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Résumé

L’utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le chan-

gement climatique et la prévention de l’intrusion d’eau salée dans les aquifères costaux ne

sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre

l’évolution des processus souterrains à partir de la surface. Un défi majeur est d’assurer la

caractérisation et l’optimisation des performances de ces technologies à différentes échelles spa-

tiales et temporelles. Les méthodes électromagnétiques (EM) d’ondes planes sont sensibles à la

conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides

saturant la roche, à la présence de fractures connectées, à la température et aux matériaux

géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de

fréquences, permettant détudier de manières analogues des processus allant de quelques mètres

sous la surface jusqu’à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont sou-

mises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ

électromagnétique. Pour cette raison, l’estimation des modèles du sous-sol par ces méthodes

doit prendre en compte des informations a priori afin de contraindre les modèles autant que

possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée.

Dans la présente thèse, je développe des approches permettant la caractérisation statique et

dynamique du sous-sol à l’aide d’ondes EM planes. Dans une première partie, je présente une

approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse)

de données d’ondes EM planes en deux dimensions. Cette stratégie est basée sur l’incorporation

dans l’algorithme d’informations a priori en fonction des changements du modèle de conduc-

tivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des

contraintes flexibles par rapport à la gamme des changements attendus en utilisant les mul-

tiplicateurs de Lagrange. J’utilise des normes différentes de la norme l2 pour contraindre la

structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent

des changements dans le temps et celles qui n’en subissent pas. Aussi, j’incorpore une stratégie

afin d’éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence

l’amélioration de la caractérisation des changements temporels par rapport aux approches

classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les

modèles.

Dans la seconde partie de cette thèse, j’adopte un formalisme bayésien et je teste la possibi-

lité de quantifier les incertitudes sur les paramètres du modèle dans l’inversion d’ondes EM

planes. Pour ce faire, je présente une stratégie d’inversion probabiliste basée sur des pixels à

deux dimensions pour des inversions de données d’ondes EM planes et de tomographies de

résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du

modèle en considérant différents types d’information a priori sur la structure du modèle et

différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats

indiquent que la régularisation du modèle est nécessaire lorsqu’on a à faire à un large nombre

de paramètres car cela permet d’accélérer la convergence des châınes et d’obtenir des modèles
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plus réalistes. Cependent, ces contraintes mènent à des incertitudes d’estimations plus faibles,

ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les

régions où la méthode présente une sensibilité limitée. Cette situation peut être améliorée en

combinant des méthodes d’ondes EM planes avec d’autres méthodes complémentaires telles

que l’ERT. De plus, je montre que le poids de régularisation des paramètres et l’écart-type des

erreurs sur les données peuvent être retrouvés par une inversion probabiliste.

Finalement, j’évalue la possibilité de caractériser une distribution tridimensionnelle d’un pa-

nache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse

tridimensionnelle d’ondes EM planes. Étant donné que les inversions probabilistes sont très

coûteuses en temps de calcul lorsque l’espace des paramètres présente une grande dimension, je

propose une stratégie de réduction du modèle où les coefficients de décomposition des moments

de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un

modèle de résistivité de base est nécessaire. Il peut être obtenu avant l’expérience time-lapse.

Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de

base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de traçage

par injection d’une solution saline et d’acides réalisé dans un système géothermal en Austra-

lie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche

déterministe. L’inversion probabiliste permet de mieux contraindre le panache du traceur salin

grâce à la grande quantité d’informations a priori incluse dans l’algorithme. Néanmoins, les

changements de conductivités nécessaires pour expliquer les changements observés dans les

données sont plus grands que ce qu’expliquent notre connaissance actuelle des phénomenès

physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base uti-

lisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir

des modèles de base de bonne qualité avant de réaliser des expériences dynamiques.

Les études décrites dans cette thèse montrent que les méthodes d’ondes EM planes sont très

utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles.

Les présentes approches améliorent l’évaluation des modèles obtenus, autant en termes d’in-

corporation d’informations a priori, qu’en termes de quantification d’incertitudes a posteriori.

De plus, les stratégies développées peuvent être appliquées à d’autres méthodes géophysiques,

et offrent une grande flexibilité pour l’incorporation d’informations additionnelles lorsqu’elles

sont disponibles.
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Abstract

The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change,

and the prevention of seawater intrusion in coastal aquifers are only some examples that

demonstrate the need for novel technologies to monitor subsurface processes from the surface.

A main challenge is to assure optimal performance of such technologies at different tempo-

ral and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface

electrical conductivity and consequently to fluid conductivity, fracture connectivity, tempera-

ture, and rock mineralogy. These methods have governing equations that are the same over a

large range of frequencies, thus allowing to study in an analogous manner processes on scales

ranging from few meters close to the surface down to several hundreds of kilometers depth.

Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive na-

ture of the electromagnetic fields. Therefore, estimations of subsurface models that use these

methods should incorporate a priori information to better constrain the models, and provide

appropriate measures of model uncertainty.

During my thesis, I have developed approaches to improve the static and dynamic characteri-

zation of the subsurface with plane-wave EM methods. In the first part of this thesis, I present

a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM

data. The strategy is based on the incorporation of prior information into the inversion al-

gorithm regarding the expected temporal changes in electrical conductivity. This is done by

incorporating a flexible stochastic regularization and constraints regarding the expected ranges

of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update

in order to obtain sharp transitions between regions that experience temporal changes and

regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic

errors in the time-lapse inversion. This work presents improvements in the characterization of

temporal changes with respect to the classical approach of performing separate inversions and

computing differences between the models.

In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte

Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inver-

sion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy

for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT)

data. I compare the uncertainties of the model parameters when considering different types of

prior information on the model structure and different likelihood functions to describe the data

errors. The results indicate that model regularization is necessary when dealing with a large

number of model parameters because it helps to accelerate the convergence of the chains and

leads to more realistic models. These constraints also lead to smaller uncertainty estimates,

which imply posterior distributions that do not include the true underlying model in regions

where the method has limited sensitivity. This situation can be improved by combining plane-

wave EM methods with complimentary geophysical methods such as ERT. In addition, I show
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that an appropriate regularization weight and the standard deviation of the data errors can

be retrieved by the MCMC inversion.

Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an

injected water plume by performing three-dimensional time-lapse MCMC inversion of plane-

wave EM data. Since MCMC inversion involves a significant computational burden in high

parameter dimensions, I propose a model reduction strategy where the coefficients of a Leg-

endre moment decomposition of the injected water plume and its location are estimated. For

this purpose, a base resistivity model is needed which is obtained prior to the time-lapse ex-

periment. A synthetic test shows that the methodology works well when the base resistivity

model is correctly characterized. The methodology is also applied to an injection experiment

performed in a geothermal system in Australia, and compared to a three-dimensional time-

lapse inversion performed within a deterministic framework. The MCMC inversion better

constrains the water plumes due to the larger amount of prior information that is included

in the algorithm. The conductivity changes needed to explain the time-lapse data are much

larger than what is physically possible based on present day understandings. This issue may

be related to the base resistivity model used, therefore indicating that more efforts should be

given to obtain high-quality base models prior to dynamic experiments.

The studies described herein give clear evidence that plane-wave EM methods are useful to

characterize and monitor the subsurface at a wide range of scales. The presented approaches

contribute to an improved appraisal of the obtained models, both in terms of the incorporation

of prior information in the algorithms and the posterior uncertainty quantification. In addition,

the developed strategies can be applied to other geophysical methods, and offer great flexibility

to incorporate additional information when available.

xii



Chapter 1

Introduction

1.1 Preface

Oil, natural gas and coal production are set to peak and start to decline within the next

decades (Nelder, 2009). In Switzerland, 39.9% of the total production of electricity is gen-

erated from nuclear power but, after the Fukushima accident (e.g. www.world-nuclear.org,

2014), the federal government declared that nuclear power would be phased out gradually

(www.swissworld.org, 2014). Existing nuclear power stations will continue to run as long as

they are safe but will not be replaced. Novel technologies need to be developed to facilitate the

switch in energy production from nuclear power and fossil fuels to renewable energy. Geother-

mal energy is one promising possibility to partially absorb the energy demand. Increasing

interest exists in developing enhanced geothermal systems (Tester et al., 2006) where fluids

are pumped into the hot geological formations and recovered once they become hot enough to

produce electricity (Fig. 1.1a). One significant complication in developing enhanced geother-

mal systems is to estimate where the injected fluids will flow.

There is currently a scientific and political interest in underground storage of CO2 in geo-

logical formations as a geoengeneering approach to global climate change mitigation (Metz

et al., 2005). The approach consists in capturing CO2 and storing it in the solid Earth or

in ocean sediments (Fig. 1.1b) so that they do not contribute to the greenhouse effect. In

coastal regions, it is imperative to monitor salt-water infiltration into freshwater aquifers used

for potable or agricultural purposes (Fig. 1.1c). In areas with deteriorating or limited water

resources, population pressure has also led to an increased demand for aquifer storage recovery

(Fig. 1.1d), where excess freshwater is injected into subsurface aquifers for later recovery (e.g.

during the dry season) with relatively small associated environmental costs.

All these engineering schemes involve fluid redistributions in geological formations on different

temporal and spatial scales. One main geological and geophysical challenge is to assure opti-

mal characterization and performance of such installations at varying resolutions, for different

1



Chapter 1

geological formations, and budgets. In the case of enhanced geothermal systems, the main

technique for monitoring reservoir development is microseismics (e.g. House, 1987), where to-

mographic techniques are used to locate earthquakes associated with fracture formation caused

by hydraulic over-pressure. Note that the microseismic technique is not directly sensitive to

fluid distribution nor to fracture connectivity.

a)

c)
d)

b)

Figure 1.1: Examples of subsurface processes that require monitoring that could be ad-
dressed using plane-wave electromagnetic methods. (a) Injection and pumping in an en-
hanced geothermal system, adapted from Petratherm (2012). (b) CO2 sequestration, adapted
from www.e-education.edu (2014). (c) Seawater intrusion in a coastal aquifer, adapted from
www.wrd.org (2007). (d) Aquifer storage recovery, adapted from USGS (2004).

Plane-wave electromagnetic methods are sensitive to the subsurface electrical conductivity dis-

tribution and consequently to fluid conductivity, temperature, fracture connectivity, and rock

mineralogy. These methods have excellent scaling capabilities since the governing equations

are the same over a large range of frequencies thus allowing to study, in an analogous manner,

processes on scales ranging from few meters close to the surface down to several hundreds of

kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due

to the diffusive nature of the electromagnetic fields. Therefore, subsurface models inferred

from these methods are not unique, and it is necessary to quantify the non-unicity by provid-

ing uncertainty estimates. This thesis aims at improving the inversion results of plane-wave

electromagnetic methods, both as a means to characterize the static subsurface and as a mon-

itoring tool. For this, I have conducted investigations related to the theory of the inverse

problem, but I have also considered the particularities of this problem applied to plane-wave

2



Introduction

electromagnetic methods. In the following, I provide a brief introduction of relevant studies

previous to my work to better clarify the contributions of my thesis.

1.2 The inverse problem in geophysics

One of the aims in applied geophysics is to describe the structure and evolution of the Earth’s

subsurface from indirect measurements at its surface. For this purpose, different geophysical

methods are used that are sensitive to different geophysical properties. The objective is thus

to infer the spatial distribution of these properties from the collected data. Let the data be

represented by a vector d = [d1 ,d2 , ...,dN ]T, where N is the number of data points collected and

T denotes the transpose, and let the Earth be represented by a vector m = [m1 ,m2 , ...,mM ]T,

where M is the number of model parameters used to describe the Earth. A set of equations

which will be referred to as the physical model are used to relate these vectors,

d = f (m) + e, (1.1)

where e is a vector of dimension N that contains the measurement data errors and any errors

in the physical model or its numerical implementation. The problem of predicting the data

that would be measured provided explicit values of the model parameters is known as the

forward problem and the predicted data is called the forward response of the model m. The

problem of finding the model m from the collected data d is called the inverse problem.

It is important to note that the choice of the model m used to represent the Earth is not

unique. In practice, this model is chosen according to the physics of the problem under study,

the amount of data that is available, and the available computational resources. The particular

type of model used will be hereafter referred to as the model parameterization. For a given

model parameterization, the number of model parameters used will be referred to as the de-

gree of discretization or resolution of the model. For example, the three-dimensional electrical

resistivity in the subsurface may be represented in terms of voxels with the model parameters

being the constant values of electrical resistivity assigned to each voxel. Alternatively, it may

be represented as continuous variations of electrical resistivity in terms of polynomials where

the model parameters are the coefficients of these polynomials. These two types of model

parameterizations will have a high or poor resolution depending on whether the size of the

voxels (or the number of polynomial coefficients) used is small or large.

The type of model parameterization and discretization employed will influence the inversion

results. In fact, there is a well known trade-off between the variance of the model parameters’

estimates and the model resolution (Backus and Gilbert, 1970). The exact trade-off curve is

problem-dependent, and a schematic representation is provided in Fig. 1.2.

Inverse problems can be classified into linear or non-linear inverse problems depending on the

3
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High 

resolution

Low

variance

Low

resolution

High

variance

Figure 1.2: Typical trade-off between model resolution and variance for inverse problems.
Adapted from Menke (1989).

properties of the physical model that links the model and the data. If this relation is linear,

that is, if it can be written in the form

d = Fm+ e, (1.2)

where F is a matrix of dimensions N × M , then the inverse problem is said to be linear.

Conversely, if this relation does not exist, the problem is said to be non-linear (see Eq. 1.1).

More details about the characteristics of linear and non-linear inverse problems will be given

in the following sections.

1.2.1 Static and time-lapse inversion

As previously stated, inverse problems are used to estimate model parameters describing the

subsurface from a set of collected geophysical data. Here, a distinction can be made between

problems where the model under study is assumed to be static, that is, where no relevant

temporal changes are expected to occur, or time-lapse, where the interest is put in estimating

the changes in subsurface properties over time. The types of approaches with which these two

problems can be solved and the algorithms used to do so are common to both problems and

they will be discussed together in the next section. However, a difference exists in the way

data can be represented in the case of time-lapse inversions.

When monitoring temporal changes in subsurface properties, it is advantageous to leave the

sensors in place during the monitoring period. The errors in the resulting time-lapse data for

the same data sensor configuration are then likely to share a repeatable systematic component,

which can be largely removed using a time-lapse inversion strategy. Following LaBrecque and

Yang (2001), the observed data can be described more specifically in terms of two different

sources of errors:

dt = f (mt ) + esys + er,t , (1.3)

where the subscript t refers to the time when the measurement was done, er,t is a random

measurement error that is varying in time and is thus different for each data set, and esys is a
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systematic contribution that is present at all times. Systematic errors can be related to model-

ing errors, bias introduced by ground coupling problems or improperly calibrated sensors and

geometrical errors (e.g., incorrect station positioning or profiles that are not perfectly aligned).

Time-lapse inversion algorithms can be defined in different ways but aim generally at removing

the systematic error contribution to improve the estimates of changes in subsurface properties.

In a first step, the model at t = 0, m0, is obtained by means of a standard inversion (see section

1.2.2) using the data acquired before any perturbation to the system. This model is referred

to as the base model in the following. Next, the residuals r0 = d0 − f (m0) = esys + er,0, are

removed from the data acquired at all subsequent times:

d̃t = dt − r0 = f (mt ) + er,t − er,0. (1.4)

Since the systematic component has been removed by differencing, the new corrected data sets

have the advantage of being less error contaminated provided that the standard deviations of

the different error sources satisfy σsys >
√

σ 2
r ,0 + σ 2

r ,t (e.g. Doetsch et al., 2010). In the next

sections, a general symbol for the errors e and the data d is kept for the sake of simplicity,

but it should be noticed that these could refer to either the static or time-lapse cases.

1.2.2 Deterministic inversion

Linear problem

There are two main approaches to tackle an inverse problem. One is the deterministic ap-

proach, in which the “best” estimate of the model parameters is sought and where different

criteria for what is “best” may apply. The other one is the probabilistic approach, which is

based on Bayes theorem and aims at finding the posterior probability density function (pdf)

of the model parameters and, therefore, a complete description of the model parameters’ un-

certainty. Each of these approaches have their own advantages and disadvantages which will

be briefly discussed.

The deterministic approach aims at finding a unique set of model parameters that satisfies a

premise about what the optimal model should be. The most simple premise is to minimize the

data errors, that is, to find the model which best explains the measured data. Still, in order to

minimize these errors, a measure of distance or length has to be defined. The most common

practice is to use the Euclidean distance, also referred to as the l2-norm, to measure the

distance between the data and the forward response of the model. Considering a linear inverse

problem (see Eq. 1.2) with Cd being the data covariance matrix, an l2-norm minimization of

the errors weighted by the covariance matrix leads to the solution of the classical method of

least squares:

mest = (FTC−1
d F)−1FTC−1

d d, (1.5)
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where usually errors are assumed to be uncorrelated and C−1
d = diag[σ −2

1 , ..., σ
−2
N ]. In most

practical cases, the inverse problem is under-determined, which means that the inverse of the

matrix (FTF) is not uniquely determined. When this happens, it is necessary to add more

information to the problem before it can be solved. In practice, this implies specifying that one

seeks a particular “type” of model in the space of models that can explain the data. Because

the incorporation of constraints helps to regularize the inverse problem in the sense that a

unique solution can be found, this constraining of the inverse problem is often called model

regularization. In terms of the mathematical problem, it means no longer minimizing the error

length but an objective function that combines the error with a term that involves the model

regularization (Tikhonov, 1963):

Wλ(m) = uTu+ λ−1wTw, (1.6)

u is the model regularization, w = C−0.5
d (d − f (m)), and λ is a trade-off parameter defining

the relative weight between the data fitting and the model regularization. The information

about the model added in the model regularization is independent of the collected data and

usually reflects a preconceived idea of the model, prior to the inversion. It is therefore usually

referred to as prior information. The regularization may force the model estimates to be close

to a reference model by making u = m −mre f . This constraint is referred to as “damping”.

Another popular constraint forces the models to be “simple”, in the sense that spatial changes

in the model properties should be smooth. This type of models are found by penalizing the

gradient of the model parameters u = Dm, where D is the difference operator. Maurer et al.

(1998) showed that these cases are the two extremes of a range of regularization schemes that

impose stochastic properties on inverted models. In the case of a general covariance matrix Cm

used to describe the preconceived properties of the model, with respect to a reference model

mre f and using an l2-norm as a measure of length, the solution to the linear problem is given

by (e.g. Menke, 1989)

m(λ) = (FTC−1
d F+ λC−1

m )−1FTC−1
d (d − Fmre f ) +mre f . (1.7)

When the inverse problem is non-linear, the deterministic strategy is to iteratively linearize

the problem by performing a Taylor’s expansion of the forward operator, F[m] ≃ F[mre f ] +

J(m −mre f ), where J is the sensitivity matrix or Jacobian matrix. Using this approximation

to minimize Eq. 1.6 with an l2-norm, an iterative solution can be found, for example, using a

Gauss-Newton approach (e.g. Parker, 1994):

mk+1(λ) = (JT
kC

−1
d Jk + λC−1

m )−1JT
kC

−1
d d̂k +mre f , (1.8)

where d̂k = d − F[mk ] + Jk∆mk , ∆mk = mk −mre f , and the subscripts k and k + 1 denote

the previous and present iterations. Alternatively, the non-linear conjugate gradient algorithm

(e.g. Tarantola, 1987; Nocedal and Wright, 2006) can be used which does not require the

computation and storage of the Jacobian matrix at each iteration. Independently of the local
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descent method used to solve the problem, a starting model is necessary to initialize the iterative

process of finding a best estimate. This starting model, which is often chosen to be the same

as the reference model, should ideally be close to the global minimum of Eq. 1.6, otherwise the

iterative solution risks to converge to a local minimum only. Figure 1.3 illustrates this problem.

global

method

local

descendent

method

m

W
λ
(m
)

Figure 1.3: Local descendent methods can get trapped in local minima of the non-linear
objective function Wλ(m) (see Eq. 1.6) when an improper starting model is used . Global
methods can “jump” out of the local minima. Adapted from Everett (2013).

Given a proper starting model, minimum values of Eq. 1.6 can be found for fixed λ. However,

finding a proper λ is not easy. First, a desired level to which the data should be fitted has to

be chosen. Based on the definition of w and using an l2-norm, the root mean square (RMS)

misfit:

RMS =

√

1

N

∑

1≤n≤N

w2
n , (1.9)

is usually used to represent the data fit. The RMS should be close to 1 for a Gaussian distri-

bution of errors. Then, to obtain a solution with minimum structure at a desired misfit, one

needs to solve Eq. 1.6 for different values of λ and compare the results.

Occam’s inversion

Constable et al. (1987) proposed an alternative approach so that λ does not need to be deter-

mined by trial and error. The approach consists in the minimization of the cost function

Wλ(m) = uTu+ λ−1(wTw − χ ∗), (1.10)

where χ ∗ is an a priori acceptable fit of the model parameters, often chosen as the number of

data N since this is the expected value of wTw when the errors follow a Gaussian distribution.

Constable et al. (1987) proposed an iterative solution similar to the Gauss-Newton algorithm

in Eq. 1.8, but incorporating a line search for the optimum value of λ at each iteration. During

the first iterations, λ is chosen to reduce the misfit. When the desired misfit level is reached,
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λ is chosen to maximize the weight of the regularization to find the smoothest possible model

that can fit the data.

Iteratively reweighted least squares algorithm

Using the l2-norm to quantify model structure, as in Occam inversion, strongly penalizes the

spatial transitions of model properties over a number of model cells. This has the disadvantage

that the models obtained may be unrealistically smooth (e.g. Ellis and Oldenburg, 1994;

Farquharson, 2007). Likewise, the use the l2-norm to quantify the data fit is very sensitive

to the presence of outliers in the error distributions because of the large penalization applied

for differences between the data and the model that, weighted by the standard deviation,

are larger than 1. Iteratively reweighted least squares (IRLS) algorithms make it possible to

use non l2-norms both on model structure and data misfit quantification, while still solving a

linear system at each iteration step (Last and Kubik, 1983; Portniaguine and Zhdanov, 1999;

Pilkington, 1997; Farquharson and Oldenburg, 1998; Farquharson, 2007; Ajo-Franklin et al.,

2007). These algorithms rely on a least-square formulation similar to Eq. (1.8), but with the

difference that reweighting matrices are defined after each iteration to approximate a given

norm. This results in algorithms with similarly fast convergence characteristics as classical

least-squares formulations, but allowing to resolve sharp interfaces and/or better assimilating

the error outliers. The update to the IRLS solution of a non-linear inverse problem can be

generalized as (e.g., Farquharson and Oldenburg, 1998; Menke, 1989; Siripunvaraporn and

Egbert, 2000):

mk+1(λ) =
[

(

C−0.5
d Jk

)T
Rd ,kC

−0.5
d Jk + λ

(

C−0.5
m

)T
Rm ,kC

−0.5
m

]−1

×
(

C−0.5
d Jk

)T
Rd ,kC

−0.5
d d̂k +mref ,

(1.11)

where Ri ,k , i = m,d is a reweighting matrix that is recalculated after each iteration and that

depends on the chosen norm. Several norms have been tested in the literature, for which

different expressions in R have to be used. Figure 1.4 shows the behavior of these norms for

different scalar values of u or w. Note that the l2-norm is the one which increases the fastest

for scalar values larger than 1. Applying non-l2 norms makes it possible to obtain models with

overall uniform regions separated by sharper interfaces.

Uncertainty estimates in deterministic inversion

Given a “best” model found by means of a deterministic inversion, a natural concern arises

from the fact that the model was estimated using data that are error contaminated, and these

errors propagate to the model estimate. A critical matter is therefore to quantify the uncer-

tainty of estimated model parameters.
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Figure 1.4: Behavior of different vector norms: (a) l2-norm; (b) l1-norm; (c) Huber M -
measure; (d) Ekblom perturbed l1-norm; and (e) support measure. Adapted from Farquharson
(2007).

In the case of a linear over-determined inverse problem where errors follow a Gaussian distri-

bution, the estimate of the model covariance matrix can be found by linear error propagation:

C′

m = ((FTF)−1FT)Cd ((F
TF)−1FT)T = σ 2

d (F
TF)−1. (1.12)

The situation is more difficult for non-linear inverse problems since a first order linearization

is often insufficient to describe the complex dependence of the model with the data. Ap-

proximate uncertainty estimates can be obtained through linearization in the vicinity of the

final model estimate (Alumbaugh and Newman, 2000). The uncertainty estimates are then

highly dependent on this estimate, which in turn is an approximation of the solution due to

linearization, and can be highly dependent on the starting model used. An alternative is to

run repeated deterministic inversions using the same data set with different regularization

constraints to obtain a collection of possible models (Oldenburg and Li, 1999). Features that

appear in all models are interpreted as being well resolved by the data. A more formal ap-

proach is to construct extremal models that fit the data up to a given data misfit threshold

with a most-squares inversion (Jackson, 1976; Meju and Hutton, 1992). This approach derives

the extremal deviations of each model parameter from a best-fitting model.

The aforementioned methods partly account for model non-linearity but fail to provide for-

mal uncertainty estimates. In fact, the inability to provide formal estimates of the model

parameters’ uncertainty is the most criticized aspect of deterministic inversion.
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1.2.3 Probabilistic inversion

A different approach to solve inverse problems consists in considering a probabilistic framework

and determining the posterior pdf of the model parameters (Tarantola and Valette, 1982). The

application of Bayes theorem states that the posterior pdf of the model conditional on the data,

p(m|d), is given by:

p(m|d) =
p(m)p(d|m)

p(d)
, (1.13)

where p(d|m) is the pdf of the data conditional on the model and is often referred to as

likelihood function L(m|d), p(m) is the model’s prior pdf and p(d) is the evidence. The

evidence is needed when different model parameterizations and discretizations are considered

(e.g. Malinverno, 2002). Otherwise, it is a constant and the following expression holds

p(m|d) ∝ p(m)L(m|d). (1.14)

The likelihood function is a measure of how well the model explains the data. The closer the

values of f (m) are to d, the higher the likelihood. Under the assumption that the measurement

data errors follow a normal distribution with zero mean, the likelihood function is given by

(e.g., Tarantola, 2005)

L(m|d) = 1

(2π)N/2det(Cd )1/2
exp

(

−1
2
(f (m) − d)TC−1

d (f (m) − d)
)

, (1.15)

where det(Cd ) denotes the determinant of Cd . The prior probability of the model vector,

p(m), represents the information known about the subsurface before collecting the actual

data. It can be based on other types of geophysical measurements, geological information

about the model structure, expected type of rocks and values of model parameters, etc. Thus,

probabilistic inversion is based on the assumption that some information is known about the

model, and the data will be used to update this information. Unfortunately, the availability

of reliable prior information is not always granted and even more difficult is the task of trans-

lating this information into a formal pdf. Indeed, the use of the prior information is the most

debated aspect of the probabilistic approach, since in practice, the prior pdf can be modified

to retrieve models with particularly desired features (e.g. Scales and Sneider, 1997).

Markov chain Monte Carlo methods

In most practical applications, the posterior pdf cannot be derived analytically and it is nec-

essary to extensively explore the space of possible models (Tarantola, 2005). Often times the

number of model parameters is large and a simple grid search in this space becomes impossible.

