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Résumé

Ce document de synthèse présente mes travaux en statistique bayésienne non-paramétrique. Il
s’agit d’étudier le comportement de la mesure a posteriori, une mesure aléatoire qui dépend des
observations, pour des modèles statistiques de dimension très grande ou infinie, tels que les modèles
non-paramétriques et semi-paramétriques.

Si l’origine de l’approche bayésienne remonte à Thomas Bayes [7] au xviiie siècle, l’utilisation
des méthodes bayésiennes dans des modèles statistiques complexes s’est spectaculairement déve-
loppée depuis le milieu des années 1990. Une raison est le développement d’algorithmes efficaces
de simulation suivant une approximation de la loi a posteriori. En parallèle, le besoin de mesurer
la qualité de la convergence de la loi a posteriori a conduit au développement progressif d’outils
théoriques d’étude de la convergence de ces lois depuis une quinzaine d’années. C’est cette ap-
proche de mesure fréquentiste des performances des procédures bayésiennes que je suis, et que
nous suivons avec mes co-auteurs, dans les travaux décrits ci-après.

J’ai choisi pour cette présentation un plan thématique.
Dans le Chapitre 1, nous définissons une notion simple de borne inférieure [P4] pour la vitesse

de convergence de la loi a posteriori. Ce concept permet notamment de montrer que certaines
vitesses de convergence ne peuvent être améliorées, ainsi que de donner des conditions qualitatives
sur les lois a priori. Nous illustrons cette définition par des exemples étudiés dans [P9] et [P15].

Dans le Chapitre 2, nous présentons des résultats de bornes supérieures pour la convergence
a posteriori, dans différents contextes statistiques : un cadre géométrique [P11] et des modèles
parcimonieux [P9, P15]. Nous proposons également une approche [P12] pour étudier la vitesse de
convergence a posteriori en norme infinie.

Dans le Chapitre 3, nous considérons la forme limite des lois a posteriori. Cette forme limite
est étudiée tout d’abord dans un cadre semi-paramétrique ; nous présentons un résultat général
pour les lois a priori gaussiennes [P7], ainsi que des exemples, notamment celui étudié dans [P8],
et une généralisation étudiée dans [P13]. Enfin, nous proposons une théorie des formes limites a
posteriori non-paramétriques d’après [P10, P14].
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Introduction

Overview
This manuscript presents a synthesis of my research work over the last few years. It discusses my
contributions to the study of the Bayes posterior distribution in statistical models with many or
infinitely many parameters, such as nonparametric and semiparametric models.

• Chapter 1 – Lower bounds for posterior rates. We define a simple notion of lower
bound rate [P4], which serves several purposes, notably checking whether some rates are
sharp, and finding necessary conditions on qualitative aspects of priors. Some examples
from [P9], [P15] are presented.

• Chapter 2 – Upper bounds for posterior rates. We describe several rate-results
obtained in different contexts, such as rates in geometric frameworks [P11] and rates in sparse
models [P9, P15]. We then propose an approach [P12] for studying posterior supremum-norm
convergence rates.

• Chapter 3 – Limiting shape of posterior ditributions. The asymptotic shape of
posterior distributions is investigated, first from the semiparametric perspective: a result for
Gaussian priors is presented [P7], as well as examples [P8] and some generalisations [P13].
Next a nonparametric limiting shape theory is proposed [P10, P14].

The chosen outline does not present the results in chronological order. I started my research on
Bayesian procedures via semiparametric models and Bernstein–von Mises theorems. It turned
out that to solve certain questions in the semiparametric context, several difficulties linked rather
to nonparametrics and convergence rates had to be overcome. For instance, the lower bound
concept presented in Chapter 1 is a side-product of investigations on using Gaussian priors in a
semiparametric translation model, which is quite unexpected. This concept was itself later of use
to prove that posterior rates presented in Chapter 2 are sharp for some combinations of model and
prior. Also, another fruitful and apparently unrelated application of studies around Bernstein–von
Mises results from Chapter 3 is presented in Chapter 2. To define a notion of convergence to an
infinite dimensional limiting object, convergence rates in some unusual loss functions were of use,
and the method we introduce has later led to new methods in terms of other distances of interest.

I do not present here the results following my PhD thesis [P1, P2, P3, P5, P6], which have
semiparametrics as common denominator. Of course, these have had and have an important in-
fluence on my research, notably via a semiparametric ‘perspective’.

The following short introduction is not ment as a comprehensive overview of the background,
nor as an exhaustive bibliographical account of the state-of-the-art results. It is simply aimed at
presenting in a (hopefully) gentle way the main tools used in the sequel.
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Statistical models
Let X (n) be a metric space equipped with a σ-algebra A(n), where n is an integer corresponding
to the amount of information, for instance the number of available observations. A statistical
experiment is a collection of probability measures {P (n)

η } indexed by a parameter η in some mea-
surable space H to be specified. We use the generic notation X(n) to denote observations from
this experiment. From now on n ≥ 1 is a given integer, which we may let tend to ∞.

Nonparametric models

In all following examples, the statistical model is indexed by, either an infinite dimensional pa-
rameter, typically a real-valued function over some space denoted by f , or a high-dimensional
parameter, denoted by θ or β. In the latter case, the model is parametric for each fixed n but
the dimension of the parameter can increase with n. The quantities f , θ, β are unknown and the
goal of the statistician is to say something about them after having observed data from the model.
Many statistical questions can be classified as belonging to one of the following trilogy: estimation,
testing and confidence sets. Here we will be mostly interested in estimation and confidence sets,
although testing sometimes plays an important role, notably in the proofs.

Gaussian white noise model. Let L2 := L2([0, 1]) be the space of square integrable functions
on [0, 1]. For f ∈ L2, dW standard white noise, consider observing

dX(n)(t) = f(t)dt+
1√
n
dW (t), t ∈ [0, 1]. (1)

Two equivalent data-generating mechanisms are: observing the path X(n)(x) =
´ x

0
f(t)dt +

n−1/2W (x), where W is standard Brownian motion on [0, 1]; or, given a collection of orthonormal
functions {ϕk, k ≥ 1} in L2 forming a basis of L2, observing the collection

Xk = fk +
1√
n
ξk, k ≥ 1, (2)

where fk =
´ 1

0
ϕkf and {ξk}k≥1 are independent N (0, 1) variables. This last version of the model

is often also called the (infinite) Gaussian sequence model.

Density estimation. On the unit interval, the density model consists of observing independent
identically distributed (i.i.d.) data

X1, . . . , Xn i.i.d. ∼ f, (3)

with f a density function on the interval [0, 1]. In this case the common law of the Xis is the
distribution Pf of density f with respect to Lebesgue measure on [0, 1]. Then P (n)

f is the product
measure ⊗ni=1Pf on [0, 1]n. For models with i.i.d. data (and those only) for simplicity in the sequel
we denote Pnf := P

(n)
f .

Geometric spaces. It is of interest to generalise the previous models to the case where data
‘sits’ on a geometrical object, say a compact metric spaceM. One may think of a torus, a sphere,
a manifold, or maybe even a discrete structure such as a tree, a graph etc.

The white noise model becomes, on a compact metric spaceM

dX(n)(x) = f(x)dx+
1√
n
dZ(x), x ∈M, (4)

where f is square-integrable onM and Z is a white noise onM.
The density estimation model on a manifoldM consists in observing

X1, . . . , Xn i.i.d. ∼ f, (5)
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where Xi areM-valued random variables with positive density function f onM.

Needles and straw in a haystack. Suppose that we observe

Xi = θi + εi, i = 1, . . . , n, (6)

for independent standard normal random variables εi and an unknown vector of means θ =
(θ1, . . . , θn). Suppose θ is sparse in that it belongs to the class of nearly black vectors

`0[pn] = {θ ∈ Rn : Card{i : θi 6= 0} ≤ pn} . (7)

Here pn is a given number, which in theoretical investigations is typically assumed to be o(n), as
n→∞. Sparsity may also mean that many means are small, but possibly not exactly zero.

High-dimensional linear regression. Consider estimation of a parameter β ∈ Rp in the
linear regression model

Y = Xβ + ε (8)

where X is a given, deterministic (n×p) matrix, and ε is an n-variate standard normal vector. As
for the previous model, we are interested in the sparse setup, where n ≤ p, and possibly n � p,
and most of the coefficients βi of the parameter vector are zero, or close to zero. Model (6) is a
special case with X the identity matrix of size n. Model (8) shares some features with this special
case, but is different in that it must take account of the noninvertibility of X and its interplay with
the sparsity assumption, and does not allow a factorization of the model along the coordinate axes.

There are of course further links between all the above models. For instance, the study of the
sparse Gaussian sequence model (6) is related to the study of certain sparse nonparametric classes,
namely sparse Besov spaces. We shall discuss further similarities along the way.

Semiparametric models

Slightly informally and broadly speaking, one may define semiparametric models as those mod-
els where the parameter of interest is a (often, but not necessarily) finite-dimensional aspect of
the parameter η of the model, where η is typically infinite-dimensional. We give two first examples.

Separated semiparametric models. A model {P (n)
η , η = (θ, f), θ ∈ Θ, f ∈ F}, where Θ

is a subset of Rk for given k ≥ 1 and F a nonparametric set, is called separated semiparametric
model. The full parameter η is a pair (θ, f), with θ called parameter of interest and f nuisance
parameter. Despite the terminology, this does not exclude f to be of interest too.

For instance, the following is called shift or translation model: one observes sample paths of
the process X(n) such that, for W standard Brownian motion,

dX(n)(t) = f(t− θ)dt+
1√
n
dW (t), t ∈ [−1/2, 1/2], (9)

where the unknown function f is symmetric (that is f(−x) = f(x) for all x), smooth and say 1-
periodic, and the unknown parameter of interest θ is the center of symmetry of the signal f(·− θ).
This model has a very specific property: estimation of θ can be done as efficiently as in the para-
metric case where f would be known, at least asymptotically. This is called a model without
loss of information. This and other models with loss of information, such as the famous Cox’s
proportional hazards model, will be more formally introduced in Chapter 3.

Functionals. More generally, given a model {P (n)
η , η ∈ H}, one may be interested in estimating

a function ψ(η) of the parameter η, for some function ψ on H. For instance, in the density model
(3), one may consider the estimation of linear functionals of the density ψ(f) =

´ 1

0
a(u)f(u)du,

for a(·) a bounded measurable function on [0, 1].
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The Bayesian paradigm

The Bayesian approach. Given a statistical model {P (n)
η , η ∈ H} and observations X(n),

a Bayesian defines a model by attributing a probability distribution to the pair (X(n), η). The
distribution P

(n)
η is viewed as the conditional law X(n) | η. A distribution on (X(n), η) is now

fully specified by attributing a law to the variable η, called a priori, or prior distribution. The
estimator of η, in the Bayesian sense, is then the conditional distribution η |X(n), called a posteriori
or posterior. This is a data-dependent probability measure on H. The prior law is often denoted
Π(·) or simply Π, and the corresponding posterior Π(· |X(n)).

Informally, in order to estimate a given parameter η, one first makes it random by giving one-
self a prior distribution. Next one updates this a priori knowledge by conditioning on the observed
data, obtaining the posterior distribution. Of course, many choices of prior are in principle possi-
ble, and one can expect this choice to have an important impact on how the posterior distribution
looks like. As the number of observations grows however, one may expect that the influence of
the prior becomes less and less eventually. We shall see through all three next Chapters that in
high dimensional models this typically cannot be achieved without special care.

Frequentist analysis of posterior distributions. Slightly anticipating the convergence
Section below, a natural way to assess convergence properties of Π(· |X(n)) is to make the fre-
quentist assumption that the data actually is generated from P

(n)
η0 , for some ‘true’ η0 in H.

Why Bayesian estimators ? Often, priors have a natural probabilistic interpretation and
insights from the construction of various stochastic processes in probability theory can be helpful.
Additional ‘smoothing’ parameter may themselves get a prior, thus leading to natural constructions
of priors via hierarchies.

Also, as the posterior is a measure, it has both a ‘location’ and a ‘spread’. Quantifying this
spread naturally leads to defining so-called credible sets (we define them below), which under some
conditions can be shown to be confidence sets. Hence in principle the Bayesian paradigm can help
the statistician in solving both ‘estimation’ and ‘confidence set construction’ tasks simultaneously.
Of course proving that the previous steps are legitimate is not always an easy task, especially in
high dimensional models.

There are other attractive aspects of the Bayesian approach that we do not discuss here: for
instance the fact that there are natural priors corresponding to exchangeable data, as developed
among others by the Italian school after de Finetti.

From the practical perspective, implementation methods of posterior distributions based on e.g.
Markov Chain Monte Carlo techniques have been very much developed since the mid-90’s. This
in turn leads to the need of developing theoretical tools to determine the convergence properties
of the corresponding estimators.

Nonparametric priors, examples
Maybe the most natural idea to build a prior on a nonparametric object such as a function is to
decompose the object into simple, finite-dimensional, ‘pieces’. Next put a prior distribution on
each piece and finally ‘combine’ the pieces together to form a prior on the whole object. Let us
give some examples for functions on the interval [0, 1].

If η = f is an element of L2[0, 1], one may first decompose f into its coefficients {fk} onto
an orthonormal basis {ϕk} of L2[0, 1], such as the Fourier basis, a wavelet basis etc. Next, draw
real-valued independent variables as prior on each coefficient. One constraint appears: one has to
choose the individual laws so that the so-formed function f almost surely belongs to L2. This can
be easily accommodated by taking the coordinate variances going to 0 fast enough. This leads us
to set

f(·) =

∞∑
k=1

σkAkϕk(·), (10)
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where {Ak} is a sample from a centered distribution with finite second moment and {σk} is a
deterministic sequence in `2. This gives ample room for choosing sequences {σk} and the common
law of the {Ak}. And, anticipating slightly, the variety of behaviours of the corresponding poste-
rior distributions in such simple models as white noise (1) is already quite broad.

Gaussian process priors. Specialising the previous construction to Gaussian distributions for
the law of Ak, one obtains particular instances of Gaussian processes taking values in L2[0, 1].

Another way of building a, say centered, Gaussian process prior (Zt) on the interval [0, 1] is via
a covariance kernel K(s, t) = E(ZsZt), (s, t) ∈ [0, 1]2. The choice K(s, t) = s ∧ t gives Brownian
motion. The choice K(s, t) = e−(s−t)2 corresponds to the so-called squared-exponential Gaussian
process, whose paths can be seen to be much smoother than those of Brownian motion.

Starting from Brownian motion, one can define a new Gaussian process by integrating it a
fractional number (α − 1/2) of times. This leads to the so-called Riemann-Liouville process of
parameter α > 0

Rαt =

ˆ t

0

(t− s)α−1/2dW (s), t ∈ [0, 1], (11)

where W is standard Brownian motion. One further defines a Riemann-Liouville type process
(RL-type process) as, for α the largest integer smaller than α,

Xα
t = Rαt +

α+1∑
k=0

Zkt
k, t ∈ [0, 1], (12)

where Z0, . . . , Zα+1, Rt are independent, Zi is standard normal and Rαt is the Riemann-Liouville
process of parameter α. If α = 1/2 then Rαt is simply standard Brownian motion and if {α} = 1/2,
with {α} ∈ [0, 1) the fractional part of α, then Rαt is a k-fold integrated Brownian motion. The
reason for adding the polynomial part to form the RL-type process Xα

t is that the support in
C0[0, 1] of Xα

t is the whole space C0[0, 1], see [100], Section 4.
Yet another, slightly more abstract, way of building a Gaussian prior is by defining it as a

Gaussian measure on a separable Banach space B (e.g. L2[0, 1], C0[0, 1] etc.) with a norm denoted
‖ · ‖B or simply ‖ · ‖ if no confusion can arise. It can be shown that, in general, this construction
coincides with the one starting from a covariance kernel as above. We refer to [102] for a compre-
hensive review.

Priors on density functions. Now consider the question of building a prior distribution on a
density f on the interval [0, 1]. A difficulty is the presence of two constraints on f , that is f ≥ 0

and
´ 1

0
f = 1, which prevents the direct use of a prior such as (10). We briefly present some

approaches. Although arguably not the first to have been considered historically, a simple and
natural approach consists in applying a transformation to a given function on [0, 1] to make it
a density. Leonard (1978) [76] and Lenk [75] considered the use of an exponential link function.
Given a, say, continuous function w on [0, 1], consider the mapping w → pw defined by

pw(s) =
ew(s)

´ 1

0
ew(u)du

, s ∈ [0, 1]. (13)

Now any prior on continuous functions, such as a random series expansion (10) or a Gaussian
process prior on [0, 1] as before, gives rise to a prior on densities by taking the image measure
under the transform (13).

A different yet perhaps more ‘canonical’ approach is to build the random density directly via
the construction of a random probability measure on [0, 1], absolutely continuous with respect to
Lebesgue measure. This connects this question to the central topic of construction of random
measures. A landmark progress in that area was the construction of the Dirichlet process by
Ferguson (1973) [40]. In terms of density estimation however, samples from the Dirichlet process
cannot be used directly since the corresponding random measure is discrete. However, the Dirichlet
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process turns out to be a particular case of some more general random structures: so called tail-free
processes, which where introduced by Freedman (1963) [42] and Fabius (1964) [39]. For well-chosen
parameters, the so-obtained random probability measures have a density. This way one obtains
as particular case the Pólya tree processes [81], [67].

Other ways to build random densities include random histograms, that we shall consider as
an example in Chapter 2 and 3, random kernel mixtures such as Bernstein polynomials [86], Beta
mixtures [90], location scale mixtures [59] etc.

Priors in semiparametric models. In a separated semiparametric model {Pθ,f}, a natural
way to build a prior on the pair (θ, f) is simply via a product prior πθ ⊗ πf on each coordinate.

Convergence of the posterior distribution
Consistency. Suppose the data X(n) we observe is effectively generated from one fixed element
P

(n)
η0 of the collection of distributions P = {P (n)

η , η ∈ H}. In this case η0 is called the ‘true’ η. It
is then natural to expect that the posterior distribution Π[· |X(n)], a random probability measure,
concentrates around the true η0 as the number n increases.

In what follows the space H of parameters is a (first countable) topological space, and Π a
prior on the Borel σ-algebra T of H.

Definition 0.1 The posterior distribution Π[· |X(n)] is said to be (weakly) consistent at η0 ∈ H if,
for every neighborhood V of η0, the posterior mass of its complement tends to 0 in P (n)

η0 -probability,
as n→∞. That is,

Π[Vc |X(n)]→P (n)
η0 0, (n→∞). (14)

A famous result by Doob (1948) states that under surprisingly mild conditions, the posterior
distribution is consistent for Π-almost all values of the parameter η, see [22, 36]. However, this is
consistency only from the prior’s perspective and does not guarantee consistency at a fixed, given
η0, which is required by the previous definition. A pioneer contribution in that direction was the
paper by Schwartz [92], who gave sufficient conditions for consistency in the i.i.d. case in terms of
1) the amount of mass the prior distribution puts on a fixed Kullback-Leibler type neighborhood
of the true distribution η0

BKL(η0, ε) :=
{
η,

ˆ
log (pη0/pη) pη0dµ ≤ ε,

ˆ
log2 (pη0/pη) pη0 ≤ ε

}
, (15)

where ε > 0, and 2) the existence of exponential tests of the simple null hypothesis H0 = {η = η0}
versus a composite hypothesis of the type H1 = {η ∈ Vc}. Schwartz’ results were later extended
to cover other examples of priors, as in [6] and [47].

In the seventies, focus seems to have partly shifted to other aspects of Bayes estimation, with
important developments on new priors for e.g. density estimation, with the introduction of classes
of random probability measures such as the Dirichlet process [40], tail-free processes and Pólya
trees. Nevertheless, we mention the fundamental work of Le Cam (1973) [70], which, while focusing
on parametric models, set the ground for future works on rates, with the use of empirical processes
techniques such as peeling combined with statistical tests with exponential power.

More surprises were to come, as it was realised that, although the Bayesian approach in prin-
ciple provides a huge freedom through the number of possible prior distributions one can imagine
to build, ‘most priors’, however, ‘do not work’, see e.g. Freedman (1963) [42]. ‘Most’ is, however,
in a topological sense of sets with large measure. Maybe more problematic is the fact that even
innocent looking priors may yield inconsistency. In a famous contribution Diaconis and Freedman
(1986) [32] give an example of natural –yet inconsistent– prior in the semiparametric symmetric
location problem. Although it illustrates a somewhat different phenomenon –semiparametric bias
rather than inconsistency– we obtain another at first sight surprising result in the world of rates
of convergence in Chapter 3, where two nearly identical nonparametric priors are shown to lead
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to completely different convergence rates for the parameter of interest.

Convergence rate. Let now the parameter space H be equipped with a metric d and let εn be
a sequence going to 0 as n→∞.

Definition 0.2 The posterior distribution is said to converge at rate at least εn towards η0 in
terms of a distance d on H if, for some M > 0,

Π[η : d(η, η0) ≤Mεn |X(n)]→P (n)
η0 1, (n→∞). (16)

Some comments are in order. In some cases, one may replace the fixed constant M by an arbi-
trary sequence M = Mn → ∞. This is typically necessary when H is finite dimensional and the
statistical model P is smooth, see below. For the nonparametric setting where η is infinite dimen-
sional, this is often not necessary, as the measure will typically concentrate on the boundaries of
balls, see Chapter 1. We also note that sometimes, depending on the chosen normalisation for the
convergence rate, one may have rates going to ∞.

Pioneering general rates of convergence results for posterior distributions were obtained at
the end of the nineties by Ghosal, Ghosh and van der Vaart [48] and Shen and Wasserman [95].
Qualitative, model-free assumptions are given that guarantee posterior convergence at a certain
rate in i.i.d. observations models, in terms of specific distances. A precise statement following [48]
is given below. Such results were later extended to non-i.i.d. models by Ghosal and van der Vaart
[49], in such different contexts as regression, Markov chain, time series data etc.

Point estimators. If the posterior distribution converges at rate εn ↓ 0 towards η0 as in Defi-
nition 0.2, then there exists a point estimator η̂n such that d(η̂n, η0)/εn is bounded in probability
under P (n)

η0 . An example of such a point estimator η̂n is the center of the smallest ball that contains
at least half of the posterior mass.

Bayes formula. It is now time to state the Reverend’s celebrated formula, that appeared
posthumously in a 1763’s essay [7] in a specific context with a binomial likelihood. It is in fact
valid much more generally assuming some measurability and a dominated likelihood assumption.
It consists of an expression of the posterior distribution, the condional law of η given the data in
the Bayesian framework, in terms of a ratio of integrated likelihoods.

In all what follows, we assume that the considered statistical experiment is dominated. There
exists a σ-finite measure µ(n) such that P (n)

η is for any η in H absolutely continuous with respect
to µ(n), with corresponding density denoted p(n)

η . We further assume that, for T a σ-field on H,
the mapping (x(n), η)→ p

(n)
η (x(n)) is jointly measurable relative to A(n) ⊗ T .

For any measurable set B in T , Bayes’ theorem states that

Π(B |X(n)) =

´
B
p

(n)
η (X(n))dΠ(η)´

p
(n)
η (X(n))dΠ(η)

. (17)

All our results are in the above setting where Bayes’ formula is valid. Nevertheless, we note that
in some relevant situations for Bayesian nonparametrics, Bayes’ formula may not apply. A pro-
totypical example is the i.i.d. sampling setting with a Dirichlet process prior on the distribution
function F . More generally, completely random measures [64] form a class of priors involving
Dirac masses at random locations and Bayes’ formula may not apply.

