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Résumé

Inflation Cosmologique: Aspects Théoriques et Contraintes Observationelles

Résumé

Dans cette thèse sur articles nous nous intéressons aux contraintes observationnelles sur les
modèles d’inflation cosmologique et nous étudions certains aspects fondamentaux liés à la na-
ture quantique de la physique inflationnaire. L’inflation est une période d’expansion accélérée
intervenant dans l’Univers primordial à très hautes énergies. En plus d’être une solution possi-
ble aux problèmes du modèle standard de la cosmologie dit du “big bang chaud”, combinée à
la mécanique quantique, l’inflation permet la production causale de fluctuations cosmologiques
sur les grandes échelles, qui sont à l’origine des structures cosmiques actuelles. Mettant en jeu
des énergies colossales au regard de ce qui peut être réalisé dans un accélérateur de particules,
l’inflation est devenue un objet d’intérêt majeur en cosmologie pour tester la physique des hautes
énergies au delà de son modèle standard.

Nous commençons par analyser de façon systématique tous les modèles inflationnaires à un
champ scalaire et avec terme cinétique standard, à la lumière des mesures du fonds diffus cos-
mologique les plus récentes. Dans l’approximation du roulement lent, et en intégrant les con-
traintes venant de la phase de réchauffement, nous dérivons les prédictions associées à environ
75 potentiels. Nous utilisons ensuite les techniques d’inférence Bayésienne pour classer près de
200 modèles inflationnaires et contraindre leurs paramètres. Cela permet d’identifier les modèles
favorisés par les observations et de quantifier les niveaux de tensions entre les différents jeux de
données. L’intérêt d’une telle approche est renforcé par l’étude de méthodes indépendantes du
modèle telle que le “flot de Hubble”, qui se révèle biaisé. Nous calculons également le spectre de
puissance au deuxième ordre pour les modèles d’inflation-k, afin de permettre leur intégration
future dans notre analyse numérique.

Dans une deuxième partie, nous décrivons certains aspects liés à la nature quantique de la
physique inflationnaire. Le formalisme de l’inflation stochastique, qui incorpore les corrections
quantiques aux dynamiques inflationnaires, est notamment utilisé dans le cadre du modèle à deux
champs d’inflation hybride. Nous discutons l’impact de ces corrections sur les prédictions de ce
modèle, et à l’aide d’un formalisme récursif, nous nous intéressons à la façon dont elles modifient
l’amplitude des perturbations. Finalement, la transition quantique-classique, et le problème de
la mesure quantique, sont étudiés dans un contexte cosmologique. Un modèle de réduction
dynamique du paquet d’onde est appliqué à la description des perturbations inflationnaires.

Mots Clés: cosmologie, inflation, fonds diffus cosmologique, inflation stochastique, inférence
Bayésienne et comparaison de modèles, perturbations quantiques.
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Abstract

Cosmological Inflation: Theoretical Aspects and Observational Constraints

Abstract

This thesis by publication is devoted to the study of the observational constraints on cosmological
inflationary models, and to the investigation of fundamental aspects related to the quantum
nature of the inflationary physics. Inflation is an early phase of accelerated expansion taking
place at very high energy. On top of being a solution for the hot big bang model problems,
combined with quantum mechanics, inflation provides a causal mechanism for the production
of cosmological fluctuations on large scales, that later give rise to today’s cosmic structures.
Given that it takes place at energy scales many orders of magnitude larger than what can be
achieved in conventional particle physics experiments, inflation has become of great interest to
test beyond standard model physics.

We first present a systematic analysis of all single-scalar-field inflationary models with canonical
kinetic terms, in light of the most up-to-date Cosmic Microwave Background (CMB) measure-
ments. Reheating consistent slow-roll predictions are derived for ∼ 75 potentials, and Bayesian
inference and model comparison techniques are developed to arrange a landscape of ∼ 200 in-
flationary models and associated priors. In this way, we discuss what are the best models of
inflation in light of the recent observations, and we properly quantify tension between data
sets. Related to this massive sampling, we highlight the shortcomings of model independent
approaches such as the one of “horizon-flow”. We also pave the way for extending our com-
putational pipeline to k-inflation models by calculating the power spectrum at next-to-next-to
leading order for this class of models.

In a second part, we describe some aspects related to the quantum nature of the inflationary
setup. In particular, we make use of the stochastic inflation formalism, which incorporates the
quantum corrections to the inflationary dynamics, in the two-field model of hybrid inflation. We
discuss how the quantum diffusion can affect the observable predictions in such models, and we
design a recursive strategy that incorporates its effects on the perturbations amplitude. Finally,
we investigate the quantum-to-classical transition and the quantum measurement problem in a
cosmological context. We apply a dynamical wavefunction collapse model to the description of
inflationary perturbations.

Keywords: cosmology, inflation, cosmic microwave background radiation, stochastic inflation,
Bayesian inference and model comparison, quantum perturbations.
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Introduction

Inflation is a phase of accelerated expansion that took place in the early Universe at very high
energy. Originally intended to dispose of some of the hot big bang shortcomings, it was soon
realized that inflation may be responsible for a powerful manifestation of our Universe’s quantum
nature. Indeed, the deviations from homogeneity and isotropy that give rise to today’s cosmic
structures (galaxies, clusters, filaments, etc.) can be traced back to the quantum fluctuations of
gravitational and matter fields during inflation. Stretched by the quasi-exponential expansion of
space-time to distances of cosmological interest today, these fluctuations serve as the primordial
seeds for inhomogeneities that later grow under the influence of gravitational instability. Inflation
has become a very active field of research in the past years, since the energy scales involved during
this early epoch are many orders of magnitude greater than those accessible in particle physics
experiments. Therefore, the early Universe is certainly one of the most promising probes to test
beyond standard model physics.

Another consequence of the fact that inflation takes place at energy scales where particle physics
remain unknown, is that the physical nature of the fields driving inflation, and their relation with
the standard model of particle physics, is still unclear. There have been a crowd of inflationary
candidates proposed so far, and an important task is to discriminate between them. On the
other hand, there is now a flow of increasingly accurate astrophysical data which provides us
with a unique opportunity to constrain the inflationary landscape. These data mostly consist
in measurements of the Cosmic Microwave Background (CMB), but they also concern other
astrophysical probes such as supernovae, galaxy surveys, and 21 cm observations. It becomes
therefore of paramount importance to be able to process such a huge amount of observational
data, comprising measurements that are very different in nature, with hundreds of inflationary
scenarios, often equally different. It is the first purpose of this thesis to design scientific and
technical tools enabling to carry out such a programme, and to determine which inflationary
models the data seem to prefer.

At the fundamental level, inflation is also probably one of the only cases in physics where an
effect based on General Relativity and Quantum Mechanics leads to predictions that, given our
present day technological capabilities, can be tested experimentally. This makes inflation an
ideal playground to discuss deep questions related to its quantum aspects. The other purpose
of this thesis is to study some of them, ranging from the quantum-to-classical transition of
cosmological perturbations, to the quantum corrections to the inflationary dynamics by means
of the stochastic inflation formalism.

The present manuscript is a thesis by publication. It presents the works realized at the Institut
d’Astrophysique de Paris between September 2011 and September 2014 under the direction of
Jérôme Martin. It first contains a brief presentation of the cosmological groundwork for our
analysis, which introduces the main aspects of the cosmological standard model and of inflation.
Mainly, this part I aims at providing the reader with the conceptual and technical tools that
may be helpful to the understanding of the results presented in part II. This second part collects
the research articles published during this thesis time (except from section 3.4 which, at the
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Introduction

time of drafting this manuscript, is going through the reviewing process).

More precisely, this document is organized as follows. In chapter 1, we review the cornerstones
of the standard model of modern cosmology. In the framework of General Relativity, we describe
homogeneous and isotropic universes and derive the associated Einstein equations. By an ex-
plicit comparison with the corresponding Newtonian physics, we highlight the deeply relativistic
nature of the expansion, especially its possible acceleration. We then give a brief description of
the main constituents of the Universe, and of the main lines of its history. Finally, we turn to
the presentation of the problems of the hot big band model, namely the horizon, flatness and
monopole problems. For each of these problems, we give a detailed calculation of its formula-
tion and show how it can be solved with a phase of accelerated expansion. In particular, we
characterize the number of e-folds that is required in each case.

In chapter 2, we review some aspects of cosmological inflation, the physical setups it relies on,
the predictions it makes and the fundamental issues it raises. We explain why and under which
conditions a single scalar field can support a phase of inflation and we present the “slow-roll”
approximation which enables to solve its dynamics perturbatively. It also provides us with a
convenient frame of calculation to compare inflationary predictions with observational data,
which we make widely use of in chapter 3. We then turn to the description of inflationary
perturbations, and show how cosmological fluctuations need to be quantized. For illustrative
purpose, we provide a detailed calculation of the power spectrum of scalar perturbations, at
first order in slow roll. Finally, we devote a large part of this second chapter to the presentation
of the stochastic inflation formalism which is used in chapter 4. We first present a detailed
heuristic derivation of the Langevin equation which is at the heart of this formalism, before
turning to the question of the time variable that should be used when solving such equations,
in order to reproduce results from Quantum Field Theories. Lastly, we address the issue of the
calculation of physical observable quantities in stochastic inflation, such as the power spectrum
of adiabatic perturbations. We show that the stochastic setup allows to reproduce the standard
result, before providing complete solutions which do not rely on an expansion in the noise term.
To our knowledge, this is the first time that such a non perturbative calculation of the power
spectrum in stochastic inflation is presented. It has not been pre-printed or published yet since
it has been derived in the course of drafting this manuscript.

We then turn to part II where the articles published during this thesis are presented and dis-
played. The first chapter, chapter 3, deals with a systematic analysis of all single-field inflation-
ary models with minimal kinetic terms, in light of the most up-to-date CMB data, especially
the ones coming from the Planck experiment and more recently from BICEP2. This somewhat
“industrial” project aims at deriving reheating consistent slow-roll predictions for ∼ 75 infla-
tionary potentials, and using Bayesian inference and model comparison techniques to arrange
a landscape of ∼ 200 inflationary models and well studied priors. In this way, one can discuss
which are the best models of inflation. This also allows us to assess the compatibility level of the
two data sets (Planck and Bicep2) given inflation, or given a specific inflationary model. The
relevance of such an approach is further advocated for in an article pointing out the shortcom-
ings of model independent parametrizations of inflation such as the one of “horizon flow”, and
another one paves the way for including single field k-inflation (i.e. non minimal kinetic terms)
models in our analysis, by calculating the power spectrum at next-to-next-to leading order for
this class of models.

In chapter 4, we turn to the description of some aspects related to the quantum nature of the
inflationary setup. In particular, the stochastic inflation formalism incorporates the quantum
corrections to the inflationary dynamics by means of stochastic Langevin equations. This gives
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rise to non trivial inflationary trajectories, especially when multiple fields are present. This
is why we study stochastic effects in hybrid inflation, a two-field model where inflation ends
by tachyonic instability, and we discuss how the quantum diffusion can affect the observable
predictions in such models. Making use of a recursive formalism for backreacting effects, we
also address the issue of evolving cosmological perturbations on top of stochastically shifted
backgrounds, in the same type of models. Finally, we investigate the quantum-to-classical
transition and the quantum measurement problem in a cosmological context. More precisely, we
apply the continuous spontaneous localization modification of the Schrödinger equation to the
case of inflationary perturbations. We establish what an efficient collapse of the wavefunction
implies for the inflationary predictions, and which constraints can be derived on the collapse
models themselves.

Finally, in a last section, we sum up our results and present some concluding remarks and
possible prospects for the present work.
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Part I.

Cosmology and Inflation
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1. The Cosmological Standard Model

In this chapter, we review the cornerstones of the standard model of modern cos-
mology. The Hot Big Bang scenario describes a series of events that occurred since
an initial singularity 13.7 billion years ago, and for which we now have accurate ob-
servational evidence. Questions left unanswered by this model are discussed, which
are solved by the introduction of an era of accelerated expansion in the early Uni-
verse. In this section, only a brief and partial overview of the standard cosmological
model is given, the various aspects of which are further detailed in a broad range of
textbooks [1, 2, 3, 4, 5, 6, 7, 8].

Considerations about the extent and the structure of the Universe exist in almost every culture
and seem to be intrinsic to the development of human awareness. In this sense, Cosmology is a
matter of concern which may be considered as old as mankind itself. However, for a very long
time, it consisted in a very speculative approach to metaphysical (more than physical) issues in
which philosophy or even religion were also at stake. This radically changed only in the first half
of the twentieth century with the advent of the theory of general relativity, which provided for
the first time a mathematical consistent framework for describing space and time. Cosmological
models, in which space is expanding, were derived from this theory and enabled to understand
many observations starting with galaxies receding. During these years, Cosmology was mainly
about describing and reconstructing a posteriori observational effects of this expansion. Then, in
the second half of the twentieth century, was formulated the hot big bang model, which includes
the description of physical processes occurring in this expanding space-time, and the associated
thermal history of the Universe. More recently, Cosmology has entered a precision era with the
inflow of high accuracy observational data such as the Cosmic Microwave Background (CMB)
measurements, galaxy and supernova surveys, 21 cm astrophysics data, forthcoming cosmic rays
and gravitational waves detectors, etc. Together with theoretical developments in high energy
and gravitational physics, this enabled to upgrade Cosmology to the status of a genuine Science,
i.e. a field of research in which falsifiable predictions can be made and tested.

1.1. The Homogeneous and Isotropic Universe

The distribution of galaxies and cosmological structures in space around us appears to be
isotropic on large scales [∼ O(100) Mpc] , which implies that space-time possesses a spher-
ical symmetry around us. This observational fact, combined with the Copernican principle1

which states that we should not live in a central or specially favoured position in the Universe,
leads to the conclusion that the Universe must be homogeneous on large scales. This is the

1The Copernican Principle is to be understood as opposed to the anthropocentrist view that human beings
should be at the center of the Universe. For example, the Aristotelian model of the solar system in the Middle
Ages placed the Earth at the center of the solar system, a unique place since it “appeared” that everything
revolves around the Earth. Nicolaus Copernicus demonstrated that this view was incorrect and that the Sun
was at the center of the solar system with the Earth in orbit around the Sun.
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Chapter 1. The Cosmological Standard Model

Figure 1.1.: Hubble diagram (i.e. velocity against distance) for extra-galactic nebulae, from the
1929 original paper [13] by Edwin Hubble. Such diagrams lead to the hypothesis
of an expanding universe with a linear expansion law v = Hr. The radial velocities
are obtained from redshift measurements and are corrected for solar motion, and
distances are estimated from involved stars and mean luminosities of nebulae in a
cluster. The black discs and full line represent the solution for solar motion using the
nebulae individually; the circles and broken line represent the solution combining
the nebulae into groups; the cross represents the mean velocity corresponding to the
mean distance of 22 nebulae whose distances could not be estimated individually.

so-called cosmological principle.

1.1.1. The Friedmann-Lemâıtre-Robertson-Walker Metric

The cosmological principle is a statement about the amount of symmetry present in the observ-
able Universe. As always in physics, this symmetry constrains and simplifies the mathematical
description of the system under consideration. In this manner, under the cosmological principle
symmetry, the metric of space-time ds2 = gµνdx

µdxν can be shown to be entirely determined
up to a free function of time, the scale factor a(t), and a discrete parameter K = −1, 0, 1 which
encodes the spatial curvature (open, flat or closed). With the (−,+,+,+) signature convention,
it is of the form [9, 10, 11, 12]

ds2 = −dt2 + a2(t)

[

dr2

1−Kr2 + r2
(

dθ2 + sin2 θdφ2
)

]

(1.1)

and is called the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. In this parametriza-
tion, t is the cosmic time, r is the comoving radial coordinate which is unitless, θ and φ are the
comoving angular coordinates, and a(t) has units of length.2

1.1.1.1. The Hubble Law

From the FLRW metric (1.1), one can see that the physical distance Lphys between two points
measured on a constant t hypersurface scales as the scale factor a, that is to say

Lphys = a(t)Lcom , (1.2)

2Hereafter and unless stated otherwise, we work in the unit system where c = ~ = kB = 1.
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1.1. The Homogeneous and Isotropic Universe

Figure 1.2.: Comparison of H0 measurements, with estimated of ±1σ errors, from a number
of different astrohphysical techniques, and compared with the spatially-flat ΛCDM
model constraints from Planck and WMAP9. Image Credit: Ref. [15].

where Lcom is the so-called comoving distance, which is constant in time for still objects in the
FLRW frame. The scale factor a thus sets the overall expansion (or contraction) level of space
hypersurfaces, hence its name. Another consequence of the FLRW metric is a linear relation
between distance and velocity. Indeed, from differentiating Eq. (1.2) with respect to cosmic time
t, one obtains

v =
dLphys

dt
=
ȧ

a
Lphys = HLphys , (1.3)

where we have defined the Hubble parameter H ≡ ȧ/a. This is the so-called Hubble law. It was
first observed in 1929, as presented in Fig. 1.1, where the current value of H, that we denote H0,
was determined to be of the order of 500 km/sec/Mpc. As we will see below, this value contains
valuable information about the content of the Universe and this is why it has been the object
of much research effort. The first good estimation was realized in 1958 in Ref. [14], where the
value 75 km/sec/Mpc was obtained. Finally, the most up to date measurements provided by
the Planck mission [15] gave the value 67.80± 0.77 km/sec/Mpc for the value of H0. This value
is rather low compared with previous measurements, see Fig. 1.2, and the tension between the
CMB-based estimates in the ΛCDM model and the astrophysical measurements of H0 is still
intriguing [15, 16, 17, 18, 19, 20, 21].

The reduced Hubble parameter h is also often used, and is defined as

H0 = 100h km/sec/Mpc . (1.4)

The Hubble parameter sets the fundamental physical scale of space-time. It provides a charac-
teristic time scale H−1

0 ≃ 4.551× 1017 sec called the “Hubble time” and a characteristic length
scale H−1

0 ≃ 1.364 × 1026m called the “Hubble radius”. As we will see later, the Hubble time
sets the scale for the age of the Universe, and the Hubble length sets the scale for the size of the
observable Universe. These values are displayed in table 1.2 where we collect all the numerical
values given and used throughout this section 1.
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Chapter 1. The Cosmological Standard Model

1.1.1.2. Redshift and Comoving Coordinates

Another interesting property of FLRW space-times is that light gets redshifted as its travels,
due to the time dependence of the scale factor. Let us consider an emitting object at rest in the
comoving coordinates system, with radial coordinate r1, while an observer is located at r0 = 0.
Light is emitted from this first object at time t1 with frequency ν1, and received by the observer
at time t0 with frequency ν0. Let us determine the relation between ν0 and ν1. Since light travels
along geodesics with ds = 0, radial light path traveling towards the observer (dθ = dφ = 0 and
dr/dt < 0) follows

dt

a (t)
=

dr√
1−Kr2

. (1.5)

Now consider the emission of two subsequent crests of a light wave. The first one is emitted at
(t1, r1) and received at (t0, 0) while the second one is emitted at (t1 + δt1, r1) and received at
(t0 + δt0, 0). From Eq. (1.5), one has

∫ 0

r1

dr√
1−Kr2

=

∫ t0

t1

dt

a(t)
=

∫ t0+δt0

t1+δt1

dt

a(t)
. (1.6)

Subtracting the third integral from the second, in the limit δt0 , δt1 ≪ a/ȧ, one obtains

δt0
a (t0)

=
δt1
a (t1)

. (1.7)

Since the time delay δt between two crests is nothing but the inverse frequency, one obtains

ν1
ν0

=
a (t0)

a (t1)
= 1 + z , (1.8)

where the last equality defines the redshift z. This quantity only depends on the ratio of the
scale factor at reception to the scale factor at emission.

In terms of wavelength λ, Eq. (1.8) gives λ0/λ1 = a(t0)/a(t1). We see that the wavelength of
light just contracts and stretches with the scale factor λ ∝ a. Another way to look at this is
to say that a photon traveling through an FRLW space-time loses momentum as the Universe
expands,

p = hν ∝ a−1 (t) . (1.9)

As shown in appendix 1.A, see Eqs. (1.95) and (1.96), this momentum loss applies to massive
particles as well as photons, and any particle moving in an expanding FLRW space-time loses
momentum as p ∝ a−1. This means that a massive particle asymptotically comes to rest relative
to the comoving coordinates system. Thus, comoving coordinates represent a preferred reference
frame which is such that any free body with a peculiar velocity relative to the comoving frame
eventually comes to rest in this frame.

1.1.1.3. Einstein Equations

The Einstein-Hilbert action [22, 23, 24] describes the dynamics of space-time metrics, and reads

Sgrav =
1

2κ

∫

d4x
√−g (R− 2Λ) , (1.10)

where κ ≡ 8πG = 8π/m2
Pl = 1/M2

Pl, where G is the Newton gravitational constant, mPl is the
Planck mass and MPl ≃ 2.4 × 1018 GeV is the reduced Planck mass. In the above expression,
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1.1. The Homogeneous and Isotropic Universe

Λ is a cosmological constant, g is the determinant of gµν and R is the Ricci curvature scalar
R ≡ gµνRµν . It is constructed from the Ricci tensor Rµν = 2Γρ

µ[ν,ρ] + 2Γρ
λ[ρΓ

λ
ν]µ, where brackets

mean anti-symmetrization over the indices and where the Christoffel symbols are given by Γρ
µν =

1
2g

ρλ (∂νgλµ + ∂µgλν − ∂λgµν).

To this action should be added a part Smatter =
∫

Lmatter
√−gd4x describing matter in the

Universe. When varying these two action terms with respect to gµν , one obtains two tensors,
namely the Einstein tensor Gµν defined as

Gµν + Λgµν ≡ 2κ√−g
∂Sgrav

∂gµν
= Rµν −

1

2
Rgµν + Λgµν (1.11)

for the gravity part, and the energy-momentum tensor

Tµν ≡ − 2√−g
∂Smatter

∂gµν
= gµνLmatter − 2

δLmatter

δgµν
(1.12)

for the matter part. This leads to the well-known Einstein equations

Gµν + gµνΛ = κTµν . (1.13)

Let us now work out the two tensors Gµν and Tµν for an FLRW metric. When the metric (1.1)
is plugged into the definition (1.11), one obtains (a detailed calculation is provided in appendix
1.A)

G00 = 3

(

H2 +
K
a2

)

, Gij = −
(

H2 + 2
ä

a
+

K
a2

)

gij , (1.14)

where the index 0 is for time t, and the indexes i and j are for space coordinates so that gij is
just the spatial part of the full metric gµν .

Given the symmetries of space-time, one can show that the most generic form of the energy-
momentum tensor is given by

Tµν = ρuµuν +
p

a2
gµν , (1.15)

where gµν = gij when µ and ν are space indexes and 0 otherwise. In the above expression,
ρ and p are two constants depending on time only, and uµ is the four velocity of a comoving
observer for whom space is homogeneous and isotropic. One thus has uµ = δµ,0, where δ is the
Krönecker symbol. Since p is associated to the spatial part of the tensor, it can be interpreted
as the pressure of matter, while ρ = Tµνu

µuν is the energy density measured by a comoving
observer. The above form of Tµν is entirely fixed by the cosmological principle. Finally, let us
mention that the time component of the conservation relation ∇µT

µν = 0 leads to

ρ̇+ 3H (ρ+ p) = 0 . (1.16)

Heuristically, this equation can be understood as a translation of the first law of thermodynamics,
dU = −pdV , with U = ρV and V = a3.

1.1.2. An Expanding Universe

Let us now detail how this general relativistic framework allows to relate the dynamics of the
expansion of space-time to the matter content properties of the Universe.
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Chapter 1. The Cosmological Standard Model

1.1.2.1. Friedmann and Raychaudhuri Equations

If one plugs the above expressions for Gµν , Eqs. (1.14), and for Tµν , Eq. (1.15), in the Einstein
equation (1.13), one obtains the two following dynamical equations

H2 =
κ

3
ρ− K

a2
+

Λ

3
, (1.17)

ä

a
= −κ

6
(ρ+ 3p) +

Λ

3
. (1.18)

These two equations are known as the Friedmann [25] and the Raychaudhuri [26] equations,
respectively. Because of the Bianchi identities, when combined together, one can check that
they account for the conservation equation (1.16).

The Friedmann equation relates the change of the scale factor of the Universe to its energy
density, spatial curvature and cosmological constant. If the Universe is assumed to be flat
(K = 0) and if the cosmological constant vanishes (Λ = 0), this means that the only presence
of energy will cause the Universe to expand (H > 0) or to contract (H < 0). In the following,
we shall mostly consider expanding universes, even if contracting universes are key ingredients
of some cosmological models [27, 28, 29, 30, 31, 32, 33, 34].

From the Raychaudhuri equation, one can notice that in absence of a cosmological constant,
any form of matter such that ρ+ 3p < 0 will cause an acceleration of the scale factor ä > 0 if it
dominates the energy budget of the Universe. The energy density is always positive, but in some
cases the pressure can be negative and the inequality ρ + 3p < 0 may be realized. This simple
property is deeply rooted in the inflationary scenario and will be discussed in more details in
chapter 2. As we shall now see, it is intimately related to the fundamental principles of general
relativity.

1.1.2.2. The Newtonian Expanding Sphere

In order to highlight the relativistic effects in the above setup more clearly, let us derive the
Newtonian version [35, 36, 37] of the Friedmann and Raychaudhuri equations. In Fig. 1.3, we
sketch the case of an expanding sphere of radius a filled with uniform matter with mass density
ρ. Let us consider a particle of massm sitting on the out-shell of this sphere. The Gauss theorem
states that the gravitational attractive force seen by such a particle is given by GmM/a, where
M = 4/3πρa3 is the integrated mass of the sphere. Its acceleration being simply ä, the second
Newton law gives rise to mä = −MGm/a, i.e.

ä

a

∣

∣

∣

∣

Newton

= −4

3
πρG = −κ

6
ρ . (1.19)

This matches the Raychaudhuri equation (1.18) without cosmological constant and without the
pressure term. This is why in Newtonian mechanics, one must have ä < 0 and the expansion of
the sphere can only decelerate. The reason why acceleration is allowed in the general relativistic
setup is because all forms of energy gravitate, including pressure.3 As a consequence, the
presence of pressure in the Raychaudhuri equation is a crucial signature of the relativistic nature

3Acceleration of FRLW space-times is actually one of the only manifestations of pressure’s self-gravity [38],
otherwise tested only in the context of big bang nucleosynthesis [39] where it is necessary to account for
current light element abundances. For example, even in compact objects such as neutron stars, pressure’s
self-gravity is immeasurable given uncertainties on the equation of state [40, 41].

8



1.1. The Homogeneous and Isotropic Universe

Figure 1.3.: Homogeneous sphere in Newtonian radial expansion.

of the setup. Indeed, in newtonian mechanics, masses source the gravity field, but relativity
relates mass to energy. Since energy is not a relativistic invariant but mixes up with momentum
when changing frames, momentum, hence pressure, naturally comes into play in a relativistic
context.

It is also interesting to calculate the newtonian energy ENewton of the sphere of Fig. 1.3. In order
to do this, we first need to derive the velocity profile v(r) of the sphere radial expansion. When
diluting, let us assume that the mass density scales as the inverse of the volume to some power
1 + w, ρ ∝ V −(1+w) (where for ordinary “newtonian” matter, w = 0). One can first show4 that
its evolution is given by

ρ̇ = − (w + 1)

[

v′ (r) + 2
v (r)

r

]

ρ . (1.20)

In order for the sphere to remain homogeneous (i.e. to be such that ρ, hence ρ̇, does not depend
on r), the term factorizing ρ in the right hand side of the previous relation should not depend
on r, i.e. one must have v′ + 2v/r = constant. This leads to the two-branch solution

v (r) = Ar +
B

r2
(1.21)

for the radial velocity, where A and B are two integration constants that can only depend on
time. In this manner the sphere is and remains homogeneous. However, there is no reason why
it should be isotropic. Indeed, even if the sphere is taken to be infinite, the direction pointing
towards its center is a priori a privileged direction. This is not the case only if the velocity
law (1.21) v(r) is valid not only for r being the distance between the center of the sphere and
one of its shells, but for r being the distance between any two points within the sphere. As we
shall now see, this selects out one of the two branches of the solution (1.21). Let us thus consider

4Two shells of radius r1 and r2 = r1 + dr respectively become, after a dt long expansion, two shells of radius
r′1 = r1 + v(r1)dt and r′2 = r1 + dr + [v(r1) + v′(r1)dr] dt. The volume contained between these two shells
thus evolves from V = 4πr21dr to V ′ = 4πr′1

2
(r′2 − r′1) ≃ V [1 + 2v(r1)/r1dt+ v′(r1)dt]. From here one gets

dV/dt = V (v′ + 2v/r), and with ρV w+1 = constant, Eq. (1.20).
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Chapter 1. The Cosmological Standard Model

two points of radial distances r1 and r2 respectively, and with angular separation θ as in Fig. 1.3.
The distance between these two points is simply given by d12 =

√

r21 + r22 − 2r1r2 cos θ. Since θ
is conserved through the radial expansion, its time variation is

ḋ12 =
r1v (r1) + r2v (r2)− [r2v (r1) + r1v (r2)] cos θ

d12
. (1.22)

On the other hand, if the velocity law (1.21) is isotropic, one must have

ḋ12 = v (d12) . (1.23)

When the velocity law (1.21) is used in the identification of Eqs. (1.22) and (1.23), it is straight-
forward to see that B = 0. Only the first branch remains, and one has

v (r) = Hr , (1.24)

where we have renamed H ≡ A = ȧ/a = ṙ/r, which can only depend on time. In a cosmological
context, one recovers the Hubble law previously mentioned. In particular, it is in order to stress
that it eventually does not depend on the volume scaling power index w.

We are now in a position where we can calculate the energy of the sphere. It is given by the
sum of its integrated kinetic energy and its integrated potential energy, that is

ENewton =

∫ a

0

1

2
(4πr2drρ)(rH)2 −

∫ a

0

G

r

(

4πr2drρ
)

(

4

3
πr3ρ

)

=
2

5
πρa5H2 − 16π2

15
Gρ2a5

=
2

5
πa5ρ

(

H2 − κ

3
ρ
)

. (1.25)

Remembering that ρ scales as V −(w+1) ∝ a−3(w+1), one obtains

H2 =
κ

3
ρ+

5ENewton

2πρ0a
3(w+1)
0

1

a2−3w
. (1.26)

When the Newtonian energy vanishes, one obtains the Friedmann equation (1.17) in absence of
cosmological constant and curvature, the presence of which is therefore a truly relativistic effect.
In passing, let us notice that when ENewton 6= 0 and for ordinary matter (such that w = 0), the
second term in the right hand side of Eq. (1.26) plays a role similar to the one of curvature in
Eq. (1.17), which scales as a−2 and which can be either positive or negative.

A last remark is in order about the conservation equation. In Newtonian mechanics, if one
replaces v(r) = Hr in Eq. (1.20), one obtains the conservation equation ρ̇ + 3(w + 1)Hρ = 0,
which, in passing, matches Eq. (1.16) if p = wρ. This relation is fairly trivial since it just states
that ρ ∝ V −(1+w). Thanks to this conservation law, one can check that the two equations (1.19)
and (1.26) are actually equivalent when w = 0. This is just a consequence of the fact that the
conservation of mechanical energy is equivalent to the second Newton law, i.e. that Newtonian
mechanics derives from a potential. However, in the case of general relativity, the conservation
equation (1.16) is not trivial at all and is required to relate the Friedmann and Raychaudhuri
equations. One thus really have two independent dynamical equations.
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1.1. The Homogeneous and Isotropic Universe

fluid equation of state parameter w ρ(a) a(t)

cold matter 0 ∝ a−3 ∝ t2/3

radiation 1/3 ∝ a−4 ∝ t1/2

spatial curvature −1/3 ∝ a−2 ∝ t

cosmological constant −1 ∝ a0 ∝ exp (Ht)

scalar field −1 + 2ǫ1/3 ∝ a−2ǫ1 t1/ǫ1

Table 1.1.: Equation of state parameter w for a few fluid examples, with corresponding
ρ(a) (1.27) and a(t) (1.30) profiles.

1.1.2.3. Constant Equations of State

It is interesting to notice that the conservation equation (1.16) can be solved in the simple case of
a single ideal fluid where the energy density and the pressure are related by a constant equation
of state parameter w ≡ p/ρ. One obtains

ρ = ρin

(

a

ain

)−3(1+w)

. (1.27)

The equation of state parameter of cold matter is simply wmat = 0 so that the energy density
scales as the inverse volume ρmat ∝ a−3, while the equation of state parameter of radiation
is wrad = 1/3 so that the associated energy density scales as ρrad ∝ a−4, which includes both
volume dilution effect (∝ a−3) and wavelength redshift (1.8) (∝ a−1). From the Friedmann
equation (1.17), one can also associate an energy density to curvature ρK ≡ −3K/(κa2) and to
the cosmological constant ρΛ ≡ Λ/κ, so that the Friedmann equation reads

H2 =
κ

3
(ρmatter + ρK + ρΛ) ≡

κ

3
ρT , (1.28)

where ρT denotes the “total” energy density. Here, ρmatter can include ordinary cold matter,
radiation, or any other Universe constituent. Since ρK ∝ a−2, this means that curvature can be
viewed as a fluid constituent with equation of state parameter wK = −1/3. In the same manner,
ρΛ is constant and can be viewed as a fluid constituent5 with equation of state parameter
wΛ = −1. These values for the equation of state parameters are summarized in table 1.1. The
last entry corresponds to a scalar field and will be further explicated in chapter 2.

Interestingly enough, since pΛ = wΛρΛ = −ρΛ, the Λ/3 term in the right hand side of Eq. (1.18)
can also be written −κ/6(ρΛ+3pΛ). In the same manner, since pK = −ρK/3, adding a −κ/6(ρK+
3pK) = 0 to the right hand side of Eq. (1.18) does not change it, so that similarly to Eq. (1.28),
the Raychaudhuri equation can be written as

ä

a
= −κ

6
[ρmatter + ρΛ + ρK + 3 (pmatter + pΛ + pK)] = −κ

6
(ρT + 3pT) , (1.29)

where pT denotes the “total” pressure. This is why, as far as the two dynamical equations (1.17)
and (1.18) are concerned, the curvature can be viewed as an ideal fluid constituent with equation

5This should not come as a surprise since the conservation relation ∇µT
µν = 0 is invariant under the redefinition

Tµν → Tµν + Λgµν . This is the reason why a cosmological constant can actually be thought of as being part
of the matter side of the Einstein equations.
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Chapter 1. The Cosmological Standard Model

of state parameter wK = −1/3 and the cosmological constant can be viewed as an ideal fluid
constituent with equation of state parameter wΛ = −1.

If the scale factor a evolves monotonously with time, the right hand side of the Friedmann
equation (1.28) soon gets dominated by a single fluid (the one with the smallest w if space
expands, or the one with the largest w if space contracts). In this limit, it can be integrated,
leading to

a (t) =



















ain

[

1± 3

2
(1 + w)

√

ρin
3

t− tin
MPl

]

2
3(1+w)

if w 6= −1

ain exp

(

±
√

ρin
3

t− tin
MPl

)

if w = −1

, (1.30)

where ain and tin are two integration constants. The sign ± depends on whether space is
expanding (plus sign, H > 0) or contracting (minus sign, H < 0). In what follows, only the case
of an expanding space will be considered. The ρ(a) shape (1.27) and the a(t) shape (1.30) are
also given in table 1.1 for the fluids mentioned so far.

Finally, it is interesting to notice that the conservation equation (1.16) can also be integrated
when the Universe is made of a collection of ideal independent fluids with equations of state
wi = pi/ρi. In this case indeed, the conservation equation gives rise to

∑

i

[ρ̇i + 3H (1 + wi) ρi] = 0 . (1.31)

One of the solutions is of course when all the terms of the above sum vanish. Physically, this
corresponds to a situation of non interacting independent fluids, where there is no energy transfer
from one fluid to another. Obviously, in this case the scaling solution (1.27) applies for all the
fluids, and the total energy density is given by

ρT =
∑

i

ρini

(

a

ain

)−3(1+wi)

. (1.32)

Unfortunately however, in this case the Friedmann equation H2 = κρT/3 cannot be integrated
analytically.

1.2. The Present Composition of the Universe

Thanks to Eq. (1.32), we now know how the energy density of each constituent of the Universe
evolves with time, at least provided its equation of state parameter is constant. Therefore, up
to potential energy transfer between constituents, it is enough to know the energy densities at
a single time (most conveniently, now) to derive their value at any other time. This is why we
now discuss the present composition of the Universe.

To this end, we first define the critical density ρcrit with respect to the Hubble parameter,

ρcrit =
3

κ
H2 . (1.33)

The total energy density ρtot is the sum of all contributions but the curvature one, ρtot = ρT−ρK.
If one writes ρtot =

∑

i ρi, each part ρi stands for an ideal fluid i with its own equation of state
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1.2. The Present Composition of the Universe

Figure 1.4.: Current Energy Composition of the Universe.

parameter wi. The dimensionless quantities Ωi = ρi/ρcrit then allow to re-write the Friedmann
equation (1.28) simply as

Ωtot =
∑

i

Ωi = 1− ΩK , (1.34)

where we stress again that the curvature term (which, contrary to the others, can be either
positive or negative) is treated separately. In the present Universe, the components contributing
to this relation have the following weights.6

Radiation

Most of the photons present in the Universe belong to the Cosmic Microwave Background, see

section 1.3.3. They represent a tiny fraction of ρtot, with [15] Ω
(0)
rad ≈ 9.3× 10−5.

Baryonic Matter

The contribution from ordinary matter (i.e. the one we find in atoms, nuclei, etc.) to Ωtot

is dominated by cold baryons (strongly interacting composite subatomic particles made up of
three quarks) which are much heavier than leptons (elementary spin 1/2 particles that do not
undergo strong interaction, such as electrons or neutrinos). However, they only amount to [15]

Ω
(0)
b ≈ 0.049.

Nonbaryonic (or “Dark”) Matter

In order to consistently explain many observational facts, ranging from galaxy rotation curves
and large scale structure formation to the CMB statistics, it is common to postulate the existence
of another non-relativistic matter component in the Universe, with w = 0 as well, referred to as

“dark matter”. Its current contribution is [15] Ω
(0)
dm ≈ 0.268 and therefore, it strongly dominates

over ordinary matter. The nature of dark matter is obviously the subject of active study.

6All quantities referring to their current (present-day) value are designated by a subscript (or occasionally a
superscript) “0” or “(0)”.
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Curvature

When K = 0, the Universe is globally flat. If K = ±1 however (K = 1 corresponds to a
closed universe while K = −1 corresponds to an infinite universe), there should be a curvature
component in the current Universe energy budget. However, it has not been detected yet, and all

the observations made so far are still consistent with Ω
(0)
K ≃ 0. The current constraints give [15]

100Ω
(0)
K = −0.10+0.62

−0.65 at 95% confidence level.

Dark Energy

Evidently, after summing over radiation, baryonic and non-baryonic matter, the bulk part of
the Universe’s energy density is still missing. Together with evidence from a recent acceleration
in the expansion of the Universe, this motivates the introduction of a missing fluid named “dark
energy”, with an equation of state parameter w ≃ −1. This is why the cosmological constant Λ
(for which w = −1 exactly) is one of the candidates for dark energy, even if as for dark matter,
the nature of dark energy is the subject of active study (for a nice review, see Ref. [42]). It

accounts for the major contribution to Ω
(0)
tot, i.e. [15] Ω

(0)
de ≈ 0.683 .

The values mentioned here are given in table 1.2. The relative contributions of these constituents
is also displayed in Fig. 1.4. One can see that the Universe is currently dominated by fluids the
physical nature of which is still not well understood (dark matter and dark energy). This gives
us an idea of the theoretical effort still needed to build a complete and standard description of
cosmology.

1.3. The History of the Universe: the Hot Big Bang Model

In the previous section, we have stated the current values of the energy fractions Ω
(0)
i for the

Universe main components. Combined with the dynamical considerations of section 1.1.2, this
enables us to now infer the main lines of the history of the Universe.

1.3.1. Dominant Constituant

Plugging the previously given values for Ω
(0)
i in Eq. (1.32), ρtot/ρcri =

∑

iΩ
(0)
i (a/a0)

−3(1+wi),
allows us to discuss the way ρtot varies with a. The result is displayed in the left panel of
Fig. 1.5. The black dashed line stands for the total sum, while the coloured lines follow each
of its components. Because of the different scalings with a, each component of the Universe
dominates its content at a different epoch (called “eras” in what follows).

The Universe is currently dominated by dark energy which means that ρtot ≃ constant. Since
cold matter ρmat ≡ ρdm+ ρb scales as a−3, its contribution increases when moving backwards in
time and becomes larger than the one of dark energy at some point aacc defined by ρmat (aacc) =

ρde (aacc), i.e. aacc/a0 =
[

Ω
(0)
mat/Ω

(0)
de

]1/3
. Here, the subscript “acc” stands for the onset of the

dark energy phase.7 When a < aacc, the Universe is dominated by cold matter and one has

7One should note that contrary to what the notation may suggest, acceleration of the expansion does not begin
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1.3. The History of the Universe: the Hot Big Bang Model

Figure 1.5.: Left panel: energy density (1.32) of the Universe constituents [scaled by the current

critical density ρ
(0)
cri ] as a function of the scale factor a. The black dashed line stands

for the sum of all contributions. The Universe history is made of a radiation era
(a < aeq), followed by a matter era (aeq < a < aacc) and more recently a cosmological
constant era (a > aacc). Right panel: scale factor a as a function of cosmic time
t. The black line corresponds to the numerical integration of Eq. (1.42), and the
coloured lines stand for the piecewise approximated solution (1.38). Both panels

make use of Ω
(0)
K = 0 and the values of Ω

(0)
i recalled in table 1.2, and dark energy is

described by means of a cosmological constant (wde = wΛ = −1.)

ρtot ∝ a−3 and a ∝ t2/3, see Eq. (1.30).

It can be more convenient to label time t with the redshift z of a photon emitted at time t and
reaching its observer now, defined in Eq. (1.8) as

1 + z =
a0
a
. (1.35)

With this definition, the transition redshift between matter and dark energy eras is given by

zacc =

[

Ω
(0)
de

Ω
(0)
mat

]1/3

− 1 . (1.36)

With the values of Ω
(0)
i recalled in table 1.2, one obtains zacc ≃ 0.29.

Then, since radiation decays faster (ρrad ∝ 1/a4) than matter, its contribution with respect to
matter increases when moving backwards in time. Therefore, it dominates the Universe content
when a < aeq, where aeq is defined by ρmat (aeq) = ρrad (aeq), giving rise to

zeq =
Ω
(0)
mat

Ω
(0)
rad

− 1 . (1.37)

at aacc exactly, since this occurs slightly before when ρde = ρmat/2.
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Chapter 1. The Cosmological Standard Model

Figure 1.6.: Age of a flat universe as a function of zeq and zacc. The displayed value correspond
to a numerical integration of Eq. (1.43).

With the values of Ω
(0)
i recalled in table 1.2, one obtains zeq ≃ 3402. Here, the subscript “eq”

stands for “equality” between matter and radiation. When a < aeq (or equivalently z > zeq),
the Universe is dominated by radiation, ρtot ∝ a−4 and a ∝ t1/2.

To conclude, the Universe history is made of three main phases: a radiation era for z > zeq
during which ρtot ∝ 1/a4 and a ∝ t1/2, a matter era for zacc < z < zeq during which ρtot ∝ 1/a3

and a ∝ t2/3, and a dark energy era for z < zacc during which ρtot ≃ constant and a ∝ eHt.
These three eras can clearly be seen on the left panel of Fig. 1.5. In this discussion, the role
played by curvature has not been included. Indeed, since ρK decays slower than, say, ρmat,

ρ
(0)
K ≪ ρ

(0)
mat implies that this inequality holds at any previous time, and curvature can never

have dominated the Universe content. This is why in Fig. 1.5 and in this section 1.3, we consider

a flat universe for which Ω
(0)
K = 0.

1.3.2. Age of the Universe

When the Universe is dominated by an ideal fluid, the a(t) profile has been derived in Eq. (1.30).
Neglecting the transition phases between the three above mentioned eras (during which there
are two equally important main constituents), we can therefore derive an approximated piece-
wise form for a(t) spanning the whole Universe history. The integration constants ρin and tin
appearing in Eq. (1.30) can be set by requiring continuity of a and ȧ at the transition times (so
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1.3. The History of the Universe: the Hot Big Bang Model

that H is continuous), and one obtains

a(t)

a0
≃























exp [H0 (t− t0)] if t > tacc

1
1+zacc

[

1 + 3
2H0 (t− tacc)

]2/3
if teq < t < tacc

1
1+zeq

[

1 + 2
(

1+zeq
1+zacc

)3/2
H0 (t− teq)

]1/2

if tBB < t < teq

. (1.38)

Here, tacc is the transition time between the matter era and the dark energy era and teq is the
transition time between the radiation era and the matter era. They are such that

H0(t0 − tacc) = ln (1 + zacc) , (1.39)

H0(tacc − teq) =
2

3
− 2

3

(

1 + zacc
1 + zeq

)3/2

. (1.40)

The piecewise function a(t) defined by Eq. (1.38) is displayed in the right panel of Fig. 1.5
(coloured lines, each colour corresponds to a different era). It is interesting to notice that when
moving backwards in time, a goes to 0 in a finite amount of time. The corresponding singularity
is called the Big Bang. Looking at Eq. (1.38), it occurs at the time tBB given by

t0 − tBB ≃ H−1
0

[

2

3
+ ln (1 + zacc)−

1

6

(

1 + zacc
1 + zeq

)3/2
]

. (1.41)

One can see that as mentioned in section 1.1.1, the age of the Universe is of the order of the
Hubble time H−1

0 . More precisely, with the values given in table 1.2, one obtains t0 − tBB ≃
0.92H−1

0 ≃ 1.33× 1010 year.

Obviously, the Friedmann equation (1.28) can also be solved exactly, that is the integral

t− t0 = H−1
0

∫ a/a0

1

d (ã/a0)
√

∑

iΩ
(0)
i

(

ã
a0

)−1−3wi

(1.42)

can be computed numerically. The result is displayed with the black line in the right panel of
Fig. 1.5. The matching with the piecewise approximation is fairly good. With the parameter
values recalled in table 1.2, this leads to a slightly different value for the age of the Universe, that
is t0 − tBB ≃ 0.95H−1

0 ≃ 1.37 × 1010 year. Actually, since the approximated expression (1.41)
for the age of the Universe is given in terms of zeq and zacc, it can be useful to express the
integral (1.42) in terms of these two variables only. One obtains for the age of the Universe

t0 − tBB = H−1
0

√

1 +
1

1 + zeq
+ (1 + zacc)

3 ×

∫ ∞

0
dz

[

(1 + z)5 +
1

1 + zeq
(1 + z)6 + (1 + zacc)

3 (1 + z)2
]−1/2

. (1.43)

One can numerically check that Eqs. (1.41) and (1.43) give similar results as soon as zeq > zacc,
and that the age of the Universe increases only mildly with zeq, and more notably with zacc.
The integral (1.43) is displayed in Fig. 1.6 as a function of zeq and zacc.
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Chapter 1. The Cosmological Standard Model

Figure 1.7.: Main events in the Cosmological Standard Scenario.

