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1.1  Fluorescent proteins (FPs) 

Around the 1970s, wtGFP was firstly studied by a Japanese scientist named Osamu 

Shimomura (Shimomura et al., 1962). The protein was purified from a marine Hydrozoa 

species: Aequorea victoria, a jelly fish found off the West coast of North America. However, 

wtGFP didn’t attract attention of biologists until 1992, when Douglas Prasher cloned and 

sequenced its gene although at that time few amino acids were missing (Prasher et al., 1992).  

Two years after, Martin Chalfie expressed the gene in E. coli and C. elegans cells (Chalfie et 

al., 1994) and successfully observed green fluorescence upon illumination with UV light. 

However, wtGFP has some drawbacks such as its major excitation peak located in the UV 

region (395-397nm) (Chattoraj et al., 1996) (Fig1. A), and poor folding at 37 °C (Tsien, 

1998). Roger Y. Tsien began to engineer wtGFP by mutagenesis to produce GFP derivatives. 

The first important improvement was a single point mutation (GFP-S65T) (Heim et al., 1995). 

This mutation largely improved the spectral characteristics of GFP by shifting the major 

excitation peak to 488 nm (Fig1. B), and increased fluorescence brightness and photostability 

(Cubitt et al., 1995). Although organic dyes are reported to be more stable against 

photobleaching, FPs are still largely used as fluorescent markers thanks to their advantages 

such as labeling specificity, non-invasive labeling and one-to-one labeling that facilitates 

quantitative counting. 

 

 

Fig1. Absorption spectra of GFP (A) (Tsien, 1998), and EGFP (B ). 

 

Tsien and collaborators continued to make various GFP mutants aiming at designing 

proteins with better brightness and different colors, such as yellow, cyan, blue and red, which 

cover almost the whole range of visible colors (Fig2.). Another important mutant of GFP, 
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Enhanced GFP (EGFP) developed by Thastrup and Falkow’s lab has two mutations compared 

to wtGFP: F64L and S65T (Cormack et al., 1996). The F64L mutation increased largely the 

folding efficiency at 37 °C, which, combined with the improvements of S65T, makes EGFP 

more practical to use as compared to wtGFP.  

 

 

Fig2. FP variants that emit from blue fluorescence to red fluorescence. (Image from internet) 

 

The Remington group firstly published the crystal structure of GFP-S65T (Ormö et al., 

1996) and subsequently the wtGFP crystal structure was published by the Phillips group 

(Yang et al., 1996). GFP has a beta barrel structure with a length of 42 Å and a diameter of 24 

Å. It is composed of 230 amino acids that form eleven beta strands connected by short 

polypeptide turns. There is one alpha helix going through the beta barrel with a chromophore 

4-(p-hydroxybenzylidene)-5-imidazolinone (p-HBI) formed by the three central amino acids 

of this helix and situated in the center of the beta barrel. It is believed that this structure, fully 

conserved within all FPs, largely protects the chromophore from solvent interactions. 

However, within this thesis, our studies show that this strong protection might be 

overestimated. In wtGFP, the chromophore is formed by the three amino acids Ser65–Tyr66–

Gly67. After protein folding, these three amino acids undergo a complex maturation reaction 

following a multi-step process including cyclization, oxidation and dehydration (Zhang et al., 

2006) (Fig3.).  In the first step, cyclization of Tyr and Gly initializes the maturation of the 

chromophore, and then with the presence of molecular oxygen a hydrogen peroxide is 

produced by the oxidation reaction. A hydroxylated cyclic imine is formed in this step. At last 

the final product, a double bonded imidazolinone ring, is formed and a matured chromophore 

that is fully conjugated is ready to fluoresce (Zhang et al., 2006). The maturation of the 

chromophore is an autocatalytic process and it doesn’t need any external factor except 

molecular oxygen.  
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Fig3. Maturation of the chromophore. (Zhang et al., 2006) 

 
 The resolved structures allowed researchers to visualize the chromophore that is 

responsible for fluorescence as well as its environment and interactions with neighboring 

residues. With the help of these crystal structures, engineering of new GFP variants by 

directed mutagenesis was accelerated and rationalized. 

We are far from completely understanding all residues’ roles in the FPs, rational 

engineering of FPs is usually very difficult and brings unexpected consequences. Thus, 

random mutagenesis is a standard method used in developing FP mutants as well.  

Martin Chalfie, Osamu Shimomura and Roger Y. Tsien were honored the 2008 Nobel 

Prize in Chemistry for their discovery and development of the green fluorescent protein 

(Fig4.). 

 

Fig4. The Nobel Prize in Chemistry 2008: Osamu Shimomura, Martin Chalfie, Roger Y Tsien 

(image from internet) 
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1.2  PhotoTransformable Fluorescent Proteins (PTFPs) 

A subfamily of fluorescent proteins called PhotoTransformable FPs (PTFPs) has the 

unique optical property that their fluorescent state can be quantitatively modified by actinic 

illumination. Most of the PTFPs were found in Anthozoan corals unlike wtGFP that is found 

in Hydrozoan Jellyfish. However, engineering of Hydrozoan FPs can also result in 

phototransformability. Thanks to their subtle manipulation by light, PTFPs are more and more 

in the focus of research and in fact, they revolutionized the field of fluorescent microscopy. 

PTFPs can be classified in three groups: PhotoActivatable Fluorescent Proteins (PAFPs) that 

can be activated from a non-fluorescent state to a fluorescent state irreversibly by proper light; 

PhotoConvertible Fluorescent Proteins (PCFPs) that exhibit a nonreversible photoconversion 

from one fluorescent emission state to another, normally from green to red; and finally, 

Reversibly Switchable Fluorescent Proteins (RSFPs) that are able to be reversibly switched 

between nonfluorescent state (off-state) and fluorescent state (on-state) many times.  

 

1.2.1 PhotoActivatable Fluorescent Proteins (PAFPs) 

A single site mutation T203H of wtGFP (Patterson and Lippincott-Schwartz, 2002) 

generated PhotoActivatable Green Fluorescent Protein (PA-GFP). Its chromophore is initially 

found in its protonated, non-fluorescent state. The T203H substitution made the side chain of 

Glu222 (GFP numbering) rotate away from His203. Thus it occupies a slightly different 

position than that in wtGFP and stabilizes the protonated chromophore that hence cannot 

fluoresce under 488-nm illumination (Henderson et al., 2009). By illumination with high 

energy violet light, the highly conserved Glu222 undergoes an oxidative decarboxylation 

(Kolbe mechanism) followed by a reorganization of the H-bond network, stabilizing the 

deprotonated chromophore. The fluorescence brightness under excitation by 488-nm light is 

thus increased 100 times after photoactivation (Patterson and Lippincott-Schwartz, 2002) 

(Fig5.).  Other PAFPs such as PA-mRFP1 (Gurskaya et al., 2006), PA-mCherry1 (York et al., 

2011), PA-TagRFP (Subach et al., 2010a) can also be activated by UV light to emit red 

fluorescence. 
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Fig5. Photoactivation of PA-GFP. 

 

1.2.2 PhotoConvertible Fluorescent Proteins (PCFPs) 

Green-to-Red photoconvertible fluorescent proteins were discovered by chance. Once, 

Ando et al left a sample of Kaede protein on the lab bench without any protection from 

sunlight. The next day, they noticed that the exposed sample emitted red fluorescence instead 

of green fluorescence (Ando et al., 2002). Further studies revealed that this green to red 

conversion mechanism is due to the cleavage of the protein backbone, between the amide 

nitrogen and Cα atoms of His62 (Mizuno et al., 2003) (Fig6.). This cleavage resulted from the 

absorption of UV light in the protonated state of the chromophore and produced an extension 

of the electron conjugated system of the chromophore, which induced a red-shifted 

fluorescence emission. Other proteins such as EosFP (Wiedenmann et al., 2004), mEosFP 

(Wiedenmann et al., 2004), mEosFP2 (McKinney et al., 2009), Dendra (Gurskaya et al., 

2006), Dendra2 (Evrogen) all belong to this protein type. PCFPs are mostly used in PALM 

(PhotoActivated Localization Microscopy) technique thanks to their good brightness in the 

green form that is observed at the ensemble level and in the red form that is observed at the 

single molecule level. 

 

Fig6. Photoconversion of Kaede. 
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1.2.3 Reversibly Switchable Fluorescent Proteins (RSFPs) 

The phenomenon of reversible photoswitching was first observed in wtGFP and its 

yellow variants (Dickson et al., 1997). However, their switching contrast (ratio of emitted 

fluorescence in the on and off states) was limited. The first well studied RSFP was Dronpa 

(Mizuno et al., 2008) due to its good photoswitching behavior. Thanks to the unique ability of 

repetitive switching, RSFPs open up a number of new possibilities including photochromic 

FRET (Giordano et al., 2002), and super-resolution microscopy such as two-color PALM 

(Shroff et al., 2007), RESOLFT (REversible Saturable OpticaL Fluorescence Transitions) 

(Hofmann et al., 2005) and SSIM (Saturated Structured Illumination Microscopy) (Rego et 

al., 2012) approaches. With years of development, by using site-directed mutagenesis or 

random mutagenesis, the RSFP family has largely expanded. In particular, Anthozoan RSFPs 

and their variants are widely used such as mGOS family (Chang et al., 2012), rsTagRFP 

(Subach et al., 2010b) and the Dronpa family: Dronpa(Ando et al., 2004), Dronpa2 (Ando et 

al., 2007), Dronpa3 (Ando et al., 2007), bsDronpa (Andresen et al., 2008), rsFastLime (Stiel 

et al., 2007) and Padron (Andresen et al., 2008). In recent years, by protein engineering of 

Hydrozoan EGFP, Mut2Q, EYQ1, EYQ2 (Bizzarri et al., 2010), Dreiklang (Brakemann et al., 

2011) , modBFP (Jablonski et al., 2013), rsEGFP (Grotjohann et al., 2011) and rsEGFP2 

(Grotjohann et al., 2012) were introduced and reported to have a very good performance in 

photoswitching.  

RSFPs can be subdivided in three types: negative RSFPs, positive RSFPs, and 

decoupled RSFP.  

Crystallographic structures suggested that in negative and positive RSFPs, 

photoswitching is the consequence of cis-trans isomerization of the chromophore, whereas 

spectroscopic studies showed that light induced protonation/deprotonation were also involved 

in the photoswitching.  

In negative RSFPs such as Dronpa and its variants, in the native state of the proteins, 

the chromophores are in their on state. The excitation light makes the proteins fluoresce and 

in the meantime, on-to-off photoswitching competes with the fluorescence. Generally, the 

chromophore is changed from the cis conformation to the trans conformation and the protein 

absorption peak switches from blue to UV, which means off switched proteins are protonated. 

Fluorescence emission can decrease to a very low level. However, the fluorescence emission 

level can be brought back when the protein is illuminated by UV light (Fig7.). 
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Fig7. Photoswitching of Dronpa. 

 

On the contrary to the negative RSFPs, positive RSFPs are typically non-fluorescent in 

their native state. Chromophores are in their off state and upon excitation, they are switched 

from the off state to the on state and fluorescence emission level keeps increasing. Padron and 

asFP595 belong to this group (Fig8.). 

 

 

Fig8. Photoswitching of Padron. 

In 2011, the Jakobs group reported a RSFP with a different photoswitching 

mechanism: Dreiklang. Dreiklang is neither a negative nor a positive RSFP. Based on 

crystallography studies, it is proposed that a water molecule close to the imidazolinone ring 

can be covalently attached or detached, upon photoswitching. This hydration and dehydration 

is triggered by light that is not absorbed by the on or off states, hence decoupled from 

excitation (Fig9.). 

 

Fig9. Photoswitching of Dreiklang. 
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In recent years, researchers aimed to develop switching speed and contrast of RSFPs 

to adapt them to advanced imaging technics. For example, rsEGFP2 is a fast switcher with 

high switching contrast, which allows it to be a good fluorescent marker for RESOLFT. 

Thanks to its fast switching speed, it significantly accelerates the scanning speed of 

RESOLFT. 

 

1.3  IrisFP : A combination of RSFP and PCFP 

IrisFP is derived from EosFP, a PCFP that is able to be converted from green to red 

emission by 405 nm light. Mutation of F173S together with a silent mutation F191L 

generated IrisFP, the first FP reported to combine the properties of RSFPs and PCFPs at the 

same time. IrisFP is able to photoswitch efficiently in its green state. Upon UV illumination, it 

can be converted into a red form in which it is also able to switch (Fig10.). 

 

Fig10. Photoswitching and photoconversion of IrisFP. *Red-trans structure is not available  

 

Based on the crystallographic structures of IrisFP-green-on (PDB entry 2VVH), 

IrisFP-green-off (PDB entry 2VVI) and IrisFP-red-on (PDB entry 2VVJ), we can see that this 

protein undergoes a cis-trans isomerization of the chromophore during photoswitching in 

green form. Like in EosFP, absorption of UV light can lead to protein backbone cleavage and 

convert IrisFP to its red form. Although the structure of IrisFP in its red-off state could not be 

obtained, it is reasonable to think that in the red state the chromophore isomerizes as well. 
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The reason why the F173S mutation can turn EosFP into a photoswitchable protein is 

that Phe173 in EosFP occupies a large space. Upon substitution by the smaller serine residue, 

a considerable space is freed, which becomes occupied by a labile water molecule w2166 that 

makes an H-bond to both Ser173 and Thr59. Moreover, Met159 is rotated towards Ser173, 

which results in another new water molecule w2188 filling the cavity. This water molecule is 

H-bonded to Ser142, lowering the bond energy of this residue to the chromophore (Moeyaert, 

2010).  

When illuminated by 488nm light (absorption peak in green-on form corresponding to 

deprotonated chromophore) we can see the decrease of both fluorescence at 512 nm and 

absorption at 488 nm, meanwhile the absorption peak at 390 nm corresponding to the 

protonated chromophore increases. When the off switched protein is illuminated by UV light 

(405 nm), the absorption of the protonated chromophore decreases and that of the 

deprotonated chromophore increases together with fluorescence emission. In the red form, the 

situation is similar, except that red fluorescence emission is at 580 nm and that 551 nm light is 

responsible for on-to-off switching and 450 nm light is responsible for off-to-on switching 

(Fig11.). Monomeric variants exist that combine properties of RSFPs and PCFPs such as 

Denra2-M159A, Dendra2-F173S (Adam et al., 2011), mIrisFP (Adam et al., 2011), 

pcDronpa2 (Moeyaert et al., 2014) and NijiFP (Adam et al., 2011).  

 

 

Fig11. Absorption and emission spectra of IrisFP displayed by solide line and dashed lines, 

respectively. (A) Irradiation by 488 nm light, decreases absorption at 488 nm as well as 

fluorescence at 516 nm and increases absorption at 390 nm. (B) Irradiation by 532 nm light, 

decreases absorption at 551 nm and fluorescence at 580 nm and increases absorption at 440 

nm. Image from (Adam et al., 2008) 
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1.4  Photobleaching and photofatigue  

Photobleaching (Fig12.) is the permanent loss of fluorescence emission capacity, in 

contrast to photoblinking that is reversible and photophysically more complex. We don’t 

discuss the photoblinking in this thesis. 

 

 

Fig12. Photobleaching of EGFP. Fluorescence decays upon excitation of 473 nm light 

(~100W/cm²). 

 

 In fluorescence microscopy, photobleaching is always a problematic issue since it can 

introduce difficulties for data accuracy and analysis. For example, in time-lapse fluorescence 

microscopy, a series of images are recorded as a function of time. Photobleaching of 

fluorescent markers makes the time of observation of live cells limited. Most published 

studies about photobleaching deal with organic dyes (Zheng et al., 2014). Oxygen is generally 

considered as the main factor that is responsible for photobleaching of these fluorophores 

(Christ et al., 2001; Song et al., 1995; Zondervan et al., 2004). It is reported that fluorophores 

in their singlet excited state can hardly react with oxygen due to the short lifetime (several ns) 

of these states (Gollnick et al., 1992). Because of the considerably longer lifetime of the 

triplet state, it is usually considered to be the departure point of the harmful reactions that can 

induce photobleaching (Song et al., 1996). Typically, electron transfer or energy transfer from 

a fluorophore in the triplet state to molecular oxygen (whose ground state is triplet state), can 

return the chromophore to its ground state and generate superoxide radical or singlet oxygen 

that are very reactive (Zheng et al., 2014). The reactive oxygen species (ROS) can easily 
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attack and destroy the fluorophore by introducing irreversible chemical modifications, 

typically oxidation. The generated ROS also have the possibility to diffuse and react with 

closeby molecules, which causes phototoxicity. Thus people often add antifading reagents 

(acting thanks to their reducing property), or oxygen scavenging enzyme (Cordes et al., 2009; 

Penttilä et al., 1996), or both of them (Rasnik et al., 2006) to the cell culture medium to 

reduce photobleaching effects. Some studies showed that the photobleaching rate non-linearly 

increases as a function of excitation power intensity, indicating multi-photon absorption by 

the chromophore (Hoogenboom et al., 2005). 

However, in case of FPs, the photobleaching mechanism is more complicated. Unlike 

in the organic dyes that are fully exposed to the solvent environment, the chromophore of FPs 

is buried in the center of the beta barrel and has close interactions with the surrounding 

residues. The beta barrel limits the access of oxygen molecules. A study demonstrated that 

EGFP can generate singlet oxygen but with lower efficiency than that of the isolated HBDI 

chromophore exposed to the solvent, suggesting that the beta barrel provides shielding of the 

chromophore (Jimenez-Banzo et al., 2008). Therefore, less oxygen could produce less 

phototoxicity. However, photobleaching in FPs is facilitated due to the complex interaction of 

the chromophore with its surrounding residues. The generated ROS are not only able to attack 

the chromophore itself but also other residues inside the FP molecule. Another study showed 

that, for example, in RFP, photobleaching is caused by chromophore photoreduction (Vegh et 

al., 2014). Photobleaching also depends on the cell environment (Malkani and Schmid, 2011).  

Photobleaching can be used at advantage in biological applications as well. The most 

widely used technics are FRAP (Fluorescence Recovery After Photobleaching) (White and 

Stelzer, 1999), FLIP (Fluorescence Loss In Photobleaching) (Wustner et al., 2012) that allow 

investigators to measure molecule mobility in vivo. Photobleaching can also be applied in 

counting protein molecules by stepwise photobleaching, which allows researchers to quantify 

molecule number in a cluster or determine the protein oligomerization sate (Groulx et al., 

2011; Zijlstra et al., 2012). PALM is based on the principle of repeated single molecules 

activation, localization and photobleaching. 

Different FPs display diverse photobleaching kinetics that result from different 

chromophore photostability and environments. Usually the fluorescence curve doesn’t show a 

mono-exponential decay suggesting that multiple photophysical processes may occur.   

 Within RSFPs, upon excitation, fluorescence emission competes with other 

photophysical processes, in particular, on- or off–switching and photobleaching. For example, 

under illumination, negative RSFPs quickly lose their fluorescence due to a combination of 
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off-switching and photobleaching. In one photoswitching cycle, due to the much lower 

photobleaching quantum yield (typically 10-5) than photoswitching quantum yield (10-2-10-3), 

most of the chromophores are switched to their off state and are still capable to fluoresce 

when switched on again. However, upon a large number of photoswitching cycles, the 

photobleached chromophores accumulate. Overall, at the ensemble level, the amplitude of 

fluorescence of each cycle decreases and the achievable number of photoswitching cycles is 

thus limited, a process known as photofatigue (Fig13.).  

 

 

Fig13. Photofatigue of IrisFP. The maximum of fluorescence intensity at each cycle decreases 

because of photobleaching. 

 

1.5  Goal of thesis    

Due to their unique property of reversible switchability, RSFPs have become a very 

powerful tool in the field of bio-imaging, reversible data storage, viscosity measurement, 

optogenetics (Fig14.) 
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Fig14. Applications of RSFPs (Duan et al., 2014). 

 

Amongst these technics, super-resolution imaging such as RESOLFT, Photochromic SOFI 

(pcSOFI) (Dedecker et al., 2012), Nonlinear Structured Illumination Microscopy (NSIM) 

(Gustafsson, 2005) essentially depend on a large number of switching cycles of RSFP 

molecules. Thus a high resistance against photofatigue is required. For instance, in 

RESOLFT, a confocal system is employed. At each position of the scanner, a donut shaped 

dump light is applied to switch off all the molecules in the peripheral area leaving only 

molecules in the beam center active. A readout beam is then applied to detect the active 

labeled molecules and their signals are recorded. At the end, a reset beam is employed to 

restore molecules back to their on state, then the detector head moves to the next point. To 

obtain a high spatial resolution, the scanning step is required to be very small. Thus, a given 

molecule should be able to undergo several dozens of switching cycles (typically ~100 to 

achieve a spatial resolution of 1/10 of the PSF width in both X and Y dimensions).  

As mentioned before, the photobleaching mechanism of FPs is not clearly understood. 

And this also applies to the photobleaching mechanisms within RSFPs.  Random mutagenesis 

and large scale screening are usually used to generate better RSFPs mutants in terms of 

brightness, fluorescence quantum yield, photoswitching speed, photoswitching contrast. 
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However, screening of mutants with enhanced photoresistance would be more delicate 

because it is notably time consuming. Thus, it would be strongly desirable to design better 

performing mutants in a rational manner. Although our understanding of brightness or 

fluorescence quantum yield is increasing, we still have very limited knowledge about 

photobleaching. Therefore, the understanding of the photobleaching mechanisms of RSFPs is 

very important. However, there was no previous study of photobleaching of RSFPs before this 

thesis. Thanks to our experience in combined kinetic X-ray crystallography and optical 

spectroscopy (absorption, fluorescence and Raman spectroscopy) and good knowledge of 

PTFPs, and in collaborating with researchers specialized in QM/MM and molecular dynamics 

modeling, we have acquired the tools to explore the photobleaching mechanisms of RSFPs. 

We have chosen IrisFP as our model FP to investigate the photobleaching mechanism in 

Anthozoan RSFPs since its photophysical properties have been extensively studied in our 

team, including its crystallographic structures in green-cis, green-trans, red-cis (Adam et al., 

2008) and blinked states (Adam et al., 2009). Based on our understanding of the 

photobleaching mechanism of IrisFP from these studies, we rationally designed an IrisFP 

mutant with increased photostability that could be more suitable to the above-mentioned 

techniques.  
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Abstract of article 1 
The first photobleached structure of IrisFP that we observed was from a crystal 

irradiated by X-rays at cryotemperature (100K). It displayed a decarboxylation of Glu212 and 

a distorted chromophore. However, this condition is far from the condition that is found in a 

microscopy experiment. We were interested to know if these structural changes also happen 

under real experimental conditions. Thus, we tried to carry out experiments at room 

temperature using the PALM microscope that was set up in our lab. Using the PALM setup, 

we were able to photobleach protein crystals under PALM conditions. X-ray crystallography 

then showed that an oxygen-independent photobleaching occurred where dramatic structural 

changes happened (characterized by light-induced decarboxylation of the strictly conserved 

Glutamate 212 coupled with chromophore conformational changes and H-bond network 

rearrangement, which destroy the π conjugated system of the chromophore). To try to figure 

out the chemical nature of the photobleached chromophore, molecular dynamics simulations 

were performed by our collaborators at Physical Chemistry Laboratory at University of Paris 

11. Suggested by the simulation, under high-intensity illumination, photobleaching is a redox-

based process, where the methylene bridge of the chromophore was reduced resulting in the 

destruction of the π conjugated system. Due to the high laser intensity, the crystals were often 

damaged. In order to preserve crystal quality, we largely decreased the laser intensity. To our 

surprise, although crystals survived photobleaching, they had even worse diffraction quality. 

