J. Dumas and C. Pernet, Computational linear algebra over finite fields In: Handbook of Finite Fields, Discrete Mathematics and Its Applications . Chap. 13.4: Linear algebra over finite fields. Chapman & Hall / CRC, pp.514-528, 2013.

C. Jeannerod, C. Pernet, and A. Storjohann, Rank-profile revealing Gaussian elimination and the CUP matrix decomposition, Journal of Symbolic Computation, vol.56, issue.21, pp.14-16, 2013.
DOI : 10.1016/j.jsc.2013.04.004

URL : https://hal.archives-ouvertes.fr/hal-00655543

C. Pernet and W. Stein, Fast computation of Hermite normal forms of random integer matrices, Journal of Number Theory, vol.130, issue.7, pp.1675-1683, 2010.
DOI : 10.1016/j.jnt.2010.01.017

URL : https://hal.archives-ouvertes.fr/hal-00798442

J. Dumas, P. Giorgi, and C. Pernet, Dense Linear Algebra over Word-Size Prime Fields, ACM Transactions on Mathematical Software, vol.35, issue.3, 2008.
DOI : 10.1145/1391989.1391992

URL : https://hal.archives-ouvertes.fr/hal-00018223

R. Boyer, J. Dumas, P. Giorgi, C. Pernet, and B. Saunders, Elements of Design for Containers and Solutions in the LinBox Library, English. In: Mathematical Software - ICMS 2014
DOI : 10.1007/978-3-662-44199-2_98

URL : https://hal.archives-ouvertes.fr/hal-01015138

[. Dumas, T. Gautier, C. Pernet, Z. Sultan, and . English, Parallel Computation of Echelon Forms, Lecture Notes in Computer Science, vol.8632, issue.15, pp.499-510, 2014.
DOI : 10.1007/978-3-319-09873-9_42

URL : https://hal.archives-ouvertes.fr/hal-00947013

E. L. Kaltofen and C. Pernet, Sparse polynomial interpolation codes and their decoding beyond half the minimum distance, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC '14, pp.272-279, 2014.
DOI : 10.1145/2608628.2608660

M. Barbier, C. Pernet, and G. Quintin, On decoding of quasi-BCH codes, Proc. WCC'13, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00768566

J. Dumas, C. Pernet, and Z. Sultan, Simultaneous computation of the row and column rank profiles, Proceedings of the 38th international symposium on International symposium on symbolic and algebraic computation, ISSAC '13, pp.16-17, 2013.
DOI : 10.1145/2465506.2465517

URL : https://hal.archives-ouvertes.fr/hal-00778136

M. Comer, E. Kaltofen, and C. Pernet, Sparse polynomial interpolation and Berlekamp/Massey algorithms that correct outlier errors in input values, Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC '12, pp.45-46, 2012.
DOI : 10.1145/2442829.2442852

[. Khonji, C. Pernet, J. Roch, T. Roche, and T. Stalinski, Output-sensitive decoding for redundant residue systems, Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ISSAC '10, pp.265-272, 2010.
DOI : 10.1145/1837934.1837985

URL : https://hal.archives-ouvertes.fr/hal-00798446

[. Boyer, J. Dumas, C. Pernet, and W. Zhou, Memory efficient scheduling of Strassen-Winograd's matrix multiplication algorithm, Proceedings of the 2009 international symposium on Symbolic and algebraic computation, ISSAC '09, pp.10-1145, 2009.
DOI : 10.1145/1576702.1576713

URL : http://arxiv.org/abs/0707.2347

J. Dumas, C. Pernet, and D. Saunders, On finding multiplicities of characteristic polynomial factors of black-box matrices, Proceedings of the 2009 international symposium on Symbolic and algebraic computation, ISSAC '09, pp.10-1145, 2009.
DOI : 10.1145/1576702.1576723

URL : https://hal.archives-ouvertes.fr/hal-00357262

C. Pernet and A. Storjohann, Faster algorithms for the characteristic polynomial, Proceedings of the 2007 international symposium on Symbolic and algebraic computation , ISSAC '07, pp.307-314, 2007.
DOI : 10.1145/1277548.1277590

J. Dumas, C. Pernet, and Z. Wan, Efficient computation of the characteristic polynomial, Proceedings of the 2005 international symposium on Symbolic and algebraic computation , ISSAC '05, p.25, 2005.
DOI : 10.1145/1073884.1073905