A theorem. We follow [48] and for simplicity state the result for i.i.d. observations. That is,
P = {Pnη , η ∈ H}, with Pnη = ⊗ni=1Pη and dPη = pηdµ. Let d = h be the Hellinger distance
between densities

h(η1, η2) := h(Pη1 , Pη2) =

(ˆ
(pη1 − pη2)2dµ

)1/2

. (18)

For a subset G ⊂ H, let N(ε,G, d) denote the ε-covering number of G with respect to d, that is
the minimal number of d-balls of radius ε needed to cover G.
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Theorem 0.1 If there exist Hn ⊂ H and c > 0 such that, with BKL given in (15),

logN(εn,Hn, h) ≤ nε2
n entropy

Π(H\Hn) ≤ e−(c+4)nε2n remaining mass

Π(BKL(η0, εn)) ≥ e−cnε2n , prior mass

then for M > 0 large enough, as n→∞,

Π(η : h(η, η0) ≤Mεn |X(n))→Pnη0 1.

Let us briefly comment on the result. One can exclude a part Hcn of the parameter set H provided
its prior mass is sufficiently small. Next the prior should put enough mass on a Kullback-Leibler
type neighborhood of the true η0. The neighborhood shrinks to 0 at the target rate. Finally, the
first condition ensures the set Hn is not ‘too large’. It can be replaced by a testing condition.

Testing is an essential ingredient of the proof of Theorem 0.1. The idea is first to construct
a test of a point η0 versus a generic Hellinger-ball centered at another point η1, with errors of
first and second kind bounded exponentially in terms of nh2(Pη0 , Pη1). This is always possible
for the Hellinger distance due to general results of Birgé (1984) [15] and Le Cam (1986) [71] for
testing convex sets, see also [16] for a recent perspective. Next, to build a test of a point versus
the complement of the ball {η : h(η, η0) ≤Mεn}, one may partition this complement into shells.
The shells are themselves covered by balls for which one uses the individual tests point–versus–
ball. Finally, one combines the previous tests into a single one. The entropy condition enables to
control the overall error of the resulting test. On the other hand, the prior mass condition enables
a control from below of the denominator in Bayes’ formula. Finally, the remaining mass condition
provides some extra flexibility.

Uniformity in the results. Although often not explicitly written to simplify the notation, the
previous rate result often holds uniformly over a given class B of parameters η, such as for instance
a Sobolev ball. That is, one typically has supη0∈B E

(n)
η0 Π(h(η, η0) > Mεn |X(n)) → 0 (also, since

the posterior takes values in [0, 1], its convergence in probability or in expectation are equivalent).

Target rate. Definition 0.2 defines ‘a’ rate rather than ‘the’ rate. Generally, for a given prior
Π, one looks for εn ‘as small as possible’ such that convergence to 0 in probability still holds.
Often, we shall try to find classes of priors so that the corresponding posterior converges at a
rate εn that is ‘optimal’ in some sense. A typical benchmark is the minimax rate corresponding
to point estimators for a given class of parameters η and a specific loss function specified via a
distance d. Making a formal link with minimaxity may sometimes require additional assumptions.
As noted above, if εn-convergence of the posterior occurs, there is a point estimator converging
at rate εn in probability. Possibly under additional conditions, this may be strenghthened to a
convergence in expectation, uniform over the considered class, thus leading to a minimax point
estimator. Another way is to prove a result for the posterior mean, which again may require some
extra work and/or assumptions, typically that the posterior mass outside balls of radius ε goes to
0 fast enough with ε. In the present work, and as in [48, 49] and [95], we will typically be content
with a (and, though often not written for simplicity, uniform) posterior mass result as in Theorem
0.1.

Extensions, related results. The results hold more generally for distances such that certain
tests exists, and for non-i.i.d. data as well, as investigated in Ghosal and van der Vaart [49].
As above, a main tool of the proof consists in building tests of the true parameter versus balls
of alternatives. This is possible in a large variety of frameworks, thanks notably to the testing
results established by Le Cam [70, 71] and Birgé [13, 14]. It is also possible to apply the result in
semiparametric models to get consistency and some (nonparametric-type) rate for the parameter
of interest.

16



Theorem 0.1 is formulated in an asymptotic way, as n → ∞. The proof and statement can
often be made non-asymptotic: typically the difference between the expectation in Theorem 0.1
and 1 is less than Ce−cnε

2
n .

Related results were simultaneously obtained by Shen and Wasserman [95], where the test-
ing/entropy condition is formulated in terms of a control of likelihood ratios, and where a variety
of other interesting examples is also studied. In the special case of density estimation, it was also
noted by Walker [103] and Walker, Lijoi and Prünster [104] that alternative arguments based on
martingale methods under somewhat adapted assumptions lead to the conclusion of Theorem 0.1.

Some methods or estimators are close in spirit to the posterior distribution. For instance,
so called pseudo-posterior distributions correspond to formula (17) where the likelihood term is
raised to some power δ > 0. Varying this ‘temperature’ parameter enables to give more weight
to data or prior respectively. This is related to families of (pseudo-)posteriors considered in the
PAC-Bayesian literature, where the likelihood term in Bayes-formula may be further replaced by
an exponentiated negative empirical risk. This is a very important and active area of research, in
particular with connections to machine learning. We refer to Catoni (2004) [27] for a theoretical
treatment and to Alquier (2013) [2] for an overview of recent developments.

Posterior rates for Gaussian process priors
Theorem 0.1 is based on qualitative assumptions. Its consequences are far-reaching: even in
situations where closed-form expressions are far from being available, it may give sharp rate
results. This fact was illustrated in a striking way through the results by van der Vaart and van
Zanten for Gaussian process priors in [99, 100]. Their results can be summarised as follows: for
Gaussian process priors, the prior mass condition can be verified using the so-called concentration
function of the Gaussian process, itself linked to its small ball probability; on the other hand,
Gaussian concentration of measure [74] provides natural candidate sets Hn that verify the two
first conditions of Theorem 0.1. These results serve as important building block for some of our
results, and we describe them now in some more detail.

Let the prior be constructed as the law P of Z, a centered and tight measurable random map
in the Banach space (B, ‖ · ‖). Let (H, ‖ · ‖H) be the Reproducing Kernel Hilbert Space (RKHS,
see [102]) of Z. We will generally assume that f0 belongs to the support of the prior in B, which
for Gaussian process priors is nothing but the closure of H in B.

For Gaussian priors an upper-bound for the concentration rate of the posterior distribution
can often be obtained in a simple way from the so-called concentration function of the Gaussian
process. This quantity is defined as follows. For any ε > 0, let

ϕf0(ε) = inf
h∈H:‖h−f0‖<ε

‖h‖2H − logP(‖Z‖ < ε) (19)

Assume that the norm ‖ ·‖ on B is comparable to a metric d appropriate to the statistical problem
(often, d is a distance for which certain tests exists, which allows to apply the theory presented
in [48]; for instance, in i.i.d. settings, one may choose Hellinger’s distance). Here “comparable”
means that the ball {f ∈ F , ‖f − f0‖ ≤ εn} should be included in the ball for d around f0 of
radius cεn and also in the Kullback-Leibler neighborhood BKL(f0, cεn) defined above, for some
c > 0. Then van der Vaart and van Zanten [100] prove that if εn → 0 satisfies

ϕf0(εn) ≤ nε2
n, (20)

then the posterior contracts at the rate εn for the distance d, in that for large enough M > 0,
Π(f : d(f, f0) ≤Mεn | X(n))→ 1 in P (n)

f0
-probability as n→∞.

These results mean that for Gaussian priors an upper-bound on the posterior rate is obtained
as soon as the next two quantities are controlled

ϕAf0(ε) = inf
h∈H:‖h−f0‖<ε

‖h‖2H, ϕB(ε) = − logP(‖Z‖ < ε). (21)
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The first term measures how well elements in the RKHSH of the Gaussian process can approximate
the true function in B. Note in particular that if f0 happens to be in H, this term simply remains
bounded. The second term, which does not depend on f0, is the so-called small ball probability of
the Gaussian process. Intuitively it can be understood as a measure of ‘complexity’ of the process.
Small ball probabilities have been studied in many papers in the probability literature and precise
equivalents as ε→ 0 of ϕB(ε) are available for many classes of Gaussian processes, see for instance
[77]. Yet at first sight it is not obvious to see why the concentration function ϕf0 should appear
in the study of posterior rates. This will be explained in Chapter 1, see Lemma 1.4.

Let us now give an example. In density estimation, if the prior is the law induced by pW , with
W Brownian motion and w → pw as in (13), the rate εn can be shown to depend on the Hölder
regularity β of the true f0 as follows. If β ≥ 1/2, then εn can be chosen equal to n−1/4, whereas if
β < 1/2 the rate εn must be in n−β/2 to satisfy (20). Thus, up to constants, the rate is optimal in
the minimax sense if β = 1/2. However, for all other values of β, the obtained (upper-bound-)rate
is below the minimax rate which is n−β/(2β+1). At this point it natural to ask whether the fastest
possible rate of concentration for Brownian motion is really the one we just described or if in fact
the posterior contracts faster. We study this question in Chapter 1.

The Laplace-Bernstein-von Mises phenomenon
Consider an i.i.d. parametric model P = {Pnθ , θ ∈ Θ}, Θ ⊂ Rk, k ≥ 1. The next result considers
smooth models, for which the notions of Fisher information Iθ0 at an interior point θ0 ∈ Θ, and of
efficient estimator, are well-defined. We refer to van der Vaart (1998) [98] for precise definitions.
We shall not elaborate on these here, but only note a few points useful to get some intuition.
Smoothness of the model implies that estimation is possible at rate 1/

√
n and that the model

at θ0 is ‘asymptotically equivalent’ to a Gaussian shift experiment {N(h, I−1
θ0

), h ∈ R}, under
rescaling by a factor

√
n. An efficient estimator θ̂n then converges in distribution, as n→∞,

√
n(θ̂n − θ0)

d→ N(0, I−1
θ0

).

The phenomenon in the next Theorem was observed by Laplace [66], and later studied by
Bernstein, von Mises [83] and Le Cam [68, 69] among others. Its first message is that posterior
distributions are, in smooth parametric models, asymptotically normal. Also, it exhibits a striking
equivalence: the Bayes posterior distribution asymptotically looks like the efficient frequentist
limiting distribution, centered at an efficient estimator.

Let π be a prior distribution on Θ and let ‖P (·) − Q(·)‖ denote the total variation distance
between the probability measures P and Q.

Theorem 0.2 ([98], Theorem 10.1) In a parametric model P as above, assume that

∀ε > 0, ∃ϕn test, Pnθ0ϕn → 0, sup|θ−θ0|≥ε P
n
θ (1− ϕn)→ 0 Testing

The model is smooth at θ0 and Iθ0 > 0 Regularity

The prior π has a continuous positive density at θ0. Prior

Then, as n→∞, under Pnθ0 , it holds, for θ̂ an efficient estimator of θ0,∥∥∥∥∥π(· |X(n)) − N

(
θ̂n,
I−1
θ0

n

)
(·)

∥∥∥∥∥ −→ 0, (22)

This result is called the Bernstein-von Mises theorem (hereafter BvM). Let us now discuss one
important consequence of it. A measurable random set Cn = Cn(X(n)) is a confidence set for the
parameter θ of level 1− α asymptotically if for any θ, it holds Pnθ (θ ∈ Cn)→ 1− α as n→∞. A
credible set of level 1−α for the posterior distribution π(· |X(n)) is a measurable set Cn such that
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π(Cn |X(n)) = 1− α.

BvM and confident credible sets. Let us consider the random interval having as endpoints
the 2.5% and 97.5% percentiles of the posterior distribution π(· |X(n)). It is the interval [An, Bn]
such that

π((−∞, An) |X(n)) = 0.025, π((Bn,+∞) |X(n)) = 0.025.

Note that [An, Bn] is accessible in practice as soon as simulation from the posterior is feasible.
Now, some simple calculations reveal that the conclusion (22) of the BVM theorem implies that,
if qα denotes the standard normal quantile at level α,

[An, Bn] =

[
θ̂n +

qα/2
√
nI1/2

θ0

+ oPnθ0
(n−1/2) , θ̂n +

q1−α/2
√
nI1/2

θ0

+ oPnθ0
(n−1/2)

]
. (23)

Simple verifications reveal that the latter interval contains θ0 with probability 95% as n→∞. So
[An, Bn] is asymptotically a 95%-confidence interval in the frequentist sense. In particular, Bayes
and frequentist credible regions asymptotically coincide. An advantage of the Bayes approach is
that, to build [An, Bn], estimation of Iθ0 is not required.
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CHAPTER 1

Lower bounds for posterior rates

We introduce a concept of lower bound for posterior rates following [P4]. We illus-
trate its use through a variety of examples, among which some are from [P4], [P9],
[P15]. This Chapter also serves as a way to introduce simple versions of several sta-
tistical models whose study will be pursued in the following Chapters.

In the introduction, we have reviewed the notion of posterior convergence rate. Roughly
speaking, ‘the’ rate in terms of a distance d is generally thought of as an εn as small as possible
such that the posterior probability of the d-ball centered at the true f0 and of radius εn still tends
to 1 in probability. The tools proposed e.g. in Ghosal, Ghosh and van der Vaart [48] and Shen
and Wasserman [95] often allow to obtain an upper bound for the posterior rate corresponding to a
given prior distribution Π. However, the result does not say whether one could actually do better,
that is obtaining an even faster rate. In a variety of situations, the notion of lower bound below
enables to prove that the obtained rate is sharp, possibly up to slowly varying factors. Also, the
concept is often useful in practical terms, even independently of upper bounds, in that it may
allow to investigate necessary conditions for the prior to converge at a given target rate.

1.1 A definition and a first result
In this Chapter unless otherwise stated we consider an experiment (X (n),A(n), P

(n)
f ) with f ∈ H

an unknown function in a space H to be specified, and the measurability and domination assump-
tions stated above.

Definition. Let d be a distance on the parameter space H. Let ζn is an arbitrary sequence
indexed by n, most of the time going to 0 with n. Given a prior Π on H, in [P4] we propose the
following definition.

Definition 1.1 The rate ζn be a lower bound for the concentration rate of the posterior distribu-
tion Π(·|X(n)) in terms of the distance d if, as n→∞,

Π(f : d(f, f0) ≤ ζn | X(n))→P
(n)
f0 0. (1.1)

The definition mainly means that ζn is too fast for the posterior measure to capture mass in the
ball of radius ζn around f0. Note also that Definition 1.1 is not the mere negation of Definition
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0.2 but a stronger requirement. Not only not all the mass belongs to a ball of radius ζn around
f0, but asymptotically no mass at all belongs to it.

The definition at first looks surprising, since it seems as if the posterior would not be allowed
to actually be close to the true f0 ! Also, if both an upper-bound as in (16) and a lower bound as
in (1.1) hold simulatenously and for a common distance d, it means that the posterior distribution
stays in a shell {f : C−1εn ≤ d(f, f0) ≤ Cεn}, as if there would not nearly be enough space for
the mass to stay ... This actually should not be surprising in high or infinite dimensional contexts,
and is related to the concentration of measure phenomenon. Indeed, we shall see in the sequel
some examples where this shell-behaviour is typical, for infinite-dimensional f ’s.

On the other hand, the definition is still meaningful for finite dimensional models, where one
can deduce from the BvM phenomenon, if it holds at standard parametric rate 1/

√
n as in (0.2),

that all posterior mass concentrates on the euclidian shell {θ : M−1
n /
√
n ≤ ‖θ − θ0‖ ≤ Mn/

√
n}

asymptotically, for an arbitrary Mn →∞. Note in that case the factor Mn going to∞ as opposed
to the fixed constant C in the former paragraph.

A possible strategy. A simple, yet, as it turns out, quite effective method to prove a lower
bound rate appeals to a Lemma due to Barron [5]. Recall the notation BKL from (15).

Lemma 1.1 Let αn be a sequence such that nα2
n →∞. Let Bn be a measurable set in H. Suppose

Π(Bn)/Π(BKL(f0, αn)) ≤ e−2nα2
n . (1.2)

Then Π(Bn | X(n))→ 0 in P (n)
f0

-probability as n→∞.

So, if an event has an exponentially small prior mass compared to the prior mass of a KL-
neighborhood of the true η0, the posterior mass of such an event is also small. Note that this
Lemma is already put to good use in establishing upper bounds for posterior rates since it enables
to show that one can restrict the study to sieve-type sets Hn provided their complement have
sufficiently small prior mass.

This immediately yields the next key Lemma.

Lemma 1.2 Let αn be as in Lemma 1.1 and suppose (1.2) holds true for Bn = {f : d(f, f0) ≤ ζn},
for an arbitrary sequence ζn and d some distance on H. Then as n→∞,

Π[f : d(f, f0) ≤ ζn |X(n)]→P
(n)
f0 0.

Controlling a ratio of prior masses of balls (in some cases the KL-type neighborhood can be shown
to contain a ball for some distance, otherwise one may still informally see the KL-neighborhood
as being of ‘ball-type’, though the KL-divergence is not a distance) is enough to obtain a lower
bound result. We show how this principle applies to a variety of examples.

1.2 Example: Sparsity
Consider the Gaussian sequence model with a sparsity assumption (6), that is, ‘finding needles
among straw in a haystack’, and suppose one wants to do estimation in this model in a Bayesian
way. How does one choose the prior distribution ?

Before all, let us see how Lemma 1.2 particularises to the sequence model.

Lemma 1.3 In model (6), let Π be a prior on θ. We have P (n)
θ0

Π
(
θ : ‖θ − θ0‖ < sn |X

)
→ 0, for

any sn for which there exist rn such that

Π
(
θ : ‖θ − θ0‖ < sn

)
Π
(
θ : ‖θ − θ0‖ < rn

) = o(e−r
2
n).
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The following motivates the introduction of the so-called ‘sparse’ or ‘Spike and Slab’ prior,
whose properties we study in detail in Chapter 2. For simplicity of exposition we restrict to the
sparse sequence model (6) but similar remarks apply in the linear regression model (8).

Discarding straw, Dirac mass priors and the ‘Spike’.

A simple prior Πλ in the sparse sequence model samples the coordinates of θ independently

Πλ ∼ ⊗ni=1E(λ), λ > 0, (1.3)

where E(λ) denotes the Laplace (double-exponential) prior with scale parameter λ−1.

Proposition 1.1 Consider the sequence model (6) and suppose the true θ0 is 0. Let Πλ be defined
by (1.3). Let λ = λn such that

√
n/λn →∞. There exists δ > 0 such that, as n→∞,

Πλn

(
θ : ‖θ‖2 ≤ δ

√
n
( 1

λn
∧ 1
)
|Y
)
→P

(n)
θ0=0 0.

The minimax rate for estimating a vector in the nearly-black class `0[pn] defined in (7), in
terms of the squared-Euclidian loss, is 2pn log pn(1 + o(1)) as n → ∞, see [34]. The above result
from [P15] shows that the prior (1.3) performs much worse than this when the true θ0 vector is 0,
except perhaps if the parameter λn is very large, nearly of the order

√
n. But if λn is very large,

say larger than some even small power of n, one can show – we do not explicitly state this here –
that the convergence rate is slow for sparse vectors with large non-zero entries.

Note that the prior (1.3) does not take into account the information that the true vector is
sparse, that is that most of its coordinates are zero. This suggests a simple modification of (1.3)
where at each coordinate, the prior is allowed to pick either a ‘0’ with some probability 1− α, or
some other non-zero value with probability α, which may be denoted

Πα,g ∼ ⊗ni=1(1− α)δ0 + αg, (1.4)

where each coordinate is a mixture of a Dirac mass at 0 and of a continuous distribution of density
g on R, for instance a Laplace density as above. We will show in Chapter 2 that this prior has
nice properties, provided α is well chosen (possibly random of course !)

At this point, the reader familiar with sparsity may wonder: but is not prior (1.3) good in that
for well-chosen λ it is should be related to the LASSO ?

Discussing the Bayesian interpretation of the LASSO.

The LASSO estimator [97] for θ in the sequence model may be defined as, withX = (X1, . . . , Xn),

θ̂LASSOλ = arg min
θ∈Rn

[
‖X − θ‖22 + 2λ‖θ‖1

]
. (1.5)

This is the posterior mode, or ‘maximum a posteriori estimator’, corresponding to the prior (1.3).
In the sequence model θ̂LASSOλ can be written explicitly as a soft thresholding estimator.

The LASSO has many desirable properties: it is computationally tractable; it automatically
leads to sparse solutions, and, with the standard choice λ = (c log n)1/2, it attains the minimax
rate over nearly-black classes. Proposition 1.1 shows that for this choice of λ the full posterior dis-
tribution corresponding to the LASSO puts no mass on balls of radius of the order

√
n/(log n)1/2,

which is substantially bigger than the minimax rate (s log n)1/2, except for extremely dense signals.
Therefore, the full posterior and its mode have in this case completely different behaviours.

The sparsity inherent to the LASSO comes from taking the maximum. On the other hand, the
corresponding posterior measure itself is nearly nowhere sparse. It faces two conflicting demands:
the scaling parameter λ in the Laplace prior must be large in order to shrink coefficients θi to zero,
but at the same time reasonable so that the Laplace prior can model the nonzero coordinates.
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That these conflicting demands do not affect the good behaviour of the LASSO estimators is
due to the special geometric, sparsity-inducing form of the posterior mode.

More generally, especially in high-dimensional settings, the posterior measure may behave dif-
ferently from some of its ‘aspects’ such as mode, mean, median etc. Another example is given in
Chapter 2, for which the full posterior behaves optimally, as opposed to its mean.

Finding needles, enough strength via heavy tails: the ‘Slab’.

Consider now a prior of the type (1.4). It is natural to ask whether any density g supported
on the whole real line leads to a satisfactory rate, or whether some further conditions arise.

The next result from [P9] shows that product priors with marginal densities proportional to
y 7→ e−|y|

α

for some α > 1 lead to suboptimal contraction rates for large true vectors θ0. In
Chapter 2, we prove that α ≤ 1 is compatible with optimal rates.

The theorem applies in particular to the normal distribution. For this prior a problem (only)
arises if the parameter vector θ0 =: θn0 (recall that in model (6) everything depends on n, including
θ, that has n coordinates) has squared-norm larger than the optimal rate:

‖θ0‖22 = ‖θn0 ‖22 � pn log(n/pn).

The posterior then puts no mass on balls of radius a multiple of ‖θn0 ‖2 around the true parameter.
For “small” θn0 no problem occurs, because shrinkage to the origin is desirable in that case.

Product priors with marginal density proportional to y 7→ e−|y|
a

give behaviour as the Gaussian
prior for every α ≥ 2. For α ∈ (1, 2) the result is slightly more complicated and involves

ρn0,α =

(
‖θn0 ‖αα
‖θn0 ‖22

∧ 1

)
‖θn0 ‖α p1/2−1/α

n , (1.6)

where ‖θ‖αα =
∑n
i=1 |αi|α is the usual Lα-norm on Rn.

Proposition 1.2 (Necessity of heavy tails) In model (6), let the prior be as in (1.4), with g a
density proportional to y 7→ e−|y|

α

and the prior πn on dimension satisfies πn(pn) ≥ exp(−cpn log(n/pn)).

(i) If α ≥ 2 and ‖θ0‖22/
(
pn log(n/pn)

)
→∞, then for sufficiently small η > 0, as n→∞,

Π
(
θ : ‖θ − θ0‖2 ≤ η ‖θ0‖2 |X(n))→P

(n)
θ0 0.

(ii) If 1 < α < 2 and (ρn0,α)2/(pn log(n/pn))→∞, then for sufficiently small η > 0, as n→∞,

Π
(
θ : ‖θ − θ0‖2 ≤ η ρn0,α |X(n))→P

(n)
θ0 0.

Proposition 1.2 shows problematic behaviour of the posterior distribution for signals with large
norm ‖θ0‖2. Instead of using fixed priors on the coordinates, we could make them depend on the
sample size, for instance Gaussian priors with variance vn → ∞, or uniform priors on intervals
[−Kn,Kn] with Kn →∞. Such priors will push the “problematic boundary” towards infinity, but
the same reasoning as for the theorem will show that shrinkage remains for (very) large θ0.

The above results show that gS needs to have heavy tails. One can also check that the fact
that the amount of mass πn(pn) at the true dimension is large enough is a necessary condition.