1.3.3. A Brief Cosmological History

The cosmological redshift (1.8) gives a rule for the behaviour of a black-body spectrum of
radiation with temperature Tγ . Indeed, since all photons redshift as exactly the same rate
λ ∝ a−1, a system which starts out as a black-body stays as a black-body, with a temperature
that decreases with expansion,

Tγ ∝ a−1 . (1.44)

Therefore, when one goes backwards in time during the radiation era, temperature increases as
1/a. In particular, this means that the initial singularity is also a point of infinite temperature.
This leads us to the standard hot Big Bang picture of the Universe: a cosmological singularity
at finite time in the past, followed by a hot, radiation dominated expansion, during which the
Universe gradually cools down as T ∝ a−1 and the radiation dilutes, followed by a period of
matter dominated expansion during which galaxies, stars and planets form. Finally, the vacuum
energy inevitably dominates and the Universe enters a state of exponential expansion.

This simple picture allows us to infer the presence of a few notable events that we now briefly
recap, and that are summarized in Fig. 1.7 with orders of magnitude about time, energy and
temperature at which these events occur. As one goes backwards in time, one can check that
energy or temperature increases.

Inflation takes place at t . 10−35 s and is the object of section 1.4 and chapter 2 (in this section,
times are given as elapsed since the initial singularity). This is why we start out our description
afterwards, when the Universe is made of a hot plasma containing the fundamental particles of
the standard model, at t ∼ 10−35 s.

At t ∼ 10−11 s occurs the electroweak phase transition which breaks the SU(2)×U(1) symmetry
of the electroweak field into the U(1) symmetry of the present day electromagnetic field [43,
44, 45, 46, 47, 48, 49]. This transition may be important to understanding the asymmetry
between the amount of matter and antimatter in the present Universe through a process of
baryogenesis [50, 51, 52, 53, 54]. It occurs at the electroweak scale which is often taken to be at
the Higgs vev, around 246 GeV.

In the same manner, around t ∼ 10−6 s, a phase transition (associated with chiral symmetry
breaking) occurs that converts a plasma of free quarks and gluons into hadrons [55, 56, 57, 58,
59, 60]. This quark-hadron transition may play an important role in the generation of primordial
magnetic fields [61]. It may also give rise to important baryon number inhomogeneities which can
affect the distribution of light element abundances from primordial Big Bang nucleosynthesis [62]
(see below). It occurs when the temperature drops below the rest energy of nucleons, around
938 MeV.
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1.3. The History of the Universe: the Hot Big Bang Model

Figure 1.8.: Big Bang Nucleosynthesis. Light elements abundances (relative to hydrogen) as a
function of the density of ordinary matter Ωb and of its density relative to photons
Ωb/Ωrad at time of nucleosynthesis. The WMAP satellite has been able to directly
measure this ordinary matter density and found a value [63] of 4.6%(±0.2%), in-
dicated by the vertical red line. This leads to predicted abundances shown by the
circles in the graph, which are in good agreement with observed abundances. Image

Credit: NASA/WMAP101087.

From there, nuclear fusion begins at t ∼ 0.01 s and big bang nucleosynthesis proceeds at t ∼ 3
min. This phase is when light elements (mostly H, D, He, Li and Be) are formed [64, 65, 66, 67].
Reproducing the observed abundances of elements from nuclear physics calculations places tight
constraints on the environment it took place in [68, 69, 70, 71, 72, 73, 74, 75]. For example,
in Fig. 1.8 are displayed the abundances of early produced light elements as a function of
the density of ordinary matter relative to photons, Ωb/Ωrad. One can see that measures of
elements abundances allow to set tight constraints on this ratio, and conversely. Nucleosynthesis
begins at temperatures of around 10 MeV (which is the order of magnitude of nuclear binding
energies) and ends at temperatures below 100 keV. The corresponding time interval is from a
few tenths of a second to up to 103 seconds. Heavier elements are only formed later through
stellar nucleosynthesis in evolving and exploding stars.

The Universe keeps on cooling down, until it reaches the point where charged electrons and
protons become bound to form electrically neutral hydrogen atoms. This phase is often called
“recombination” (although nuclei and electrons have never combined before). Since the photon-
atom cross section (the Rayleigh cross-section) is much smaller than the photon-electron cross-
section (Thomson cross-section), the Universe becomes transparent shortly after when photons
decouple from matter (photon decoupling) and travel freely in the Universe. The associated
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Figure 1.9.: Cosmic Microwave Background temperature fluctuations, as seen by the Planck
satellite [76]. Colours encode temperature deviations from the mean temperature
(blue points are colder whereas red points are hotter). Image Credit: Planck Collaboration.

relic radiation is called cosmic microwave background (CMB) and is the oldest photograph of
the Universe one can get [77]. Its emission occurs at energies around 1 eV, at t ∼500,000 y.
It reaches us today with the same shape of temperature distribution, i.e. a perfect black-body
spectrum, with its central temperature redshifted by the amount of expansion O

(

103
)

that has
occurred since then, to reach the average value TCMB = 2.725 K. This temperature is the same
for all direction in the sky, up to tiny fluctuations of the order 10−5. This tells us that at
recombination time, the Universe is homogeneous and isotropic on all scales up to the present
horizon (see section 1.4.1) to at least one part in 100,000. The statistics of the deviations
from homogeneity of this radiation is a key prediction of the theory of inflation that we discuss
in chapter 2. For illustrative purpose, the spatial map of the CMB temperature fluctuations
measured by the Planck satellite is displayed in Fig. 1.9.

Galaxies then start to form, and inside them objects energetic enough to ionize neutral hydrogen.
This is the so-called reionization epoch [78, 79, 80, 81]. As these objects form and radiate energy,
the Universe indeed goes from being neutral back to being an ionized plasma, between 150 million
and one billion years after the Big Bang. Compared with before recombination however, matter
is much more diluted because of the expansion of the Universe, and scattering interactions are
much less frequent than at this time. This is why the subsequent Universe, full of low density
ionized hydrogen, remains transparent, as is the case today.

At t ∼ 9 billion years, dark energy starts to dominate and the expansion accelerates [84, 85].
First stellar systems form, and large scale structures continue to develop until today. Large
scale structures constitute another observational pillar of modern cosmology, since the way they
develop is related to the content of the Universe, the physical nature of its dark sector, the
underlying theory of gravitation, and the initial cosmological perturbations they start from. For
example, in Fig. 1.10 is displayed the result of simulated dark matter distributions for different
cosmological models. The left panel is when structures develop in the standard cosmology
described so far, the middle panel is when no dark energy is introduced in the model (Ωde = 0),
and the right panel is when warm dark matter (i.e. such that wde > 0) is used instead of cold
dark matter. One can see that the features of the structures are different. For example, when
no dark energy is present, the Universe expansion does not accelerate at late times, which allows
faster structure formation. In this manner, measuring the distribution of matter around us
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Figure 1.10.: Simulated dark matter distributions for different cosmological models. The colours
encode velocities. Left panel: standard cosmological model. Middle panel: without
dark energy (Ωm = 1, ΩΛ = 0, h = 0.7). Right panel: with warm (instead of cold)
dark matter in form of a sterile neutrino. Produced with the MC2 code [82] run
over a small simulation [containing 323 particles, with a box size of (32Mpc/h)3].
Image Credit: Ref. [83].

and understanding, notably by the means of numerical simulations and statistical tools, how it
depends on the physical properties of our Universe, is a way to test these properties in the large
scales regime.

1.4. The Big Bang Model Problems and Inflation

Now that we have introduced the main aspects of the standard cosmological model, it is worth
mentionning that it raises unanswered questions, known as the hot big bang model problems.
The horizon problem and the flatness problem deal with the fact that, interpreted within the
standard model, observations lead to the conclusion that the Universe must have been extremely
flat at early times, and homogeneous even over causally disconnected physical scales. They are
not definite impossibility problems, but still serious fine-tuning issues. The monopole problem
deals with the density of topological defects arising from symmetry breaking in the early Uni-
verse. Described in the standard model, these defects should be well visible at present time,
which is in contradiction with experimental investigation for them. In this section, we describe
in details these three problems, and we show that even if very different in nature, they can all
be solved by the introduction of a phase of accelerated expansion in the early Universe.

1.4.1. The Horizon Problem

One of the properties of the above described cosmology is that it is endowed with a causal horizon,
i.e. a frontier that separates observable events from non observable ones. Said differently, the set
of events causally connected to a reference point in space-time only form a bounded set. Since
no physical process can act on scales larger than the horizon, we typically expect the Universe
to be strongly inhomogeneous on those scales.

However, as we shall now see, within the cosmological scenario of the standard hot big bang
model, the last scattering surface (with respect to us) spans over several causally disconnected
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pieces of space-time, that is, the size of the cosmological horizon at time of recombination is
smaller than the diameter of the last scattering surface. The last scattering surface should
therefore exhibit strong deviations from homogeneity, which is not the case. In this section, we
thus calculate the size of the cosmological horizon [86, 87] in a FLRW space-time, and express
the angular distance of the horizon at time of recombination, as seen by a current observer on
Earth. For the reasons mentioned at the end of section 1.3.1, namely the fact that curvature can
never have dominated the Universe content, we consider the case of a flat universe (K = 0). We
take the origin of the r coordinate to be the location of Earth, i.e. “our” comoving coordinate
is r = 0.

1.4.1.1. Cosmological Horizon

Let us consider a photon emitted at tem and rem and traveling towards us (dθ = dφ = 0). Its
trajectory is given by Eq. (1.5), that is

r (t) = rem −
∫ t

tem

dt̃

a
(

t̃
) . (1.45)

At time t, the physical distance (or “proper” distance) between the photon and the origin is
then given by dP(t) = a(t)r(t). The horizon is defined in the following way. If the photon is
received at (or before) time trec, the horizon at time trec is the proper distance to the furthest
point the photon can have been sent from. Clearly, this distance is maximized if the photon was
emitted at the earliest possible time, that is tem = tBB, and if it is received at the latest allowed
time trec, that is r (trec) = 0. When plugging these two relations in Eq. (1.45), one obtains
rem =

∫ trec
tBB

dt̃/a(t̃). By definition, the size of the horizon dH at time trec is then given by

dH (trec) = a (trec) rem = a (trec)

∫ trec

tBB

dt

a (t)
. (1.46)

If one replaces trec by the time of recombination tlss, one obtains the horizon size at the last
scattering surface emission time, dH (tlss).

1.4.1.2. Angular Distance to dH (tlss)

We now move on to compute the angular distance of the horizon at time of recombination, as
seen by a current observer on Earth. This quantity ∆ΩdH (t0) can be expressed as follows. The
last scattering surface is an instantaneous sphere of constant radius and therefore, within the last
scattering surface, dr = dt = 0. The FLRW metric then takes the form dP = a(tlss)rlssdΩ, where
dΩ2 = dθ2+sin2 θdφ2. Therefore, the angular extension of the horizon at time of recombination
reads

∆ΩdH (t0) =
dH (tlss)

a (tlss) rlss
. (1.47)

It only remains to compute rlss, which can be done using the same procedure as before. Indeed,
applying Eq. (1.45) between tem = tlss and t0, r(t0) = 0 leads to rlss =

∫ t0
tlss

dt/a(t). Together
with Eq. (1.46) for trec = tlss, one obtains

∆ΩdH (t0) =

∫ tlss

tBB

dt

a(t)
∫ t0

tlss

dt

a(t)

. (1.48)
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1.4.1.3. Formulation of the Problem

Let us now evaluate this quantity with the cosmological model of section 1.3, made of a radiation
era, a matter era and a dark energy era. Recombination occurs during the matter era (zlss ≃
1090, see Ref. [15]), so that tBB < teq < tlss < tacc. Therefore, thanks to Eq. (1.38), tlss can be
expressed in terms of the recombination redshift zlss through H0(t0− tlss) ≃ 2/3+ ln (1 + zacc)−
2/3 [(1 + zacc)/(1 + zlss)]

3/2. Another consequence of this series of events is that the integrals
appearing in Eq. (1.48) can be split according to

∫ tlss
tBB

=
∫ teq
tBB

+
∫ tlss
teq

and
∫ t0
tlss

=
∫ tacc
tlss

+
∫ t0
tacc

.

Using the piecewise approximation (1.38) for the a(t) profile, each of these integrals can be
computed. One obtains

a0H0

∫ teq

tBB

dt

a
≃ (1 + zacc)

3/2

√

1 + zeq
, a0H0

∫ tlss

teq

dt

a
≃ 2 (1 + zacc)

3/2

(

1√
1 + zlss

− 1
√

1 + zeq

)

,

(1.49)

a0H0

∫ t0

tacc

dt

a
≃ zacc , a0H0

∫ tacc

tlss

dt

a
≃ 2 (1 + zacc)

3/2

(

1√
1 + zacc

− 1√
1 + zlss

)

.

These expressions allow to express ∆ΩdH (t0) in terms of zeq, zlss and zacc according to

∆ΩdH (t0) =

2√
1 + zlss

− 1
√

1 + zeq
2 + 3zacc

(1 + zacc)
3/2

− 2√
1 + zlss

. (1.50)

With the parameter values recalled in table 1.2, one obtains ∆ΩdH (t0) ≃ 0.023 rad ≃ 1.31◦. For
comparison purpose, let us remind that the angular diameter of the moon seen from the Earth
is ≃ 0.5◦.

Beyond the piecewise approximated form of a(t), like for the age of the Universe in section 1.3.2,
an exact calculation can also be carried out using the relation

∫ t2

t1

dt

a(t)
=

1

H0a0

∫ z1

z2

dz
√

∑

iΩ
(0)
i (1 + z)3(1+wi)

. (1.51)

Such an integral can be computed numerically, and one obtains

∆ΩdH (t0) =

∫∞
zlss

dz/

√

∑

iΩ
(0)
i (1 + z)3(1+wi)

∫ zlss
0 dz/

√

∑

iΩ
(0)
i (1 + z)3(1+wi)

≃ 0.0054 rad ≃ 0.3◦ (1.52)

which is of the same order of magnitude as (but even smaller than) the above approximated
result, and which represents ∼ 1/450,000 of the full sky coverage.

As a consequence, one expects the last scattering surface to be made of 450,000 patches whose
typical physical properties are a priori completely different. This is in contradiction with obser-
vations which establish that up to tiny fluctuations of the order δT/T ≃ 10−5, the CMB radiation
is extremely homogeneous and isotropic across the last scattering surface. This paradox is called
the horizon problem [88, 89].

A solution to this problem is of course to assume that the initial conditions were identical in all
the causally disconnected patches, but it seems very difficult to justify. Another solution is to
add a new phase to the standard scenario.
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1.4.1.4. Inflation as a Solution to the Horizon Problem

Let us assume that the epoch dominated by radiation can be interrupted during the period
tin < t < tend, or equivalently zend < z < zin. During this interval, we assume that the Universe
is dominated by an unknown ideal fluid X with an equation of state parameter wX . We now
wonder whether there are values of zin, zend and wX such that the horizon problem can be
solved in this new scenario. Let us thus redo the horizon diameter distance calculation in this
new setup.

The piecewise function a(t) now has a new piece, and is given by

a(t)

a0
≃































































exp [H0 (t− t0)] if t > tacc

1
1+zacc

[

1 + 3
2H0 (t− tacc)

]2/3
if teq < t < tacc

1
1+zeq

[

1 + 2
(

1+zeq
1+zacc

)3/2
H0 (t− teq)

]1/2

if tend < t < teq

1
1+zend

[

1 + 3
2 (1 + wX)

(

1+zend
1+zacc

)2√
1+zacc
1+zeq

H0 (t− tend)

]
2

3(1+wX)
if tin < t < tend

1
1+zin

[

1 + 2
(

1+zend
1+zacc

)2√
1+zacc
1+zeq

(

1+zin
1+zend

)
3
2
(1+wX)

H0 (t− tin)

]1/2

if t′BB < t < tin

(1.53)
where the expressions given for tacc and teq in Eqs. (1.39) and (1.40) are still valid, and where
tend, tin and t′BB are such that

H0 (teq − tend) =
1

2

(

1 + zacc
1 + zeq

)3/2
[

1−
(

1 + zeq
1 + zend

)2
]

, (1.54)

H0 (tend − tin) =
2

3 (1 + wX)

(

1 + zacc
1 + zend

)2√ 1 + zeq
1 + zacc

[

1−
(

1 + zend
1 + zin

)
3
2
(1+wX)

]

, (1.55)

H0

(

tin − t′BB

)

=
1

2

(

1 + zacc
1 + zend

)2√ 1 + zeq
1 + zacc

(

1 + zend
1 + zin

)
3
2
(1+wX)

. (1.56)

In this new scenario, the integral decomposition of the numerator in Eq. (1.48) now reads
∫ tlss
t′BB

=
∫ tin
t′BB

+
∫ tend
tin

+
∫ teq
tend

+
∫ tlss
teq

, while the integral decomposition of the denominator
∫ t0
tlss

=
∫ tacc
tlss

+
∫ t0
tacc

is unchanged. The integrals
∫ tlss
teq

,
∫ tacc
tlss

and
∫ t0
tacc

have already been calculated in

Eq. (1.49) and their expression remains valid. On the other hand, the three new integrals
∫ tin
t′BB

,
∫ tend
tin

and
∫ teq
tend

, need to be computed. Using the piecewise approximation (1.53), they are given
by

a0H0

∫ tin

t′BB

dt

a
≃ (1 + zin)

(

1 + zacc
1 + zend

)2√ 1 + zeq
1 + zacc

(

1 + zend
1 + zin

)
3
2
(1+wX)

,

a0H0

∫ tend

tin

dt

a
≃ 2

1 + 3wX

(1 + zacc)
2

1 + zend

√

1 + zeq
1 + zacc

[

1−
(

1 + zend
1 + zin

)
1
2
(1+3wX)

]

, (1.57)

a0H0

∫ teq

tend

dt

a
≃ (1 + zacc)

3/2

√

1 + zeq

zend − zeq
1 + zend

.
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We can now express the angular extension of the horizon at time of recombination, which reads

∆Ω′
dH

(t0) =

2√
1 + zlss

− 1
√

1 + zeq
+

√

1 + zeq

1 + zend

1− 3wX

1 + 3wX

[

1− e−
1
2
(1+3wX)N

]

2 + 3zacc

(1 + zacc)
3/2

− 2√
1 + zlss

(1.58)

= ∆ΩdH (t0) +

√

1 + zeq

1 + zend

1− 3wX

1 + 3wX

2 + 3zacc

(1 + zacc)
3/2

− 2√
1 + zlss

[

1− e−
1
2
(1+3wX)N

]

, (1.59)

where we have defined the number of e-folds of the new phase N ≡ ln(aend/ain) = ln 1+zin
1+zend

and
where in the second line, the standard result (1.52) has been singled out. A first remark is that
when wX = 1/3 (i.e. the new phase cannot be distinguished from the radiation era in which
it intervenes) or when N = 0 (i.e. the new phase does not exist), one re-obtains Eq. (1.50) as
expected. However, when this new phase is switched on, an extra term appears in the angular
size of the horizon that can make it much larger, provided

wX < −1/3 . (1.60)

Indeed, if 1 + 3wX > 0, then the argument of the exponential term in Eq. (1.59) is negative
and the correction coming from the phase driven by the unknown fluid becomes negligible. If
1 + 3wX < 0 on the other hand, then the correction may be important enough to reach the full
sky coverage ∆ΩdH (t0) > 4π, depending of course on the number of e-folds N .

Let us give some numbers, for the values recalled in table 1.2. If zend = zGUT ≃ 1028 (where
“GUT” stands for the Grand Unification Theory breaking scale, see section 1.4.3), ∆ΩdH (t0) >
4π when N > 125 for w = −2/3 and when N > 63 for w = −1. If zend = 1010, i.e. two orders of
magnitude above nucleosynthesis, ∆ΩdH (t0) > 4π when N > 42 for w = −2/3 and when N > 21
for w = −1. Values of the minimum number of e-folds Nmin required to have ∆ΩdH > 4π are
displayed in Fig. 1.11 as a function of wX and for a few values of zend.

To sum up this discussion and in order to get a clear formula that is easy to handle, one can
simplify Eq. (1.59) in the limit where zlss ≫ 1 and zacc ≪ 1. One obtains that the horizon
problem is solved provided wX < −1/3 and

N & − 2

1 + 3wX
ln

(

4πzend√
zeq

)

. (1.61)

One can check in Fig. 1.11 that this indeed provides a good approximation for the minimum
numbers of e-folds .

Finally, from Eq. (1.30), a ∝ t
2

3(1+w) , one can see that the condition wX < −1/3 is equivalent to
requiring that the expansion of the Universe is accelerating, that is ä > 0. This is why the new
phase we have introduced in the cosmological standard history is called “inflation” [90, 91].

1.4.1.5. Heuristic Understanding: Conformal Diagrams

Let us try to understand more intuitively what happened. A heuristic way of understanding
why a phase of inflation can solve the horizon problem is by means of conformal diagrams. The
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Figure 1.11.: Minimum number of e-folds in order to obtain ∆ΩdH (t0) > 4π from Eq. (1.59), as a
function of wX and for a few values of zend, with parameter values given in table 1.2
(coloured lines). The black dotted lines correspond to the approximation (1.61).

conformal time η is defined as

dt = adη , (1.62)

so that the flat FLRW metric is given by ds2 = a2(dη2 − dr2) (where angular coordinates are
omitted). In this time parameterization, null geodesics for the propagation of photons follow the
very simple trajectory dη = dr. Therefore, the size of the horizon at time η is straightforwardly
given by

dH (η) = a(η) (η − ηBB) . (1.63)

When the Universe is dominated by a single ideal fluid with equation of state parameter w, the
a(t) profile is given by Eq. (1.30), which, if one sets the origins of time tBB = 0, reads

a (t) = a0

(

t

t0

)
2

3(1+w)

. (1.64)

From here, integrating Eq. (1.62), one obtains

η =
3

a0t0

1 + w

3w + 1

(

t

t0

)
3w+1
3(w+1)

, (1.65)

where we have set the origins of conformal times such that its current value is given by η0 =
−3(a0t0)

−1(1 + w)/(3w + 1). The calculation of Eq. (1.63) now proceeds along two different
cases:

If w > −1/3, when t→ 0, η → 0 in Eq. (1.65), hence ηBB = 0 and the size of the horizon given
by Eq. (1.63) is finite, equal to dH = aη. This is why in this case, a horizon problem can occur.
This corresponds the left panel of Fig. 1.12.
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Figure 1.12.: Conformal diagrams. In the (η, r) plane, light propagates along straight lines. The
left panel corresponds to the standard Big Bang cosmology. The CMB at last
scattering consists of ∼ 105 causally disconnected regions, that is regions the past
light cones of which do not intersect because at η = 0 lies an initial singularity. The
right panel corresponds to the inflationary cosmology. Inflation extends conformal
time to negative values, so that past light cones of any two points on the CMB
surface intersect (grey shaded area).

If w < −1/3, when t→ 0, η → −∞ in Eq. (1.65), hence ηBB = −∞ and the size of the horizon
given by Eq. (1.63) is infinite. This is the case displayed in the right panel of Fig. 1.12. The
singularity a = 0 is pushed to the infinite past η → −∞, because w < −1/3 allows η to reach
negative values. This is why in this case, there is no horizon problem. Actually when w < −1/3,
the scale factor blows up in the infinite future t → ∞ at η = 0. This is because in this case,
we assume a phase of inflation (w < −1/3) which lasts for ever. In practice, inflation ends at
some finite time −1 ≪ ηend < 0 and the surface η = 0− corresponds to the end of inflation, as
displayed in Fig. 1.12.

This is why inflation succeeds in making the size of the horizon expand so much that it is suffi-
ciently large at time of recombination to explain the current homogeneity of the Universe [90].

1.4.2. The Flatness Problem

The flatness problem is also a fine-tuning problem that arises from the observational constraint
on 1 − Ωtot = ΩK. When Ωtot = 1 (or K = 0), the Universe is globally flat, at the border line
between a closed finite universe (Ωtot > 1, or K = 1) and an open, infinite universe (Ωtot < 1 or
K = −1). Since K is a constant, the sign of 1−Ωtot cannot change during the cosmic evolution.

Observational constraints put Ω
(0)
tot well close to 1, 100Ω

(0)
K = −0.10+0.62

−0.65 at 95% [15]. However,
Ωtot = 1 is an unstable equilibrium point. In order for Ωtot to fall within the given constraints
today, it had to be equal to 1 within an extremely high level of fine-tuning in the early Universe.
The flatness problem [92, 93] is the puzzle of explaining why the early Universe exhibits such
fine-tuning in the value of this parameter.
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1.4.2.1. Formulation of the Problem

From the definition (1.33) of ρcri and of the rescaled variables Ωi, the deviation from unity of
the total rescaled energy density is given by

1− Ωtot = ΩK =
1

1 +

∑

Ωi

ΩK

. (1.66)

From table 1.1, let us remember that Ωrad ∝ a−4 and ΩK ∝ a−2. This is why, when evaluating
this quantity in the early Universe where radiation is the dominant constituent (

∑

Ωi ≃ Ωrad),
one obtains

1− Ωtot ≃
1

1 +
Ω
(0)
rad

1− Ω
(0)
tot

(

a0
a

)2

≃ 1− Ω
(0)
tot

Ω
(0)
rad

(

1

1 + z

)2

. (1.67)

If one takes
∣

∣

∣
Ω
(0)
K

∣

∣

∣
≃ 10−3 and Ω

(0)
rad ≃ 10−4 (according to the values given in section 1.2), one

obtains |1− Ωtot| ≃ 10−15 for z ≃ 1010 and |1− Ωtot| ≃ 10−55 for z = zGUT ≃ 1028. As a
consequence, one can see that the deviation from a flat universe |1− Ωtot| has to be fine-tuned
to a tiny value at early time in order to explain the current flatness of the Universe. This is the
so-called flatness problem [92, 93].

1.4.2.2. Inflation as a Solution to the Flatness Problem

As for the horizon problem, a possible explanation consists in adding a new phase which inter-
rupts the radiation epoch between two times tin and tend, and where the Universe content is
dominated by an ideal fluid X with equation of state wX . Let us calculate the initial devia-
tion from flatness |1− Ωtot| required in this new scenario, sketched by Eq. (1.53). Similarly to
Eq. (1.67), during this phase, one has

1− Ωend
tot =

1

1 +
Ωin
X

1− Ωin
tot

(

aend
ain

)−1−3wX
. (1.68)

The purpose of this new phase is that starting from a sizable value of 1−Ωin
tot, it should drive this

quantity to a tiny value, 1−Ωend
tot . Since aend/ain ≫ 1, this is achieved provided −1− 3wX > 0,

that is wX < −1/3, exactly the same condition (1.60) as the one coming from the horizon
problem and characterizing an inflationary phase where the expansion is accelerating.

More precisely, let us calculate the minimum number of e-folds N = ln(aend/ain) required to

solve the flatness problem. Relating 1−Ωend
tot to 1−Ω

(0)
tot thanks to Eq. (1.67), it is straightforward

to write

N =
1

1 + 3wX
ln

[

Ωin
X

1− Ωin
tot

1− Ω
(0)
tot

Ω
(0)
rad

(

1

1 + zend

)2
]

. (1.69)

To avoid initial fine-tuning of the Universe flatness, one takes Ωin
X ∝ 1−Ωin

tot, so that the flatness
problem is solved provided

N & − 2

1 + 3wX
ln






zend

√

√

√

√

√

Ω
(0)
rad

∣

∣

∣
1− Ω

(0)
tot

∣

∣

∣






. (1.70)
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Note that the similarity with Eq. (1.61) is striking. More precisely, from the values for Ω
(0)
i

given in table 1.2, the pre-factors in front of zend in the logarithms of Eqs. (1.61) and (1.70) are

such that 4π/
√
zeq ∼

√

Ω
(0)
rad/(1− Ω

(0)
tot). Therefore, the values of Nmin displayed in Fig. 1.11 are

such that the flatness problem is also solved.

Let us try to understand more intuitively why it is so. The flatness problem arises because
curvature energy density decays slower than the one of matter or radiation. Therefore, if it is
small today, it must have been even smaller before. The only way to escape from this fine-
tuning issue is to have some phase during which the energy density decays even smaller than
curvature. Since wK = −1/3 (see table 1.1), this implies that this phase is driven by a new fluid
the equation of state parameter of which is such that wX < −1/3. When this new component
dominates the Universe content, curvature decays faster than this new fluid, and is therefore
dynamically driven to very small values. If the energy content of this new component X is then
transferred to radiation, curvature is automatically subdominant with respect to radiation at
the end of this new phase, in a sufficiently large extent provided the duration of inflation N is
large enough.

1.4.3. The Monopole Problem

In Grand Unified Theories [94, 95, 96] (GUT), local symmetry under some simple symmetry
group is spontaneously broken at an energy MGUT ≃ 1016 GeV to the gauge symmetry of the
Standard Model under the group SU(3)×SU(2)×U(1). In all such cases, the field that breaks
the symmetry can be left in twisted configurations that carry non-zero magnetic charge. These
topological glitches in the vacuum configuration of gauge fields are magnetic monopoles [97, 98].
Such monopoles are expected to be copiously produced in Grand Unified Theories at high
temperature [99, 100], and they should have persisted to the present day, to such an extent that
they would become the primary constituent of the Universe [101, 102]. Not only is that not the
case, but all searches for them have so far turned out fruitless, placing stringent limits on the
density of relic magnetic monopoles in the Universe [103, 104, 105, 106, 107, 108]. These searches
show that at present time, monopoles must be typically fewer than ∼ 10−30 per nucleon.

1.4.3.1. Formulation of the Problem

Let us estimate the current monopole density, in the standard cosmological model sketched
in Eq. (1.38). At time tGUT of GUT phase transition, the field that dynamically realizes the
symmetry breaking cannot be correlated at length larger than the causal horizon. Therefore,
when created, the mean distance Dmon between two neighbor monopoles must be smaller than
dH(tGUT). If monopoles do not find each other to annihilate, this distance is stretched to the

currentD
(0)
mon = a0/aGUT dH(tGUT). Using Eq. (1.46) to express the horizon distance, one obtains

D(0)
mon =

∫ tGUT

tBB

dt

a/a0
. (1.71)

Making use of Eq. (1.38), this integral can easily be calculated (since the GUT phase transition
occurs at energies larger than the one at equivalence, one has tBB < tGUT < teq), and one obtains

D(0)
mon =

√

1 + zeq (1 + zacc)
3/2

1 + zGUT
H−1

0 . (1.72)
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In passing, the value zGUT ∼ 1028 that has been used so far and that we need here one more
time can now be better justified. Indeed, GUT phase transition occurs when ρ ∼M4

GUT, hence
HGUT ∼ M2

GUT/MPl ∼ 1013 GeV. During the radiation phase, the time behaviour of H = ȧ/a
can be calculated from Eq. (1.38), hence tGUT can be expressed in terms of HGUT. Using again
Eq. (1.38), one then has aGUT in terms of HGUT and in the limit where zGUT > zeq ≫ 1, this
gives rise to

zGUT ∼ z1/4eq

√

HGUT

H0
∼ 1028 . (1.73)

This indeed corresponds to the value mentioned before.

Back to the current monopole density calculation, together with the values of zeq and zacc recalled

in table 1.2, this allows us to evaluate Eq. (1.72) and one obtains D
(0)
mon ≃ 1 m. Therefore, there

should be abount one magnetic monopole per cube meter in our vicinity neighborhood.

In order to better understand this order of magnitude, let us calculate the corresponding rescaled

monopole density Ω
(0)
mon. If the mass of each monopole is of the order MGUT, and remembering

that the critical energy density is given by Eq. (1.33), this rescaled quantity is given by

Ω(0)
mon =

M

3H2
0M

2
Pl

[

D
(0)
mon

]3 ≃ 1015 . (1.74)

Magnetic monopoles should therefore be the dominant constituent of our current Universe,
which is in obvious contradiction with observations. To estimate how far we are from the
observational constraints mentioned above (namely less than a monopole per 1030 nucleon), one
can also calculate the ratio of monopole and nucleon number densities η,

η
(0)
mon

η
(0)
nucl

=
Ω
(0)
mon

Ω
(0)
m

mnucl

MGUT
≃ 5 , (1.75)

where we have assumed that visible cold matter is essentially made of nucleons, and where we
have taken the mass of nucleons to be of the order of mnucl ≃ 938 MeV. As a consequence, there
should be O(1) magnetic monopole per nucleon, while observations establish that there is less
than a monopole per 1030 nucleon. This is the so-called monopole problem. Obviously, since
magnetic monopoles are supposed to be produced at very high energy where particle physics
remains elusive, one can always imagine that the associated symmetry breakings do not occur.
However, another elegant solution is again to add a phase of inflation.

1.4.3.2. Inflation as a Solution to the Monopole Problem

If a phase of inflation is added after the GUT phase transition, one may hope to dilute monopoles
to such an extent that they would not be visible today. In this case, Eq. (1.71) still applies, but
the integral now has to be calculated with Eq. (1.53). Since the GUT phase transition occurs
before inflation, one has tBB < tGUT < tin and one obtains

D(0)
mon

′
=

√

1 + zeq (1 + zacc)
3/2

1 + zGUT
H−1

0 e(1−3wX)N
2 , (1.76)

where again, N is the amount of e-folds during inflation. Several comments are in order. First,
one notices that at first sight, the standard result (1.72) is only modified by the exponential
term. When wX = 1/3 or N = 0, as before, the standard result (1.72) is recovered. However, the
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value of zGUT is actually also modified since the derivation of Eq. (1.73) relies on the standard
scenario (1.38). Using this time the modified scheme (1.53) in the calculation of zGUT, one
obtains

zGUT ∼ z1/4eq

√

HGUT

H0
e(1−3wX)N

4 . (1.77)

Here also, the standard result is modified by an exponential term, and zGUT actually also depends
on the number of e-folds realized during inflation. Plugging back this expression into Eq. (1.76),
one finally obtains

D(0)
mon ≃ z1/4eq

√

H0

HGUT
H−1

0 e(1−3wX)N
4 . (1.78)

From here, one can see that the condition on wX for the new phase to provide a possible solution
to the monopole problem is wX < 1/3. This condition is less stringent than the one arisen from
the horizon and flatness problems, wX < −1/3. Here, a phase of more rapid expansion than
the one driven by radiation is sufficient, and acceleration in itself is a priori not a necessary
condition. Obviously, this also depends on the number of inflationary e-folds N .

Let us see which typical numbers of e-folds are required. A first strong requirement would be
that there is no magnetic monopole in our entire observable Universe. Since we cannot see
beyond the last scattering surface, its size is given by dobs = a0rlss = a0

∫ t0
tlss

dt/a. This integral
can be computed making use of Eq. (1.53), and one obtains dobs ≃ 2/H0. This confirms that
as mentioned in section 1.1.1 the size of the observable Universe is of the order of the Hubble
length. Therefore, requiring that D

(0)
mon > dobs leads to

N >
2

1− 3wX
ln

(

HGUT

H0

√

2

zeq

)

. (1.79)

With the values recalled in table 1.2 for zeq, HGUT and H0, one typically obtains N > 61 for
wX = −1 or N > 246 for wX = 0. A less strict requirement is just to meet the observational

constraint on η
(0)
mon/η

(0)
nucl. This ratio can be calculated as in Eq. (1.75), and one obtains

N >
2

1− 3wX
ln







HGUT

H0

√

1

zeq

(

mnuclH0

3M2
PlΩm

)2/3
[

η
(0)
nucl

η
(0)
mon

]2/3

min







. (1.80)

Using the same values as before together with η
(0)
nucl/η

(0)
mon > 1030, this gives N > 24.5 for

wX = −1 or N > 98 for wX = 0.

A last consistency check remains to be done. Indeed, in order for a phase with w < 1/3 to solve
the monopole problem, its e-folds must be realized after the GUT scale transition and before,
say, the equivalence time. One should make sure that there is enough time between these two
times for this new phase to proceed, that is

1 + zin
1 + zend

<
1 + zGUT

1 + zeq
. (1.81)

The left hand side of the previous relation is simply given by eN , while zGUT appearing in the
right hand side depends on N through Eq. (1.77). This is why the previous relation translates
into a constraint on N itself, which reads

N <
2

3 (1 + wX)
ln

(

HGUT

H0
z−3/4
eq

)

. (1.82)
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Figure 1.13.: Number of inflationary e-folds required to solve the monopole problem, as a func-
tion of wX . The blue line stands for the minimum number of e-folds in order
to dilute the monopoles further than our observable Universe and corresponds to
Eq. (1.79). The green line stands for the minimum number of e-folds in order to
dilute the monopoles so that the experimental constraint on ηnucl/ηmon is satisfied
and corresponds to Eq. (1.80). Finally, the red line stands for the maximum num-
ber of e-folds between the GUT phase transition and equivalence and corresponds
to Eq. (1.82). The shaded areas correspond to when both constraints N > Nmin

and N < Nmax are satisfied, the darker area being when the stricter constraint
on the presence of monopoles in our observable Universe is used. The parameter
values used here are the ones of table 1.2.

Obviously, a viable scenario is when Eqs. (1.79) and (1.82) [or Eqs. (1.80) and (1.82)] are satisfied
at the same time. Such bounding values of N are displayed in Fig. 1.13. The shaded area stands
for values of wX and N such that both constraints are simultaneously satisfied. Since the
maximal value for N given by Eq. (1.82) blows up when wX → −1, it is always possible to solve
the monopole problem, provided wX is close enough to −1. More precisely, if the criterion (1.80)
is adopted, one obtains wX < −0.052, whereas if the criterion (1.79) is adopted, one obtains
wX < −0.34. It is remarkable that this last condition is very similar to the one wX < −1/3
that comes from the horizon and flatness problems. Therefore, even for the monopole problem,
an accelerating phase seems to be required.
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1.A. FLRW Christoffel symbols, Einstein tensor and Geodesics

In this appendix, we give the Christoffel symbols and the Ricci and Einstein tensors of the
FLRW metric, and comment on the geodesic equations in comoving coordinate. Starting from
the FLRW metric (1.1),

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[

dr2

1−Kr2 + r2
(

dθ2 + sin2 θdφ2
)

]

, (1.83)

the Christoffel symbols are formally given by

Γρ
µν =

1

2
gρλ (∂νgλµ + ∂µgλν − ∂λgµν) . (1.84)

One can check that they are symmetrical in their lower indices, that is Γρ
µν = Γρ

νµ. After a
straightforward calculation, up to this symmetry, the only non vanishing Christoffel symbols of
the FLRW metric are given by

Γ0
11 =

aȧ

1−Kr2 , Γ0
22 = aȧr2 ,

Γ0
33 = aȧr2 sin2 θ , Γ1

11 =
Kr

1−Kr2 ,

Γ1
22 = −r

(

1−Kr2
)

, Γ1
33 = −r

(

1−Kr2
)

sin2 θ , (1.85)

Γ2
33 = − sin θ cos θ , Γ1

01 = Γ2
02 = Γ3

03 =
ȧ

a
,

Γ2
12 = Γ3

13 =
1

r
, Γ3

23 = cot θ ,

where index 0 is for time t, 1 is for r, 2 is for θ and 3 is for φ. The Ricci tensor is formally
expressed as

Rµν = 2Γρ
µ[ν,ρ] + 2Γρ

λ[ρΓ
λ
ν]µ , (1.86)

where the brackets mean anti-symmetrization under the indices. From the Christoffel sym-
bols (1.85), one can check that its non-zero components are the diagonal ones, given by

R00 = −3
ä

a
, R11 =

aä+ 2ȧ2 + 2K
1−Kr2 ,

R22 = r2
(

aä+ 2ȧ2 + 2K
)

, R33 = r2
(

aä+ 2ȧ2 + 2K
)

sin2 θ . (1.87)

The Ricci curvature scalar is just the contraction of the Ricci tensor with the metric, R = gµνRµν ,
and is given by

R = 6

[

(

ȧ

a

)2

+
ä

a
+

K
a2

]

. (1.88)

Finally, the Einstein tensor Gµν = Rµν −R/2gµν has non vanishing components

G00 = 3

[

(

ȧ

a

)2

+
K
a2

]

, G11 = −
[

(

ȧ

a

)2

+ 2
ä

a
+

K
a2

]

a2

1−Kr2 ,

G22 = −
[

(

ȧ

a

)2

+ 2
ä

a
+

K
a2

]

a2r2 , G33 = −
[

(

ȧ

a

)2

+ 2
ä

a
+

K
a2

]

a2r2 sin2 θ . (1.89)

One can check that this matches the formula (1.14) given in section 1.1.1.3.
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Finally, it is interesting to say a few words about the geodesic equation

d2xµ

ds2
+ Γµ

νρ

dxν

ds

dxρ

ds
= 0 . (1.90)

Because the FLRW geometry is isotropic with respect to every point, it is always possible to
chose a local coordinate system such that a given geodesic initially has a purely radial part,
that is dθ/ds = dφ/ds = 0 at initial time. Then it is straightforward to see that the geodesic
equations for θ and φ [µ = 2 or 3 in Eq. (1.90)] imply that it remains so at any later time. In
this case, the geodesic equations for t and r are

d2t

ds2
+

aȧ

1−Kr2
(

dr

ds

)2

= 0 , (1.91)

d2r

ds2
+

Kr
1−Kr2

(

dr

ds

)2

+ 2
ȧ

a

dt

ds

dr

ds
= 0 . (1.92)

One can check that a static particle such that dt/ds = 1 and dr/dt = 0 is a solution of the above
system, which means that still particles in the comoving coordinate system are indeed solutions
of the geodesic equations. If one is interested in the more general trajectory r(t) associated with
this system, one can work out its solution as

dt

ds
=

[

1 +

(

b0
a

)2
]1/2

, (1.93)

dr

ds
=

√

1−Kr2 b0
a2
, (1.94)

where b0 is an integration constant that depends on initial conditions (for example, b0 = 0 for
still particles and b0 = ∞ for photons). From here, the physical impulsion p can be obtained,

p

m
=

√

gij
dxi

ds

dxj

ds
=

a√
1−Kr2

dr

ds
=
b0
a
, (1.95)

which confirms the rule p ∝ 1/a otherwise derived in section 1.1.1.2. More precisely, the solution
for dr/dt is given by

dr

dt
=
√

1−Kr2 b0
a2

[

1 +

(

b0
a

)2
]−1/2

, (1.96)

which means that as time proceeds and a increases (in an expanding universe), dr/dt ∝ 1/a2 → 0
for massive particles. Therefore, massive particles asymptotically come to rest relative to the
comoving coordinate system, as mentioned in section 1.1.1.2. More precisely, dr/dt ∝ 1/a2

means that r reaches a finite value in the asymptotic future if a grows strictly faster than
a ∝

√
t. This is the case in a matter era, an inflationary era or a dark energy era, but not during

a radiation era where dr/dt→ 0 but r → ∞ if K = 0 or −1 and r → 1 if K = 1.

To be explicit, once the a(t) profile known [see for example Eq. (1.30)], one can calculate

r (t) = rin +



















sin (I) if K = 1

I if K = 0

sinh (I) if K = −1

, (1.97)
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where I is given by

I = b0

∫ t

tin

dt̃

a2

√

1 +
(

b0
a

)2
. (1.98)

Finally, let us mention that for massless particles (b0 = ∞), Eq. (1.98) gives I =
∫

dt/a, which
is in agreement with Eq. (1.5).
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1.B. Numerical Values of Cosmological Parameters

Physical Quantity Numerical Value

MPl 2.435× 1018 GeV

H0 67.3 km/sec/Mpc

H−1
0 4.55× 1017 sec

H−1
0 1.36× 1026 m

wdm 0

wmat 0

wrad 1/3

wK −1/3

wΛ −1

Ω
(0)
rad 9.3× 10−5

Ω
(0)
b 0.049

Ω
(0)
dm 0.268

Ω
(0)
de 0.683

|ΩK| . 10−3

zacc 0.29

zlss 1090

zeq 3402

zGUT (without inflation) 1028

MGUT 1016 GeV

HGUT 1013 GeV

Table 1.2.: Numerical values of cosmological parameters used in section 1.
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2. Cosmological Inflation

In this chapter, we review some aspects of cosmological inflation, the physical se-
tups it relies on, the predictions it makes and the fundamental issues it raises. Our
purpose is mainly to provide the reader with an understanding of the theoretical and
technical tools used in part II where the results obtained during this thesis are pre-
sented. This is why in this section, only a brief overview of the physics of inflation
is given, the various aspects of which are further detailed in a broad range of text-
books [109, 110, 111, 4, 112, 113, 7, 8].

In chapter 1, we reviewed the cornerstones of the cosmological hot big bang model and the
problems it raises. In particular, in section 1.4, we saw that a phase of inflation during which
the scale factor accelerates ä > 0 can solve the hot big bang problems if it occurs prior to
(or during) the radiation era [91, 114, 115, 116, 117, 118, 119]. However, we have not discussed
which kind of matter component can drive such a phase of inflation. From the the Raychaudhuri
equation (1.18), ä > 0 implies that ρ+ 3p < 0, hence the pressure must necessarily be negative.
One therefore needs to find a physical system able to produce such a negative pressure.

The inflationary phase takes place at very high energy, typically between 103 and 1015 GeV [120].
At such high energies, field theory is the relevant framework to describe matter, and a natural
way to try and realize inflation is therefore to consider that a real scalar field φ (dubbed the
“inflaton” field) dominates the energy density budget of matter in the early Universe. More-
over, this assumption is compatible with the observed homogeneity, isotropy and flatness of the
early Universe. Quite remarkably, it turns out that if the potential V (φ) of this scalar field is
sufficiently flat dV/dφ≪ V/MPl so that the field moves slowly, then the corresponding pressure
is negative. This is why it is believed that inflation is driven by one (or several) scalar field(s).
However, the physical nature of the inflaton and its relation with the standard model of particle
physics and its extensions is still unclear. This is not surprising since the inflationary mechanism
takes place at energy scales where particle physics remains elusive and has not been tested in
accelerators. This is why the shape of its potential is a priori not known except that is must be
sufficiently flat to support a phase of inflation.

Nonetheless, one of the great achievements of inflation is that, combined with quantum me-
chanics, it provides a convincing mechanism for the origin of the cosmological fluctuations, the
seeds of the CMB anisotropies and of the galaxies. Inflation predicts that their spectrum should
be almost scale invariant (i.e. equal power on all spatial scales) [121, 122, 123, 124, 125, 126,
127, 128, 129, 130], which is fully consistent with the observations. In passing, this part of
the scenario is particularly remarkable since it makes us of General Relativity and Quantum
Mechanics [131, 132, 133, 134, 135, 136, 137, 138, 139, 138], two theories that are notoriously
difficult to combine. In fact, inflation is probably the only case in physics where an effect based
on General Relativity and Quantum Mechanics leads to predictions that, given our present day
technological capabilities, can be tested experimentally. Given the confirmation of these pre-
dictions by observations and given the fact that, despite many efforts, inflation has not been
superseded by its various challengers [140, 29, 141, 27, 142, 143, 144, 145, 146, 147, 148, 149,
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150, 31, 34, 151, 152, 153, 154, 32, 155, 156, 157, 158, 159, 160, 161, 162], this scenario has
gradually become a crucial part of modern cosmology.