URL : https://hal.archives-ouvertes.fr/hal-00004056

J. Dumas, P. Giorgi, and C. Pernet, FFPACK, Proceedings of the 2004 international symposium on Symbolic and algebraic computation , ISSAC '04, pp.10-1145, 2004.
DOI : 10.1145/1005285.1005304

URL : https://hal.archives-ouvertes.fr/hal-00018223

J. Dumas, T. Gautier, and C. Pernet, Finite field linear algebra subroutines, Proceedings of the 2002 international symposium on Symbolic and algebraic computation , ISSAC '02, pp.10-1145, 2002.
DOI : 10.1145/780506.780515

A. Kumar, J. Roch, and C. Pernet, Secured Outsourced Linear Algebra In: SAFE- COMP 2013 FastAbstract -The 32nd Int. Conf. on Computer Safety, Reliability and Security, 2013.

J. Dumas, C. Pernet, and J. Roch, Adaptive Triangular System Solving, Challenges in Symbolic Computation Software. Dagstuhl Seminar Proceedings 06271, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00104042

J. Dumas, C. Pernet, and Z. Sultan, Computing the Rank Profile Matrix, Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC '15, p.19, 2014.
DOI : 10.1145/2755996.2756682

URL : https://hal.archives-ouvertes.fr/hal-01107722

C. Pernet and A. Storjohann, Frobenius form in expected matrix multiplication time over sufficiently large fields. Tech. rep. https://cs.uwaterloo.ca/ ~ astorjoh/cpoly.pdf. Symbolic Computation Group, 2007.

C. Pernet, A. Rondepierre, and G. Villard, Computing the Kalman form, Labortoire Jean Kuntzmann, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00009558

C. Pernet, Implementation of Winograd's fast matrix multiplication over finite fields using ATLAS level 3 BLAS, 2001.

R. Abbott, M. Bronstein, and T. Mulders, Fast deterministic computation of determinants of dense matrices, Proceedings of the 1999 international symposium on Symbolic and algebraic computation , ISSAC '99, pp.197-204, 1999.
DOI : 10.1145/309831.309934

]. E. Agu+09, J. Agullo, J. Demmel, B. Dongarra, J. Hadri et al., Numerical linear algebra on emerging architectures: The PLASMA and MAGMA projects, Journal of Physics Conference Series, vol.18011801, issue.9, pp.12037-12047, 2009.

]. M. Alb12 and . Albrecht, The M4RIE Library for Dense Linear Algebra over Small Fields with Even Characteristic, Proc. of the 37th International Symposium on Symbolic and Algebraic Computation. ISSAC '12, pp.28-34, 2012.

G. [. Albrecht, W. Bard, and . Hart, Algorithm 898, ACM Transactions on Mathematical Software, vol.37, issue.1, pp.1-9, 2010.
DOI : 10.1145/1644001.1644010

]. M. [-ale02 and . Alekhnovich, Linear Diophantine equations over polynomials and soft decoding of Reed- Solomon codes, Proc. of the 43rd Annual IEEE Symposium on, pp.439-448, 2002.

]. E. And+90, Z. Anderson, J. Bai, A. Dongarra, A. Greenbaum et al., LAPACK: A Portable Linear Algebra Library for High-performance Computers, Proc. of the 1990 ACM/IEEE Conference on, pp.2-11, 1990.

]. V. Arl+70, E. Arlazarov, M. Dinic, I. Kronrod, and . Faradzev, On economical construction of the transitive closure of a directed graph, English Translation in Soviet Math Dokl, p.10, 1970.

V. [. Baur and . Strassen, The complexity of partial derivatives, Theoretical Computer Science, vol.22, issue.3, pp.317-330, 1983.
DOI : 10.1016/0304-3975(83)90110-X

]. P. Bee+13, T. Beelen, J. Hoholdt, Y. Nielsen, and . Wu, On Rational Interpolation-Based List- Decoding and List-Decoding Binary Goppa Codes, IEEE Trans. on Information Theory, vol.596, pp.3269-3281, 2013.

[. Ben-or, S. Goldwasser, and A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant distributed computation, Proceedings of the twentieth annual ACM symposium on Theory of computing , STOC '88, pp.1-10, 1988.
DOI : 10.1145/62212.62213

[. Ben-or and P. Tiwari, A deterministic algorithm for sparse multivariate polynomial interpolation, Proceedings of the twentieth annual ACM symposium on Theory of computing , STOC '88, pp.301-309, 1988.
DOI : 10.1145/62212.62241

R. R. Berlekamp and L. R. Welch, Error correction for algebraic block codes, US Patent, vol.4633470, p.34, 1986.

]. D. Ber11 and . Bernstein, Simplified High-Speed High-Distance List Decoding for Alternant Codes In: Post-Quantum Cryptography, Ed. by B.-Y. Yang. LNCS, vol.7071, pp.200-216, 2011.