We have examined necessary conditions for sparse priors to converge (uniformly) at optimal
rate. Of course spike-and-slab priors with Dirac masses at 0 are not the only possible option.
Other Bayesian alternatives are e.g. the horseshoe [26] and nonparametric empirical Bayes [57].
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1.3 Example: Gaussian process priors
Prior mass and Concentration function. As briefly mentioned in the introduction, for
Gaussian priors there are natural fairly tight bounds for the prior mass of certain neighborhoods,
which involve the concentration function ϕ of the Gaussian prior as defined in (19).

Lemma 1.4 Let Z be a Gaussian process in (B, ‖ · ‖) with associated RKHS H. Assume that f0

belongs to the support of Z in B. Then for any ε > 0,

ϕf0(ε) ≤ − logP(‖Z − f0‖ < ε) ≤ ϕf0(ε/2).

The intuition behind the result is as follows: recall from (21) that ϕ is the sum of two terms, the
small ball probability and an approximation term. If f0 belongs to the RKHS H of the prior, one
can directly apply the famous Cameron-Martin-Girsanov formula, which asserts that shifting a
Gaussian measure by elements of H, absolute continuity of measures remains, so one is left with
a probability around the zero-function, that is the small ball probability. If f0 does not belong to
H, an extra approximation term of it by elements of H arises, which results into the second term
in (21).

A consequence of the next Lemma is that ϕf0 admits an inverse ϕ−1
f0

.

Lemma 1.5 Let Z be a non-degenerate centered Gaussian process in (B, ‖ · ‖). For any f0 in B,
the associated concentration function ε → ϕf0(ε) is strictly decreasing and convex on (0,∞). In
particular, it is continuous on (0,∞).

Result in terms of the concentration function. Combining Lemmas 1.2 and 1.4 one gets

Theorem 1.1 Let Z be a Gaussian process with associated distribution Π on the space H =

(B, ‖ · ‖). Let the data X(n) be generated according to P
(n)
f0

and assume that f0 belongs to the
support of Π in B. Let αn → 0 such that nα2

n → ∞ and Π(BKL(f0, αn)) ≥ e−cnα
2
n , for some

c > 0. Suppose that ζn → 0 is such that

ϕf0(ζn) ≥ (2 + c)nα2
n. (1.7)

Then, as n→∞, we have, in P (n)
f0

-probability,

Π(‖f − f0‖ ≤ ζn | X(n))→ 0.

While for obtaining upper-bounds results, Condition (20) from van der Vaart and van Zanten
[100] requires to bound the concentration function f0 from above, the previous result states that
it is enough to bound ϕf0 from below to obtain a lower-bound posterior rate. Further, the result
suggests that it may sometimes be possible to precisely determine the rate of the posterior by
having the same (up to constants) upper- and lower-bound rate.

Let us discuss this last point informally first. The condition on the neighborhood BKL in
Theorem 1.1 is typically satisfied for αn = εn, an upper-bound rate. If neighborhoods BKL
contain ‖ · ‖-balls, then [100] show that the last condition is true when ϕf0(εn) ≤ nε2

n. So if
αn = εn, Condition (1.7) requires ϕf0(ζn) & nε2

n. This means that if ϕf0(ct) compares up to
constants to cδϕf0(t) for some real δ, then one can take ζn ≈ εn and a precise rate of convergence
ε∗n for the posterior is obtained by solving

ϕf0(ε∗n) ≈ nε∗n
2

and ζn ≈ εn ≈ ε∗n. This is of course somewhat informal, since it requires in particular that ϕf0(cεn)
compares to ϕf0(εn). However this can be shown to be the case for a variety of functions f0 and
Gaussian process priors.

Illustration: Gaussian white noise model. First, one can specialise Theorem 1.1 to the
white noise model: the next result is a consequence of Theorem 3.4 in [100] for the upper-bound
and of Theorem 1.1 for the lower bound.
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Theorem 1.2 Suppose the data is generated according to (1). Let the prior Π be a Gaussian
process prior on L2. Suppose f0 belongs to the support of Π in L2. Let εn and ζn be such that

ϕf0(εn) ≤ nε2
n and ζn ≤ ϕ−1

f0
(9nε2

n).

Then for M large enough, as n→∞,

Π(ζn ≤ ‖f − f0‖2 ≤Mεn | X(n))→P
(n)
f0 1.

Let us consider series priors such as (10), now with Gaussian distributions on the coefficients,

Π = Πα : f(·) ∼
∞∑
k=1

k−
1
2−ααkεk(·), (1.8)

where αk are independent standard normal random variables, {εk} is a (smooth enough) orthonor-
mal basis of L2 and α > 0. The choice σk = k−1/2−α for the standard deviations on the coefficients
is especially natural if f0 happens to belong to a Sobolev ball, which we shall assume below. We
note that the prior (1.8) stands at the ‘boundary’ of an α-Sobolev space. A realisation of the
prior (1.8) does not belong to a Sobolev space of order α (because the harmonic series diverges)
but almost surely belongs to Sobolev spaces of order γ < α. Such an object is seen as having
‘regularity’ or ‘smoothness’ α. Zhao [108] proved upper-bound rates for the posterior-mean for
these priors, and discusses spaces the prior and posterior belong to. Her result is revisited by
Shen and Wasserman [95] who prove a result for the full posterior. Also, Belitser and Ghosal
[8] consider putting a prior on the parameter α and derive adaptive upper-bound posterior rates
when the regularity parameter α belongs to a grid.

The prior Π = Πα from (1.8) defines a random element in B = L2[0, 1]. Theorem 1.2 tells us
that upper and lower-bound rates can be determined via inequalities on the concentration function
ϕf0 of the prior Πα at a given f0. The RKHS Hα of Πα in B can be shown to be the space

Hα =
{∑
k≥1

hkσkεk, (hk)k≥1 ∈ `2
}
, ‖

∑
k≥1

hkσkεk‖2Hα =
∑
k≥1

h2
k

see van der Vaart and van Zanten [102], Theorem 4.2. The support of the prior in L2 is L2 itself,
using that for Gaussian priors the closure of the RKHS in the B-norm coincides with the support
of the prior in B. For the prior Πα, the small ball probability is a well-studied quantity, see Kuelbs
and Li [65], who show that as ε→ 0,

− log Πα(‖f‖2 < ε) � ε−1/α.

Also, one can study the approximation term in ϕf0 using that Hα is actually itself a Sobolev space.
The Sobolev ball Fβ,L of order β > 0 and radius L > 0 is, for a smooth enough basis {εk}, the

set Fβ,L = {f ∈ L2,
∑
k≥1 k

2β〈f, εk〉22 ≤ L2}. Denote, for positive α, β,

rα,βn = n−(α∧β)/(2α+1). (1.9)

The next statement reveals that the posterior corresponding to the prior Πα achieves the rate
rα,βn and that this rate cannot be improved in general. The upper-bounds essentially follow from
the general results in [100], although the specific application to the priors Πα (with a proof using
general principles; [8] also get upper-bound rates but using explicit expressions) is new. Yet, the
main point of the result is to show that the rate is sharp via providing a lower-bound rate.

Proposition 1.3 Let the prior Π = Πα be defined by (1.8), for some α > 0. Let f0 be in Fβ,L, for
some β, L > 0. Let the rate rα,βn be defined by (1.9). Then, the upper-bound rate εn in Theorem
1.2 can be chosen such that εn . rα,βn .
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• If α ≤ β, then the lower-bound rate ζn in Theorem 1.2 can be taken such that ζn & rα,βn and,
for M large enough,

Π(M−1rα,βn ≤ ‖f − f0‖2 ≤Mrα,βn | X(n))→P
(n)
f0 1.

• If β < α, there exists f0 in Fβ,L such that, for p > 1 + β/2 and M large enough,

Π(rα,βn log−p n ≤ ‖f − f0‖2 ≤Mrα,βn | X(n))→P
(n)
f0 1.

There are two regimes. If the prior is as smooth or ‘rougher’ than the true function, that is
α ≤ β, a case called undersmoothing, then the shell behaviour mentioned above occurs and the
posterior rate remains determined, equal to n−α/(2α+1) up to constants. One can see from the
proof of the Proposition that this corresponds to the case where the small ball probability part
of the concentration function ϕf0 dominates over the RKHS-approximation part. If α > β, more
information on the true function f0, in terms of the behaviour of the sequence of coefficients
〈f0, εk〉2, is needed to evaluate the RKHS-approximation term. This term may behave differently
depending on f0. For f0’s so that a control from below of the basis-coefficients is available, one
may obtain a lower bound for the approximation term in terms of a power of n−1 and in turn a
corresponding lower bound rate result. Such special f0’s are those ‘at the boundary’ of the Sobolev
ball Fβ,L. This is how the specific “worst-case” function f0 appearing in the second part of the
statement of Proposition 1.3 is constructed.

Note that the result of Proposition 1.3 is stated in a pointwise fashion, that is for one single
f0. As is typically the case for rate theorems, as noted in the Introduction, here in the case α ≤ β
one can check that the result holds uniformly over the Sobolev ball Fβ,L. In the case α ≤ β,
Proposition 1.3 provides an existence result, for which it is natural to ask whether one can avoid
the log-factor in the lower bound. The answer is yes if one allows sequences of functions: it can be
checked that there exists a sequence f0,n in Fβ,L, where the function f0,n has only one properly
chosen non-zero Fourier coefficient, such that, forM large enough, Π(rα,βn /M ≤ ‖f−f0,n‖2 | X(n))
tends to 1 in probability.

Finally, we note that Shen and Wasserman [95] obtained interesting partial lower-bound type
results for the prior Πα in their Theorem 6, which states that the negation of the upper-bound
definition holds true for balls of small enough radius. As we have noted above, this is weaker than
the lower-bound concept (1.1), since it does not exclude that some posterior mass remains close
to the true f0.

Illustration: Density estimation.

Consider observations X(n) = (X1, . . . , Xn) from the density model (3). So now f is a density
on [0, 1]. Suppose the true f0 is a continuous, positive density and denote w0 = log f0, so that
f0 = ew0 .

We consider the prior on densities arising from, first, taking a Gaussian process prior on [0, 1],
and next applying the exponential-type transformation (13) to make it a density. To simplify the
presentation we take here Brownian motion W as a starting prior. Extensions to other priors are
mentioned below. Then the quantity

pW (t) =
eW (t)

´ 1

0
eW (u)du

, (1.10)

with W standard Brownian motion, defines a random density on [0, 1]. The corresponding (non-
Gaussian) prior on the set of densities is denoted by Πpw . Brownian motion induces a Gaussian
measure on L2, but for the proof of the next result it is actually more convenient to view it within
the Banach space C0[0, 1] of continuous functions on [0, 1] equipped with the supremum norm.
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Theorem 1.3 (Case of Brownian motion α = 1/2) Suppose that w0 = log f0 belongs to the
Hölder class Cβ [0, 1] for some β > 0 and let the prior on densities be the distribution Πpw of pW ,
where W is standard Brownian motion. Let ϕw0

denote the concentration function associated to
W and w0. Then there exist finite constants C1, C2 > 0 such that, if εn and ζn are such that

ϕw0
(εn) ≤ nε2

n and ζn ≤ C1ϕ
−1
w0

(C2nε
2
n),

then for M large enough, as n→∞, in Pnf0-probability,

Πpw(h(f, f0) ≤Mεn | X(n)) → 1,

Πpw(‖f − f0‖∞ ≥ ζn | X(n)) → 1.

Moreover, one can choose εn . n−1/4. Finally, in the case that β ≥ 1/2, one can take ζn & n−1/4.

Theorem 1.3 states results for density estimation, similar to those for white noise above, for a
natural prior of ‘regularity’ α = 1/2 (more precisely, Brownian motion paths almost surely belong
to the Hölder space Cβ , any β < 1/2; the paths do belong to a well-chosen Besov space with
regularity index 1/2, almost surely), with a few differences. Before discussing these, let us note
that Theorem 1.3 essentially extends to arbitrary α’s by replacing Brownian motion by Riemann-
Liouville type priors, see [P4], Theorem 3. Also, we note en passant that the latter result also
extends upper-bound results derived in [100] in the case α = β to arbitrary pairs (α, β), which
will be of use in Chapter 3.

While the upper-bound rate in Theorem 1.3 is in terms of Hellinger’s distance, the lower bounds
are in terms of the uniform norm. To obtain the lower bounds, the uniform norm is in a way the
simplest distance to work with since KL-neighborhoods appearing in Theorem 1.1 can conveniently
be related to sets of the form Bn = {f, ‖f − f0‖∞ ≤ ζn} . For upper-bounds, Hellinger’s distance
is a rather natural choice since it is a natural testing distance for i.i.d. data in view of the theory
of [48]. It would certainly be interesting to get a result in term of a common distance. We only
note that already the question of obtaining upper-bounds for other distances than Hellinger is
non-trivial, we will say more on this in Chapters 2-3.

1.4 Other examples
Squared-exponential Gaussian processes. A Gaussian prior distribution on smooth func-
tions often encountered in applications is the centered Gaussian process (Zt)[0,1] with covariance
function K(s, t) = E(ZsZt) given by

K(s, t) = e−(s−t)2 , (s, t) ∈ [0, 1]2. (1.11)

However, in this simple form it turns out that the corresponding prior has an undesirable behaviour
even if the true function f0 belongs to some natural classes such as Hölder or Sobolev. More
precisely, van der Vaart and van Zanten [101] prove the following in the fixed regression model
(we state it for simplicity in the Gaussian white noise model, the proof being the same).

Theorem 1.4 ([101]) Consider the white noise model (1) with prior Π on f given by (1.11).
There exists a function f0, regular of order β in the Sobolev sense, such that, for some l > 0,

Π(f : ‖f − f0‖2 ≤ (log n)−l |X(n))→P
(n)
f0 0.

The result in [101] is even more precise: any function f0 whose Fourier transform decreases slowly
enough cannot lead to a rate faster than the logarithmic rate of Theorem 1.4.

This can be explained as follows: the sample paths of the squared exponential Gaussian process
(1.11) can be shown to be extremely smooth (analytical). If the true f0 happens to be a little bit
‘non-smooth’, then the prior will have difficulties detecting it; similar to the result for regularity
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α above, a strong mismatch between regularity of the Gaussian prior and regularity of the true
leads to slow rates. So without further modification the prior (1.11) is too rigid. A possible fix to
this issue is discussed in Chapter 2.

Consequences for Gaussian processes.
Gaussian process are fine priors but, if the goal is nonparametric estimation, are a little too

‘rigid’: as the results of Proposition 1.3 and Theorem 1.3, 1.4 show, such priors lead to the
optimal minimax rate only if their regularity matches that of the true f0. If there is a mismatch
in regularity, then the posterior rate may be suboptimal. Nevertheless, these priors turn out to
be very useful building blocks within more complex priors leading to adaptation to the unknown
regularity β, as we shall see at the beginning of Chapter 2.

Lower-bounds arguments are also useful in investigations on adaptive priors, see Theorem 2.4
below and, for a different problem, the paper [9] on anisotropic classes.

1.5 Discussion and perspectives
The notion of lower bound is a natural counterpart to the notion of upper-bound rate. One first
obvious use is in proving that a rate obtained by a result such as Theorem 0.1 cannot be improved.
Another useful aspect is in finding the ‘boundaries’ of possible classes of priors for a given problem:
that is, finding necessary conditions for priors to attain a target rate.

The last sentence is reminiscent of the notion of maxiset, introduced by Kerkyacharian and Pi-
card (2002) [60]. For a given procedure (point estimator), one looks for maximal sets of parameters
on which the procedure attains a given rate. To our knowledge, maxisets have been investigated
only for point estimators so far. We would find it interesting to 1) define a notion of maxiset for
‘posterior measure estimators’, 2) investigate the corresponding sets. The previous lower bound
concept could be particularly useful in proving that a given parameter does not belong to a certain
maxiset.
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CHAPTER 2

Upper bounds for posterior rates

We present contributions to rates of convergence for posterior distributions. First,
we focus on a natural method to obtain convergence on geometric spaces following
[P11], based on random solutions of the heat equation. Convergence properties of the
posterior are studied and optimality is discussed. Next, we examine Bayesian proce-
dures in sparse settings as in [P9, P15]. We introduce families of priors which contain
as special cases Bayesian analogues of thresholding. The linear regression model is
studied, both from the point of view of recovery of the true parameter and prediction of
the unknown mean vector. Finally we propose a programme [P12] to derive posterior
rates of convergence for strong measures of distance not covered by available general
theorems. We show how this programme can be put to use via some examples.

2.1 Posterior convergence on geometric spaces
On the real line. A particularly popular prior distribution on functions defined on [0, 1] (or
[0, 1]d) is the squared-exponential Gaussian process (1.11). It is routinely used in machine learning,
up to one, small in apparence, modification: one or several constant multiplicative factors are
typically added to (1.11). These extra ‘hyper-parameters’ are often tuned in practice by empirical
Bayes methods. Van der Vaart and van Zanten proposed an elegant way to perform this tuning in
a fully Bayes way, while at the same time enabling to obtain fast rates of convergence (Theorem
1.4 shows this is not possible for the basic version (1.11) of the prior). It turns out that it is
enough to randomly rescale the prior. Consider, if (Zx)x∈[0,1] is the squared-exponential Gaussian
process (1.11),

Π ∼ x→ ZAx, (2.1)

where A is an independent random variable with a standard Gamma distribution. To make a
prior on densities, it suffices to apply the exponential transformation w → pw := ew/

´ 1

0
ew as in

(1.10).

Theorem 2.1 ([99]) In the density model (3), let Πpw be the prior on f defined as the image
measure of Π in (2.1) through the exponential transform pw. Suppose log f0 belongs to Cβ [0, 1],
β > 0. Then for M large enough, with h the Hellinger distance,

Πpw

[
f : h(f, f0) ≤Mεn |X(n)

]
→Pnf0 1,
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Figure 2.1: Random rescaling of paths.

where εn = n−
β

2β+1 (log n)
4β+1
4β+2 .

So, the randomly rescaled Gaussian process achieves the minimax rate of convergence over Hölder
classes, up to a logarithmic factor. Also, the result is adaptive, since the regularity of f0 is not used
in the prior construction. The result is striking, because a single shrinked path as in Figure 2.1
has the same regularity as the original, supersmooth, prior. Nevertheless, the ‘extra randomness’
introduced via the rescaling variable A is sufficient to make the whole prior flexible enough to lead
to adaptation (up to a logarithmic factor). A natural question is: is it possible to obtain similar
results for data sitting on a geometrical object, such as a sphere ? Indeed, rescaling of paths does
not seem obvious (and is not !) when some geometry is involved ...

Geometric spaces. Consider a geometric framework such as the white noise model (4) or density
estimation (5) on a compact metric space M with metric ρ and equipped with a Borel measure
µ. There is a simple reason why the squared-exponential kernel cannot be used in such a context.
Although (1.11) admits the immediate generalisation, for ρ the metric onM,

κρ(s, t) = e−ρ(s,t)
2

, (s, t) ∈M2, (2.2)

it can be shown that this function is not positive definite in general already for the simplest
examples such as M taken to be the sphere in Rk, k ≥ 2. Yet, we shall see below that (1.11)
admits a natural generalisation to this context, but it is not as simple as (2.2).

For simplicity we present in a slightly informal style the construction in [P11], giving pointers
to the paper for details when appropriate. We take the case of the sphere M = S2 as recurrent
illustration. Let B(x, r) denote the ball of center x and radius r for the metric ρ onM. Suppose
thatM verifies the so-called Ahlfors property: there exist positive c1, c2, d such that

for all x ∈M, for all 0 < r ≤ 1, c1r
d ≤ |B(x, r)| ≤ c2rd. (2.3)

In the case of the sphere S2, d = 2. More generally d in the sequel can be thought of as the
‘dimension’ ofM although in general d could be non-integer.

Operator L, Laplacian and heat kernel. The starting point is a self-adjoint positive oper-
ator L on functions on M (more precisely on a domain D dense in L2(M), the space of square
integrable functions with respect to the measure µ). When defined, minus the Laplacian on M,
that is L = −∆M is typically appropriate. Suppose L admits a discrete spectrum with finite
dimension spectral spaces Hk = Vect{(elk), 1 ≤ l ≤ dim(Hk)} and that its eigenfunctions elk are
continuous functions on M. The numbering is chosen so that the eigenvalues are ordered in an
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increasing order. Also, in all this section, sums over k and l range over 1 ≤ k ≤ dim(Hk) and
1 ≤ l <∞. Under some conditions, the following series converges to a continuous function

Pt(x, y) :=
∑
k

e−tλk
∑
l

elk(x)elk(y), (2.4)

on M ×M, called the heat kernel. Let us justify this terminology in an informal way when
L = −∆M. By informally differentiating under the series sign, we see that Pt(·, y) for any fixed y
is a solution in g of the heat equation

∂g

∂t
= (−L)g = ∆Mg. (2.5)

For a more formal characterisation of Pt, in particular the connection to semi-groups, see [P11]
Section 2.4 and references therein.

The orthonormal basis of L2(M) generated by {elk} can be interpreted as a harmonic analysis
overM. In the case of the sphereM = S2, the eigenvectors of the Laplacian ∆S2 are well-known:
these are the spherical harmonics, which have explicit expressions in terms of homogeneous poly-
nomials of three variables, see [P11], Section 3.

Decoupling time and space. Let us note the presence of the indexing variable t, the ‘time’,
in (2.4). For the squared-exponential kernel on the real-line, the prior can be made more flexible
by stretching the path along the ‘x’-axis, that is the space domain. Since in general there is no
natural analogue of stretching on a geometric object, a natural idea is to stretch time instead.
Indeed, our procedure puts a prior on time as we describe below. Let us now discuss a further
property of Pt.

Estimates for the heat kernel. The following Gaussian-like estimates of the heat kernel Pt
are satisfied in a surprisingly large variety of situations, in particular on all compact manifolds
without boundary, see e.g. Grigor’yan [53], for instance on the sphere. We assume them to hold:
suppose that there exist C1, C2 > 0, c1, c2 > 0, such that, for all t ∈]0, 1[, and any x, y ∈M,

C2e
− c2ρ

2(x,y)
t

|B(x,
√
t)|1/2|B(y,

√
t)|1/2

≤ Pt(x, y) ≤ C1e
− c1ρ

2(x,y)
t

|B(x,
√
t)|1/2|B(y,

√
t)|1/2

, (2.6)

where |B(x, r)| denotes the volume of the ball B(x, r).

Geometric prior. A prior on functions fromM to R is constructed hierarchically as follows.
First, generate a collection of independent standard normal variables {X l

k} with indexes k ≥ 0
and 1 ≤ l ≤ dim(Hλk). Set, for x ∈M and any t ∈ (0, 1],

W t(x) =
∑
k

∑
l

e−λkt/2X l
ke
l
k(x). (2.7)

This process is centered and has covariance kernel precisely Pt, as follows by direct computation,

E(W t(x)W t(y)) = Pt(x, y).

Second, draw a positive random variable T according to a density g on (0, 1]. This variable
can be interpreted as a random scaling, or random ‘time’. It turns out that convenient choices
of g are deeply connected to the geometry of M. We choose the density g of T such that, for a
positive constant q, with d defined in (2.3),

g(t) = e−t
−d/2 logq(1/t), t ∈ (0, 1]. (2.8)

We show below that the choice q = 1 + d/2 leads to sharp rates.
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The full (non-Gaussian) prior we consider is WT , where T is random with density g. That is,

WT (x) =
∑
k

∑
l

e−λkT/2X l
ke
l
k(x), (2.9)

and we define Π as the prior on functions onM induced by WT .

Does the prior (2.8) relate to the square-exponential GP ? So far there does not seem
to be a direct connection between our construction and that of [99]. However, such a connection
becomes apparent when taking another look at equation (2.6). We see that the covariance kernel
of W t for a given t very closely relates to e−cρ

2(x,y)/t, which however is not itself in general a
covariance kernel as noted above. In this sense, the heat kernel is the natural generalisation of the
squared-exponential kernel e−C(x−y)2 to geometric spaces.