To solve these problems, random explorations methods often referred to as Monte Carlo (MC)

methods have to be used. Let д(m) be the desired probability distribution. The basic idea of

MC methods is to randomly draw model proposals from a certain distribution over a sampling
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space and obtain a collection of models that follows the distribution д(m). A popular type of

MC method, the rejection sampling or accept-reject method (Von Neumann, 1951), consists

in providing an envelope function ch(m), where c is a constant, of the desired distribution

д(m). The model proposals mprop are drawn from the distribution h and are then “accepted”

or “rejected” with a probability

Paccept =
д(mprop)

ch(mprop)
. (1.16)

Provided enough samples, the set of accepted models will be distributed according to the de-

sired distribution д. If the parameter space is low dimensional, MC simulation can provide a

reasonable approximation of the posterior distribution pending that the ensemble of samples

is sufficiently large. For higher dimensional spaces, exhaustive random sampling is inefficient,

and more intelligent search methods, such as Markov chain Monte Carlo (MCMC) simulation,

are required to speed up the exploration of the target distribution.

By definition, a MCMC method for the simulation of a distribution д is any method producing

an ergodic Markov chain whose stationary distribution is д (Robert and Casella, 2004). The

Markov property means that the “present” state of the chain depends on its immediate past

state only. The stationary distribution is the distribution to which the Markov chain conver-

gences and the ergodic property states that the stationary distribution does not depend on

the chain’s initial conditions. Therefore, the application of MCMC methods to probabilistic

inversion consists in building Markov chains that converge to the posterior pdf of the model

parameters.

A particular type of MCMC method is the Metropolis-Hastings algorithm (Metropolis and

Ulam, 1949; Metropolis et al., 1953; Hastings, 1970). This algorithm generates chains that

sample the distribution д by drawing proposed chain states from a proposal distribution and

“accepting” or “rejecting” these samples according to a probabilistic rule that involves the

chain’s immediate past state. At a given state mold, the proposal distribution q(mnew |mold)

proposes a new state mnew. If

д(mnew)q(mold |mnew)

д(mold)q(mnew |mold)
≥ 1, (1.17)

then the chain moves to the proposed state mnew. If not, the proposal is not automatically

rejected, but accepted with a probability equal to the ratio in the left side of Eq. 1.17. This

can be summarized with an acceptance probability:

Pold→new
accept = min

{

1,
д(mnew)q(mold |mnew)

д(mold)q(mnew |mold)

}

. (1.18)

In practice, a number α is drawn from a uniform distributionU [0, 1] and compared to Pold→new
accept .

If α ≤ Pold→new
accept , then the model mnew is accepted. Equation 1.18 is known as the Metropolis
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rule.

It can be shown that the Metropolis-Hastings algorithm will asymptotically converge to samples

of д. Note that an explicit expression for д is not necessary but only the possibility to calculate

it for concrete models up to a normalizing constant. Thus, it is straightforward to adapt the

Metropolis-Hastings algorithm to the inverse problem by making д = p(m)L(m|d) ∝ p(m|d).

To completely define a MCMC algorithm, it is necessary to (1) define the proposal distribution

q, and (2) establish a “convergence test” to determine when an ensemble of the last X states

of the chain follow the desired distribution. Mosegaard and Tarantola (1995) introduced an

extended Metropolis algorithm, where it is not necessary to evaluate an explicit formulation of

the prior p(m) but only to generate proposals that follow the prior distribution thus making

the acceptance probability:

Pold→new
accept = min

{

1,
L(mnew |d)
L(mold |d)

}

. (1.19)

The acceptance rate of a MCMC algorithm is defined as the ratio of the number of models

accepted over the number of models proposed. It is generally desirable to have proposal dis-

tributions that lead to acceptance rates between 20 − 50% (e.g., Tarantola, 2005). Otherwise,

if the acceptance rates are too large, the chain is inefficient at sampling other parts of the

posterior (the proposed models are too close from each other). If it is too small, computer

resources are misused in evaluating the forward response of models that are not going to be

accepted (the proposed models are too far from each other).

Many convergence criteria exist depending on the particular MCMC algorithm used. When

multiple Markov chains are run, Gelman and Rubin (1992) suggest to compare the statistics

of the different chains. The variance of the model parameters are independently estimated

for each chain using the last 50% (for example) of the chains’ states. Chains that converged

are expected to have perfectly matching distributions and should therefore provide equal vari-

ances for each model parameter. Gelman and Rubin (1992) compute ratios of the variance

estimates among different chains for each model parameter, which are now often referred to

as the Gelman-Rubin statistic. According to their criteria, when all the model parameters

have Gelman-Rubin statistics smaller than 1.2, the chain can be stopped and the ensemble of

models used to calculate these statistics are distributed according to the posterior pdf.

No linear approximations of the function f (m) are required in MCMC methods. Rather, it

is necessary that the forward solver is as fast as possible to allow for many forward response

computations. Thus, probabilistic inversion not only quantifies joint and marginal parameter

uncertainty but also provides a correct treatment of the non-linearity of the problem and

effectively explores the space of possible model parameters. For this reason, it is often referred

to as a global inversion method (see Fig. 1.3).

12



Introduction

Adaptive Markov chain Monte Carlo methods

Even though MCMC methods have proven to be much more efficient than simple MC methods,

they also suffer from the curse of dimensionality. This means that as the number of model

parameters to estimate, (i.e. the dimension of the problem) increases, it becomes increasingly

difficult to explore the complete space of the posterior pdf, thus leading to impractical com-

putation times. Many variations of the Metropolis-Hastings algorithms exist, which aim at

improving the proposal distributions in high dimensions. One of such strategies is the so-called

multiple-try sampling (Liu et al., 2000), where each Markov chain proposes more than 1 (typ-

ically 5; e.g. Laloy and Vrugt, 2012 ) models but accepts only one of those. Other strategies

include the use of information about previous states of the chains to generate new proposals.

These algorithms are known as adaptive MCMC algorithms (e.g. Robert and Casella, 2004).

The use of previous states that are not the immediate past state of the chains implies that the

Markov property does not hold any more. However, these algorithms can be shown to maintain

detailed balance and ergodicity, which ensures their convergence to the desired posterior pdf

(Roberts and Rosenthal, 2007; Laloy and Vrugt, 2012).

Global optimization methods

Other global search methods of stochastic nature, such as simulated annealing (Kirkpatrick

et al., 1983) and genetic algorithms (Holland, 1992), can be used in geophysical inverse prob-

lems (c.f. Sen and Stoffa, 1995). These methods fully account for the non-linear relation

between model and data but are only concerned with finding the optimal model of a given

objective function without recourse to estimating the underlying posterior parameter distribu-

tion. They can therefore be placed between the deterministic and probabilistic approaches for

inversion. Post-processing of the sampled trajectories can provide some insights into model

parameters’ uncertainty, but this type of analysis lacks the statistical rigor of Bayesian ap-

proaches.

1.3 Subsurface characterization with electromagnetic methods

1.3.1 Electrical properties of rocks

Electromagnetic (EM) methods are applied to image the conductive and capacitive properties

of the subsurface. These properties can be represented by a complex conductivity σ ∗, a complex

resistivity ρ∗, or a complex permittivity ε∗:

σ ∗
=

1

ρ∗
= iωε∗ , (1.20)

where ω denotes the angular frequency and i =
√
−1. The underlying physical properties are the

electrical conductivity σ [S/m], the electrical resistivity ρ [Ωm], and the electrical permittivity

ε [F/m] (Lesmes and Friedman, 2005). Unfortunately there is not a direct correspondence
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between rock types and their electrical properties since the latter depend on temperature,

porosity, and fluid content, among others. A schematic representation of the variability of

rocks’ electrical properties can be observed in Fig. 1.5. Note the large range of variation of

the electrical properties, which cover approximately 7 orders of magnitude.

Figure 1.5: Typical electrical resistivity and conductivity values found for Earth materials.
Adapted from Palacky (1988).

In the most general case, the electrical properties described in Eq. 1.20 are frequency dependent

and anisotropic, that is, dependent on the direction they are measured, and are represented

with a tensor (e.g. Mart́ı, 2014). The electrical permittivity is often expressed in terms of a

ratio:

κ =
ε

ε0
, (1.21)

where ε0 = 8.86 × 10−12 F/m represents the vacuum permittivity.

1.3.2 Petrophysical relations

As previously mentioned, electrical properties of rocks depend on several factors. Although

much effort has been put to identify universal laws that describe these dependences, the petro-

physical relations used are often site- and scale-dependent. The most used relation continues

to be Archie’s law (Archie, 1942), which links the electrical conductivity to the rock porosity

and fluid conductivity:

σ = σwϕ
m , (1.22)
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where σw is the fluid conductivity, ϕ the rock porosity, and m the cementation factor, which

depends on the pores’ connections. Different models have been proposed to extend Eq. 1.22

to account for partial fluid saturation and surface conductivity. One of this models is given by

Linde et al. (2006):

σ = ϕm(Snwσw + (ϕ−m − 1)σs ), (1.23)

where σs is the surface conductivity which is associated to the presence of clays, Sw is the fluid

saturation, and n is the saturation exponent which depends on the geometry of the conductive

phase. Since the fluid conductivity largely depends on the temperature, the rock conductivity

is also dependent on this parameter. Sen et al. (1988) describe this dependence with an

empirical formula. Also, a dependence with pressure arises from its influence on rock porosity

or fracture aperture, when considering ϕ to be the volume of fractures relative to the total

volume of rock (e.g. Brace et al., 1965).

1.3.3 Electromagnetic geophysical methods

EM methods are sensitive to the electrical properties of the subsurface and they aim at charac-

terizing changes in these properties by measuring one or more components of the electric and

magnetic fields. The physics governing EM methods are completely described by Maxwell’s

equations:

∇ × E = −∂B
∂t
, (1.24a)

∇ × H = jf −
∂D

∂t
, (1.24b)

∇.B = 0, (1.24c)

∇.D = q f , (1.24d)

where E [V/m] is the electric field intensity, B [T] is the magnetic induction, H [A/m] is the

magnetic field intensity, D [C/m2] is the dielectric displacement, jf [A/m2] is the electric cur-

rent density due to free charges and q f [C/m3] the electric charge density due to free charges.

The sensitivity of EM methods to electrical properties can be used at a wide range of spatial

scales. This results in many EM techniques that are more or less suitable for each relevant

scale, from borehole (i.e. well logging) to airborne and marine measurements. In the next

section only on-land EM methods of relevance to this thesis are discussed. For a comprehensive

description of other EM methods the reader is referred to Nabighian and Corbett (1988).

Plane-wave electromagnetic methods

Plane-wave EM methods use EM source fields that are distant to the measurement points and

thus can be approximated as uniform, plane-polarized EM waves which impact the Earth’s
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surface with near vertical incidence (Cagniard, 1953). These methods also assume that dis-

placement currents are negligible compared to time-varying conduction currents, which implies

that the second term on the right side of Eq. 1.24b is zero.

For linear, isotropic media the following constitutive equations hold:

B = µH, (1.25a)

D = εE, (1.25b)

j = σE, (1.25c)

where Eq.1.25c is Ohm’s law. Assuming that variations in the electrical permittivities and

magnetic permeabilities are negligible compared to variations in bulk rock conductivities, free-

space values can be used for µ and ε .

Maxwell’s equations can be rearranged when considering the aforementioned assumptions lead-

ing to diffusion equations for B and E (Jackson, 1962). In the particular case of a homogeneous

half-space these can be written as:

(∇2 − k2)B = 0 (1.26a)

(∇2 − k2)E = 0, (1.26b)

where k2 = iωµσ . These equations have solutions of the type:

B = B0e
−ikz +B1e

ikz , (1.27a)

E = E0e
−ikz +E1e

ikz , (1.27b)

where z denotes the vertical coordinate. Since the fields have to vanish when z → ∞, E1 =

B1 = 0 and Eqs. 1.27a and 1.27b become

B = B0e
−ikz

= B0e
−iνze−νz , (1.28a)

E = E0e
−ikz

= E0e
−iνze−νz , (1.28b)

where E0 and B0 are the EM fields at the Earth’s surface and ν =
√

ωµσ

2 . Thus, both fields

vary sinusoidally with depth (e−iνz ) but are also attenuated (e−νz ). From the attenuating

exponent a skin depth can be calculated as the depth at which the amplitude of the fields are

reduced by 1/e:

δ =

√

2

ωµσ
. (1.29)
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This equation can be approximated using the magnetic permeability of free space µ0 = 4π10−7

Hm−1, which leads to the following skin depth in meters:

δ(T ) ≈ 500
√

T ρ , (1.30)

where ρ is the resistivity of the half-space and T the wave period.

Considering the plane-wave EM assumptions in the more general case of isotropic conductivity

varying in three dimensions leads to the following general relation between the E and B fields

(Cantwell, 1960):
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where Eh(ω) = [Ex (ω), Ey(ω)]
T is the horizontal electric field, Hh(ω) = [Hx (ω),Hy(ω)]

T the

horizontal magnetic field, and Z(ω) the impedance tensor or transfer function. Apparent

resistivities ρappi j (ω) and impedance phases φapp
i j (ω) can be obtained from the impedance com-

ponents:

ρ
app
i j (ω) =

1

ωµ0
|Zi j (ω)|2 , (1.32)

φ
app
i j (ω) = arctan

(

ImZi j (ω)

ReZi j (ω)

)

, (1.33)

where i j denote any combination of the horizontal components x and y. Also, a geomagnetic

transfer function (so-called tipper pointer) T relates the vertical and horizontal magnetic fields

as

[

Hz (ω)
]

=

[

A(ω) B(ω)
]
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. (1.34)

Table 1.1 summarizes particular forms of the impedance tensor for different electrical con-

ductivity distribution dimensionalities. Note that for two-dimensional conductivity models

Maxwell’s equations can be decoupled into two independent modes for an appropriate rotation

of the coordinate system: transverse-electric (TE) and transverse-magnetic (TM) (e.g., Zhang

et al., 1987). Current flows parallel to the strike direction in the TE mode and perpendicular

to it in the TM mode.

Although different types of plane-wave EM methods exist, the equations governing them are

the same and the differences are given by the nature of the source they use and the frequency

range considered. Table 1.2 summarizes these differences.

The magnetotelluric (MT) method (Vozoff, 1991; Chave and Jones, 2012) is the oldest among

plane-wave EM methods. It uses natural fluctuations of the magnetic field of external (solar
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wind-magnetosphere interaction) and internal (meteorological activity such as lightning dis-

charges) origin as sources, and is therefore a passive method. Due to weak source fields at

frequencies higher than 1kHz, the method is rarely used above this frequency. The name audio

magnetotellurics (AMT) is often used for measurements at the highest frequencies (between

10 Hz and 1KHz). The three components of the magnetic field and the horizontal components

of the electric field are usually measured, from which the transfer functions in Eqs. 1.31 and

1.34 are estimated.

The controlled source audio magnetotelluric (CSAMT) method (Goldstein and Strangway,

1975; Zonge et al., 1991) uses a grounded dipole source to compensate the low energy fre-

quency range found in natural sources. Provided that the source is sufficiently far away from

the receivers, the plane-wave assumption is valid for this technique. Some studies suggest that

a 4 skin depths distance should be sufficient (e.g., Goldstein and Strangway, 1975), but up

to 20 skin depths may be necessary in the case a conductive layer overlaying a resistive body

(Wannamaker, 1997).

The original very low frequency (VLF) method (Paal, 1965) measures the magnetic field tilt-

angle or the vertical or horizontal magnetic field strengths created by VLF radio transmitters

in the range 15-25 kHz. These measurements provide information about lateral variations of

conductivity. The VLF resistivity (VLF-R) method uses the same VLF sources but also mea-

sures one or two electric field components, which can be used to estimate apparent resistivity

and phase.

Finally, the radio magnetotelluric (RMT) method extends the use of VLF radio transmitters

to long wave radio transmitters, thus covering a wider frequency range of 10-250 kHz. Usu-

ally displacement currents are neglected even for the highest frequencies used, however, some

studies (e.g., Linde and Pedersen, 2004a; Kalscheuer et al., 2008) suggest that these should be

taken into account in presence of highly resistive (ρ ≥ 3000 Ωm) media.

Table 1.1: Impedance tensor components for different electrical conductivity distribution
dimensionalities. Conductivity is assumed isotropic.

Dimensionality

1-D 2-D 3-D

Tensor components Zxx = Zyy = 0 Zxx = −Zyy Zxx , −Zyy
Zxy = −Zyx Zxy , −Zyx Zxy , −Zyx
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Table 1.2: Summary of on land plane-wave electromagnetic methods. Modified from Bastani
(2001).

Method Source type Frequency range Application
MT Natural 10−4 Hz - 1 kHz Shallow crustal to

lithosphere studies
CSAMT Artificial 10−1 Hz - 100 kHz Shallow environmental to

controlled source deep crustal studies
Conventional VLF VLF transmitters 15-25 kHz Mapping structures
VLF resistivity VLF transmitters 15-25 kHz Low resolution

shallow sounding
RMT VLF and 10-250 kHz Shallow sounding for

Radio transmitters engineering and environmental studies

Forward modeling for plane-wave EM methods

The equations describing the link between the measured EM fields and the subsurface conduc-

tivity (Eqs. 1.24a, 1.24b, 1.24c, 1.24d) cannot be solved analytically for arbitrarily complex

subsurface conductivity models. Here, a brief description of the most common methods used

to predict the forward response of subsurface conductivity models is presented.

There are three essential approaches to numerically solve Maxwell’s equations in an accurate

manner: the finite difference approach, the finite element approach, and the integral equation

approach (e.g. Avdeev, 2005). The finite difference approach consists in discretizing the three-

dimensional domain in rectangular cuboids and approximating Maxwell’s differential equations

by their finite difference counterparts. It is arguably the most used approach to model EM

forward responses, probably due to its relatively simple implementation. Examples of the finite

difference approach applied to plane-wave EM in two-dimensions are given by Rodi (1976);

Smith and Booker (1991); Siripunvaraporn and Egbert (2000) and Kalscheuer et al. (2010),

and Mackie et al. (1993); Siripunvaraporn et al. (2005) and Egbert and Kelbert (2012) in

three-dimensions.

In the finite element approach more flexibility is given to the model parameterization, which

can be based on “unstructured” meshes that are particularly helpful to model topography.

The downside of these methods is that they are more complicated to implement and com-

puting times are usually longer. Examples of finite element plane-wave EM forward solvers

with structured meshes are given by Wannamaker and Stodt (1987) in two dimensions and

by Zyserman and Santos (2000) in three dimensions. Unstructured meshes for plane-wave

EM modeling were presented not so long ago in two dimensions (e.g. Key and Weiss, 2006;

Franke et al., 2007) and even more recently in the three-dimensional case (e.g. Ren et al., 2013).

Finally, the integral equation approach involves transforming Maxwell’s differential equations
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into integral equations by applying the Green’s function technique and solving only for the

anomalous field (e.g. Avdeev, 2005). In this formulation only the anomalous body needs to

be discretized, but its implementation is challenging. Some examples of forward solvers using

integral equations in three dimensions are given by Wannamaker et al. (1984), Wannamaker

(1991), and Avdeev (2007).

Inversion of plane-wave EM data

The Occam inversion algorithm presented in section 1.2 was originally conceived to invert

plane-wave EM data for one-dimensional cases where the subsurface properties vary only with

depth. The method was then extended for two dimensions (deGroot Hedlin and Constable,

1990). Siripunvaraporn and Egbert (2000) introduced a more efficient formulation to avoid

the large amount of memory and time needed to do operations with the Jacobian matrix. This

method uses a Gauss-Newton approach in the so-called data space, which is made possible

by a change of variables in the minimization problem. This allows to reduce the size of the

matrices handled and thus requires less computing time and memory. The same technique

was then applied for three-dimensional inversion by Siripunvaraporn et al. (2005). An alterna-

tive version of the two-dimensional code published by Siripunvaraporn and Egbert (2000) was

developed by Kalscheuer et al. (2010). This algorithm applies object-oriented programming

and dynamic allocation of variables, thus making it computationally efficient. Note that all

the inversion algorithms mentioned thus far are freely available either from a website or upon

request to the authors.

Rodi and Mackie (2001) and Newman and Alumbaugh (2000) presented two- and three-

dimensional inversion algorithms, respectively, of plane-wave EM data based on the non-linear

conjugate gradient method. Despite the progress that these algorithms represented in terms

of speed, they require massively parallel computing architecture (Avdeev, 2005). Recently,

Egbert and Kelbert (2012) presented a modular system grouping several inversion schemes for

EM methods. This code makes it possible to choose between non-linear conjugate gradient

and the data space Gauss-Newton schemes to perform deterministic inversions. The code is

also freely available for academic purposes and is very likely to have a major impact on the

plane-wave EM community in the coming years.

Monte Carlo methods applied to the inversion of plane-wave EM data are still rare. The first

paper using Monte Carlo sampling for plane-wave EM methods was published by Tarits et al.

(1994). The authors estimated the posterior pdf of the thicknesses and electrical conductivi-

ties of a fixed number of layers. Grandis et al. (1999) employed MCMC simulation sampling

from a prior distribution that favors smooth conductivity variations in the one-dimensional

model and with fixed layer thicknesses. The same authors presented a MCMC inversion to

determine the laterally varying conductivity of an anomalous thin-sheet (Vasseur and Weidelt,

1977) embedded in a one-dimensional medium (Grandis et al., 2002).

20



Introduction

Hou et al. (2006) used a quasi-Monte Carlo method (Ueberhuber, 1997, p. 125) to find one-

dimensional models of reservoir-fluid saturation and porosity by jointly inverting controlled

source electromagnetic (CSEM) and seismic data. The same types of data were jointly in-

verted by Chen et al. (2007) using MCMC simulation to derive one-dimensional models of

gas saturation. In a more recent contribution, Guo et al. (2011) compared deterministic and

Bayesian one-dimensional inversions using synthetic and field MT data. Minsley (2011) pre-

sented a one-dimensional trans-dimensional MCMC inversion (Malinverno, 2000) algorithm for

EM data, in which the number of layers was assumed unknown. Their approach favors model

parsimony between models that equally fit the data (c.f. Malinverno, 2002). Ray and Key

(2012) used the same type of method to determine one-dimensional anisotropic resistivity pro-

files from marine CSEM data. More recently, Buland and Kolbjørnsen (2012) jointly inverted

synthetic CSEM and MT data in one-dimension. Khan et al. (2006) used EM data within

a MCMC framework to constrain the composition and thermal state of the mantle beneath

Europe.

After the work of Grandis et al. (2002) for thin-sheets, the first MCMC two-dimensional

inversion of plane-wave EM data was presented by Chen et al. (2012). These authors fix

the number of layers in the model but invert for the posterior pdf of the layers thicknesses

and resistivities at given offsets and interpolated these values to obtain the two-dimensional

conductivity distribution.

Monitoring with plane-wave EM methods

The last twenty years have seen tremendous advances in the use of geophysics to infer tem-

poral changes in subsurface properties, especially for groundwater systems (e.g., Rubin and

Hubbard, 2005), but surprisingly few published studies consider inductive electromagnetic

techniques. A number of numerical studies have focused on the potential of using CSEM to

monitor hydrocarbon reservoirs. Most of these studies (e.g. Lien and Mannseth, 2008; Orange

et al., 2009; Black et al., 2009; Berre et al., 2011; Kang et al., 2012) considered CSEM moni-

toring for marine applications, while a few (e.g. Wirianto et al., 2010; Schamper et al., 2011;

Zhdanov et al., 2013) presented feasibility studies of land-based CSEM. They all conclude that

monitoring is feasible, although not easy due to the diffusive character of EM signals and the

low frequencies required to reach the reservoirs. For successful applications, this implies rather

strong temporal contrasts and significant volumes experiencing temporally varying subsurface

conditions. An innovative alternative has been recently considered for on land CSEM monitor-

ing which uses boreholes to set up the sources at depth and thus perform borehole-to-surface

measurements (e.g. Girard et al., 2011; Bergmann et al., 2012; Vilamajó et al., 2013). These

studies report an improvement in the method sensitivity when the sources are close to the

target.
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For groundwater applications, the targets of interest are typically located at shallower depths

than for hydrocarbon reservoirs. In a rare case study, Falgàs et al. (2009) successfully used

AMT to monitor saltwater intrusion dynamics in a coastal aquifer in Spain. As the repeated

surveys were not taken at the same positions, a time-lapse strategy as presented in section 1.2.1

could not be used and they inverted for independent conductivity models at each time. Nix

(2005) monitored the spreading of a conductive tracer using scalar RMT data. By performing

independent inversions along the same profile location at different times, models were obtained

that were in fair accordance with groundwater data.

For deeper environmental applications such as volcanic and geothermal studies, plane-wave

EM methods represent prominent monitoring tools due to their large penetration depth and

their sensitivity to fluid conductivity, temperature and fracture connectivity. Bedrosian et al.

(2004) performed one of the first magnetotelluric studies aimed at monitoring a fluid injection

in a geothermal system. They conducted separate two-dimensional inversions and compared

the resulting models to infer the conductivity changes post injection but no changes could be

detected due to the large noise present in the data. Aizawa et al. (2009) conducted a one-year

monitoring study at a volcano in Japan using two MT stations. The data indicate large tem-

poral changes, but the sparse information only allowed to invert for two-dimensional models

that suggested that the conductivity changes occurred at the sea level.

Peacock et al. (2012, 2013) presented MT monitoring results of an injection experiment in an

enhanced geothermal system in Paralana, Australia. In this experiment, 3100 m3 of saline

water, together with acids, were injected at 3.7 km depth to stimulate the opening of fractures

and enable remote monitoring of the plume path. The authors observed consistent changes

in apparent resistivity and phase at approximately 50 MT station, however, no attempt was

made to invert these data.

Electrical Resistivity Tomography

The electrical resistivity tomography (ERT) or direct-current resistivity (DCR) method in-

volves the stimulation of current flow into the subsurface by means of grounded electrodes and

the measurement of resulting electrical potential differences. The physics of the problem is also

described by Maxwell’s equations, but in the the zero-frequency limit due to the continuous

current injected. This leads to Poisson’s equation:

∇. (σ∇U ) = −I δ(r), (1.35)

where E = −∇U , U is the electrical potential, I the injected current at a point r and δ the

Dirac delta function. Many two- and three-dimensional forward and inversion codes exist

for the ERT method including the one by Kalscheuer et al. (2010), which also comprises a

joint-inversion strategy for ERT and RMT data. Although these two methods are sensitive
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to electrical conductivity, they are considered complementary since ERT is generally more

sensitive to resistors and RMT is more sensitive to conductors (e.g., Kalscheuer et al., 2010).

1.4 Objectives and outline of the thesis

The previously summarized works indicate the strong potential of plane-wave EM methods to

infer temporal changes in the subsurface. Furthermore, field studies have confirmed significant

data sensitivity to these changes at different spatial scales. While most of the studies have

focused on the interpretation of the raw data changes or the comparison of independently

inverted models, much of the methods’ potential improvements rely on the inversion strategies

used to obtain the subsurface models. The aim of this thesis is to improve the inversion results

obtained from plane-wave EM methods by applying advanced strategies to tackle the static

and time-lapse inversion problems. Such strategies involve the application of state-of-the-art

inversion methodologies and a tailored treatment of the time-lapse data. Within the many ap-

proaches that could improve the inversion results, I considered key elements the incorporation

of as much prior information as possible in the inversion, and the uncertainty quantification of

the model estimates, which should lead to a better interpretation of the available information.

In the first part of this thesis, which is described in Chapter 2, I present the development of a

two-dimensional deterministic approach to perform time-lapse inversion with plane-wave EM

methods. The strategy is based on the incorporation of prior information in the inversion al-

gorithm regarding expected changes in the electrical conductivity. The use of non-l2 norms to

penalize the model structure is introduced to obtain sharp limits between regions of the model

that experienced temporal changes and regions that did not. A time-lapse differencing strategy

is presented to remove the systematic error contribution from the time-lapse inversion. The

performance of different model norms are evaluated with numerical tests, showing that the

perturbed l1-norm leads to the best inversion results. This work evidences an improvement in

the characterization of temporal changes with respect to the classical approach of performing

separate inversions and comparing the models.