]. D. Bin+79, M. Bini, F. Capovani, G. Romani, and . Lotti, O(n 2.7799 ) complexity for n × n approximate matrix multiplication, Information Processing Letters, vol.85, issue.79, pp.234-23590113, 1979.

]. R. Bla83 and . Blahut, Theory and Practice of Error Control Codes, pp.31-44, 1983.

A. [. Bleichenbacher, M. Kiayias, and . Yung, Decoding interleaved Reed???Solomon codes over noisy channels, Automata, Languages and Programming, 2007.
DOI : 10.1016/j.tcs.2007.02.043

A. [. Bleichenbacher, M. Y. Kiayias, and . English, Decoding of Interleaved Reed Solomon Codes over Noisy Data, Lecture Notes in Computer Science, vol.2719, pp.97-108, 2003.
DOI : 10.1007/3-540-45061-0_9

]. D. Bol+92, R. Boley, G. Brent, F. Golub, and . Luk, Algorithmic Fault Tolerance Using the Lanczos Method, In: SIAM Journal on Matrix Analysis and Applications, vol.131, pp.312-332, 1992.

]. D. Bon00 and . Boneh, Finding Smooth Integers in Short Intervals Using CRT Decoding, Proc. of the Thirty-second Annual ACM Symposium on Theory of Computing. STOC '00, pp.265-272, 2000.

R. [. Boothby and . Bradshaw, Bitslicing and the Method of Four Russians Over Larger Finite Fields, p.10, 2009.

]. G. Bos+12, A. Bosilca, A. Bouteiller, T. Danalis, P. Herault et al., DAGuE: A generic distributed DAG engine for High Performance Computing Extensions for Next-Generation Parallel Programming Models, Parallel Computing, vol.38, pp.1-2, 2012.

]. G. Bos+09, R. Bosilca, J. Delmas, J. Dongarra, and . Langou, Algorithm-based fault tolerance applied to high performance computing, In: Journal of Parallel and Distributed Computing, vol.694, pp.410-416, 2009.

C. [. Bostan, . Jeannerod, and . Schost, Solving structured linear systems with large displacement rank, In: Theoretical Computer Science, vol.407, pp.1-3, 2008.
DOI : 10.1016/j.tcs.2008.05.014

URL : http://doi.org/10.1016/j.tcs.2008.05.014

]. B. Boy12 and . Boyer, Multiplication matricielle efficace et conception logicielle pour la bibliothèque de calcul exact LinBox, p.12, 2012.

J. [. Boyer and . Dumas, Matrix multiplication over word-size prime fields using Bini's approximate formula " . hal-00987812, p.12, 2014.

E. [. Boyer and . Kaltofen, Numerical Linear System Solving with Parametric Entries by Error Correction, Proceedings of the 2014 Symposium on Symbolic-Numeric Computation . SNC '14, pp.33-38, 2014.

T. [. Broquedis, V. Gautier, and . Danjean, libKOMP, an Efficient OpenMP Runtime System for Both Fork-Join and Data Flow Paradigms, In: OpenMP in a Heterogeneous World. LNCS, vol.7312, pp.102-115, 2012.
DOI : 10.1007/978-3-642-30961-8_8

URL : https://hal.archives-ouvertes.fr/hal-00796253

J. [. Bunch and . Hopcroft, Triangular factorization and inversion by fast matrix multiplication, Mathematics of Computation, vol.28, issue.125, pp.231-236, 1974.
DOI : 10.1090/S0025-5718-1974-0331751-8

C. [. Bürgisser, M. Clausen, and . Shokrollahi, Grundlehren der mathematischen Wissenschaften, Algebraic Complexity Theory, vol.315, 1997.

]. A. But+09, J. Buttari, J. Langou, J. Kurzak, and . Dongarra, A class of parallel tiled linear algebra algorithms for multicore architectures, Parallel Computing, vol.351, pp.38-53, 2009.

]. S. Cab71 and . Cabay, Exact Solution of Linear Equations, Proceedings of the Second ACM Symposium on Symbolic and Algebraic Manipulation. SYMSAC '71, pp.392-398, 1971.