We found that, in contrast to the high-intensity illumination, under low-intensity illumination, 

an oxygen-dependent photobleaching occurred, which introduces only few structural changes. 

The photobleached structure shows an intact chromophore and surrounding H-bond network. 

The decarboxylation of Glu212 doesn’t take place. Crystallographic data showed positive 

electron densities close to Met159 and Cys171. To interpret this data, we collaborated with 

Sylvie Kieffer-Jaquinod at Laboratoire de Biologie à Grande Echelle at CEA. Confirmed by 

mass spectrometry, Met159 and Cys171 are found sulfoxided. The neighboring Met159 is 

supposed to be responsible for the photobleaching, because when sulfoxided, it forms a strong 

H-bond with the chromophore, trapping it in a protonated state that is non-fluorescent.  

 

 

 

 



2 Articles 

 

20 
 

 
 
 
 



Structural Evidence for a Two-Regime Photobleaching Mechanism in
a Reversibly Switchable Fluorescent Protein
Chenxi Duan,†,‡,§,∥ Virgile Adam,†,‡,§,∥ Martin Byrdin,†,‡,§,∥ Jacqueline Ridard,⊥ Sylvie Kieffer-Jaquinod,#,$

Cećile Morlot,†,‡,§ Delphine Arcizet,†,‡,§,∥ Isabelle Demachy,⊥ and Dominique Bourgeois*,†,‡,§,∥

†Universite ́ Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France
‡CNRS, IBS, F-38027 Grenoble, France
§CEA, DSV, IBS, F-38027 Grenoble, France
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ABSTRACT: Photobleaching, the irreversible photodestruc-
tion of a chromophore, severely limits the use of fluorescent
proteins (FPs) in optical microscopy. Yet, the mechanisms that
govern photobleaching remain poorly understood. In Rever-
sibly Switchable Fluorescent Proteins (RSFPs), a class of FPs
that can be repeatedly photoswitched between nonfluorescent
and fluorescent states, photobleaching limits the achievable
number of switching cycles, a process known as photofatigue.
We investigated the photofatigue mechanisms in the protein
IrisFP using combined X-ray crystallography, optical in
crystallo spectroscopy, mass spectrometry and modeling approaches. At laser-light intensities typical of conventional wide-field
fluorescence microscopy, an oxygen-dependent photobleaching pathway was evidenced. Structural modifications induced by
singlet-oxygen production within the chromophore pocket revealed the oxidation of two sulfur-containing residues, Met159 and
Cys171, locking the chromophore in a nonfluorescent protonated state. At laser-light intensities typical of localization-based
nanoscopy (>0.1 kW/cm2), a completely different, oxygen-independent photobleaching pathway was found to take place. The
conserved Glu212 underwent decarboxylation concomitantly with an extensive rearrangement of the H-bond network around
the chromophore, and an sp2-to-sp3 hybridization change of the carbon atom bridging the chromophore cyclic moieties was
observed. This two-regime photobleaching mechanism is likely to be a common feature in RSFPs from Anthozoan species, which
typically share high structural and sequence identity with IrisFP. In addition, our results suggest that, when such FPs are used, the
illumination conditions employed in localization-based super-resolution microscopy might generate less cytotoxicity than those
of standard wide-field microscopy at constant absorbed light-dose. Finally, our data will facilitate the rational design of FPs
displaying enhanced photoresistance.

■ INTRODUCTION

Recent progresses in fluorescence bioimaging techniques have
benefited from the rapid development of a large palette of
fluorescent proteins (FPs).1 However, the limited photo-
stability of FPs has remained a major impediment to their
successful use in many approaches including single-molecule,
FRET, time-lapse or super-resolution microscopies. FPs
typically can only emit ∼105 photons before their chromo-
phores fall victim to irreversible photodestruction.2 The
detailed photophysical mechanisms leading to photobleaching
in FPs remain largely unknown, although some structural
insight has been obtained in the case of KillerRed, a highly
phototoxic FP.3−5 Successful efforts to obtain more photostable

variants have mainly relied on directed evolution ap-
proaches.2,6−8

In reversibly switchable fluorescent proteins (RSFPs),9

photobleaching manifests itself in a process referred to as
“photofatigue”. RSFPs can be repeatedly photoswitched
between a fluorescent (on) and a nonfluorescent (off) state
by illumination with visible light of appropriate wavelengths.
Photoswitching capabilities are central to a growing number of
advanced techniques including a variety of super-resolution
modalities,10−14 photochromic FRET,15 optical lock-in detec-
tion,16 frequency-domain imaging,17 optogenetic manipula-
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tion18 and bio data-storage.19,20 However, because photo-
bleaching competes with photoswitching, a progressive
decrease in fluorescence intensity at each on−off cycle (that
is, photofatigue) is observed in ensemble experiments, and at
the single molecule level, the number of achievable on−off
cycles is limited. Thus, photofatigue fundamentally limits the
achievable resolution in nanoscopy approaches such as optically
linear fluorescence transition microscopy (RESOLFT)10 and
nonlinear structured illumination microscopy (NSIM),14 or the
contrast enhancement capability in frequency-domain based
microscopy schemes.16,17 Efforts to develop fatigue-resistant
RSFPs have been made recently, again essentially based on
directed-evolution approaches.20−22

Several parameters exert an influence on the photostability of
fluorescent proteins. Although the compact FP β-barrel partially
shields the chromophore against molecular oxygen, a number
of experimental,23−25 and theoretical26,27 investigations con-
cluded that O2 plays an important role in photobleaching of
FPs. However, the exact mechanism by which oxygen-
dependent chromophore photodestruction occurs has not
been directly visualized. Light-induced redox chemistry has
also been described to cause a variety of chromophore
phototransformations28 and the photostability of GFP and
some derivatives has been shown to depend on the presence of
redox-active components in the environment.29,30 Decarbox-
ylation of the strictly conserved Glu212 (IrisFP numbering,
corresponding to Glu222 in GFP) has been described in several
cases and is notably involved in photoactivation31−33 or the
formation of super-red species.34 Such decarboxylation was also
observed in experimental conditions not routinely used in
fluorescence microscopy, such as at cryogenic temperature5,35

or under X-ray irradiation.36,37 The possible involvement of
Glu212 decarboxylation in photobleaching under commonly
used fluorescence microscopy schemes, nevertheless, has not
been documented. In general, it has been repeatedly reported
that the photostability of fluorescent proteins may strongly
depend on illumination conditions.2,38−41

Here, we set out to study the photofatigue mechanism of the
biphotochromic RSFP named IrisFP,42 under experimental
conditions typical of wide-field diffraction-limited and super-
resolution microscopy. Our previous investigations had
revealed the structural and spectroscopic signature of IrisFP
in its green and red on-states (chromophore in cis
conformation), in the corresponding off-states (chromophore
in trans conformation), and in a reversible dark state (displaying
a transiently distorted chromophore geometry consistent with a
radical species protonated at atom Cα of the methylene
bridge37,43). In the present work, employing a combination of
kinetic X-ray crystallography, in crystallo UV−vis absorbance,
fluorescence and Raman spectroscopies, mass spectrometry,
and molecular dynamics simulations, we discovered two distinct
photobleaching mechanisms in IrisFP. The first mechanism is
oxygen-independent, whereas the second is oxygen-dependent.
A switch from the first to the second mechanism was observed
as the illumination power density was decreased from levels
typical of localization-based nanoscopy to those of standard
wide-field microscopy.

■ EXPERIMENTAL PROCEDURES
Experimental procedures are described in details in the Supporting
Information.

■ RESULTS
Photofatigue at High Illumination Intensity. In green

IrisFP, illumination by 488-nm (cyan) light isomerizes the
fluorescent cis anionic chromophore to a trans nonfluorescent
neutral configuration (quantum yield = 3.2 × 10−3). Back-
switching to the fluorescent cis state is efficiently achieved with
405-nm (violet) light (quantum yield =0.15).42 We thought of
studying the photofatigue of green IrisFP in crystallo under
experimental conditions typical of super-resolution PALM
microscopy, that is, under relatively high excitation laser power
density (∼0.1 kW/cm2 at 488 nm, see the Supporting
Information, Figure S1A). After 10 min of alternating
illumination at 488 and 405 nm, corresponding to about 260
switching cycles, the fluorescence intensity was largely reduced
(Figure 1). The decay of the fluorescence envelope appears

biphasic and can be fitted with a biexponential model in which
∼75% of the molecules undergo rapid bleaching and ∼25%
undergo ∼10 times slower bleaching (see discussion in the
Supporting Information). Absorbance by the anionic chromo-
phores largely decreased without any increase of the neutral
species, suggesting that most molecules were irreversibly
bleached (Figure 2A). Similar behavior was observed in
solution (Figure S2, Supporting Information).
Experimental difference electron density maps between

fatigued and nonfatigued parts of a single crystal (Figure 2C
and Table S1, Supporting Information) revealed a complex set
of structural modifications confined in the chromophore pocket
(Figure S5A, Supporting Information). Strong negative electron
density at Glu212 suggested decarboxylation of this residue, as
unambiguously confirmed by mass spectrometry analysis
(Table S2, Supporting Information). The hydrogen-bond
network around the chromophore was largely perturbed, with
three water molecules being dislocated and Arg66 and His194
adopting a conformation similar to that found in the trans state
of the chromophore. The phenolate group of the chromophore
appeared largely disordered, together with the hydroxyl group
of Ser142 normally H-bonded to the chromophore phenolate.
The imidazolinone ring, however, remained planar. These
crystallographic data suggest that the chromophore is no longer

Figure 1. Photofatigue fluorescence decay of crystalline IrisFP under
high-intensity illumination by 488-nm (∼100 W/cm2, continuous) and
405-nm (∼1 W/cm2, on for 0.3 s every 2.3 s) laser light. Fluorescence
was recorded at 512 nm. The crystal was submitted to 260 switching
cycles during 10 min of illumination, which resulted in the loss of
∼75% of its initial fluorescence emission. The inset shows an enlarged
view of the decay over the first 10 cycles. The fluorescence envelope
can be fitted with a biexponential decay model (red trace).
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properly held in place by the protein matrix and may have lost
its electron conjugation.
To gain further insight into the chemical modifications of the

chromophore, we performed in crystallo Raman spectroscopy of
IrisFP crystals illuminated in the same manner. Upon
photobleaching, the spectra (Figure 2B) showed considerable
modifications (see discussion in the Supporting Information),
notably a complete disappearance of the bands at 1503 cm−1

and 1545 cm−1 (anionic chromophore) and 1564 cm−1 and
1604 cm−1 (neutral chromophore). The strongly resonance-
enhanced band at 1545 cm−1 has been assigned to a mode that
combines stretching of the CαC5 exocyclic double bond and
deformation of the imidazolinone moiety of the chromophore44

(for chromophore atoms nomenclature, see Scheme S1 in the
Supporting Information). In the neutral state of the
chromophore, this band is shifted to 1564 cm−1, consistent
with a more localized electron density in this state. The loss of
these bands, together with the vanished UV−vis absorbance,
strongly suggests that the Cα carbon atom of the chromophore
methylene bridge converts from an sp2-hybridized to an sp3-
hybridized configuration, possibly as a result of intramolecular
electron and proton transfer.43 Based on these findings, as well
as on further molecular dynamics simulations (see below) a
model of photodamaged IrisFP was refined (Figure 2D).
Overall, these data suggest that under high-intensity

illumination IrisFP suffers from a redox-based photofatigue
mechanism, which is associated to decarboxylation of Glu212.

Photofatigue at Low Illumination Intensity. Submitting
IrisFP crystals to repeated high-intensity laser illumination is a
harsh procedure that often compromises their diffraction
quality. In an attempt to better preserve the samples, we
photofatigued IrisFP crystals at ∼10 times lower power density
(∼10 W/cm2 at 488 nm, see the Supporting Information,
Figure S1B). After 100 min of alternating cyan and violet
illumination (460 switching cycles), fluorescence emission was
again largely reduced (Figure 3). However, the fluorescence
photofatigue decay profile (Figure 3, red curve) significantly
differed from that under high illumination, although a
biexponential model was still required to achieve a satisfactory
fit (see discussion in the Supporting Information).
To our surprise, the diffraction quality of the crystals was not

improved. Instead, it was generally even more degraded.
Furthermore, crystallographic analysis revealed neither any
substantial structural changes of Glu212 nor any significant
distortion or disorder of the chromophore (Figure 4C and
Table S1, Supporting Information). Instead, additional positive
electron density close to the sulfur atoms of both Met159 and
Cys171 was noticed in the difference electron density maps
(Figure 4C and Figure S5B, Supporting Information).
Absorption spectra of crystals fatigued in this way showed a
decreased anionic band but an increased neutral band (Figure
4A). A titration experiment revealed that the pKa of the
photofatigued chromophore increased to ∼12 (Figure S8,
Supporting Information) instead of 5.7 under native con-
ditions,45 suggesting that the chromophore has been trapped in

Figure 2. (A) Absorption spectra of crystalline IrisFP before (green) and after (blue) high-intensity photobleaching. Both anionic and neutral bands
are largely decreased. (B) Raman spectra of crystalline IrisFP before (green) and after (blue) high-intensity photobleaching. The complete
disappearance of the 1503, 1545, 1604, and 1564 cm−1 bands (inset, arrows) suggests the breakage of the chromophore methylene bridge π-
conjugation (C) NCS-averaged experimental difference electron density map Fobs,bleached − Fobs,native upon high-intensity photobleaching, overlaid on
the crystallographic structure of intact IrisFP (PDB model 2VVH). The chromophore (orange) and the important surrounding residues (gray) in the
chromophore pocket are shown. Positive electron density is shown in green (+5 σ) and negative electron density is shown in red (−5 σ). (D)
Refined model of high-intensity photobleached IrisFP. The chromophore phenolate moiety is represented in dim color to highlight the disorder
observed in the electron difference density map. H-bonds are represented with dashed lines, and water molecules as red balls.
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a nonfluorescent protonated state. Raman spectrometry of a
partially fatigued crystal confirmed this finding, displaying an
increase of the vibrational bands associated with the neutral
chromophore (1564 cm−1, 1604 cm−1) at the expense of those

associated with the anionic chromophore (1503 cm−1, 1545
cm−1) (Figure 4B), but without signs of a ruptured π-system.
Finally, peptide analysis of a photofatigued sample by mass
spectrometry revealed a substantial increase in the level of
oxidation of a number of fragments containing methionine,
cysteine, and tryptophan residues (Figure S9, Supporting
Information). In particular, fragments that contained Met159
had ∼320% higher mono-oxidation levels than those of intact
IrisFP. Oxidation levels of fragments containing Cys171 were
also raised significantly (see Figure S9 caption in the
Supporting Information). Conversely, the decarboxylation
level of Glu212 remained unaltered as compared to
nonbleached IrisFP (Table S2, Supporting Information).
These data suggest that, under low-intensity illumination,
photofatigue of IrisFP results in sulfoxidation of Met159 and
Cys171, followed by oxidation of other residues more remote
from the chromophore pocket. Comforted by the mass
spectrometry results, we modeled the two positive features
near Met159 and Cys171 in the difference electron density map
as oxygen atoms covalently bonded to the sulfur atoms of these
residues, respectively (Figure 4D). A new water molecule was
also modeled next to Met159, above the chromophore
hydroxybenzylidene ring. The sulfoxidized Met159 was found
to form a tight H-bond (2.8 Å) between the newly added
oxygen atom and the presumably protonated chromophore
phenol moiety. This tight H-bond is consistent with the
extremely high pKa measured for the fatigued chromophore.
Interestingly, the level of Met159 and Cys171 sulfoxidation

Figure 3. Photofatigue fluorescence decay of crystalline IrisFP under
low-intensity illumination by 488-nm (∼10 W/cm2, continuous) and
405-nm (∼0.01 W/cm2, on for 4 s every 12 s) laser light. Fluorescence
was recorded at 512 nm. The crystal was submitted to 460 switching
cycles during 100 min of illumination, which resulted in the loss of
∼90% of its initial fluorescence emission. The inset shows an enlarged
view of the decay over the first 10 cycles. The fluorescence envelope
can be fitted with a biexponential decay model (red trace).

Figure 4. (A) Absorption spectra of crystalline IrisFP before (green) and after (red) low-intensity photobleaching. The intensity of the anionic band
at 488 nm decreased while that of the neutral band at 390 nm increased. (B) Raman spectra of crystalline IrisFP before (green) and after (red)
partial low-intensity photobleaching. The decrease of the 1503 cm−1 and 1545 cm−1 bands and the increase of the 1604 cm−1 and 1564 cm−1 bands
(inset, arrows) is consistent with a conversion from the anionic to a neutral state of the chromophore without the loss of π-conjugation (C) NCS-
averaged electron difference density map Fobs − Fcalc upon low-intensity photobleaching, overlaid on the crystallographic structure of intact IrisFP
(PDB model 2VVH), as in Figure 2C. Positive electron density is shown in green (+5.3 σ) and negative electron density is shown in red (−5.3 σ, no
feature visible). (D) Refined model of low-intensity photobleaching IrisFP. H-bonds are represented with dashed lines, and water molecules as red
balls.

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja406860e | J. Am. Chem. Soc. 2013, 135, 15841−1585015844

http://pubs.acs.org/action/showImage?doi=10.1021/ja406860e&iName=master.img-003.jpg&w=229&h=160
http://pubs.acs.org/action/showImage?doi=10.1021/ja406860e&iName=master.img-004.jpg&w=374&h=275


observed in the electron density maps strongly varied between
the four IrisFP monomers. Whereas significant electron
densities were observed in monomers A, B, and D, no sign of
sulfoxidation could be detected in monomer C (Figure S6A−D,
Supporting Information). This difference could be explained by
a variable diffusion capacity of oxygen molecules into the
chromophore pocket via pores in the IrisFP β-barrel, probably
due to crystal packing effects. In monomers A, B, and D,
inspection of the IrisFP static structure showed a pore between
the residues Glu140 and Ile196, in the close vicinity of the
chromophore phenolate (Figure S6E−H, Supporting Informa-
tion) at a location previously identified in other FPs such as
His148Asp-YFP46 or the Arthropoda TurboGFP.47 This pore is
occluded in monomer C.
Overall, the data suggest that under low-intensity illumina-

tion IrisFP suffers from an oxidation-based photofatigue
mechanism, which is initiated by the production of singlet-
oxygen within the chromophore pocket.
Further Insight into IrisFP Photobleaching under

High-Intensity Illumination. The novelty of the decarbox-
ylation-based photofatigue mechanism of IrisFP, its complex
structural signature and its potential relevance for high-
resolution microscopy prompted us to investigate this
mechanism in more details. Notably, we asked the four
following questions: (i) Which wavelength (488 or 405 nm) is
primarily responsible for photodestruction? (ii) What is the
temporal order of the structural events leading to the observed
photofatigued structure? (iii) What is the chemical nature of
the photobleached chromophore? (iv) Is a two-consecutive-
photon absorption process involved?
Question i can be readily answered in the case of low-

intensity photobleaching, as the chromophore clearly adopts a
cis configuration in this bleached state, strongly suggesting that
photobleaching results from the absorption of a 488-nm
photon. The question is more delicate to answer in the case of
high-intensity photobleaching, as two arguments could favor
the hypothesis that photodestruction originates from violet
light illumination. First, it has been reported that decarbox-
ylation reactions occurring via a Photo-Kolbe mechanism are
favored in the UV range.48 Second, the conformational switch
of the His194-Arg66 pair observed in our structure (Figure 2C
and 2D) seems at first glance consistent with the chromophore
being photobleached in its trans configuration by violet light.
However, close inspection of the difference electron density
map of Figure 2C shows that residue Ile157 maintains a
conformation typical of the cis chromophoric state.42 This
suggests that the His194-Arg66 switch could be a consequence

of photobleaching by cyan light in the cis configuration of the
chromophore. To test this hypothesis, crystals of green IrisFP
were illuminated at 100 K at 488 nm for a prolonged time. At
this temperature, chromophore isomerization is prevented,
likely due to the lack of sufficient conformational flexibility of
the IrisFP chromophore pocket, and thus no switching by cis−
trans isomerization can occur. Despite a deterioration of the
crystalline order resulting from this harsh sample treatment,
difference electron density maps clearly showed that 488 nm
light is able to induce extensive Glu212 decarboxylation,
similarly to 405 nm light (Figure S4, Supporting Information).
The conformational switch of the His194-Arg66 pair
subsequent to Glu212 decarboxylation in the cis chromophoric
state was then confirmed by molecular dynamics simulations
(see below). These arguments, together with the fact that the
sample was exposed to ∼600 times more cyan than violet
photons, favor the hypothesis that photodestruction upon
repeated switching in IrisFP predominantly results from light
absorption at 488 nm by the cis chromophore.
We next attempted to disentangle the order of the structural

events leading to chromophore destruction (question ii) by
collecting a high-quality structure of IrisFP en-route to
photobleaching. Knowing that X-rays efficiently induce IrisFP
photobleaching through Glu212 decarboxylation,37 we rea-
soned that collecting a pair of high-resolution crystallographic
structures at 100K at different X-ray doses might uncover
structural differences representative of early events along the
photobleaching pathway. The results, presented in Figure S7
(Supporting Information) (see also Tables S1 and S3,
Supporting Information), reveal decarboxylation of Glu212 as
well as the disappearance of several water molecules
participating in the hydrogen bond network surrounding the
chromophore. However, instead of the disorder of the
phenolate moiety observed in the photofatigued structure, the
chromophore exhibits a clear distortion with an upward tilt of
the chromophore phenolate and a downward bend of the
methylene bridge. This distortion is also consistent with sp3-
hybridization of the Cα carbon atom (Figure 2D). Furthermore,
His194 and Arg66 are not significantly displaced as compared
to their native conformation. If we admit that photobleaching
pathways induced by high-intensity visible and X-ray light are
both initiated by redox processes leading to Glu212
decarboxylation, it is reasonable to associate these structural
changes with an early intermediate state along the high-
intensity photofatigue pathway.
To further investigate whether the X-ray bleached cryo-

structure is a plausible intermediate state along the high-

Figure 5. (A) Lewis representation of the proposed doubly reduced/protonated chromophore CαN photobleached under high-intensity
illumination conditions. This structure was used to model the bleached pBlred and Blred states. (B) MD simulations: time-evolution of characteristic
distances between atoms involved in the H-bond network around the IrisFP chromophore pocket, from the pBlred to the Blred states. Blue:
His194(NE2)-Glu144. Red: His194(ND1)-Arg66. Green: His194(NE2)-Ser142.
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intensity photofatigue pathway, we conducted molecular
dynamics simulations using software specifically tailored for
fluorescent proteins simulations.49 These simulations also
allowed us to examine the chemical nature of the fatigued
chromophore (question iii). Starting from the putative
intermediate state with the chromophore adopting various
chemical structures, we analyzed whether or not the IrisFP
conformation evolved toward the experimentally observed
fatigued structure. In order to ensure the sp3-character of the
Cα atom revealed by Raman spectroscopy while excluding an
unstable radical state of the fatigued chromophore, the latter
must be considered as formally reduced by two hydrogen
atoms. Among all available choices tested (Figure S10, Table
S4, Supporting Information), the reduced structure protonated
at positions Cα and N4 (referred to as CαN) was found to be
the only one compatible with our experimental data (Figure
5A). Protonation at other positions either altered the planar
character of the imidazolinone ring or weakened the hydrogen
bond between that ring and Arg91 (see further discussion in
the Supporting Information). Using structure CαN in our MD
simulations, we noticed that the conformational switch of
His194 and Arg66 to their positions observed in the fatigued
structure occurred within a nanosecond (Figure 5B and Figure
S14, Supporting Information). Furthermore, large fluctuations
of the chromophore torsions around the Cα atom were
observed afterward (the 80% confidence interval of the dihedral
τ angle ranged from −5° to 55°), reflecting the interplay
between the intramolecular energy landscape of the reduced
chromophore CαN (Figure S11, Supporting Information) and
the decreased constraints due to the protein environment.
These fluctuations are consistent with the phenolate disorder
observed experimentally.
Finally, in order to investigate whether the high-intensity

bleaching mechanism involves a two-consecutive-photon
absorption process (question iv), we measured the initial
photofatigue rate as a function of the illumination power
density in the absence of oxygen (Figure S3, Supporting
Information). The results confirm that O2 is indeed not

required in this mechanism. The best linear fit to a double-
logarithmic plot of the data showed a slope of 1.8 ± 0.3 (Figure
S3, Supporting Information), indicating a mechanism mainly
involving two photons with a possible weak residual from a
one-photon contribution.