What strongly motivates the investigation of the inflationary period is that there is now a flow
of increasingly accurate astrophysical data which gives us a unique opportunity to learn more
about inflation. In particular, the recently released Planck satellite data [76, 163, 15], and if
confirmed to be of primordial origin, the B-mode detection by the BICEP2 experiment [164],
play a crucial role in this process. These missions complement and improve upon observations
made by the NASA WMAP satellite [165, 166] and are a major source of information relevant
to several cosmological issues including inflation [167, 168]. The CMB small angular scales of
Planck are already complemented by ground-based microwave telescopes such as the Atacama
Cosmology Telescope [169, 170] or the South Pole Telescope [171, 172] while ultra-sensitive
polarization dedicated experiments are on their way [173, 174, 175, 176, 177, 178].

Let us also mention that even if this is what we focus on in this thesis, the flow of new data does
not only concern the CMB. The supernovae projects [179, 180, 181, 182] continue to measure
the distances to the nearby exploding SN1A stars while the large scale galaxy surveys such as
the Sloan Digital Sky Survey (SDSS) [183, 184] are providing an unprecedented picture of the
structure of the universe. The “lever arm” in length scales between CMB and galaxy power
spectra increases the sensitivity to the small deviations from scale invariance, and thus should
be extremely powerful to constrain inflationary models. For this reason, the future Euclid
satellite will be another step forward in our understanding of inflation [185]. The possibility
of direct detection of the primordial gravitational waves is also currently discussed for high
energy inflationary models on large scales [186, 187, 188, 189, 190, 191, 192, 193, 194, 195]
and also on small scales [196, 197]. Finally, in a foreseeable future, the yet unexplored length
scales are expected to be unveiled by the 21 cm cosmological telescopes. These ones will be
sensitive to the redshifted 21 cm line absorbed by hydrogen clouds before the formation of
galaxies [198, 199, 200, 201, 202, 203, 204]. With such data, we will have a complete tomography
of the universe history from the time of CMB emission at the surface of last scattering to the
distribution of galaxies today.

Our ability to see through the inflationary window is crucial since it turns the early universe
into a laboratory for ultra-high energy physics, at scales entirely inaccessible to conventional
experimentation. In other words, this window offers a unique opportunity to learn about the
very early universe and about physics in a regime that cannot be tested otherwise, even in
accelerators such as the Large Hadron Collider. In this chapter, we discuss a few aspects that
play a key role in this enterprise, and we introduce some of the theoretical and technical tools
that are widely used in part II where the results of this thesis are presented. It is organized
as follows. In section 2.1, we explain why and under which conditions a single scalar field can
support a phase of inflation. In section 2.2, we present a frame of approximation, the “slow-roll
approximation”, which enables to solve its dynamics perturbatively. It also provides us with a
convenient scheme of calculation to compare inflationary predictions with observational data,
which we make widely use of in Ref. [205], section 3.2, in Ref. [206], section 3.3 and in Ref. [207],
section 3.4. The slow-roll inflationary trajectories are also the subject of Ref. [208], section 3.1,
and for this reason it seems important to review the main aspects of this formalism in the present
chapter. Then, in section 2.3, we turn to the description of inflationary perturbations. We show
how cosmological perturbations need to be quantized, and for illustrative purpose, we provide a
detailed calculation of the power spectrum of scalar perturbations. Since such a calculation is
modified when extensions to standard quantum mechanics are included in Ref. [138], section 4.3,
it is important to first understand how it proceeds in the standard approach. We then specify the
obtained result at leading order in the slow-roll approximation. Indeed, in Ref. [209], section 3.5,
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this calculation is extended to next-to-leading order in slow roll, and it is generalized in the case
where not only the potential but also the kinetic term is a free function. This is why details of
the calculation for the leading order in slow roll with canonical kinetic term for the inflaton field
may be useful to get acquainted with the employed technique. Finally, in section 2.4, we devote
a large part of this introductory chapter to the presentation of the stochastic inflation formalism
which is used in Ref. [210], section 4.1 and in Ref. [211], section 4.2. We first present a detailed
heuristic derivation of the Langevin equation which is at the heart of this formalism. This
allows us to discuss its nature and the assumptions it rests on. Then, we turn to the question
of the time variable that should be used when solving such equations, in order to reproduce
results from Quantum Field Theories (QFT). Lastly, we address the issue of the calculation of
physical observable quantities in stochastic inflation, such as the power spectrum of adiabatic
perturbations. We show that the stochastic setup allows us to reproduce the standard result of
section 2.3, before providing complete solutions which do not rely on an expansion in the noise
term. To our knowledge, this is the first time such a non perturbative calculation of the power
spectrum in stochastic inflation is presented, and we plan to further discuss it in a forthcoming
article.

2.1. Single-Field Inflation

What makes the inflationary idea quite natural is that the negative pressure condition can simply
be met with a single scalar field φ, the inflaton field, minimally coupled to gravity. The action
of such a system is given by

Sφ = −
∫

d4x
√−g

[

1

2
gµν∂µφ∂νφ+ V (φ)

]

. (2.1)

The function V (φ) is a potential term for the scalar field, that is left unspecified for the moment.
Indeed, the physical nature of the inflaton field is still unknown (there are many candidates)
and, as a consequence, V (φ) can have different shapes. From Eq. (1.12), the energy-momentum
tensor associated with this action can be derived, and one obtains

T (φ)
µν = ∂µφ∂νφ+ gµν

[

−1

2
gρσ∂ρφ∂σφ+ V (φ)

]

. (2.2)

At the background level, since FRLW space-times are homogeneous and isotropic, φ must be
homogeneous as well and can only depend on time. Interestingly enough, in such a case, the
energy-momentum tensor can be expressed in the form of Eq. (1.15) if one lets

ρ =
φ̇2

2
+ V , (2.3)

p =
φ̇2

2
− V . (2.4)

As a consequence, for an homogeneous scalar field, the condition for the acceleration of the scale
factor is fulfilled, ρ+ 3p < 0, as soon as

V > φ̇2 . (2.5)

This is the condition for inflation to take place. This means that inflation can be obtained
provided the inflaton slowly rolls down its potential, so that its potential energy dominates
over its kinetic energy. This also shows that the inflaton potential must be sufficiently flat,
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a requirement which is not always easy to obtain in realistic situations and which makes the
inflationary model building problem a difficult issue [212].

The dynamics of φ can be obtained if one plugs the expressions (2.3) and (2.4) into the conser-
vation equation (1.16). Doing so, one gets the Klein-Gordon equation

φ̈+ 3Hφ̇+ V ′ = 0 , (2.6)

where a prime denotes a derivative with respect to φ. On the other hand, the Friedmann
equation (1.17) gives rise to

3M2
PlH

2 = V +
φ̇2

2
. (2.7)

This last quantity is important since it sets the energy scale at which inflation takes place.
In section 2.3, we will see that its measurement requires to detect primordial gravity waves.
Without such a detection, one can only constrain ρ1/4 ∝ √

MPlH to be between the Grand
Unified Theory (GUT) scale, that is to say ∼ 1015GeV, and ∼ 103GeV [120]. However, if the
measurement of the B mode polarization of the CMB by the BICEP2 experiment [164] is of
primordial origin, the inflationary energy scale should lie close the GUT scale, see the discussion
at the end of section 2.3.

The Klein-Gordon equation (2.6) and the Friedmann equation (2.7) form a closed system that
can be integrated for any potential V (φ) and given initial conditions φin and φ̇in. A few numerical
solutions of this set of equations when V (φ) = m2φ2/2 are displayed in Fig. 2.1 for illustrative
purpose. In this figure, the light blue area stands for the region where the condition (2.5) is
fulfilled and where inflation takes place. One can see that even if the initial velocity of the
inflaton field is too large, it is quickly damped to sufficiently small values so that inflation starts
and proceeds. Then, at some point, the system exits the light blue area and inflation naturally
stops. Subsequently, the field quickly oscillates at the bottom of the potential, the amplitude
of these oscillations being damped due to the expansion, through the term ∝ Hφ̇ in Eq. (2.6).
During this phase, possible coupling between φ and other fields can efficiently make the inflaton
field parametrically decay into radiation, hence smoothly connecting inflation to the radiation-
dominated epoch [213, 214, 215, 216, 217, 218, 219, 196, 220]. This is the so-called reheating
period [221, 222, 223, 224, 225].

2.2. The Slow-Roll Approximation

Beyond the numerical solutions of Fig. 2.1, analytical solutions can also be obtained, in the limit
where the condition (2.5) is saturated, that is when V ≫ φ̇2. In this limit, one has p ≃ −ρ,
so that the conservation equation ρ̇ = −3H(ρ + p) implies that ρ is almost constant in time.
Thanks to the Friedmann equation (1.17), this means that H = ȧ/a is almost constant in time
too, which implies that space-time is close to the de Sitter universe for which

a (t) = ain exp [H (t− tin)] . (2.8)

This is why it is interesting to derive solutions to Eqs. (2.6) and (2.7) in the limit1 where the
Universe is perturbatively close to the one of Eq. (2.8). The “slow-roll approximation” refers to
this limit, in which the velocity of the inflaton is small φ̇≪

√
V and the field “slowly rolls” down

its potential. At the technical level, the strategy is to define a set of parameters that quantify
the deviation from de Sitter space-times, and to perform an expansion in these parameters.

1As will be shown in section 2.3.4, such an assumption can be justified a posteriori, e.g. by the fact that only
small deviations from scale invariance are measured, with tight constraints on the level of gravity waves.
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Figure 2.1.: Phase space diagram of the inflaton trajectory for V = m2φ2/2, with m ≃ 7 ×
10−6MPl. The black lines correspond to numerical solutions of Eqs. (2.6) and (2.7)
with different initial conditions. The arrows indicate in which direction the system
evolves. The light blue area stands for the region in phase space where inflation
proceeds, that is where the condition (2.5), V > φ̇2, is fulfilled. Finally, the blue
solid line displays the slow-roll trajectory at leading order φ̇ ≃ −V ′/(3H), with
H2 ≃ V/(3M2

Pl). One can see that as long as the slow-roll condition V ≫ φ̇2 is
met (i.e. when one is well inside the light blue area), this trajectory represents an
attractor solution.

2.2.1. The Slow-Roll Parameters

Although there are several possible sets of slow-roll parameters, here we choose to introduce the
Hubble-flow parameters {ǫn} defined by the flow equations [226, 227]. If one lets ǫ0 ≡ Hin/H,
this parameter ǫ0 is constant for a de Sitter space (and equal to 1), so that its time derivatives
should be small in the limit we are interested in. This is why, labelling time with the number
of e-folds N ≡ ln a, starting from ǫ0, one iteratively defines

ǫn+1 =
d ln |ǫn|
dN

. (2.9)

In this hierarchy, all the ǫn are typically of the same order of magnitude. By definition, one has
slow-roll inflation as long as |ǫn| ≪ 1, for all n > 0. For example, the first slow-roll parameter is
given by ǫ1 = −Ḣ/H2 = 1− ä/(aH2), which implies that inflation (ä > 0) takes place provided
ǫ1 < 1.
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2.2.2. The Slow-Roll Trajectory

Now, let us see how the system formed by Eqs. (2.6) and (2.7) can be solved perturbatively in
the slow-roll limit. Inserting the Klein-Gordon equation in the time derivative of the Friedmann
equation, one obtains Ḣ = −φ̇2/(2M2

Pl), hence
2

ǫ1 = − Ḣ

H2
= 3

φ̇2/2

V (φ) + φ̇2/2
. (2.10)

The condition ǫ1 ≪ 1 thus implies that the kinetic energy of the inflaton is much smaller than
its potential energy, which is clearly the limit under study. Under this condition, the Friedmann
equation simplifies and gives, at leading order in slow roll, H2 ≃ V/(3M2

Pl).

One can keep on and play the same game with ǫ2. Inserting the Klein-Gordon equation (2.6)
in the time derivative of the relation Ḣ = −φ̇2/(2M2

Pl) previously obtained, one gets Ḧ =
3Hφ̇2/M2

Pl + φ̇V ′/M2
Pl, and

ǫ2 =
Ḧ

HḢ
− 2

Ḣ

H2
= 6

(

ǫ1
3

− V ′

3Hφ̇
− 1

)

. (2.11)

The condition ǫ2 ≪ 1 thus implies that, at leading order in slow roll, φ̇ ≃ −V ′/(3H), which
means that the acceleration term can be neglected in the Klein-Gordon equation (2.6) (such
a limit solution is displayed by the solid blue line in Fig. 2.1). This is particularly interesting
since it lowers by one the order of the differential equation satisfied by φ. As a consequence, it
removes the dependency on the initial conditions by singling out a specific trajectory in phase
space, and it allows to derive analytical solutions in most cases.

More explicitly, since dN = Hdt, at leading order in slow roll, the Klein-Gordon equation
reads dN = −3H2dφ/V ′. Plugging in the slow-roll leading order of the Friedmann equation
H2

SR,LO = V/(3M2
Pl), one obtains

∆NSR,LO = − 1

M2
Pl

∫ φend

φin

V

V ′
dφ , (2.12)

where ∆N ≡ Nend−Nin, φin is the value of φ at some initial time Nin, and φend is the value of φ
at some final time Nend. This represents the leading order (LO) of the slow-roll (SR) trajectory.
Inverting this relation yields the value of φ as a function of time N .

If one worked at next-to-leading order in slow roll, see section 2.2.3, one would obtain a slightly
modified trajectory, so on and so forth, and the slow-roll trajectory is by definition the limit
towards which this perturbative process converges. It singles out a specific solution to Eqs. (2.6)
and (2.7). It is worth mentioning that as can be seen in Fig. 2.1, this slow-roll trajectory is
actually a powerful attractor [228] of the inflationary dynamics, that is to say, starting from a
large basin of possible initial conditions φin and φ̇in, the system quickly converges towards the
slow-roll trajectory. This property makes the slow-roll scheme of approximation both convenient
and physically well-motivated.

It is also interesting to remark that under the slow-roll approximation, the slow-roll hierarchy
can easily be expressed in terms of V and its derivatives. Indeed, making use of Eq. (2.12), one

2Notice that with Eq. (2.10), Eqs. (2.3) and (2.4) give rise to ω = p/ρ = −1 + 2ǫ1/3, which is consistent with
what we displayed in table 1.1.
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has

d

dN

∣

∣

∣

∣

SR,LO

= −M2
Pl

V ′

V

d

dφ
. (2.13)

Repeatedly applying this identity starting from ǫ0 = Hin/H ≃ Hin

√

3M2
Pl/V , one obtains, at

leading order in slow roll,

ǫLO
0 = Hin

√

3M2
Pl

V
, (2.14)

ǫLO
1 =

M2
Pl

2

(

V ′

V

)2

, (2.15)

ǫLO
2 = 2M2

Pl

[

(

V ′

V

)2

− V ′′

V

]

, (2.16)

ǫLO
3 =

2M4
Pl

ǫLO
2

[

V ′′′V ′

V 2
− 3

V ′′V ′2

V 3
+ 2

(

V ′

V

)4
]

, (2.17)

and the following slow-roll parameters can be computed in the same manner. One can see that
as mentioned above, in order for the first slow-roll parameter to be small and for inflation to take
place, the potential needs to be sufficiently flat, and more precisely its logarithm, (d/dφ) lnV ≪
1/MPl.

2.2.3. Next-to-Leading Orders in Slow Roll

Most of the time, the leading order of the slow-roll trajectory is sufficiently accurate, but given
the precision of observations, it can be useful (and sometimes necessary) to work at higher order
in slow roll. Here we explain how the higher contributions can be derived, and as an example,
we establish the next-to-leading order (NLO) and the next-to-next-to-leading order (NNLO)
versions of the previous expressions. The starting point is to combine equations (2.7) and (2.10)
into

H2 =
V

3M2
Pl

(

1− ǫ1
3

)−1
, (2.18)

which is exact. Together with the Friedmann equation (2.7), this gives rise to φ̇2 = 2V ǫ1/(3−ǫ1).
These two formulas allow us to recast dN = Hdφ/φ̇ as

dN = ± 1

MPl

dφ√
2ǫ1

, (2.19)

which is again an exact relation. From here the slow-roll parameters at next-to-leading order
can be obtained as follows. Rewriting Eq. (2.18) as ǫ0 = ǫLO

0

√

1− ǫ1/3, and iteratively applying

d

dN

∣

∣

∣

∣

SR,NLO

=

√

ǫNLO
1

ǫLO
1

d

dN

∣

∣

∣

∣

SR,LO

(2.20)
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Figure 2.2.: Leading order, next-to-leading order and next-to-next-to leading order of the slow-
roll trajectory for V = m2φ2/2, with m ≃ 7× 10−6MPl. All the trajectories start at
φin = 15MPl. In the left panel, the black solid line stands for the numerical solution
of Eq. (2.6) where dφ/dN |in is set according to Eq. (2.12). The blue dashed line
stand for the leading order slow-roll solution (2.12), the green dashed line stand for
the next-to-leading order slow-roll solution (2.30), and the red dashed line stand for
the next-to-next-to-leading order slow-roll solution (2.31). One can check that the
slow-roll solutions are good approximations to the exact solution. More precisely, in
the right panel, the distances from the slow-roll approximations to the exact solution
is displayed at each order. Since φ decreases during inflation, this plot should be
read from the right to the left. Each slow-roll solution is compared with the exact
solution of Eq. (2.6) that shares the same initial condition dφ/dN |in at N = 0 and
φin = 15MPl (so that the distance to the exact solution exactly vanishes at φ = φin
in all three cases). One can check that at each order, the distance to the exact
solution is smaller.

which comes from Eq. (2.19), one obtains an expression for the slow-roll parameters at next-to-
leading order in terms of the slow-roll parameters at leading order, which reads

ǫNLO
0 = ǫLO

0

(

1− ǫLO
1

6

)

, (2.21)
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, (2.22)
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, (2.23)
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3
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2

3
− ǫLO

4

3

)

, (2.24)

where the following slow-roll parameters can be computed in the same manner, and where
the slow-roll parameters at leading order in the right hand sides are given by Eqs. (2.14)-
(2.17). In the same manner, to go to next-to-next-to-leading order, one starts again from
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ǫ0 = ǫLO
0

√
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which is again a direct consequence of Eq. (2.19). Doing so, one obtains
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so on and so forth.

Let us move on to the slow-roll trajectory. At next-to-leading order, it proceeds from combining
Eq. (2.19) and Eq. (2.22), which gives rise to

∆NSR,NLO = − 1

M2
Pl

∫ φend

φin

V

V ′
dφ+

1

3
ln

(

V ′
end/Vend
V ′
in/Vin

)

. (2.30)

In the same manner, the next-to-next-to-leading order of the slow-roll trajectory can be obtained
from combining Eq. (2.19) and Eq. (2.27), and one gets
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dφ+
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ln
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V V ′
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V 2
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V

]

dφ . (2.31)

The slow-roll solutions at leading order (2.12), next-to-leading order (2.30), and next-to-next-to-
leading order (2.31) are displayed in Fig. 2.2 for the potential V (φ) = m2φ2/2. In the left panel,
they are superimposed to a numerical solution of Eq. (2.6). As already seen in Fig. 2.1, the
inflaton rolls down the potential and eventually rapidly oscillates around its minimum, and the
slow-roll solutions provide good approximations to the exact trajectory as long as the slow-roll
condition is fulfilled. However, it is difficult to distinguish by eye between the different slow-
roll orders in this figure. This is why in the right panel, this difference between the slow-roll
approximations and the actual trajectory is displayed, in terms of the number of e-folds realized
at φ, as a function of φ (since φ decreases during inflation in this model, this plot should be read
from the right to the left). Each slow-roll solution is actually compared with the numerical exact
solution of Eq. (2.6) that shares the same initial condition dφ/dN |in, so that the difference with
the exact solution exactly vanishes at φ = φin in all three cases. One can check that at each
order, the distance to the exact solution is smaller. Therefore, the slow-roll strategy does provide
a perturbative procedure that converges towards a solution (in fact, the attractor solution) of
the dynamical system formed by Eqs. (2.6) and (2.7).
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2.3. Inflationary Perturbations

What makes inflation appealing is that on top of solving the hot big bang problems, this new
phase in the cosmological scenario, combined with quantum mechanics, naturally explains the
origin of the CMB anisotropies and of the large-scale structures. In the inflationary paradigm
indeed, these deviations from homogeneity and isotropy originate from the unavoidable zero-
point quantum fluctuations of the coupled inflaton and gravitational fields. Statistically, the
fluctuations are characterized by their two-point correlation function or power spectrum. The
observations [229, 230, 120, 231, 232, 15, 163, 164] indicate that it is close to the Harrison-
Zel’dovich, scale invariant, power spectrum with equal power on all scales. That this power
spectrum represents a good fit to the astrophysical data was in fact realized before the advent
of inflation, but no convincing fundamental theory was known to explain this result.

One of the main successes of inflation is that it precisely predicts an almost scale invariant power
spectrum, the small deviations from scale invariance being connected to the micro-physics of
inflation [122, 123, 124, 125, 126, 127]. The fact that different types of inflationary scenarios lead
to a power spectrum which is, at leading order, always close to scale invariance is connected with
the fact that the inflationary background is always close to the de Sitter solution (see above)
or, equivalently, with the fact that the inflaton potential is always almost flat. The deviations
from scale invariance are related to the deviations from a flat potential and, therefore, depend
on the detailed shape of the potential. As a consequence, measuring the statistical moments of
the cosmological perturbations with accuracy allows us to say something about V (φ) and there
is currently an important effort in this direction, using the high accuracy CMB data that have
been released in the past years [233, 234, 235, 236, 237, 205, 206].

Thus in this section, we turn to the description of inflationary perturbations and we see how the
results reviewed above can be derived. We show how and why cosmological perturbations need
to be quantized, we derive their power spectrum and we verify that it is indeed almost scale
invariant. This allows us to highlight some fundamental aspects about the nature of cosmological
perturbations and the way they must be dealt with.

2.3.1. Basic Formalism

Clearly, in order to model the cosmological fluctuations, one needs to go beyond homogeneity
and isotropy. The most general metric describing small fluctuations on top of a FLRW universe
can be written as [129, 8]

ds2 = a2 (η)
[

− (1 + 2α) dη2 + 2Bidx
idη + (γij + hij) dx

idxj
]

. (2.32)

Notice that here, the metric is written in terms of conformal time η introduced in Eq. (1.62),
and that γij stands for the spatial part of the unperturbed FLRW metric that can be directly
read off from Eq. (1.1). In Eq. (2.32), the three functions α, Bi and hij are functions of time
and space since we consider an inhomogeneous and anisotropic situation.

2.3.1.1. SVT Decomposition

In order to track the dynamics of these cosmological perturbations, it can be useful to decompose
them into scalar, vector and tensor components [238] (thereof realizing a “SVT decomposition”).
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Indeed, any vector field can be decomposed into the divergence of a scalar and a vector with
vanishing divergence, that is3

Bi = ∂iB + B̄i , with ∂iB̄i = 0 . (2.33)

In the same manner, any tensor field can be decomposed into

hij = −2ψγij + 2∂i∂jE + 2∂(iĒj) + 2Ēij , with ∂iĒ
ij = 0 and Ēi

i = 0 . (2.34)

It can be shown that vector modes are rapidly suppressed during inflation [129, 8]. This is why
they are often disregarded. Tensor perturbations (i.e. gravity waves) and scalar perturbations
are instead usually focused on. If one first studies scalar perturbations at linear order, one then
has to consider

ds2
∣

∣

scal
= a2 (η)

{

− (1 + 2α) dη2 + 2 (∂iB) dxidη + [(1− 2ψ) δij + 2∂i∂jE] dxidxj
}

, (2.35)

where we take the case of a flat FLRW background for which γij = δij , for the reasons mentioned
at the end of section 1.3.1 (namely the fact that the observed spatial curvature is negligible).

2.3.1.2. Gauge Invariant Variables

As is well known, the above approach is redundant because of gauge freedom [129, 239, 240]
under space-time diffeomorphisms. A careful study of this question shows that, in the absence of
anisotropic stress, the gravitational sector can in fact be described by a single, gauge-invariant,
quantity, the Bardeen potential ΦB defined by [239]

ΦB (η,x) = −α+
1

a

[

a
(

B − E′
)]′
, (2.36)

where a prime denotes a derivative with respect to the conformal time η. In the same manner,
the matter sector can be modelled by the gauge-invariant fluctuation of the scalar field

δφ(gi) (η,x) = δφ+ φ′
(

B − E′
)

. (2.37)

The two quantities ΦB and δφ(gi) are related by a perturbed Einstein constraint. This implies
that the scalar sector can in fact be described by a single quantity. For this reason, it is useful
to introduce the so-called Mukhanov-Sasaki variable [122, 241, 242] which is a combination of
the Bardeen potential and of the gauge-invariant field,

v (η,x) = a

[

δφ(gi) + φ′
ΦB

H

]

, (2.38)

where H ≡ a′/a. All the other physical scalar quantities can be expressed in terms of v(η,x)
which, therefore, fully characterizes the scalar sector.

2.3.1.3. Equation of Motion for the Perturbations

The next step consists in deriving an equation of motion for v(η,x). Let us first establish
the action for the quantity v(η,x). Expanding the action of the system [i.e. Einstein-Hilbert

3For the quantities introduced here, the indexes must be lowered or raised with the unperturbed metric γij . For
example, B̄i = γijB̄j .
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Figure 2.3.: Length scales evolution in the cosmological standard model including a phase of
inflation. The blue curve stands for the Hubble radius normalized to its current
value, H0/H. The inflationary phase is implemented with a large field potential
V (φ) = m2φ2/2, where m is normalized to the amplitude of the CMB power spec-
trum m ≃ 7 × 10−6MPl (see below), while radiation, cold matter and dark energy
components follow the values of table 1.2. As expected, the Hubble radius is roughly
constant during inflation and increases afterwards. The green lines stand for the
physical length scales probed in the CMB, normalized to the current Hubble radius.
They get stretched according to λ = a/k, as the expansion of the Universe proceeds.
The pivot scale λ∗ corresponds to k∗ = 0.05 Mpc−1, and [λ−, λ+] defines the scales
directly observed in the CMB, with k+ ≃ 0.0002 Mpc−1 and k− ≃ 0.2 Mpc−1. These
scales frame the observational window displayed in orange. They cross the Hubble
radius during inflation, and at more recent time.

action (1.10) plus the action of the inflaton scalar field (2.1)] up to second order in the pertur-
bations, one obtains [129]

(2)δS =
1

2

∫

d4x

[

(

v′
)2 − δij∂iv∂jv +

(

a
√
ǫ1
)′′

a
√
ǫ1

v2

]

, (2.39)

where ǫ1 is defined in Eq. (2.10). The next move consists in Fourier transforming the quantity
v(η,x). We follow such a strategy because we work with a linear theory and, as a consequence,
all the modes evolve independently. We have

v (η,x) =
1

(2π)3/2

∫

R3

d3k vk (η)e
ik·x , (2.40)

with v−k = v∗k because v(η,x) is real. Then, inserting this expansion into Eq. (2.39), one arrives
at [129]

(2)δS =

∫

dη

∫

R+×R2

d3k

{

v′kv
∗
k
′ + vkv

∗
k

[

(

a
√
ǫ1
)′′

a
√
ǫ1

− k2

]}

, (2.41)
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where one can see that the integral over k is taken over R+×R
2, i.e. half the Fourier space only,

precisely because of the redundancy v−k = v∗k. For the same reason, the overall factor 1/2 has
been cancelled. This allows us to define pk, the variable canonically conjugate to vk,

pk =
δL
δv∗k

′ = v′k , (2.42)

where L is the Lagrangian density in Fourier space that can be read off from Eq. (2.41), (2)δS =
∫

dηL. This gives rise to the Hamiltonian density H (not to be confused with the Hubble
parameter), defined by the Legendre transform H =

∫

d3kv′kpk − L, which reads

H =

∫

R+×R2

d3k

{

pkp
∗
k + vkv

∗
k

[

k2 −
(

a
√
ǫ1
)′′

a
√
ǫ1

]}

. (2.43)

This Hamiltonian density represents a collection of parametric oscillators, with one oscillator
per mode k, the time-dependent frequency of which can be expressed as

ω2 (η,k) = k2 −
(

a
√
ǫ1
)′′

a
√
ǫ1

. (2.44)

We see that the frequency depends on the scale factor and its derivatives (up to the fourth). This
means that different inflationary backgrounds (i.e. different inflaton potentials) lead to different
ω(η,k) and, therefore, to different behaviours for vk(η). Since Eq. (2.41) gives rise to L =
∫

d3k
(

pkp
∗
k − w2vkv

∗
k

)

, the equation of motion for the Mukhanov-Sasaki variable can be derived
from the variational relation ∂L/∂v∗k = ∂η(∂L/∂p∗k). The same result can be obtained making
use of Eq. (2.43), H =

∫

d3k
(

pkp
∗
k + w2vkv

∗
k

)

, and of Hamilton’s relation p′k = −∂H/∂v∗k. In
either case, one obtains

v′′k + ω2 (η,k) vk = 0, (2.45)

which confirms that each mode behaves as a parametric oscillator.

Let us comment on the structure of this equation. In the case where ǫ1 is constant, ω2 =
k2 − a′′/a, and since a ∼ eHt ∝ −1/(ηH), one roughly obtains ω2 ≃ k2 − 2/η2. Remember
that during inflation, η increases in the range [−∞, 0−], see Fig. 1.12. As a consequence, the
system undergoes two different regimes. At early time, when η ≪ −1/k, one has ω2 ≃ k2 which
corresponds to an harmonic oscillator. In this case the Mukhanov-Sasaki variable oscillates with
constant amplitude, vk ∝ cos(kη), like in Minkowski space-time. On the contrary, at late time
when η ≫ −1/k, one has ω2 ≃ −2/η2 which corresponds to a forced harmonic oscillator, or
parametric oscillator. The Mukhanov-Sasaki variable grows as vk ∝ −1/η + η2 ≃ −1/η, where
the growing mode dominates over the decaying mode in the limit η → 0−. In this regime,
curvature of space-time sources the parametric amplification of the cosmological perturbations.

The situation can be better understood looking at Fig. 2.3. In this figure, we have plotted the
Hubble radius of a universe made of radiation, cold matter and a cosmological constant according
to the values of table 1.2, and which also contains an inflaton field with potential V (φ) = m2φ2/2
(in this discussion, the precise shape of V has no importance). One can check that the Hubble
radius is roughly constant during inflation, and increases afterwards during the radiation era
and the matter era. On the other hand, the physical length scales λ associated with cosmological
perturbations get stretched according to λ = a/k (where k is the comoving wavenumber), and
always increase as the expansion of the Universe proceeds. As a consequence, at the beginning
of inflation, scales of astrophysical interest today are “sub-Hubble”, which means that they are
smaller than the Hubble radius. Since space-time is locally flat, of the Minkowski type, length
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scales far inside the Hubble scale follow harmonic oscillator equations. At some point during
inflation, they cross the Hubble radius and become “super-Hubble”. From this point on they
are impacted by the curvature of space-time, and they undergo parametric amplification. Note
that they cross the Hubble radius a second time, at some point between the CMB emission and
now, so that they are currently sub-Hubble again.

To go beyond this schematic description, one has of course to work within a specified inflationary
model. Once a potential V (φ) is chosen, the background equations (2.6) and (2.7) can be
solved and the corresponding scale factor a(η) is inferred. This, in turn, allows us to determine
ω2(η,k) and, then, one can solve the equation of motion (2.45) for the Fourier component of the
Mukhanov-Sasaki variable vk. However, in order to fully specify the solution for vk, one also
needs to set initial conditions. Classically, there does not seem to exist a natural criterion to
choose them. However, as we shall now see, when quantization is performed, if one assumes that
the perturbations are sourced by the zero-point fluctuations of the theory, it leads to well-defined
initial conditions. We now turn to these questions.

2.3.2. Quantization in the Schrödinger Picture

In this section, we review how the cosmological perturbations must be quantized. Very often
in the literature, the quantization is done in the Heisenberg picture. Here, we carry out the
quantization in the Schrödinger picture [135, 138] to show that one obtains the same results
doing so. In order to properly quantize the system, it is more convenient to work with real
variables. Therefore, we introduce the following decompositions

vk ≡ 1√
2

(

vRk + ivIk
)

, pk ≡ 1√
2

(

pRk + ipIk
)

, (2.46)

where vRk , v
I
k, p

R
k and pIk are real quantities. In the Schrödinger approach, the quantum state

of the system is described by a wavefunctional, Ψ [v(η,x)]. Since we work in Fourier space, and
since the theory is free (i.e. without mode mixing terms) in the sense that it does not contain
terms with power higher than two in the Lagrangian, the wavefunctional can also be factorized
into mode components as

Ψ [v(η,x)] =
∏

k∈R+×R2

Ψk

(

vRk , v
I
k

)

=
∏

k∈R+×R2

ΨR
k

(

vRk
)

ΨI
k

(

vIk
)

. (2.47)

Quantization is achieved by promoting vk and pk to quantum operators, v̂k and p̂k, and by
requiring the canonical commutation relations

[

v̂Rk , p̂
R
q

]

= iδ (k − q) ,
[

v̂Ik, p̂
I
q

]

= iδ (k − q) , (2.48)

with
[

v̂Rk , p̂
I
q

]

=
[

v̂Ik, p̂
R
q

]

= 0. These relations admit the following representation

v̂R,I
k Ψ = vR,I

k Ψ , (2.49)

p̂R,I
k Ψ = −i ∂Ψ

∂vR,I
k

. (2.50)

The wavefunctional Ψ [v(η,x)] obeys the Schrödinger equation which, in this context, is a func-
tional differential equation. However, since each mode evolves independently, this functional
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differential equation can be reduced to an infinite number of differential equations for each ΨR,I
k .

Concretely, we have

i
ΨR,I

k

∂η
= ĤR,I

k ΨR,I
k , (2.51)

where the Hamiltonian densities ĤR,I
k are related to the direct space Hamiltonian density Ĥ by

the Fourier expansion Ĥ =
∫

R3 d
3k
(

ĤR
k + ĤI

k

)

. Looking at Eq. (2.43), they can be expressed
as

ĤR,I
k = −1

2

∂2

∂
(

vR,I
k

)2 +
1

2
ω2(η,k)

(

v̂R,I
k

)2
, (2.52)

where we have made use of the representations (2.49) and (2.50), and where the factor 1/2 ac-
counts for the fact that the Ĥk densities are defined through an integral over R3 while Eq. (2.43)
makes use of an integral over R+ × R

2.

We are now in a position where we can solve the Schrödinger equation. Let us consider the
following Gaussian state

ΨR,I
k

(

η, vR,I
k

)

= Nk(η)e
−Ωk(η)(vR,I

k )
2

. (2.53)

The functions Nk(η) and Ωk(η) are time dependent and do not carry the superscripts “R” or
“I” because as shown below, they are the same for the wavefunctions of the real and imaginary
parts. Inserting the state Ψk given by Eq. (2.53) into the Schrödinger equation (2.51), one can
see that such a Gaussian state is a solution of the Schrödinger equation. This is why at linear
order in perturbation theory, if the initial state is Gaussian, perturbations remain Gaussian.
More precisely, this is the case provided Nk and Ωk obey the following differential equations

i
N ′

k

Nk

= Ωk and Ω′
k = −2iΩ2

k +
i

2
ω2(η,k). (2.54)

The solutions can be easily found and read

|Nk| =
(

2ℜeΩk

π

)1/4

and Ωk = − i

2

f ′k
fk
, (2.55)

where fk is a function obeying the equation f ′′k + ω2fk = 0, that is to say exactly Eq. (2.45).
The first equation (2.55) guarantees that the wavefunction is properly normalized, i.e. that we
have

∫ ∞

−∞
ΨR,I

k ΨR,I
k

∗dvR,I
k = 1. (2.56)

Let us now discuss the initial conditions. A rather natural assumption to make is that the
perturbations are initially in their ground state, so that they are only sourced by the zero-
point quantum fluctuations. According to the discussion following Fig. 2.3, at the beginning
of inflation, all the modes of astrophysical interest today have a physical wavelength which is
smaller than the Hubble radius, i.e. k/(aH) → ∞. In this regime, one has ω2(η,k) → k2 and
each mode behaves as an harmonic oscillator (as opposed to a parametric oscillator in the generic
case) with frequency ω = k. As a consequence, the differential equation for fk(η) can easily be
solved and the solution reads fk = Ake

ikη + Bke
−ikη, Ak and Bk being integration constants.

Upon using the second equation (2.55), one then has

Ωk → k

2

Ake
ikη −Bke

−ikη

Akeikη +Bke−ikη
(2.57)
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in this limit. On the other hand, let us calculate the ground state wavefunction of the harmonic
oscillator under consideration. The number of particle operator n̂k = â†kâk for the harmonic

oscillator with ω ∼ k can be expressed in terms of the creation and annihilation operators a†k
and ak, defined by [243]

âk =

√

k

2

(

v̂k +
i

k
p̂k

)

, (2.58)

â†k =

√

k

2

(

v̂k − i

k
p̂k

)

, (2.59)

so that one has n̂k = k/2(v̂2k+ p̂
2
k/k

2+ i/k[vk, pk]) = k/2(v̂2k+ p̂
2
k/k

2−1/k), where one has made
use of the canonical commutation relations (2.48). Here the superscripts “R” and “I” have been
removed for simplicity. Making use of the representations (2.49) and (2.50), this allows us to
calculate the mean number of particles present in the state (2.53), and one obtains

〈Ψk|n̂k|Ψk〉 =
k

2

[

〈

Ψk|v̂2k|Ψk

〉

(

1− 4
Ω2
k

k2

)

+ 2
Ωk

k2
− 1

k

]

, (2.60)

where the quantum mean value of v2k is just given by the Gaussian integral

〈

Ψk|v̂2k|Ψk

〉

=

∫ ∞

−∞
dvkΨk (η, vk)Ψ

∗
k (η, vk) v

2
k

=

√

2ℜe (Ωk)

π

∫ ∞

−∞
dvke

−2ℜe (Ωk)v
2
kv2k

=
1

4ℜe (Ωk)
. (2.61)

Combining the two previous equations together yields an expression for the mean number of
particles in the Gaussian state Ψk, only in terms of Ωk. Requiring that this number vanishes,
so that Ψk coincides with the ground state of the Minkowski harmonic oscillator at early time,
gives rise to ℑmΩk = 0 and ℜeΩk = k/2. Looking back at Eq. (2.57), this means that one
must set the initial conditions such that Bk = 0.

Moreover, it is easy to check that the Wronskian W ≡ f ′kf
∗
k − f ′∗k fk is a conserved quantity,

dW/dη = 0, thanks to the equation of motion (2.45) of fk. At early time, since fk = Ake
ikη +

Bke
−ikη, one hasW = 2ik(|Ak|2−|Bk|2). In the Heisenberg picture, the canonical commutation

relations require that W = i. Even if in the Schrödinger picture presently used, the specific
value of W is irrelevant since it cancels out in all calculable physical quantities, this value is
conventionally adopted, which amounts to setting Ak = 1/

√
2k on top of Bk = 0. However, we

insist that a different value of Ak can be worked with without modifying the results obtained
below, as long as Bk = 0. The equation for fk (2.45) will thus be solved with the initial condition

lim
k/(aH)→+∞

fk =
1√
2k

eikη. (2.62)

Such an initial state is often referred to as the Bunch-Davies vacuum [244, 245]. Obviously,
if excited states of the harmonic oscillator are chosen as initial conditions instead, one obtains
different results [246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261,
262, 263, 264, 265, 266] and the inflationary predictions are dependent on what one assumes for
the initial state of the perturbations.

Once an initial value for fk is chosen, the quantum state for the perturbations is completely
specified. Indeed, the wavefunction Ψ is given by Eq. (2.53) and depends on a single parameter

54



2.3. Inflationary Perturbations

Ωk, for which we know what is the initial state and the equation of motion. We therefore
completely know the wavefunction, from which we can further study the quantum state of the
perturbations. For example, in section 4.3, we show that on super-Hubble scales, the quantum
state is a squeezed one, and we discuss how this squeezing can account for a quantum-to-classical
transition of the perturbations. Another relevant quantity to compute is of course the two-point
correlation function in the quantum state Ψ, i.e. the power spectrum.

2.3.3. The Power Spectrum

Let us now turn to the calculation of the power spectrum. We first introduce the two-point
correlation function, defined by 〈Ψ |v̂(η,x)v̂(η,x+ r)|Ψ〉. Making use of the Fourier transform
of the Mukhanov-Sasaki variable, Eq. (2.40), and of the mode decomposition of the wavefunction,
Eq. (2.47), one has

〈Ψ |v̂(η,x)v̂(η,x+ r)|Ψ〉 =
1

(2π)3

∫

R3

dp eip·x
∫

R3

dq eiq·(x+r) 〈Ψ |v̂pv̂q|Ψ〉 (2.63)

=
1

(2π)3

∫

R3

dp eip·x
∫

R3

dq eiq·(x+r)
∏

k∈R+×R2

∏

k′∈R+×R2

〈Ψk |v̂pv̂q|Ψk′〉 .

(2.64)

In the above expression, one can see that k and k′ take value in R
+ × R

2 while p and q take
value in R

3. In order to have the same integration domain for all variables, it is useful to notice
that the p-integration (or, in the same manner, the q-integration) can be expressed as

∫

R3

dp eip·xv̂p =

∫

R+×R2

dp eip·xv̂p +

∫

R−×R2

dp eip·xv̂p (2.65)

=

∫

R+×R2

dp eip·xv̂p +

∫

R+×R2

dp e−ip·xv̂−p (2.66)

=

∫

R+×R2

dp eip·xv̂p +

∫

R+×R2

dp e−ip·xv̂∗p (2.67)

=

∫

R+×R2

dp
(

eip·xv̂p + e−ip·xv̂∗p
)

, (2.68)

where between the second and the third line we have used the relation v̂−p = v̂∗p mentioned above
which comes from the fact that v̂ is a real operator in physical space. Plugging the obtained
expression in Eq. (2.64), one obtains

〈Ψ |v̂(η,x)v̂(η,x+ r)|Ψ〉 = 1

(2π)3

∫

R+×R2

dp

∫

R+×R2

dq
∏

k∈R+×R2

∏

k′∈R+×R2

〈

Ψk

∣

∣

∣

[

eip·xv̂p + e−ip·xv̂∗p
]

[

eiq·(x+r)v̂q + e−iq·(x+r)v̂∗q

]∣

∣

∣
Ψk′

〉

.

(2.69)

Since the Hilbert spaces associated with each mode are independent at linear order in pertur-
bation theory, and since the |Ψk〉 wavefunctions are normalized, 〈Ψk|Ψ′

k〉 = δ(k − k′), in the
above expression the product terms can be written as

〈

Ψk

∣

∣

∣
v̂
(∗)
p v̂

(∗)
q

∣

∣

∣
Ψk′

〉

= δ (p− q) δ (p− k) δ
(

q − k′
)

〈

Ψk

∣

∣

∣
v̂
(∗)
p v̂

(∗)
q

∣

∣

∣
Ψk′

〉

, (2.70)
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where the superscripts “(∗)” mean that stars may or may not be present. The delta functions
allow to calculate all integrals and products (since they are performed on the same domains)
but one, and one obtains

〈Ψ |v̂(η,x)v̂(η,x+ r)|Ψ〉 = 1

(2π)3

∫

R+×R2

dp

〈

Ψp

∣

∣

∣

[

eip·xv̂p + e−ip·xv̂∗p
]

[

eip·(x+r)v̂p + e−ip·(x+r)v̂∗p

]
∣

∣

∣
Ψp

〉

.

(2.71)

Let us now decompose the product terms into real parts and imaginary parts. Making use of
Eq. (2.46), and since v̂Rp and v̂Ip act on independent Hilbert spaces again, |Ψk〉 = |ΨR

k 〉|ΨI
k〉, one

has for example

〈

Ψp

∣

∣v̂2p
∣

∣Ψp

〉

=
1

2

〈

Ψp

∣

∣

∣

(

v̂Rp + iv̂Ip
)2
∣

∣

∣
Ψp

〉

(2.72)

=
1

2

〈

ΨR
p

∣

∣

∣

(

v̂Rp
)2
∣

∣

∣
ΨR

p

〉

− 1

2

〈

ΨI
p

∣

∣

∣

(

v̂Ip
)2
∣

∣

∣
ΨI

p

〉

, (2.73)

and in the same manner

〈

Ψp

∣

∣v̂pv̂
∗
p

∣

∣Ψp

〉

=
〈

Ψp

∣

∣v̂∗pv̂p
∣

∣Ψp

〉

=
1

2

〈

ΨR
p

∣

∣

∣

(

v̂Rp
)2
∣

∣

∣
ΨR

p

〉

+
1

2

〈

ΨI
p

∣

∣

∣

(

v̂Ip
)2
∣

∣

∣
ΨI

p

〉

, (2.74)

〈

Ψp

∣

∣

∣

(

v̂∗p
)2
∣

∣

∣
Ψp

〉

=
1

2

〈

ΨR
p

∣

∣

∣

(

v̂Rp
)2
∣

∣

∣
ΨR

p

〉

− 1

2

〈

ΨI
p

∣

∣

∣

(

v̂Ip
)2
∣

∣

∣
ΨI

p

〉

. (2.75)

Plugging these relations into Eq. (2.71), one obtains

〈Ψ |v̂(η,x)v̂(η,x+ r)|Ψ〉 = 1

(2π)3

∫

R+×R2

dp
{

[cos (p·r) + cos (2p·x+ p·r)]
〈

ΨR
p

∣

∣

∣

(

v̂Rp
)2
∣

∣

∣
ΨR

p

〉

+ [cos (p·r)− cos (2p·x+ p·r)]
〈

ΨI
p

∣

∣

∣

(

v̂Ip
)2
∣

∣

∣
ΨI

p

〉}

. (2.76)

The mean values of
(

v̂Rp
)2

and
(

v̂Ip
)2

are the same, and given by Eq. (2.61). This is why the
previous expression reduces to

〈Ψ |v̂(η,x)v̂(η,x+ r)|Ψ〉 = 1

2(2π)3

∫

R+×R2

dp
cos (p·r)
ℜe (Ωp)

. (2.77)

Now, let us see how the angular part of the p-integral can be performed. When p denotes
the module of p and r denotes the module of r, let θ be the angle between r and p. With
these notations, one has p·r = pr cos θ, and from what precedes,4 Ωp only depends on p and
we use the notation Ωp. The p-integral can be decomposed into radial and angular parts,
dp = p2 sin θ dp dθ dϕ. Because p takes its values in R

+ × R
2, ϕ only varies in [0, π], and one

has

〈Ψ |v̂(η,x)v̂(η,x+ r)|Ψ〉 =
1

2(2π)3

∫ π

0
dϕ

∫ π

0
dθ sin θ

∫ ∞

0
dp p2

cos (pr cos θ)

ℜe (Ωp)
(2.78)

=
1

16π2

∫ π

0
dθ sin θ

∫ ∞

0
dp p2

cos (pr cos θ)

ℜe (Ωp)
(2.79)

=
1

16π2

∫ ∞

0
dp p2

1

ℜe (Ωp)

[

sin (pr cos θ)

−pr

]θ=π

θ=0

(2.80)

=
1

8π2

∫ ∞

0

dp

p

sin (pr)

pr

p3

ℜe (Ωp)
. (2.81)

4Indeed, fp is initiated in the state (2.62) which only depends on the radial part p of p, and follows an equation
of motion (2.45) that only depends on p as well. Hence fp = fp, and Ωp = Ωp.
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We are now in a position where an expression for the power spectrum can be given. The power
spectrum Pv(k) is defined as the square of the Fourier amplitude per logarithmic interval at a
given scale k, i.e. it is such that

〈Ψ |v̂(η,x)v̂(η,x+ r)|Ψ〉 ≡
∫ ∞

0

dk

k

sin (kr)

kr
Pv (k) . (2.82)

By identifying Eqs. (2.81) and (2.82), it is straightforward to obtain

Pv (k) =
k3

8π2
1

ℜe (Ωk)
. (2.83)

Finally, let us express ℜe (Ωk) in terms of the function fk. From the second Eq. (2.55), one
easily shows that

ℜe (Ωk) = − i

4

W

|fk|2
. (2.84)

One can check that only the ratio W/|fk|2 is involved, so that as announced above, the ab-
solute normalization of fk does not play any role in the Schrödinger picture. Since the initial
condition (2.62) is associated with the choice W = i, one eventually obtains

Pv (k) =
k3

2π2
|fk|2. (2.85)

A last remark is in order. Instead of calculating the power spectrum of the Mukhanov variable
Pv, it often proves more convenient to discuss the power spectrum of curvature perturbations Pζ .
The quantity ζ is related to the Bardeen potential defined in Eq. (2.36) through the following
expression [129, 267, 240]

ζ =
2

3

H−1Φ′
B
+ΦB

1 + w
+ΦB , (2.86)

where w ≡ p/ρ is the equation of state parameter. The importance of ζ lies in the fact that
it is a conserved quantity on large scales [267, 240]. Therefore, its spectrum, calculated at the
end of inflation, can directly be propagated to the recombination time as it is not sensitive to
the details of the cosmological evolution, in particular to those of the complicated reheating
era [268, 223, 214, 225, 219]. The curvature perturbation can also be expressed in terms of the
Mukhanov-Sasaki variable as [267]

ζ =
1

a
√
2ǫ1

v

MPl

. (2.87)

Making use of Eq. (2.85), one then has

Pζ(k) =
1

2a2M2
Plǫ1

Pv(k) =
k3

4π2a2ǫ1M2
Pl

|fk|2 , (2.88)

and it only remains to calculate |fk|2.