Sketch of required arguments. To obtain convergence rates corresponding to the prior Π
and derive Theorem 2.3 below, we use the general rate Theorem 0.1. As we have explained in the
Introduction, for Gaussian processes a rate is obtained by solving in εn the equation ϕf0(εn) ≤ nε2

n,
with ϕ the concentration function of the process. Here Π is not Gaussian, but conditionally on a
given value of T , say T = t, the prior induced byW t is Gaussian by construction. So, an important
step in the proof is the study of the concentration function ϕf0 of W t at the true function f0,
which involves an approximation term as well as the small ball probability of W t.

The approximation part of ϕ requires some regularity condition on f0; it turns out that it is
particularly natural to work with a scale of Besov spaces, which may precisely be defined in terms
of quality of approximation. Define first the ‘low frequency’ functions from the eigenspaces Hλ as

Σt =
⊕
λ≤
√
t

Hλ.

Next, let Et(f)p := infg∈Σt ‖f − g‖p denote the best approximation of f ∈ Lp = Lp(M) from Σt.
Then the Besov space Bspq(M) is defined as

Bspq(M) := {f ∈ Lp, ‖f‖Aspq := ‖f‖p +
(∑
j≥0

(
2sjE2j (f)p

)q)1/q

<∞}. (2.10)

Assuming a Bs2,∞(M)-regularity in the white noise case and a Bs∞,∞(M)-regularity in the density
estimation case enables a control of the approximation part.

The study of the small ball probability of the process W t is more delicate, especially since we
look for sharp rates. We achieve this by using the general very precise link existing for Gaussian
processes between small ball probability and entropy of the RKHS, as established in [65]. For this,
we need first the expression of the RKHS say Ht of Wt.

The prior W t and its RKHS Ht. For any t > 0, it follows from the expression of W t that

Ht =
{
h =

∑
k

∑
l

alke
−λkt/2elk,

∑
k,l

|alk|2 <∞
}
, (2.11)

equipped with the inner product

〈
∑
k

∑
l

alke
−λkt/2elk ,

∑
k

∑
l

blke
−λkt/2elk 〉Ht =

∑
k

∑
l

alkb
l
k.

Let us further denote Ht1 the unit ball of Ht.

Key estimates. The next result is a sharp entropy estimate of the RKHS unit ball Ht1, uniform
in a range of time parameters t. The statement brings together geometry via the covering number
N(ε,M, ρ) of the space M, probability via the RKHS of the process W t and approximation, via
the entropy of Ht1, denoted H(·,Ht1, D) = logN(·,Ht1, D), for a given distance D on H.
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Theorem 2.2 Suppose the spaceM, the operator L and its eigenfunctions elk verify the properties
listed above. For t > 0, let Ht be defined by (2.11). Let us fix a > 0, ν > 0. There exists ε0 > 0
such that for ε, t with εν ≤ at and 0 < ε ≤ ε0,

H(ε,Ht1, ‖ · ‖2) � H(ε,Ht1, ‖ · ‖∞) � N(δ(t, ε),M, ρ) · log
1

ε
, with

1

δ(t, ε)
:=

√
1

t
log

1

ε
.

Under the assumption (2.3) that balls have a polynomially increasing volume in terms of their
radius, the covering number N(η,M, ρ) ofM is shown to be N(η,M, ρ) � η−d, which yields the
estimate δ(t, ε)−d log(1/ε) for the entropy in Theorem 2.2. From this one can deduce an estimate
of the same order − logP(‖W t‖2 < ε) � − logP(‖W t‖∞ < ε) � t−d/2 log1+d/2(1/ε) for the small
ball probabilities, both in terms of the L2- and L∞-norms.

Convergence rate for the geometric prior. The following theorem states a result for the
white noise and density estimation problems on M. In the first case, the prior is directly the
law on L2(M) induced by WT in (2.9). In density estimation, the prior is the image measure
of the law of WT viewed as a random element of C0(M) under the exponential transformation
w → p

[M]
w = ew/

´
M ew onM. Recall the definition of the Besov spaces from (2.10).

Theorem 2.3 Let the setM and the operator L satisfy the properties listed above. Consider the
white noise model (4) onM. Suppose that f0 is in the Besov space Bs2,∞(M) with s > 0 and that
the prior Π on f is WT given by (2.9). Let q = 1 + d/2 in (2.8). Set εn = (log n/n)2s/(2s+d). For
M large enough, as n→∞,

Π(‖f − f0‖2 ≥Mεn | X(n))→P
(n)
f0 0.

Consider the density model (5) on M. Suppose that log f0 is in the Besov space Bs∞,∞(M) with
s > 0 and that the prior Π on f is p[M]

WT with WT as in (2.9). With q, εn as before and h the
Hellinger distance between densities onM, for M large enough, as n→∞,

Π(h(f, f0) ≥Mεn | X(n))→Pnf0 0.

Again, uniformity in the results can be obtained on balls of the considered Besov spaces.

The rate is sharp. The rate εn in Theorem 2.3 contains an additional logarithmic term with
respect to the minimax rates [38] of estimation onM. It is natural to ask whether the posterior
rate indeed includes such a term. Again, the setM and the operator L are as before.

Theorem 2.4 Consider the white noise model (4) on M. Let εn = (log n/n)s/(2d+s) for s > 0
and let the prior Π on f be the law induced by WT , see (2.9), with q > 0 in (2.8). Then there
exist f0 in the unit ball of Bs2,∞(M) and a constant c > 0 such that

Π(‖f − f0‖2 ≤ c(log n)0∨(q−1− d2 )εn | X(n))→P
(n)
f0 0.

This result shows that the posterior rate obtained in Theorem 2.3 cannot be improved upon over
Bs2,∞(M), so the logarithmic factor is necessary. Also, it reveals that if q in (2.8) exceeds 1 + d/2,
then the convergence rate becomes slower.

We now move to a quite different model, but where the general approach of the rate Theorem
0.1 will still be of use.

2.2 Needles and straw in a haystack with sparse priors
In this Section we present results from [P9] for the sparse sequence model (6). The model is
at the basis of many other statistical frameworks, and the results can find applications in other
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contexts. One main achievement is in the understanding of posterior rates for one important
class of prior distributions modelling sparsity, namely priors involving Dirac masses at 0. The
results also suggest a kind of ‘dictionary’ between some thresholding rules [35, 54] and their fully
Bayesian counterparts, which are posterior measures. In particular, we present a natural way of
choosing the thresholding constant. The results also serve as guideline for the study of the linear
regression model in the next Section. In the sequence model here, we shall use the approach of
the general rate Theorem 0.1, although the scheme of proofs needs to be adapted if one looks for
sharp rates. We prove results for estimators without ‘explicit’ expressions (meaning there is one,
but is a complicated ratio of integrals). We denote by E(n)

θ0
the expectation under P (n)

θ0
.

Model and prior. Let us recall the sparse sequence model (6)

Xi = θi + εi, i = 1, . . . , n,

where the true θ0 = (θ0,1, . . . , θ0,n) has at most pn non-zero coefficients. Due to its importance,
this model has been studied by many authors, and we only cite a few key papers such as [35]
(thresholding), [18, 52] (model selection and penalisation), [1] (false discovery rate approach) and
[57, 58] (empirical Bayes). Close connections with, in particular, [58], will appear below.

We consider a prior Π = Πn on Rn constructed in three steps:

(P1) A dimension k is chosen according to a prior probability measure πn on the set {0, 1, 2, . . . , n}.

(P2) Given k a subset S ⊂ {1, . . . , n} of size |S| = k is chosen uniformly at random from the
(
n
k

)
subsets of size k.

(P3) Given (k, S) a vector θS = (θi : i ∈ S) is chosen from a probability distribution with Lebesgue
density gS on RS and this is extended to θ ∈ Rn by setting the remaining coordinates θSc
equal to 0.

Suppose gS is an independent product of |S| times a same given density g,

gS =
⊗
S

g (2.12)

We also assume that πn(k) > 0 for any k. Note that the prior is characterised by the pair (πn, g).

Posterior. Given the prior Π, one can form the posterior distribution, and use Bayes’ formula to
write it as a fairly complicated ratio of sum of integrals. We do not discuss further the expression
here, which may be found as Equation (2.1) in [P9].

We now examin conditions on the pair (πn, g) that appear naturally.

Prior πn, the Spike, and posterior dimension.
We say a prior πn on dimension has exponential decrease if, for some C > 0 and D < 1,

πn(k) ≤ Dπn(k − 1), k > Cpn. (2.13)

If the condition is also satisfied with C = 0, we speak of strict exponential decrease.

Theorem 2.5 (Dimension) If πn has exponential decrease (2.13) and gS is a product of |S|
copies of a univariate density g, with mean zero and finite second moment, then there exists
M > 0 such that, as pn, n→∞,

sup
θ0∈`0[pn]

E
(n)
θ0

Πn

(
θ : |Sθ| > Mpn |X(n)

)
→ 0.

For reasonable priors, we may hope that the posterior distribution spreads mass in the pn-
dimensional subspace that supports a true mean vector θ0 ∈ `0[pn]. The theorem shows that
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the posterior distribution “overshoots” this space by subspaces of dimension at most a multiple of
pn. Because the overshoot can have a random direction, this does not mean that the posterior
distribution concentrates overall on a fixed Mpn-dimensional subspace. The theorem shows that
it concentrates along Mpn-dimensional coordinate planes, but its support will be far from convex.

Prior g, the Slab, and heavy tails.
We further assume that g in (2.12) can be written g = eh, for a function h : R→ R satisfying∣∣h(x)− h(y)

∣∣ . 1 + |x− y|, ∀x, y ∈ R. (2.14)

This covers all densities eh with a uniformly Lipshitz function h, such as the Laplace and Student
densities. It also covers other smooth densities with polynomial tails, and densities of the form
cαe
−|x|α for some α ∈ (0, 1]. On the other hand the standard normal density is ruled out. Indeed,

as we know from the lower bound result of Proposition 1.2, for g(x) proportional to e−|x|
α

and
α > 1, the minimax rate cannot be expected uniformly over the whole class `0[pn].

Example 2.1 (Independent Dirac mixtures, or Bayesian α-thresholding) Consider the
prior as in (1.4)

Πα,g ∼ ⊗ni=1(1− α)δ0 + αg

This construction induces a prior πn on dimension equal to the binomial law with parameters n
and α. It has exponential decrease (2.13) if α . pn/n. Furthermore, the nonzero coordinates are
distributed according to the product of copies of g. Thus this prior fits in our set-up (P1)-(P3)
above. This prior is considered in George and Foster (2000) [44] and Johnstone and Silverman
(2004) [58], in combination with a Gaussian or a heavy tailed density g, respectively.

For a fixed α the coordinates θi are independent, under both the prior and the posterior
distribution. Furthermore, the posterior distribution of θi depends on Xi only.

The prior Πα,g has connections with thresholding rules. As noted in Chapter 1, if α = 1
and g is the Laplace law, the posterior mode is a soft-thresholding rule. If α ∈ (0, 1), some (but
not all) aspects of the posterior distribution put some coordinates to 0. This is the case for the
posterior median, as considered in [58], where the posterior median is shown to be a thresholding
rule: a given coordinate equals 0 if and only if the value of the corresponding observation drops
in absolute value below a certain level. On the contrary, the posterior mean is not a thresholding
rule: all its coordinates are typically nonzero. This has some nontrivial consequences, see below.

Now at this point the question, also central for thresholding procedures arises: how does one
choose α ? One possibility is to set α = αn = 1/n, see below the next Theorem for a discussion.
The authors of [58] propose, on the top of using the coordinatewise posterior median for estimating
θ, to set the weight parameter α by a thresholded empirical Bayes method. The parameter is
chosen equal to the maximum likelihood estimator of α based on the marginal distribution of
X in the Bayesian set-up (i.e. with θ integrated out but with fixed α) subject to the constraint
that the resulting posterior median (after plugging in α̂) given an observation in the interval
[−(2 log n)1/2, (2 log n)1/2] is zero. The authors show that the resulting point estimator works
remarkably well, in a minimax sense, for various metrics and sparsity classes.

Example 2.2 (Binomial and Beta-binomial priors, or full Bayesian thresholding) The
binomial (n, αn) distribution for πn gives an expected dimension of nαn. In the sparse setting a
small value of αn is therefore natural. If the sparsity parameter pn were known, we could consider
the choice αn = pn/n; we shall refer to the corresponding law as oracle binomial prior.

A natural Bayesian strategy is to view the unknown “sparsity" parameter α as a hyperparameter
and put a prior on it. The classical choice is the Beta prior, leading to the hierarchical scheme
α ∼ Beta(κ, ) and k |α ∼ Binomial(n, α). This yields a mixture of binomials as a prior πn on the
dimension of the model. The independence of the coordinates θi is then lost.

For κ = 1 and = n+ 1 we obtain πn(k) ∝
(

2n−k
n

)
. Then πn(k)/πn(k− 1) = (n− k+ 1)/(2n−

k + 1), showing (strict) exponential decrease (2.13), with D = 1/2.
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Example 2.3 (Complexity prior) For positive constants a, b, let us set

πn(k) ∝ e−ak log(bn/k), (2.15)

where ∝ stands for ‘proportional to’. Because ek log(n/k) ≤
(
n
k

)
≤ ek log(ne/k), this prior is inversely

proportional to the number of models of size k, a quantity that can be viewed as the model
complexity for a given dimension k. Thus this prior appears particularly suited to the purpose of
“downweighting the complexity". Forgetting about the extra component gS of the prior, we can
also consider it an analogue of the penalty “2k log(n/k)" used in model selection in this context
by (e.g.) Birgé and Massart in [18]. Every particular model with support S of size |S| = k then
receives prior probability bounded below and above by expressions of the type e−a1k log(b1n/k).

Recovery. We next obtain posterior convergence rates for a variety of measures of loss. We show
below that the conditions of the Theorem are satisfied for all three examples above.

The `q metric for 0 < q ≤ 2, is defined (without qth-root) by

dq(θ, θ
′) =

n∑
i=1

|θi − θ′i|q. (2.16)

For q < 2 this “metric” is more sensitive to small variations in the coordinates than the square
Euclidean metric, which is d2.

Theorem 2.6 (Recovery) In the sparse sequence model (6) with prior Π ≡ (πn, g), if πn has
exponential decrease (2.13) and g in (2.12) has mean zero, finite second moment and can be written
g = eh with h satisfying (2.14), then for any q ∈ (0, 2], for rn satisfying

r2
n ≥ {pn log(n/pn)} ∨ log

1

πn(pn)
, (2.17)

and sufficiently large M , as pn, n→∞ such that pn/n→ 0,

sup
θ0∈`0[pn]

E
(n)
θ0

Π
(
θ : dq(θ, θ0) > Mrqnp

1−q/2
n |X(n)

)
→ 0.

The minimax rate over `0[pn] for dq is known to be of the order, see e.g. [34],

r∗n,q = pn logq/2(n/pn). (2.18)

For q = 2 the theorem refers to the square Euclidean distance d2, and asserts that the posterior
distribution contracts at the rate r2

n, uniformly over `0[pn]. The first inequality in (2.17) says that
this rate is, of course, not faster than the minimax rate r∗n,2 � pn log(n/pn) above. The second
shows that it is also limited by the amount of prior mass πn(pn) put on the true dimension. If
this satisfies, for some c > 0,

πn(pn) & exp
(
−cpn log(n/pn)

)
. (2.19)

then log(1/πn(pn)) . r∗n,2 and the rate r2
n is equal to the minimax rate.

For q ∈ (0, 2) we can make similar remarks. The minimax rate r∗n,q over `0[pn] for dq is given
in (2.18). Because

(r∗n,2)q/2p1−q/2
n = r∗n,q,

the theorem shows contraction of the posterior distribution relative to dq at the minimax rate r∗n,q
over `0[pn] under the same conditions that it gives the minimax rate r∗n.2 for d2: (2.19) suffices.

The examples. The binomial prior of Example 2.1 has exponential decrease (2.13) if α = αn .
pn/n. The oracle binomial prior αn � pn/n is at the upper end of this range, and also satisfies
(2.19), and thus yields the minimax rate of contraction. The choice αn = 1/n yields log πn(pn)
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of the order −pn log pn, and hence attains the minimax rate if pn is of the order na, a < 1; for
larger pn it may miss the minimax rate by a logarithmic factor. The full Bayesian thresholding
of Example 2.2 with κ = 1, λ = n+ 1 can be shown to verify πn(pn) & e−pn(1+o(1)) if pn/n→ 0,
and hence (2.19) is satisfied. Finally, the complexity prior of Example 2.3, verifies exponential
decrease for large enough b, as well as (2.19), so yields optimal rates as well.

The mean/median phenomenon. When 0 < q < 1 the result of Theorem 2.6 is surprising at
first when compared to the finding in [58] that the posterior median, or more generally so-called
“strict-thresholding rules", attain the convergence rate r∗n,q, but the posterior mean converges at
a strictly slower rate (even when θ0 = 0; see [58], Section 10). By the preceding theorem the full
posterior distribution does contract at the optimal rate r∗n,q, for any 0 < q < 2.

This is another striking illustration of the fact that in general, the full posterior measure and
its aspects (mean, mode, median etc.) may have completely different behaviours.

The slower convergence of the posterior mean relative to the contraction of the full posterior
distribution is made possible by the fact that dq-balls have astroid-type shapes for 0 < q < 1, and
differ significantly from their convex hull if n is large. The posterior mean, which is in the convex
hull of the support of the posterior, can therefore be significantly farther in dq-distance from θ0

than the bulk of the distribution. By Theorem 2.5 only few coordinates outside the support of θ0

are given non-zero values by the posterior. However, the corresponding indices are random and
on average spread over {1, 2, . . . , n}, which makes that the posterior mean at a fixed coordinate
is typically non-zero. Adding up all small errors in `q typically gives a much higher total sum for
q < 1 than for q ≥ 1. In contrast the posterior median does not suffer from this averaging effect.

The posterior measure thus provides a unifying point of view on the considered objects. In this
perspective for 0 < q < 1 the posterior mean is a bad representation of the full posterior measure.

Recovery for complexity priors. For the complexity priors of Example 2.3, the following
theorem gives a more precise result on the contraction of the posterior measure in terms of the
Euclidian distance ‖ · ‖2 = d

1/2
2 .

Theorem 2.7 (Recovery, complexity priors) In model (6) with prior Π ≡ (πn, g), suppose
that πn is given by (2.15) with a ≥ 1 and b ≥ e7+2c1 , and that g is as in Theorem 2.6. Then, for
rn satisfying (2.17), for any 1 ≤ pn ≤ n and r ≥ 1,

sup
θ0∈`0[pn]

E
(n)
θ0

Π
(
θ : ‖θ − θ0‖2 > 45rn + 10r |X

)
. e−r

2/10.

The result provides a fast decrease to 0 of the posterior mass outside a euclidian ball of a constant
times the minimax rate. From this result –for brevity we refrain from writing down the full
statements and refer to [P9]– one can

• deduce that several point estimators obtained from the posterior converge at optimal rates.
For instance, the posterior mean corresponding to any prior as in Theorem 2.7 converges at
minimax rate in terms of Euclidian loss. Also, we prove in [P9] that the posterior coordi-
natewise median is minimax with respect to all dq-losses 0 < q ≤ 2.

• derive results for so-called weak-classes ms[pn], for which sparsity is defined as corresponding
to a certain decrease to 0 of the ordered coefficients, instead of most coefficients being exactly
0 as for the `0[pn] class. Priors as in Theorem 2.7 are minimax for such classes.

• extend the results of Theorem 2.7 to priors allowing some dependence between the coordi-
nates, with gS not necessarily an independent product of g’s, see [P9], Example 2.6, where
‘weakly-mixing’ priors are considered.

Algorithm and Simulations. For a general prior from (P1)-(P3) above and under the assump-
tion that gS is a coordinatewise product as in (2.12), we provide in [P9], Section 3, a polynomial
time algorithm for simulating from some aspects of the posterior distribution, such as posterior
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Figure 2.2: Marginal posterior medians (red dots) and marginal credible intervals (orange) for the
parameters θ1, . . . , θn for a single data vector X1, . . . , Xn simulated according to the model (6)
with θ = (0, 0, . . . , 0, 5, . . . , 5), where n = 500 and the last pn = 100 coordinates are nonzero. The
data points are indicated by green dots. The prior g is standard Laplace and πn(k) ∝

(
2n−k
n

)
.

mean, posterior coordinatewise median, posterior number of selected models etc. The algorithm is
based on a polynomial multiplication idea: using the product structure of the likelihood combined
with the specific form of the mixture priors we consider, one can recursively compute the terms
appearing in Bayes’ formula by identifying them to coefficients of a polynomial. The latter can be
computed at fairly low computational cost. The estimates of θ we propose, based on the posterior
coordinatewise median for complexity-type priors, are competitive with the best results obtained
by using the ‘R’ package EbayesThresh of Johnstone and Silverman [58]. A detailed comparison
with discussion can be found in [P9], Section 3.

We present in Figure 2.2 a typical simulation output for a prior satisfying the conditions of
Theorem 2.6 and corresponding to the ‘full Bayesian thresholding’ of Example 2.2. The posterior
coordinatewise median (red dots) correctly sets to 0 most of the true zero coefficients while at the
same time performing quite well on the part where true coefficients are separated from 0.

Further results. So far we have mainly discussed sparse rates of convergence for posterior
distributions for recovery of the parameter θ. Clearly, and as suggested by Figure 2.2, there are
further interesting questions. For instance, the model selection question: if there is enough signal
strength on some given coordinates, does the posterior selected correctly picks up at least those
coordinates ? Can one say something about a possible limit in distribution of the posterior ? Also,
slightly more on the technical side, pushing further than minimaxity, one may be interested in
oracle-type results for the posterior. Some of these topics are considered in the following Section,
under slightly more specific conditions for the prior distribution.
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2.3 Sparse Bayesian linear regression
Model. Consider estimation of the parameter β ∈ Rp in the linear regression model (8)

Y = Xβ + ε,

where X is a given, deterministic (n× p) matrix, and ε is an n-variate standard normal vector.

Recovery, prediction, model recovery. As far as estimation is concerned, there are three
main questions one may ask. It is important to distinguish between them, as they typically require
assumptions of different natures. Recovery is concerned with estimation of β in the above model.
When n < p the parameter β is typically not identifiable, but if sparsity of β is assumed, it may
become identifiable under some non-trivial assumptions on the design matrix X. Recovery can
also be seen as an inverse problem with operator X. Prediction is concerned with estimation of the
mean parameter Xβ. One may hope that this requires less stringent assumptions, as one does not
have to ‘invert the inverse problem’. Finally, model recovery, or model selection, consists in finding,
when possible, the set of indexes for which a nonzero coefficient is present. This task requires the
most stringent assumptions: indeed, already in the sparse sequence model (6), finding the support
Sθ of the true θ is only possible if the nonzero coefficients of θ are well-enough separated from
0. The type of practical problem at hand may determine which type of assumptions on X are
reasonable, and in turn which ones of these estimation questions one can solve.

Due to its central importance in applications, there is a large growing body of literature on the
sparse regression model, and some important contributions in a non-Bayesian framework include
Donoho et al. (2006) [33], Candès and Tao (2007) [25], Bickel et al. (2009) [11], as well as [3, 4, 24,
61, 87, 106, 107]. We refer to the book by Bühlmann and van de Geer (2011) [23] for an overview
and further references. Some important Bayesian contributions include [20, 43, 44, 56, 84, 93,
105]. To our knowledge though little is known so far concerning posterior convergence rates.

So, pursuing the approach used for the sequence model in the last Section, we now consider a
Bayesian approach for model (8) based on priors that set a selection of coefficients βi a priori to
zero; equivalently, priors that distribute their mass over models that use only a (small) selection
of the columns of X. Bayes’s formula gives a posterior distribution as before, and we denote by
Eβ0 = E

(n,p)
β0 the expectation under P (n,p)

β0
.

