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This thesis deals with modelling, analysis and control of gene regulatory networks in the bacterium E. coli, with tools of Control Theory. Different mathematical methodologies (qualitative/quantitative, deterministic/stochastic) have been used to best describe the different biological systems under investigation. Notably, in the first part of the thesis we mainly addressed the problem of controlling the growth rate of bacterial cells.

Growth control is essential in industrial biotechnology and fundamental research of this kind could pave the way to novel types of antimicrobial strategies. To this aim we developed new qualitative mathematical formalisms, derived from piecewise linear systems, to couple gene expression with growth rate. We applied these formalisms to small E. coli synthetic gene circuit models (conceived with our collaborators from Ibis, Inria Grenoble) implementing both open and closed loop configurations. By means of phase plane analysis and bifurcation diagrams we showed that the proposed qualitative control strategies, which act on the gene expression machinery (GEM), can mathematically control the cell growth rate. Moreover, in order to identify the key components of GEM that mostly determine the bacterial growth rate, we also tested several growth rate models using Boolean computational tools. In the second part of the thesis, we developed a coarse-grained, but quantitative, ODE model of E. coli GEM whose parameter values have been identified from published experimental data at different steady state growth rate values. This coarse-grained E. coli model may be used, in the future, as starting point for the design of synthetic genetic manipulations, which implement desired controls of the bacterial GEM. In the third part, we moved from population cell models to single cell models. In particular we addressed the problem of stochastic state estimation for gene regulatory networks at the level of single cells. We took the Chemical Master Equation (CME) as a reference modelling approach, and investigated the use of stochastic differential model approximations for the construction of practical real-time filters. To this aim, we considered a Square-Root Unscented Kalman Filter built on a Chemical Langevin Equation approximation of the CME. State estimation is interesting per se for the reconstruction of gene network variables that cannot be measured directly; in addition it can be used as an intermediate step for identification, and plays a central role toward model-based control.

Résumé

Cette thèse porte sur la modélisation, l'analyse et le contrôle de réseaux de régulation génétique dans la bactérie E. Coli, avec les outils de la Théorie du Contrôle. On utilise plusieurs formalismes (qualitatif/quantitatif, déterministe/stochastique) pour décrire les différents systèmes. Dans la première partie de la thèse, on considère le problème du contrôle du taux de croissance pour les bactéries. Le taux de croissance est une caractéristique essentielle pour l'industrie des biotechnologies, et cette recherche peut ouvrir la voie à de nouvelles stratégies antimicrobiennes. Nous avons développé de nouveaux formalismes qualitatifs, basé sur les systèmes affines par morceaux différentiels, qui couplent l'expression des gènes et la croissance. Nous appliquons ces formalismes à de petits modèles de circuits génétiques synthétiques (conçus avec nos collaborateurs de Ibis, Inria Grenoble), et étudions des boucles de contrôle ouvertes ou fermées. Par une étude du portrait de phase et des bifurcations , nous montrons que la stratégie qualitative de contrôle proposée, qui agit sur la machinerie cellulaire globale, permet de contrôler le taux de croissance. Pour trouver les composants les plus représentatifs de cette machinerie cellulaire, nous testons plusieurs modèles de taux de croissance, avec des outils de calcul booléens. Dans la seconde partie de la thèse, nous développons un modèle simplifié de la machinerie cellulaire globale chez E. Coli, basé sur des équations différentielles, et dont les paramètres sont identifiés à partir de données de la littérature pour plusieurs taux de croissance. Ce modèle pourra être utilisé comme une base pour tester des stratégies de contrôle de la machinerie cellulaire, par des techniques de biologie synthétique. Dans la troisième partie, nous passons des modèles de population de cellules à des modèles de cellule individuelle ; nous considérons le problème de l'estimation stochastique de l'état dans des réseaux de gènes pour une seule cellule. L'équation maitresse de la chimie est prise comme modèle de référence, et nous étudions l'utilisation d'approximation par des modèles différentiels stochastiques pour la construction de filtres efficaces en temps réel. Nous considérons pour cela une version non-linéaire du filtre de Kalman basée sur une approximation de l'équation maitresse par l'équation de Langevin chimique. L'estimation de l'état est intéressante en soi, car elle permet de reconstituer des variables non mesurables dans des réseaux génétiques ; de plus, c'est une étape nécessaire pour l'identification, et pour le contrôle basé sur un modèle.

At the beginning of the 21 st century, however, the research in biology has moved towards a more integrated understanding of molecular and cellular systems. In fact, we are increasingly observing how the integration of different fields of biology, natural sciences and engineering allows researchers to better understand how cells work, how cellular process are regulated, and how cells respond to environmental stresses or even anticipate those changes. This is in part due to the fact that new technologies provide faster, cheaper, more accurate and comprehensive measurements of gene expression levels [START_REF] Bolouri | Computational modeling of gene regulatory networks: a primer[END_REF][START_REF] Klipp | Systems biology in practice: concepts, implementation and application[END_REF]. The larger and always more complex amount of data, that has become available in this way, is however not suited to be analysed manually. Hence, mathematical and computational tools turn out to be indispensable to pre-process, analyse, and eventually extract meaning and insights from such experimental data.

Concomitant with all these advances and the potential technological impact due to these revolutionary biological developments, leading scientists in life science have recognized that a new system-level approach is required. This approach has been termed systems biology. Notably, "system biology" can be defined as an holistic molecular analysis of cellular networks, relying on the integration of different experiments, data processing, and modelling [START_REF] Arkin | Network news: innovations in 21st century systems biology[END_REF][START_REF] Kitano | Computational systems biology[END_REF][START_REF] Kitano | Systems biology: A brief overview[END_REF][START_REF] Klipp | Systems biology in practice: concepts, implementation and application[END_REF]. Eventually, the ambitious goal of systems biology is the understanding of an entire biological system by modelling, predicting, and controlling the behaviour of all its components. Chapter 1. Introduction and thesis overview 2

Motivations

A major topic of systems biology is the modelling and analysis of networks: gene networks, protein interaction networks, signalling networks, metabolic networks, etc [START_REF] Klipp | Systems biology in practice: concepts, implementation and application[END_REF].

In this regard, we developed the main content of this thesis, which focuses on modelling, analysis and control of gene regulatory networks (GRN) using different tools from Control Theory.

Models of GRN provide significant insights into the underlying molecular mechanisms, and could lead to important biotechnological applications. They allow researchers to dissect the role of components of a given system, so as to give precise definitions of the functions exerted by system components and their interactions. Moreover, they can be easily used for system simulations to test different scenarios that are not accessible by experiments. However, we have to take into account that biological systems have particular constraints, which often give rise to new mathematical problems for which classical methods are not applicable [START_REF] Sontag | Some new directions in control theory inspired by systems biology[END_REF]. In fact, the type of data available for the system is one of the first aspects to consider in modelling and analysing of GRN. Currently, there are many different biochemical experimental techniques, which range from qualitative (e.g.. micro-array data) to quantitative (e.g reporter genes or fluorescence proteins). Therefore, according to the type/quality of data, modellers have to choose the more suitable mathematical formalisms to describe the given biological process: for instance a choice between discrete/continuous, deterministic/stochastic (see Chapter 3). Moreover, a second aspect which has to be considered is the purpose of the models, that is the particular phenomenon or aspect of the biological system that is intended to study. Hence, the mathematical part can be kept as simple as possible to facilitate the implementation and the analysis, so as to have faster and more comprehensible results.

Or the system can be modelled in much more detail in order to have a very realistic model, but then it can be very complicated to deal with. Of course, none of the considerations mentioned above makes a model wrong or right, but they determine whether a model is able to solve the problem for which it has been developed [START_REF] Klipp | Systems biology in practice: concepts, implementation and application[END_REF]. In addition, model analysis is strongly related to the particular mathematical formalism employed to formulate the model. This is because the mathematical framework will also determine the types of methods that can be used to analyse the model.

Along with measurements (outputs), there are also external actions (inputs) that can be applied to the system. As we have seen for outputs, also inputs (terminology taken from Control Theory) strongly depend on and are limited by the experimental techniques currently available. For instance, possible inputs that can be applied to a biological system are chemicals gradients, mechanical and electrical stimulations, optical excitations, and genetic type inputs (inducible engineered promoters) [START_REF] Leduc | How do control-based approaches enter into biology?[END_REF]. Input-output Chapter 1. Introduction and thesis overview 3 approaches play a fundamental role when the objective is that of controlling biological systems. Intracellular functions can basically be controlled in two fashions: by open-loop or closed-loop approaches. Open-loop methodology is employed by researchers by altering the functions of the cells, for instance through inducers, drugs, toxins, and observing the corresponding outputs; there is no "closing" of the systems by feeding back the response to determine a new input for further system alterations [START_REF] Gardner | Construction of a genetic toggle switch in Escherichia coli[END_REF][START_REF] Hlavacek | Rules for coupled expression of regulator and effector genes in inducible circuits[END_REF][START_REF] Tan | Emergent bistability by a growth-modulating positive feedback circuit[END_REF]. The main goal of open-loop approaches in biology is that of testing intracellular functions with respect to altered dynamics. Moreover, open-loop gene circuits have strongly contributed to the emerging of the synthetic biology discipline. Synthetic biology aims at designing and constructing gene networks from basic biochemical components [START_REF] Benner | Synthetic biology[END_REF][START_REF] Khalil | Synthetic biology: applications come of age[END_REF][START_REF] Mukherji | Synthetic biology: understanding biological design from synthetic circuits[END_REF]. The most difficult and intriguing challenge in applying control theory to biology is not simply to understand how a biological system controls itself, but also to figure out how to exert dynamic control on a system. Implementing a closed-loop control in cells is a very challenging task because it requires real-time measurements, possibly without interfering too much with the biological systems, and controllers that, using the readouts, modify the biological system state accordingly [START_REF] Leduc | How do control-based approaches enter into biology?[END_REF]. Examples of recent closed-loop controls applied to GRNs are [START_REF] Milias-Argeitis | In silico feedback for in vivo regulation of a gene expression circuit[END_REF][START_REF] Uhlendorf | Long-term model predictive control of gene expression at the population and single-cell levels[END_REF].

Along these lines, we applied modelling, analysis and control techniques to the gene expression machinery (GEM) of the bacterium Escherichia coli (E. coli ), with the aim of dynamically linking gene expression and cell growth rate so as to develop possible (theoretical) controllers for the bacterial growth [START_REF] Chaves | GeMCo: Model reduction, experimental validation, and control for the gene expression machinery in E. coli[END_REF]. E. coli is a model organism that is easy to manipulate and, being one of the most widely used biological models, much knowledge is available about its regulatory networks [START_REF] Lee | Systems biology and biotechnology of Escherichia coli[END_REF]. E. coli, in the presence of a carbon source-glucose being the preferred sugar-grows in an exponential manner until it exhausts the nutrient sources, and then enters a stationary phase with practically zero growth. The wild-type bacteria grow at different rates in the presence of carbon sources of different types: fastest growth on glucose and a large range of slower growth rates on alternative carbon sources. While many experimental and theoretical studies have addressed the regulation of the growth rate [START_REF] Bettenbrock | Correlation between growth rates, EIIACrr phosphorylation, and Intracellular Cyclic AMP levels in Escherichia coli K-12[END_REF][START_REF] Dennis | Control of rRNA synthesis in Escherichia coli : a systems biology approach[END_REF][START_REF] Flores | Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system[END_REF][START_REF] Paliy | Growth of E. coli BL21 in minimal media with different gluconeogenic carbon sources and salt contents[END_REF], no attempts have been made to modify these control mechanisms in a directed way.

From the biological point of view, the topics of the physiological regulation of cellular growth and the functioning of the gene expression machinery have been extensively studied in the literature (e.g., [START_REF] Bremer | Feedback control of ribosome function in Escherichia coli[END_REF]). However, the dynamic intertwining of the two, and the redesign of the system to externally control the growth rate, do not seem to have been much explored. Several modelling attempts opened the way for understanding the relation between the gene expression machinery and the control of cellular growth in a fixed environment. Some models focus on specific components of the machinery, for instance, Chapter 1. Introduction and thesis overview 4 the growth-dependent changes of RNA polymerase partitioning [START_REF] Bremer | Free RNA polymerase and modeling global transcription in Escherichia coli[END_REF][START_REF] Klumpp | Growth-rate-dependent partitioning of RNA polymerases in bacteria[END_REF] or the relationship between ribosomal RNA (rRNA) synthesis and the growth rate [START_REF] Dennis | Control of rRNA synthesis in Escherichia coli : a systems biology approach[END_REF]. Recent models have provided a more global view of this system, with for instance a metabolic network reconstruction of the transcriptional and translational machinery [START_REF] Thiele | Genome-scale reconstruction of Escherichia coli 's transcriptional and translational machinery: a knowledge base, its mathematical formulation, and its functional characterization[END_REF] and a biophysical description of the gene expression machinery [START_REF] Tadmor | A coarse-grained biophysical model of E. coli and its application to perturbation of the rRNA operon copy number[END_REF]. All these models show a relation between steady state exponential growth on the one hand, and the free RNA polymerase concentration and the synthesis rate of rRNAs on the other hand. However, they do not consider the possibility of externally controlling some of the parameters affecting growth. The present thesis intends to fill in this gap, by constructing minimal dynamical models of the multiple connections between growth control and the functioning of the gene expression machinery. We will not develop our models from scratch: we will build upon the existing work mentioned above and also, take into account preliminary (unpublished) results from partners (Ibis team, Inria Grenoble).

To recap, the main objectives of this thesis are those of developing new modelling formalisms as well as new control strategies for GRN, by applying or adapting classical tools from Control Theory to Systems and Synthetic Biology.

Contributions

After two introductory chapters on fundamentals of molecular cell biology (Chapter 2) and mathematical modelling formalisms of GRNs (Chapter 3), we mainly address-in the first part of the thesis-the problem of theoretically controlling the cell growth rate.

Notably, we developed two novel qualitative formalisms to model and dynamically link gene expression and bacterial growth rate. These qualitative formalisms are derived from piecewise linear systems (PL, see Chapter 3 and references therein), from which we kept the use of step functions to model the interactions between the elements of the GRN, and added (and tested) two mathematical descriptions of growth rate to model the dilution effect.

Notably, in Chapter 4 we develop and analyse an open-loop model of a minimal synthetic gene circuit, that describes part of the gene expression machinery (GEM) in Escherichia coli. Here we assume that the bacterial growth rate is proportional to the concentration of a component of the GEM (CGEM) (e.g., RNAP, ribosome). This model is a piecewise non-linear system with two variables (the concentrations of CGEM and another protein) and an input (an inducer) which controls the CGEM expression. We study the qualitative dynamics of the model and the bifurcation diagram with respect to the input. Moreover, an analytic expression of the growth rate during the exponential phase as function of the input is derived, and an identifiability analysis of its parameters is pursued using artificial data.

In Chapter 5 we continue studying and developing the synthetic gene circuit model introduced in Chapter 4, for which also a closed-loop configuration is developed. This closed-loop model, achieved by appropriately rewiring and designing the gene interactions, mathematically reproduces the inverse diauxie phenomenon in an appropriate range of the input values. This means that the designed feedback law theoretically allows modified E. coli to grow slower on glucose than on a less preferred carbon source (e.g.. maltose), inversely to the normal (wild-type) bacterial behaviour.

In Chapter 6, we further improve the qualitative modelling formalism by introducing a new expression for the growth rate. That is, we now model the growth rate as the weighted minimum of two limiting gene products responsible for bacterial growth (RNAP and ribosome). The resulting system is a switched system with two piecewise quadratic (PQ) modes. Moreover, we propose and analyse a bi-dimensional SPQ openloop model-describing the bacterial gene expression machinery-in which the growth rate of cells can be controlled by an external input which tunes the synthesis of one of the variables.

In Chapter 7 we use some recent Boolean tools to compute attractors of Boolean GRNs, with the aim of testing several bacterial growth rate models depending on the GEM. Notably, some of the growth rate models tested here are Boolean versions of those growth rate functions introduced in Chapters 4-5-6, whose plausibility have been confirmed.

The discrete Boolean framework permits easier testing of different combinations of biochemical interactions, leading to hypotheses elimination and model discrimination, and thus providing useful insights for the construction of a more detailed dynamical growth model.

Then, we moved from qualitative to quantitative modelling of GRNs. In Chapter 8

we present an ODE model of E. coli gene expression machinery developed with our collaborators in Grenoble (Inria Ibis team). Such ODE model has been calibrated using parameter values from the literature, and estimating the remaining ones from published experimental data. A reduced version of the model, obtained by assuming quasi-steady state equilibrium of mRNA species, is also presented. In fact, a low-dimensional, but still quantitative model, for which the parameters are known, can be used as starting point to design and study-in silico-possible growth rate control strategies. In this regard, the model can be easily extended considering the network motifs and dynamical growth rate expressions of Chapters 4-5-6, which qualitatively describe possible synthetic gene modifications, allowing the control the growth rate of the cells.

Chapter 1. Introduction and thesis overview 6 Finally, in Chapter 9 we switched from population based models, which use deterministic formalisms, to single cell models, where a stochastic approach may be required to better describe the biochemical reactions when species concentrations become too low. Here we address the state estimation problem for gene regulatory networks at the level of single cells. In fact, state estimation is an important tool for many aspects: it allows reconstruction of state variables that cannot be measured directly, it can be used as an intermediate step for identification [START_REF] Cacace | Stochastic modeling of expression kinetics identifies messenger half-lives and reveals sequential waves of co-ordinated transcription and decay[END_REF], and plays a central role toward model-based control [START_REF] Uhlendorf | Long-term model predictive control of gene expression at the population and single-cell levels[END_REF]. Notably, we consider models that include both intrinsic noise, in terms of stochastic dynamics, and extrinsic noise, in terms of random parameter values. We take the Chemical Master Equation (CME) with random parameters as a reference modelling approach, and investigate the use of stochastic differential model approximations for the construction of practical real-time filters. To this aim we consider a Square-Root Unscented Kalman Filter built on a Chemical Langevin Equation approximation of the CME. Then, using arabinose uptake regulation in Escherichia coli bacteria as a case study, we show that performance is comparable to that of a (computationally heavier) particle filter built directly on the CME, and that the use of information about parameter uncertainty allows one to improve state estimation performance.

Conclusions to these research works as well as some perspectives can be found in Chapter 10.

Chapter 2

Notes on Molecular Cell Biology

In this chapter we briefly introduce the most important concepts on molecular cell biology that we used throughout the thesis. Notably, we have mainly focused on gene expression, its regulation, and on some techniques used to measure gene products. For more details on the molecular biology of the cell we remand to [START_REF] Alberts | Essential Cell Biology, Third Edition[END_REF][START_REF] Alberts | Molecular Biology of the Cell[END_REF].

The Cell

All living organisms are made of cells. Cells are small units (mostly 1-100 µm), enclosed by a membrane and filled with a concentrated aqueous solution of chemicals. Each cell posses the same genetic information of the parent organism and this information, stored in DNA, is passed on to the daughter cells during cell division.

Organisms may consist of just one cell, and they are called unicellular, or they may be multicellular. Multicellular organisms are typically organized into tissues, which are groups of similar cells arranged so as to perform a specific function in addition to the housekeeping processes common to all cells.

In this thesis we will not address cell differentiation, i.e. formation of cell types in a multicellular organism, but we will only discuss the general (housekeeping) aspects of cell components and functions.

Prokaryotes and Eukaryotes

Cells are divided into two categories depending on the way the genetic material (DNA) is organized within them.
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The first category is composed of prokaryotes which-by definition-are organisms whose cells do not have a nucleus nor other well-defined compartments (see Figure 2.1).

Most prokaryotes are single-celled organisms, although some join together to form chains, clusters or other multicellular structures [START_REF] Alberts | Essential Cell Biology, Third Edition[END_REF]. In prokaryote cells DNA is stored in the cytoplasm in an area called nucleoid, but it is not enclosed within a separate nuclear envelope. Eukaryotes belong to the second category and they can be defined as organisms whose cells have a nucleus. Eukaryotic cells, in general, are bigger and more elaborate than prokaryotes. They range from unicellular yeast to plants and animals, which are very complex multicellular organisms with billions of cells. Eukaryotes, in addition to a nucleus, have other organelles, sub-cellular structures that carry out specialized functions (see Figure 2.2). For examples, mitochondria are responsible for energy production through metabolism, and containing a very small amount of DNA; chloroplasts (plants)

for photosynthesis; ribosomes serve as machinery for protein synthesis, and made up themselves of proteins and RNAs; endoplasmatic reticulum; and so forth. The cytoskeleton, made up of micro-tubules and filaments, controls cell shape, drives and guides cell movements and plays a role in intra-cell substance transport.

Since in this thesis I mainly focus on bacteria, in what follows I will introduce the bacterium E. coli, which is considered by biologists as the model organism for prokaryotic cells and we will mainly concentrate on prokaryotic cell functions. The nucleus is the most prominent organelle in the cell and contains chromosomes (the storage sites of DNA). Mitochondria produce chemical energy (ATP) for the cell. Centriolis are involved in nuclear division during cell division. Ribosomes, the endoplasmatic reticulum and the Golgi apparatus work together in the synthesis of proteins. (Picture taken from [START_REF] Carta | Switched piecewise quadratic models of biological networks: application to control of bacterial growth[END_REF]).

E. coli as model organism

It is thought that all cells descended from a common ancestor [START_REF] Alberts | Essential Cell Biology, Third Edition[END_REF]. Hence, the knowledge gained from the study of one organism allows us to better understand others, even ourselves. But some organisms are more convenient than others to study in the laboratory. This is because some are easier to genetically manipulate and reproduce faster; others are multicellular but transparent and so biologists can easily watch the development of their tissues and organs.

Molecular biologists have focused on Escherichia coli (E. coli for short) as a model organism for prokaryotic cells. E. coli is a small, rod-shaped bacterium that normally lives in the gut of humans and other vertebrates, but it can be grown easily in a simple nutrient broth in a culture bottle. E. coli is able to grow in variable chemical conditions and it reproduces rapidly (approximately one generation in 20 minutes). The bacterium E. coli was one of the first organisms to have its complete genome sequenced [START_REF] Blattner | The complete genome sequence of Escherichia coli K-12[END_REF]. Its genetic information is stored in a single, circular double-stranded molecule of DNA, approximately 4.6 million nucleotide pairs long, and it makes 4300 different proteins.
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The molecular functioning of E. coli is better understood than any other organisms and most of our knowledge of the fundamental mechanisms of life (how cells replicate their DNA, how they decode these genetic instructions to make proteins, etc.) has come from studies on it. In fact, although human cells are eukaryotic cells, subsequent research has confirmed that basic molecular processes occur in the same way both in human and in E. coli cells [START_REF] Alberts | Essential Cell Biology, Third Edition[END_REF]. 

Gene expression: from DNA to Protein

The central dogma of molecular biology says: "DNA makes RNA, RNA makes protein, and proteins make the cell" [START_REF] Crick | Central dogma of molecular biology[END_REF]. This key paradigm of molecular biology states that the flow of information in gene expression is from genes encoded by DNA to mRNA by transcription and from mRNA to protein by translation (see Figure 2.4). At any given time, and in any given cell of an organism, thousands of genes and their products (RNA, proteins) actively participate in an orchestrated fashion to generate the macromolecular machinery for life. 

Transcription: from gene to RNA

The genome, i.e. the genetic information of an individual, describes all the proteins that are potentially present in every cell of a given organism. This information is encoded in the DNA molecule, which is a double-stranded helix made of alternating sugars (deoxyribose) and phosphate groups (related to phosphoric acid), with the nucleobases (guanine(G), adenine(A), thymine(T), and cytosine(C)) attached to the sugars (see Fig- The first step in the synthesis of protein is transcription and it consists in copying the nucleotide sequence of a gene into RNA (ribonucleic acid ). Like DNA, RNA is a polymer made of four different nucleotides . It differs from DNA in three respects:

1. whereas DNA is always a double-stranded helix, RNA is single stranded;

2. the nucleotides in RNA are ribonucleotides, i.e they contain the sugar ribose rather than deoxyribose;

3. although, like DNA, RNA contains the bases adenine (A), guanine (G), and cytosine (C), it contains uracil (U) instead of thymine (T) found in DNA.

All of the RNA in a cell is made by transcription. The enzyme that carries out transcription is called RNA polymerase (RNAP). RNAP, to begin transcription, must be able to recognize the start of a gene, called promoter, and bind steadily to the DNA at this site. Then, RNAP moves stepwise along the DNA, unwinding the DNA double helix to expose the bases on each DNA strand. As RNAP progresses, it adds nucleotides one by one to the RNA chain using an exposed DNA strand as a template. Chain elongation continues until RNAP meets a stop site in the DNA, the terminator, where the enzyme halts and releases both the DNA template and newly made RNA chain. The resulting RNA transcript is thus single-stranded and complementary to one of the two DNA strands. The process of transcription is carried out by RNA polymerase (RNAP), which uses DNA (black) as a template and produces RNA (blue). (Picture taken from [START_REF] Carta | A coarse-grained dynamical model of E. coli gene expression machinery at varying growth rates[END_REF]).

Several types of RNA are produced in cells. The majority of genes specify the amino acid sequence of proteins, and the RNA molecules that are transcribed from these genes are called messenger RNA (mRNA). Moreover, there are also non-messenger RNA:

ribosomal RNA (rRNA) that forms the core of ribosomes, on which the mRNA is translated into protein, and transfer RNA (tRNA) that selects and carries amino acids to the ribosome for the protein synthesis.

Translation: from RNA to protein

The next step in gene expression is called translation, because it allows the conversion of the information stored into mRNA to protein. Since there are only 4 different nucleotides Chapter 2. Notes on Molecular Cell Biology 13 in mRNA but 20 different amino acids in a protein, this translation can not be a direct one-to-one correspondence between a nucleotide in RNA and an amino acid in a protein.

The rules by which the nucleotides of a gene, by means of mRNA, are translated into the amino acid sequence of a protein are known as the genetic code. Notably, an mRNA sequence is decoded in sets of three nucleotides, called codons, thus allowing 4 3 = 64 possible combination of three nucleotides, even though only 20 amino acids are commonly found in proteins.

The translation of mRNA into protein is due to adaptor molecules that recognize and bind-through base-pairing-to a codon at one site on their surface (called anticodon)

and to an amino acid at another site. These adaptors are small RNA molecules (about 80 nucleotides in length) known as transfer RNAs (tRNAs). Transfer RNAs are captured and hold in position on the mRNA strand by a large molecular machine that moves along the mRNA allowing accurate and rapid translation of the genetic code.

This complex molecular machine is the ribosome, which is made up of more than 50 different proteins (the ribosomal proteins) and several RNA molecules called ribosomal RNAs (rRNAs). 

Regulation of Gene expression

The regulation of gene expression is the process by which individual cell specifies which of its many thousands of genes have to be expressed. This mechanism is paramount, especially for multicellular organisms, as animals, which have to differentiate their cells in order to produce, for instance, muscle, nerve, blood cells and, eventually, all the variety of cell types seen in the adult [START_REF] Emerson | Specificity of gene regulation[END_REF]. Thus, cell differentiation arises because cells produce and accumulate different RNA and protein molecules [START_REF] Alberts | Essential Cell Biology, Third Edition[END_REF]. But, regulation of gene expression is also widely adopted by prokaryotic/unicellular cells like bacteria. In fact, bacterial cells can change the expression of their genes in response to external signals, for example, according to the food sources that are available in the environment [START_REF] Dean | Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. characterization of inducer exclusion-resistant mutants and reconstitution of inducer exclusion in proteoliposomes[END_REF][START_REF] Narang | Bacterial gene regulation in diauxic and non-diauxic growth[END_REF][START_REF] Notley-Mcrobb | The relationship between external glucose concentration and cAMP levels inside Escherichia coli : implications for models of phosphotransferase-mediated regulation of adenylate cyclase[END_REF].

Gene expression can be regulated at many steps in the pathway from DNA to RNA to Protein. Moreover, the stability of the final gene product, whether it is RNA or protein, also contributes to the expression level of the gene-an unstable (faster degradation) product results in a lower expression level than a stable one which degraded more slowly.

Transcriptional control

Control of transcription is mostly exerted at the initiation step. In Subsection 2.2.1 we saw that RNAP binds to the promoter of a gene to make an RNA copy of the gene. In addition to the promoter, almost all genes have regulatory DNA sequences that are used to activate (resp. inhibit) the gene transcription by facilitating (resp. preventing) RNAP binding to the promoter. However, these regulatory DNA sequences-to have any effect-have to be recognized by proteins called transcription factors, which bind to DNA. Hence, each transcription factor is able to recognize a different DNA sequence and so regulates only particular genes. Notably, a transcription factor is a repressor protein if, in its active form, it blocks the binding of RNAP to the promoter, thus switching genes off. But some transcription factors-called activators-do the opposite, that is they switch on some genes by binding nearby the promoter and helping RNAP to initiate transcription.

Post-transcriptional control

Post-transcriptional controls operate after RNAP has bound to the promoter of a gene to synthesize RNA. One of the most common ways to regulate gene expression at posttranscriptional level is to control translational initiation, so as to modulate protein synthesis. Bacterial mRNAs, for example, have a ribosome-binding site (RBS) where translation begins. These RBS have to be recognized by a ribosome, which binds to it and starts peptide synthesis. Hence, by blocking or exposing the RBS, the bacterium can either inhibit or facilitate the translation of an mRNA.

Measurement Techniques

In this section we will briefly present some techniques used in molecular biology to measure gene expression. Gene expression measurement and analysis have become essential tools for medical investigations and for characterizing complex biological circumstances.

Here, without going into details-which is behind the scope of this thesis-we will list some techniques used to quantify mRNA and protein abundance.

mRNA quantification

Several techniques are available to quantify levels of mRNA in a cell, generally referred to as DNA Microarray [START_REF] Asyali | Gene expression profile classification: a review[END_REF][START_REF] Klipp | Systems biology in practice: concepts, implementation and application[END_REF]. DNA microarray is a tool that allows the RNA of thousands of genes to be monitored at the same time, so as biologists can visualize which genes are switched on (or off) as cells grow, divide, or respond to hormones, toxins, or infections. The information contained in DNA microarrays say whether the expression of each gene has increased or decreased relative to a reference condition. It is therefore an essentially qualitative measurement. 

Protein quantification

The most common method to detect the presence of a specific protein-or a small number of them-in a sample taken from an experiment is the Western blot technique. The protein is extracted from the sample and together with a small number of antibodieswhich recognize only specific proteins-is transferred to a nitrocellulose membrane. Different methods, for instance radioactive labelling of stains, are then used in order to produce bands, indicating the location of the protein. Finally, the intensity of the band is proportional to the amount of protein [START_REF] Klipp | Systems biology in practice: concepts, implementation and application[END_REF]. is easier to monitor. In this fashion, the amount, the timing, the cell specificity of reporter protein synthesis will reflect the function of the original gene as well as the behaviour of the regulatory sequences that belong to it. In most cases, the expression of the reporter gene is monitored by tracking the fluorescence or the luminescence of its protein product [START_REF] Jong | Experimental and computational validation of models of fluorescent and luminescent reporter genes in bacteria[END_REF].

Nowadays, one of the most used reporter proteins is the green fluorescent protein (GFP), which traditionally refers to the protein first isolated from the jellyfish Aequorea victoria. Once GFP gene has been fused to the end of the gene that encodes a protein of interest, GFP can be monitored simply by following its fluorescence by microscopy.

Fluorescent protein methods are more and more used in combination with flow cytometry. Flow Cytometry devices are instruments that, at rates of up to thousands of cells per second, can count individual cells, sort them into different groups, analyse cellular characteristics such as cell size, shape, or quantity of measured fluorescence. In this fashion, it is possible, for instance, to count how many cells in a population synthesize 

Measurement limitations

Even though all the measurement techniques just presented are of fundamental importance for deciphering and exploiting genetic information, all of them are intrinsically noisy because of chemical interactions in blots, production errors in arrays, or other sources of interference and artefacts. Moreover, microarray and Western blot measurements are affected by low precision because very few bits of information can be extracted from their data.

These limitations of imprecision and noise have to be taken into account in systems biology modelling because it is not always possible to tightly fit model parameters to such data. When this is the case-to overcome these difficulties-qualitative models turn out to be more suitable.

Chapter 3

Modelling Genetic Regulatory

Network Systems

As we have seen in Chapter 2, the genome of an organism plays a fundamental role in the control of almost all cellular processes. Hence, to elucidate the functioning of organisms on the molecular level, we need to know which genes are switched on, which proteins are synthesized, when and how transcription factors interact and bind to regulatory sites of other genes.

DNA, RNA, proteins, and other small molecules are all interconnected through positive and negative feedback loops, forming the so called genetic regulatory networks (GRN). Since an intuitive understanding of the dynamics of such GRN-which could involve many components-is difficult to achieve, the help of mathematical and computer tools for modelling and simulation of genetic regulatory networks is indispensable [START_REF] Jong | Modeling and simulation of genetic regulatory systems: a literature review[END_REF][START_REF] Hasty | Computational studies of gene regulatory networks: in numero molecular biology[END_REF][START_REF] Smolen | Modeling transcriptional control in gene networks-methods, recent results, and future directions[END_REF].

This chapter reviews some formalisms that have successfully been employed in mathematical biology to model genetic regulatory systems. Notably, it will deal with gene expression modelling techniques without considering those cellular processes, such as ion channels, membrane electrical behaviour, transporters and pumps, cell cycle, etc., that might be modelled as well (see examples in [START_REF] Fall | Computational Cell Biology. Interdisciplinary applied mathematics[END_REF]), but that are beyond the scope of this thesis.

Specifically, this chapter focuses on those gene expression modelling formalisms that will be used to develop the most important findings of this thesis, i.e. 

Boolean Models

Modelling GRNs with the Boolean framework has first been introduced by S. Kauffman and R. Thomas [START_REF] Glass | The logical analysis of continuous, non-linear biochemical control networks[END_REF][START_REF] Kauffman | Emergent properties in random complex automata[END_REF][START_REF] Thomas | Boolean formalization of genetic control circuits[END_REF][START_REF] Thomas | Biological feedback[END_REF]. Since then, relevant theoretical and applied research on the Boolean formalism has been pursued [START_REF] Remy | Graphic requirements for multistability and attractive cycles in a boolean dynamical framework[END_REF][START_REF] Richard | Positive circuits and maximal number of fixed points in discrete dynamical systems[END_REF][START_REF] Richard | Negative circuits and sustained oscillations in asynchronous automata networks[END_REF]. Moreover, the Boolean framework has turned out to be a very useful tool when dealing with large gene regulatory networks (10 or more variables) as it is successfully reported in [START_REF] Albert | The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster[END_REF][START_REF] Calzone | Mathematical modelling of cell-fate decision in response to death receptor engagement[END_REF][START_REF] Davidich | Boolean network model predicts cell cycle sequence of fission yeast[END_REF][START_REF] Fauré | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF][START_REF] Kauffman | Random boolean network models and the yeast transcriptional network[END_REF][START_REF] Li | The yeast cell-cycle network is robustly designed[END_REF][START_REF] Li | Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling[END_REF].

As a matter of fact-at the highest level of abstraction-the state of a GRN component (gene, mRNA, protein, etc) can be represented by a Boolean variable which can only take two values: 0 or 1. In addition, these variables, or nodes, are interconnected by a set of logical rules (AND, OR, NOT etc.), which orchestrate their dynamical behaviour (see, for instance, [START_REF] Wang | Boolean modeling in systems biology: an overview of methodology and applications[END_REF] for a review on Boolean models in systems biology). Boolean variables are particularly suitable for modelling gene expression when experimental data are scarce and/or qualitative. In fact, in these cases, one can assume that a Boolean variable is 0 (resp., 1) when the expression of a gene or protein is weak (resp., strong).

Boolean variables will be denoted by X = (X 1 , ..., X n ) with the state space Ω = {0, 1} n , and also the time at which the system evolves is assumed to be discrete, 0 < t 1 < ... < t max , with t max ≤ +∞. As previously said, the dynamics of a Boolean network is dictated by a set of logical rules, {F i (X) : Ω → {0, 1}, i = 1, ..., n} which, given the state at t k , determine the state at t k+1 : X i (t k+1 ) = F i (X(t k )) or, in a more compact way:

X + i := F i (X), i = 1, ..., n.
Finally, to dynamically simulate a Boolean network, one must specify the mode of updating the variables of the system, that is how values of the nodes progress in time. Several updating algorithms have been developed, but the two most employed are briefly discussed next.

Synchronous and Asynchronous networks

One of the most common strategies to update the system and obtain its trajectories is that of assuming that all variables are simultaneously updated. This means that, at each instant t k+1 all variables are changed to their new values:

∀k > 0, ∀i = 1, ..., n X i (t k+1 ) = F i (X i (t k )).
The corresponding networks are, hence, called synchronous Boolean networks.

However, since the timescales of different biological processes can vary widely (transcription is generally faster than translation, and complex binding is even faster; see, for instance, some timescales in [START_REF] Alon | An Introduction to Systems Biology: Design Principles of Biological Circuits[END_REF]), the synchronous updating is not always the more realistic choice in systems biology. To overcome this issue, a more general updating algorithm assumes that, at each time instant, only one node is updated following its logical rule, that is:

∀k > 0, ∃!j ∈ 1, ..., n X j (t k+1 ) = F j (X i (t k )) and X i (t k+1 ) = X i (t k ) i = j.
In this case, the corresponding networks are called asynchronous Boolean networks.

For both strategies, the trajectories of the Boolean network consist of a sequence of transitions among the 2 n states in Ω. Notably, a transition between two states V , W

∈ Ω occurs if V = X(t k ) and W = X(t k+1 ), and in this case W is called the successor of V . More generally, the set of all asynchronous successors of X is given by:

σ(X) = { X ∈ Ω : ∃j Xj = F j (X) and Xi = X i i = j}.
All possible trajectories can also be represented by a directed graph with 2 n vertexes (the cardinality of Ω), with an edge connecting two vertexes whenever one state is the successor of the other. It is worth noting that there is an essential difference between the directed graphs corresponding to synchronous or asynchronous networks. Any given sate of a synchronous network can have at most only one successor, hence giving rise to a deterministic updating, whereas the state of an asynchronous network can have up to n successors, i.e. potentially leading to several different trajectories from any given state.

Graph theoretical representation

Here, we focus only on asynchronous Boolean networks since, as we have said above, they permit a more realistic interpretation of the different timescales present in biological processes. The associated directed graph will be called the asynchronous transition graph, and its properties can be studied using graph theory and its application [START_REF] Bondy | Graph theory with applications[END_REF][START_REF] West | Introduction to graph theory[END_REF]. To this aim, a directed graph can be decomposed into strongly connected components (SCCs), which are the maximal subsets of vertexes where every pair is mutually reachable. Notably, two vertexes are said to be mutually reachable if there are directed paths linking one vertex to the other. SCCs can be made up of a single state, or several states, or even the whole state space for some special models. Hence, SCCs can have outgoing paths directed towards (states contained in) other SCCs. An SCC that contains no outgoing path is called a terminal SCC or attractor, since any trajectory that reaches it cannot leave. To conclude, identifying and analysing the SCCs of a Boolean network facilitates the identification of the attractors, which describe the asymptotic behavior of the system.

Example: Boolean bistable switch

The Boolean model corresponding to the bistable switch circuit depicted in Figure 3.1 reads as:

m + 1 = N OT p 2 p + 1 = m 1 m + 2 = N OT p 1 p + 2 = m 2 (3.1)
To construct the asynchronous transition graph of model (3.1), one proceeds as follows:

1. for each state X = (m 1 , p 1 , m 2 , p 2 ), compute the possible variable changes from the synchronous Boolean table using (3.1); 2. then consider only one variable change at time, to obtain all the successors of X, i.e. σ(X) = {Y 1 , . . . , Y } and draw an edge from X to each Y i .

For example: X = (1, 0, 0, 1) ⇒ X + = (0, 1, 1, 0) so the possible successors Y i are: 

Y 1 = (0, 0, 0, 1), Y 2 = (1, 1, 0, 1), Y 3 = (1, 0, 1, 1), Y 3 = (1,

Ordinary Differential Equation (ODE) Models

Very likely, the most used formalism for modelling gene regulatory networks is that of ordinary differential equations (ODEs). These models can generally be studied and analysed using tools developed for nonlinear systems, in order to investigate dynamics, bifurcation behaviour, system stability [65,[START_REF] Khalil | Nonlinear systems[END_REF]. Example of biological models involving the ODE formalism can be found in [65,[START_REF] Heinrich | The regulation of cellular systems[END_REF]105]. and let m i , p i be the concentrations of mRNA and protein for the associated gene i, respectively, we have [START_REF] Polynikis | Comparing different ode modelling approaches for gene regulatory networks[END_REF]: 

dm i dt = F i (f R i (p 1 ), f R i (p 2 ), ..., f R i (p n )) -γ i m i (3.2)
dp i dt = f P i (m i ) -δ i p i (3.
F i (f R i (p 1 ), f R i (p 2 ), ..., f R i (p n ))
denotes mRNA synthesis rate whereas the negative part γ i m i stands for mRNA degradation rate.

Similarly, in (3.3) f P i (m i ) models the translation rate of mRNA m i into protein p i , and δ i p i represents protein degradation rate. Notably, the generic function f R i (p j ) : R → R in (3.2)-usually nonlinear-describes how protein p j regulates the synthesis of m i .

If protein p j has no effect on m i , then f R i (p j ) = 0. The function F (•) in (3.2) is a combination of sums and/or products of functions f R i (p j ), describing how transcription factors p i regulate mRNA synthesis (ex. in an additive and/or multiplicative fashion).

Functions f R i (p j ), depending on the specific transcription regulation, can follow the law of mass action [START_REF] Heinrich | The regulation of cellular systems[END_REF][START_REF] Horn | General mass action kinetics[END_REF], the Michaelis-Menten enzymatic kinetics [153], or-as some experimental evidences suggest-can be represented by monotonic sigmoidal-shaped functions [START_REF] Yagil | Quantitative aspects of protein induction[END_REF][START_REF] Yagil | On the relation between effector concentration and the rate of induced enzyme synthesis[END_REF] which increases when p j is an activator and decreases when p j is an inhibitor. A function-satisfying this property-which is widely employed in systems biology is the Hill function [START_REF] Alon | An Introduction to Systems Biology: Design Principles of Biological Circuits[END_REF]. A Hill function can be increasing, and hence acting as an activator, or decreasing, if is modelling an inhibition. The increasing Hill function,

h + (p j ; θ j , n j ) : R ≥0 × R 2 >0 → R ≥0
, is an increasing function in p j with two parameters, θ j and n j , which starts from zero and approaches unity:

h + (p j ; θ j , n j ) = p n j j p n j j + θ n j j . (3.4)
The parameter θ j indicates the threshold of protein concentration p j needed to produce a relevant increase in mRNA synthesis (regulated by p j ). The parameter n j is referred to as Hill coefficient (or cooperative coefficient) and it controls the steepness of the Hill function (the larger n j , the more step-like is the Hill function). Moreover, in some cases n j could also have a biological meaning, it denotes the number of protein molecules required for binding to the DNA [START_REF] Widder | Dynamic patterns of gene regulation i: simple two-gene systems[END_REF]. The decreasing Hill function h -(p j ; θ j , n j ) :

R ≥0 × R 2 >0 → R ≥0
, is a decreasing function given by:

h -(p j ; θ j , n j ) = 1 -h + (p j ; θ j , n j ) = θ n j j p n j j + θ n j j . (3.5)
Finally, the translation function f P i (m i ) in 3.3 is often represented as a linear term proportional to the mRNA concentration m i .

Because of the nonlinearity of the Hill functions, a GRN involving many genes can not generally be solved analytically, and so model reduction/approximation techniques and computer tools are necessary.

Quasi-steady-state assumption of mRNA concentration

Very often in the literature, when modelling gene expression, it is assumed that the main gene expression regulation is at the transcriptional level. This hypothesis stems from the fact that-in some GRN-the mRNA dynamics is much faster than protein dynamics, i.e. mRNA concentration reaches its equilibrium faster than that of protein. This is oftentimes due to the fact that γ i δ i , that is mRNA degrades much faster than protein (typical mRNA half-lives are 2 -6 minutes, while those of proteins are on the order of hours [START_REF] Alon | An Introduction to Systems Biology: Design Principles of Biological Circuits[END_REF]).

Mathematically, this assumption says that ε i dm i dt = 0, for a small positive constant ε i 1, in 3.2 (see Tikhonov's theorem for more mathematical details in [START_REF] Khalil | Nonlinear systems[END_REF]) and so:

m i = 1 γ i F i (f R i (p 1 ), f R i (p 2 ), ..., f R i (p n )). (3.6) 
Then, substituting (3.6) into (3.3) we obtain a reduced gene expression model involving only the protein concentration for each gene: 

dp i dt = f P i 1 γ i F (f R i (p 1 ), f R i (p 2 ), ..., f R i (p n )) -δ i p i . (3.7)
: ṁ1 = v 1 h -(p 2 ; θ 2 , n 2 ) -γ 1 m 1 ṗ1 = k1 m 1 -δ 1 p 1 ṁ2 = v 2 h -(p 1 ; θ 1 , n 1 ) -γ 2 m 2 ṗ2 = k2 m 2 -δ 2 p 2 (3.8)
A reduced model can be obtained by assuming that the mRNA dynamics are extremely fast when compared to the protein dynamics (realistic biological assumption) and hence reach their equilibrium instantly. Assuming quasi-steady-state mRNA concentrations (see Section 3.2.1) for the inhibition-inhibition network of Figure3.1, the dynamics can be described by just two variables, i.e. p 1 and p 2 . More precisely, if we assume that ṁ1 ≈ 0 and ṁ2 ≈ 0 the mRNA ODEs in (3.8) yield:

m 1 = v 1 γ 1 h -(p 2 ; θ 2 , n 2 ) m 2 = v 2 γ 2 h -(p 1 ; θ 1 , n 1 ) (3.9)
and substituting (3.9) into ṗ1 and ṗ2 in (3.8) one gets:

ṗ1 = k 1 h -(p 2 ; θ 2 , n 2 ) -δ 1 p 1 ṗ2 = k 2 h -(p 1 ; θ 1 , n 1 ) -δ 2 p 2 (3.10)
where

k 1 = v 1 γ 1 k1 and k 2 = v 2 γ 2 k2 .
A dynamical analysis of this model is not the main scope of this thesis and details can be found, for instance, in [START_REF] Bernot | Modeling and analysis of gene regulatory networks[END_REF]. Here, we would just recall that the dynamics of system (3.10) depends on the values of the parameters. Notably, system (3.10) can show two distinct dynamical scenarios: the first, in which there are two stable and one unstable steady states; the second, in which there is a unique stable steady state. The nullclines and steady states of the two scenarios mentioned above are shown in Figure 3.3.

x(t) 

Piecewise Linear (PL) models

Piecewise linear (PL) models also consist on systems of differential equations, but differently from classical ODE models, their vector fields have (finitely many) points of discontinuity. This is because the PL system state space is divided into regions (domains)

in which the vector field may assume different expressions. However, these expressions must be affine or linear in each variable.