T. [. Candes and . Tao, Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?, IEEE Transactions on Information Theory, vol.52, issue.12, pp.5406-5425, 2006.
DOI : 10.1109/TIT.2006.885507

URL : http://arxiv.org/abs/math/0410542

]. F. Cap+09, A. Cappello, B. Geist, L. Gropp, B. Kale et al., Toward Exascale Resilience, International Journal of High Performance Computing Applications, pp.10-1177, 2009.

]. P. Che52 and . Chebyshev, Mémoire sur les nombres premiers, Mathématiques Pures et Appliquées, vol.17, pp.366-390, 1852.

]. L. Che+02, W. Chen, E. Eberly, B. D. Kaltofen, W. J. Saunders et al., Efficient matrix preconditioners for black box linear algebra Special Issue on Structured and Infinite Systems of Linear equations, In: Linear Algebra and its Applications, vol.343344, issue.7 9, pp.119-146, 2002.

]. M. Cho+14, C. Chowdhury, V. Jeannerod, ´. E. Neiger, G. Schost et al., Faster Algorithms for Multivariate Interpolation with Multiplicities and Simultaneous Polynomial Approximations, p.53, 2014.

N. [. Cohn and . Heninger, Ideal forms of Coppersmith's theorem and Guruswami-Sudan list decoding, ArXiv 1008.1284, p.40, 2010.
DOI : 10.3934/amc.2015.9.311

A. [. Coppersmith, R. Odlzyko, and . Schroeppel, Discrete logarithms inGF(p), Algorithmica, vol.13, issue.1-4, pp.1-15, 1986.
DOI : 10.1007/BF01840433

M. [. Coppersmith and . Sudan, Reconstructing curves in three (and higher) dimensional space from noisy data, Proceedings of the thirty-fifth ACM symposium on Theory of computing , STOC '03, pp.136-142, 2003.
DOI : 10.1145/780542.780563

+. Di, F. Martino, J. Baccanico, W. Fullop, K. Kramer et al., Lessons Learned From the Analysis of System Failures at Petascale: The Case of Blue Waters, Proc. of the 44th international conference on Dependable Systems and Networks, p.2014, 2014.

]. J. Don+85, J. D. Dongarra, S. Croz, R. J. Hammarling, and . Hanson, A Proposal for an Extended Set of Fortran Basic Linear Algebra Subprograms, In: SIGNUM Newsl, vol.20, issue.1, pp.2-18, 1985.

]. J. Don+98, L. S. Dongarra, D. C. Duff, H. A. Sorensen, and . Vorst, Numerical Linear Algebra for High Performance Computers, SIAM, vol.14, p.13, 1998.

]. J. Don+14, M. Dongarra, H. Faverge, P. Ltaief, and . Luszczek, Achieving Numerical Accuracy and High Performance using Recursive Tile LU Factorization, Concurrency and Computation: Practice and Experience, pp.1408-1431, 2014.

]. J. Don+87, J. Dongarra, I. Du-croz, S. Duff, and . Hammarling, A Proposal for a Set of Level 3

]. J. Dor87 and . Dornstetter, On the equivalence between Berlekamp's and Euclid's algorithms (Corresp, IEEE Trans. on Information Theory, vol.333, pp.428-431, 1987.

]. P. Du+12, A. Du, G. Bouteiller, T. Bosilca, J. Herault et al., Algorithm-based Fault Tolerance for Dense Matrix Factorizations, PPoPP'12, pp.225-234, 2012.

[. Dumas, L. Fousse, and B. Salvy, Simultaneous modular reduction and Kronecker substitution for small finite fields Special Issue in Honour of Keith Geddes on his 60th Birthday, Journal of Symbolic Computation, vol.467, 2011.

[. Dumas and J. Roch, On parallel block algorithms for exact triangularizations, Parallel Computing, vol.28, issue.11, pp.1531-1548, 2002.
DOI : 10.1016/S0167-8191(02)00161-8

]. W. Ebe00 and . Eberly, Asymptotically efficient algorithms for the Frobenius form, Tech. rep. Dpt. of Computer Science, p.27, 2000.

]. E. Eln+02, L. Elnozahy, Y. Alvisi, D. B. Wang, and . Johnson, A Survey of Rollback-recovery Protocols in Message-passing Systems, In: ACM Comput. Surv, vol.343, pp.375-408, 2002.