Despite the positive results presented in Chapter 2, much room for improvement was left con-

sidering that the deterministic framework used only allowed me to find one possible model

among the many that could equally explain the data and satisfy the imposed constraints. This

is why I then decided to adopt a Bayesian framework and test the possibility of quantify-

ing model parameter uncertainty in plane-wave EM inversion. Thus, in Chapter 3 I present

a two-dimensional pixel-based probabilistic MCMC inversion strategy for separate and joint

inversions of plane-wave EM and ERT data. I compare the uncertainties of the model param-

eters when considering different types of prior information on the model structure, different

likelihood functions to describe the data errors, and joint inversion of RMT and ERT data.

In addition, I show that the regularization parameter and the standard deviation of the data
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errors can be retrieved by the MCMC inversion.

After the separate works on time-lapse and MCMC inversions presented in Chapters 2 and 3,

respectively, I decided to combine these strategies to quantify uncertainty in the estimation of

subsurface temporal changes with plane-wave EM methods. In this case, I decided to tackle

the more realistic problem of characterizing these changes in three-dimensions, since most of

the monitoring applications do not allow for the two-dimensional simplification. As illustrated

by tests on synthetic and real data in Chapter 3, even when implemented in computer clus-

ters and with efficient forward solvers, MCMC inversion involves a significant computational

burden. However, much of this burden is associated with the number of model parameters

to estimate, that is, the smaller the number of parameters, the fastest the convergence of the

MCMC inversions. Chapter 4 presents the development and results of a three-dimensional

time-lapse probabilistic inversion strategy for plane-wave EM. The work is focused on the

use of the MT method to infer mass transfer in an enhanced geothermal system following an

injection experiment. To alleviate the computational burden of the three-dimension forward

solvers, I propose a model reduction strategy where only the coefficients of a Legendre moment

decomposition of the injected water plume and the position of this plume in the subsurface are

estimated. For this purpose, a base resistivity model is needed which can be obtained prior to

the time-lapse experiment. A synthetic test is presented which shows that the methodology

works well when the base resistivity model is correctly characterized. The methodology is also

applied to an injection experiment performed in a geothermal system in Australia, and com-

pared to a three-dimensional time-lapse inversion performed within a deterministic framework.

The probabilistic inversion retrieves better constrained water plumes due to the larger amount

of prior information that was included in the algorithm. However the conductivity changes in

the model needed to explain the measured data changes are much larger than physically pos-

sible. A discussion is presented about this issue, which may be related to the limited quality

of the base resistivity model.

Finally, in Chapter 5 I provide general conclusions derived from the results of this thesis and

an outlook on future improvements related to my work.
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2.1 Abstract

Geoelectrical techniques are widely used to monitor groundwater processes, while surprisingly

few studies have considered audio (AMT) and radio (RMT) magnetotellurics for such pur-

poses. In this numerical investigation, we analyze to what extent inversion results based on

AMT and RMT monitoring data can be improved by (1) time-lapse difference inversion; (2)

incorporation of statistical information about the expected model update (i.e., the model reg-

ularization is based on a geostatistical model); (3) using alternative model norms to quantify

temporal changes (i.e., approximations of l1 and Cauchy norms using iteratively reweighted

least-squares), (4) constraining model updates to predefined ranges (i.e., using Lagrange Mul-

tipliers to only allow either increases or decreases of electrical resistivity with respect to back-

ground conditions). To do so, we consider a simple illustrative model and a more realistic test

case related to seawater intrusion. The results are encouraging and show significant improve-

ments when using time-lapse difference inversion with non-l2 model norms. Artifacts that may

arise when imposing compactness of regions with temporal changes can be suppressed through

inequality constraints to yield models without oscillations outside the true region of temporal

changes. Based on these results, we recommend approximate l1-norm solutions as they can

resolve both sharp and smooth interfaces within the same model.

2.2 Introduction

Reliable monitoring of fluid redistribution and mass transfer in the subsurface are key ele-

ments to maximize oil, gas, and geothermal production, to evaluate the performance of CO2

sequestration, or to manage environmental risk, such as saltwater infiltration in coastal ar-

eas. Time-lapse inversions of geophysical data enable subsurface monitoring and have been

explored widely for diverse applications using a range of geophysical techniques. Time-lapse

inversions resolve temporal changes better than differencing models from separate inversions

because of enhanced cancellation of errors that are constant over time and because the model

regularizations can be defined with respect to temporal changes. For example, LaBrecque and

Yang (2001) showed that time-lapse difference inversion of 3D electrical resistance tomogra-

phy (ERT) data yield models with increased error cancellation, faster convergence and higher

resolution with fewer artifacts compared to differencing of separately inverted models. Ajo-

Franklin et al. (2007) inverted temporal differences in crosshole seismic traveltimes to better

resolve subsurface variations related to CO2 sequestration. Doetsch et al. (2010) jointly in-

verted time-lapse crosshole electrical resistance and ground penetrating radar traveltime data

to obtain improved images of moisture content plumes.

The last twenty years have seen tremendous advances in the use of geophysics for inferring

temporal changes in groundwater systems (e.g., Rubin and Hubbard, 2005), but surprisingly

few published studies consider inductive electromagnetic techniques (e.g., Falgàs et al., 2009;
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Minsley et al., 2011). This is even more puzzling given the very long tradition of inductive

methods in groundwater resources evaluations (e.g., Fitterman and Stewart, 1986; Tezkan,

1999; d’Ozouville et al., 2008 ). One possible reason relates to the success and flexibility of

ERT for this type of applications (e.g., Kemna et al., 2002). Nevertheless, inductive techniques,

such as radio magnetotellurics (RMT), have some distinct advantages compared with ERT:

they are more sensitive to conductors that often represent the monitoring target; they work

well in regions of high contact resistance (e.g., Beylich et al., 2003); they are better suited for

investigating anisotropy (Linde and Pedersen, 2004b); and they might provide models with

superior resolution (for conductive structures) compared with ERT (Kalscheuer et al., 2010).

The same properties hold for audio magnetotelluric (AMT) applications that work well at

depth ranges that are typically out of reach for ERT.

One of the most widely used inversion strategies for geophysical inversion is minimum structure

inversion, in which the model with the least structure is sought under the constraint that the

model is consistent with the data and the estimated data errors (e.g., Constable et al., 1987;

deGroot Hedlin and Constable, 1990; Siripunvaraporn and Egbert, 2000). To quantify model

structure, the l2-norm is commonly used. This is because its minimization results in a linear

system to be solved, but it has the disadvantage that the models obtained are unrealistically

smooth for many types of applications (Ellis and Oldenburg, 1994). Iteratively reweighted

least squares (IRLS) algorithms make it possible to use non l2-norms, while still solving a

linear system at each iteration step. With such strategies, it is possible to obtain models

with overall uniform regions separated by sharper interfaces. Last and Kubik (1983) used an

IRLS scheme to minimize the total cross-sectional area of anomalous bodies when inverting

2D gravity data. Portniaguine and Zhdanov (1999) inverted 3D magnetic and gravity data by

minimizing the volume in which the gradient of the properties is nonzero. Farquharson and

Oldenburg (1998) minimized an l1-type measure of the horizontal and vertical derivatives in

the 2D inversion of electrical resistance data. Farquharson (2007) minimized an approximate

l1-norm of a combination of horizontal and vertical model differences together with differences

between diagonal cells to better image dipping structures when inverting gravity and magne-

totelluric (MT) data. Pilkington (1997) used the Cauchy norm to obtain sparse 3D magnetic

models. The IRLS scheme has been successfully applied for different types of geophysical

data to obtain compact models, but has only rarely been used in time-lapse applications (Ajo-

Franklin et al., 2007).

The primary motivation of this paper is to evaluate, through numerical examples, to what

extent inversion results based on AMT and RMT monitoring data can be enhanced by (1)

time-lapse difference inversion; (2) incorporation of statistical information about the expected

model updates; (3) using appropriate model norms to quantify temporal changes, (4) con-

straining model updates to predefined ranges. After presenting the theoretical background

(section 2), we present the results of two numerical case studies (section 3). We then dis-
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cuss the implications of these results for field-based applications (section 4) before making our

conclusions (section 5).

2.3 Method

2.3.1 Basic magnetotelluric theory

Using distant source signals, the MT method measures the relations between frequency-

dependent electric and magnetic field components that are sensitive to the resistivity structure

of the Earth. Under the assumption of far field conditions, these fields are related through the

impedance tensor Z Cantwell (1960):















Ex (ω)

Ey(ω)















=















Zxx (ω) Zxy(ω)

Zyx (ω) Zyy(ω)





























Hx (ω)

Hy(ω)















, (2.1)

where E(ω) = [Ex (ω), Ey(ω)]
T is the horizontal electric field and Hh(ω) = [Hx (ω),Hy(ω)]

T

the horizontal magnetic field at a given angular frequency ω, with T denoting transposition.

The apparent resistivities ρ
app
i j (ω) and impedance phases φ

app
i j (ω) can be obtained from the

impedance components, for example, for Zxy :

ρ
app
xy (ω) =

1

ωµ0
|Zxy(ω)|2 , (2.2)

φ
app
xy (ω) = arctan

(

ImZxy(ω)

ReZxy(ω)

)

, (2.3)

where µ0 = 4π10−7Hm−1 is the magnetic permeability of free space (analogous definitions hold

for Zyx ). The geomagnetic transfer function (so-called tipper pointer) T relates the vertical

and horizontal magnetic fields as

[

Hz (ω)
]

=

[

A(ω) B(ω)
]















Hx (ω)

Hy(ω)















= TT















Hx (ω)

Hy(ω)















. (2.4)

When considering 2D structures, Maxwells equations can, for an appropriate rotation of the

coordinate system, be decoupled into two independent modes: transverse-electric (TE) and

transverse-magnetic (TM) (e.g., Zhang et al., 1987). Current flows parallel to the strike direc-

tion in the TE mode and perpendicular to it in the TM mode. The RMT and AMT methods

considered here differ from the MT technique in terms of the higher frequency range of the

measurements and in terms of the origin of the sources used, but the governing equations

generally remain the same. Classical MT modeling neglects the influence of displacement cur-

rents, but these must be included when considering high RMT frequencies acquired over very

resistive formations (e.g., Linde and Pedersen, 2004a; Kalscheuer and Pedersen, 2007).
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2.3.2 Discrete deterministic inversion

The inverse problem of deriving the multi-dimensional resistivity structure of the subsurface

using impedance tensors and tipper pointers only, is both non-linear and underdetermined

when considering finely discretized models. These challenges are most often addressed by

using iterative methods based on successive linearization and by incorporating regularization

constraints that strongly penalize model structure that deviates from a preconceived morphol-

ogy. A number of inversion algorithms are available that are based on different numerical

approaches (e.g. deGroot Hedlin and Constable (1990); Siripunvaraporn and Egbert (2000);

Rodi and Mackie (2001)). Solutions based on smoothness-constrained least-squares formula-

tions are often referred to as Occam inversion (Constable et al., 1987) and aim at finding the

smoothest model that can explain the observed data within the assumed data errors. Given

N observed data dobs
= [d1 , d2 , ...,dN ]T and M resistivity blocks m = [m1 ,m2 , ...,mM ]T of

constant properties with typically M > N , the inverse problem can in the 2D case be solved

by minimizing the functional

Wλ(m) = αy ‖δy(m−mre f )‖22+αz ‖δz (m−mre f )‖22+λ−1
{

‖C−0.5
d

(

dobs − F[m]
)

‖22 − χ 2
∗

}

, (2.5)

where y and z denote the horizontal and vertical directions of the 2D profile, respectively,

αii = y, z is the desired weight of smoothing in each direction, δii = y , z is the difference

operator, mre f is a reference model, C−0.5
d = diag[σ −1

1 , ..., σ
−1
N ] aims at weighting the data

with respect to their quality, F[m] is the forward response of m, χ 2
d
= ‖C−0.5

d

(

dobs − F[m]
)

‖22
is the data misfit, χ 2

∗
is the desired data misfit and λ is a trade-off parameter defining the

weight in given to minimizing the model roughness. The desired model is found by iteratively

solving:

mk+1(λ) =
[

(

C−0.5
d Jk

)T
C−0.5

d Jk + λ
(

αyδ
T
y δy + αzδ

T
z δz

)

]−1 (

C−0.5
d Jk

)T
C−0.5

d d̂k +mref ,

(2.6)

where d̂k = dobs − F[mk ] + Jk∆mk , ∆mk = mk −mre f , the subscripts k and k + 1 denote

the previous and present iterations, J is the sensitivity matrix or Jacobian matrix, and λ is

determined through a line search. In the first iterations, λ is chosen to minimize χ 2
d
. When

χ 2
d
≤ χ 2

∗
, λ is maximized under the constraint of satisfying χ 2

d
≤ χ 2

∗
. The inverse of the matrix

in square brackets in Eq. (2.6) is referred to as the generalized inverse. The data misfit of

inversion models is often represented in terms of the root mean square (RMS) misfit:

RMS =

√

1

N

∑

1≤n≤N

w2
n , (2.7)

where w = C−0.5
d

(

dobs − F[m]
)

. Given a Gaussian distribution of errors, the expected value

of χ 2 is N , which corresponds to an RMS misfit of 1. Using the l2-norm to quantify model
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structure, as in Occam inversion, favors smooth transitions of model properties over a num-

ber of model cells (e.g., Farquharson, 2007). If sharp transitions between geological units or

anomalies with small spatial supports are expected, it is necessary to work with other model

norms to obtain models in agreement with such pre-supposed properties. One numerically

efficient way to do this is through iteratively reweighted least squares (IRLS) algorithms (e.g.,

Farquharson and Oldenburg, 1998; Portniaguine and Zhdanov, 1999; Ajo-Franklin et al., 2007;

Pilkington, 1997). These algorithms rely on a least-square formulation similar to Eq. (2.6), but

with the difference that reweighting matrices are defined after each iteration to approximate

a given norm. This results in algorithms with similarly fast convergence characteristics as

gradient-based formulations, but they allow resolving sharp interfaces or compact anomalies.

The update to the IRLS solution of a non-linear inverse problem can be generalized as (e.g.,

Farquharson and Oldenburg, 1998; Menke, 1989; Siripunvaraporn and Egbert, 2000):

mk+1(λ) =
[

(

C−0.5
d Jk

)T
Rd ,kC

−0.5
d Jk + λ

(

C−0.5
m

)T
Rm ,kC

−0.5
m

]−1 (

C−0.5
d Jk

)T
Rd ,kC

−0.5
d d̂k+mref ,

(2.8)

where C−0.5
m indicates a more general and flexible model regularization matrix than the dif-

ference operator in Eq. (2.5), and Ri , i = m,d is a reweighting matrix that is recalculated

after each iteration and that depends on the norm chosen. In this work, the amount of model

structure is quantified by considering a given norm of the vector x = C−0.5
m ∆m. There are

several norms that can be used to emphasize different aspects of model structure. For example,

Ekbloms perturbed lp -norm

ϕ(x) =
∑

1≤m≤M

(

x2m + γ 2
)p/2
, (2.9)

where γ is a small number with respect to xm . Choosing p = 1 makes it possible to approximate

the l1-norm with the advantage that its derivative exists at x = 0. The l1-norm imposes penal-

izations proportional to the values of x , contrary to the l2-norm, which provides an enhanced

penalization of large values. Ekbloms norm can be implemented in the IRLS algorithm by

taking R as:

Rii = p
(

x2i + γ 2
)p/2−1

. (2.10)

Last and Kubik (1983) and Portniaguine and Zhdanov (1999) use a minimum support measure

defined as

ϕ(x) =
∑

1≤m≤M

x2m
(

x2m + γ 2
) , (2.11)

with a corresponding R :
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Rii =
2γ 2

(

x2i + γ 2
)2
, (2.12)

This norm is proportional to the number of non-zero elements of x . The Cauchy norm

ϕ(x) =
∑

1≤m≤M

ln

(

1 +
x2m
γ 2

)

, (2.13)

with

Rii =
1

(

x2i + γ 2
) , (2.14)

is another norm used to obtain an x with few values different from zero (Sacchi and Ulrych,

1996; Pilkington, 1997). The norm decreases as more elements of xm are smaller than γ . The

choice of γ controls the amplitudes and the fractions of non-zero values. For the numerical

experiments considered in this work, we have found that taking γ =
∑

1≤m≤M | xmM | leads to

satisfactory solutions for all cases considered. Schemes based on IRLS must allow for several

model iterations before the final model is computed, such that the reweighting of the regular-

ization term is consistent with the final model. As shown in Eq. (2.8), the IRLS scheme can

also be used to apply different norms to quantify data misfit. In these numerical investigations,

we assume and impose a Gaussian distribution of the data residuals. The data misfit was con-

sequently quantified with a classical l2-norm (c.f., Eq. (2.7)), which is optimal for Gaussian

errors.

2.3.3 Time-lapse inversion

When monitoring temporal changes in subsurface properties it is advantageous to leave the

sensors in place during the monitoring period. The errors in the resulting time-lapse data

acquired for the same sensor configuration are likely to share a repeatable systematic com-

ponent, which can be largely removed in the time-lapse inversion. Following LaBrecque and

Yang (2001), the observed data at time-lapse t can be expressed as:

dobs
t = F[mt ] + εsys + εr,t , (2.15)

where εr,t is a random observational error that is varying in time and is thus different for

each data set and εsys is a systematic contribution that is present at all times. Systematic

errors can be related to modeling errors, bias introduced by ground coupling problems or

improperly calibrated sensors, deviations from 2D assumptions or geometrical errors (e.g.,

incorrect electrode positioning or profiles that are not perfectly aligned). Time-lapse inversion

algorithms can be defined in different ways but aim generally at removing the systematic

contribution to allow resolving minute changes in subsurface properties over time. In a first

step, the model at t = 0, m0, is obtained by means of a standard inversion (see section
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2.2.) using the data acquired before any perturbation to the system. Next, the residuals

r0 = dobs
0 − F[m0] = εsys + εr,0, are removed from the data acquired at all subsequent times:

d̃
obs

t = dobs
t − r0 = F[mt ] + εr,t − εr,0 , (2.16)

Since the systematic component has been removed by differencing, the new corrected data sets

have the advantage of being less error contaminated, provided the common situation concerning

the standard deviations of the different error sources that σsys >
√

σ 2
r ,0 + σ 2

r ,t (e.g., Doetsch

et al., 2010). Furthermore, m0 can be used as the reference model mre f for the following

inversions, so that the model regularization is applied to the model update with respect to the

model reference.

2.3.4 Stochastic regularization

Statistical information of the expected model update with respect to mre f can be used to

constrain time-lapse inversions and thereby accurately include statistical properties as a pri-

ori information. Maurer et al. (1998) showed that regularization based on model covariance

models, so-called stochastic regularizations, uniquely define the relative contribution of pe-

nalizing roughness (i.e., to obtain smooth models) with respect to damping (i.e., to obtain

models that are close to mre f ). A given covariance function is used to compute the model

covariance matrix, which is then inverted to obtain the regularization matrix C−0.5
m . When

the correlation function is stationary throughout a uniform grid, the covariance matrix can

be inverted efficiently through circulant embedding and using the diagonalization theorem of

circulant matrices (Dietrich and Newsam, 1997; Linde et al., 2006). Here we consider the

exponential correlation function for a two-dimensional domain that is defined as

r(l) = c exp(−l), (2.17)

where c is the variance and l is

l =

√

(

hy

Iy

)2

+

(

hz

Iz

)2

, (2.18)

where hi , i = y , z is the separation between two points and Ii , i = y , z is the integral scale that

characterizes the spatial correlation in each direction (e.g., Rubin, 2003). When the distance

between two points equals the integer scale, their correlation is 1/e ≃ 37%. As the same

constant c is assumed for all model parameters, the multiplication of C−0.5
m in Eq. (2.8) results

in the inverse of the constant c being multiplied with λ. As we perform a line search for λ, we

set c = 1.
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2.3.5 Guiding the model update

Constraints regarding model parameter updates can be incorporated through Lagrange multi-

pliers (e.g., Menke, 1989, Chapter 3.10). If the model values are only expected to decrease with

respect to mref (e.g., electrical resistivity is expected to decrease due to the application of a

saline tracer), one can guide the inversion by penalizing model parameters exhibiting positive

deviations frommref in iteration k, to have values closer to mref in iteration k + 1 by adding

the constraint Hk∆mk+1 = 0, where Hk is of size Mv × M , and Mv is the number of elements

of ∆mk that are positive and should be guided to be zero. In iteration k + 1, Hk is generated

from ∆mk as

H
i j

k
=



















1, if ∆m j

k
> 0 is the i-th value to penalize,

0, otherwise.
(2.19)

The constraint equation must be solved simultaneously with Eq. (2.8) (Menke, 1989), which

results in an augmented system of equations:















mk+1(λ)

v(λ)















=















(

C−0.5
d Jk

)T
Rd ,kC

−0.5
d Jk + λ

(

C−0.5
m

)T
Rm ,kC

−0.5
m HT

k

Hk 0















−1

×















(

C−0.5
d Jk

)T
Rd ,kC

−0.5
d d̂k

0















+















mref

0















,

(2.20)

where
ˆ̃
dk = d̃

obs
t − F[mk ] + Jk∆mk , and we solve for the M new model parameters in vector

mk+1, plus the Mv unknown Lagrange multipliers in vector v.

2.4 Numerical examples

2.4.1 A shallow prism

A very simple synthetic test case was considered to investigate the influence of the different

regularizations and norms presented in section 2 on the time-lapse inversions results. The test

case consists of a model that changes between time instance t = 0 (Fig. 2.1a) and t = 1 (Fig.

2.1b), in which the only difference is a conductive prism with a cross-sectional area of 66 m2

that appears at t = 1.

The forward responses of the models were computed for both the TE and TM modes including

the real and imaginary parts of the tipper pointer, at 7 stations with a separation of 5 m. A

total of 10 frequencies regularly spaced in logarithmic scale (two frequencies per octave) were

used in the RMT frequency range of 10 to 226 kHz, which resulted in 420 data points. A

mesh of 58104 cells was used for the forward computations and the inversions, including 10

rows needed to model the air. The central part of the mesh, which is shown in Fig.2.1 and
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Figure 2.1: Synthetic 2D models used to generate the data at (a) t = 0 and (b) t = 1 for the
shallow prism model. (c) Reference model for the time-lapse inversions obtained by inverting
the data at t = 0 with an Occam algorithm. The triangles at the top of the figures indicate
station locations.

2.2, has a 11 m2 discretization. All the forward calculations and inversions presented here

were calculated using a modified version (cf. Kalscheuer et al., 2010) of the REBOCC code

(Siripunvaraporn and Egbert, 2000).

To simulate the time-lapse data, two types of errors were added to the forward responses of the

synthetic models (see section 2.3.). Uncorrelated Gaussian noise with zero mean was consid-

ered in all cases. For the impedances, standards deviations of σsys = 10% and σr ,0 = σr ,1 = 2%

were considered, whereas for the real and imaginary part of the tipper σsys = 0.02 and

σr ,0 = σr ,1 = 0.005 were used. Inversions of the synthetic data were performed using the

different inversion and regularization schemes defined in sections 2.2-2.3. To allow for more

iterations before convergence of the IRLS inversions, a maximum of five points were evaluated

to determine λ and thereby decrease the convergence rate.

A standard smoothness-constrained least squares inversion, referred to as Occam in the fol-

lowing (see Eq. (2.6)), was used to obtain independently inverted models at each time. The

errors assumed were 10.2% (i.e.,
√
102 + 22) for the impedance elements and 0.0206 (i.e.,√

0.022 + 0.0052 ) for the tipper components, and a half-space of 100 Ωm was used as the

starting model. For the time-lapse inversions, new time-lapse corrected data sets were created
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using Eq. (2.16)). The reference model used was the one obtained with an Occam inversion

for t = 0 (Fig. 1c). The errors assumed were corresponding to the random components of the

noise added.

Figure 2.2 2 shows the true model update (Fig. 2.2a) together with the model updates ob-

tained with the different inversion schemes (Fig. 2.2b-h). All the models in Fig. 2.2 fit the

data with RMS ≤ 1.05. Figure 2.2b shows the model update obtained by differencing the two

separate Occam inversions. The region of change is approximately detected, but it is resolved

as a smoothly varying feature of strongly overestimated extent that is centered below the ac-

tual anomaly. Furthermore, positive updates representing artifacts appear on the sides of the

model. Figure 2.2c shows the result of applying the time-lapse inversion to the traditional

Occam inversion (i.e., time-lapse corrected data, but with smoothness constraints using an l2

measure). The lower error-level in the time-lapse corrected data helps to better constrain the

geometry of the model update, which is considerably more focused than the previous example.

However, the model update is still rather smooth due to the l2 measure of model structure

and oscillations representing inversion artifacts are still visible. Figure 2.2d shows the model

update obtained using stochastic regularization with the l2-norm in the time-lapse scheme. As-

suming that points more than 6 m apart are poorly correlated, the integral scales were chosen

as Iy = Iz = 3m (correlation is less than 14% for separations larger than two integral scales,

see Sec. 2.4). The model obtained is very similar to that of Fig. 2.2c. Figure 2.2e-g show the

results of applying the stochastic regularization to the time-lapse inversion using the perturbed

l1-norm, minimum support norm and Cauchy norm as measures of model structure, respec-

tively. The delineations of the anomalous region are much sharper and the oscillations shown

in Fig. 2.2b-d have essentially been removed. Some cells with positive resistivity changes can

be seen in the three models, close to the receiver stations in Fig. 2.2e and g and inside the

prism in Fig. 2.2f. These features disappear when penalizing positive changes to the model

through Lagrange multipliers (see Eq. 2.20). The model update obtained with the penalized

inversion using the l1-norm is shown in Fig. 2.2h. Similar results were found with the Cauchy

and minimum support measures. A feature that is common to all the cases where non l2-norms

were used is an overestimation of the inferred magnitude of the model update in the center of

the prism.

Figure 2.3 shows horizontal slices at a depth of 8 m through the models in Fig. 2.2. The

sharp changes and large amplitudes obtained with the non l2-norms contrast strongly with the

smoothly oscillating updates obtained with the l2-norm inversions. The rather small amplitude

observed in the curve representing the Cauchy norm model (Fig. 2.2g) is due to the maximum

value not being found at 8 m, but at a depth of 7 m.

We define two measures to quantify the similarity between the proposed model updates and

the true model update. The first one is an average of the final ∆m for the cells located in the
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Figure 2.2: Model differences at t = 1 for the shallow prism example. (a) True difference
between the synthetic models at t = 1 and t = 0. Model differences obtained using (b)
differencing of Occam inversion models at t = 1 and t = 0, (c) time-lapse Occam inversion,
time-lapse inversion with stochastic regularization using the (d) l2-norm, (e) perturbed l1-
norm, (f) minimum support, (g) Cauchy norm, and (h) perturbed l1-norm with negativity
constraints applied to the model update. Grey color-coding indicates overestimated differences
with respect to the true differences.

region where the true prism is located. Since inversions of electromagnetic data are essentially

always working with logarithms of resistivity (or conductivity), the same units were used to

compute the average. The second measure is an average of the amplitudes of ∆m outside the

region of the prism, which is zero for the true difference. It quantifies how much structure a

certain solution is adding outside the region where the true changes occur.

The values of the two measures together with the RMS for the different inversion cases are
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Figure 2.3: Horizontal slices through the model differences in Fig. 2.2 at a depth of 8 m.

Table 2.1: Statistics of performance measures for the model differences shown in Fig. 2.2.