PL systems are a class of qualitative models, which can be used to facilitate the analysis of large classical ODE GRN models (see Section 3.2). In fact, intuitively, PL models can be derived from ODE models (3.2)-(3.3) with Hill functions (3.4)-(3.4) by letting the Hill coefficient tends to infinity. In this case the Hill functions h + , h -turn into step functions s + , s -, respectively:

lim n→∞ h + (x; θ, n) = s + (x; θ) =    1 if x > θ 0 if x < θ lim n→∞ h -(x; θ, n) = s -(x; θ) =    1 if x < θ 0 if x > θ (3.11)
Note that the functions s + (x; θ) and s -(x; θ) remain undefined at x = θ, which are the points (or hyper-surfaces) of discontinuity of the vector field. Moreover, PL systems are generally used to model only protein dynamics, so-when this is the case-the quasisteady-state assumption of mRNA concentration, discussed in Section 3.2.1, is implicitly assumed.

Piecewise linear systems-with applications to genetic regulatory networks-have been originally introduced by [START_REF] Glass | The logical analysis of continuous, non-linear biochemical control networks[END_REF]. From a biological point of view, the use of step functions has been motivated by the experimental observation that the activity of certain genes changes in a drastic manner at a threshold concentration of a regulatory protein ( [START_REF] Yagil | On the relation between effector concentration and the rate of induced enzyme synthesis[END_REF]).

Hence, the PL model has the general form

ẋi = f i (x) -d i x i , 1 ≤ i ≤ n, (3.12) 
where x = (x 1 , ..., x n ) T ∈ R n ≥0 is a vector of protein concentrations. The non-negative quantities f i (x) and d i x i represent synthesis and degradation rates for each protein x i respectively. The function f i : R n ≥0 → R ≥0 represents the expression rate of the gene i depending on the whole state x. However, f i (x) can be detailed as:

f i (x) = L i l=1 k il b il (x)
where k il > 0 is a rate parameter and b il (x) is a combination of step functions s + , s - defined in (3.11).

Moreover, the PL system (6.1) can be written in matrix form as ẋ = f (x) -Γx, (3.13) where f = (f 1 , ..., f n ) and Γ = diag(d 1 , ..., d n ).

The dynamical properties of the PL systems are briefly summarized next.

Dynamical study of PL systems

The dynamics of PL systems can be studied in the n-dimensional state-space Ω =

Ω 1 × Ω 2 × ... × Ω n , where each Ω i is defined by Ω i = {x i ∈ R ≥0 |0 ≤ x i ≤ max i } for some maximum concentration value max i .
A protein encoded by a gene will be involved in different interactions at different concentration thresholds, so for each variable x i , we assume there are p i ordered thresholds θ 1 i , ..., θ p i i (we also define θ 0 i = 0 and θ 

p i+1 i = max i ). The (n - 
D i = x i ∈ Ω i |0 ≤ x i < θ 1 i D i = x i ∈ Ω i |θ j i < x i < θ j+1 i for j ∈ {1, ..., p i -1} D i = {x i ∈ Ω i |θ p i i < x i ≤ max i } D i = x i ∈ Ω i |x i = θ j i for j ∈ {1, ..., p i }.
Let D be the set of domains in Ω. A domain 

Solutions and Stability in Regular Domains

For any regulatory domain D, the function f (x) is constant for all x ∈ D, and it follows that the PL system (3.13) can be written as

ẋ = f D -Γx, (3.14) 
where f D is constant in D. This implies that the equations are decoupled:

ẋi = f D i -d i x i , i = 1, ..., n (3.15) 
and the solution x D i (t) can be explicitly computed for all x ∈ D:

x D i (t) = (x i (0) -φ D i )e -d i t + φ D i , where φ D i = f D i d i . (3.16) 
For each domain D, it is clear that solutions will evolve towards

Φ D = (φ D 1 , ..., φ D n ), called the focal point of D.

Since f D

i is constant and the number of thresholds θ j i is finite (equal to p i , see above), we can now be more precise and set max i = max ∀D∈Dr {φ D i }. Then, the set Ω is an invariant region for the system and one may consider that x(t) ∈ Ω ∀ t ≥ 0.

Each focal point φ D

i may lie inside or outside the domain D (to avoid very specific cases, it is generally assumed that focal points do not lie on switching domain, i.e. on the boundary of adjacent regular domains). Hence, if φ D i ∈ D, then the domain is invariant, and the focal point turns out to be a true fixed (stable) point (see [START_REF] Casey | Piecewise-linear models of genetic regulatory networks: Equilibria and their stability[END_REF] for more details).

Whereas, if φ D

i / ∈ D, then solutions eventually leave the domain to enter another one, and the system switches to another vector field. More specifically, if the vector fields in two adjacent regular domains do not have opposite orientations, the trajectories can pass through the switching domain-which separates the two adjacent regular domains-and the overall solution is given by concatenating the solutions in the two (regular) adjacent domains. Otherwise, the vector field has to be defined as a differential inclusion along the switching surface at the boundary of the two domains, and a solution can still be constructed in the sense of Filippov ([73,[START_REF] Gouzé | A class of piecewise linear differential equations arising in biological models[END_REF], see also Section 3.3.3).

Solutions and Stability in Switching Domains

To provide the existence and the possibility for solutions to be continued on all domains, we have to define the right-hand side of system (3.13) at the points of discontinuity of the function f . To this end, we use a construction originally proposed by Filippov [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF] and then applied to PL systems ( [START_REF] Gouzé | A class of piecewise linear differential equations arising in biological models[END_REF]). The method consists of extending the system (3.13)

as a differential inclusion, ẋ ∈ H(x), (3.17) 
where

H is a set valued function (i.e. H(x) ⊆ R n ). If D ∈ D r , then we define H simply as H(x) = {f D -Γx}, ∀x ∈ D. (3.18)
If D ∈ D s , we define H as

H(x) = co({f D -Γx | D ∈ R(D)}), ∀x ∈ D, (3.19) 
where R(D) = {D ∈ D r | D ⊆ ∂D } is the set of all regulatory domains with D in their boundary, and co(X) is the closed convex hull of X. For switching domains, H(x) is typically multi-valued so solutions of the differential inclusion are defined as follows.

Definition 3.1. A solution of (6.12) on [0, T ] in the sense of Filippov is an absolutely

continuous function (w.r.t. t) ξ t (x 0 ) such that ξ 0 (x 0 ) = x 0 and ξt ∈ H(ξ t ), for almost all t ∈ [0, T ].
Moreover, the equilibrium points in switching domain (also called singular or Filippow equilibria) are defined in following way.

Definition 3.2. In a switching domain D ∈ D s , we say that a point y ∈ Ω is an equilibrium point for the differential inclusion if 0 ∈ H(y). Now, we shall explain how to construct the set H(x) at discontinuity points of f .

Let us consider the case where x belongs to a switching domain S separating two regular domains D 1 and D 2 . Hence,

H(x) = co({f D 1 -Γx, f D 2 -Γx})
represents the segment joining the endpoints of the vectors

g 1 = f D 1 -Γx and g 2 = f D 2 -Γx.
Trajectories can cross S if the vector fields g 1 and g 2 point in a similar direction (see Figure 3.4), slide along S if g 1 and g 2 point in opposite direction towards S (see Figure 3.5) and be repelled from S if g 1 and g 2 point in opposite direction away from S. The last two cases are known as stable and unstable sliding motion in the literature ( [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]).

For example, for a two dimensional system let us assume that a sliding motion (stable or unstable) occurs on the switching domain S, which is in the hyper-plane

C j i = {x ∈ R n ≥0 : x i = θ j i }.
Then, for all x ∈ S the solution may satisfy:

ẋ = αf D 1 + (1 -α)f D 2 -Γx, 0 ≤ α ≤ 1. (3.20) 
During sliding motion the state trajectories evolve on the hyper-plane x i = θ j i , so the parameter α is selected such that the velocity vector of the system (6.15) is always tangent to C j i . This, mathematically means that α has to satisfy the following condition:

ẋi = 0, for x ∈ C j i , ⇐⇒ αf D 1 i + (1 -α)f D 2 i -d i θ j i = 0,
which, solved with respect to α, gives:

α = f D 2 i -d i θ j i f D 2 i -f D 1 i .
It is useful to define a concept analogous to the focal points defined for regulatory domains, to deal with switching domains.

Definition 3.3. We recall that supp(D) is the (n -k)-dimensional hyperplane supporting D. Let D be a switching domain of order k, then its focal set Φ(D) is

Φ(D) = supp(D) ∩ {x : 0 ∈ H(x)}, (3.21) 
where H(x) is defined as in (6.14). Hence, Φ(D) for D ∈ D s is the set containing all the equilibrium points of the differential inclusion (6.12), which lie on supp(D). Thus, Φ(D) can be empty or a singleton, but more generally is a closed convex bounded set and hence is referred to as a focal set. In particular, this means that the sliding motion stops when it reaches Φ(D). If Φ(D) is empty, then the trajectory leaves S and switches to another domain.

More details on dynamical analysis and applications of PL models can be found in [START_REF] Casey | Piecewise-linear models of genetic regulatory networks: Equilibria and their stability[END_REF][START_REF] Jong | Qualitative simulation of genetic regulatory networks using piecewise-linear models[END_REF][START_REF] Gouzé | A class of piecewise linear differential equations arising in biological models[END_REF][START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF].

Example: PL bistable switch

To derive the PL system corresponding to the bistable switch example, one starts directly from the reduced ODE model (3.10) by replacing the Hill functions with the respective step functions:

ṗ1 = k 1 s -(p 2 ; θ 2 ) -δ 1 p 1 ṗ2 = k 2 s -(p 1 ; θ 1 ) -δ 2 p 2 (3.22) System (3.22) is defined inside the (invariant) set Ω = [0, k 1 /δ 1 ] × [0, k 2 /δ 2 ]
which can be divided into four regular domains, where the vector field is uniquely defined:

D 1 = {x ∈ R 2 ≥0 : 0 ≤ p 1 < θ 1 , 0 ≤ p 2 < θ 2 } D 2 = {x ∈ R 2 ≥0 : 0 ≤ p 1 < θ 1 , θ 2 < p 2 ≤ k 2 /δ 2 } D 3 = {x ∈ R 2 ≥0 : θ 1 < p 1 ≤ k 1 /δ 1 , 0 ≤ p 2 < θ 2 } D 4 = {x ∈ R 2 ≥0 : θ 1 < p 1 ≤ k 1 /δ 1 , θ 2 < p 2 ≤ k 2 /δ 2 }.
In addition, there are also switching domains, where the system is defined only as a differential inclusion, corresponding to the segments where each of the variables is at a threshold (p i = θ i and p j ∈ [0, k j /δ j ]). In each of the four regular domains, the differential system is linear, and simple to study. In D 1 , for instance, the system is

ṗ1 = k 1 -δ 1 p 1 ṗ2 = k 2 -δ 2 p 2 ,
and the solution converges exponentially (see (3.16)) towards a steady state (k 1 /δ 1 , k 2 /δ 2 ).

If we suppose that θ i < k i γ i , then this steady state is outside D 1 , and the solution will switch to another system when it crosses one of the thresholds.

For the bistable switch θ i < k i γ i , i = 1, 2, there are two classical stable steady states, φ 1 and φ 2 , and an unstable Filippov equilibrium point, φ 3 , analogous to a saddle point (see Figure 3.3):

φ 1 = k 1 δ 1 , 0 , φ 2 = 0, k 2 δ 2 , φ 3 = (θ 1 , θ 2 ).
φ 1 and φ 2 belong to (the boundary of) their respective domains (D 2 and D 3 ), so that any trajectory entering one of these domains remains there. In contrast, trajectories starting in D 1 or D 4 will switch to another domain.

Stochastic Models

As seen so far, much of the mathematical modelling of GRNs represents gene expression and regulation as deterministic processes. However, considerable experimental evidence There are two stable steady states (φ 1 ,φ 2 ) and an unstable Filippov equilibrium (φ 3 ). One solution x(t) = [p 1 (t), p 2 (t)] is shown in black, which may be compared to that shown in Figure 3.3 (a). Picture taken from [START_REF] Bernot | Modeling and analysis of gene regulatory networks[END_REF] (Chapter 2) and labels modified to match our notations.

suggests that gene expression, both in prokaryotes and eukaryotes, is an inherently stochastic process ( [START_REF] Elowitz | Stochastic gene expression in a single cell[END_REF][START_REF] Longo | Dynamics of single-cell gene expression[END_REF][START_REF] Paulsson | Control, exploitation and tolerance of intracellular noise[END_REF][START_REF] Thattai | Intrinsic noise in gene regulatory networks[END_REF]). This is particularly true when cellular biochemical reactions (eg. binding/unbinding of TFs to promoters, translation, etc.) are triggered by small number of molecules (typically when dealing with single cell gene expression models), a condition which makes deterministic formalisms (representing average amount of cellular components in a population of cells) poorly accurate to describe the true behaviour of the system [START_REF] Paulsson | Models of stochastic gene expression[END_REF][START_REF] Samad | Stochastic modelling of gene regulatory networks[END_REF][START_REF] Wilkinson | Stochastic Modelling for Systems Biology[END_REF].

The introduction of noise in gene regulation can be efficiently modelled using Chemical Master Equations (CMEs) whose realizations can be exactly simulated by Gillespie's algorithm ( [START_REF] Gillespie | A general method for numerically simulating the stochastic time evolution of coupled chemical reactions[END_REF][START_REF] Gillespie | Exact stochastic simulation of coupled chemical reactions[END_REF][START_REF] Gillespie | A rigorous derivation of the chemical master equation[END_REF]). Moreover, under certain conditions discussed later on, CMEs can be approximated by stochastic differential equations (SDEs) of the Langevin type, named Langevin Chemical Equations (CLEs) [START_REF] Gillespie | The chemical langevin equation[END_REF], which are easier to handle and much less time consuming to simulate.

The Chemical Master Equation (CME)

Let us consider a well-stirred system of molecules of N chemical species (mRNAs, proteins, etc) {S 1 , ..., S N }, which interact through M chemical reactions (transcription, translation, degradation, etc) {R 1 , ..., R M }. It is assumed that the system is well-stirred and confined to a constant volume (cellular volume) Ω.

Let X i (t) ∈ N denote the number of molecules of species S i in the system at time t. The aim is to estimate the state vector X(t) = (X 1 (t), ..., X N (t)), given that the system was in state X(t 0 ) = Z 0 at some initial time t 0 .

The system state X(t)-describing the molecular populations-will actually be a vector of random variables. The changes in the species populations are of course a consequence of the chemical reactions. Each reaction channel R j is characterized mathematically by two quantities:

1. state-change vector ν j = (ν 1j , ..., ν N j ), where ν ij is the change in the S i molecular population caused by one R j reaction, so if the system is in state Z and one R j reaction occurs, the system immediately jumps to state Z + ν j ;

2. propensity function a j , defined so that a j (Z)dt = the probability, given X(t) = Z, that one R j reaction will occur somewhere inside Ω in the next infinitesimal time interval [t, t + dt). The probability that more than one reaction will occur in [t, t + dt) is assumed to be negligible.

Due to the probabilistic nature of the definition of a j , an exact prediction of X(t) is not possible, but one might hope to infer the probability

P (Z, t|Z 0 , t 0 ) = Pr{X(t) = Z, given X(t 0 ) = Z 0 },
which is given by the Chemical Master Equation (CME) [START_REF] Gillespie | A rigorous derivation of the chemical master equation[END_REF] ∂P (Z, t|Z 0 , t 0 ) The key to generate realizations of X(t) by means of the SSA is to define a new probability function p(τ, j|Z, t) such that:

∂t = M j=1 [a j (Z -ν j )P (Z -ν j , t|Z 0 , t 0 ) -a j (Z)P (Z, t|Z 0 , t 0 )] . ( 3 
p(τ, j|Z, t)dτ = the probability, given X(t) = Z, that the next reaction in the system will occur in the infinitesimal time interval [t + τ, t + τ + dτ ), and will be an R j reaction.

Formally, p(τ, j|Z, t) is a joint probability density function of two random variables τ and j, representing the time to the next reaction and the index of the next reaction, respectively, given that the system at time t is in the state Z. Taking into account the definition of a j and applying the laws of probability it can be proven that (see [START_REF] Gillespie | A rigorous derivation of the chemical master equation[END_REF][START_REF] Samad | Stochastic modelling of gene regulatory networks[END_REF] for mathematical details):

p(τ, j|Z, t) = a j (Z) exp(-a 0 (Z)τ ) (3.24) 
where:

a 0 (Z) = M j =1 a j (Z) (3.25)
The stochastic simulation algorithm is mathematically based on (3.24). In fact, (3.24) implies that τ is an exponential random variable with mean (and standard deviation) 1/a 0 (Z), while j is a statistically independent random variable with probability a j (Z)/a 0 (Z). There are several Monte Carlo algorithms to generate samples of τ and j according the definition above [START_REF] Wilkinson | Stochastic Modelling for Systems Biology[END_REF]. Probably, the simplest approach is that which relies on the standard inversion generating method of Monte Carlo theory [START_REF] Rubinstein | Simulation and the Monte Carlo method[END_REF]: draw two random numbers r 1 and r 2 from the uniform distribution in the unit interval, and select τ and j such that:

τ = 1 a 0 (Z) ln 1 r 1 (3.26a) j = the smallest integer satisfying j j =1 a j (Z) > r 2 a 0 (Z) (3.26b)
Now, we have the following stochastic simulation algorithm (SSA), also known as the Gillespie algorithm, for generating an exact numerical realization of the stochastic process X(t) satisfying CME (3.23)( [START_REF] Gillespie | Stochastic simulation of chemical kinetics[END_REF]):

1. Initialize the time t = t 0 and the system state x = Z 0 .

2. With the system at state X(t) = Z, evaluate all a j (Z) and their sum a 0 (Z).

3. Generate values for τ and j using (3.26a) and (3.26b).

4. Update the time and the state value by replacing t ← t + τ and Z ← Z + ν j .

5. Record (Z, t) as desired. Return to Step 1, or else end the simulation.

The problem with the SSA is that it might be very slow, and this slowness is due to the factor 1/a 0 (Z) in (3.26a), which can be very small if the population of any species is sufficiently large, and this is often the case in practice [START_REF] Samad | Stochastic modelling of gene regulatory networks[END_REF]. To overcome this computational issue, more efficient variations of the SSA [START_REF] Cao | Efficient formulation of the stochastic simulation algorithm for chemically reacting systems[END_REF][START_REF] Rubinstein | Simulation and the Monte Carlo method[END_REF], or even approximated numerical methods, such as the Tau-leaping [START_REF] Gillespie | Approximate accelerated stochastic simulation of chemically reacting systems[END_REF], have been implemented.

Another possible way to speed up the computation of realizations of X(t) is that of directly approximating the CME by stochastic differential equations of the Langevin type, and so obtaining the so called Chemical Langevin Equation (CLE) [START_REF] Gillespie | The chemical langevin equation[END_REF].

The chemical Langevin equation (CLE)

A detailed mathematical derivation of CLE is given in [START_REF] Gillespie | The chemical langevin equation[END_REF], here we just mention the two conditions required to get a valid approximation of the CME by the CLE.

Suppose the system's state X(t) of CME (3.23) at the current time t is Z. Suppose also that, for any time τ > 0, K j be the number of reactions that occur in the time interval [t, t + τ ] (it is worth noting that here τ has not the same definition as given before in (3.24), since now τ assumes the meaning of a preselected time which encompasses more than one reaction event). Under the two conditions listed below:

Condition (i):
Require τ to be small enough that the change in the state during [t, t + τ ] will be so small that none of the propensity functions changes its value in a noticeable fashion, that is:

a j (X( t)) ∼ = a j (Z), ∀ t ∈ [t, t + τ ], ∀j ∈ [1, M ]. (3.27)

Condition (ii):

Require τ to be large enough that the expected number of occurrences of each reaction R j in [t, t + τ ] be much larger than 1, that is:

a j (Z)τ 1, ∀j ∈ [1, M ]. (3.28)
then, CME (3.23) can be approximated by stochastic differential equations of the Langevin type [START_REF] Gillespie | The chemical langevin equation[END_REF]:

dx i (t) dt = M j=1 ν j,i a j x(t) + ν j,i a j x(t) Γ j (t), (3.29) 
with i = 1, . . . , N , where, for j = 1, . . . , M , the Γ j (t) are mutually uncorrelated white noise processes. Here, in (3.29) x = [x 1 , ..., x N ] plays the role of a continuous approximation of the molecule count X in the CME.

Now, let us focus on the two conditions (i) and (ii). Condition (ii) runs counter to condition (i), and there may be cases in which both conditions can not be satisfied simultaneously. But there will be many practical circumstances in which both conditions hold. In fact, this is the case when species have large molecular population numbers, i.e. when X i 1 ∀i ∈ {1, N }.

In principle, the CLE can be simulated using any numerical methods developed for stochastic differential equations (SDEs) (see [START_REF] Kloeden | Numerical solution of SDE through computer experiments[END_REF] for more details on numerical simulations of SDEs). However, particular attention has to be paid to ensure non-negativity of the system's state x, which is not generally guaranteed for SDE simulations, differently from SSA for CME,. To this end, one approach consists in shutting down a reaction channel when the amount of any its reactants (species involved in) reaches zero [START_REF] Dana | Physically consistent simulation of mesoscale chemical kinetics: The non-negative FIS-α method[END_REF].

Example: CME and CLE bistable switch

The bistable switch model consists of N = 4 species (variable): m 1 (mRNA of gene 1), p 1 (protein of gene 1), m 2 (mRNA of gene 2), p 2 (protein of gene 2), which interact via through the M = 8 reactions reported in Table 3.1 with the corresponding propensities a(x) = a 1 (x), . . . , a 8 (x) , where x = m 1 , p 1 , m 2 , p 2 , and stoichiometric vectors [ν 1 , . . . , ν 8 ]:

[ν 1 , . . . , ν 8 ] 4×8 =        1 -1 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 1 -1        (3.30) Synthesis Rate a j Degradation Rate a j ∅ a 1 → m 1 v 1 h -(p 2 ; θ 2 , n 2 ) m 1 a 2 → ∅ γ 1 m 1 m 1 a 3 → m 1 + p 1 k1 m 1 p 1 a 4 → ∅ δ 1 p 1 ∅ a 5 → m 2 v 2 h -(p 1 ; θ 1 , n 1 ) m 2 a 6 → ∅ γ 2 m 2 m 2 a 7 → m 2 + p 2 k2 m 2 p 2 a 8 → ∅ δ 2 p 2
Table 3.1: Reactions of the stochastic model of the system of Figure 3.1 and corresponding propensities. An arrow from (to) symbol ∅ means synthesis (degradation).

Parameters

Values 9.3 and initial condition x(0) = [m 1 (0), p 1 (0), m 2 (0), p 2 (0)] = [START_REF] Carta | A simple model to control growth rate of synthetic E.coli during the exponential phase: Model analysis and parameter estimation[END_REF]10,[START_REF] Carta | A simple model to control growth rate of synthetic E.coli during the exponential phase: Model analysis and parameter estimation[END_REF][START_REF] Bremer | Free RNA polymerase and modeling global transcription in Escherichia coli[END_REF]. As we can notice, for this particular choice of parameter values and initial condition, protein 1 (p 1 ) reaches its ON state (higher values) with higher frequency than protein 2 (p 2 ), which reaches its OFF state (lower values). However, due to the stochastic nature of the model, also the opposite behaviour can happen: p 1 is OFF and p 2 is ON (see thicker blue and purple lines).

v 1 1 # min -1 γ 1 0.4 min -1 k 1 1 min -1 δ 1 0.012 min -1 θ 1 10# n 1 2 v 2 1 min -1 γ 2 0.4 # min -1 k 2 1 min -1 δ 2 0.012 min -1 θ 2 30 # n 2 3

Final comments

The mathematical formalisms discussed in this chapter allow genetic regulatory networks to be modelled in different ways, and each has some strengths and possible weakness.

Deterministic Vs stochastic models

Until recently, modelling and simulation studies of GRNs have mainly focused on deterministic models, such as Boolean models and simplified differential equation models. In fact, when the biochemical reaction mechanisms underlying regulatory interactions are not known or are incompletely known, qualitative formalisms, as Boolean and piecewise linear methods, turn out to be the most appropriate to gain high-level informations on the network dynamics and insights on the underlying biological system.

Whereas, when dealing with regulatory networks, that have been well-characterized by experimental data (often of small size and modest complexity), quantitative ODE and stochastic models can be successfully used to simulate, analyse and validate models of biological regulatory systems.

Moreover, it is worth remembering that stochastic models, as CME and CLE, are probably the most appropriate formalisms to deal with gene expression in single cells, where the molecules' number is so small to make any deterministic approach inadequate and not realistic.

Quantitative Vs qualitative models

Another point to take into account, besides a lack of relevant biological information to build quantitative models, is that large ODE and stochastic models are also computationally very heavy to simulate, making them less attractive for real time simulation purposes. Hence, also in this case, qualitative formalisms could be successfully used both for speeding up simulations, as well as for helping modellers in identifying those subnets and/or regulation loops which determine the main biological process of interest. In this fashion, the entire system could be reduced to a smaller and, probably, lumped GRN which could be more easily addressed with quantitative ODE or stochastic methods.

However, the emergence of new experimental techniques, along with the increasing development of open biological databases of experimental data and the continuing increase of computer power, allow modellers to develop more and more quantitative and complex biological models. 

Estimation

In this chapter we discuss a work that has been presented at the Computational Methods for Systems Biology Conference in 2012 [START_REF] Carta | A simple model to control growth rate of synthetic E. coli during the exponential phase: Model analysis and parameter estimation[END_REF] and was awarded with the Best Student Paper prize.

Here, we develop and analyse a model of a minimal synthetic gene circuit, that describes part of the gene expression machinery in Escherichia coli, and enables the control of the growth rate of the cells during the exponential phase. This model is a piecewise nonlinear system with two variables (the concentrations of two gene products) and an input (an inducer). We study the qualitative dynamics of the model and the bifurcation diagram with respect to the input. Moreover, an analytic expression of the growth rate during the exponential phase as function of the input is derived. A relevant problem is that of identifiability of the parameters of this expression supposing noisy measurements of exponential growth rate. We present such an identifiability study that we validate in silico with synthetic measurements.

Introduction

Synthetic biology has nearly emerged as a new engineering discipline. The goal of synthetic biology [START_REF] Andrianantoandro | Synthetic biology: new engineering rules for an emerging discipline[END_REF][START_REF] Khalil | Synthetic biology: applications come of age[END_REF][START_REF] Mukherji | Synthetic biology: understanding biological design from synthetic circuits[END_REF] is to develop and apply engineering tools to control cellular behaviour-constructing novel biological circuits in the cell-to perform new and desired functions.

Most recent synthetic designs have focused on the cell transcription machinery, which includes the genes to be expressed, their promoters, RNA polymerase and transcription factors, all serving as potential engineering components. Indeed, synthetic bio-molecular circuits are typically fabricated in Escherichia coli (E. coli ), by cutting and pasting together coding regions and promoters (natural and synthetic) according to designed structures and specific purposes ( [START_REF] Elowitz | A synthetic oscillatory network of transcriptional regulators[END_REF][START_REF] Gardner | Construction of a genetic toggle switch in Escherichia coli[END_REF][START_REF] Tigges | A tunable synthetic mammalian oscillator[END_REF]).

Along these lines, synthetic biology ultimately aims at developing synthetic bio-molecular circuitry that may help in producing bio-pharmaceuticals, bio-films, bio-fuels, novel cancer treatments and novel bio-materials (see [START_REF] Khalil | Synthetic biology: applications come of age[END_REF] for a review on synthetic biology applications).

In the present work we focus on the gene expression machinery of the bacterium Escherichia coli, with the aim of controlling the growth rate of the cells. E. coli is a model organism that is easy to manipulate and much knowledge is available about its regulatory networks.

In the presence of a carbon source-such as glucose-E. coli grows in an exponential manner until it exhausts the nutrient sources, and then enters a stationary phase with practically zero growth [START_REF] Monod | The growth of bacterial cultures[END_REF]. The wild-type (namely the genetically unmodified) bacteria grow at different rates in the presence of carbon sources of different types [START_REF] Marr | Growth rate of Escherichia coli[END_REF].

Notably, glucose is the preferred substrate because it leads to a higher growth rate in wild type. Our control objective is to force the bacterium to significantly modify its response to glucose so as to tune the cells' growth rates. To this end, we take into account the recent applications of synthetic biology which allow us to fabricate engineered promoters which in turn can be externally controlled by inducers [START_REF] Kaern | The engineering of gene regulatory networks[END_REF].

Notably, we will study an open loop configuration of a bi-dimensional model of a mutant E. coli inspired by the experiments in [START_REF] Tan | Emergent bistability by a growth-modulating positive feedback circuit[END_REF]. The two basic variables of our model, which describe the gene expression machinery that is responsible for bacterial growth are (see Fig. 4.1):

1. the concentration of a Component of the Gene Expression Machinery (CGEM), proteins responsible for global growth (ribosomes and RNA polymerase). Without this CGEM, the bacteria cannot produce any proteins and thus cannot grow.

2. the concentration of CRP, a protein involved in the formation of the complex cAMP-CRP whose level positively correlates with less preferred carbon sources and slower growth [START_REF] Bettenbrock | Correlation between growth rates, EIIACrr phosphorylation, and Intracellular Cyclic AMP levels in Escherichia coli K-12[END_REF].

We will assume that an engineered inducible-promoter is used to express the CGEM.

Moreover it is assumed that the mutant CGEM activates its own expression. The number and location of equilibria can thus be controlled by means of an input control function of the inducer and, in particular, there can be regions of bi-stability, as observed in [START_REF] Tan | Emergent bistability by a growth-modulating positive feedback circuit[END_REF].

The type of growth rate control we present-which directly acts upon the GEM-could be useful in creating bacterial cells that divert resources used for growth towards the production of a target compound. Thus, the analysis of the simple model presented here is an attempt to help guide the construction of synthetic gene networks, which improves product yield and productivity.

This paper is structured as follow: in Section 4. 

The Open-loop Model

The principal modelling challenges come from incomplete knowledge of the networks, and the dearth of quantitative data for identifying kinetic parameters required for detailed mathematical models. Qualitative methods overcome both of these difficulties and are thus well-suited to the modelling and simulation of genetic networks ( [START_REF] Jong | Genetic network analyzer: qualitative simulation of genetic regulatory networks[END_REF][START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF]).

In this work we used a novel piecewise non-linear formalism-derived from piecewise linear (PL) systems (see [START_REF] Casey | Piecewise-linear models of genetic regulatory networks: Equilibria and their stability[END_REF][START_REF] Chaves | Piecewise affine models of regulatory genetic networks: review and probabilistic interpretation[END_REF][START_REF] Jong | Qualitative simulation of genetic regulatory networks using piecewise-linear models[END_REF][START_REF] Gouzé | A class of piecewise linear differential equations arising in biological models[END_REF][START_REF] Grognard | Piecewise-linear models of genetic regulatory networks: theory and example[END_REF] for more details)-to model gene expression affected by dilution due to growth rate.

The open-loop model depicted in Fig. motivated by the experimental observation that the activity of certain genes changes in a switch-like manner at a threshold concentration of a regulatory protein [START_REF] Yagil | On the relation between effector concentration and the rate of induced enzyme synthesis[END_REF]. The non linearity is concentrated in the removal term of differential equations, which takes into account the protein degradation and the dilution due to growth.

The open-loop model, expressed by (4.1), describes the qualitative dynamics of a CGEM responsible for bacterial growth and another protein that reflects growth, such as CRP.

The CGEM is assumed to be externally controlled by an inducer I (such as IPTG (Isopropil β-D-1-tiogalattopiranoside), Tc (tetracycline) etc). This model of ODE exhibits bi-stability in CGEM expression for some parameter sets, as experimentally verified in [START_REF] Tan | Emergent bistability by a growth-modulating positive feedback circuit[END_REF]. We shall take into account this bi-stability to control the model's state to the "low" or to the "high" CGEM stable steady state. Let x c , x p ∈ R ≥0 be the CRP and CGEM concentrations respectively. Thus, the open-loop model graphically depicted in Fig. 4.1, can be mathematically translated into:

                 ẋc (t) = k 0 c s + (x p , θ 1 p ) + k 1 c s + (x p , θ 2 p ) s + (x c , θ 1 c ) s -(x p , θ μ) -(μ x p (t) + γ c ) x c (t) ẋp (t) = ν 1 k 0 p s + (x p , θ 1 p ) + ν 1 k 1 p s + (x p , θ 2 p ) -(μ x p (t) + γ p ) x p (t) (4.1)
where:

k 0 i > 0 (i = c, p
) is the basal synthesis rate constant;

k 1 i > 0 (i = c, p
) is the main synthesis rate constant; ν 1 is a positive input accounting for the inducer I; it will be a function ν 1 (v), v being the concentration of I; γ i > 0 (i = c, p) is the degradation rate constant;

θ j i > 0 (i = c, p; j = 1, 2)
is the x i threshold concentration for activation/inhibition; θ μ > 0 is a growth threshold depending on which substrate is used; μ > 0 is a growth constant depending on which substrate is used. and s + , s -denote the step-like functions, defined as

s + (x i , θ j i ) =    1 if x i > θ j i 0 if x i < θ j i ; s -(x i , θ j i ) = 1 -s + (x i , θ j i ) ,
which are used to model the switch-like promoters' regulation carried out by the generic protein x i . These s + , s -are not defined at the threshold values so, to define solutions on the surfaces of discontinuity, i.e. x i = θ j i , we use the approach of Filippov [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF], which extends the vector field to a differential inclusion.

In what follows, we will explain the main assumptions adopted in building the system equations (4.1), which were inspired by the models in [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF][START_REF] Tan | Emergent bistability by a growth-modulating positive feedback circuit[END_REF] and the literature on E. coli.

Growth rate

In bacteria, growth rate is intimately intertwined with gene expression ( [START_REF] Klumpp | Growth rate-dependent global effects on gene expression in bacteria[END_REF][START_REF] Scott | Interdependence of cell growth and gene expression: Origins and consequences[END_REF]) and with the type of substrate [START_REF] Marr | Growth rate of Escherichia coli[END_REF]. Hence, to keep model complexity to a minimum, we assume growth rate µ to be proportional-with a constant μ depending on the quality of medium-to the concentration of the CGEM which is responsible for bacterial growth:

µ(t) = μ x p (t) . (4.2)

cAMP-CRP activation

The cAMP-CRP complex is formed from cAMP, a small metabolite, which binds the protein CRP. The cAMP concentration is higher at low growth rate and rapidly decreases at high growth rate [START_REF] Bettenbrock | Correlation between growth rates, EIIACrr phosphorylation, and Intracellular Cyclic AMP levels in Escherichia coli K-12[END_REF]. Thus, cAMP abundance in cells can be well captured by a negative step function of µ, i.e. s -(µ, θ µ ). Moreover, being cAMP association with or dissociation from CRP much faster than the synthesis and degradation of proteins [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF],

we have assumed that as soon as CRP reaches a certain threshold, i.e. θ c , CRP instantly binds to cAMP in a switch-like fashion . For these reasons, the positive regulation carried out by cAMP-CRP reads as:

b + cAM P -CRP = s + (x c , θ c ) s -(µ, θ µ ).
Focusing on the negative step function s -(µ, θ µ ) and taking into account the expression of µ in (4.2), we can rewrite b + cAM P -CRP as:

b + cAM P -CRP (x c , x p ) = s + (x c , θ c ) s -(x p , θ μ) (4.3)
where θ μ is a threshold concentration of CGEM which depends on the type of carbon source.

CRP synthesis

We have assumed that a lower value of x p , i.e. θ1 p , induces the basal synthesis (k 0 c s + (x p , θ 1 p )) of x c while a higher value of x p , i.e. θ 2 p , is needed to stimulate its main expression (k 1 c s + (x p , θ 2 p )). Moreover, the crp gene is regulated both positively and negatively by cAMP-CRP. However, in order to simplify, we omit the negative control of crp, because this mechanism only plays a role when the CRP concentration is low [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF] 1 . Thus, only one concentration threshold of CRP, i.e. θ 1 c , is required in the model, to allow production of the cAMP-CRP complex. In conclusion, taking into account the regulation function of cAMP-CRP in (5.16), the CRP synthesis reads:

f c (x) = k 0 c s + (x p , θ 1 p ) + k 1 c s + (x p , θ 2 p ) b + cAM P -CRP (x c , x p ), (4.4) 
with

0 < θ 1 c < max c , (4.5) 
where max c is the maximum concentration value for CRP.

CGEM synthesis

In this bi-dimensional model, since the CGEM is the main factor which determines growth of the cell, it is also responsible for its own synthesis. We have thus assumed that a low concentration (θ 1 p ) is sufficient to stimulate its basal production k 0 p s + (x p , θ 1 p ) while its main production k 1 p s + (x p , θ 2 p ) is stimulated only above the θ 2 p threshold. Thus, we can order the thresholds for x p as:

0 < θ 1 p < θ 2 p < max p , (4.6) 
where max p is the maximum concentration value.

Moreover, the inducer effect is modelled by input ν 1 . For a general formulation of the activation of x p by an inducer I, we will later on assume that ν 1 is a positive increasing function of I. Consequently, x p synthesis reads:

f p (x) = ν 1 k 0 p s + (x p , θ 1 p ) + ν 1 k 1 p s + (x p , θ 2 p ). (4.7)

Proteins removal

The negative terms in ẋc and ẋp of (4.1) take into account the fact that cells remove proteins by two processes: degradation and dilution due to cell growth [START_REF] Eden | Proteome half-life dynamics in living human cells[END_REF]. Notably, these terms can generally be expressed as (µ(t)+γ i )x i (for i = c, p) where µ(t) = μ x p (t), which is the bacterial growth rate in (4.2), is responsible for the proteins' dilution while γ i stands for protein's degradation.

Qualitative Analysis of the Open-loop Model

In this section we will qualitatively study, by means of phase-planes and bifurcation diagrams, model (4.1) in the case that cells are grown in glucose. This will elucidate how qualitative dynamics-in terms of equilibria' location and their stability-is intertwined with biological phenomena. Moreover, we shall show how-through the external input ν 1 -the stability of equilibria in (4.1) can be controlled, pointing out a reciprocal influence between growth rate and gene expression.

Open-loop model in glucose growth

If cells are grown in glucose, then parameters depending on the substrate become θ μ = θ G p and μ = µ G in model (4.1). Moreover, in the presence of glucose or other PTS sugars, adenylate cyclase 2 activity decreases, leading to a drop in the cellular level of cAMP [START_REF] Krin | The regulation of Enzyme IIAGlc expression controls adenylate cyclase activity in Escherichia coli[END_REF][START_REF] Notley-Mcrobb | The relationship between external glucose concentration and cAMP levels inside Escherichia coli : implications for models of phosphotransferase-mediated regulation of adenylate cyclase[END_REF]. Thus, we have modelled this effect assuming:

0 < θ 1 p < θ G p < θ 2 p < max p . (4.8)
Therefore, during growth on glucose, the state space of model (4.1) can be partitioned into eight regular domains, where the vector field is uniquely defined:

D G 1 = x ∈ R 2 ≥0 : 0 ≤ x c < θ 1 c , 0 ≤ x p < θ 1 p D G 2 = x ∈ R 2 ≥0 : θ 1 c < x c ≤ max c , 0 ≤ x p < θ 1 p D G 3 = x ∈ R 2 ≥0 : 0 ≤ x c < θ 1 c , θ 1 p < x p < θ G p D G 4 = x ∈ R 2 ≥0 : θ 1 c < x c ≤ max c , θ 1 p < x p < θ G p D G 5 = x ∈ R 2 ≥0 : 0 ≤ x c < θ 1 c , θ G p < x p < θ 2 p D G 6 = x ∈ R 2 ≥0 : θ 1 c < x c ≤ max c , θ G p < x p < θ 2 p D G 7 = x ∈ R 2 ≥0 : 0 ≤ x c < θ 1 c , θ 2 p < x p ≤ max p D G 8 = x ∈ R 2 ≥0 : θ 1 c < x c ≤ max c , θ 2 p < x p ≤ max p .
In addition, there are also switching domains, where the model is defined only as a differential inclusion [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF], corresponding to the segments where each of the variables is at a threshold (x i = θ i and x j ∈ [0, max j ]).

In general, for any regular domain D, the synthesis rates (4.4) and (4.7) are constant for all x ∈ D, and it follows that model (4.1) can be written as

     ẋc (t) = f D c -(μ x p (t) + γ c ) x c (t) ẋp (t) = f D p -(μ x p (t) + γ p ) x p (t) (4.9) with f D c , f D p , μ, γ c , γ p positive real constants.
For any initial condition x(t 0 ) ∈ D the unique solution of (4.9) can be found explicitly by solving first the x p -equation of (4.9), which is an autonomous differential equation, and then solving the x c -equation, having substituted x p (t) into it. Thus, it can be shown that x c (t) is given by:

x c (t) = 1 b(t) b(t 0 )x c (t 0 ) + f D c t t 0 b(s)ds
2 Enzyme that catalyses the conversion of ATP to cAMP and pyrophosphate.
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51 where b(t) = exp t t 0 (μ x p (τ ) + γ p )dτ . Moreover, defining Φ(D) = (x c , xp ) T with xc = f D c μx p + γ c , xp = -γ p + γ 2 p + 4μf D p 2μ , (4.10) 
(it is easy to check that xp -in (6.11)-is the only positive solution of ẋp = 0) it turns out that either x(t) → Φ(D) as t → ∞ or x(t) reaches the boundary of D. We will group into regions R j those domains D G i where model (4.1)-in glucose growthhas the same dynamics and thus the same focal points. Considering Definition 6.5, we have the following focal points:

∀x ∈ R 1 = x ∈ R 2 ≥0 : x ∈ D G 1 ∪ D G 2 x c → 0 ∧ x p → 0 Thus, Φ G 0 = (0, 0) is the focal point of region R 1 . ∀x ∈ R 2 = x ∈ R 2 ≥0 : x ∈ D G 3 ∪ D G 4 ∪ D G 5 ∪ D G 6 x c → k 0 c µ G x1 p,G + γ c = x2 c,G x p → -γ p + γ 2 p + 4 ν 1 k 0 p µ G 2µ G = x1 p,G Thus, Φ G 1 = (x 2 c,G , x1 p,G ) is the focal point of region R G 2 . ∀x ∈ R 3 = x ∈ R 2 ≥0 : x ∈ D G 7 ∪ D G 8 x c → k 0 c µ G x2 p,G + γ c = x1 c,G x p → -γ p + γ 2 p + 4 ν 1 (k 0 p + k 1 p )µ G 2µ G = x2 p,G Thus, Φ G 2 = (x 1 c,G , x2 p,G ) is the focal point of region R 3 .
The focal points Φ G i (i = 1, ..., 3) are equilibrium points of model (4.1) provided that they belong to their respective regular domain, i.e. Φ(D) ∈ D. The local stability of equilibrium points is given by the following theorem. 

θ 1 c = 0.6, θ 1 p = 0.8, θ G p = 2, θ 2 p = 3.5, k 0 c = 7, k 1 c = 10, k 0 p = 40, k 1 p = 50, γ c = 1, γ p = 1, µ G = 2 end ν 1 = .5. The black curve is the x c -nullcline: x p = k 0 c x c µ G - γ c µ G . Stable fixed points: Φ G 0 , Φ G 1 , Φ G 2 .
Theorem 4. Proof. Model (4.1) restricted to D is given by (4.9). In order to assess the stability of Φ(D), we compute the Jacobian matrix of (4.9) calculated in Φ(D) = (x c , xp ) T :

J(x c , xp ) = -(μx p + γ c ) -μx c 0 -(2μx p + γ p )
.

Since all the eigenvalues of J, which are the diagonal entries as J is diagonal, are negative, Φ(D) turns out to be a locally stable point.

Hence, there can be at most three locally stable steady states during growth on glucose. 

G 0 , Φ G 1 , Φ G 2 ,
(for the parameter values used) are locally stable steady states since they are within their respective regular domains (Theorem 6.3). Notably, it is easy to verify that Φ G 0 is locally stable for any set of parameters. It represents absence of growth and can happen when the initial condition x p (t 0 ), is too low-specifically x p (t 0 ) < θ 

p,G < θ 1 p and x2 p,G < θ 2 p , neither Φ G
1 nor Φ G 2 are stable steady states. In this case, model (4.1) during growth on glucose converges towards the only stable point Φ G 0 (not depicted in Fig. 4.3). So, in I, the control input is too small to allow CGEM to reach a basal level, and prevents bacterial growth.

In part II, when x1

p,G (ν 1 ) > θ 1 p and x2 p,G (ν 1 ) < θ 2 p hold, only Φ G 1 is a stable steady state (besides the trivial one) according to Theorem 6.3. Hence, it turns out that choosing an initial condition of CGEM x p (t 0 ) > θ 1 p and ν 1 such that x1 p,G (ν 1 ) > θ 1 p and x2 p,G (ν 1 ) < θ 2 p , we can control model (4.1) to the stable point Φ G 1 .

In part III, characterized by

θ 1 p < x1 p,G (ν 1 ) < θ 2 p and x2 p,G (ν 1 ) > θ 2 p , both Φ G 1 and Φ G 2
are stable steady states: this is a region of bi-stability. Moreover, the phase plane corresponding to this configuration is depicted in Fig. 4.2, where we can also observe the presence of two separatrices x p = θ 1 p and x p = θ 2 p . Is is clear that, depending on

x p (t 0 ), the model can converge to Φ G 1 (if θ 1 p < x p (t 0 ) < θ 2 p ) or to Φ G 2 (if x p (t 0 ) > θ 2 p ).
In part IV, when x1 p,G (ν 1 ) > θ 2 p holds, only Φ G 2 is a stable steady state and thus, whenever

x p (t 0 ) > θ 1 p , model (4.1) converges to Φ G 2 .
The open-loop control in glucose growth can be summarized as follows.