]. I. Emi98 and . Emiris, A complete implementation for computing general dimensional convex hulls, International Journal of Computational Geometry & Applications, vol.8, pp.2-223, 1998.

P. [. Erdös and . Turán, On Some Sequences of Integers, Journal of the London Mathematical Society, vol.1, issue.4, pp.1-11, 1936.
DOI : 10.1112/jlms/s1-11.4.261

]. Fau99 and . Faugère, A new efficient algorithm for computing Gröbner bases (F4), Journal of Pure and Applied Algebra, vol.139, issue.99, pp.1-3, 1999.

[. Feng and K. K. Tzeng, An iterative algorithm of shift-register synthesis for multiple sequences, Scientia Sinica (Science in China) XXVIII, pp.1222-1232, 1985.

[. Feng and K. Tzeng, A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes, IEEE Transactions on Information Theory, vol.37, issue.5, pp.1274-1287, 1991.
DOI : 10.1109/18.133246

]. T. Fre+88, G. M. Freeman, E. Imirzian, L. Kaltofen, and . Yagati, DAGWOOD: A system for manipulating polynomials given by straight-line programs, In: ACM Trans. on Mathematical Software (TOMS), vol.143, pp.218-240, 1988.

]. S. Gao02 and . Gao, A New Algorithm for Decoding Reed-Solomon Codes, pp.55-68, 2002.

. [. Garg and . Schost, Interpolation of polynomials given by straight-line programs, Theoretical Computer Science, vol.410, issue.27-29, pp.27-29, 2009.
DOI : 10.1016/j.tcs.2009.03.030

URL : http://doi.org/10.1016/j.tcs.2009.03.030

J. [. Gathen and . Gerhard, Modern Computer Algebra, pp.11-41, 2013.

]. T. Gau+12, F. Gautier, V. Lementec, B. Faucher, and . Raffin, X-Kaapi: a Multi Paradigm Runtime for Multicore Architectures, 2012.

]. M. Gie93 and . Giesbrecht, Nearly Optimal Algorithms for Canonical Matrix Forms, p.27, 1993.

]. M. Gie95 and . Giesbrecht, Nearly Optimal Algorithms for Canonical Matrix Forms, In: SIAM Journal on Computing, vol.245, pp.948-969, 1995.

D. [. Giesbrecht and . Roche, Interpolation of Shifted-Lacunary Polynomials, computational complexity, vol.19, issue.3, pp.333-354, 2010.
DOI : 10.1007/s00037-010-0294-0

]. P. Gio14 and . Giorgi, Toward High Performance Matrix Multiplication for Exact Computation, talk given at SIAM Conference on Parallel Processing for Scientific Computing

[. Giorgi, C. Jeannerod, and G. Villard, On the complexity of polynomial matrix computations, Proceedings of the 2003 international symposium on Symbolic and algebraic computation , ISSAC '03, pp.135-142, 2003.
DOI : 10.1145/860854.860889

[. Giorgi and R. Lebreton, Online order basis algorithm and its impact on the block Wiedemann algorithm, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC '14, p.53, 2014.
DOI : 10.1145/2608628.2608647

URL : https://hal.archives-ouvertes.fr/lirmm-01232873

D. [. Gleixner, K. Steffy, and . Wolter, Improving the accuracy of linear programming solvers with iterative refinement, Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ISSAC '12, pp.187-194, 2012.
DOI : 10.1145/2442829.2442858

]. S. Gol97 and . Goldwasser, Multi Party Computations: Past and Present, Proc. of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing. PODC '97, pp.1-6, 1997.

]. G. Gol96 and . Golub, Matrix computations. 3rd, 1996.

]. W. Gow01 and . Gowers, A new proof of Szemerédi's theorem, Geom. Funct. Anal, vol.113, pp.465-588, 2001.

M. [. Grigoriev and . Karpinski, A zero-test and an interpolation algorithm for the shifted sparse polynomials, Proc. AAECC-10, pp.162-169, 1993.
DOI : 10.1007/3-540-56686-4_41

M. [. Gupta and . Murty, A remark on Artin's conjecture, English. In: Inventiones mathematicae 78, pp.127-130, 1984.
DOI : 10.1007/BF01388719

A. [. Guruswami, M. Sahai, and . Sudan, "Soft-decision" decoding of Chinese remainder codes, Proceedings 41st Annual Symposium on Foundations of Computer Science, pp.159-168, 2000.
DOI : 10.1109/SFCS.2000.892076

M. [. Guruswami and . Sudan, Improved decoding of Reed-Solomon and algebraic-geometry codes, IEEE Transactions on Information Theory, vol.45, issue.6, pp.1757-1767, 1999.
DOI : 10.1109/18.782097

]. D. Hea86 and . Heath-brown, Artin's conjecture for primitive roots, The Quarterly Journal of Mathematics, vol.371, pp.27-38, 1986.