Notation. For a vector β ∈ Rp and a set S ⊂ {1, 2, . . . , p}, let βS be the vector (βi)i∈S ∈ RS ,
and |S| the cardinality of S. The support of the parameter β is the set Sβ = {i : βi 6= 0}. The
support of the true β0 is denoted S0, with cardinality s0 := |S0|. Moreover, we write s = |S| if
there is no ambiguity to which set S is referred to. We let X.,i be the ith column of the design
matrix X, and

‖X‖ = max
i=1,...,p

‖X.,i‖2 = max
i=1,...,p

(XtX)
1/2
i,i . (2.20)

Prior. We consider a specific sub-class of the priors Π ≡ (πn, g) from Section 2.2. More precisely,
we construct Π again via (P1)-(P3), with g as in (2.12), but this time assuming that

• g is the Laplace density on R with parameter λ

g(β) = (λ/2)e−λ|β|, β ∈ R, λ > 0. (2.21)

• the prior on dimension πn is given by, for constants a, c > 0,

πp(s) ∝ c−sp−as, s = 0, 1, . . . , p. (2.22)

That is, we restrict to priors on coefficients that are Laplace distributed with parameter λ. As-
sumptions on λ itself are discussed next. The prior πp on dimension is essentially the same as the
complexity prior (2.15), the only minor difference being that a factor log p/s is replaced by log p.
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This only possibly affects logarithmic factors in the rate so here we work with the simpler (2.22).

The tuning parameter λ. We allow the inverse scale parameter λ to change with p, within the
range, with ‖X‖ defined in (2.20),

‖X‖
p
≤ λ ≤ 2λ, where λ := 2‖X‖

√
log p. (2.23)

So λ/‖X‖ is allowed to be a constant, or any quantity between p−1 and 2(log p)1/2. This broad
range is in stark contrast to the usual choice of the smoothing parameter in the LASSO, which
must be chosen proportional to ‖X‖(log p)1/2 and corresponds to the upper bound in (2.23).

This can be explained as follows: the standard LASSO must have λ/‖X‖ tending to infinity in
order to be sufficiently good at identifying noise as ‘zero’ (and indeed ‖X‖(log p)1/2 corresponds
to a ‘noise level’ under which it is desirable to threshold). This has the undesirable effect that the
LASSO will slightly shrink the nonzero coefficients of β towards 0. While this extra ‘bias’ towards
0 does not harm its rate of convergence, it may be interesting in practice to have some correction
for it. What happens is that the LASSO must perform both model selection and good estimation
of non-zero coefficient at once, and hence the choice of λ is essentially forced up to a constant.

The prior Π naturally allows for some extra flexibility, via its two components: the prior
πp takes care of the model dimension part, while the Laplace prior densities model the nonzero
coordinates. Large values of λ would shrink the nonzero coordinates to zero, which is clearly
undesirable. Thus it is natural to assume λ � λ, and fixed values of λ/‖X‖, and even values
decreasing to zero – making the prior non-informative – should be well-adapted to the problem.
Also, small values of λ permit a distributional approximation to the posterior distribution centered
at unbiased estimators.

Example 2.4 (Sequence model) This corresponds to X = I and n = p in the present setting,
whence ‖X‖ = 1. Condition (2.23) reduces to p−1 ≤ λ ≤ 4

√
log p. Fixed values of λ, as considered

in the previous Section 2.2 are easily included. As there is only one observation per parameter,
it may not be unreasonable to consider λ → 0, in order to create noninformative priors for the
nonzero coefficients. This is allowed easily also.

Example 2.5 (Response model) If every row of the regression equation Y = Xβ + ε refers
to measurement of an instance of a fixed relationship between an input vector Xi,· ∈ Rp and the
corresponding output Yi, then the entry Xi,j of X is the value of individual i on the jth covari-
able. It is then reasonable to think of these entries as being sampled from some fixed distribution,
independent of n and p, in which case ‖X‖ will (typically) be of the order

√
n. Condition (2.23)

reduces to
√
n/p ≤ λ ≤ 4

√
n
√

log p. Fixed values of λ, as before are included provided p &
√
n.

Recovery, conditions on the design matrix.
The parameter β in the model (8) is not estimable without conditions on the regression matrix

when p > n. If β is known to be sparse, then ‘local invertibility’ of the Gram matrix XtX is
sufficient for estimability, even in the case p > n. We make this precise in the following definitions,
which are variants on definitions in the literature, slightly adapted to suit to our Bayesian setup.
We refer to the book by Bühlmann and van de Geer [23] for an overview of possible conditions.
We follow their terminology in the sequel up to small adaptations.

Definition 2.1 (Compatibility) The compatibility number of model S ⊂ {1, . . . , p} is

φ(S) := inf
{‖Xβ‖2|S|1/2
‖X‖ ‖βS‖1

: ‖βSc‖1 ≤ 7‖βS‖1, βS 6= 0
}
.

The compatibility number compares the `2-norm of the predictive vector Xβ to the `1-norm of
the parameter β. A model S is considered ‘compatible’ if φ(S) > 0. It then satisfies the nontrivial
inequality ‖Xβ‖2|S|1/2 ≥ φ(S)‖X‖ ‖βS‖1. We shall see that true vectors β0 with compatible
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support Sβ0 can be recovered from the data, uniformly in a lower bound on the size of their
compatibility numbers. The number 7 has no particular interest and is used for simplicity.

The compatibility number involves the full vectors β (also their coordinates outside of S) and
allows to reduce the recovery problem to sparse vectors. The next definition concerns sparse
vectors only. Unlike the compatibility number it is uniform in vectors up to a given dimension.

Definition 2.2 The compatibility number in vectors of dimension s is defined as

φ(s) := inf
{‖Xβ‖2|Sβ |1/2
‖X‖ ‖β‖1

: 0 6= |Sβ | ≤ s
}

The smallest scaled singular value of dimension s is defined as

φ̃(s) := inf
{ ‖Xβ‖2
‖X‖ ‖β‖2

: 0 6= |Sβ | ≤ s
}
. (2.24)

For recovery we shall impose that these numbers for s equal to (a multiple of) the dimension of
the true parameter vector are bounded away from zero. Since ‖β‖1 ≤ |Sβ |1/2‖β‖2 by the Cauchy-
Schwarz inequality, it follows that φ̃(s) ≤ φ(s), for any s > 0. The stronger assumptions on the
design matrix imposed through φ̃(s) will be used for recovery with respect to the `2-norm, whereas
the numbers φ(s) suffice for `1-reconstruction. The ‘scaled’ in Definition 2.2 refers to the scaling
of the matrix X by division by the maximum column length ‖X‖; if the latter is unity, then φ̃(s)
is just the smallest singular value of a submatrix of X of dimension s.

The final and strongest invertibility condition is in terms of ‘mutual coherence’ of the regression
matrix, which is the maximum correlation between its columns. Equivalently, it is the ratio
between entries on the diagonal of XtX and off-diagonal entries.

Definition 2.3 The mutual coherence number is

mc(X) = max
1≤i 6=j≤p

|〈X.,i, X.,j〉|
‖X.,i‖2 ‖X.,j‖2

.

We also say that X satisfies the ‘(K, s) mutual coherence condition’ if mc(X) is bounded
above by (Ks)−1, in which case reconstruction is typically possible for true vectors β of dimension
up to s. Conditions of this type have been used by many authors, following Donoho, Elad and
Temlyakov (2006) [33], who coined the name. Below we use a version of the condition to obtain
rates of contraction of the posterior distribution with respect to the maximum norm, similarly as
in the study of [79] of the LASSO and the Dantzig estimator under the maximum norm.

For extensive discussion of the preceding and various other conditions we refer to Section 6.13
of [23]. To see that the compatibility indices are well behaved in interesting examples we note
the following. In the sequence model (6) the regression matrix X is the identity, and hence
the compatibility numbers are 1 and the mutual coherence number is zero, which is the optimal
situation. In the response setting of Example 2.5 it is reasonable to assume that the entries of X
are i.i.d. random variables. Then the mutual coherence number is with high probability bounded
by a multiple of (n/ log n)−1/2. Models up to nearly dimension

√
n can then be identified from

the data.
The following lemma shows that control of the mutual coherence numbers imply control of the

compatibility numbers and sparse singular values. Notice that φ̃(1) = φ(1) = mini ‖X.,i‖2/‖X‖,
as follows by evaluating the infimum in Definition 2.2 with β equal to unit vectors.

Lemma 2.1 We have φ(S)2 ≥ φ(1)2 − 15|S|mc(X) and φ(s)2 ≥ φ̃(s)2 ≥ φ(1)2 − s mc(X).

We are ready to state the main results on the regression model. For simplicity all results are stated
in limit form, for p, n→∞. We omit to recall ‘p, n→∞’ in the following statements.

Dimension. We start by a result on dimension reduction, analogous to the one of Theorem 2.5.
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Theorem 2.8 In the regression model (8), let the prior Π ≡ (λ, πp) on β be chosen according to
(2.21)-(2.22) with λ satisfying (2.23). Recall that a is the constant in (2.22). Then, with s0 = |Sβ0 |
and for any M > 2,

sup
β0

Eβ0Π
(
β : |Sβ | > s0 + M

a

(
1 + 16

φ(S0)2
λ
λ

)
s0

∣∣Y )→ 0.

Recovery. The second theorem concerns the ability of the posterior distribution to recover the
true parameters from the data. It gives rates of contraction of the posterior distribution both
regarding prediction error ‖Xβ − Xβ0‖2 and regarding the parameter β relative to the `1- and
`2- and `∞-distances. Besides on the dimensionality the rate depends on compatibility. Set, for
‘a’ the constant in (2.22),

ψ(S) = φ
((

2 + 3
a + 33

φ(S)2
λ
λ

)
|S|
)
,

ψ̃(S) = φ̃
((

2 + 3
a + 33

φ(S)2
λ
λ

)
|S|
)
. (2.25)

In the interesting case that λ � λ, these numbers are bounded below by φ((2 + 4
a )|Sβ |) and

φ̃((2 + 4
a )|Sβ |) asymptotically if φ(Sβ) is bounded away from zero. Thus the following theorem

gives rates of recovery that are uniform in true vectors β such that φ(Sβ) and φ((2 + 4
a )|Sβ |) or

φ̃((2 + 4
a )|Sβ |) are bounded away from zero.

Theorem 2.9 (Recovery) In the regression model (8), let the prior Π ≡ (λ, πp) on β be chosen
according to (2.21)-(2.22) with λ satisfying (2.23). Then for sufficiently large M , with S0 = Sβ0 ,

sup
β0

Eβ0Π
(
β : ‖X(β − β0)‖2 > M

ψ(S0)

√
|S0| log p

φ(S0) |Y
)
→ 0,

sup
β0

Eβ0Π
(
β : ‖β − β0‖1 > M

ψ(S0)2
|S0|
√

log p
‖X‖φ(S0)2 |Y

)
→ 0,

sup
β0

Eβ0Π
(
β : ‖β − β0‖2 > M

ψ̃(S0)2

√
|S0| log p

‖X‖φ(S0) |Y
)
→ 0.

Furthermore, for every c0 > 0, any d0 < c20(1 + 2/a)−1/8 for a the constant in (2.22), and sn with
λsn
√

log p/‖X‖ → 0, for sufficiently large M ,

sup
β0:φ(S0)≥c0,ψ̃(S0)≥c0
|S0|≤sn,|S0|≤d0 mc(X)−1

Eβ0Π
(
β : ‖β − β0‖∞ > M

√
log p
‖X‖ |Y

)
→ 0.

The conditions to obtain the rates |S0|
√

log p/‖X‖,
√
|S0| log p and

√
log p for the ‖·‖1, ‖·‖2, ‖·‖∞

norms respectively in Theorem 2.9 are increasingly strong. They are in line with the conditions
required for the LASSO to achieve the corresponding rates, see [23].

Model Selection. If a coefficient of the true β is large enough, one can show that it gets
automatically selected by our procedure. How ‘large’ it should be depends on the conditions
satisfied by the matrix X. If φ(S0), ψ̃(S0) are bounded from below, the detection threshold
is of order

√
|S0| log p/‖X‖. Under a mutual coherence condition on X, the smaller threshold√

log p/‖X‖ can also be achieved, see [P15], Theorem 5.
Under some additional conditions on the growth of sn and on λ, one can further show that

S only consists of the coordinates which are above the threshold, that is, that the posterior
distribution consistently selects the correct model. Let

B̃ = B̃(M) =
{
β : min

i∈Sβ
|βi| ≥ M

ψ̃(S)2

√
|Sβ | log p

‖X‖φ(Sβ)

}
. (2.26)
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Theorem 2.10 (Consistent model selection) Let the conditions of Theorem 2.9 be satisfied
and B̃ be defined in (2.26). Suppose that a > 1 in (2.22) and that sn ≤ pA for some A < a − 1,
and snλ

√
log p/‖X‖ → 0. Then, for M large enough, for every c0 > 0,

inf
β0∈B̃:φ(S0)≥c0
|S0|≤sn,ψ̃(S0)≥c0

Eβ0Π
(
β : Sβ = Sβ0 |Y

)
→ 1.

Prediction. The vector Xβ is the mean vector of the observation Y in (8), and one might guess
that this is estimable without identifiability conditions on the regression matrix X. Next we show
that the posterior distribution based on a prior of type Π above can indeed solve this prediction
problem at (nearly) optimal rates under no condition on the design matrix X. The best results
are achieved by taking a heavy tailed distribution on g. Suppose g is of the form

g(x) ∝ λ

1 + |λx|µ
, x ∈ R, λ > 0, µ > 3. (2.27)

Theorem 2.11 If πp satisfies (2.22) with a ≥ 1, and g is of the form (2.27) with λ = ‖X‖ and
µ > 3, then for sufficiently large M ,

sup
β0

Eβ0Π
(
β ∈ Rp : ‖Xβ −Xβ0‖22 > Mρn(β0) |Y

)
→ 0,

for ρn(β) = |Sβ | log p ∨
∑
i∈Sβ log

(
1 + ‖X‖µ|βi|µ

)
.

For simplicity we have stated the result in an asymptotic fashion, but a more general oracle-
type inequality result for the posterior holds as well, see [P15] Theorem 10. A similar result was
obtained Dalalyan and Tsybakov [31] for point-estimators in a PAC-Bayesian framework. The rate
|Sβ | log p for the squared euclidian distance is achieved uniformly over most β’s except those with
some very large coefficients for which the logarithmic term in ρn above may become dominant.
It is also possible to consider other choices of g in (2.27), such as the Laplace density considered
above, but then the second term in the definition of ρn(β) becomes larger (the heavier the tails,
the smallest ρn(β), see [P15], Theorem 10).

One may further ask whether it is possible to obtain a prediction result without condition on
X uniformly in all βs (so, without the possible extra log term in ρn(β) above). We prove in [P15],
Theorem 11 that this is possible by constructing an improper prior directly on Xβ.

Distributional approximation. Although we shall not present this aspect in details here, we
note that in the small λ regime, we also derive in [P15] a distributional approximation for the
posterior distribution in the form of a BvM-type theorem.

We conclude by a few words on practical implementation. It is generally believed that sim-
ulating for posterior distributions corresponding to priors with mixtures of point masses at 0 is
computationally intensive in the regression model. Although not quite as computationally fast as
the LASSO, we note that recent years have seen some progresses in this direction for algorithms
simulating from approximations of the posterior or aspects of it. Recent contributions on the
subject include [20, 89, 91].

2.4 Supremum norm posterior rates
Motivation. The general rate Theorem 0.1 is well-suited for use in combination with specific
distances: either the Hellinger distance between probabilities, or more generally distances in which
some tests at exponential rate are available. Although this covers already quite an important
number of applications, sometimes one has a specific distance at hand, for which building tests as
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mentioned may not be straightforward. A typical example is the supremum norm on functions.
Giné and Nickl (2011) [50] have shown that in density estimation it is possible to build tests with
exponential-type decrease of errors using sharp concentration inequalities for certain estimators.
Then one is able to apply the general rate Theorem 0.1 but the corresponding posterior rates are
above the minimax rate by a polynomial factor in n for Hölder classes.

Obtaining posterior rates in Lp norms p > 2 is an interesting question in itself, but we mention
that the question also finds applications for instance in the study of remainder terms appearing in
the study of semiparametric functionals: [P13] considers some examples. On the other hand, the
problem is well-studied from the frequentist minimax perspective and rates are known since a long
time: a brief bibliographic review is made in [P12]. Simple frequentist estimators achieving the
rate are wavelet estimators based on thresholding [54]. So, it is natural to think that sparse priors
in the spirit of Section 2.2 should work. Indeed, in a recent preprint [55], Hoffmann, Rousseau and
Schmidt-Hieber prove that adaptive rates in white noise are achieved by such priors. The authors
also derive a number of interesting results for white noise and suggest an abstract construction for
density estimation. Yet, one may think that other methods are possible, and that sparsity-inducing
priors per se should not be a necessary requirement.

Here, our goal is to provide a methodology to handle the question for a given prior, not nec-
essarily sparsity inducing (also, to our knowledge no minimax posterior sup-norm rate in density
estimation were known before [P12]). In particular, Theorem 2.13 below shows that exponen-
tially transformed Gaussian processes similar to those considered in [50] do achieve the minimax
sup-norm convergence rate, so the method enables to achieve sharp rates, which seems not to be
always the case with the testing approach. In fact, we had to build a somewhat related argument
without testing in our paper [P10], see Theorem 3.7 in Chapter 3 below.

The semiparametric perspective and multiscale. The main idea comes from a multiscale
analysis of f combined to a connection to semiparametrics. For a localised wavelet basis ψlk, see
below, the supremum norm of a function f can be related to maxima of its wavelet coefficients
〈f, ψlk〉2. But

f → 〈f, ψlk〉2
can be seen as a semiparametric functional. It is precisely one of the goals of Chapter 3 to study
posterior behaviour and shape for fixed functionals. Here the problem is somewhat different from
the semiparametric questions considered in Chapter 3 since one needs to control many functionals
simultaneously. However, the fact that this is feasible, at least for some range of indexes l, leads
to the results stated below.

Localised bases and wavelets. Wavelet basis are particularly suited here and we refer to Här-
dle, Kerkyacharian, Picard and Tsybakov [54] for an introduction to wavelet bases constructions
and applications of wavelets in statistics.

The Haar basis on [0, 1] is defined by ϕH(x) = 1, ψH(x) := ψH0,0(x) = −1l[0,1/2](x) + 1l(1/2,1](x)

and ψHl,k(x) = 2l/2ψ(2lx− k), for any integer l and 0 ≤ k ≤ 2l − 1. The supports of Haar wavelets
form dyadic partitions of [0, 1], corresponding to intervals I lk := (k2−l, (k + 1)2−l] for k > 0, and
where the interval is closed to the left when k = 0. One drawback of the Haar basis is that it has
non-smooth basis elements.

For wavelets on an interval, an alternative is the boundary corrected basis of Cohen, Daubechies,
Vial [29], which we will refer to as CDV basis. The CDV basis enables a treatment on compact
intervals and at the same time can be chosen sufficiently smooth. We adopt a double indexing as
for the Haar basis and denote the CDV basis by {ψlk}.

The key localisation property shared by both bases is: for some universal C > 0 and any l ≥ 0,

‖
2l−1∑
k=0

|ψlk|‖∞ ≤ C2l/2. (2.28)

The basis {ψlk} can be chosen smooth enough so that it characterises Besov spaces Bs∞,∞[0, 1],
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up to a given arbitrary level say S, in terms of wavelet coefficients. That is, for s ≤ S, we have
g ∈ Bs∞,∞[0, 1] if and only if

‖g‖∞,∞,s := sup
l≥0, 0≤k≤2l−1

2l(
1
2 +s)|〈g, ψlk〉2| <∞. (2.29)

We recall that Bs∞,∞ coincides with the Hölder space Cs when s is not an integer and otherwise the
inclusion Cs ⊂ Bs∞,∞ holds. If the Haar-wavelet is considered, the fact that f0 is in Cs, 0 < s ≤ 1,
implies that the supremum in (2.29) with ψlk = ψHlk is finite.

Rates and notation. For any α > 0 and any n ≥ 1, denote by ε̄n,α and ε∗n,α the rates

ε̄n,α := n−
α

2α+1 , ε∗n,α :=

(
log n

n

) α
2α+1

. (2.30)

Let us also set, omitting the dependence in α in the notation,

hn =
( n

log n

)− 1
2α+1

, Ln = blog2(1/hn)c. (2.31)

Gaussian white noise model. In the white noise model (1), suppose one wants to estimate the
function f with respect to the ‖ · ‖∞-loss from a Bayesian perspective. We already have natural
candidate priors on functions via the prior given by (10), which assigns independent priors to the
coordinates of f onto a basis.

Prior, white noise case. Consider the prior Π on functions on [0, 1] induced by, for a doubly-
indexed orthonormal basis {ψlk} of L2[0, 1] satisfying (2.28),

f =

∞∑
l=−1

2l−1∑
k=0

σlζlkψlk, (2.32)

where {ζlk} are independent indentically distributed variables with density ϕ with respect to
Lebesgue measure on [0, 1], and where {σl} is a sequence of parameters depending on l only to be
specified below. Further assume that ϕ is strictly positive on [−1, 1] and that it satisfies

∃ b1, b2, c1, c2, δ > 0, ∀x : |x| ≥ 1, c1e
−b1|x|1+δ ≤ ϕ(x) ≤ c2e−b2|x|

1+δ

. (2.33)

Consider a scaling σl for the prior equal to, for δ the constant in (2.33),

σl =
2−l(

1
2 +α)

(l + 1)µ
, µ =

1

1 + δ
. (2.34)

Possible choices for ϕ cover several commonly used classes of prior distributions, such as exponen-
tial power distributions. The precise tuning of σl with the logarithmic-type term in (l+ 1)µ seems
necessary to get sharp rates in the next Theorem (that is, without extra logarithmic terms). Also,
under (2.33) the density ϕ has exponential moments. This is mostly for simplicity, as moment-
generating functions can then be used in the proofs. We do not think this is an essential restriction
though, and results for heavier tailed priors may presumably be obtained by adapting the proof.

Statement, white noise. The next result is for fixed regularity α > 0.

Theorem 2.12 Let X(n) be observations from the white noise model (1). Suppose f0 belongs to
Bα∞,∞[0, 1], for some α > 0. Let the prior Π be a product prior defined through ϕ and σl satisfying
(2.33), (2.34). Then there exists M > 0 such that for ε∗n,α defined by (2.30),

Enf0

ˆ
‖f − f0‖∞dΠ(f |X(n)) ≤Mε∗n,α.
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Theorem 2.12 can be seen as a generalisation to non-conjugate priors of Theorem 1 in [50].
Possible choices for ϕ cover several commonly used classes of prior distributions, such as so-called
exponential power (EP) distributions. Several other choices of priors distributions are possible,
up sometimes to some adaptations, see [P12].

Density estimation. Consider the density estimation model (3) on the interval [0, 1]. Let F be
the set of densities f on [0, 1] which are bounded away from 0 and ∞. Let Fρ,D = {f, 0 < ρ ≤
f ≤ D <∞,

´ 1

0
f = 1}. For the following results we assume that the true function f0 belongs to

F0 := F(ρ0, D0), for some 0 < ρ0 ≤ D0 <∞.