Proposition 4.3. Consider model (4.1) with control input ν 1 and initial condition x p (t 0 )

such that: if (x 1 p,G (ν 1 ) < θ 1 p ∧ x2 p,G (ν 1 ) < θ 2 p ) ∨ x p (t 0 ) < θ 1 p , then model (4.1) converges to the trivial focal point Φ G 0 (region I in Fig. 4.3); if x1 p,G (ν 1 ) > θ 1 p ∧ x2 p,G (ν 1 ) < θ 2 p ∧ x p (t 0 ) > θ 1 p , then model (4.1) converges to the low focal point Φ G 1 (region II in Fig. 4.3); if θ 1 p < x1 p,G (ν 1 ) < θ 2 p ∧ x2 p,G (ν 1 ) > θ 2 p ∧ x p (t 0 ) > θ 1 p , then model (4.1
) is bistable (region III in Fig. 4.3) and notably: 

-if θ 1 p < x p (t 0 ) < θ 2 p , then model (4.1) converges to the low focal point Φ G 1 ; -if x p (t 0 ) > θ 2 p , then model (4.1) converges to the high focal point Φ G 2 if x1 p,G (ν 1 ) > θ 2 p ∧ x p (t 0 ) > θ 1 p ,

Growth rate expression for exponential phase

Here, to account for different dosage of inducer, we make an assumption to analytically characterize the function ν 1 = h(v). Notably, to describe the regulation of CGEM gene expression by the inducer, we employ a function typically used in synthetic biology [START_REF] Kaern | The engineering of gene regulatory networks[END_REF]: rate [START_REF] Monod | The growth of bacterial cultures[END_REF]. This means that, according to (4.2), a stable fixed point of the CGEM has to be reached. Hence, our expression of growth rate during exponential phase reads:

ν 1 (v) = α + (1 -α) v n K n v + v n
µ = µ G xp (4.12)
where xp is the CGEM concentration at steady state, which can be either x1 p,G or x2 p,Gdepending on the amount of inducerwhich determines the level of CGEM expression. Thus, our expression of growth rate during exponential phase can assume the two values below:

µ(v) =            µ G x1 p,G = -γ p + γ 2 p + 4 ν 1 k 0 p µ G 2 µ G x2 p,G = -γ p + γ 2 p + 4 ν 1 (k 0 p + k 1 p ) µ G 2 .
(4.13) Specifically, we assumed there is a particular value of inducer, i.e. v * , such that for an appropriate choice of initial condition and for all v ≤ v * the CGEM steady state is x1

p,G
while for all v > v * the steady state is x2 p,G . Thus, considering that, and substituting (4.11) into (7.9) we obtain the theoretical expression for growth rate during exponential phase:

µ(v) = 8 > > > > > > > > < > > > > > > > > : - γp 2 " 1 - s 1 + 4k 0 p µGα γ 2 p + 4k 0 p µG(1 -α) γ 2 p v n K n v + v n # if, v ≤ v * - γp 2 " 1 - s 1 + 4(k 0 p + k 1 p )µGα γ 2 p + 4(k 0 p + k 1 p )µG(1 -α) γ 2 p v n K n v + v n # if, v > v * (4.14)
It is worthy to notice that expression (4.14) directly relates the growth rate µ during exponential phase to the amount of the inducer v. Hence, using (4.14) we can fine tune-by means of appropriate level of the inducer-the growth rate of the cells during the exponential phase.

In silico Identifiability Analysis of Growth Rate

Our collaborators (Jérôme Izard and Hans Geiselmann3 ) are currently performing an ongoing experiment on a synthetic E. coli -implementing the open-loop model depicted Fig. 4.1 -which relates the level of growth rate during the exponential phase to the amount of the inducer. In the future, these dose-response curves will be useful to calibrate and validate the growth rate expression (during exponential phase) (4.14).

Here, we used simulated data to fit the the growth rate model (4.14) and to study the identifiability of the parameters.

Problem Statement

Given a parametric non-linear model, such as (4.14), the relationship between a response variable (output) and one or more predictor variables (input) can be represented by the expression:

y = η(v, p) + ,
where y is an n × 1 vector of observations of the response variable,

v is an n × m matrix of predictors,
p is a q × 1 vector of unknown parameters to be estimated, η is any function of v and p, is an n × 1 vector of independent, identically distributed random disturbances.

The nonlinear regression problem consists of finding a vector p minimizing a scalar cost function J(p), which is generally a measurement of the agreement of experimental data with the outputs predicted by the model. The cost function that we have considered in this work is a weighted least squares criterion:

J(p) = n i=1 (y i -η(v i , p)) 2 y 2 i (4.15)
where y i denotes the i-th data-point of the observable y, measured at input-points v i , and η(v i , p) the i-th observable as predicted by the parameters p. The parameters can be estimated numerically by:

p = arg min [J(p)] . (4.16) 
Determining the parameter vector p which minimizes J(p) is only a part of the parameter estimation problem. In fact, when preparing to fit a mathematical model or expression to a set of experimental data, the prior assessment of parameter identifiability is a crucial aspect [START_REF] Vajda | Qualitative and quantitative identifiability analysis of nonlinear chemical kinetic models[END_REF]. However, the structural identifiability analysis for non-linear models in systems biology is still a challenging question [START_REF] Chis | Structural identifiability of systems biology models: A critical comparison of methods[END_REF]. Whether or not parameters can be estimated uniquely depends on the model structure, the parametrization of the model and the experiment used to get the data [START_REF] Raue | Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood[END_REF].
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Regarding this problem, we briefly recall two important definitions on identifiability [START_REF] Walter | Identification of parametric models from experimental data[END_REF]: the parameter p i , i = 1, ..., q is structurally globally identifiable if assuming ideal conditions (error-free model structure and unlimited noise-free observations (v, y)) and if for almost any p * ∈ P (admissible parametric space P),

y(p, v) = y(p * , v), ∀v ⇒ p i = p * i .
the parameter p i , i = 1, ..., q is structurally locally identifiable if assuming ideal conditions (error-free model structure and unlimited noise-free observations (v, y)) and if for almost any p * ∈ P (admissible parametric space P), there exists

a neighbourhood V (p * ) such that p ∈ V (p * ) ∧ y(p, v) = y(p * , v), ∀v ⇒ p i = p * i .
An important complement to the structural identifiability definitions is the notion of practical identifiability. Practical identifiability is indeed related to the quality of experimental data and their information content [START_REF] Dochain | Dynamical Modelling and Estimation in Wastewater Treatment Processes[END_REF]. The question raised by this notion is the following: in the presence of observation errors and/or few data are reliable estimations of the parameters possible? Thus, once having determined the value of p minimizing the cost function J(p), it is very important to find a realistic measure of how p is precise. To this end, the confidence intervals4 of the estimated parameters have to be calculated.

It must be noted that, unlike for the linear case for which an exact theory exists, there is no exact theory for the evaluation of confidence intervals for systems which are nonlinear in the parameters. An approximate method based on a local linearisation of the output function η(v, p) is generally used [START_REF] Gallant | Nonlinear regression[END_REF][START_REF] Seber | Nonlinear regression[END_REF], thus the confidence region is evaluated as a function of the parameter covariance matrix. The applicability of such approximate method requires that the response function η(v, p) must be continuous in its arguments (v, p), the first partial derivatives ∂ ∂p i η(v, p) must be continuous in its arguments (v, p), and the second partial derivatives ∂ 2 ∂p i ∂p j η(v, p) must be continuous in its arguments (v, p), but our model (4.14) does not satisfy these conditions because of the discontinuity in v = v * . Hence, in the remainder of the paper a computational method, based on in silico generated data, is suggested to argue the practical identifiability of non-linear discontinuous model such as (4.14).

Generation of Simulated Data Sets

In order to assess the quality of parameter estimation and thus the practical identifiability of parameters in (4.14), artificial data were generated by simulation of (4.14) from a set of pre-defined parameters (to be considered as true values). The true parameter values (Tab. 4.5.2) were chosen from physiological parameters of E.coli cells [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF][START_REF] Klumpp | Growth rate-dependent global effects on gene expression in bacteria[END_REF] and were based on similar studies of this type [START_REF] Tan | Emergent bistability by a growth-modulating positive feedback circuit[END_REF]. Thus, the artificial growth rate values have been simulated considering a measurement error proportional to the nominal value of growth rate:

k 0 p k 1 p γ p µ G α K v n v * [µM • min -1 ] [µM • min -1 ] [min -1 ] [(µM • min) -1 ] [µM ] [µM ] 0.
y = µ(v) + σµ(v)N (0, 1) (4.17) 
where N (0, 1) is a normally distributed random variable with zero mean and unit vari- 

Model Parametrization and Global Optimization

First, to avoid evident structural identifiability problems we will group together those parameters in (4.14) which appear as combinations of products and/or quotients between parameters. Thus, after some algebraic manipulations expression (4.14) reads as:

µ(v) = 8 > > > > > > > > < > > > > > > > > : - γp 2 " 1 - s 1 + 4k 0 p µGα γ 2 p " 1 + (1 -α) α v n K n v + v n « # if, v ≤ v * - γp 2 " 1 - s 1 + 4(k 0 p + k 1 p )µGα γ 2 p " 1 + (1 -α) α v n K n v + v n « # if, v > v * (4.18)
Moreover, to avoid dependence on physical unit as well as to overcome possible scaling problem and to reduce the number of parameters, we decided to calculate a nondimensional version of expression (4.18). Notably, the non-dimensional slope µ N (v) is obtained by dividing µ(v) in (4.18) for the minimal growth rate, which is achieved at the minimum value of the inducer, i.e. at v = v 0 , which for our data sets I, II, III, IV consists in v 0 = 0. Thus, considering the necessary condition v 0 < v * , the non-dimensional growth rate during the exponential phase reads:

µN (v) = 8 > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > : 1 - s 1 + 4k 0 p µGα γ 2 p " 1 + (1 -α) α v n K n v + v n « 1 - s 1 + 4k 0 p µGα γ 2 p if, v ≤ v * 1 - s 1 + 4(k 0 p + k 1 p )µGα γ 2 p " 1 + (1 -α) α v n K n v + v n « 1 - s 1 + 4k 0 p µGα γ 2 p if, v > v * (4.19)
Now, considering the following parametrization

p 1 = 4k 0 p µ G α γ 2 p ; p 2 = (1 -α) α ; p 3 = K v ; p 4 = n; p 5 = 4k 1 p µ G α γ 2 p ; p 6 = v *
the expression (4.19) can be rewritten as Similarly, the data sets I to IV will also be normalized to their minimal value, i.e., each output-point is divided by the minimal observation value, that is y min = µ(v 0 ), where

µN (v, p) = 8 > > > > > > > > > > < > > > > > > > > > > : 1 - s 1 + p1 " 1 + p2 v p 4 p p 4 3 + v p 4 « 1 - √ 1 + p1 if, v ≤ p6 1 - s 1 + (p1 + p5) " 1 + p2 v p 4 p p 4 3 + v p 4 « 1 - √ 1 + p1 if, v > p6
v 0 = 0.
Our approach in identifying the unknown parameters of model (4.19) consists in solving a non-linear least squares minimization problem, using a hybrid optimization approach which makes use of the functions ga (Genetic Algorithm [START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF]) and GlobalSearch of the M AT LAB Global Optimization Toolbox . To start, we used the Genetic Algorithm (GA)

for 10 4 generations to get near an optimum point. The genetic algorithm does not use derivatives to detect descent in its minimization steps. Hence, it is a good choice for nondifferentiable and/or discontinuous problems. Moreover, GA does not necessarily need an user supplied initial guess, which in most case leads to local sub-optimal convergence if the initial guess is far from the global optimum. The result obtained with the genetic algorithm is then used as initial point of a hybrid function, to further improve the value of the cost function J(p). We decided to use the GlobalSearch5 command as hybrid function since it searches many basins of attraction near the starting point given by GA, arriving faster at an even better solution.

In Silico Practical Identifiability Analysis

The practical identifiability of model (4.20) has been tested using data sets I, II, III and IV, which have different values of errors' measurement and different data points. Hence, these artificial data are suitable to mimic realistic experimental set-ups.

For each data set mentioned above, parameters' confidence intervals have been computed

following a Monte Carlo-like approach.

Notably, N simul = 200 runs of the previously described hybrid optimization were performed. Where, at each of the N simul runs, a new realization of the artificial measurementsaccording to the inputs and noise statistic of each data set-is considered. These N simul optimization yields N simul estimated values for each parameter p i , i = 1, . . . , 5. Then, for each i, an average value, mi , and a standard deviation, ŝi , were computed by fitting a Gaussian distribution N ( mi , ŝ2 i ) to the histogram of the N simul values of p i . Thus, the 95% confidence interval (CI i ) for the p i parameter is calculated as:

DATA SET I DATA SET II DATA SET III DATA SET IV σ = 10 2 σ = 10 -2 σ = 5 • 10 -2 σ = 5 • 10 -2 N exp = 62 N exp = 32 N exp = 62 N exp =
CI i = mi ± 1.96ŝ i (4.22)
This leads to the confidence intervals listed in Table 4.2.

As we can see in Table 4.2, parameters p i for i ∈ {2, 3, 4, 6} do not show any practical identifiability issues, as the true value is contained in the respective CI with sufficiently precision. On the contrary, the CIs of parameters p1 and p5 tend to become very large at increasing values of the measurement's errors (σ) and at decreasing numbers of data points, indicating that in real experimental conditions (that is, limited and noisy data), the precise identification of these parameters might be impracticable. Moreover, we found that the correlation coefficient (R) between the two vectors of estimated parameters parameters p1 and p5 is R = 0.99, for all data sets. Recall that the correlation coefficient measures the interrelationship between p1 and p5 quantifying the compensation effects of changes in the parameter values on the model output. In fact, when two parameters are highly correlated, a change in the model output caused by a change in a model parameter can be balanced by a proper change in the other parameter value.

Thus, instead of considering the CIs of p1 and p5 separately-which are not significantwe have computed the confidence interval of their ratio, i.e. p5 /p 1 . These results are presented in since they contain the true value of the ratio p * 5 /p * 1 = 5.5, and more precise since their relative width is smaller than the relative width of CI 1 and CI 5 .

It must be noted that a further reduced model which takes into account the correlation between p 5 and p 1 can not be achieved. This because expression (4.20) can be rewritten in terms of the ratio and either p 5 or p 1 . 

Conclusions

In this paper, a minimal model consisting of two variables (the concentrations of two gene products) and an input (an inducer) was analysed and used to describe one possible mechanism to control the growth rate of E. coli cells during exponential phase. This Moreover, this mathematical formalism allows derivation of an analytic expression for the growth rate as function of the input. This expression has two applications: it can be directly fitted to experimental data to estimate a set of parameters (this is an advantage relative to the typical "indirect" parameter estimation by fitting to the numerical solutions of the differential equations); it provides an indication of how to control the growth rate to a desired value by adding a given quantity of inducer.

Finally, practical identifiability analysis based on numerical simulations is presented, which shows that some issues may arise with noisy measurements. In this case, our analysis suggests that the original growth rates' measurements should be adimensionalized and unknown parameters grouped into a new set of "lumped" parameters in order to obtain local identifiability. Notably, we found that only the ratio between the estimated parameters p1 and p5 can be estimated with sufficient precision in the case when only limited and noisy data are available. This study and the conclusions on identifiability will be most useful to help dealing with and solving parameter estimation problems with real data sets. First, an open loop circuit is obtained by externally controlling the gene encoding for RNA polymerase through an inducible promoter. Notably, varying the constant input we can impose a low or a high stable value to the growth rate. Finally, by appropriately rewiring and designing the gene interactions, we have formulated a feedback law, which mathematically shows the inverse diauxie in an appropriate range of the input values.

Introduction

Growth control is essential in industrial biotechnology and fundamental research of this kind could pave the way to novel types of antimicrobial strategies. Indeed, the basic effect of an antibiotic is to slow (or arrest) growth.

Here, we first introduce a novel mathematical formalism to qualitative model gene expression and dilution due to growth rate (Section 5.2). Then, we focus on the gene expression machinery of the bacterium Escherichia coli, with the aim of controlling the growth rate of the cells (Section 5.3). To this end, we present and analyse a bi-dimensional open-loop model in which the growth rate is controlled externallyexpressing RNA polymerase from a synthetic IPTG-inducible promoter (Section 5.4, Chapter 5. Controlling bacterial growth: in silico feedback law design to re-wire the genetic network 66 5.5). Finally, by designing a feedback law, we obtain a closed-loop model which implements a possible rewiring of the genetic network and modifies the wild type response of the bacteria to nutrients (Section 5.6). More specifically, the model is able to theoretically generate inverse diauxie, notably higher growth rate on an alternative sugar than on the preferred glucose (Section 5.7). The new rewiring does allow both to control growth rate in response to a sugar source and fine-tune it in response to an (external) inducer.

Piecewise linear models with dilution

The regulation of gene expression plays a pivotal role in the functioning of cells. Mathematical modelling and computational techniques are fundamental to the understanding of these genetic regulatory networks ( [START_REF] Alon | An Introduction to Systems Biology: Design Principles of Biological Circuits[END_REF][START_REF] Jong | Modeling and simulation of genetic regulatory systems: a literature review[END_REF]). The principal modelling challenges come from incomplete knowledge of the networks, and the dearth of quantitative data for identifying kinetic parameters required for detailed mathematical models. Qualitative methods overcome both of these difficulties and are thus well-suited to the modelling and simulation of genetic networks.

A class of widespread and well studied qualitative models are piecewise linear (PL) systems, originally introduced by Glass and Kauffman [START_REF] Glass | The logical analysis of continuous, non-linear biochemical control networks[END_REF]. PL models of regulatory genetic networks are built with discontinuous (step) functions. The use of step function has been motivated by the experimental observation that the activity of certain genes changes in a switch-like manner at a threshold concentration of a regulatory protein [START_REF] Yagil | On the relation between effector concentration and the rate of induced enzyme synthesis[END_REF].

The PL model has the general form

ẋi = f i (x) -d i x i , 1 ≤ i ≤ n, (5.1) 
where x = (x 1 , ..., x n ) T is a non-negative vector of protein concentrations. The nonnegative quantities f i (x) and d i x i represent synthesis and degradation rates for each protein x i respectively. The function f i : R n ≥0 → R ≥0 represents the expression rate of the gene i depending on the whole state x. However, f i (x) can be detailed as:

f i (x) = L i l=1 k il b il (x)
where k il > 0 is a rate parameter and b il (x) is a combination of step functions s + , s -:

s + (x i , θ j i ) =    1 if x i > θ j i 0 if x i < θ j i ; s -(x i , θ j i ) = 1 -s + (x i , θ j i ).
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More details on PL models can be found in [START_REF] Casey | Piecewise-linear models of genetic regulatory networks: Equilibria and their stability[END_REF][START_REF] Chaves | Piecewise affine models of regulatory genetic networks: review and probabilistic interpretation[END_REF][START_REF] Jong | Qualitative simulation of genetic regulatory networks using piecewise-linear models[END_REF][START_REF] Gouzé | A class of piecewise linear differential equations arising in biological models[END_REF][START_REF] Grognard | Piecewise-linear models of genetic regulatory networks: theory and example[END_REF].

Since our purpose is dealing with gene expression during bacterial growth, we take into account the fact that cells remove proteins by two processes: degradation and dilution due to cell growth [START_REF] Eden | Proteome half-life dynamics in living human cells[END_REF]. Thus, the PL formalism can be extended setting

d i = µ + γ i in (5.1)
, where µ is the bacterial growth rate responsible for the proteins' dilution and γ i is a degradation constant. Moreover, in bacteria, growth rate is intimately intertwined with gene expression ( [START_REF] Klumpp | Growth rate-dependent global effects on gene expression in bacteria[END_REF][START_REF] Scott | Interdependence of cell growth and gene expression: Origins and consequences[END_REF]) and with the type of substrate [START_REF] Marr | Growth rate of Escherichia coli[END_REF]. Hence, keeping complexity to a minimum, we assume growth rate µ to be proportional-with a constant μ depending on the quality of medium-to the concentration of one of n proteins, which is supposed to be tightly related to µ. Assuming the growth proportional protein to be

x n , µ : R ≥0 → R ≥0 reads as:

µ(t) = μ x n (t). (5.2)
Therefore, the PL system with dilution effect, henceforth referred to as piecewise wise non-linear (PWNL) system, has the general form:

ẋi = f i (x) -(μ x n + γ i )x i , 1 ≤ i ≤ n (5.3) or in vector notation ẋ = f (x) -d(x n )x, (5.4) 
where f = (f 1 , ..., f n ) and d = diag(μ x n + γ 1 , ..., μ x n + γ n ), where diag is the diagonal matrix corresponding to the vector. The dynamics of the PWNL system (5.3) can be studied in the n-dimensional state-space Ω = Ω 1 × Ω 2 × ... × Ω n , where each Ω i is defined by

Ω i = {x i ∈ R ≥0 |0 ≤ x i ≤ max i } for some maximum concentration value max i .
A protein encoded by a gene will be involved in different interactions at different concentration thresholds, so for each variable x i , we assume there are p i ordered thresholds θ 1 i , ..., θ p i i (we also define θ 0 i = 0 and θ

p i+1 i = max i ). The (n -1)-dimensional
hyper-planes defined by these thresholds partition Ω into hyper-rectangular regions we call domains. Specifically, a domain D ⊂ Ω is defined to be a set

D = D 1 × ... × D n ,
where D i is one of the following: 

D i = x i ∈ Ω i |0 ≤ x i < θ 1 i D i = x i ∈ Ω i |θ j i < x i < θ j+1 i for j ∈ {1, ..., p i -1} D i = {x i ∈ Ω i |θ p i i < x i ≤ max i } D i = x i ∈ Ω i |x i = θ j i for j ∈ {1

Solutions in Regular Domains

For any regulatory domain D, the function f (x) is constant for all x ∈ D, and it follows that the PWNL system (5.4) can be written as

ẋ = f D -d(x n )x, (5.5) 
where f D is constant in D. For any x(t 0 ) ∈ D the unique solution of (5.5) can be found explicitly by solving first the n-component of (5.5

)-ẋn = f D n -(μ x n + γ n )
x n -which is an autonomous differential equation, and then solving the i-components (i = 1, ..., n-1), having substituted x n (t) into them. Thus, it can be shown that x i (t) (i = 1, ..., n -1) is given by:

x i (t) = 1 b(t) b(t 0 )x i (t 0 ) + f D i t t 0 b(s)ds where b(t) = exp t t 0 (μ x n (τ ) + γ n )dτ . Moreover, defining Φ(D) = (x 1 , ..., xn ) T with xi = f D i μx n + γ i , i = 1, ..., n -1 xn = -γ n + γ 2 n + 4μf D n 2μ , (5.6) 
(it is easy to check that xn -in (5.6)-is the only positive solution of ẋn = 0) it turns out that either x(t) → Φ(D) as t → ∞ or x(t) reaches the boundary of D. are not defined when a variable x i takes some threshold value θ q i i , the vector field is undefined on the switching domains. We need to precise our definition of solutions.
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Solutions in Switching Domains

To provide the existence and the possibility for solutions to be continued on all domains, we have to define the right-hand side of system (5.4) at the points of discontinuity of the function f . To this end, we use a construction originally proposed by Filippov [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF] and recently applied to PL systems ( [START_REF] Jong | Qualitative simulation of genetic regulatory networks using piecewise-linear models[END_REF], [START_REF] Gouzé | A class of piecewise linear differential equations arising in biological models[END_REF]). The method consists of extending the system (5.4) to a differential inclusion,

ẋ ∈ H(x), (5.7) 
where H is a set valued function (i.e. H(x) ⊆ R n ). If D ∈ D r , then we define H simply as

H(x) = {f D -d(x n )x}, ∀x ∈ D. (5.8) If D ∈ D s , we define H as H(x) = co({f D -d(x n )x | D ∈ R(D)}), ∀x ∈ D, (5.9) 
where Let us consider the case where x belongs to a switching domain S separating two nregular domains D 1 and D 2 . Hence,

R(D) = {D ∈ D r | D ⊆ ∂D } is
H(x) = co({f D 1 -d(x n )x, f D 2 -d(x n )x})
represents the segment joining the endpoints of the vectors

g 1 = f D 1 -d(x n )x and g 2 = f D 2 -d(x n )x.
Trajectories can cross S if the vector fields g 1 and g 2 point in a similar direction, slide along S if g 1 and g 2 point in opposite direction towards S and be repelled from S if g 1 and g 2 point in opposite direction away from S. The last two cases are known as stable and unstable sliding motion in the literature [START_REF] Casey | Piecewise-linear models of genetic regulatory networks: Equilibria and their stability[END_REF]. Moreover, the velocity of the sliding motion (stable or unstable) on S is given by

ẋ = f S -d(x n )x.
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Theorem 5.3. Assume that S is in the hyper-plane C j i = {x ∈ R n ≥0 : x i = θ j i } and a sliding motion (stable or unstable) occurs on S. The vector f S in (5.10) is given by

f S = αf D 1 + (1 -α)f D 2 , α =          f D 2 i -(γ i + μx n )θ j i f D 2 i -f D 1 i , if i ∈ {1, ..., n -1} f D 2 i -(γ i + μθ j i )θ j i f D 2 i -f D 1 i , if i = n.
(5.11)

Proof. The segment joining the endpoints of the vectors

f D 1 -d(x n )x and f D 2 -d(x n )x
is expressed by

αf D 1 + (1 -α)f D 2 -d(x n )x, 0 ≤ α ≤ 1.
Since the state trajectories during sliding motion are on the hyper-plane x i = θ j i , the parameter α in (5.11) is selected such that the state velocity vector of the system (5.10) is in this hyper-plane. Thus, depending on whether the sliding mode occurs in x i = θ j i (i ∈ {1, ..., n -1}) or in x n = θ j n , we have two values of α, which are found from the conditions

αf D 1 i + (1 -α)f D 2 i -(γ i + μx n )θ j i = 0, if i ∈ {1, ..., n -1} αf D 1 i + (1 -α)f D 2 i -(γ i + μθ j i )θ j i = 0, if i = n.
We notice that in the case i = n the value of α is constant ∀x ∈ S and thus a sliding mode occurs along the entire switching domain S. By contrast, in the case i ∈ {1, ..., n -1} the value of α depends on x n , that means that a sliding motion occurs on S as long as the vector fields point in opposite direction towards (or away) S or, equivalently, as long as 0 < α(x n ) < 1 ∀x n ∈ S. Specifically, it could happen that solutions slide for a while along S and then leave it as soon as the condition 0 < α(x n ) < 1 does not hold any more.

It is useful to define a concept analogous to the focal points defined for regulatory domains, extended to deal with switching domains.

Definition 5.4. We recall that supp(D) is the (n -k)-dimensional hyperplane supporting D. Let D be a switching domain of order k, then its focal set Φ(D) is

Φ(D) = supp(D) ∩ {x : 0 ∈ H(x)}, (5.12) 
where H(x) is defined as in (5.9).
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Hence, Φ(D) for D ∈ D s is the set containing all the equilibrium points of the differential inclusion (5.7), which lie on supp(D). Thus, Φ(D) can be a singleton, but more generally is a closed convex bounded set and hence is referred to as a focal set.

To rule out some singular cases when proving results on stability, we make a technical assumption on the focal sets for our system.

Assumption 1. ∀ D ∈ D, we assume that Φ(D) ∩ supp(D ) = {}, ∀D ∈ R(D).
It essentially says that for every regular and switching domain D, the focal set Φ(D)

does not intersect the supporting hyperplane of any domain D in the boundary of D.

Equilibria and Stability in Regular Domains

The focal points are equilibrium points of the PWNL system (5.4) provided that they belong to their respective regular domain, i.e. Φ(D) ∈ D. If this is the case, the focal points are referred to as regular equilibria. The local stability of equilibrium points is given by the following theorem. is a locally stable point of system (5.4).

Proof. System (5.4) restricted to D ∈ D r is given by (5.5). In order to assess the stability of Φ(D), we compute the Jacobian matrix of (5.5) calculated in Φ(D) = (x 1 , ..., xn ) T :

J(x 1 , ..., xn ) =             -(μx n + γ 1 ) 0 0 . . . 0 -μx 1 0 -(μx n + γ 2 ) 0 . . . 0 -μx 2 . . . . . . . . . . . . . . . . . . 0 . . . 0 -(μx n + γ n-2 ) 0 -μx n-2 0 . . . . . . 0 -(μx n + γ n-1 ) -μx n-1 0 . . . . . . . . . 0 -(2μx n + γ n )             .
Since all the eigenvalues of J, which are the diagonal entries as J is diagonal, are negative, Φ(D) turns out to be a locally stable point.
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Equilibria and Stability in Switching Domains

It is possible that solutions of (5.4) reach equilibria that lie in switching domains and such equilibria are called singular equilibria. In general, a singular equilibrium x of system (5.4) is a point that satisfies the condition 0 ∈ H(x) and that belongs to some threshold plane. Determining whether a singular equilibrium is stable or unstable requires a detailed analysis that is beyond the scope of this paper. However, in the following theorem we present a procedure to assess the stability of singular equilibria that can occur on x n -hyperplane.

Theorem 5.6. Assume that a sliding motion occurs on a switching domain S, which lies in the hyper-plane

C j n = {x ∈ R n ≥0 :
x n = θ j n }, separating two regular domains D 1 and D 2 . Let x = (x 1 , ..., xn ) be the singular equilibrium point of the sliding motion. If

x ∈ S and if the sliding motion is stable (resp. unstable), then x is locally stable (resp. unstable).

Proof. Assuming the presence of a such stable sliding motion in S and x ∈ S, this implies that there exists a neighbourhood of x where the n-component of trajectories are approaching xn = θ j n . Notably, the velocity of motion of the other i-components

(i = 1, ..., n -1) is given by ẋi = αf D 1 i + (1 -α)f D 2 i -(μθ j n + γ i )x i (5.13)
with α equal to the second value in (5.11). Hence, the stability of x follows by the fact that (5.13) is of the PL form. If the x ∈ S, but the sliding motion is unstable, the instability of x follows from the instability of the sliding motion.

Introduction to the control problem

In this paper we focus on the gene expression machinery of the bacterium Escherichia coli, with the aim of controlling the growth rate of the cells. E. coli is a model organism that is easy to manipulate and much knowledge is available about its regulatory networks.

In the presence of a carbon source-such as the preferred glucose, or alternatively maltose or other sugars-E. coli grows in an exponential manner until it exhausts the nutrient sources, and then enters a stationary phase with practically zero growth [START_REF] Monod | The growth of bacterial cultures[END_REF].

The wild-type (namely the genetically unmodified) bacteria grow at different rates in the presence of carbon sources of different types [START_REF] Marr | Growth rate of Escherichia coli[END_REF]. Notably, glucose is the preferred Chapter 5. Controlling bacterial growth: in silico feedback law design to re-wire the genetic network 73 substrate because it leads to a higher growth rate in wild type. In the presence of two carbon sources (one is glucose), two successive growth phases are observed: a faster growth rate until glucose is exhausted and then a slower growth rate corresponding to consumption of the alternative sugar. This phenomenon is called diauxie [START_REF] Narang | Bacterial gene regulation in diauxic and non-diauxic growth[END_REF].

Our control objective is to force the bacterium to significantly modify its response to glucose and an alternative carbon source. Using the PWNL formalism introduced in Section 5.2 and taking into account the recent applications of synthetic biology, we propose a bi-dimensional model of a mutant E. coli. The two basic variables, which describe the gene expression machinery that is responsible for bacterial growth are (see Figure5.1):

1. the concentration of RNA polymerase (RNAP), a special enzyme which enables the transcription of any gene (in other words if there is no RNAP, the bacteria can not produce proteins and thus can not grow);

2. the concentration of CRP, a protein involved in the formation of the complex cAMP-CRP whose level positively correlates with less preferred carbon sources and slower growth [START_REF] Bettenbrock | Correlation between growth rates, EIIACrr phosphorylation, and Intracellular Cyclic AMP levels in Escherichia coli K-12[END_REF].

For this model we will study an open loop (see Figure5.1) configuration where the number and location of equilibria can be controlled by means of an input control function, which directly acts on the synthetic promoter of RNAP, tuning its gene expression. This choice can be justified by the experiment in [START_REF] Tan | Emergent bistability by a growth-modulating positive feedback circuit[END_REF] where the synthetic promoter of RNAP is controlled by IPTG as in Figure5.1.

Then, starting from the open-loop model, we extend it by adding a feedback control of the system's variables. The objective of the closed loop system is to explore, in silico, the possibility of constructing a mutant E. coli by re-wiring the gene expression machinery. In particular, the model suggests a re-wired network (see Figure5.6) that has the property of making the bacteria grow faster on an alternative sugar than on glucose (with appropriate set of parameters) leading de facto to inverse diauxie as desired.

Open-loop model

The open-loop model, expressed by (5. in [START_REF] Tan | Emergent bistability by a growth-modulating positive feedback circuit[END_REF]. We shall take into account this bi-stability to control the system to the "low" or to the "high" RNAP stable steady state. Let (5.14) where:

x 2 = x p :                  ẋc (t) = k 0 c s + (x p , θ 1 p ) + k 1 c s + (x p , θ 2 p ) s + (x c , θ 1 c ) s -(x p , θ μ) -(μ x p (t) + γ c ) x c (t) ẋp (t) = ν 1 k 0 p s + (x p , θ 1 p ) + ν 1 k 1 p s + (x p , θ 2 p ) -(μ x p (t) + γ p ) x p (t)
k 0 i > 0 (i = c, p
) are the basal synthesis rate constants;

k 1 i > 0 (i = c, p
) are the main synthesis rate constants; ν 1 is a positive input accounting for IPTG induction of the synthetic rpoBC promoter;

γ i > 0 (i = c, p)
is the degradation rate constant; In what follows, we will explain the main assumptions adopted in building the system (5.14).

θ j i > 0 (i = c, p; j = 1,

Growth rate

In bacteria, growth rate is highly correlated with RNAP [START_REF] Tadmor | A coarse-grained biophysical model of E. coli and its application to perturbation of the rRNA operon copy number[END_REF], which plays a key role in gene transcription [START_REF] George | A unified theory of gene expression[END_REF], and with the type of substrate [START_REF] Marr | Growth rate of Escherichia coli[END_REF]. Hence, according to (7.9), we modelled growth rate µ : R ≥0 → R ≥0 as:

µ(t) = μ x p (t).
(5.15)

cAMP-CRP activation

The cAMP-CRP activation box (Figure 5.1) summarizes the formation of the cAMP-CRP complex from cAMP, a small metabolite, which binds the protein CRP. The cAMP concentration is higher at low growth rate and rapidly decreases at high growth rate [START_REF] Bettenbrock | Correlation between growth rates, EIIACrr phosphorylation, and Intracellular Cyclic AMP levels in Escherichia coli K-12[END_REF].

Thus, cAMP abundance in cells can be well captured by a negative step function of µ,

i.e. s -(µ, θ µ ). Moreover, since cAMP association with or dissociation from CRP is much faster than the synthesis and degradation of proteins [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF], we have assumed that as soon as CRP reaches a certain threshold, i.e. θ c , CRP instantly binds to cAMP in a switchlike fashion . For these reasons, the positive regulation carried out by cAMP-CRP reads as:

b + cAM P -CRP = s + (x c , θ c ) s -(µ, θ µ ).
Focusing on the decreasing step function s -(µ, θ µ ) and taking into account the expression of µ in (5.15), we can rewrite b + cAM P -CRP as:

b + cAM P -CRP (x c , x p ) = s + (x c , θ c ) s -(x p , θ μ) (5.16)
where θ μ is a RNAP threshold concentration, which depends on the type of carbon source.

CRP synthesis

With CRP synthesis we indicate the production of CRP, namely the positive term of ẋc in (5.14). CRP-as every other protein-needs, to be expressed, that RNAP binds to Chapter 5. Controlling bacterial growth: in silico feedback law design to re-wire the genetic network 76 the relative promoter in order to initiate transcription [START_REF] George | A unified theory of gene expression[END_REF]. Thus, we have assumed that a lower value of x p , i.e. θ 1 p , induces the basal synthesis (k 0 c s + (x p , θ 1 p )) of x c while a higher value of x p , i.e. θ 2 p , is needed to stimulate its main expression (k 1 c s + (x p , θ 2 p )). Moreover, the crp gene is regulated both positively and negatively by cAMP-CRP. However, in order to simplify, we omit the negative control of crp, because this mechanism only plays a role when the CRP concentration is low [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF] 1 . Thus, only one concentration threshold of CRP, i.e. θ 1 c , is required in the model, to allow production of the cAMP-CRP complex. In conclusion, taking into account the regulation function of cAMP-CRP in (5.16), the CRP synthesis reads:

f c (x) = k 0 c s + (x p , θ 1 p ) + k 1 c s + (x p , θ 2 p ) b + cAM P -CRP (x c , x p ), with 0 < θ 1 c < max c , (5.17) 
where max c is the maximum concentration value for CRP.

RNAP synthesis

Similarly, RNAP synthesis denotes RNAP yield, expressed by the positive term of ẋp in (5.14). We have assumed that a low concentration of RNAP (θ 1 p ) is sufficient to stimulate its basal production k 0 p s + (x p , θ 1 p ) while only above the θ 2 p threshold RNAP is able to stimulate its main production k 1 p s + (x p , θ 2 p ). Thus, we can order RNAP's thresholds as:

0 < θ 1 p < θ 2 p < max p , (5.18) 
where max p is the maximum concentration value for RNAP. Moreover, the synthetic rpoBC promoter can be induced by IPTG whose effect is modelled by input v 1 . Since we do not known whether the effect of IPTG is linear, we will later on assume, more generally, that v 1 is a positive increasing function of IPTG, to be denoted by v 1 = h(IP T G). Thus, RNAP synthesis reads:

f p (x) = ν 1 k 0 p s + (x p , θ 1 p ) + ν 1 k 1 p s + (x p , θ 2 p ).

CRP and RNAP removal

The negative terms of ẋc and ẋp in (5.14) take into account proteins' dilution and degradation as discussed in Section 5.2 and generally expressed in (5.3).
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Qualitative analysis of the open-loop system

In this section we will qualitatively study, by means of phase-plane analysis and bifurcation diagrams, system (5.14) in two cases: 1) cells grown in glucose and 2) cells grown in a medium with a different sugar, which we will assume is maltose, for simplicity. This will elucidate how different growth rates, induced by different substrates, influence gene expression and vice versa. Moreover, we shall show how-through the external input ν 1 -the stability of equilibria in (5.14) can be controlled.

Open-loop system in glucose growth

If cells are grown in glucose, then parameters depending on the substrate become θ μ = θ G p and μ = µ G in system (5.14). Moreover, in the presence of glucose or other PTS sugars, adenylate cyclase2 activity decreases, leading to a drop in the cellular level of cAMP [116] [134]. Thus, we have modelled this effect assuming:

0 < θ 1 p < θ G p < θ 2 p < max p . (5.19) 
Therefore, during growth on glucose, the state space of system (5.14) can be partitioned into eight regular domains, where the vector filed is uniquely defined:

D G 1 = x ∈ R 2 ≥0 : 0 ≤ x c < θ 1 c , 0 ≤ x p < θ 1 p D G 2 = x ∈ R 2 ≥0 : θ 1 c < x c ≤ max c , 0 ≤ x p < θ 1 p D G 3 = x ∈ R 2 ≥0 : 0 ≤ x c < θ 1 c , θ 1 p < x p < θ G p D G 4 = x ∈ R 2 ≥0 : θ 1 c < x c ≤ max c , θ 1 p < x p < θ G p D G 5 = x ∈ R 2 ≥0 : 0 ≤ x c < θ 1 c , θ G p < x p < θ 2 p D G 6 = x ∈ R 2 ≥0 : θ 1 c < x c ≤ max c , θ G p < x p < θ 2 p D G 7 = x ∈ R 2 ≥0 : 0 ≤ x c < θ 1 c , θ 2 p < x p ≤ max p D G 8 = x ∈ R 2 ≥0 : θ 1 c < x c ≤ max c , θ 2 p < x p ≤ max p .
The switching domains are not listed here, but they are as defined in Section 5.2. We will group into regions R G j those domains where system (5.14)-in glucose growth-has the same dynamics and thus the same focal points. Considering Definition 5.1, we have the following focal points: Chapter 5. Controlling bacterial growth: in silico feedback law design to re-wire the genetic network 78

∀x ∈ R G 1 = x ∈ R 2 ≥0 : x ∈ D G 1 ∪ D G 2 x c → 0 x p → 0 Thus, Φ G 0 = (0, 0) is the focal point of region R G 1 . ∀x ∈ R G 2 = x ∈ R 2 ≥0 : x ∈ D G 3 ∪ D G 4 ∪ D G 5 ∪ D G 6 x c → k 0 c µ G x1 p,G + γ c = x2 c,G x p → -γ p + γ 2 p + 4 v 1 k 0 p µ G 2µ G = x1 p,G Thus, Φ G 1 = (x 2 c,G , x1 p,G ) is the focal point of region R G 2 . ∀x ∈ R G 3 = x ∈ R 2 ≥0 : x ∈ D G 7 ∪ D G 8 x c → k 0 c µ G x2 p,G + γ c = x1 c,G x p → -γ p + γ 2 p + 4 v 1 (k 0 p + k 1 p )µ G 2µ G = x2 p,G Thus, Φ G 2 = (x 1 c,G , x2 p,G ) is the focal point of region R G 3 .
Hence, there can be at most three locally stable steady states during growth on glucose.

Figure 5.2 depicts the phase-plane of system (5.14). It can be seen that Φ G 0 , Φ G 1 , Φ G 2 , (for the parameter values used) are locally stable steady states since they are within their respective regular domains (Theorem 5.5). Notably, it is easy to verify that Φ G 0 is locally stable for any set of parameters. It represents absence of growth and can happen when RNAP initial condition, i.e. x p (t 0 ), is too low-specifically x p (t 0 ) < θ 1 p -to initiate gene transcription or when the control input ν 1 does not sufficiently induce RNAP expression, that is when x1 p,G < θ 1 p . We refer to Φ G 0 as the trivial fixed point. Φ G 1 represents RNAP basal level-leading to a low growth rate (see (5.15))-while CRP is at a high level, which is in agreement with high crp gene expression (by cAMP-CRP) at lower growth rate. Thus, because of the low growth rate achieved, we refer to Φ G 1 as the low fixed point. Conversely, at Φ G 2 , CRP is at low level while RNAP, as well as µ, have reached their highest stable values. Thus, Φ G 2 is named the high fixed point.

Since x1

p,G (ν 1 ) and x2 p,G (ν 1 ), it turns out that the location of focal points Φ G 1 and Φ G 2 , and thus the number of equilibria of system (5.14), depend on the control input ν 1 . 

θ 1 c = 0.6, θ 1 p = 0.8, θ G p = 2, θ 2 p = 3.5, k 0 c = 7, k 1 c = 10, k 0 p = 8, k 1 p = 26, γ c = 1, γ p = 1, µ G = 2 e v 1 = 1.
The black curve is the x c -nullcline: nor Φ G 2 are stable steady states. In this case, system (5.14) during growth on glucose converges towards the only stable point Φ G 0 (not depicted in Figure 5.3). So, in I, the control input is too small to allow RNAP to reach a basal level, and prevents bacterial growth.

x p = k 0 c x c µ G - γ c µ G . Stable fixed points: Φ G 0 , Φ G 1 , Φ G 2 .

In part II, when x1

p,G (ν 1 ) > θ 1 p and x2 p,G (ν 1 ) < θ 2 p hold, only Φ G 1 is a stable steady state (besides the trivial one) according to Theorem 5.5. Hence, it turns out that choosing an initial condition of RNAP x p (t 0 ) > θ 1 p and ν 1 such that x1 p,G (ν 1 ) > θ 1 p and x2 p,G (ν 1 ) < θ 2 p , we can control system (5.14) to the stable point Φ G 1 .

In part III, characterized by

θ 1 p < x1 p,G (ν 1 ) < θ 2 p and x2 p,G (ν 1 ) > θ 2 p , both Φ G 1 and Φ G 2
are stable steady states: this is a region of bi-stability. Moreover, the phase plane corresponding to this configuration is depicted in Figure 5.2, where we can also observe the presence of two separatrices x p = θ 1 p and x p = θ 2 p . Is is clear that, depending on x p (t 0 ), the system can converge to Φ G 1 (if

θ 1 p < x p (t 0 ) < θ 2 p ) or to Φ G 2 (if x p (t 0 ) > θ 2 p ).
In part IV, when x1 p,G (ν 1 ) > θ 2 p holds, only Φ G 2 is a stable steady state and thus, whenever x p (t 0 ) > θ 1 p , system (5.14) 

converges to Φ G 2 .
The open-loop control in glucose growth can be summarized as follows.

Proposition 5.7. Consider system (5.14) with control input ν 1 and initial condition

x p (t 0 ) such that: if (x 1 p,G (ν 1 ) < θ 1 p ∧ x2 p,G (ν 1 ) < θ 2 p ) ∨ x p (t 0 ) < θ 1 p , then system (5.14) converges to the trivial focal point Φ G 0 (region I in Figure 5.3); if x1 p,G (ν 1 ) > θ 1 p ∧ x2 p,G (ν 1 ) < θ 2 p ∧ x p (t 0 ) > θ 1 p , then system (5.14) converges to the low focal point Φ G 1 (region II in Figure 5.3); if θ 1 p < x1 p,G (ν 1 ) < θ 2 p ∧ x2 p,G (ν 1 ) > θ 2 p ∧ x p (t 0 ) > θ 1
p , then system (5.14) is bistable (region III in Figure 5.3) and notably: 5.3).

-if θ 1 p < x p (t 0 ) < θ 2 p ,

Open-loop system under an alternative carbon source

We consider now system (5.14) in the case that E. coli is grown in a medium with an alternative non PTS sugar, such as maltose. It follows that θ μ = θ M p and μ = µ M in system (5.14). To take into account the fact that-in the absence of PTS sugar (as glucose)-cAMP formation is not strongly inhibited [START_REF] Notley-Mcrobb | The relationship between external glucose concentration and cAMP levels inside Escherichia coli : implications for models of phosphotransferase-mediated regulation of adenylate cyclase[END_REF], we have assumed: 

0 < θ 1 p < θ 2 p < θ M p < max p (5.
Φ M 0 = (0, 0) Φ M 1 = (x 2 c,M , x1 p,M ) Φ M 2 = (x 1 c,M , x2 p,M ) Φ M 3 = (x 3 c,M , x2 p,M )
where: 

x1 c,M = k 0 c µ M x2 p,M + γ c , x1 p,M = -γ p + γ 2 p + 4 v 1 k 0 p µ M 2µ M , x2 c,M = k 0 c µ M x1 p,M + γ c , x2 p,M = -γ p + γ 2 p + 4 v 1 (k 0 p + k 1 p )µ M 2µ M , x3 c,M = k 0 c + k 1 c µ M x2 p,M + γ c . We have that Φ M 0 is the focal point of domains D M 1 and D M 2 ; Φ M 1 is
θ 1 c = 0.6, θ 2 c = 2.7, θ 1 p = 0.8, θ 2 p = 3.5, θ M p = 10, k 0 c = 5, k 1 c = 10, k 0 p = 8, k 1 p = 26, γ c = 1, γ p = 1, µ M = 1 e v 1 = 1.
The black curves are the x c -nullclines: no direct effect on cAMP formation-in contrast to glucose which is observed to inhibit it [START_REF] Notley-Mcrobb | The relationship between external glucose concentration and cAMP levels inside Escherichia coli : implications for models of phosphotransferase-mediated regulation of adenylate cyclase[END_REF]. Moreover, when Φ M 3 is a stable point (if Φ M 3 ∈ D M 6 , Theorem 5.5) it ensures a higher level of CRP expression, which reflects the higher level of cAMP-CRP as well.

x p = k 0 c x c µ G - γ c µ G and x p = k 0 c + k 1 c x c µ G - γ c µ G . Stable fixed points: Φ M 0 , Φ M 1 , Φ M 3 .
Again in the maltose growth case, it is possible to control system (5.14)-by means of the input ν 1 -to a "low" or a "high" stable point. Indeed, Figure 5.5 depicts how the stability of x p changes as a function of ν The open-loop control in maltose growth is summarized below.