]. S. Hey+12, E. Heyse, V. Kiltz, C. Lyubashevsky, K. Paar et al., Lapin: An Efficient Authentication Protocol Based on Ring-LPN " . English. In: Fast Software Encryption, Ed. by A. Canteaut. Lecture Notes in Computer Science, vol.7549, pp.346-365

]. C. Hoo67 and . Hooley, On Artin's conjecture, Journal für die reine und angewandte Mathematik, pp.209-220, 1967.

[. Huang and J. A. Abraham, Algorithm-Based Fault Tolerance for Matrix Operations, IEEE Trans. Comput, vol.33, issue.6, 1984.

]. S. Hus+96, E. M. Huss-lederman, J. Jacobson, A. Johnson, T. Tsao et al., Implementation of Strassen's Algorithm for Matrix Multiplication, Proc. of the 1996 ACM/IEEE Conference on, pp.32-32, 1996.

S. [. Ibarra, R. Moran, and . Hui, A generalization of the fast LUP matrix decomposition algorithm and applications, Journal of Algorithms, vol.3, issue.1, pp.45-56, 1982.
DOI : 10.1016/0196-6774(82)90007-4

. [. Kaltofen, J. M. Lakshman, and . Wiley, Modular rational sparse multivariate polynomial interpolation, Proceedings of the international symposium on Symbolic and algebraic computation , ISSAC '90, pp.135-139, 1990.
DOI : 10.1145/96877.96912

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

]. E. Kal+12, B. Kaltofen, Z. Li, L. Yang, and . Zhi, Exact certification in global polynomial optimization via sums-of-squares of rational functions with rational coefficients, Journal of Symbolic Computation, vol.471, 2012.

Z. [. Kaltofen and . Yang, Sparse multivariate function recovery from values with noise and outlier errors, Proceedings of the 38th international symposium on International symposium on symbolic and algebraic computation, ISSAC '13, pp.219-226, 2013.
DOI : 10.1145/2465506.2465524

Z. [. Kaltofen and . Yang, Sparse multivariate function recovery with a high error rate in the evaluations, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC '14, pp.280-287, 2014.
DOI : 10.1145/2608628.2608637

W. [. Kaltofen, A. A. Lee, and . Lobo, Early termination in Ben-Or/Tiwari sparse interpolation and a hybrid of Zippel's algorithm, Proceedings of the 2000 international symposium on Symbolic and algebraic computation symbolic and algebraic computation , ISSAC '00, pp.192-201, 2000.
DOI : 10.1145/345542.345629

H. [. Kaltofen and . Rolletschek, Computing greatest common divisors and factorizations in quadratic number fields, Mathematics of Computation, vol.53, issue.188, pp.697-720, 1989.
DOI : 10.1090/S0025-5718-1989-0982367-2

B. [. Kaltofen, H. Saunders-english, T. Mattson, T. Mora, and . Rao, On wiedemann's method of solving sparse linear systems, Lecture Notes in Computer Science, vol.539, issue.7 9, pp.29-38, 1991.
DOI : 10.1007/3-540-54522-0_93

B. [. Kaltofen and . Trager, Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science, pp.301-320, 1990.
DOI : 10.1109/SFCS.1988.21946

Z. [. Kaltofen, L. Yang, and . Zhi, On probabilistic analysis of randomization in hybrid symbolic-numeric algorithms, Proc. SNC'07, pp.11-17, 2007.

]. W. Kel85 and . Keller-gehrig, Fast algorithms for the characteristic polynomial, In: Theoretical computer science, vol.36, issue.21, pp.309-317, 1985.

M. [. Khodadad and . Monagan, Fast rational function reconstruction, Proceedings of the 2006 international symposium on Symbolic and algebraic computation , ISSAC '06, pp.184-190, 2006.
DOI : 10.1145/1145768.1145801

R. [. Klimkowski, ]. L. Van-de-geijn, R. Lamport, M. Shostak, and . Pease, Anatomy of a Parallel Out-of-Core Dense Linear Solver The Byzantine Generals Problem, In: ICPP. In: ACM Trans. Program. Lang. Syst, vol.33, issue.4, pp.29-82, 1982.