2.3.4. Power Spectrum at Leading Order in Slow Roll

In the last section, we saw that the calculation of the scalar power spectrum Pζ(k) boils down
to solving the differential equation (2.45) for fk, with initial condition given by Eq. (2.62). In
Eq. (2.45), ω2(η,k) = (a

√
ǫ1)

′′/(a
√
ǫ1) depends on the background function a(η), hence on V (φ)

and on the solution of the Klein-Gordon equation (2.6). In practice, it must be solved numerically
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once these quantities are specified. However, in the slow-roll approximation, as explained in
section 2.2, a(η) is close to the de Sitter profile a(η) ∝ −1/(Hη), and at the technical level,
the slow-roll parameters quantify the deviation of a(η) from this de Sitter solution. A priori,
ω2(η,k) can therefore be expressed in terms of the slow-roll parameters and Eq. (2.45) can be
solved accordingly. This is why in this section, in order to gain some insight on the shape of
the power spectrum, we solve Eq. (2.45) at first order in slow roll and we calculate the power
spectrum Pζ(k) around some pivot scale k∗ at this same order in slow roll.

The first step consists in working out an expression for a(η) at first order in slow roll. One can
start from the definition of η, given by Eq. (1.62), and write

η =

∫

dt

a
=

∫

da

aH , (2.89)

where we denote H ≡ a′/a = aH. Writing the last integrand as 1/(aH) = (d/da)a × 1/(aH),
the last integral can be integrated by parts and one obtains

∫

da

aH =
1

H +

∫

da

aH (2− ǫ1) , (2.90)

where ǫ1 = 1 − Ḣ/H2 = −H′/H2 has been defined in Eq. (2.10). The above expression gives
rise to

∫

da

aH = − 1

H +

∫

da

aHǫ1 . (2.91)

Again, the integral in the right hand side can be integrated by parts. Indeed, its integrand can
be written as ǫ1/(aH) = 1/(aH)× ǫ1 = (d/da)[−1/H+

∫

daǫ1/(aH)]× ǫ1, where we have made
use of Eq. (2.91) itself to integrate 1/(aH). Therefore, one obtains

∫

da

aHǫ1 = −ǫ1H + ǫ1

∫

ǫ1da

aH +

∫

ǫ1ǫ2da

aH −
∫
[

d

da
(ǫ1)

∫

ǫ1dā

āH

]

da (2.92)

= −ǫ1H + ǫ1

∫

ǫ1da

aH +

∫

ǫ1ǫ2da

aH − ǫ1

∫

ǫ1da

aH +

∫

ǫ21da

aH (2.93)

= −ǫ1H +

∫

[ ǫ1
aH (ǫ1 + ǫ2)

]

da , (2.94)

where between the first and the second line the last term has been integrated by parts. Plugging
Eq. (2.94) into Eq. (2.91) yields an expression for η, namely

η = −1 + ǫ1
H +

∫

da

aH
(

ǫ21 + ǫ1ǫ2
)

. (2.95)

Since we want to work at first order in slow roll, the last integral can be dropped and one simply
has η ≃ −(1+ǫ1)/H. However, let us notice that if one wanted to derive higher order in slow-roll
terms, the same strategy could be used. The integral in the right hand side of Eq. (2.95) could
be integrated by parts making use of Eq. (2.94), noticing that its integrand can be written as
ǫ1/(aH)× (ǫ1 + ǫ2) and that Eq. (2.94) precisely provides us with a formal integral of the first
term ǫ1/(aH), so on and so forth. At second order in slow roll for example, one would obtain
Eq. (2.5) of Ref. [209], see section 3.5. Here however, we work at first order in slow roll and we
have

H ≃ −1 + ǫ1∗
η

. (2.96)

In the above expression, the first slow-roll parameter has been evaluated at the time η∗ where
the pivot scale k∗ crosses the Hubble radius since as will be shown in Eq. (2.99), deviations of ǫ1
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from this value are slow-roll suppressed quantities. If one integrates the above expression along
dη, one obtains

ln

(

a

a∗

)

≃ (1 + ǫ1∗) ln

(

η∗
η

)

(2.97)

from which one has after exponentiation, and at first order in slow roll, a/a∗ = η∗/η[1 −
ǫ1∗ ln(η/η∗)]. Looking at Eq. (2.96), the time η∗ can be expressed as η∗ = −(1 + ǫ1∗)/H∗,
so that one eventually has

a ≃ − 1

H∗η

[

1 + ǫ1∗ − ǫ1∗ ln

(

η

η∗

)]

. (2.98)

We have therefore reached our first goal, namely to find an expression for a(η) at first order in
slow roll. Notice that when ǫ1∗ = 0, one recovers the de Sitter profile a(η) = −1/(Hη). Now we
need to calculate the corresponding behaviour of ω2(η,k) = (a

√
ǫ1)

′′/(a
√
ǫ1) at leading order in

slow roll. The first slow-roll parameter ǫ1 can be expanded at first order in slow roll around the
time η∗, and one has

ǫ1 ≃ ǫ1∗ +
dǫ1
dN

∣

∣

∣

∣

η∗

(N −N∗) ≃ ǫ1∗ + ǫ1∗ǫ2∗ ln

(

a

a∗

)

≃ ǫ1∗ − ǫ1∗ǫ2∗ (1 + ǫ1∗) ln

(

η

η∗

)

≃ ǫ1∗

[

1− ǫ2∗ ln

(

η

η∗

)]

, (2.99)

where in the second line we have used Eq. (2.97) to express ln(a) in terms of η. At this point,
with Eqs. (2.98) and (2.99), we are in a position where we can calculate ω2 at first order in slow
roll. After a straightforward calculation, one obtains

(

a
√
ǫ1
)′′

a
√
ǫ1

≃ 2

η2

(

1 +
3

2
ǫ1∗ +

3

4
ǫ2∗

)

. (2.100)

In particular, one notices that the logarithmic terms in η cancel out at first order in slow roll,
which makes the previous expression quite simple and easy to handle. Indeed, at this order,
Eq. (2.45) reads

f ′′k +

[

k2 − 2

η2

(

1 +
3

2
ǫ1∗ +

3

4
ǫ2∗

)]

fk = 0 . (2.101)

Conveniently enough, such a differential equation can be solved in terms of Hankel functions,
and one obtains

fk = Ck

√

−kηH(1)
ν (−kη) +Dk

√

−kηH(2)
ν (−kη) , (2.102)

with

ν =
3

2

√

1 +
4

3
ǫ1∗ +

2

3
ǫ2∗ (2.103)

≃ 3

2
+ ǫ1∗ +

ǫ2∗
2
. (2.104)

In Eq. (2.102), H
(1)
ν and H

(2)
ν are Hankel functions [269] (also called Bessel functions of the third

kind), and Ck and Dk are integration constants.

These constants can be set so that the Bunch-Davies vacuum (2.62) is recovered at early time.
In Eq. (2.62) the limit k/(aH) → +∞ actually corresponds to kη → −∞ since from Eq. (2.96)
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one has k/(aH) = k/H ≃ −kη/(1 + ǫ1∗). Since one has [269] H
(1)
ν (z) ≃

√

2/(πz) exp[i(z −
νπ/2− π/4)] and H

(2)
ν (z) ≃

√

2/(πz) exp[−i(z − νπ/2− π/4)] when z ≫ 1, one obtains

fk −→
kη→−∞

Ck

√

2

π
exp

[

−i
(

kη +
νπ

2
+
π

4

)]

+Dk

√

2

π
exp

[

i
(

kη +
νπ

2
+
π

4

)]

. (2.105)

This is why in order to match Eq. (2.62), one must set Ck = 0 and Dk =
√

π/k exp[−iπ/2(ν +
1/2)]/2. One eventually has

fk =
1

2

√

π

k

√

−kηe−iπ
2 (ν+

1
2)H(2)

ν (−kη) . (2.106)

At the end of inflation, the pivot scale k∗ around which we are expanding the power spec-
trum and which is of astrophysical interest today, is much larger than the Hubble radius, i.e.
k∗/(aendHend) ≪ 1. In Fig. 2.3, this corresponds to the observational window located at the end
of inflation where P(k) is calculated. Since we have shown that k/(aH) ≃ −kη, this means that
the power spectrum (2.88), which scales as |fk|2, can be approximated at the end of inflation in

the limit kη → 0−. Since one has [269] H
(2)
ν (z) ≃ −i(2/z)νΓ(ν)/π when z → 0, one obtains

|fk|2 −→
kη→0−

−kη
4k

(

2

−kη

)2ν Γ2 (ν)

π
. (2.107)

In order to be consistent with our first order in slow roll expansion, the slow-roll parameters
appearing in ν, see Eq. (2.104), should now be expanded too. One has Γ(ν) = Γ(3/2) +
Γ′(3/2)(ǫ1∗+ ǫ2∗/2), where [269] Γ

′(3/2) = Γ(3/2)(2− 2 ln 2− γE) and Γ(3/2) =
√
π/2, γE being

the Euler-Mascheroni constant. On the other hand, one can write [−2/(kη)]2ν = e2ν ln[−2/(kη)] ≃
[−2/(kη)]3{1+ (2ǫ1∗ + ǫ2∗) ln[−2/(kη)]}. Plugging these expressions in Eq. (2.107), one obtains

|fk|2 −→
kη→0−

1

2k

1

(kη)2
{1 + (2ǫ1∗ + ǫ2∗) [2− ln 2− γE − ln (−kη)]} . (2.108)

We now have everything one needs to calculate the power spectrum Pζ at first order in slow
roll. In Eq. (2.88), let us replace a by Eq. (2.98), ǫ1 by Eq. (2.99), and |fk|2 by Eq. (2.108). One
obtains, at first order in slow roll,

Pζ(k) =
H2

∗

8π2ǫ1∗M2
Pl

[2 (1− ln 2− γE) ǫ1∗ + (2− ln 2− γE) ǫ2∗ − (2ǫ1∗ + ǫ2∗) ln (−kη∗)] . (2.109)

One can see that quite remarkably, the dependence in η has cancelled out since, as announced,
the curvature perturbations are constant on large scales. The time η∗ can be expressed in terms
of k∗ since by definition, it is such that k∗/(a∗H∗) = 1. Since Eq. (2.96) gives k/(aH) = k/H =
−kη(1 + ǫ1∗), one simply has −kη∗ = (k/k∗)(1 + ǫ1∗)

−1. Denoting C ≡ ln 2 + γE − 2 ≃ −0.7296
for simplicity, the power spectrum of curvature perturbations calculated at the end of inflation,
at first order in slow roll, is finally given by

Pζ(k) =
H2

∗

8π2ǫ1∗M2
Pl

[

1− 2 (C + 1) ǫ1∗ − Cǫ2∗ − (2ǫ1∗ + ǫ2∗) ln

(

k

k∗

)]

. (2.110)

This result was derived for the first time in Ref. [128], where the corresponding formula for
gravity waves was obtained too. Indeed, the same procedure as the one presented here can be
employed to calculate the power spectrum of tensor perturbations Ph. Instead of Eq. (2.45),
one has to solve an equation of the form h′′ + (k2 − a′′/a)h = 0, and one obtains

Ph(k) =
2H2

∗

π2M2
Pl

[

1− 2 (C + 1) ǫ1∗ − 2ǫ1∗ ln

(

k

k∗

)]

. (2.111)
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Before that, scalar perturbations during inflation were first integrated in Refs. [270, 242] and
tensor perturbations in Ref. [121].5 The same result (2.110) was later re-derived using the Green
function method in Ref. [272], using the Wentzel-Kramers-Brillouin (WKB) method in Ref. [273]
and using the uniform approximation in Refs. [274, 275]. In fact, the Green function method of
Ref. [272] made possible the first determination of the scalar power spectrum at second order
in slow roll, since at second order, the mode equation (2.45) describing the evolution of the
cosmological perturbations can no longer be solved exactly, hence the need for a new method
of approximation.6 Finally, the first derivation of the tensor power spectrum at second order in
slow roll using the Green function method was presented in Ref. [278].

A few comments are in order regarding Eqs. (2.110) and (2.111). First of all, as announced,
at leading order in slow roll, these two spectra are scale invariant, that is the power on each
scale k does not depend on k. For scalar perturbations, the overall amplitude is measured to
be [163, 167] Pζ(k∗) ≃ 2.203× 10−9. More precisely, the small deviations from scale invariance
appear through the logarithm of k, and are controlled by the slow-roll parameters, which quantify
the deviation of space-time from de Sitter, see Eq. (2.9), or equivalently the non flatness of the
potential, see Eqs. (2.14)-(2.17). As a consequence, measuring the scale dependence of the power
spectrum is a way of constraining the inflationary potential V (φ). For scalar perturbations, the
deviation from scale invariance of the power spectrum is often described in terms of the scalar
spectral index n

S
, defined as

n
S
≡ 1 +

d lnPζ

d ln k
, (2.112)

where n
S
= 1 for exact scale invariance. At first order in slow roll, from Eq. (2.110), it is

given by n
S
= 1− 2ǫ1∗ − ǫ2∗. By definition, the first slow-roll parameter ǫ1 = −Ḣ/H2 is always

positive. The second slow-roll parameter is proportional to its time derivative, ǫ2 = (dǫ1/dN)/ǫ1.
Inflation takes place as long as ǫ1 < 1, and if it ends with a “graceful exit” when ǫ1 = 1, it is
natural to assume that ǫ1 increases during inflation, and therefore that ǫ2 is positive too. As a
consequence, a rather natural prediction [122, 279] of slow-roll inflation is that the scalar power
spectrum should be almost scale invariant but slightly red, i.e. “n

S
< 1” (as opposed to “blue”,

for which n
S
> 1). This is why it is quite remarkable that the most recent observations [163, 167]

strongly favour a red scalar spectrum, n
S
= 0.9619±0.0073, which excludes exact scale invariance

n
S
= 1 at more than the 5σ confidence level. As for tensors, the deviation from scale invariance

is usually described in terms of the tensor spectral index

n
T
≡ d lnPh

d ln k
, (2.113)

where n
T

= 0 for exact scale invariance. At first order in slow roll, from Eq. (2.111), it is
given by n

T
= −2ǫ1∗. Since ǫ1 is always positive, this means that the tensor spectral index is

generically red (n
T
< 0) in slow-roll inflation. The sign of n

T
has not been measured so far, but

one can see that it would be an additional test for slow-roll inflation. If one ever finds that a blue
spectrum n

T
> 0 is favoured, this would be difficult to explain in the framework presented here,

and alternatives such as, for instance, string gas cosmology which predicts a blue spectrum [280],
would be a possible solution. Another useful quantity to calculate is the ratio r between the
amplitude of both power spectra,

r ≡ Ph(k∗)

Pζ(k∗)
≃ 16ǫ1∗ , (2.114)

5In Ref. [271], it was also realized that the power spectrum can be evaluated exactly in the case of power-law
inflation, for which a(η) ∝ |η|β .

6In Refs. [276, 277], it was also shown how to improve the WKB method by adding more adiabatic terms. This
improved WKB method has allowed a re-derivation of the scalar and tensor power spectra at second order
and confirmed the results of the Green function approach.
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where its first order expression in slow roll has been derived thanks to Eqs. (2.110) and (2.111).
Since ǫ1 is a small parameter in slow-roll inflation, this means that tensor perturbations are
generically suppressed with respect to scalar perturbations. This is why in practice, it seems
difficult to directly measure the gravitational primordial power spectrum. However, tensor
perturbations leave an indirect imprint in the polarization pattern of the CMB through its
rotational component (dubbed “B mode”) that scalar cannot, by definition, produce. Recently
the BICEP2 experiment [164] has reported the detection of this B mode signal. If it is of
primordial origin, the associated value for r is found to be r = 0.16+0.06

−0.05. This value carries
important physical consequences, notably, it allows to constrain the energy scale ρ∗ = 3M2

PlH
2
∗

of inflation. Indeed, combining Eqs. (2.110), (2.111) and (2.114), one obtains

ρ
1/4
∗ = 2.0× 1016

( r

0.16

)1/4
( P
2.2× 10−9

)1/4

GeV , (2.115)

which corresponds to GUT energy scales. If such a detection is confirmed, therefore, inflation
is a high energy phenomenon by Particle Physics standard. Such a value of r also implies a
large field excursion. Indeed, because of the relation (2.19), one has ∆φ/MPl ∼

√
2ǫ1MPl∆N =

O(1) (r/0.16)1/2 [281, 282], which indicates that the excursion of the field during inflation is
necessarily super-Planckian. This raises model building issues since most inflationary theoretical
setups arise as effective field theories relying on sub-Planckian expansions [283].

Finally, a last comment is in order concerning the value of Pζ ∼ 10−9. Indeed, during the
typical inflationary time scale of one e-fold , as just mentioned, the field excursion ∆φcl under
the “classical” Klein-Gordon equation (2.6) is given by ∆φcl ∼

√
2ǫ1MPl. On the other hand,

as we will see in the next section, quantum fluctuations in the scalar sector modify the inflaton
dynamics, which translates into a quantum excursion ∆φqu = H/(2π). As a consequence,
the ratio between these two field excursions, which roughly quantifies how much the quantum
effects modify the inflationary dynamics, is given by ∆φqu/∆φcl = H/

√

8π2M2
Plǫ1 =

√

Pζ . As a
consequence, the small measured value of Pζ indicates that the quantum effects on the inflaton
dynamics are small, at least at Hubble exit time of the modes of astrophysical interest today.
Hence the classical trajectory (2.6) can safely be used as a first approximation. In the next
section, we discuss in more details the implementation of quantum effects on the inflationary
dynamics, notably by means of the “stochastic inflation” formalism.

2.4. Stochastic Inflation

As explained in section 2.3, in the standard description of inflation, the homogeneous parts of the
fields are usually assumed to behave classically, while the small deviations from homogeneity and
isotropy over this classical background are treated quantum mechanically. However, one expects
quantum corrections to the classical trajectory to modify the way the background evolves [284,
285, 286, 287, 288, 289]. The stochastic inflation formalism [290, 291, 292, 293, 294, 295, 296,
297, 289, 298] aims at modeling this physics. The idea is to treat the dynamics of the inflaton
field coarse-grained over length scales larger than the Hubble radius, by integrating out the sub-
Hubble degrees of freedom. It amounts to working out the effective theory for an open quantum
system made of the large scale modes of the field operators. When such a theory is derived, it
can be shown that the dynamics of the coarse-grained field ϕ is modified by the presence of a
stochastic term, so that its slow-roll equation of motion dϕ/dN = −V ′/(3H2) is modified and
becomes a Langevin equation of the form [290]

dϕ

dN
= − V ′

3H2
+
H

2π
ξ (N) , (2.116)
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where ξ is a normalized white Gaussian noise, such that 〈ξ(N)〉 = 0 and 〈ξ(N1)ξ(N2)〉 =
δ(N1 − N2). What makes this formalism very appealing is that it reproduces results from
quantum field theory in curved space-times, even beyond the perturbative level [298, 299, 300,
301]. For example, in Ref. [302], it is shown that stochastic inflation reproduces perturbative
calculations of quantum field theories with non-conformal fields, in particular its secular effects
which take the form of “infrared logarithms”. Not only stochastic inflation accounts for the
leading infrared logarithms at each order in perturbation theory, but it can even describe the
regimes where inflation proceeds so long that the large logarithms overwhelm small coupling
constants. In Refs. [303, 304], this technique was extended to scalar quantum electrodynamics
on a de Sitter background. As one can see, stochastic inflation is therefore more than just a
qualitative description of some backreaction effects, but it provides us with a very powerful and
straightforward frame of calculation for quantum field theoretic effects on inflationary space-
times.

This section is organized as follows. First, in section 2.4.1, we detail an heuristic derivation of the
Langevin equations of stochastic inflation. This allows us to emphasize a few important aspects
of the nature of the formalism and of the assumptions it rests on. Then, in section 2.4.2, we
elaborate on the reasons why this equation needs to be written and solved with the number of e-
folds as the time variable. Since it happens quite often that a different time variable is used in the
literature, it seems important to stress why it is a priori wrong to do so. Finally, in section 2.4.3
we address the issue of the calculation of physical observable quantities in stochastic inflation
such as the power spectrum of adiabatic perturbations. Making use of the δN formalism, we
show that the stochastic setup enables to reproduce the standard result (derived in section 2.3)
of linear perturbation theory, in a “classical” limit that we carefully define. Then, we provide
complete solutions which do not rely on an expansion in the noise terms and which are therefore
valid even when the stochastic effects are large. Generic formulas are provided that can be
straightforwardly applied to any single field potential, and as an example, the case of a large
field potential V ∝ φp is completely worked out. To our knowledge, it is the first time such a
non perturbative calculation of the power spectrum in stochastic inflation is presented.

2.4.1. Heuristic Derivation of the Langevin Equations

The basic strategy of stochastic inflation is to introduce a cutoff in Fourier space through a
suitable time-dependent window function that filters out the modes whose frequency is higher
than the comoving horizon size. The inflaton field is thus split in two differently behaving
parts: the short-wavelength part which is treated as a fully quantum operator, and the coarse-
grained one which collects the remaining super-horizon modes and which is treated as classical.
A Langevin equation of motion for the long-wavelength part can be obtained, where the sub-
horizon modes enter as a classical stochastic noise term that perturbs the dynamics of the
coarse-grained field. In this section, we give a detailed derivation of such a stochastic equation
of motion for the coarse-grained field, based on a heuristic argument dealing with the equation
of motion only.

However, it is worth mentioning that a more general approach can be followed that exploits the
influence functional method [305, 306] and operates the frequency splitting at the action level,
getting rid of the high frequencies via a path-integral over the sub-horizon part of the field. The
effective action obtained by this process contains some extra terms that can be interpreted as
the coupling of the super-horizon field with a classical random noise source, whose configurations
are statistically weighted by an appropriate functional probability distribution, becoming the
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Chapter 2. Cosmological Inflation

origin of the stochastic character of the Langevin equation of motion. In some sense, stochastic
inflation is therefore nothing more that a direct application of the well-known non equilibrium
quantum field theories for open quantum systems, to inflationary cosmologies.

2.4.1.1. Coarse-Grained Field

The starting point of the stochastic formalism is to divide the inflaton field φ into two pieces,
φ = ϕ + φ>. The coarse-grained field ϕ contains all wavelengths much larger than the Hubble
radius, i.e. such that k < σaH, where σ ≪ 1 is a fixed parameter that sets the coarse-graining
scale. On the other hand, φ> collects the small wavelength modes, and can be written as

φ> (x, N) =

∫

dk

(2π)
3
2

W

(

k

σaH

)

[

e−ik·xφk (N) ak + eik·xφ∗k (N) a†k

]

, (2.117)

where W is a filter function so that W ≃ 0 when its argument is small, k/(σaH) ≪ 1, and
W ≃ 1 when its argument is large, k/(σaH) ≫ 1. The idea is to derive an effective equation of
motion for ϕ, integrating out the degrees of freedom contained in φ>.

The time dependence in the argument of the window function translates the fact that modes are
continuously leaving the small wavelength part of the field φ> to source the coarse-grained part
ϕ. Therefore, one expects the dynamics of the coarse-grained field to be kicked by the inflow of
modes which cross the Hubble radius during inflation. It is important to stress that the effect
one shall obtain is only due to this continuous Hubble crossing of modes, rather than to some
fundamental coupling between super-Hubble and sub-Hubble modes.7

2.4.1.2. Split Klein-Gordon Equation

We start from the Klein-Gordon equation of the field φ (x, t) given by Eq. (2.6), but we rewrite
it in terms of the number of e-folds N ≡ ln a, that is

∂2φ (x, N)

∂N2
+ (3− ǫ1)

∂φ (x, N)

∂N
− ∇2

a2H2
φ (x, N) +

V ′ [φ (x, N)]

H2
= 0 . (2.118)

The reasons why it is crucial to work with N as the time variable are explained in section 2.4.2.
It is important to stress that in the stochastic inflationary setup, the short wavelength pertur-
bations are taken to be test perturbations, in the sense that the background functions H, aH
and ǫ1 appearing in Eq. (2.118) are to be evaluated at the coarse-grained field ϕ only, through
the Friedmann equation (2.7). Written in terms of ϕ and ∂ϕ/∂N only, the latter is given by

H2 =
V (ϕ)

3M2
Pl − 1

2

(

dϕ
dN

)2 . (2.119)

Here we have not displayed any gradient term since it is σ-suppressed for ϕ. In the same manner,
the first slow-roll parameter ǫ1 = −(dH/dN)/H can simply be expressed in terms of dφ/dN as
ǫ1 = (dφ/dN)2/(2M2

Pl), see Eq. (2.15).

Let us now plug the decomposition φ = ϕ + φ> into the Klein-Gordon equation (2.118), and
expand the obtained result at first order in φ>. One obtains

∂2ϕ

∂N2
+ (3− ǫ1)

∂ϕ

∂N
+
V ′ (ϕ)

H2
= −∂

2φ>
∂N2

− (3− ǫ1)
∂φ>
∂N

+
∇2φ>

(aH)2
− V ′′ (ϕ)

H2
φ> , (2.120)

7Such couplings would need to be taken into account e.g. beyond linear order in perturbation theory.
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where the gradient term for ϕ has been dropped for the same reason as above. Again, H and ǫ1
have to be understood as functions of ϕ and ∂ϕ/∂N . The right hand side of this equation can
be written with the Fourier expansion (2.117). Before doing so, to simplify notations, we first
introduce the hermitian operators Ak, defined as

Ak (x, N) = e−ik·xφk (N) ak + eik·xφ∗k (N) a†k , (2.121)

so that for example, the Fourier expansion of φ is simply given by (2π)−3/2φ =
∫

dkAk. One
obtains

∂2ϕ

∂N2
+ (3− ǫ1)

∂ϕ

∂N
+
V ′ (ϕ)

H2
= −

∫

dk

(2π)3/2

{

∂

∂N
W

(

k

σaH

)[

2
∂Ak

∂N
+ (3− ǫ1)Ak

]

+
∂2

∂N2
W

(

k

σaH

)

Ak +W

(

k

σaH

)[

∂2Ak

∂N2
+ (3− ǫ1)

∂Ak

∂N
+

(

V ′′

H2
+

k2

a2H2

)

Ak

]}

.(2.122)

In this equation, it is clear that the last bracketed term vanishes since from the definition (2.121)
of the Ak operators, it involves the equation of motion for φk and for φ∗k that one obtains by
Fourier expanding Eq. (2.118). This is why, if one lets

ξ1 = −
∫

dk

(2π)3/2
∂

∂N

[

W

(

k

σaH

)]

Ak (2.123)

and

ξ2 = −
∫

dk

(2π)3/2
∂

∂N

[

W

(

k

σaH

)]

∂Ak

∂N
, (2.124)

the split Klein-Gordon equation can be written as

∂2ϕ

∂N2
+ (3− ǫ1)

∂ϕ

∂N
+
V ′ (ϕ)

H2
= (3− ǫ1) ξ1 +

∂ξ1
∂N

− ξ2 . (2.125)

2.4.1.3. Stochastic Processes

A crucial ingredient of the stochastic inflationary setup is the statement that the coarse-grained
field can be described in terms of a classical stochastic quantity. Indeed, it can be shown
that as the cosmological perturbations cross the Hubble radius, they evolve from a coherent
vacuum state to a strongly squeezed state [131], the corresponding squeezing being much more
important than whatever can be realized in the laboratory [307]. In this limit, the predictions
of the quantum formalism are indistinguishable from that of a theory where the fluctuations
are just assumed to be realizations of a classical stochastic process [308, 132, 309, 310]. The
classical limit is a subtle concept in quantum mechanics but, in this sense, such a system can be
characterized as being classical [136]. Moreover, the large-scale cosmological perturbations are
not isolated and, as a consequence, the phenomenon of decoherence [311, 312, 313] is relevant
for them, which is also considered as playing a role in their quantum-to-classical transition [132,
314, 309, 315, 133, 316, 317, 318, 319].

This is why in the σ ≪ 1 limit where ϕ contains only super-Hubble, largely squeezed modes, the
terms ξ1 and ξ2 can be treated8 as classical noise sources acting on a stochastic coarse-grained
field ϕ, through a split Klein-Gordon equation which becomes a Langevin equation for ϕ. This

8This is rigorously showed within the Keldysh formalism, see Refs. [305, 306]
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is the stochastic inflationary setup. The mapping between ξ1 and ξ2 (which are, strictly speak-
ing, quantum operators) and their classical noise counterparts is made by identifying quantum
expectation values with stochastic moments, i.e. by requiring that

〈

ξpi (x1, N1) ξ
q
j (x2, N2)

〉

=
〈

0
∣

∣

∣
T
[

ξpi (x1, N1) ξ
q
j (x2, N2)

]∣

∣

∣
0
〉

, (2.126)

where i and j stand for 1 or 2, p and q are natural integers, and where the T -product is the
time ordering product. Note that in the left hand side of the above, the angle brackets stand for
stochastic average while in the right hand side, they denote the bra and the ket of the vacuum
state |0〉.

2.4.1.4. Noise Moments

Since the field fluctuations φk are Gaussian to a good level of approximation, and since ξ1 and
ξ2 are linearly constructed out of them, they also follow Gaussian statistics and it is enough to
calculate their second moments to fully characterize them. First of all, T -products of Ak’s and
∂Ak/∂N ’s need to be worked out. Making use of the canonical relations 〈0|T [ak1a

†
k2
]|0〉 = δ(k1−

k2) and 〈0|T [ak1ak2 ]|0〉 = 〈0|T [a†k1
a†k2

]|0〉 = 〈0|T [a†k1
ak2 ]|0〉 = 0, from the definition (2.121) one

obtains

〈Ak1 (x1, N1)Ak2 (x2, N2)〉 = φk1 (N1)φ
∗
k2

(N2) e
ik1·(x2−x1)δ (k1 − k2) , (2.127)

〈

Ak1 (x1, N1)
∂Ak2

∂N
(x2, N2)

〉

= φk1 (N1)
∂φ∗k2

∂N
(N2) e

ik1·(x2−x1)δ (k1 − k2) , (2.128)

〈

∂Ak1

∂N
(x1, N1)

∂Ak2

∂N
(x2, N2)

〉

=
∂φk1

∂N
(N1)

∂φ∗k2

∂N
(N2) e

ik1·(x2−x1)δ (k1 − k2) . (2.129)

Let us proceed with the details of the calculation for 〈ξ1ξ1〉, since the expressions for 〈ξ1ξ2〉 and
〈ξ2ξ2〉 will follow accordingly. Making use of Eq. (2.127), one obtains

〈ξ1 (x1, N1) ξ1 (x2, N2)〉 =
∫

dk1dk2

(2π)3
∂

∂N
W

[

k1
σa (N1)H (N1)

]

∂

∂N
W

[

k2
σa (N2)H (N2)

]

×φk1 (N1)φ
∗
k2

(N2) e
ik1(·x2x1)δ (k1 − k2) (2.130)

=

∫

dk

(2π)3
∂

∂N
W

[

k

σa (N1)H (N1)

]

∂

∂N
W

[

k

σa (N2)H (N2)

]

φk (N1)φ
∗
k (N2) e

ik·(x2−x1).(2.131)

Let θ be the angle between k and x2−x1, so that k · (x2−x1) = kr cos(θ), where r ≡ |x2−x1|
and k = |k|. Decomposing dk = k2dk sin(θ)dθdφ, the φ integration can be factorized out and
just gives a 2π factor. The θ integral can also be performed, since one has

∫ π

0
dθ sin (θ) eikr cos(θ) =

[

−eikr cos(θ)

ikr

]π

0

= 2
sin (kr)

kr
. (2.132)

It only remains the k-integral, and one has

〈ξ1 (x1, N1) ξ1 (x2, N2)〉 = (2.133)
∫

k2dk

(2π)2
∂

∂N
W

[

k

σa (N1)H (N1)

]

∂

∂N
W

[

k

σa (N2)H (N2)

]

φk (N1)φ
∗
k (N2)

sin (kr)

kr
.

Another quantity we need to compute is ∂W/∂N . One has

∂

∂N
W

(

k

σaH

)

=
∂

∂N

(

k

σaH

)

W ′

(

k

σaH

)

=
k (ǫ1 − 1)

σaH
W ′

(

k

σaH

)

. (2.134)

This is why to proceed, one needs to specify the window function.
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2.4.1.5. Window Function and Coloured Noises

A very simple choice for the window function consists in taking a Heaviside step functionW (s) =
θ(s− 1), so that W ≡ 1 when k ≥ σaH and W ≡ 0 when k < σaH. In this case, one has

W ′

(

k

σaH

)

= θ′
(

k

σaH
− 1

)

= δ

(

k

σaH
− 1

)

= σaHδ (k − σaH) . (2.135)

Combining this relation with Eq. (2.134), one obtains

∂

∂N
W

[

k

σa (N1)H (N1)

]

∂

∂N
W

[

k

σa (N2)H (N2)

]

= σ2a (N1)H (N1) a (N2)H (N2) δ [k − σa (N1)H (N1)] δ [k − σa (N2)H (N2)]

= σ2a (N1)H (N1) a (N2)H (N2) δ [k − σa (N1)H (N1)] δ [σa (N1)H (N1)− σa (N2)H (N2)]

= σ2a (N1)H (N1) a (N2)H (N2) δ [k − σa (N1)H (N1)]
δ (N1 −N2)

(1− ǫ1)σa (N1)H (N1)

=
σa (N1)H (N1)

1− ǫ1
δ [k − σa (N1)H (N1)] δ (N1 −N2) . (2.136)

One can see that due to the presence of the δ(N1 −N2) term, ξ1 and ξ2 are white noises, which
means that the value they take at time N1 is uncorrelated with any of their previous (or future)
realizations at times N2, or said differently, that the noises have no memory of their previous
history. Thanks to this property, ϕ describes a Markovian process.

However, one should note that this is directly due to our choice of a step function as the window
function. If smooth window functions were considered instead, one would obtain coloured noises,
and consequently non-Markovian processes [320, 321, 322]. This have important physical impli-
cations, since coloured noises directly affect the shape of the power spectrum [322] and provide
an extra source to the production of non Gaussianities [323]. Even though their treatment is
more challenging, coloured noises can be argued to be better motivated, since a sharp cutoff in
momentum space gives rise to a rather unnatural window function in position space, and since a
wide class of smooth window functions give rise to the same asymptotic coloured noise, so that
physical quantities remain independent of the exact shape of the window function.

More precisely, it was shown in Ref. [324] that the final correlations of the coarse-grained field
are independent of the window function if it satisfies two properties. First, when written in
position space, it must be chosen to be spherically symmetric and x-dependent only through
the combination |x|/R, where R = 1/(σaH) is the length scale over which coarse graining
is performed. In this way, W is constrained to have the form W (x,N) ∝ R−3w(|x|/R), when
represented in position space. Second, the function w(s) must decrease at least as s−6 for s≫ 1.
This is not the case for the Heaviside step window function which gives, after Fourier transform,

wHeav (s) =
sin (s)− s cos (s)

2π2s3
. (2.137)

Such a window function is not everywhere positive and decays too slowly at large distances to
satisfy the criterion mentioned above. For simplicity in the following, we will still work with
the Heaviside step window function, but one may keep in mind that this choice is not without
consequences.

Working with a Heaviside window function, one then obtains

〈ξ1 (x1, N1) ξ1 (x2, N2)〉 =
(σaH)3

2π2
(1− ǫ1) |φk|2k=σaH

sin (σaHr)

σaHr
δ (N1 −N2) . (2.138)
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Similarly, one gets for 〈ξ2ξ2〉 and 〈ξ1ξ2〉 the following expressions,

〈ξ2 (x1, N1) ξ2 (x2, N2)〉 =
(σaH)3

2π2
(1− ǫ1)

∣

∣

∣

∣

∂φk
∂N

∣

∣

∣

∣

2

k=σaH

sin (σaHr)

σaHr
δ (N1 −N2) , (2.139)

〈ξ1 (x1, N1) ξ2 (x2, N2)〉 =
(σaH)3

2π2
(1− ǫ1)

(

φk
∂φ∗k
∂N

)

k=σaH

sin (σaHr)

σaHr
δ (N1 −N2) , (2.140)

and 〈ξ2ξ1〉 is simply given by 〈ξ1ξ2〉∗.

2.4.1.6. Case of a de Sitter Background

In practice, from here, one needs to calculate the amplitude of the Fourier modes φk over the
background under consideration to work out the correlations of the noises ξ1 and ξ2. This must
be done by solving the equation of motion for the modes φk, which is given by the last bracketed
term of Eq. (2.122). Here we give the solution in the specific case of a de Sitter background.
When writing the equation for the modes in term of the time variable z ≡ k/(aH), one obtains

d2φk
dz2

− 2

z

dφk
dz

+

(

1 +
V ′′

H2z2

)

φk . (2.141)

If V ′′ is taken to be constant, then the solutions of this equation are given by

φk = Akz
3/2H(1)

ν (z) +Bkz
3/2H(2)

ν (z) , (2.142)

where H
(1)
ν and H

(2)
ν are the Hankel functions [269] of the first and second class respectively, Ak

and Bk are integration constants, and

ν =
3

2

√

1− 4

9

V ′′

H2
. (2.143)

As explained in section 2.3.2, the integration constants can be set by requiring that the per-
turbations are initiated in their Bunch-Davies vacuum state aφk = e−ikη/

√
2k, see Eq. (2.62),

when they are well inside the Hubble radius. Remember that η is the conformal time defined in
Eq. (1.62). This amounts to choosing

φk →
z≫1

zH√
2kk

e−iz . (2.144)

Since one has [269]H
(1)
ν (z) ≃

√

2/(πz) exp[i(z−νπ/2−π/4)] andH(2)
ν (z) ≃

√

2/(πz) exp[−i(z−
νπ/2 − π/4)] when z ≫ 1, this sets the integration constants to be Ak = 0 and Bk =√
π/2H/k3/2 exp[−iπ/2(ν + 1/2)], so that one has

φk =

√
π

2
H
(z

k

)3/2
exp

[

−iπ
2

(

ν +
1

2

)]

H(2)
ν (z) . (2.145)

This allows to evaluate φk when k = σaH, that is when z = σ. Since one has [269] H
(2)
ν (σ) ≃

i/πΓ(ν)(σ/2)−ν when σ ≪ 1, where Γ is the Euler Gamma function, one can write

(σaH)3 |φk|2k=σaH ≃ H2

4π
Γ2 (ν) 22νσ3−2ν . (2.146)
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In the same manner, making use of the relation [269] dH
(2)
ν (z)/dz = H

(2)
ν−1(z) − ν/zH

(2)
ν (z) ≃

−ν/zH(2)
ν (z) when z ≪ 1, and since d/dN = −zd/dz, one has dφk/dN ≃ (ν − 3/2)φk in this

same limit, so that one obtains

(σaH)3
∣

∣

∣

∣

dφk
dN

∣

∣

∣

∣

2

k=σaH

≃ H2

4π
Γ2 (ν)

(

ν − 3

2

)2

22νσ3−2ν , (2.147)

(σaH)3
(

φk
dφ∗k
dN

)

k=σaH

≃ H2

4π
Γ2 (ν)

(

ν − 3

2

)

22νσ3−2ν . (2.148)

From here, when evaluated at the same point x in space, the cross correlations (2.138)-(2.140)
of the noises simply read

〈ξ1 (N1) ξ1 (N2)〉 =

(

H

2π

)2
(σ

2

)3−2ν 4Γ2 (ν)

π
δ (N1 −N2) , (2.149)

〈ξ2 (N1) ξ2 (N2)〉 =

(

H

2π

)2(

ν − 3

2

)2
(σ

2

)3−2ν 4Γ2 (ν)

π
δ (N1 −N2) , (2.150)

〈ξ1 (N1) ξ2 (N2)〉 =

(

H

2π

)2(

ν − 3

2

)

(σ

2

)3−2ν 4Γ2 (ν)

π
δ (N1 −N2) . (2.151)

2.4.1.7. Case of a Light Field

We now specify the noises amplitudes when the field is assumed to be light compared to the
Hubble factor, that is when V ′′ ≪ H. In this case, from Eq. (2.143), one has ν ≃ 3/2. Looking
back at Eqs. (2.149)-(2.151), this means that one simply has ξ2 = 0, and that

〈ξ1 (N1) ξ1 (N2)〉 =
(

H

2π

)2

δ (N1 −N2) . (2.152)

This is why it is convenient to express ξ1 in terms of a normalized white Gaussian noise ξ through
ξ1 = H/(2π)ξ, so that the Langevin equation for the coarse-grained field is simply given by

∂2ϕ

∂N2
+ 3

∂ϕ

∂N
+
V ′ (ϕ)

H2
= 3

H

2π
ξ . (2.153)

2.4.1.8. Case of a Slow-Rolling Field

Finally, if the field is experiencing slow roll, then as usual the second time derivative can be
neglected in the equation of motion and one finally obtains

∂ϕ

∂N
+
V ′ (ϕ)

3H2
=
H

2π
ξ , (2.154)

which corresponds to the announced equation (2.116) and which was first derived in Ref. [290].

2.4.2. Why should we use the Number of e-folds as the Time Variable in the
Langevin equations?

In section 2.4.1, the Langevin equation has been worked out in terms of the number of e-folds
N . A priori, another time variable could have been used, such as cosmic time t for example.
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Indeed, in a number of papers (see e.g. Refs. [325, 326, 289, 327, 324, 328, 329, 330, 331]), the
Langevin equation is written and solved in terms of t instead of N . However, this choice is not
without consequences since the transformation from t to N makes use of the stochastic function
H [ϕ (t)] and as a consequence, leads to a physically different stochastic process with different
probability distributions.

2.4.2.1. Steady-State Distributions

The claim we just made can be easily established [289, 332, 333] when deriving e.g. the steady-
state distribution associated with the stochastic process under study, for different time variables.
This distribution can be obtained writing the Fokker-Planck equation for P (φ,N), which is the
probability density for the coarse-grained field to take the value φ at time N . If one starts from
the Langevin equation (2.116) written in terms of N , in the Itô interpretation [334], one obtains

∂

∂N
P (φ,N) =

∂

∂φ

[

V ′

3H2
P (φ,N)

]

+
∂2

∂φ2

[

H2

8π2
P (φ,N)

]

. (2.155)

If we denote the steady-state probability distribution by Pstat(φ), the equation for Pstat(φ) is
simply given by ∂Pstat(φ)/∂N = 0, that is

∂

∂φ

{

V ′

3H2
Pstat (φ) +

∂

∂φ

[

H2

8π2
Pstat (φ)

]}

≡ ∂J

∂φ
= 0 , (2.156)

where J denotes the probability current. This current thus needs to be independent of φ in
the steady-state case. In most interesting cases, it is actually 0. For example, if φ can take
unbounded values, since

∫

Pstat(φ)dφ = 1, Pstat(φ) needs to decrease at infinity strictly faster
than |φ|−1. In this case, Pstat(φ) and ∂Pstat(φ)/∂φ vanish at infinity and J is 0 at infinity, hence
everywhere. This yields quite a simple equation to solve for Pstat(φ), and one obtains

Pstat (φ) ∝
24π2M4

Pl

V (φ)
exp

[

24π2M4
Pl

V (φ)

]

, (2.157)

where there is an overall integration constant chosen so that the distribution is normalized,
∫

Pstat(φ)dφ = 1, and that for simplicity we do not display here. Now, let us redo the same
calculation, but starting this time from the Langevin equation written in terms of cosmic time
t. Performing a simple change of time variable in Eq. (2.116), the later is given by

dφ̃

dt
= − V ′

3H
+
H3/2

2π
ξ (t) , (2.158)

where we use the notation φ̃ to stress the fact that a priori, φ̃ is not the same stochastic process
as φ. The Fokker-Planck equation corresponding to the above equation reads

∂

∂t
P̃
(

φ̃, N
)

=
∂

∂φ̃

[

V ′

3H
P̃
(

φ̃, N
)

]

+
∂2

∂φ2

[

H3

8π2
P̃
(

φ̃, N
)

]

. (2.159)

In the same manner as before, this equation can be written as ∂P̃ /∂t = ∂J̃/∂φ̃, and requiring
that the current J̃ vanishes gives rise to a differential equation for the steady-state distribution
P̃stat(φ̃) that can easily be solved, and one obtains

P̃stat

(

φ̃
)

∝





24π2M4
Pl

V
(

φ̃
)





3/2

exp





24π2M4
Pl

V
(

φ̃
)



 . (2.160)
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This is, as announced, explicitly different from Eq. (2.157). In this calculation, it can also
be made explicit that this difference is intimately related with the fact that the amplitude of
the noise depends on the coarse grained field through the function H(φ). Indeed, if one does
the same calculation but assume that H is a constant, then one obtains the same stationary
distribution for the two time variables, Pstat = P̃stat ∝ exp(24π2M4

Pl/V ).

In any case, with the example of the steady-state distribution, we have shown that different
time variables for the Langevin equation correspond to different stochastic processes. This is
why, in the following, we identify the correct time variable one must work with when dealing
with stochastic inflation.