■ DISCUSSION

Our study of the photofatigue mechanism of the reversibly
switchable protein IrisFP reveals a two-regime photodestruc-
tion pathway. At illumination intensities of ∼100 W/cm2,
photobleaching of IrisFP involves decarboxylation of Glu212
probably via electron transfer to the chromophore in a photo-
Kolbe reaction.31,48 We propose that this leads to a prebleached
dark state, represented by the cryo-trapped structure of Figure
S7 (Supporting Information), in which the chromophore is
already reduced and protonated at the Cα atom and at the N4
nitrogen atom. In this state, denoted pBlred, the chromophore
has lost its electron conjugation and adopts a tilted geometry.
(Note that pBlred differs from the blinked radical state DH•

described earlier by us.43) Subsequently, while the chemical
structure of the chromophore does not evolve further, the
hydrogen bond network surrounding it collapses, and the
His194-Arg66 pair flips to a conformation resembling that of
IrisFP in its switched-off state. The phenolate moiety of the
chromophore loses its anchoring to the protein matrix,
resulting in large fluctuations of the τ and φ dihedral angles.
A complete loss of absorbance and fluorescence is thus
observed in this bleached state, referred to as Blred, and the
presence of oxygen is not required.
At illumination intensities ten times lower (∼10 W/cm2), a

completely different scenario takes place. The chromophore
reacts in its triplet state T1 with molecular oxygen to produce
singlet oxygen 1O2. We propose that singlet oxygen then
rapidly reacts with the nearby Met159 and a water molecule to
produce sulfoxidized-Met159 and hydrogen peroxide H2O2.

50

H2O2 in turn attacks Cys171 to give sulfoxidized Cys171 and a
hydroxyl molecule.50 Because the S−O bond in a sulfoxidized
methionine is highly polarized, with partial negative charge on

Figure 6. Proposed photophysical scheme for a two-regime photobleaching in IrisFP. Yellow arrows represent chemical steps involving electron/
proton transfer or oxidation reactions. Blue arrows represent entry/exit of oxygen species.
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the oxygen atom, the chromophore is trapped in a protonated
state due to the establishment of a strong H-bond interaction.
Loss of fluorescence is observed, but partial absorption by the
neutral chromophore is maintained. Alternatively to oxidizing
Met159 and Cys171, singlet oxygen may also diffuse further
throughout the IrisFP matrix and attack more remote amino
acids, as revealed by mass spectrometry. We refer to either of
these oxygen dependent bleached states as Bloxy. Singlet oxygen
may also undergo a different fate: it can escape into the solvent
and generate cytotoxicity. This is consistent with the estimated
1O2 lifetime and diffusion length in cells of 250 ns and 45 nm,
respectively.51 Diffusion out of the IrisFP β-barrel could occur
via the pore identified in this work, or through other pores
opening transiently that will necessitate future investigations by
molecular dynamics simulations.26,27

Sulfur-containing residues are major targets of reactive
oxygen species (ROS) and are most susceptible to oxidation.52

Notably, methionine oxidation by singlet oxygen has been
described in the context of chromophore assisted light
inactivation (CALI), typically resulting in enzyme inactiva-
tion.53 Here, low-intensity photobleaching of IrisFP can be
viewed as a special case of intramolecular CALI. We note that it
is unlikely that methionine sulfoxide reductases, which are
enzymes known to revert methionine sulfoxidation54 would
salvage IrisFP fluorescence, because Met159 is buried into the
β-barrel. Further oxidation of remote sensitive residues could
also be associated with a loss of fluorescence possibly linked to
partial unfolding of the IrisFP β-barrel, in turn corroborating
the loss of diffraction observed in crystals treated with
prolonged low-intensity light. This observation is reminiscent
of the loss of enzymatic activity observed in enzymes submitted
to a high-level of oxidation by ROS,50,55 and it is consistent
with the loss of fluorescence observed in other FPs submitted
to ROS by pulse radiolysis.56

The photophysical scheme of Figure 6 recapitulates the
proposed photobleaching pathways. Upon excitation, the
ground-state singlet chromophore S0 reaches the first electroni-
cally excited state S1, from which it can either fluoresce,
deactivate nonradiatively (through isomerization, giving rise to
off-switching), or undergo intersystem crossing to the long-
lived triplet state T1. From T1, a number of possible pathways
can be envisaged. T1 can relax to S0 either spontaneously or,
more efficiently, by triplet−triplet quenching if molecular
oxygen is present near the chromophore. This results in the
production of 1O2 which may, as described above, attack the
fluorescent protein or escape into the medium. The photo-
fatigued state Bloxy is produced. Alternatively, the high oxidation
potential of the excited chromophore may drive electron
transfer from Glu212 without the need for oxygen, leading to
the nonfluorescent prebleached state pBlred from which the
photofatigued state Blred occurs.
It is interesting to determine which factors control the switch

from one photobleaching regime to the other. Two hypotheses
can be proposed. First, the entry rate of molecular oxygen into
the IrisFP β-barrel could play a role. A slow O2 entry rate
relative to the rate of photon absorption would disfavor the
reaction of the excited IrisFP chromophore with oxygen,
leaving redox chemistry as the dominant route to photo-
bleaching. Second, as strongly suggested by our data (Figure
S3, Supporting Information), the onset of redox photo-
bleaching at high intensity could result from a mechanism
relying on the consecutive absorption of two photons. The
increase of the T1 lifetime while oxygen is absent from the

chromophore pocket would further boost such mechanism. In
order to test these hypotheses, the complete kinetic model
illustrated in Figure S15 (Supporting Information) was
challenged by simulations predicting the relative fraction of
the two photofatigued species Blred and Bloxy as a function of the
applied laser intensity, assuming realistic rates for entry/exit of
oxygen in/from the chromophore pocket (see discussion in the
Supporting Information and Figure S16). The model
consistently predicts dominant oxygen-dependent and oxy-
gen-independent photobleaching pathways under the exper-
imental low- and high-intensity illumination conditions,
respectively. We propose that the photobleached state Blred
can be reached via one- or two-consecutive-photon excitation.
In the first case, the radical state DH• could be involved, as
suggested by our previous simulations using QM/MM
approaches.43 In the second case, absorption of the second
photon could take place in T1 or another state of the
chromophore with micro- to millisecond lifetime, thus
accelerating formation of Blred at high excitation rates. The
existence of a two-consecutive-photon absorption route leading
to Glu222 decarboxylation has been noticed in GFP57 and is
consistent with the high laser intensities observed to build-up
the super-red species in DsRed.34 Furthermore, by analogy to
the results found in GFP,57 it may be speculated that
conventional two-photon-excitation schemes, in view of the
high laser power-densities used, could favor the oxygen-
independent bleaching pathway.
In the crystalline state, assuming a typical concentration of

oxygen of 200 μM, there is a large excess of IrisFP monomers
(>100). Assuming a bulk diffusion coefficient of 2 × 10−5 cm2/
s, a single molecule of O2 is able to explore only ∼20 unit cells
in a microsecond. Thus, it is likely that the rate at which oxygen
molecules penetrate into a given crystalline IrisFP monomer is
lower than the excitation rate of the chromophore, at least
under our high-intensity illumination conditions (5 × 104 s−1).
In solution samples or in biological cells this situation might
differ, with more molecular oxygen available per fluorophore.
This may possibly shift upward the intensity threshold between
the two photobleaching pathways. More generally, we expect
this threshold to depend not only on the fluorescent protein
and molecular oxygen concentrations but also on the redox
environment, as well as on other parameters such as pH,
viscosity of the medium, or even the nature of fusion
constructs.
Photo-Kolbe reactions in fluorescent proteins have been

described several times.31−33,48,58 The invoked mechanism,
however, always leaves the chromophore intact. Indeed, it is
generally proposed that following electron transfer from
Glu212 to the chromophore, an electron (and proton) is
transferred back from the chromophore to the CH2

• radical of
the decarboxylated Glu212. By contrast, the chromophore of
IrisFP is chemically altered, with the methylene bridge ending
up in an sp3-hybridized state as demonstrated by Raman
spectroscopy. The photobleached chromophore is thus likely to
be photochemically reduced, which implies the net transfer of
two electrons and two protons. Our MD simulations favor such
a process, suggesting the formation of a zwitterionic
imidazolinone ring in which the oxygen atom is negatively
charged and stabilized by two H-bonds to the guanidinium
groups of Arg66 and Arg91 while the N4 nitrogen atom is
protonated and positively charged. Whereas the proton ending
up on the Cα carbon could originate from Arg66,43 we
speculate that the second electron and proton could be

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja406860e | J. Am. Chem. Soc. 2013, 135, 15841−1585015847



provided by a reducing molecule in the surrounding medium.29

Further studies will be needed, however, to precisely unravel
the redox mechanism allowing these transfers.
Studying the photobleaching mechanisms of RSFPs is

important because these markers play an increasing role in
several advanced fluorescence microscopy applications. It could
be argued, however, that the photoswitching capabilities of
RSFPs complicate the investigation of irreversible photo-
destruction processes. On the contrary, and consistently with
previous work,41 we propose that the investigation of
photobleaching pathways through repeated photoswitching
provides the advantage that uncontrolled accumulation of
reversible dark states (“shelving”)2 is largely reduced: the
overall slow photofatigue of RSFPs facilitates the recovery of
thermally unstable dark states, and repeated illumination by 405
nm light often promotes fast recovery of light-sensitive dark
states, as is the case for the main trans-isomeric off state.
Overall, studying photobleaching of RSFPs facilitates the
decoupling of irreversible and reversible photophysical
processes.
The photobleaching mechanisms described here for IrisFP

might be conserved in other photoconvertible and photo-
switchable fluorescent proteins derived from Anthozoan species
such as Dronpa, mTFP0.7, Kaede, EosFP, Dendra2, and their
variants.39 Indeed, all these proteins display very similar
structural organizations of their chromophore pocket, with
nearly identical hydrogen bond networks involving Glu212,
His194, Arg66, and Glu144. Their sequence identity and global
structural similarity is also high, suggesting the possibility of a
common pathway for oxygen diffusion toward the chromo-
phore and/or common redox mechanisms. Moreover, all these
proteins, except mTFP0.7, contain a methionine at position
159. The observation of a trapped neutral chromophore upon
Met159 sulfoxidation might therefore be a general feature of
this family of proteins. We note that, in the context of the
present study, the presence of this residue at this position can
be considered as a fortunate feature that allowed us to provide
the first structural evidence of singlet oxygen production within
a FP chromophore pocket. Interestingly, during the directed
evolution of mCherry from mRFP1, it was reported that the
mutation Met163Gln was entirely responsible for the 10-fold
enhanced photostability of mCherry.2 This finding could relate
to our observations in IrisFP, although recent molecular
dynamics simulations proposed that this mutation essentially
served to block the entry of molecular oxygen within the
barrel.27

In general, the photobleaching mechanisms observed in
IrisFP are unlikely to apply to Hydrozoan RSFPs such as
rsEGFP.20,21 While oxygen diffusion pathways probably differ,
Glu212 decarboxylation in Hydrozoan FPs typically induces
photoactivation rather than photobleaching. Nevertheless,
competing photobleaching routes probably also exist in
Hydrozoan RSFPs and would deserve investigations similar
to those described in this work. Likewise, non-RSFPs of
Anthozoan origin are likely to exhibit yet different photo-
bleaching mechanisms. In the red fluorescent protein KillerRed,
for which structures of photobleached states under low
intensity illumination have been published,3,4 the chromophore
was found either disordered3 or distorted,4 possibly consistent
with sp3-hybridization of the methylene bridge, and no
substantial modifications of the chromophore environment
was noticed. These differences with our low-intensity IrisFP
bleached structure might arise from a type I photosensitization

mechanism in KillerRed3 versus a type II mechanism in IrisFP
and be a consequence of the different chromophore structures
and environments in the two proteins.
Our results provide some of the molecular basis required for

the rational design of more photoresistant Anthozoan RSFPs.
For example, in IrisFP, mutations Met159Ala45 or Glu212Gln59

could be carried out and their effect on photobleaching
investigated, with the potential caveat that mutations enhancing
photoresistance may also modify important properties such as
photoswitching yields or maturation efficiency. Further
directed-evolution based engineering of electron transfer
pathways and oxygen entry routes will probably be required
to obtain optimal photoresistant variants.

■ CONCLUSION
Despite considerable advances in fluorescent proteins research
in the recent past, the high susceptibility of FPs to irreversible
photobleaching still remains a major bottleneck to their use in
advanced microscopy applications. Here, we have explored the
photobleaching mechanisms in IrisFP, a representative of the
important class of reversibly switchable fluorescent proteins.
Under low-intensity illumination (∼0.01 kW/cm2) typical of
standard wide-field fluorescence microscopy, an oxygen-
dependent mechanism dominates, that damages the IrisFP
chromophore environment mainly through sulfoxidation
reactions and releases singlet oxygen in the medium. Under
high-intensity illumination (∼0.1 kW/cm2) approaching laser-
light levels used in localization-based super-resolution micros-
copy, an oxygen-independent mechanism takes over, that
damages the chromophore itself via decarboxylation of the
strictly conserved Glu212.
As a consequence of this work we speculate that high-

intensity illumination of Anthozoan phototransformable FPs
might generate less cytotoxicity than low-intensity illumination
at constant integrated dose. This prediction is consistent with
previous findings that light-induced damage of cellular samples
labeled with fluorescent proteins mostly originates from ROS
released by the fluorescent markers under typical widefield
illumination regimes.60,61 However, at high-intensity, additional
effects due to, e.g., singlet oxygen release by endogenous
chromophores (such as flavins) and rapid depletion of ROS
scavenging cellular components (such as glutathione) may play
an adverse role. Overall, our results might be related to the
observation that prolonged PALM illumination of Anthozoan
FPs generally induces tolerable phototoxicity in live cells,62−65

but call for further quantitative investigations of the light-
intensity dependence of cytotoxic effects in biological samples.
The two-regime photobleaching mechanism characterized in
this work may also play a role in the frequently observed
discrepancy between bleaching kinetics measured under a
variety of conditions, typically low versus high intensity wide-
field or wide-field versus confocal. In the latter case, however,
the short illumination dwell-times and typically much higher
instantaneous power densities (>10 kW/cm2) probably call for
yet other photobleaching mechanisms to be explored in the
future.

■ ASSOCIATED CONTENT
*S Supporting Information
Materials and methods for crystal growth, X-ray data collection
and structure determination, photobleaching procedures,
optical spectroscopy and mass spectrometry, quantum
mechanics and molecular dynamics simulations. Discussions
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of laser beam heterogeneity, QM/MD simulations, modeling of
kinetic scheme, Raman spectra from photobleached crystals.
This material is available free of charge via the Internet at
http://pubs.acs.org.
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Materials and Methods 

Expression and purification 

IrisFP was expressed in Escherichia coli BL21 (DE3), using a pQE32 plasmid encoding 

the full-length IrisFP as described previously.1 The bacterial culture was grown at 37°C to 

OD600 nm = 0.6. Overexpression was induced by adding 0.1 mM IPTG and the culture was 

incubated 7 days at 4°C. After centrifugation, the cell pellet was resuspended in a solution 

containing 50 mM HEPES pH 7.5 and 150 mM NaCl, and then lysed by sonication. The His-

tagged recombinant protein was purified in two steps, using a pre-packed Talon metal affinity 

column (Clontech Laboratories, California, USA) and then a Hiload 16/60 Superdex 75 gel-

filtration column (GE healthcare, Pennsylvania, USA). Fractions suitable for spectroscopic 

characterization and crystallization trials were concentrated to 20 mg/ml and dialyzed against 

a 50 mM sodium phosphate buffer (pH 7) containing 300 mM NaCl. 

Crystallization  

Crystals were grown at 293 K using the hanging drop method, using 2.1 M (NH4)2SO4 

and 100 mM Bicine pH 8.0 as crystallization buffer. Rod-shaped yellowish crystals appeared 

within 24 h and reached their final size (typically 50 × 100 × 1000 µm3) within a few days.  

Cryoprotection 

For X-ray diffraction and UV-visible microspectrophotometry, photofatigued crystals 

were rapidly transferred to a cryoprotectant solution (10% glycerol/ 2.1 M (NH4)2SO4 

/100 mM Bicine pH 8.0) before being flash-frozen in gaseous nitrogen at 100 K. Glycerol was 

not used for Raman spectroscopy to avoid spectral contamination by this molecule. 

 

Photobleaching procedures 
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Photobleaching at room temperature 

To photofatigue IrisFP crystals under high-intensity conditions, we used our super-resolution 

PALM microscope. Crystallization drops were deposited on a glass slide, and were 

surrounded by several drops of crystallization medium to prevent drying.  The drops were 

covered with a coverslip and sealed with grease. The samples were then placed on the stage of 

an inverted microscope (IX-81, Olympus) equipped with a ×20 objective. 488-nm and 405-

nm lasers (Gaussian beam FWHMs: ~100 and ~200 µm) were then focused onto the part of 

the crystal to be treated (Figure S1A). Continuous illumination at 488 nm (73 W/cm²) was 

applied at room temperature for 10 minutes while the 405-nm laser (1 W/cm²) was turned on 

for 0.3 s every 2 s to restore the cis conformation of the chromophore. Only few crystals 

withstood this harsh treatment, which often resulted in significant unit-cell expansion in the 

bleached region, preventing the computation of accurate difference electron density maps. 

Higher laser power-densities resulted in crystal cracking and could not be used. To monitor 

photofatigue decays, the EMCCD camera of the microscope was replaced by a CCD-based 

spectrometer (AvaSpec-ULS2048, Avantes, Eerbeek, The Netherlands).  

Solution samples were treated similarly, except that the crystallization drops were replaced by 

films of polyvinyl alcohol (PVA) containing purified IrisFP at a concentration of 0.74 mM 

(Figure S2 and S3). 

To photofatigue IrisFP crystals under the low-intensity conditions, the same inverted-

geometry setup turned out to be inappropriate, as the much longer experiment time required to 

achieve extensive photofatigue typically resulted in crystal drying.  Thus, we designed an 

alternative setup based on an upright microscope which allowed photobleaching crystals 

directly in their crystallization trays (Figure S1B). Laser light was brought to the samples with 

a 200 µm diameter optical fiber, the tip of which was positioned above the crystal of interest 

with the aid of the microscope eyepieces. The measured FWHMs of the 488-nm and 405-nm 

laser beams obtained in these conditions at the sample position were ~220 µm (a smaller 

value than anticipated, possibly due to a lens effect of the crystallization drops). Crystals were 

continuously illuminated by the 488-nm laser (9 W/cm²) for 2 hours while the 405-nm laser 

(10 mW/cm²) was turned on for 4 s every 12 s to restore the cis conformation of the 

chromophore. The same optical fiber was used to detect fluorescence emission, which was 

redirected with a dichroic mirror to a CCD-based spectrometer. 
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In all cases, the switching cycles were terminated by a final exposure to 405-nm light to avoid 

the presence of residual non-fluorescing IrisFP molecules in their switched-off state.  

 

Photobleaching at cryogenic temperature 

Photofatigue of crystalline IrisFP at cryogenic temperature (Figure S4) was performed 

using a microspectrophotometer on which samples were mounted with standard cryoloops. 

Crystals were flash-cooled to 100 K by a nitrogen gas cryo-stream (Oxford cryostream, Series 

600, Oxford, UK). For photobleaching of the cis-state, crystals were mounted and illuminated 

by laser light (51 W/cm²) for 1 hour. For photobleaching of the trans-state, crystals were first 

illuminated in their crystallization drops by unfocused 488-nm light in order to isomerize the 

chromophore to the trans conformation. They were then mounted onto the spectrometer and 

illuminated by 405-nm laser light (40 W/cm²) for 1 hour. 

 

X-Ray data collection 

X-ray diffraction data sets were collected at 100 K at the European Synchrotron 

Radiation Facility (ESRF) on beamlines ID14-2 and ID29, with an ADSC Q210 and a 

PILATUS 6M detector, respectively, and at the Swiss Light Source (SLS) on beamline PXII, 

with a PILATUS 6M detector. Diffraction experiments on ID14-2 and PXII were combined 

with online microspectrophotometry in order to properly locate photobleached areas on the 

crystals, based on absorption spectra.  

The structure of photofatigued IrisFP under high-intensity illumination conditions 

(Figures 2C, 2D) was obtained at beamline ID14-2 of the ESRF. Two data sets were collected 

on the same crystal, one centered on the photobleached zone and the other on an intact zone. 

The X-ray beam size was 100 × 100 µm², somewhat larger than the photobleached zone. 

Many crystals showed a reduced diffraction quality in the photobleached area, usually 

coupled to a substantial increase in the unit-cell dimensions.  

The structure of photofatigued IrisFP under low-intensity illumination conditions 

(Figures 4C, 4D) was obtained at beamline PXII of the SLS. Two data sets were collected on 

the same crystal, one centered on the photobleached zone and the other on an intact zone. The 

X-ray beam size was 50 × 50 µm². Many crystals showed poor diffraction quality in the 
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photobleached area. Only a few moderately photofatigued crystals conserved acceptable 

diffraction quality, and the unit-cell dimensions always increased in the fatigued zone. 