]. Lap95 and . Laprie, In: Fault-Tolerant Computing, 1995, Highlights from Twenty-Five Years., Twenty-Fifth International Symposium on, DEPENDABLE COMPUTING AND FAULT TOLERANCE : CONCEPTS AND TERMINOLOGY, pp.2-10, 1995.

]. C. Law+79, R. J. Lawson, D. R. Hanson, F. T. Kincaid, and . Krogh, Basic Linear Algebra Subprograms for Fortran Usage, In: ACM Trans. on Mathematical Software (TOMS), vol.53, pp.308-323, 1979.

]. F. Leg14 and . Gall, Powers of Tensors and Fast Matrix Multiplication, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation. ISSAC '14, pp.296-303, 2014.

H. [. Lidl and . Niederreiter, Finite fields Encyclopedia of Mathematics and its Applications, p.51, 1997.

H. [. Luk and . Park, An analysis of algorithm-based fault tolerance techniques, Proc. SPIE, pp.222-227, 1986.
DOI : 10.1016/0743-7315(88)90027-5

]. G. Mal10 and . Malaschonok, Fast generalized Bruhat decomposition, CASC'10, pp.194-202, 2010.

]. D. Man76 and . Mandelbaum, On a class of arithmetic codes and a decoding algorithm (Corresp, IEEE Trans. on Information Theory, vol.22, issue.1, 1976.

]. J. Mas69 and . Massey, Shift-register synthesis and BCH decoding, IEEE Trans. on Information Theory it, pp.15-122, 1969.

T. [. Massey and . Schaub, Linear complexity in coding theory, LNCS, vol.311, issue.32, pp.19-32, 1988.
DOI : 10.1007/3-540-19368-5_2

]. T. Moo05 and . Moon, Error Correction Coding: Mathematical Methods and Algorithms, 2005.

]. M. Mur88 and . English, Artin's conjecture for primitive roots In: The Mathematical Intelligencer 10, pp.59-67, 1988.

]. J. Nie13 and . Nielsen, List decoding of algebraic codes, p.40, 2013.

]. K. Oda+83, Y. Odaka, I. Sako, T. Iwamoto, L. Doi et al., Error correctable data transmission method, US Patent, vol.4413, pp.340-379, 1983.

A. [. Olesh and . Storjohann, THE VECTOR RATIONAL FUNCTION RECONSTRUCTION PROBLEM, Computer Algebra 2006, pp.137-149, 2007.
DOI : 10.1142/9789812778857_0008

A. [. Parvaresh and . Vardy, Correcting Errors Beyond the Guruswami-Sudan Radius in Polynomial Time, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05), pp.285-294, 2005.
DOI : 10.1109/SFCS.2005.29

R. [. Perez, J. Badia, and . Labarta, A dependency-aware task-based programming environment for multi-core architectures, 2008 IEEE International Conference on Cluster Computing, pp.142-151, 2008.
DOI : 10.1109/CLUSTR.2008.4663765

]. C. Per06 and . Pernet, Algèbre linéaire exacte efficace : le calcul du polynôme caractéristique, p.11, 2006.

]. R. Pro95 and . Prony, Essai expérimental et analytique sur les lois de la Dilatabilité de fluidesélastiquefluidesélastique et sur celles de la Force expansive de la vapeur de l'eau et de la vapeur de l'alkool, ` a différentes températures, Floréal et Prairial III, pp.24-76, 1795.

]. G. Qui12 and . Quintin, On the Algorithms of Guruswami-Sudan List Decoding over Finite Rings, p.40, 2012.

]. S. Ram19 and . Ramanujan, A proof of Bertrand's postulate, Journal of the Indian Mathematical Society, vol.11, pp.181-182, 1919.

G. [. Reed and . English, Polynomial Codes Over Certain Finite Fields, Journal of the Society for Industrial and Applied Mathematics, vol.8, issue.2, p.34, 1960.
DOI : 10.1137/0108018

]. K. Rot53 and . Roth, On certain sets of integers, In: J. London Math. Soc, vol.28, pp.104-109, 1953.

]. W. Ste+14 and . Stein, Version 6.3) http://www.sagemath.org. The Sage Development Team, Sage Mathematics Software, p.2014

D. [. Salem and . Spencer, On sets which do not contain a given number of terms in arithmetical progression, pp.133-143, 1950.