Proposition 5.8. Consider system (5.14) (during growth on maltose) with control input ν 1 and initial condition x p (t 0 ) such that: if θ 1 p < x p (t 0 ) < θ 2 p , then system (5.14) converges to the low focal point Φ M 1 ;

if (x 1 p,M (ν 1 ) < θ 1 p ∧ x2 p,M (ν 1 ) < θ 2 p ) ∨ x p (t 0 ) < θ 1 p ,
if x p (t 0 ) > θ 2 p , then system (5.14) converges to the high focal point To conclude, we remark that the most relevant difference in comparison with growth on glucose, is the higher level of CRP, and thus the higher level of cAMP-CRP, which can be achieved in bacteria grown in maltose. We shall see how this information shall be useful in constructing a feedback control law later on. 

Φ M 3 ; if x1 p,M (ν 1 ) > θ 2 p ∧ x2 p,M (ν 1 ) < θ M p ∧ x p (t 0 ) > θ 1 p , then system (5.14) converges to the high focal point Φ M 3 (region IVa in Figure 5.5). if x1 p,M (ν 1 ) > θ 2 p ∧ x2 p,M (ν 1 ) > θ M p ∧ x p (t 0 ) > θ 1 p ,

Closed-loop model

As motivated in Section 5.3, the aim of the closed loop model is to suggest a way for building a synthetic strain of E. coli able to generate inverse diauxie. In the wild type case, glucose is the "preferred" substrate because it supports the highest growth rate [START_REF] Narang | Bacterial gene regulation in diauxic and non-diauxic growth[END_REF] while in a modified bacterium, using the closed-loop model, we aim at inverting this mechanism to get higher growth on maltose than on glucose.

In [START_REF] Tan | Emergent bistability by a growth-modulating positive feedback circuit[END_REF], the RNAP promoter was modified in such a way that it can be controlled externally through IPTG. We will assume that further modifications can be introduced such that RNAP will eventually be controlled by some other variable. A new control system involving two inputs is thus considered: assuming a new synthetic rpoBC promoter is used, in which both k 0 p and k 1 p are controlled by ν 1 while only k 1 p is controlled by ν 2 , we end up with the following PWNL system:

                 ẋc (t) = k 0 c s + (x p , θ 1 p ) + k 1 c s + (x p , θ 2 p ) s + (x c , θ 1 c ) s -(x p , θ μ) -(μ x p (t) + γ c ) x c (t) ẋp (t) = ν 1 k 0 p s + (x p , θ 1 p ) + ν 1 ν 2 k 1 p s + (x p , θ 2 p ) -(μ x p (t) + γ p ) x p (t).
(5.21)

During exponential phase-the period characterized by cell doubling-the bacterial culture shows a constant growth rate [START_REF] Monod | The growth of bacterial cultures[END_REF]. This means that, according to (5.15), a stable Chapter 5. Controlling bacterial growth: in silico feedback law design to re-wire the genetic network 85 fixed point of RNAP has to be reached. Thus, constructing a closed-loop control to generate inverse diauxie, mathematically means finding a function of the system's variables ν 2 = g(x c , x p ) that regulates the transcription of the gene rpoBC in such a way that:

µ M xp,M > µ G xp,G (5.22) 
where xp,M and xp,G are two possible RNAP steady states in maltose and glucose media, respectively.

In the following Theorem we state sufficient conditions and a feedback function for model (5.21) to exhibit a higher growth rate on maltose then on glucose.

Theorem 5.9. Assume

g(x c , x p ) = s + (x c , θ * c ) s -(x p , θ μ), (5.23 
) The proof of Theorem 5.9 will be given in the remainder of the article, by analysing system (5.21) in glucose and maltose medium.

θ 1 c < θ * c < k 0 c + k 1 c µ M θ M p + γ c , (5.24) 
µ G µ M < 1 + k 1 p k 0 p , (5.25) 
x p (t 0 ) > θ 1 p , (5.26 

Qualitative analysis of the closed-loop system

Now, we will study-both in glucose and in maltose cultures-the closed-loop system that results from (5.21) when input v 2 is given by the feedback law (5.23). Moreover, we Chapter 5. Controlling bacterial growth: in silico feedback law design to re-wire the genetic network 86 will assume that conditions (5.24), (5.25) hold in the following analysis. Thus, when we refer to system (5.21), we implicitly assume that all the conditions stated in Theorem 5.9 hold, to ensure the inverse diauxie.

Closed-loop system in glucose growth

When E. coli is grown in glucose we have θ μ = θ G p and μ = µ G in system (5.21). Since glucose inhibits cAMP formation as previously motivated and expressed in (5.19), it turns out that the product s + (x p , θ 2 p )s -(x p , θ G ), in the second equation in (5.21), is always zero. Thus, system (5.21) during glucose growth can be simplified to:

               ẋc (t) = k 0 c s + (x p , θ 1 p ) -(µ G x p (t) + γ c ) x c (t) 0 < θ 1 c < max c ẋp (t) = v 1 k 0 p s + (x p , θ 1 p ) -(µ G x p (t) + γ p ) x p (t) 0 < θ 1 p < θ G p < θ 2 p < max p (5.27)
System (5.27) clearly shows that the value of θ * c does not play a role during growth on glucose. The focal points of system (5.27) are:

Ψ G 0 = (0, 0), Ψ G 1 = (x 1 c,G , x1 p,G )
where:

x1 c,G = k 0 c µ G x1 p + γ c ; x1 p,G = -γ p + γ 2 p + 4 v 1 k 0 p µ G 2µ G .
Figure 5.7 depicts the phase-plane of system (5.27) in the case when both Ψ G 0 and Ψ G 1 are stable fixed points (Theorem 5.5). We notice that, the main difference with the open-loop model is that system (5.27) no longer exhibits the high focal point (Φ G 2 ) with x2 p,G as RNAP equilibrium (see Figure 5.2 for comparison). This is due to cAMP-CRP which through the feedback law g(x c , x p ), inhibits the rpoBC promoter and shuts off RNAP main expression. Biologically, this means that the growth rate of E. coli -at steady state-is limited by the low level of RNAP expression at x1 p,G .

For reasons of space we omit the x p bifurcation diagram as function of ν 1 for system (5.27), but the main results on equilibria stability are stated in Proposition 5.10.

Proposition 5.10. Consider system (5.27) with control input ν 1 and initial condition

x p (t 0 ) such that: 

if x1 p,G (ν 1 ) < θ 1 p ∨ x p (t 0 ) < θ 1 p ,
θ 1 c = 0.6, θ 1 p = 0.8, θ G p = 2, θ 2 p = 3.5, k 0 c = 5, k 1 c = 10, k 0 p = 8, k 1 p = 26, γ c = 1, γ p = 1, µ G = 1 and v 1 = 1.
The black curve is the x c -nullcline:

x p = k 0 c x c µ G - γ c µ G . Stable fixed points: Ψ G 0 , Ψ G 1 . if x1 p,G (ν 1 ) > θ 1 p ∧ x p (t 0 ) > θ 1 p , then system (5.27) converges to the low focal point Ψ G 1 .

Closed-loop system in maltose growth

We consider now system (5.21) in the case when E. coli is grown in maltose, thus we have θ μ = θ M p , μ = µ M and (5.20) holds.

It follows that the focal points of system (5.21) during maltose growth are:

Ψ M 0 = (0, 0) Ψ M 1 = (x 1 c,M , x1 p,M ) Ψ M 2 = (x 2 c,M , x2 p,M ) Ψ M 3 = (x 3 c,M , x1 p,M )
where: Unlike in the glucose case, the closed loop model for maltose preserves the high focal point, allowing RNAP to be expressed at a high rate and hence to reach its maximal equilibrium in x2 p,M . Figure 5.9 shows the x p stable steady states as a function of the control input v 1 . The main differences with the x p -bifurcation diagram of the open-loop model in Figure 5.5 are the regions V and VI, which are due to the feedback control ν 2 = g(x c , x p ). Notably, region V of Figure 5.9 shows that, according to Theorem 5. 5.9), and notably:

x1 c,M = k 0 c µ M x1 p,M + γ c , x1 p,M = -γ p + γ 2 p + 4 v 1 k 0 p µ M 2µ M , x2 c,M = k 0 c + k 1 c µ M x2 p,M + γ c , x2 p,M = -γ p + γ 2 p + 4 v 1 (k 0 p + k 1 p )µ M 2µ M , x3 c,M = k 0 c + k 1 c µ M x1 p,M + γ c .
x p = k 0 c x c µ M - γ c µ M and x p = k 0 c + k 1 c x c µ M - γ c µ M . Stable fixed points: Ψ M 0 , Ψ M 1 and Ψ M 2 .
-if θ 1 p < x p (t 0 ) < θ 2 p , then system (5.21) converges to the low focal point Ψ M 1 ; -if x p (t 0 ) > θ 2 p , then system (5.21) converges to the high focal point Ψ M 2 ; if x1 p,M (ν 1 ) > θ 2 p ∧ xp,M (ν 1 ) 2 < θ M p ∧
x p (t 0 ) > θ 1 p , then system (5.21) converges to the high focal point Ψ M 2 (region IV in Figure 5.9).

if θ 2 p < x1 p,M (ν 1 ) < θ M p ∧ x2 p,M (ν 1 ) > θ M p ∧
x p (t 0 ) > θ 1 p , then system (5.21) converges to a Filippov focal point, which arises on the x p = θ M p switching domain (region V in Figure 5.9).

if x1

p,M (ν 1 ) > θ M p ∧ x p (t 0 ) > θ 1 p , then system (5.21) converges to the focal point Ψ M 1 (region VI in Figure 5.9).

Inverse Diauxie

We conclude by showing how the feedback control law ν 2 = g(x c , c p ) and the sufficient conditions in Theorem 5.9 lead to the inverse diauxie.

In a glucose medium, under conditions (5.23), (5.24), (5.25) 

µ M -γ p + γ 2 p + 4v 1 (k 0 p + k 1 p )µ M 2µ M > µ G -γ p + γ 2 p + 4v 1 k 0 p µ G 2µ G
which is satisfied if and only if condition (5.25) holds. Moreover, condition (5.24) is essential to guarantee that Ψ M 2 stays within its domain D M 11 , and hence the stability of x2 p,M (Theorem 5.5) for all ν 1 such that θ 2 p < x2 p,M < θ M p . Finally, condition (5.26) is needed to avoid the convergence of system (5.21) with the feedback law (5.23) to the trivial steady state. Figure 5.10 graphically illustrates Theorem 5.5 and range (ν min

1 , ν max 1 )
in which the stable growth rate on maltose is higher than that one on glucose. Notably,

ν min 1 is the minimum ν 1 such that x1 p,M (ν 1 ) > θ 2 p while ν max 1 is the maximum ν 1 such that x1 p,G (ν 1 ) < θ M p .
To conclude, Figure 5 Our results combine the control based approaches of engineering with biology, with the aim of implementing new functions in the cells (synthetic biology), which may have some practical and relevant importance in applications such as production of biopharmaceuticals, novel bio-materials and developing new bio-technologies.

Conclusions

To conclude, the work presented here is an attempt to help guide the construction of synthetic gene networks, by allowing biologists to select experimental conditions most likely to yield successful results. Conference [START_REF] Carta | A class of switched piecewise quadratic systems for coupling gene expression with growth rate in bacteria[END_REF].

Here, a novel qualitative formalism to model gene expression dynamics dependent on dilution due to cell growth rate is proposed and explored for qualitatively controlling the bacterial growth rate. Notably, we extend the piecewise linear (PL) systems by keeping the use of step functions to model the interactions between the elements and adding a growth rate expression to model the dilution effect. We model the growth rate as the weighted minimum of two limiting gene products responsible for bacterial growth. The resulting system is a switched system with two piecewise quadratic (PQ) modes. We 

Introduction

The overall aim of synthetic biology is to develop and apply engineering tools to control cellular behaviour-constructing novel biological circuits in the cell-to achieve desired functions [START_REF] Mukherji | Synthetic biology: understanding biological design from synthetic circuits[END_REF].

Most recent synthetic designs have focused on the cell transcription machinery, which includes the genes to be expressed, their promoters, RNA polymerase, Ribosomes and transcription factors, all serving as potential engineering components. Indeed, synthetic bio-molecular circuits are typically constructed in Escherichia coli (E. coli ), by "cutting and pasting"together coding regions and promoters (natural and synthetic) according to designed structures and specific purposes ( [START_REF] Elowitz | A synthetic oscillatory network of transcriptional regulators[END_REF], [START_REF] Gardner | Construction of a genetic toggle switch in Escherichia coli[END_REF], [START_REF] Tigges | A tunable synthetic mammalian oscillator[END_REF]).

Along these lines, control-based approaches are entering more and more into the core of synthetic biology ( [START_REF] Ang | Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network[END_REF], [START_REF] Leduc | How do control-based approaches enter into biology?[END_REF], [START_REF] Menolascina | Analysis, design and implementation of a novel scheme for in-vivo control of synthetic gene regulatory networks[END_REF], [START_REF] Yang | External control of the GAL network in S. cerevisiae: A view from control theory[END_REF]). Control theory is equally applicable, but with some limitations due to biological constrains ( [START_REF] Chaves | Exact control of genetic networks in a qualitative framework: The bistable switch example[END_REF], [START_REF] Sontag | Some new directions in control theory inspired by systems biology[END_REF]), for instance, to implement controllers of particular cellular processes that ultimately may result in great advances which would not be possible when using other approaches. Indeed, control theory approaches may help in producing bio-pharmaceuticals, bio-films, bio-fuels, novel cancer treatments and novel bio-materials (see [START_REF] Khalil | Synthetic biology: applications come of age[END_REF] for a review on synthetic biology applications).

Here, we first introduce a novel mathematical formalism to qualitatively model gene expression and dilution due to cell growth. In fact, one of the aims of systems and synthetic biology is to link molecular-level mechanisms (e.g. gene expression) to cell-level behaviour (e.g. growth rate) ( [START_REF] Alon | An Introduction to Systems Biology: Design Principles of Biological Circuits[END_REF][START_REF] Kitano | Systems biology: A brief overview[END_REF]). In the last years much work has focused on the impact of molecular and gene networks on cellular physiology, but less is known about how cellular physiology can influence the machinery of transcription and translation ( [START_REF] Klumpp | Growth rate-dependent global effects on gene expression in bacteria[END_REF]). To this aim, we present a bacterial growth rate model-where growth is limited by different factors-which ultimately leads to a switched piecewise quadratic (SPQ) formalism-derived from piecewise linear (PL) systems ( [START_REF] Gouzé | A class of piecewise linear differential equations arising in biological models[END_REF]).

Then, we focus on the gene expression machinery of the bacterium Escherichia coli, with the aim of designing laws to control the growth rate of the cells. Growth control is essential in industrial biotechnology and fundamental research of this kind could pave the way to novel types of antimicrobial strategies. Indeed, the basic effect of an antibiotic is to slow (or arrest) growth. To this end, we present and analyse a bi-dimensional open-loop model of bacterial gene expression in which the growth rate is controlled externally by tuning the synthesis of a component of the gene expression machinery (RNA Polymerase). This type of control can be easily implemented, for instance, by means of inducers that activate synthetic inducible promoters [START_REF] Kaern | The engineering of gene regulatory networks[END_REF].

The paper is organized as follows. In Section 6.2 we briefly recall PL systems. In Section 6.3 we define the cell growth rate model used in this paper. In Section 6.4 we present the SPQ system, which extends the PL system by considering the dilution due to cell growth. In Section 6.5 we state and prove some theorems on the stability of PQ subsystems that will be useful in Section 6.6 to study the stability of the entire SPQ system. Then, in Section 7.3 we present and analyse a bi-dimensional SPQ openloop control system of bacterial gene expression. Finally, in Section 6.8 we state our conclusion and perspectives.

Piecewise Linear systems overview

The regulation of gene expression plays a pivotal role in the functioning of cells. Mathematical modelling and computational techniques are fundamental to the understanding of these genetic regulatory networks ( [START_REF] Alon | An Introduction to Systems Biology: Design Principles of Biological Circuits[END_REF][START_REF] Jong | Modeling and simulation of genetic regulatory systems: a literature review[END_REF]). The principal modelling challenges come from incomplete knowledge of the networks, and the dearth of quantitative data for identifying kinetic parameters required for detailed mathematical models. Qualitative methods overcome both of these difficulties and are thus well-suited to the modelling and simulation of genetic networks ( [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF]).

A class of widespread and well studied qualitative models are piecewise linear (PL) systems, originally introduced by [START_REF] Glass | The logical analysis of continuous, non-linear biochemical control networks[END_REF]. PL models of regulatory genetic networks are built with discontinuous (step) functions. The use of step function has been motivated by the experimental observation that the activity of certain genes changes in a drastic manner at a threshold concentration of a regulatory protein ( [START_REF] Yagil | On the relation between effector concentration and the rate of induced enzyme synthesis[END_REF]). The PL model has

the general form ẋi = f i (x) -d i x i , 1 ≤ i ≤ n, (6.1) 
where x = (x 1 , ..., x n ) T ∈ R n ≥0 is a vector of protein concentrations. The non-negative quantities f i (x) and d i x i represent synthesis and degradation rates for each protein x i respectively. The function f i : R n ≥0 → R ≥0 represents the expression rate of the gene i depending on the whole state x. However, f i (x) can be detailed as:

f i (x) = L i l=1 k il b il (x)
where k il > 0 is a rate parameter and b il (x) is a combination of step functions s + , s -:

s + (x i , θ j i ) =    1 if x i > θ j i 0 if x i < θ j i ; s -(x i , θ j i ) = 1 -s + (x i , θ j i ).
Chapter 6. Switched piecewise quadratic models of biological networks 96 More details on dynamical analysis and applications of PL models can be found in [START_REF] Casey | Piecewise-linear models of genetic regulatory networks: Equilibria and their stability[END_REF][START_REF] Jong | Qualitative simulation of genetic regulatory networks using piecewise-linear models[END_REF][START_REF] Gouzé | A class of piecewise linear differential equations arising in biological models[END_REF]].

The growth rate model

In our model proteins' concentration decreases by two processes: degradation and dilution due to cell growth ( [START_REF] Eden | Proteome half-life dynamics in living human cells[END_REF]). However, PL systems do not take into account protein dilution, but they only consider protein degradation. To overcome this issue, the PL formalism (6.1) can be extended setting:

d i = µ(•) + γ i (6.2)
where µ(•) is the bacterial growth rate accounting for proteins' dilution and γ i is a degradation constant.

Several studies have reported that bacterial growth rate is intimately intertwined with gene expression ( [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF][START_REF] Klumpp | Growth rate-dependent global effects on gene expression in bacteria[END_REF][START_REF] Scott | Interdependence of cell growth and gene expression: Origins and consequences[END_REF][START_REF] Tadmor | A coarse-grained biophysical model of E. coli and its application to perturbation of the rRNA operon copy number[END_REF]) and with the type of substrate ( [START_REF] Marr | Growth rate of Escherichia coli[END_REF][START_REF] Monod | The growth of bacterial cultures[END_REF]).

Here, to keep the discussion as general as possible, we assume that growth rate is limited by the amount of two generic cellular components which are necessary to sustain the gene expression machinery of cell. Notably, let x a , x b ∈ R ≥0 be the concentrations of cellular components a and b, respectively we model the bacterial growth rate µ : R ≥0 → R ≥0 as:

µ(t) = min(µ a x a (t), µ b x b (t)) (6.3)
where µ a and µ b are proportion factors depending for instance on the carbon source used. We note that expressions of the type (6.3) are widely used in ecology to model the specific growth rate of species, determined by the resource that is most limiting according to Liebig's "law of the minimum" ( [START_REF] Huisman | Biodiversity of plankton by species oscillations and chaos[END_REF]), and recently, a similar expression to (6.3) has also been applied in a model of ribosomal regulation in E. coli ( [START_REF] Shachrai | Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth[END_REF]).

The Switched Piecewise Quadratic (SPQ) system

Since our purpose is dealing with gene expression dependent on bacterial growth, we substitute expression (6.2) with µ of the form (6.3) into the PL systems (6.1).

Without loss of generality, we choose for x a and x b the two last components of x. That is, considering x a = x n-1 and x b = x n in (6.3), we obtain a new system, which takes Chapter 6. Switched piecewise quadratic models of biological networks 97 into account the dilution effect, whose general form is:

ẋi = f i (x) -[min(µ n-1 x n-1 , µ n x n ) + γ i ] x i , 1 ≤ i ≤ n . (6.4)
We note that system (6.4), according to the evaluation of the function min in µ, can be split into two subsystems (or modes):

I: if x n-1 < µ n µ n-1 x n ẋi = f i (x) -[µ n-1 x n-1 + γ i ] x i , 1 ≤ i ≤ n II: if x n < µ n-1 µ n x n-1 ẋi = f i (x) -[µ n x n + γ i ] x i , 1 ≤ i ≤ n (6.5)
which share the same structure and properties. Thus, system (6.4) belongs to the class of switched systems ( [START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF]) in which the growth rate µ acts as a rule that orchestrates the switching between the two subsystems in (6.5). Furthermore, noting that subsystems in (6.5) are piecewise quadratic, we named system (6.4) switched piecewise quadratic

(SPQ).
Moreover, each piecewise quadratic (PQ) system (or mode) in (6.5) can be written in matrix form as ẋ = f (x) -d(x q )x, (

where f = (f 1 , ..., f n ) and d(x q ) = diag(µ q x q + γ 1 , ..., µ q x q + γ n ), where diag is the diagonal matrix corresponding to the vector and q = n -1 or q = n depending on whether we refer to mode I or mode II in (6.5), respectively.

To study the dynamics of the SPQ system (6.4) we need first to characterize the dynamics of its PQ modes (6.6), and then investigate the properties arising from the switching condition. To this end, in the next section we present a dynamical study of the PQ subsystem.

The PQ subsystem: dynamical study

For simplicity, we provide a dynamical study only for mode II in (6.5), that is when

x q =
x n in (6.6), but equivalent results can be derived for mode I considering x q = x n-1 .

The dynamics of the PQ subsystem can be studied in the n-dimensional state-space

Ω = Ω 1 × Ω 2 × ... × Ω n , where each Ω i is defined by Ω i = {x i ∈ R ≥0 |0 ≤ x i ≤ max i }
for some maximum concentration value max i . A protein encoded by a gene will be involved in different interactions at different concentration thresholds, so for each variable x i , we Chapter 6. Switched piecewise quadratic models of biological networks 98 assume there are p i ordered thresholds θ 1 i , ..., θ p i i (we also define θ 0 i = 0 and θ

p i+1 i = max i
). The (n -1)-dimensional hyper-planes defined by these thresholds partition Ω into hyper-rectangular regions we call domains. Specifically, a domain D ⊂ Ω is defined to be a set D = D 1 × ... × D n , where D i is one of the following: 

D i = x i ∈ Ω i |θ j i < x i < θ j+1 i for j ∈ {0, ..., p i } D i = x i ∈ Ω i |x i = θ j i for j ∈ {0

Solutions and Stability in Regular Domains

For any regulatory domain D, the function f (x) is constant for all x ∈ D, and it follows that the PQ system (6.6) (for x q = x n ) can be written as

ẋ = f D -d(x n )x, (6.7) 
where f D is constant in D. We note that (6.7) is a hierarchical system, since the differential equation governing x n (t) depends only on x n (t) while ẋi (t) depends only on

x i (t) and x n (t), but not on x j (t) for n > j > i. Thus, for any x(t 0 ) ∈ D the unique solution of (6.7) can be found explicitly by solving first the n-component of (6.7)-

ẋn = f D n -(µ n x n + γ n )
x n -which is an autonomous differential equation, and then solving the i-components (i = 1, ..., n -1), having substituted x n (t) into them. Lemma 6.1. Equation

ẋn = f D n -(µ n x n + γ n )x n (6.8)
admits only one positive equilibrium, which is globally asymptotically stable in R ≥0 .

Proof. Given the initial condition x n (t 0 ), it is easy to check that the solution x n (t) of (6.8) is given by:

x n (t) = x + n + (x + n -x - n ) exp [-µ n (x + n -x - n )(t -t 0 )] β -exp -µ n (x + n -x - n )(t -t 0 ) (6.9)
where

x + n = -γ n + γ 2 n + 4µ n f D n 2µ n x - n = -γ n -γ 2 n + 4µ n f D n 2µ n (6.10)
are, respectively, the unique roots of

f D n -(µ n x n + γ n )x n = 0 and β = xn(t 0 )-x - n xn(t 0 )-x + n .
Moreover, since all parameters in (6.8) are positive, it turns out that x + n > 0 and x - n < 0. Finally, from (6.9) follows that lim t→+∞

x n (t) = x + n .

Hence, x + n is the only globally asymptotically stable equilibrium of (6.8) in R ≥0 .

Given x n (t) from (6.9), x i (t) (i = 1, ..., n -1) follows by:

x i (t) = 1 b(t) b(t 0 )x i (t 0 ) + f D i t t 0 b(s)ds where b(t) = exp t t 0 (µ n x n (τ ) + γ n )dτ .
Moreover, regarding the stability of system (6.7) we can state the following two theorems. Theorem 6.2. Assuming that D = R n ≥0 , then point Φ(D) = (x 1 , ..., xn ) T defined as

xi = η(x n , f D i , µ n , γ i ) = f D i µ n xn + γ i , i = 1, ..., n -1 xn = ϕ(f D n , µ n , γ n ) = -γ n + γ 2 n + 4µ n f D n 2µ n , (6.11) 
is a globally asymptotically stable equilibrium of the system (6.7)

Proof. Since xn = x + n (see (6.10)), from Lemma 6.1 it turns out that xn is a globally asymptotically stable equilibrium of (6.8). Moreover, xi is a globally asymptotically stable equilibrium for ẋi = f D n -(µ n xn + γ n )x i (which is of the form of PL systems). Finally, for the state x of (6.7), there exists a positively invariant compact set D ⊂ D containing Φ(D), such that D attracts all the solution of system (6.7) (see [START_REF] Jong | Qualitative simulation of genetic regulatory networks using piecewise-linear models[END_REF]). Hence, the proof follows by Theorem 1 in [START_REF] Viel | Stability of polymerization reactors using i/o linearization and a high-gain observer[END_REF].

What happens to the stability of system (6.7) if we relax the hypothesis D = R n ≥0 and consider D ∈ D r ? Theorem 6.3. Let D ∈ D r . If Φ(D) ∈ D, then Φ(D) is a locally asymptotically stable point of system (6.7). The green lines represent the nullclines of the dynamical system. We note how the PL and PQ systems differ in nullclines shape and vector field orientation.

(a

): ẋ1 = k 1 -γ 1 x 1 , ẋ2 = k 2 -γ 2 x 2 ; (b): ẋ1 = k 1 -(µ 2 x 2 + γ 1 )x 1 , ẋ2 = k 2 -(µ 2 + γ 2 )x 2 . Parameter values: k 1 = 2, k 2 = 3, γ 1 = 1, γ 2 = 1, µ 2 = 0.5.
Proof. Any D ∈ D r , is not in general a positively invariant compact set for x, so there could exist solutions x of (6.7) which exit the domain D without converging towards Φ(D). Hence, Φ(D) is only locally asymptotically stable with respect to D. Remark 6.4. We note that Theorem 6.3 states a novel behaviour of the PQ systems with respect to PL systems, that is the convergence towards the equilibrium point is not assured from every point within the domain containing the equilibrium as, conversely, it is for PL systems. In fact, if in Figure 6.1(b) there was a threshold domain

x 1 = θ such that x1 < θ < k 1 µ 2 x 2 + γ 1
, then convergence towards the equilibrium point (x 1 , x2 )

would not be assured from any (x 1 , x 2 ) ∈ D, as-for instance-if we consider x1 < x 1 < k 1 µ 2 x 2 + γ 1 and x 2 < x2 (see vector filed orientation). are not defined when a variable x i takes some threshold value θ p i i , the vector field is undefined on the threshold domains. We need to precise our definition of solutions.

Solutions and Stability in Threshold Domains

To provide the existence and the possibility for solutions to be continued on all domains, we have to define the right-hand side of system (6.6) at the points of discontinuity of the function f . To this end, we use a construction originally proposed by Filippov [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF] and then applied to PL systems ( [START_REF] Gouzé | A class of piecewise linear differential equations arising in biological models[END_REF]). The method consists of extending the system (6.6)

to a differential inclusion, ẋ ∈ H(x), (6.12) 
where H is a set valued function (i.e. H(x) ⊆ R n ). If D ∈ D r , then we define H simply as

H(x) = {f D -d(x n )x}, ∀x ∈ D. (6.13) 
If D ∈ D t , we define H as

H(x) = co({f D -d(x n )x | D ∈ R(D)}), ∀x ∈ D, (6.14) 
where R(D) = {D ∈ D r | D ⊆ ∂D } is the set of all regulatory domains with D in their boundary, and co(X) is the closed convex hull of X. For threshold domains, H(x) is typically multi-valued so solutions of the differential inclusion are defined as follows.

Definition 6.6. A solution of (6.12) on [0, T ] in the sense of Filippov is an absolutely continuous function (w.r.t. t) ξ t (x 0 ) such that ξ 0 (x 0 ) = x 0 and ξt ∈ H(ξ t ), for almost all t ∈ [0, T ]. Now, we shall explain how to construct the set H(x) at discontinuity points of f .

Let us consider the case where x belongs to a threshold domain S separating two nregular domains D 1 and D 2 . Hence,

H(x) = co({f D 1 -d(x n )x, f D 2 -d(x n )x})
represents the segment joining the endpoints of the vectors

g 1 = f D 1 -d(x n )x and g 2 = f D 2 -d(x n )x.
Trajectories can cross S if the vector fields g 1 and g 2 point in a similar direction, slide along S if g 1 and g 2 point in opposite directions towards S and be repelled from S if g 1 and g 2 point in opposite directions away from S. The last two cases are known as stable and unstable sliding motion in the literature ( [START_REF] Filippov | Differential equations with discontinuous righthand sides[END_REF]). Moreover, the velocity of the sliding motion (stable or unstable) on S is given by ẋ = f S -d(x n )x. (6.15) Theorem 6.7. Assume that S is in the hyper-plane C j i = {x ∈ R n ≥0 : x i = θ j i } and a sliding motion (stable or unstable) occurs on S. The vector f S in (6.15) is given by

f S = αf D 1 + (1 -α)f D 2 , α =          f D 2 i -(γ i + µ n x n )θ j i f D 2 i -f D 1 i , if i ∈ {1, ..., n -1} f D 2 i -(γ i + µ n θ j i )θ j i f D 2 i -f D 1 i , if i = n. (6.16)
Proof. The segment joining the endpoints of the vectors

f D 1 -d(x n )x and f D 2 -d(x n )x
is expressed by

αf D 1 + (1 -α)f D 2 -d(x n )x, 0 ≤ α ≤ 1.
Since the state trajectories during sliding motion are on the hyper-plane x i = θ j i , the parameter α in (6. [START_REF] Ang | Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network[END_REF]) is selected such that the state velocity vector of the system (6. [START_REF] Andrianantoandro | Synthetic biology: new engineering rules for an emerging discipline[END_REF] is in this hyper-plane. Thus, depending on whether the sliding motion occurs in x i = θ j i (i ∈ {1, ..., n -1}) or in x n = θ j n , we have two values of α, which are found from the conditions

αf D 1 i + (1 -α)f D 2 i -(γ i + µ n x n )θ j i = 0, if i ∈ {1, ..., n -1} αf D 1 i + (1 -α)f D 2 i -(γ i + µ n θ j i )θ j i = 0, if i = n.
Remark 6.8. In the case i = n the value of α is constant ∀x ∈ S and thus a sliding motion occurs along the entire threshold domain S. By contrast, in the case i ∈ {1, ..., n-1} the value of α depends on x n , this means that a sliding motion occurs on S as long as the vector fields point in opposite direction towards (or away) S or, equivalently, as long as 0 < α(x n ) < 1 ∀x n ∈ S. Specifically, it could happen-in contrast to PL systems-that solutions slide for a while along S and then leave it as soon as the condition 0 < α(x n ) < 1

does not hold any more.
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It is useful to define a concept analogous to the focal points defined for regulatory domains, extended to deal with threshold domains. Definition 6.9. We recall that supp(D) is the (n -k)-dimensional hyperplane supporting D. Let D be a threshold domain of order k, then its focal set Φ(D) is

Φ(D) = supp(D) ∩ {x : 0 ∈ H(x)}, (6.17) 
where H(x) is defined as in (6.14).

Hence, Φ(D) for D ∈ D t is the set containing all the equilibrium points of the differential inclusion (6.12), which lie on supp(D). Thus, Φ(D) can be a singleton, but more generally is a closed convex bounded set and hence is referred to as a focal set.

From now on-to rule out some singular cases when proving results on stability-we make the following technical assumption on the focal sets for our system:

Assumption 2. ∀ D ∈ D, we assume that Φ(D) ∩ supp(D ) = {}, ∀D ∈ ∂(D).
It essentially says that for every regular and threshold domain D, the focal set Φ(D)

does not intersect the supporting hyperplane of any domain D in the boundary of D.

It is possible that solutions of (6.6) reach equilibria that lie in threshold domains and such equilibria are called singular equilibria. In general, a singular equilibrium x of system (6.6) is a point that satisfies the condition 0 ∈ H(x) and that belongs to some threshold plane. Determining in the most general case whether a singular equilibrium is stable or unstable requires a detailed analysis that for the sake of space is not mentioned in this paper. However, in the following theorem we present a procedure to assess the stability of singular equilibria that can occur on x n -hyperplane.

Theorem 6.10. Assume that a sliding motion occurs on a threshold domain S, which lies in the hyper-plane C j n = {x ∈ R n ≥0 : x n = θ j n }, separating two n-domains D 1 and D 2 . Let x = (x 1 , ..., xn ) be the singular equilibrium point of the sliding motion. If

x ∈ S and if the sliding motion is stable (resp. unstable), then x is locally stable (resp. unstable).

Proof. Assuming the presence of a such stable sliding motion in S and x ∈ S, this implies that there exists a neighbourhood of x where the n-component of trajectories are approaching xn = θ j n . Notably, the velocity of motion of the other i-components

(i = 1, ..., n -1) is given by ẋi = αf D 1 i + (1 -α)f D 2 i -(µ n θ j n + γ i )x i (6.18)
with α equal to the second value in (6.16). Hence, the stability of x follows by the fact that (6.18) is of the PL form. If the x ∈ S, but the sliding motion is unstable, the instability of x follows from the instability of the sliding motion.

After having studied the stability of PQ modes, we are able-in the next section-to present the stability analysis of the entire SPQ system.

Stability Analysis of the SPQ system

Within the hybrid systems literature, much has been written on the stability of switching systems ( [START_REF] Branicky | Stability of switched and hybrid systems[END_REF]). Usually, Multiple Lyapunov Functions are used to prove Lyapunov stability for switched systems ( [START_REF] Branicky | Stability of switched and hybrid systems[END_REF][START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF]). However, many results using this approach are not directly applicable to systems with sliding motions and/or cases when the domains do not have a common focal point. Moreover, the structure of the SPQ system (6.4) is particular and the problem we consider quite specific, which allows us to take a different approach.

More specifically, we can define two regions χ I and χ II ⊂ R n , in which system (6.4) is active following the I-mode and the II-mode, respectively:

χ I = {[x 1 , ..., x n ] T ∈ R n : µ n-1 x n-1 -µ n x n < 0} χ II = {[x 1 , ..., x n ] T ∈ R n : µ n-1 x n-1 -µ n x n > 0} . (6.19) 
In addition, a switching surface between the I and II modes, i.e. a boundary between χ I and χ II , is given by:

S I,II = {[x 1 , ..., x n ] T ∈ R n : µ n-1 x n-1 -µ n x n = 0} . (6.20) 
We will now state two definitions and an hypothesis useful to enunciate a theorem for the stability of system (6.4). Definition 6.11. Let Ψ m (m = I, II.) be the set containing all the locally stable points of the m-mode. Definition 6.12. Let Λ m (m = I, II.) be the set containing all the unstable points of the m-mode.

We recall that the procedures to determine Ψ m and Λ m , that is the stable and unstable points of the two modes, have been presented in Section 6.5. Assumption 3 states that equilibria of the I and II modes do not lay on switching surface S I,II . This rules out some very special cases when proving results on stability of the switched system (6.4).

Theorem 6.13. Assume that hypothesis 3 holds, then the set of locally stable points of (6.4), i.e. Ψ, and set of unstable points of (6.4), i.e. Λ, are given by:

Ψ = (Ψ I ∩ χ I ) ∪ (Ψ II ∩ χ II ) Λ = (Λ I ∩ χ I ) ∪ (Λ II ∩ χ II ) . (6.21) 
Proof. The proof follows by observing that a stable (resp. unstable) point of the mmode, is also a stable (resp. unstable) point of the switched system (6.4) only if it is within the space region in which the m-mode is active, i.e. χ m .

Open loop control of the RNAP-ribosomes system

From here on we focus on the gene expression machinery of the bacterium Escherichia coli, with the aim of controlling the growth rate of the cells. The model and the control we shall introduce have been developed in collaboration with our biologist research partners (Ibis team Inria and UJF Grenoble).

In the presence of a carbon source E. coli grows in an exponential manner until it exhausts the nutrient sources, and then enters a stationary phase with practically zero growth [START_REF] Monod | The growth of bacterial cultures[END_REF]. Our control objective is to force the bacterium to significantly modify its response to the carbon source so as to tune the growth rate during the exponential phase. To this end, we take into account the recent applications of synthetic biology which allow us to engineer promoters which in turn can be externally controlled by inducers [START_REF] Kaern | The engineering of gene regulatory networks[END_REF].

Notably, we will study an open loop configuration of a bi-dimensional SPQ model of a mutant E. coli inspired by the experiments in [START_REF] Tan | Emergent bistability by a growth-modulating positive feedback circuit[END_REF]. The two basic variables of our model, which describe the gene expression machinery that is responsible for bacterial growth are (see Fig. 6.2):

1. the concentration of RNA Polymerase (RNAP), protein that catalyses the transcription of all genes. Without RNAP, the bacteria cannot produce any RNAs.

2. the concentration of Ribosomes (RIB), a complex molecular machine serving for the production of all proteins (translation).

Moreover, we will assume that an engineered inducible-promoter is used to externally control the expression of RNAP (similarly to [START_REF] Tan | Emergent bistability by a growth-modulating positive feedback circuit[END_REF]). We note that we could theoretically have decided to control the synthesis of Ribosomes, but this seems to be much more complicated to implement in practice since Ribosomes are more complex entities.

Finally, as in [START_REF] Carta | A class of switched piecewise quadratic systems for coupling gene expression with growth rate in bacteria[END_REF] we assume that growth rate is intimately related to the capacity of cells to produce bulk proteins, which represent cell building and maintenance proteins essential for bacterial growth. Bulk proteins, as any other protein, are produced in a twostep process (gene expression) in which RNAP and ribosomes play a pivotal role ( [START_REF] George | A unified theory of gene expression[END_REF]).

The first step, i.e. transcription, is catalysed by RNAP which allows the synthesis of mRNA from DNA. During the second step, i.e. translation, the mRNA is translated into proteins by ribosomes. Taking this into account, the cell's growth rate-considered as a sort of production rate of bulk proteins-is thus limited by two potential limiting factors: RNAP and ribosomes. Thus, let x p , x r ∈ R ≥0 be the concentrations of RNAP and ribosomes, respectively we modeled the bacterial growth rate µ : R ≥0 → R ≥0 as: µ(t, u) = min(µ p x p (t, u), µ r x r (t)) (6.22) where µ p and µ r are proportion factors depending on the carbon source used, whereas u is the control input that allows us to modulate the expression of RNAP. It is evident from (6.22) that controlling the expression of RNAP will eventually lead to a growth rate tuning.

During exponential phase-the period characterized by cell doubling-the bacterial culture shows a constant growth rate [START_REF] Monod | The growth of bacterial cultures[END_REF]. This means that, according to (6. 

SPQ model of the open-loop control system

In order to show how we can control the bacterial growth rate acting on the RNAP expression, we propose a bidimensional SPQ open-loop model (depicted in Figure 6.2) describing the concentrations' dynamics of RNAP and ribosomes. Let x p , x r be the concentration of RNAP and ribosomes respectively, the SPQ model is given by:

ẋr = k 1 r s + (x p , θ 1 p ) + k 2 r s + (x p , θ 2 p ) -(min(µ p x p , µ r x r ) + γ r )x r ẋp = u k 0 p s + (x p , θ 1 p )s + (x r , θ 1 r ) + k 1 p s + (x p , θ 2 p )s + (x r , θ 2 r ) -(min(µ p x p , µ r x r ) + γ p )x p (6.24)
We have considered that the synthesis of ribosomes is limited by the production rate of stable-RNAs, which in turn are essentially regulated at the level of transcription by RNAP ( [START_REF] Gourse | rRNA transcription and growth rate-dependent regulation of ribosome sysnthesis in Escherichia coli[END_REF]). More specifically, stable-RNAs are produced from two promoters, P1 and P2. We assumed that a lower concentration of RNAP, i.e. θ 1 p , activates the house-keeping promoter P2 while a higher RNAP concentration, i.e. θ 2 p , is needed to stimulates the promoter P1, whose activity increases with growth rate.

Regarding RNAP, we note that the control input u acts on the RNAP synthesis rate modulating its level of expression. Notably, we assumed that u ∈ [0, 1] in order to allow u to mimic the effect of typical regulation functions (e.g. Hill type functions) employed in synthetic biology for modelling engineered promoters controlled by inducers.

Moreover, for the RNAP synthesis we have considered both transcription and translation regulation. Hence, a lower concentration of RNAP (accounting for transcription), i.e. θ 1 p , and a lower concentration of ribosomes (according for translation), i.e. θ 1 r , are required for the basal synthesis (u k 0 p ) of RNAP whereas, for the main synthesis of RNAP (u[k 0 p + k 1 p ]), higher concentrations of RNAP (θ 2 p ) and ribosomes (θ 2 r ) are needed. From the considerations above, it follows that:

0 ≤ θ 1 r ≤ θ 2 r ≤ max r ; 0 ≤ θ 1 p ≤ θ 2 p ≤ max p .
Therefore, the state space of each of two modes of system (6.24) can be partitioned into nine regular domains, where the vector field is uniquely defined:

D 1 = x ∈ R 2 ≥0 : 0 ≤ x r < θ 1 r , 0 ≤ x p < θ 1 p D 2 = x ∈ R 2 ≥0 : θ 1 r < x r < θ 2 r , 0 ≤ x p < θ 1 p D 3 = x ∈ R 2 ≥0 : θ 2 r < x r ≤ max r , 0 ≤ x p < θ 1 p D 4 = x ∈ R 2 ≥0 : 0 ≤ x r < θ 1 r , θ 1 p < x p < θ 2 p D 5 = x ∈ R 2 ≥0 : θ 1 r < x r < θ 2 r , θ 1 p < x p < θ 2 p D 6 = x ∈ R 2 ≥0 : θ 2 r < x r ≤ max r , θ 1 p < x p < θ 2 p D 7 = x ∈ R 2 ≥0 : 0 ≤ x r < θ 1 r , θ 2 p < x p ≤ max p D 8 = x ∈ R 2 ≥0 : θ 1 r < x r < θ 2 r , θ 2 p < x p ≤ max p D 9 = x ∈ R 2 ≥0 : θ 2 r < x r ≤ max r , θ 2 p < x p ≤ max p .
The threshold domains are not listed here, but they are as defined in Section 6.5.

Let mode-I be active when min(µ p x p , µ r x r ) = µ p x p and mode-II be active when min(µ p x p , µ r x r ) = µ r x r in (6.24). Hence, according to (6.11) we can calculate the focal points of modes I and II for each regular domains D j (j = 1, ..., 9):

D j I-mode II-mode D 1 xp = ϕ(0, µ p , γ p ) xr = ϕ(0, µ r , γ r ) D 2 xr = η(x p , 0, µ p , γ r ) xp = η(x r , 0, µ r , γ p ) D 3 D 4 xp = ϕ(0, µ p , γ p ) xr = ϕ(k 1 r , µ r , γ r ) xr = η(x p , k 1 r , µ p , γ p ) xp = η(x r , 0, µ r , γ p ) D 5 xp = ϕ(uk 0 p , µ p , γ p ) xr = ϕ(k 1 r , µ r , γ r ) D 6 xr = η(x p , k 1 r , µ p , γ r ) xp = η(x r , uk 0 p , µ r , γ p ) D 7 xp = ϕ(0, µ p , γ p ) xr = ϕ(k 1 r + k 2 r , µ r , γ r ) xr = η(x p , k 1 r + k 2 r , µ p , γ r ) xp = η(x r , 0, µ r , γ p ) D 8 xp = ϕ(uk 0 p , µ p , γ p ) xr = ϕ(k 1 r + k 2 r , µ r , γ r ) xr = η(x p , k 1 r + k 2 r , µ p , γ r ) xp = η(x r , uk 0 p , µ r , γ p ) D 9 xp = ϕ(u[k 0 p + k 1 p ], µ p , γ p ) xr = ϕ(k 1 r + k 2 r , µ r , γ r ) xr = η(x p , k 1 r + k 2 r , µ p , γ r ) xp = η(x r , u[k 0 p + k 1 p ], µ r , γ p ) (6.25)
Chapter 6. Switched piecewise quadratic models of biological networks 109 It turns out from (6.25) that focal points' location of modes I and II of system (6.24) depends on the control input u. Therefore, the number of equilibria of system (6.24) depends on u too. This means that model (6.24) can be controlled towards different equilibrium points by choosing appropriate values of u and this, eventually, will result in controlling the bacterial growth rate during the exponential phase. In fact, exponential growth rate is related to the equilibrium reached by the system (6.24) through expression (6.23). In circles are plotted growth rate values when mode-I is active while in diamonds those when mode-II is active. Notably, green circles denote μ = µ p ϕ(0, µ p , γ p ), green diamonds denote μ = µ r ϕ(0, µ r , γ r ), purple circles denote μ = µ p ϕ(uk 0 p , µ p , γ p ), orange circles denote μ = µ p ϕ(u[k 0 p + k 1 p ], µ p , γ p ), purple diamonds denote μ = µ r ϕ(k 1 r , µ r , γ r ), orange diamonds denote μ = µ r ϕ(k 1 r + k 2 r , µ r , γ r ). Parameter values used:

θ 1 r = 1.1, θ 1 p = 1.1, θ 2 p = 2.1, θ 2 r = 2.1, k 1 r = 8, k 2 r = 5, k 0 p = 10, k 1 p = 10, γ r = 1, γ p = 1, µ r = 0.8 end µ p = 0.5.
To illustrate this, we have depicted in Fig. 6.3 the µ-bifurcation diagram when the control input u varies from 0 to 1 while the other parameter values stay constant and set to values reported in Fig. 6.3. Notably, to draw Fig. 6.3 we first calculated the equilibria of the SPQ system (6.24) as function of u applying Theorem 6.13 and then computed the growth rate expression at steady state using (6.22).