Mean of ∆m Mean of |∆m |
Inversion inside the true inside the true RMS
strategy anomaly anomaly

log10 ρ(Ωm) log10 ρ(Ωm)

True model difference -1 0 0.97
Difference of Occam -0.27 0.078 0.97
inversions
TL Occam inversions -0.54 0.058 1.00
TL stoch. reg. l2-norm -0.58 0.053 0.98
TL stoch. reg. perturbed -0.5 0.015 0.99
l1-norm
TL stoch. reg. minimum -0.3 0.006 1.02
support
TL stoch. reg. -0.3 0.007 1
Cauchy norm
TL stoch. reg. -0.53 0.014 1.04
Cauchy norm +
negativity contraints

given in Table 2.1. For the true model difference, the means inside and outside the anomaly are

-1 and 0, respectively. The traditional Occam scheme has a mean of -0.27 inside the anomaly

and 0.078 in the outside region. For the time-lapse cases, the l2-norm gives better estimates of

the average magnitude of the update, with means of -0.54 and -0.58, but puts a lot of structure

outside the region of changes (means of 0.058 and 0.053). On the other hand, the non l2-norms

have a smaller average update, but the structure outside the true anomaly has decreased with

1 or 2 orders of magnitude. When the update calculated using the Cauchy norm is constrained

to be negative, the average value within the prism is closer to the actual value (-0.53).
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2.4.2 Seawater intrusion example

The second more complex test case is inspired by the experiment of Falgàs et al. (2009), who

monitored a seawater-freshwater mixing zone over time using AMT. The models at t = 0 and

t = 1 are shown in Figs. 2.4a and b. The models comprise a 100 m thick 100 Ωm layer, in

which seawater intrusion occurs in the lower 50 m. The aquifer overlies a 630 Ωm half-space.

The sea is modeled in the rightmost upper corner with a resistivity of 0.3 Ωm. The seawater

encroachment is represented with a linearly increasing resistivity, from 3 Ωm corresponding to

a rock completely saturated with seawater to 100 Ωm corresponding to freshwater conditions.

At t = 1, the seawater-freshwater interface has advanced 300 m inland with respect to the

situation at t = 0.
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Figure 2.4: Synthetic 2D models used to generate the data at (a) t = 0 and (b) t = 1 for
the seawater intrusion example. (c) Reference model for the time-lapse inversions obtained by
inverting the data at t = 0 with an Occam algorithm. The triangles at the top of the figures
indicate station locations.

The forward responses were simulated considering 10 stations with a spacing of 160 m and a

frequency range of 10 Hz to 116 kHz (two frequencies per octave as in the prism example).

Within the region of interest, the cell size is 2010 m2. The simulated TE mode, TM mode and

tipper data were noise contaminated with σsys = 5% and σr ,0 = σr ,1 = 2% for the impedances,

and σsys = 0.02 and σr ,0 = σr ,1 = 0.005 for the tipper components.
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Figure 2.4 c shows the result of Occam inversion using the noise-contaminated data. A half-

space of 100 Ωm was used as the starting model and a five times larger regularization weight

was applied in the horizontal direction to emphasize the layered nature of the model. The

model obtained is similar to the one shown by Falgàs et al. (2009). The seawater encroach-

ment is clearly detected and the upper part of the aquifer is well resolved, but the lower part

is imaged with a gradual increase in the resistivity rather than a sharp transition.

Figure 2.5a shows the difference between the true models at times t = 1 and t = 0. Changes in

the horizontal direction are smooth, while the transition between layers in the vertical direc-

tion is sharp. The model difference between the two independent Occam inversions is shown

in Fig. 2.5b. The upper interface of the time-lapse anomaly is well resolved, whereas the lower

interface is very diffuse and extends to large depths. The lateral extension of the anomalous

region is well resolved, but a positive artifact is shown to the right. The model update given by

the time-lapse inversion with stochastic regularization (Iy = 200 m and Iz = 20 m) using the

l2-norm (Fig. 2.5c) and the Occam inversion as reference model better defines the lower inter-

face, but presents more regions of positive inversion artifacts. When the perturbed l1-norm is

used (Fig. 2.5d), the positive changes observed in the lo wer part of the profile disappear and

the transitions get sharper, but the positive changes towards the seaside prevail. Figure2.5e

and f show the model updates obtained when penalizing positive values using the perturbed

l1-norm and Cauchy norm, respectively. The time-lapse target is well resolved and no oscil-

lations are observed outside the region of the time-lapse target. Furthermore, in the case of

the perturbed l1-norm, the smooth horizontal transition is respected and the lateral extent of

the anomaly corresponds overall quite well with the time-lapse target. This is not the case for

the Cauchy norm, which resolves the time-lapse change as being laterally more compact than

it really is. Furthermore, some cells with positive resistivity updates can still be observed for

this model. Inversions using the minimum support norm with and without penalizing positive

changes did not converge for this model.

Horizontal and vertical cuts of the models shown in Fig. 2.5 are presented in Fig. 2.6a and

b, respectively. The true difference (shown in black in Fig. 2.6a) is smoothly varying in the

horizontal direction. All the inversion schemes reproduce this transition rather well, except

for the constrained Cauchy norm, shown in blue, which presents very small updates at this

depth of 80 m. The largest differences between the models can be seen in the right part of the

figure, that is, the region closer to the sea. Artifacts are present when using both the l2-norm

and the non-constrained l1-norm. These artifacts disappear only when penalizing the positive

updates, which results in a curve that closely follows the true model update at all points in

the case of the perturbed l1-norm. In the vertical cut (Fig. 2.6b), the results are similar to

those of the prism example: the time-lapse inversions better constrain the model update, the

non l2-norms make the transitions sharper and the negativity constraints reduce or completely

39



Chapter 2

−1.2 −0.8 −0.4 0.0 0.4 0.8 1.2

log10  ρ ( Ω  m)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Profile (m)

(a)

0

100

200D
e

p
th

 (
m

) 0

100

200D
e

p
th

 (
m

)

0

100

200D
e

p
th

 (
m

) 0

100

200D
e

p
th

 (
m

)

0

100

200D
e

p
th

 (
m

) 0

100

200D
e

p
th

 (
m

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Profile (m)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Profile (m)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Profile (m)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Profile (m)
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Profile (m)

(b)

(c) (d)

(f)(e)

Figure 2.5: Model differences at t = 1 for the seawater intrusion example. (a) True differ-
ence between the synthetic models at t = 1 and t = 0. Model differences obtained using (b)
differencing of Occam inversion models at t = 1 and t = 0, time-lapse inversion with stochas-
tic regularization using the (c) l2-norm, (d) perturbed l1-norm, (e) perturbed l1-norm with
negativity constraints, and (f) Cauchy norm with negativity constraints. Grey color-coding
indicates overestimated amplitudes with respect to the true differences.

eliminate positive value updates.

Table 2.2 shows the comparison statistics for each model in Fig. 2.5. The average value of

the model update is -0.65 inside the true anomaly and 0 outside. Inside the anomaly, the

mean magnitude is well estimated in all cases except for the Cauchy norm, which presents

some positive updates inside the region of true change. Outside the anomaly, Occam inversion

is again the method that puts the most structure (0.103) (c.f. table 2.1). The time-lapse

inversion using the l2-norm has a mean of absolute values of 0.098, and the perturbed l1-norm

0.072. Only when the negativity constraints are added, the mean of the absolute values outside

the anomalous region is reduced by one order of magnitude.

2.5 Discussion

Falgàs et al. (2009) demonstrated convincingly that AMT monitoring allows resolving seasonal

seawater-freshwater dynamics. The aim of this work was to investigate through numerical ex-

amples to what extent these types of results could be further improved by using more refined

inverse formulations.
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Figure 2.6: (a) Horizontal and (b) vertical slices of the model differences in Fig.2.5 at a
depth of 80 m and a profile distance of 1200 m, respectively.

Table 2.2: Statistics of performance measures for the model differences shown in Fig.2.5.

Mean of ∆m Mean of |∆m |
Inversion inside the true inside the true RMS
strategy anomaly anomaly

log10 ρ(Ωm) log10 ρ(Ωm)

True model difference -0.65 0 0.96
Difference of Occam -0.62 0.103 1.01
inversions
TL stoch. reg. l2-norm -0.67 0.098 1.04
TL stoch. reg. perturbed -0.67 0.072 1.00
l1-norm
TL stoch. reg. perturbed -0.68 0.033 1.05
l1-norm +
negativity constraints
TL stoch. reg. -0.44 0.021 1.04
Cauchy norm +
negativity contraints

As expected, removing errors that are constant over time (εsys ) clearly yield improved models

for the two case studies. The model updates provided by differencing independent Occam

inversions (Fig. 2.2b and Fig. 2.5b) were unnecessarily diffuse compared with a difference

inversion that otherwise is based on the same type of objective function (i.e., smoothness con-
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straints and a l2-norm). This improvement is explained by error cancellation in the difference

inversion scheme as outlined by LaBrecque and Yang (2001).

Compared with smoothness constraints, stochastic regularization offers added flexibility in im-

posing statistical information of the expected model morphology (e.g., Linde et al., 2006). In

our case, this was used to add information about the expected scale of temporal changes in the

model (Doetsch et al., 2010). No specific integer scale can be defined for the model shown in

Fig. 2.1b because of the superposition of geological layers and the time-lapse anomaly, while

this is easier when inverting for the model update (Fig. 2.2a). For the examples considered in

this study, we do not find any significant differences between the time-lapse inversion results

based on an l2-norm when using stochastic regularization (Fig. 2.1d) compared with smooth-

ness constraints (Fig. 2.1c). In fact, both types of models are unsuitable as they are overly

smooth and display oscillations in the region around the true anomaly.

To obtain sharper transitions, we applied non l2-norms in a similar manner as Farquharson

and Oldenburg (1998), Portniaguine and Zhdanov (1999), and Pilkington (1997), but to time-

lapse data (Ajo-Franklin et al., 2007). Using the perturbed l1-norm, the Cauchy norm and the

minimum support measures, we obtained compact model updates with a significant decrease

in structure outside the true anomaly (Fig. 2.2e-g and Fig. 2.5d), but with the magnitude in

some of the model cells being overestimated (Fig. 2.3 and Fig. 2.5).

The seawater on the right side in the saltwater intrusion example resulted in significant arti-

facts in the time-lapse inversions, especially for the non l2-norms. Even if the values in this

region at t = 1 were the same as at t = 0, large positive structures appeared for the three

non-traditional norms used (only the perturbed l1-norm example is shown in Fig. 2.5d). As

we were considering a time at which the seawater-freshwater transition zone advances inland,

it was natural to penalize positive changes in resistivity. Each cell with constraints adds a

dimension to the matrix that has to be inverted, which can be computationally demanding

in terms of memory and computing time. For the examples considered here, the number of

elements of the model update that need to be penalized constitutes a significant percentage of

the model blocks only in the first iterations. Note that penalizing positive values by adding

Lagrange multipliers does not ensure that no positive cells are going to be found in the model

update. Indeed, a few positive cells can be observed in the model update calculated with the

Cauchy norm when applying the negativity constraints.

Another technical issue is that the reweighting needed for the non-traditional norm increases

the condition number of the generalized inverse and also tends to increase the non-linearity of

the inverse problem. Of the three norms considered, the perturbed l1-norm was found to be

the most robust in the sense that it did not significantly change the condition number of the

matrices to be inverted compared with the l2-norm case.
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2.6 Conclusions

We find that inversion results based on monitoring of uniform inducing field electromagnetic

data (RMT and AMT in the examples considered) can be much improved by using difference

inversion and by incorporating information regarding the expected changes in model proper-

ties over time. Compact and sharper model updates were obtained by combining stochastic

regularization and non l2-norms implemented through an IRLS procedure. In particular, the

perturbed l1-norm was found to be both robust and allowing for smooth variations, not creat-

ing compact models when this was not the case. Penalizing model updates with non-physical

variations (e.g., increases in resistivity when saltwater is intruding) was shown to be success-

ful not only in avoiding inversion artifacts, but also, in the case of the perturbed l1-norm,

to better determine the magnitudes of the time-lapse changes. A characteristic of all model

updates computed with non l2-norms is the overestimation of the magnitudes of the changes in

some cells. Such overestimations can be removed using Lagrange multipliers, similarly as for

the negativity constraints, given that the expected maximum amplitudes of the true changes

are known or can be adequately assessed. The presented inversion methodology will in the

future be applied to field data, which will require the development of robust transfer function

estimation procedures of time-lapse data.
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3.1 Abstract

Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are

well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet,

application of such methods to CPU-intensive forward models can be a daunting task, partic-

ularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC

inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how

model parameter uncertainty depends on model structure constraints using different norms of

the likelihood function and the model constraints, and study the added benefits of joint inver-

sion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that

model structure constraints are necessary to stabilize the MCMC inversion results of a highly

discretized model. These constraints decrease model parameter uncertainty and facilitate

model interpretation. A drawback is that these constraints may lead to posterior distributions

that do not fully include the true underlying model, because some of its features exhibit a

low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly

mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical

Bayesian inverse formulation introduced and used herein is able to successfully recover the

probabilistic properties of the measurement data errors and a model regularization weight.

Application of the proposed inversion methodology to field data from an aquifer demonstrates

that the posterior mean model realization is very similar to that derived from a deterministic

inversion with similar model constraints.

3.2 Introduction

Geophysical measurement methods make it possible to non-invasively sense the physical prop-

erties of the subsurface at different spatial and temporal resolutions. Inversion methods are

required to interpret these indirect observations and derive a physical description of the subsur-

face, yet multiple descriptions can be found (also referred to as models) that fit the observed

geophysical data equally well. This is in large part due to measurement errors, incomplete

data coverage, the underlying physics and/or overparameterization of the subsurface models.

Whereas the probabilistic properties of observation errors are relatively easy to describe, model

structural errors are difficult to formulate in probabilistic terms. Arbitrary and subjective reg-

ularizations and parameterizations may significantly decrease model parameter uncertainty

but they may also introduce a bias, meaning that some features of the true model may not be

resolved.

Bayesian inference can help to explicitly treat input data, parameter, and model uncertainty,

but successful implementation requires efficient sampling methods that explore the posterior

target distribution. In this probabilistic approach, the inverse problem is stated as an infer-

ence problem where the solution is given by the posterior probability density function (pdf) of
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the model parameters. This distribution quantifies joint and marginal parameter uncertainty.

Unfortunately, in most practical applications, this posterior distribution cannot be derived

analytically, and methods are required that use trial-and-error sampling to approximate the

target distribution. Markov chain Monte Carlo (MCMC) simulation methods are well suited

for this task, but suffer from poor efficiency, particularly when confronted with significant

model nonlinearity, nonuniqueness and high-dimensional parameter spaces (Mosegaard and

Tarantola, 1995).

The basic building block of MCMC sampling is Monte Carlo (MC) simulation. This approach

randomly samples the prior parameter space, and evaluates the distance of the response of

each candidate model to the respective data. If the parameter space is low dimensional, MC

simulation can provide a reasonable approximation of the posterior distribution pending that

the ensemble of samples is sufficiently large. Yet, for higher dimensional spaces, exhaustive

random sampling is inefficient, and more intelligent search methods such as MCMC simulation

are required to speed up the exploration of the target distribution. Monte Carlo methods have

been applied to magnetotelluric (MT) data and other types of frequency-domain electromag-

netic (FDEM) data in a number of studies for 1-D modeling problems (Tarits et al., 1994;

Grandis et al., 1999, 2002; Hou et al., 2006; Khan et al., 2006; Chen et al., 2007; Guo et al.,

2011; Minsley, 2011; Buland and Kolbjørnsen, 2012). We briefly summarize a few of these

studies.

Tarits et al. (1994) used Monte Carlo sampling to estimate the posterior distribution of the

thicknesses and electrical resistivity of different subsurface layers assuming that the number of

layers is known a priori. Grandis et al. (1999) extended this 1-D approach by employing MCMC

simulation with sampling from a prior distribution that favours smooth variations in the 1-D

electrical resistivity model. Hou et al. (2006) used a quasi-Monte Carlo method (Ueberhuber,

1997, p. 125) for 1-D models of reservoir-fluid saturation and porosity to jointly invert con-

trolled source electromagnetic (CSEM) and seismic data. The same types of data were jointly

inverted by Chen et al. (2007) using MCMC simulation to derive 1-D models of gas saturation.

In a more recent contribution, Guo et al. (2011) compared deterministic and Bayesian MT

data inversion using 1-D synthetic and field data. Data errors and regularization weight were

treated as hyperparameters and determined by MCMC simulation (cf. Malinverno and Briggs,

2004). Results showed that the MT data contained sufficient information to accurately de-

termine these latent variables. Minsley (2011) presented a 1-D trans-dimensional MCMC

inversion (Malinverno, 2000) algorithm for FDEM data, in which the number of layers was

assumed unknown. Their approach favours model parsimony between models that equally fit

the data. This favouring of simple models is naturally accounted for in the so-called Ockham

factor, which measures how much of the prior information is contained in the posterior pdf.

With increasing number of parameters, the probability mass of the prior in the vicinity of
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the posterior will typically decrease (and so will the Ockham factor), while the data fit will

typically improve (Malinverno, 2002). Ray and Key (2012) used the same type of method

to determine 1-D anisotropic resistivity profiles from marine CSEM data. Most recently, Bu-

land and Kolbjørnsen (2012) jointly inverted synthetic CSEM and MT data and presented a

real-world application for CSEM data. Khan et al. (2006) used EM data within a MCMC

framework to constrain the composition and thermal state of the mantle beneath Europe.

The published contributions summarized thus far have demonstrated the ability of MCMC

methods to (1) successfully converge to the global optimum of the parameter space, (2) treat

nonlinear relationships between model and data and (3) adequately characterize parameter

and model uncertainty. Yet, all these studies used relatively simple 1-D models to minimize

the computational costs of the forward solution, and considered relatively low-dimensional

parameter spaces to facilitate convergence of the MCMC sampler to the appropriate limiting

distribution.

Grandis et al. (2002) presented the first published multidimensional MCMC inversion of MT

data using a thin-sheet modelling code that is CPU-efficient, but only accurate for relatively

thin anomalous bodies. Inversions were presented for a horizontal 2-D anomaly embedded in

a known horizontally layered 1-D model. Chen et al. (2012) presented a MCMC algorithm to

invert 2-D MT data. They fixed the number of layers in the model, yet allowed the depths

to vary at given offsets. A 2-D resistivity structure was estimated at a geothermal site using

436 model parameters. This particular algorithm enables the inversion of 2-D data, but im-

poses strict constraints on the model parameterization in that only layered models with sharp

boundaries are allowed.

Other global search methods of stochastic nature, such as simulated annealing (Kirkpatrick

et al., 1983) and genetic algorithms (Holland, 1992), have been used to produce 1-D and 2-D

electrical resistivity models from MT data (Dosso and Oldenburg, 1991; Everett and Schultz,

1993; Pérez-Flores and Schultz, 2002). These methods fully account for the nonlinear relation

between model and data, but are only concerned with finding the optimal model, without

recourse to estimating the underlying posterior parameter distribution. Post-processing of the

sampled trajectories can provide some insights into the remaining parameter uncertainty, but

this type of analysis approach lacks statistical rigor.

More complex and highly parameterized 2-D or 3-D resistivity models are generally obtained

through deterministic inversion (e.g. deGroot Hedlin and Constable, 1990; Siripunvaraporn

and Egbert, 2000; Rodi and Mackie, 2001; Siripunvaraporn et al., 2005). These algorithms

are much more efficient but provide only a single “best” solution to the inverse problem (e.g.

Menke, 1989). Approximate uncertainty estimates can be obtained through linearization in

the vicinity of the final solution (Alumbaugh and Newman, 2000). As an alternative to such
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approaches, Oldenburg and Li (1999) derived a set of different deterministic models using the

same data set by running repeated deterministic inversions with different regularization con-

straints. Features that appear in all models are interpreted as being well resolved by the data.

Jackson (1976) and Meju and Hutton (1992) constructed extremal models that fit the data up

to a given data misfit threshold with a most-squares inversion. This approach derives the ex-

tremal deviations of each model parameter from a best-fitting model. Kalscheuer and Pedersen

(2007) used truncated singular value decomposition (TSVD) to estimate the model parameter

errors and resolution of models from radio magnetotelluric (RMT) data. Finally, Kalscheuer

et al. (2010) used the same approach to compare the errors and resolution properties of the

RMT data against those of a joint inversion with electrical resistivity tomography data (ERT)

and ERT data alone. The aforementioned methods partly account for model nonlinearity but

violate formal Bayesian principles, first, because the “best” model is found by minimizing an

objective function rather than analyzing the variables marginal pdfs, and secondly because the

estimated uncertainties are dependent on this best model, which in turn depends on the initial

model used to find it (e.g. Chen et al., 2008). This poses questions regarding the statistical

validity of the estimated model and parameter uncertainty.

The purpose of the present paper is to investigate MCMC-derived parameter uncertainty and

bias of a finely parameterized 2-D subsurface system for an increasing level of model con-

straints. In particular, we study how the posterior uncertainty changes when RMT data is

inverted using (1) no constraints on the model structure, (2) smoothness constraints with dif-

ferent model norms and (3) joint inversion with ERT data. We also investigate the ability

of the MCMC algorithm to retrieve the true measurement data errors and the regularization

weight that provides appropriate weights to the model constraints.

The remainder of the paper is organized as follows: Section 3.3 presents the theoretical back-

ground of the proposed inversion approach. This is followed in Section 3.4 by the results of a

synthetic model using different levels of model constraints and in Section 3.5 for a real world

application using experimental data from an aquifer in Sweden. Section 3.6 discusses the im-

plications of our results and highlights potential further developments. Finally, Section 3.7

concludes this paper with a summary of the presented work.

3.3 Methodology

3.3.1 Bayesian inversion

Let the physical system under investigation be described by a vector of M model parameters,

m = (m1 ,m2 , ...,mM ) and a set of N observations, d = (d1 , d2 , ...,dN ) which are theoretically

related to the model via a set of equations,

d = д(m) + e, (3.1)
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where e is a vector of dimension N , which contains measurement data errors and any discrep-

ancies caused by the model parameterization, deficiencies in the forward function д(m), etc.

The posterior pdf p(m|d) of the model parameters, conditional on the data, can be obtained

by applying Bayes theorem (Tarantola and Valette, 1982):

p(m|d) =
p(m)p(d|m)

p(d)
, (3.2)

where p(d|m) is the pdf of d conditional onm, also called the likelihood function L(m|d), p(m)

is the prior pdf and p(d) signifies the evidence. The evidence is a normalizing constant that is

required for Bayesian model selection and averaging (e.g. Malinverno, 2002), but because our

interests concern a fixed model parameterization, p(m) can be removed without harm from

eq. (3.2) leaving us with the following proportionality equality

p(m|d) ∝ p(m)L(m|d), (3.3)

The prior probability of the model vector, p(m), represents the information known about the

subsurface before collecting the actual data. It can be based on other types of geophysical

measurements, geological information about the model structure, expected type of rocks and

values of model parameters, etc. In the absence of detailed prior information about the sub-

surface properties, we assume a Jeffreys prior, that is, that the logarithm of each respective

property is uniformly distributed(Jeffreys, 1998; Tarantola, 2005).

3.3.2 The likelihood function

The likelihood function summarizes the distance (typically a norm of a vector of residuals)

between the model simulation and observed data. The larger the value of the likelihood, the

closer the model response typically is to the experimental data. Under the assumption that the

measurement data errors follow a normal distribution with zero mean, the likelihood function

is given by (Tarantola, 2005)

L(m|d) = 1

(2π)N/2det(Σ)1/2
exp

(

−1
2
(д(m) − d)T Σ

−1 (д(m) − d)
)

, (3.4)

where Σ is the data covariance matrix and det(Σ) denotes the determinant of Σ. If the errors

are uncorrelated, then Σ is a diagonal matrix and det(Σ) =
∏

1≤i≤N σ 2
i . The log-likelihood can

then be expressed as

l(m|d) = −N
2
log(2π) − 1

2
log















∏

1≤i≤N

σ 2
i


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

− 1

2
ϕd ,2 , (3.5)

where ϕd ,2 =
∑

1≤i≤N

(

дi (m)−di
σi

)2

represents the data misfit and σi denotes the standard devi-

ation of the i-th measurement error. This misfit function is a measure of the distance between

the forward response of the proposed model and the measured data, where the subscript 2
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defines the l2-norm. The first term in eq. (3.5) is a constant, and the measurement data errors

can be assumed unknown and estimated jointly with the model parameters. This approach is

also referred to as hierarchical Bayes (e.g. Malinverno and Briggs, 2004; Guo et al., 2011). As

the data misfit becomes smaller, the log-likelihood increases and the proposed model is more

likely to be a realization from the posterior distribution. Given the assumptions of the data

errors made thus far, the sum of squared errors should follow a chi-square distribution with

expected value of N . To avoid data over- or underfitting, it is therefore necessary to have a

posterior misfit pdf with the same expected value.

When the data errors deviate from normality, it is common to use an exponential distribution,

which is consistent with an l1-norm instead of an l2-norm (Menke, 1989). Different publications

have demonstrated that the l1-norm is more robust against outliers, and often more realistic

(e.g. Shearer, 1997; Farquharson and Oldenburg, 1998). When the measurement errors are

independent, the corresponding exponential likelihood function is given by (Tarantola, 2005):

L(m|d) = 1

2N
∏

1≤i≤N σi
exp










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, (3.6)

which corresponds to the following formulation of the log-likelihood function

l(m|d) = −N log(2) − log















∏

1≤i≤N

σi


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
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
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− ϕd ,1 , (3.7)

where the data misfit is now defined as ϕd ,1 =
∑

1≤i≤N

∣

∣

∣

∣

дi (m)−di
σi

∣

∣

∣

∣

. This distribution has much

longer tails (e.g. Menke, 1989), thereby reducing the importance of outliers during parameter

estimation.

3.3.3 Constraining the model structure

When strong a priori knowledge of a suitable model structure is lacking, one may invert for

the model pdf by only providing each model parameter’s likely range of variation as a priori

information. An alternative is to also constrain the model structure to favour smooth spatial

transitions. This is a common strategy in deterministic inversion (e.g. Constable et al., 1987;

deGroot Hedlin and Constable, 1990), where these constraints serve as a regularization term

that decreases the ill-posedness of the inverse problem. In the Bayesian framework, the con-

straints can be included in the prior pdf (e.g. Besag et al., 1995; Chen et al., 2012).

To favour models with smoothly varying resistivity structures, we impose independent normal

distributions to the horizontal and vertical model gradients. This results in the following

constraint prior pdf (see Appendix A)

cm ,2(m) =
1

(2παy)
My

1

(2παz )Mz
exp













−1
2


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mTDT
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z Dzm
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









, (3.8)
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where Dy and Dz signify the difference operators in the horizontal and vertical directions

with rank My and Mz , respectively, (My + 1) and (Mz + 1) denote the number of horizontal

and vertical grid cells, respectively, and αy and αz are the standard deviations of the model

gradients in each spatial direction. If their expected values are similar for both directions, the

constraint function becomes

log(cm ,2(m)) = −(My + Mz ) log(2πλ
2)
1

2
ϕm ,2 , (3.9)

where ϕm ,2 =
1
λ2

(

mTDT
yDym+mTDT

z Dzm
)

and λ = αz = αy is a hyperparameter to be

determined using MCMC simulation. This latter variable bears much resemblance with model

regularization weights used in deterministic inversions, and hence will be referred to as such

hereafter. Note also that the right-hand side term in eq. (3.9) is essentially the model regu-

larization term proposed by deGroot Hedlin and Constable (1990). The smaller the value of

λ, the higher the weight given to the regularization term.