]. K. Sat+12, K. Sato, A. Mohror, T. Moody, B. Gamblin et al., Design and modeling of a non-blocking checkpointing system, High Performance Computing, Networking, Storage and Analysis (SC), 2012 International Conference for, pp.1-10, 2012.

V. [. Schmidt, M. Sidorenko, and . Bossert, Decoding Reed??Solomon Codes Beyond Half the Minimum Distance using Shift-Register Synthesis, 2006 IEEE International Symposium on Information Theory, pp.459-463, 2006.
DOI : 10.1109/ISIT.2006.261711

V. [. Schmidt, M. Sidorenko, and . Bossert, Syndrome Decoding of Reed–Solomon Codes Beyond Half the Minimum Distance Based on Shift-Register Synthesis, IEEE Transactions on Information Theory, vol.56, issue.10, pp.5245-5252, 2010.
DOI : 10.1109/TIT.2010.2060130

]. F. Sch84 and . Schneider, Byzantine generals in action: implementing fail-stop processors, In: ACM Trans. Comput. Syst, vol.2, issue.2, pp.145-154, 0190.

]. A. Sha79 and . Shamir, How to Share a Secret, Commun. ACM, vol.2211, pp.612-613359176, 1979.

]. A. Shi88 and . Shiozaki, Decoding of redundant residue polynomial codes using Euclid's algorithm, IEEE Trans. on Information Theory, vol.34, issue.5, pp.1351-1354, 1988.

]. A. Sto00 and . Storjohann, Algorithms for Matrix Canonical Forms, p.19, 2000.

]. A. Sto03 and . Storjohann, High-order lifting and integrality certification, Journal of Symbolic Computation, vol.36, issue.30, pp.3-4, 2003.

]. A. Sto05 and . Storjohann, The shifted number system for fast linear algebra on integer matrices Festschrift for the 70th Birthday of Arnold Schonhage Festschrift for the 70th Birthday of Arnold Schonhage, Journal of Complexity, vol.214, issue.9, p.30, 2005.

G. [. Storjohann and . Villard, Computing the rank and a small nullspace basis of a polynomial matrix, Proceedings of the 2005 international symposium on Symbolic and algebraic computation , ISSAC '05, pp.309-316, 2005.
DOI : 10.1145/1073884.1073927

URL : https://hal.archives-ouvertes.fr/hal-00004832

]. V. Str69 and . Strassen, Gaussian elimination is not optimal, Numerische Mathematik, vol.134, issue.7 8, pp.354-356, 1969.

]. M. Sud97 and . Sudan, Decoding of Reed-Solomon Codes beyond the Error-Correction Bound, Journal of Complexity, vol.131, pp.180-193, 1997.

]. E. Sze75 and . Szemerédi, On sets of integers containing no k elements in arithmetic progression, Proc. Int. Congress of Mathematicians, pp.503-505, 1974.

F. The and . Group, FFLAS-FFPACK: Finite Field Linear Algebra Subroutines / Package

]. G. Vil97 and . Villard, Fast Parallel Algorithms for Matrix Reduction to Normal Forms, Applicable Algebra in Engineering, Communication and Computing, vol.86, pp.511-537, 1997.

]. S. Wag72 and . Jr, On k-free sequences of integers, In: Mathematics of Computation, vol.26, pp.767-771, 1972.

C. [. Watson and . Hastings, Self-checked computation using residue arithmetic, Proceedings of the IEEE, pp.1920-1931, 1966.
DOI : 10.1109/PROC.1966.5275

]. D. Wie86 and . Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. on Information Theory, vol.32, issue.7 9, pp.54-62, 1986.

]. Y. Wu08 and . Wu, New List Decoding Algorithms for Reed-Solomon and BCH Codes, IEEE Trans. on Information Theory, vol.548, pp.3611-3630, 2008.

J. [. Yarkhan, J. Kurzak, and . Dongarra, QUARK Users'Guide: QUeueing And Runtime for Kernels

]. A. Zeh12 and . Zeh, Algebraic Soft-and Hard-decision Decoding of Generalized Reed-Solomon and Cyclic Codes, p.40, 2012.

]. W. Zho12 and . Zhou, Fast order basis and kernel basis computation and related problems, p.2012

]. R. Zip90 and . Zippel, Interpolating polynomials from their values Computational algebraic complexity editorial, Journal of Symbolic Computation, vol.93, issue.08, pp.375-403, 1990.