2.4.2.2. Perturbations Equation derived from the Background Equation

As suggested in Ref. [335], since the Langevin equation was obtained in section 2.4.1 by perform-
ing an expansion in φ> in the equation of motion directly, the correct time variable should be
the one such that the equations for the perturbations, which must be established at the action
level, can correctly be obtained from varying the equation of motion for the background itself,
when written in terms of this time variable. In this section, we establish that this condition
selects out N as the time variable. This is of course an heuristic argument only, and a more
rigorous derivation of this result will be presented in section 2.4.2.3 where it will be shown that
N only allows to reproduce results from Quantum Field Theories.

In the case where inflation is driven by a single scalar field φ, the action we start from, S =
Sgrav + Sφ where Sgrav is given by Eq. (1.10) and Sφ is given by Eq. (2.1), reads

S =

∫

d4x
√−g

[

M2
Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]

. (2.161)

From this action (and this action only), we first want to derive equations of motion for the
scalar perturbations, that can be compared with what will be obtained below from varying the
equation of motion itself. To make our point even more convincing, we go up to second order
in the perturbations. This is why we expand the background fields {φ, gµν} at second order in
the non-homogeneous scalar perturbations, without fixing any gauge for the moment. With the
same notations as in section 2.3.1, when the time variable in the metric is the conformal time
η, one has

φ (η, ~x) = φ(0) (η) + φ(1) (η, ~x) +
1

2
φ(2) (η, ~x) ,

g00 = a2
[

−1− 2α(1) − α(2)
]

, gi0 = −a2
[

∂iB
(1) +

1

2
∂iB

(2)

]

, (2.162)

gij = a2
{

δij

[

1− 2ψ(1) − ψ(2)
]

+ 2∂i∂j

[

E(1) +
1

2
E(2)

]}

.

Here we have not displayed vector and tensor perturbations, as in Eq. (2.35). As explained in
section 2.3.1, the degrees of freedom introduced above are partially redundant and in absence of
anisotropic stress, the scalar sector can be described in terms of a single gauge invariant variable.
One possible choice is the Mukhanov-Sasaki variable [122, 241, 242] v, which can be defined,
order by order, as the scalar field fluctuation φ(n) on uniform curvature hypersurfaces [336]. To
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first and second orders, after a lengthy but straightforward calculation, one obtains [337]

v(1) = φ(1) +

(

φ(0)
)′

H ψ(1) , (2.163)

v(2) = φ(2) +

(

φ(0)
)′

H ψ(2) +

(

ψ1

H

)2 [
(

φ(0)
)′′

+ 2H
(

φ(0)
)′

− H′

H
(

φ(0)
)′
]

+2

(

φ(0)
)′

H2
ψ′
1ψ1 + 2

ψ1

H
(

φ(1)
)′
. (2.164)

From varying the expanded action, one can derive an equation of motion for the scalar pertur-
bations, and in particular for a gauge invariant combination of them, say the Mukhanov-Sasaki
variable. In this section, we want to compare this action-based equation of motion for the scalar
perturbations with an equation of motion for the perturbation in φ coming from varying the
background Klein-Gordon equation. It is therefore important to work in a gauge where these two
quantities, v and the perturbation in φ, can be identified. By definition of the Mukhanov-Sasaki
variable, this is the case in the Uniform Curvature Gauge, for which one has

v(n) = φ(n) (2.165)

to all orders. In this gauge, one notably has ψ = 0 to all orders, which indeed gives Eq. (2.165)
at first and second order starting from Eqs. (2.163) and (2.164).

The equation of motion for the scalar perturbations φ(1) and φ(2) is therefore given by the one
for v(1) and v(2) in this gauge. At leading order in the slow-roll approximation, and in the long
wavelength limit, they read9

3Hφ̇(1) +

(

V ′′ − V ′2

3H2M2
Pl

)

φ(1) = 0 , (2.166)

3Hφ̇(2) +

(

V ′′ − V ′2

3H2M2
Pl

)

φ(2) = −1

2

(

V ′′′ − V ′V ′′

H2M2
Pl

+
2V ′3

9H4M4
Pl

)

φ(1)
2
. (2.167)

We now need to compare these equations with the ones that arise when varying the equation of
motion for the background, and find out for which time variable they match.

If t is used
When cosmic time t is used, the leading order of the slow-roll approximation for the Klein-
Gordon equation for the background is given by Eq. (2.12),

dφ

dt
= − V ′

3H (φ)
, (2.168)

9In spite of the complexity of the field equations at second order, see e.g. Ref. [338], in the long wavelength limit,
it is sufficient [339] to use the local conservation of energy-momentum to establish Eqs. (2.166) and (2.167).
Because this is not the main subject of this section, the corresponding calculations are not reproduced here
but they can be found in Refs. [339, 336].
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where we take H2 ≃ V/(3M2
Pl) at leading order in slow roll. When plugging φ = φ(0)+φ(1)+φ(2)

in this equation, one obtains at first and second order in the perturbations

3H
˜̇
φ(1) +

(

V ′′ − V ′2

6H2M2
Pl

)

φ̃(1) = 0 , (2.169)

3H
˜̇
φ(2) +

(

V ′′ − V ′2

6H2M2
Pl

)

φ̃(2) = −1

2

(

V ′′′ − V ′V ′′

2H2M2
Pl

+
V ′3

12H4M4
Pl

)

φ̃(1)
2
. (2.170)

One should stress that these equations do not apply to φ(1) and φ(2) since they are different
from Eqs. (2.166) and (2.167), which is why we use the notation φ̃(1,2) instead of φ(1,2). The
differences with Eqs. (2.166) and (2.167) are displayed in red. One can see that several factors
do not match. This is because in general, the equations for the perturbations must be derived
from the action itself and cannot be obtained by simply varying the equation of motion for the
background.

If ds = Hpaqdt is used
For this reason, let us look for a time variable s which is such that the equations for the
perturbations arise from varying the equation of motion for the background when written in
terms of s. Let us assume that s is related to t thanks to a relation of the form

ds = Hp (φ) aq (φ) dt , (2.171)

where p and q are power indexes that we try to determine. For example, when p = 0 and q = 0,
s is the cosmic time t, when p = 1 and q = 0, s is the number of e-folds N , while when p = 0
and q = −1, s is the conformal time η. In terms of s, the equation of motion for the background
is given by

dφ

ds
= − V ′

3Hp+1 (φ)
, (2.172)

where again we take H2 ≃ V/(3M2
Pl) at leading order in slow roll. When plugging φ = φ(0) +

φ(1) + φ(2), one obtains at first and second order in the perturbations

3H
˙̃
φ(1) +

(

V ′′ − p+ 1

6

V ′2

H2M2
Pl

+ 3qH2

)

φ̃(1) = 0 , (2.173)

3H
˙̃
φ(2) +

(

V ′′ − p+ 1

6

V ′2

H2M2
Pl

+ 3qH2

)

φ̃(2) =

−1

2

[

V ′′′ − p+ 1

2

V ′V ′′

H2M2
Pl

+
(p+ 1) (p+ 3)

36

V ′3

H4M4
Pl

+ 3q
H2V ′′

V ′
− pq

V ′

M2
Pl

− 18q
H4

V ′

]

φ̃(1)
2
.

(2.174)

Again, these equations do not apply to φ(1) and φ(2) in general since the correct ones are given
by Eqs. (2.166) and (2.167) which is why we use the notation φ̃(1,2). The differences between
these two sets of equations are displayed in red. In order for the above to match Eqs. (2.166)
and (2.167), one must have q = 0 and (p + 1)/6 = 1/3 which gives p = 1, (p + 1)/2 = 1 which
also gives p = 1, and (p + 1)(p + 3)/36 = 2/9 which gives p = 1 or p = −5. As a conclusion,
with p = 1 and q = 0 only, the equations for the perturbations (from what is shown here, up
to second order in perturbation theory) can be seen as if they were derived from varying the
equation of motion for the background. This choice corresponds to the number of e-folds N .
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2.4.2.3. Stochastic Inflation and QFT on Curved Space-Times

To go beyond this heuristic argument, one can explicitly show [299, 300] that N is the time
variable which allows to consistently connect stochastic inflation with results of QFT on curved
space-times. For example, let us consider the leading order of the fluctuations δφ = ϕ − φcl
in the coarse-grained inflaton field about its classical background value φcl. By “classical”, we
mean that φcl is the solution of the equation of motion without the noise term. We want to
compute the mean square value of δφ and compare what we obtain to results coming from
QFT calculations. For example, in Ref. [340], with renormalization obtained by employing the
adiabatic subtraction prescription on inflationary backgrounds, it was shown that in quadratic
inflation where V = m2φ2/2, if δφ = 0 at time t0, one has at leading order see Eq. (48) of
Ref. [340]

〈

(φ− φcl)
2
〉

=
H6

0 −H6

8π2m2H2
, (2.175)

where H means H (φcl) and H0 means H evaluated at time t0. In the same manner, in Ref. [341],
it was shown that in power-law inflation where a(t) ∝ tp with p≫ 1, the same quantity is given
by see Eq. (29) of Ref. [341]

〈

(φ− φcl)
2
〉

=
p

8π2
(

H2
0 −H2

)

. (2.176)

Let us see how these results can be derived in the stochastic inflationary framework. We start
from the Langevin equation (2.116) that we write

dϕ

dN
= −2M2

Pl

H ′

H
+
H

2π
ξ (N) (2.177)

where we have used H2 ≃ V/(3M2
Pl) and where a prime denotes a derivative with respect to the

inflaton field. Since φcl is the solution of the above equation without the noise term, the noise
term can be considered as a perturbation captured in δφ. After expanding Eq. (2.177) in powers
of δφ, one gets for the leading order δφ(1)

dδφ(1)

dN
+ 2M2

Pl

(

H ′

H

)′

δφ(1) =
H

2π
ξ . (2.178)

Multiplying this equation by δφ(1) and taking the stochastic average leads to

d
〈

δφ(1)
2
〉

dN
+ 4M2

Pl

(

H ′

H

)′
〈

δφ(1)
2
〉

=
H

π

〈

ξδφ(1)
〉

. (2.179)

In order to obtain a differential equation for 〈δφ(1)2〉 only, one needs to evaluate the right hand
side of the previous equation. This can be done as follows. Letting δφ(1) = 0 at time N0, a
formal solution of Eq. (2.178) is given by

δφ(1) = exp

[

−2M2
Pl

∫ N

N0

(

H ′

H

)′

dn

]
∫ N

N0

{

H

2π
ξ (n) exp

[

2M2
Pl

∫ n

N0

(

H ′

H

)′

dn̄

]}

dn . (2.180)

From this expression, since 〈ξ (N) ξ (N ′)〉 = δ (N −N ′), it is straightforward to see that10

〈

ξδφ(1)
〉

=
H

4π
. (2.181)

10The 1/2 factor comes from the rule
∫ x2

x1

f(x)δ(x − x2)dx = f(x2)/2 when the Dirac function is centred at a
boundary of the integral.
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This is why one obtains

d
〈

δφ(1)
2
〉

dN
+ 4M2

Pl

(

H ′

H

)′
〈

δφ(1)
2
〉

=
H2

4π2
. (2.182)

Since the equation of motion for φcl is simply given by dN = −H/(2H ′M2
Pl)dφcl, one can change

the time variable from N to φcl and the formal solution of the above equation can be written as

〈

δφ(1)
2
〉

= − 1

8π2M2
Pl

H ′2

H2

∫

H5

H ′3
dφcl . (2.183)

For quadratic inflation where H = mφ/(
√
6MPl), this exactly gives rise to Eq. (2.175) while for

power-law inflation where11 H = H0 exp
[

−1/
√
2p(φ− φ0)/MPl

]

, one exactly obtains Eq. (2.176).
Therefore, stochastic and standard field-theoretical approaches to inflation produce the same
results for the amount of field fluctuations. Here we have established this property at leading
order in perturbation theory. However, as shown in Refs. [290, 298], the stochastic approach
can reproduce QFT results for any finite number of scalar loops and even beyond.

To emphasize the specificity of N as a preferred time variable choice, let us repeat the same
procedure using the Langevin equation written in terms of t,

dφ̃

dt
= −2M2

PlH
′ +

H3/2

2π
ξ (t) . (2.184)

Since this corresponds to a different stochastic process as the one written in terms of N , we use
again the notation φ̃ instead of φ. At leading order in the noise, one obtains for δφ̃(1)

dδφ̃(1)

dt
+ 2M2

PlH
′′δφ̃(1) =

H3/2

2π
ξ (t) . (2.185)

Again, multiplying this equation by δφ̃(1) and taking the stochastic average leads to

d
〈

δφ̃(1)
2
〉

dt
+ 4M2

PlH
′′
〈

δφ̃(1)
2
〉

=
H3/2

π

〈

ξ (t) δφ̃(1)
〉

. (2.186)

In the same manner as before, making use of the formal solution to Eq. (2.185),

δφ̃(1) = exp

[

−2M2
Pl

∫ t

t0

H ′′du

]
∫ t

t0

{

H3/2

2π
ξ (u) exp

[

2M2
Pl

∫ u

t0

H ′′dv

]

}

du , (2.187)

one can show that
〈

ξ (t) δφ̃(1)
〉

= H3/2/(4π), so that one needs to solve

d
〈

δφ̃(1)
2
〉

dt
+ 4M2

PlH
′′
〈

δφ̃(1)
2
〉

=
H3

4π2
. (2.188)

Making use of the classical trajectory dt = −dφcl/(2M
2
PlH

′), one obtains12

〈

δφ̃(1)
2
〉

= − H ′2

8π2M2
Pl

∫

H3

H ′3
dφcl (2.189)

11In section 3.2, it is shown that the potential associated with power-law inflation, for which a(t) ∝ tp, is given

by V (φ) ∝ e−
√

2/pφ/MPl . Since H2 = V (φ)/(3M2
Pl) at leading order in slow roll, one obtains the given H(φ)

profile.
12This equation (2.189) also matches Eq. (13) of Ref. [328] where perturbative solutions of stochastic inflation

are derived when formulated in terms of the cosmic time.
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which is clearly different from Eq. (2.183).13 For example, for quadratic inflation, it reduces to

〈δφ̃(1)2〉 = 3(H4
0 − H4)/(16π2m2) which does not coincide with Eq. (2.175) and for power-law

inflation, it reduces to 〈δφ̃(1)2〉 = pH2/(4π2) ln(H0/H) which does not coincide with Eq. (2.176).

Finally and in passing, let us derive the corresponding results for the leading order of the mean
fluctuation 〈δφ〉. Since from Eq. (2.178) it is clear that 〈δφ(1)〉 = 0, one has to work out 〈δφ(2)〉.
Expanding ϕ = φcl + δφ(1) + δφ(2) in Eq. (2.177), one obtains

dδφ(2)

dN
+ 2M2

Pl

(

H ′

H

)′

δφ(2) +M2
Pl

(

H ′

H

)′′

δφ(1)
2
=
H ′

2π
δφ(1)ξ (N) . (2.190)

When taking the stochastic average of the above equation, 〈δφ(1)2〉 is given by Eq. (2.183) and
〈δφ(1)ξ〉 is given by Eq. (2.181), so that one obtains

d
〈

δφ(2)
〉

dN
+ 2M2

Pl

(

H ′

H

)′
〈

δφ(2)
〉

=
1

8π2

(

H ′

H

)′′(H ′

H

)2 ∫ H5

H ′3
dφ+

HH ′

8π2
. (2.191)

Using the classical trajectory dφcl = −2M2
PlH

′/HdN , this equation can be written in terms of
φcl, and after integration by parts, this gives rise to

〈

δφ(2)
〉

=
1

2

(H ′/H)′

H ′/H

〈

δφ(1)
2
〉

+
1

32M2
Plπ2

H ′

H

(

H4
0

H ′
0
2 − H4

H ′2

)

, (2.192)

where 〈δφ(1)2〉 is given by Eq. (2.181). For example, when applied to quadratic inflation where
V = m2φ2/2, one obtains

〈

δφ(2)
〉

=

√
6

96π2mMPlH

[

H6 −H6
0

H2
− 3

(

H4 −H4
0

)

]

, (2.193)

which corresponds to Eq. (49) of Ref. [299]. However, it is again worth noting that one would
have obtained a completely different result starting from the Langevin equation written in terms
of cosmic time t, namely14

〈

δφ̃(2)
〉

=
1

2

H ′′

H ′

〈

δφ̃(1)
2
〉

+
H ′

32π2M2
Pl

(

H3
0

H0′2
− H3

H′2
)

. (2.194)

This obviously differs from Eq. (2.192).

To summarize the discussion, different time variables in the Langevin equation lead to different
stochastic processes, and the only time variable which allows the stochastic inflation formalism
to reproduce QFT calculations is the number of e-folds N . One should therefore always work
with N when dealing with stochastic inflation.

2.4.3. Stochastic Inflation and the Scalar Power Spectrum

In the previous section, we saw that stochastic inflation is able to reproduce QFT results,
and we mentioned that this is even true beyond the linear order [298, 302, 299, 300, 301] in

13As shown below in section 2.4.3.1, this difference is crucial since it leads e.g. to an incorrect result for the power
spectrum of scalar perturbations.

14This equation (2.194) matches Eq. (15) of Ref. [328] where perturbative solutions of the Langevin equation are
derived when formulated in terms of the cosmic time.
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perturbations theory. Let us see how this interesting property shall be used. The calculation of
the corrections to the power spectrum that arise when perturbations are worked out beyond the
linear order [342, 343, 344] is a difficult task, see for example Refs. [345, 346]. Indeed, already at
second order, the perturbed Einstein equations δGµν = δTµν are cumbersome. However, as we
saw explicitly in sections 2.4.2.2 and 2.4.2.3, stochastic inflation can lead to the same results as
the ones coming from a δGµν = δTµν calculation, by means of a Langevin Klein-Gordon equation.
This is why in this section, we calculate the power spectrum of scalar adiabatic perturbations,
starting from the Langevin equation, and at any order in the noise term.

At linear order, this problem has been treated in Refs. [327, 322, 331] by expanding the coarse-
grained field about its classical counterpart at first order, ϕ = φcl+δφ

(1), where φcl is the solution
of the Langevin equation (2.116) without the noise term, and by calculating the statistical
moments of δφ(1) making use of the same techniques as in section 2.4.2.3. The correlation
functions of δφ(1) are related to the power spectrum Pζ of curvature perturbations thanks to
the relation [331]

Pζ ≃
1

H (φcl)

d

dt

{

[

H (φcl)

φ̇cl

]2〈
[

δφ(1)
]2
〉

}

. (2.195)

In this expression, the right hand side needs to be evaluated when the scale associated with
the wavenumber k (for which the power spectrum is calculated) exits the Hubble radius. In
the references mentioned above, it is important to stress that the Langevin equations are solved
in terms of t as the time variable, whereas we have shown in section 2.4.2 that the number of
e-folds N must be used instead. This has important consequences. Indeed, if one plugs the

expression (2.183) obtained for 〈δφ(1)2〉 using the number of e-folds as the time variable into
Eq. (2.195), one obtains for the power spectrum Pζ evaluated at the wavenumber k

Pζ ≃
[

H(φcl)

2π

]2 1

2M2
Plǫ1 (φcl)

, (2.196)

where as above, φcl needs to be evaluated when the scale associated with the wavenumber k
(for which the power spectrum is calculated) exits the Hubble radius. This expression exactly
matches the standard result (2.110) recovered below, see Eq. (2.205). However, if one makes
use of the cosmic time t as the time variable and plugs Eq. (2.189) into Eq. (2.195), one obtains
instead

Pζ̃ ≃
[

H(φcl)

2π

]2 1

2M2
Plǫ1 (φcl)

{

1 + 2

[

H ′ (φcl)

H (φcl)

]2 ∫ φcl
[

H (φcl)

H ′ (φcl)

]3

dφ

}

(2.197)

= Pζ

{

1 + 2

[

H ′ (φcl)

H (φcl)

]2 ∫ φcl
[

H (φcl)

H ′ (φcl)

]3

dφ

}

. (2.198)

Here we have adopted the same notation as in section 2.4.2 where a tilde stresses that not the
same quantity is actually worked out and ζ is not ζ̃. This result exactly matches Eq (2.11) of
Ref. [331]. However, when in this work it is concluded that, because of the second term in the
braces of Eq. (2.198) which is always negative, “the amplitude of the spectrum in the stochastic
approach is in general reduced with respect to the amplitude in the standard approach”, one
can see that such a statement is incorrect since the extra term in Eq. (2.198) is entirely due to a
bad choice of time variable. This is why, if such an approach were to be followed and generalized
to higher orders, it would again be crucial to work with N as the time variable contrary to what
is done in the references mentioned above.

Another strategy is followed in Refs. [347, 348, 349], where methods of statistical physics, such
as replica field theory, are employed in a stochastic inflationary context in the case of a free test
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field evolving in a de Sitter or power-law background. In particular, dependence on the window
function W is studied and it is shown that the effects associated with the choice of the window
function vanish at late time so that the power spectrum calculated at the end of inflation is
rather independent on W .

Finally, in Refs. [350, 351], the δN formalism is used to relate the curvature perturbations to
the number of e-folds perturbations. The Langevin equation is solved numerically over a large
number of realizations, and the power spectrum is computed in this manner, numerically, for
quadratic potentials and hybrid potentials.

This is this last route that we chose to follow here, since it does not rely on a pertubative
expansion in the noise terms and it therefore allows us to describe regimes where the stochastic
effects are large. The δN formalism proves very helpful since it relates the scalar power spectrum
to stochastic properties of a family of background trajectories, and it is thus well suited to address
the issue of stochastic effects on the scalar power spectrum. For the first time, we derive fully
analytical and non perturbative results that apply to any single-field potential, and which do
not require a numerical solution of the Langevin equation. These results allow us to prove that
the usual power spectrum is recovered in the classical limit, for any potential, and to discuss
qualitatively and quantitatively the modifications to the standard result that arise due to the
stochastic effects. The work presented here has not been pre-printed or published yet since it
has been derived in the course of drafting this manuscript.

In this section, we first briefly describe how the δN formalism proceeds. We then turn to the
stochastic inflation equations for which we provide generic formal results about ending points
probabilities, mean number of e-folds and dispersion in the number of e-folds. For each quantity,
we derive analytical non perturbative results that we compute explicitly for the “large field” po-
tential (V ∝ φp) as an illustrative example. We then derive the generic curvature perturbations
power spectrum computed in stochastic inflation, again without using any expansion in the noise
term. We make sure that in the classical limit (that we pay attention to carefully define), the
standard result (2.110) is recovered. Finally, we completely work out the large field example for
which we precisely calculate and discuss the stochastic effects on the scalar power spectrum and
its tilt.

2.4.3.1. The δN Formalism

Based on generic considerations, the δN formalism [125, 352, 353, 354, 355, 356] enables to
relate statistical properties of cosmological perturbations to the distributions of number of e-
folds in some family of homogeneous universes. This leads the way to a very powerful frame
of calculation that we now briefly describe. As explained in section 2.3.1, starting from the
Friedmann-Lemâıtre-Robertson-Walker line element ds2 = −dt2 + a2(t)δijdx

idxj , deviations
from homogeneity and isotropy can be included in a more general metric, which contains some
gauge redundancy. A specific gauge choice consists in setting the fixed t-slices of space-time to
have uniform energy density, and the fixed x-worldlines to be comoving. When doing so, the
perturbed metric becomes [357, 288]

ds2 = −dt2 + a2(t)e2ζ(t,x)γij(t,x) , (2.199)

where ζ is the curvature perturbation. This allows to define a local scale factor ã(t,x) =
a(t)eζ(t,x). Starting from an initial flat slice of space-time at time tin, the amount of expansion
N(t,x) ≡ ln [ã(t,x)/a(tin)] to a final slice of uniform energy density is straightforwardly related
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to the curvature perturbation

ζ(t,x) = N (t,x)−N0(t) ≡ δN , (2.200)

where N0(t) ≡ ln [a(t)/a(tin)] is the unperturbed amount of expansion. This result leads to the
δN formalism if one further assumes that on super-Hubble scales, the evolution of the Universe
at each position is independent and well-approximated by the evolution of an unperturbed
universe. This is the so-called “separate universe” assumption [355, 339, 358]. It implies that
N(t,x) is the amount of expansion in unperturbed universes, so that ζ can be calculated from
the knowledge of the evolution of a family of such universes. Written in terms of the inflaton
field φ(x) = φ + δφ(x), made of an unperturbed homogeneous piece φ and a perturbation δφ
originating from vacuum quantum dispersion, Eq. (2.200) gives rise to

ζ (t,x) = N [ρ (t) , φ (x)]−N [ρ (t) , φ] , (2.201)

where N is evaluated in unperturbed universes from an initial epoch when the inflaton field has
an assigned value φ to a final epoch when the energy density has an assigned value ρ. Since the
observed curvature perturbations are almost Gaussian, at leading order in perturbation theory,
one has

ζ (t,x) = δN ≃ ∂N

∂φ
δφ , (2.202)

where N (φ) is evaluated with the classical formula

N (φ) =
1

MPl

∫

dφ√
2ǫ1

. (2.203)

Once ζ is decomposed into Fourier components, ζk = (2π)−3/2
∫

d3kζ(t,k) exp(ik · x), the
power spectrum Pζ , defined with the quantum expected value 〈ζkζk′〉 ≡ (2π)3Pζ(k)δ(k + k′)

and Pζ(k) ≡ k3

2π2Pζ(k), can be expressed in terms of the power-spectrum of δφ (defined by similar
relations) thanks to Eq. (2.202). For quasi de Sitter inflation, and when the curvature of the
inflaton potential is much smaller than H, on super-Hubble scales, the later is given by15 [244]

Pδφ(k) ≃
[

H(k)

2π

]2

, (2.204)

where H(k) means H evaluated at the time when the k mode crosses the Hubble radius, i.e.
when aH = k. Together with Eq. (2.203), one therefore obtains

Pζ =

[

H(k)

2π

]2 1

2M2
Plǫ1 (k)

, (2.205)

where again, functions must be evaluated at the time when the corresponding mode k crosses
the Hubble radius. This result matches the one coming from the usual calculation [128] pre-
sented in section 2.3. Indeed, in the slow-roll approximation, around some pivot scale k∗ well
chosen in the range of scales probed by the CMB, one has H ≃ H∗ [1− ε1∗ ln (k/k∗)] and
ǫ1 ≃ ǫ1∗ [1 + ε2∗ ln (k/k∗)], where we use the second slow-roll parameter ǫ2 ≡ (dǫ1/dN)/ε1. This
gives rise to

Pζ =
H2

∗

8π2M2
Plǫ1∗

[

1− (2ǫ1∗ + ǫ2∗) ln

(

k

k∗

)

+ · · ·
]

. (2.206)

The standard result (2.110) is retrieved, except that the slow-roll correction to the overall am-
plitude 1− 2(C + 1)ǫ1∗ − Cǫ2∗ obtained in Eq. (2.110) is not present here. This is because the

15The de Sitter spectrum for δφ (2.204) can be obtained e.g. letting ν = 3/2 in Eq. (2.146), since with the above
definitions Pδφ(k) = k3/2π2|φk|2.
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de Sitter spectrum (2.204) has been used for Pδφ while the slow-roll corrected spectrum should
have16. However, one can see that this approximation only affects the overall amplitude by a
subleading correction, and that the shape of the power spectrum is correctly described. For
example, the spectral index, defined in Eq. (2.112), is correctly given by n

S
= 1− 2ǫ1∗ − ǫ2∗ at

first order in slow roll.

A fundamental remark is that in the above calculation, the separate universe approximation
is assorted with the assumption that once k∗ crosses the Hubble radius, the evolution of the
inflaton field is governed by its classical equation of motion (2.203). The stochastic dispersion
in the number of e-folds thus only comes from the field dispersion at Hubble crossing δφ∗. In
most cases, this is a good approximation for the following reason. Looking at the Langevin
equation (2.116), one can see that during the typical time scale of one e-fold , the classical
drift of the inflaton field is of the order ∆φcl = V ′/(3H2) =

√
2ǫ1MPl, while the quantum

noise is of the order ∆φqu = H/(2π). As in the end of section 2.3.4, this allows us to define
a criterion η ≡ ∆φqu/∆φcl that measures the amplitude of the stochastic corrections to the
classical trajectory. Looking back at Eqs. (2.205), one can see that this stochastic criterion η
can be expressed as

η =
∆φqu
∆φcl

=
√

Pζ . (2.207)

Since Pζ(k∗) ∼ 2 × 10−9, in single field inflation with canonical kinetic term, η is already
small when k∗ crosses the Hubble radius. If one further assumes that inflation ends “naturally”
(i.e. by slow-roll violation when ǫ1 reaches 1) so that ǫ1 grows during the last stages of inflation,
Pζ ∝ H2/ǫ1 decreases (sinceH can only decrease) and one is therefore ensured that the stochastic
correction to the inflaton trajectory is small after k∗ crosses the Hubble radius.

However, it can happen that ǫ1 decreases after the Hubble crossing time of modes of astrophysical
interest today. For example, when the potential has an inflection point [359, 360, 361, 362, 363,
364, 365, 366, 367, 368, 369, 370], see also Refs. [371, 372, 373], ǫ1 decreases before crossing
the inflection point and increases afterwards, so that a transient phase where the stochastic
effects can play a non negligible role may happen at some point during the last 60 e-folds . In
some other cases, inflation does not end naturally but is triggered e.g. by tachyonic instability
involving another field, like in hybrid inflation [374, 212, 375, 376, 377, 378]. In such models ǫ1
monotonously decreases during inflation and the last e-folds may be stochastic dominated. It can
also happen, for instance in string theoretical contexts where the inflaton stands for the distance
between two branes and evolves in a throat [379, 380, 381, 382], that the inflaton field is allowed
to vary only in a bounded interval of values, and that inflation ends by brane annihilation when
φ reaches a bound of this interval. In these cases again, ǫ1 may decrease as inflation proceeds,
and even if η is small when k∗ crosses the Hubble radius, it does not necessarily remain so since
it keeps increasing afterwards.17

In these cases, it is crucial to study the dispersion δN that arises not only from δφ∗ but from
the complete stochastic history of the coarse-grained field. In the next sections, we therefore
calculate the first statistical moments of the number of e-folds realized between fixed points.

16The calculation of Pδφ relies on the de Sitter spectrum (2.204), because the amplitude of the noise term in
Eq. (2.116) also relies on it, see sections 2.4.1.6 and 2.4.1.7. This is why in the following, only the leading
contributions in slow roll will be derived, and the obtained results should be compared with the reference
classical spectrum (2.206). If one wants to go beyond, one needs to add slow-roll corrections to the noise
amplitudes.

17Another situation of interest is k-inflation [383, 384] for which η ∝
√

Pζγ where γ > 1 is the Lorentz factor. It
can easily happen that γ ≫ 1 in which case Pζ(k∗) ∼ 10−9 does not necessarily mean that η ≪ 1.
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Figure 2.4.: Sketch of the dynamics solved in section 2.4.3. If the inflaton is initially located
at φin, it evolves along some potential V (φ) thanks to the stochastic Langevin
equation (2.208), until it reaches one of the two values φ1 or φ2 where it stops.

2.4.3.2. Stochastic Inflation and Number of e-folds

Let us start from the slow-roll Langevin equation (2.116),

dφ

dN
= − V ′

3H2
+
H

2π
ξ (N) , (2.208)

and work at leading order in slow roll so that H2 ≃ V/(3M2
Pl). In what follows, we make use of

stochastic analysis common tools, introduced e.g. in Ref. [385] (see notably p.108 and below). In
any case, all the quantities introduced below are self consistently defined. We calculate the mean
number of e-folds realized between two points, the dispersion in the number of e-folds realized
between two points, and the ending point probability which allows to quantify how much the
inflaton can climb up its potential under stochastic effects.

More precisely, let us consider the situation described in Fig. 2.4, where the inflaton is initially
located at φin and evolves in some potential V (φ) under Eq. (2.208). Usually, the inflationary
dynamics is stopped when the inflaton reaches some ending value. In the stochastic setup
however, since the inflaton can a priori explore any part of the potential thanks to stochastic
effects, it makes sense to introduce two possible ending points, located at φ1 and φ2 on each
side of φin. We assume that inflation stops when φ reaches φ1 or φ2. Let N be the number of
e-folds realized when this happens. Obviously, N is a stochastic quantity, which means that it
is different from one realization to another. In what follows, we compute its first and second
moments, as well as the probability that inflation ends at φ1 (or φ2).

A first useful result to establish is the Itô lemma, which is a relation verified by any smooth
function f of φ. The Taylor expansion of such a function at second order gives f (φ+ dφ) =
f (φ) + f ′ (φ) dφ + f ′′ (φ) /2 dφ2 + O

(

dφ3
)

. Now, if φ is a realization of the stochastic process
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under study, dφ is given by Eq. (2.208) and at first order in dN , one obtains

df [φ (N)] = f ′ [φ (N)]

√
V [φ (N)]

2π
√
3MPl

ξ (N) dN

−f ′ [φ (N)]
V ′ [φ (N)]

V [φ (N)]
M2

PldN +
1

24π2M2
Pl

f ′′ [φ (N)]V [φ (N)] dN . (2.209)

Integrating this relation between N = 0 where φ = φin and N = N where φ = φ1 or φ2, one
gets the Itô lemma [386]

f (φ1 or φ2)− f (φin) =

∫ N

0
f ′ [φ (N)]

√
V [φ (N)]

2π
√
3MPl

ξ (N) dN

+

∫ N

0

{

1

24π2M2
Pl

f ′′ [φ (N)]V [φ (N)]− f ′ [φ (N)]
V ′ [φ (N)]

V [φ (N)]
M2

Pl

}

dN .

(2.210)

2.4.3.3. Ending Point Probability

In this section we calculate the probability p1 that the inflaton field first reaches the ending point
located at φ1 [i.e. φ (N ) = φ1], or equivalently the probability p2 = 1− p1 that the inflaton field
first reaches the ending point located at φ2 [i.e. φ (N ) = φ2]. First of all, let ψ (φ) be a function
that can be expressed as

ψ (φ) =
h (φ)− h (φ2)

h (φ1)− h (φ2)
, (2.211)

where h (φ) will be specified later. By construction, one has ψ (φ1) = 1 and ψ (φ2) = 0. This
implies that the mean value of ψ evaluated at φ (N ) is given by

〈ψ [φ (N )]〉 = p1ψ (φ1) + p2ψ (φ2) = p1. (2.212)

The idea is then to find an appropriate h (φ) function which makes easy the evaluation of the
left hand side of the previous relation, to deduce p1. In order to do so, let us apply the Itô
lemma (2.210) to h (φ). If one requires that the integral of the second line of Eq. (2.210)
vanishes, that is

h′′ (φ)
V (φ)

24π2M4
Pl

= h′ (φ)
V ′ (φ)

V (φ)
, (2.213)

one obtains

h [φ (N )]− h (φin) =

∫ N

0
h′ [φ (N)]

√
V [φ (N)]

2π
√
3MPl

ξ (N) dN . (2.214)

Using the linear relation (2.211) between h and ψ, this gives rise to the same equation for ψ.
Finally, taking the stochastic average of this equation over all the realizations cancels out18 its
right hand side, so that one obtains

〈ψ [φ (N )]〉 = ψ (φin) , (2.215)

which is the probability p1 one is seeking for. Therefore all one needs to do is to solve Eq. (2.213)
to obtain h (φ), then to plug the obtained expression in Eq. (2.211) to derive ψ(φ), and finally

18The fact that the integral in the right hand side of Eq. (2.214) vanishes when averaged is actually non trivial
since both the integrand and the upper bound are stochastic quantities, but it can be shown in a rigorous way
(see page 12 of Ref. [385]).
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to evaluate this function at φin to calculate p1. A formal solution to Eq. (2.213) can straight-
forwardly be calculated and one obtains

h (φ) = A

∫ φ

B
exp

[

−24π2M4
Pl

V (u)

]

du , (2.216)

where A and B are two integration constants that play no role since they cancel out when
calculating ψ thanks to Eq. (2.211). Indeed, this gives rise to

p1 =

∫ φin

φ2

exp

[

−24π2M4
Pl

V (u)

]

du

∫ φ1

φ2

exp

[

−24π2M4
Pl

V (u)

]

du

. (2.217)

A few remarks are in order about this equation. Firstly, one can check that since φin lies between
φ1 and φ2, this probability is ensured to be comprised between 0 and 1. Secondly, the function
appearing in the integral, exp(−24π2M4

Pl/V ), is rather natural for the problem under study,
since it has already been encountered (actually, its inverse) when calculating the steady-state
distribution in section 2.4.2.1, see Eq. (2.157). Thirdly, a special case that will prove useful in
the following (in particular in sections 2.4.3.4 and 2.4.3.5) is when the potential is maximal at
φ∞ = ±∞, and when, say, φ1 = φ∞. In this case one is sure to first reach the ending point
located at φ2, that is p1 = 0. Indeed, assuming that the potential is bounded from below, the
numerator of Eq. (2.217) must be finite, since a bounded function is integrated over a bounded
interval. If the potential is maximal at φ1, and if it is monotonous over an interval of the type
[φ0, φ1[, the denominator of Eq. (2.217) is on the contrary larger than the integral of a function
bounded from below by a strictly positive number, over an unbounded interval [φ0, φ∞]. This
is why it diverges, and p1 vanishes.

Example: V ∝ φp

For illustrative purpose, let us now see what Eq. (2.217) gives in the case where the potential
V is monomial in the inflaton field φ and is given by

V (φ) =M4

(

φ

MPl

)p

, (2.218)

where p is a positive parameter that sets the shape of the potential (here we take p > 1)
and M is an overall mass scale normalization. Such models are often referred to as “large
field inflation” (LFI), or “chaotic inflation” (for further details about this model, including
theoretical justifications, see e.g. section 4.2 of Ref. [205], section 3.2). In such cases, if one
defines x ≡ V/(24π2M4

Pl), one obtains

p1 =

Γ

(

−1

p
,
1

x2

)

− Γ

(

−1

p
,
1

xin

)

Γ

(

−1

p
,
1

x2

)

− Γ

(

−1

p
,
1

x1

) , (2.219)

where Γ (s, y) ≡
∫∞
y ts−1e−tdt is the upper incomplete gamma function [269]. It is displayed in

Fig. 2.5 for a few values of p. One can check that p1 decreases monotonously between p1 = 1
when xin = x1 and p1 = 0 when xin = x2. Since φin is labelled by xin = V (φin)/(24π

2M4
Pl)

in Fig. 2.5, inflation classically proceeds from the right to the left. Therefore, p1 < 1 implies
that some realizations of the stochastic process (2.208) climb up the potential and end up at φ2.
When x1 < xin ≪ 1 however, one has p1 =≃ 1 [as can be seen in Fig. 2.5, or directly checked
in Eq. (2.217)] which means that in this case the inflaton very seldom climbs up the potential.
This actually corresponds to the classical limit, on which we elaborate below.
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Figure 2.5.: Probability of reaching the ending point located at φ1 first, as a function of φin
labelled by xin = V (φin)/(24π

2M4
Pl) (so that inflation classically proceeds from the

right to the left), in the large field potentials (LFI). The displayed result corresponds
to p = 1 (brown), p = 2 (blue), p = 3 (magenta), p = 4 (green) and p = 6 (red). It
is given by Eq. (2.219). The two ending points are located at x1 = 0.1 and x2 = 10,
and are denoted by the dashed grey vertical lines.

2.4.3.4. Mean Number of e-folds

Let us now turn to the calculation of the mean number of e-folds 〈N〉. As above, we want to
make use of the Itô lemma (2.210). In order to do so, let us choose f(φ) to be defined as the
solution of the differential equation

f ′′ (φ)

24π2M2
Pl

V (φ)− f ′ (φ)
V ′ (φ)

V (φ)
M2

Pl = −1 , (2.220)

with boundary conditions f (φ1) = f (φ2) = 0. Such a solution will be explicitly calculated in
due time. For now it is interesting to notice that thanks to this definition, the first term of the
left hand side of the Itô equation (2.210), f (φ1 or φ2), vanishes, and that the second integrand
of its right hand side is −1. Thus, the Itô equation can be rewritten as

N = f (φin) +

∫ N

0
f ′ [φ (N)]

√
V [φ (N)]

2π
√
3MPl

ξ (N) dN . (2.221)

By averaging over all the realizations, one obtains19

〈N〉 = f (φin) . (2.222)

Therefore it is enough to solve the deterministic differential equation (2.220) for f with the
associated boundary conditions, and to evaluate the obtained solution at φin, in order to derive

19Here also, since both the integrand and the upper bound are stochastic quantities, it is a non trivial fact that
the integral in the right hand side of Eq. (2.221) vanishes when averaged. However it can be shown in a
rigorous way, see page 12 of Ref. [385].
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Figure 2.6.: Integration domain of Eq. (2.223) when evaluated at φ = φ2, in the case φ1 < φ2
(the opposite case proceeds exactly the same way). The discrete parameter u is
integrated between φ1 and φ2, while v varies between φ̄ and u. The resulting
integration domain is displayed in green. When u < φ̄, one has dudv < 0 and one
integrates a positive contribution [remember that a minus sign is stands in front of
Eq. (2.223)], and conversely when u > φ̄, one has dudv > 0 and one integrates a
negative contribution. This is a necessary condition in order for the overall integral
to vanish. This is why φ̄ must lie between φ1 and φ2.

the mean value of the realized number of e-folds. Solving Eq. (2.220) gives rise to

f (φ) = −24π2M2
Pl

∫ φ

φ1

du

∫ u

φ̄(φ1,φ2)

dv

V (v)
exp

{

24π2M4
Pl

[

1

V (v)
− 1

V (u)

]}

, (2.223)

where φ̄ is an integration constant that must be chosen in order to have f(φ2) = 0. More
precisely, as can be seen in Fig. 2.6, φ̄ must be such that, when f is evaluated at φ2, the
integration domain of Eq. (2.223) possesses a positive part and a negative part, that are able
to compensate for each other. This implies that φ̄ lies between φ1 and φ2. Another generic
condition comes from splitting the u-integral in Eq. (2.223) into

∫ φ
φ1

du =
∫ φ2

φ1
du+

∫ φ
φ2

du. The

first integral vanishes because f(φ2) = 0, which means that in order for f to be symmetrical in
φ1 ↔ φ2, φ̄(φ1, φ2) must abide by this symmetry too, that is

φ̄ (φ1, φ2) = φ̄ (φ2, φ1) . (2.224)

Beyond these simple conditions, the actual location of φ̄ needs to be calculated for each potential
V explicitly and there is no explicit generic expression for it.

However, in the special case where the potential is maximal at φ∞ = ±∞ (which is the case
notably for large field or plateau models), and if one wants to calculate the mean number of
e-folds between φin and φ1, things can be made clearer regarding the location of φ̄. Indeed,
one can set φ2 = φ∞, since in the case described here the probability to reach φ∞ vanishes,
as shown in section 2.4.3.3. Therefore, the quantity we really compute is the mean number of
e-folds between φin and φ1. In order to make things explicit, let us assume that V ′ > 0 (the
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same line of arguments can be followed in the case V ′ < 0). Inflation proceeds at φ < φ∞. In
this case, the (absolute value of the) integrand of Eq. (2.226) increases with u and reaches a
constant when u → φ∞, while strongly decreasing with v. Looking back at Fig. 2.6, one can
convince oneself that, in order for the negative integration domain to cancel out the positive
one, φ̄ has therefore to be moved to φ∞,

φ̄ = φ∞ . (2.225)

Once the location of φ̄ is determined, from Eqs. (2.222) and (2.223), one obtains

〈N〉 = −24π2M2
Pl

∫ φin

φ1

du

∫ u

φ̄(φ1,φ2)

dv

V (v)
exp

{

24π2M4
Pl

[

1

V (v)
− 1

V (u)

]}

. (2.226)

Here also, one recognizes the same kind of functions as the ones appearing in the steady-state
distribution (2.157).

Classical Limit
As a consistency check, let us derive the asymptotic limit of Eq. (2.226) in the classical approx-
imation, and see whether the classical trajectory (2.12) is properly recovered. For simplicity, we
consider the situation described above where the potential is maximal at φ∞ = ±∞ and where
we thus need to evaluate Eq. (2.226) between φin and φ1 = φend, with φ̄ = φ∞.

Let us first work out the v-integral, that is to say
∫ u
φ̄ dv/V (v) exp[24π2M4

Pl/V (v)]. Since the
integrand varies exponentially with the potential, the strategy is to evaluate it close to its
maximum, that is where the potential V is minimum. The potential being maximal at φ∞ = φ̄,
the integrand is clearly maximal20 at u. In order for the dominant contributions to the v-
integral to come from the close neighbourhood of its ending point u, one needs the argument of
the exponential to be large, that is

V (φend) ≪ 24π2M4
Pl . (2.227)

This assumption is quite natural in the classical limit since V/M4
Pl controls the amplitude of the

noise term in Eq. (2.208), but we come back to what it really means below. Taylor expanding
1/V at first order around u, 1/V (v) ≃ 1/V (u)−V ′(u)/V 2(u)(v−u), one obtains, after integrating
by parts21

∫ u

φ̄

dv

V (v)
exp

[

24π2M4
Pl

V (v)

]

≃ − 1

24π2M4
Pl

V (u)

V ′(u)

[

1− V (u)

24π2M4
Pl

]

exp

[

24π2M4
Pl

V (u)

]

. (2.228)

This is similar to a saddle-point approximation [387] (also called Laplace’s method). Because
of assumption (2.227), the term 1− V (u)/(24π2M4

Pl) can be approximated to 1. Plugging back
this expression in Eq. (2.226), one finally obtains

〈N〉|cl =
∫ φin

φend

du

M2
Pl

V (u)

V ′(u)
, (2.229)

which exactly matches the classical trajectory (2.12). The classical limit is then properly recov-
ered.

20More generally, the calculation presented here only relies on the assumption V
(

φ̄
)

> V (φin) and on Eq. (2.227).
21Since V (φ̄) > V (u) and since V is monotonous, one can also show that exp

[

−24π2M4
PlV

′(u)/V 2(u)(φ̄− u)
]

is
exponentially vanishing.
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A few remarks are in order. First, the classical trajectory appears as a saddle-point limit of
the mean stochastic trajectory, analogously to what happens e.g. in the context of path integral
calculations. The fact that the classical limit corresponds to Eq. (2.227) is also interesting, since
it can be shown [388, 389] that V/M4

Pl measures the amplitude of the quantum gravity corrections.
Therefore, the “classical” limit needs here to be understood as the limit where corrections from
quantum gravity are negligible, and the condition (2.227) is in fact very generic. For this reason,
in the following and as we did in section 2.4.3.3, it is convenient to define the ratio

x ≡ V

24π2M4
Pl

. (2.230)

Generic expressions in x will be derived, but the validity range of the present calculation is of
course x < 1 since we do not incorporate quantum gravity. In the following also, the “classical”
limit shall always refer to the x ≪ 1 limit. Finally and in passing, the fact that x encodes the
amplitude of quantum gravity possible effects can be illustrated in the calculation of the steady-
state distribution, see section 2.4.2.1. In this section, we made clear that different time variables
in the Langevin equation lead to different stochastic processes (and as a consequence, different
steady-state distributions) because of the H(φ) dependence, through which the amplitude of the
noise depends on the coarse-grained field. In some sense, because the coarse-grained field is a
stochastic quantity, so is H, i.e. the metric, and we understand why it has to do with “quantum
gravity”. In any case, this H(φ) dependence translates into different steady-state distributions
P and P̃ when computed in terms of N or in terms of t respectively. Making use of Eqs. (2.157)
and (2.160), the difference between these two distributions can be studied through the ratio

lnP

ln P̃
=

1− x lnx

1− 3
2x lnx

, (2.231)

from which it is clear that the two distributions are identical [and the effects coming from the
H(φ) dependence vanish] in the limit where x→ 0.