Sharper spatial model transitions than those obtained by the least-squares smoothness con-

straints may be sought. In classical deterministic inversions, sharp transitions are usually

imposed by applying alternative model norms (e.g. Farquharson, 2007; Rosas Carbajal et al.,

2012). Similar to how an exponential pdf was used to obtain more robust data misfit measures,

here we apply it to increase the likelihood of models whose properties change abruptly from

one cell to the next:

cm ,1(m) =
1

(2αy)
My

1

(2αz )Mz
exp

[

−
( ‖Dym‖1

αy
+
‖Dzm‖1

αz

)]

, (3.10)

where a l1-norm is used (subscript) for the smoothness constraints. In the case that αz = αy = λ,

the log-distribution of eq. (3.10) becomes

log(cm ,1(m)) = −(My + Mz ) log(2λ)
1

λ

(

‖Dym‖1 + ‖Dzm‖1
)

, (3.11)

The l1-norm linearly weights the differences of the properties of adjacent cells. This is different

from an l2-norm that squares these differences, and hence an l1-norm is less sensitive to sharp

transitions between neighbouring cells.

3.3.4 Forward computations

To compute the likelihood functions described in the previous section, a numerical solver is

needed to simulate the geophysical response of each proposed model. For both geophysical

methods considered herein, the RMT and ERT responses are described by Maxwell’s equations.

In the general case, the model parameters and electromagnetic field vary dynamically in a 3-D

space. The higher the resolution of the resolved spatial dimension and the larger the number

of model parameters, the more demanding the forward problem. Despite significant advances

in computational power, 3-D MCMC inversion remains a daunting computational task. We
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therefore focus our attention on a 2-D model of the subsurface and compute the 2.5D ERT and

RMT forward responses using finite-difference approximation. A detailed description of the

forward solvers can be found in Kalscheuer et al. (2010), and interested readers are referred to

this publication for additional details about the numerical setup and solution.

3.3.5 MCMC strategy for high-dimensional problems

For high-dimensional and non-linear inverse problems, it is practically impossible to analyti-

cally derive the posterior distribution. We therefore resort to MCMC sampling methods that

iteratively search the space of feasible solutions. In short, MCMC simulation proceeds as

follows. An initial starting point, mold is drawn randomly by sampling from the prior dis-

tribution. The posterior density of this point is calculated by evaluating the product of the

likelihood of the corresponding simulation and prior density. A new (candidate) point, mnew

is subsequently created from a proposal distribution that is centred around the current point.

This proposal is accepted with probability (Mosegaard and Tarantola, 1995):

Paccept = min
{

1, exp[l(mnew |d) − l(mold |d)]
}

, (3.12)

If the proposal is accepted the Markov chain moves to mnew , otherwise the chain remains at

its old location. After many iterations, the samples that are generated with this approach are

distributed according to the underlying posterior distribution. The efficiency of sampling is

strongly determined by the scale and orientation of the proposal distribution. If this distribu-

tion is incorrectly chosen, then the acceptance rate of candidate points might be unacceptably

low, resulting in a very poor efficiency. On the contrary, if the proposal distribution is chosen

accurately, the MCMC sampler will rapidly explore the posterior target distribution.

In this work, we use the MT-DREAM(ZS) algorithm (Laloy and Vrugt, 2012), which was

especially designed to efficiently explore high-dimensional posterior distributions. This is an

adaptive MCMC algorithm (e.g. Roberts and Rosenthal, 2007), which runs multiple chains in

parallel and combines multiple-try sampling (Liu et al., 2000) with sampling from an archive

of past states (Vrugt et al., 2009, see also Vrugt et al., 2008) to accelerate convergence to a

limiting distribution. Furthermore, it is fully parallelized and especially designed to run on

a computer cluster. The MT-DREAM(ZS) algorithm satisfies detailed balance and ergodicity,

and is generally superior to existing MCMC algorithms (Laloy and Vrugt, 2012). To assess

convergence, the Gelman-Rubin statistic (Gelman and Rubin, 1992) is periodically computed

using the last 50 percent of the samples in each of the chains. Convergence to a limiting

distribution is declared if the GelmanRubin statistic is less than 1.2 for all parameters. After

convergence, we use the last 25 percent of the samples in each chain to summarize the posterior

distribution.
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3.3.6 Uncertainty estimation with most-squares inversion

Most-squares inversion (Jackson, 1976; Meju and Hutton, 1992) is a deterministic inversion

approach where extremal models are sought that fit the data up to a given threshold. First,

a best-fitting model m0 is calculated. Next, a particular cell of the model is chosen and

the most-squares inversion is used to find the extremal values of this cell that satisfy a data

misfit threshold ϕ2
d ,2 = ϕd ,2[m0] + ∆ϕ. All model cells are allowed to vary and two different

searches are initiated to derive the smallest and largest acceptable resistivities. If we choose

∆ϕ = 1 it can be shown that this results in extremal values that deviate one standard deviation

from the best-fitting model (e.g. Kalscheuer et al., 2010). Most-squares inversion has been

used to test the validity of other non-linear yet deterministic variance estimates, such as

inversion schemes based on singular value decomposition (Kalscheuer and Pedersen, 2007).

Furthermore, it can also be applied with regularization constraints using the same model

regularization weight used to derive the best-fitting model and modifying the threshold misfit

to ϕt
d ,2
= ϕd ,2[m0] + (1/λ2)ϕm ,2 + ∆ϕ. The mean and uncertainty of the different cells derived

from the most-squares inversion results are compared against their estimates from MCMC

simulation.

3.4 Synthetic Examples

To evaluate the impact of the model constraints and data on the posterior pdf, we consider

a synthetic 2-D resistivity model. This study is similar to the one presented by Kalscheuer

et al. (2010). Two resistors and two conductors with thicknesses of 10 m (Fig. 3.1 a) are

immersed in a homogeneous medium of 100 Ωm. A conductor of 10 Ωm and 50m length over-

lays a 1000 Ωm and 30-m long resistor at symmetric positions, and a resistor of 1000 Ωm and

50m length overlays a 10 Ωm and 30-m long conductor, respectively. The transverse electric

(TE) and transverse magnetic (TM) mode responses of this configuration were computed for

the 17 different stations shown in Fig. 3.1 (a). A total of 8 frequencies, regularly spaced

on a logarithmic scale in the frequency range of 22-226 kHz were used, which resulted in a

total of 544 data points. These synthetic observations were subsequently corrupted with a

Gaussian measurement data error with standard deviation equal to 3 percent of the simulated

impedances. To explicitly investigate the effect of the probabilistic properties of the measure-

ment data errors, we also created a second data set by perturbing the error-free simulated

forward responses with a zero-mean exponential distribution and a similar mean deviation of

3 percent of the modelled impedances. Unless stated differently, we refer to the RMT data as

the data set contaminated with Gaussian noise in the remainder of this paper. To generate

the synthetic ERT data, forward and reverse poledipole configurations were considered with

electrodes placed at the positions of the 17 different RMT stations. Similarly to Kalscheuer

et al. (2010), four expansion factors (1, 2, 4 and 6) and a basic potential electrode distance of

10 m, and level values of n = 1, ..., 7 for a fixed potential electrode distance were used. This

resulted in a data set consisting of 306 different artificial observations. To mimic the effect
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of measurement data errors, the simulated data were again perturbed with a Gaussian error

using a standard deviation of 3 percent of the simulated apparent resistivities. The model

discretization used in the MCMC inversions is shown in Fig. 3.1(a). Each cell has dimensions

of 5 × 10 m2, but the cells located at the left, right and bottom edges of the domain extend

until “infinity” (i.e. to accommodate the imposed boundary conditions). This results in a

total of 228 different resistivity values that need to be estimated from the experimental data.
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Figure 3.1: (a) Synthetic test model with the MCMC model discretization highlighted. Let-
ters A, B, C and D indicate cells for which the inversion results are evaluated against those of
deterministic most-squares inversions. Numbered letters V1, V2 and V3 indicate the offsets
at which the resistivity marginal posterior pdfs are presented. (b) Model obtained by invert-
ing RMT data (3 percent error on the impedance elements) with a smoothness constrained
deterministic inversion. The mesh in (b) corresponds to the model discretization of the deter-
ministic inversions and the forward modelling mesh. The triangles at the top of the figures
indicate the locations of the RMT stations and the ERT electrodes.

Fig. 3.1 (b) plots the final model derived from the RMT data using a classical deterministic

inversion with smoothness constraints (cf. deGroot Hedlin and Constable, 1990). This model

was obtained after three iterations and has a misfit of ϕd ,2 = 533, assuming a 3 percent error

of the impedance values. A homogenous half-space of 100 Ωm was used as the starting model.

The inversion successfully retrieves the two shallow blocks, and indicates the presence of the

deep conductor. However, it shows no evidence of the deep resistor. The resistivity value of

the shallow conductor is well defined, but the magnitude of the resistor is underdetermined.

We now summarize the results of MCMC simulation using the different penalties of the model

structure described previously in Section 3.3. Following recommendations made by Laloy

and Vrugt (2012), we use three different chains and simultaneously create and evaluate five

candidate points in each individual chain. To maximize computational efficiency, we run MT-

DREAM(ZS) in parallel using 16 different processors. Fifteen processors are used to simulta-

neously evaluate the different proposals, and achieve a linear speed up, whereas the remaining

processor serves to execute the main algorithmic tasks of MT-DREAM(ZS). We invert for the

log-resistivity values, and use a Jeffreys prior in the range of 100.5 to 103.5 m. We also invert

for the hyperparameter r , which represents the standard deviation of the measurement data
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errors as a percentage of the measured impedances. We use a Jeffreys prior for r as well,

and define its upper and lower bound as half and double its true value (i.e. 1.5-6 percent).

Appendix B details the log-likelihood that is used to estimate r from the RMT data.
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Figure 3.2: (a-d) Posterior MCMC realizations from the inversion of RMT data with no
model constraints other than minimal and maximal parameter bounds of ρ = 100.5 and 103.5
m, respectively. It is very difficult to identify a clear correlation between these realizations and
the true underlying model in Fig. 3.1 (a).

In the first MCMC trial, no constraints on the model structure (see eq. 3.23) were specified.

Convergence of the chains was reached after about 100 000 computational time units (CTUs,

cf. Laloy and Vrugt, 2012). Note that a single update of each of the parallel chains requires

two CTUs, one for the evaluation of the candidate points, and one for the calculation of the

posterior density of the reference set. To provide insights into the properties of the posterior

resistivity distribution, Fig. 3.2 displays four randomly chosen posterior models. The corre-

sponding data misfit is also listed. The models exhibit an extreme variability and the only

structure that is clearly persistent in all four realizations is the shallow conductor. Figs 3.3(a-

c) depict ranges of the marginal posterior pdf of the resistivity of three vertical profiles. As

expected, these results illustrate that model variability increases with depth. The first 20 m

appear rather well constrained by the data, but the uncertainty of the resistivity significantly

increases beyond this depth. The data misfit and marginal posterior pdfs of the impedance

error are represented with histograms in Figs 3.3(d) and (e), respectively. The marginal distri-

bution of the data misfit is centred on its a priori expected value of N , a finding that inspires

confidence in the ability of MT-DREAM(ZS) to converge to the adequate parameter values. In

other words, the proposed models do not systematically over or under fit the calibration data.

Note also that the standard deviation of the relative data error is well resolved with mean

value of r = 0.03 and standard deviation of 0.001 (see Fig. 3.3e).
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Figure 3.3: MCMC inversion of RMT data without model constrains. (a-c) Marginal
posterior pdf of the vertical profiles V1, V2 and V3 corresponding to the offsets (a) 55 m, (b)
95 m and (c) 135 m. The red line represents the true values, while the solid and dashed blue
lines represent the mean and P2.5 and P97.5 percentiles, respectively. It is seen that below 30
m the posterior models span the full prior range of resistivity. Grey colour-coding indicates
the full posterior pdf range. Histograms of the (d) data misfit and (e) the inferred impedance
error marginal posterior pdf. The red crosses at the top of the histograms depict the values
corresponding to (d) the data misfit of the true model and (e) the true error standard deviation.

To determine whether model constraints about the considered subsurface influence the ef-

ficiency and robustness of MCMC simulation, a second inversion was performed in which

smoothly varying resistivity structures were favoured by including eq. (3.9) in the prior pdf.

The prior distribution in this case is then the same Jeffreys distribution as before with the

same parameter ranges, but multiplied by the exponential of eq. (3.9). The regularization

weight, λ was assumed to follow a Jeffreys prior with range of half and two times the optimal

value derived by fitting a normal distribution (eq. A2) to the true log-resistivity model. For

convenience, we further assumed a similar value of λ in both the vertical and horizontal direc-

tion.

Numerical results show that convergence was achieved after approximately 75 000 CTUs. Fig-

ure 3.4 illustrates that the posterior realizations exhibit far less spatial variability than those
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previously derived for the unconstrained case without smoothness constraints, although the

models are visually quite different. This is further confirmed by the vertical resistivity profiles

depicted in Figs. 3.5(a-c). Model parameter uncertainty has significantly reduced, but with

the side effect that some features of the true model are no longer accurately represented in

the posterior pdf. Indeed, the two conductors and the shallow resistor are clearly detected,

but the deep resistor is not adequately resolved. Yet, the MCMC inferred resistivity increases

with depth, which is consistent with the observations. The marginal distribution of the data

misfit presented in Fig. 3.5(d) again nicely centres on the true value, and is quite similar to the

unconstrained inversion trial. The same is true for the data error estimation (Fig. 3.5f): the

true value is obtained and the variability is similar to that previously observed in Fig. 3.3(e).

The estimated value of λ is slightly larger than its previous counterpart derived from the true

log-resistivity model. This finding is to be expected and is a direct consequence of the influ-

ence of the data misfit term in the estimation (i.e. less weight is put on the model constraints).
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Figure 3.4: (a-d) Posterior MCMC realizations obtained by inverting the RMT data with
least-squares smoothness constrains. All the four anomalous bodies are somewhat indicated,
even if it is only the upper left conductive body that is well resolved.

We now summarize the MCMC results with an l1 measure (see eq. 3.11) for the model con-

straints. For this inversion, we use a data set contaminated with exponentially distributed

errors and log-likelihood function given by eq. (3.7). For consistency, we again use a Jef-

freys prior for all regular model parameters (resistivities) and hyperparameters (regularization

weight and impedance error). The resistivity and impedance error prior bounds remain the

same as in the past examples, but the prior of the regularization weight ranges from half

(0.055) to four (0.44) times the value found by fitting eq. (3.11) to the true resistivity model.

We purposely increased the upper bound of λ so that the posterior pdf was unaffected by the
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Figure 3.5: MCMC inversion of RMT data with least-squares smoothness constrains. (a-c)
Marginal posterior pdfs of the vertical profiles V1, V2 and V3 corresponding to the offsets
(a) 55 m, (b) 95 m and (c) 135 m. The red line represents the true values, while the solid
and dashed blue lines represent the mean and P2.5 and P97.5 percentiles, respectively. Grey
colour-coding indicates the full posterior pdf range. It is clear that the smoothness constraints
have largely decreased model variability. Histograms of the (d) data misfit, (e) regularization
weight and (f) impedance error marginal posterior pdf. The red crosses at the top of the
histograms depict (d) and (f) the true values and (e) the value given by fitting eq. (3.9) to the
true log-resistivity model.

a priori bounds.

About 67 000 CTUs were needed to declare convergence to a limiting distribution. The pos-

terior realizations presented in Fig. 3.6 are rather homogeneous, and display even less vari-

ability than their counterparts previously depicted in Fig. 3.4 using the least-squares model

constraints. The two shallow features are clearly identified, and a deep conductor can be seen

in three of the four figures. The deep resistor however is not evident in any of the models.

This becomes more evident if we plot the three depth profiles (Figs. 3.7a-c). The 95 percent

posterior uncertainty ranges are comparable to those obtained with the inversion using the l2

model constraints. The data misfit and the impedance errors are very well recovered. How-

ever, the posterior mean of λ is substantially larger than its value derived from fitting the true

model structure to an exponential model (0.11).

Finally, we jointly invert the RMT and ERT data using least-squares smoothness constraints.

In this particular case, the log-likelihood function is given by the sum of those corresponding to

each data set. A derivation of the ERT likelihood is presented in Appendix C. This inversion

includes the ERT data error, which constitutes a new hyperparameter to be estimated. We
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Figure 3.6: (a-d) Posterior MCMC realizations obtained by inverting the RMT data with l1
smoothness constrains. The upper anomalous bodies are resolved, but not the lower ones.

use a Jeffreys prior for this parameter, with bounds given by half and twice its true value.

Convergence of the chains was achieved after about 60 000 CTUs. The posterior realiza-

tions shown in Fig. 3.8 clearly resolve the two conductors and the two resistors. The vertical

resistivity profiles presented in Figs 3.9a-c confirm that joint inversion improves parameter con-

vergence. Yet, the resistor below the conductor (Fig. 3.9a) is not particularly well resolved.

However, its magnitude is much better estimated than in the previous inversions. The model

constraints enforce smooth transitions from the conductor to the resistor and vice versa, which

complicates estimation of the actual magnitudes in the vicinity of these transitions (e.g. Fig.

3.9c below the conductor). The posterior histograms of the RMT (Fig. 3.9d) and ERT data

(Fig. 3.9e) misfits are closely centred on their true values, a desirable finding that indicates

that both data types are equally important in the fitting of the parameters. The marginal pos-

terior distribution of the regularization weight (Fig. 3.9f) demonstrates a tendency towards

somewhat larger values than obtained from the RMT data. This is not surprising, as new data

have been added to the likelihood function. For completeness, Figs 3.9(g) and (h) plot his-

tograms of the impedance and apparent resistivity error. The posterior ranges encompass the

synthetic true values, although the most likely (expected) values are somewhat smaller. This

demonstrates that the measurement errors of both data types can be successfully retrieved

from the joint inversion presented herein.

To provide more insights into the behaviour of the MT-DREAM(ZS) algorithm, Fig. 3.10

presents the evolution of the sampled model structure in one randomly chosen chain as a func-

tion of the number of MCMC realizations. The true value and those inferred from the different
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Figure 3.7: MCMC inversion of RMT data with l1 smoothness constrains. (a-c) Resistivity
marginal posterior pdf of the vertical profiles V1, V2 and V3 corresponding to the offsets (a) 55
m, (b) 95 m and (c) 135 m. The red line represents the true values, while the solid and dashed
blue lines represent the mean and P2.5 and P97.5 percentiles, respectively. Grey colour-coding
indicates the full posterior pdf range. The parameters’ uncertainties are comparable to those
of the l2 smoothness constrains. Histograms of the (d) data misfit, (e) regularization weight
and (f) impedance error marginal posterior pdf. The red crosses at the top of the histograms
of (d) and (f) depict the true values. (e) The value given by fitting eq. (3.11) to the true
log-resistivity model (0.11) is not comprised in the marginal posterior pdf.

MCMC trials are given by the l2-norm of the difference operator applied to the model vector

in the horizontal and vertical directions (i.e. the term enclosed in parentheses in eq. 3.9). We

restrict our attention to the posterior samples, thus after burn-in (cf. Laloy and Vrugt, 2012)

has been achieved.

The MCMC inversion without model constrains (Fig. 3.10a) converges to a model structure

that overestimates the actual variability observed in the true model. The true model is not

contained in the sampled posterior pdf. When smoothness constraints are explicitly included

in the formulation of the log-likelihood function, the posterior models converge much closer

to the true model, but with insufficient structure. This is particularly true if the l1 norm is

used. The average model structure in this case is 24, which is about half the true value. The

correspondence between the true model and posterior realizations improves somewhat if an l2

norm is used. Indeed, the sampled chain trajectory moves closer to the dashed black line, but

nevertheless the actual model variability is still underestimated. Fortunately, a joint inversion

of RMT and ERT data provides posterior realizations with properties similar to that of the

true model, especially if an l2 norm is used for the model constraints.

Table 3.1 lists the centre values and standard deviations estimated with the MCMC and
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Figure 3.8: (a-d) Posterior MCMC realizations obtained by joint inversion of RMT and
ERT data with least-squares smoothness constrains. The anomalous bodies are better defined
compared with the inversions of RMT data alone (see Fig. 3.4).

most-squares inversions for the cells shown in Fig. 3.1(a). To enable a comparison between

both methods, we calculate two different standard deviations from the posterior mean MCMC

model: one for resistivity decrease and one for resistivity increase. We performed three most-

squares inversions: one for the RMT data with smoothness constraints, one for the ERT data

with smoothness constraints, and one for joint inversion with smoothness constraints. To find

the best-fitting models, we locate that sample of the MCMC chains with largest value of the

sum of eqs (3.5) and (3.9). This model was then used to initiate a deterministic inversion

with additional Marquardt-Levenberg damping (cf. Kalscheuer et al., 2010) to attempt to

find a model with an even larger summed log-likelihood. This model was then used by the

most-squares inversion to find the extremal values of each cell. In both inversion steps, we

used the mean model regularization weight determined by the MCMC inversions. As seen in

Fig. 3.1(b), the model discretization is finer in the horizontal direction for the most-squares

inversion. At each iteration we therefore averaged the two resistivities involved in each par-

ticular cell to force a single resistivity value and make it comparable to the MCMC inversion

cell.

The standard deviations summarized in Table 3.1 show that the two types of inversions provide

similar uncertainty estimates. However, the standard deviations derived with the most-squares

inversion are consistently larger than those derived with MCMC simulation. For example, in

the single inversions of the RMT data, cell B has standard deviations of 0.18/0.19 for the

MCMC inversion, and 0.24/0.24 for the most-squares inversion, respectively. These differences

appear larger for the joint inversion. For instance, cell A has standard deviations of 0.08/0.08
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Figure 3.9: MCMC joint inversion of RMT and ERT data with least-squares smoothness
constrains. (a-c) Resistivity marginal posterior pdfs of the vertical profiles V1, V2 and V3
corresponding to the offsets (a) 55 m, (b) 95 m and (c) 135 m. The red line represents the
true values, while the solid and dashed blue lines represent the mean and P2.5 and P97.5
percentiles, respectively. Grey colour-coding indicates the full posterior pdf range. The range
of the posterior pdf is rather small, but covers essentially the true model. Histograms of the
(d) RMT data misfit, (e) ERT data misfit, (f) regularization weight, (g) RMT impedance error
and (h) ERT apparent resistivity error marginal posterior pdfs. The red crosses at the top of
the histograms depict (d), (e), (g) and (h) the true values and (f) the value given by fitting
eq. (3.9) to the true log-resistivity model.

with the MCMC inversion, but with the most-squares inversion these values are doubled.

Furthermore, we see that the mean value estimates are quite different for the two types of

inversion. For example, the mean value of cell A for the ERT data and MCMC inversion is

1.0, whereas its counterpart derived from the most-squares inversion is 1.16. Thus, although

the width of the uncertainty ranges can be quite similar, the mean value might induce shifts

in the posterior distribution.

3.5 Field data Example: Skediga Area (Sweden)

We now apply our methodology to real-world RMT data. A tensor RMT survey was conducted

in Skediga (Sweden) to determine the geometry of a glaciofluvial aquifer system composed of

a sand/gravel formation overlying crystalline basement. The aquifer system is overlain by a
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Figure 3.10: Posterior least-squares model structure metric as a function of realization num-
ber for the different types of MCMC inversions considered. (a) MCMC inversion of RMT data
without model constrains. This inversion needs many more realizations to converge than all
other cases and has a much larger average model structure. (b) MCMC inversions with model
constraints. The dashed black line represents the true value. The joint inversion of RMT and
ERT is the only case that proposes models with the same amount of model structure as the
true model.

formation dominated by clay lenses. We use the same RMT data as Kalscheuer and Pedersen

(2007), that is, 528 data points consisting of apparent resistivities and phases of the determi-

nant mode (Pedersen and Engels, 2005), acquired at 22 different stations using 12 frequencies

in the range of 4-181 kHz. An estimate of the data error was provided by the impedance

estimation from the electric and magnetic field measurements and an error floor of 1.5 percent

was used as in the previous studies (Pedersen et al., 2005; Kalscheuer and Pedersen, 2007).

The error floor constitutes a lower bound to the estimated data errors such that no single data

has an error estimate smaller than this value.

Fig. 3.11(a) shows the model obtained by Kalscheuer and Pedersen (2007) derived from a

deterministic inversion with smoothness constraints using a half-space of 1000 m as the initial

model. The model was obtained after four iterations and has a data misfit of ϕd ,2 = 1141.

Pedersen et al. (2005) interpret the 30 Ωm isoline (i.e. the transition between the two greenish

colours) as the lower bound of the clay lenses. According to boreholes in the vicinity of the

profiles, the transition from the aquifer to the underlying crystalline basement occurs at about

30 m depth (Kalscheuer and Pedersen, 2007).

We ran the MT-DREAM(ZS) algorithm on a 2-D domain consisting of 288 model parameters

using the l2 smoothness constraints. Each resistivity cell is of size 5 ×10 m, except for the
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Table 3.1: Mean values and standard deviations of the cells highlighted in Fig. 3.1(a) for
individual and joint MCMC and most-squares (MS) inversions with different types of model
constraints. The centre values are the mean values for the MCMC inversions and the parameter
derived from the best-fitting MCMC model for the most-squares inversions (cf. Section 3.4
for details). The standard deviations (SD) are given in logarithmic units that are calculated
individually for each side of the centre value (-/+).

Type of Model Cell A Cell B Cell C Cell D
inversion constraint Centre SD(-/+) Centre SD(-/+) Centre SD(-/+) Centre SD(-/+)

log10 ρ(Ωm) log10 ρ(Ωm) log10 ρ(Ωm) log10 ρ(Ωm)

Individual l2-diff. 0.97 0.12/0.11 2.04 0.18/0.19 2.36 0.11/0.15 1.36 0.21/0.21
RMT MCMC
Individual l2-diff. 0.98 0.15/0.12 1.90 0.24/0.24 2.36 0.19/0.17 1.36 0.22/0.26
RMT MS
Individual l2-diff. 1.00 0.10/0.09 2.00 0.12/0.10 2.65 0.11/0.11 2.05 0.14/0.14
ERT MCMC
Individual l2-diff. 01.16 0.17/0.17 1.63 0.23/0.24 2.64 0.18/0.18 2.12 0.23/0.23
ERT MS
Joint MCMC l2-diff. 0.94 0.08/0.08 2.35 0.18/0.18 2.78 0.17/0.15 1.13 0.23/0.25
Joint MS l2-diff. 0.99 0.15/0.16 2.18 0.25/0.35 3.11 0.20/0.18 1.05 0.22/0.26
True values - 1.00 N/A 3.00 N/A 3.0 N/A 1.00 N/A

edges that extend to the end of the forward mesh (1300 m in each direction). We used Jeffreys

priors in the range of 100.5 to 103.5 of ρ(Ωm). In addition, we estimated two hyperparameters:

the regularization weight λ and a data error correction factor. The latter represents a scaling

factor of the errors and error floor. We assume a Jeffreys prior for this scaling factor, with

ranges between the logarithms of 0.5 and 4.

Convergence was reached after approximately 150 000 CTUs. Figures 3.11(b) and (c) show

two realizations from the MCMC derived posterior pdf. The two models clearly indicate two

shallow conductors at profile offsets of 40 m and between 170 and 220 m. A deep resistor is

also found that is deeper on the left side of the profile than in the middle and that disappears

on the right side. A mean posterior model was constructed by taking the mean value of the

different realizations of the posterior pdf (Fig. 3.11d). This model is largely comparable to

the model obtained by the deterministic inversion; the claysand/gravel transitions are located

at similar depths nearly everywhere along the profile and the overall basement geometry of

the two different models corresponds well (this was also noted with the ensemble mean of the

synthetic example using least squares smoothness constraints compared to Fig. 3.11(b), not

shown here). Some deviations are possibly due to difference in model discretization, but may

more probably be due to differences in data fitting, as discussed below.