Example: log-densities. Let us define a prior Π on log-densities via the exponential transfor-
mation (13). Given a sufficiently smooth CDV-wavelet basis {ψlk}, consider the prior induced on
densities f by, for Ln defined in (2.31),

T (x) =

Ln∑
l=0

2l−1∑
k=0

σlαlkψlk(x) (2.35)

f(x) = exp {T (x)− c(T )} , c(T ) = log

ˆ 1

0

eT (x)dx, (2.36)

where αlk are i.i.d. random variables of density ϕ with respect to Lebesgue measure and σlk some
positive reals. We consider the choices ϕ(x) = ϕG(x) = e−x

2/2/
√

2π the Gaussian density and
ϕ(x) = ϕH(x), where ϕH is any density such that its logarithm logϕH is Lipschitz on R. We refer
to this last case as the ‘Log-Lipschitz case’. For instance, the αlk’s can be Laplace-distributed or
have heavier tails, such as, for a given 0 ≤ τ < 1 and x ∈ R, and cτ a normalising constant,

ϕH,τ (x) = cτ exp{−(1 + |x|)1−τ}. (2.37)

Suppose the prior parameters σl satisfy, for some α > 1/2 and 0 < r ≤ α− 1
4 ,

σl ≥ 2−l(α+ 1
2 ) (Log-Lipschitz case), σl = 2−l(

1
2 +r) (Gaussian-case). (2.38)

Typically, see below, such priors f in (2.36) under ϕ = ϕG or ϕH and (2.38) attain the rate ε̄n,α
in (2.30) in terms of Hellinger loss, up to logarithmic terms. For some ν > 0, suppose

Π[f : h(f, f0) > (log n)ν ε̄n,α |X(n)]→Pnf0 0. (2.39)

Theorem 2.13 Consider observations X(n) in the density model (3). Suppose log f0 belongs to
Cα[0, 1], with α ≥ 1. Let Π be the prior on F defined by (2.36), with ϕ = ϕG or ϕH . Suppose that
σl satisfy (2.38) and that (2.39) holds. Then, for α > 1 and ε∗n,α defined by (2.30), any Mn →∞,
it holds, as n→∞,

Π[f : ‖f − f0‖∞ > Mnε
∗
n,α |X(n)]→Pnf0 0.

In the case α = 1, the same holds with ε∗n,α replaced by (log n)ηε∗n,α, for some η > 0.

Theorem 2.13 implies that log-density priors for many natural priors on the coefficients achieve the
optimal minimax rate of estimation over Hölder spaces under sup-norm loss, as soon as the regu-
larity is at least 1. We note that obtaining this result requires quite some work, especially for log-
density priors: indeed, for those a natural semiparametric analysis is based on f → 〈 log f, ψlk〉2.
These functionals can be shown to relate to f → 〈f, ζlk〉2, with ζlk = ψlk/f0. Note in particular
that {ζlk} do not themselves form a wavelet basis in general. That a uniform control of these
previous linear functionals holds up to the desired cut-off level for the considered priors is true
but non-trivial.

Let us give some examples of prior distributions satisfying the assumptions of Theorem 2.13.
In the Gaussian case, any sequence of the type σl = 2−l(

1
2 +γ) with 0 < γ ≤ α− 1/4 satisfies both
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(2.38) and (2.39). In the Log-Lipschitz case, the choice ϕ = ϕH,τ in (2.37) with any 0 ≤ τ < 1
combined with σl = 2−lα satisfies (2.38)-(2.39). Both claims follow from minor adaptations of
Theorem 4.5 in [100] and Theorem 2.1 in [88] respectively.

Example: random histograms. Associated to the regular dyadic partition of [0, 1] at level
L ∈ N∗, given by IL0 = [0, 2−L] and ILk = (k2−L, (k + 1)2−L] for k = 1, . . . , 2L − 1, is a natural
notion of histogram

HL = {h ∈ L∞[0, 1], h(x) =

2L−1∑
k=0

hk1lILk (x), hk ∈ R, k = 0, . . . , 2L − 1}

the set of all histograms with 2L regular bins on [0, 1]. Let SL = {ω ∈ [0, 1]2
L

;
∑2L−1
k=0 ωk = 1} be

the unit simplex in R2L . Let H1
L be the subset of HL consisting of histograms which are densities

on [0, 1]. Let H1 be the set of all histograms which are densities on [0, 1].
A simple way to specify a prior onH1

L is to set L = Ln deterministic and to fix a distribution for
ωL := (ω0, . . . , ω2L−1). Set L = Ln as defined in (2.31). Choose some fixed constants a, c1, c2 > 0
and let

L = Ln, ωL ∼ D(α0, . . . , α2L−1), c12−La ≤ αk ≤ c2, (2.40)

for any admissible index k, where D denotes the Dirichlet distribution on the simplex SL.

Theorem 2.14 Let f0 ∈ F0 and suppose f0 belongs to Cα[0, 1], where 1/2 < α ≤ 1. Let Π be the
prior on H1 ⊂ F defined by (2.40). Then, for ε∗n,α defined by (2.30) and any Mn → ∞ it holds,
as n→∞,

Π[f : ‖f − f0‖∞ > Mnε
∗
n,α |X(n)]→Pnf0 0.

According to Theorem 2.14, random dyadic histograms achieve the minimax rate in sup-norm over
Hölder balls. Condition (2.40) is quite mild. For instance, the uniform choice α0 = · · · = α2L−1 = 1
is allowed, as well as a variety of others, for instance one can take αk = αk,Ln to originate from
a measure A = ALn on the interval [0, 1], of finite total mass ĀLn := A([0, 1]). By this we mean
αk = A(ILnk ). If A/ĀLn has say a fixed continuous and positive density a with respect to Lebesgue
measure on [0, 1], then (2.40) is satisfied as soon as there exists a δ > 0 with 2−δLn . ĀLn . 2Ln .

Further examples. The scope of the described technique is not restricted to the previous ex-
amples. In particular, in a forthcoming work we prove that a class of Pólya trees density priors
achieves supremum norm minimax rates for density estimation.

2.5 Perspectives
We have presented several posterior convergence rate results in nonparametric frameworks. Some
relate to families of prior distributions such as heat kernel Gaussian process priors, prior for sparse
objects etc. Other families of prior distributions are of particular interest. One example we have
in mind is the class of mixtures. As briefly mentioned in the Introduction, mixture of kernels for
instance arise naturally as priors on density functions. Such priors appear to be very flexible: for
instance, Judith Rousseau [90] has shown that certain random mixtures of Beta kernels achieve
Hellinger-posterior convergence rate that are adaptive over Hölder classes, up to a logarithmic
factor, without restrictions due to the order of the kernel. It would be interesting to develop a
broader theory for mixture priors, especially for more complex models, and possibly in terms of
different loss functions. Also, in the present manuscript, we mostly focus on priors on functions and
vectors, but some families of priors on complex objects such are matrices or graphs are presently
very much developped in probability theory or in machine learning, and it seems natural to ask
about their statistical properties, in particular their posterior convergence rates.
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The question of obtaining posterior rates with respect to strong measures of loss such as the
supremum norm appears to be quite challenging in general: the programme presented above to
study those relates it to the question of obtaining Bernstein-von Mises results (uniformly) for
functionals, as we discuss in Chapter 3. Also, in this case, the role of the prior on high frequencies
may be even more important than for other losses. Posterior adaptation with respect to strong
losses further rises a variety of interesting questions, and investigation of some of these is under
current investigation.

Finally, refinements of the notion of posterior rates are very desirable. Two directions appear
naturally: providing oracle-type results for rates in the spirit of oracle inequalities (though not
explicitly presented here we obtain some results in this direction for sparse priors in [P15]); de-
velopping nonasymptotic results, ressembling for instance the one of Theorem 2.7: [17] is a recent
interesting step in this direction.
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CHAPTER 3

Limiting shape of posterior distributions

We derive Bernstein-von Mises (BvM) theorems in infinite-dimensional settings.
First, we present an approach to the semiparametric BvM theorem for separated models
based on [P7]. Some examples are then presented in details. We briefly mention some
extensions [P13] and a counterexample [P8]. Second, we define a notion of nonparamet-
ric BvM in nonparametric models [P10, P14]. From it we derive several applications,
such as Bayesian Donsker theorems in nonconjugate settings and the construction of
nonparametric confident credible sets.

3.1 Semiparametric BvM for separated models
It is natural to ask whether the BvM Theorem 0.2 admits a counterpart in semiparametric mod-
els. Such a result is very desirable, as it implies asymptotic normality of the marginal posterior
distribution for the parameter of interest, and immediately yields asymptotic confidence sets.

Few semiparametric BvM results are available in the literature. Kim and Lee [63] and Kim
[62] obtain BvM results in the proportional hazards for the cumulative hazard function and the
parameter in Cox’ model, with a specific class of Lévy processes as priors and using that this class
is partly conjugate to the model. Shen [94] states quite general results, but a few of his conditions
are fairly implicit and may not be easy to check in practice. Bickel and Kleijn [10] provide a set of
conditions for i.i.d. data, assuming

√
n-consistency for the posterior of the parameter of interest.

Rivoirard and Rousseau [88] obtain a general semiparametric BvM result in the density model for
linear functionals of the density. We first present the results obtained in [P7], and in the next
Section we briefly discuss [P13], which is a natural continuation of [P7] and [88].

Notation. Let us consider a sequence of statistical experiments (X (n),G(n), P
(n)
η , η ∈ E), with

observations X(n), where E is a parameter set of the form Θ × F with Θ an interval of R – the
results extend without much effort to Rk, but we keep k = 1 for simplicity – and F a subset of
a separable Banach space. The true value of the parameter is denoted by η0 = (θ0, f0) and is
assumed to be an interior point of E . We assume that the measures P (n)

η admit densities p(n)
η with

respect to a σ-finite measure µ(n). The log-likelihood is denoted `n(η),

`n(η) = log p(n)
η , and Λn(η) = `n(η)− `n(η0).
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The space E = Θ×F is equipped with a product σ-field T ⊗B and we assume that (x, η)→ p
(n)
η (x)

is jointly measurable. Note that the data does not have to be i.i.d.

Prior, condition (P). We put a prior Π on the pair (θ, f), of the form Π = πθ ⊗ πf . For πθ we
choose any probability measure on Θ having a density λ with respect to Lebesgue measure on Θ,
with λ positive and continuous at the point θ0.

Bayes’ formula and neighborhoods. The neighborhoods BKL from (15) have natural ana-
logues in the semiparametric, possibly non-i.i.d., context. For any ε > 0, define

BKL,n(η0, ε) = {η ∈ E : K(P (n)
η0 , P (n)

η ) ≤ nε2, V (P (n)
η0 , P (n)

η ) ≤ nε2}. (3.1)

It is also useful to introduce as a technical tool Πθ=θ0(· |X(n)), the posterior distribution in the
model where θ is known to be equal to θ0 and one takes πf as prior on f . By Bayes’ theorem, for
any B ∈ B,

Πθ=θ0(B|X(n)) =

´
B
p

(n)
θ0,f

(X(n))dπf (f)´
p

(n)
θ0,f

(X(n))dπf (f)
.

We also define a neighborhood of f0 in F restricted to the case θ = θ0 as

Bθ=θ0KL,n(f0, ε) = {f ∈ F : K(P (n)
η0 , P

(n)
θ0,f

) ≤ nε2, V (P (n)
η0 , P

(n)
θ0,f

) ≤ nε2}. (3.2)

A specific semiparametric framework. A natural way to study efficiency in a semiparametric
model is to study estimation along a maximal collection of 1-dimensional paths locally around the
true parameter, as explained for instance in [98], Chap. 25, where the i.i.d. case is considered.
The paper by McNeney and Wellner (2000) [82] develops similar tools in non-i.i.d. situations.
Likelihood ratios along paths may then for instance be well approximated by the likelihood ratios
for a Gaussian shift experiment, which leads to the notion of local asymptotic normality (LAN).
The approach we follow is closely related, and assumes for simplicity that linear approximations
to a given true (θ0, f0) belong to the model. We describe this setting precisely now.

Given a true η0 = (θ0, f0) in E , for any η = (θ, f) in E (possibly restricted to a subset of E ,
possibly close enough to η0), let us assume that the pair (θ − θ0, f − f0) can be embedded in a
product Hilbert space of the form Vη0 = R × Gη0 equipped with an inner-product 〈 , 〉L with
associated norm ‖ · ‖L. Locally around the true parameter, we shall compare the log-likelihood
differences to a quadratic term plus a stochastic term. We set

Rn(θ, f) = Λn(θ, f) + n‖θ − θ0, f − f0‖2L/2−
√
nWn(θ − θ0, f − f0), (3.3)

where ‖(h, a)‖L is denoted ‖h, a‖L for simplicity, and where

• Λn(θ, f) = `n(θ, f) − `n(θ0, f0) is the difference of log-likelihoods between the points (θ, f)
and (θ0, f0).

• {Wn(v), v ∈ Vη0} is a collection of random variables, measurable with respect to the obser-
vations X(n) and satisfying the following properties

� For any v1, . . . , vd in Vη0 , the d-tuple (Wn(v1), . . . ,Wn(vd)) converges in distribution
to the d-dimensional centered Gaussian distribution with covariance structure given by
the matrix (〈vi, vj〉L)1≤i,j≤d.
� The map v →Wn(v) is linear.

Below we will further assume that one has a form of uniform control of the Rn’s over (sieved)
shrinking neighborhoods of the true η0, see assumptions (N) and (N ) below.

The inner-product and the stochastic term introduced above are often identified from LAN-
type expansions. For instance, one might be in a situation where the model is LAN with linear
paths (see e.g. [82]) in that for each v = (s, g) ∈ Vη0 , as n→∞,

Λn(θ0 + s/
√
n, f0 + g/

√
n) = −‖s, g‖2L/2 +Wn(s, g) + o

P
(n)
η0

(1), (3.4)
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where ‖ · ‖L, Wn and Vη0 are as above. To define the notions of information and efficiency in our
model, we assume for simplicity that the considered model is LAN with linear paths, which falls
in the framework considered in [82], so we can borrow from that paper the definitions and their
implications for efficiency. In fact, assumption (3.4) is essentially weaker than the uniform type
of control on Rn(θ, f) required below. All examples considered in the sequel admit such a LAN
expansion, at least for a well-chosen parametrisation of the model.

Semiparametric structure. Here we define the notions of least favorable direction and efficient
Fisher information following [82]. Let F be the closure in Vη0 of the linear span of all elements
of the type (0, f − f0), where f belongs to F . Let us define the element (0, γ(·)) ∈ F as the
orthogonal projection of the vector (1, 0) onto the closed subspace F . The element γ is called least
favorable direction. For any (s, g) ∈ Vη0 , one has the following decomposition

‖s, g‖2L = (‖1, 0‖2L − ‖0, γ‖2L)s2 + ‖0, g + sγ‖2L. (3.5)

The coefficient of s2 is called efficient Fisher information and is denoted by Ĩη0 = ‖1, 0‖2L−‖0, γ‖2L.
If γ is zero, we say there is no loss of information and denote the information simply by Iη0 . Note
also that since ‖ · ‖L is a norm, Iη0 = ‖1, 0‖2L is always nonzero. In that case it can be checked
that this information Iη0 equals the information in the model where f would be known (that is,
the standard Fisher information). If Ĩη0 itself is nonzero, let us also denote

∆n,η0 = Ĩ−1
η0 Wn(1,−γ).

An estimator θ̂n of θ0 is said asymptotically linear and efficient if
√
n(θ̂n− θ0) = ∆n,η0 + o

P
(n)
η0

(1).
When an approximation such as (3.4) holds, the model asymptotically looks like a Gaussian

shift experiment with inner-product 〈·, ·〉L. How much information is available for estimating a
given parameter is completely encoded in the inner-product. Observe that from (3.5), one deduces
‖s, g‖2L ≥ (‖1, 0‖2L − ‖0, γ‖2L)s2 = Ĩη0s

2 with equality when g = −sγ. The quantity Ĩη0 represents
the ‘smallest curvature’ of paths approaching η0.

The case without loss of information. We first state a result applying when there is no
loss of information, that is when γ = 0. If γ = 0, it holds ‖h, a‖2L = ‖h, 0‖2L + ‖0, a‖2L and
Iη0 = Ĩη0 = ‖1, 0‖2L as well as ∆n,η0 = Wn(1, 0)/‖1, 0‖2L.

Concentration (C). Let εn → 0 be a sequence such that nε2
n →∞. The statistical model and the

prior Π satisfy condition (C) with rate εn if there exists a sequence of measurable sets Fn in F
such that, as n→∞, in P (n)

η0 -probability,

Π
(
{η ∈ Θ×Fn, ‖η − η0‖L ≤ εn} | X(n)

)
→ 1,

Πθ=θ0
(
{f ∈ Fn, ‖0, f − f0‖L ≤ εn/

√
2} | X(n)

)
→ 1.

Local shape (N). Let Rn be defined by (3.3) and let εn and Fn be as in (C). Let us denote
Vn = {(θ, f) ∈ Θ× Fn, ‖θ − θ0, f − f0‖L ≤ εn}. The model satisfies (N) with rate εn over the
sieve Fn if

sup
(θ,f)∈Vn

|Rn(θ, f)−Rn(θ0, f)|
1 + n(θ − θ0)2

= o
P

(n)
η0

(1).

Theorem 3.1 Let us assume that the prior Π on (θ, f) satisfies (P) and that the model and prior
verify conditions (C), (N). Suppose there is no information loss. Then it holds, as n→∞,

sup
B

∣∣∣∣Π(B ×F | X(n)
)
−N

(
θ0 +

1√
n

∆n,η0 ,
1

n
I−1
η0

)
(B)

∣∣∣∣→ 0,
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in P (n)
η0 -probability, where the supremum is taken over all measurable sets B in Θ. In words, the

total variation distance between the marginal in θ of the posterior distribution and a Gaussian
distribution centered at θ0 + 1√

n
∆n,η0 , of variance

1
nI
−1
η0 , converges to zero, in P (n)

η0 -probability.

Condition (C) means that the posterior concentrates at εn-rate around the true η0 in terms
of ‖ · ‖L. This is an Hilbert-norm, often corresponding to a weighted L2-space: often, one may
apply the general rate Theorem 0.1. Sometimes this does not suffice and one may have to devise
a specific argument, or apply a different technique, such as the sup-norm rate approach from
Chapter 2. Condition (N) controls how much the likelihood ratio differs locally from the one of
a Gaussian experiment and is studied below. Note that assumptions (P) -the parametric part of
the prior must charge θ0-, (N) -which is about the shape of the model- and (C) -which enables
us to localize in a neighborhood of the true η0- compare in their spirit to the assumptions for the
parametric Bernstein-von Mises theorem as stated in Le Cam and Yang [72], §7.3, Prop.1. One
can also note that Theorem 3.1 actually yields a result in the particular case where f is known.
In this case, the Theorem implies that if posterior concentration occurs at rate εn = Mnn

−1/2 for
some Mn →∞ (for instance Mn = log n say) and if the uniform LAN property (N) in θ holds in
that neighborhood of size Mnn

−1/2 then the parametric BVM theorem holds.

The case with information loss. Here we shall restrict our investigations to Gaussian priors
for πf . More precisely suppose πf is the distribution associated to a centered Gaussian process
taking its values almost surely in a separable Banach space B. Let H be the Reproducing Kernel
Hilbert Space of the Gaussian process. We shall assume that the space H is ‘large enough’ so that
the least favorable direction γ above can be approximated by elements of H. Suppose that there
exists ρn → 0 and a sequence γn of elements in H such that for all n, γn − γ belongs to Gη0 and

‖γn‖2H ≤ 2nρ2
n and ‖0, γn − γ‖L ≤ ρn. (3.6)

Concentration (C). The model verifies condition (C) with rate εn if there exists a sequence of

measurable sets Fn in F such that, if Fn(θ) = Fn + (θ − θ0)γn,

Π
(
{η ∈ Θ×Fn, ‖η − η0‖L ≤ εn} | X(n)

)
→ 1,

inf
|θ−θ0|Ĩ1/2η0

≤εn
Πθ=θ0

(
{f ∈ Fn(θ), ‖0, f − f0‖L ≤ εn/2} | X(n)

)
→ 1,

as n→∞, in P (n)
η0 -probability. Suppose the neighborhoods in (3.1)-(3.2) verify, for some c, d > 0

Π(BKL,n(η0, dεn)) ≥ e−cnε
2
n and πf (Bθ=θ0KL,n(f0, dεn)) ≥ e−cnε

2
n .

Local Shape (N ). Let Vn = {(θ, f) ∈ Θ × Fn, ‖θ − θ0, f − f0‖L ≤ 2εn}. Assume that for any

(θ, f) in Vn, the function f − (θ − θ0)γn belongs to F and that

sup
(θ,f)∈Vn

|Rn(θ, f)−Rn(θ0, f − (θ − θ0)γn)|
1 + n(θ − θ0)2

= o
P

(n)
η0

(1).

Our last assumption is related to how well the least favorable direction γ is approximated by
elements of H. As n→∞ suppose, with εn as in (C) and ρn, γn as in (3.6),

(E)
√
nεnρn = o(1) and Wn(0, γ − γn) = o

P
(n)
η0

(1).

Theorem 3.2 Let us assume that the prior Π = πθ ⊗ πf on (θ, f) satisfies (P), that πf is a
Gaussian prior, that Ĩη0 > 0 and that the least favorable direction γ can be approximated according
to (3.6). Suppose that conditions (C), (N ) and (E) are satisfied. Then it holds

sup
B

∣∣∣∣Π(B ×F | X(n)
)
−N

(
θ0 +

1√
n

∆n,η0 ,
1

n
Ĩ−1
η0

)
(B)

∣∣∣∣→ 0,

52



as n→∞, in P (n)
η0 -probability, where the supremum is taken over all measurable sets B in Θ.

The assumptions are similar in nature to the ones of Theorem 3.1, with additional requirements
about the least favorable direction γ and Gaussianity of πf . Note that if γ happens to belong to
the RKHS H of πf , then (3.6) and (E) are trivially satisfied.

Discussion of the assumptions. Assumptions (C)–(C) ask for the posterior to contract around
η0 at a preliminary rate εn. This is quite reasonable, especially since this rate does not have to
be the ‘best possible’ rate. Of course the faster εn, the easier to check assumptions (N)–(N )
become. These last assumptions control how far the model is from Gaussianity asymptotically.
Without assuming (local, asymptotic) Gaussianity somewhere, one cannot of course hope to con-
verge towards a normal distribution as in the above Theorems. The control has to be uniform in
both θ and f , which may sometimes be a relatively strong requirement, although the assumptions
provide the flexibility of checking it only on a sieve Fn.

Assumption (E) is really what makes the difference between both cases (with or without
information loss). One can make the following comments on it

• It is typically not too difficult to check, especially in models where an explicit expression of
γ is available. One may note that even a qualitative knowledge of γ can possibly be enough:
one only needs to know how well γ can be approximated by elements of H.

• However, this assumption is often the most restrictive of the three. What typically matters
are the respective ‘regularities’ of f0 and γ, which in turn determine the rates εn and ρn.
Consider the simple case where say εn = ρn. The condition becomes

√
nε2

n = o(1), which
means the rate εn should not be too slow. In particular, taking a Gaussian prior πf that
oversmooths too much can easily destroy the condition. Indeed, we have seen in Chapter
1 that the convergence rate for Gaussian processes drops quickly to very slow rates in the
oversmoothing case.

• One cannot avoid such a condition in general. In the following we consider an example where
the BvM theorem does not to hold for some priors in most of the zone determined by the
condition. Also, the condition will also arise for other priors than Gaussian.

If one compares the conditions here with sets of sufficient conditions for semiparametric frequentist
point estimators to be efficient, see e.g. [98]-Chapter 25.8, one notes the presence of a so-called
‘no-bias’ condition, e.g. (25.52) in [98], which in terms of rates may lead to conditions such as√
nε2

n → 0 as above. By analogy we talk for (E) of a no-bias condition. This terminology will be
further justified below.

An attractive aspect of (E) is that, while it is certainly not always sharp, it is completely
explicit in terms of prior and model. It shows well which aspects are at stake for solving the semi-
parametric problem: there is an interaction between ‘fairly good estimation of the nonparametric
part f0’ and ‘estimation of the least favorable direction’ (in the i.i.d. case, the latter is closely
related to the so-called efficient score function). In other words, good estimation of the nuisance
part is not the only requirement. In fact, one can show that adaptive priors (with respect to
estimation of f) may not verify the BvM theorem, precisely because they perform poorly on the
least-favorable direction (or efficient score) part.

Example: Translation model. Consider the translation model (9). To ensure identifiability,
one assumes that θ belongs to Θ = [−τ0, τ0] ⊂]− 1/4, 1/4[, a set of diameter smaller than 1/2.