Example: V ∝ φp

As an illustrative example, let us now see what Eq. (2.226) gives in the case of the large
field potential (2.218). In these models, remember that the classical trajectory proceeds at
decreasing values of φ. One is interested in the mean number of e-folds realized between φin
and φend. Since the large field potential belongs to the category mentioned above where V is
maximal at φ∞ = ∞, one takes φ1 = φend and φ̄ = φ∞ = ∞ in Eq. (2.226). One obtains, for
p > 1,

〈N〉 = 1

p (p− 1)

(

24π2M4
Pl

M4

)2/p ∫ xin

xend

e−
1
xx

2
p
−2
M

(

1− 1

p
, 2− 1

p
,
1

x

)

dx , (2.232)

where M is the Kummer’s confluent hypergeometric function [269] and where we have used the
variable x = V/(24π2M4

Pl), so that the classical limit corresponds to x ≪ 1. In this limit, one
can make use of the asymptotic expansion [269] M(a, a+ 1, z) ≃ a exp(z)/z when z → ∞, and
one exactly obtains the classical trajectory (2.12) as expected.

An explicit comparison between both trajectories is displayed in Fig. 2.7 for a few values of p.
The quantity which is displayed is the derivative of the mean number of e-folds with respect to
φin, to remove the dependence on φend. It is plotted as a function of φin, which is labelled by xin to
make interpretation easier. Since the energy density must remain sub-Planckian, only the region
x < 1 makes really sense but we display a larger range of values for x to see how the functions
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Figure 2.7.: Mean number of e-folds for the models V ∝ φp with p = 2 (blue), p = 3 (magenta),
p = 4 (green) and p = 6 (red). The displayed quantity is the derivative of the mean
number of e-folds with respect to the starting point φin, as a function of φin labeled
by xin = V (φin)/(24π

2M4
Pl). The solid lines correspond to Eq. (2.232) while the

dashed lines stand for the classical trajectory ∝ V/V ′ given by Eq. (2.12). The later
provides a good approximation to the former in the regime x ≪ 1, as expected.
Obviously, the calculation makes sense only when x < 1, i.e. outside the yellow
shaded area, which is displayed for information only.

involved behave in general. On can first check that when xin ≪ 1, the classical trajectory (2.12)
provides a good approximation to the mean number of e-folds given by Eq. (2.232). On the
other hand, when xin is large, the deviation between these two quantities starts to be important
and the mean stochastic number of e-folds is smaller than the classical one. This is due to the
effect of the quantum kicks, which tend to shift the inflaton field faster than what the classical
drift does at large field values. More precisely, since the confluent hypergeometric function tends

to 1 when its last argument goes to 0, one has d 〈N〉 /dφin ∝ x
1/p−1
in when xin ≫ 1, whereas

classically dN/dφ ∝ x
1/p
in . Finally, there exists an intermediate range of values when xin ∼ 1 for

which the mean number of e-folds is slightly larger than the classical one.

2.4.3.5. Number of e-folds Dispersion

Let us now move on with the calculation of the dispersion in the number of e-folds, that we
denote

δN 2 =
〈

N 2
〉

− 〈N〉2 . (2.233)

This quantity first requires to compute the mean squared number of e-folds
〈

N 2
〉

. In order to
do so, let us square Eq. (2.221), and take the stochastic average of it. One obtains22

〈

N 2
〉

= f2 (φin) +

〈
∫ N

0
f ′

2
[φ (N)]

V [φ (N)]

12π2M2
Pl

dN

〉

. (2.234)

22This is again a non trivial result since both the integrand and the upper bound of the integral appearing in
Eq. (2.221) are stochastic quantities, but it can be shown in a rigorous way (see page 12 of Ref. [385]).
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In order to make use of the Itô lemma, let g(φ) be the function defined by

g′′ (φ)V (φ)

24π2M2
Pl

− g′ (φ)
V ′ (φ)

V (φ)
M2

Pl = −f ′2 (φ) V (φ)

12π2M2
Pl

, (2.235)

where f is the function introduced in Eq. (2.223). When applied to g (φ), if one further sets
g (φ1) = g (φ2) = 0, the stochastic average of the Itô lemma (2.210) gives rise to

g (φin) =

〈
∫ N

0
f ′

2
[φ (N)]

V [φ (N)]

12π2M2
Pl

dN

〉

=
〈

N 2
〉

− f2 (φin)

=
〈

N 2
〉

− 〈N〉2 , (2.236)

where the second line is just a consequence of Eq. (2.234) and where the third line is just
a consequence of Eq. (2.222). Therefore, what one needs to do is to solve Eq. (2.235) with
boundary conditions g (φ1) = g (φ2) = 0, and to evaluate the resulting function at φin in order
to obtain

δN 2 = g (φin) . (2.237)

The differential equation (2.235) can formally be integrated, and one obtains

g (φin) = 2

∫ φ1

φin

dφ

∫ φ

φ̂(φ1,φ2)
dψf ′

2
(ψ) exp

[

24π2M4
Pl

V (ψ)
− 24π2M4

Pl

V (φ)

]

, (2.238)

where φ̂ (φ1, φ2) is an integration constant that must be chosen in order to have g (φ2) = 0.
As for φ̄, it is straightforward to show that φ̂ must lie between φ1 and φ2 and that it must be
symmetric in (φ1, φ2), that is

φ̂ (φ1, φ2) = φ̂ (φ2, φ1) . (2.239)

In the same manner as for φ̄, when the potential is maximal at φ∞ = ±∞ and if φ2 = φ∞, one
has φ̂ = φ∞.

Classical Limit
As was done for the mean number of e-folds in section 2.4.3.4, let us derive the classical limit
x ≪ 1 of Eq. (2.238). Obviously, in the classical setup the trajectories are not stochastic
and δN 2 = 0, and what we mean by “classical limit” here is the non vanishing leading order
contribution to δN 2 in the limit x ≪ 1. As in section 2.4.3.4, we consider the situation where
the potential is maximal at φ∞ = ±∞ and where we thus need to evaluate Eq. (2.238) between
φin and φ1 = φend, with φ̂ = φ∞ and φ̄ = φ∞ in the f ′2 term.

Let us first work out the ψ-integral, that is to say
∫ φ

φ̂
dψf ′2 exp[24π2M4

Pl/V (ψ)], with a saddle-

point approximation as before. Since the integrand varies exponentially with the potential, the
strategy is again to evaluate it close to its maximum, that is where the potential V is minimum.
The potential is maximal at φ∞ = φ̂, so the integrand is clearly maximal at φ. Taylor expanding
1/V at first order around φ, 1/V (ψ) ≃ 1/V (φ)− V ′(φ)/V 2(φ)(ψ − φ), one obtains23

∫ φ

φ̂
dψf ′

2
(ψ) exp

[

24π2M4
Pl

V (ψ)

]

≃ − 1

24π2M8
Pl

V 4 (φ)

V ′3 (φ)
exp

[

24π2M4
Pl

V (φ)

]

. (2.240)

23In the limit where V (φ) ≪ 24π2M4
Pl, f is close to the classical trajectory (2.229) as shown in section 2.4.3.4,

and one can take f ′ (ψ) ≃ V (ψ) /V ′ (ψ)M−2
Pl

.
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Plugging back this expression in Eq. (2.238), one obtains

δN 2
∣

∣

cl
=

1

12π2M8
Pl

∫ φin

φend

dφ
V 4 (φ)

V ′3 (φ)
(2.241)

which we shall refer to as the classical approximation to δN 2.

2.4.3.6. Scalar Power Spectrum

We are now in a position where we can calculate the power spectrum for scalar adiabatic per-
turbations Pζ . The power spectrum of δN is defined by the two-point correlator of N ,

PδN (k) =
k3

2π2

∫

d3x 〈δN (0) δN (x)〉 eik·x . (2.242)

Since the quantity δN 2 computed between two points φin and φend is due to an integrated effects
of all the modes crossing the Hubble radius between these two points, one has

δN 2 =

∫ kend

kin

PδN (k)
dk

k
=

∫ ln kend

ln kend−〈N〉(1−ǫ1+··· )
PδNdN , (2.243)

where 〈N〉 = ln(aend/ain) = ln(kend/kin)(1 + ǫ1 + · · · ). Here, “· · · ” refer to higher order in slow
roll terms, but it is enough to keep the zeroth order only since we are just interested in the
leading order contributions in slow roll. This is why the above relation leads to

Pζ (k) = PδN (k) =
dδN 2

d 〈N〉

∣

∣

∣

∣

〈N〉=ln(kend/k)

. (2.244)

Since δN 2 is given by g (φ), see Eq. (2.237), and 〈N〉 is given by f (φ), see Eq. (2.222), noting
that d/d〈N〉 = (dφ/d〈N〉)d/dφ = (1/f ′)d/dφ, this gives rise to

Pζ (φ) =
g′ (φ)

f ′ (φ)
= 2

∫ φ̂

φ
dψ

f ′2 (ψ)

f (φ)
exp

[

24π2M4
Pl

V (ψ)
− 24π2M4

Pl

V (φ)

]

, (2.245)

where f is given by Eq. (2.223). Here, by Pζ(φ), we mean the power spectrum calculated at a
scale k such that when it crosses the Hubble radius, the inflaton field value is φ. This is the main
result of this section since it provides, for the first time, a complete expression of the curvature
perturbations power spectrum in stochastic inflation, computed in a non perturbative manner
and, therefore, including the full stochastic effects.

Classical Limit
As a consistency check, it is important to make sure that the standard result for the power
spectrum (2.205) is properly recovered in the classical limit x ≪ 1. Since we already derived
the classical limit for δN 2, given by Eq. (2.241), and the classical limit for 〈N〉, given by the
classical trajectory (2.229), one can plug these two expressions in Eq. (2.244). Noting again that
d/d〈N〉 = (dφ/d〈N〉)d/dφ = (1/f ′)d/dφ, one obtains

Pζ |cl =
1

12π2M6
Pl

V 3 (φ)

V ′2 (φ)
, (2.246)

which exactly matches the usual result (2.205), since at leading order in slow roll one has
H2 ≃ V/(3M2

Pl) and ǫ1 = M2
Pl/2(V

′/V )2. This generalizes the result of Ref. [350], where this
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correspondence is shown but only for inflationary models where the Hubble parameter varies
linearly with φ, that is for inflationary potentials of the specific form given by Eq. (50) in
Ref. [208], section 3.1. Here we have extended this result to any potential is single-field slow-roll
inflation.

2.4.3.7. Scalar Spectral Index

Finally, it can be interesting to calculate the scalar spectral index, defined in Eq. (2.112) and
which characterizes the way Pζ varies with k. Since we established in the last section how Pζ

varies with φ, see Eq. (2.245), we first need to determine how φ varies with k. At leading order
in slow roll, one has

∂

∂ ln (k)
≃ (1 + ǫ1)

∂

∂N
(2.247)

≃ − 1

∂ 〈N〉 /∂φ
∂

∂φ
(2.248)

≃ − 1

f ′ (φ)

∂

∂φ
. (2.249)

When going from Eq. (2.247) to Eq. (2.248), the 1 + ǫ1 term has been dropped since it only
gives rise to subdominant corrections in slow roll. Making use of Eq. (2.244) for Pζ , one obtains

n
S
= 1− g′′ (φ)

f ′ (φ) g′ (φ)
+
f ′′ (φ)

f ′2 (φ)
, (2.250)

where f (φ) is given by Eq. (2.223) and g (φ) is given by Eq. (2.238).

Classical Limit
The regular classical result can also be recovered as in section 2.4.3.6. When f(φ) is given by
its classical limit (2.229) and g(φ) is given by its classical limit (2.241), the above result (2.250)
gives rise to

n
S

∣

∣

cl
= 1−M2

Pl

[

3

(

V ′

V

)2

− 2
V ′′

V

]

= 1− 2ǫ1 − ǫ2 , (2.251)

which matches the formula given below Eq. (2.206) since in the slow-roll approximation, the
slow-roll parameters ǫ1 and ǫ2 can be expressed as

ǫ1 =
M2

Pl

2

(

V ′

V

)2

, (2.252)

ǫ2 = 2M2
Pl

[

(

V ′

V

)2

− V ′′

V

]

, (2.253)

see Eqs. (2.15) and (2.16).

2.4.3.8. A Complete Example: Large Field Inflation

In sections 2.4.3.3 and 2.4.3.4, we have exemplified the above results in the case of a large field
potential. This is why, to gain some intuition on how the stochastic effects modify the power
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spectrum, and in order to make clear how the calculation presented here works in practice, we
now turn to the complete treatment of large field inflation. We recall that the potential of these
models is given by

V (φ) =M4

(

φ

MPl

)p

. (2.254)

In the figures displayed below, we set the mass scale M4 to the value that fits the amplitude of
the power spectrum Pζ , when the power spectrum is calculated with the classical formula. The

classical trajectory (2.229) can be integrated as φ/MPl =
√

φ2end/M
2
Pl − 2p (N −Nend), where

φend/MPl = p/
√
2 is the location where ǫ1 ≃ p2M2

Pl/(2φ
2) = 1. Then, Eq. (2.205) gives rise to

M4

M4
Pl

= 12π2p2
(

p2

2
+ 2p∆N∗

)−1−p/2

Pζ∗ , (2.255)

where we take the measured value [163] Pζ∗ ≃ 2.203 × 10−9 and we let ∆N∗ ≃ 50. Obviously,
when the power spectrum does not match the one given by the classical calculation, this mass
normalization needs to be changed accordingly (see section 2.4.3.9) but here we use this value
for illustrative purpose.

The aim of this section is to see which corrections to the power spectrum arise due to stochastic
effects, and also to check the validity of the formulas derived above with a numerical code
that integrates a large number of realizations of the Langevin equation. In passing, it is worth
noting that in order to avoid large numerical errors when doing so (due e.g. to the small value
of M4/M4

Pl ≃ 10−11), the Langevin equation (2.208) can be written in terms of the rescaled
variables

y =

(

M2

2π
√
3pM2

Pl

)2/p
φ

MPl

and s = p

(

M2

2π
√
3pM2

Pl

)4/p

N , (2.256)

so that it is given by the simple form

dy

ds
= −1

y
+ yp/2ξ (s) . (2.257)

This equation is solved a large number of times (typically 106 − 107 realizations are produced)
and the mean values of N and N 2 are computed over the realizations.

Mean number of e-folds
The mean number of e-folds has already been computed and is given by Eq. (2.232). In order
to test both the validity of our analytical approach and the reliability of our numerical code,
we compare in Fig. 2.8 the integral (2.232) with the ensemble average over a large number of
numerical realizations of the Langevin equation (2.257). Since the energy density must remain
sub-Planckian, values of x larger than 1 do not really make sense but here, we display them to
check the agreement between our code and our calculation in a broader range. Obviously, this
agreement is excellent. When the value of φin is such that xin ≪ 1, the classical trajectory (2.229)
provides a very good approximation to the mean stochastic trajectory. To go beyond, it proves
useful at this point to derive the next-to-leading orders expressions for 〈N〉 in the x ≪ 1 limit,
to characterize the deviations from the classical trajectory in this regime. Making use of the
expansion [269] M(1 − 1/p, 2 − 1/p, 1/x) ≃ (1 − 1/p)e1/x[x + x2/p + (1 + p)/p2x3 + · · · ] when
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Figure 2.8.: Mean number of e-folds 〈N〉 realized in the large field potential (2.254) for p =
2 (left panel) and p = 4 (right panel), between xin and xend, as a function of
xin, where x = V/(24π2M4

Pl). The mass scale M4 is normalized to Eq. (2.255).
The location x∗ refers to the value of x for which the classical number of e-folds
Ncl = 50 and xend is where ǫ1 = 1. The green line corresponds to the analytical
exact result (2.232), and the red circles are provided by a numerical integration of
the Langevin equation (2.257) where a large number of realizations are produced
over which the mean value of N is computed. Obviously, the agreement with the
analytical formula is excellent and confirms both approaches. The orange dashed line
corresponds to the classical trajectory (2.229), which provides a good approximation
to the exact result when xin ≪ 1. Finally, the black dashed line corresponds to
Eq. (2.259) which is the expansion of Eq. (2.232) in the opposite limit x ≫ 1.
Obviously, the calculation makes sense only when x < 1, i.e. outside the yellow
shaded area, which is displayed for information only.

x≪ 1, one obtains

〈N〉|xend<xin≪1 ≃
(

24π2M4
Pl

M4

)2/p
1

p2

[p

2

(

x
2/p
in − x

2/p
end

)

+
1

p+ 2

(

x
2/p+1
in − x

2/p+1
end

)

+
1

2p

(

x
2/p+2
in − x

2/p+2
end

)

+ · · ·
]

. (2.258)

The term on the first line corresponds to the classical trajectory (2.229), and the following
ones are corrections in the regime xin ≪ 1. Again, the opposite limit x ≫ 1 corresponds to
super-Planckian energy densities where our calculation should not apply. However, it can be
interesting to see how Eq. (2.258) breaks when x & 1. If one expands Eq. (2.232) in the limit
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where xin ≫ 1, one obtains

〈N〉|xend≪1,xin≫1 ≃


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24π2M4
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M4

)2/p
x
2/p−1
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(p− 1) (2− p)
if 1 < p < 2

12π2M4
Pl

M4
ln (xin) if p = 2

(

24π2M4
Pl

M4

)2/p
[

C (p)− x
2/p−1
in

(p− 1) (p− 2)

]

if p > 2

, (2.259)

where C(p) is a constant depending on p but which is always of order one. These expressions
are also displayed in Fig. 2.8 where one can check that they provide reliable approximations to
the exact result when xin ≫ 1. Interestingly enough, when p > 2, the mean number of e-folds
that one can realize in the large field potential is always finite even if one starts from φin = ∞,
and is of the order O(1)(M/MPl)

8/p. This is not the case when p ≤ 2 for which the potential is
flatter and the mean number of e-folds blows up with φin.

Number of e-folds dispersion
The calculation of the power spectrum also requires to obtain the dispersion in the number of
e-folds . Applying Eq. (2.238) to the potential (2.254), one gets

δN 2 =
2

p2 (p− 1)2

(

24π2M4
Pl

M4

)4/p ∫ xin

xend

ds

∫ ∞

s
dt
(

st3
)

1
p
−1

e−
1
s
− 1

tM2

(

1− 1

p
, 2− 1

p
,
1

t

)

.

(2.260)
This expression is displayed in Fig. 2.9 together with the result of a numerical integration of
the Langevin equation for a large number of realizations over which the mean values of N and
N 2 are computed, and δN 2 is obtained. Obviously, the agreement is excellent. At this point,
it again proves useful to derive the asymptotic limits of Eq. (2.260) in the regimes xin ≪ 1 and
xin ≫ 1, even if we recall that the later is non-physical. When xend < xin ≪ 1, if p > 3/2, one
has

δN 2
∣

∣

xend<xin≪1
≃ 2

p4

(

24π2M4
Pl

M4

)4/p [
p

p+ 4

(

x
4/p+1
in − x

4/p+1
end

)

+
p+ 5

2p+ 4

(

x
4/p+2
in − x

4/p+2
end

)

+
2p2 + 15p+ 18

3p2 + 4p

(

x
4/p+3
in − x

4/p+3
end

)

]

.

(2.261)

The first line of this expression exactly matches the classical approximation (2.241) to δN 2, as
expected, while the following terms are corrections in the regime x ≪ 1. On the other hand,
when xend ≪ 1 but xin ≫ 1, one has

δN 2
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(

24π2M4
Pl

M4

)4/p
[

C̄(p)− x
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(p− 1)2 (p− 2) (2p− 3)

]

if p > 2

(2.262)
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Figure 2.9.: Dispersion of the number of e-folds δN 2 = 〈N 2〉 − 〈N〉2 realized in the large field
potential (2.254) for p = 2 (left panel) and p = 4 (right panel), between xin and xend,
as a function of xin, where x ≡ V/(24π2M4

Pl). The mass scale M4 is normalized to
Eq. (2.255). The location x∗ refers to the value of x for which the classical number
of e-folds Ncl = 50 and xend is where ǫ1 = 1. The green line corresponds to the
analytical exact result (2.260), and the red circles are provided by a numerical
integration of the Langevin equation (2.257) where a large number of realizations
are produced over which the mean values ofN andN 2 are computed. Obviously, the
agreement with the analytical formula is excellent and confirms both approaches.
The black dotted line corresponds to the classical limit (2.241), which provides a
good approximation to the exact result when xin ≪ 1. Finally, the black dashed
line corresponds to Eq. (2.262) which is the expansion of Eq. (2.260) in the opposite
limit x ≫ 1. Again, this limit is non-physical since one must have x < 1 in order
to keep the energy densities from being super-Planckian, and the yellow shaded
area is displayed only to check the agreement between the numerical code and the
analytical calculation in a broader range.

where C̄(p) is a constant depending on p but which is always of order one. These expressions
are also displayed in Fig. 2.9 where one can check that they provide reliable approximations to
the exact result. As for the mean number of e-folds , it is worth noticing that when p > 2,
δN 2 is bounded by O(1)(MPl/M)16/p, while when p ≤ 2 it can reach arbitrarily large values in
principle.

Power Spectrum
Following section 2.4.3.6, the power spectrum can now be properly computed. Making use of
Eq. (2.245), one obtains for the large field potential (2.254)

Pζ =
2

p (p− 1)

(

24π2M4
Pl

M4

)2/p
x1−1/p

M
(

1− 1
p , 2− 1

p ,
1
x

)

∫ ∞

x
t3/p−3e−

1
tM2

(

1− 1

p
, 2− 1

p
,
1

t

)

dt .

(2.263)
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Figure 2.10.: Power Spectrum of curvature perturbations Pζ realized in the large field poten-
tial (2.254) for p = 2 (left panel) and p = 4 (right panel), computed at a scale
whose Hubble exit time is labelled by x, where x = V/(24π2M4

Pl), as a function
of x, and where inflation terminates at xend. The mass scale M4 is normalized
to Eq. (2.255), so that at x∗, one can check that P ≃ 2 × 10−9. The location
x∗ refers to the value of x for which the classical number of e-folds Ncl = 50 and
xend is where ǫ1 = 1. The green line stands for the analytical exact result (2.263).
The black dotted line corresponds to the classical limit (2.246), which provides a
good approximation to the exact result when x≪ 1. Finally, the black dashed line
corresponds to Eq. (2.266) which is the expansion of Eq. (2.263) in the opposite
limit x ≫ 1. As before, the yellow shaded area x > 1 may not be physical and it
is displayed for illustrative purpose only.

Here, x means the actual value of x at the Hubble exit time of the scale where the power
spectrum is calculated. The classical limit of this expression can be obtained either expanding
the above formula in x≪ 1, or combining Eqs. (2.258) and (2.261). In either case, one obtains

Pζ |xend<x≪1 ≃ 2

p2

(

24π2M4
Pl

M4

)

2
p

x
1+ 2

p

[

1 +

(

1 +
4

p

)

x+

(

2 +
13

p
+

13

p2

)

x2
]

(2.264)

≃ Pζ |cl
[

1 +

(

1 +
4

p

)

x+

(

2 +
13

p
+

13

p2

)

x2
]

, (2.265)

where Pζ |cl is given by Eq. (2.246) and exactly corresponds to the regular “classical” contribution
to the power spectrum. To see how this result breaks when x & 1, it can be interesting to write
the opposite limit x ≫ 1, where the power spectrum can be obtained combining Eqs. (2.259)
and (2.262). Interestingly enough, for 〈N〉 and δN 2, three different cases were to be distinguished
according to the value of p. As far as the power spectrum is concerned, they all give rise to the
same expression, namely

Pζ |xend≪1,x≫1 ≃
2

(p− 1) (2p− 3)

(

24π2M4
Pl

M4

)2/p

x2/p−1 . (2.266)

In particular, when p = 2, the power spectrum tend to be constant (i.e. scale invariant) in the
limit x ≫ 1. This is the limiting case between p < 2 where the power spectrum amplitude
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increases with φ in the x ≫ 1 limit, and the case p > 2 where the power spectrum amplitude
decreases with φ.

The three formulas (2.263), (2.246) and (2.266) are displayed together in Fig. 2.10 for p = 2 and
p = 4. The mass scaleM4 is normalized to Eq. (2.255), i.e. the amplitude of the power spectrum
is calibrated to Pζ ≃ 2× 10−9 when it is computed ∼ 50 e-folds before the location defined by
ǫ1 = 1. Of course, if one is interested in a situation where the scales of astrophysical interest
today crossed the Hubble radius at a different value of φ∗ or equivalently x∗ (for example, if
inflation proceeds at larger fields and ends by tachyonic instability), then the mass scale M4

needs to be calibrated differently (and the value of xend has to be changed as well). In any case,
Fig. 2.10 shows how the amplitude of the power spectrum varies with φ for fixed M4.

A few other comments are in order. First, as expected, when x≪ 1, the classical limit provides
a good approximation to the exact result. Actually, from Eq. (2.265), the relative difference
between the two is given by δPζ/ Pζ |cl ≃ (1 + 4/p)x > 0, which means that the stochastic
effects account for a slightly larger amplitude of the power spectrum in this limit.24 Second, in
the regular case where inflation terminates when ǫ1 = 1 and the power spectrum is computed
50 e-folds before this point, Eq. (2.255) gives rise to x∗ ≃ 10−11 and the actual stochastic
modification to the power spectrum is accordingly small. Therefore, in the large field model,
only tiny corrections appear, and we will come back to this point in section 2.4.3.9.

Scalar Spectral Index
Finally, let us calculate the spectral index n

S
at a given scale whose Hubble exit time is labelled

by x. It is given by Eq. (2.250) and can be computed straightforwardly. Its asymptotic limits
can also be worked out making use of the previous formulas. In the limit where x ≪ 1, one
obtains

n
S

∣
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≃
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,

(2.268)

where one has used Eq. (2.251) to single out the classical result n
S

∣

∣

cl
. Therefore, one can check

that in the classical limit, the regular result is recovered. The scalar index is red (n
S
< 1),

and stochastic effects tend to make it even redder by slightly decreasing the actual value of n
S
.

Again, even if it corresponds to super-Planckian energy densities, it can be interesting to see
how the above result breaks in the regime x & 1, and one obtains

n
S

∣

∣

xend≪1,x≫1
≃ 1−

(

M4

24π2M4
Pl

)

2
p

(p− 1) (2− p)x
1− 2

p . (2.269)

If p < 2, the spectral index remains red and keeps increasing with x towards 1 (even if slower
than in the classical regime), whereas if p > 2, the spectral index becomes blue and starts
increasing with x away from 1, i.e. away from scale invariance. The case p = 2 is singular
since, at leading order, the previous expression gives n

S
= 1. This is why one needs to work out

24Contrary to what is incorrectly concluded in Ref. [331], as explained in the introductory part of section 2.4.3.
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Figure 2.11.: Spectral index n
S
of the power spectrum of curvature perturbations realized in the

large field potential (2.254) for p = 2 (left panel) and p = 4 (right panel), computed
at a scale whose Hubble exit time is labelled by x, where x = V/(24π2M4

Pl), as
a function of x, and where inflation terminates at xend. The mass scale M4 is
normalized to Eq. (2.255), the location x∗ corresponds to the value of x for which
the classical number of e-folds Ncl = 50 and xend is where ǫ1 = 1. The coloured
lines stand for the analytical exact result (2.250), it is blue when the spectral index
is “blue” (n

S
> 1), and it is red when the spectral index is “red” (n

S
< 1). The

black dotted line corresponds to the classical limit (2.251), which provides a good
approximation to the exact result when x ≪ 1. Finally, the black dashed line
corresponds to Eqs. (2.269) and (2.270) which is the expansion of Eq. (2.250) in
the opposite limit x ≫ 1. As before, the yellow shaded area x > 1 may not be
physical and it is displayed for illustrative purpose only.

Eqs. (2.259) and (2.266) at next-to-leading order in 1/x. After a straightforward calculation,
one obtains

n
S

∣

∣

xend≪1,x≫1
(p = 2) ≃ 1− M4

24π2M4
Pl

8

9x
. (2.270)

Therefore, in this case, the spectral index also remains red, and increases towards 1 at the same
rate than in the classical regime. The exact result (2.250) is compared with these approximations
in Fig. 2.11 for p = 2 (left panel) and p = 4 (right panel). If p = 2, one can see that the stochastic
effects do not modify much the behaviour of n

S
even when x & 1 and only add some feature

around x ≃ 1. However, this case is singular and in general, the result radically changes when
x approaches 1. When p > 2, the spectral index can even turn from red to blue.

2.4.3.9. Discussion

At the beginning of section 2.4.3, we explained that, because of the relation Pζ ∝ η2 ∼ 2×10−9,
the stochastic effects play a negligible role at the time where the scales of astrophysical today
cross the Hubble radius. However, we pointed out that it does not mean that η remains small
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during all the last ∼ 50 e-folds of inflation, and that some substantial effects on the power
spectrum may appear in models where it is not the case. The calculation we carried out in
this section shows that it is not the case. Indeed, the amplitude of the corrections to the
power spectrum is not controlled by η, but by x, which is generically small in order to keep
energy densities sub-Planckian. Furthermore, contrary to η, x can only decrease during inflation.
For example, in the large field model we studied, one typically has x∗ ∼ 10−11. In general,
since at leading order in slow roll, the amplitude of the power spectrum is given by Pζ ∼
H2/(8π2M2

Plǫ1) = x/ǫ1, one has

x∗ ≃ ǫ1∗Pζ∗ ≃
r

16
Pζ∗ . (2.271)

With Pζ∗ ∼ 2× 10−9 and since r < 1 with certainty, one has x∗ < 10−10 and the corrections to
the power spectrum we have computed are at most tiny ∼ 10−10 corrections, at least under the
assumptions me made (single field and slow roll). However, we have built a scheme in which it
is straightforward to calculate these corrections, at any order. Besides, our calculation is well
under control even when the stochastic effects dominate the inflationary dynamics (in the sense
η ≫ 1), as long as x < 1.

Let us mention a few prospects. In order to test the ability of stochastic inflation to reproduce
results beyond the linear level, it would first be interesting to compare what we obtained with
a computation of the power spectrum at second order in the perturbations, using the standard
approach. Another interesting idea would be to generalize our scheme to multiple-field scenarios,
since it has been shown [390] that the δN formalism performs very well in these situations too.
Finally, a straightforward prospect would be to enlarge our procedure to the calculation of non-
Gaussianities. Indeed, in the δN formalism and in the large scale limit, the fNL parameters
quantifying non-Gaussianities can be related [356, 391, 390] to the third moments of the number
of e-folds N thanks to

f loc
NL

=
δN 3

(δN 2)2
=

〈

(N − 〈N〉)3
〉

〈

(N − 〈N〉)2
〉2 . (2.272)

In this expression, δN 2 has already be calculated and δN 3 can be obtained just the same way we
calculated 〈N〉 and 〈N 2〉. In this manner, we could also study non-Gaussianities in the context
of stochastic inflation. For single-field models with canonical kinetic terms, the fNL parameters
are already known to be small (of the order of the slow-roll parameters), but the same formalism
as the one we presented here can be derived e.g. for DBI inflation [379, 392, 393, 394, 395, 396,
397, 398, 399, 400, 401] (or general k-inflation [383, 384]). In these models, the kinetic term
is not canonical and a larger amount of non-Gaussianities can be produced. The stochastic
inflation formalism has been generalized to these models [402, 403, 404, 405] where a modified
Langevin equation has been obtained, and the same techniques as the one we developed here
can in principle be applied.
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3. Inflationary Predictions and Comparison
with “Big Data” Observations

Inflation has entered a “big data” era driven by the current flow of high accu-
racy astrophysical observations, among which are the Cosmic Microwave Background
(CMB) measurements. During the time of this thesis notably, the Planck (and if con-
firmed BICEP2) experiments published unequalled measurements of the CMB maps.
It offers an unprecedented opportunity to constrain the inflationary theory. This is
however a challenging project given the size of the inflationary landscape which con-
tains hundreds of different scenarios. The objective of this first chapter is to take
full advantage of the unprecedented accuracy of the data to determine which models
appear to be favoured.

Publications

3.1. “Horizon-Flow off-track for Inflation” (article) . . . . . . . . . 106

3.2. “Encyclopædia Inflationaris” (article) . . . . . . . . . . . . . . 108

3.3. “The Best Inflationary Models After Planck” (article) . . . . 110

3.4. “Compatibility of Planck and BICEP2 in the Light of Infla-
tion” (article) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.5. “K-inflationry Power Spectra at Second Order” (article) . . 114

The inflationary theory contains hundreds of different scenarios. As a consequence, it is a difficult
task to single out the ones that are favoured by the observations. In order to take full advantage
of the unprecedented accuracy of astrophysical data, which is needed to address this problem,
it is necessary to develop new tools and techniques in order to perform a change of scales in the
analysis and to adopt a systematic approach.

A first attempt to carry out this programme is to make use of model independent parametriza-
tions of inflation, such as the one of “horizon-flow”. In this approach, the analysis is run over
quantities describing the way the Hubble parameter H varies with the inflaton field φ in single-
field inflation. In particular, potential reconstruction and the search for “generic” inflationary
predictions have been addressed with this technique. In section 3.1, Ref. [208], we show that in
fact, the horizon-flow framework implicitly samples a subclass of phenomenological inflationary
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potentials, which strongly bias the analysis. Furthermore, it relies on trajectories in phase space
that differ from the slow-roll, that are sometimes even unstable, and that make the horizon-flow
setup blind to entire inflationary regimes. Such an approach should therefore be avoided.

On the contrary, slow roll does not suffer from these flaws and this is why in collaboration with
Jérôme Martin and Christophe Ringeval, we have used this framework to systematically analyse
the inflationary models one by one. For each of them, we derived the corresponding predictions
and compared them to the Planck data. The results of this somewhat “industrial” project are
presented in section 3.2, Ref. [205]. We focused on the simplest models, the single-field slow-
roll models with minimal kinetic term, since there is currently no observational evidence for
non-minimal extensions of the inflationary paradigm.

Together with this paper, we developed the publicly available library1 ASPIC, which provides all
fortran routines needed to quickly derive reheating consistent observable predictions for all those
scenarios. From a systematic scan of the literature, we found that this amounts to including
∼ 75 potentials. This number should be compared with three or four representing the previous
state of the art. The ASPIC library is an evolutive project and is intended to be completed as
new models appear.

We then used Bayesian inference and model comparison techniques to rank the ASPIC models
and find the best ones. Interfacing the ASPIC codes with a machine-learned effective likelihood
and a nested sampling algorithm, we designed a numerical pipeline that provides the Bayesian
evidences and complexities of ∼ 200 models of inflation using the Planck 2013 CMB data, from
non-committal and well-studied priors. The results of this analysis are presented in section 3.3,
Ref. [206]. We showed that one third of the models can now be considered as strongly disfavoured,
and that the preferred potentials are of the plateau type, i.e. they are such that both the kinetic
energy and the kinetic-to-total energy ratio increase during inflation.

When the BICEP2 experiment released its measurements of the CMB polarization, we updated
our results including these data in the analysis. This can be found in section 3.4, Ref. [207]. In
particular, we investigated the implications for inflation of the detection of B-modes polarization
if it is of primordial origin. We showed that the sets of inflationary models preferred by Planck
alone and BICEP2 alone are almost disjoint, indicating a clear tension between these two data
sets. More precisely, we addressed this tension with a Bayesian measure of compatibility between
the two data sets, showing that for the Planck-preferred as for the BICEP2-preferred models,
they tend to be incompatible. This is why at this point, it seems premature to draw definitive
conclusions, and one should better wait for the release of the polarization data from Planck,
scheduled by the end of the year, and for a clarification of the dust contribution to the BICEP2
measured signal.

Finally, there are various possible extensions and prospects for this project. One of them is to
generalize our analysis and numerical pipeline to k-inflation models [383, 384], where the speed
of sound is varying, but the action for the curvature perturbations remains quadratic (see also
Refs. [406, 407]). This is why in Ref. [209], presented in section 3.5, we have paved the way
for including such models in the analysis, by calculating for the first time the next-to-next-to-
leading order scalar and tensor primordial power spectra in k-inflation. We made use of the
uniform approximation together with a second order expansion in the Hubble and sound-flow
functions.

1http://cp3.irmp.ucl.ac.be/~ringeval/aspic.html
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Inflation can be parametrized by means of truncated flow equations. In this “horizon-flow” setup,

generic results have been obtained, such as typical values for r=ð1 − nSÞ. They are sometimes referred to as

intrinsic features of inflation itself. In this paper we first show that the phenomenological class of

inflationary potentials sampled by horizon flow is directly responsible for such predictions. They are

therefore anything but generic. Furthermore, the horizon-flow setup is shown to rely on trajectories in phase

space that differ from the slow roll. For a given potential, we demonstrate that this renders horizon flow

blind to entire relevant inflationary regimes, for which the horizon-flow trajectory is shown to be unstable.

This makes horizon flow a biased parametrization of inflation.

DOI: 10.1103/PhysRevD.89.083526 PACS numbers: 98.80.Cq

I. INTRODUCTION

Inflation is currently the leading paradigm for explaining

the physical conditions that prevailed in the very early

Universe [1–5]. It describes a phase of accelerated expan-

sion that solves the puzzles of the standard hot big bang

model, and it provides a causal mechanism for generating

inhomogeneities on cosmological scales [6–11]. These

inhomogeneities result from the amplification of the

unavoidable vacuum quantum fluctuations of the gravita-

tional and matter fields during the accelerated expansion. In

particular, inflation predicts that their spectrum should be

almost scale invariant, with small deviations from scale

invariance being related to the precise microphysics of

inflation. This prediction is consistent with the current high

precision astrophysical observations [12–15]. In particular,

the recent Planck measurement [15] of the cosmic micro-

wave background temperature map gives together with

WMAP polarization data a slightly red tilted scalar spectral

index nS ≃ 0.96, ruling out exact scale invariance nS ¼ 1 at

over 5σ and enabling us to constrain the inflationary

models still allowed by the observations [16,17].

Together with the absence of primordial non-Gaussianities

and of isocurvature modes [15], these results indicate that, at

thisstage, thefullsetofobservationscanbeaccountedfor inthe

minimal setup, where inflation is driven by a single scalar

field ϕ, the inflaton field, minimally coupled to gravity, and

evolving in somepotentialVðϕÞ. The action for such a system
is given by (hereafterMPl denotes the reduced Planck mass)

S ¼

Z !

M2

Pl

2
R −

1

2
∂μϕ∂

μϕ − VðϕÞ

"

ffiffiffiffiffiffi

−g
p

d4x; (1)

where the background metric is chosen to be of the flat

Friedmann-Lemaître-Robertson-Walker type, i.e. the one of

a homogeneous and isotropic expanding universe (about

which fluctuations are evolved), given by ds2 ¼ −dt2þ
a2ðtÞdx2, where the scale factor aðtÞ is a free function of

time. However, the physical nature of the inflaton and its

relation with the standard model of particle physics and its

extensions remainelusive, since the inflationarymechanism is

supposed to take place at very high energies in a regimewhere

particle physics is not known and has not been tested in

accelerators. Therefore the only requirement on V is that it

shouldbesufficientlyflat tosupportinflation,butotherwisethe

multitude of inflaton candidates (with associated potentials)

makes the theory as a whole hardly tractable, unless one

restricts to a specific model.

If one does so, within a given inflationary model VðϕÞ,
there exists a frame of approximation, the slow-roll

approximation, which provides a set of manageable equa-

tions to calculate an attractor solution for the dynamics

arising from the action (1), and to consistently derive the

statistical properties of cosmological perturbations pro-

duced during inflation. This is why, in order to constrain

the inflationary scenario at a level matching the accuracy of

the current data, a first approach is to scan the full set of

models that have been proposed so far, and to test them one

by one [16,17] making use of the slow-roll setup.

Another strategy consists in developing model indepen-

dent approaches and in studying generic parametrizations

of inflation. Among these parametrizations is the “horizon-

flow” setup [18–22] which relies on truncated flow

equations describing the inflationary dynamics. The start-

ing point is to define a set of flow parameters, based on time

derivatives of the Hubble scale H ≡ _a=a during inflation

(a dot denoting a derivation with respect to cosmic time t),
and to derive a set of equations for their variation in time. A

finite subset of these equations is then solved numerically.

Since all the observable quantities related to inflation

directly depend on H and the way it (slowly) varies with

time, this is indeed a generic way to describe a full set of*
vennin@iap.fr
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Jérôme Martina, Christophe Ringevalb,∗, Vincent Vennina
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The current flow of high accuracy astrophysical data, among which are the Cosmic Microwave Background

(CMB) measurements by the Planck satellite, offers an unprecedented opportunity to constrain the inflation-

ary theory. This is however a challenging project given the size of the inflationary landscape which contains

hundreds of different scenarios. Given that there is currently no observational evidence for primordial non-

Gaussianities, isocurvature perturbations or any other non-minimal extension of the inflationary paradigm,

a reasonable approach is to consider the simplest models first, namely the slow-roll single field models with

minimal kinetic terms. This still leaves us with a very populated landscape, the exploration of which requires

new and efficient strategies. It has been customary to tackle this problem by means of approximate model

independent methods while a more ambitious alternative is to study the inflationary scenarios one by one.

We have developed the new publicly available runtime library ASPIC 1 to implement this last approach. The

ASPIC code provides all routines needed to quickly derive reheating consistent observable predictions within

this class of scenarios. ASPIC has been designed as an evolutive code which presently supports 74 different

models, a number that may be compared with three or four representing the present state of the art. In this

paper, for each of the ASPIC models, we present and collect new results in a systematic manner, thereby

constituting the first Encyclopædia Inflationaris. Finally, we discuss how this procedure and ASPIC could be

used to determine the best model of inflation by means of Bayesian inference.
c© 2014 Published by Elsevier B.V.

1. Introduction

The theory of inflation [1–4] represents a cornerstone of the

standard model of modern cosmology (the “hot Big-Bang model” of

Lemaı̂tre and Friedmann) [5–8]. By definition, it is a phase of acceler-

ated expansion which is supposed to take place in the very early uni-

verse, at very high energy, between Big-Bang Nucleosynthesis (BBN)

and 1015 GeV. Inflation allows us to understand several puzzles that

plagued the pre-inflationary standard model (before 1981) and that

could not be understood otherwise. Without inflation, the standard

model of cosmology would remain incomplete and highly unsatisfac-

tory. Themost spectacular achievement of inflation is that, combined

with quantummechanics, it provides a convincingmechanism for the

origin of the cosmological fluctuations (the seeds of the galaxies and

of the Cosmic Microwave Background – CMB – anisotropies) and pre-

dicts that their spectrum should be almost scale invariant (i.e. equal

power on all spatial scales) [9–17] which is fully consistent with the

observations. Let us notice in passing that this part of the scenario

is particularly remarkable since it combines General Relativity and

1 http://cp3.irmp.ucl.ac.be/ringeval/aspic.html

∗ Corresponding author. Tel.: +32 10472075.

E-mail address: christophe.ringeval@uclouvain.be (Christophe Ringeval).

Quantum Mechanics [18–20, 7, 8, 21–24]. Given all these spectacu-

lar successes and given the fact that, despite many efforts, inflation

has not been superseded by its various challengers [25–53], this sce-

nario has gradually become a crucial part of modern cosmology. As

can be seen in Fig. 1, the number of papers devoted to this topic and

published each year is inflating since the advent of inflation.

In order to produce a phase of inflation within General Relativity,

the matter content of the universe has to be dominated by a fluid

with negative pressure. At very high energy, the correct description

of matter is field theory, the prototypical example being a scalar field

since it is compatible with the symmetries implied by the cosmolog-

ical principle. Quite remarkably, if the potential of this scalar field

is sufficiently flat (in fact, more precisely, its logarithm) so that the

field moves slowly, then the corresponding pressure is negative. This

is why it is believed that inflation is driven by one (or several) scalar

field(s). For obvious reasons, this scalar field was given the name “in-

flaton”. However, the physical nature of the inflaton and its relation

with the standardmodel of particle physics and its extensions remain

elusive.Moreover the shape of its potential is not knownexcept that it

must be sufficiently flat. This is not so surprising since, as mentioned

above, the inflationary mechanism is supposed to take place at very

high energies in a regime where particle physics is not known and

has not been tested in accelerators.

Another crucial aspect of the inflationary scenario is how it ends

and how it is connected to the subsequent hot Big-Bang phase. It

2212-6864/$ - see front matter c© 2014 Published by Elsevier B.V.
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Abstract. We compute the Bayesian evidence and complexity of 193 slow-roll single-field
models of inflation using the Planck 2013 Cosmic Microwave Background data, with the
aim of establishing which models are favoured from a Bayesian perspective. Our calculations
employ a new numerical pipeline interfacing an inflationary effective likelihood with the slow-
roll library ASPIC and the nested sampling algorithm MultiNest. The models considered
represent a complete and systematic scan of the entire landscape of inflationary scenarios
proposed so far. Our analysis singles out the most probable models (from an Occam’s razor
point of view) that are compatible with Planck data, while ruling out with very strong
evidence 34% of the models considered. We identify 26% of the models that are favoured
by the Bayesian evidence, corresponding to 15 different potential shapes. If the Bayesian
complexity is included in the analysis, only 9% of the models are preferred, corresponding to
only 9 different potential shapes. These shapes are all of the plateau type.

Keywords: inflation, CMBR experiments, physics of the early universe, cosmological pa-
rameters from CMBR

ArXiv ePrint: 1312.3529

c© 2014 IOP Publishing Ltd and Sissa Medialab srl doi:10.1088/1475-7516/2014/03/039



3.3. “The Best Inflationary Models After Planck” (article)

To keep the size of this manuscript manageable, the rest of this article [206] is not displayed here.
A full version of it can be found at http://iopscience.iop.org/1475-7516/2014/03/039/

(published version) or at http://arxiv.org/abs/1312.3529 (arXived version).