The structure of X-ray bleached IrisFP (Figure S7) was collected at beamline ID29 of the 

ESRF. Two data sets were helically collected along the rod-shaped crystal in order to 

minimize the spread of X-ray damage within each data set.   

 

X-Ray data processing 

All crystallographic data sets were reduced with the XDS package.2 Data collection 

statistics are compiled in Table S1. Experimental difference electron density maps (Fobs, bleached 

– Fobs, green) were calculated with CCP43 after Bayesian q-weighting of the difference structure 

factor amplitudes4 performed with IDL (ITT, Boulder, Colorado, USA) and using phases from 

the green structure of IrisFP (PDB entry 2VVH). Such maps are able to reveal subtle 

conformational changes by a small fraction of the molecules in the crystal, but only in the 

absence of significant changes in the unit-cell dimensions. Under high-intensity illumination 

conditions, one crystal showed no such change and provided the data presented in Figure 2C. 

Due to the larger X-ray beam size relative to the bleached crystal volume, the fraction of 

bleached molecules observed crystallographically was estimated to be ≤ 20%. Under low-

intensity illumination conditions, unit-cell expansion in the bleached area was always too 

large to compute reliable experimental difference electron density maps. Instead, standard 

difference Fourier maps (Fobs, bleached – Fcalc, green) were generated (Figure 4C).  

NCS-averaged maps were calculated with Coot.5 Figures presenting crystallographic data 

were prepared with Pymol (Schrödinger, LLC., New York, USA).  

 

Model refinement 

In order to obtain refined models of pBlred and Blred, we employed the difference refinement 

method6 after a molecular replacement step using the program MOLREP7 with PDB entry 

2VVH as a search model. We used extrapolated structure factors: 
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where α is a scaling factor corresponding to the fraction of photobleached chromophores, q is 

the weight calculated from the ‘‘q-weighting’’ procedure4 and m is Read’s figure of merit.8 

Stereo-chemical restraints for the chromophore were taken as published in Roy et al.9 in order 

to properly describe the methylene bridge Cα carbon in a sp3-configuration and a planar 

imidazolinone ring. The structures were refined with PHENIX10 along with manual inspection 

and corrections in Coot.5  

In order to obtain a refined model of Bloxy, a standard refinement procedure using PHENIX10 

and Coot5 was employed. 

Refinement statistics can be found in Table S1. The relatively poor Rcryst and Rfree factors 

obtained for the structure of photobleached IrisFP under high-intensity illumination 

conditions is explained by the low occupancy of the photobleached state in the crystal volume 

probed by X-rays (α ≈ 0.2), resulting in rather high sigma values for the extrapolated structure 

factor amplitudes. However, the refined structure was found to correctly match the 

experimental difference electron density features of Figure 2C, providing credit to its 

significance.  

Atomic coordinates and structure factors amplitudes of IrisFP in states   Blred,  pBlred and Bloxy 

have been deposited in the Protein Data Bank (www.pdb.org) under the PDB accession codes 

4LJB, 4LJC and 4LJD, respectively. 

 

Optical microspectrophotometry  

Absorption spectra from IrisFP crystals (Figures 2 and 4) or PVA-embedded samples 

(Figure S2) were recorded at 100 K and at room temperature, respectively, using a 

microspectrophotometer setup described previously11. Solution spectra (Figure S2) were 

measured at RT using a 3-window quartz-cell (50 µL, optical path 3 mm). The cell was 

connected to the lamp and spectrometer of our microspectrophotometer setup through 100-µm 

optical fibers. Actinic light was delivered at right angle via a third fiber of 200-µm diameter, 

so that the laser beams covered completely the third window. For anaerobic measurements, 

the quartz-cell was nitrogen-bubbled beforehand and sealed (Figure S2 and S8). 

Spectroscopic data were processed using homemade routines based on the MATLAB 

software (The MathWorks Inc., Natick, Massachusetts, USA). Absorption spectra were 

corrected for background using a polynomial baseline subtraction. Model fitting of the 

photofatigue decays was performed with Origin (OriginLab, Northampton, Massachusetts, 

USA). Fluorescence emission spectra were corrected for background using an offset baseline 

subtraction at 450 nm. 
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Raman spectroscopy 

In crystallo Raman spectroscopy was performed at the Cryobench laboratory (ID29-1, 

ESRF). Off-resonance Raman spectra were recorded at 100 K from IrisFP crystals mounted in 

standard cryoloops, using a 785-nm laser. Samples were photofatigued using the same 

protocols as described above, except that, for the low-intensity illumination condition, crystals 

were prepared using the inverted PALM microscope, which allowed achieving only partial 

photobleaching before crystal drying occurred. As for X-ray data, Raman spectra were 

recorded on both bleached and non-bleached parts of the same crystal. Spectra were recorded 

in 10 min over the spectral window (200 – 2000 cm-1). Baseline subtraction was carried out 

with an automated baseline-flattening routine.12 Spectra were scaled with MATLAB (The 

MathWorks Inc., Natick, Massachusetts, USA), after normalization at the amide I band (1665 

cm-1). 

 

Mass spectrometry 

Mass spectrometry was used to confirm Glu212 decarboxylation and amino acids 

oxidation levels under high- and low-intensity illumination conditions, respectively. Crystals 

were prepared following the same protocol as described above, except that the entire crystal 

volume was treated. The crystals were then dissolved in 20 µl Tris buffer (50 mM, pH 8.0); 

Solution samples were directly prepared either in PVA films (to prevent molecular diffusion, 

high-intensity conditions, 1 µl, 740 µM) or in a quartz cuvette (low-intensity conditions, 

30 µl, 10 µM). Samples in 50 mM Tris were diluted to have a final concentration of 10% of 

acetonitrile; heated at 90°C during 5 min then cooled with an ice bath to unfold the FP 

structure. A 1/20 ratio of trypsin was added to the mixture and the digestion was extended 

overnight. ~ 100 ng of each trypsin digested sample was analyzed in triplicate by nano-liquid 

chromatography coupled to tandem mass spectrometry (Ultimate3000, Dionex and LTQ-

Orbitrap XL, Thermo Fischer, Waltham, Massachussets, USA). Fragments were identified 

using the Mascot software (version 2.4, Matrix Science) against a custom database containing 

the target protein.13 We specified Met/Trp/His/Tyr oxidations, Cys di- and tri-oxidation and 

Glu decarboxylation as possible variable modifications (Figure S9, Table S2). ESI-TRAP was 

selected as the analytical instrument, semi-Trypsin as the enzyme and 3 missed cleavage were 

allowed. Precursor and fragment mass error tolerances were set respectively at 10 ppm and 

0.6 Da. For the evaluations of the ratio between oxidized and non-oxidized forms, the 6 raw 

files were deconvoluted and aligned using the Decon-2ls and MultiAlign software suite. 
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(PNNL, Richland, WA). The intensities of the Mascot identified peptides corresponding to 

reduced and oxidized Met, Cys or Trp were compared in the two conditions. Averages and 

standard deviations of the percentages of oxidized forms were calculated from the triplicate 

experiments. (Figure S9). 

The Decon-2LS and Multi-Align softwares used for MS data processing were provided 

by the W. R. Wiley Environmental Molecular Science Laboratory, a national scientific user 

facility sponsored by the US Department of Energy’s Office of Biological and Environmental 

Research, located at PNNL. (OMICS.PNL.GOV). 

 

Quantum mechanical and molecular dynamics simulations 

To assess the chemical structure of the chromophore in both the pBlred (X-ray bleached) and 

Blred photobleached structures (a prerequisite to perform the molecular dynamics simulations), 

quantum mechanical (QM) calculations at the B3LYP/6-31G* level using Gaussian14 were 

performed. In the absence of experimental evidence concerning the charge state of the 

chromophore in these bleached structures, the anionic form, with a deprotonated phenolate 

ring, was assumed. The only simple way to account for the observed chromophore tilted 

geometry is that an H atom is added on the bridge carbon atom Cα, as previously described.9 

In such conditions, however, the chromophore becomes a free radical and something else 

necessarily happens. We examined if a second H atom may be accommodated by the 

imidazolinone ring. The requirement of the observed planar geometry of that ring excludes all 

sites except the oxygen atom O and the nitrogen atom N4 (see Figure S10). Three chemical 

structures were thus explored : two structures with an hydrogen atom on O, that differ from 

each other by the orientation of the hydroxyl group, either towards the phenolate ring 

(structure referred to as CαOI ) or in the opposite direction (CαOII), and the one with an 

hydrogen atom on N4 (CαN) (Figure S10). 

The QM calculations showed that the three structures are stable with respect to the addition of 

the second hydrogen atom, by an energy amount of 40-60 kcal/mol depending of the 

structure. 

Molecular dynamics (MD) simulations were performed in order to examine whether the X-ray 

bleached structure (Figure S7 and Table S3) might spontaneously transform into the Blred 

photobleached structure at room temperature. The chromophore force field, apart from the 

dihedral potential, was obtained as described previously.15 The missing carboxylate of Glu212 

was replaced by a hydrogen atom. For all standard amino-acids the AMBER force field “ff99” 
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was used.16 MD simulations were run with the parallel module PMEMD of the AMBER 

suite16 modified by Jonasson et al.15 that allows using coupled dihedral potentials. The MD 

protocol consists of minimization and equilibration phases, where constraints on the protein 

are progressively removed, followed by 4-ns free runs at constant temperature (300 K) and 

pressure (1 atm). In the case of the CαN chemical structure, four free runs were carried out, 

starting with different snapshots of the last equilibrium phase. For each of the two structures 

CαOI and CαOII three free runs were carried out in the same way. A run with the 

chromophore in its fluorescent cis form (see Jonasson et al.15 for the force field) was also 

performed in order to get some information about the influence of Glu212 decarboxylation 

and of chromophore denaturation.  

An essential point in the molecular dynamics simulations is the torsional behavior of the 

chromophore around Cα. It is expected to significantly differ from a free rotation profile, due 

to the two rings. We used coupled dihedral potentials V(τ,φ) (see Figure S10 for the definition 

of τ and φ) determined as in Jonasson et al.15 For each of the three reduced chemical  

structures, a specific potential was obtained by fitting an ab initio two dimensional potential 

energy surface (PES) calculated at the B3LYP/6-31G* level using Gaussian.14 The three PES 

are shown in Figure S11. The iso-energy curves around the minima are ellipses with axes 

largely tilted by respect to the τ and φ axes, showing that the usual additive form V(τ)+V(φ) 

would have been inappropriate to fit the dihedral profile. 

 

Laser beam heterogeneity  

In all cases, photofatigue experiments were carried out using laser beams adopting a near-

Gaussian two-dimensional profile rather than a top-hat profile. Therefore, the beam power-

densities were not homogeneous throughout the samples. Notably, under our “high-intensity” 

illumination conditions, a fraction of the IrisFP molecules at the periphery of the illuminated 

profile rather experienced “low-intensity” illumination conditions. For a monophasic 

photobleaching process, it has been shown that the observed fluorescence emission decay of a 

sample bathed in a Gaussian-shaped laser beam can be expressed as:17 
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where a is the radius of the laser beam and τ0 is the inverse of the bleaching rate at the beam 

center. Attempts to fit our photofatigue decays (Figures 1 and 3) using such a model did not 
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provide satisfactory results, suggesting that in both cases the photobleaching processes are 

multiphasic. The most satisfactory fit with a biphasic model under both low- and high-

intensity illumination conditions is likely to incorporate both the effects of the beam 

heterogeneity and the various bleaching mechanisms that may be present. The different decay 

profiles observed in the two illumination conditions, however, strongly suggest that a distinct 

distribution of bleaching mechanisms are involved in the two cases. The more pronounced 

biphasic shape of the photofatigue decay under high-intensity illumination is consistent with a 

large fraction of the molecules experiencing oxygen-independent bleaching while a smaller 

fraction, remote from the beam center, experiences slower, oxygen-dependent bleaching. 

It should be noted that the various techniques used in this work to probe photobleaching 

mechanisms typically interrogate volumes of the treated crystals that differ in size: mass 

spectrometry used the entire crystal volume (photofatigued on multiple spots), crystallography 

typically employed a  100 µm diameter X-ray beam of approximately the same size as the 

photofatigued region (but possibly slightly offset), fluorescence spectroscopy used exactly the 

same size (with no offset), optical absorption microspectrophotometry used a 50-µm white-

light beam slightly smaller (with little offset), and Raman spectroscopy used a ~10-µm near-

IR-laser beam much smaller than the photofatigued region (with little offset).  

We also note that, on the PALM microscope, the size of the 405 nm beam was larger than that 

of the 488 nm beam. As a result, for samples treated on this microscope, volume peripheral to 

the photofatigued region underwent green-to-red photoconversion (Figure S12A). Residual 

difference electron density map corresponding to this photoconversion is visible in figure 2C 

around the Phe61-His62 backbone linkage. A calculated difference density map between the 

models of green and red photoconverted IrisFP (Figure S12B) confirmed that no other density 

features observed in Figure 2C may originate from unwanted photoconversion. 

 

Detailed results on QM and MD simulations 

The three torsional landscapes of the chromophore corresponding to the three putative 

chemical structures of the bleached pBlred and Blred states largely differ from each other 

(Figure S11). In the case of the CαN structure it presents a deep energy minimum around the 

geometry τ=0°, φ=±90°. In the case of CαOI a deep minimum is also observed, centered on 

τ=180°, φ=±90°. Concerning CαOII, the energy profile is very flat compared to the preceding 
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ones, allowing very large torsional movements away from the minimum energy point centered 

at  τ=120°, φ=-75°. 

The main results of the MD simulations are summarized in Table S4.  

CαOI structure: No switch of Arg66 and His194 is observed in any of the three runs. 

The internal forces of the chromophore drive it to conformations with τ and φ average values 

equal to respectively 169° and -74°, near the equilibrium geometry of the isolated 

chromophore. Inspection of the chromophore environment in the MD trajectories shows that 

in these conformations the phenolate ring hinders the movement of the Arg66 sidechain that 

would drive this residue to its conformation in Blred (Figure S13A). 

CαOII structure: No switch happens in the first two runs. Average values of τ and φ 

are 146° and -60°, values located in the large basin of the potential energy surface, close to 

the minimum energy point. Inspection of the trajectories lead to the same analysis as above: 

the movement of Arg66 is prevented by the phenolate. In the third run the switch is observed 

at the very beginning of the run, when the phenolate ring does not yet block the Arg66 

displacement.  

An interesting feature of the CαOI and CαOII MD simulations is the significant 

weakening of the usually strong hydrogen bond between the imidazolinone oxygen O with 

Arg91, clearly due to the addition of the hydrogen atom on O.  

CαN structure: With this chemical structure, the mean values of the dihedral angles τ 

and φ are 25° and -85°. In such geometries the phenolate ring lets the Arg66 sidechain free to 

move (Figure S13B), and the switch is observed in all four runs. This results in the loss of the 

H-bond between His194 and Glu144, and in the formation of two new H-bonds: a strong one 

between His194 and Arg66, and a non-permanent one between His194 and Ser142. Figure 

S14 shows that these H-bond modifications are simultaneous. In addition a first movement of 

Arg66 was observed in the last part of the equibration phase, leading to the formation of a H-

bond with Glu144.  

The mean value of τ (25°) is in good agreement with the experimental values in the 

Blred photobleached structure. The large fluctuations observed (standard deviation of 16°, 

much larger than the 6° deviation observed for the fluorescent chromophore) are consistent 

with the disorder of the phenolate in the crystallographic structure. The mean value of φ is -

85°, far from the crystallographic values. However this comparison is not pertinent due to the 

observed disorder of the phenolate. 
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It is worth noting that the rearrangement of the switch of Arg66 and His194 is 

observed with the fluorescent planar cis chromophore as well, as long as Glu212 is 

decarboxylated. Thus, Glu212 decarboxylation, resulting in an H-bond missing for His194, 

appears to be sufficient to induce this rearrangement, provided that the phenolate does not 

hinder the displacement of Arg66.  

These results show that IrisFP structural dynamics at 300 K is indeed able to drive 

His194 and Arg66 from their conformations in the cryo-X-ray-bleached structure towards 

those in the Blred photobleached one, adding value to the notion that the former structure may 

be viewed as an intermediate along the Blred bleaching pathway. More generally, they strongly 

suggest that the decarboxylation of Glu212 is sufficient to induce the large displacement of 

His194 and Arg66. The results also provide an answer to question (iii) of the main text, 

concerning the chemical structure of the chromophore : the most probable structure is the 

zwitterionic CαN. 

Modeling of kinetic scheme 

In order to simulate the observed two-regime bleaching behavior, we consider the kinetic 

scheme S15. 

The chromophore in its singlet ground state S0 absorbs photons with rate kex, exciting it 

to the first singlet excited state S1 from where it can return to S0 by fluorescence or non-

radiative decay (both processes described by rate kF). Alternatively, the singlet excited 

chromophore can undergo intersystem crossing to the triplet excited state T1 with rate kIS. T1 

may then engage into a number of pathways.  

First, it can spontaneously convert to the ground state (rate constant kT1,1), or be 

quenched by triplet oxygen (rate constant kT1,2), creating highly reactive singlet oxygen. 1O2 

may in turn face three different fates : intersystem crossing to restore triplet oxygen (k1), exit 

from the protein to the solvent (k2) or reactive attack on the FP itself, thus leading to 

permanent oxygenic bleaching of the chromophore fluorescence (state Bloxy formed with k3).  

Second, T1 may experience electron/proton transfer with rate constant k4, leading to a 

doublet radical state DH•. This « blinked » dark state may either recombine with rate constant 

k5 to the intact singlet ground state or further react with rate constant k6 to a permanently 

(« redox ») bleached state Blred.
9 

Third, T1 may undergo a second excitation to a higher excited triplet state Tn that may 

rapidly return to the ground state or go through electron/proton transfer to the permanently 

bleached state Blred (we assume that this bleached state is close or identical to that reached 



 S12

through DH•). The overall rate for this latter process is unknown but is likely to be limited by 

the preceding second excitation; therefore the whole process is described by the rate constant 

kT1,ex. 

Within the framework of this simplified kinetic scheme, there exist two possible 

mechanisms that can introduce a dependence of the prevailing bleaching pathway on the 

excitation rate kex. 

 

A) The T1 state is populated by kex via kIS and depopulated essentially by kT1,2, fuelling the 

k3 oxygen dependent bleaching pathway. If, in the high-energy case, oxygen 

replenishment by kO2,in and k1 is too slow to compete with kex, the lack of available 

oxygen within the FP barrel will be limiting the Bloxy pathway. The entry and exit rates 

of oxygen in and out of the barrel are poorly known and therefore, we introduce kO2,in 

as well as kO2,out as adjustable parameters. 

 

B) The weight of the Tn pathway will increase with kex, as the chance of the absorption of 

the second photon necessary for this pathway is directly proportional to the excitation 

power density, ie kT1,ex.α kex. However, currently the absorption cross section of T1 is 

not known, and we use kT1,ex as an adjustable parameter for the probability of this 

pathway.  

 

Fixing the rate constants to the values given in the legend of Figure S16 and varying the 

excitation power density from 10 to 100 W.cm-2, we can actually observe the gradual change 

from prevailing oxidative damage to more and more redox and second photon induced 

decarboxylation with increasing energy (Figure S16). 

  

Raman spectra from photobleached crystals 

Modifications of the Raman spectra of IrisFP crystals induced by photobleaching at high 

illumination intensity are drastic throughout the whole investigated wavenumber range 

(Figure 2B), indicative of the chemical transformation of the chromophore. In addition to the 

complete disappearance of the bands at 1503 cm-1, 1545 cm-1, 1564 cm-1 and 1604 cm-1 

described in the main manuscript, many bands in the range 1000 to 1500 cm-1 are also 

strongly decreased, while a few others appear or are increased. A precise assignment of these 

vibrational bands has not been performed, but some indications can be given based on 
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previous work on the HBDI chromophore.18 The decreased band at 1037 cm-1 can be assigned 

to a coupled imidazolinone C-C stretching mode and C=O mode. The decreased bands at 

1093 cm-1 and 1111 cm-1, and the increased band at 1069 cm-1are unassigned. The strongly 

increased band at 1137 cm-1 is possibly assigned to an imidazolinone mode, while the 

vanished bands at 1154 and 1172 cm-1 could be assigned to a phenol C-H deformation band. 

Decreased bands at 1217 and 1260 cm-1 are unassigned. The increased band at 1304 cm-1, and 

the decreased bands at 1321 and 1338 cm-1 are possibly assigned to phenol modes. The 

decreased band at 1375 cm-1 and the increased band at 1395 cm-1 are unassigned. The slightly 

decreased strong band at 1448 cm-1 could possibly be assigned to a phenol C-H deformation 

mode, and the slightly increased band at 1484 cm-1 remains unassigned. The disappearance of 

the ill-defined band around 1665 cm-1 could correspond to an imidazolinone C=O stretching 

mode. Although the exact interpretation of all these changes remains out of the scope of this 

paper, they strongly suggest that the chemical structure of the chromophore is not only altered 

at the methylene bridge, but also at the phenol and imidazolinone cyclic moieties, consistent 

with our proposal of a reduced chromophore.  

Modifications of the Raman spectra induced by photobleaching at low illumination intensity 

appear much less pronounced throughout the entire wavenumber range (Figure 4B), although 

in this case an incompletely bleached crystal was interrogated, which limits the accuracy with 

which spectral modifications can be detected. The reason for partial bleaching was to probe 

the Raman signature of the Met159 sulfoxidation reaction, while avoiding the overall barrel 

destabilization due to oxidation of residues more remote from the chromophore that was 

found to occur upon long illumination. Apart from the protonation of the chromophore, as 

described in the main manuscript, these Raman spectra suggest that the chemical structure of 

the chromophore remains chemically unaltered under these conditions.  
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Scheme S1.  Structural formula of the 4-(p-hydroxybenzylidene)-5-imidazolinone 
chromophore with atom labeling. 
  