We present four vertical profiles of the posterior pdf in Figs 3.12(a-d), at offsets (a) y= 50 m,

(b) y= 100 m, (c) y= 150 m and (d) y= 200 m. As expected, the profiles show an increase
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Figure 3.11: (a) Deterministic inversion model obtained from RMT data acquired at Skediga,
Sweden (modified after Kalscheuer and Pedersen, 2007). Numbered letters V1, V2, V3 and V4
indicate the offsets at which the resistivity marginal posterior pdfs are presented in Fig. 3.12.
(b)(c) Posterior MCMC realizations obtained by inversion of the same data with least-squares
smoothness constrains. (d) Ensemble posterior mean model from MCMC inversion. The data
misfits are calculated with errors inferred from the mean value of Fig. 3.12(e). Note the strong
similarity between the models in (a) and (d).

in model variability below the conductive clay lenses. Furthermore, we see how the clay-

sand/gravel transitions are much better determined at places where the aquifer stretches up

to the surface (Figs. 3.12b and c). In these regions there is no overlapping between the two

resistivity intervals, whereas in the other two profiles the transition happens more smoothly,

probably due to the model constraints. Also the transition to a fixed basement resistivity

is smooth because of the model regularization. Magnitudes are expected to be above ρ =
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Figure 3.12: MCMC inversion of the Skediga data set with least-squares model constraints.
(a-d) Resistivity marginal posterior pdf of the vertical profiles V1, V2, V3 and V4 correspond-
ing to the offsets (a) 50 m, (b) 100 m, (c) 150 m and (d) 200 m of the model shown in Fig.
??(d). The solid and dashed blue lines represent the mean and P2.5 and P97.5 percentiles,
respectively. The red line represents the values obtained with the deterministic inversion (see
Fig. ??a). Grey colour-coding indicates the full posterior pdf range. (e-f) Histograms of the
(e) data misfit and (f) impedance error scaling factor marginal posterior pdfs. The red cross
at the top of (e) depicts the number of data.

1000Ωm for the crystalline basement (Pedersen et al., 2005). These values are reached at all

profiles except in Fig. 3.12(d), probably due to the important clay thickness in the shallow

part of the model. Figs 3.12(e) and (f) show marginal distributions of the posterior data misfit

and the data error correction factor. These two variables are related. The mean data misfit is

542 and the number of data is comprised within the estimated data misfit uncertainty range.

The mean data error correction factor is 1.84, hence data errors are estimated to be almost

twice those initially assumed for the impedances. The data misfits presented in Fig. 3.11 are

calculated using data errors corrected with this value, and they show that the model given by

the deterministic inversion appears to be overfitting the data. This, in turn, could explain the

differences in magnitude observed between the two models. An inversion of the Skediga data

set with the same priors for the error scaling factor and resistivity values but with no model

constraints converged to a similar marginal posterior pdf of the impedance errors (not shown).

In accordance with the synthetic example, the posterior pdf of the unconstrained inversion

contains models with unrealistically high spatial variability.

67



Chapter 3

3.6 Discussion

We have presented the first fully 2-D pixel-based MCMC inversion of plane-wave EM data.

While the presented results indicate that the inversion can be successfully addressed within

a probabilistic framework, notable features and issues arise that are discussed in more detail

below.

A comparison between the most-squares and MCMC inversions showed that while the former

tends to provide slightly larger uncertainty estimates, the results of the two approaches are

comparable. A more substantial difference between the methods relates to the centre values

from which the uncertainty estimates are derived. This difference is mainly caused by the

fact that the most-squares inversion starts from a model that minimizes the combined data

and model misfit function, while the MCMC analysis is based on an ensemble mean model

obtained from a combination of the marginal estimates of individual variables. The minimiza-

tion approach used in the most-squares inversion is not rigorously formal, as the best model

should be the one that best represents the statistics of the posterior pdf rather than the min-

imization of the combined data and model misfit function. Calculating maximal and minimal

perturbations of specific parameters from this “optimal” model could be the reason for the

shifted and slightly larger uncertainty ranges compared to the MCMC estimates that describe

the ensemble statistics of the posterior pdf.

The type of model parameterization and the number of parameters have an important impact

on the posterior pdfs. Laloy and Vrugt (2012) and Linde and Vrugt (2013) used model param-

eterizations based on Legendre polynomials and the discrete cosine transform, respectively,

to show how improper model truncations may lead to biased model estimates. To alleviate

this problem, we considered a finely discretized model. However, the unconstrained inversions

converge to models that exhibit much more structure than the true model (see Fig. 3.10a),

which is in agreement with Linde and Vrugt (2013). When running inversions with coarser

grids (i.e. 10 × 10 m cells, not shown herein), the proposed models and the true model are in

much better agreement and the uncertainty ranges of the parameters were strongly reduced.

This highlights the fundamental trade-off between model resolution and variability: allowing a

higher spatial resolution by using smaller model cells implies larger resistivity ranges for each

pixel.

To obtain meaningful results for fine model discretizations, it appears fundamental to add ad-

ditional constraints regarding the model structure. As noted by Grandis et al. (1999) for the

1-D MT problem, the use of least-squares smoothness constraints reduced the presence of un-

realistic oscillations in the models and led to smaller and more realistic estimates of parameter

uncertainty. Unfortunately, the models provided by the constrained inversions did not con-

tain all the features of the true model. In regions where the data are not sensitive enough, the
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model constraints strongly affect the resulting parameter values and result in biased estimates.

The problem of biased estimates was partly mitigated through joint inversion of the plane-wave

EM data with ERT. The inversion of the ERT data alone with l2 smoothness constraints (not

shown) did recover the deep resistor albeit with a smaller magnitude than the true value, but

not the deep conductor that was resolved by the RMT data. As seen in Fig. 3.10, when invert-

ing the ERT data and plane-wave EM data separately, constraining the model structure led to

oversimplified models, whereas the joint inversion led to the correct amount of model structure

for this specific application. The models obtained from the plane-wave EM data could clearly

be improved by adding lower frequencies, while a larger electrode spread would improve the

ERT models. However, our intention was not to determine an optimal experimental design,

but to evaluate the implications of the different constraints applied to the inferred subsurface

models. In this sense, we see how the combination of two complimentary methods helps to

better estimate the resistivity models in terms of structure and magnitude, and effectively

reduces the weight given to the model constraints.

Other strategies can also be applied to tackle the aforementioned issues. The incorporation

of a pre-supposed geostatistical model or summary statistics derived from training images can

easily be incorporated in the Bayesian framework (e.g. Cordua et al., 2012). Clearly, the re-

sulting models would be much closer to the true model if the true model structure was known

and we penalized deviations from this value in Eqs. (3.9) and (3.11), rather than penaliz-

ing deviations from zero variability. Reliable information of this kind is often not available

and strong assumptions about the model structure will to a certain degree promulgate biased

model estimates. Nevertheless, it might be favourable to test the resulting models under such

restrictive assumptions, rather than to obtain models that are too variable to be meaningful.

Alternatively, one may consider a set of possible model parameterizations, model discretiza-

tions and/or model constraints that may seem equally suitable for a specific problem. In the

spirit of Oldenburg and Li (1999), one may test the different hypotheses of the model struc-

ture and compare the results. More quantitatively, a 2-D trans-dimensional inversion algorithm

could be implemented. The trans-dimenional algorithm would, for a chosen parameterization,

estimate the appropriate degree of discretization, while inherently favouring models with fewer

parameters (see Bodin and Sambridge, 2009 for a 2-D application to seismic tomography). The

implementation of such a method is beyond the scope of the present work. Possibly more in-

teresting than determining appropriate model discretizations would be to determine preferred

model parameterizations. In fact, a formal theory based on Bayes factors (e.g. Kass and

Raftery, 1995) could be used to evaluate evidence in favour of a null hypothesis (see Khan and

Mosegaard, 2002; Khan et al., 2004) for applications of Bayes factors to study the physical

properties of the Moon). Bayes factors could be used within a model selection strategy to

evaluate the a posteriori probability of different model parameterizations and discretizations.
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We leave such a study of Bayesian hypothesis testing for future work.

3.7 Conclusions

We presented the first pixel-based and fully 2-D MCMC inversion of plane-wave EM and ERT

data. The results of the inversion include the posterior mean and uncertainty of the model

parameter estimates. Numerical findings demonstrated a necessity to add explicit constraints

on the model structure to obtain meaningful results. These constraints were designed such

that they favour model parsimony, and consequently the posterior ensemble mean was shifted

closer to that of its true value. However, model interpretation should be done with some care,

acknowledging that models may be biased in regions with insufficient data sensitivity, and

uncertainty estimates are determined by the imposed model constraints.

The MCMC inversion not only appropriately converged to the posterior mean model, the

posterior realizations adequately estimated the actual data errors, including a regularization

weight that favours the appropriate model structure. Joint inversion of the ERT and plane-

wave EM data provided the best model estimates. The inversion methodology was applied

to real RMT aquifer data from Sweden. The MCMC derived posterior mean model was very

similar to that of the model geometry obtained from a deterministic inversion. On top of

this, the MT-DREAM(ZS) algorithm also retrieved a correction of the impedance errors, which

suggested that the deterministic inversion might have overfitted the experimental data. The

differences among the resistivity magnitudes of the two different models may hence be explained

by a difference in data fitting. Future work should involve diagnostic criteria and methodologies

that help favour model selection. In this regard, Bayes factors may be of particular interest.
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3.9 Appendix A: 2-D Smoothness Constraints

To obtain smoothly varying model property variations in the 2-D models, we impose zero-mean

normal prior distributions with respect to the vertical and horizontal log-resistivity gradients:
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where Dy and Dz are the difference operators in the horizontal and vertical directions with

rank My and Mz , respectively, and αy and αz are the standard deviations of the log-resistivity

gradients in each direction. Assuming that the two pdfs are uncorrelated, the joint pdf of the

horizontal and vertical resistivity gradients is given by multiplication of each pdf (eq. 3.8).

When the standard deviations are the same, eq. (3.8) can be expressed as

cm ,2(m) =
1

(2πλ)My

1

(2πλ)Mz
exp

[

− 1

2λ2

(

mTDT
yDym+mTDT

z Dzm
)

]

, (3.14)

where λ = αz = αy . Taking the logarithm of eq. 3.14 results in

log(cm ,2(m)) = −My log(2πλ
2) − Mz log(2πλ

2) − 1

2λ2

(

mTDT
yDym+mTDT

z Dzm
)

, (3.15)

or, equivalently

log(cm ,2(m)) = −(My + Mz ) log(2πλ
2) − 1

2λ2

(

mTDT
yDym+mTDT

z Dzm
)

. (3.16)

3.10 Appendix B: Log-likelihood functions for plane-wave EM

data

Equation (3.5) represents the log-likelihood function of a set of normally distributed errors

that have zero mean and are uncorrelated. These errors may, however, have different standard

deviations. Indeed, RMT data often comprise apparent resistivities and phases. Let the first

N/2 data points be the apparent resistivities di = ρ
app

i , i = 1, ..., N/2, and the last N/2 data

points the phases di = φi , i = N/2 + 1, ..., N . The data standard deviations can then be

expressed as (Fisher and LeQuang, 1981)

σi =



















rdi , if i = 1, ..., N/2

r/2, if i = N/2 + 1, ..., N
(3.17)

where r is the standard deviation of the relative error of the apparent resistivities, which is

assumed to be the same for all measurements. Using eq. 3.17, the middle term in eq. (3.5)

can be expressed as

1

2
log















∏

1≤i≤N

σ 2
i















=

1

2
log

















∏

1≤i≤N/2

(r ρ
app

i )2
∏

N/2+1≤i≤N

(r/2))2

















(3.18)

which leads to
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1
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log


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


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i
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











= log


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











rN
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∏

1≤i≤N/2

ρ
app

i

















. (3.19)

Expanding the logarithm and replacing this expression in eq. (3.5) gives

l(m|d) = −N
2
log(2π)+

N

2
log(2)−N log(r)−

∑

1≤i≤N/2

log(ρ
app

i )− 1
2

∑

1≤i≤N

(

дi (m) − di
σi

)2

, (3.20)

which is equivalent to

l(m|d) = −N
2
log(π) − N log(r) −

∑

1≤i≤N/2

log(ρ
app

i ) − 1

2

∑

1≤i≤N

(

дi (m) − di
σi

)2

. (3.21)

3.11 Appendix C: Log-likelihood functions for ERT data

In the case of ERT, we consider a single type of data. The apparent resistivities are assumed

to comprise relative errors. Therefore, we follow the same derivation as in Appendix B, but

with standard deviations given by σi = rdi , i = 1, ..., N . Then, the middle term of eq. (3.5) can

be expressed as

1

2
log















∏

1≤i≤N

σ 2
i















= log















rN
∏

1≤i≤N

ρ
app

i















, (3.22)

which leads to a log-likelihood of the form

l(m|d) = −N
2
log(π) − N log(r) −

∑

1≤i≤N

log(ρ
app

i ) − 1

2

∑

1≤i≤N

(

дi (m) − di
σi

)2

. (3.23)
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4.1 Abstract

Surface-based monitoring of mass transfer caused by injections and extractions in deep bore-

holes is crucial to maximize oil, gas, and geothermal production. Inductive electromagnetic

methods, such as magnetotellurics, are appealing for these applications due to their large pen-

etration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In

this work, we propose a three-dimensional Markov chain Monte Carlo (MCMC) inversion of

time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The

inversion retrieves the posterior probability density function of the resulting plume, and thus

directly quantifies uncertainty. To decrease computation times, we base the parameterization

on a reduced Legendre moment decomposition of the plume. A synthetic test shows that

our methodology is effective when the electrical resistivity structure prior to the injection is

well characterized. The center of mass and spread of the plume are well retrieved. We then

apply our inversion strategy to an injection experiment in an enhanced geothermal system

at Paralana, South Australia, and compare it to a three-dimensional deterministic time-lapse

inversion. The latter retrieves conductivity changes that are more shallow than the actual

injection interval, whereas the probabilistic inversion retrieves plumes that are located at the

correct depths and oriented in a preferential north-south direction. The inversion requires a

correction factor in the petrophysical relation to explain the time-lapse data. We suggest that

this discrepancy may be partly explained by unaccounted subsurface heterogeneities in the

base model from which time-lapse changes are inferred.

4.2 Introduction

Monitoring of subsurface mass transfer is critical to maximize oil, gas, and geothermal produc-

tion, to improve groundwater remediation and to manage environmental risk. In particular,

enhanced geothermal systems, which constitute an attractive and increasingly studied renew-

able energy source (Muñoz, 2014), require information on the flow paths taken by the injected

water in order to subsequently recover it and use it for energy production.

Geophysical methods are suitable to characterize subsurface processes, both because of their

non-invasive nature and their capacity to provide spatially extensive data coverage (e.g., Hub-

bard and Rubin, 2005). Various geophysical techniques have been applied in time-lapse stud-

ies that aim at inferring temporal changes in the near subsurface (e.g., LaBrecque and Yang,

2001; Day-Lewis et al., 2002; Ajo-Franklin et al., 2007; Miller et al., 2008; Doetsch et al., 2010;

Rosas Carbajal et al., 2012). Tailored inverse formulations that reduce noise and model pa-

rameterizations that focus on temporal changes make time-lapse inversions more suitable than

simple differencing of models obtained from separate inversions. LaBrecque and Yang (2001)

proposed a time-lapse difference inversion, and applied it to three-dimensional electrical resis-

tivity tomography (ERT) data. A similar strategy was applied by Ajo-Franklin et al. (2007)
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to better resolve subsurface variations related to CO2 injection with crosshole seismics, and by

Doetsch et al. (2010) combined with joint inversion of crosshole ERT and ground-penetrating

radar (GPR). More recently, Rosas Carbajal et al. (2012) applied this type of inversion ap-

proach to time-lapse electromagnetic (EM) data, specifically radio (RMT) and audio (AMT)

magnetotellurics. Inspired by the work of Falgàs et al. (2009), who monitored saltwater intru-

sion in a coastal aquifer, Rosas Carbajal et al. (2012) demonstrated significant improvements

in the resulting models by incorporating information about the expected temporal changes

and removing systematic errors.

For deeper targets, for example in volcanic and geothermal studies, microseismic and inductive

EM methods represent prominent monitoring tools. The former consists in locating natural

(e.g., Brenguier et al., 2007, 2008) or induced (e.g., House, 1987) seismic sources associated

with fracture openings caused by hydraulic pressure variation. The latter are sensitive to

changes in electrical resistivity, which can be related to fluid redistributions and changes in

fracture connectivity. Feasibility studies (e.g., Lien and Mannseth, 2008; Orange et al., 2009;

Wirianto et al., 2010) that focused on controlled source electromagnetics (CSEM) showed that

monitoring is feasible, but complicated by the diffusive character of the EM fields and the

depths of investigation. Bedrosian et al. (2004) performed one of the first magnetotellurics

(MT) studies aimed at monitoring a fluid injection. They conducted two-dimensional inver-

sions to map the subsurface resistivity changes following the injection, but no changes could

be detected due to the low signal-to-noise-ratio. Kappler et al. (2010) studied MT data vari-

ations over a period of 4 years at the San Andreas Fault and showed that no significant EM

signal precursors occurred prior to the most significant earthquake event during this period.

Aizawa et al. (2011) conducted a one-year monitoring study at a volcano in Japan using two

MT stations. The data indicate large temporal changes, and the two-dimensional inversion

models suggested that the resistivity changes occurred at the sea level. Peacock et al. (2012,

2013) presented MT monitoring results of an injection experiment in an enhanced geothermal

system at Paralana, Australia. In this experiment, 3100 m3 of saline water, together with

acids, were injected at 3.7 km depth to stimulate the opening of new fractures and enable

remote monitoring of the plume. The authors observed changes above the ambient noise in

both apparent resistivity and phase at ∼50 MT stations, with maximum changes occurring in

the north-northeast direction. No attempts were made to invert these data.

The works cited above present deterministic approaches to the inverse problem, where one

single subsurface model that explains the data is sought by iterative linearization and regu-

larization, and no formal estimates of model parameter uncertainty are made. An alternative

approach is offered by probabilistic inversion (e.g., Mosegaard and Tarantola, 1995; Tarantola,

2005). This approach aims at estimating the posterior probability density function (pdf) of

the model parameters, which carries detailed information about parameter uncertainty. To

numerically estimate the posterior distributions, Markov chain Monte Carlo (MCMC) simu-
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lation methods are often used. These methods are able to (e.g., Sambridge and Mosegaard,

2002, and references therein) (1) correctly treat the non-linear relationships between model

and data, (2) successfully converge to the posterior pdf of the model parameters, and thus,

(3) adequately characterize parameter uncertainty. Pioneering EM applications of probabilis-

tic inversions were performed by Tarits et al. (1994), Grandis et al. (1999, 2002), Hou et al.

(2006), Khan et al. (2006), and Chen et al. (2007). The computational costs of the algorithms,

which require many evaluations of the forward response, have only recently been overcome

to explore high dimensional problems: Chen et al. (2012) presented a MCMC algorithm to

invert two-dimensional MT data based on a fixed number of layers, and Rosas-Carbajal et al.

(2014) presented the first two-dimensional pixel-based MCMC inversion of plane-wave EM

data. Probabilistic inversions have been applied to time-lapse geophysical data (e.g., Ramirez

et al., 2005; Laloy et al., 2012; Lochbühler et al., 2014). Of particular interest in this study

is the work by Laloy et al. (2012), who inverted synthetic crosshole GPR travel time data

to characterize a injected water plume in partially-saturated media. The authors proposed a

model parameterization based on the Legendre moments of the injected plume. This reduces

the number of parameters to estimate, and thus the computation time, and constrains the

solutions to those that honor the total volume of water injected.

In this paper, we address the problem of estimating the mass transfer following a deep injection

with time-lapse MT data. To do so, we present the first three-dimensional time-lapse deter-

ministic and probabilistic inversions of MT data. We parameterize the probabilistic inversion

using a Legendre moment decomposition similar to Laloy et al. (2012), but under saturated

conditions and for a saline fluid, and provide estimates of the plume’s center of mass and

spread and their uncertainty. After a numerical test, we focus on the plume resulting from

the Paralana injection experiment (Peacock et al., 2012), and compare the MCMC inversion

results to those obtained by time-lapse deterministic inversion.

4.3 Methodology

4.3.1 Probabilistic inversion

We use a probabilistic framework to estimate the posterior pdf of a set of model parameters that

describe a tracer plume at a given time-lapse t. Let this system be described by a vector of B

model parameters, bt = (b1,t ,b2,t , ...,bB ,t ) and a set of N observations, dt = (d1,t , d2,t , ...,dN ,t ),

which are related to bt via a set of equations,

dt = д(bt ) + er,t + esys , (4.1)

where д(bt ) is the MT forward response, er,t is a random observational error that is varying

in time, and esys is a systematic contribution that is present at all times. The latter may

include modeling errors, static shifts, errors in sensor calibrations, and/or geometrical errors

76



Monitoring fluid injection in a geothermal system

(e.g., station positioning). The posterior pdf p(bt |dt ) of the model parameters conditional on

the data is found by applying Bayes theorem (e.g., Tarantola and Valette, 1982). In the case

of a fixed model parameterization, this results in the following proportionality equality

p(bt |dt ) ∝ p(bt )L(bt ). (4.2)

The prior probability, p(bt ), represents the information known about the subsurface before

collecting the actual data, whereas the likelihood function, L(bt ), describes the likelihood that

a given model is responsible for the observed data. The larger the likelihood, the closer the

model response is to the experimental data. Typically, the assumption is made that the errors

are uncorrelated and follow a normal distribution with zero mean. Then the log-likelihood

function, that is, the logarithm of the likelihood function, is l(bt ) ∝ − 1
2φl2 , where

φl2 =

N
∑

i=1

(

дi (bt ) − di ,t
σi ,t

)2

, (4.3)

represents the data misfit, σi ,t denotes the standard deviation of the i-th error at time t, and

the subscript l2 indicates the l2-norm. Under these assumptions, φl2 is expected to follow a

chi-squared distribution with expected value N . A common representation of the data misfit

is the root mean square (RMS) misfit:

RMS =

√

√

√

1

N

N
∑

i=1

(

дi (bt ) − di ,t
σi ,t

)2

, (4.4)

which takes a value of RMS = 1 when φl2 = N .

When the data errors contain significant outliers, it is often better to use an exponential dis-

tribution, which is equivalent to using an l1-norm instead of an l2-norm in the data misfit

(Menke, 1989). The l1-norm is more robust and often represents a more realistic description

of data errors (e.g., Claerbout and Muir, 1973; Egbert and Booker, 1986; Chave and Thom-

son, 1989; Farquharson and Oldenburg, 1998; Tarantola, 2005). For uncorrelated errors, the

corresponding log-likelihood function is proportional to l(bt ) ∝ −φl1 , where the data misfit is

now defined as

φl1 =

N
∑

i=1

∣

∣

∣

∣

∣

∣

дi (bt ) − di ,t
σi ,t

∣

∣

∣

∣

∣

∣

, (4.5)

and σi ,t represents the mean deviation of the i-th error at time t (e.g., Tarantola, 2005).

To numerically implement the probabilistic inversion, we use the DREAM(ZS) algorithm (Laloy

and Vrugt, 2012). This is an adaptive MCMC algorithm (e.g., Roberts and Rosenthal, 2007)

which, in order to render the sampling more efficient, runs multiple chains in parallel and

implements sampling from an archive of past states. Jumps in each chain are calculated by
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computing the difference between one or multiple pairs of chain states, drawn from an external

sample of points that summarizes the search history of all the individual chains. A proposed

model bt ,new is accepted, in the case of a uniform prior, with probability (e.g., Mosegaard and

Tarantola, 1995):

Paccept = min
{

1, exp[l(bt ,new ) − l(bt ,old )]
}

, (4.6)

where bt ,old is the chain’s last accepted model. If the proposal is accepted then the chain

moves to bt ,new , otherwise the chain remains at its old location. After a burn-in period, the

sampled model realizations are distributed according to the underlying posterior distribution.

To assess convergence, the Gelman-Rubin statistic (Gelman and Rubin, 1992) is periodically

computed using the last 50% of the chains’ samples. Convergence to a limiting distribution is

declared if the Gelman-Rubin statistic is less than 1.2 for all model parameters.

A variation of the DREAM(ZS) algorithm is the so-called MT-DREAM(ZS) algorithm (Laloy

and Vrugt, 2012), which has recently been applied to several types of geophysical data such as

GPR, RMT and ERT (Laloy et al., 2012; Linde and Vrugt, 2013; Rosas-Carbajal et al., 2014;

Lochbühler et al., 2014). This multiple-try sampling procedure, designed for high parameter

dimensions (i.e., more than ∼30 model parameters), proposes several models per chain and per

realization, and thus requires many forward computations running in parallel to be efficient.

In the present contribution we use DREAM(ZS) as we estimate at maximum 14 parameters.

We run the different chains in parallel, and use parallelized forward solvers.

4.3.2 Time-lapse strategy

Rosas Carbajal et al. (2012) used a time-lapse inversion strategy to obtain temporal updates

from an initial two-dimensional resistivity model using time-lapse RMT and AMT data. The

strategy is based on data differencing (LaBrecque and Yang, 2001) to remove systematic errors

(see Eq. 4.1). Although the examples were limited to the audio and radio frequency range,

this strategy is directly applicable to other types of geophysical data, in particular MT data.

First, a base resistivity model is obtained by means of a deterministic inversion using the

data acquired at a reference time (t = 0) before any perturbation is made to the system. The

resulting data residuals, δ0 = dt − д(b0) = esys + er,0, are removed from the data acquired at

all subsequent times:

d̃t = dt − δ0 = д(bt ) + er,t − er,0. (4.7)

The new data sets d̃t used in the inversion at time-lapse t will be contaminated with less

error provided that σsys >
√

σ 2
r ,0 + σ 2

r ,t , where σsys and σr are the standard deviations of the

systematic and random errors, respectively.
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4.3.3 Tracer plume parameterization

Markov chain Monte Carlo inversion is computationally demanding in high parameter dimen-

sions. To reduce the number of parameters, and to include the total mass of water injected as

a fixed constraint on the proposed plume geometries, we use a parsimonious model parameter-

ization proposed by Laloy et al. (2012). This parameterization is based on a reduced Legendre

moment decomposition of the tracer plume. The Legendre polynomials are orthogonal if de-

fined in a unit square domain, and thus the Legendre moments are uncorrelated with each

other (Teague, 1980).

Consider a uniformly discretized three-dimensional distribution of the injected fluid θi [m
3/m3],

i = 1, ..., (nx × ny × nz), for which xi , yi and zi , are the spatial coordinates and nx , ny, and

nz the number of voxels in the x -, y- and z-directions, respectively. The three-dimensional

space described by θ is a sub-region of the three-dimensional resistivity forward model do-

main and is typically more finely discretized (see Fig. 4.1). A set of coordinates β =

(xstart , xend ,ystart ,yend , zstart , zend) describes the limits within this sub-region where θi , 0.

Figure 4.1: Three-dimensional parameter discretization used in the inversions of the Par-
alana data set. The discretization along the north axis, not shown in the figure, is identical
to the discretization along the east axis. The black lines represent the resistivity mesh (the
complete extension to the sides and in depth is not shown), which is used as the forward mesh
in the MCMC inversions and also as the inversion mesh in the deterministic inversions. The
solid blue lines represent the limits of the sub-region where the tracer plumes can be placed in
the MCMC inversions. The dashed blue lines represent the discretization of the tracer plume
as mapped from the Legendre parameterization. The black cross indicates the injection point.