111

http://iopscience.iop.org/1475-7516/2014/03/039/
http://arxiv.org/abs/1312.3529


ar
X

iv
:1

4
0

5
.7

2
7

2
v

1
  

[a
st

ro
-p

h
.C

O
] 

 2
8

 M
ay

 2
0

1
4

Compatibility of Planck and BICEP2 in the Light of Inflation
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We investigate the implications for inflation of the detection of B-modes polarization in the
Cosmic Microwave Background (CMB) by BICEP2. We show that the hypothesis of primordial
origin of the measurement is only favored by the first four bandpowers, while the others would
prefer unreasonably large values of the tensor-to-scalar ratio. Using only those four bandpowers, we
carry out a complete analysis in the cosmological and inflationary slow-roll parameter space using
the BICEP2 polarization measurements alone and extract the Bayesian evidences and complexities
for all the Encyclopædia Inflationaris models. This allows us to determine the most probable
and simplest BICEP2 inflationary scenarios. Although this list contains the simplest monomial
potentials, it also includes many other scenarios, suggesting that focusing model building efforts on
large field models only is unjustified at this stage. We demonstrate that the sets of inflationary
models preferred by Planck alone and BICEP2 alone are almost disjoint, indicating a clear tension
between the two data sets. We address this tension with a Bayesian measure of compatibility
between BICEP2 and Planck. We find that for models favored by Planck the two data sets tend to
be incompatible, whereas there is a moderate evidence of compatibility for the BICEP2 preferred
models. As a result, it would be premature to draw any conclusion on the best Planck models, such
as Starobinsky and/or Kähler moduli inflation. For the subset of scenarios not exhibiting data sets
incompatibility, we update the evidences and complexities using both data sets together.

PACS numbers: 98.80.Cq

I. INTRODUCTION

The recent discovery of B-mode polarization in the
Cosmic Microwave Background (CMB) by BICEP2 [1], if
confirmed to be of primordial origin [2], would constitute
a breakthrough for our understanding of early universe
cosmology. In addition to lensing, B-mode can be gen-
erated by either vector perturbations or tensor pertur-
bations [3]. Vectors do not propagate in a Friedmann-
Lemâıtre universe (see however Ref. [4]) and can be a
potential explanation of the BICEP2 data only if they
are incessantly generated by active sources such as cos-
mic strings [5] or magnetic fields [6]. These, however, are
severely constrained by other measurements [7, 8].

Tensor modes are a natural and expected outcome of
cosmic inflation although the uncertainty on their am-
plitude is huge (several orders of magnitude). In this
context, the BICEP2 result might represent the first de-
tection of primordial gravity waves produced in the early
Universe [9, 10] and, therefore, could give us precious in-
formation about the physical conditions that prevailed

∗Electronic address: jmartin@iap.fr
†Electronic address: christophe.ringeval@uclouvain.be
‡Electronic address: r.trotta@imperial.ac.uk
§Electronic address: vennin@iap.fr

at that time. Of course, the BICEP2 result needs to be
confirmed by other measurements before one can be sure
that primordial B-mode have really been detected. In
this paper, our working hypothesis will be that this is
indeed the case. On general grounds, it is anyway always
interesting to explore the implications for inflation of a
non negligible level of primordial gravity waves.
The claimed amplitude of the signal corresponds to a

tensor to scalar ratio of r = 0.2+0.07
−0.05 or r = 0.16+0.06

−0.05

depending on how polarized dust foregrounds are mod-
eled and/or subtracted. Recent works [11] have how-
ever cast doubts on the modeling of the foreground dust,
which could potentially lead to the amplitude of the ten-
sor modes signal to be much lower, to the point of be-
coming undetectable. In the following, we shall take the
BICEP2 result at face value, pending further investiga-
tion, most notably thanks to the recently released Planck
dust maps [12]. The BICEP2 measurement, if, as already
mentioned, interpreted as of primordial origin, has sev-
eral important physical consequences that we now dis-
cuss.
Firstly, the energy scale of inflation [13–21] is fixed and

roughly given by

ρ1/4 ≃ 2.2
( r

0.2

)1/4

1016GeV, (1)

i.e. around the Grand Unified Theory (GUT) energy
scale. A more accurate determination of this energy
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Abstract. Within the class of inflationary models, k-inflation represents the most general
single field framework that can be associated with an effective quadratic action for the cur-
vature perturbations and a varying speed of sound. The incoming flow of high-precision
cosmological data, such as those from the Planck satellite and small scale Cosmic Microwave
Background (CMB) experiments, calls for greater accuracy in the inflationary predictions. In
this work, we calculate for the first time the next-to-next-to-leading order scalar and tensor
primordial power spectra in k-inflation needed in order to obtain robust constraints on the
inflationary theory. The method used is the uniform approximation together with a second
order expansion in the Hubble and sound flow functions. Our result is checked in various
limits in which it reduces to already known situations.

Keywords: inflation, cosmological perturbation theory, physics of the early universe
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4. Quantum Aspects of Inflation and the
Stochastic Formalism

One of the great achievements of inflation is that, combined with quantum mechan-
ics, it provides a convincing mechanism for the origin of the cosmological fluctua-
tions. Such a mechanism rests on General Relativity and Quantum Mechanics, two
theories that are notoriously difficult to combine, and leads to predictions that can
be tested experimentally. This is why inflation is an ideal playground to discuss deep
questions at the fundamental level. This second chapter aims at studying issues re-
lated to the quantum nature of the theory, and in particular the stochastic formalism
which enables to address some of them.

Publications

4.1. “Stochastic Effects in Hybrid Inflation” (article) . . . . . . . 120

4.2. “Recursive Stochastic Effects in Valley Hybrid Inflation”
(article) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.3. “Cosmological Inflation and the Quantum Measurement Prob-
lem” (article) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

In the standard description of inflation, the homogeneous parts of the fields are usually assumed
to behave classically while the small deviations from homogeneity and isotropy are treated quan-
tum mechanically over this classical background. To go beyond this “semi-classical” approach, it
seems interesting to incorporate quantum corrections to the inflationary dynamics. The stochas-
tic inflation formalism aims at describing such an effect, by deriving the effective action for the
fields coarse-grained over length scales larger than the Hubble radius, and integrating out the
sub-Hubble degrees of freedom. At the technical level, such an approach boils down to solv-
ing Langevin equations for the coarse-grained fields, in which an additional, stochastic term, is
added.

These stochastic equations give rise to non trivial inflationary dynamics, especially in the case
where multiple fields are present. In order to understand how the quantum diffusion can affect
the observable predictions in such models, in section 4.1, Ref. [210], we study the stochastic
effects in hybrid inflation, a two-field model where inflation ends due to an instability triggered
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by an auxiliary “waterfall” field. In the neighbourhood of the critical point, the potential is very
flat and the quantum fluctuations dominate over the classical drifts of the fields. In practice,
one has to deal with two coupled Langevin equations, and solving the corresponding system,
even at the perturbative level, is a difficult task. This is why we numerically addressed this
problem by simulating a large number of realizations of the stochastic processes, and studied
the associated probability distributions in the hybrid potential, discussing in particular the
impact of the stochastic effects on the realized number of e-folds.

We then studied how these results get modified when further backreaction effects are imple-
mented. In the original version of stochastic inflation indeed, the correlations of the noise in the
Langevin equations are controlled by the amplitude of the perturbations, calculated over the
classical, i.e. without the stochastic corrections, background. At next-to-leading order however,
these stochastic corrections modify the amplification of the perturbations, hence the properties
of the stochastic corrections, so on and so forth. In section 4.2, Ref. [211], we designed a re-
cursive formalism that addresses this issue and applied it to the case of hybrid inflation. We
showed that the method converges in the valley (before the critical point) but points towards
an expected instability in the waterfall (after the critical point). Notably, we found that the
typical dispersion of the waterfall field at the critical point is diminished, thus jeopardizing the
possibility of a short transition, and we showed that the blue-tilt problem present in the hybrid
model is even worsened by recursive stochastic effects.

Finally, as an illustration of how inflationary physics enables to discuss deep questions related
to the nature of the quantum theory itself, in section 4.3, Ref. [138], we addressed the issue of
the quantum-to-classical transition and the quantum measurement problem in a cosmological
context. We first reviewed how the quantum-to-classical transition of the cosmological pertur-
bations is usually accounted for by the large squeezing of the quantum state of the perturbations
and the phenomenon of decoherence. However, this does not explain how a specific outcome can
be produced in the early Universe in the absence of any observer (referring to the Copenhagen
interpretation of Quantum Mechanics). We then studied the continuous spontaneous localiza-
tion (CLS) approach to quantum mechanics which attempts to solve the quantum measurement
question by causing the wavefunction collapse by means of additional non-linear and stochastic
terms to the Schrödinger equation. CSL is the only falsifiable solution to the quantum mea-
surement problem proposed so far, since it makes predictions that, in some regimes, differ from
standard quantum mechanics. We applied this theory to inflation, and we showed that reach-
ing a satisfactory degree of collapse at the end of inflation requires to strongly break the almost
scale invariance of the power spectrum of the scalar perturbations, at a level which is completely
excluded by observations. These results illustrate the remarkable power of inflation in particular
and cosmology in general to constrain new physics, in regimes complementary to what can be
achieved in lab experiments. Let us mention that following our work, other authors [408] gener-
alized our calculation to the case where the CSL strength parameter depends on physical scales
through a phenomenological power law, so as to capture the CSL amplification mechanism. In
particular, they showed that there exists a power index for which the problem we pointed out
can be evaded.
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Hybrid inflation is a two-field model where inflation ends due to an instability. In the neighborhood of

the instability point, the potential is very flat and the quantum fluctuations dominate over the classical

motion of the inflaton and waterfall fields. In this article, we study this regime in the framework of

stochastic inflation. We numerically solve the two coupled Langevin equations controlling the evolution

of the fields and compute the probability distributions of the total number of e-folds and of the inflation

exit point. Then, we discuss the physical consequences of our results, in particular, the question of how the

quantum diffusion can affect the observable predictions of hybrid inflation.

DOI: 10.1103/PhysRevD.85.043525 PACS numbers: 98.80.Cq, 98.80.Qc

I. INTRODUCTION

Inflation is the leading scenario among the models at-

tempting to describe the physical conditions that prevailed

in the very early Universe. It consists in a phase of accel-

erated expansion which naturally solves the problems of

the hot big bang theory [1–5] (for reviews, see Refs. [6–8]).

In addition, it predicts an almost scale invariant power

spectrum for the primordial cosmological fluctuations,

the tiny deviations from scale invariance being related to

the microphysics of inflation [9–14]. As is well known, this

prediction turns out to be fully consistent with different

types of astrophysical observations, among which is the

measurement of the cosmic microwave background radia-

tion (CMBR) anisotropies [15–19].

Inflation is usually driven by one or many scalar fields.

In the context of general relativity, this represents the

simplest mechanism to obtain the negative pressure neces-

sary to produce an accelerated expansion. However, the

physical nature of those scalar fields is presently unknown,

and many different inflationary models have been sug-

gested. The reason for such a situation originates from

the fact that inflation is a high energy phenomenon.

Indeed, the energy scale of inflation is somewhere between

the TeV scale and the grand unified theory scale [15]. At

those scales, particle physics remains elusive, and as a

consequence there is presently a large variety of different

inflationary scenarios.

However, given the extensions of the standard model of

particle physics, notably those based on supersymmetry

and supergravity, it is clear that some models appear to be

more motivated and more generic than others. In particular,

this is the case of hybrid inflation [20,21], which can be

realized in various ways in the context of supersymmetry;

see, for instance, the scenarios named F-term inflation and

D-term inflation (among others) [22–25]. Hybrid inflation

is a two-field model such that inflation occurs along a

valley in the field space and ends by tachyonic instability

along the so-called waterfall field direction. Hybrid infla-

tion is known to lead to a blue spectrum for the fluctua-

tions, a prediction which appears to be disfavored by the

most recent observations [15]. However, it was shown

recently [26–28] that, in some regions of the parameter

space, a significant number of e-folds can occur in the

waterfall regime. In this case, it was also demonstrated

that the spectral index becomes red, which therefore im-

plies that the model is in fact totally compatible with the

data [26,27].

In the context of inflation, another interesting question is

the role played by the quantum corrections [29–39].

Various works have shown that they can have a crucial

impact on the inflationary dynamics. This is, for instance,

the case for large field inflation if one starts inflation high

enough in the potential. In this case, the quantum

kicks undergone by the field can be so important that the

field climbs its potential instead of rolling down it as

should be the case according to the classical equations of

motion. In such a situation, it is likely that one enters into a

regime of eternal inflation [31,40,41].

Hybrid inflation is also a model where one expects the

quantum corrections to be very important. It should be

the case high in the inflationary valley but also around

the critical point where the tachyonic instability is trig-

gered [26,27,42]. The goal of this article is to investigate

this last question in detail. In particular, we are interested

in whether the quantum effects can significantly modify the

classical dynamics and affect the observational predictions

of the model.

In order to carry out our study, we use the stochastic

inflation formalism [30,32–39,43,44]. It consists in model-

ing the quantum effects by a stochastic white noise. As a

consequence, the equation describing the motion of the

fields becomes a Langevin equation. As mentioned previ-

ously, hybrid inflation is a genuine two-field model, which

implies that one has to deal with two coupled Langevin
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(Received 26 August 2013; published 31 October 2013)

Hybrid inflation is a two-field model where inflation ends because of a tachyonic instability, the

duration of which is determined by stochastic effects and has important observational implications.

Making use of the recursive approach to the stochastic formalism presented in [L. P. Levasseur, preceding

article, Phys. Rev. D 88, 083537 (2013)], these effects are consistently computed. Through an analysis of

backreaction, this method is shown to converge in the valley but points toward an (expected) instability in

the waterfall. It is further shown that the quasistationarity of the auxiliary field distribution breaks down in

the case of a short-lived waterfall. We find that the typical dispersion of the waterfall field at the critical

point is then diminished, thus increasing the duration of the waterfall phase and jeopardizing the

possibility of a short transition. Finally, we find that stochastic effects worsen the blue tilt of the curvature

perturbations by an Oð1Þ factor when compared with the usual slow-roll contribution.

DOI: 10.1103/PhysRevD.88.083538 PACS numbers: 98.80.Cq, 98.70.Vc

I. INTRODUCTION

Inflation is currently the leading paradigm attempting to

shed light on the physics of the very early Universe. It

describes a phase of accelerated expansion, which solves

many problems of the hot big bang scenario [1–8]. Inflation

further provides a causal mechanism for generating fluctu-

ations on cosmological scales, and it predicts that their

spectrum should be almost scale invariant, with small de-

viations from scale invariance which can be traced back to

the precisemicrophysics of inflation [9–14]. This prediction

is consistent with the current astrophysical observation,

such as the CMB, including the measurement of the cosmic

microwave background anisotropies. For this specific ob-

servable, the latest results [15–17] give a slightly red-tilted

spectral index nS ’ 0:96, ruling out exact scale invariance

nS ¼ 1 at over 5! and allowing us to constrain the infla-

tionary models still allowed by the data [18].

With the ever-increasing precision of the experiments

probing this window into the early Universe, it is now very

important to develop robust and self-consistent methods

for calculating inflationary predictions. For example, in

the context of multifield inflation, it is complicated to

disentangle the gravitational and matter degrees of free-

dom when describing fluctuations produced in the scalar

fields using traditional methods. Typically, approximations

are used to make the problem tractable, but these

approximations ignore backreaction, that is, the effects of

these fluctuations on the background spacetime and field

trajectory. Restoring or even assessing the importance of

these neglected effects then becomes extremely nontrivial,

and it has been shown that such effects can have a crucial

impact on the inflationary dynamics [19–22] (see also

Ref. [23] for a review of early work).

Oneway to resum these effects, at least partially, is tomake

use of the stochastic inflation formalism [24–34]. The basic

strategy is to derive an effective theory for the long-

wavelength part of the fields, which are ‘‘coarse grained’’ at

a scale larger than the Hubble radius. In this framework, the

small-scale quantum fluctuations play the role of a ‘‘bath’’

and are collected in classical noise terms which affect the

dynamics of the coarse-grained fields. The super-Hubble

physics can thus be described by a stochastic classical theory.

The corresponding equations can be derived by making

use of the Schwinger-Keldysh closed time path formalism

[35–38], where the strategy is to split the degrees of free-

dom of the full quantum fields in momentum space through

a window function, and perform the path integral over

the small-scale fluctuations. In Ref. [39], this Lagrangian

formulation of the theory is used to develop a recursive

method for solving the stochastic equations when the

background spacetime is taken to be dynamic. It is this

recursive method which we now apply to models of multi-

field inflation, and specifically to hybrid inflation.

At the energy scale of inflation (typically around

10
15–1016 GeV), particle physics remains elusive, leaving

room for a large variety of different inflationary scenarios.
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According to cosmological inflation, the inhomogeneities in our Universe are of quantum-mechanical

origin. This scenario is phenomenologically very appealing as it solves the puzzles of the standard hot big

bang model and naturally explains why the spectrum of cosmological perturbations is almost scale

invariant. It is also an ideal playground to discuss deep questions among which is the quantum

measurement problem in a cosmological context. Although the large squeezing of the quantum state of

the perturbations and the phenomenon of decoherence explain many aspects of the quantum-to-classical

transition, it remains to understand how a specific outcome can be produced in the early Universe, in the

absence of any observer. The continuous spontaneous localization (CSL) approach to quantum mechanics

attempts to solve the quantum measurement question in a general context. In this framework, the wave

function collapse is caused by adding new nonlinear and stochastic terms to the Schrödinger equation. In

this paper, we apply this theory to inflation, which amounts to solving the CSL parametric oscillator case.

We choose the wave function collapse to occur on an eigenstate of the Mukhanov-Sasaki variable and

discuss the corresponding modified Schrödinger equation. Then, we compute the power spectrum of the

perturbations and show that it acquires a universal shape with two branches, one which remains scale

invariant and one with nS ¼ 4, a spectral index in obvious contradiction with the cosmic microwave

background anisotropy observations. The requirement that the non-scale-invariant part be outside the

observational window puts stringent constraints on the parameter controlling the deviations from ordinary

quantum mechanics. Due to the absence of a CSL amplification mechanism in field theory, this also has

the consequence that the collapse mechanism of the inflationary fluctuations is not efficient. Then, we

determine the collapse time. On small scales the collapse is almost instantaneous, and we recover exactly

the behavior of the CSL harmonic oscillator (a case for which we present new results), whereas, on large

scales, we find that the collapse is delayed and can take several e-folds to happen. We conclude that

recovering the observational successes of inflation and, at the same time, reaching a satisfactory resolution

of the inflationary ‘‘macro-objectification’’ issue seems problematic in the framework considered here.

This work also provides a complete solution to the CSL parametric oscillator system, a topic we suggest

could play a very important role to further constrain the CSL parameters. Our results illustrate the

remarkable power of inflation and cosmology to constrain new physics.

DOI: 10.1103/PhysRevD.86.103524 PACS numbers: 98.80.Cq, 98.80.Qc, 03.65.Ta, 03.65.Yz

I. INTRODUCTION

Inflation is currently the leading paradigm for explaining

the physical conditions that prevailed in the very early

Universe [1–5]. It solves the puzzles of the standard hot

big bang phase and it explains the origin of the inhomo-

geneities in our Universe [6–11] (for reviews, see

Refs. [12–18]). According to the inflationary scenario,

these inhomogeneities result from the amplification of

the unavoidable vacuum quantum fluctuations of the gravi-

tational and inflaton fields during a phase of accelerated

expansion. In particular, inflation predicts an almost scale

invariant power spectrum for the cosmological fluctuations

[19], a prediction which fits very well the high accuracy

astrophysical data now at our disposal [20–26].

Often less emphasized is the fact that inflation is also

particularly remarkable from the theoretical point of view.

Indeed, the inflationary mechanism for the production of

cosmological perturbations makes use of general relativity

and quantum mechanics, two theories that are notoriously

difficult to combine. Moreover, this mechanism leads to

theoretical predictions that are possible to study observa-

tionally with great accuracy. In fact, inflation is probably

the only case in physics where an effect based on general

relativity and quantum mechanics leads to predictions that,

given our present day technological capabilities, can be

tested experimentally.

The situation described above can be used to investigate

deep questions. Among these deep questions is how the

quantum measurement problem looks in a cosmological

context. According to inflation, the cosmic microwave

background (CMB) radiation anisotropy [27] is an observ-

able and is therefore described by a quantum operator. As a

consequence, when one looks at a CMBmap, one observes
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Conclusion

The goal of this thesis was to derive observational constraints on cosmological
inflation models, and to investigate some fundamental aspects related to the quantum
nature of the inflationary setup. In this last section we summarize the main results
we obtained, drawing a few concluding remarks and suggesting possible prospects.

The phenomenological successes of inflation have provided the motivation for numerous efforts
to establish its connection with the standard model of particle physics. Our ability to see
through the inflationary window turns the early Universe into a laboratory for ultra-high energy
physics, at scales entirely inaccessible to conventional experimentation. A crowd of inflationary
candidates have thus been proposed, among which it is a priori difficult to discriminate the most
promising ones since inflation takes place at energy scales where particle physics remain elusive.
As a consequence, despite the fact that it has become a cornerstone, the inflationary era is not
as well constrained as the other parts of the standard model of Cosmology. However, there is
now a flow of increasingly accurate astrophysical data which gives us a unique opportunity to
learn more about inflation. We have now entered the era of massive multi-data analysis, and a
change of scale is clearly required compared to previous analyses.

The first goal of this thesis was to develop methods that allow us to constrain the inflationary
scenario at a level matching the accuracy of the data. We chose to adopt a systematic and
somewhat “industrial” approach of this issue. We first focused on the single-field models of
inflation, with canonical kinetic terms, and studied them in the slow-roll approximation. Indeed,
these are the simplest inflationary models, and there is currently no observational evidence
(as would be for example the detection of substantial primordial non-Gaussianities or entropic
perturbations) that forces us to consider more complicated models. Obviously, this does not
mean that more complicated models are ruled out, but simply that single-field slow-roll scenarios
achieve the best compromise between quality of the fit and theoretical simplicity. This still left
us with a very populated landscape.

Going through the literature, we identified ∼ 75 different inflationary potentials that we studied
one by one. Without any other approximation than slow roll, we calculated the predictions of
these models. For many of them, we thus derived new results since in most cases, they were
studied under additional approximations. The errors associated with these approximations
cannot be ignored given the current accuracy of the data, and it is therefore necessary to
do without them. We also developed a publicly available runtime library that computes the
reheating consistent predictions for these models. This project is an evolutive one and it is
intended to be completed as new models appear.

Then, the Planck 2013 Cosmic Microwave Background (CMB) data were released and we com-
puted the Bayesian evidences and complexities of the ∼ 200 inflationary scenarios that arise
from the previously studied potentials. At the technical level, we actually interfaced the slow-
roll library mentioned above with a machine-learning effective likelihood and a nested sampling
algorithm. Doing so, we identified the most probable models that are compatible with the Planck
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data, while ruling out with very strong evidence one third of the models considered. Among the
preferred models, we identified that most potentials are of the plateau type, i.e. they are such
that the kinetic energy and the kinetic-to-total energy density ratio increase during inflation.
Prototypical examples of such models are the Starobinsky model or the Kähler moduli model.

Later on in the course of this thesis, the BICEP2 experiment reported the detection of B-mode
signal in the polarization of the CMB, at the level of r ∼ 0.16. Beyond the strong implications
that such a detection would have for inflation in general if confirmed, it was clear that it could
drastically refine our analysis arising from the Planck data only. In particular, the Planck
likelihood is consistent with r = 0 (so far), and indicates that r < 0.1 at the two-sigma confidence
level. A measurement of r obviously puts further constrains on the inflationary models. This
is why we re-processed the same computational pipeline, but including the BICEP2 data in
the analysis. The results we obtained showed that the sets of inflationary models preferred by
Planck alone and BICEP2 alone are almost disjoint, indicating a clear tension between the two
data sets.

We then decided to quantify this tension with a Bayesian measure of compatibility between
BICEP2 and Planck. The compatibility of these two experiments is widely discussed in the
literature, but the improvement of our approach is that we quantify compatibility under the
assumption of inflation or under the assumption of a specific inflationary model. In this manner,
we could draw stronger and more reliable conclusions. Under the generic assumption of slow-roll
inflation, we established that the Bayesian test is inconclusive, i.e. there is neither indication
towards compatibility nor incompatibility. However, when computing the compatibility level
model by model, we found that for models favoured by Planck the two data sets tend to be
incompatible, whereas there is a moderate evidence of compatibility for the BICEP2 preferred
models. As a result, it is premature to draw any conclusion on the best Planck models at this
point, such as Starobinsky inflation or Kähler moduli inflation. Furthermore, we established
that the data are strongly compatible only for models that are disfavoured by both Planck
and BICEP2 separately. Indeed, both data sets agree in disfavouring those models and in this
sense only, they can be said to be “compatible”. This is why one still needs to wait for some
clarification about the data before being able to properly combine them and draw definitive
conclusions as for the Planck best models. In particular, the polarization measurements by
Planck that should be released by the end of the year, and a possible reconsideration of the dust
contribution in the B-mode signal measured by BICEP2, may help to unveil the tension.

As a possible prospect of this work, the inclusion of k-inflation models in the analysis needs to
be considered. Indeed, in this class of models, the action for the scalar perturbations at linear
order is still quadratic, but the speed of sound c

S
is now a function of time. As a consequence,

there exists a frame of approximation similar to slow roll that applies to the time variation of
c
S
, and the same machinery can be extended to these cases without implying an unreasonable

increase in its complexity level. Since the accuracy of the data requires to work at next-to-next-
to leading order at least, we have calculated, for the first time, the power spectra of scalar and
tensor perturbations at this order in k-inflation to pave the way for such an extension. However,
such models can produce a large amount of primordial non-Gaussianities, and this observable
needs also be included in the analysis to properly constrain k-inflation.

Obviously, on could go beyond and include multi-field models, non scalar-field models, etc.
However, this represents much more complicated situations with strong dependence on the
initial conditions, and where there is no such thing as a frame of approximation in which the
background trajectory and the amplitude of the perturbations can be calculated perturbatively.
As a consequence, one needs to numerically integrate all equations, and it seems difficult to
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process our complete Bayesian pipeline in a realistic amount of time for such models, at least in
the generic situation.

Another relevant study to carry out is the one about reheating. From the beginning, we have
taken care of consistently describing reheating in the analysis, which boils down to including a
single parameter combining the mean energy density and the average equation of state during
reheating. From the results we obtained, it is clear that we are in a position where we can put
explicit constraints on the reheating parameters, either model by model, or in a model averaged
way. We are currently working on such a follow-up.

There is also an ongoing debate about what the next instrumental move should be. If the urge
for a clear detection of r is obvious, the sensitivity of future experiments must be such that,
in case of a non detection, the improvement in the constraint on the gravity wave level would
still significantly improve our knowledge about the early Universe. This is why we are also
currently examinating future experiments specifications in the light of this issue. For the few
ones that have been planned, we are deriving the likelihood it would provide given a fiducial
model, and we are processing our Bayesian pipeline for the ∼ 200 inflationary models we have
at hand, to determine how much the constraints on these models would improve. Repeating
the analysis for a few different fiducial models, this allows us to derive clear forecasts about the
actual performance of these experiments.

It is also worth mentioning that the reliability of our approach, compared with model inde-
pendent parametrizations of inflation, was strengthened by our analysis of the horizon-flow
framework. In this setup, inflation is parametrized by means of truncated flow equations. Typ-
ically, potential reconstruction has been investigated with the help of this technique, as well
as the search for “generic” inflationary predictions. We showed that horizon flow only samples
a phenomenological class of inflationary potentials, which are at the origins of such wrongly
concluded generic predictions. Furthermore, we established that the horizon-flow setup rests on
trajectories in phase space that differ from the slow roll one. Such trajectories are sometimes
unstable, and given a potential, they render horizon flow blind to entire inflationary regimes,
hence making this parametrization a biased one.

Together with this data-oriented approach of inflationary models, we also studied more funda-
mental aspects related to the quantum nature of the inflationary setup. In particular, we got
interested in the stochastic inflation formalism which incorporates quantum corrections to the
classical background by means of stochastic Langevin equations. Such a formalism is theoret-
ically well founded and technically appealing since it is notably able to reproduce a number
of results from Quantum Field Theories, even beyond the perturbative level. It gives rise to
non trivial dynamics, in particular when multiple fields are present, since in these cases, due to
quantum diffusion, the system can explore parts of the inflationary potential to which the clas-
sical trajectory is insensitive. This is why we studied the stochastic effects in hybrid inflation,
a two-field model where inflation ends by tachyonic instability, triggered by an auxiliary “wa-
terfall” field, close to a critical saddle point. There, the potential is very flat and the quantum
fluctuations dominate over the classical drifts of the fields. The two Langevin equations become
highly coupled, and their solving requires a numerical approach. It is however important to well
understand what happens in this regime, since it determines the amount of e-folds that can be
realized in the waterfall phase. If the scales of astrophysical interest today cross the Hubble
radius before the critical point, that is if the number of e-folds realized in the waterfall is smaller
than ∼ 50, then the power spectrum of scalar perturbations was shown to be blue and the model
is therefore ruled out. Only if the last 50 e-folds are realized in the waterfall phase can this
problem be evaded, and it is then crucial to properly determine the amount of e-folds realized in
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the waterfall. This is why we mainly focused on this quantity, and we computed its distribution
for different sets of parameters.

To go beyond, one needs to investigate more the regime of parameters for which ∼ 50 e-folds are
realized during the waterfall, and scales of astrophysical interest today cross the Hubble radius
in the neighbourhood of the critical point, that is where the stochastic effects do not represent a
tiny correction to the classical trajectory anymore. In such a case, the calculation of the power
spectrum is more involved. In the introductory part of this manuscript, we have derived an
entirely analytical method for calculating the power spectrum in stochastic inflation in a non
perturbative manner, that is without relying on an expansion in the noise term, for single-field
models. If such an approach should be employed to calculate the power spectrum and the non
Gaussianity levels in some single-field models where important stochastic effects are expected
to play a role, it still remains to be generalized to multiple-fields setups in order to address the
case of models such as hybrid inflation.

Another issue we studied is the fact that in standard stochastic inflation, the correlations of noise
terms in the Langevin equations depend on the amplitude of perturbations that are calculated
over a classical background. Now, if the background is stochastically shifted, the perturbations
should be affected, hence the noise correlations, hence the way the background is shifted, so
on and so forth. In order to try and take into account such an effect, we designed a recursive
approach to stochastic inflation that we applied to the hybrid models. As expected, such a
formalism converges in the valley but blows up in the waterfall. Interestingly enough, the
corresponding effects tend to increase the duration of the waterfall phase by decreasing the
waterfall field dispersion at the critical point, and worsen the blue tilt problem in the valley,
hence reinforcing the plausibility of long lasting waterfall scenarios.

Finally, we addressed the issue of the quantum measurement problem in a cosmological context,
so as to illustrate how inflationary physics can help to discuss deep questions related to the nature
of the quantum theory itself. The quantum-to-classical transition of cosmological perturbations
is a subject of great interest at the fundamental level, since perturbations originate from zero
point quantum fluctuation but are usually treated as purely classical quantities after inflation
ends. This transition is often accounted for by the large squeezing of the quantum state of the
perturbations, for which one can show that it is phenomenologically equivalent to a stochastic
set of classical processes. The phenomenon of quantum decoherence is also usually mentioned
as being part of the explanation. However, at the fundamental level, this does not explain how a
specific outcome can be produced in the early Universe, in the absence of any observer. A possible
way out is the continuous spontaneous localization (CSL) approach to quantum mechanics in
which the wavefunction collapse is caused by adding non linear and stochastic terms to the
Schrödinger equation. We applied this theory to inflation, and calculated both the collapse
level of the wavefunction at the end of inflation and the power spectrum of perturbations. We
found that reaching a satisfactory level of collapse for the scales of astrophysical interest today
implies to strongly break the scale invariance of the power spectrum, hence rendering the direct
application of the theory in the early Universe problematic. In a later work, other authors have
extended our calculation in the case where the CSL strength parameter depends on physical
scales through a phenomenological power law, and they showed that there exists a power index
for which the problem we point out is evaded. In any case, this illustrates the remarkable power
of inflation in particular, and Cosmology in general, to constrain new physics.

In this thesis, we have thus shown that theoretical developments and observational achievements
of the past years make possible to constrain the inflationary physics and to learn more about
the physical conditions that prevailed in the early Universe. However, one might fear that the
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built-in phenomenological robustness of inflation may keep us from learning too much about its
microphysical origin since inflationary predictions depend on a few generic observables and the
window of scales through which we may grasp a look at early Universe physics is restricted to a
few e-folds.

Actually, we may indeed be at a turning point with the possible detection of primordial gravity
waves. Indeed, if the detection of r is confirmed, it is clear that we should undertake all possible
and reasonable efforts to provide an accurate measurement of its value. If it is of the same order
of magnitude as the one announced by BICEP2, r ∼ 0.1 − 0.2, it also means that the spectral
index of gravity waves, n

T
, may also be measured [409] in the medium term. This would double

the number of inflationary parameters for which we have a measurement, going from {Pζ,∗, nS
}

to {Pζ,∗, nS
, r, n

T
}. If this is the case, considering also the EE and TE signals measured by

Planck and that will be released soon, it seems realistic to try and really constrain the shape of
the inflationary potential and its energy scale. This is a very exciting perspective.

However, if a more accurate determination of the foregrounds contribution to the BICEP2 signal
makes its detection disappear, measurement of new inflationary parameters in the short run seem
quite unlikely. Indeed, some plateau models, such as Khäler moduli inflation or brane inflation,
can predict tiny values of r, typically r < 10−6. At the present day, it seems technologically
unrealistic to try and detect such small amount of primordial gravity waves. Moreover, for single-
field slow-roll models of inflation with canonical kinetic terms, the level of non-Gaussianities is
very small, fNL ∼ ǫ, and still beyond what we can reach observationally [410]. The same applies
for entropic perturbations which may well be far beyond what we will be able to detect in the
years to come if the other fields contributing to ρ during inflation are very massive. The running
of the scalar power spectrum is also very small in the slow-roll regime, α

S
∼ ǫ2, and if no deviation

from slow roll occurred in the observational window (as it seems to be the case so far), it is also
quite unlikely to be detected in the years to come. Of course, there is still the possibility that
slow roll be mildly violated at some point, or that a “massive but not so massive” auxiliary field
contributes to the energy density during inflation, or that a “small but not so small” deviation
from minimal coupling to gravity appear, so that the quantities mentioned above may still be
measured soon, but this would represent a rather fine-tuned situation, considering what we
already know. This is why in that second case, it is possible that the observational constraints
on inflationary models stagnate for a decade or even more.

To continue to improve our knowledge of early universe physics, two routes may then be followed.
One is to try and discriminate among models on a theoretical basis, dedicating more efforts in
the model building programme, better understanding how inflationary models are sensitive to
radiative corrections, how they can be connected to the standard model of particle physics and its
extensions, etc. Another is to investigate more the connections between inflationary predictions
and other astrophysical probes such as supernovae, galaxy surveys, 21 cm astrophysics, the
reconstruction of the initial conditions large scale structures simulations, etc. For example, the
“lever arm” in length scales between CMB and galaxy power spectra is huge and it increases
the sensitivity to the small deviations from scale invariance.

Cosmology has now entered a “big data” era where measurements very different in nature
have to be cleverly combined to derive constraints on physical processes equally different. In
this manner, advances in the different fields of Cosmology and even Astrophysics are highly
entangled, and the decryption of the early Universe physics is an ongoing adventure.
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Compte Rendu Français

Ce court compte rendu contient une description en langue française des résultats
importants obtenus lors de la thèse et présentés dans ce document.

5.1. L’inflation et le Modèle Standard de la Cosmologie

Nous commençons par rappeler les aspects essentiels du modèle standard de la cosmologie. Le
modèle du Big Bang chaud décrit avec succès une série d’événements se déroulant dans un
univers en expansion, dont la densité d’énergie et la température décroissent au cours du temps
depuis une singularité initiale il y a 13.7 milliards d’année. Un certain nombre de questions sont
néanmoins laissées en suspens, et nous expliquons comment une phase d’inflation, c’est à dire
d’expansion accélérée, permet d’y répondre.

5.1.1. L’Univers Homogène

Les observations faites à grandes échelles de la distribution de matière dans l’Univers lais-
sent apparâıtre que notre Univers est isotrope sur des distances supérieures à ∼ 100 Mpc.
Ce constat, combiné au principe Copernicien qui suppose que nous n’occupons pas une place
spécifique ou “centrale” dans l’Univers, nous amène à considérer un Univers homogène aux
grandes échelles. Sous l’hypothèse de cette symétrie, la métrique de l’espace-temps ds2 =
gµνdx

µdxν est entièrement déterminée par une fonction du temps a(t) appelée facteur d’échelle,
et un paramètre discret K = −1, 0, 1 qui caractérise la courbure spatiale de l’Univers (ouvert,
plat ou fermé). Cette métrique est celle des espaces-temps de Friedmann-Lemâıtre-Robertson-
Walker (FLRW), et elle peut s’écrire [9, 10, 11, 12]

ds2 = −dt2 + a2(t)

[

dr2

1−Kr2 + r2
(

dθ2 + sin2 θdφ2
)

]

. (5.1)

Dans cette paramétrisation, t est le temps cosmique, r est la coordonnée radiale comobile,
et θ et φ sont des coordonnées angulaires comobiles. A l’intérieur de ces espaces-temps, la
distance physique Lphys séparant deux points, mesurée sur une hypersurface à t constant, est
proportionnelle au facteur d’échelle a. En pratique, nous avons donc Lphys = a(t)Lcom, où Lcom

est la distance comobile, constante pour deux objets au repos dans les coordonnées FLRW. Ainsi,
le facteur d’échelle a définit le niveau global d’expansion (ou de contraction) des hypersurfaces
de type espace. Une autre conséquence de la forme de la métrique (5.1) est l’existence d’une
relation linéaire entre vitesse et distance, appelée loi de Hubble [13]. En effet, lorsque l’on dérive
la relation Lphys = a(t)Lcom par rapport au temps, on obtient

v =
dLphys

dt
=
ȧ

a
Lphys = HLphys , (5.2)
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où nous avons défini le paramètre de Hubble H = ȧ/a. La valeur actuelle de H, souvent dénotée
H0, a été mesurée [15] autour de 67 km/sec/Mpc.

Dans le cadre de la relativité générale, la dynamique des espaces-temps est décrite par l’action
de Einstein-Hilbert [22, 23, 24],

S = Sgrav + Smat =
1

2κ

∫

d4x
√−g (R− 2Λ) + Smat . (5.3)

Dans cette expression, κ ≡ 8πG = 1/M2
Pl où G est la constante de Newton etMPl est la masse de

Planck réduite MPl ≃ 2.4× 1018 GeV. La partie gravitationnelle de l’action Sgrav fait intervenir
une constante cosmologique éventuelle Λ, le déterminant g de la métrique gµν et la courbure de
Ricci R associée à la métrique. La partie de matière Smat contient tous les champs du modèle
standard de la physique des particules et de ses extensions éventuelles. Sa forme exacte est donc
en général relativement complexe. Néanmoins, dans la limite où le constituant dominant (en
terme de densité d’énergie) est un fluide parfait homogène, son expression peut être largement
simplifiée et la variation de l’action (5.3) par rapport aux composantes de la métrique gµν donne
lieu à deux équations dynamiques,

H2 =
κ

3
ρ− K

a2
+

Λ

3
, (5.4)

ä

a
= −κ

6
(ρ+ 3p) +

Λ

3
, (5.5)

où ρ et p sont respectivement la densité d’énergie et la pression du fluide parfait. La première de
ces équations s’appelle équation de Friedmann [25] et relie le taux d’expansion de l’Univers à sa
densité d’énergie, sa courbure spatiale et la valeur de la constante cosmologique. La deuxième
équation s’appelle équation de Raychaudhuri [26] et relie son accélération à une combinaison de
la densité d’énergie et de la pression, ainsi qu’à la valeur de la constante cosmologique. Lorsque
l’on combine ces deux relations, on obtient l’équation de continuité1

ρ̇+ 3H (ρ+ p) = 0 . (5.6)

De façon heuristique, cette équation peut être comprise comme étant une traduction de la
première loi de la thermodynamique, dU = −pdV , avec U = ρV and V = a3.

5.1.2. Le Modèle du Big Bang Chaud et ses Problèmes

Nous venons d’établir que pour un Univers homogène et isotrope, la Relativité Générale décrit
un espace-temps en expansion, le taux d’expansion et son accélération étant reliés au contenu en
matière de l’Univers, à sa courbure et à une éventuelle constante cosmologique. Cela implique
qu’en remontant le temps et en regardant dans le passé, l’Univers est de plus en plus contracté,
les densités d’énergie sont de plus en plus importantes, jusqu’à une singularité initiale où a = 0.
Pour un univers principalement constitué de matière froide et de rayonnement, ces considérations
donnent lieu au modèle dit du Big Bang chaud, dans lequel les éléments constitutifs de la matière
baryonique aujourd’hui s’assemblent peu à peu, au fur et à mesure que les énergies en jeux
diminuent et permettent leur existence stable, et les grandes structures de l’Univers (galaxies,
amas, filaments, ...) se forment et croissent par instabilité gravitationnelle.

1L’équation de continuité s’obtient également à partir de la relation de conservation ∇µT
µν = 0, ce qui une

conséquence des identités de Bianchi.
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Néanmoins, ce scénario pose un certain nombre de questions appelés “problèmes” du modèle
du Big Bang chaud. Ce ne sont pas des problèmes d’impossibilité pure à proprement parler,
mais ils montrent que le modèle du Big Bang chaud repose en fait sur des hypothèses très fortes
concernant ses conditions initiales, qui doivent être finement réglées autour de configurations
peu “naturelles” pour pouvoir expliquer les propriétés de l’Univers telles que nous les observons
aujourd’hui.

Le premier de ces problèmes est celui dit de l’horizon [88, 89]. Une des propriétés fondamentales
des espaces-temps décrits plus haut est le fait qu’ils sont dotés d’horizon causaux, c’est à dire de
frontières séparant les événements observables des événements non observables, définis relative-
ment à un observateur. Par causalité, aucun processus physique ne peut agir sur des distances
plus grandes que l’horizon, et l’on s’attend donc à ce que l’Univers soit relativement inhomogène
sur ces échelles. Cette hypothèse naturelle est en contradiction avec les observations, qui met-
tent en évidence un Univers redoutablement homogène sur des échelles qui, sous l’hypothèse
du modèle standard du Big Bang chaud, devraient être bien plus étendues que l’horizon. Le
modèle du Big Bang chaud suppose donc pour commencer que l’Univers ait été initialement
parfaitement homogène, y compris au delà de son horizon causal.

Le deuxième problème est celui de la platitude [92, 93], qui se pose à partir des mesures actuelles
de la courbure spatiale de l’Univers. Ces observations sont compatibles avec l’hypothèse d’un
univers parfaitement plat, et contraignent en tout état de cause la courbure spatiale à des niveaux
extrêmement faibles. Or, dans un Univers dominé par de la matière froide ou du rayonnement,
la déviation à un Univers plat ne peut qu’augmenter avec le temps. Par conséquent, si l’Univers
actuel est redoutablement plat, cela implique qu’il l’était encore bien davantage dans le passé.
Malheureusement, il n’y a aucune raison qui explique a priori que la courbure ait été initialement
si faible. Là aussi, le modèle du Big Bang chaud suppose le réglage ultra-fin d’un paramètre (la
courbure) à une valeur initiale minuscule.

Finalement, le troisième problème, plus spéculatif, est celui des monopôles [101, 102, 99, 100], qui
sont des défauts topologiques pouvant apparâıtre notamment lors de la transition de phase entre
une théorie de grande unification et la symétrie de jauge du modèle standard SU(3)× SU(2)×
U(1). Ces transitions se produisent à une échelle d’énergie de l’ordre de MGUT ≃ 1016 GeV, et
donnent lieu à la production de monopôles magnétiques qui devraient perdurer jusqu’à l’heure
actuelle. Lorsqu’on la calcule dans le cadre du modèle standard du Big Bang chaud, la densité
de ces monopôles aujourd’hui devrait être colossale, en fait, ils devraient même dominer le
contenu énergétique de l’Univers actuel. Ce n’est clairement pas le cas. Des recherches pour leur
détection ont même été menées et des contraintes très importantes [103, 104, 105, 106, 107, 108]
sur leur densité ont pu être dérivées (typiquement, moins de 1 monopôle par ∼ 1030 nucléon).
Ce troisième problème est bien entendu plus délicat à cerner, car il met en jeu de la physique
au delà du modèle standard.

5.1.3. L’Inflation Cosmologique

Dans la section précédente, nous avons vu que le modèle standard du Big Bang chaud, dans lequel
l’Univers est principalement constitué de matière froide et de rayonnement, souffre d’hypothèses
très fortes et peu naturelles concernant ses conditions initiales et sur lesquelles il repose. Un
remède possible est de supposer qu’une phase initiale d’accélération de l’expansion (c’est à dire
lors de laquelle ä > 0), a eu lieu dans l’Univers primordial [90, 91]. C’est ce que l’on appelle
l’inflation cosmologique [114, 116, 118, 119].
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L’équation de Raychaudhuri (5.5) nous indique que pour avoir ä > 0, en l’absence de constante
cosmologique, la quantité ρ+ 3p doit être négative. Puisque la densité d’énergie ρ est toujours
positive, la pression doit donc être, a fortiori, négative. Bien entendu, la question est de savoir
quel système physique est susceptible de générer une telle pression négative. Ce qui rend l’idée
inflationnaire relativement attractive est le fait que le système physique le plus simple compatible
avec les symétries du problème, à savoir un champ scalaire homogène φ minimalement couplé à
la gravité, permet de réaliser cette condition. La partie de matière Smat de l’action pour un tel
champ est donnée par

Sφ = −
∫

d4x
√−g

[

1

2
gµν∂µφ∂νφ+ V (φ)

]

, (5.7)

où V (φ) est un terme potentiel que nous ne spécifions pas pour le moment. En effet, la nature
physique du champ φ, dénommé inflaton, et ses relations avec les autres champs du modèle
standard de la physique des particules n’a toujours pas été établi et bon nombre de candidats
ont été proposés et sont étudiés à l’heure actuelle. Il est intéressant de noter que l’action écrite
plus haut peut être vue comme celle d’un fluide parfait, dont la densité d’énergie et la pression
sont respectivement données par

ρ =
φ̇2

2
+ V , (5.8)

p =
φ̇2

2
− V . (5.9)

Une conséquence directe de ce résultat est le fait que la condition d’accélération de l’expansion,
ρ + 3p < 0, est remplie dès lors que V > φ̇2. Cela implique qu’une phase d’inflation peut être
obtenue lorsque l’inflaton descend lentement le long de son potentiel, suffisamment lentement
pour que son énergie potentielle dépasse le double de son énergie cinétique. Son potentiel doit
donc être suffisamment plat, ce qui n’est pas toujours facile à réaliser en pratique.

5.2. Prédictions Inflationnaires et Observations en Données Massives

Nous entrons à présent dans la description résumée des principaux résultats obtenus lors de cette
thèse. La cosmologie moderne est entrée dans une “ère de précision” avec l’arrivée de données
astrophysiques massives, en particulier celles concernant le fonds diffus cosmologique (FDC).
Notamment, au cours de cette thèse, le satellite Planck a publié des mesures sans précédent
des fluctuations primordiales de température du FDC. D’un autre côté, comme nous venons de
le mentionner, de nombreux candidats à l’inflation ont été proposés jusqu’à aujourd’hui et il
reste a priori difficile de déterminer lesquels sont favorisés par les observations. Un des objectifs
de cette thèse a donc été de développer les méthodes et les outils permettant une approche
systématique de ce problème, et menant à un changement d’échelle à la fois dans la prise en
compte des données et dans le nombre de modèles traités.