 S17

 

Figure S1.  Optical setups for photofatigue of IrisFP crystals under conditions of high 
(A) and low (B) power density. M, mirror; DM, dichroic mirror; AOTF, acousto-optic 
tunable filter. (C) From left to right, photographs of an IrisFP crystal before, during 
and after experiment.  
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Figure S2. Absorption spectra of IrisFP in the solution state, normalized at 280 nm: 
Prior to illumination (green); Under aerobic illumination: after 570 switching cycles at 
low-intensity (red), after 184 cycles at high-intensity in PVA gel (blue); Under 
anaerobic illumination: after 744 switching cycles at low-intensity (dark gray). 
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Figure S3. Photobleaching of IrisFP in the absence of oxygen mainly proceeds via a 
two-subsequent-photon absorption process. The fast component of a bi-exponential 
fit of the photo-fatigue envelope kinetics was used as the photo-fatigue rate. In this 
doubly logarithmic presentation, a linear fit (red line) of this rate as a function of the 
incident power density of the 488 nm beam gives a slope of 1.8 ± 0.3. The inset 
shows the same data with a linear presentation. The error bars represent the 
confidence interval of the fitted time-constant to the photofatigue curves. Actual 
errors are expected to be larger due to additional experimental imperfections.  
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Figure S4. Visible-light-induced photobleaching at cryogenic temperature (100 K) 
shows a clear decarboxylation of Glu212 both in cis and trans conformations. (A) 
Photobleaching in trans conformation by 405-nm laser. NCS-averaged Fobs-Fcalc 
difference electron densities are displayed in green (+6.5 σ) and red (-6.5 σ), 
respectively. (B) Photobleaching in cis conformation by 488-nm laser. NCS-averaged 
Fobs-Fcalc difference electron densities are displayed in green (+4.5 σ) and red (-
4.5 σ), respectively. 
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Figure S5. (A) Overall view of structural changes upon high-intensity-photobleaching 
of IrisFP. The structural modifications depicted by NCS-averaged electron density 
difference maps (± 6 σ) are all located around the chromophore. (B) Overall view of 
structural changes upon low-intensity-photobleaching of IrisFP. The major structural 
modifications depicted by NCS-averaged electron density difference maps (± 5.3 σ) 
are all located around the chromophore, near Met159 and Cys171. The negative 
densities in the back and in the front of the chromophore are due to disordered 
sulfate molecules. 
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Figure S6. (A-D) Structural changes in monomers A to D induced by low-intensity 
photobleaching. 2Fobs-Fcalc (1 σ) and Fobs-Fcalc (± 3.0 σ) electron density maps are 
shown as blue and green/red meshes respectively. No negative density is observed. 
(E-H) Surface view of monomers A to D of the IrisFP β-barrel. No access to the 
chromophore through the surface is visible in monomer C, which might explain the 
absence of  significant sulfoxidation detected on Met159 in that monomer.  
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Figure S7. Structural modifications resulting from X-Ray-induced photobleaching. A 
NCS-averaged experimental electron difference density map is displayed. Positive 
density is shown in green (+6 σ) and negative density is shown in red (-6 σ), overlaid 
on the structure of the intact IrisFP chromophore pocket (PDB code 2VVH). 
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Figure S8. pH titration of the neutral absorption band of IrisFP solution samples, 
following low-intensity photobleaching. A Henderson-Hasselbalch fit (red curve) 
yields a pKa of 11.9 ± 0.2 for the oxidation-photobleached chromophore. Note that 
progressive protein denaturation makes the measurement of absorption values at pH 
>11 increasingly unreliable. 
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Figure S9. Mass spectrometry analysis of oxidation in non-illuminated IrisFP (green 
bar) and low-intensity-illuminated (red bar) samples. Only peptides identified in both 
non-oxidized and oxidized forms by the Mascot software are shown. Peptides 
displaying oxidation levels below 1% in both samples are not represented. Peptides 
containing Tyr78, Tyr211 and W86 fall in this category, although the data show a 
detectable increase in the oxidation level of these residues upon low-intensity-
illumination. Due to sample pre-treatment (heating and digestion) before injection into 
the mass spectrometer, some background oxidation of sensitive residues is generally 
observed on the intact, non-bleached IrisFP, as is commonly the case.19 The high 
scatter of oxidation state of the very sensitive Met159 from the reference sample is 
explained by the time dependent oxidation of the sample during the analytical 
process. The only way to evaluate Cys171 oxidation was through a low abundance 
miss-cleaved peptide. The non-oxidized form was not observed in any condition, but 
various oxidation states appeared in the illuminated sample. It was therefore 
impossible to derive a ratio for the corresponding peptide. For Cys195, the evaluation 
of the oxidation corresponded to the ratio of two oxidation states. Overall, these data 
clearly suggest that, upon low-intensity illumination, photo-oxidation occurs not only 
on residues close to the chromophore but also on more distant ones. 
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Figure S10. Lewis representation of the different chemical structures considered in 
this work. CαN, CαOI, CαOII describe reduced forms of the chromophore and differ 
by the two hydrogenated sites. 
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Figure S11. Potential energy surfaces (PES) for the different reduced forms of the 
chromophore. (A) CαN, (B) CαOI, (C) CαOII. Energies in kcal/mol. 
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Figure S12. A: Picture of the photobleached IrisFP crystal used for X-ray data 
collection. Due to the larger 405 nm laser beamsize as compared to the 488 nm laser 
a volume peripheral to the photofatigued region underwent green-to-red 
photoconversion. B: Fcalc,red-Fcalc,green map (± 9 σ) upon photoconversion in IrisFP: the 
difference density features are localized on the Phe61-His62 linkage. 
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Figure S13. Snapshots extracted from molecular dynamics simulations, showing the 
3D organization of the chromophore and Arg66.  
(A) During CαOI simulation: τ=150° and ϕ=-80°. (B) During CαN simulation: τ=28° 
and ϕ=-85°. The arrow indicates the type of movement that the Arg66 side chain 
would undergo to reach its position in the high-intensity-photobleached structure. The 
phenolate hinders this movement in (A) but not in (B). 
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Figure S14. Characteristic distances of the H-bond network between Arg66, Glu144, 
His194 and Ser142, as a function of time in the four CαN simulation runs. Blue: 
His194(NE2)-Glu144, Red: His194(ND1)-Arg66, Green: His194(NE2)-Ser142. 
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Figure S15. Putative kinetic model representative of a two-regime photobleaching in 
IrisFP. Description of the rate constants is provided in the SI text. Yellow arrows 
represent chemical steps involving e.g. electron/proton transfer or sulfoxidation 
reactions. Blue arrows represent entry/exit of oxygen species. 
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Figure S16. Power-dependence simulation of the different bleaching pathways. The 
fractions of photobleached protein by the respective pathways Blred (blue squares) 
and Bloxy (red squares) are calculated as a function of excitation power density upon 
illumination for a time chosen so that 15% of molecules are bleached. Rate constants 
described in Figure S15 were chosen as: kF=0.33×109 s-1, kex=5-50×103 s-1, 
kT1,ex=0.15×kex, kIS=0.3×106 s-1, k1=4.0×103 s-1, k2=3.9×106 s-1, k3=1.2×105 s-1, 
kT1,1=5.0×103 s-1, kT1,2=1.2×106 Mol-1s-1, k4=3.0×104 s-1, k5=1.0×104 s-1, k6=1.0×101 s-

1, kO2,in=5.0×107 Mol-1s-1, kO2,out =1.0×105 s-1 with [O2]medium=200 µM. 
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Table S1. Crystallographic data collection and refinement statistics.  
 

 
High-intensity 
photobleaching 

X-ray-induced 
photobleaching  

Low-intensity 
photobleaching  

PDB entry 4LJB 4LJC 4LJD 
Data collection 
  Beamline ID14-2 ID29 PXII3 
  Wavelength, Å 0.933 0.997 0.999 
  Space group P 212121 P 212121 P 212121 
  Cell dimensions    
      a, Å 86.09   86.64    85.99    
      b, Å 96.41 96.81 96.53     
      c, Å 140.03 140.69 140.19 
  Resolution, Å 47.32-1.9 (2.0-1.9) 48.41-1.86 (1.96-1.86)  47.34-2.5 (2.64-2.5) 
  *Rsym, % 6.8 (42.2) 6.2 (42.5)  7.5 (49.4) 
  Mean I/σ(I) 11.4 (3.2) 10.4 (2.5)  11.8 (2.7) 
  Completeness, % 99.2 (99.2) 99.3 (98.6)  97.8 (97.5) 
  Redundancy 4.2 (4.1) 3.3 (3.2)  3.4 (3.5) 
  No. of unique reflections 91193 (13214) 99096 (14169)  40095 (5752) 
Wilson B factor, Å2 34.9 24.8 55.6 
Refinement   
 # Rwork/Rfree 0.34/0.38 0.20/0.24 0.20/0.25 
  Average B factor, (Å²) 27.9 27.0 29.0 
  Rmsd    
      Bond length, (Å) 0.009 0.012 0.006 
      Bond angles, (°) 1.52 1.63 0.93 
  Ramachandran statistics (%) 
      Favored 99.4 100 99.1 
      Allowed 0.6 0 0.9   
      Outliers 0 0 0 

*Rsym = ΣjΣh|Ih,j – 〈Ih〉|/ΣjΣh Ih,j
 

# Rwork= Σh|Fobs – Fcal|/ΣhFobs, Rfree is calculated with a small fraction (5 %) of reflections chosen to be 
part of a test group. 
Values in parentheses refer to the highest resolution shell. 
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Table S2. Mass spectrometry analysis of IrisFP decarboxylation. 
 

 
Decarboxylation 
(E212) 

#Native IrisFP 0% 

#Low energy solution 3.4% 

*Low energy solution (anaerobic) 18.8% 

¤High energy in crystallo 26% 
 
#,*,¤ : Different digestion times used. (Due to the amount of sample necessary for mass-spectrometry 
analysis, high-energy experiments in the solution state (requiring highly focused laser beams) could 
not be successfully conducted.) 
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Table S3. Distances in the crystallographic structures (chain A). 
 

 X- ray bleached 
structure 

High-intensity photo-
bleached structure 

Glu144(OE1)-His194(NE2) 2.9 5.8 
Glu144(OE1)-Arg66(NE) 3.3 3.0 
Arg66(NH1)-CRO(O) 3.2 6.4 
Arg66(NH2)-CRO(O) 2.9 7.2 
Arg66(NH1)-His194(ND1) 5.4 3.1 
Arg66(NH1)-Glu144(OE1) 3.8 2.8 
His194(NE2)-Ser142(OG) 5.9 2.9 

 
CRO(O) : oxygen atom of the imidazolinone ring of the chromophore. Bold characters: distances in 
qualitative agreement with the existence of a hydrogen bond. Distances in (Å) 
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Table S4. Molecular dynamics results and crystallographic structures.  
 

 
Switching between 
Arg66 and His194? 

Calculated 
switching time [ps] 

τ [°] φ [°] 

MD simulations on the chemical structures of the chromophore 
Cis (planar) Yes 10 -4  (6) -4  (6) 
CαN Yes 830 30 (15) -85 (11) 
 Yes 170 28 (15) -85 (11) 
 Yes 410 22 (14) -85 (11) 
 Yes 550 22 (16) -85 (11) 
CαOI No - 173 (9) -75 (8) 
 No - 166 (8) -71 (9) 
 No - 167 (8) -77 (8) 
CαOII No - 150 (8) -60 (9) 
 No - 142 (8) -60 (10) 
 Yes 5 127 (12) -69 (9) 
Crystallographic structures 
X-ray bleached 
structure 

No - [25,33] [-41,-14] 

High-intensity photo-
bleached structure 

Yes ND [4,43] [-48,-12] 

 
Numbers in parenthesis are the standard deviations in the MD simulations. The different switching 
times and dihedral angles values report results obtained for the different MD simulation runs. For 
crystallographic structures the interval covered by the values taken in chains A, B, C and D is given. 
 



2 Articles 

 

67 
 

Abstract of article 2 
Based on our previous results on the IrisFP photobleaching mechanism, we have 

identified that Glu212 is importantly involved in the high-intensity illumination 

photobleaching pathway and Met159 is importantly involved in the low-intensity illumination 

photobleaching pathway. Therefore, thanks to Xavier HENRY (Pneumo lab, IBS), we 

obtained IrisFP-E212Q and IrisFP-M159A mutants with the intent to improve the resistance 

against photofatigue under high- or low-intensity illumination, respectively. It is well-known 

that Glu212 has a very important role during the chromophore maturation. During the 

dehydration step, the carboxyl group of this Glutamate serves as a proton donor to the 

hydroxyl leaving group. Replacing Glu212 by Gln hindered chromophore maturation, leaving 

us too little protein to perform complicated experiment. This phenomenon was already 

observed before in Hydrozoan EGFP (Sniegowski et al., 2005). Therefore we turned our focus 

to the IrisFP-M159A mutant and investigated it. We transformed plasmidic DNA into E.coli 

cells for expression and then we were able to purify the IrisFP-M159A protein. The native 

crystallographic structure was resolved; photophysical characterization and comparative 

photofatigue experiments to its parent protein in vitro and in vivo were performed.  

As expected, the IrisFP-M159A mutant displays an enhanced photoresistance under 

low-intensity illumination under various conditions: in solution, in PVA gel, in fixed and live 

E.coli cells. This enhanced photoresistance by the single mutation of Met159 confirms our 

finding in the previous paper that under low-intensity illumination, the sulfoxidation of nearby 

sulfur-containing Met159 is the predominant reason of photobleaching. 

The same experiments were also carried out in PVA gel and in E.coli cells under high-

intensity illumination. We also observed a photoresistance enhancement in fixed and live 

cells, which suggests that Met159 plays an unknown role in high-intensity illumination 

photobleaching. From this study, we cannot completely understand the role of Met159 under 

high-intensity illumination conditions. Further investigation should be carried out.   
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ABSTRACT: Fluorescent proteins are particularly susceptible to photobleaching, the permanent loss of fluorescence 
emission resulting from photodestruction of the chromophore. In the case of Reversibly Switchable Fluorescent Proteins 
(RSFPs), which can be switched back and forth between a non-fluorescent and a fluorescent state, the achievable number 
of switching cycles is limited by photobleaching, a process known as photofatigue. Photofatigue has become a crucial 
limitation in a number of advanced applications based on repeated photoswitching of RSFPs, notably in the field of super-
resolution fluorescence microscopy. Here, based on our previous structural investigation of photobleaching mechanisms in 
IrisFP, an RSFP also capable of green-to-red photoconversion, we present the rational design of a single-mutant IrisFP-
M159A that displays considerably enhanced photostability. The results suggest that, under moderate illumination 
intensities, photobleaching of IrisFP-like Anthozoan fluorescent proteins such as EosFP, Dendra or Dronpa derivatives is 
mainly driven by an oxygen-dependent mechanism resulting in the irreversible sulfoxidation of methionine 159. The 
photofatigue decay profiles of IrisFP and its photoresistant mutant IrisFP-M159A were investigated in different 
experimental conditions, in vitro and in cellulo. Although the performance of the mutant was found to be always superior, 
the results showed switching behaviors strongly dependent on the nanoenvironment. Thus, in general, assessment of 
photostability and switching properties of RSFPs should be carried out in real experimental conditions.  

 
 

1. Introduction 

 
Fluorescent proteins (FPs) have become essential tools in fluorescence imaging. 

PhotoTransformable Fluorescent Proteins (PTFPs) constitute an important subset of the FP family, 

displaying specific photophysical properties such as photoactivation, photoconversion and 

photoswitching. Because their fluorescence states are controllable by light, PTFPs have largely 

contributed to revolutionize the field of fluorescence imaging in recent years [1,2,3]. Amongst PTFPs, 

Reversibly Switchable Fluorescent Proteins (RSFPs) [4] offer the widest panel of applications. RSFPs 

can be switched back and forth between a fluorescent and a nonfluorescent state, which has recently 

led to the development of a number of smart methods including reversible data biostorage [5,6], 

photochromic FRET [7] and a variety of nanoscopy approaches. Amongst the latter, photochromic 
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Stochastic Optical Fluctuation Imaging (pcSOFI) [8], Nonlinear Structured Illumination Microscopy 

(NSIM) [9] and REversible Saturable Optical Linear Fluorescence Transitions (RESOLFT) [10] 

critically rely on the ability of the RSFPs to perform a high number of switching cycles. For example, 

in RESOLFT nanoscopy, a confocal setup is used and at each scanner position, a donut-shaped beam 

with a central zero intensity is applied to switch off the RSFP labels at the periphery of the Point 

Spread Function (PSF). A probe beam is then applied to readout the fluorescence from the labels that 

are still in their on-state at the center of the PSF, followed by a reset beam to restore the on-state over 

the entire PSF. To achieve a high spatial resolution, small laser-scanning steps are chosen and a given 

RSFP is thus submitted to many photoswitching cycles (typically ~100 to achieve a spatial resolution 

of 1/10 of the PSF width in both X and Y dimensions), requiring a strong resistance to photofatigue in 

addition to other key parameters such as a high fluorescence brightness and a high switching contrast. 

Continued engineering efforts have been dedicated to the development of RSFPs with 

improved photophysical properties [1,3,4]. Structural views of the chromophore isomerization based 

switching mechanism have facilitated the rational design of RSFPs switching at various rates 

[11,12,13]. In contrast, the lack of a precise understanding of photobleaching mechanisms has only 

allowed the engineering of photoresistant variants by directed-evolution approaches [13,14]. 

Nonetheless, the development of hydrozoan RSFPs based on EGFP and EYFP has resulted in fatigue-

resistant switchers such as rsEGFP [6] and Dreiklang [15] and recently rsEGFP2 [16] has been shown 

to display high photostability and fast switching speed, thus largely increasing the potential of 

RESOLFT nanoscopy. 

Photobleaching in fluorescent proteins is caused by the irreversible photodestruction of the 

chromophore or alteration of neighboring residues. However, the underlying photochemical 

mechanisms remain incompletely understood. A recent study of IrisFP [17], a tetrameric RSFP of 

Anthozoan origin, showed that two completely different photobleaching mechanisms can happen 

depending only on the intensity of the excitation light [18]. IrisFP is a single mutant of EosFP (EosFP-

F173S), is both switchable and photoconvertible, and presents high sequence identity and structural 

similarity to well-known PTFPs such as mEos2, Dendra2 or Dronpa. Under relatively high-intensity 

illumination conditions (> 0.1 kW/cm², typical of single molecule localization based nanoscopy), 

photobleaching of IrisFP is caused by decarboxylation of the strictly conserved Glu212 (IrisFP 

numbering) coupled to an sp2-to-sp3 hybridization change of the central carbon atom of the 

chromophore methylene bridge and an extensive rearrangement of the H-bond network surrounding 

the chromophore. In contrast, under low-intensity illumination conditions (~0.01 kW/cm², typical of 

standard widefield fluorescence imaging), Met159, a highly conserved residue in anthozoa PTFPs 

located next to the chromophore hydroxybenzylidene moiety, undergoes a sulfoxidation reaction that 

results in trapping the chromophore in a permanent nonfluorescent protonated state. Sulfoxidation of 

Met159 follows from the production of singlet oxygen within the chromophore pocket due to triplet-
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triplet reaction of the excited chromophore with molecular oxygen. Thus, Met159 was identified as a 

key residue in IrisFP photobleaching under oxygenated conditions.  

Here, we replaced Met159 by Alanine in IrisFP in order to increase photofatigue resistance at 

least under low intensity illumination condition. A structural view of IrisFP-M159A is presented and 

photofatigue experiments in solution, in polyvinyl-alcohol (PVA) gels and in bacterial cells were 

performed at low and high illumination intensities to compare the achieved performance of the 

designed variant with that of its parent protein. 

 

2. Materials and Methods 

Expression and purification 

The M159A mutation in IrisFP/pQE32 was introduced by site-directed mutagenesis with 

oligonucleotide primers purchased from Invitrogen (Life Technologies, Saint Aubin, France). E.coli 

BL21(DE3) bacteria were transformed by plasmidic DNA for expression of both parent and mutant 

His-tagged proteins. Bacterial cultures were grown at 37°C and the overexpression was induced by 

adding 0.1 mM IPTG once the optical density at 600 nm reached 0.6. Cultures were then incubated at 

4°C for 7 days. Cells were harvested by centrifugation and resuspended pellets (150 mM NaCl/50 mM 

HEPES pH 7.5) were lysed by sonication. Supernatants containing crude protein extracts were purified 

using a pre-packed Talon metal affinity column (Clontech Laboratories, California, USA) followed by 

a HiLoad 16/60 Superdex 75 gel-filtration column (GE Healthcare, Pennsylvania, USA). Fractions 

were pooled and concentrated to 20 mg/ml. 

 

Crystallization, X-ray data collection and data processing 

Crystals of IrisFP-M159A were grown at 293 K by the hanging drop method, using a 1:1 ratio 

of concentrated protein and 2.1 M ammonium sulfate / 0.1 M Bicine (pH 8.1). The rod-shaped 

yellowish colored crystals dimensioned 50 × 100 × 500 µm3. X-ray data were collected at 100 K at the 

European Synchrotron Radiation Facility (ESRF, Grenoble) on the beamline ID14-4 (X-ray 

wavelength λ = 0.939 Å) equipped with an ADSC Q315r detector. Data sets were integrated and 

scaled at 2.0 Å resolution with XDS [19]. The crystal structure of IrisFP-M159A (PDB ID: 4R6B) was 

solved by molecular replacement with Molrep [20], using the coordinates of one monomer of IrisFP 

(PDB ID: 2VVH) as a search model. Refinement was made with Phenix [21]. Data collection and 

model refinement statistics are compiled in Table 2. Figure 2 was prepared with PyMOL [22]. The 

structure of the protein in its switched-off state could not be obtained due to compromised diffraction 

after laser illumination of crystals. 
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Photophysical characterization in solution 

Purified proteins were diluted in Tris buffer (pH 8.5) to ensure that chromophores were 

completely in the anionic state and concentrations were adjusted to an optical density OD = 0.1 at 488 

nm. Samples were placed in a 10 mm optical path quartz cell with blackened walls and two opposite 3 

x 5 mm2 clear windows (Starna, Pfungstadt, Germany). The cell was filled to the upper limit of the 

window, closed with a plastic stopper and placed between optical fibers, coupled to excitation lasers 

on one side and, via a 500 nm cutoff filter (EdgeBasic, Semrock), to a CCD-based spectrometer 

(AvaSpec-ULS2048L, Avantes, Eerbeek, the Netherlands) on the other side. The switching-off laser 

(488 nm, CrystaLaser, Reno, USA) also served for readout and thus was on permanently, whereas the 

activation laser (405 nm, CrystaLaser, Reno, USA) was only on during periods of on-switching. High-

resolution photoswitching cycles were recorded by placing a microlens array (Thorlabs) between the 

fiber output and the quartz cuvette entry window so as to produce a fully homogenized excitation 

beam. Data were recorded for ~1 h with a cycle time of 10 min and an on-switching duration of 3 min. 

(405 nm: 1.3 mW/cm², 488 nm 8 mW/cm²). For photofatigue experiments, sufficient laser power 

densities could not be obtained with the microlens array, which thus was replaced with a collimating 

lens despite the loss of homogenized beam profiles. Photofatigue was studied for >18 h with a cycle 

time of 20 s and an on-switching duration of 3 s. (405 nm: 0.03 W/cm², 488 nm 0.04 W/cm²). Laser 

powers were measured behind the exit window of the water-filled cell. 

Microscopy setup 

Photobleaching experiments were performed on an inverted microscope (IX-81, Olympus) 

with a 100× oil immersion objective equipped with a NPS nosepiece (Olympus). Samples were 

illuminated by circularly polarized 488-nm (Spectra-Physics, Santa Clara, USA) and 405-nm 

(CrystaLaser, Reno, USA) gaussian-shaped laser beams with FWHM of ~20 µm at the focal plane. For 

low-intensity photofatigue experiments, continuous illumination at 488 nm (40 W/cm²) and alternating 

illumination at 405 nm (2.3 W/cm²) were performed with 15-ms frames recorded every 75 ms. Each 

cycle was 3-s long (off-to-on: 0.3 s, on-to-off 2.7 s). Each experiment consisted of 1000 switching 

cycles. For high-intensity photofatigue experiments, continuous illumination at 488 nm (400 W/cm²) 

and alternating illumination at 405 nm (10.8 W/cm²) were performed with 5-ms frames recorded every 

25 ms. Each cycle was 250 ms long (off-to-on: 25 ms, on-to-off: 225 ms). Each experiment consisted 

of 600 switching cycles. Proper synchronization of laser timing and frame acquisition by the EMCCD 

camera (Evolve 512, Roper, USA) was realized with Labview. 