As shown in Fig. 6.3, for the parameter values used, we have six different scenarios which correspond to different equilibria of system (6.24) and so to different growth rates. Moreover, to point out which mode contributes to the system's equilibria we have plotted growth rate equilibria resulting from mode-I (µ p xp ) in circles and growth rate equilibria resulting from mode-II (µ r xr ) in diamonds in Figure 6.3. Proposition 6.14 (Trivial Equilibrium). Assume the control input u is such that xp = ϕ(uk 0 p , µ p , γ p ) < θ 1 p , then the only equilibrium of the system is the origin, which is an equilibrium for both modes (scenario-a). Moreover, system (6.24) always converges We think that scenario-d is the most intriguing case, because it shows how both modes can contribute to system stability. For this reason, the phase plane of system (6.24) representing scenario-d (bi-mode bistability) is shown in Figure 6 For each regular domain are drawn the focal points of I-mode (circles) and II-mode (diamonds). The color of the focal points is the same of the arrows of the domain whence they are originated. The red line represents the switching surface. The equilibria of the two modes are drawn in larger size. Notably, the stable points of the SPQ system are (0, 0), (η(x p , k 1 r , µ p , γ r ), ϕ(uk 0 p , µ p , γ p )), (ϕ(k 1 r + k 2 r , µ r , γ r ), η(x r , u[k 0 p + k 1 p ], µ r , γ p )).

Conclusion

In this paper we proposed a new mathematical formalism to model bacterial gene expression dependent on dilution due to growth rate. This novel modelling approach can be considered as an extension of piecewise linear (PL) systems, which have been modified by introduction of an expression for the growth rate to model the dilution effect. The derived system is a switched system whose two modes are piecewise quadratic (PQ), hence we named this new formalism as switched piecewise quadratic (SPQ). We have first focused on the characterization of equilibria of the PQ subsystems, both for equilibria within regular domains and equilibria that lie on surfaces of discontinuity (threshold domains) due to the use of step functions (as in PL models). Then, we took into account the switching behaviour of the SPQ system to formulate a criterium assessing the stability of its equilibria. Our results combine the control based approaches of engineering with biology, with the aim of implementing new functions in the cells (synthetic biology), which may have some practical and relevant importance in applications such as production of biopharmaceuticals, novel bio-materials and developing new bio-technologies.

One possible extension for the SPQ systems-to get even more realistic growth rate values in some biological conditions-would be that of considering a cut-off value of the growth rate, that is a maximal (µ max ) growth rate. In this case, expression (6.3) would be modified in:

µ(t) = min(µ a x a (t), µ b x b (t), µ max ) (6.26)
With a growth rate model as (6.26), the SPQ system will have a third mode, which will be active when µ(t) = µ max . Moreover, it is easy to check that this third mode is a PL system and so no other specific studies are required to handle this extension.

To conclude, we believe that the SPQ formalism is a promising approach for qualitative modelling gene expression dynamics dependent on dilution and a valid starting point to help guide the construction of synthetic gene networks, by allowing biologists to select experimental conditions most likely to yield successful results.

Chapter 7

Attractor computation using interconnected Boolean networks:

testing growth models in E. Coli
This chapter is taken from a recent accepted paper that Madalena Chaves and I wrote for the Theoretical Computer Science journal [START_REF] Chaves | Attractor computation using interconnected boolean networks: testing growth models in E. Coli[END_REF].

A recently developed method has shown that the attractors, or asymptotic behaviour, of an asynchronous Boolean network can be computed at a much lower cost if the network is written as an interconnection of two smaller modules. We have applied this methodology to study the interconnection of two Boolean models to explore bacterial growth and its interactions with the cellular gene expression machinery, with a focus on growth dynamics as a function of ribosomes, RNA polymerase and other "bulk" proteins inside the cell. Notably, some of the growth rate models tested here are Boolean versions of those growth rate functions introduced in Chapters 4-5-6. The discrete framework permits easier testing of different combinations of biochemical interactions, leading to hypotheses elimination and model discrimination, and thus providing useful insights for the construction of a more detailed dynamical growth model. In this work, I did not participate in the development of the Boolean methods, whereas my contribution was in the design of the different tested Boolean models and in the interpretation of results.

Introduction

Large networks with complex interactions are hard to analyse in detail, but logical and discrete models can facilitate this task. Based essentially on the structure and topology of the network interactions, logical models provide qualitative information on the dynamical properties of system [START_REF] Glass | The logical analysis of continuous, non-linear biochemical control networks[END_REF][START_REF] Thomas | Boolean formalization of genetic control circuits[END_REF], which can be used for model discrimination and guidance in model improvement. There are many recent examples of applications of discrete models including Drosophila embryo pattern formation [START_REF] Albert | The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster[END_REF][START_REF] Sánchez | A logical analysis of the drosophila gap-gene system[END_REF], yeast cell cycle [START_REF] Sevim | Reliability of transcriptional cycles and the yeast cell-cycle oscillator[END_REF], T-cell response [START_REF] Saez-Rodriguez | A logical model provides insights into T cell receptor signaling[END_REF], or an apoptosis network [START_REF] Calzone | Mathematical modelling of cell-fate decision in response to death receptor engagement[END_REF].

Boolean networks are a class of logical models whose variables are described in terms of only two levels (1 or 0; presence or absence; "on" or "off"), which have been useful for biochemical systems [START_REF] Wang | Boolean modeling in systems biology: an overview of methodology and applications[END_REF]. The dynamics of a Boolean model is determined by specifying an updating mode, most commonly synchronous (all nodes updated simultaneously) or asynchronous (only one node updated at any given instant). Since the state space is finite, the dynamics can be represented in terms of a transition graph, which can be studied using some classical algorithms from graph theory [START_REF] Cormen | Introduction to algorithms[END_REF]. Other, more specific tools are available for an exact and rigorous analysis of the transition graph [START_REF] Lorenz | Analysis and characterization of asynchronous state transition graphs using extremal states[END_REF], computation of attractors (or asymptotic behaviour) [START_REF] Chaves | Predicting the asymptotic dynamics of large biological networks by interconnections of boolean modules[END_REF], and other properties [START_REF] Thomas | Biological feedback[END_REF]. In addition, a wide range of computer tools are available for simulation and analysis of discrete models [START_REF] Gonzalez | GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks[END_REF], model reduction [START_REF] Naldi | Dynamically consistent reduction of logical regulatory graphs[END_REF], or model checking [START_REF] Fages | Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM[END_REF].

It is clear that discrete models are not appropriate to finely describe the behaviour of a system, since they cannot represent continuous effects (such as indicating whether an oscillation is sustained or damped), but they are useful to verify whether a given network of interactions is feasible and compatible with known properties of the system. This is a first step towards the construction of a more detailed and informed model.

As an application, we will analyse a network of interactions involved in determining bacterial growth of Escherichia Coli, which varies non-linearly with different factors, such as availability of nutrients or the concentration of the necessary enzymes and proteins needed for cell division [START_REF] Bettenbrock | Correlation between growth rates, EIIACrr phosphorylation, and Intracellular Cyclic AMP levels in Escherichia coli K-12[END_REF][START_REF] Shachrai | Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth[END_REF]. Mathematical models have been developed to describe and reproduce several regulatory modules and their response to nutrient availability [START_REF] Hardiman | Topology of the global regulatory network of carbon limitation in Escherichia coli[END_REF][START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF]. One of the least understood aspects in these studies remains the actual modelling of bacterial growth: while it is clear that growth depends on the general availability of "bulk" proteins, ribosomes, and RNA polymerase, it is difficult to find a reasonable mathematical model that reproduces all these effects [START_REF] Goelzer | Bacterial growth rate reflects a bottleneck in resource allocation[END_REF]. In many cases, growth is considered to be a given constant and the model is designed to reproduce a single phase of bacterial growth.

Here, we propose to test and study a dynamical function for bacterial growth in terms of the major components involved in bacterial cell division, that is, gene transcription (RNA polymerase) and translation (ribosomes). To test the feasibility of mathematical growth functions, we will focus on a qualitative model of the network involved in the Chapter 7. Attractor computation using interconnected Boolean networks 115 carbon starvation response [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF] and its interconnection with a basic model describing the dynamics of ribosomes and RNA polymerase (see Section 7.3).

We will use two methods for analysis of qualitative systems (see Section 7.2): first, a method that transforms piecewise affine (PWA) systems into discrete and then Boolean models [START_REF] Chaves | Comparing Boolean and piecewise affine differential models for genetic networks[END_REF][START_REF] Jamshidi | Comparing discrete and piecewise affine differential equation models of gene regulatory networks[END_REF]; and, second, a recently developed method to compute the attractors of an interconnection of two Boolean modules [START_REF] Chaves | Predicting the asymptotic dynamics of large biological networks by interconnections of boolean modules[END_REF][START_REF] Tournier | Interconnection of asynchronous boolean networks, asymptotic and transient dynamics[END_REF]. Our analysis generates a general view of the dynamical properties of a model which is a first step towards verifying the feasibility of the model's structure -by comparing to experimental observations-and facilitates hypotheses testing. The results indicate that at least two (positive) qualitative levels for growth rate (such as "high" and "intermediate" rates) are needed in order to reproduce both the stationary and exponential growth phases (see Section 7.4).

Methodology

In this section, we briefly recall two mathematical methods which are very useful for analysis of qualitative systems and, in particular, interconnections of Boolean models.

From discrete to Boolean models

Although Boolean variables can only take the values 0 or 1, it is nevertheless possible to construct Boolean models that describe variables with a discrete number of values [START_REF] Chaves | Comparing Boolean and piecewise affine differential models for genetic networks[END_REF][START_REF] Van Ham | Kinetic Logic: A Boolean Approach to the Analysis of Complex Regulatory Systems[END_REF]. Consider a discrete model

Σ disc = (Ω d , F d ), with variables V = (V 1 , . . . , V n ) , state
space Ω d = Π n i=1 {0, 1, 2, . . . , d i }, where d i ∈ N is the number of levels of variable V i (i = 1, . . . , n), and a state transition table F d : Ω d → Ω d . The state of the system at the next instant k + 1 is given as a function of the state of the system at the current instant k, according to the rules F d , using the notation:

V + = Fd (V ).
Throughout this paper, the function Fd is obtained from F d by assuming an asynchronous dynamic updating rule, that is, exactly one variable is updated at any given time:

V + ∈ {W ∈ Ω d : ∃k s.t. W k = (F d ) k (V ) = V k and W j = V j , ∀j = k }. (7.1)
Furthermore, for a more realistic model, we consider that each variable V i can only switch from its current level to an immediately adjacent level [START_REF] Thomas | Biological feedback[END_REF], that is:

V + i ∈ {V i -1, V i , V i + 1}, ∀i. (7.2)
The idea is to create an extended Boolean model Σ bool = (Ω b , F b ) where each discrete variable V i is represented by d i Boolean variables, for instance, {X i,1 , . . . , X i,d i }, so that the state space of the model is Ω b = {0, 1} d 1 +•••+dn . There are several possible ways to convert the discrete into the Boolean variables, but here we chose to use the same criterion as in [START_REF] Chaves | Comparing Boolean and piecewise affine differential models for genetic networks[END_REF] which stipulates that

V i = k ⇔ (X i,1 = • • • = X i,k = 1, X i,k+1 = • • • = X i,d i = 0), (7.3)
meaning that a variable i is at a state k if and only if all the first k Boolean variables are ON. In particular, note that this criterion implies the partition of the state space of the extended Boolean model into permissible and forbidden regions:

Ω p = {X ∈ Ω b : k < l ⇔ X i,k ≥ X i,l }, Ω f = {0, 1} d 1 +•••+dn \ Ω p .
Thus, to generate the Boolean transition table F b we need to guarantee that no transitions from a permissible to a forbidden state take place. The method described in [START_REF] Chaves | Comparing Boolean and piecewise affine differential models for genetic networks[END_REF] deals with this problem in a natural way, and guarantees that no transitions from permissible to forbidden states take place.

Dynamics of Boolean models

This section contains a brief summary of some useful objects that characterize the dynamics of a Boolean model. There are several possible ways of defining the dynamical updating rules [START_REF] Wang | Boolean modeling in systems biology: an overview of methodology and applications[END_REF] of a Boolean network Σ = (Ω, F b ), but here we will assume asynchronous updates, so the definitions and rules (7.1) stated for discrete systems also apply, with d i = 1 for all i. Note that (7.2) is immediately satisfied for Boolean models.

The asynchronous transition graph, G = (Ω, E), of system Σ is a directed graph whose vertices (or nodes) are the elements of Ω, and the edges are given by E. There are thus 2 n nodes in G. Given any two elements a, ã ∈ Ω the edge "a → ã" is in E iff:

ã ∈ {w ∈ Ω : ∃k s.t. w k = (F b ) k (a) = a k and w j = a j , ∀j = k }.
A path a 1 a 2 in G is a sequence of edges linking a 1 to a 2 .

A strongly connected component (SCC) of G is a maximal subset C ⊂ Ω, that contains a path joining any pair of its elements. In general, a SCC may have both incoming and outgoing edges. An SCC with no outgoing edges is called terminal.

An attractor A of G is a terminal strongly connected component, that is, once a trajectory enters A it cannot leave again. Therefore, the attractors can be said to characterize Chapter 7. Attractor computation using interconnected Boolean networks 117 the asymptotic behaviour of the network. An asynchronous transition graph always has at least one, but can have multiple, attractors. An attractor can be formed of a single state (we will call it a singleton) or of a subset of Ω.

Interconnection of Boolean models

To study the interconnection of the two systems, we will use a method based on control theory concepts recently developed by one of the authors [START_REF] Chaves | Predicting the asymptotic dynamics of large biological networks by interconnections of boolean modules[END_REF][START_REF] Tournier | Interconnection of asynchronous boolean networks, asymptotic and transient dynamics[END_REF]. This method analyses the asymptotic behaviour of the interconnection of two systems directly from the behaviour of the two subsystems, without having to construct or analyse the full interconnected system. The advantage is a much reduced computational cost, while still obtaining exact results: indeed, for large (e.g., n ≥ 15) Boolean models, the computation of the asynchronous transition graph and its attractors is infeasible, as it involves the analysis of a 2 n × 2 n matrix. The idea is to first study each individual system for each set of inputs, obtain the corresponding attractors, and then construct a new object, the asymptotic graph. This new graph is much smaller than the state transition graph of the full model, but it contains all the information on its asymptotic dynamics, namely all the attractors of the full model correspond to attractors in the asymptotic graph. Some notation is next introduced.

Consider two asynchronous Boolean models, Σ A and Σ B , with a set of inputs (U i ) and a set of outputs (H i ):

Σ A = (Ω A , U A , H A , F A ) : Ω A = {0, 1} n A , U A = {0, 1} p A , H A = {0, 1} q A , Σ B = (Ω B , U B , H B , F B ) : Ω B = {0, 1} n B , U B = {0, 1} p B , H B = {0, 1} q B .
The following notation will be used: states will be denoted a ∈ Σ A and b ∈ Σ B , inputs u ∈ U A and v ∈ U B , and the output corresponding to state a will be denoted h A (a) ∈ H A (resp., h B (b) ∈ H B for state b). The synchronous rules are written:

a + = F A (a; u), and b + = F B (b; v).
For each fixed u ∈ U A , there is a set of attractors of system Σ A , which will be denoted

A i u , i ∈ N. Similarly for system Σ B , B j v , j ∈ N.
The interconnection of these two systems is formed by letting the input of each system be the output of the other

v = h A (a) ∈ U B u = h B (b) ∈ U A ,
where it is assumed without loss of generality that q A = p B and q B = p A . The new system will be denoted:

Σ = (Ω, F bool ) : Ω = {0, 1} n A +n B , F bool : Ω → Ω
with the Boolean rules F bool given by the appropriate combination of F A , F B :

F bool (a, b) = (F A (a; h B (b)), F B (b; h A (a))).
Note that F A , F B , and F bool contain the synchronous table of state transitions. Here, we will consider that the dynamics is asynchronous, so that only one variable is updated at a given time. The asynchronous transition graphs of the two modules (one for each fixed input) and that of the full interconnected system will be called, respectively, G A,u , G B,v , and G.

Transition graphs and semi-attractors The first step of the method is to compute all the transition graphs G A,u and G B,v , compute their attractors, and then divide each of these into subsets corresponding to a fixed output. These will be called semi-attractors of the individual system and are defined as follows:

A i uα = the i-th semi-attractor of system Σ A , corresponding to input u, with output α B j vβ = the j-th semi-attractor of system Σ B , corresponding to input v, with output β.

Note that the standard attractor is the union of all corresponding "semi-attractors":

A i u = ∪ all α A i uα .
The asymptotic graph The second step of the method is to construct the asymptotic graph G as whose nodes are the cross-products of semi-attractors:

A i uα × B j vβ .
There is an edge between two of the nodes

A i uα × B j vβ → A i uα × B j α β
if there is a path in the graph G B,α that leads from some state in B j vβ to some state in B j α β . Similarly for an edge

A i uα × B j vβ → A ĩ β α × B j vβ .
In order to satisfy an asynchronous updating scheme, only one set of variables is allowed to change for each edge. The computational cost can be further reduced by observing that all nodes with u = β and v = α are transient (shown in [START_REF] Tournier | Interconnection of asynchronous boolean networks, asymptotic and transient dynamics[END_REF]); hence, to compute the attractors of the asymptotic graph we only need to include the edges between nodes satisfying either u = β or v = α.

Attractors of an interconnection

The third step of the method is to compute all the attractors of G as which contain, in fact, a representative of each of the attractors of G. This is theoretically proven in [START_REF] Chaves | Predicting the asymptotic dynamics of large biological networks by interconnections of boolean modules[END_REF][START_REF] Tournier | Interconnection of asynchronous boolean networks, asymptotic and transient dynamics[END_REF]: Theorem 7.1. [START_REF] Chaves | Predicting the asymptotic dynamics of large biological networks by interconnections of boolean modules[END_REF] If Q is an attractor of G, then there exists at least one corresponding

attractor in G as , Q as = Q as (Q). Moreover, if Q 1 = Q 2 are two distinct attractors of G, then Q as (Q 1 ) = Q as (Q 2 ).
In other words, we recover all the attractors of the interconnection, without explicitly constructing the interconnected system. In broad terms, Theorem 7.1 says that any attractor of G generates an attractor in G as , but the converse is not necessarily true and G as may have more attractors than G.

To better illustrate Theorem 7.1, and show its advantages as well as limitations, a purely theoretical example is next given. For convenience, in the following examples, the attractors are labelled using the decimal representation for the Boolean inputs and outputs, that is: The corresponding asymptotic graph is shown in Fig. 7.2. To illustrate the computation of an edge, consider the product A i uα × B j vβ = A 1 21 × B 1 11 : since α = 1 = v, the system A does not induce any change in the variables b; in contrast, the fact that β = 1 will induce a trajectory between a state in A 1 21 and an attractor in the graph G A,2 (corresponds to Boolean input u=1). In the graph G A,2 , the state 00 is in the basin of attraction of

000 ⇔ u = 1,
{01} = A 1 12 .
Therefore, there is an edge

A 1 21 × B 1 11 → A 1 12 × B 1 11 .
All other edges are similarly computed.

Note that the full interconnected system has four variables and hence its dynamics is given by an asynchronous transition graph G with 2 4 = 16 states. To compute the attractors of G we needed to compute a transition graph with only 2 × 3 = 6 states (2 attractors from system A and 3 from system B). Furthermore, as remarked above, the size of G as can be further reduced by excluding the cross-product states known to be transient. In this example only A 1 21 × B 1 21 satisfies the condition u = β and v = α, and can be excluded. For higher order systems, such a size reduction can represent very significant savings in computational cost.

The G as of Example I has two attractors:

Q 1 = {A 1 12 ×B 1 21 } and Q 2 = {A 1 12 ×B 1 11 , A 1 12 × B 2 22 , A 1 21 × B 1 11 , A 1 21 × B 2 22 }.
For this 4-dimensional example, it is easy to check that Q 1 is a true attractor of the full interconnected system (see also Prop. 7.2), while Q 2 is a "spurious" attractor, that is, not a real attractor of G. To see this, it suffices to note that there is a pathway that leads from a state within Q 2 to Q 1 , and which is not "covered" by G as :

Q 2 A 1 21 × B 2 22
(00, 01)

G B,1
-→ (00, 00)

G A,1 -→ (01, 00) ∈ Q 1
This Example shows that even very simple (and deterministic) individual asynchronous dynamics can lead to asymptotic graphs that exhibit spurious attractors. However, note that this example was specifically contrived to illustrate the generation of spurious attractors; its Boolean rules are not necessarily biologically plausible.

In view of Example I, it would be useful to complement Theorem 7.1 by conditions permitting to decide whether an attractor of G as is also an attractor of G. An exact result was also proved in [START_REF] Tournier | Interconnection of asynchronous boolean networks, asymptotic and transient dynamics[END_REF] -i.e., recovering exactly all the attractors in G from the cross-products of semi-attractors, with no spurious generation,-by computing the cross graph which is similar to G as but involves cross-products of all (semi-)SCCs (as opposed to considering only semi-attractors). However, depending on the number of SCCs, the cross graph can often be more costly to compute than the full graph G, hence the usefulness of establishing sufficient conditions for deciding whether an attractor of G as is a "true" attractor.

Some preliminary results were presented in Proposition 1 of [START_REF] Tournier | Interconnection of asynchronous boolean networks, asymptotic and transient dynamics[END_REF], which are improved below in Prop. 7.2. To state this, we need to introduce projection functions, for V = A i uα × B j vβ , and R = {V 1 , . . . , V r }:

π(V ) = {(a, b) ∈ Ω : a ∈ A i uα , b ∈ B j vβ }, π(R) = ∪ V ∈R π(V ), π A (R) = {a ∈ Ω A : ∃b such that (a, b) ∈ π(R)}.
The A-output of R is the set:

A-output = {h A (a) : a ∈ π A (R)} ⊂ H A
Similar definitions apply for the projection π B (R) and the B-output of R.

Chapter 7. Attractor computation using interconnected Boolean networks 122 Recall that we are assuming q A = p B and q B = p A , hence H A ≡ U B and H B ≡ U A and the A-output (resp., B-output) of R is also contained in U B (resp., U A ). The new result of Prop. 7.2 is in parts (ii), (iii), which previously stated "for all u ∈ U A " or "for all v ∈ U B ". The new conditions are much less restrictive, although the proof is similar. If Proposition 7.2 is not applicable, then one may still verify a posteriori whether R represents an attractor of G by simulating all trajectories starting from all states in π(R) and checking whether any of them leaves R (however, this "direct force" procedure may also involve some computational costs).

Proposition 7.2. Let R be a terminal SCC of G as . If either one of the following conditions is satisfied: i) R is a singleton (i.e., contains a single product V ); ii) the A-output of R is a singleton and the set π A (R) is an attractor of G A,u for all Part (i) is unchanged from [START_REF] Tournier | Interconnection of asynchronous boolean networks, asymptotic and transient dynamics[END_REF]. Parts (ii) and (iii) are very similar, so we will only prove part (iii). If the B-output of R is a singleton, say {α}, then any V ∈ R must be of the form

u in the B-output of R; iii) the B-output of R is a singleton and the set π B (R)} is an attractor of G B,v for all v in the A-output of R; then R as = π(R)
A j α(•) × B (•)
vα , for some v in the A-output of R.

In particular, (see definition of semi-SCC) all A j α(•) belong to the same attractor A j α of G A,α . Suppose now that the set π B (R) is an attractor for all v in the A-output of R. Then, to show that π(R) is an attractor of G as , it suffices to show that: (1) π(R) is a strongly connected set, and (2) π(R) contains all its successors. If (1) and ( 2 If Proposition 7.2 cannot be applied, there may be other methods to decide whether an attractor of G as is a true attractor, such as identifying invariant sets of the system that contain the given attractor: examples of this are given below in Propositions 7.4 and 7.5.

Example II. To illustrate the relevance of Prop. 7.2, another theoretical example is now given. The two systems A and B are more conveniently represented by their asynchronous transitions graphs, one for each fixed input (Fig. 7.3). The dimensions are n a = 2, n B = 3, p A = 1, p B = 2 and their outputs are as follows:

h A (a) = (a 1 , a 2 ) , h B (b) = b 1 .
Note that attractor A 1 2 splits into two semi-attractors, A 1 21 and A 2 23 , and the attractor B 1 2 splits into B 1 21 and B 2 22 . The full interconnected system has five variables and hence its dynamics is given by an asynchronous transition graph G with 2 5 = 32 states. To compute the attractors of G we needed to compute a transition graph with 4×7-8 = 20 states: 4 semi-attractors from system A and 7 from system B, and 8 transient crossproducts (see also Fig. 7.4).

The G as of Example II (Fig. 7.4) has two attractors:

Q 1 = {A 1 11 × B 1 11 } and Q 2 = {A 1 21 × B 1 32 , A 1 21 × B 2 12 , A 2 23 × B 1 12 , A 2 23 × B 1 32 }. It is easy to check that Q 1 = {00000} is an attractor of G, by Prop. 7.2(i). Likewise Q 2 = {10111,
10101, 10100, 00111, 00101, 00100} 

∈ π B (Q 2 )} = {1}; the A-output of Q 2 is {h A (a) : a ∈ π A (Q 2 )} = {10, 00}
; and, finally, the set π B (Q 2 ) = {111, 101, 100} is indeed an attractor of both G B,v=10 and G B,v=00 .

Application: a model for E. Coli growth mechanism

The bacteria Escherichia Coli are unicellular micro-organisms (present in the human gut, for instance) which grow and divide in the presence of a carbon source, such as glucose or other sugars. In typical experiments, in a carbon rich medium, the bacteria are observed to grow at a constant growth rate, which is referred to as the exponential phase [START_REF] Marr | Growth rate of Escherichia coli[END_REF]. In the absence of carbon, the bacteria enter a stationary phase, with no cellular growth or division. E. Coli use a network of genes and proteins to detect the presence or absence of carbon sources and respond accordingly, by adjusting their gene expression levels. The major players in this nutritional response network are well characterized (see, for instance, [START_REF] Bettenbrock | Correlation between growth rates, EIIACrr phosphorylation, and Intracellular Cyclic AMP levels in Escherichia coli K-12[END_REF][START_REF] Hardiman | Topology of the global regulatory network of carbon limitation in Escherichia coli[END_REF][START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF] and references therein) but, in contrast, it has been difficult to find an appropriate dynamical expression for modelling the growth rate of E. Coli [START_REF] Marr | Growth rate of Escherichia coli[END_REF].

In other words, if one wishes to add a model variable to describe growth rate, what should its mathematical rule be? To overcome this problem, models often focus on either the exponential or the stationary phases, thereby considering growth rate to be either constant or zero, respectively [START_REF] Goelzer | Bacterial growth rate reflects a bottleneck in resource allocation[END_REF]. However, such models are not able to describe the transition from one phase to the other, thus failing to provide intuition on a crucial cellular mechanism.

Growth should depend on the capacity of the bacteria to produce all the "bulk" proteins necessary to its development and cellular division. In its turn, the synthesis of "bulk" proteins depends on the transcription and translation steps, which are limited, respectively, by the concentrations of RNA polymerase and ribosomes. Some models have thus tried to include these effects to obtain a more accurate expression for growth rate. For instance, one may have a dependence on one step:

Growth rate ∼ RNA polymerase (7.5) as tested previously in [START_REF] Carta | A simple model to control growth rate of synthetic E. coli during the exponential phase: Model analysis and parameter estimation[END_REF], or in two (or more) steps, each of them separately limiting growth rate, hence the use of the minimum function:

Growth rate ∼ min{ ribosomal proteins, bulk proteins } (7.6) 

gyr1 gyr2 fis1 fis2 fis3 fis4 top1 top2 crp1 crp2 cya1 cya2 rrn1 rrn2 pol1 pol2  f g (rrn,pol,crp) W1 W2
= (u 1 , u 2 , u 3 ), v = (v 1 , v 2 , v 3
). The dashed lines represent the interconnection: i.e., the output of one system becomes the input of the other. Bacterial growth rate is internally computed as a function of the external nutrient sources (Glu), ribosomes (here represented by rrn i ), RNA polymerase (pol i ) or "bulk" proteins (which will be basically represented by crp). Growth rate is first translated into two qualitative levels, W 1 and W 2 , which signal downstream. The region under hatching represents the new variables and interactions added to the original model in [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF]. Several different forms for f g will be tested (see text).

as considered in [START_REF] Shachrai | Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth[END_REF], or

Growth rate ∼ min{ ribosomal proteins, RNA polymerase } (7.7) as we considered in [START_REF] Carta | A class of switched piecewise quadratic systems for coupling gene expression with growth rate in bacteria[END_REF]. In this Section, our goal is to test these expressions, by interconnecting a well known nutritional response module with a basic transcription/translation model, using the Boolean interconnection method described in Section 7.2.3.

E. Coli nutritional stress response module

The nutritional stress response network developed in [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF] involves three groups of variables, each representing a different regulatory effect: DNA super-coiling (determined by the enzymes GyrAB and TopA), carbon response (involving the proteins Crp, Cya), and a global regulator (protein Fis) that sends the carbon availability signal down to the stable RNAs (rrn). The latter are limiting factors in ribosome production, and are thus a measure of the growth of the bacteria.
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A very brief description of the main biological steps in response to nutritional stress is as follows (see [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF] and references therein): in answer to carbon depletion, the bacteria increase their cyclic AMP concentration (cAMP); this small molecule will bind to Crp (cAMP receptor protein) to form a complex that controls the expression of different genes, some involved in the synthesis of enzymes that allow the bacteria to make use of other carbon sources, others involved in morphological changes and motility. The complex cAMP-Crp also activates the enzyme Cya (adenylate cyclase), which contributes to produce cAMP from ATP, and represses the global regulator Fis, a protein which is available at high concentration during the exponential phase, and is responsible for the control of many other genes. The protein Fis also represses the complex cAMP-Crp and, among others, it controls two enzymes involved in DNA topology regulation: Gyrase AB (GyrAB) which induces negative super-coils in the DNA and Topoisomerase A which restores super-coiling to "normal" levels. Finally, Fis also stimulates the transcription of stable RNAs, a necessary condition for the production of ribosomes and hence necessary for bacterial growth.

The model developed in [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF] includes a constant external input named "Signal" that represents nutritional stress, that is, the presence ("Signal"= 0) or absence ("Signal"= 1) of carbon sources, while the variable rrn is simply an output, as it does not influence the other variables. Growth rate was summarized into the effect of the complex cAMP-Crp on the other variables, namely Fis, Crp, abd Cya. Depending on the value of "Signal", the network reproduced two steady states corresponding to the stationary or exponential phases of E. coli, characterized in Table 7.1. The two states predicted by this model are consistent with experimental observations: in the exponential phase, Fis is present at high levels, as well as stable RNAs, and the cAMP receptor protein is not strongly present. The opposite happens in the stationary phase.

In our model, the interactions are reorganized in order to include the explicit effect of growth rate. It is known that the complex cAMP-Crp is growth dependent [START_REF] Berthoumieux | Shared control of gene expression in bacteria by transcription factors and global physiology of the cell[END_REF], so we replaced this complex by an equivalent expression that depends on Crp, Cya, and growth, now represented by the arrows u 1 , q r and q y in Fig. 7.5. The components inside the hatched region in Fig. 7.5 were not present in model [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF], and the rrn variable did not influence the system. The objective in this paper is thus to refine the effect of growth in the system, as described below in Section 7.3.2.

The model [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF] consists of a piecewise affine system on six variables, it was further studied in [START_REF] Corblin | A declarative constraint-based method for analyzing discrete genetic regulatory networks[END_REF][START_REF] Grognard | Piecewise-linear models of genetic regulatory networks: theory and example[END_REF][START_REF] Tournier | Hierarchical analysis of piecewise affine models of gene regulatory networks[END_REF] and has been written as an extended Boolean model in [START_REF] Chaves | Comparing Boolean and piecewise affine differential models for genetic networks[END_REF], using the procedure briefly described in Section 7. 

The cellular growth module

To test the dependence of growth rate on some of the major model components, we will study a "closed-loop system": that is, use the state of the system to construct a mathematical expression for bacterial growth rate and then feed it back to the system, by letting proteins Cya and Crp depend on it. Thus, cellular growth rate (represented by µ) now appears explicitly in the model, as an internal variable that depends dynamically on the state of the system at each instant (see Fig. 7.5). In agreement with the variables of the system, growth rate will have two positive discrete levels (translated to W 1 and W 2 , see equation (7.9) below). This also implies that the effect of growth on fis, crp and cya has to be updated relative to the original model [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF]. In Fig. 7.5, there are thus three links (respectively, u 1 , q r and q y ) which are not fixed for now, but for which several possible combinations will be tested, with a view to better understand growth signalling (see Section 7.4). The motivation for building this closed-loop system is to test the dynamical dependence of bacterial growth rate on the system's variables, a question which is still not well understood. Thus, for this example, an expression for growth rate will be considered valid if the refined system in Fig. 7.5 is able to reproduce the same results as the (more schematic) model [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF].

As indicated in Fig. 7.5, the second Boolean module will describe the expression of the genes encoding for crp, cya, rrn, and will further include pol, to represent the expression Chapter 7. Attractor computation using interconnected Boolean networks 129 of RNA polymerase, the enzyme responsible for gene transcription (2 Boolean variables each). The presence of carbon sources will be represented by the external input Glu.

Previously [START_REF] Carta | A simple model to control growth rate of synthetic E. coli during the exponential phase: Model analysis and parameter estimation[END_REF], we have studied a mathematical expression for bacterial growth rate that is dependent only on RNA polymerase, for a simple 2-dimensional model. However, experimental data [START_REF] Shachrai | Cost of unneeded proteins in E. coli is reduced after several generations in exponential growth[END_REF] suggests that ribosomes play a major role, hence we wish to improve our results by analysing models that consider different combinations of limiting factors, and checking their compatibility with known results.

The growth variable, µ, and its downstream signals will be given by:

µ = Glu and f g (rrn 1 , rrn 2 , pol 1 , pol 2 , crp 1 , crp 2 ); (7.9) W = 2 -µ; W 1 = sign(W ); W 2 = max(0, W -1); 
where sign(W ) = 1 if W > 0 and sign(W ) = 0 if W = 0 (by construction, sign(W ) is never negative). The variables W 1 and W 2 correspond, respectively, to:

W 1 = 1 ⇔ µ ≤ 1, W 2 = 1 ⇔ µ = 0.
and satisfy W 1 ≥ W 2 . Following (7.5)-(7.7) and (7.8), different expressions for the function f g will be tested, namely:

f r g = rrn 1 + rrn 2 , f p g = pol 1 + pol 2 , f b g = crp 1 + crp 2 , (7.10) 
f rp g = min(rrn 1 + rrn 2 , pol 1 + pol 2 ) f rb g = min(rrn 1 + rrn 2 , crp 1 + crp 2 ),
where the protein Crp is used as a surrogate for the level of expression of "bulk" proteins.

In addition, to describe how the growth rate affects the genetic machinery, two functions need to be chosen: these correspond to the arrows labelled q y and q r (see below), which will also be a function of W 1 and W 2 . Several possible combinations will be tested and the final results compared to the original model.

System interconnection

The full discrete system will thus have 7 variables, V = (fis, gyr, top, crp, cya, rrn, pol) , with discrete levels d 1 = 4, d j = 2 for j = 2, . . . , 7 and state space:

Ω d = {0, 1, . . . , 4} × {0, 1, 2} × . . . × {0, 1, 2}.
The extended Boolean model will have 16 variables. As described in Section 7.2.3, the interconnection of two input/output asynchronous Boolean networks such as systems (7.13) and (7.14), is obtained by setting u = h B (b) and v = h A (a). Most of the input/output functions are already fixed by model [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF]. There is a new interaction between the two modules, due to the effect of the growth rate in fis, which is represented by u 1 in Fig. 7.5:

u 1 ∈ {W 1 , W 2 }, u 2 = crp 1 or crp 2 , u 3 = cya 1 or cya 2 , v 1 = fis 1 , v 2 = fis 2 or fis 4 , v 3 = fis 3 .
The goal in this paper is the discrimination between different variants of the model in Fig. 7.5, in order to choose the mechanism that better represents bacterial response.

The variants cover: models for growth rate: f r g , f b g , f rb g , and f rp g ; interactions between growth signals and the genetic machinery response: q r , q y , and u 1 .

As remarked above (Section 7.3.1), the interactions q r , q y , and u 1 in some sense replace the effect of the complex cAMP-Crp on the system, by including an explicit dependence on growth rate. To evaluate the new rules we will consider that there are two signalling stages, corresponding to the response of Cya/cAMP (the initial steps in the case of nutritional stress) and of Fis (global regulator). The response of crp will be timed with one or the other:

q r = u 1 or q r = q y .
Chapter 7. Attractor computation using interconnected Boolean networks 131

The following distinct combinations for q y , q r and u 1 will be tested:

(I) q y = W 1 , q r = W 1 , u 1 = W 1 (II) q y = W 1 , q r = W 1 , u 1 = W 2 (III) q y = W 2 , q r = W 2 , u 1 = W 1 (7.11) (IV ) q y = W 1 , q r = W 2 , u 1 = W 2 (V ) q y = W 2 , q r = W 2 , u 1 = W 2 (V I) q y = W 2 , q r = W 1 , u 1 = W 1

Results

As discussed above (cf. Section 7.3), the goal is to recover the behaviour of the system as described in Ropers et al [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF] (Table 7.1) but now with growth rate "actually computed" by the bacteria, for the system in closed loop form which uses the state of the system. Various combinations of interactions and growth rate functions were tested, with the results summarized in Table 7.2 and discussed below. As an indication of the Table 7.2: The attractors for each combination of growth rate function and interactions u 1 , q r , q y . Attractors σ i satisfy rrn = pol = 0, while attractors α j , j ∈ {2, 4, 24, 48, 52, 72}, satisfy rrn ≥ 1 and pol ≥ 1 (full characterizations are given in Sections 7.4.2 and 7.4.3). The indexes i, j denote the number of distinct states contained in the attractor. All the attractors of G as are also attractors of G: either they satisfy Prop. 7.2 and/or other methods, as indicated. The highlighted row ( * * * ) represents the model variants which better reproduce computational costs, application of the method presented in Section 7.2.3 to compute the attractors for model f rp g , case IV, gave the following results:

there are eight constant-input asynchronous transition graphs for each system (G A,u , or G B,v ); on these graphs there are a total of 22 semi-attractors for system Σ A and 20 for

Σ B ;
the total number of vertices in the asymptotic graph is thus 20 × 22 = 440;

as remarked in Section 7. 2.3 (and [166]), the number of vertices in G as can be further reduced by eliminating those which are known to have no incoming arrow.

This leads to only 90 vertices; the computational cost of finding the attractors of the interconnected system Σ has therefore been reduced from analysis of a size 2 16 = 65536 to a size 90 matrix; one should nevertheless consider the cost of computing this size 90 matrix, which involves reachability calculations in the 2 × 8 individual asynchronous transition graphs (the full process was very fast here, taking between 30-60 seconds for each model variant).

General properties

Some immediate observations from the results are:

a common point to all model variants is that, in the presence of nutrient (Glu=1),

G as always has two attractors which are both attractors of G, by application of Prop. 7.2(i) or (iii), or other methods (see Prop. 7.4, 7.

for all model variants, the first attractor (σ i , i ∈ {4, 24, 48, 52}) has rrn = pol = 0 and the second attractor (α j , j ∈ {2, 4, 24, 48, 52, 72}) rrn = pol = 1. The first may be said to represent stationary phase, while the second stands for exponential phase.

also for all model variants, in the absence of nutrient (Glu=0), there is only one attractor, σ 4 ; this can be verified directly (see Prop. 7.3 below). The stationary phase attractor σ 4 has four states and is characterized by:

σ 4 : fis = 0, gyr ∈ {1, 2}, top = 0, crp = 2, cya ∈ {1, 2}, rrn = 0, pol = 0. (7.12)
coinciding with the stationary attractor of model [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF] (see Table 7.1) with the exception of gyr and cya which oscillate between 1 and 2 (instead of being fixed at 2).

all models involving the ribosomes or RNA polymerase as a growth rate limiting factor exhibit the same stationary phase and a similar exponential phase attractors, depending only on the choice of feedback interactions.

As an example, for model variant f rp g , case IV, the basins of attraction for σ 4 and α 24 are disconnected. The stationary phase attractor is formed of a single vertex, while the A 10 45 = {10000000, 10000010, 10001000, 10001010, 10001100, 10001110}, A 11 47 = {11000000, 11000010, 11001100, 11001010, 10001100, 11001110}, A 12 48 = {11100000, 11100010, 11101100, 11101010, 11101100, 11101110, 11110000, 11110010, 11111100, 11111010, 11111100, 11111110} .

In practice, the attractor in Fig. 7.6 can be reduced to (either) one of the horizontal rows, with three components only. All concentrations are fixed, except for fis, gyr, and top which are allowed to oscillate in any given increasing or decreasing order, provided that fis ≥ 1 and top ≤ 1.

In the case where no carbon sources are present, it can be shown that all model variants become the same, and hence exhibit the same stationary phase attractor. This is essentially due to the direct effect of growth rate on the synthesis of RNA polymerase.

Then:

(i) The set P 0 is invariant independently of the function f g ;

(ii) The set P 1 is invariant if f g = f b g .
Proof : Invariance of P 0 follows directly from the Boolean rules for rrn i and pol i . For P 1 , it suffices to note that the Boolean rules imply (see Appendix): cya ≥ 1 and crp ≥ 1 which imply µ ≥ 1. Then, rrn = pol = 1 and µ ≥ 1 imply rrn = pol = 1.

Model discrimination

Based on the observations above and comparison of Tables 7.1 and 7.2, it seems clear that the growth rate function should depend on the ribosomes and/or RNA polymerase. With this model, at steady state there is no difference between a dependence on ribosomes or RNA polymerase, although the transient dynamics do depend differently on these two species (simulations in Section 7.4.5). (This may be due to a very simplified model for the transcription/translation steps which is, however, not our aim to study here.) The model variants corresponding to I,III,VI do not satisfy the properties of the exponential phase attractor and can thus be eliminated. The interconnection of type II has most of the correct properties, but it allows the concentration of crp and cya to oscillate, in contrast to the original model. The cases that better fit the original model are IV and V, whose asymptotic behaviour is indistinguishable. This is consistent with the observations (summarized in Ropers et al. [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF]) that: immediately upon carbon starvation, or absence of carbon source, transcription of the gene cya is activated, which leads to production of the protein Cya. Phosphorylation of Cya leads to synthesis of cyclic AMP, which in turn will bind to Crp and produce a complex [cAMP-Crp]. This complex will then control a variety of genes which are directly involved in the adaptive response of E. coli to a deprivation of carbon. Among others, it activates crp, and inactivates cya and the global regulator fis.

Furthermore, to establish the transition to exponential phase, and guarantee the presence of global regulator fis, the wiring interactions should be as in cases II, IV, and V, which all satisfy u 1 = W 2 : in other words, since W 2 = 1 corresponds to µ = 0, fis is inhibited only at low growth rate, as also observed in [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF]. The levels of crp and cya are in agreement with those of Table 7.1 if crp is activated at high growth rate level and the inhibition effect on cya is not later than the activation of crp, i.e., q r = W 2 , q y ≥ q r (recall that W 1 ≥ W 2 ).

In conclusion, to develop a more detailed continuous model, bacterial growth rate should depend on the ribosomes. For simplicity, one may even consider the ribosomes to be the only variable influencing growth rate (besides the external input), because no differences were observed between models with f r g , f rp g , or f rb g .

Dynamical behaviour

By virtue of Theorem 7.1 and Propositions 7.2 to 7.5, we know that any trajectory of the interconnected model will eventually reach either the exponential or stationary phase attractors, depending on the initial condition and path in the graph G. To illustrate possible dynamical behaviours, we can generate trajectories in G, by randomly choosing the variable to be updated at the next instant, according to the rules. Note that this simulation does not need the graph G to be constructed; but, on the other hand, such simulations cannot characterize the full behaviour of the network. Hence the usefulness of the asymptotic graph G as , which can now be completed with some statistical results on initial conditions and attractors reached.

For the statistical analysis we choose interconnection model IV, and growth rate models f rp g , f r g , and f p g . It must be noted that the asymptotic graph "looses" some trajectories of the full interconnected system as, to construct G as , the system is assumed to evolve in one of the constant-input/constant-output graphs {a} × G B,α or G A,β × {b} until reaching an attractor. In simulations, however, the system is allowed to switch before reaching an attractor, meaning that the basins of attraction are not really disconnected as might be suggested by the asymptotic graph.

Monte Carlo simulations of the full model (10 4 randomly generated trajectories) assume that all transitions in G are equally probable and show that the two attractors are reached with similar frequencies: for f rp g , a fraction of 0.59 (0.57 for f r g , or 0.58 for f p g ) trajectories converge to the exponential phase attractor.

Note that the invariance results in Propositions 7.4 and 7.5 already provide an idea of the basins of attractions, since they imply notably that initial conditions of the form rrn = pol = 0 (resp., rrn = pol = 1) lead immediately to the stationary (resp., exponential) phase attractor. To obtain more information on the distribution of the basins of attraction, we have further analysed the probability that the system converges to either attractor given an initial condition with variable var i = (where var i runs over the sixteen Boolean variables of the system and ∈ {0, 1}). We found that the convergence to either attractor depends essentially on the initial concentrations of RNA polymerase and ribosomes, while all other concentrations play minor roles (in agreement with Propositions 7.4 and 7.5). An interesting observation is that, for all variables except the polymerase, and for any initial condition, the probability of converging to exponential phase is higher than to stationary phase. It is also evident that the absence Chapter 7. Attractor computation using interconnected Boolean networks 138 of polymerase immediately prevents convergence to exponential phase. In addition, we observe that all trajectories converging to exponential phase need to start with an intermediate (or higher) level of RNA polymerase (pol ≥ 1). Table 7.3 summarizes the statistics obtained from the Monte Carlo simulations. Our studies lead to the conclusion 

Initial conditions

Attractor reached f rp g , f r g , f p g pol = 0 stationary pol ≥ 1 and rrn = 0 either pol ≥ 1 and rrn ≥ 1 exponential that RNA polymerase and ribosomes are both crucial for bacterial growth, but exert their roles at different times: initially, the presence of RNA polymerase is necessary to grow and reach the exponential phase (otherwise, if RNA polymerase is absent at time zero, the bacteria enter the stationary phase even in the presence of carbon sources), while ribosomes can be absent; at later times, the presence of ribosomes is essential to guarantee the entry into exponential phase.