5.2.1. Roulement Lent et Flot de Hubble

Une des manières d’aborder la question est d’utiliser des approches indépendantes du modèle
inflationnaire. Dans la Ref. [208] (section 3.1), nous nous sommes intéressés à l’une d’entre elles,
le “flot de Hubble”. Dans cette paramétrisation, la hiérarchie des paramètres de roulement lent
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est tronquée à un certain ordre M , c’est à dire que l’ensemble des paramètres d’ordre supérieur
à M sont pris comme identiquement nuls. L’évolution des paramètres restants est intégrée
numériquement à partir de conditions initiales tirées au hasard dans des intervalles prédéfinis,
et en utilisant l’inflaton φ lui-même comme variable temporelle. Le même processus est réitéré
pour différentes conditions initiales, et ce un grand nombre de fois. De cette manière, on cherche
à dériver des prédictions typiques pour l’inflation, ne reposant pas sur une forme explicite du
potentiel mais ayant une portée “générique”.

Nous avons montré qu’une telle approche comporte en réalité un certain nombre de biais.
Premièrement, puisque les paramètres de roulement lent sont reliés à une fonction de Hub-
ble H(φ) et à ses dérivées successives, tronquer leur hiérarchie à un ordre M revient à imposer
une forme polynomiale pour H(φ), d’ordreM+1. Dans la mesure où V et H sont explicitement
reliés via la relation V = 3M2

PlH
2 − 2M4

PlH
′2 (où un prime signifie une dérivation par rapport à

l’inflaton φ), une famille spécifique de potentiels est en fait implicitement étudiée par l’approche
du flot de Hubble. Ces potentiels sont des polynômes d’ordre 2M + 2 dans le champ scalaire
φ, avec certaines relations imposées entre les coefficients. Nous avons étudié cette famille de
potentiels et nous avons montré qu’elle est directement responsable des prédictions soit-disant
“génériques” qui semblaient avoir été dérivées dans la littérature. Cette méthode n’est donc
pas indépendante du modèle dans la mesure où elle ne permet d’étudier qu’une famille re-
streinte de potentiels, qui n’ont par ailleurs pas de justification physique et sont purement
phénoménologiques.

Ensuite, nous avons établi qu’une fois le potentiel fixé, le flot de Hubble résout la dynamique
inflationnaire le long d’une seule trajectoire dans l’espace des phases uniquement. En effet,
puisqu’en toute généralité, φ̇ = −2M2

PlH
′, partir d’une fonction H(φ) revient à fixer à l’avance

la trajectoire inflationnaire. Ceci pose deux types de problèmes. Tout d’abord, cette trajectoire
est en général différente de la trajectoire de roulement lent, qui est pourtant un attracteur du
système dynamique. Par conséquent, autant cela fait du sens d’étudier l’inflation le long de
la trajectoire de roulement lent puisqu’elle est asymptotiquement approchée depuis un large
bassin de conditions initiales, autant la trajectoire reliée au flot de Hubble ne jouit pas d’une
telle justification physique.2 Ensuite, à l’intérieur d’un potentiel, il arrive souvent que l’inflation
puisse se produire le long de différentes branches, notamment lorsque le potentiel n’est pas une
fonction monotone du champ scalaire φ (ce qui est courant pour les potentiels décrits par le flot
de Hubble et mentionnés plus haut). La trajectoire “imposée” par la fonction H(φ) ne permet
d’étudier l’inflation que sur l’une de ces branches, ce qui représente un biais supplémentaire dans
l’étude de ces potentiels.

Pour l’ensemble de ces raisons, nous avons conclu que le flot de Hubble conduit à une analyse
biaisée des dynamiques inflationnaires et de leurs prédictions physiques, et avons donc opté pour
une étude systématique de l’ensemble des potentiels inflationnaires proposés dans la littérature,
le long des trajectoires de roulement lent.

5.2.2. Modèles à un Champ et Encyclopædia Inflationaris

Dans la mesure où plusieurs centaines de scénarios inflationnaires ont été proposés dans la
littérature, il semble naturel de commencer par étudier les plus simples, à savoir les modèles à un
champ scalaire, avec terme cinétique standard, et dont la dynamique satisfait à l’approximation

2Dans certains cas, nous avons même montré que les trajectoire reliées au flot de Hubble sont instables dans
l’espace des phases.
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Figure 5.1.: Prédictions de quelques modèles implémentés dans la bibliothèque ASPIC, calculées
dans l’approximation du roulement lent et en intégrant de façon cohérente la phase
de réchauffement. Ces prédictions sont tracées dans le plan (n

S
, r), et sont super-

posées aux contours à un et deux sigma de WMAP9 (en gris), PLANCK (en bleu) et
PLANCK+BICEP2 (en jaune). Une loi a priori de Jeffreys a été utilisée pour le pre-
mier paramètre de roulement lent dans la figure de gauche, tandis qu’une loi a priori
plate a été utilisée dans la figure de droite. Les valeurs annotées représentent le log-
arithme de l’échelle d’énergie, log(Treh/GeV), à laquelle une phase de réchauffement
dominée par de la matière se termine. La zone rose délimite les modèles pour
lesquels l’énergie cinétique et son rapport avec l’énergie totale augmentent, la zone
jaune indique les modèles pour lesquels l’énergie cinétique diminue mais son rapport
avec l’énergie totale augmente, et la zone violette recouvre les modèles pour lesquels
l’énergie cinétique et son rapport avec l’énergie totale diminuent, au moment où les
prédictions sont calculées.

du roulement lent. En effet, les extensions à ce cadre minimal (terme cinétique non-standard,
présence de champs multiples, sortie transitoire du régime de roulement lent, etc.) prédisent
souvent la présence de signaux (non-Gaussianités, perturbations entropiques, running, etc.) qui
n’ont pour l’instant jamais été détectés. C’est pourquoi à ce stade, et tant que les données ne les
excluent pas, il semble raisonnable de commencer en abordant les scénarios les moins complexes.

Nous avons recensé environ 75 potentiels appartenant à cette catégorie, pour lesquelles nous
avons dérivé les prédictions dans l’approximation du roulement lent, que nous avons présentées
dans la Ref. [205], Encyclopædia Inflationaris (section 3.2). Nous avons également conçu une
bibliothèque numérique publique dénommée ASPIC3 (pour “Accurate Slow-roll Predictions for In-
flationary Cosmology”) qui contient l’ensemble des programmes permettant le calcul numérique
des prédictions inflationnaires de ces modèles et leur comparaison aux observations. Ce code
libre d’accès est un projet évolutif, et est amené à être complété au fur et à mesure que de
nouveaux modèles sont considérés.

Il est important de noter qu’aucune autre approximation que celle du roulement n’a été effectuée
dans cette analyse, là où des approximations supplémentaires ont souvent été utilisées dans la
littérature. En effet, nous avons montré que la précision actuelle des données est telle que le calcul

3http://theory.physics.unige.ch/~ringeval/aspic.html
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des prédictions se doit d’être le plus précis possible, et que ces approximations supplémentaires
conduisent souvent à des résultats erronés. La phase de réchauffement a également été prise en
compte de façon cohérente, là où la plupart des travaux se contentent de tirer le paramètre ∆N∗

(représentant le nombre d’e-folds entre le croisement de l’échelle de pivot des spectres de puis-
sance avec le rayon de Hubble et la fin de l’inflation) dans un intervalle prédéfini. Cette procédure
peut conduire à des situations non-physiques où l’énergie à la fin de l’ère de réchauffement est
plus élevée que l’énergie à la fin de l’inflation, ou plus faible que l’énergie au moment de la
nucléation.

Le détail des prédictions dérivées potentiel par potentiel est présenté dans la section 3.2 et
nous ne donnons ici que quelques éléments conclusifs. Une manière de résumer les résultats
obtenus est d’utiliser une classification des modèles d’inflation basée sur la variation temporelle
des énergies qui leur sont associées et permettant de découper le plan (n

S
, r) (où n

S
est l’indice

spectral des perturbations scalaires et r est l’amplitude du spectre des ondes gravitationnelles
normalisé au spectre des perturbations scalaires) en trois zones, représentées sur la figure 5.1.
La première zone, en rose, contient les modèles pour lesquels l’énergie cinétique φ̇2/2 et le
rapport de l’énergie cinétique avec l’énergie totale φ̇2/2/(V + φ̇2/2) augmentent au moment où
les prédictions sont calculées, c’est à dire lorsque l’échelle pivot des spectres de puissance croise le
rayon de Hubble. La deuxième zone, en jaune pâle, recouvre les modèles pour lesquels l’énergie
cinétique diminue mais son rapport avec l’énergie totale augmente, tandis que la troisième zone,
en bleu, indique les modèles pour lesquels l’énergie cinétique et son rapport avec l’énergie totale
diminuent. S’il est clair que les données du satellite WMAP ne sont pas discriminantes vis à
vis de cette classification, dans la mesure où des modèles compatibles avec ses mesures existent
dans chacune des trois zones, l’apport du satellite PLANCK apparâıt clairement dans le fait
que ses observations indiquent une nette préférence pour les modèles de la première catégorie.
Ces modèles ont des potentiels concaves, soit en forme de “sommet de colline”, soit en forme de
“plateau”. Parmi les 75 familles de potentiels que nous avons étudiées, ce sont donc ces potentiels
qui semblent être “préférés” par les données (le fait que BICEP2 nous amène à reconsidérer ou
non cette affirmation sera discutée plus bas).

Pour aller plus loin que ce simple constat “à l’œil”, pour quantifier précisément cette préférence et
pour dégager les tout meilleurs modèles, nous avons ensuite appliqué les méthodes de l’inférence
Bayésienne au problème étudié.

5.2.3. Inférence Bayésienne et Meilleurs Modèles Inflationnaires selon Planck

Étant donné le nombre important de modèles à traiter (75 familles de potentiels, et près de
200 modèles), il nous faut disposer d’un moyen de quantifier rigoureusement une affirmation du
type “le modèle A est meilleur que le modèle B”. Le programme Bayésien de comparaison de
modèles répond à ce besoin, et nécessite de calculer l’évidence Bayésienne, c’est à dire l’intégrale
de la fonction de vraisemblance sur l’espace des lois a priori, pour chaque modèle. Le rapport
entre ces évidences donne le facteur de Bayes, qui représente le degré avec lequel les données ont
modifié notre niveau de confiance relative entre les différents modèles. De cette manière, nous
pouvons identifier les “meilleurs” (au sens Bayésien du terme) modèles d’inflation.

Dans la Ref. [206] (section 3.3), nous avons donc calculé l’évidence Bayésienne de l’ensemble
des modèles implémentés dans la bibliothèque ASPIC. Pour ce faire, nous avons mis au point
un bloc de traitement numérique qui réalise l’interface entre une fonction de vraisemblance
inflationnaire effective, la bibliothèque ASPIC, et un algorithme d’échantillonnage adaptatif. De
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Figure 5.2.: Nombre de modèles inflationnaires dans chaque catégorie de Jeffreys (définies par
rapport au meilleur modèle pour chaque expérience) pour les jeux de données
PLANCK, BICEP2 et PLANCK+BICEP2. Pour les données de PLANCK et
BICEP2 combinées, seuls les modèles n’indiquant pas d’incompatibilité entre
PLANCK et BICEP2 sont comptabilisés.

cette manière, nous avons identifié les 26% des modèles qui sont favorisés4 par les données de
PLANCK, ce qui correspond à 15 familles de potentiels. Le détail des effectifs au sein de chaque
catégorie de Jeffreys est présenté dans la figure 5.2. En incluant la complexité Bayésienne dans
l’analyse, qui permet d’identifier le nombre de paramètres non contraints par les observations et
d’estimer ainsi le niveaux de complexité superflue, seulement 9% des modèles arrivent en tête,
qui correspondent tous à des potentiels ayant une forme de “plateau”. Le détail des résultats
est donné dans la section 3.3.

5.2.4. Inflation et Tension entre Planck et BICEP2

Si l’on regarde attentivement la figure 5.1, l’on est en droit de se demander si les mesures de
l’expérience BICEP2 ne remettent pas en cause ces conclusions, dans la mesure où la zone

4Le terme “favorisé” doit être entendu ici comme appartenant à la zone inconclusive de la classification de
Jeffreys, définie relativement au meilleur modèle. L’échelle de Jeffreys permet de qualifier conventionnellement
le rapport entre les évidences EA et EB de deux modèles A et B selon quatre catégories. Lorsque ln(EA/EB) < 1,
la situation est dite “inconclusive”, lorsque 1 < ln(EA/EB) < 2.5, la conclusion que le modèle A est meilleur que
le modèle B est dite “faible”, lorsque 2.5 < ln(EA/EB) < 5 elle est dite “modérée”, et lorsque ln(EA/EB) > 5
elle est dite “forte”.
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préférée par la combinaison PLANCK+BICEP2 recouvre à présent certains modèles de la
deuxième zone, celle en jaune pâle. Ces modèles correspondent typiquement à des potentiels
convexes, s’annulant à leur minimum. D’un autre côté, l’existence d’une possible tension entre
PLANCK et BICEP2 a été discutée dans la littérature, ainsi que la question de la correcte prise
en compte des avant plans de poussière par BICEP2. En attendant une clarification de cette
situation, il s’agit donc d’être prudent lorsque l’on combine ces deux jeux de données.

Dans la Ref. [207] (section 3.4), nous avons donc discuté les conséquences de la détection du
mode B de polarisation dans le FDC par l’expérience BICEP2, si cette détection est confirmée.
En particulier, nous avons mené une étude complète dans l’espace des paramètres cosmologiques
et des paramètres inflationnaires de roulement lent, en utilisant les données de polarisation de
BICEP2 seules. Nous avons ensuite extrait les évidences Bayésiennes et les complexités des
∼ 200 modèles que nous avions traités avec PLANCK. De cette manière, nous avons là aussi
identifié les meilleurs modèles d’après BICEP2. Cela nous a permis de constater que la liste
des modèles préférés par PLANCK et la liste des modèles préférés par BICEP2 sont presque
disjointes, ce qui confirme l’existence d’une possible tension entre les deux jeux de données.

Pour aller plus loin, nous avons donc cherché à quantifier cette tension à l’aide d’une mesure
Bayésienne de la compatibilité entre PLANCK et BICEP2, définie relativement à chaque modèle.
Nous avons ainsi établi que pour les modèles préférés par PLANCK, les deux jeux de données
montrent une tendance à l’incompatibilité, alors qu’il y a une indication modérée de compatibilité
pour certains des modèles préférés par BICEP2. C’est pourquoi il est en particulier prématuré de
tirer des conclusions trop hâtives et définitives concernant les modèles favorisés par PLANCK
tels que le modèle de Starobinsky. Pour le sous-ensemble constitué des modèles n’indiquant
pas d’incompatibilité, nous avons finalement mis à jour nos calculs d’évidence et de complexité
en utilisant la combinaison des deux jeux de données PLANCK+BICEP2. La distribution
des modèles au sein des différentes catégories de Jeffreys est présentée dans la figure 5.2 pour
BICEP2 seul, et pour la combinaison des données de PLANCK et de BICEP2 où seuls les
modèles n’indiquant pas d’incompatibilité entre les deux jeux de données sont dénombrés.

Ce travail ouvre de nombreuses perspectives. Tout d’abord, le projet ASPIC est évolutif, dans le
sens qu’il a vocation a être complété par de nouveaux modèles au gré de leur apparition, qu’il
peut être étendu à d’autres classes de modèles que celle considérée ici (modèles à un champ
scalaire avec terme cinétique standard et dans l’approximation du roulement lent), et qu’il se
doit enfin d’intégrer de nouveaux jeux de données au fur et à mesure que ceux-ci sont publiés.
Ainsi, dès l’automne 2014, les mesures de polarisation réalisées par le satellite Planck devraient
être disponibles, et d’autres expériences viendront bientôt les compléter [174, 411, 178, 177].

L’exploitation des résultats de notre analyse Bayésienne peut également se poursuivre con-
cernant la phase de réchauffement. En effet, comme nous l’avons mentionné, les prédictions
inflationnaires sont sensibles à la phase de réchauffement à travers deux quantités, le paramètre
d’équation d’état moyen (c’est à dire moyenné sur le nombre d’e-folds) w̄reh pendant la phase
de réchauffement, et la densité d’énergie ρreh au moment où w = 1/3 et où la phase de radia-
tion commence. Ces deux paramètres décrivent l’expansion réalisée entre la fin de l’inflation et
le début de la phase de radiation, et sont contraints par l’analyse Bayésienne que nous avons
menée. Nous travaillons actuellement à caractériser précisément ces contraintes pour l’ensemble
des modèles implémentés.

Enfin, un problème largement discuté par la communauté à l’heure actuelle est celle des car-
actéristiques techniques requises pour les prochaines expériences. La question générale est de
savoir quel niveau de précision doit être atteint dans les mesures pour permettre une progres-
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sion notable de notre niveau de connaissance de l’Univers primordial. En particulier, le niveau
de sensibilité en r, l’amplitude du spectre de puissance des ondes gravitationnelles normalisé
au spectre des perturbations scalaires, semble crucial. Notre approche permet de répondre très
explicitement à cette question. En effet, en dérivant la vraisemblance effective que nous observe-
rions pour un niveau de bruit fixé dans les détecteurs et pour un modèle fiduciel donné, nous
pouvons calculer les évidences de chaque modèle de la bibliothèque ASPIC sous ces hypothèses et
caractériser ainsi le gain d’information associé sur les modèles d’inflation. Nous menons actuelle-
ment cette étude prospective, qui va permettre de quantifier exactement l’apport des futures
expériences.

Finalement, on est en droit de se demander si le niveau de précision théorique des approches
calculatoires utilisées sera suffisant. En particulier, les résultats présentés ici sont dérivés à
partir d’un calcul au premier ou au deuxième ordre dans l’approximation du roulement lent, et
il faut établir à quel ordre il sera nécessaire de travailler avec les données des futures expériences.
L’étude prospective que nous venons d’évoquer permettra aussi d’étudier cette question en détail.

5.2.5. Spectres de Puissance au Deuxième Ordre en Inflation-k

Comme nous venons de l’expliquer, un prolongement possible à ce travail est l’intégration de nou-
veaux modèles d’inflation, et de nouvelles catégories de modèles. Par exemple, l’inflation-k [383,
384] représente un cadre général décrivant les modèles avec une action effective quadratique
pour les perturbations de courbure et une vitesse du son c

S
variable (voir aussi Refs. [406, 407]).

Si ces modèles prédisent souvent la production de non-Gaussianités à un niveau exclu par les
observations, il reste intéressant de pouvoir les contraindre précisément. C’est pourquoi dans
la Ref. [209] (section 3.5), nous avons calculé pour la première fois les spectres de puissance
scalaire et tensorielle au deuxième ordre pour l’inflation-k. Techniquement, nous avons utilisé
l’approximation uniforme assortie d’un développement au deuxième ordre dans les paramètres
de roulement lent et dans les paramètres de flot de la vitesse du son. A titre illustratif, le résultat
obtenu pour le spectre de puissance des perturbations de courbure s’écrit
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, (5.10)

où nous avons introduit la quantité D définie par D ≡ 1/3 − ln 3. Les paramètres ǫi sont les
paramètres de roulement lent et les paramètres δi sont les paramètres de flot de la vitesse du
son. La présence du ⋄ en indice indique que les quantités sont calculées au moment où l’échelle

174



5.3. Aspects Quantiques de l’Inflation et Formalisme Stochastique

de pivot k⋄ croise le rayon de Hubble. Avec les mêmes notations, le spectre de puissance des
ondes gravitationnelles est donné par
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Ces deux résultats mettent en évidence qu’à l’ordre dominant dans l’approximation du roulement
lent et lorsque c

S
= 1, les spectres de puissances sont invariants d’échelle, c’est à dire qu’ils ne

dépendent pas de k. La dépendance en k apparâıt de façon logarithmique uniquement, et son
amplitude dépend des paramètres de roulement lent et des paramètres de flot de la vitesse du
son. Les termes correspondants sont en rouge dans les équations (5.10) et (5.11). Dans ce
contexte, une expression au “deuxième” ordre en {ǫi, δi} des spectres implique que l’on étende
le résultat jusqu’à l’ordre ln2(k/k⋄).

5.3. Aspects Quantiques de l’Inflation et Formalisme Stochastique

Sur le plan théorique, un des aspects intéressants de l’inflation est qu’elle permet d’expliquer
l’existence de fluctuations cosmologiques et de caractériser leurs propriétés statistiques à partir
de considérations quantiques. D’une certaine manière, un tel mécanisme repose à la fois sur
la Relativité Générale et sur la Mécanique Quantique, deux théories que l’on sait difficile à
combiner, et conduit à des prédictions que l’on peut tester expérimentalement. C’est pourquoi
la physique inflationnaire représente un objet d’étude intéressant pour aborder un certain nombre
de questions fondamentales.

Dans la description standard des champs en inflation, on considère la plupart du temps que la
partie homogène des champs se comporte de façon classique, tandis que les petites déviations à
l’homogénéité sont traitées comme des fluctuations quantiques, évoluant sur ce fonds classique.
Dans le sens où seule une partie du système est ainsi quantifiée, l’approche standard peut donc
être qualifiée de semi-classique.

Le formalisme de l’inflation stochastique [290, 291, 292, 293, 294, 295, 296, 297, 289, 298] permet
d’aller au delà et d’incorporer les corrections quantiques à la trajectoire classique. L’idée est de
dériver une théorie effective pour les modes scalaires de grandes longueurs d’onde uniquement,
en intégrant les modes de petites longueurs d’onde dans l’action du champ scalaire. Les modes
de grandes longueurs d’onde sont rassemblés dans un champ filtré ϕ, que l’on peut définir à
partir du champ total φ de la manière suivante:

ϕ (x, N) =

∫

d3k

(2π)3/2
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k
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)

[

φk (N) âke
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. (5.12)

Dans cette expression, W est une fonction de filtrage qui sélectionne les modes de grandes
longueurs d’onde, c’est à dire que W ≃ 0 lorsque k ≫ σaH et W ≃ 1 lorsque k ≪ σaH. Le
paramètre σ ≪ 1 est une constante fixant l’échelle à laquelle le lissage a lieu. En écrivant le
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champ total comme φ = ϕ+δφ, l’idée est donc de dériver une théorie effective pour ϕ uniquement
en intégrant δφ. On peut alors montrer que les fluctuations quantiques présentes dans le secteur
δφ affectent la dynamique de ϕ par l’introduction d’un terme de bruit stochastique dans son
équation du mouvement. A l’ordre dominant dans l’approximation du roulement lent, celle-ci
s’écrit

dϕ

dN
= − V ′

3H2
+
H

2π
ξ (N) . (5.13)

Dans cette équation, le premier terme −V ′/(3H2) est le terme classique standard de l’équation
de Klein-Gordon et ξ est un bruit blanc Gaussien (pour une fonction filtre de Heaviside), telle que
〈ξ (N)〉 = 0 et 〈ξ (N1) ξ (N2)〉 = δ (N1 −N2). L’équation du mouvement pour le champ scalaire
devient donc une équation stochastique appelée équation de Langevin. Sa résolution permet de
calculer efficacement des effets de pure théorie quantique des champs, comme cela est montré
pour différents systèmes dans les Refs. [298, 302, 303, 304, 299, 300, 301]. Dans la section 2.4.3,
nous avons notamment montré que l’équation de Langevin permet de calculer la statistique des
fluctuations du champ, c’est à dire le spectre de puissance des perturbations scalaires. Plus
précisément, nous avons établi que l’intégration exacte de l’équation (5.13) conduit au spectre
de puissance des perturbations de courbure
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où Pζ (φ) représente le spectre de puissance calculé au mode k pour lequel la valeur du champ
scalaire lorsque k croise le rayon de Hubble vaut φ, et où la fonction f(φ) est définie par
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Dans ces deux expressions, φ̂ et φ̄ sont des constantes d’intégration qui valent dans la plupart
des cas φ̂ = φ̄ = ±∞. A l’ordre dominant dans l’approximation classique, c’est à dire lorsque
V ≪M4

Pl et que les corrections attendues en gravité quantiques sont faibles, l’expression standard
du spectre de puissance est retrouvée comme cas limite de l’équation (5.14).

5.3.1. Effets Stochastiques en Inflation Hybride

Une situation d’intérêt pour l’inflation stochastique est celle des modèles à champs multiples,
pour lesquels plusieurs équations de Langevin couplées régissent les trajectoires inflationnaires
et donnent lieu à une dynamique non triviale. Dans la Ref. [210] (section 4.1) nous nous sommes
intéressés à l’un d’entre eux, le modèle d’inflation hybride.

Ce modèle est celui d’un potentiel à deux champs, un inflaton ϕ et un champ auxiliaire ψ dont
la masse est proportionnelle à ϕ2 − φ2c , où φc est une constante fixant la valeur de l’inflaton
à partir de laquelle le champ auxiliaire devient tachyonique. L’inflation a d’abord lieu dans
la “vallée” ϕ > φc où elle est conduite par l’inflaton et où le champ auxiliaire, lourd, est tel
que ψ ≃ 0. Puis, lorsque ϕ passe la valeur critique φc, la masse du champ auxiliaire devient
négative ce qui déclenche son instabilité tachyonique et termine l’inflation. Au voisinage de ce
point critique, les corrections stochastiques sont importantes et donnent lieu à des effets que
nous avons étudiés numériquement. A titre illustratif, nous avons représenté dans la Fig. 5.3 la
densité de probabilité de présence du système dans le plan (ϕ, ψ), en partant d’une distribution
de Dirac initialisée suffisamment haut dans la vallée. Dans un premier temps, le système descend
le long de la vallée et la distribution reste relativement piquée. Puis, arrivée au point critique,
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Figure 5.3.: Densité de probabilité de présence calculée à différents temps N pour le modèle
d’inflation hybride, et représentée dans le plan (ϕ, ψ). La distribution initiale est
celle d’une fonction de Dirac prise suffisamment haute dans la vallée. Le potentiel

hybride est donné par V = Λ4
[

(

1− ψ2/M2
)2

+ ϕ2/µ2 + 2ϕ2ψ2/(φ2cM
2)
]

, et les

paramètres utilisés sont Λ = 1.06347MPl, φc =M = 1.50398MPl et µ = 7.74597MPl.

elle s’étend rapidement, notamment dans la direction des deux vallées secondaires menant le
système aux minimas (ϕ = 0, ψ = ±M).

Une question importante relative à ce modèle est la durée de la période d’instabilité tachyonique
lors de laquelle ϕ < φc. En effet, si la fenêtre observationnelle du FDC se trouve à l’extérieur de
cette phase, l’indice spectral des perturbations scalaires est bleu, ce qui est en désaccord avec
les observations. Typiquement, le modèle est donc viable uniquement si la période d’instabilité
tachyonique s’étend sur plus de 40 ou 50 e-folds. Cette durée étant essentiellement dépendante
des effets stochastiques et de la dispersion moyenne des champs au point critique qui en découle,
nous avons étudié cette quantité avec attention. En particulier, nous avons caractérisé, en
fonction des paramètres du potentiel, la dispersion stochastique dans le champ ψ au point
critique et la distribution du nombre d’e-folds réalisé dans la période d’instabilité tachyonique.

Une autre quantité à laquelle nous nous sommes intéressés est le point de sortie de l’inflation.
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Lorsque l’inflation est réalisée par un seul champ ϕ, le point de sortie de l’inflation ϕend est
unique (du moins dans l’approximation du roulement lent) et ne dépend pas des conditions
initiales ou de la réalisation stochastique. Dans le modèle d’inflation hybride en revanche, la
ligne de niveau ǫ1 = 1 définit une infinité de points de sortie possibles (ϕend, ψend), qui dépendent
a priori de la réalisation stochastique. Or, nous avons montré qu’en pratique, les trajectoires
stochastiques terminent toutes l’inflation très près du point de sortie classique (c’est à dire là
où sort la solution des équations du mouvement sans le terme stochastique). En effet, lors des
derniers e-folds avant la fin de l’inflation, les termes de bruit dans les équations de Langevin sont
fortement sous-dominants. Puisque la trajectoire de roulement lent est un attracteur dynamique,
le système se rapproche alors rapidement de cette trajectoire classique, peu importe l’endroit
par lequel les effets stochastiques lui ont fait quitter la zone du potentiel dominée par le bruit.
Cela explique que la distribution finale soit très piquée autour de la valeur classique.

5.3.2. Formalisme Stochastique Récursif

Dans l’approche standard de l’inflation stochastique, les corrélations des termes de bruit dans
l’équation de Langevin sont calculées à partir de l’amplitude des perturbations en champs
scalaires, lorsqu’elles croisent l’échelle de lissage σaH. Ces perturbations sont elles-mêmes
obtenues à partir de leur équation d’évolution sur un fonds classique. Ce schéma est valable dans
la limite où les effets stochastiques ne représentent qu’une petite perturbation à la trajectoire
classique, mais en principe, si l’on évolue les perturbations sur un fonds corrigé par les effets
stochastiques, leur amplitude devrait en être légèrement affectée. Ainsi, les corrélations du bruit
devraient être corrigées par cet effet, et donc la dynamique du fonds, et donc l’amplitude du
bruit, et ainsi de suite.

Pour étudier plus en détails cet effet, dans la Ref. [211] (section 4.2), nous avons mis au point un
formalisme récursif intégrant la correction des corrélations du bruit par les effets stochastiques
eux-mêmes. Nous avons ensuite appliqué ce formalisme au modèle d’inflation hybride, pour
l’illustrer concrètement. Nous avons également pris soin d’incorporer les effets de la masse du
champs auxiliaire ψ dans le calcul des corrélations du bruit agissant sur ψ, puisque dans la
vallée cette masse n’est plus négligeable devant le paramètre de Hubble H et a tendance à
diminuer l’amplitude des perturbations. De cette manière, la dispersion stochastique dans le
champs auxiliaire est réduite au point critique, ce qui augmente la durée de la phase d’instabilité
tachyonique.

Une bonne prise en compte des effets stochastiques dans la vallée montre également que le
problème de l’indice spectral bleu est plus grave encore lorsque les corrections quantiques à la
trajectoire sont implémentées. Cela renforce l’hypothèse d’une instabilité tachyonique longue.
D’un autre côté, nous avons établi que le formalisme récursif présente de bonnes propriétés de
convergence dans la vallée mais diverge dans la phase d’instabilité tachyonique. Cette période
peut donc difficilement être décrite par une approche perturbative, ce qui rend son traitement
délicat en général. Pourtant, outre le problème de l’indice spectral, le scénario d’une instabilité
courte pose le problème de l’évolution de la distribution du champ auxiliaire qui n’est plus
quasi-statique dans la vallée. Cela induit des valeurs de sa dispersion encore plus faibles au
point critique que ce que le calcul usuel suggère, et qui sont incompatibles avec l’hypothèse
d’une instabilité courte. Enfin, dans le cas d’une instabilité courte, les grandes longueurs d’onde
du champs auxiliaire ne sont plus dans un état quantique comprimé. Cette caractéristique
de la fonction d’onde des perturbations est pourtant un ingrédient important de la transition
quantique-classique que nous décrivons dans la section suivante.
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Figure 5.4.: Fonction de Wigner de l’état quantique comprimé d’un mode k de perturbation
scalaire à différents instants durant l’inflation, correspondants successivement à rk =
0.0005, rk = 0.48, rk = 0.88 et rk = 2.31.

5.3.3. Le Problème de la Mesure Quantique en Cosmologie

Une des questions largement discutées dans le contexte de l’inflation est la transition quantique-
classique des perturbations cosmologiques. En effet, si les fluctuations des champs inflationnaires
sont traitées quantiquement, il est d’usage de considérer que les coefficients alm mesurés sur le
FDC par exemple se comportent comme des réalisations stochastiques de ces variables quan-
tiques. Ils sont alors interprétés comme des graines de perturbations classiques donnant lieu à la
croissance de structures cosmologiques par instabilité gravitationnelle telles que les galaxies, les
amas de galaxies, etc. Il s’agit donc de savoir comment cette projection sur des états classiques
s’effectue en pratique.

Une première réponse souvent avancée est la compression des états quantiques [131, 307, 132,
309, 133, 412]. En effet, lorsqu’elles évoluent sur des échelles plus grandes que le rayon de
Hubble durant l’inflation, les perturbations cosmologiques subissent une compression de leur
état quantique. Cette compression peut être décrite via la fonction de Wigner W , qui est une
distribution de quasi-probabilité définie dans l’espace des phases (vk, pk) pour chaque mode k,
où v est la variable de Mukhanov et p est son moment canoniquement conjugué. Pour un état
quantique |Ψk(vk)〉 Gaussien, cette fonction est de la forme

W (vk, pk) ∝ exp

[

− k

cosh (2rk) + cos (2φk) sinh (2rk)
v2k

]

×

exp

{

−k [cosh (2rk) + cos (2φk) sinh (2rk)]

[

pk
k

+ vk
sin (2φk) sinh (2rk)

cosh (2rk) + cos (2φk) sinh (2rk)

]2
}

.

(5.16)

Dans cette expression, rk et φk sont deux fonctions du temps appelées respectivement paramètre
de compression et angle de compression. Dans un espace-temps de de Sitter (c’est à dire dans
lequel le paramètre de Hubble H est constant), elles sont données par

rk = argsinh

(

aH

2k

)

, (5.17)

φk =
π

4
− 1

2
arctan

(

aH

2k

)

. (5.18)

La fonction de Wigner décrite par ces relations est représentée sur la figure 5.4 à différents
temps, ou de façon équivalente, à différentes valeurs de rk (rk = 0.0005, rk = 0.48, rk = 0.88
et rk = 2.31). Initialement, dans le régime où le mode considéré correspond à une échelle de
longueur plus petite que le rayon de Hubble, k ≫ aH, on a rk ≃ 0 et φk ≃ π/4. Dans cette
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limite, la fonction de Wigner (5.16) est de la forme W ∝ exp
(

−kv2k − p2k/k
)

, ce qui correspond
à un état cohérent pour lequel l’extension de la fonction de Wigner est la même dans toutes les
directions et sature l’inégalité de Heisenberg. En revanche, à la fin de l’inflation lorsque le mode
considéré est largement au delà du rayon de Hubble, k ≪ aH, on a5 rk ≫ 1 et φk ≃ 0. La
fonction de Wigner est alors de la forme W ∝ δ[pk + k tan(φk)vk], ce qui correspond à un état
comprimé dans la direction donnée par l’angle φk.

Les états comprimés sont bien connus en mécanique quantique (en particulier dans le domaine
de l’optique quantique) car ils présentent des propriétés statistiques intéressantes. Notamment,
leur évolution temporelle peut être décrite en terme d’une collection stochastique de processus
classiques [136, 133, 413]. En d’autres termes, la fonction de Wigner peut être vue dans cette
limite comme une véritable distribution de probabilité, répartissant un ensemble de processus
dans l’espace des phases qui suivent tous les équations classiques du mouvement. La valeur
moyenne de n’importe quelle observable définie dans l’espace des phases et calculée à l’aide de
cette distribution cöıncide alors avec les moyennes d’opérateurs quantiques. C’est pour cette
raison qu’à partir de la fin de l’inflation, les perturbations cosmologiques aux grandes longueurs
d’onde peuvent être traitées comme étant des fluctuations classiques, suivant une distribution
initiale dont les propriétés statistiques cöıncident avec les prédictions quantiques calculées pen-
dant la phase inflationnaire. Dans ce sens, la compression des états quantiques joue un rôle clé
pour l’ensemble du scénario cosmologique.

Un autre phénomène associé à la transition quantique-classique est celui de la décohérence. Les
perturbations cosmologiques ne sont pas totalement isolées d’un environnement extérieur auquel
elles sont nécessairement couplées [317, 318, 319]. Ce couplage a pour conséquence que leur ma-
trice densité est dynamiquement diagonalisée avant la recombinaison [132, 309, 315, 133, 316],
et le système peut alors être vu comme un mélange statistique d’état purs. Néanmoins, la
décohérence des perturbations ne résout pas le problème de la mesure en mécanique quan-
tique [414, 415], c’est à dire la production d’une réalisation unique. Ce problème apparâıt de
manière encore plus nette en cosmologie puisque nous disposons alors, par définition, d’une seule
carte du FDC. L’interprétation standard de Copenhague de la mécanique quantique, qui stip-
ule qu’une réalisation unique d’un processus quantique est produite par le biais d’une mesure
réalisée par un expérimentateur extérieur qui projette la fonction d’onde du système sur un état
propre de l’observable en question, pose problème dans le cas présent vue la difficulté à définir
un observateur extérieur à l’Univers lui même. C’est pourquoi il est courant de postuler que
le phénomène de décohérence est combiné avec une autre interprétation que celle de Copen-
hague, comme par exemple celle des mondes multiples [136, 416, 417, 418], de l’information
quantique [419], ou en invoquant des variables cachées non locales [420, 421, 422, 153, 33, 423].
En fait, la seule alternative à la formulation standard de Copenhague qui propose une solution
au problème de la mesure tout en étant falsifiable, est un modèle de réduction dynamique de la
fonction d’onde [424, 425, 426, 427, 428, 429, 430, 431]. En effet, le problème de la mesure réside
dans le fait que deux processus très différents par nature prennent place: l’évolution linéaire et
unitaire de Schrödinger d’un côté et la réduction non linéaire et stochastique du paquet d’onde
de l’autre.

Dans la Ref. [138] (section 4.3), nous nous sommes ainsi intéressés au modèle de CSL (pour
“continuous spontaneous localization”) de Pearle, Ghirardi, Rimini et Weber [425, 426, 428,

5Plus précisément, on a aendH/k = e∆N∗ , où ∆N∗ est le nombre d’e-folds réalisés entre le moment où le mode
k croise le rayon de Hubble et la fin de l’inflation. Si k est à l’intérieur de la fenêtre observationnelle, on a
typiquement ∆N∗ ≃ 50, et d’après l’équation (5.17), rk à la fin de l’inflation est de l’ordre de rk ≃ ∆N∗ ≃ 50.
Il est intéressant de noter que le niveau de compression associé à de tels paramètres est colossal, et typiquement
bien plus grand que ce qui peut être réalisé en laboratoire [307].
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Figure 5.5.: Spectre de puissance des perturbations scalaires obtenu avec l’équation de
Schrödinger modifiée (5.19), en prenant Ĉ = v̂k pour chaque mode k, et pour
différentes valeurs de γ. La quantité représentée est le spectre normalisé à sa valeur
standard (c’est à dire lorsque γ = 0). Le mode k0 correspond à une échelle pivot
autour de laquelle le spectre est calculé.

429], dans lequel l’équation de Schrödinger est modifiée par l’ajout de termes non linéaires et
stochastiques:

d |ψ〉 = −iĤdt |ψ〉+√
γ
(

Ĉ −
〈

Ĉ
〉)

dWt |ψ〉 −
γ

2

(

Ĉ −
〈

Ĉ
〉)2

dt |ψ〉 . (5.19)

L’opérateur Ĥ est le hamiltonien du système et le premier terme correspond donc à l’équation
de Schrödinger standard. L’opérateur Ĉ est l’opérateur de projection dont les états propres sont
les directions le long desquelles on souhaite réaliser la réduction de la fonction d’onde. La non
linéarité apparâıt dans les termes 〈Ĉ〉 = 〈ψ|Ĉ|ψ〉. La nature stochastique de cette équation de
Schrödinger modifiée se traduit quant à elle par la présence d’un processus de Wiener Wt, et
l’amplitude des termes non standards est définie par une constante de couplage γ. Cette théorie
permet de projeter la fonction d’onde |ψ〉 sur un des états propres de Ĉ de façon dynamique, avec
un temps caractéristique et à une précision près qui dépendent de γ, et selon des probabilités
qui suivent la règle de Born.6 De plus, ce modèle est doté d’un mécanisme d’amplification
grâce auquel la constante de couplage γ effective d’un système constitué de N particules crôıt
proportionnellement avec N . Cela permet d’expliquer que les objets macroscopiques soient bien

6De cette manière, les règles de Born n’ont pas besoin d’être postulées dans cette théorie, contrairement à
ce qui est fait en mécanique quantique standard. Ici elles peuvent être démontrées à partir de l’équation
d’évolution (5.19).
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localisés, tout en laissant la dynamique des systèmes microscopiques, dont on sait qu’ils sont
parfaitement décrits par la mécanique quantique standard, essentiellement inchangée.

Nous avons donc utilisé ce modèle pour décrire l’évolution des perturbations scalaires pendant
l’inflation, afin d’établir quelles contraintes sur la théorie (c’est à dire principalement sur le
paramètre γ) la nécessité de réduire la fonction d’onde pendant l’inflation pouvait imposer.
Nous avons choisi comme opérateur de projection la variable de Mukhanov-Sasaki v puisqu’elle
est invariante de jauge. Un premier résultat a été obtenu en calculant le spectre de puissance
produit par cette théorie, et représenté sur la figure 5.5 pour différentes valeurs de γ. Deux
branches apparaissent nettement: une branche qui reste quasi invariante d’échelle et où les
termes non standards jouent un rôle négligeable, et une branche très fortement dépendante de
l’échelle où n

S
= 4 et où les termes non standards dominent. Afin que cette branche se situe au

delà des échelles observables et pour préserver l’invariance d’échelle observée, la constante de
couplage γ doit être suffisamment petite,

γ

k20
≪ e−∆N∗ ≃ 10−28 . (5.20)

Dans cette expression, k0 est l’échelle pivot autour de laquelle le spectre de puissance est calculé.
Néanmoins, γ ne peut pas être arbitrairement petit si l’on souhaite que la réduction du paquet
d’onde se produise avant la fin de l’inflation. Pour des échelles situées à l’extérieur du rayon de
Hubble, le nombre d’e-folds requis pour que la réduction ait lieu est de l’ordre de log(k2/γ), qui
d’après la contrainte précédente doit être plus grand que ∼ 28. Les ∆N∗ ∼ 60 e-folds dont nous
disposons sont donc suffisants. En revanche, dans la branche invariante d’échelle, l’efficacité de
la réduction du paquet d’onde, mesurée par sa dispersion σvk dans son état final, est donnée par

kσvk ≃ exp (2∆N∗) ≫ 1 . (5.21)

En conclusion, l’invariance d’échelle contraint γ à prendre des valeurs si petites que la fonction
d’onde est très mal localisée à la fin de l’inflation et que le modèle discuté ici ne peut pas
expliquer correctement la production d’une réalisation bien définie au cours de l’inflation.

Notons néanmoins que les auteurs de la Ref. [408] ont généralisé notre calcul au cas où γ dépend
de k par le biais d’une loi de puissance. Ils ont établi pour quel exposant dans cette loi l’indice
spectral de la branche du spectre dominée par les termes non standards est invariante d’échelle.
Dans ce cas, il n’y a plus de borne supérieure sur γ et quitte à prendre des grandes valeurs de
γ, il est toujours possible de réaliser efficacement la réduction du paquet d’onde sans altérer
l’invariance d’échelle du spectre.

5.4. Conclusion

Dans cette thèse, nous avons illustré la manière dont le paradigme inflationnaire permet de
mieux cerner un certain nombre de questions fondamentales en physique, et d’appréhender leurs
implications concrètes dans un cadre théorique pertinent. D’un autre côté, nous avons vu que de
nombreuses mesures cosmologiques et astrophysiques permettent de contraindre explicitement
les paramètres microphysiques décrivant cette phase d’expansion accélérée et de cette manière,
d’en apprendre d’avantage sur les caractéristiques physiques de l’Univers primordial.

Pour conclure, il convient de discuter à présent les perspectives offertes par une telle démarche
à moyen et long terme. Le paradigme inflationnaire est doté d’une solidité phénoménologique
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qui peut rendre difficile l’identification de son origine microphysique, puisque ses prédictions
dépendent d’un petit nombre d’observables génériques et que les échelles nous permettant de
les sonder sont restreintes à quelques e-folds. Par conséquent, si la détection de r revendiquée
par l’expérience BICEP2 se confirme, il est clair que tout doit être entrepris pour en mesurer
précisément la valeur. Si l’ordre de grandeur annoncé r ∼ 0.1 est correct, cela signifie également
que l’indice spectral des ondes gravitationnelles, n

T
, peut aussi être mesuré [409] à moyen terme.

De cette manière, le nombre de paramètres inflationnaires dont on aurait une mesure doublerait,
passant de {Pζ,∗, nS

} à {Pζ,∗, nS
, r, n

T
}. Si l’on ajoute à cela les corrélations EE et TE mesurées

par Planck et qui devraient être publiées sous peu, il semble réaliste de vouloir réellement
contraindre la forme du potentiel et son échelle d’énergie.

En revanche, si une détermination plus précise de la contribution des avant plans de poussière
dans l’expérience BICEP2 fait disparâıtre le signal sur r, ce projet risque d’être fortement
ralenti. En effet, pour bon nombre de modèles dont le potentiel a une forme de “plateau” (les
modèles favorisés par Planck), tels que les modèles d’inflation branaire ou les modèles d’inflation
avec module de Khähler, la valeur prédite pour r est minuscule, typiquement r < 10−6. Pour
l’instant, il semble totalement impossible d’atteindre de tels seuils de détection. De la même
manière, pour les modèles d’inflation à un champ scalaire et avec terme cinétique standard (qui
semblent pour le moment favorisés par les données), le niveau de non Gaussianités primordiales
est très faible, fNL ∼ ǫ, et ne semble pas être détectable pour le moment [410]. Le même constat
s’applique pour les perturbations entropiques qui pourraient provenir de la présence d’autres
champs massifs, ou pour le running du spectre de puissance α

S
∼ ǫ2. C’est pourquoi dans

ce cas, il est fort possible que l’on assiste à un certain ralentissement de l’entreprise visant à
contraindre l’inflation par les mesures du FDC.

Pour continuer à progresser dans notre compréhension de l’Univers primordial, deux chemins
peuvent alors être empruntés. Le premier consiste à discriminer les modèles par des arguments
théoriques, en continuant à examiner les possibilités offertes par les extensions du modèle stan-
dard de la physique des particules, en comprenant mieux le rôle des corrections radiatives, des
couplages aux autres champs, des propriétés physiques de la phase de réchauffement qui en
découlent, etc. Car indépendamment des observations, l’inflation soulève un certain nombre de
problème fondamentaux qu’il reste à résoudre. Une autre possibilité est d’étudier plus en détails
les connections existant entre les prédictions inflationnaires et d’autres sondes astrophysiques
telles que les supernovae, la répartition des galaxies et des amas de galaxies, l’astrophysique à
21 cm, la reconstruction des conditions initiales par les simulations de grandes structures, etc.
Le bras de levier entre les différentes échelles associées à ces objets est énorme et devrait nous
permettre de mieux cerner l’Univers dans lequel ils évoluent.

La cosmologie est entrée dans une ère de données massives où des mesures d’observables fon-
damentalement différentes par nature doivent être intelligemment combinées dans le but de
contraindre des processus physiques tout aussi différents. De cette manière, les avancées dans
l’ensemble des champs de la cosmologie et même de l’astrophysique sont étroitement liées et
dépendantes les unes des autres. Le décryptage de l’Univers primordial repose donc sur une
compréhension de phénomènes physiques très variés, et sur la réalisation de mesures qui met-
tent au défi la technologie moderne. Seulement à ce prix pourrons nous avancer dans cette quête
universelle qu’est la compréhension du monde dans lequel nous vivons.
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