The Legendre moments λ of θ are given by

λpqu =
(2p + 1)(2q + 1)(2u + 1)

8
×

nx ×ny×nz
∑

i=1

Pp(x
′

i )Pq(y
′

i )Pu(z
′

i )θi∆x
′
∆y′∆z′, (4.8)

where x ′, y′, and z′ are the transformed model coordinates on a unit square grid [−1 ≤
x ′,y′, z′ ≤ 1], ∆x ′, ∆y′ and ∆z′ represent the voxel dimensions of the unit square, and Pp(x

′

i )
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is the Legendre polynomial of order p evaluated by numerical integration over cell i in the

x -direction. In matrix notation, equation (4.8) is described by

λ = Pθ, (4.9)

where P contains the Legendre polynomial products on the three-dimensional unit grid. Then,

θ can be reconstructed from its Legendre moments up to a given resolution defined by a

truncated series expansion (Teague, 1980),

θ reci =

Omax
∑

p=0

Omax
∑

q=0

Omax
∑

u=0

λpquPp(x
′

i )Pq(y
′

i )Pu(z
′

i ), (4.10)

where the superscript rec stands for reconstructed and Omax is the maximum order of moments

used for the reconstruction. Writing Eq. 4.10 in matrix notation gives

θrec = Γλ, (4.11)

where Γ contains the polynomial product coefficients of the orthogonal moments and has

dimension (nx × ny × nz) × npqu , with npqu = [(max(p)+1) × (max(q)+1) × (max(u)+1)]. The

resulting plumes should not only lead to resistivity models whose forward responses explain

the measured data, but they should also honor prior constraints. Here, the first imposed

constraint concerns the total mass of injected water, which is directly related to the first

Legendre moment:

λ000 =
W tot

8

∆x ′∆y′∆z′

∆x∆y∆z
, (4.12)

where ∆x , ∆y, and ∆z represent the true voxel dimensions and W tot is the injected volume of

water. The remaining constraints force θ to be zero at the boundaries of the region defined by

β. Following Laloy et al. (2012), we construct a system of equations Aλ = h, which contains

all the constraints on λ, and calculate the singular value decomposition (SVD) of A

A = USVT , (4.13)

where U and V are orthogonal matrices that contain basis vectors spanning the space of

constraints imposed in h, and basis vectors spanning the model space for λ, respectively, and

S is a diagonal matrix with the singular values sorted in decreasing order. According to Laloy

et al. (2012), S will typically have k significant singular values related to the constraints in h.

Then, the solutions to the inverse problem will have the general form

λ = VkS
−1
k UT

k h+V0α, (4.14)

where Vk , Sk and Uk have dimensions npqu × k , k × k and Nprior × k, respectively. The first

term on the right side of Eq. 4.14 ensures that λ satisfies the desired constraints while the
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second term, specifically the vector α, is to be determined by the MCMC inversion such that

the inferred models honor the data.

The constraints described above do not prevent the generation of models containing negative

values (i.e., θi < 0). To avoid such models, we only consider the region of the plume with

θi ≥ 0, that is, we set to zero the negative values, and re-scale the plume to conserve the

injected water mass.

We evaluate the basic geometrical properties of the resulting plumes in terms of their center

of mass:


























µxc =
1

W tot

∑nx ×ny×nz

i=1 θixi∆x
′
∆y′∆z′,

µyc =
1

W tot

∑nx ×ny×nz

i=1 θiyi∆x
′
∆y′∆z′,

µzc =
1

W tot

∑nx ×ny×nz

i=1 θizi∆x
′
∆y′∆z′,

(4.15)

and spread:


































Sxx =
√

1
W tot

(

∑nx ×ny×nz

i=1 θix
2
i ∆x

′∆y′∆z′
)

− µ2xc ,

Syy =
√

1
W tot

(

∑nx ×ny×nz

i=1 θiy
2
i ∆x

′∆y′∆z′
)

− µ2yc ,

Szz =
√

1
W tot

(

∑nx ×ny×nz

i=1 θiz
2
i ∆x

′∆y′∆z′
)

− µ2zc .

(4.16)

4.3.4 Petrophysics and upscaling procedure

In this subsection, we explain how θ can be translated into a salinity distribution and cor-

responding bulk resistivity values, from which the MT response can be evaluated. Let the

three-dimensional subsurface resistivity prior to the injection be described by a vector r j ,0,

j = 1, ..., (NX × NY × NZ ), with NX , NY and NZ the number of resistivity blocks in the x -,

y- and z-direction, respectively. The subscript 0 refers to the base model, that is, prior to the

injection. The black mesh in Fig. 4.1 represents this discretization. It is assumed that the

region where fluid is injected is saturated with water of constant resistivity. Taking Φ j ,t to be

the porosity at the scale of the resistivity discretization, and using Archie’s law (Archie, 1942)

gives

r j ,0 = ρ
pre
w Φ

−m0

j ,0 , (4.17)

where m0 is the cementation factor prior to the injection, which is assumed to be known, and

ρ
pre
w is the resistivity of the pre-existing fluid at the confined rock temperature. It is assumed

that the conductive fluid dominates the conduction in the fracture network (e.g., Brace et al.,

1965), and surface conductivity is thus neglected.

The fluid resistivity is a function of temperature and salt concentration. We use the relationship

by Sen and Goode (1992) to model this dependence:

ρw(T , c) =
[

(5.6 + 0.27T − 1.5 × 10−4T 2)c − 2.36 + 0.099T

1 + 0.214c
c3/2

]−1

Ωm, (4.18)
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where c is the salt concentration in mol/l andT the temperature in ◦C. Given a proposed spatial

distribution of the tracer plume at time t, θi ,t [m3/m3], which is prescribed at a finer scale

than that of the base resistivity model, we consider the possibility of an increase in porosity

due to the opening of fractures, ∆ϕi ,t , where ϕi ,t represents the porosity at the scale of the fine

discretization. The bounds for the porosity change are given by 0 ≤ ∆ϕi ,t ≤ θi ,t . To obtain the

salt concentration of the fluid at time t in each model block, we sum the contributions from

the salt concentration prior to the injection and the salt concentration of the injected water,

weighted by the volume they occupy in the available space:

ci ,t =
θi ,t

ϕi ,t
c inj +

ϕi ,t − θi ,t
ϕi ,t

cpre , (4.19)

where ϕi ,t = ϕi ,0 + ∆ϕi ,t .

If new fractures are opened it is likely that the cementation factor decreases (e.g., Jougnot and

Revil, 2010). As a first approximation, we model the changes of the cementation factor ∆mi ,t

as a linear mapping of the injected water content to the interval [0 : ∆mmax], that is,

∆mi ,t =
θi ,t

θt ,max
∆mmax , (4.20)

where the maximum change in the cementation factor ∆mmax is one of the parameters to

be estimated within the inversion. The cementation factor at time t will then be given by

mi ,t =m0 + ∆mi ,t .

To reduce the time needed to calculate the MT forward responses, it is important to make

the resistivity model discretization as coarse as possible. To upscale the finely discretized salt

concentration model described by our inverse parameterization to the coarse bulk resistivity

model used for forward modeling (see Fig. 4.1), we volume-average the porosity and the

cementation factor in each coarse block:



















Φ j ,t =

∑

i∈Vj
ϕi ,tVi
Vj
,

M j ,t =

∑

i∈Vj
mi ,tVi
Vj
,

(4.21)

where Vj and Vi are the volumes of the coarse-mesh and fine-mesh blocks, respectively. Corre-

spondingly, the total salt content in each of the coarse blocks is given by:

S j ,t =
∑

i∈Vj

ci ,tϕi ,tVi . (4.22)

We use this salt content to calculate the upscaled fluid salt concentration C j ,t =
S j ,t

Φj ,tVj
, which in

turn is used in Eq. 4.18 to calculate an upscaled fluid resistivity. Finally, the coarse-mesh bulk

resistivity at time t, r j ,t , is calculated using Eq. 4.17 with the upscaled porosity, cementation
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factor and fluid resistivity.

The posterior pdf that we seek to sample with MCMC simulations is given by

p(bt |d̃t ) ∝ p(bt )L(bt ), (4.23)

where bt = [α, β,∆mmax]. Figure 4.2 summarizes our probabilistic inversion methodology and

the upscaling procedure.
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Figure 4.2: Schematic overview of the MCMC inversion framework used to invert the
time-lapse MT data. The left side describes the MCMC algorithm applied to one of the
parallel chains used in DREAM(ZS). The right side highlights the upscaling procedure used to
transform the proposed tracer plume model to a resistivity model that can be used to evaluate
the corresponding MT response.

4.3.5 Three-dimensional deterministic inversion

To obtain the base resistivity model needed for the time-lapse inversions, we resort to classical

deterministic inversion. To the best of our knowledge, no attempts have been made so far to

use MT data to obtain the posterior pdf of a three-dimensional resistivity model discretized

in voxels. This is because the large number of unknowns would imply a large number of

iterations to converge to the posterior distribution (c.f., Rosas-Carbajal et al., 2014), and the

forward solvers still require significant CPU time to calculate the three-dimensional forward

model response. We use the ModEM program (Egbert and Kelbert, 2012) with non-linear

conjugate gradients as the inversion algorithm (e.g., Nocedal and Wright, 2006) to perform
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the deterministic inversions.

4.4 The Paralana test site

The Paralana geothermal system is located in Paralana, South Australia. Its anomalously high

heat flow, estimated at 113 mW/m2 (Neumann et al., 2000), is associated with an unusual

concentration of radiogenic elements within the Mount Painter Domain (Brugger et al., 2005).

This domain is composed of fractured Paleoproterozoic to Mesoproterozoic gneiss, granites,

and metasediments. Well testing and fracture stimulation were carried out in view of devel-

oping a power supply from the geothermal sources. In 2009, an injection well was drilled to

4000 m depth and cased to 3725 m. Several zones of over-pressured fluid were encountered

between 3670 and 3864 m (Reid et al., 2011) and the measured temperature at the bottom of

the borehole was 190 ◦C. Saline fluids with a resistivity of 1.5 Ωm (at ambient temperature)

were encountered at 3860 m, indicating a preexisting fluid-filled fracture network (Peacock

et al., 2013).

In July 2011, 3100 m3 of saline water of resistivity 0.3 Ωm, along with acids, were injected

into the metasediments to stimulate the opening of new fractures. The injection was carried

out at a depth of 3680 m over the course of four days. During the injection, a microseismic

array measured over 11,000 events with the majority located in the northeast quadrant from

the injection well (Hasting et al., 2011). The data suggest that fractures opened in a preferred

northeast direction and that the total zone stimulated by the injection was approximately 900

m in the northeast-southwest direction, over a depth extent of 600 m. After the injection,

the wellhead pressure remained at approximately 27.6 MPa, suggesting that the stimulated

volume is connected to a naturally over-pressured zone (Reid et al., 2011) .

Peacock et al. (2012) presented the results of the continuous monitoring of the 4-day injection

with 11 MT stations placed around the borehole. Peacock et al. (2013) reported on time-lapse

measurements of about 50 MT stations acquired just before and 1 week after the injection

experiment. They observed coherent changes in the MT signals above measurement errors,

indicating predominant resistivity changes in the north-northeast direction. In the following

section, we use these data in an attempt to infer the spatial distribution of the injected tracer

1 week after the injection was finalized. We refer to Peacock et al. (2012) and Peacock et al.

(2013) for details about the MT transfer function estimation.

4.5 Results

4.5.1 Base resistivity model from three-dimensional deterministic inversion

To evaluate the changes in resistivity produced by the injected water, a base model represent-

ing the subsurface resistivity prior to the injection is needed (Rosas Carbajal et al., 2012).
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Figure 4.3 depicts the location of the 60 MT stations used to obtain this model. Besides the

time-lapse stations (i.e., those repeated post-injection), additional stations were used to obtain

the base model.
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Figure 4.3: Magnetotelluric stations used for the base and time-lapse inversions in Paralana,
represented in a local grid with the injection point in the center (×). At the bottom right
corner, a map of Australia shows the temperature at 5 km depth where red represents 285 ◦C
and the star locates Paralana.

We first perform one-dimensional MCMC inversions to obtain layered models that are param-

eterized in terms of the logarithms of resistivity and layer thickness, for 2, 3, 4, and 5 layers.

The one-dimensional forward solver is described by Linde and Pedersen (2004b). We use the

off-diagonal components of the impedance tensor of 60 stations with 12 periods ranging from

0.016 to 161 seconds and assume an error floor of 5% on the impedance elements. The prior

pdf consists of uniform distributions in the range of -2 to 4 for log-resistivity, and 1 to 4 for

log-thickness. Figure 4.4(a) shows some posterior realizations of these inversions, and 4.4(b)

and (c) display the forward response of the posterior mean models compared to the measured

apparent resistivity and phase, respectively. As the number of layers and, thus, the degrees of

freedom increase, so does the uncertainty in the posterior pdf. The improvement in data fit

from the mean model with 4 layers to the mean model with 5 layers is very subtle (RMS of 6.77

and 6.6, respectively). Furthermore, the inversion considering 5 layers proposes a very thin

and conductive layer (located at about 10 km depth), which appears unphysical. The data

presented in Figs. 4.4(b) and (c) shows evidence of heterogeneity that cannot be explained

with one-dimensional models. Therefore, we use the mean model from the posterior pdf with

4 layers as the starting model of the three-dimensional deterministic inversion. The layers’
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thicknesses and resistivities in this model from surface to depth are given by















































h1 = 33 m, r1 = 70 Ωm,

h2 = 700 m, r2 = 4 Ωm,

h3 = 7780 m, r3 = 550 Ωm,

h4 = half-space, r4 = 20 Ωm.

(4.24)
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Figure 4.4: (a) Posterior realizations of the one-dimensional MCMC inversions of the base
data using different (fixed a-priori) number of layers. Corresponding data in terms of (b)
apparent resistivities and (c) phases are shown together with the simulated responses of the
posterior mean models, where the X direction corresponds to the north and the Y direction to
the east. The model with 4 layers represents a compromise between low data misfit and few
model parameters. The forward responses of the one-dimensional models explain the general
tendency of the data at low periods but cannot describe the separation between the XY and
YX data at higher periods.

We use the ModEM program (Egbert and Kelbert, 2012) to perform the three-dimensional

inversion. ModEM implements l2 measures of model structure and data misfit. This makes

it necessary to use Gaussian error assumptions for all the deterministic inversions. Since the

diagonal components of the impedance tensor are strongly noise contaminated, we do not use

them in any of the inversions. Thus, we invert the same data as in the one-dimensional MCMC

inversion, and we obtain a final RMS of 1.35.

Figure 4.5(a) shows vertical slices of the inverted three-dimensional model at the center of the

x - and y- axes and for horizontal slices at 700 m and 3700 m (injection) depth. Most of the
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new structure with respect to the starting model is present at shallow depths whereas only

minor changes are introduced at the injection depth. According to this model, the injection

takes place in a thick resistive layer. We present the comparison between the model response

and the data for some stations in Fig. 4.5(b). Both apparent resistivity and phase curves are

clearly better explained by the three-dimensional model than by the one-dimensional model

(see 4.4 Figs. b and c).

−5

0

5

−5

0

5

1

2

3

4

5

 

Easting [km]Northing [km]
 

D
e

p
th

 [
k
m

]

0.5

1

1.5

2

2.5

a)

lo
g

1
0

( 
r 0

 )

10
−2

10
0

10
2

10
0

10
1

10
2

A
p

p
. 
re

s
is

ti
v
it
y
 [

Ω
m

]

10
−2

10
0

10
2

0

20

40

60

P
h

a
s
e

 [
°]

 

 

10
−2

10
0

10
2

10
0

10
1

10
2

10
−2

10
0

10
2

0

20

40

60

10
−2

10
0

10
2

10
0

10
1

10
2

10
−2

10
0

10
2

0

20

40

60

10
−2

10
0

10
2

10
0

10
1

10
2

A
p

p
. 
re

s
is

ti
v
it
y
 [

Ω
m

]

10
−2

10
0

10
2

0

20

40

60

P
h

a
s
e

 [
°]

T [s]

10
−2

10
0

10
2

10
0

10
1

10
2

10
−2

10
0

10
2

0

20

40

60

T [s]

10
−2

10
0

10
2

10
0

10
1

10
2

10
−2

10
0

10
2

0

20

40

60

T [s]

 

 

ST 02 ST 04 ST 15

ST 27 ST 49 ST 54

Data t0 XY

Data t0 YX

3D model t0 XY

3D model t0 YX

b)

Figure 4.5: (a) Three-dimensional base model at Paralana obtained from the deterministic
inversion of the base data using ModEM (Egbert and Kelbert, 2012) and the mean one-
dimensional model with 4 layers from Fig. 4.4 as the starting model. Horizontal depth slices
correspond to 700 m and 3700 m (injection) depth. (b) Base data and forward response of the
model shown in (a) for some of the MT stations.

4.5.2 Time-lapse three-dimensional deterministic inversion

Figure 4.6 illustrates some of the changes observed with respect to the base data one week after

the injection (defective stations were removed). Changes in apparent resistivity between sta-

tions are more erratic in terms of orientation and magnitude than changes in phase. Hence, we

decided to only use the phase data for the deterministic and probabilistic time-lapse inversions.

Following the strategy presented in Section 4.3.2, we compute the data residuals from the base

model and remove them from the post-injection data. Not all the stations could be repeated

using the same holes for installing the MT stations, however, we applied the time-lapse strat-

egy to all the stations assuming that in cases where the station locations were not exactly the

same this would still remove most of the systematic modeling errors. We use the combination

(σr ,tot =
√

σ 2
r ,0 + σ 2

r ,t ) of the errors pre- and post-injection provided by the impedance transfer

function estimations. In addition, we use an error floor of 1◦ to ensure that data are not
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Figure 4.6: Relative apparent resistivity and absolute phase changes observed in the data
one week after the injection as a function of station position, for some of the periods considered.
Changes are represented by arrows, where the length is proportional to the l2-norm of the off-
diagonal impedance changes and the orientation depicts the relative weight between changes
in the XY and YX components. A vertical arrow indicates changes in the XY component only.
Phase changes appear to be more consistent among different stations than resistivity changes,
and are largest at T = 4.10 s (panel b). This figure is shown as a station-to-station comparison
only. For phase tensor representation, see Peacock et al. (2013).

over-fitted. Finally, we remove 6 data points corresponding to the longer periods at 3 different

stations because they present extremely large errors. This results in a total of 676 data points.

Using the three-dimensional base model (Fig. 4.5a) as the starting model, we perform a

deterministic time-lapse inversion of the data. The RMS of the starting model is 2.8 and the

final RMS after the inversion converged is 1.01, which corresponds to a misfit of φl2 = 690.

Depth slices of resistivity changes at 700 and 3700 m depth are presented in Figs. 4.7(a) and

(b). Most changes indicate a decrease in the electrical resistivity. In Fig. 4.7(a), large regions

with predominant resistivity decrease are found close to the injection point and towards the

south and west. Resistivity changes of more than 1 order of magnitude, but with small spatial

supports, are obtained below the stations. The resistivity decrease at the injection depth (Fig.

4.7b), is elongated in the north-south direction and is of much smaller magnitude than at 700

m depth (log-resistivity contrasts with respect to the base model are approximately 2 orders

of magnitude smaller). The adequate data misfit and the agreement between the data and the
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forward responses in Fig. 4.7 (c) suggest that this model explains most of the time-lapse data.
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Figure 4.7: (a-b) Estimated differences in log-resistivity after the injection with respect
to the base model (Fig. 4.5a), obtained with a three-dimensional deterministic time-lapse
inversion of the data acquired post-injection. The depth slices correspond to (a) 700 m and
(b) 3700 m (injection depth). (c) Post-injection differences of data and forward response of
the model shown in (a) and (b) for some of the stations measured, with respect to the data
shown in Fig. 4.5 (b). The resistivity changes are concentrated at shallower depths than
the injection point, but the model explains the time-lapse data (RMS = 1.01). Note the low
signal-to-noise-ratios in the field example

4.5.3 Synthetic time-lapse MCMC inversion

To evaluate our probabilistic three-dimensional time-lapse inversion strategy, we first consider

a synthetic test case. The example is similar to the real experiment in that we assume being

in possession of the same amount and type of information in terms of the station distribution,

periods and data errors. In addition, we assume that the base model previously obtained (Fig.

4.6 a) is the real one, and insert in this model a three-dimensional plume calculated with a

Legendre moment decomposition of order 3. For this, we use the same temperature and salin-

ity constraints as the ones from the real experiment, but we assume that the mass injected is
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6 orders of magnitude larger than in the real case, and that the injection is done at a depth of

2700 m, that is, 1 km more shallow than the real experiment. These drastic changes compared

to the field experiment were needed to reproduce the observed time-lapse data. Finally, we

assign a maximum change in the cementation factor of ∆mmax
= −0.5.

To generate the synthetic plume we use the scheme shown on the right side of Fig. 4.2. We

consider the porosity presented in Eq. 4.17 to be the crack porosity, that is, the ratio between

the volume of open fractures in the rock and the total rock volume. This value is calculated

using Eq. 4.17 with the base resistivity model and assuming m = 2 over the complete domain.

The fluid resistivity at the borehole temperature is calculated using Eq. 4.18 with the values

obtained from fluid samples and temperature measured at the injection borehole. Equation

4.17 gives, for an average resistivity value of 550 Ωm at the injection depth, an average crack

porosity of 2.5%. We assume that the space created by the rock dissolution and opening of

fractures in each voxel is equal to the volume of fluid that originates from the injection in that

voxel, that is, ∆ϕi ,t = θi ,t . This assumption implies that the volume of pre-existing fluids does

not change since the extra volume needed for the injected fluids is given by the porosity in-

crease. This simplification maximizes the predicted resistivity changes because the pre-existing

fluids are not replaced by the injected ones. We adopt the same assumption in the inversion of

the field data. Figure 4.8 (a) shows the selected geometry of the synthetic plume represented

as the volume of subsurface where salinity has changed. The plume is predominantly oriented

in the north-south direction and presents a bend towards the east in the northern extreme. In

depth, it extends from ∼1.5 km to ∼3.3 km. The northeast extreme of the plume has smaller

tracer water content than the north-south portion. The center of mass and spread are given

in Table 4.1. The spread in the north-south direction is ∼900 m larger than in the east-west

direction.

Figure 4.8 (b) shows the corresponding resistivity changes with respect to the base model cal-

culated as described in Section 4.3.4 and Fig. 4.2. Maximum resistivity changes of 2 orders of

magnitude are found close to the injection point (x= y= 0 in Fig. 4.8b). In the northeastern

part, the resistivity changes are ∼1 order of magnitude. To simulate the synthetic data, we

contaminate the forward response of this new resistivity model with errors following an expo-

nential distribution with a mean deviation (see Eq. 4.5) equal to the standard deviation used

for the deterministic inversion. The resulting synthetic data, shown for some stations in Fig.

4.8 (c), have deviations from the base model response that are similar to the field data.

The model parameterization used for the synthetic and field-based inversions is based on a

Legendre decomposition up to order 3 (see Section 4.3.3). This means that, besides the 6

coordinate parameters in β and the maximum change in the cementation factor ∆mmax, 7 coef-

ficients αi , i = 1, .., 7 need to be determined by the inversion. Following Laloy et al. (2012), we

assign uniform prior distributions for these coefficients in the range [-0.1 0.1], which contain
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Figure 4.8: Synthetic plume used to test the MCMC inversions based on the Legendre
moment decomposition. (a) Plume geometry at the fine discretization used for the Legendre
decomposition. (b) Differences in log-resistivity with respect to the base model (Fig. 4 a)
at the injection depth of 2700 m. (c) Time-lapse data simulated from the synthetic model
and contaminated with noise corresponding to the same errors as assumed for the field data.
The plume has a predominant north-south direction with a bend towards the northeast at its
northern side.

the values used to create the synthetic plume. For the coordinates of the plume boundaries,

we determine a maximum extension of 13.8 km in the east-west and north-south directions

and of 3.3 km in depth. Then, we discretize this volume in cubes of 75 × 75 × 75 m3 to obtain

the injected water distribution θ from the Legendre moments. Thus, xstart and ystart can take

discrete (every 75 m) values between -6.9 km and 0 km; xend and yend can take values between

0 and 6.9 km; and zstart and zend can vary between 0.5 and 2.15 km, and 2.15 km and 3.8 km,

respectively. To translate the plume to a resistivity model, we discretize the same volume in

cubes of 300 × 300 × 300 m3. This discretization was chosen based on a convergence test of the

mesh, in which we evaluated the forward response (also calculated with ModEM) of the base

model containing a conductor of the size of the maximum plume allowed for different lengths

of the domain and resistivity block sizes. The chosen resistivity discretization represents a

compromise between accurate forward responses, that is, changes in impedance of less than

0.1% with respect to a highly discretized and largely extended mesh, and computation time.
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Table 4.1: Mean values and standard deviations of the center of mass and spread of the
synthetic plume, as estimated with the probabilistic mass-constrained time-lapse approach.

Center of mass Spread
Model Estimate µxc µyc µzc Sxx Syy Szz ∆mmax Misfit

[m] [m] [m] [m] [m] [m] [-] [-]

True N/A -620 840 2550 2420 1530 440 -0.5 676

Mean -1160 670 2490 2370 1480 370 -0.48 682
Order 3 Standard 490 440 310 370 190 110 0.24 3

deviation

We allow ∆mmax to vary between 0, that is, no change in the cementation factor, and -0.99,

which implies mmin ≈ 1 and thus a perfectly connected medium. We use uniform prior distri-

butions for all the model parameters mentioned.
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Figure 4.9: (a-f) Marginal posterior distributions of the center of mass (a-c) and spread (d-f)
of the plume for the synthetic test. The ranges of values shown correspond prior pdfs’ bounds.
(g) Maximum change of the cementation factor. (h) Misfit distribution of the posterior models’
responses, to compare with the 676 data points used. The red crosses indicate the true values.
The histograms’ mean and standard deviation are indicated in Table 4.1.

We use the DREAM(ZS) algorithm with 3 chains that evaluate the forward responses in paral-

lel. We also employ the parallelized forward solver in ModEM, which distributes the forward

computations for each period and electric and magnetic field configuration to a different pro-

cessor. To decrease the number of processors needed, we only use the 8 largest periods in the
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MCMC inversions, which is where the main time-lapse changes are given. Since we evaluate

8 periods for each configuration, we use 16 processors per chain, and thus 48 processors in

total for the forward computations. The computing time of a single forward response depends

on the complexity of the model evaluated, but on average takes 11 minutes. Convergence of

the chains was reached after ∼7500 realizations, which, multiplying by the number of chains

implies ∼22500 forward computations. The mean acceptance rate was 40% and the total com-

puting time needed to reach convergence was approximately 2 months.

Figure 4.9 (a-f) shows the marginal posterior distributions of the plume’s center of mass and

spread, and ∆mmax. All the parameter values used to construct the synthetic plume are

contained in the posterior pdf. Figure 4.9 (h) shows the data misfit distribution of the models

that belong to the posterior pdf. The corresponding model responses have misfits that are close

to the true value (676). Table 4.1 shows the mean and standard deviation of the histograms

shown in Fig. 4.9. The center of mass estimate in depth is very well determined, being only

60 m more shallow than the true value, while in the x -direction, it is approximately 450 m to

the south from the exact value. The standard deviations of the center of mass estimates are in

the order of 400 m. The spreads of the plume are well determined, with a larger uncertainty

in the x -direction. The cementation factor change is well estimated with a mean value of -0.48

and a standard deviation of 0.24. The posterior misfit distribution is short-tailed and close

to the number of data. In Fig. 4.10(a-f) we present some of the plumes that belong to the

posterior distribution. Like the true model, the plumes are mostly located in the eastern part

of the region and are elongated in the north-south direction. Only two plumes (Fig. 4.10 b

and e) present a larger extension to the northeast similar to the true plume.

a) b) c)

d) e) f)

Figure 4.10: (a-f) Random posterior realizations from the MCMC inversion of the synthetic
time-lapse data. Models have a predominant north-south direction and similar extension to
the true plume (Fig. 4.8a).
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4.5.4 Application to the Paralana injection experiment

We now return to the field data acquired during the injection experiment in Paralana. We first

perform a MCMC inversion with the same model parameters as for the synthetic case and the

same prior distributions, but with the correct water volume. Also, the discretization in cubes

of 300 × 300 × 300 m3 is shifted downwards 1.1 km in z to allow for deeper plumes. Thus,

zstart and zend can vary between 1.6 km and 3.25 km, and 3.25 km and 4.9 km, respectively.