Conclusions

Several dynamic model variants for bacterial growth rate that consider limitation by availability of the proteins needed for cell division (RNA polymerase for transcription, ribosomes for translation, or other "bulk" proteins) were tested and compared to a well established model. The main goal was to analyse (qualitative) feasibility of the wiring network, as well as the logical coherence of each model variant. This was accomplished by using a Boolean version of the model for nutritional stress response in [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF], coupled with a basic cellular growth module.

We can conclude that Boolean models provide a useful framework for analysis of a system's dynamical behaviour, convenient for hypotheses testing and model discrimination. This framework presents several advantages from a computational point of view, as many tools and algorithms are available for the study and rigorous analysis of the networks. In particular, using the interconnection of two Boolean modules, it is possible to compute the attractors of a large network at a much lower cost than with classical graph theoretical tools. However, the drawbacks of this methodology include problems related to identifying the two (or more) Boolean modules as well as the corresponding inputs and outputs, which are not always obvious (see also [START_REF] Tournier | Interconnection of asynchronous boolean networks, asymptotic and transient dynamics[END_REF]). As the number of Chapter 7. Attractor computation using interconnected Boolean networks 139 modules and inputs increases, also the computational cost will increase and a balance must be found. This is a topic that should be further developed in future work.

A number of interesting points arise from our qualitative analysis. First, it was clear that limitation of growth rate by the ribosomes is needed in order to correctly reproduce the asymptotic modes, as well as transient dynamics, of the original model [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF]. Second, in the presence of nutrient, our closed-loop model -where bacteria internally compute their growth rate, rather than responding to an already fixed signal-has the capacity for bistability (i.e., two asymptotic modes, representing exponential and stationary phases).

Thus the closed-loop model also recovers the correct response to initial conditions: if both ribosomes and RNA polymerase concentration is very low, then the bacteria cannot grow even in the presence of nutrient. In the absence of nutrient, only the stationary phase attractor remains, as should be expected. Finally, by comparison to [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF], we were able to discard most of the model variants and retain several properties necessary to reproduce the original model's attractors.

Since our main goal was essentially theoretical, we have not fully explored the directions for model improvement suggested by our analysis. For instance, a more detailed module for transcription/translation including other components besides ribosomes and RNA polymerase, or the modelling of the "bulk" proteins in a more precise way. To conclude, although discrete models are, of course, not appropriate for a detailed description of a system or to answer more specific questions, this analysis constitutes a very useful preliminary study of growth rate models. It provides many indications and clues for future work on constructing a more detailed, continuous model of the system.

The rules for the cellular growth module can be written as follows:

crp + 1 = 1;
crp + 2 = (not q r and crp 1 and not v 1 ) or (q r and crp 1 and not (v 2 or v 3 ));

cya + 1 = 1;
cya + 2 = (not q y and cya 1 ) or (q y and (hy1 or hy2)); where the auxiliary expressions are hy1 = cya 1 and (not crp 1 or not crp 2 ); hy2 = cya 1 and not cya 2 and crp 1 and crp 2 ;

Chapter 8

A coarse-grained dynamical model of E. coli gene expression machinery at varying growth rates This chapter is written in the form of a technical report (deliverable) for the ANR GeMCo project [START_REF] Chaves | GeMCo: Model reduction, experimental validation, and control for the gene expression machinery in E. coli[END_REF].

The mathematical model of E. coli gene expression machinery presented here can be seen as a reduced version of a higher dimensional and more detailed kinetic model (unpublished work) developed by our collaborators in Grenoble (D. Ropers and E. Grac, Inria Ibis team). The aim of developing a reduced model was mainly that of facilitating the identification of the system's parameters. In fact, a low-dimensional, but still quantitative model, for which the parameters are known, is a crucial starting point to design and study-in silico-possible growth rate control strategies. Along these lines, this reduced, but quantitative model, could be easily extended considering the network motifs and dynamical growth rate expressions of Chapters 4-5-6, which describe, qualitatively, possible synthetic gene modifications to control the growth rate of the cells. In this way, one could use qualitative and quantitative modelling formalisms together, in an iterative process, in order to develop more accurate reduced models and test novel control laws.

Introduction

In bacteria the rate of cell proliferation (growth rate) and the gene expression machinery (GEM) are tightly coupled. In fact, bacterial gene expression not only depends on specific regulation of particular molecules, but also on cell growth rate because important components of GEM (ribosomes, RNA Polymerase, etc) are all growth-rate dependent [START_REF] Klumpp | Growth rate-dependent global effects on gene expression in bacteria[END_REF]. Moreover, early works on bacterial physiology [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF][START_REF] Marr | Growth rate of Escherichia coli[END_REF][START_REF] Scott | Interdependence of cell growth and gene expression: Origins and consequences[END_REF][START_REF] Volkmer | Condition-dependent cell volume and concentration of Escherichia coli to facilitate data conversion for systems biology modeling[END_REF] have

shown that many parameters of the cells, such as their macro-molecular composition and cell size, depend only on the growth rate and not on the nutrient used to achieve that growth rate.

In this study we focus on the GEM of E. coli with the intent of developing a minimal, but quantitative, dynamical model of the bacterial transcription-translation apparatus dependent on growth rate. We sought to formulate a model of E. coli that could predict macro-molecular cell composition (concentrations of RNAP, ribosomes, proteins etc) from growth rate, DNA related parameters (concentrations of genes of interest) and known key physical process in the cell, while keeping the complexity of the model to a minimum.

Similarly to [START_REF] Tadmor | A coarse-grained biophysical model of E. coli and its application to perturbation of the rRNA operon copy number[END_REF], we lumped the E. coli genome into a small set of gene classes (rnn, rpoBC, protein-encoding (bulk ) genes) accounting for all transcription and translation within the cell for a given growth rate. Then, according to the formalism in [START_REF] Kremling | Comment on mathematical models which describe transcription and calculate the relationship between mrna and protein expression ratio[END_REF] we developed an ODE model whose variables account for the macromolecule content of the cell (ribosomes, RNAP, proteins, mRNAs etc). This coarse-grained model of E.coli GEM has then been calibrated to data from [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF] showing that the model is able to reproduce the macromolecular composition of the cell at several growth rate values.

This type of model is interesting per se because it may help elucidate how the E. coli GEM works on a global scale, pointing out the most important and fundamental regulations at the gene expression level. Moreover, this GEM model could also be used as host-cell model where more complex/specific gene networks are embedded into it.

This, for example, would allow one to study host-synthetic circuit interactions and help biologists in engineering biological circuits that require the knowledge of host factors that compete or interface with designed function [START_REF] Cardinale | Effects of genetic variation on the E. coli host-circuit interface[END_REF]. the rRNA operon determining the ribosome synthesis [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF], the operon encoding for β -β subunits [START_REF] Morgan | The wild-type nucleotide sequence of the rpoBC-attenuator region of Escherichia coli DNA, and its implications for the nature of the rifd18 mutation[END_REF] which are the limiting factors in RNAP assembling and the proxy gene class which is a consolidation of all identified gene-encoding protein. Moreover, Figure 8.1 shows the various feedback regulations between the components of the GEM.

Notably, transcription of all gene classes is catalysed by RNAP while translation of β -β mRNA (mβ -β ) and bulk mRNA (mRNA) is operated by ribosomes [START_REF] George | A unified theory of gene expression[END_REF]. In addition to these mechanistic regulations, we considered also the known effect that the physiological state of the cell-represented by the growth rate µ-has on the regulation of stable-RNA (sRNA) and mRNA [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF][START_REF] Gourse | rRNA transcription and growth rate-dependent regulation of ribosome sysnthesis in Escherichia coli[END_REF]. That is, at increasing growth rate values more stable-RNAs are produced whereas mRNA synthesis is reduced. In what follows we will discuss the expression of the three gene classes in more detail.

Ribosomes synthesis and function

Ribosomes are composed of stable-RNAs (sRNA) and proteins (r-protein). Since the synthesis of r-proteins is regulated so as to match that of sRNA [START_REF] Dennis | Control of rRNA synthesis in Escherichia coli : a systems biology approach[END_REF], it turns out that ribosome regulation centers on the transcriptional control of rnn genes. Hence, we will not take into account r-proteins synthesis and their assembling with sRNA to produce ribosomes, but we will consider that ribosome synthesis is essentially limited by the rate of sRNA synthesis. This assumption is graphically represented by the dashed arrow in The rnn genes, from which sRNA is produced, are organized in 7 operons (rnnA, rnnB, rnnC, rnnD, rnnE, rnnG, rnnH ) and are under the control of two promoters: the Pr1 constitutive promoter which is essentially regulated by free RNAP and the Pr2 growth rate dependent promoter whose activation strongly correlates with increasing Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 146 growth rate values [START_REF] Gourse | rRNA transcription and growth rate-dependent regulation of ribosome sysnthesis in Escherichia coli[END_REF]. In rapidly growing cells, sRNA is strongly synthesized and commandeers the majority of RNAP in the cell, whereas sRNA synthesis is suppressed at lower growth (e.g. nutrient starvation, amino acids depletion) [START_REF] Jin | Growth rate regulation in Escherichia coli[END_REF]. At molecular level, Pr2 promoter is inhibited by ppGpp, an alarmone molecule, which rapidly accumulates at lower growth rates following the stringent response caused by amino acid and/or nutrient starvation [START_REF] Dennis | Control of rRNA synthesis in Escherichia coli : a systems biology approach[END_REF]. Since ppGpp and growth rate regulations of Pr2 are strongly interconnected and superposed [START_REF] Jin | Growth rate regulation in Escherichia coli[END_REF], for the sake of simplicity we will only take into account the growth rate positive effect on sRNA synthesis.

Ribosome role in the GEM is that of synthesizing proteins (translation) linking amino acids together in the order specified by messenger-RNA molecules. The red arrows in 

RNAP synthesis and function

In E. coli cells the transcription is catalysed by RNA Polymerase (RNAP) core enzyme (green arrows in Figure 8.1), which is made up of five subunits (α 2 ββ σ). The amount of ββ turns out to be the limiting factor in RNAP synthesis [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF]. Hence-in our modelwe will omit the other subunits and focus only on ββ formation, assuming that ββ subunits' amount equals RNAP core enzyme amount.

The ββ subunits are the product of rpoBC genes expression. The rpoBC genes are regulated both at transcriptional and translational level [START_REF] Dykxhoorn | Synthesis of the β and β subunits of Escherichia coli RNA polymerase is autogenously regulated in vivo by both transcriptional and translational mechanisms[END_REF], but some of these feedback mechanisms are still unclear. In our model, we will only consider the positive transcriptional regulation of RNAP and the positive translational regulation of ribosomes which are known and well understood regulations.

RNAP initiates transcription at specific DNA sequences known as promoters. It then moves along DNA producing an RNA chain (mRNA sRNA), which is complementary to the template DNA strand. The process of adding nucleotides to the RNA strand is known as elongation. Finally, RNAP will preferentially release its RNA transcript at specific DNA sequences encoded at the end of genes, which are known as terminators.

Proteins synthesis and function

In our model, the bulk gene class represents a consolidation of all 4288 identified geneencoded protein [START_REF] Blattner | The complete genome sequence of Escherichia coli K-12[END_REF] in E. coli. Hence, mRNA and protein in Figure 8.1 represent proxy products of all messenger-RNAs and proteins expressed in E. coli. In bacteria, mRNA Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 147 synthesis is regulated at transcription level by RNAP and by growth rate dependent mechanisms (probably due to ppGpp) [START_REF] Bremer | Guanosine tetraphosphate as a global regulator of bacterial RNA synthesis: a model involving RNA polymerase pausing and queuing[END_REF] that-at higher growth rates-reduces mRNA synthesis to divert resources towards sRNA synthesis. This is because-to achieve higher growth rate values-cells need more ribosomes to be engaged in translating proteins and so resources are diverted from producing mRNA towards stable-RNA molecules, which substantially determine ribosome amount.

Mathematical background

To model the dynamics of gene products depicted in Figure 8.1 we used a mathematical formalism developed by A. Kremling in [START_REF] Kremling | Comment on mathematical models which describe transcription and calculate the relationship between mrna and protein expression ratio[END_REF]. This formalism uses ordinary differential equations coupled with algebraic mass conservation equations (to derive free RNAP and ribosomes) to model-in a quite detailed fashion-the dynamics of those molecular mechanisms involved in the transcription and translation of a single gene. Here, we basically report, as an example, the derivation of transcription and translation model equations of a generic gene. These equations will be then used to model the entire GEM depicted in Figure 8.1.

Transcription

Let consider a single gene g of length L, being L the number of nucleotides of gene g.

Free RNAP, denoted by F P , binds in a reversible way to the free promoter D of gene g and forms the complex P D:

F P + D k 2 k 1 P D (8.1)
After binding, RNAP clears the promoter and is ready to start moving (and reading nucleotides) along the gene g:

P D kg → Y + D (8.2)
where Y denotes RNAP just after having cleared the promoter, but still bound to the DNA. Then, RNAP moves along the gene g, reads its information and enlarges the chain of the nascent mRNA Y i with nucleotides N u. Eventually, when RNAP has finished to Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 148 elongate the RNA chain (RNA), it unbinds to the DNA and returns to its free state:

Y + N u cg → Y 1 Y 1 + N u cg → Y 2 . . . Y L-1 + N u cg → F P + RN A (8.3)
Then, the completed RNA molecule is subject to degradation γ g and dilution due to cell growth rate µ:

RN A γg+µ → ∅ (8.4)
In this model, reactions (8. as in [START_REF] Belgacem | Analysis and reduction of transcription translation coupled models for gene expression[END_REF][START_REF] Belgacem | Stability analysis and reduction of gene transcription models[END_REF]:

Ṗd = k 1 P f d f -k 2 P d -k g P d ḋf = -k 1 P f d f + k 2 P d + k g P d Ṗf = -k 1 P f d f + k 2 P d + c g w L-1 ẇ = k g P d -c g w ẇ1 = c g w -c g w 1 . . . ẇL-1 = c g w L-2 -c g w L-1 ẋ = c g w L-1 -(γ g + µ)x (8.5)
Along with system (8.5), there are also two mass conservation equations regarding the total concentration of promoter, i.e. d, and the total concentration of RNAP, i.e. P :

d = d f + P d (8.6a) P = P f + P d + w + w 1 + . . . + w L-1 . (8.6b)
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Hence, solving the promoter conservation equation (8.6a) with respect to the free promoter concentration d f , system (8.5) can be reduced in:

Ṗd = k 1 P f (d -P d ) -k 2 P d -k g P d Ṗf = -k 1 P f (d -P d ) + k 2 P d + c g w L-1 ẇ = k g P d -c g w ẇ1 = c g w -c g w 1 . . . ẇL-1 = c g w L-2 -c g w L-1 ẋ = c g w L-1 -(γ g + µ)x (8.7)
Then, assuming that all RNAP complexes P d , w, w 1 ,...,w L-1 are at steady state (the mostly accepted biological hypothesis beyond this assumption is that biochemical reactions involved in complexes' formation are generally much faster than the entire transcription process), one gets:

P d = P f P f + θ P d (8.8) w L-1 = w L-2 = . . . = w 1 = w = k g c g P d = k g c g P f P f + θ P d (8.9)
where

θ P = k 2 + k g k 1 .
Moreover, substituting (8.8) and (8.9) into (8.6b), the total RNAP conservation equation can be rewritten as:

P = P f + P f P f + θ P d 1 + L k g c g (8.10)
Finally, the ODE modelling the dynamics of the transcription of gene g, which leads to the formation of the completed RNA-expressed in molar concentration by x, reads as:

ẋ = k g P f P f + θ P d -(γ g + µ)x. (8.11)
Biologically speaking, equation (8.10) makes sense only if the biological system under investigation was made up of only gene g (RNAP would either be free or bound to gene g), but in reality organisms consist of thousands of genes. Hence, considering an organism with a total number of n genes, a more realistic conservation equation for RNAP would be:

P = P f + n l=1 P f P f + θ l P d l 1 + L l k l c l (8.12)
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As explained in [START_REF] Kremling | Comment on mathematical models which describe transcription and calculate the relationship between mrna and protein expression ratio[END_REF], this model does not consider stearic effects of RNAP, that is RNAP when bound to the DNA occupies only one nucleotide.

Translation

Modelling the translation process is a little bit more elaborated than transcription, since one has to take into account both nascent mRNAs, i.e. uncompleted mRNAs that stem from RNAPs which are still in the process of transcribing, and completed mRNA. 

8
F R + Y i k 4 k 3 RY i (8.13)
After binding, ribosome clears the ribosome binding site and is ready to start moving (and reading nucleotides) along the nascent mRNA:

RY i k G → Z i + Y i (8.14)
where Z i denotes ribosome just after the clearance, bound to the nascent mRNA and waiting for reading nucleotides.

Then, the moving ribosome Z j i reads the information stored in the nascent mRNA and enlarges the chain of the corresponding protein with amino acids AA. Here we do not model amino acid formation, which are considered not limiting, nor the charging and uncharging of AA on transfer-RNA, which are considered not limiting as well. The protein chain is considered to grow at the maximal length s amino acids. This maximal length of s is related to the length i-in nucleotides-of the nascent mRNA Y i by the relation s = i/3, since every triplet of nucleotides (codon) determines one amino acid.

Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 151

Z i + AA c G → Z 1 i Z 1 i + AA c G → Z 2 i . . . Z s-1 i + AA c G → Z s i Z s i + AA c G → . . . (8.15)
Degradation of nascent mRNA is not considered.

Let R f , w f i , w i , z i , z j i be the molar concentration of species F R, Y i , RY i , Z i , Z j i , respectively. Hence, assuming classical mass-action kinetics, one can derive the following ODEs from reactions above (8.13)-(8.14)-(8.15):

ẇi = k 3 R f w f i -k 4 w i -k G w i ẇf i = -k 3 R f w f i + k 4 w i + k G w i Ṙf = -k 3 R f w f i + k 4 w i żi = k G w i -c G z i ż1 i = c G z i -c G z 1 i . . . żs-1 i = c G z s-2 i -c G z s-1 i żs i = c G z s-1 i -c G z s i (8.16)
Since for every nascent mRNA Y i the following conservation equation is valid:

w i = w f i + w i (8.17)
considering w f i = w i -w i , we can reduce system (8.24) to:

ẇi = k 3 R f (w i -w i ) -k 4 w i -k G w i Ṙf = -k 3 R f (w i -w i ) + k 4 w i żi = k G w i -c G z i ż1 i = c G z i -c G z 1 i . . . żs-1 i = c G z s-2 i -c G z s-1 i żs i = c G z s-1 i -c G z s i (8.18)
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Now, considering steady state assumption for all ribosome complexes RY i , Z i and Z j i one gets:

w i = R f R f + θ R w i (8.19) z s i = z s-1 i = . . . = z 1 i = z i = k G c G w i = k G c G R f R f + θ R w i (8.20) where θ R = k 4 + k G k 3 .

Translation of completed mRNA

Now we focus on the translation of completed mRNAs. Let RN A be the completed mRNA, free from RNAP and the gene whereby it has been generated.

The process of ribosome binding to the completed mRNA is similar to that for the nascent mRNA presented above. Hence, free ribosome F R binds to the free ribosome binding site RN A f of mRN A in a reversible way forming the complex RRN A:

F R + RN A f k 4 k 3 RRN A (8.21)
After binding, ribosome clears the ribosome binding site and is ready to start moving (and reading nucleotides) along the mRNA:

RRN A k G → Z + RN A f (8.22)
where Z denotes ribosome just after the clearance, bound to the completed mRNA and waiting for reading nucleotides.

Then, the moving ribosome Z j reads all the information stored into the completed 

Z + AA c G → Z 1 Z 1 + AA c G → Z 2 . . . Z M -1 + AA c G → G + R f G γ G +µ → ∅ (8.23) Let R f , w f , w, z, z j ,X
ẇ = k 3 R f w f -k 4 w -k G w ẇf = -k 3 R f w f + k 4 w + k G w Ṙf = -k 3 R f w f + k 4 w ż = k G w -c G z ż1 = c G z -c G z 1 . . . żM-1 = c G z M -2 -c G z M -1 Ẋ = c G z M -1 -(γ G + µ)X (8.24) 
Since for the completed mRNA RN A the following conservation equation is valid:

x = w f + w (8.25)
we can reduce system (8.24), considering w f = x -w, to: 

ẇ = k 3 R f (x -w) -k 4 w -k G w Ṙf = -k 3 R f (x -w) + k 4 w ż = k G w -c G z ż1 = c G z -c G z 1 . . . żM-1 = c G z M -2 -c G w M -1 Ẋ = c G z M -1 -(γ G + µ)X ( 
w = R f R f + θ R x (8.27) z M -1 = z M -2 = . . . = z 1 = z = k G c G w = k G c G R f R f + θ R x (8.28) where θ R = k 4 + k G k 3 .
Finally, the ODE for the protein G reads as:

Ẋ = k G R f R f + θ R x -(γ G + µ)X (8.29)

Comments on ribosome engaged in translation

To calculate the total concentration of ribosomes engaged in the translation process, one has to consider two terms: one for those translating nascent mRNAs and the other one for those translating the completed mRNA.

Let us first consider the total concentration of ribosomes that are involved in translating one nascent mRNA which stems from the moving RNAP Y i . Since from each moving RNAP complex Y i only one nascent mRNA originates from it, from now on Y i will also indicate the corresponding nascent mRNA which is being transcribed from the moving RNAP (Y i ). For every Y i the ribosomes that are bound to it are RRN A i , Z i , Z 1 i , Z 2 i ,...,Z s i , denoting the ribosome bound to the ribosome binding site, the ribosome after the clearance, and all moving ribosomes. Hence, let R n i be the concentration of ribosomes engaged in the translation of the nascent mRNA Y i , we have:

R n i = w i + z i + s=iM/L j=1 z j i (8.30)
and knowing that all the nascent mRNA on gene g are Y i for i = 1, 2, . . . , L -1, it turns out that the total concentration of ribosomes engaged in translating all nascent mRNA, i.e. R n , is given by: 

R n = L-1 i=1   w i + z i + iM/L j=1 z j i   . ( 8 
R n = L-1 i=1   R f R f + θ R w i + k G c G R f R f + θ R w i + iM/L j=1 k G c G R f R f + θ R w i   = R f R f + θ R L-1 i=1 1 + k G c G + i M L k G c G w i (8.32)
then, since w i = k g c g P f P f + θ P d as stated in (8.9), we have:

R n = R f R f + θ R k g c g P f P f + θ P d L-1 i=1 1 + k G c G + i M L k G c G = R f R f + θ R k g c g P f P f + θ P d (L -1) + k G c G (L -1) + M L k G c G L-1 i=1 i = R f R f + θ R k g c g P f P f + θ P d (L -1) + k G c G (L -1) + M (L -1) 2 k G c G = R f R f + θ R k g c g P f P f + θ P d(L -1) 1 + k G c G 1 + M 2 (8.33)
Now we will focus on the ribosomes engaged in translating the completed mRNA. Similarly as above, for the completed mRNA the ribosomes that are bound to it are RRN A, Z, Z 1 , Z 2 ,...,Z M -1 , denoting the ribosome bound to the ribosome binding site, the ribosome after the clearance, and all moving ribosomes. Hence, let R c be the concentration of ribosomes engaged in the translation of the completed mRNA, we have:

R c = w + z + M -1 j=1 z j (8.34)
Substituting expressions (8.27)-(8.28) into (8.34), one gets:

R c =   R f R f + θ R x + k G c G R f R f + θ R x + M -1 j=1 k G c G R f R f + θ R x   = R f R f + θ R x 1 + k G c G M (8.35)
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Finally, the total concentration of ribosomes engaged in the translation process for the single gene g, denoted by R g , are:

R g = R n + R c = R f R f + θ R k g c g P f P f + θ P d(L -1) 1 + k G c G 1 + M 2 + R f R f + θ R x 1 + k G c G M = R f R f + θ R (L -1) k g c g P f P f + θ P d 1 + k G c G 1 + M 2 + 1 + k G c G M x (8.36)

Final conclusions

Here we summarize the most important modelling equations of the transcription-translation model just presented above: 

ẋ = k g P f P f + θ P d -(γ g + µ)x (8.37a) Ẋ = k G R f R f + θ R x -(γ G + µ)X (8.37b) P g = P f P f + θ P d 1 + L k g c g (8.37c) R g = R f R f + θ R (L -1) k g c g P f P f + θ P d 1 + k G c G 1 + M 2 + 1 + k G c G M x (8.
ẋ = k g P f P f + θ P F 1 (•)d -(γ g + µ(•))x (8.38a) Ẋ = k G R f R f + θ R F 2 (•)x -(γ G + µ(•))X (8.38b) P g = P f P f + θ P F 1 (•)d 1 + L k g c g (8.38c) R g = R f R f + θ R F 2 (•) (L -1) k g c g P f P f + θ P F 1 (•)d 1 + k G c G 1 + M 2 + 1 + k G c G M x (8.38d)
To conclude, we note that all parameters used in model (8.38) have a biological meaning and each can be expressed with physical units as reported in Regarding stable-RNA length, mRNA length and protein length we assumed L r = 6623 N u, L b = 1000 N u and L B = 333 aa as reported in [START_REF] Tadmor | A coarse-grained biophysical model of E. coli and its application to perturbation of the rRNA operon copy number[END_REF]. In particular it is Hence we can now convert data in Table 8.5 in [µM ] units using the following expressions: Average DNA per cell:

[N P ] = N P V c • 10 -15 [L/µm 3 ] • N a • 10 6 [N R ] = N R V c • 10 -15 [L/µm 3 ] • N a • 10 6 [N B ] = N B V c • 10 -15 [L/µm 3 ] • L B • N a • 10 6 [r m ] = r m V c • 10 -15 [L/µm 3 ] • L b • N a • 60 [min/h] • 10 6 [r s ] = r s V c • 10 -15 [L/µm 3 ] • L r • N a • 60 
In an exponential culture, the average number of DNA per cell or the genome equivalent per cell is given by the Helmstetter and Cooper equation [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF]: 8.9: Growth-rate-dependent cell cycle parameter values taken from [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF].

G c = τ C • ln(2) × 2 C+D τ -2 D τ ( 

Individual gene copy number per cell:

In an exponential culture the number of copies of a gene x is calculated by the following equation [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF]:

N x = 2 [C(1-m )+D]/τ (8.49)
where m is the map location of gene x relative to location or replication origin: The rnn operon is made up of seven genes and their m and m values taken from [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF] are reported in 

m =          (m +

Promoter concentration of rpoBC genes

In Table 8.12 are reported the m and m values of rpoBC genes. The rpoBC m value has been taken from [START_REF] Morgan | The wild-type nucleotide sequence of the rpoBC-attenuator region of Escherichia coli DNA, and its implications for the nature of the rifd18 mutation[END_REF].

Using formula (8.49) with values in Tables 8.9-8.12 we can calculate the gene copy number per cell of rpoBC (N rpoBC ) at growth rates of interest. Eventually the promoter concentration d p (in [µM ]) of rpoBC is given by: 

d p = N rpoBC V c • 10 -15 [L/µm 3 ] • N a • 10 

Promoter concentration of bulk genes

The bulk gene class is a consolidation of the 4288 identified protein encoding-genes in E. coli [START_REF] Blattner | The complete genome sequence of Escherichia coli K-12[END_REF]. Here, we assume that these 4288 genes are uniformly distributed across the chromosome. This implies that:

m i = i/4288, for i = 0, 1, 2, ..., 4287 
and the gene copy number per cell is given by:

N b = 4287 i=0 2 [C(1-m i )+D]/τ = 2 (C+D)/τ 1 -2 -C/τ 1 -2 -C/(4288•τ ) (8.53)
Using formula (8.53) with values in Tables 8.9 we can calculate the gene copy number per cell of bulk genes (N b ) at growth rates of interest. Eventually, the promoter concentration

d p (in [µM ]
) of bulk genes is given by: each nucleotide of the DNA may be a (non-specific) binding site of RNAP, and when RNAP is bound to these non-specific binding sites not only transcription does not start, but also the pool of free RNAP is reduced.

d b = N b V c • 10 -15 [L/µm 3 ] • N a • 10 
The number of non-specific binding sites per cell N ns is given by [START_REF] Klumpp | Growth-rate-dependent partitioning of RNA polymerases in bacteria[END_REF]:

N ns = g G c
where g = 4.6 • 10 6 is the genome size ( [START_REF] Klumpp | Growth-rate-dependent partitioning of RNA polymerases in bacteria[END_REF]) and G c is genome equivalent per cell expressed in 8.47. Finally the non-specific promoter concentration d ns (in [µM ]) is

given by: 

d ns = N ns V c • 10 -15 [L/µm 3 ] • N a • 10 6 . ( 8 
R i = k r µ + γ r P i f P i f + θ r1 P • h + (µ, θ r µ , n r ) + P i f P i f + θ r2 P d i r p i = k p µ + γ p P i f P i f + θ p P d i p P i = k P µ + γ P R i f R i f + θ P R p i b i = k b µ + γ b P i f P i f + θ b P h -(µ; θ b µ , n b )d i b B i = k B µ + γ B R i f R i f + θ B R b i P i = P i f + P i f P i f + θ r1 P • h + (µ, θ r µ , n r ) + P i f P i f + θ r2 P d i r 1 + L r k r c r + P i f P i f + θ p P d i p 1 + L p k p c i p + P i f P i f + θ b P h -(µ; θ b µ , n b )d i b 1 + L b k b c i b + P i f P i f + θ ns P d i ns R i = R i f + R i f R i f + θ P R (L p -1) k p c i p P i f P i f + θ p P d i p 1 + k P c i P 1 + M P 2 + 1 + M P k P c i P p i + R i f R i f + θ B R (L b -1) k b c i b P i f P i f + θ b P h -(µ; θ b µ , n b )d i b 1 + k B c i B 1 + M B 2 + 1 + M B k B c i B b i r i s = k r P i f P i f + θ r1 P • h + (µ, θ r µ , n r ) + P i f P i f + θ r2 P d i r r i m = k b P i f P i f + θ b P h -(µ; θ b µ , n b )d i b ( 8 
J(φ) = n i R i (φ) -[N R ] i 0.1 • [N R ] i 2 + n i P i (φ) -[N P ] i 0.1 • [N P ] i 2 + n i B i (φ) -[N B ] i 0.1 • [N B ] i 2 + n i ri s (φ) -[r s ] i 0.1 • [r s ] i 2 + n i ri m (φ) -[r m ] i 0.1 • [r m ] i 2 (8.58)
where n = 5 is the number of experimental data points, one for each growth rate values in Table 8.6.

To find the parameters in φ that minimize J(φ) we used an optimization approach written in M AT LAB ® which first uses the GlobalSearch function and then, to refine the estimation, the pattern search function.

Hence, the estimated parameter values are reported in 

Introduction

A key player of single-cell gene network dynamics is noise [START_REF] Thattai | Intrinsic noise in gene regulatory networks[END_REF]. A distinction is usually made between intrinsic noise, i.e. the uncertainty inherent in biochemical events (binding/unbinding of transcription factors, synthesis of mRNA or protein molecules, etc.), and extrinsic noise, such as the variability of individual features over an isogenic population (abundance of aspecific transcription/translation factors, local environmental conditions, etc.) [START_REF] Paulsson | Models of stochastic gene expression[END_REF].

Gene expression monitoring techniques with single-cell resolution opened the way to the identification of stochastic gene network models. The CME [START_REF] Samad | Stochastic modelling of gene regulatory networks[END_REF], describing the kinetics of the network species in terms of probabilistic reaction events, is a standard tool for the description of intrinsic noise. To account for extrinsic noise, similar to Mixed-Effects (ME) modelling [START_REF] Davidian | Nonlinear models for repeated measurement data: An overview and update[END_REF], one approach is to describe the parameters of the network dynamics as random variables taking different values in different individuals (see e.g. [START_REF] Hasenauer | Identification of models of heterogeneous cell populations from population snapshot data[END_REF]).

Stochastic gene network models are nowadays fundamental tools for understanding the behaviour of cells in face of environmental and evolutionary challenges [START_REF] Paulsson | Control, exploitation and tolerance of intracellular noise[END_REF]. Most recently, they have also been considered for the real-time computer-based control of gene expression in single cells [START_REF] Milias-Argeitis | In silico feedback for in vivo regulation of a gene expression circuit[END_REF][START_REF] Uhlendorf | Long-term model predictive control of gene expression at the population and single-cell levels[END_REF].

This paper investigates state estimation from cell-level measurements for networks with intrinsic and extrinsic noise. State estimation is interesting per se for the reconstruction of network states that cannot be measured directly. In addition, it can be used as an intermediate step for identification, and plays a central role toward model-based control.

We start from the CME as the reference ("true") model of a cell network. Inspired by the ME approach [START_REF] Davidian | Nonlinear models for repeated measurement data: An overview and update[END_REF][START_REF] Hasenauer | Identification of models of heterogeneous cell populations from population snapshot data[END_REF], we include extrinsic noise in terms of variability of the model parameters. Since CME appears to be impractical for real-time filtering, we propose to use an asymptotic approximation, the Chemical Langevin Equation (CLE) [START_REF] Gillespie | The chemical langevin equation[END_REF], to implement filtering. First, we compare simulations of the CME and CLE models. Then, we use the latter to construct a Square-Root Unscented Kalman Filter (SRUKF) [START_REF] Julier | Unscented filtering and nonlinear estimation[END_REF][START_REF] Sarkka | On unscented kalman filtering for state estimation of continuous-time nonlinear systems[END_REF][START_REF] Singer | Continuous-discrete unscented kalman filtering[END_REF]. Using data generated from the true (CME) system, we compare performance of SRUKF with that of a (computationally heavier) particle filter built directly on the CME [START_REF] Doucet | Sequential Monte Carlo Methods in Practice[END_REF].

We develop our work on the case study of the network regulating the uptake of sugar arabinose in bacteria Escherichia coli. While relatively simple, this well characterized system (see [START_REF] Megerle | Timing and dynamics of single cell gene expression in the arabinose utilization system[END_REF] and references therein) is representative of the nature and complexity of the genetic feedback mechanisms regulating bacterial response to environmental stress.

Different from e.g. [START_REF] Hasenauer | Identification of models of heterogeneous cell populations from population snapshot data[END_REF][START_REF] Zechner | Moment-based inference predicts bimodality in transient gene expression[END_REF], where the observations consist of time series of the empirical distribution of gene expression obtained via flow cytometry, we consider the case where the expression in every cell of a small population is observed over time, as it can be obtained e.g. by fluorescence microscopy (see e.g. [START_REF] Uhlendorf | Long-term model predictive control of gene expression at the population and single-cell levels[END_REF]).

Bayesian inference, such as parameter and state estimation, for biological networks has been considered before, see e.g. [START_REF] Gillespie | Bayesian inference for the chemical master equation using approximate models[END_REF][START_REF] Wilkinson | Stochastic Modelling for Systems Biology[END_REF]. Here, we focus on state estimation under parameter uncertainty. First, we show that, despite the known limitations for small molecule numbers, the CLE is a viable CME approximation for the construction of computationally affordable filters coping with intrinsic noise (stochastic dynamics) and extrinsic noise (random parameters). Second, we show that the use of ME-type models, accounting for parameter variability, may improve state estimation performance.

Stochastic modelling of genetic networks

Consider a biochemical reaction network involving n species and m possible reactions among them. For gene regulatory networks, the species are typically proteins, mRNAs, transcription factors, etc., while reactions are e.g. binding/unbinding events, formation of complexes, degradation, and, at a higher level of abstraction, gene expression.

Assume that the reaction volume is uniform. For cells or cell nuclei, this assumption is still accepted in many contexts, as long as spatial resolution is not central. Let X = (X 1 , . . . , X n ) ∈ N n , where X i denotes the number of elements of species i, with i = 1, . . . , n. Let ν j ∈ Z n be the stoichiometry of reaction j, with j = 1, . . . , m. That is, element i of ν j , denoted ν j,i is the number of elements of species i produced or consumed in reaction j. Assume that reactions occur stochastically with propensities a j ∈ R ≥0 generally depending on X.Then X is the random state vector of a Markovian jump process. For times t ≥ 0, say, the probability p(Z, t) = Prob(X(t) = Z), Z ∈ N n , obeys the CME [START_REF] Samad | Stochastic modelling of gene regulatory networks[END_REF] dp

(Z, t) dt = m j=1 a j (Z -ν j )p(Z -ν j , t) -a j (Z)p(Z, t). (9.1)
whose solution is fully determined given the distribution of X(0). The CME is a linear but infinite-dimensional differential equation. For all but the simplest systems, the exact solution cannot be computed in practice. Simulated sample trajectories can be obtained by the Gillespie and related algorithms [START_REF] Samad | Stochastic modelling of gene regulatory networks[END_REF]. Under appropriate conditions on the process X, typically satisfied for large numbers X i , the jump process X is well approximated by a continuous process with state x ∈ R n ≥0 that satisfies the so-called

Langevin equation [START_REF] Gillespie | The chemical langevin equation[END_REF], i.e. the system of stochastic differential equations

dx i (t) dt = m j=1 ν j,i a j x(t) + ν j,i a j x(t) Γ j (t), (9.2) 
with i = 1, . . . , n, where, for j = 1, . . . , m, the Γ j (t) are mutually uncorrelated white noise processes. Here x plays the role of a continuous approximation of the molecule count X. Eq. (9.2) equally describes the evolution of molar concentrations

x = X/(ΩN A )[M],
where Ω is the reaction volume, N A is Avogadro's number and [M] denotes molar (moles/liter) units, provided appropriate rescaling of the reaction propensities and their parameters. From now on we assume x = X/(ΩN A ) and omit symbol [M] where no confusion may arise.

Inter-individual variability Similar to ME-modelling in pharmacokinetics [START_REF] Davidian | Nonlinear models for repeated measurement data: An overview and update[END_REF], variability of reaction dynamics among different cells (extrinsic noise) can be described in terms of inter-individual variability of the parameters of a common kinetic model [START_REF] Hasenauer | Identification of models of heterogeneous cell populations from population snapshot data[END_REF].

Using a Bayesian approach, one assumes that individual parameters are concentrated around a known population average (so-called fixed-effects) but deviate from it by a quantity modelled as a random variable with a given prior. This prior, characteristic of the population, is inferred from a set of representative individuals. Then, deviations of new individuals from the population average are treated as random outcomes from the same prior. In our context, let a θ j denote that reaction propensity a j depends on a parameter vector θ. Let X (resp. x ) and θ be the state (resp. the state of the Langevin approximation) and the parameters of the th cell in a population of N cells.

Then X (resp. x ) evolves according to the dynamics determined by a θ j . To model individual variations from population average, we assume that θ , . . . , θ N are independent identically distributed (i.i.d.) outcomes of the random variable θ defined by

θ = θ + δ, (9.3) 
where θ is fixed and δ is a random variable with known distribution F δ . Provided suitable definition of F δ , this model includes the case where some entries of θ are fixed. [START_REF] Megerle | Timing and dynamics of single cell gene expression in the arabinose utilization system[END_REF]). In absence of glucose, global transcriptional regulators enable the expression of arabinose import enzymes, here lumped into a "virtual" enzyme Upt, and metabolization enzyme AraBAD, under the control of promoter P BAD . In the modified strains we refer to, gene araBAD is deleted from the DNA and replaced by the P BAD -controlled GFP (Green Fluorescent Protein) gene on plasmids. When arabinose is present, it forms complexes with AraC molecules, which promote transcription of the above genes, thus increasing the amount of arabinose transporters and fluorescent molecules. More transporters imply faster arabinose uptake and hence higher transporter synthesis rate, in a positive feedback loop. Parts in grey will not be modelled explicitly.

for cell , with = 1, . . . , N. We assume that y (t) = CX (t) + e (t), t∈ T , (9.4)

where the output matrix C, typically selecting one of the system states, is known, and the e (t) are i.i.d. noise samples of appropriate dimension from a Gaussian distribution N (0, R), with R > 0 known. More specific measurement models depend on the details of the experimental setup and are not pursued in this paper. Under the Langevin approximation, we will replace X by the process x from (9.2) and rescale quantities accordingly.

Case study: E.coli arabinose uptake dynamics

We are interested in the network that regulates the uptake of arabinose in Escherichia coli, a well characterized bacterium. Upon exhaustion of primary environmental carbon sources (glucose), E.coli activates adaptation mechanisms triggering the uptake of less favourable carbon sources such as arabinose (see [START_REF] Megerle | Timing and dynamics of single cell gene expression in the arabinose utilization system[END_REF], and references therein). A simplified representation of the system is in Figure9.1. We consider a model inspired by [START_REF] Megerle | Timing and dynamics of single cell gene expression in the arabinose utilization system[END_REF]. The model consists of the n = 5 species ara (arabinose), mUpt (Upt messenger RNA), Upt (Upt protein), mGFP (GFP messenger RNA), GFP (GFP protein), interacting via the m = 12 "lumped" reactions reported in Figure9.2 with the corresponding propensities a(x) = a 1 (x), . . . , a 12 (x) , where x = x 1 , x 2 , x 3 , x 4 , x 5 denotes amounts of ara, mUpt Upt, mGFP and GFP, in the same order. Nominal parameter values θ, mostly derived from [START_REF] Megerle | Timing and dynamics of single cell gene expression in the arabinose utilization system[END_REF], are listed in To get an insight into the accuracy of the CLE approximation of the CME, we analyse numerical simulations of the two processes. To simulate the CLE (9.5) we used a modified version of the Euler-Maruyama method [START_REF] Kloeden | Numerical solution of SDE through computer experiments[END_REF] (with sampling time of 0.1[min]) which shuts down a reaction channel when the amount of any its reactants reaches zero, for preserving non-negativity of the system state [START_REF] Dana | Physically consistent simulation of mesoscale chemical kinetics: The non-negative FIS-α method[END_REF]. To simulate the CME (9.1) we used a customized version of software StochKit [START_REF] Sanft | Stochkit2: software for discrete stochastic simulation of biochemical systems with events[END_REF]. Simulations are started from the state X -= (0, 0, 43, 0, 155) which is (up to integer round-off) the expected state of equilibrium before the arabinose uptake mechanism kicks in. In practice, this value is computed by approximately solving the equation 0 = V a(x -) subject to x -1 1 = 0, with x -= X -/(ΩN A ), with respect to X -∈ N n . The simulated states X(t) and x(t) are recorded at times T = {t k = k • T : k = 0, . . . , 20}, with T = 5[min]. Results from 100 simulated trajectories are reported in Figure 9.4(a). Distributions look similar, but the Langevin approximation appears to be slightly biased. At every time k, the hypothesis of equal distributions was tested by applying a standard two-sample Kolmogorov-Smirnov test first on the simulated states, then on the same data but with their means equalized.

Synthesis Rate aj

Degradation Rate aj ∅ a 1 → ara v1x3 ara a 2 → ∅ γ1x1 ∅ a 3 → mUpt (basal) v 0 2 mUpt a 5 → ∅ γ2x2 ∅ a 4 → mUpt (regulated) v2 x 3 1 K 3 u + x 3 1 mUpt a 6 → mUpt+Upt v3x2 Upt a 7 → ∅ γ3x3 ∅ a 8 → mGFP (basal) v 0 4 mGFP a 10 → ∅ γ4x4 ∅ a 9 → mGFP (regulated) v4 x 3 1 K 3 u + x 3 1 mGFP a 11 → mGFP+GFP v5x4 GFP a 12 → ∅ γ5x5
Results in Figure 9. 4(b) show that, while the hypothesis is often rejected before bias correction, this is no longer the case after mean equalization, except for small molecule numbers (see e.g. mUpt and mGFP around time 10) where the CLE is known to perform worse [START_REF] Gillespie | The chemical langevin equation[END_REF]. We will discuss the implications of this for filtering in the next section.

Gene network state estimation

Consider a cell population model specified as in Section 9.2. Given an initial distribution p(•, 0) at initial time t 0 = 0, the dynamics of X in every individual = 1, . . . , N are described by the propensities a θ j of the reactions ν j , with j = 1, . . . , m, and the individual parameters θ follow (9.3) with assigned distribution F δ . Let measurements (9.4) be available for all individuals. We consider the following real-time state estimation problem in all individuals.

Problem 1. Let Y (t) = {y (t k ) : t k ≤ t}. For t ≥ 0, compute E[X 1 (t), . . . X N (t)|Y 1 (t), . . . , Y N (t)].

Expectation is taken with respect to the process laws and the random deviations of the individual parameters from population average. Since these quantities are assumed to be Being the problem identical for every individual, from now on we drop superscript " " from the notation and look at the generic individual (process) X with parameters θ obeying (9.3).

Given the known difficulty of solving the CME, the problem of computing X [k|k] appears quite challenging and is further complicated by the randomness of parameters θ.

Possible but computationally demanding approaches include Markov Chain Monte Carlo (MCMC) sampling [START_REF] Gillespie | Bayesian inference for the chemical master equation using approximate models[END_REF] and particle filtering [START_REF] Doucet | Sequential Monte Carlo Methods in Practice[END_REF][START_REF] Wilkinson | Stochastic Modelling for Systems Biology[END_REF]. We consider that computationally more effective solutions may be obtained based on the CLE approximation (9.2).

as the lower triangular Cholesky factor of the covariance P . Following [START_REF] Sarkka | On unscented kalman filtering for state estimation of continuous-time nonlinear systems[END_REF], one defines X 0 = µ, X i = µ + ( √ cA) i for i = 1, ..., L and X i = µ -( √ cA) i for i = L + 1, ..., 2L, and corresponding weights W V a(X 1 )

• • • V a(X 2L ) 0 • • • 0 F (X ) ,   HV diag a(X i ) 0   G(X i )
.