Photofatigue in PVA gel 

Purified proteins were diluted to micromolar concentration in a solution of 1% PVA (Mowiol 

4-88, Sigma-Aldrich) in Tris buffer at pH 8.5. Glass slides were coated with a solution of PVA 

containing the protein of interest to form a thin film, which was let to dry for 1-4 hours. The dried 

matrix ensured an efficient embedding of the proteins, preventing their diffusion.  
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Photofatigue in cellulo  

E.coli BL21(DE3) bacteria were transformed by plasmidic DNA coding for each of the two 

proteins and bacterial cultures were grown at 37°C until reaching an optical density at 600 nm between 

0.4 and 0.8. For fixed-cell experiments, three consecutive centrifugations were performed. Cells were 

first resuspended in PBS buffer and then in paraformaldehyde (%4 w/v) for 30 min for fixation. 

Finally, paraformaldehyde was washed by the last centrifugation and cells were resuspended in PBS. 

The fixed cells were immobilized by incubating the bacterial suspension during 1h at room 

temperature on chitosan-coated glass slides. For live-cell experiments, after a centrifugation at 150 

rpm, cells were resuspended in 80 µL LB medium. 10 µL of the cell suspension were spread on a 

freshly prepared 1-mm thick agarose pad (2 % w/v agarose / PBS pH 7.5) on a slide and incubated for 

10 mn at room temperature. A cover slide was then placed over the pad and sealed before the 

measurements.  

Fluorescence quantum yield and pKa measurements 

Excitation and emission spectra were recorded with a Synergy H4 Hybrid microplate reader 

(Bio-Tek, Winooski, USA). The fluorescence quantum yield of IrisFP-M159A was calculated by the 

method described by Williams et al. [23] 

Extraction of photoswitching parameters 

Image processing was achieved with ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes 

of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997-2014). Background subtraction 

was achieved in the following manner: In PVA the measured EMCCD-offset of 500 counts was 

subtracted; for in-cellulo experiments, non-transformed cells were mixed with transformed cells so 

that a correct background corresponding to the EMCCD offset plus the autofluorescence signals from 

the bacteria and the LB medium (for live cells) could be substracted. To obtain photofatigue profiles, 

the average fluorescence signal inside a region of interest contouring a chosen transformed cell was 

computed and the average fluorescence signal inside a region of interest contouring a nearby non-

transformed cell was subtracted, using ImageJ. 

On- and off-switching quantum yields were obtained by fitting individual switching cycles 

with a simple kinetic model involving one-to-one reversible conversion between the on and off state. 

However, in the case of PVA and fixed cells, as molecules may not be excited at the same rate in a 

rigid medium, the model allowed for a variable anisotropic distribution of the chromophore dipoles. 

Also, the fitting model was designed to take into account the limited time-resolution afforded by the 

used integrating detectors. Model fitting and further processing of the photofatigue decay profiles was 

done in Matlab (see Supporting Information).  
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3. Results 

Photophysical and structural characterization of IrisFP-M159A 

To test the hypothesis according to which photobleaching of IrisFP under moderate 

illumination intensity mainly results from sulfoxidation of Met159, we produced the single mutant 

Met159Ala (IrisFP-M159A) with the expectation that resistance to photofatigue should be enhanced. 

Mutation of Met159 in several RSFPs has previously been shown to affect various photophysical 

properties, such as the off- and on-switching rates in Dronpa-2 (Met159Thr) and Dronpa-3 

(Met159Ala) [12,24], blue shifting of excitation/emission spectra in bsDronpa (Met159Cys) [25], or 

reversal of switching mode in Padron (Met159Tyr) [25]. Thus, to evaluate such possible effects in 

addition to fatigue resistance, we carried out an extensive biophysical characterization of IrisFP-

M159A and compared the results with IrisFP. IrisFP-M159A has its excitation and emission maxima 

at 484 nm and 513 nm (Figure 1), slightly blue shifted by 4 nm and 3 nm as compared to IrisFP [17], 

respectively, and giving rise to a 29 nm Stokes shift (Table 1). IrisFP-M159A shows a 12 % higher 

extinction coefficient than its parent at physiological pH (pH 7.3), but a significantly reduced 

fluorescence quantum yield, resulting in a decreased brightness by a factor of ~2.4. At physiological 

pH, no neutral absorbance peak around 400 nm is observed, suggesting a low chromophore pKa. 

Indeed, a pH titration of the absorption bands of IrisFP-M159A revealed a pKa of 4.7, significantly 

lower than IrisFP (pKa=5.7) (Figure 1). 

 

 

Figure 1. The mutation M159A in IrisFP only moderately affects its spectra but acidifies its chomophore.  
(A) Absorption (solid), excitation (dashes) and emission (bold) spectra of IrisFP (red) and IrisFP-M159A (blue) 
at pH 7.3. Absorption and excitation maxima peak at 488 nm for IrisFP and 484 nm for IrisFP-M159A. Emission 
spectra show a maximum at 516 and 513 nm for IrisFP and IrisFP-M159, respectively. (B) Titration curves of 
IrisFP (red) and IrisFP-M159A (blue), demonstrating a clear acidification of the mutant’s chromophore. 
Measurement points (squares) are fitted by the Henderson-Hasselbalch equation (lines), which yields pKa values 
of 5.7 for IrisFP and 4.7 for IrisFP-M159A.  
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Table 1. Photophysical properties of IrisFP and IrisFP–M159A.  
 

 

 

The overall crystallographic structure of the IrisFP-M159A mutant, obtained at 2.0 Å 

resolution, is nearly identical to that of the parent protein, with an rms deviation over all Cα atoms of 

only 0.174 Å. The interface between monomers is entirely preserved so that IrisFP-M159A is, as 

IrisFP, an obligate tetramer. Inspection of the chromophore and its surrounding residues (Figure 2) 

shows only minimal rearrangements. Because alanine has a side chain much shorter than that of 

methionine, a water molecule (Wat2) is found to fill up the cavity created by mutagenesis. Together 

with Wat2, two water molecules already present in the IrisFP structure (Wat1 and Wat3) are slightly 

moved to accommodate a new H-bond chain linking the phenolate moiety of the chromophore to 

Ser173. Ser173 is slightly shifted towards Ala159.  

 

 
Figure 2. Crystallographic structure of IrisFP-M159A (light blue) overlaid with that of IrisFP (gray). The 
chromophore and neighboring residues are shown in stick mode, water molecules are represented as balls, and 
dashed lines represent the newly formed H-bonds chain between the phenolate moiety of the chromophore and 
Ser173. 
 

  IrisFP IrisFP-M159A 

On-
state 

Absorbance maximum [nm] 488 484 
Emission maximum [nm] 516 513 
Extinction coefficient at anionic peak (ε) [M-1.cm-1] 52200 62800 
Fluorescence quantum yield 0.43 0.18 
Brightness (relative to EGFP) 0.68 0.28 

 pKa 5.7 4.7 
Off-
state 

Absorption maximum [nm] 390 390 
Extinction coefficient at neutral peak (ε) [M-1.cm-1] 27342 29363 
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Despite the newly established hydrogen bond network, the absence of Met159 likely results in a 

reduced rigidity of the chromophore environment promoting non-radiative de-excitation pathways and 

consistent with the observation of a lower fluorescence quantum yield in the mutant. Moreover, in the 

absence of Met159, the electrostatic environment of the chromophore hydroxybenzylidene moiety is 

altered, which likely accounts for the reduced pKa and slightly blue-shifted excitation spectrum.  

 
Table 2. Crystallographic data collection and refinement statistics.  
 

PDB entry 4R6B 
Data collection 
  Beamline ID14-4 
  Wavelength, Å 0.939 
  Space group P 212121 
  Cell dimensions  
      a, Å 86.70   
      b, Å 96.35 
      c, Å 139.43 
  Resolution, Å 46.47-2.00 (2.11-2.0) 
  *Rsym, % 9.0 (45.1) 
  Mean I/σ(I) 10.0 (2.7) 
  Completeness, % 100.0 (100.0) 
  Redundancy 4.9 (5.0) 
  No. of unique reflections 79546 (11489) 
  Wilson B factor, Å2 22.4 
Refinement   
 # Rwork/Rfree 0.20/0.23 
  Average B factor, (Å²) 25 
  Rmsd  
      Bond length, (Å) 0.011 
      Bond angles, (°) 1.18 
  Ramachandran statistics (%) 
      Favored 93.9 
      Allowed 6.1 
      Outliers 0 

 

*Rsym = ΣjΣh|Ih,j – 〈Ih〉|/ΣjΣh Ih,j
 

# Rwork= Σh|Fobs – Fcal|/ΣhFobs, Rfree is calculated with a small fraction (5 %) of reflections chosen to be part of a 
test group. 
Values in parentheses refer to the highest resolution shell. 
 

Switching behavior and photofatigue studies in solution  

A first comparative investigation of the switching behavior of IrisFP-M159A and IrisFP was 

performed in solution. Purified protein solutions were placed in a quartz cuvette, with concentrations 

adjusted to provide identical optical density at 488 nm (OD=0.1). First, a very low laser power density 

(6 mW/cm² at 488 nm) was applied in order to record high resolution switching kinetics over a few 

cycles (300 points per cycle). As its parent, IrisFP-M159A displays negative photoswitching, that is, 

off-switching results from illumination at the peak excitation wavelength. The extracted quantum 

yields for off- and on-switching, the off- and on-switching brightness (product of switching quantum 

yield by extinction coefficient at the switching wavelength) and the switching contrast (ratio of 

emitted fluorescence in the on and off states) are shown in Table 3. It is seen that the off-switching 



Methods and Applications in Fluorescence:  Special issue on super-resolution imaging 
 

9 
 

quantum yield of IrisFP-M159A is about 4 times that of IrisFP, consistent with the idea that the larger 

flexibility of the mutant protein should facilitate cis-trans isomerization of the chromophore. The on-

switching quantum yield of IrisFP-M159A, however, is about 30% lower than that of IrisFP, despite 

the apparent higher rate of on-switching (Figure 3). This is due to the fact that, as the 488 nm laser is 

kept on during on-switching to allow proper monitoring of the emitted fluorescence, the apparent rate 

is the sum of the actual on- and off- switching rates. For the two proteins, the switching kinetics follow 

an almost ideal monophasic behavior, suggesting a homogeneous population of molecules and a one-

to-one switching behavior between the on-state and the off-state under these experimental conditions. 

 

 

Figure 3. Photofatigue of IrisFP and IrisFP-M159A in solution. A single switching cycle is shown (black circles) 
for IrisFP (A) and for IrisFP-M159A (B) along with their fits (red curves). A series of such switching cycles is 
recorded by integrating the fluorescence signal during the exposure of IrisFP (C) and IrisFP-M159A (D) samples 
to alternating 488-nm (0.04 W/cm²) / 405-nm (0.03 W/cm²) laser illuminations. At such low intensities in 
solution IrisFP-M159A demonstrates a >40-fold improvement in the achievable number of switching cycles as 
compared to its parent. Insets show absorption spectra before (dashed lines) and after (solid lines) photofatigue 
of the samples. IrisFP presents an absorption band at ~390 nm due to chromophore protonation consecutive to 
sulfoxidation of Met-159, while this feature is absent in the spectrum of IrisFP-M159A.  
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Table 3. Photoswitching behavior in solution.  
 

 
a Calculated over the first halftime of the photofatigue decay 
bCalculated from the ratio of the integrated photofatigue decays × extinction coefficients at anionic peaks taken 
from Table 1. 
cValues between parentheses are normalized to IrisFP. 

 
Photofatigue experiments were then performed on IrisFP and IrisFP-M159A, for about 8000 

cycles with moderate time resolution (20 points/cycle, 0.04 W/cm² at 488 nm). The photofatigue 

kinetics are shown in Figure 3C and 3D. IrisFP showed a much faster photofatigue decay than the 

M159A mutant: its fluorescence was halved after ~80 cycles whereas it took about 3500 cycles to 

achieve the same decrease with the mutant. The photofatigue decay of IrisFP is clearly biphasic, which 

suggests the possible buildup of a long-lived dark state retarding photofatigue during the slow phase of 

the experiment through a shelving effect. It is important to note that the difference in the number of 

achievable cycles by a factor of ~43 is not representative of the true difference in photostability 

between the two proteins, due to the fact that IrisFP-M159A switches more rapidly. Indeed, it can be 

estimated by integrating the emitted fluorescence signal along the photofatigue decay curve and 

correcting for the difference in extinction coefficient that IrisFP-M159A is about 5.2 times more 

photostable than its parent protein under these experimental conditions. Furthermore, since IrisFP-

M159A also has a reduced fluorescence quantum yield, its total photon budget is only ~1.8 times that 

of IrisFP. 

Comparative absorbance spectra recorded before and after photofatigue decay of the two 

proteins show that, whereas a substantial increase in the neutral band peaking at around 390 nm is 

observed for IrisFP after photofatigue, this is not the case for the mutant, which in contrast displays a 

completely flat spectrum (Figure 3C, 3D, inset). We previously have shown that the increase in 

absorption at 390 nm by IrisFP upon photofatigue at low illumination intensity follows from 

sulfoxidation of Met159, trapping the chromophore in a nonfluorescent protonated state. The present 

data thus confirms that no such trapping occurs in IrisFP-M159A, which most likely accounts for the 

observed superior photofatigue resistance of this mutant. 

  

 IrisFP  IrisFP-M159A 
On-to-off switching quantum yield 0.005 0.019 
Off-to-on switching quantum yield 0.15 0.11 
On-to-off switching brightness [ΦOn-to-off switching×ε488] 261 (1)c 1193 (4.57)c 
Off-to-on switching brightness [ΦOff-to-on switching×ε405] 4101 (1) c 3230 (0.78)c 
Switching contrast [Fluorescenceon/Fluorescenceoff]

 a 65.7 72.9 
Photofatigue half decay [cycles] 80 3500 
Photoresistance enhancement b 5.2 
Thermal recovery half-time [h] 2.5 0.5 
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Switching behavior and photofatigue studies in vitro and in cellulo  

It is now recognized that the switching behavior of RSFPs strongly depends on both 

illumination and nanoenvironmental conditions [16,26]. Therefore, we next carried out photofatigue 

decay experiments in vitro and in cellulo at two different illumination intensities (~40 W/cm² and 

~400 W/cm²), aiming at comparing the behavior of the two proteins. All results are summarized in 

Figure 4 and Table 4. At high illumination intensity, our EMCCD camera based setup did not provide 

sufficient time-resolution to follow individual switching cycles with sufficient accuracy, so that only 

the envelope of the fluorescence decay along the photofatigue profiles are reported. At low 

illumination intensity, individual switching cycles could be monitored and the available time 

resolution, depending on the investigated conditions (see below), was generally sufficient to achieve a 

coarse extraction of the on- and off-switching brightness.  

 

 

Figure 4. Photofatigue of IrisFP (black) and IrisFP-M159A (red) embedded in a PVA gel (A-C), in fixed 
bacteria (D-F) and in live bacteria (G-I) at low (~40 W/cm², left and central column) and high (~400 W/cm², 
right column) intensity 488 nm illumination. The insets show individual switching cycles. Green lines: model fits 
from which the switching yields reported in Table 4 were extracted. 
 

A first set of experiments were performed in polyvinyl-alcohol (PVA) gels. Interestingly, the 

switching speed of both proteins appeared to be strongly reduced as compared to solution studies 

(Table 4). The photofatigue half decay of IrisFP was reduced by a factor of ~3 as compared to solution 

studies and, surprisingly, that of IrisFP-M159A was decreased by a factor of nearly 80. This finding is 

corroborated by the observation that the switching kinetics of the mutant was dramatically slowed 

down, to the point that in PVA the global behavior of the M159A mutant became relatively similar to 
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that of its parent. Nevertheless, a slight photoresistance enhancement by a factor of ~1.9 was still 

obtained with the mutant protein. Under high-intensity illumination, the two proteins also behaved 

similarly, with IrisFP even showing a slightly slower photofatigue decay. Of interest is the complex 

shape of the overall photofatigue decay profiles of the two proteins recorded under low illumination 

conditions. These profiles exhibit a clear biphasic decay of the fluorescence maxima and an intriguing 

evolution of the fluorescence minima at early time points, pointing at complex photophysical 

processes taking place. Overall, these data suggest that PVA strongly modifies the switching behavior 

of IrisFP and its mutant possibly due to reduced oxygen access, redox effect that are known to be 

promoted by this polymer [27,28,29], or motional restriction. In fact, although macromolecules are 

expected to freely tumble in the aqueous cavities within the PVA gel, we observed that individual 

switching cycles were best fitted with a kinetic model that assumes fixed dipole orientations of the 

fluorescent proteins. 

 

Table 4. Conditions and parameters for IrisFP and M159A photofatigue experiments in vitro and in 
cellulo. 
 

 
a High corresponds to 400 W/cm2, low corresponds to 40 W/cm2 
b Calculated as the product of switching quantum yield and absorption coefficient taken from Table 1 
c Calculated over the first halftime of the photofatigue decay 
d Calculated from the ratio of the integrated photofatigue decays × extinction coefficients taken from Table 1 
e Values between parentheses are normalized to IrisFP in solution (Table 3) 
f Determination of switching brightness limited by time resolution 
ND: Not determined 
 

Next, we recorded photofatigue decay profiles in fixed E. coli BL21(DE3) cells. Again, the 

switching speed of both proteins appeared to be strongly reduced as compared to solution studies. 

However IrisFP-M159A displayed a well behaved photofatigue decay profile under low illumination 

conditions and was found to exhibit a much greater number of switching cycles than its parent protein 

under both illumination conditions. The photoresistance enhancement of IrisFP-M159A in fixed cells 

Matrix 
Power 

density a 
Protein 

Off-to-on 
switching 

brightness b 
[cm-1.M-1] 

On-to-off 
switching 

brightness b 
[cm-1.M-1] 

Switching 
contrast c 

Photo-
fatigue 

half decay 
[cycles] 

Photo-
resistance 
enhance
ment d 

PVA 
gel 

Low 
IrisFP 440 (0.11)e ≈ 52 (0.20)e 18 25 

1.9 
IrisFP-M159A 820 (0.20)e ≈ 25 (0.10)e 10 45 

High 
IrisFP ND ND ND 31 

ND 
IrisFP-M159A ND ND ND 17 

Fixed 
cells 

Low 
IrisFP 1900 (0.46)e ≈ 36 (0.14)e 16 33 

6.1 
IrisFP-M159A 880 (0.21)e ≈ 56 (0.21)e 22 248 

High 
IrisFP ND ND ND 35 

ND 
IrisFP-M159A ND ND ND 115 

Live 
cells 

Low 
IrisFPf ≥ 1400 (0.34)e ≥ 52 (0.20)e 14 178 

2.0 
IrisFP-M159Af ND ND 8 315 

High 
IrisFP ND ND ND 54 

ND 
IrisFP-M159A ND ND ND > 600 
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under low illumination intensity exceeds that of IrisFP by a factor of ~6.1. As in PVA, individual 

switching cycles were best fitted with a kinetic model assuming fixed dipole orientations of the 

fluorophores. This is consistent with the hypothesis that cross-linking by paraformaldehyde in fixed 

cells may prevent tumbling of macromolecules. 

Finally, photofatigue data were recorded in live E. coli cells. In this case, it appeared that the 

switching kinetics of both proteins were too rapid to allow reliable fitting of individual cycles, 

suggesting that in such environment, the fluorescent protein markers adopt a behavior close to that in 

solution. Inspection of the switching cycles also suggests that molecules freely tumble when expressed 

in the cytoplasm of live E. coli cells. Consistent with faster switching, the achievable number of 

photoswitching cycles by both proteins was found higher than in PVA or fixed cells, and the photo 

resistance enhancement achieved by IrisFP-M159A was estimated to be ~2.0. 

It is worth noting that a switching contrast much lower than in solution was observed in all 

tested conditions, and particularly in live cells. Such lower contrast may result from the higher laser 

power densities used in widefield illumination conditions, but this issue remains to be explored. 

 

4. Discussion and Conclusion 

In this work, we have shown that rational engineering of an RSFP by a single mutation leads 

to significantly enhanced photoresistance. As expected from our previous structural investigation [18], 

the M159A mutation in IrisFP increased fatigue resistance at low laser illumination intensities (< ~40 

W/cm²). This is explained by the suppression of a sulfoxidation reaction that in the IrisFP parent 

protein results in trapping the chromophore irreversibly in a nonfluorescent protonated state. The 

mechanism that leads to sulfoxidation of Met159 likely involves quenching of the chromophore triplet 

state by oxygen, which releases highly reactive singlet oxygen within the chromophore pocket. Singlet 

oxygen is prone to attack any neighboring sulfur group, and thus rapidly reacts with the nearby 

Met159. The observed enhancement in fatigue resistance by a factor > 5 in solution reaches beyond 

expectations, considering that other sources of photobleaching certainly exist (e.g. destabilization of 

the protein scaffold by oxidation reactions involving singlet oxygen and other residues such as 

cysteins, tryptophans or tyrosines). Thus, the Met159 sulfoxidation pathway appears to be the major 

source of photobleaching in IrisFP in solution and at low illumination intensities, and this conclusion 

may also hold for popular phototransformable fluorescent proteins such as mEos2, Dronpa or 

Dendra2, which all have a methionine at position 159 located next to the chromophore. However, in 

PVA and in E. coli cells, the increase in photoresistance afforded by the M159A mutation was variable 

(Table 4) suggesting that the complex nanoenvironment in these samples may promote other 

photobleaching pathways.  

The M159A mutation in IrisFP also resulted in about a 4-fold faster off-switching speed, 

which is similar to the effect obtained in e.g. Dronpa variants [12,24]. The combination of more rapid 
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switching and enhanced photoresistance yielded a considerable increase in the number of achievable 

on-off switching cycles, reaching a factor > 40 in solution. In PVA and in E. coli cells, the situation 

was again different: a strong decrease of the switching speed of the two proteins was noticed and the 

enhancement in the number of achievable switching cycles by the mutant was not so high (factors of 

~2, ~7.5 and ~1.8 in PVA, fixed cells and live cells, respectively).  

Under high illumination intensities (~0.4 kW/cm²), the improvement in photostability 

achieved in the M159A-IrisFP mutant could not be assessed due to the limited time-resolution of our 

experimental setup, which did not allow to accurately monitor individual switching cycles. 

Nevertheless, the gain in the number of on-off switching cycles achieved by IrisFP-M159A was on 

average reduced as compared to low light-level conditions (with the intriguing exception of live cells, 

Table 4). This is consistent with the hypothesis that other photobleaching pathways predominate at 

high illumination intensities. We indeed observed that at such intensities photobleaching in IrisFP 

essentially proceeds through a consecutive two-photon absorption process (CTPA) that leads to 

disruption of chromophore π-conjugation through decarboxylation of the fully conserved Glu212 

residue, without involving Met159 nor the presence of oxygen [18]. Yet, the improvement in 

photofatigue decay achieved by IrisFP-M159A at high intensities suggests that Met159 could 

indirectly participate in this redox based photobleaching mechanism.  