Let F be the linear space of all symmetric square-integrable functions f : [−1/2, 1/2] → R
and, for simplicity in the definitions of the classes of functions below, such that

´ 1

0
f(u)du =

0. We extend any f ∈ F by 1-periodicity and denote its real Fourier coefficients by fk =√
2
´ 1

0
f(u) cos(2πku)du, k ≥ 1. Note that we can still denote by f0 the true function f . Let

us denote εk(·) = cos(2πk·) for k ≥ 0. Also, let ‖ · ‖2 be the L2-norm over [−1/2, 1/2].
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Translation model: Smoothness conditions. A function f = (fk)k≥1 is said to fulfill con-
ditions (R) if there exist reals ρ > 0, L > 0 and β > 1 such that |f1| ≥ ρ and

∑
k≥1 k

2βf2
k ≤ L2.

Translation model: LAN-norm. It can be checked that if f0 satisfies (R), the model is
LAN with linear paths and with LAN-norm the Hilbert norm given by, for a real h and a square
integrable 1-periodic a(·),

‖h, a‖2L =
( ˆ 1/2

−1/2

f ′0(u)2du
)
h2 +

ˆ 1/2

−1/2

a(u)2du.

We see that the norm ‘splits’ in two independent parts, one for the parametric component of
interest represented by h, and the other for the nuisance part. From this it can be deduced that
there is no information loss in this model.

Translation model: Prior and statement. For the parametric part πθ of the prior, let us
choose the uniform measure on [−1/4, 1/4]. The nonparametric part πf is a family of Gaussian
priors parameterised by a real parameter α similar to (1.8). Let {νk}k≥1 be a sequence of inde-
pendent standard normal random variables and for any k > 0 and α > 1, let σk = k−1/2−α. The
prior παf is the distribution generated by

f(·) =

∞∑
k=1

σkνkεk(·). (3.7)

One may also define a prior truncated at k(n), a strictly increasing sequence of integers. In that
case the entropy bounds involved to get posterior convergence are easier to obtain. This also
explains why for this prior the domain where the BVM-theorem holds is slightly larger in the
following theorem. In both cases α can be seen as the ‘regularity’ of the prior, as opposed to the
(unknown) regularity β of f0.

Theorem 3.3 Suppose that f0 satisfies (R) with regularity β > 1. Let the prior πθ satisfy (P)
and let πf be defined by (3.7) for some α > 1. Then conditions (C) and (N) of Theorem 3.1 are
satisfied for pairs (β, α) such that the corresponding point in Figure 3.1 lies in the shaded area. In
particular, the BvM theorem holds in this region. For the prior παf,k(n) with k(n) = bn1/(2α+1)c,
the same holds in the region delimited by the ‘triangle’-curve.

The region for which β > 1 and α > 1 delimited by the ‘square’-curve in Figure 3.1 can be
regarded as the ‘best possible’ region, since it describes true functions and priors which have at
least one derivatives in a weak (L2-) sense. This condition on β is necessary to have a finite Fisher
information, which here equals ‖f ′0‖−1

2 . Thus with this respect the results of Theorem 3.3 are
quite sharp, in that only a small strip in the region where α or β are very close to 1 is not covered
by Theorem 3.1. More precisely, the region where BVM holds is defined by α > 1 +

√
3/2 (resp.

α > 3/2 for the truncated prior), β > 3/2 and, finally, α < (3β − 2)/(4− 2β), which corresponds
to the non-linear curve in Figure 3.1. These mild conditions arise when checking (N).

For instance for β = 2, any prior of the type (1.8) with α > 1 +
√

3/2 will do. This means
also that in model (9) for β ≥ 2, no condition on the nonparametric concentration rate εn of the
posterior is needed to get the semiparametric BVM theorem. It can be easily seen that if β = 2
and α increases, εn becomes slower and slower (in fact if β = 2 and α ≥ 2, then εn can be as slow
as n−2/(2α+1), as we have seen in Chapter 1).

One could consider extending the results of Theorem 3.3 to other families of priors, for instance
non-Gaussian series, such as truncated series of weighted Laplace laws on the Fourier coefficients.
For infinite Laplace series, similar results may hold as well, but this is possibly much harder, as
the heavier tails make the construction of sieves more delicate.

Example: Cox’s proportional hazards model. The observations are a random sample from
the distribution of the variable (T, δ, Z), where T = X ∧ Y , δ = 1lX≤Y , for some real-valued
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Figure 3.1: Translation model. Possible choices for πf

random variables X, Y and Z. We assume that the variable Z, called covariate, is bounded by
M and admits a continuous density ϕ with respect to Lebesgue’s measure on [−M,M ]. Suppose
that given Z, the variables X and Y are independent and that there exists a real τ > 0 such
that Pη(X > τ) > 0 and Pη(Y ≥ τ) = Pη(Y = τ) > 0. The conditional hazard function α of X
knowing Z is defined by α(x)dx = Pη(X ∈ [x, x+ dx] | X ≥ x, Z). The Cox model assumes that
α(x) = eθZλ(x), where λ is an unknown hazard function and θ a real parameter. For notational
simplicity, we have assumed that Z and θ are one-dimensional.

Let us assume that λ0 is continuous and that there exists a ρ > 0 such that, for all x in [0, τ ],
one has λ0(x) ≥ ρ > 0. We denote Λ(x) =

´ x
0
λ(u)du. We also assume that Y given Z = z admits

a continuous density gz with respect to Lebesgue’s measure on [0, τ) with distribution function
Gz and that there exists ρ′ > 0 such that gz(t) ≥ ρ′ for almost all z, t. Finally we assume that
the possible values of θ lie in some compact interval [−θM , θM ].

Cox’ model: LAN norm. In this semiparametric framework the unknown parameter is the pair
(θ, λ). Equivalently under the above assumptions one may consider instead η = (θ, r), where we
denote r := log λ. Indeed, some calculations show that the Cox model fulfills the LAN property
with linear paths when parameterised by η = (θ, r), with LAN Hilbert norm equal to, for a real h
and a square integrable function a on [0, 1],

‖h, a‖2L =

ˆ τ

0

{h2M2(u) + 2ha(u)M1(u) + a(u)2M0(u)}dΛ0,

where Mi(u) = Eη0(1u≤TZ
ieθ0Z), for any u ∈ [0, τ ] and any integer i. One can check that there

is a loss of information in this model and that the least favorable direction γ(·) has a simple
expression in terms of the functions Mi above. Namely, γ = M1/M0. Explicitly, for any u ∈ [0, τ ],

γ(u) =
M1

M0
(u) =

´ τ
0

(1−Gz(u−))zeθ0z−Λ0(u)eθ0zϕ(z)dz´ τ
0

(1−Gz(u−))eθ0z−Λ0(u)eθ0zϕ(z)dz
. (3.8)

Cox’ model: Prior. We construct Π as πθ ⊗ πf with πθ having a positive continuous density
with respect to Lebesgue measure on [−θM , θM ]. As prior πf on r = log λ, we considered the
family of Riemann-Liouville type processes introduced in (12) and parameterised by the ‘regularity’
parameter α > 0.
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Theorem 3.4 Suppose that log λ0 belongs to Cβ [0, τ ] with β > 3/2. Suppose the least favorable
direction γ in (3.8) has Hölder regularity at least 2β/3. Let the prior πθ be defined as described
above and πf be a Riemann-Liouville type process with parameter α > 3/2. Then the conditions
(P), (C), (N ) and (E) of Theorem 3.2 are satisfied for pairs (β, α) such that the corresponding
point in Figure 3.2 lies in the shaded area. In particular, the BvM theorem holds when α > 3/2
and α < 4β/3− 1/2.

The main difference with Theorem 3.3 is the triangular shape of the obtained region. The origin
of this shape is due to a “no-bias”-type condition. As the proof reveals, conditions (N ) and (E)
both carry conditions imposing a constraint on the rate, and the strongest of the two leads to ask
for n3/4ε2

n → 0.
Also, note that the regularity condition on γ is not difficult to check, due to the existence of an

explicit form (3.8) for γ. For instance if Y and Z are independent, in which case Gz(u) does not
depend on z, then γ has the same regularity as Λ0 so its Hölder regularity is at least β+ 1 > 2β/3
and the condition is verified.
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Figure 3.2: Cox’ model. Possible choices for πf

3.2 Semiparametric BvM, extensions
Natural questions arise from the results in the previous section

1. In the case with information loss, what about non-Gaussian priors ?

2. No-bias type conditions such as (E) seem to be important. Can one avoid them ?

3. The case of implicit semiparametric functionals f → ψ(f) is not covered by these results.

Our aim in this short Section will simply be to give some insight into these questions via some
specific results. About Questions 1. and 3., below we state a result in the density estimation model
from [P13] which gives a partial answer for ‘smooth’ functionals. Next in the case of Gaussian
priors we give an example where the BvM phenomenon does not hold in the region of parameters
where (E) is not satisfied.

We note that Theorem 3.5 below is a fairly special case of our main result in [P13]. One of our
goals in [P13] is to shed some light on complex functionals where a study ‘at first order’ is not
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enough. A typical example is, in the white noise model, estimation of ψ(f) =
´
f2, for Sobolev

regularities of f below β = 1/2. For β < 1/2, second order terms become important and for
β < 1/4 the estimation rate drops below the standard

√
n-rate. We shall not discuss further

issues related to second order considerations here and refer to [P13] for a precise statement and
the application to the mentioned quadratic functional.

Density estimation example. Consider the density model (3). We suppose that the true
density f0 is bounded away from 0 and ∞ on [0, 1]. We consider An = {f, ‖f − f0‖1 ≤ εn} where
εn is a positive sequence decreasing to 0. Let us define

L2(f0) = {ϕ : [0, 1]→ R,
ˆ 1

0

ϕ(x)2f0(x)dx <∞}.

For any ϕ in L2(f0), we write F0(ϕ) as shorthand for
´ 1

0
ϕ(x)f0(x)dx.

Set, for any positive density f on [0, 1],

η = log f, η0 = log f0, h =
√
n(η − η0).

One can write the following LAN-type expansion

`n(η)− `n(η0) =
√
nF0(h) +

1√
n

n∑
i=1

[h(Xi)− F0(h)] = −1

2
‖h‖2L +Wn(h) +Rn(η, η0),

with the notation, for any g in L2(f0),

‖g‖2L =

ˆ 1

0

(g − F0(g))2f0, Wn(g) = Gng =
1√
n

n∑
i=1

[g(Xi)− F0(g)], (3.9)

and Rn(η, η0) =
√
nPf0h+ ‖h‖2L/2. Note that ‖ · ‖L is an Hilbertian norm induced by the inner-

product 〈g1, g2〉L =
´
g1g2f0 defined on the space HT := {g ∈ L2(Pf0),

´
gf0 = 0} ⊂ H = L2(f0).

We consider functionals ψ(f) of the density f , which are differentiable relative to the tangent
set HT with efficient influence function ψ̃f0 , see [98], Chap. 25. Let us set

ψ(f)− ψ(f0) = 〈f − f0

f0
, ψ̃f0〉L + r̃(f, f0). (3.10)

Theorem 3.5 Let f0 be bounded away from 0 and ∞ on [0, 1] and let Π be a prior on f . Let ψ
be a differentiable functional relative to the tangent set HT , with efficient influence function ψ̃f0
bounded on [0, 1]. Let r̃ be defined by (3.10). Suppose that for some εn → 0 it holds

Π[f : ‖f − f0‖1 ≤ εn |X(n)]→ 1, (3.11)

in P (n)
f0

-probability and that, for An = {f, ‖f − f0‖1 ≤ εn},

sup
f∈An

r̃(f, f0) = o(1/
√
n).

Set ηt = η − t√
n
ψ̃f0 − log

´ 1

0
e
η− t√

n
ψ̃f0 and assume that, in P (n)

f0
-probability,

´
An

e`n(ηt)−`n(η0)dΠ(η)´
e`n(η)−`n(η0)dΠ(η)

→ 1. (3.12)

Then, for ψ̂n any linear efficient estimator of ψ(f), the BvM theorem holds for the functional ψ.
That is, the posterior distribution of

√
n(ψ(f)− ψ̂n) is asymptotically Gaussian with mean 0 and

variance ‖ψ̃f0‖2L, in P
(n)
f0

-probability.
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The semiparametric efficiency bound for estimating ψ(f) at f0 is ‖ψ̃f0‖2L, so Theorem 3.5 yields
the BvM Theorem for the functional ψ(f), with efficient limiting distribution.

Theorem 3.5 has three main conditions: first, a concentration of the posterior around the true
f0, similar in spirit to (C) above. Second, the remainder term r̃ of the functional expansion is
assumed small, which ensures that a study ‘at first order’ is sufficient. Third, condition (3.12)
expresses that some perturbation of the parameter along the efficient influence function ψ̃f0 can
be ignored as n → ∞ in a ratio of integrals. Making this condition more explicit would be very
desirable but seems difficult without saying more on the prior Π. A further informal interpretation
of this conditions is that priors should behave well under a ‘change of variable’ η → η− tψ̃f0/

√
n.

In [P13], as far as first order results are concerned, we investigate two classes of priors, which
were not considered before from the BvM perspective: random histograms and Gaussian process
priors. In doing so, we develop change of variables formulas for histograms which we also use
in [P12]. The message is similar to that of the previous Section: for the semiparametric BvM to
hold one needs the prior to approximate sufficiently well the influence function of the functional
(in the previous section the ‘least favorable direction’) and possibly also the true function. In
[P13], we also consider the possibility of BvM results for a class of adaptive priors, namely random
histograms with a random cut-off-level. One notable conclusion is that if the efficient influence
function and the true density have very different regularities, then the use of an adaptive prior for
f may actually prevent the semiparametric BvM to hold. A simple example with Haar-histogram
priors is given in [P13], Section 4.4.

The role of the bias. We now turn to an example from [P8] illustrating what can happen in the
region of parameters where (E) does not hold. Consider the following semiparametric ‘alignment
of curves’ problem. Let θ belong to Θ ⊂ [−τ, τ ], with 0 < τ < 1/2. Let f belong to F = L2[0, 1].
For simplicity of treatment, we assume that f is 1-periodic. The observations consist of the paths

dY (t) = f(t)dt+
1√
n
dW1(t)

dZ(t) = f(t− θ)dt+
1√
n
dW2(t),

where W1,W2 are independent standard Brownian motions and t ∈ [0, 1]. Both the real θ and
the function f are unknown, making the model semiparametric in η = (θ, f). Let X denote the
coupled observation of (Y,Z). We omit the index n to simplify the notation.

Consider a prior Π = πθ ⊗ πf on the pair η = (θ, f). As prior πθ on θ, we simply take the
uniform distribution on the interval [−τ, τ ]. For πf we consider two examples of prior distributions.
Let {νk}k≥1 be a sequence of independent N(0, 1) random variables. We define, for any real α > 1
and u in R, the priors

παf ∼
√

2

∞∑
k=1

[
(2k)−

1
2−αν2k cos(2πku) + (2k)−

1
2−αν2k+1 sin(2πku)

]
πα,∗f ∼

√
2

∞∑
k=1

[
(2k)−

1
2−αν2k cos(2πku) + (2k + 1)−

1
2−αν2k+1 sin(2πku)

]
.

Thus, the prior παf draws random functions with Gaussian Fourier coefficients of variance equal on
even and odd harmonics to the same constant times k−1−2α. The prior πα,∗f is the same, except
that the variance of the kth Fourier coefficient is simply k−1−2α.

Provided the true function f0 has at least one derivative in the L2-sense, one can set

γ := −f ′0/2 and Ĩ :=
1

2

ˆ 1

0

f ′20 (u)du.

One can check that these are respectively the least favorable direction and the efficient information
in the model as defined in the previous section. So, there is a loss of information in this model if
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f ′0 is nonzero, which should be assumed anyways for identifiability reasons. So, assuming Ĩ > 0,
we also denote ∆ := −Ĩ−1

´ 1

0
[γ(u)dW1(u)− γ(u− θ0)dW2(u)]. A special example illustrating our

results is the function f [β]
0 , defined for β > 3/2 by

f
[β]
0 (u) =

√
2

∞∑
k=1

[
(2k)−

1
2−β cos(2πku) + (2k + 1)−

1
2−β sin(2πku)

]
. (3.13)

The following Proposition is a consequence of the main result in [P8].

Proposition 3.1 Let η0 = (θ0, f0) with θ0 ∈ Θ and f0 the function f
[β]
0 defined in (3.13). Let

Πα = πθ ⊗ παf and Πα,∗ = πθ ⊗ πα,∗f . Take α = 4 and β = 2. As n→∞, it holds

‖Πα(· × F |X)−N(θ0 +
∆√
n
,
Ĩ−1

n
)(·)‖ →P (n)

η0 0.

In particular, the semiparametric Bernstein-von Mises theorem holds for Πα. On the other hand,
for any δ > 4/9 and any M > 0, as n→∞,

Πα,∗(|θ − θ0| ≤Mn−δ |X)→P (n)
η0 0.

In particular, the marginal of the Bayesian posterior for Πα,∗ is not
√
n-consistent.

One can check that condition (E) of Theorem 3.2 asks for α < 2β− 3/2 and indeed (α, β) = (4, 2)
does not meet this condition. In fact, some explicit computations can be carried out in the present
model, and the following can be shown. If one takes a prior for πf with general Fourier coefficients
{σ2k, σ2k+1}, under some mild conditions on those as well as on f0, one can check that,

‖Πσ(· × F |X)−N(θ0 +
∆ + ζσn√

n
,
Ĩ−1

n
)‖ →P (n)

η0 0,

where ζσn is given by, for {f0,k} the Fourier coefficients of f0,

ζσn =
π√
n

∞∑
k=1

kf0,2kf0,2k+1(σ−2
2k+1 − σ

−2
2k )

{
(2n)2

(2n+ σ−2
2k )(2n+ σ−2

2k+1)

}
. (3.14)

Note that if σ2k = σ2k+1 then ζσn is zero, which explains the first part of Proposition 3.1. On the
other hand, if σ2k and σ2k+1 are different, ζσn may not tend to 0 as n → ∞. More precisely, this
happens for πα,∗f above as soon as α ≥ 2β − 1/2. This is the case for (α, β) = (4, 2), hence the
second part of Proposition 3.1.

As a conclusion, the semiparametric BvM does not hold for some Gaussian priors in most of
the complement of the region delimited by condition (E). The departure from BvM takes the
form of a bias term, here ζσn given by (3.14), as announced.

3.3 Nonparametric BvM in Gaussian white noise
In view of the previous semiparametric BvM results, it is natural to ask whether a nonparametric
BvM theorem can be formulated. If so is it still possible to deduce applications to confidence sets ?

Introduction. A natural place to start is the Gaussian white noise model (1). Even for such
a simple model, Cox (1993) [30] and Freedman (1999) [41] have shown the impossibility of a
nonparametric BvM result in a strict L2-setting. Leahu (2011) [73] derived interesting results on
the possibility and impossibility of BvM-theorems in model (1): Leahu shows that a BvM-result
in white noise, in the total variation sense and for Gaussian conjugate priors, can only hold for
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priors inducing a heavy undersmoothing (such priors do not in fact induce L2 random functions).
Though these results are nice mathematically, as a consequence of the roughness the induced
credible sets are typically too large for most nonparametric applications.

Also, a number of BvM-type results have been obtained for finite-dimensional posteriors with
dimension increasing to infinity: Ghosal [45] and Bontemps [19] consider regression with a finite
number of regressors, Ghosal [46] and Clarke and Ghosal [28] consider exponential families, and
the case of discrete probability distributions is treated in Boucheron and Gassiat [21]. Another
recent further result in this direction is Panov and Spokoiny [85], which also allows for possible
model misspecification. These results are formulated in terms of the total variation distance.

A new approach. The idea we propose in [P10] consists of two parts 1) enlarge the space in
which results are formulated and 2) change the notion of convergence in the result. In view of the
negative results mentioned above, that rule out the existence of BvM in a pure L2 setting, part 1)
is quite natural: one defines a space common to all components of the white noise model. But this
space enlargement has another effect: since the space is larger, the norm becomes weaker. Hence
tightness at a ‘fast’, parametric, 1/

√
n rate becomes possible and enables part 2), that is weak

convergence of probability measures in the enlarged space for broad classes of prior distributions.

An enlarged space. To stay in a Hilbert space setting while enlarging L2, a natural class comes
to mind, that of negative-order Sobolev spaces {Hr

2}r<0 on [0, 1], defined similarly as usual Sobolev
spaces, but with negative orders. To obtain sharp results we need ‘logarithmic’ Sobolev spaces,
for a real s and δ > 0,

Hs,δ
2 :=

{
f : ‖f‖2s,2,δ :=

∑
l≥0

(2l)2s

l2δ

2l−1∑
k=0

〈ψlk, f〉2 <∞

}
, (3.15)

where {ψlk} is a wavelet basis on [0, 1] (a Fourier-type basis is also possible here, but wavelets
will be crucially needed in the next Section, so for easy reference we write already in terms of
wavelet notation). The space should be large enough so that the Gaussian experiment in (1) can
be realised as a tight random element in that space. The critical value for this to be the case turns
out to be s = −1/2. So, define the collection of Hilbert spaces

H := H
−1/2,δ
2 , ‖ · ‖H := ‖ · ‖−1/2,2,δ, δ > 1/2. (3.16)

If we denote by W the centered Gaussian Borel random variable on H with covariance I, then the
Gaussian white noise model (1) can be written as

X(n) = f +
1√
n
W, (3.17)

a natural Gaussian shift experiment in the Hilbert space H. For any δ > 1/2, a simple calculation
reveals that the ‖W‖−1/2,2,δ-norm converges almost surely and W is thus tight in H−1/2,δ

2 .
We denote by N the law of W a standard, or canonical, Gaussian probability measure on the

Hilbert space H. Now we are ready to define the notion of convergence we consider: it is sim-
ply weak convergence, but in the space H. It is convenient to consider a distance which metrises
it. We choose the so-called bounded-Lipschitz metric, see e.g. Dudley (2002) [37], Theorem 11.3.3.

Bounded-Lipschitz metric. The space of bounded Lipschitz functions on the space H is

BLH(1) =

{
f : H → R, sup

s∈H
|f(s)|+ sup

s 6=t,s,t∈H
|f(s)− f(t)|/d(s, t) ≤ 1

}
.

The bounded Lipschitz metric on probability measures on H is β := βH defined as

βH(µ, ν) = sup
u∈BLH(1)

∣∣∣∣ˆ
H

u(s)(dµ− dν)(s)

∣∣∣∣ . (3.18)
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The metric β metrises weak convergence of probability measures on H.

Notion of weak BvM in the space H. Let Π be a prior on L2. It naturally induces a prior
on H by the injection L2 → H. Let

Πn = Π(· |X(n)) = Π(· |X(n))

denote the corresponding posterior distribution on H given the data from the white noise model
(1), or equivalently, from (3.17). On H and for z ∈ H, define the transformation

τz : f 7→
√
n(f − z). (3.19)

Let Πn ◦ τ−1
X(n) be the image of the posterior law under τX(n) . The shape of Πn ◦ τ−1

X(n) reveals how
the posterior concentrates on 1/

√
n-H-neighborhoods of the efficient estimator X(n).

Definition 3.1 Consider the white noise model (1) viewed in H as (3.17). Under a fixed function
f0, denote by P

(n)
f0

the distribution of X(n). Let β be the bounded Lipschitz metric for weak
convergence of probability measures on H. We say that a prior Π satisfies the weak Bernstein -
von Mises phenomenon in H if, as n→∞,

β(Πn ◦ τ−1
X(n) ,N )→P

(n)
f0 0.

Thus when the weak Bernstein-von Mises phenomenon holds the posterior necessarily has the
approximate shape of an infinite-dimensional Gaussian distribution. Moreover, we require this
Gaussian distribution to equal N – the canonical choice in view of efficiency considerations. The
covariance of N is the Cramér-Rao bound for estimating f in the Gaussian shift experiment (3.17)
in H-loss, and this can be seen to carry over to sufficiently regular real-valued functionals.