Prediction From time t k-1 to t k , the SRUKF prediction equations [START_REF] Sarkka | On unscented kalman filtering for state estimation of continuous-time nonlinear systems[END_REF][START_REF] Singer | Continuous-discrete unscented kalman filtering[END_REF] can be written in terms of sigma vectors as B(t) = √ c 0 A(t)Φ(M (t)) -A(t)Φ(M (t)) ,

M (t) = A -1 (t)[X (t)W F T (X (t))+F T (X (t))W X (t)+ 2L i=0 W (µ)
i G(X i (t))G T (X i (t))]A -T (t), dX i (t)/dt = F (X (t))w m + B i (t), i = 0, ..., 2L, where Φ(• ) is a function defined as:

Φ ij (M ) = M ij ∀i > j, Φ ij (M ) = 1/2M ij ∀i = j,
Φ ij (M ) = 0 otherwise. In practice, the above equations are integrated numerically as follows. Choosing a discretization interval of δt (we set δt = 0.005[min]) and dividing the interval between measurements into J = (t k -t k-1 )/δt subintervals, one computes X i (t + δt) = X i (t) + [F (X (t))w m + B i (t)] δt, i = 0, ..., 2L iteratively from t k-1 to t k . At each iterate, one extracts A(t) from the current X (t) and updates F (X (t)) and B(t) accordingly. This eventually yields new X (t k ) and A(t k ), from which the a priori moments are given by ξ[k|k -1] = X (t k )w m , P [k|k -1] = A(t k )A T (t k ). Data are generated by simulating the "true" CME model. We consider two scenarios.

Measurement update

Scenario 1 We consider simulations always starting from state X -of Section 9.3), and initialize the filters at X -and x -, assuming this state is known. This choice is relevant to experiments where the beginning of arabinose uptake occurs at a known time, e.g. at the delivery of arabinose in a glucose-poor medium. We simulated 100 trajectories X(t) and produced corresponding fluorescence measurements y(t) at times T by corrupting the simulated values of X 5 with zero-mean Gaussian noise with standard deviation σ fixed to 4 • 10 -7 [M], which is approximately 10% of the mean observed value of X 5 /(N A Ω).

On each trajectory, we ran SRUKF and PF from the true initial state and null variance.

Scenario 2

We assume that the system has started the arabinose uptake mechanism earlier than expected. This is relevant to experiments where the start of arabinose uptake is somewhat undetermined, e.g. for bacteria placed in an arabinose-rich medium where the switch to arabinose depends on depletion of environmental glucose. To simulate this we considered the same 100 simulations of the previous dataset, discarding the first two measurement times (thus taking t = 10[min] as the initial time) and extending the simulations to include two additional measurements. For each trajectory, we ran both SRUKF and PF initialized as in the first scenario, in the (wrong) belief that the system is observed starting from an equilibrium state. We interpret these results as follows. While a more advanced PF (e.g a larger number of particles P ) could be considered, at least for our case study, the modelling error introduced by approximating the CME with the CLE has no practical effect on estimation performance. In addition, in our implementation, the SRUKF is much faster than PF (filtering one trajectory takes more than 15min for PF and less than 2min for the SRUKF on a 64bits 3.20GHz 6-core 6Gb-RAM Linux workstation). Although the PF computational burden may be reduced e.g. by the use of tau-leaping [START_REF] Samad | Stochastic modelling of gene regulatory networks[END_REF], these results make CLE-based SRUKF an appealing alternative for real-time applications.

Performance of the SRUKF in presence of extrinsic noise

We now evaluate performance of the SRUKF when some parameters are random. We again consider two scenarios. In both cases, we consider 100 values of the variable parameter sampled from a Gaussian distribution with mean equal to the nominal value and standard deviation equal to 20% of the mean (for consistency, we ensure that all samples are positive). For each of the 100 parameter values, we simulate the system once starting from X -(which, by its definition, does not depend on K u and v 4 ) and record state and noisy measurements at times T , with noise distributed as in the previous section. SRUKF is run on each simulated trajectory initialized with the true statistics of the parameters and null-variance initial state estimate X -/(N A Ω). To assess the performance gain in using the information on parameter variability, we also run a SRUKF using the wrong belief that parameters are all fixed to nominal values, and refer to it as nominal SRUKF (nSRUKF). 

Conclusions

We investigated filtering of single-cell biochemical regulatory networks with intrinsic and extrinsic noise. Simulation results on a relevant case study show that approximation of the reference CME model via CLE is an appealing approach to construct practical realtime state estimators. Moreover, the use of prior information on parameter uncertainty led to improved estimation results, showing the potential of extrinsic noise modelling for state estimation and control applications. Directions of investigation include extensive performance comparisons and applications to real data. Chapter 10

Conclusions and Perspectives

The research work presented in this thesis aimed at applying both classical and less classical methods and tools from Systems and Control Theory to Systems and Synthetic Biology. In particular, we focused on different mathematical formalisms, i.e. qualitative/quantitative as well as deterministic/stochastic, for modelling gene regulatory networks in different experimental and/or biological contexts. Then, to gather predictive information and insights from these models, as well as to study their dynamical properties, we analysed them using bifurcation diagrams, phase planes and computational Boolean tools. Moreover, we addressed the problems of designing qualitative control strategies to tune bacterial growth rate, identifying model parameters and filtering of single-cell biochemical regulatory networks with intrinsic and extrinsic noise.

Qualitative models

In the first part of this thesis we mainly focused on qualitative models. In fact, qualitative formalisms turn out to be very useful when little is known about the underlying molecular processes, model parameter values or when the aim is that of speeding up the computation. Notably, we addressed the problem of developing new qualitative formalisms to model gene expression dependent on dilution due to growth rate.

The two novel modelling approaches presented in this thesis can be considered as an extension of piecewise linear (PL) systems. In fact, we kept the use of step functions to model the interactions between the elements from PL systems and we added a growth rate expression to model the dilution effect. Notably, in Chapters 4-5 we considered the growth rate to be proportional to the concentration of a component of the gene expression machinery (as RNAP or ribosome), and this choice leaded to a piecewise quadratic (PQ) system. Whereas, in Chapter 6, we model the growth rate as the weighted minimum of two limiting gene products (RNAP and Ribosome) responsible for transcription and translation, and so for bacterial growth too. In this case, the modelling formalism turn out to be a switched piecewise quadratic (SPQ) system. The dynamics of such systems were studied using Filippov's theory and criteria assessing the equilibria stability have been formulated.

Moreover, always in the vein of qualitative models, in Chapter 7 we studied several configurations of a model made up of two interconnected Boolean modules. Notably, one module describes a Boolean version of the model for nutritional stress response in [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF],

and the other one a basic cellular growth module. The aim was that of testing several dynamic model variants for bacterial growth rate that consider limitation by availability of the proteins needed for cell division (RNA polymerase for transcription, ribosomes for translation, or other "bulk" proteins), and analysing (qualitative) feasibility of the wiring network, as well as the logical coherence of each model variant. The main advantage in using the Boolean framework, and in particular the use of interconnection of two Boolean modules, was that of computing the attractors of a large network at a much lower cost than with classical graph theoretical tools. From a biological point of view, our qualitative analysis showed that a limitation of growth rate by the ribosomes is needed in order to correctly reproduce the asymptotic modes, as well as transient dynamics, of the original model [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF].

Qualitative control strategies

With the advent of synthetic biology a number of new problems, that can be stud- an higher growth rate on maltose then on glucose. We studied these models by means of bifurcation diagrams and phase planes analysis and we showed that a mathematical control of the bacterial growth rate can be achieved. These qualitative control strategies represent an attempt to help guide biologists in the construction of synthetic gene networks, which in turn should force bacteria to modify their growth rate in a desired fashion.

Quantitative models

This thesis also dealt with the construction of more quantitative (detailed) models of GRN. In Chapter 8, we used the mathematical formalism developed in [START_REF] Kremling | Comment on mathematical models which describe transcription and calculate the relationship between mrna and protein expression ratio[END_REF] to model in more detail the transcription and translation machinery of the bacterium E. coli. Notably, the model consists of 5 non-linear differential equations coupled with 2 algebraic equations. This algebraic-differential equation system model the dynamics of the transcriptional and translational products of three gene classes, i.e. rnn genes, rpoBC genes and the proxy bulk genes, which represent the entire E. coli genome. Where rnn genes account for ribosome synthesis, rpoBC genes for that of RNAP, and bulk genes determine the production of all cellular proteins. In addition, by means of two Hill functions, we also took into account the growth rate dependent regulations which affect the sRNA and mRNA synthesis. More precisely, this growth regulation determines how resources are allocated during the transcription process. Quantitative models, once their parameter values have been identified, can be a useful tool to perform a large numbers of in silico experiments at little cost. In fact, in silico experiments can explore experimental conditions too costly or too long/complicated to carry out in the lab. Moreover, they can help scientists develop insights into the roles of different regulatory interactions, as well as discover inconsistencies in modelling assumptions when a GRN model is not able to reproduce certain experimental data.

Parameter estimation

In this thesis we also addressed the important problem of estimating the parameter values of a biological model. More precisely, in Chapter 4 we pursued a practical identifiability analysis, based on numerical simulations, of the derived expression for the growth rate as function of the input. In this study we showed that some issues may arise with noisy measurements. In fact, in this particular case, our analysis suggested that the original growth rates' measurements should be adimensionalized and unknown parameters grouped into a new set of "lumped" parameters in order to obtain local Chapter 10. Conclusions and Perspectives 198 identifiability. Moreover, we found that only the ratio between two estimated parameters can be recovered with sufficient precision in the case when only limited and noisy data are available. This identifiability analysis is a preliminary study which will be most useful to help dealing with and solving parameter estimation problems with real data sets.

Furthermore, in Chapter 8 we presented an algebraic-differential equation model of the gene expression machinery of E. coli, whose parameter values have been identified. Notably, this GEM dynamical model, which consists of five variables and two algebraic equations, has been calibrated using a sort of data integration. In fact, some parameter values were taken from literature, others specifically calculated using genetic information about gene classes and biological formulas, and finally, the remaining ones, identified using experimental data of E. coli macromolecular composition at different steady state growth rate values from [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF]. We showed that the calibrated GEM model was able to consistently reproduce all the experimental data, since all model predictions were within the measurement confidence intervals (see fitting results in Figure 8.3).

Stochastic models and state estimation

The use of differential equations, or more generally deterministic models, for describing molecular processes makes certain assumptions that are not always valid. One of the assumption is that variables can assume continuous values, but this is only a simplification because molecules are discrete entities. Of course, while molecule numbers are sufficiently large their dynamics can be modeled by ODEs, but when they are few, the discreteness should be taken into account. Another important fact is that small molecule numbers give rise to random fluctuations that can not be captured by ODEs. Hence, when dealing with population based models (as for example the model in Chapter 8) differential equations can be successfully employed, but when one addresses the problem of modelling GRN at the single cell level, stochastic formalisms might be more appropriate to model random molecular reaction events, due to the small molecular counts present in the single cell volume. To this aim, the Chemical Master Equation (CME) [START_REF] Samad | Stochastic modelling of gene regulatory networks[END_REF],

describing chemical kinetics in terms of probabilistic reaction events among the network species, turns out to be a standard tool for the accurate description of this type of randomness, also called intrinsic noise. However, the stochasticity in reaction events may not be the only source of noise, other noise may be due to the variability of individual features over an isogenic population (abundance of aspecific transcription/translation factors, local environmental conditions, etc.) [START_REF] Paulsson | Models of stochastic gene expression[END_REF], usually referred as extrinsic noise.

Chapter 10. Conclusions and Perspectives
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In Chapter 9, we used CME and its stochastic differential equation approximation, i.e. Chemical Langevin Equation (CLE), to model intrinsic noise in the GRN context.

Whereas, to account for extrinsic noise, similar to Mixed-Effects (ME) modelling [START_REF] Davidian | Nonlinear models for repeated measurement data: An overview and update[END_REF], we described the parameters of the network dynamics as random variables taking different values in different individuals (see e.g. [START_REF] Hasenauer | Identification of models of heterogeneous cell populations from population snapshot data[END_REF]). Moreover, we investigated the problem of filtering biochemical regulatory network system with intrinsic and extrinsic noise,

given single-cell fluorescent data. To this aim we consider two filters: a particle filter (PF) built on a CME and a Square-Root Unscented Kalman Filter (SRUKF) built on a CLE. Simulation results on a relevant case study of the arabinose uptake dynamics in E.coli showed that approximation of the reference CME model via CLE is an appealing approach to construct practical real-time state estimators. Moreover, the use of prior information on parameter uncertainty led to improved estimation results, showing the potential of extrinsic noise modelling for state estimation and control applications.

Perspectives

Some prospective applications as well as research directions are discussed below. 

Chapter 1 Introduction

 1 During the last century research in molecular and cell biology has deeply studied and investigated how cellular components work and interact among each other. For examples, biologist have examined the biochemistry of different molecules, the structure of DNA, RNA and proteins, the principles governing DNA replication, as well as transcription and translation.

Figure 2 . 1 :

 21 Figure 2.1: Schematic of a prokaryote cell. In a prokaryotic cell, all their intracellular components (proteins, DNA and metabolites) are located together in the same volume enclosed by the cell membrane. Many prokaryotes (bacteria) are able to move in a fluid-like environment using flagella, which are also used as sensors to detect concentration gradients and other signals. (Picture taken from [1]).

Figure 2 . 2 :

 22 Figure 2.2: Eukaryotic (animal) cell. The nucleus is the most prominent organelle in the cell and contains chromosomes (the storage sites of DNA). Mitochondria produce chemical energy (ATP) for the cell. Centriolis are involved in nuclear division during cell division. Ribosomes, the endoplasmatic reticulum and the Golgi apparatus work together in the synthesis of proteins. (Picture taken from [2]).
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 23 Figure 2.3: Escherichia coli: Scanning electron micrograph of Escherichia coli, grown in culture and adhered to a cover slip. (Picture taken from [3]).

Figure 2 . 4 :

 24 Figure 2.4: Diagram of the central dogma, DNA to RNA to protein, illustrating the genetic code. (Picture taken from [4]).

ure 2 .

 2 5). The sugar-phosphate backbones of the two DNA strands form a uniform helix, with strands placed in opposite directions. The strands are held together by hydrogen bonds between opposing bases according to the base pair rule: A is always paired with T and G is always paired with C. Within cells, DNA is organized into long structures called chromosomes. During cell cycle these chromosomes are duplicated in the process of DNA replication, providing each cell its own complete set of chromosomes.
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 25 Figure 2.5: Chemical structure of DNA, with coloured label identifying the four bases as well as the phosphate and deoxyribose components of the backbone. (Picture taken from [5]).

Figure 2 . 6 :

 26 Figure 2.6:The process of transcription is carried out by RNA polymerase (RNAP), which uses DNA (black) as a template and produces RNA (blue). (Picture taken from[START_REF] Carta | A coarse-grained dynamical model of E. coli gene expression machinery at varying growth rates[END_REF]).
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 27 Figure 2.7: The process of translation is carried out by ribosome, which uses mRNA and tRNAs-charged with amino acids-to produce a protein. (Picture taken from [7])
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 28 Figure 2.8: Heat map generated from DNA microarray data reflecting gene expression values in several conditions. (Picture taken form [8])
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 29 Figure 2.9: Western blot using a anti-lipoic acid primary antibody and an IR-dye labelled secondary antibody in Leishmania major extracts. (Picture taken from [9])

Figure 2 .

 2 Figure 2.10: A diagram of a how a reporter gene is used to study a regulatory sequence. (Picture taken from [10])

Figure 3 . 2 :

 32 Figure 3.2: Asymptotic transition graph of the bistable-switch. There are five SCCs (states inside the red circles) and two attractors: (1, 1, 0, 0) and (0, 0, 1, 1), denoting either gene and protein 1 are ON, or gene and protein 2 are ON, respectively.

  More specifically, when ODEs are used to model gene expression, the cellular concentration of proteins, mRNAs and other molecules are represented by non-negative continuous time variables. Notably, to model the typical transcription-translation process, the ODEs formalism makes use of two equations for any given gene i: one (3.2) to model the dynamics of the transcribed mRNA concentration and the other (3.3) for the concentration of the corresponding translated protein. Hence, given a GRN of n genes,

  3) for i = 1, ..., N . Both equations (3.2), (3.3) are made up of two terms: one positive and one negative. In (3.2), the positive term

Figure 3 . 3 :

 33 Figure 3.3: Phase planes for the system (3.10) for two sets of parameter values: (a) bistability, or (b) single steady. Stable steady states are marked by a black circle, and the unstable steady state by an open rectangle In each region delimited by the nullclines ( ṗ1 = 0 in red, ṗ2 = 0 in blue), the sign of the vector field of each coordinate is unchanged. One solution, i.e. x(t) = [p 1 (t), p 2 (t)], is shown in black. Picture taken from [22] (Chapter 2) and labels modified to match our notations.

  1)-dimensional hyper-planes defined by these thresholds partition Ω into hyper-rectangular regions we call domains. Specifically, a domain D ⊂ Ω is defined Chapter 3. Modelling Genetic Regulatory Network Systems 29 to be a set D = D 1 × ... × D n , where D i is one of the following:

Figure 3 . 4 :

 34 Figure 3.4: Example of behaviour of a bidimensional PL system at a point x in a switching domain S, when the differential equations are generalized into differential inclusions by the method of Filippov. Here trajectories cross S instantaneously, and solutions are normally continued.

Figure 3 . 5 :

 35 Figure 3.5: Example of behaviour of a bidimensional PL system at a point x in a switching domain S, when the differential equations are generalized into differential inclusions by the method of Filippov. Here a solution can be constructed in such a way that trajectories evolve on S (sliding motion).

Figure 3 . 6 :

 36 Figure 3.6: Phase plane for the piecewise linear system(3.22). The threshold values θ 1 , θ 2 divide the plane into four rectangular regions, where the vector field is constant. There are two stable steady states (φ 1 ,φ 2 ) and an unstable Filippov equilibrium (φ 3 ). One solution x(t) = [p 1 (t), p 2 (t)] is shown in black, which may be compared to that shown in Figure3.3 (a). Picture taken from[START_REF] Bernot | Modeling and analysis of gene regulatory networks[END_REF] (Chapter 2) and labels modified to match our notations.

Figure 3 . 7 :

 37 Figure 3.7: Plot showing 20 realizations of the p 1 and p 2 variables of the CME model of the bistable-switch system using the Gillespie's algorithm (SSA). Simulations are performed using parameter values from Table9.3 and initial condition x(0) = [m 1 (0), p 1 (0), m 2 (0), p 2 (0)] =[START_REF] Carta | A simple model to control growth rate of synthetic E.coli during the exponential phase: Model analysis and parameter estimation[END_REF] 10,[START_REF] Carta | A simple model to control growth rate of synthetic E.coli during the exponential phase: Model analysis and parameter estimation[END_REF][START_REF] Bremer | Free RNA polymerase and modeling global transcription in Escherichia coli[END_REF]. As we can notice, for this particular choice of parameter values and initial condition, protein 1 (p 1 ) reaches its ON state (higher values) with higher frequency than protein 2 (p 2 ), which reaches its OFF state (lower values). However, due to the stochastic nature of the model, also the opposite behaviour can happen: p 1 is OFF and p 2 is ON (see thicker blue and purple lines).

Chapter 4 A

 4 Simple Model to Control Growth Rate of Synthetic E. coli during the Exponential Phase: Model Analysis and Parameter

  2 we describe the open-loop model, providing some biological motivations for the terms forming the differential equations. Next, in Section 5.5 we qualitatively analyse the open-loop model by means of phaseplane and bifurcation diagram, showing how the steady states of the CGEM can be controlled by the external input (inducer). In Section 4.4 we derive a mathematical expression of the growth rate during the exponential phase as a function of the amount of the inducer. Finally, in Section 4.5 we present an in silico practical identifiability analysis of such expression.

Definition 4 . 1 .

 41 Given a regular domain D, the point Φ(D) = (x c , xp ) T (defined by (6.11)) is called the focal point for the flow in D.

Chapter 4 . 52 0Figure 4 . 2 :

 45242 Figure 4.2: Phase plane of model (4.1) during growth in glucose. Parameter values used: θ 1 c = 0.6, θ 1 p = 0.8, θ G p = 2, θ 2 p = 3.5, k 0 c = 7, k 1 c = 10, k 0 p = 40, k 1 p = 50, γ c = 1,

2 .

 2 Let D be a regular domain and Φ(D) be the focal point of D. If Φ(D) ∈ D, then Φ(D) is a locally stable point of model (4.1).

Fig. 4 .

 4 Fig. 4.2 depicts the phase-plane of model (4.1). It can be seen that Φ G 0 , Φ G 1 , Φ G 2 , (for the parameter values used) are locally stable steady states since they are within their

Fig. 4

 4 .3 the x p -bifurcation diagram when parameter ν 1 varies from 0 to 1 while the other parameter values are the same as those used in Fig. 4.2. We notice that Fig. 4.3 is divided into four parts in which x p stability changes significantly. In part I, for those values of ν 1 such that x1

then model ( 4 . 1 )

 41 converges to the high focal point Φ G 2 (region IV in Fig. 4.3).

(4. 11 )

 11 where v denotes inducerconcentration and α accounts for the basal transcriptional activity. Controlled gene expression follows Hill-type dosage-response curve with promoteractivator affinity K v and cooperative (Hill) coefficient n. During exponential phase-the period characterized by cell doubling-the bacterial culture shows a constant growth Chapter 4. Modelling Genetic Regulatory Network Systems 55

  ance and σµ(v) is the standard deviation of the observation errors. Four different types of data sets were considered to account for practical identifiability: data set I, with v = [0, 5, 10, 15, ..., 295, 300, 1000] and σ = 10 -2 ; data set II, with v = [0, 10, 20, 30, ..., 290, 300, 1000] and σ = 10 -2 ; data set III, with v = [0, 5, 10, 15, ..., 295, 300, 1000] and σ = 5 • 10 -2 ; data set IV, with v = [0, 10, 20, 30, ..., 290, 300, 1000] and σ = 5 • 10 -2 ; Notably, data sets I, II, III and IV, have been generated with different number of points (N exp ) and different intensities of noise (σ) to study the practical identifiability of the parameters in four realistic experimental conditions. In particular, data sets I and III have the same number of data points, i.e. N exp = 62, but different noise, σ = 10 -2 for data set I and σ = 5 • 10 -2 for data set III. Data set II and IV have less number of points, i.e. N exp = 32, while the level of noise considered is σ = 10 -2 for data set II and σ = 5 • 10 -2 for data set VI.

(4. 20 )

 20 where p = [p 1 , p 2 , p 3 , p 4 , p 5 , p 6 ] and, considering the true parameters values in Tab 4.5.2 we obtain the true vector of parameters p * : p * = [0.3033, 9, 30, 2, 1.6683, 50] . (4.21)
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 44 Figure 4.4: Fitting the growth rate function (4.20) using one realization of the nondimensional data set II. The blue points are the normalized artificial data generated according to specification of data set II. The red curve is the function (4.20) when p is used.

Fig 4 . 4

 44 shows the fitting of model (4.20) to one realization of data set IV.

Chapter 4 .

 4 Modelling Genetic Regulatory Network Systems 63 model is based on the piecewise linear formalism but a new, non-linear, term was added to account for the dilution effect during growth. The qualitative dynamics of the model can thus be studied, and the bifurcation diagram with respect to the input is obtained.

Chapter 5 Controlling

 5 bacterial growth: in silico feedback law design to re-wire the genetic network Here we present an unpublished work, in which we continue studying and developing the synthetic gene circuit model introduced in Chapter 4, with the aim of proposing some qualitative control strategies to tune and modify growth rate in Escherichia coli.

Definition 5 . 1 .

 51 Given a regulatory domain D ∈ D r , the point Φ(D) = (x 1 , ..., xn ) T ∈ Ω (defined by (5.6)) is called the focal point for the flow in D. Different regulatory domains will usually have different focal points. In general, all solutions in a regulatory domain D flow towards the focal point Φ(D) until they either reach it or leave the domain D. What happens when a solution leaves a regulatory domain D and enters a switching domain in the boundary of D? Since the step functions

  the set of all regulatory domains with D in their boundary, and co(X) is the closed convex hull of X. For switching domains, H(x) is typically multi-valued so solutions of the differential inclusion are defined as follows.Definition 5.2. A solution of (5.7) on [0, T ] in the sense of Filippov is an absolutely continuous function (w.r.t. t) ξ t (x 0 ) such that ξ 0 (x 0 ) = x 0 and ξt ∈ H(ξ t ), for almost all t ∈ [0, T ]. Now, we shall explain how to construct the set H(x) at discontinuity points of f .

Theorem 5 . 5 .

 55 Let D ∈ D r and Φ(D) be the focal point of D. If Φ(D) ∈ D, then Φ(D)

  x c , x p ∈ R ≥0 be the CRP and RNAP concentrations respectively. Thus, the open-loop model graphically depicted in Figure 5.1, can be translated into a PWNL system as (5.3) considering n = 2, x 1 = x c and
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 57952 Figure 5.2: Phase plane of system (5.14) during growth in glucose. Parameter values used:θ 1 c = 0.6, θ 1 p = 0.8, θ G p = 2, θ 2 p = 3.5, k 0 c = 7, k 1 c = 10, k 0 p = 8, k 1 p = 26, γ c = 1,

Figure 5 . 3 :Chapter 5 .

 535 Figure 5.3: Bifurcation diagram for system (5.14) during growth in glucose, showing the non trivial locally stable steady states of x p as a function of the control input v 1 . Other parameter values used are the same of those in Figure 5.2. See Proposition 5.7 for more details.

20 )(

 20 compare to(5.19)).

Figure 5 .

 5 Figure 5.4 depicts the phase-plane of system (5.14) during maltose growth with the location of regular domains D M j . It turns out that there are new four (distinct focal points) possible steady states. The focal points' coordinates and their expressions are presented below:
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 58254 Figure 5.4: Phase plane of system (5.14) during growth in maltose. Parameter values used:θ 1 c = 0.6, θ 2 c = 2.7, θ 1 p = 0.8, θ 2 p = 3.5, θ M p = 10, k 0 c = 5, k 1 c = 10, k 0 p = 8, k 1 p = 26, γ c = 1, γ p = 1, µ M = 1 e v 1 = 1.The black curves are the x c -nullclines:
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 55 Figure 5.5: Bifurcation diagram for system (5.14) during growth in maltose, showing the non trivial locally stable steady states of x p as a function of the control input v 1 . Other parameter values used are the same of those in Figure 5.4. See Proposition 5.8 for more details.

  then system (5.14) converges to the trivial focal point Φ M 0 (region I in Figure 5.5); if x1 p,M (ν 1 ) > θ 1 p ∧ x2 p,M (ν 1 ) < θ 2 p ∧ x p (t 0 ) > θ 1 p , then system (5.14) converges to the low focal point Φ M 1 (region II in Figure 5.5); if θ 1 p < x1 p,M (ν 1 ) < θ 2 p ∧ x2 p,M (ν 1 ) > θ 2 p , then system (5.14) is non-trivially bistable (region III in Figure 5.5), and notably:

  then system (5.14) converges to the high focal point Φ M 2 (region IVb in Figure 5.5).

Chapter 5 .Figure 5 . 6 :

 556 Figure 5.6: Closed loop-model of gene expression machinery in mutant E. coli. The the term ν 2 indicates the feedback control law implemented by re-wiring the open loop model (Figure 5.1), that is putting RNAP transcription under positive regulation of cAMP-CRP.

) then setting ν 2 = 1 = (ν min 1 , ν max 1 )

 2111 g(x c , x p ), there exists an interval I such that the inverse diauxie condition in (5.22) is satisfied by (5.21), for all ν 1 ∈ I 1 . Briefly, function (5.23) asserts that the regulation of RNAP transcription is carried out by cAMP-CRP, which positively regulates rpoBC main synthesis rate. The mathematical formulation of such feedback control function arises from the modelling and analysis of the open-loop system (Section 5.4, 5.5). Condition (5.24) gives a range for the cAMP-CRP affinity, i.e. θ * c , of the synthetic rpoBC promoter. Condition (5.25) indicates how the basal (k 0 p ) and the main (k 1 p ) synthesis rates of RNAP have to be related with µ G and µ M . Finally, condition (5.26) establishes which is the minimum RNAP initial value that guarantees the inverse diauxie.

Chapter 5 . 87 0Figure 5 . 7 :

 58757 Figure 5.7: Phase plane of system (5.27) during growth in glucose. Parameter values used:θ 1 c = 0.6, θ 1 p = 0.8, θ G p = 2, θ 2 p = 3.5, k 0 c = 5, k 1 c = 10, k 0 p = 8, k 1 p = 26, γ c = 1,
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 58858 Figure 5.8: Phase plane of system (5.21) during growth in maltose. Parameter values used: θ 1 c = 0.6, θ * c = 1.2, θ 1 p = 0.8, θ 2 p = 3.5, θ M p = 10, k 0 c = 5, k 1 c = 10, k 0 p = 8, k 1 p = 26, γ c = 1, γ p = 1, µ M = 1 and v 1 = 1. The black curves are the x c -nullclines:

Figure 5 . 9 :

 59 Figure 5.9: Bifurcation diagram for system (5.21) during growth in maltose, showing the non trivial locally stable steady states of x p as a function of the control input v 1 . Other parameter values used are the same of those in Figure 5.8. See Proposition 5.11 for more details.

Figure 5 .

 5 Figure 5.8 depicts the phase plane of system (5.21) when maltose is the substrate.

Figure 5 . 10 : 1 , ν max 1 )

 51011 Figure 5.10: Bifurcation diagram of closed-loop bacterial growth rate, showing µ stable steady states as a function of v 1 . System's parameters are the same of those in Figure 5.7 and Figure 5.8. (ν min 1 , ν max 1 ) is the range in which the closed loop system (5.21) with (5.23) exhibits the inverse diauxie phenomenon.

1 < ν 1 < ν max 1 .Chapter 5 .Figure 5 . 11 :

 115511 Figure 5.11: Growth rate as function of time (5.15) for the open-loop system (5.14) and the closed-loop system (5.21) when cells are grown in glucose and in maltose. ν 1 = 4 satisfies ν min 1 < ν 1 < ν max 1 as in Theorem 5.9, x p (t 0 ) = 1 satisfies condition (5.26). The other parameter values used are the same of those in Figures 5.2, 5.4, 5.7, 5.8.

A

  new qualitative formalism to model gene expression and growth rate in bacteria has been proposed. Within this new modelling framework, named piecewise non linear (PWNL) systems, we presented a bi-dimensional open loop model of E. coli gene expression in which the synthetic promoter encoding for RNAP is controlled externally by an input (IPTG). Since E. coli growth rate is related to the type of carbon source as well as the amount of RNAP, it was shown out that the bacterial exponential growth rate can be controlled-by means of appropriate values of the input (IPTG)-towards a low or a high level. Then, starting from the analysis of the open-loop system in the cases that cells are grown in glucose and in maltose, we developed a closed-loop system, obtained by rewiring the open-loop's gene interactions, which is able to mathematically show the inverse diauxie, namely reaching an higher growth rate on maltose then on glucose.

  models of biological networks: application to control of bacterial growth The content of this chapter has been submitted to the AUTOMATICA journal and it consists of an extended version of a previously paper presented at the Nolcos 2013

  study the stability of such switched piecewise quadratic (SPQ) system starting from the stability analysis of the (PQ) modes. Then, we propose and analyse a bidimensional SPQ open-loop model-describing the bacterial gene expression machinery-in which the growth rate of cells can be controlled by an external input which tunes the synthesis of one of the variables. The stability of the SPQ open-loop model is thus studied by means of bifurcation diagram with respect to the input and the phase plane of a relevant scenario-showing bi-mode bistability-is presented.

Figure 6 . 1 :

 61 Figure 6.1: Examples of vector-field in a 2D regular domain for the PL system (a) and PQ system (b). In both cases, the focal point (red circle) is inside the domain. The green lines represent the nullclines of the dynamical system. We note how the PL and PQ systems differ in nullclines shape and vector field orientation.

Definition 6 . 5 .Chapter 6 .

 656 Given a regulatory domain D ∈ D r , the point Φ(D) = (x 1 , ..., xn ) T ∈ Ω (defined by (6.11)) is called the focal point for the flow in D. Switched piecewise quadratic models of biological networks 101 The focal points are equilibrium points of the PQ system (6.6) provided that they belong to their respective regular domain, i.e. Φ(D) ∈ D. If this is the case, the focal points are referred to as regular equilibria. Different regulatory domains will usually have different focal points. In general, all solutions in a regulatory domain D flow towards the focal point Φ(D) until they either reach it or leave the domain D. What happens when a solution leaves a regulatory domain D and enters a threshold domain in the boundary of D? Since the step functions

Assumption 3 .

 3 Assume that: Ψ m ∩ S I,II = {} (∀m = I, II), Λ m ∩ S I,II = {} (∀m = I, II).

Figure 6 . 3 :

 63 Figure 6.3: Growth rate bifurcation diagram as function of the control input u.In circles are plotted growth rate values when mode-I is active while in diamonds those when mode-II is active. Notably, green circles denote μ = µ p ϕ(0, µ p , γ p ), green diamonds denote μ = µ r ϕ(0, µ r , γ r ), purple circles denote μ = µ p ϕ(uk 0 p , µ p , γ p ), orange circles denote μ = µ p ϕ(u[k 0 p + k 1 p ], µ p , γ p ), purple diamonds denote μ = µ r ϕ(k 1 r , µ r , γ r ), orange diamonds denote μ = µ r ϕ(k 1 r + k 2 r , µ r , γ r ). Parameter values used:θ 1 r = 1.1, θ 1 p = 1.1, θ 2 p = 2.1, θ 2 r = 2.1, k 1 r = 8, k 2 r = 5, k 0 p = 10, k 1 p = 10, γ r = 1, γ p = 1, µ r = 0.8 end µ p = 0.5.

Figure 6 . 4 :

 64 Figure 6.4: Phase planes of the SPQ system (6.24) of scenario-d depicted in Figure 6.3 (bi-mode bistable). For each regular domain are drawn the focal points of I-mode (circles) and II-mode (diamonds). The color of the focal points is the same of the arrows of the domain whence they are originated. The red line represents the switching surface. The equilibria of the two modes are drawn in larger size. Notably, the stable points of the SPQ system are (0, 0), (η(x p , k 1 r , µ p , γ r ), ϕ(uk 0 p , µ p , γ p )), (ϕ(k 1 r + k 2 r , µ r , γ r ), η(x r , u[k 0 p + k 1 p ], µ r , γ p )).

Finally, a

  minimal SPQ model consisting of two variables (RNA Polymerase and Ribosomes) and an input was analysed and used to describe one possible mechanism to control the growth rate of E. coli cells during exponential phase. The qualitative dynamics of the model can thus be studied, and the growth rate bifurcation diagram with respect to the input is obtained. Notably, the growth rate bifurcation diagram has shown out that the bacterial exponential growth rate can be controlled-by means of appropriate values of the input-towards different levels which correspond to different equilibria of the SPQ system. Notably, we point out the interesting bi-mode bistability scenario where both PQ modes contributes to the equilibria of the SPQ system.

1 = 2 = 1 = 2 =

 1212 001 ⇔ u = 2, . . . , 111 ⇔ u = 8, etc. Example I. Consider the following bi-dimensional systems A and B, with n A = n B = 2 and p A = p B = 1: a + u and (a 1 and not a 2 ), a + [u and (not a 1 or a 2 )] or [not u and a 1 ], h A (a) = a 2 , [v and not b 2 )] or [not v and (b 1 xor b 2 )], b + [v and b 1 and b 2 ] or [not v and (b 1 or b 2 )], h B (b) = b 2 , whose asynchronous transition graphs G A,u and G B,v are shown in Fig. 7.1, for convenience. Note that the attractors in all graphs are singletons except for B 2 2,2 = {01, 11}. However, since the two states have the same output (h B (01) = h B (11) = 1), in this example the semi-attractors are in fact the actual attractors.

Figure 7 . 1 :

 71 Figure 7.1: Example I: the asynchronous transition graphs that define the dynamics of the two systems (7.4).

Figure 7 . 2 :

 72 Figure 7.2: Example I: the asymptotic graph of the interconnection of the two systems (7.4). The cross-products inside shaded squares belong to an attractor. The cross-product inside a white circle represents a transient state that can be excluded from the computation.

  is an attractor of G. Proof: We will use the notation (a, b) G (a , b ) to denote a path connecting the two elements in the transition graph G and (a, b) → G (a, b ) to denote a one-step transition.

  ) hold, then π(R) is indeed a terminal SCC.To show[START_REF] Chaves | Attractor computation using interconnected Boolean networks: testing growth rate models in E.coli[END_REF], let (a, b) and (a , b ) be any two elements of π(R).Then (a, b) G (a, b ), since π B (R) is an attractor of G B,h A (a) (v = h A (a) ∈ A-output) (a, b ) G (a , b ),since a, a belong to the same attractor A j α of G A,α . Chapter 7. Attractor computation using interconnected Boolean networks 123 To show (2), observe that there are two forms of successors: either (a, b) → G (a , b) or (a, b) → G (a, b ). We want to prove that both (a , b) and (a, b ) are in π(R). In the first case, since a, a belong to the same attractor A j α , it is immediate to see that (a , b) ∈ π(R). In the second case, since b ∈ π B (R) and π B (R) is an attractor of G B,h A (a) , by definition of π B (R) there some exists a such that (a , b ) ∈ π(R). Recall that the B-output is a singleton so h B (b ) = α. This implies (a, b ) G (a , b ) G (a, b ), since a, a belong to the same attractor A j α of G A,α . Therefore, (a, b ) ∈ π(R) as wanted. Remark. The generalization of points (ii) and (iii) of Proposition 7.2 to multiple Aoutputs and B-outputs is not clear, due to Example I where the spurious attractor Q 2 satisfies A-output=B-output={1,2}. Other examples exist where an attractor of G as of the same form as Q 2 is indeed and attractor of G (see Example 2 in [45]).

Figure 7 . 3 :

 73 Figure 7.3: Example II: the asynchronous transition graphs of systems A and B, for each fixed input.

Figure 7 . 4 :

 74 Figure 7.4: Example II: the asymptotic graph of the interconnection of systems A and B defined in Fig. 7.3. States inside light shaded squares belong to some attractor; there are two attractors in this graph. States inside white circles represent known transient state, which can be discarded from the computation. States inside light shaded circles represent all other states.

Figure 7 . 5 :

 75 Figure 7.5: The interconnection of the fis global regulatory module (left rectangle) and a basic cellular growth model (right rectangle). Each module has three inputs and outputs: u= (u 1 , u 2 , u 3 ), v = (v 1 , v 2 , v 3). The dashed lines represent the interconnection: i.e., the output of one system becomes the input of the other. Bacterial growth rate is internally computed as a function of the external nutrient sources (Glu), ribosomes (here represented by rrn i ), RNA polymerase (pol i ) or "bulk" proteins (which will be basically represented by crp). Growth rate is first translated into two qualitative levels, W 1 and W 2 , which signal downstream. The region under hatching represents the new variables and interactions added to the original model in[START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF]. Several different forms for f g will be tested (see text).

Figure 7 . 6 :

 76 Figure 7.6: The exponential growth phase attractor (model f rp g , case IV). Since the B j α4 components are all equal, this attractor can be reduced to (either) one of the horizontal rows, with three components only (see text for more details).

1 = pol 1 or rrn 2 ; rrn + 2 = pol 2 and rrn 1 and v 3 ; pol + 1 = 2 =

 1212 (sign(µ) and rrn 1 and pol 1 ) or pol 2 ; pol + sign(µ) and rrn 2 and pol 2 ;

8. 2 EFigure 8 . 1 :

 281 Figure 8.1: The coarse-grained model of E. coli GEM.

Figure

  Figure 8.1.

Figure 8 . 1 ,

 81 Figure 8.1, starting from ribosomes and ending in the mRNA species (mβ -β , mRNA), are indicating the positive regulation effect carried out by ribosomes in the translation process.

  mRNA, and elongates the corresponding protein G with amino acids AA (encoded by nucleotides in mRNA) until G has reached its length M = L/3. As before, we do not model neither amino acid formation nor the charging and uncharging of AA on transfer-RNA. Moreover, protein G is subject to degradation γ G and dilution due to cell growth Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 153 rate µ.

  37d) Notably, (8.37a) represents the dynamics of mRNA concentration x, produced during the transcription of gene g; (8.37b) models the dynamics of protein concentration X, produced during the translation of the mRNA of gene g; (8.37c) denotes the concentration of RNAP engaged in the transcription of gene g; (8.37d) counts for the total concentration of ribosomes engaged in the translation of both nascent and completed mRNA of gene g.It is worth saying that equations (8.37) describe the transcription-translation case of a constitutive gene g, i.e. a gene which is not specifically regulated, neither at the transcriptional level by transcription factors and/or external inducers, nor at the translational level. One possible way to extend model (8.37), to account for these specific regulations of the gene expression, would be that of considering two generic functions F 1 (•) and F 2 (•) describing all the specific regulations at the transcriptional and at the translational level, respectively. Moreover, also the growth rate µ might be modeled as a function µ(•) of the system variables. With all these considerations above, model (8.37) Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 157 can be generalized as follows:

Chapter 8 .

 8 A coarse-grained dynamical model of E. coli gene expression machinery 164 worth noting that L b = 1000 N u and L B = 333 aa represent average E. coli mRNA and protein length respectively.

Figure 9 . 2 :

 92 Figure 9.2: Reactions of the stochastic model of the system of Figure9.1 and corresponding propensities. An arrow from (to) symbol ∅ means synthesis (degradation, including dilution effects due to cell growth).

Figure9. 3 .

 3 Figure9.[START_REF] Carta | A class of switched piecewise quadratic systems for coupling gene expression with growth rate in bacteria[END_REF]. In this model, the rate of transcription of the Upt and GFP genes (resp. a 4 and a 9 ) is described as a switch-like (Hill) function of the internal arabinose abundance, with a threshold parameter that depends on the concentration of unmodelled regulators (notably AraC, see Figure9.1 and[START_REF] Megerle | Timing and dynamics of single cell gene expression in the arabinose utilization system[END_REF]). The observed variable is a fluorescence level proportional to the amount of GFP, i.e. C = [0 0 0 0 K], for simplicity we take K = 1.The CME and CLE models follow from replacing the stoichiometries ν 1 , . . . , ν 12 and the propensities of the model of Figure9.2 into (9.1) and (9.2). In particular, the CLE can be written in the matrix form

1 v2 4 . 95 # 1 Ku 1 v4 4 . 95 # 1 v5 5 min -1 5 min - 1 Figure 9 . 3 :

 1495114951193 Figure 9.3: Nominal parameter values for the CME (in molecule number unitssymbol # denotes number of molecules) and the CLE (in concentration units -normalization factor 1/N A Ω7.9 • 10 -10 M/#). Degradation rates, equal for CME and CLE models, are (γ 1 , γ 2 , γ 3 , γ 4 , γ 5 ) = (0.0139, 0.347, 0.0139, 0.116, 0.0139)min -1 .

Chapter 9 .Figure 9 . 4 :Problem 2 .

 9942 Figure 9.4: (a) Comparison of 100 simulations of the CME model (red, stars) and the CLE approximation (blue, circles) at times T . At each time point, samples from the two simulations are plotted next to each other (slightly off the corresponding time point) for visual comparison. Lines indicate simulation mean for CME (red dashed) and CLE (blue solid). (b) Results of the Kolmogorov-Smirnov test for the CME and CLE simulations in Figure9.4(a) (blue), and for the same data after equalization of the means (red). The test is applied, separately for every state entry, to the simulated states at times T . A value of 0 (resp. 1) means that the hypothesis of equivalence of the distributions has been accepted (resp. rejected) with 95% confidence level.

+ ( 1 -H

 1 α 2 + β). The parameters c = α 2 (L + κ) and λ = c -L are scaling parameters with positive constants α, β and κ used to tune the SRUKF (in our applications we set α = 0.17, κ = 200, β = 2). Define X = [X 0 , . . . , X 2L ], T , with H = (I -[w m ... w m ]),

  For a new measurement y(t k ), ξ[k|k] and P [k|k] are computed from the above ξ[k|k -1] and P [k|k -1] by a standard Kalman update step according to our linear measurement model.SRUKF InitializationWe set ξ[0| -1] = E[ξ(t 0 )] and P [0| -1] = V ar[ξ(t 0 )],where the statistics of ξ at t 0 are determined by the priors on x(t 0 ) and θ. 9.5 State estimation: Simulation results for the E.coli arabinose uptake system 9.5.1 Comparison of SRUKF and PFTo evaluate the CLE approximation of the CME for filtering performance, we compare the (CLE-based) SRUKF with a (CME-based) PF using P = 1000 particles. This comparison is carried out with model parameters fixed to the nominal values of Table9.3.

Figure 9 . 5 :

 95 Figure 9.5: Comparison of estimation errors ē[k|k]/x[k] (red, solid), ēP F [k|k]/x[k] (blue, dash-dotted) and ēµ [k]/x[k] (green, dotted).

Scenario 1 Scenario 2

 12 All parameters are known and fixed to the nominal values except for K u . This is the threshold of the sigmoidal function that determines the switch-like behaviour of the system via regulation of mUpt synthesis, and may represent e.g. individual-dependent concentrations of unmodelled regulators (such as AraC, see Figure 9.1 and [125]). We fix all parameters to nominal values except v 4 , the maximal regulated synthesis rate of mGFP. Variability of v 4 may represent e.g. different number of promoters for GFP (unequal number of plasmids carrying the reporter) in different cells.

  Let Ξ[k] denote either (X[k], K u ) or (X[k], v 4 ), depending on the scenario. Let ξ[k|k] and x[k|k] denote the estimates from SRUKF and nSRUKF, in the same order. Let µ[k] denote the a priori mean of process Ξ[k] with nominal parameters (a priori estimator, with Chapter 9. State estimation for gene networks with intrinsic and extrinsic noise 192 last entry now fixed to the nominal parameter value). From the 100 filtering results we compute the (empirical) statistics ē[k|k] = E | Ξ[k]/(N A Ω) -ξ[k|k] | (SRUKF), ēn [k|k] = E | X[k]/(N A Ω) -x[k|k] | (nSRUKF), ēµ [k] = E | [Ξ[k] -µ[k] | /(N A Ω) (a priori ).

Figure 9 . 6

 96 Figure 9.6 reports plots of the estimation errors ē[k|k] and ēn [k|k] relative to ēµ [k]. In both scenarios, both SRUKF and nSRUKF improve upon the prior knowledge on X[k]in at least some components. In Scenario 1, uncertainty about K u is reduced around times 20 -30min, where the threshold is crossed by the increasing concentrations of intracellular arabinose, more markedly for SRUKF. This leads to a transient improvement of the estimation of arabinose concentration. For the remaining times, where the specific value of K u is inessential (saturation of the nonlinearity), the contribution of filtering is not apparent. In Scenario 2, SRUKF clearly outperforms nSRUKF in the estimation of mGFP and GFP concentrations, i.e. the states more directly related to v 4 . Overall, results show that exploiting the prior on extrinsic noise (parameter variability) not only enables estimation of the individual parameter value, but also improves estimation of unobserved states. This supports the use of ME-type models for state estimation and control applications.