Overall, our data suggest that IrisFP-M159A, or preferably monomeric variants less prone to 

impair fused protein function such as NijiFP-M159A, Dendra2-M159A [11], or pcDronpa2-M159A 

[30], could facilitate the use of advanced techniques based on photochromism such as pcFRET [7], 

OLID microscopy [31] or pcSOFI [8].  

Our widefield-based setup did not allow testing IrisFP and its mutant under the experimental 

conditions of RESOLFT nanoscopy. Based on our results and on the published switching properties of 

rsEGFP and rsEGFP2, which exhibit ~1100 and ~2100 cycles, respectively, before half decay in 

polyacrylamide [16], we speculate that the latter RSFPs remain superior for RESOLFT nanoscopy. 

However, the successful use of Dronpa-M159T with this technique [32] suggests that IrisFP-like 

M159A variants could still perform well under RESOLFT conditions. The use of mIris-M159A or 

NijiFP-M159A could thus open the door to the development of two-color pulse-chase RESOLFT 

nanoscopy [33].  

The putative superior photofatigue resistance of EGFP-like RSFPs could be explained by two 

factors. First, rsEGFP and its derivatives do not have sulfur containing residues in their chromophore 

pocket, de facto achieving the same effect as the one we rationally engineered in the case of IrisFP-

M159A. Second, Glu222 decarboxylation in these proteins may not necessarily result in 

photobleaching, as suggested by the observation that such decarboxylation rather activates proteins of 

the GFP family [34], the most notable example being photoactivatable PA-GFP [35]. Nevertheless, a 

precise understanding of the strong photoresistance of rsEGFP and its variants calls for a structural 

characterization of these proteins in their on and off states as well as in their photofatigued states. 



Methods and Applications in Fluorescence:  Special issue on super-resolution imaging 
 

15 
 

In conclusion, we have shown that Met159 plays a critical role in controlling the photostability 

of IrisFP and possibly other RSFPs of anthozoan origin. Importantly, the photoswitching behavior of 

RSFPs appears to be strongly influenced by the local nanoenvironment, consistent with the growing 

evidence that, despite embedding by the β-barrel matrix, the photophysics of fluorescent protein’s 

chromophores is largely controlled by the external environment. In particular we observed that PVA 

gels or the use of paraformaldehyde for cell fixation drastically changed the photoswitching properties 

of IrisFP and its mutant. The rationale behind such observation remains to be investigated, but could 

involve redox effects or reduced conformational freedom. Finally, the complex shape of photofatigue 

decay profiles observed in this work suggests the existence of subtle photophysical processes that 

could, in particular, involve the formation of long-lived dark states yet to be characterized. 
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Description of the fitting model 

A simple kinetic model involving one-to-one reversible conversion between the on 

and off states was used to extract the on- and off-switching quantum yields: 

 

 

 

Where k1 and k-1 are the excitation rate constants during the switching-off and switching-on 

processes, respectively, and ФOFF and ФON are the quantum yields for off-switching and on-

switching. A proper evaluation of the dipole-orientation-dependent molecular excitation rates 

is necessary.  

 

Case of tumbling molecules: 

The excitation rate [s-1] of a rapidly tumbling molecule is given by: 
( ) ( )

hcN

Ln
Pk

A

1010 6−

= λε  

where ε [M-1cm-1] is the extinction coefficient of the considered species (ON or OFF 

molecules) at the excitation wavelength λ [nm], P [Wcm-2] is the laser power-density 

ON OFF

k
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(assumed to be uniform throughout the illuminated sample), NA is the Avogadro number, h is 

the Planck constant and c is the speed of light.  

The model then simply writes: 

[ ]( ) [ ]( ) [ ]( )tOFFktONk
dt

tONd
ONOFF φφ 11 −+−=  

[ ]( ) [ ]( ) 0CtOFFtON =+  

where C0 is the total concentration of the fluorescent protein. 

During switching-off periods (488 nm laser on and 405 nm laser off), we have: 

488
11

488
11 , −− == kkkk

 
Note that 488

1−k  corresponds to residual on-switching due to absorption at 488 nm of the OFF 

state. This residual on-switching may not be negligible, and will essentially determine the 

observed switching contrast. 488
1−k depends on the extinction coefficient 488

OFFε  ie the absorption 

of the OFF state at 488 nm, which is unknown but can be fitted from the data.  

During switching-on periods (488 nm laser on and 405 nm laser on), we have: 

405
1

488
11

405
1

488
11 , −−− +=+= kkkkkk

 
As 488

1k  is very large as compared to 405
1k because 488

ONε , the absorption of the ON state at 488 

nm, is much larger than 405
ONε  (which is also unknown), and the illumination power density at 

488 nm is typically much higher than that at 405 nm, 405
1k  is neglected. 

The emitted fluorescence is then:  

( ) [ ]( )tONtF ∝  

To take into account the limited time resolution of the EMCCD detector, the detected signal 

at every frame is then integrated over the frametime: 

( ) ( )∫∝
frametime

EMCCD dttFframeS  

 

Case of fixed molecules: 

For a fixed oriented molecule with spherical coordinates θ and φ, the excitation rate of the 

absorbance dipole is angle dependent. For a circularly polarized laser beam whose 

electromagnetic field is assumed to be parallel to the objective focal plane, the excitation rate 

is given by: ( ) θθ 2cos
2

3
kk = , where θ is measured from the focal plane. The model then 

writes: 

( )[ ]( ) ( ) ( )[ ]( ) ( ) ( )[ ]( )tOFFktONk
dt

tONd
ONOFF θφθθφθθ

11 −+−=  
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( )[ ]( ) ( )[ ]( ) ( )θθθ 0CtOFFtON =+
 

( ) ( )
( ) 00

cos

cos
C

d
C

θθ
θθ

∫
=  

 

For each θ the calculations proceeds in the same way, however, the fluorescence is not 

emitted isotropically, so that based on Fourkas et al (Opt Lett 26: 211-213, 2001), the 

detected signal is:  

( ) ( )[ ]( ) ( )∫∝ θθθ dEtONtF
 

with the detection efficiency ( )θE  taking the form: 

( ) ( )θθ 2sinbaE +=  

 

Case of variable tumbling propensity: 

In real situations, molecules might be partially tumbling. We modeled this case as the fixed 

molecule case except that the excitation rates were then obtained as weighted averages of 

those rates for fully tumbling and fixed molecules. 

( ) ( )kwkwk −+= 1cos
2

3 2 θθ  

where w is a tumbling propensity.  
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Abstract of article 3 
This publication is a book chapter published in “Methods in Molecular Biology” 

(Duan et al., 2014a). In this review, we first present the development of RSFPs and classify 

RSFPs into three groups, negative RSFPs, positive RSFPs and decoupled RSFP. Then we 

present suitable approaches for the investigation of photoswitching mechanisms including X-

ray crystallography, NMR, UV-vis optical spectroscopy or vibrational spectroscopy. Most 

importantly, like indicated in the title, we especially focused on the structural basis of all three 

different kinds of RSFPs. We took IrisFP, Padron and Dreiklang as examples to explain the 

photoswitching mechanisms in negative RSFPs, positive RSFPs and decoupled RSFPs, 

respectively. A large fraction of the paper was dedicated to present the uses of RSFPs such as 

PhotoActivated Localization Microscopy (PALM), pcSOFI, RESOLFT, Saturated Structured 

Illumination Microscopy (SSIM), bi-photochromic Pulse Chase, reversible data storage, 

optogenetics, viscosity sensing, photochromic FRET. At the end of this chapter, we presented 

some future perspectives for RSFPs. In fact, this review could serve as a better introduction to 

my thesis.   
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    Chapter 12   

 Structural Basis of Photoswitching in Fluorescent Proteins 

           Chenxi     Duan    ,     Virgile     Adam    ,     Martin     Byrdin    , and     Dominique     Bourgeois    

    Abstract 

   Fluorescent proteins have revolutionized life sciences because they allow noninvasive and highly specifi c 
labeling of biological samples. The subset of “phototransformable” fl uorescent proteins recently attracted 
a widespread interest, as their fl uorescence state can be modifi ed upon excitation at defi ned wavelengths. 
The fl uorescence emission of Reversibly Switchable Fluorescent Proteins (RSFPs), in particular, can be 
repeatedly switched on and off. RSFPs enable many new exciting modalities in fl uorescence microscopy 
and biotechnology, including protein tracking, photochromic Förster Resonance Energy Transfer, super- 
resolution microscopy, optogenetics, and ultra-high-density optical data storage. Photoswitching in RSFPs 
typically results from chromophore  cis – trans  isomerization accompanied by a protonation change, but 
other switching schemes based on, e.g., chromophore hydration/dehydration have also been discovered. 
In this chapter, we review the main structural features at the basis of photoswitching in RSFPs.  

  Key words     Fluorescent proteins  ,   Photoswitching  ,   Dronpa  ,   RSFPs  ,   Protein dynamics  ,    cis – trans  
Isomerization  ,   Proton transfer  ,   Super-resolution microscopy  

  Abbreviations 

   GFP    Green fl uorescent protein   
  YFP    Yellow fl uorescent protein   
  FPs    Fluorescent proteins   
  PTFPs    Phototransformable fl uorescent proteins   
  RSFPs    Reversibly switchable fl uorescent proteins   
  PCFPs    Photoconvertible fl uorescent proteins   
  PAFPs    Photoactivatable fl uorescent proteins   
  ESPT    Excited state proton transfer   
  KIE    Kinetic isotope effect   
   p -HBI    4-( p -Hydroxybenzylidene)-5-imidazolinone   
  pcFRET    Photochromic Förster resonance energy transfer   
  QM/MM    Quantum mechanics/molecular mechanics   
  SMLM    Single molecule localization microscopy   
  PALM    Photoactivated localization microscopy   
  STORM    Stochastic optical reconstruction microscopy   
  STED    Stimulated emission depletion   
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  RESOLFT    Reversible saturable optical linear fl uorescence transitions   
  SSIM    Saturated structured illumination microscopy   
  (pc)SOFI    (Photochromic) stochastic optical fl uctuation imaging   
  IR    Infra-red   
  HSQC    Heteronuclear single quantum coherence   
  XFEL    X-Ray-free electron laser   

1        Introduction 

 Fluorescent proteins (FPs) have become indispensable tools to 
investigate the interrelations between cell structure, function, and 
dynamics [ 1 ]. Their three-dimensional structure is quite simple: 
the peptide chain forms an 11-stranded β-barrel resembling a 
“soda can,” which wraps around a three-residues-based endoge-
nous chromophore (Fig.  1 ). This 4-( p -hydroxybenzylidene)-5-
imidazolinone ( p -HBI) chromophore only requires oxygen as an 
external cofactor to become mature. A stunning palette of fl uores-
cent proteins displaying a wide range of emission colors (450–
650 nm) has been engineered, typically by rational or random 
mutagenesis of the chromophore itself or of its close environment 
[ 2 ]. The discovery of FPs from Anthozoan species (e.g., corals or 
anemones), which exhibit a high structural similarity but only a 
small sequence identity (<30 %) with the more classical Hydrozoan 
FPs (e.g., jellyfi shes), launched the development of red fl uorescent 
proteins [ 3 ], and considerably boosted FP research in recent years.

   In addition to suitable colors, useful FPs should exhibit a high 
expression level, fast maturation, and high fl uorescence brightness 
so that they can be imaged with suffi cient signal-to-noise ratio 
soon after cell transfection. Furthermore, they should be mono-
meric and should not induce cytotoxicity, to avoid cellular dysfunc-
tion. Importantly, they should be photostable and possible 
modifi cations of their fl uorescence properties as a function of light 
excitation or environmental parameters (e.g., pH, redox potential, 
oxygen level) should be understood. 

 The protonation state of the  p -hydroxybenzylidene moiety of 
the chromophore plays a key role in the fl uorescence properties of 
FPs. Two protonation states can generally be adopted, the propor-
tion of which is determined by the interactions with neighboring 
residues in the chromophore pocket and may (or not) vary with 
pH. The protonated (neutral) chromophore absorbs in the so- 
called “A-band,” whereas the deprotonated (anionic) chromo-
phore absorbs in the “B-band” (Fig.  1 ). For a green-emitting FP, 
those bands usually peak at ~400 nm and ~490 nm, respectively. In 
their anionic state, FPs are typically highly fl uorescent, whereas in 
their neutral state they are dimly or not fl uorescent. However, 
upon excitation of the neutral state, the FP chromophore becomes 
a strong acid with a p K a near zero. Ultrafast conversion to a 
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deprotonated excited state may thus occur, resulting in high yield 
and strongly Stokes-shifted fl uorescence. 

 The high fl uorescence quantum yield of FPs (generally > ~0.5) 
is commonly attributed to the idea that the chromophore is held 
rigidly within the protein matrix through a set of tight non- covalent 
interactions. This is a too simplistic view. In fact, FPs exhibit a 
highly dynamic behavior, in line with their observed complex pho-
tophysics. Upon light absorption, and especially when intersystem 
crossing to the long-lived triplet state takes place, the FP structural 
plasticity may allow a number of photophysical or photochemical 
transformations to occur. For example, like any fl uorophore, FPs 
undergo transient stochastic switching events to nonfl uorescent 
dark states (“blinking”), and eventual conversion to a permanent 
off state (“bleaching”). 

 In the subfamily of fl uorescent proteins termed 
Phototransformable FPs (PTFPs), specifi c phototransformations 
can be quantitatively induced by light, which is at the basis of a 
number of revolutionary developments in advanced fl uorescence 
microscopy. These PTFPs, mostly found in Anthozoan stony cor-
als, but also engineered from Hydrozoan FPs have become the 
focus of intense research since a few years [ 4 – 6 ]. Three types of 
phototransformations may be distinguished in PTFPs (Fig.  2 ): 
nonreversible activation from a nonfl uorescent to a fl uorescent 
state (referred to as “photoactivation,” fl uorescent proteins of this 

  Fig. 1    Enhanced green fl uorescent protein (EGFP). ( a ) The crystal structure (Protein Data Bank (PDB) ID 2Y0G) 
of a single chain is represented in  gray cartoons . The green-glowing chromophore is represented in  balls  and 
 sticks  and  stands  in the center of the barrel. ( b ) Absorption spectrum of EGFP. Two bands are attributed to the 
neutral form (A-band) and the anionic form (B-band) of the chromophore. Lewis structures of the correspond-
ing chromophore are represented as  insets        
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group are called Photoactivatable FPs (PAFPs)), nonreversible 
conversion between two fl uorescent states with different emission 
colors (“photoconversion,” fl uorescent proteins of this group are 
called Photoconvertible FPs (PCFPs)), and reversible switching 
between a fl uorescent on-state and a nonfl uorescent off-state 
(“photoswitching,” fl uorescent proteins of this group are called 
Reversibly Switchable FPs (RSFPs)). In this chapter we give a 
structural perspective on the fascinating photophysical properties 
of RSFPs.

2       Discovery and Classifi cation of RSFPs 

 A list of the currently developed RSFPs with their main photo-
physical properties is provided in Table  1 .

   The fi rst observation of reversible photoswitching of a fl uores-
cent protein at room temperature was made with yellow derivatives 
of  Aequora victoria  GFP at the single molecule [ 7 ] and at the 
ensemble levels [ 8 – 10 ]. However, photoswitching of these 
Hydrozoan FPs appeared limited, probably involving only minor 

  Fig. 2    Various possible reactions in phototransformable fl uorescent proteins with typical examples of irrevers-
ibly photoactivatable fl uorescent proteins (PAFP), irreversibly photoconvertible fl uorescent proteins (PCFP), and 
reversibly switchable fl uorescent proteins (RSFP). Photoinduced reactions occurring at the chromophore level 
are represented for each case. Figure reproduced from D. Bourgeois, A. Regis-Faro and V. Adam (2012), 
Biochemical Society Transactions, 40 531–538, © the Biochemical Society, with permission from Portland 
Press Limited       
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subpopulations of molecules. Effi cient photoswitching was initially 
reported of the weakly fl uorescent and tetrameric asFP595 from 
the Anthozoan sea anemone  Anemonia sulcata . The phenomena 
was described as reversible “kindling,” because the fl uorescence 
emission from asFP595 was enhanced by the fl uorescence excita-
tion light (568 nm) and quenched by blue light (450 nm) [ 11 ]. 
The fi rst RSFP of suffi cient quality to successfully conduct biologi-
cal experiments was obtained upon engineering a Pectiniidae coral 
FP, yielding the well-known Dronpa [ 12 ]. In contrast to asFP595, 
fl uorescence emission in Dronpa is quenched by the excitation 
light (490 nm) and recovered by illumination with violet light 
(405 nm). A large number of mechanistic investigations were then 
performed on these two proteins [ 13 – 28 ]. 

 In view of the growing interest of RSFPs for advanced fl uores-
cence microscopy applications, substantial efforts were made in the 
last years to develop variants with improved properties such as 
higher fl uorescence brightness (the product of fl uorescence quan-
tum yield and molar extinction coeffi cient), enhanced switching 
contrast (ratio of fl uorescence emission of the on and off states), 
tunable switching quantum yields, increased photoresistance, or 
red-shifted emission (Table  1 ). Several new Anthozoan RSFPs 
were thus introduced such as a number of Dronpa variants [ 20 ,  29 , 
 30 ], mTFP0.7 from  Clavuliara  sp. [ 31 ], rsTagRFP from  E. quadricolor  
[ 32 ,  33 ], mGeos from  L. hemprichii  [ 34 ], and others (Table  1 ). An 
interesting case was IrisFP (and later NijiFP), which combines on–
off photoswitching with green to red photo- conversion properties 
[ 35 ,  36 ], introducing the possibility to achieve dual color photo-
switching with a single protein. Recently, Hydrozoan GFP-based 
RSFPs were also developed, showing that high-performance pho-
toswitching is not restricted to Anthozoan FPs. Single-mutation of 
the strictly conserved Glu222 (GFP numbering) into Gln con-
ferred high-contrast switching properties to variants of YFP [ 37 ], 
while a combined rational and random mutagenesis approach 
yielded the photoresistant rsEGFP [ 38 ] and rsEGFP2 [ 39 ]. 

 All these RSFPs can be classifi ed as “negative” or “positive.” In 
negative RSFPs such as Dronpa, off-switching results from illumi-
nation at wavelengths absorbed by the protein in its on-state. In 
positive RSFPs such as asFP595, on-switching results from illumi-
nation at wavelengths absorbed by the protein in its on-state 
(Table  1 ). In all cases, switching is thought to primarily result from 
a light-induced  cis – trans  isomerization of the chromophore accom-
panied by a change of the  p -hydroxybenzylidene protonation state. 
A different acid–base environment of the chromophore in the two 
isomeric states modulates its p K a and is key to the photoswitching 
function. In the fl uorescent on-state, the chromophore is typically 
in an anionic  cis  confi guration, whereas in the nonfl uorescent off 
state it is found in a  trans  confi guration, either neutral or anionic. 
In negative RSFPs, the  cis  confi guration of the chromophore is the 
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thermodynamically stable form, so these proteins are typically 
highly fl uorescent in their native state. In positive RSFPs, the non-
fl uorescent  trans  confi gurations tends to be more thermodynami-
cally stable, although both states are sometimes observed at 
equilibrium, so these proteins are normally nonfl uorescent or 
weakly fl uorescent in their native state. 

 In 2011, Brakemann  et al . [ 40 ] engineered YFP-derivatives 
previously shown to be partially switchable [ 10 ,  41 ] to elaborate 
Dreiklang, an RSFP that exhibits an entirely new mechanism which 
does not rely on  cis – trans  isomerization of the chromophore, but 
rather involves reversible chemical modifi cations of the imidazoli-
none moiety. In Dreiklang, photoswitching is neither positive nor 
negative but is “decoupled,” meaning that fl uorescence excitation 
exerts no infl uence on photoswitching.  

3    Methodology for the Investigation of Photoswitching Mechanisms 

 Boosted by this rapidly evolving research fi eld, increased attention 
has been devoted to mechanistic investigations of RSFPs with a 
dual goal: gaining fundamental insight into this intriguing phe-
nomenon and rationally designing variants with enhanced photo-
physical properties. Several methods can be used that are briefl y 
described below. 

 Confocal or wide-fi eld fl uorescence microscopy approaches 
based on single-molecule detection allow monitoring the sto-
chastic nature of photoswitching. By recording many single-
molecule fl uorescence traces, histograms of on-times and 
off-times can be extracted from which key photophysical param-
eters such as switching quantum yields can be derived. Single-
molecule investigations provide the essential advantage that 
subpopulations of molecules behaving differently from the aver-
age can be identifi ed. The same illumination conditions as those 
used in cell microscopy experiments can be used and the infl u-
ence of environmental conditions such as redox potential, pH, 
or oxygen level can be monitored. However, to study single 
molecule behavior, the RSFPs are typically attached to a glass 
coverslip or immobilized in a polymer substrate, which might 
induce deviations relative to the  in cellulo  behavior. Ultimately, 
despite complications due to a lower signal-to- noise ratio and a 
higher molecular density, these methods will be applied directly 
in the biological sample so as to evaluate RSFPs switching in 
genuine experimental conditions. 

 To get a high-resolution structural view of photoswitching, 
ensemble level techniques must be used, such as X-ray crystallog-
raphy, NMR, UV–vis optical spectroscopy, or vibrational spectros-
copy. The most direct view of the structural signature of 
photoswitching is provided by crystallography. However, the 
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nonstandard concepts of “kinetic” protein crystallography need to 
be used [ 42 ], whereby photoswitching is induced  in crystallo . 
Indeed, the photoswitched chromophore is usually not stable for 
more than at most a few hours, a time much too short to achieve 
crystal growth. Thus, to generate the switched state, the crystalline 
sample is submitted to laser illumination, followed by fl ash cooling 
to prevent back switching and to minimize radiation damage 
effects during diffraction data collection. Fortunately, FPs are well-
suited samples for kinetic protein crystallography, as conforma-
tional changes induced by light illumination are small enough to 
be compatible with crystal packing interactions, so that samples are 
usually not seriously deteriorated upon illumination. However, it 
should always be kept in mind that the crystalline state may exert 
an infl uence on the observed switching scenario, for example by 
selecting out a subset of conformational states not strictly repre-
sentative of the in-solution behavior. This point has for example 
been a matter of debate concerning the structure of the off state of 
Dronpa [ 16 ]. 2D-NMR investigations (typically based on  1 H– 15 N 
or  1 H– 13 C HSQC experiments) have the advantage that no crystal 
constraints are present, so the observed conformational changes 
may be more genuine. However, the usually longer measuring 
times at room temperature make it trickier to maintain the photo-
switched state in the sample. For example, prolonged illumination 
might be required and result in unwanted photobleaching. In all 
cases, X-ray or NMR structural views should be complemented by 
steady-state optical spectroscopy measurements so as to quantify 
the extent of photoswitching in the investigated samples. Optical 
microspectrophotometry can be applied  in crystallo , in the absor-
bance, fl uorescence [ 43 ], or even Raman mode [ 44 ]. It should be 
noted that careful spectroscopic investigations using relatively basic 
instruments can provide a wealth of insightful mechanistic infor-
mation complementary to structural approaches [ 45 ,  46 ]. 