At this point one may wonder whether the notion of weak convergence in H is strong enough
to include interesting applications.

Uniformity classes for weak convergence. Since we have a statement in terms of weak
convergence (as opposed e.g. to total variation) we cannot infer that Πn ◦ τ−1

X(n) and N are ap-
proximately the same for every Borel set in H, but only for sets B that are continuity sets for the
probability measure N . For statistical applications of the BvM phenomenon one typically needs
some uniformity in B. Weak convergence in H implies that Πn ◦ τ−1

X(n) is close to N uniformly in
classes of subsets of H whose boundaries are sufficiently regular relative to the measure N .

We call a family U of measurable real-valued functions defined on H a N−uniformity class
for weak convergence if for any sequence µn of Borel probability measures on H that converges
weakly to N we also have

sup
u∈U

∣∣∣∣ˆ
H

u(s)(dµn − dN )(s)

∣∣∣∣→ 0 (3.20)

as n → ∞. For any subset A of H, define the δ-boundary of A by ∂δA = {x ∈ H : d(x,A) <
δ, d(x,Ac) < δ}. By Theorem 2 of Billingsley and Topsøe [12], a family A of measurable subsets
of H is a N -uniformity class if and only if

lim
δ→0

sup
A∈A
N (∂δA) = 0. (3.21)

This typically allows for enough uniformity to deal with a variety of concrete nonparametric sta-
tistical problems. A key property for this is that, by general properties of Gaussian measures
on separable Banach spaces, the collection of all centered balls (or rather, in a L2-perspective,
ellipsoids) for the ‖ · ‖H -norm verify (3.21) and thus form a N -uniformity class.

Application: Weighted L2-credible ellipsoids. Recall that H stands for the space H(δ)
from (3.16) for some arbitrary choice of δ > 1/2. Denote by B(g, r) = {f ∈ H : ‖f − g‖H ≤ r}
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the norm ball in H of radius r centered at g. In terms of the wavelet basis {ψlk} of L2, this
corresponds to L2-ellipsoids of radius r{

{clk} :
∑
l,k

l−2δ2−l|clk − 〈g, ψlk〉|2 ≤ r2
}
.

To find the appropriate radius, one may use the quantiles of the posterior distribution. Given
α > 0, one solves for Rn ≡ R(X(n), α) such that

Π(f : ‖f − Tn‖H ≤ Rn/
√
n |X(n)) = 1− α, (3.22)

where Tn = X(n). By its mere definition, a ‖·‖H -ball centred at Tn of radius Rn constitutes a level
(1− α)-credible set for the posterior distribution. The weak Bernstein-von Mises phenomenon in
H implies that this credible ball asymptotically coincides with the exact (1 − α)-confidence set
built using the efficient estimator X(n) for f , by the following result.

Theorem 3.6 Suppose the weak Bernstein-von Mises phenomenon in the sense of Definition 3.1
holds. Given 0 < α < 1 consider the credible set

Cn =
{
f : ‖f − X(n)‖H ≤ Rn/

√
n
}

(3.23)

where Rn ≡ R(X(n), α) is such that Π(Cn|X(n)) = 1− α. Then, as n→∞,

Pnf0(f0 ∈ Cn)→ 1− α and Rn = OP (1).

Also, the posterior mean f̄n may replace X(n) in (3.23) as long as ‖f̄n − X(n)‖H = oP (n−1/2).

One may ask: what is ‘size’ of the confidence set Cn in (3.23) ? Indeed, Cn has a ‘small’ radius
1/
√
n but in terms a weak norm, namely the H-norm. So far it would seem that we cannot re-

translate this result back in L2-terms. We can do so by using a helpful ‘interpolation’ idea.

Interpolation idea. Let Bα,‖·‖∞(g,R) denote a ball in the Hölder space of functions of order
α > 0 on [0, 1], and B‖·‖2(g,R) a ball for the standard L2-norm on [0, 1].

Let c1, c2 > 0 be given and let g ∈ L2. Then there exists c3 > 0 such that for n ≥ 1,

B‖·‖H

(
g,

c1√
n

)
∩ B‖·‖α,∞ (0, c2) ⊂ B‖·‖2

(
g,

c3ln

n
α

2α+1

)
, (3.24)

where ln = log2δ n. So, provided it is possible to further intersect the previous credible set with
a α-Hölder ball of fixed radius, the resulting set is automatically included in a L2-ball of radius
precisely the standard minimax nonparametric rate for α-regular functions, up to a logarithmic
term (one may note that the log-term comes from the logarithmic correction to the space H).

Example of nonparametric confident credible set. For the sake of simplicity, consider
first a uniform wavelet prior Π on L2 arising from the law of the random wavelet series, for α > 0,

Uα,M =
∑
l

∑
k

2−l(α+1/2)ulkψlk(·), (3.25)

where the ulk are i.i.d. uniform on [−M,M ] for some M > 0 and indexes l, k vary as usual. Such
priors model functions that lie in a fixed Hölder ball of ‖·‖α,∞-radiusM , with posteriors Π(· |X(n))
contracting about f0 at the L2-minimax rate within logarithmic factors if ‖f0‖α,∞ ≤M , see [50].
Of course in practice using such a prior means that an upper-bound on the α-Hölder norm is
known, which may not always be the case. We note below that the method can be adapted if this
is not the case.

In this situation it is natural to intersect the credible set Cn with a Hölder ball

Cn =
{
f : ‖f‖α,∞ ≤M, ‖f − f̄n‖H ≤ Rn/

√
n
}
, (3.26)
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where Rn is as in (3.22) with Tn = f̄n. By definition of the prior Π induced by Uα,M above, we
have ‖f‖α,∞ ≤ M , Π-almost surely, so also Πn-almost surely. In particular Π(Cn|X(n)) = 1 − α,
so Cn is a credible set of level 1− α. Theorem 3.6 implies the following result.

Corollary 3.1 Consider observations from (3.17) under a function f0 ∈ Cα with ‖f0‖α,∞ < M .
Let Π be the law of Uα,M , let Π(·|X(n)) the associated posterior and let Cn be as in (3.26). Then

Pnf0(f0 ∈ Cn)→ 1− α

as n→∞ and the L2-diameter |Cn|2 of Cn satisfies, for some κ > 0,

|Cn|2 = OP (n−α/(2α+1)(log n)κ).

More generally, to avoid the use of a fixed bound M in (3.25), one may use more general priors
that have infinite support on each coordinate. Then instead of intersecting with an α-Hölder ball
of given radius M , it is enough to intersect it with a ball whose radius is a type of ‘posterior
quantile’ for a α-order norm. The results then parallel those for the uniform priors, but without
the boundedness constraint. A precise statement is given in [P10], Corollary 2.

Conclusion so far on credible sets. The meaning of the results we have presented so far
is as follows: provided one can show the weak nonparametric BvM for standard nonparametric
priors modelling α–smooth functions - this will be the object of the next paragraphs - it is possible
to deduce confident credible sets which have diameter equal to the nonparametric minimax rate
of convergence for such problems, up to a slowly varying factor (this extra log-term can in fact be
replaced by an arbitrary factor Mn → ∞, up to a slightly different definition of the space H). It
is important to note that for the argument to go through, α–smooth priors should be allowed, as
opposed to priors inducing a too severe undersmoothing.

We also note that such confidence sets are for fixed regularity α (i.e. one should know α, or
a lower bound on it, to at least ‘undersmooth’). Construction of adaptive confident credible sets
is an interesting further problem, but is qualitatively somewhat different: in particular, rates will
typically change, unless something more is assumed on the considered functions.

BvM for product priors in Gaussian white noise. Let us consider priors of the form
Π = ⊗lkπlk defined on the coordinates of the orthonormal basis {ψlk}, where πlk are probability
distributions with Lebesgue density ϕlk on the real line, with the following assumptions. For some
fixed density ϕ on the real line and admissible indexes k, l,

ϕlk(·) =
1

σl
ϕ

(
·
σl

)
∀k, with σl > 0.

Condition 3.1 Suppose that for a finite constant M > 0,

sup
l,k

|〈f0, ψlk〉|
σl

≤M.

Suppose also that for some τ > M and 0 < cϕ ≤ Cϕ <∞

ϕ(x) ≤ Cϕ ∀x ∈ R, ϕ(x) ≥ cϕ ∀x ∈ (−τ, τ), and
ˆ
R
x2ϕ(x)dx <∞.

This allows for a rich variety of base priors ϕ, such as Gaussian, sub-Gaussian, Laplace, most
Student laws, or more generally any law with positive continuous density and finite second moment,
but also uniform priors with large enough support. The full prior on f considered here is thus a
sum of independent terms over the basis {ψlk}, including many, especially non-Gaussian, processes.
One may also consider Gaussian processes such as Brownian motion, even if their Karhunen-Loève
expansion is not a (localised) wavelet basis, as long as it is smooth enough, see [P10] for details.

First, one shows the following intermediate result
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Theorem 3.7 Consider data from the white noise model (3.17) under a fixed function f0 with
coefficients {〈f0, ψlk〉} over the basis {ψlk}. Then if the product prior Π and f0 satisfy Condition
3.1, we have, as n→∞,

E
(n)
f0

ˆ
‖f − f0‖2HdΠ(f |X(n)) = O

(
1

n

)
.

The conclusion of this Theorem enables a tightness argument at rate 1/
√
n in the proof of the

weak BvM theorem stated next. Interestingly, even if the result of Theorem 3.7 is in terms of a
‘weak’ norm (the rate is ‘fast’ though !), it does not seem possible to derive this convergence rate
using a testing approach as in the general rate Theorem 0.1. Instead, we use a type of multiscale
approach, which we later formalised for more complex norms as in Section 2.4.

Theorem 3.8 Suppose the assumptions of Theorem 3.7 are satisfied and that ϕ is continuous near
{〈f0, ψlk〉} for every indexes l, k. Then for β the bounded Lipschitz metric for weak convergence

of probability measures on H, as n→∞ we have β(Πn ◦ τ−1
X(n) ,N )→P

(n)
f0 0.

We note that the results of Theorem 3.8 as well as those presented above on credible sets, which
are its consequences, can be seen to be uniform (‘honest’) in all f0 that satisfy Condition 3.1 with
fixed constant M .

Further applications and uniform semiparametrics. Another important set of applications
of the weak nonparametric BvM theorem is related to continuous functionals. Indeed, by the
continuous mapping theorem, it immediately follows that the weak convergence result in Definition
3.1 implies weak convergence of the image measures through any continuous mapping ψ : H →
Y, for some given space Y. Applications include semiparametric BvM results for linear and
smooth nonlinear functionals, credible bands for selfconvolutions, etc., see [P10], Section 2. In
this perspective, one may see the weak nonparametric BvM as a semiparametric BvM ‘uniform in
many functionals’.

This also leads to a natural question: is the choice of space H canonical ? What if the goal is
to obtain credible sets in different norms than ‖ · ‖2, such as ‖ · ‖∞ ? We consider this next.

3.4 Nonparametric BvM and Donsker’s theorem
In the previous section we have considered the white noise model and confidence-sets results linked
to the ‖ · ‖2-norm. In addition to the question of obtaining results in terms of different norms, it is
natural to consider the nonparametric BvM question for other statistical models as well. Here we
shall focus on density estimation, following [P14]. We note that the construction below can also
be followed in the white noise model as an alternative to the construction in the previous section.

We define Hölder-type spaces Cs of continuous functions on [0, 1]:

Cs([0, 1]) =

{
f ∈ C([0, 1]) : ‖f‖s,∞ := sup

l,k
2l(s+1/2)|〈ψlk, f〉| <∞

}
. (3.27)

Density model, limiting distribution. Consider the density model (3) where we observe
X1, . . . , Xn i.i.d. from law P with density f on [0, 1].

In analogy with the white noise case, the first step is to identify the limiting distribution for the
BvM result. In white noise, one identifies the limit via the equation (3.17), X(n) = f + n−1/2W,
where X(n) can be seen as an estimator of f . In the density model, let us take an intermediate
step via projections onto the wavelet basis {ψlk}, which we assume to be a localised basis such as
the Haar or CDV bases used in Section 2.4.

A natural estimate of 〈f, ψlk〉 is given by Pnψlk ≡ 〈Pn, ψlk〉 = 1
n

∑n
i=1 ψlk(Xi).
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The P -white bridge process. By the central limit theorem, for k, l fixed and as n → ∞, the
random variable

√
n(Pn − P )(ψlk) converges in distribution to

GP (ψlk) ∼ N(0,VarP (ψlk(X1))). (3.28)

In analogy to the white noise process W, the process GP arising from (3.28) can be defined as the
Gaussian process indexed by the Hilbert space

L2(P ) ≡
{
f : [0, 1]→ R :

ˆ 1

0

f2dP <∞
}

with covariance function E [GP (g)GP (h)] =
´ 1

0
(g−Pg)(h−Ph)dP . We call GP the P -white bridge

process. Now we turn to the definition of spaces similar to the large spaceH of the previous section.

Multiscale spacesM(w) andM0(w). For monotone increasing weighting sequences w = (wl :
l ≥ J0 − 1), wl ≥ 1, we define multi-scale sequence spaces

M≡M(w) ≡
{
x = {xlk} : ‖x‖M(w) ≡ sup

l

maxk |xlk|
wl

<∞
}
. (3.29)

The spaceM(w) is a non-separable Banach space (it is isomorphic to `∞). However, the weighted
sequences in M(w) that vanish at infinity form a separable closed subspace for the same norm,
which leads us to define

M0 =M0(w) =

{
x ∈M(w) : lim

l→∞
max
k

|xlk|
wl

= 0

}
. (3.30)

Furthermore, we call a sequence (wl) admissible if wl/
√
l ↑ ∞ as l→∞.

P -white bridge as tight measure onM0(w). The idea behind the definition of the enlarged
spaceM0(w) is, as for H, to find a ‘smallest’ (separable) large space the limit GP belongs to. The
next proposition also applies to white noise W.

Proposition 3.2 Let GP be a P -white bridge. For ω = (ωl) =
√
l we have E‖GP ‖M(ω) <∞. If

w = (wl) is admissible then GP defines a tight Gaussian Borel probability measure inM0(w).

Truncated empirical measure, convergence. Any P with bounded density f has coeffi-
cients 〈f, ψlk〉 ∈ `2 ⊂M0(w). We would like to formulate a statement such as

√
n(Pn − P )→d GP inM0,

as n → ∞, paralleling (3.17) in the Gaussian white noise setting. The fluctuations of
√
n(Pn −

P )(ψlk)/
√
l along k are stochastically bounded for l such that 2l ≤ n, but are unbounded for

high frequencies. Thus the empirical process
√
n(Pn − P ) will not define an element of M0 for

every admissible sequence w. In our nonparametric setting we can restrict to frequencies at levels
l, 2l ≤ n, and introduce an appropriate ‘projection’ Pn(j) of the empirical measure Pn onto Vj via

〈Pn(j), ψlk〉 =

{
〈Pn, ψlk〉 if l ≤ j
0 if l > j,

(3.31)

which defines a tight random variable inM0. The following theorem shows that Pn(j) estimates
P efficiently inM0 if j is chosen appropriately. Note that the natural choice j = Ln such that

2Ln ∼ N1/(2γ+1),

where N = n (if γ > 0) or N = n/ log n (if γ ≥ 0), is possible.
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Theorem 3.9 Let w = (wl) be admissible. Suppose P has density f in Cγ([0, 1]) for some γ ≥ 0.
Let jn be such that

√
n2−jn(γ+1/2)w−1

jn
= o(1),

2jnjn
n

= O(1).

Then we have, as n→∞,
√
n(Pn(jn)− P )→d GP inM0(w).

Weak nonparametric BvM inM0(w). As in the previous section, we metrise weak convergence
of laws in M0(w) via βM0(w) defined in the same way as (3.18), where now βS denotes weak
convergence on a space S, and view the prior Π on the functional parameter f ∈ L2 as a prior on
sequence space `2 under the wavelet isometry L2 ∼= `2.

Definition 3.2 Let w be admissible, let Π be a prior and Π(· |X(n)) the corresponding posterior
distribution on `2 ⊂M0 =M0(w), obtained from observations X(n) in the density model. Let Π̃n

be the image measure of Π(· |X(n)) under the mapping

τ : f 7→
√
n(f − Tn)

where Tn = Tn(X(n)) is an estimator of f inM0. Then we say that Π satisfies the weak Bernstein
von Mises phenomenon inM0 with centering Tn if, for X(n) ∼ Pnf0 and fixed f0, as n→∞,

βM0(Π̃n,N )→Pf0 0,

where N is the law inM0 of GP0 , f0 ∈ L∞.

Weak nonparametric BvM, density model. We define multi-scale priors Π on some space
F of probability density functions f giving rise to absolutely continuous probability measures.
Suppose the true density f0 is bounded away from 0 and ∞.

We now introduce possible values for a cut-off parameter Ln. For α > 0, let jn = jn(α) and
ln = ln(α) be the largest integers such that

2jn ≤ n
1

2α+1 , 2ln ≤
(

n

log n

) 1
2α+1

. (3.32)

and set, in slight abuse of notation, either

Ln = jn (∀n ≥ 1) or Ln = ln (∀n ≥ 1). (3.33)

We consider two classes of priors, the examples (S), (H) of respectively log-density and ran-
dom histograms priors from Section 2.4. The priors (S), (H) are ‘multiscale’ priors where high
frequencies are ignored – corresponding to truncated series priors considered frequently in the
nonparametric Bayes literature. The resulting posterior distributions Π(·|X(n)) attain minimax
optimal contraction rates up to logarithmic terms in Hellinger and L2-distance ([100], [88], [P13])
and L∞-distance ([P12]) as we stated in Section 2.4. Clearly other priors are of interest as well, for
instance priors without or with random high-frequency cut-off, or Dirichlet mixtures of normals
etc. While our current proofs do not cover such situations, one can note that our proof strat-
egy via simultaneous control of many linear functionals is applicable in such situations as well.
Generalising the scope of our techniques is an interesting direction of future research.

The projection Pn(j) as in (3.31), with the choice j = Ln from (3.33), defines a tight random
variable inM0. For z ∈ M0, the map τz : f 7→

√
n(f − z) mapsM0 →M0, and we can define

the shifted posterior Π(· |X(n)) ◦ τ−1
Pn(Ln). The following theorem shows that the above priors

satisfy a weak BvM theorem inM0 in the sense of Definition 3.2, with efficient centring Pn(Ln)
(cf. Theorem 3.9). Denote the law L(GP0

) of GP0
from Proposition 3.2 by N .

Theorem 3.10 Let M0 = M0(w) for any admissible w = (wl). Let X(n) = (X1, . . . , Xn)
i.i.d. from law P0 with density f0 ∈ F0. Let Π be a prior on the set of probability densities
F that is
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1. either of type (S), in which case one assumes log f0 ∈ Cα for some α > 1,

2. or of type (H), and one assumes f0 ∈ Cα for some 1/2 < α ≤ 1.

Suppose the prior parameters satisfy (3.33), (2.38) and (2.40). Let Π(· |X(n)) be the induced
posterior distribution onM0. Then, as n→∞,

βM0
(Π(· |X(n)) ◦ τ−1

Pn(Ln),N )→PN
0 0. (3.34)

Application to credible bands. As the multiscale spacesM0(w) are defined via maxima of
collections of wavelet coefficients, they are particularly well-suited to the study of the supremum
norm. Indeed, by analogy to the study of the credible sets in the previous section, which were
shown to have (nearly) optimal diameter in L2, it is possible up to minor adaptations to carry out
the same method to obtain credible sets which are confidence bands having an optimal diameter
(up to an arbitrary undersmoothing factor Mn → ∞) in L∞[0, 1]. We refer to [P14], Section 4.2
for explicit statement. Instead here we shall present in some detail a different application.

Bayesian Donsker’s theorem. Whenever a prior on f satisfies the weak Bernstein-von Mises
phenomenon in the sense of Definition 3.2, we can deduce from the continuous mapping theorem
many BvMs via continuous functionals fromM0(w) to arbitrary spaces.

One may do so for integral functionals Lg(f) =
´ 1

0
g(x)f(x)dx simultaneously for many g’s

satisfying bounds on the decay of their wavelet coefficients. More precisely a bound
∑
k |〈g, ψlk〉| ≤

cl for all l combined with a weak BvM for (wl) such that
∑
clwl <∞ is sufficient. Let us illustrate

this in a key example gt = 1[0,t], t ∈ [0, 1], where we can derive results paralleling the classical
Donsker theorem for distribution functions and its BvM version for the Dirichlet process proved
by Albert Lo (1983) [78]. For simplicity we restrict to situations where the posterior f |X(n) is
supported in L2, and where the centering Tn in Definition 3.2 is contained in L2. In that case the
primitives

F (t) =

ˆ t

0

f(x)dx, Tn(t) =

ˆ t

0

Tn(x)dx

define random variables in the separable space C([0, 1]) of continuous functions on [0, 1], and we
can formulate a BvM-result in that space. Different centerings, such as the empirical distribution
function, are discussed below.

Theorem 3.11 Let Π be a prior supported in L2([0, 1]) and suppose the weak Bernstein - von
Mises phenomenon in the sense of Definition 3.2 holds true inM0(w) for some sequence (wl) such
that

∑
l wl2

−l/2 < ∞, and with centering Tn ∈ L2. Define the posterior cumulative distribution
function

F (t) =

ˆ t

0

f(x)dx, t ∈ [0, 1]. (3.35)

Let G be a P0-Brownian bridge (G(t) ≡ GP0(t) : t ∈ [0, 1]), dP0(x) = f0(x)dx, f0 ∈ L∞,. If
X(n) ∼ Pnf0 for some fixed f0 then as n→∞,

βC([0,1])(L(
√
n(F − Tn) |X(n)),L(G))→Pnf0 0, (3.36)

βR(L(
√
n‖F − Tn‖∞ |X(n)),L(‖G‖∞))→Pnf0 0. (3.37)

Let us now apply this result to the case of priors (S) or (H), for which the weak BvM has been
obtained above with centering the truncated empirical measure Pn(Ln). Theorem 3.11 leads to a
result with centering the primitive of Pn(Ln). One can check that this can be replaced by

Fn(t) =
1

n

n∑
i=1

1[0,t](Xi), t ∈ [0, 1],

the empirical distribution function based on a sample X1, . . . , Xn.
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Corollary 3.2 Let Π be a prior of type (S) or (H) and suppose the conditions of Theorem 3.10
are satisfied. Then, as n→∞,

βL∞([0,1])(L(
√
n(F − Fn) |X(n)),L(GP0))→Pnf0 0,

βR(L(
√
n‖F − Fn‖∞ |X(n)),L(‖GP0

‖∞))→Pnf0 0.

This result is the Bayesian analogue of Donsker’s theorem for the empirical distribution function
Fn. To our knowledge, most results of this kind in a Bayesian context have been obtained under
some form of, at least partial, conjugacy of the model and prior. Note that here the results are
obtained from general principles. Other examples of priors are currently under investigation.

3.5 Perspectives
As mentioned early in the Introduction, the measure of spread naturally provided by the posterior
distribution is potentially a very interesting tool for building confidence regions.

In semiparametric problems, if the Bernstein-von Mises theorem holds, the posterior quantiles
immediately give natural and asymptotically efficient confidence regions. As we have seen, ob-
taining semiparametric BvM results is a complex question in general: in particular, the choice of
the prior on the nonparametric part is crucial. It would be interesting to develop semiparametric
BvMs for further classes of priors, and in particular provide further functional ‘change of variable’
guarantees that ensure that no additional bias appears in the limiting posterior marginal.

In nonparametric problems, constructing confidence sets is an interesting and challenging ques-
tion. In the previous sections we have provided some tools and a possible way to construct fixed
regularity confident credible sets. Building adaptive confidence sets is a natural further question,
though this becomes often a somewhat qualitatively different problem: in particular, rates may
change, as is well known from the frequentist analysis of the problem, see Low (1997) [80]. Recent
contributions on the question, where some further references can be found, include [51] following
a non-Bayesian approach and [96], where a Bayesian approach is considered.
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