Figure 9 . 6 :

 96 Figure 9.6: Estimation error ratios ēi [k|k]/ē µ,i [k] (blue, solid) and ēn,i [k|k]/ē µ,i [k] (green, dashed) for the state entries i = 1, . . . , 5 (top to bottom, first five rows) and ē6 [k|k]/ē µ,6 [k] (unknown parameter, last row). The smaller the value, the more accurate the state estimate. Reference value 1 (no improvement relative to prior knowledge) is indicated by a horizontal line (red). Left: Variability on K u ; Right: Variability on v 4 .

  ied with mathematical models, have arisen. Such problems are related to the coupling of individual components, their regulation and control to produce a desired dynamical outcome. In this thesis, we addressed the problem of mathematically controlling the bacterial growth rate, acting on the GEM by appropriately introducing synthetic inducible promoters and rewiring gene network interactions. To this aim, using the PQ and SPQ formalisms, we presented in Chapters 4-5-6 some qualitative control strategies implementing open and closed loop configurations. Notably, the open-loop configurations (Chapters 4-5-6) have been obtained by putting the expression of component of the GEM (e.g. RNAP, Ribosome), which determines the bacterial growth, under the external control of an inducible promoter. Whereas, in Chapter 5, starting from the analysis of the open-loop system in the cases that cells are grown in glucose and in maltose, we developed a closed-loop system, obtained by rewiring the open-loop's gene interactions, which is able to mathematically show the inverse diauxie, namely reaching Chapter 10. Conclusions and Perspectives 197

10. 6 . 1

 61 Qualitative control: application to real data Our collaborators (Jérôme Izard and Hans Geiselmann 1 ) are performing an ongoing experiment on a synthetic E. coli, implementing the open-loop model presented in Chapters 4-5. Notably, their experiments relate the level of growth rate during the exponential phase of the synthetic bacteria to the amount of the inducer. Their preliminary (unpublished) results are very promising and, in the future, these dose-response curves can be used to calibrate and validate the growth rate expression presented in Chapters 4.Moreover, a growth rate model-as a function of control input-could be also derived for the SPQ system (Chapter 6) where a weighted minimum model is used, and hence fitting this expression to experimental data too. Then, an evaluation of the predictive power of the two growth rate models could help in discriminating the best growth model. Therefore, a real implementation of the gene network rewiring suggested by the closedloop model in Chapter 5, and collection of experimental data would, of course, help in confirming the theoretical results on the inverse diauxie and/or suggesting new directions of investigations both at biological and mathematical levels.

  (resp. m 2 ) and the corresponding protein concentration is denoted by p 1 (resp. p 2 ). The inhibition of gene 1 (resp. gene 2 ) by protein p 2 (resp. p 1 ) is modelled by the decreasing Hill function, h -(p 2 ; θ 2 , n 2 ) (resp. h -(p 1 ; θ 1 , n 1 )). The translation of mRNAs and the degradation of mRNAs and protein are all modelled by linear functions. Based on the above, the ordinary differential equations describing the system's dynamics read as

	3.2.2 Example: ODE bistable switch

Now, we present the full ODE model corresponding to the bistable switch circuit depicted in Figure 3.1. The concentration of mRNA produced by gene 1 (resp. gene 2 ) is denoted by m 1

  D ∈ D is called a regulatory domain if none of the variables x i has a threshold value in D (it is a full open hyper-rectangle).

In contrast, a domain D ∈ D is called a switching domain of order k ≤ n if exactly k variables have threshold values in D, and the corresponding variables x i are called switching variables in D [127]. The two sets of domains are respectively denoted by D r and D s .

Table 3 . 2 :

 32 Parameter values for the CME and CLE (in molecule number unitssymbol # denotes number of molecules).

	It is worth noting that, though propensities a j reported in Table 3.1 are expressed with
	the same notations of deterministic synthesis and degradation rates of the ODE bistable
	switch model (3.8), parameter values have now different physical units. This is because
	CME and CLE variables denote number of molecules and not concentrations, as in the
	ODE example.		
	The CME and CLE models follow from replacing the stoichiometries ν 1 , . . . , ν 8 (3.30)
	and the propensities of the model of Table 3.1 into (3.23) and (3.29). In particular, the
	CLE can be written in the matrix form	
	ẋ = V a(x) + V diag	a(x) Γ	(3.31)
	where V = [ν 1 , ..., ν 8 ] 4×8 , diag	a(x) is the diagonal matrix having the square root
	of the entries of vector a(x) on the diagonal, Γ = [Γ 1 , ..., Γ m ] T .
	In Figure 3.7 are shown 20 realizations of protein 1 (p 1 ) and protein 2 (p 2 ) of the CME
	model using the Gillespie's algorithm (SSA). CLE simulations look similar and are not
	shown.		

Table 4 .

 4 

1: Nominal parameter values

Table 4 . 2 :

 42 Confidence intervals of estimated parameters pi when (4.20) is fitted to (non-dimensionalized) data sets I, II,III,IV. The confidence intervals for parameters become larger at increasing values of the measurement error and at decreasing numbers of data points, indicating possible practical identifiability problems especially for p1 and p5 .

Table 4

 4 

		DATA SET I	DATA SET II	DATA SET III	DATA SET IV
		σ = 10 -2	σ = 10 -2	σ = 5 • 10 -2	σ = 5 • 10 -2
		N exp = 62	N exp = 32	N exp = 62	N exp = 32
	CI p5 /p 1	5.29 ± 2.39	5.54 ± 2.43	4.99 ± 1.15	5.2 ± 1.3

.3. As we can notice in Table 4.3, the CIs of p5 /p 1 are accurate,

Table 4 . 3 :

 43 Confidence intervals of the ratio p5 /p 1 when (4.20) is fitted to (nondimensionalized) data sets I, II,III,IV.

  Controlling bacterial growth: in silico feedback law design to re-wire the genetic network 68 In contrast, a domain D ∈ D is called a switching domain of order k ≤ n if exactly k variables have threshold values in D [127]. The corresponding variables x i are called switching variables in D. The two sets of domains are respectively denoted by D r and D s .

, ..., p i }.

Let D be the set of domains in Ω . A domain D ∈ D is called a regulatory domain if none of the variables x i has a threshold value in D (it is the full hyper-rectangle).

Chapter 5.

  Controlling bacterial growth: in silico feedback law design to re-wire the genetic network 75 θ μ > 0 is a growth threshold depending on which substrate is used; μ > 0 is a growth constant depending on which substrate is used.

2) is the x i threshold concentration for activation/inhibition; Chapter 5.

  Controlling bacterial growth: in silico feedback law design to re-wire the genetic network 81 if x1 p,G (ν 1 ) > θ 2 p ∧ x p (t 0 ) > θ 1 p , then system (5.14) converges to the high focal point Φ G 2 (region IV in Figure

then system (5.14) converges to the low focal point Φ G 1 ; if x p (t 0 ) > θ 2 p , then system (5.14) converges to the high focal point Φ G Chapter 5.

  1 . Notably-always without considering the trivial Chapter 5. Controlling bacterial growth: in silico feedback law design to re-wire the genetic network 83 fixed point Φ M 0 -we observe that choosing ν 1 such that x1 p,M (ν 1 ) > θ 1 p and x2 p,M (ν 1 ) < θ 2 p , system (5.14) converges to the "low" stable point Φ M 1 for any x p (t 0 ) > θ 1 p . The convergence to the "high" stable points, i.e. Φ M 2 or Φ M 3 , is guaranteed for those ν 1 such that x1 p,M (ν 1 ) > θ 2 p . In fact, in this case system (5.14) with x p (t 0 ) > θ 1 (ν 1 ) > θ 2 p hold, we are in the bi-stability case depicted in Figure 5.4, where both x1 p,M and x2 p,M are stable steady states of x p differential equation. The convergence to one or to the other stable steady state depends on the initial condition with respect to the separatrices θ 1 p and θ 2 p . Notably, if θ 1 p < x p (t 0 ) < θ 2 p , x p (t) converges to x1 p,M while, if x p (t 0 ) > θ 2 p , x p (t) converges to x2 p,M .

	p converges
	to Φ M 3 , if θ 2 p < x2 p,M (ν 1 ) < θ M p , or to Φ M 2 , if x2 p,M (ν 1 ) > θ M p , both of them having the
	"high" level of RNAP, i.e. x2 p,M .
	When θ 1 p < x1 p,M (ν 1 ) < θ 2 p and x2 p,M

6 ,

 6 Chapter 5. Controlling bacterial growth: in silico feedback law design to re-wire the genetic network 89 a Filippov stable fixed point is generated on the switching domain x p = θ M p when θ 2 p < x1 p,M < θ M p and x2 p,M > θ M p . Besides, because of the inhibition of RNAP by cAMP-CRP (in VI) x1 p,M becomes again a stable steady state when x1 p,M (ν 1 ) > θ M p .

	Finally, Proposition 5.11 summarizes the stable equilibria of system (5.21) with maltose
	as medium.
	Proposition 5.11. Consider system (5.21) during growth in maltose with control input
	ν 1 and initial condition x p (t 0 ) such that:
	if (x 1 p,M (ν 1 ) < θ 1 p ∧ x2 p,M (ν 1 ) < θ 2 p ) ∨ x p (t 0 ) < θ 1 p , then system (5.21) converges
	to the trivial focal point Ψ M 0 (region I in Figure 5.9);
	if x1 p,M (ν 1 ) > θ 1 p ∧ x2

p,M (ν 1 ) < θ 2 p ∧ x p (t 0 ) > θ 1 p , then system (5.21) converges to the low focal point Ψ M 1 (region II in Figure

5

.9);

if θ 1 p < x1 p,M (ν 1 ) < θ 2 p ∧ x2 p,M (ν 1 ) > θ 2 p ,

then system (5.21) is non-trivially bistable (region III in Figure
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and (5.26)

, only a low level of stable RNAP can be reached, i.e. x1 p,G , while in a maltose medium, also a stable high level of RNAP can be achieved, i.e. x2 p,M . These facts are fundamental for ensuring Chapter 5.

  , ..., p i }.Let D be the set of domains in Ω. A domain D ∈ D is called a regulatory domain if none of the variables x i has a threshold value in D (it is the full hyper-rectangle). In contrast,

a domain D ∈ D is called a threshold domain of order k ≤ n if exactly k variables have threshold values in D (in

[START_REF] Mestl | A mathematical framework for describing and analysing gene regulatory networks[END_REF] 

threshold domains are called switching domains, but we avoid this definition to prevent misunderstandings with switched system). The corresponding variables x i are called threshold variables in D. The two sets of domains are respectively denoted by D r andD t .

  Regulatory network of the SPQ model(6.24). The system consists of RNAP and ribosomes (RIB), encoded by their respective proxy genes rnap and rib (it is worth saying that RNAP and RIB are made up of different subunits encoded by different genes, but here, for the sake of simplicity, we consider that they are originated by lumped (proxy) gene classes (rnap and rib)). Notably, the synthesis of RNAP is positively regulated by RIB, RNAP and the control input u while the synthesis of RIB is positively regulated by RNAP from the promoters P1 and P2.

	Chapter 6. Switched piecewise quadratic models of biological networks	107
		RIB	RNAP	u
	P1 P2	rib	rnap
		Legend	
		P	
		p Synthesis of gene product P from gene p	Activation
	Figure 6.2:		
			22), stable
	fixed points of RNAP and RIB have to be reached. Hence, our expression of growth rate
	during exponential phase reads:	
		μ(u) = min(µ p xp (u), µ r xr )	(6.23)
	where xp and xr are concentrations of RNAP and RIB at steady state, respectively.

Hence, controlling bacterial growth rate will result in controlling the location of x p , x r stable points by means of the control input u so as to have a desired constant μ at exponential phase.

  Boolean variables and gyr, top by 2 each (see Fig.7.5). The rules for this module are given in the Appendix.Since each variable may have several discrete values, the Boolean models will use var i , i ∈ {1, 2, . . . , d} to denote the corresponding d Boolean variables (see Section 7.2.1)

	(similarly for the other variables). The discrete variable can be recovered simply by
	adding the Boolean variables:		
	d		
	var =	var i .	(7.8)
	i=1		

2. The first Boolean module is formed by the 8 variables corresponding to genes fis, gyr, and top, since fis is described by 4

Table 7 . 1 :

 71 The two E. coli modes reproduced by the model[START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF]. If a variable has more than one value, this means that the asymptotic solution is oscillatory among those values.

	"Signal"	fis	gyr top crp cya rrn Phase
	0	1,2,3,4 1,2	0	1	2	0,1 Exponential
	1	0	2	0	2	2	0	Stationary

  Table 7.1 results (see Section 7.4.4).

	Growth rate function	Interactions (7.11)	Attractors, G as (Glu=1)	Attractors, G as (Glu=0)
			Stationary	Exponential	Stationary
	f r g ,f p g ,f rp g ,f rb g	I II III,VI	σ 4 [Prop. 7.2(i)] σ 4 [Prop. 7.2(i)] σ 4 [Prop. 7.2(i)]	α 4 [Prop. 7.2(i)] α 72 [Prop. 7.4] α 2 [Prop. 7.2(i)]	σ 4 [Prop. 7.3] σ 4 [Prop. 7.3] σ 4 [Prop. 7.3]
	* * *	IV,V	σ 4 [Prop. 7.2(i)]	α 24 [Prop. 7.2(iii)]	σ 4 [Prop. 7.3]
	f b g	I,III,VI II IV,V	σ 52 [Prop. 7.5(i)] σ 48 [Prop. 7.5(i)] σ 24 [Prop. 7.2(iii)]	α 52 [Prop. 7.5(ii)] α 48 [Prop. 7.5(ii)] α 24 [Prop. 7.2(iii)]	σ 4 [Prop. 7.3] σ 4 [Prop. 7.3] σ 4 [Prop. 7.3]

Table 7 . 3 :

 73 Initial conditions and attractor reached, for some model variants, with interconnection of type IV.

  3) are supposed not dependent on nucleotides, since they are assumed to be in excess. Let P f , d f , P d , w,w i , x be the molar concentration of species F P , D, P D, Y , Y i and RN A, respectively. Hence, assuming classical mass-action

	kinetics, one can derive the following ODEs from reactions above (8.1)-(8.2)-(8.3)-(8.4)

  .3.2.1 Translation of nascent mRNA Every complex Y i (the moving RNAP on gene g) represents a starting point for translation, since from each Y i can originate a new, but uncompleted, mRNA where free ribosomes can bind and start translation. Hence, free ribosome F R binds to the free ribosome binding site Y i of Y i in a reversible fashion forming the complex RY i :

  be the molar concentration of species F R, RN A, RRN A, Z, Z j , G, respectively. Hence, assuming classical mass-action kinetics, one can derive the

	following ODEs from reactions above (8.21)-(8.22)-(8.23):

  8.26) Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 154 Now, considering steady state assumption for all ribosome complexes RRN A, Z and Z j

	one gets:

Table 8

 8 

	.1.

Table 8 . 1 :

 81 Model Parameters.Table8.5: Data taken from[START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF]. We note that in[START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF] growth rate µ in expressed in [doublings/h] while here it has been converted in[1/h] considering the conversion [1/h] = ln(2) • [doublings/h]. Symbols #, aa, N u denote number of molecules, amino acid, nucleotide, respectively.in Table8.5, the protein length (L B ) in amino-acids (aa), the mRNA length (L b ) in nucleotides (Nu) and stable-RNA length (L r ) in nucleotides (Nu).To calculate the cell volume, which is a growth-rate-dependent parameter, we interpo-Cell volume plotted against the growth rate. Red circles represent data from[START_REF] Trueba | Changes in cell diameter during the division cycle of Escherichia coli[END_REF]; blue curve is the quadratic interpolated function: V c = 0.0002 µ 2 +0.8482 µ+ 0.1129; blue squares are V v at µ of interest in Table8.5.

	8.4 E. coli GEM dynamical model
	Here, using the mathematical formalism presented in Section 8.3 and summarized in (8.38),
	we aim at representing the transcription and translation machinery in E. coli depicted
	in Figure 8.1. Notably, we will apply model (8.38) to each of the gene classes, i.e. rnn,
	rpoBC, bulk, to derive a dynamical model whose system's variables are R, p, P , b, B,
	denoting molar concentration of ribosomes, RNAP mRNA, RNAP protein, total mRNA,
	total protein, respectively.

lated a quadratic function to E. coli cell volume data from

[START_REF] Trueba | Changes in cell diameter during the division cycle of Escherichia coli[END_REF]

, measured at five other different growth rate values, so as to derive E. coli cell volumes at growth rates of interest indicated in Table

8

.5. A quadratic interpolation has been adopted since it was the one giving smaller errors. The interpolation of cell volume data from

[START_REF] Trueba | Changes in cell diameter during the division cycle of Escherichia coli[END_REF] 

is depicted in Figure 8.2, whereas interpolated cell volume values-at growth rate of interest-are reported in Table 8.6.

  [min/h] • 10 6 (8.46) where N a = 6.022 • 10 23 [molecules/mol] is the Avogadro constant. In Table 8.6 are reported the conversion of data in Table 8.5 using formulas (8.46).

					Growth rate µ [1/h]	
	Parameters	Symbol Units 0.42	0.69	1.04	1.39	1.73
	Cell Volume	V c	µm 3	0.47	0.70	0.99	1.29	1.58
	RNAP concentration	[N P ]	µM	5.35	6.63	8.34	10.31	11.96
	ribosomes concentration	[N R ]	µM	24.25	31.98	43.89	58.10	75.52
	protein concentration	[N B ]	µM	5996.5 6189.6 6515.3 7311.1 7874.1
	mRNA synthesis rate	[r m ]	µM/h 92.00	130.77 137.18 144.53 147.25
	stable RNA synthesis rate	[r s ]	µM/h 9.69	21.25	43.85	77.49	125.90

Table 8 . 6 :

 86 Data in Table8.5 after conversion in µM using formulas (8.46). A coarse-grained dynamical model of E. coli gene expression machinery 165 Notably, some of the model parameter values taken from the literature are growth-rateindependent, i.e. their values do not change when µ changes, while others are growthrate-dependent, i.e. they assume different values for each of the µ values reported in

	Data in Table 8.6 will then be used (Section 8.5.4) to estimate unknown parameters
	of model 8.43-8.45, but let us first see how most of the model parameters have either
	been fixed to literature values, or calculated using genetic informations and experimental
	biological formulas.
	8.5.2 Parameters taken from literature
	In the last decades much research has focused on the mutual influence between bacterial
	gene expression and global regulation of cell growth rate [31, 113, 124, 151, 159]. These
	research works allowed us to derive some of the parameter values used for the GEM
	model (8.43)-(8.45).

Table 8 .

 8 7: Growth-rate-independent parameter values based on literature.

			Growth rate µ [1/h]		
	Parameters Units 0.42	0.69	1.04	1.39	1.73	Notes
	c b	N u/h 140400 162000 180000 187200 198000 from [31]
	c p	N u/h 140400 162000 180000 187200 198000 c p = c b (assumed)
	c B	aa/h 43200	57600	64800	72000	75600	from [31]
	c P	aa/h 43200	57600	64800	72000	75600	c

P = c B (assumed)

Table 8 .

 8 8: Growth-rate-dependent parameter values taken from literature. Other growth-rate-dependent parameters are the promoter concentrations denoted by d r , d p , d b , d ns in (8.43)-(8.45). To calculate these quantities we have first to introduce the concepts of average DNA per cell and individual gene copy number per cell. Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 166

	8.5.3 Calculated growth-rate-dependent parameters

Table

  

									8.47)
	where C, D denote the time required to replicate chromosome (in [min]) and the interval
	time (in [min]) between chromosomal replication and cell division, respectively. Both
	C, D are measured growth-dependent parameters [31] whose values for µ of interest are
	reported in Table 8.9. Whereas τ denote time required for cell division (in [min]) and it
	is related to growth rate µ (in [1/h]) by the following formula:			
		τ =	ln(2) µ	• 60 [min/h].				(8.48)
						Growth rate µ [1/h]	
	Descriptions	Parameters Units 0.42 0.69 1.04 1.39 1.73 Notes
	Division time		τ	min	100 60	40	30	24	from [31]
	Replication period		C	min	67	50	45	43	42	from [31]
	Period from termination		D	min	30	27	25	24	23	from [31]
	of replication to cell division								

  Having presented the concepts of average DNA per cell and individual gene copy number per cell with their respective formulas, we can now calculate the promoter concentrations of each gene class, i.e. d r , d p , d b , and the concentration of not specific binding sites d ns . Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 167 8.5.3.1 Promoter concentration of rnn operon

	16)/50 if 0 ≤ m < 36	
	(84-m)/50	if 36 ≤ m < 84	(8.50)
	(m-84)/50	if 84 ≤ m < 100	
	while m denotes the absolute map location of gen x.	

  Table 8.10 .

	rnn operon	
	Gene x	m	m
	rnnA	87 0.06
	rnnB	89.5 0.11
	rnnC	85 0.02
	rnnD	72 0.24
	rnnE	90.5 0.13
	rnnG	57 0.54
	rnnH	5	0.42

Table 8 .

 8 10: Absolute map location (m) and relative map location(m ) of the seven rnn genes. Values taken from[START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF].N rnn and d r values at growth rates of interest are reported in Table8.11.

			d r =	N rnn V c • 10 -15 [L/µm 3 ] • N a	• 10 6		(8.51)
					Growth rate µ [1/h]	
	Parameters	Units	0.42	0.69	1.04	1.39	1.73	Notes
	N rnn	genes/cell 12.44	15.11	20.07	26.94	35.96	calculated
	d r	µM	0.0444 0.0358 0.0335 0.0347 0.0377 calculated

Using formula (8.

[START_REF] Cormen | Introduction to algorithms[END_REF] 

with values in Tables 8.9-8.10 we can calculate the gene copy number per cell of operon rnn (N rnn ) at growth rates of interest. Eventually, the promoter concentration d r (in [µM ]) of operon rnn is given by:

Table 8 .

 8 11: Growth-rate-dependent rnn copy number and concentration.

Table 8 .

 8 [START_REF] Alberts | Essential Cell Biology, Third Edition[END_REF]: Absolute map location (m) and relative map location(m ) of the rpoBC genes. Values taken from[START_REF] Morgan | The wild-type nucleotide sequence of the rpoBC-attenuator region of Escherichia coli DNA, and its implications for the nature of the rifd18 mutation[END_REF].N rpoBC and d p values at growth rates of interest are reported in Table8.13. 

	6	(8.52)

Table 8.13: Growth-rate-dependent rpoBC copy number and concentration.

Table 8 .

 8 6 (8.[START_REF] Jong | Modeling and simulation of genetic regulatory systems: a literature review[END_REF] where N b and d b values at growth rates of interest are reported in Table8.14. 14: Growth-rate-dependent values of bulk copy number and concentration.

	Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 169
					Growth rate µ [1/h]		
	Parameters	Units	0.42	0.69	1.04	1.39	1.73	Notes
	N b	genes/cell 6719.36 7928.62 10016.49 12781.57 16237.20 calculated
	d b	µM	23.96	18.78	16.72	16.46	17.03	calculated

8.5.3.4 Promoter concentration of non-specific binding sites

RNAP could also bind to non-specific binding sites on the DNA, because the number of sites for non-specific binding greatly exceeds the number of promoters

[START_REF] Klumpp | Growth-rate-dependent partitioning of RNA polymerases in bacteria[END_REF]

. In theory,

Table 8 .

 8 .[START_REF] Jong | Genetic network analyzer: qualitative simulation of genetic regulatory networks[END_REF] In Table8.15 are reported the calculated values of G c , N ns and d ns at growth rates of 15: Growth-rate-dependent values of non-specific promoter concentration.Finally, to recap, all calculated growth rate parameter values are reported in Table8.[START_REF] Ang | Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network[END_REF].In general, the problem of estimating the unknown parameters of a model can be formulated as a minimization problem, where the theoretical model predictions are compared to the experimental data, and the parameter values are adjusted in order to minimize the distance between the two. Hence, with this in mind and since experimental data are steady state measurements (at five given growth rate values) of ribosome, RNAP, protein concentrations and mRNA and sRNA synthesis rates (see Table8.6), we have th growth rate value at which measurements in Table 8.6 are taken. Hence, for each Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 171 i = 1, ..., 5, the steady state model predictions read as:

	interest.							
						Growth rate µ [1/h]	
	Parameters	Units	0.42	0.69	1.04	1.39	1.73	Notes
	G c	DN A/cell 1.6	1.8	2.3	3.0	3.8	calculated
	N ns	10 6 bs/cell 7.3	8.28	10.58	13.8	17.48	calculated
	d ns	µM		26244.18 19616.19 17657.09 17776.45 18333.50 calculated
					Growth rate µ [1/h]	
	Parameters Units 0.42		0.69	1.04	1.39	1.73	Notes
	d r	µM	0.0444	0.0358	0.0335	0.0347	0.0377	calculated
	d p	µM	0.0066	0.0054	0.0051	0.0054	0.0059	calculated
	d b	µM	23.96		18.78	16.72	16.46	17.03	calculated
	d ns	µM	26244.18 19616.19 17657.09 17776.45 18333.50 calculated
	Table 8.16: Calculated growth-rate-dependent parameter values of promoter concen-
					trations.		

to derive the same theoretical quantities from model (8.43)-(8.

[START_REF] Chaves | Predicting the asymptotic dynamics of large biological networks by interconnections of boolean modules[END_REF]

. This means that we need to calculate steady state variables of model (8.43)-(8.45), and the theoretical mRNA synthesis rate r m and sRNA synthesis rate r s . However, let us first introduce the vector of steady state growth rate µ = [µ 1 , ..., µ 5 ], where µ i (i = 1, ..., 5) is the i -

  A coarse-grained dynamical model of E. coli gene expression machinery 172 Now, to quantify the distance between the model predictions in (8.57) and experimental data in Table 8.6, calculate the cost function J(φ):

	Chapter 8.
	.57)
	We note that index i indicates that model predictions (8.57) are calculated considering
	growth rate dependent parameters at their i -th growth rate values (see Tables 8.8
	and 8.16).

  Table 8.17. Model fitting. Red circles denote experimental data [31] after molar conversion (see Table 8.6); blue open circles are model predictions with parameter values from Table 8.18. Measurement 95% confidence intervals are calculated considering 10% measurement errors as stated in [31].

	Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 173
	Protein [microM]	0 50 100 0 5 10 15 RNAP [microM] 6000 Ribosome [microM] 8000 10000	0.42 0.42	0.69 0.69	1.04 1.04	1.39 1.39	1.73 1.73	2	rRNA syn. rate [microM/h] mRNA syn. rate [microM/h]	0 50 100 150 200 50 100 150 200	0.42	0.69	1.04	1.39	1.73
		4000									0.42	0.69	1.04	1.39	1.73
			0.42	0.69	1.04	1.39	1.73								
											specific growth rate [1/h]
			specific growth rate [1/h]								
	Figure 8.3: R		Parameters Units Values θ r1 P µM 16.3938 θ r µ 1/h 1.2106 Growth rate µ [1/h]				
	n r Parameters Units 0.42		-0.69		7.4251 1.04		1.39		1.73	Notes
		L r		θ r2 P N u 6623		µM 6623		45.3137 6623	6623		6623	from [159]
		c r d r k r θ r1 P	γ r θ p P N u/h 306000 γ p µM 0.0082 θ P R 1/h 6600 γ P µM 16.3938		1/h 0.0344 µM 306000 306000 5.9876 0.0083 0.0094 1/h 12.6818 µM 6600 6600 124.3815 1/h 0.2179 16.3938 16.3938	306000 0.0113 6600 16.3938	306000 0.0142 6600 16.3938	from [31] calculated from [159] estimated
		θ r µ n r		θ b 1/h 1.2106 P θ b µ -7.4251		µM 1.2106 1/h 0.2291 107.1302 1.2106 7.4251 7.4251	1.2106 7.4251	1.2106 7.4251	estimated estimated
		θ r2 P γ r		n b γ b µM 45.3137 θ B R 1/h 0.0344		-45.3137 1/h 20.7052 0.7424 45.3137 µM 29.8494 0.0344 0.0344	45.3137 0.0344	45.3137 0.0344	estimated estimated
	γ B θ ns P Parameters Units 0.42 p		1/h 0.0330 µM Growth rate µ [1/h] 7739.7769 0.69 1.04 1.39		1.73	Notes
		L p		N u 8253 Table 8.17: Estimated parameter values. 8253 8253 8253		8253	from Eco-Cyc [106]
	c p In Figure 8.3 are shown the fitting results of steady state model (8.43) and conservation N u/h 140400 162000 180000 187200 198000 c p = c b (assumed)
	equations (8.45) using parameter values in Table 8.18. As we can notice, all model d p µM 0.0066 0.0054 0.0051 0.0054 0.0059 calculated
	predictions are within the 95% confidence intervals of measurements. Measurement k p 1/h 600 600 600 600 600 k p = k b
	95% confidence intervals are calculated considering 10% measurement errors as stated (assumed)
	in [31].	θ p P		µM 5.9876		5.9876		5.9876		5.9876	5.9876	estimated
		γ p		1/h 12.6818		12.6818		12.6818	12.6818	12.6818	estimated
			P				Growth rate µ [1/h]				

To recap, in Table 8.18 are reported all parameter values of model (8.43) and conservation equations (8.45).

  Observation model We consider the case where noisy measurements from individual cells are collected over time. Let T = t k : k = 0, 1, 2, . . ., with t k < t k+1 for all k, be a set of measurement times. After standard preprocessing (such as e.g. background Arabinose uptake regulatory network in (modified) E.coli cells (inspired from
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	Figure 9.1:					

removal in fluorescent gene reporter systems) let y (t) be the measurement at time t ∈ T

We found that a model involving the negative control of crp by cAMP-CRP does not have any effect on the conclusion of this study.

Laboratoire Adaptation et Pathogénie des Microorganismes, (CNRS UMR 5163), Université Joseph Fourier, Bâtiment Jean Roget, Faculté de Médecine-Pharmacie, La Tronche, France

A confidence interval [σ - i , σ +i ] of a parameter estimate pi to a confidence level α signifies that the true value p * i is located within this interval with probability α.

GlobalSearch first runs fmincon from the start point you give. If this run converges, GlobalSearch records the start point and end point for an initial estimate on the radius of a basin of attraction. Then, GlobalSearch solver starts a local solver (fmincon) from multiple starting points and store local and global solutions found during the search process. Notably, the GlobalSearch solver first uses a scattersearch algorithm to randomly generate multiple starting points, then filters non-promising start points based upon objective and constraint function values and local minima already found, and finally runs a constrained nonlinear optimization solver to search for a local minimum from the remaining start points.

Enzyme that catalyses the conversion of ATP to cAMP and pyrophosphate.

Laboratoire Adaptation et Pathogénie des Microorganismes, (CNRS UMR 5163), Université Joseph Fourier, La Tronche, France
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to the origin-independently from u-when the initial condition x p (t 0 ) satisfies x p (t 0 ) < θ 1 p (all scenarios in Figure 6.3).

From a biological point of view, Proposition 6.14 says that the origin is an equilibrium of system (6.24) either when u does not sufficiently induce RNAP expression (scenario-a)

or when RNAP initial condition is is too low to initiate gene transcription (all scenarios in Figure 6.3). The origin represents absence of growth and we refer to it as the trivial equilibrium, for this reason we will not mention it any more in the discussion which follows.

Proposition 6.15 (Monostability). Assume u is such that the only equilibrium of the system is given by the focal point of D 5 , D 6 of mode-I (see (6.25)), then system (6. [START_REF] Bettenbrock | Correlation between growth rates, EIIACrr phosphorylation, and Intracellular Cyclic AMP levels in Escherichia coli K-12[END_REF]) is monostable and the growth rate reads as μ = µ p ϕ(uk 0 p , µ p , γ p ) (scenario-b). Moreover, assume u is such that the only equilibrium of the system is given by the focal point of D 9 of mode-II (see (6.25)), then system (6.24) is still monostable and the growth rate reads as μ = µ r ϕ(k 1 r + k 2 r , µ r , γ r ) (scenario-f ).

When u is such that system (6.24) has two (non trivial) equilibria which belong to the same mode we say that system (6.24) is mono-mode bistable. Notably, we can have that the two equilibria belong to mode-I (scenario-c) or to mode-II (scenario-e).

Proposition 6.16 (Mono-mode Bistability). Assume u is such that system (6.24) has two equilibria in the same mode, then we can have:

scenario-c: equilibria belong to mode-I and they are the focal point of D 5 , D 6

(for the lower one) and the focal point of D 9 (for the higher one). Hence, the two growth rate expressions are: μ = µ p ϕ(uk 0 p , µ p , γ p ) and μ = µ p ϕ(u[k 0 p + k 1 p ], µ p , γ p ).

scenario-e: equilibria belong to mode-II and they are given by the focal point of D 5 , D 6 (for the lower one) and by the focal point of D 9 (for the higher one).

Thus, now the two growth rate expressions are: μ = µ r ϕ(k 1 r , µ r , γ r ) and μ = µ r ϕ(k 1 r + k 2 r , µ r , γ r ).

When u is such that system (6.24) has two (non trivial) equilibria shared by the two modes, we say that system (6.24) is bi-mode bistable. This is the case of scenario-d in Proposition 6.17 (Bi-mode Bistability). Assume that the equilibria are given by the focal point of D 5 , D 6 of mode-I and by the focal point of D 9 of mode-II (see (6.25)), then the two growth rate expressions are μ = µ p ϕ(uk 0 p , µ p , γ p ) and μ = µ r ϕ(k 1 r + k 2 r , µ r , γ r ).

Proposition 7.3. Assume that Glu=0. Then, the asymptotic graph for all model variants exhibits only one attractor, σ 4 .

Proof : In the case Glu=0, we immediately have the steady state values for rrn and pol:

For the interactions W , q y , q r , and u 1 it also follows that:

Together with the rules in Appendix, this leads to:

Thus, at steady state, the values for fis satisfy fis i = 0, for all i, which in turn imply that all the outputs of system A are zero: v i = 0 for all i. The remaining concentrations can now be easily established from the Boolean rules, so it follows that there is only one attractor and that it is σ 4 (7.12).

Growth Rate limited by ribosomes or RNA polymerase

For the model variants using f r g , f p g ,f rp g , or f rb g , the stationary phase attractor σ 4 is always the same (as described in Section 7.4.1). The exponential phase attractor, α j , j ∈ {2, 4, 24, 72}, depends on the wiring and has j states characterized by :

Note that cases IV and V (α 24 ) are similar to the exponential phase attractor of [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF] (see Table 7.1) (the only difference is rrn now fixed at 1, which seems reasonable for Chapter 7. Attractor computation using interconnected Boolean networks 135 the exponential phase). Cases I,III,VI (α 2 ,α 4 ) fail to reproduce the levels of fis during exponential phase (here they are fixed at zero). Case II (α 72 ) also exhibits oscilations in crp and cya, which are not observed in Table 7.1. This attractor does not fit into Proposition 7.2, but an alternative way to show that it is not a spurious attractor, is to note that the set of states with ribosomes, RNA polymerase and Fis all at discrete level 1 is invariant, so trajectories cannot leave this set; therefore, an attractor with such properties must exist, with the only possible candidate being α 72 .

Proof : From the Boolean rules (see Appendix), it suffices to note that:

And then:

Therefore, the set Q is invariant.

Growth Rate limited by bulk proteins

For the model variants using f b g , the exponential phase attractors are characterized as follows:

The stationary phase attractors are similar in all variables except that rrn = pol = 0.

Comparison with Table 7.1 shows many differences with respect to model [START_REF] Ropers | Qualitative simulation of the carbon starvation response in Escherichia coli[END_REF]. These attractors are also true attractors of G, as shown by application of the following result.

Proposition 7.5. Define the sets P 0 and P 1 :

Appendix

Boolean rules of the two E. coli modules

The Boolean model for the Fis module is defined by a set of rules which use some auxiliary expressions of the form h-given below: h11 = ((u 2 or u 3 ) and hf 2 ) or ((not u 2 or not u 3 ) and h01); h12 = ((u 2 or u 3 ) and hf 3 ) or ((not u 2 or not u 3 ) and h02); h13 = ((u 2 or u 3 ) and hf 4 ) or ((not u 2 or not u 3 ) and h03); h14 = (not u 2 or not u 3 ) and h04;

rnn gene expression model

As stated in Section 8.2.1, rnn genes encode for the stable-RNAs (sRNA), which are the limiting factors in ribosome formation, hence here we assume that sRNA basically determine the amount of ribosomes. This means that only the transcription model equation (8.38a) will be used to model the dynamics of ribosome concentration. Moreover, equation (8.38a) has to be slightly be modified to account for the fact that rnn genes have two promoters: Pr1, which is a growth rate dependent promoter (presumably regulated by ppGpp) and Pr2, which is a constitutive one. Therefore, the dynamics of ribosomes concentration R reads as:

where h + (µ, θ r µ , n r ) denotes an increasing Hill function of the growth rate µ, modelling the specific growth rate dependent regulation of promoter Pr1. Whereas the second Michaelis-Menten term of free RNAP (P f ) denotes the constitutive regulation of promoter P r2. The concentration of RNAP engaged in translating the rnn genes P r can be easily derived from (8.38c): 

rpoBC gene expression model

As reported in Section 8.2.2, rpoBC genes encode for the β -β subunits, which are the limiting factors for RNAP formation. Hence, here we assume that concentrations Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 159 of β -β mRNA, i.e. p, and β -β protein, i.e. P , equal those of RNAP mRNA and RNAP protein, respectively. Even though rpoBC gene expression seems to be specifically regulated both at transcriptional and translational level (but mechanisms have still to be well elucidated), here-for the sake of simplicity-we assume that rpoBC genes have no specific regulations, that is [START_REF] Carta | A class of switched piecewise quadratic systems for coupling gene expression with growth rate in bacteria[END_REF]. Hence, rpoBC gene expression model reads as:

where P p and R p denote RNAP engaged in the transcription of rpoBC genes and ribosomes engaged in translation of β -β mRNA, respectively.

Explanations of parameters in (8.41) are given in Finally, total protein concentration B is simply determined by the translation of the proxy total mRNA b, without any specific translational regulation.

Hence, rpoBC gene expression model reads as:

(8.42b)

) is a decreasing Hill function of the growth rate µ, modelling the negative (specific) regulation effect that µ exerts on the mRNA transcription at higher growth rates. Whereas, P b and R b denote RNAP engaged in the transcription of bulk genes and ribosomes engaged in translation of mRNA, respectively. Explanations of parameters in (8.42) are given in Table 8 [START_REF] Chaves | Piecewise affine models of regulatory genetic networks: review and probabilistic interpretation[END_REF] where P f and R f , denoting free RNAP and free ribosomes respectively, have to fulfil the following conservation equations: [START_REF] Chaves | Exact control of genetic networks in a qualitative framework: The bistable switch example[END_REF] where P r , P p , R p , P b , R b , have been defined in (8.40), (8.41), (8.42); whereas P ns = P f P f +θ ns P d ns models RNAP concentration that binds to non-specific binding sites present on the DNA [START_REF] Klumpp | Growth-rate-dependent partitioning of RNA polymerases in bacteria[END_REF], reducing in this way the available RNAP for the transcription process.
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Model calibration

In this section we will discuss how the parameter values of model (8.43) with (8. [START_REF] Chaves | Predicting the asymptotic dynamics of large biological networks by interconnections of boolean modules[END_REF] have been identified. Notably, some parameters have been fixed to values given in the literature (Section 8.5.2), some others have been calculated using biological experimental formulas (Section 8.5.3), and the remaining ones have been identified using steady state experimental data from the literature (Section 8.5.4).

Experimental data

The experimental data we used to calibrate the GEM model (8.43) with (8.45) were taken from [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF], where macromolecular composition of exponentially growing E. coli B/r were measured at 37 for five growth rate values. Here we recall that when bacteria are in the exponential phase, growth rate µ is constant, and macromolecular composition of the cells is supposed to be at steady state.

For the sake of clarity, in Table 8.5 are reported the experimental data as they appear in [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF].

We note that data in 

Model reduction

Model (8.43) can be reduced by considering a quasi-steady-state approximation for the mRNA variables p and b. In fact, since g p g P and g b g B we can assume that ṗ ≈ 0 and ḃ ≈ 0. Hence, the reduced model reads as: [START_REF] Dennis | Control of rRNA synthesis in Escherichia coli : a systems biology approach[END_REF] where P f and R f , denoting free RNAP and free ribosomes respectively, have still to fulfil the conservation equations in (8.45).

Conclusions

In this Chapter, we presented a core dynamical model of the gene expression machinery of the bacterium E. coli. In particular, the entire E.coli genome has been divided into three main gene classes: rnn genes, rpoBC genes and the proxy bulk genes. As a matter of fact, rnn genes account for ribosome synthesis, rpoBC genes for that of RNAP, and bulk genes determine the production of all cellular proteins. Hence, with these three gene classes, we were able to model the entire transcription-translation apparatus in E. coli. Notably, using the formalism presented in [START_REF] Kremling | Comment on mathematical models which describe transcription and calculate the relationship between mrna and protein expression ratio[END_REF], we modelled the transcription Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 176 regulation due to free RNAP and the translation regulation exerted by free ribosomes, but we also took into account the specific growth rate dependent regulation which affects the sRNA and mRNA synthesis. Notably, we extended the model framework of [START_REF] Kremling | Comment on mathematical models which describe transcription and calculate the relationship between mrna and protein expression ratio[END_REF] by introducing two Hill functions, which account for the transcriptional growth rate regulation. More precisely, this growth regulation determines how resources are allocated during the transcription process. This mechanism, which is probably due to the ppGpp molecule, works in the following fashion: at higher growth rate values transcription of rnn genes is favoured with respect to that of bulk genes, leading to an overproduction of sRNA with respect to mRNA synthesis. This because, at higher growth rates, more ribosomes (sRNA are the limiting factor of ribosome assembling) are needed to speed up the translation of proteins.

Then, the GEM dynamical model, which consists of five variables and two algebraic equations, has been calibrated using some parameter values taken from literature, others calculated using genetic information about gene classes and biological formulas, and finally, the remaining ones, identified using experimental data of E. coli macromolecular composition at different steady state growth rate values from [START_REF] Bremer | Modulation of chemical composition and other parameters of the cell by growth rate[END_REF]. We showed that the calibrated GEM model (all parameter values are reported in Table 8. [START_REF] Asyali | Gene expression profile classification: a review[END_REF]) was able to consistently reproduce all the experimental data (see fitting results in Figure 8.3). However, to give more consistency to the estimated parameters (reported in Table 8.17), an identifiability analysis should be conducted, as well as a validation of the model predictions on an alternative data set should be pursued. But these studies were beyond the scope of this work and they can be addressed in the future.

Moreover, the developed GEM model can also be used as a "tool" to calculate steady states of free RNAP and ribosomes, which are quantities difficult to measure in practice (Section 8.6). A reduced version of original model (8.43) has also been presented, in which mRNAs species have been assumed to be at their quasi steady state equilibrium (Section 8.7).

It is worth saying that, even though model (8. [START_REF] Chaves | Piecewise affine models of regulatory genetic networks: review and probabilistic interpretation[END_REF]) is a dynamical model, it is only valid when growth rate µ is constant, that is during the exponential phase of the bacterial growth. In other growth phases, a dynamical expression of µ has to be developed (see Chapters 4-6-7 for possible dynamical µ models), and probably also a recalibration of the model is required, possibly using dynamical experimental data.

To conclude, this model of the GEM of E. coli describes central regulatory mechanisms and allowed us to elucidate how the E. coli transcription-translation apparatus works on a global scale, pointing out that the transcriptional growth rate regulation plays a fundamental role in the overall regulation of the gene expression machinery. Moreover, Chapter 8. A coarse-grained dynamical model of E. coli gene expression machinery 177 this GEM model could also be used as host-cell model where more complex/specific gene networks are embedded into it, or as a starting point for the design of synthetic genetic manipulations, which implement desired controls of the bacterial GEM.

Chapter 9

State estimation for gene networks with intrinsic and extrinsic noise:

A case study on E.coli arabinose uptake dynamics

The work presented in this chapter is the result of a collaboration I had with Eugenio Cinquemani (Inria Ibis team, Grenoble). A reduced version of this chapter has been presented at the European Control Conference (ECC) in 2013 [START_REF] Carta | State estimation for gene networks with intrinsic and extrinsic noise: A case study on e. coli arabinose uptake dynamics[END_REF].

We address state estimation for gene regulatory networks at the level of single cells. We consider models that include both intrinsic noise, in terms of stochastic dynamics, and extrinsic noise, in terms of random parameter values. We take the Chemical Master Equation (CME) with random parameters as a reference modelling approach, and investigate the use of stochastic differential model approximations for the construction of practical real-time filters. To this aim we consider a Square-Root Unscented Kalman Filter (SRUKF) built on a Chemical Langevin Equation (CLE) approximation of the CME. Using arabinose uptake regulation in Escherichia coli bacteria as a case study, we show that performance is comparable to that of a (computationally heavier) particle filter built directly on the CME, and that the use of information about parameter uncertainty allows one to improve state estimation performance.

We saw in Section 9.3 that, at least in our case study, the CLE provides a viable approximation of the CME, with the exception of a small bias. For state estimation purposes, the closed-loop correction of the estimates as new measurements become available is expected to compensate for this. Since, conditionally on θ, process x in (9.2) is an approximation of process X, it is natural to see the augmented process ξ = (x, θ) as an approximation of (X, θ), and to approximate the solution of Problem 2 by computing

. Following a well-known approach (see e.g. [START_REF] Dochain | State and parameter estimation in chemical and biochemical processes: a tutorial[END_REF]), the dynamics of ξ can be written by treating θ as an invariant state θ(t) with random initial condition. Combining θ(t) = 0 with Eq. (9.5) leads to the augmented Langevin system

with a priori distribution of θ(t) at time t 0 given by (9.3). Based on this, we address the following problem, slightly more general than the computation of

In the next section we will provide one solution based on a version of the so-called Unscented Kalman Filter (UKF) [START_REF] Julier | Unscented filtering and nonlinear estimation[END_REF]. i.e. more quantitatively, could be conducted. To this aim, the quantitative GEM model of Chapter 8 will help for searching more precise and dynamical growth rate formulas.

Eventually, once a satisfactory dynamical growth rate expression will be available, the quantitative model of Chapter 8 may evolve towards an even more refined E. coli GEM model, which will be valid in each phase of the bacterial growth, and not only in the exponential phase when the growth rate is simply constant.

Filtering applications of GRN models

A natural follow-up of the filtering method proposed in Chapter 9 would be that of application on real single-cell fluorescent data. Moreover, this filtering approach could also be employed as part of a tool for parametric identification of GRN with intrinsic and extrinsic noise or, more in general, for the identification of non-linear mixed-effects models with stochastic differential equations [START_REF] Donnet | A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models[END_REF][START_REF] Overgaard | Non-linear mixedeffects models with stochastic differential equations: implementation of an estimation algorithm[END_REF]. Another possible application would be that of using this filtering technique for the control of single-cell biochemical network dynamics via model-based control strategies [START_REF] Uhlendorf | Long-term model predictive control of gene expression at the population and single-cell levels[END_REF], which ultimately may also be useful for bacterial growth control.
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