The base model l1-norm data misfit of the time-lapse data is φl1 ≈ 1980 and the MCMC inver-

sion reaches a data misfit that oscillates around φl1 ≈ 750 for our 676 data (i.e., the data are

not fitted). The spread estimates shown in Table 4.2, Sxx = 2820 m, Syy = 2900 m, Szz = 710

m, have a tendency to maximize the size of the plume (the prior ranges of β result in allowed

maximum spreads of 3100 m in the horizontal directions and 740 m in depth). Moreover,

∆mmax, which largely controls the changes in the resistivity with respect to the base model,

is very close to the maximum value allowed, that is, -0.99. This behavior of the spread and

∆mmax indicates that a larger conductance is needed to explain the time-lapse changes.

To investigate if more compact models that fit the data can be obtained, we make a correction

in our physical model to account for the additional conductance needed. We add a correction

factor in Archies law: r j ,t=1 =
1

10f
ρinjΦ

−m
j ,t=1, with f being a free and non-physical parameter

to be determined by the MCMC inversion. We use a uniform prior pdf between 0 and 10 for

f , and we do not invert for a change in the cementation factor anymore.

Table 4.2: Mean and standard deviation of the estimated center of mass and spread of the
injected plume at Paralana, as estimated with the probabilistic mass-constrained time-lapse
inversion approach, with and without a correction factor in the petrophysical relationship.

Center of mass Spread
Model Estimate µxc µyc µzc Sxx Syy Szz ∆mmax f Misfit

[m] [m] [m] [m] [m] [m]

Order 3 Mean -460 1010 2830 2820 2900 710 -0.95 N/A 750
with Standard 390 1070 110 210 100 60 0.04 N/A 7
∆mmax deviation

Order 3 Mean -2540 10 3830 2260 1630 530 N/A 5.7 574
with Standard 440 550 130 180 160 60 N/A 0.3 9
f deviation

The MCMC inversion converged after ∼13,500 iterations, with a mean acceptance rate of 25%

and 3 months and 1 week of total computation time. Figure 4.11 shows the posterior esti-

mates of mean and standard deviation of the center of mass, spread, correction factor and

misfit. The posterior uncertainty ranges of the spreads are no longer affected by the prior

boundaries (see Table 4.2). The center of mass of the plume is located towards the south of
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the injection point and it is well centered in the east-west direction. In depth, the center of

mass is estimated at a depth ∼150 m deeper than the actual injection point, with a standard

deviation of 130 m. In accordance with the microseismics (Reid et al., 2011), the spread is

larger in the north-south direction than in the east-west direction. The posterior pdf of f

has a mean value of 5.7 with a standard deviation of 0.7. This results in bulk resistivity

changes of approximately 5 orders of magnitude. The posterior models have data misfit values

that are smaller than the number of data with the posterior misfit distribution centered on 575.

Figure 4.11: (a-f) Marginal posterior distributions of the center of mass (a-c) and spread
(d-f) of the plume from the Paralana time-lapse inversion. The range of values shown corre-
sponds to the prior pdfs’ bounds. (g) Maximum change of the cementation factor. (h) Misfit
distribution of the posterior models, to compare with the 676 data points used. The histograms
mean and standard deviation are indicated in Table 4.2.

The posterior models shown in Fig. 4.11(a-f) indicate that the plume is most likely oriented in

a north-south direction, and rather to the east. In depth, most models extend between 3400

m and 4500 m but with depth variations along the plume. Some models (Figs. 4.11b, c, d and

f) show a plume dipping towards the north, as suggested by the microseismic data by Reid

et al. (2011). An isolated component of the plume can be observed in Figs. 4.11(b), (d), and

(f) in the northeast region at more shallow depths (∼3400 m) than the rest of the plume.

4.6 Discussion

Our results indicate that it is possible to infer information about tracer plumes in deep injec-

tions experiments using MT data, but also that many important challenges remain.
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Figure 4.12: (a-f) Random posterior realizations from the MCMC inversion of the Paralana
time-lapse data using a correction factor in the petrophysical relationship.

Our probabilistic time-lapse inversion methodology has several advantages over the determinis-

tic approach. The non-linearity of the inverse problem is correctly treated and the uncertainty

of the model parameters is formally characterized. Furthermore, valuable prior information

such as the injection depth, the fact that electrical resistivity is expected only to decrease or

stay unchanged after the injection, and bounds on the region where resistivity can decrease,

can be flexibly implemented in the MCMC inversion. The results of the synthetic example

shown in Figs. 4.8-4.10 suggest that our approach works properly when the base resistivity

model is correct, and the plume is in accordance with the proposed physical model. The

MCMC inversion correctly retrieves the change in the cementation factor and the center of

mass and spread of the plume. Higher orders of the Legendre moment decomposition could be

used, which would allow for more complicated three-dimensional structures (c.f., Laloy et al.,

2012). The computational costs would then also be larger (3 months were needed for the

inversion of the Paralana data to converge), but it is unlikely that smaller details would be

resolved. Given that the first two-dimensional probabilistic inversions of MT data have only

recently been presented (Chen et al., 2012; Rosas-Carbajal et al., 2014), this work presents the

first advances towards an all-inclusive monitoring strategy with EM methods.

The large time-lapse changes observed in the MT data following the injection experiment in

Paralana were used by Peacock et al. (2013) to provide qualitative information about the

direction of flow of the injected fluids. Our deterministic three-dimensional time-lapse inver-

sion, which was performed without including the corresponding prior information used in the

MCMC inversion, was useful to determine the geographical regions of maximum resistivity

changes, even if the changes in depth were too shallow. These changes were located close to
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the injection point and towards the south and the west of this point. The large number of

degrees of freedom allowed the deterministic inversion to place the resistivity changes where

sensitivity is largest, that is, at shallower depths. Unphysical resistors also appear (see Fig.

4.7) as no constraints regarding the sign of the resistivity changes were included in the inver-

sion. These results could be improved by including these types of constraints, for example by

penalizing positive changes in the resistivity model and using an l1-norm to penalize the model

structure (see examples for two-dimensional inversions in Rosas Carbajal et al., 2012).

A first indication that very large resistivity changes were needed to explain the Paralana time-

lapse data was given by the fact that the amount of injected water had to be increased and the

depth of injection moved to shallower depths to obtain similar time-lapse changes for the syn-

thetic example. An inversion of the Paralana data that accounted for the amount of water and

salinity injected, temperature, and maximum cementation factor changes could not explain the

data changes. This suggests limitations of the upscaling model used, and raises the question

of whether changes in reservoir properties can be inferred from the time-lapse MT data. In

this regard, Vasco et al. (2014) argue that instead of aiming at relating changes in geophysical

properties to changes in reservoir properties, it may be more viable to relate the initiation of a

change in a geophysical property to key reservoir changes such as fluid saturation or pressures.

While Vasco et al. (2014) consider reservoir monitoring with seismic data, the application to

MT data where relatively long time series have to be used to obtain good signal-to-noise ratios

of the transfer functions is not straightforward.

When adding a non-physical correction factor in the petrophysical model, the probabilistic

inversion could fit the data and retrieved water plumes that are more elongated in the north-

south direction. Compared to the microseismics, the center of mass of the plume is located to

the south of the injection point, and the plumes predicted from the MT data are much larger

in extent (see Fig. 4.12). The latter is expected, as the microseismic data sense the opening of

fractures whereas the MT time-lapse data sense changes in electrical resistivity, which happen

where the injected fluid is present and not only where fractures open. Also, the microseismic

data were measured during the injection, while the time-lapse MT data were acquired one

week after the injection was completed.

The extremely large resistivity changes needed to explain the time-lapse data raise important

questions about the origin of such a large conductance anomaly caused by the injection. Sur-

face conductivity effects could not explain the changes even if clay minerals were present, since

the injection of more conductive water would only decrease its influence. One possibility is

that, as the rock dissolves due to the injected acids, more minerals are incorporated into the

fluids and thus the salinity of the fluid increases, therefore decreasing the bulk resistivity. An

alternative is that the large changes observed originated from a complex arrangement of frac-

tures, which in some directions were effectively connected by the fracture stimulation whereas
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in other directions stay in the vicinity of the percolation threshold. Such a hypothesis was

suggested by Bahr (2000) to explain the distortion in MT data and by Hautot et al. (2002)

to associate observed temporal variations in resistivity to pore pressure changes controlled by

lake level variations. Reid et al. (2011) reported on high fluid pressures encountered when

drilling the Paralana borehole and after the injection experiment was finished. This supports

the hypothesis that fractures may be well connected in some directions while staying close to

the percolation threshold in others, thus creating large variations of the measured electric fields.

Simulating the MT responses of complex fracture networks would be highly computationally

demanding. To test the influence of an unaccounted conduction mechanism operating in a

preferential direction, we considered the simple case of a base model that contains two large

unconnected conductors. To obtain this model, we performed a new deterministic inversion

of the base data. The starting model was the same one-dimensional model as the one used

in Section 4.5.1, but with two unconnected conductors oriented in the north-south direction

that are separated by ∼2 km and are located on opposite sides of the injection point. They

have a vertical extension of ∼5 km, and are completely embedded in the layer of 550 Ωm.

The deterministic inversion based on this new starting model provided a new base model very

similar to the original one (Fig. 4.5a), except for the two conductors. The RMS is 1.21, that

is, slightly lower than the original one (RMS = 1.35). We then took one of the posterior plume

realizations (Fig. 4.13a) from the MCMC inversion performed with the original base model.

The plume, which fits the time-lapse data when evaluated with the original base model, has

f = 5.9. When evaluated with the new base model, the plume effectively connects the two con-

ductors and predicts larger data changes than the ones observed, which results in a large misfit

of φl1 = 1336. This indicates that the base model has a significant influence on the inferred

plume statistics. We then used the new base model to initiate a new MCMC time-lapse inver-

sion until acceptable data misfits were reached. Figure 4.13(b) shows one of the plumes that

fit the data (φl1 = 636). This plume is much smaller than the one shown in Fig. 4.13(a) and

has f = 4.4, that is, smaller than any f contained in the posterior pdf displayed in Fig. 4.11(g).

This simple analysis suggests that, to a certain extent, the large resistivity changes needed to

explain the time-lapse data could be an effect of our chosen base model. Indeed, the synthetic

example, which was performed using the correct base model, yielded good estimates of the

plume. This effect could be studied by performing a time-lapse MCMC inversion where not

only the plume geometry would be inverted for, but also the heterogeneous base model. Such

methods have been proposed for deterministic time-lapse studies involving ERT data (Kim

et al., 2009; Karaoulis et al., 2011). This type of study would be highly computationally

demanding, and we leave it for future investigations.
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a) b)

Figure 4.13: Influence of the base model on the plume estimation. (a) Plume belonging
to the posterior distribution of the MCMC inversion with the base model represented in Fig.
4.5(a) including a correction factor (f = 5.9). (b) New proposed plume, more compact and
with a smaller correction factor (f = 4.4) which fits the time-lapse data when using a different
base model.

4.7 Conclusions

We presented the first time-lapse three-dimensional deterministic and probabilistic inversions

of EM data, with focus on imaging a tracer plume created by injecting a saline tracer in

a geothermal system. The time-lapse deterministic inversion resulted in resistivity changes

that are much more shallow compared to the depth of the injection, which demonstrates the

importance of including prior information such as the injection point and the fact that the

electrical resistivity is expected to decrease following the injection. The probabilistic approach

used was based on petrophysical relations and a reduced Legendre moment decomposition of

the injected plume that was chosen to decrease the parameter dimensionality and thus the

computation times. This approach was shown to be effective when applied to a synthetic test

case based on similar informations as those available for the real experiment. For the inversion

of the Paralana data, a large correction factor had to be included in the petrophysical relation

to account for the extra conductance needed to explain the time-lapse changes. The plumes

belonging to the posterior pdf are elongated in the north-south direction, which is in agreement

with microseismic data. However, their center of mass is estimated to be located south from

the injection point, which is in contrast to the microseismic events. The large correction factor

values found suggested important limitations in our physical model. Since the studied media

is highly fractured, a possible explanation is the existence of a connected fracture network

that is close to the percolation threshold in one direction. Another related possibility is a

heterogeneous base resistivity distribution that is poorly represented by our base model. A

simple modeling example indicated that this is indeed a potential explanation. Thus, more

efforts have to be put in the accurate characterization of the base model when performing

monitoring studies with EM methods.
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Conclusions and Outlook

The general objective of this thesis was to improve the inversion results of plane-wave electro-

magnetic (EM) data related to static and dynamic subsurface studies. The research performed

builds on an extensive number of synthetic feasibility studies and a few field experiments that

show the potential of plane-wave EM methods to image and monitor the Earth’s subsurface.

The main contributions are related to a set of increasingly refined inversion strategies that pro-

vide new insights into the capability of plane-wave EM methods to resolve target features and

temporal changes in the subsurface. Key advancements are related to the MCMC probabilistic

framework used to perform the inversions, the incorporation of relevant prior information in

the inversion algorithms, and the time-lapse strategies applied for dynamic characterizations.

The main conclusions of the thesis are presented in this chapter, followed by an overview

of persisting challenges related to my work that could help to further advance the inversion

results of plane-wave EM methods if solved.

5.0.1 Conclusions

To decrease the non-unicity of the inverse problem and obtain models in accordance with

expected subsurface temporal changes, I first implemented a time-lapse differencing strategy

and enforced specific information in a deterministic two-dimensional inversion algorithm, as

presented in Chapter 2. The time-lapse strategy had previously been proven useful for other

geophysical methods and this was found to be the case for plane-wave EM methods as well.

The numerical studies showed that the larger data errors present when this technique is not

used lead to overly-smoothed models and thus poorly resolved temporal changes. Conversely,

removing the systematic errors provides better defined structures and less weight is given to

the model regularization term. The prior information considered in Chapter 2 includes the

use of a stochastic regularization operator to specify the statistical properties of the expected

changes, the use of non-l2 norms to penalize structure and thus obtain sharper spatial transi-

tions between regions where changes occur and where they do not, and the incorporation of

expected ranges of conductivity changes through Lagrange multipliers. The stochastic regular-

ization adds flexibility to the regularization since it allows to specify the expected correlation
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lengths in the vertical and horizontal directions. The examination of different model norms led

to the conclusion that the perturbed l1-norm is probably the best option for monitoring appli-

cations since it produces sharp delimitations of the temporal changes but also respects smooth

variations when this is motivated by the data. The time-lapse models were shown to further

improve when incorporating constraints regarding the expected ranges of resistivity changes

(resistivity could only decrease or remain unchanged in the example presented in Chapter 2).

Despite this positive results, much room for improvement was left considering that the de-

terministic framework only retrieves one possible model among the many that could equally

explain the data and satisfy the imposed constraints. This is why I then decided to adopt a

Bayesian framework and perform probabilistic inversion of plane-wave EM data using a Markov

chain Monte Carlo (MCMC) algorithm. In Chapter 3, I presented the results of a pixel-based

two-dimensional MCMC inversion of plane-wave EM data and electrical resistivity tomography

(ERT) data. This algorithm provides formal estimates of the model parameters’ uncertainty,

and thus allows to completely evaluate the non-unicity of the inverse problem given the prior

information. The random exploration of the posterior pdf with MCMC simulations becomes

increasingly inefficient for large model parameter dimensions. When no information regard-

ing the model structure is included, the posterior models tend to present unrealistically large

spatial variations. In Chapter 3, I dealt with this problem by applying model regularizations

as it is usually done in deterministic inversions. The model structure penalization is more

straightforward to implement in a MCMC inversion algorithm than in a deterministic one.

For example, applying an l1-norm to penalize the model structure requires no approximation

(see the Ekblom norm or perturbed l1-norm in Chapter 2) because no linearization is needed

in MCMC inversion. The regularization applied led to more realistic models and a significant

decrease in the number of realizations needed to reach convergence. However, in regions were

the data was not sensitive enough to constrain the model, the regularization led to biased esti-

mates that did not contain the true model parameter value. In this regard, the joint inversion

of RMT and ERT data resulted in a better constrained model and a reduced weight given to

the regularization and estimates’ bias.

In Chapter 3, I also compared the uncertainty estimates provided by MCMC inversion and (de-

terministic) most squares inversion. The results in terms of deviations from the mean model

are in agreement but the central values of the uncertainty ranges are not the same, which

means that the most squares inversion results may be slightly biased. This problem arises

from the fact that the most squares inversion starts from a model that minimizes the objec-

tive function, and thus represents the maximum likelihood but, in the general case, not the

expected value (i.e., the mean). The most squares inversion is often unsuitable for estimating

the uncertainty of all the model parameters since in practice a different and careful inversion

needs to be performed for each model cell that is studied.
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After treating time-lapse deterministic inversions in Chapter 2, and probabilistic inversions

in Chapter 3, I addressed the challenging problem of estimating the three-dimensional spatial

distribution of an injected saline water plume in a probabilistic framework (Chapter 4). I

applied a time-lapse strategy similar to the one used in Chapter 2 to improve the quality of

the time-lapse models. For a fixed number of model parameters, the computational burden

of MCMC inversion is significantly increased in three-dimensions due to the time needed to

calculate the three-dimensional forward responses. To reduce the computation times, I in-

verted only for the injected plume’s spatial distribution and used the base resistivity model

obtained prior to the injection to update the resistivity only in the region where the plumes

were proposed. Furthermore, I parameterized the injected water distribution in terms of a

reduced Legendre moment decomposition to decrease the number of model parameters to be

estimated. The results presented in Chapter 4 show that the approach works well when the

base model is correctly characterized. For the real injection experiment, extremely large con-

ductivity changes are needed to explain the time-lapse data. An improper characterization

of the base conductivity model could be the reason for the need of such large changes, thus

indicating that more efforts should be placed in the characterization of the base model.

The works presented in Chapters 2, 3 and 4 give clear evidence of the importance of including

as much prior information as possible in the inversion algorithms to obtain improved subsurface

models. In Chapters 3 and 4, which present probabilistic approaches, the prior information was

much easier to include. The probabilistic framework offers also more flexibility to implement

other types of error distributions such as the exponential distribution, which assimilates the

presence of outliers in the data better than the traditional Gaussian distribution. Finally, as

demonstrated in Chapter 3, probabilistic inversion also allows to invert for hyper-parameters

such as the regularization weight and the standard deviation of the errors. This is very helpful

in practice, since usually the errors are assumed to be known and statements of over- or under-

fitting the data rely only on the RMS of a fixed error. The application of this methodology

to field data showed that previously found models obtained with deterministic inversions were

based on an overly-small standard deviation of the errors, which resulted in inversion artifacts.

The downside of MCMC inversion related to the computation time needed to reach convergence

was partially ameliorated in Chapter 3 by applying model regularizations and in Chapter 4

by proposing a model reduction based on the Legendre moment decomposition of the injected

water plume. Both of these methods effectively reduced the number of iterations needed for the

MCMC algorithm to converge. Whether a model reduction or model regularization strategy

is used, the posterior pdf is affected by these choices and interpretation of the uncertainty

estimates should be done acknowledging this influence.

5.0.2 Outlook

Probabilistic inversion performed with MCMC methods is becoming increasingly popular

thanks to its ability to correctly treat non-linear inverse problems and quantify model param-
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eter uncertainty. The main drawback of this technique is the difficulty to effectively sample

the complete space of posterior models, especially when dealing with high parameter dimen-

sions. This, combined with the computationally expensive forward solvers often needed to

correctly simulate the physics, make MCMC simulations computationally expensive. Thus, ef-

forts should be put in the search for better performing algorithms to explore the ever increasing

parameter dimensionality. In this regard, the use of adaptive MCMC algorithms (Roberts and

Rosenthal, 2007; Vrugt et al., 2009; Laloy and Vrugt, 2012) and multiple-try (Liu et al., 2000;

Laloy and Vrugt, 2012) techniques as applied in this thesis proved useful for exploring high-

parameter dimensions and constitute promising strategies that may become mainstream for

geophysical inversions.

The computational resources and mathematical algorithms used for forward computations

constantly outperform themselves. However, before forward solvers become efficient enough

to routinely compute high-dimensional MCMC inversions, other solutions may be applied to

decrease the time needed to compute the forward responses. One possibility would be the use

of approximate forward solvers, combined with precise solutions when necessary, in the MCMC

algorithm. Many approximations exist for plane-wave EM methods (e.g. Habashy et al., 1993;

Virieux et al., 1994; Zhdanov and Fang, 1996; Zhdanov and Hursan, 2000), which could be

used in a two-stage MCMC inversion (Christen and Fox, 2005; Efendiev et al., 2005) where

the precise forward response is used only if the approximate solution suggests that the pro-

posed model should be accepted. The requirement for this method to converge to the correct

posterior is that the likelihood function calculated with the approximate solution represents

a smoothed version of the true likelihood calculated with the precise solution. For time-lapse

problems, a direct reduction of the response computation times could be achieved by using

integral equations, which only need the anomalous component (i.e. the temporal changes) to

be discretized. This approach can be applied even in the case of heterogeneous background

models (Zhdanov et al., 2006).

As shown in Chapter 4, model reduction techniques decrease the computation times because

of the smaller number of model parameters to estimate. They also imply smaller uncertain-

ties of the model parameters due to the variance-resolution trade-off. In the case of time-

lapse inversion of an injected water plume, the reduction was done by inverting for the water

plume geometry parameterized in terms of a Legendre moment decomposition. For static

three-dimensional characterizations, a reduced parameterization that reproduces the expected

variations in the subsurface at different scales may not be easy to find. Parameterizations

based on orthogonal basis such as the discrete cosine transform (e.g. Linde and Vrugt, 2013)

are a possible way to decrease the number of coefficients to invert and may be a first option

to tackle three-dimensional inversion of plane-wave EM data.

The inclusion of more refined prior information could also help to further decrease computa-
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tion times and model uncertainty. The flexibility offered by MCMC inversion to include prior

information is sometimes criticized because this information can be tuned so that the poste-

rior models have some desired properties (Scales and Sneider, 1997). Note that, in the strict

sense of Bayes theorem, prior information should only refer to actual information provided

independently of the recorded data. Thus, model regularization, as a means to reduce the

unrealistic spatial oscillations in model parameter values when there is few data available or

an over-parameterized model such as in Chapter 3, could not be considered prior information

and should not be implemented as such in Bayesian inversions. In practice, as it was shown

in Chapter 3, not including this information may lead to unrealistic models that are very

difficult to interpret. Possible improvements regarding the prior information used in MCMC

inversion of plane-wave EM data include the use of model structure penalization with respect

to a certain pre-conceived model or measure of structure, if such information is available.

The incorporation of information from training images was shown to improve the results of

the inversion in near-surface studies, for example by generating samples of the prior pdf by

sequentially simulating the models according to the image’s statistics (e.g. Cordua et al.,

2012) or by penalizing deviations from their summary statistics (Lochbüler et al., submitted).

Stochastic regularization, as used in the time-lapse deterministic inversion in Chapter 2 could

also be implemented.

While the aforementioned possibilities would certainly improve the inversion results, the avail-

ability of those types of information is unfortunately not always granted and their use may lead

to biased estimates. Complimentary methods such as ERT and RMT, as shown in Chapter 3,

help to better constrain the models and should be implemented when possible. Joint inversion

of geophysical methods that are sensitive to different physical parameters, such as plane-wave

EM methods and seismics, are of primary importance to better characterize the subsurface.

The probabilistic framework could help to implement better couplings between the different

models. For example, when applying cross-gradient penalizations (Gallardo and Meju, 2004),

different norms could be used and the same penalization could be switched off in some regions.

Integrated inversions that constrain the subsurface models not only through joint inversion

of different geophysical methods but also by incorporating geochemical and petrological data

(e.g. Afonso et al., 2013a,b) are starting to be developed. They may be used to directly infer

thermal state, water content or even chemical composition in the subsurface. While it is highly

important to integrate these different kinds of information to obtain more consistent models,

it is also important to further advance in the study of how to link the geophysical parameters

with the parameters of interest, that is, the petrophysical relations and the upscaling and

downscaling laws. Laboratory experiments constitute a key tool to further advance in these

fields.

The different choices of prior information, likelihood function and/or model parameterization

and degree of discretization affect the uncertainty estimates. This points to the need for formal
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tools that compare and ultimately decide which of those conceptually different possibilities is

the most suitable. In this regard, model selection strategies hold a promising potential to use

the collected data to falsify or favor certain types of conceptual models over others by compar-

ing their evidence (see Eq. 3.2). A particular type of model selection is the trans-dimensional

inversion (Malinverno, 2002) where, given a fixed model parameterization and prior pdf, the

degree of discretization is determined within the probabilistic inversion. The trans-dimensional

inversion inherently favors models with fewer parameters for equal data fitting, thus a model

regularization term is not necessary. This methodology has been applied in one-dimensional

inversions of EM (Minsley, 2011) and controlled source EM (Ray and Key, 2012) data. How-

ever, two- and three-dimensional inversions seem less straightforward to implement (see Bodin

and Sambridge, 2009 for a two-dimensional application to seismic tomography). A more rad-

ical model selection is done when comparing not only different degrees of discretization but

also different types of model parameterization or prior information (e.g. model regularization).

For this purpose, Bayes factors (Kass and Raftery, 1995) can be computed, which are ratios

of the “competing” conceptual models’ evidences. Bayes factors have been rarely used for

hypothesis testing with geophysical data (c.f. Khan and Mosegaard, 2002; Khan et al., 2004;

Linde, 2014). More studies should be encouraged in this direction.

Usually, the data used for plane-wave EM inversion are apparent resistivity and phases of the

impedance tensor components. These are not the raw data measured in the field but are de-

rived from the measured electric and magnetic time series. Thus, the systematic and random

error separation proposed for time-lapse inversion referring to calibration errors, geometrical

errors and anything related to the acquisition process should ideally be applied to the raw data.

However, the modeling errors coming from the imperfect model discretization, unaccounted

anisotropy, or incorrect station positioning in the mesh, should be taken into account with

the processed data. This shows that there is still a potential for improvement in time-lapse

studies related to the removal of errors prior to the transfer function estimation. Since the EM

sources are different for different plane-wave EM methods, the transfer function estimation is

also different and the characterization of error propagation of the electric and magnetic fields

to apparent resistivity and phase should be also method-dependent.

Improvements in the inversion results with respect to the injection experiment presented in

Chapter 4 could be achieved by placing more stations in a grid-based distribution to increase

the spatial constraining of the plume. The use of the tipper pointer could also be helpful to

better delineate the conductive plume. Given the volumetric nature of the plane-wave EM

methods sensitivity to electrical resistivity, it will still remain very difficult to retrieve precise

spatial distributions of this property without incorporating further information. Instead of

over-interpreting highly discretized models carrying large uncertainties, reduced models are

promising strategies to retrieve simple reliable estimates of temporal changes. Future efforts

should be put in finding a proper trade-off between model simplicity and data fit, while avoiding
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biased estimates. The aforementioned theory of Bayes factors could be of help for this kind of

studies.
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