 To gain further mechanistic insight, putative intermediate 
states along the photoswitching reaction pathway should be char-
acterized in addition to the switching endpoints. Since photo-
switching is typically a very rapid (subnanosecond) process, ultrafast 
pump-probe UV–vis or IR spectroscopy are the tools of choice to 
be used. However, a major diffi culty is that photoswitching in 
RSFPs is a low yield process (10 −4 –10 −1 ) so that the fraction of 
molecules that can simultaneously follow the desired photoswitch-
ing pathway is small (although a larger fraction may engage into 
the pathway but quickly return to the starting state or deviate to 
other photophysical states). This explains why almost all ultrafast 
spectroscopic investigations of RSFPs photoswitching so far con-
centrated on the back-photoswitching reaction of Dronpa which 
has a particularly high yield (>0.1). 

 Yet, another approach to track intermediates consists in 
 performing temperature-controlled experiments. At suffi ciently 
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low temperature, the switching reaction may not be able to be 
completed if thermal energy barriers are present along the path-
way. In such a case, activated molecules may possibly get trapped 
and accumulate in an intermediate state that can then be probed 
structurally or spectroscopically. Such an approach was for example 
used to study the protein Padron [ 47 ]. Working at low tempera-
ture, however, always carries the danger that the protein conforma-
tional landscape may be altered. 

 Important insight into photoswitching mechanisms can also 
be obtained from theoretical investigations such as molecular 
dynamics simulations or reaction-path-fi nding techniques. In such 
studies, the RSFP is modeled with quantum mechanics/molecular 
mechanics (QM/MM) hybrid approaches: the chromophore and 
its nearby environment are described at the quantum level in the 
ground or excited state, whereas the rest of the protein is treated 
with classical force fi elds. Such investigations have provided a num-
ber of interesting details about fundamental properties of photo-
switching [ 21 ,  27 ]. However, they strongly rely on available 
high-resolution crystallographic input structures, and it should be 
kept in mind that they remain restricted by necessary simplifi ca-
tions and assumptions, due to limited computing power. For 
example, modeling proton transfer reactions involving the RSFPs 
chromophore is diffi cult, as the number of atoms in the QM region 
can typically not be changed along simulations. 

 Ultrafast time-resolved crystallography experiments on RSFPs 
based on synchrotron Laue diffraction have so far remained unsuc-
cessful. However, new XFEL sources offer exciting prospects to 
catch photoswitching in action. In the long term, the dream would 
be to watch single RSFPs in real time at atomic resolution, e.g., by 
combining femtosecond stimulated Raman scattering [ 48 ] with 
XFEL diffraction [ 49 ].  

4    Photoswitching Mechanisms 

 In this section, we describe in more detail the photoswitching 
mechanisms as observed in negative, positive, and decoupled 
RSFPs. Three important remarks should be made beforehand. 

 First, the  p -HBI chromophore in solution has been shown to 
undergo facile photoinduced  cis – trans  isomerization caused by 
twisting around the methylene bridge that links the two cyclic 
moieties (explaining the lack of fl uorescence of the isolated  p -HBI 
chromophore in solution) [ 50 ]. Thus, chromophore isomerization 
in RSFPs is primarily a manifestation of intrinsic excited state chro-
mophore dynamics. This process is in general hindered by the pro-
tein scaffold in FPs, but it can still occur with low yield in RSFPs. 
Chromophore isomerization in RSFPs is a single-photon  excitation 
process in both directions [ 13 ,  47 ]. However, back-switching is 
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also thermally driven and it should be kept in mind that some FPs 
are able to change the isomeric state of their chromophore in the 
ground state following pH changes [ 51 ,  52 ]. 

 Second, the isomeric state of the chromophore in general does 
not dictate per se the occurrence or the lack of fl uorescence. There 
exist FPs exhibiting strong fl uorescence in the  trans  state [ 52 ,  53 ]. 
However, in positive or negative RSFPs, the nonfl uorescent state 
has always been found to correspond to the  trans  confi guration of 
the chromophore. 

 Third, the proton affi nity of the chromophore hydroxybenzyli-
dene group strongly depends on the local protein environment 
and therefore it is isomer dependent, both in the ground and in the 
excited states. Widely different chromophore p K a are therefore 
expected—and observed—in the  trans  or  cis  confi gurations. As 
chromophore protonation has a strong infl uence on the ability to 
fl uoresce, this isomer-dependent p K a generally plays a key role in 
fl uorescence switching. 

  To describe the photoswitching mechanism in negative RSFPs, we 
take the example of IrisFP, which has been extensively character-
ized by us [ 35 ]. The X-ray structures and absorption/fl uorescence 
spectra of the protein in its on and off states are presented in Fig.  3 .

   In both states, it can be seen that the chromophore is main-
tained by a complex set of H-bonding interactions involving 
Arg66, Ser142, Glu144, Ser173, Tyr177, His194, and Glu212, as 
well as water molecules. These residues are essentially conserved in 
all negative RSFPs from Anthozoa species.  cis – trans  Isomerization 
is accompanied by a substantial structural change of the chromo-
phore pocket. The tightly H-bonded triad Glu144-His194- 
Glu212 in the  cis  confi guration is replaced by the 
Glu144-Arg66-Glu212 triad in the  trans  confi guration, with either 
His194 or Arg66 stabilizing the chromophore by π-stacking and 
π-cation interactions with the hydroxybenzylidene moiety, respec-
tively. In the  cis  confi guration, the chromophore phenolate inter-
acts with Ser142 whose hydroxy group is protonated, thus favoring 
a deprotonated state. This anionic state is further favored by the 
interaction of Arg66 with the carbonyl group of the imidazolinone 
moiety, which retains electron density on that ring. Hence, the 
p K a of the  cis  chromophore in IrisFP ensures a predominantly 
deprotonated chromophore at physiological pH (p K a = 5.7). The 
chromophore is also found in a highly planar confi guration. Thus, 
the conditions favoring a high fl uorescence yield are fulfi lled. In 
the  trans  confi guration, a very different scenario is found, where 
the phenolate group is interacting with the deprotonated Glu144, 
and the interaction of Arg66 with the imidazolinone being disen-
gaged. Consequently, there is a substantial change in the 
 chromophore electrostatic environment, and the latter is found 
completely protonated at physiological pH, with a p K a > 10. 

4.1  Negative 
Anthozoan RSFPs: 
On and Off States
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No ESPT (excited state proton transfer) is observed and the chro-
mophore is found to adopt a quite distorted geometry. Thus, the 
conditions favoring a high fl uorescence yield are not fulfi lled. The 
 trans -conformation is thermodynamically quite stable, taking a few 
hours to return to the  cis -conformation. This stems from the fact 
that the protein scaffold is able to accommodate the hydroxyben-
zylidene group of the  trans -chromophore with overall little defor-
mation, and by optimally rearranging the H-bond networks within 
the pocket. Some subtleties contribute to enhancing the stability of 
the  trans -state: for example, Ser142, which maintains a strong 

  Fig. 3    Crystallographic structures of the chromophore, its microenvironment, and the corresponding spectra 
for IrisFP. ( a ) In the more stable fl uorescent state (PDB ID 2VVH), the chromophore adopts a  cis  conformation 
and is deprotonated as observable by the major anionic absorption band peaking at 487 nm ( black spectrum ) 
that provides fl uorescence peaking at 516 nm ( green dotted spectrum ). ( b ) In the dark state (PDB ID 2VVI), the 
3D structure shows that the chromophore clearly adopts a  trans  conformation and is protonated as observable 
by the major neutral band peaking at 390 nm ( black spectrum ). The remaining fl uorescence signal ( green dot-
ted spectrum ) is due to a minor fraction of chromophores remaining in the  cis  conformation. Water molecules 
are represented as  red balls  and hydrogen bonds are represented as  black dotted lines        
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H-bond with the hydroxybenzylidene moiety in the  cis -state, 
engages with another H-bonding partner once the chromophore 
has been isomerized, as a compensation. Also, Glu212 directly 
interacts with the imidazolinone nitrogen in the  trans -state, pro-
viding further stabilization. 

 Similar schemes have been described for Dronpa [ 15 ] and 
mTFP0.7 [ 31 ], with some relatively minor variations. An impor-
tant peculiarity of Dronpa is that upon off-photoswitching, the 
seventh β-strand near the chromophore becomes disordered, as 
shown by NMR experiments [ 16 ]. As this strand forms part of the 
cross-dimer interface in the tetrameric parent of Dronpa, Dronpa 
photoswitching modulates its propensity to multimerize at high 
concentration. This property was ingenuously used to develop a 
new optogenetic approach [ 54 ]. Likewise, researchers took advan-
tage of the fl exibility-mediated photoswitching of Dronpa to 
develop a viscosity measurement assay [ 55 ].  

  Padron is a positive RSFP engineered from Dronpa [ 30 ,  56 ]. The 
two essential Met159Tyr and Val157Gly mutations were suffi cient 
to completely reverse the switching properties of Dronpa (hence 
the name “Padron”). The X-ray structures and absorption/fl uo-
rescence spectra of Padron in its on and off states are presented in 
Fig.  4 . In the on state, the confi gurations of the chromophore and 
of its immediate environment do not differ much from Dronpa or 
IrisFP. However, Ser142 adopts a different conformation than in 
Dronpa, which might be responsible for the substantial increase in 
the proton affi nity of the chromophore hydroxybenzylidene moi-
ety. Indeed, the chromophore exhibits a p K a of 6.0 (5.3 for 
Dronpa), meaning that at physiological pH a signifi cant fraction of 
the switched-on Padron molecules are protonated and nonfl uores-
cent. In the  trans  state, structural differences with negative RSFPs 
are striking: Tyr159 now establishes an H-bonding interaction 
with the chromophore phenolate, which maintains the latter in an 
anionic state, with a p K a of 4.5. His193, Arg66, and Glu211 
(equivalent to His194, Arg66, and Glu212 in IrisFP) do not 
change their conformation relative to the  cis  state, possibly because 
of the shifted location of Ser142, and this may in turn result in the 
severe torsion of the  trans  chromophore. Thus, the  trans  chromo-
phore is nonfl uorescent but exhibits an absorption spectrum simi-
lar to that of the fl uorescent on state (although somewhat broader 
presumably due to a larger conformational freedom).

     Photoswitching kinetics and pathways in RSFPs are controlled by 
the potential energy surfaces that connect the on and off states of 
the chromophore. The chromophore isomer conformation and 
protonation, in the ground and excited state, as well as the protein 
environment, are all involved. Therefore, modifying the chromo-
phore composition, or its environment, allows tuning properties 
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such as photoswitching rates, photon outputs, photostability, or 
pH-sensitivity. For example, Chang et al. [ 34 ] engineered the 
mGeos negative RSFPs by modifying the fi rst position of the chro-
mophore tripeptide and found that mGeos-M (with a methionine 
at this position) had the highest number of photons emitted per 
switching cycle amongst all green RSFPs. Likewise, Adam et al. 
[ 36 ] modifi ed the protein environment of the photo-convertible 
EosFP and Dendra2 PCFPs to engineer bi-photochromic variants 
with differing properties. 

  Fig. 4    Crystallographic structures of the chromophore, its microenvironment, and the corresponding spectra 
for Padron. ( a ) In the more stable dark state (PDB ID 3ZUF) the 3D structure shows that the chromophore 
adopts a trans conformation and is deprotonated as indicated by the major anionic absorption band peaking 
at 503 nm ( black spectrum ). ( b ) In the fl uorescent state (PDB ID 3ZUJ) the chromophore clearly adopts a  cis  
conformation. Absorption spectra reveal two bands, one peaking at 390 nm and corresponding to the neutral 
fraction and one peaking at 503 nm and corresponding to the anionic fl uorescent fraction peaking at 518 nm. 
Water molecules are represented as red balls and hydrogen bonds are represented as  black dotted lines        
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 In both positive and negative RSFPs, the exact order of events 
and the presence of intermediate states along the reaction pathway 
have been investigated. Because of its high quantum yield (~0.5), 
the back switching reaction in Dronpa could be experimentally 
interrogated by ultrafast spectroscopy. ESPT to an intermediate 
state I was proposed to occur, consistent with the observation of a 
signifi cant kinetic isotope effect (KIE) using deuterated samples 
[ 18 ]. In line with this view, theoretical calculations proposed that 
isomerization and deprotonation events during Dronpa off-on 
switching are concerted [ 21 ]. This view is also consistent with the 
elegant theoretical model of Olsen et al. [ 57 ], which suggests that 
to promote effi cient photoswitching, the protein environment 
should restrict torsion around the methylene phenoxy bond 
(P-bond) and promote torsion around the imidazolinone bond 
(I-bond) through suitable acid–base chemistry. However, these 
fi ndings were recently questioned by a Fourier Transform infrared 
study (FTIR) in which a  cis  protonated ground state intermediate 
was evidenced, strongly suggesting that deprotonation of the chro-
mophore rather occurs as a subsequent step to isomerization [ 23 ]. 
These contradictory observations show that the interpretation of 
ultrafast spectroscopic data is a delicate issue and corroborates the 
fact that many interrelated factors control photoswitching in RSFPs, 
the exact roles of which are diffi cult to disentangle. Moreover, hid-
den processes may take place and further complicate the matter: as 
an example, the recent study of Gayda et al. [ 45 ] on a mutant of 
IrisFP (called mIrisGFP) revealed that the neutral  cis  chromophore 
of mIrisGFP can isomerize to the neutral  trans  state much more 
effi ciently than the anionic  cis  chromophore (consistent with a bar-
rierless mechanism predicted by the Olsen model [ 57 ]). This phe-
nomenon however typically remains unnoticed, as back switching 
by the same illumination wavelength (405 nm) is even more effi -
cient, bringing back the neutral  trans  chromophore “immediately” 
to the  cis  confi guration. Several different switching processes may 
thus occur in parallel, even if at the ensemble level the spectroscopic 
footprint remains steady. Overall, the precise photoswitching mech-
anism of negative RSFPs still remains to be elucidated completely. 

 In positive RSFPs, work has been done on Padron and asFP595. 
A study of the asFP595-Ala143Ser mutant (displaying an enhanced 
fl uorescence quantum yield) by molecular dynamics suggested that 
on-switching was linked to chromophore  trans – cis  isomerization 
via a Hula-Twist mechanism, in which both I and P bonds change 
in a concerted manner to minimize the volume swept by the chro-
mophore during switching [ 14 ]. This view is however diffi cult to 
reconcile with the Olsen theory of isomerization through I-bond 
fl ip.  Ab initio  calculations and QC/MM molecular dynamics simu-
lations in asFP595 suggested that  trans – cis  isomerization occurs in 
the neutral state of the chromophore, followed by a dark state 
equilibration to a zwitterionic fl uorescent  cis  state [ 27 ]. In Padron, 
a different scenario was observed: two fl uorescent intermediates 
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along the on-switching pathway could be cryo-trapped [ 47 ]. The 
combined spectroscopic and crystallographic data suggested that 
 trans – cis  isomerization of the chromophore occurs entirely in the 
anionic state and precedes protonation. These experimental fi nd-
ings are in line with the latest results by FTIR in Dronpa [ 23 ]. 
They are also interesting in terms of structural protein dynamics. 
First, they reveal that full  trans – cis  isomerization of the Padron 
chromophore is possible at 100 K, a temperature at which protein 
dynamical breathing is essentially stalled. As heat dissipation upon 
photon absorption occurs on the picosecond timescale, a tran-
siently “hot” chromophore could account for this observation. 
Second, it was observed that protonation of the chromophore fol-
lowing isomerization only took place above the glass transition 
temperature (~200 K), suggesting that protonation involves 
exchange with the surrounding solvent. The fact that Padron can 
be effi ciently photoswitched at cryo- temperature opens interesting 
potential applications such as cryo- nanoscopy [ 47 ]. 

 Overall, as for negative RSFPs, the mechanisms governing fl u-
orescence switching in positive RSFPs are still not entirely under-
stood. The extent by which these mechanisms differ between 
members of each family also remains to be evaluated.  

  Surprisingly little structural information is available on RSFPs 
evolved from GFP derivatives. Amongst several pieces of indirect 
evidence, studies by vibrational spectroscopy [ 58 ] suggest that a 
chromophore  cis – trans  isomerization process similar to that found 
in Anthozoan RSFPs also takes place in these proteins. However 
structural evidence for a  trans  chromophore in Hydrozoan RSFPs 
is still lacking.  

  Positive and negative RSFPs are not optimal in that laser-light used 
for fl uorescence excitation also induces switching. The protein 
Dreiklang, evolved from the GFP variant Citrine, nicely overcomes 
this problem [ 40 ]. In Dreiklang, excitation at 514 nm does not 
induce signifi cant off-switching, whereas near UV-light at 365 and 
405 nm result in on and off switching, respectively. The existence 
of such decoupling had already been hinted at in previous experi-
ments with EYFP [ 10 ,  41 ]. In Dreiklang, this behavior was delib-
erately exacerbated by random mutagenesis, resulting in an 
unprecedented switching mechanism. Combined crystallographic 
and mass spectroscopy analyzes provided evidence that light- 
induced hydration-dehydration of the chromophore caused switch-
ing by disrupting the π-conjugated electron system (Fig.  5 ). 
Hydration of the C 65  atom of the imidazolinone moiety appeared 
to be facilitated by the proper positioning of a water molecule 
(Wat A ) held in place by hydrogen bonding between Tyr203 and 
Glu222 and putatively replaced in the switched-off state by another 
water molecule (Wat B ) garnered from the environment. However, 
the exact roles of the 4 mutations (Val61Leu, Phe64Ile, Tyr145His, 
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and Asn146Asp) relative to Citrine remain to be established. Also, 
the use of UV-light to induce on- and off-switching is prone to 
generate cytotoxicity. It is also not clear yet how the hydration/
dehydration processes can be light-activated in the protonated 
state of the chromophore.

5        Using RSFPs in Advanced Fluorescence Applications 

 Many exciting fi elds of science are nowadays explored by using 
photoswitchable fl uorescent proteins, including super-resolution 
fl uorescence microscopy ( see  Chapter   16     of this volume), 

  Fig. 5    Crystallographic structures of the chromophore, its microenvironment, and the corresponding spectra 
for Dreiklang. ( a ) In the more stable fl uorescent state (PDB ID 3ST4), the chromophore adopts a  cis  conforma-
tion and is deprotonated as observable by the major anionic absorption band peaking at 515 nm ( black spec-
trum ) that provides fl uorescence at 529 nm ( green dotted spectrum ). ( b ) In the dark state (PDB ID 3ST3) the 
water molecule Wat A  is found to hydrate the carbon C 65 , distorting the geometry of the imidazolinone ring. 
Absorption spectra reveal that both the neutral and the anionic forms have been converted to a blue-shifted 
absorption band peaking at 340 nm. Water molecules are represented as  red balls  and hydrogen bonds are 
represented as  black dotted lines        
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optogenetics, optical lock-in detection, frequency-domain imaging, 
sensor developments and biotechnological applications (Fig.  6 ). 
Some examples are described below.

    Single molecule localization microscopy (SMLM) was developed 
in 2006 with techniques such as photoactivated localization 
microscopy (PALM) [ 59 ,  60 ] and stochastic optical reconstruction 
microscopy (STORM) [ 61 ]. These super-resolution techniques 
are conceptually identical but use either phototransformable FPs 
(PALM) or blinking organic dyes (STORM) as highlighters. 
SMLM is nowadays very popular in that it does not require a com-
plex instrumental setup and provides the best spatial resolutions 
currently achievable. Irreversible photoconvertible FPs are gener-
ally preferred for PALM applications over RSFPs because they typi-
cally emit more photons per localized spot and are less prone to 
complications due to multiple localizations of a single molecule. 
Multicolor PALM, however, is diffi cult to achieve with PCFPs 
only, as currently available members do not display a large spectral 
separation. A solution to this problem has been found by achieving 
dual-labeling with a green-to-red PCFP such as EosFP and an 
RSFP such as Dronpa. The method relies on a sequential acquisi-
tion protocol: all EosFP molecules are fi rst photoconverted to 

5.1  Super-Resolution 
Fluorescence 
Microscopy by Single 
Molecule Localization

  Fig. 6    Panoply of possible applications using RSFPs in super-resolution imaging and biotechnology.  OLID  opti-
cal lock-in detection,  FDI  frequency domain imaging       
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their red-emitting state by 405-nm irradiation and detected by 
561-nm illumination with minimal effects on the Dronpa mole-
cules that are visualized subsequently with alternating 488 and 
405-nm illumination. This protocol succeeded in colocalizing a 
variety of proteins of interest [ 62 ,  63 ]. 

 Interestingly, the rich photophysics of RSFPs also allow acquir-
ing dual-labeling “false-multicolor” PALM data [ 30 ]. This can be 
accomplished by distinguishing RSFPs variants of similar colors 
based on properties such as positive vs. negative switching, or dif-
ferent photoswitching rates. 

 The capacity of RSFPs to produce intense fl uctuations of their 
emission signal recently permitted their application into a variant 
of SMLM called stochastic optical fl uctuation imaging (SOFI) ( see  
Chapter   17     of this volume). In its standard version, SOFI takes 
advantage of natural fl uorescence fl ickering to enhance image reso-
lution [ 64 ]. Photochromic SOFI (pcSOFI) [ 65 ] demonstrates 
improved signal-to-noise contrast and a two- to threefold enhance-
ment of the spatial resolution compared to diffraction-limited 
images, thanks to the possibility of precisely controlling the “fl ick-
ering” (switching) of RSFPs.  

  RSFPs can be advantageously used in nonlinear imaging because 
the saturation of their switching transitions leads to distinct min-
ima/maxima of fl uorescence depending on the illumination pat-
tern, even with low light intensities. 

 In confocal illumination mode, the concept of REversible 
Saturable Optical Linear Fluorescence Transitions (RESOLFT) 
[ 66 ] has been proposed as an alternative to the well-known 
STimulated Emission Depletion (STED) microscopy. In STED, a 
donut-shaped laser spot applied immediately after excitation by a 
diffraction-limited laser spot depletes emission of a standard fl uo-
rophore except for the central zero-intensity region of the donut 
beam. The diameter of the resulting effective point spread function 
decreases with increasing intensities of the donut-shaped beam, 
thus providing enhanced resolution. However, an enormous power 
density is required for this beam (typically MW/cm 2 ). Instead, 
when RESOLFT is used in combination with RSFPs [ 67 ,  68 ], the 
donut-shaped beam serves to switch off the label, a process which 
is not limited by the fl uorescence lifetime. Thus, albeit at the 
expense of a reduced time-resolution, this allows a huge decrease 
(up to six orders of magnitude) of the light intensity needed to 
break the diffraction barrier as compared to STED microscopy. 
This considerably reduces potential cytotoxic effects. 

 Increasing spatial resolution in RESOLFT implies achieving a 
higher number of switching cycles of the RSFP, while improving 
time resolution requires higher switching yields. The engineering 
of the well-known EGFP into rsEGFP [ 38 ] created an RSFP with 
much faster photoswitching rates than Dronpa and with a much 

5.2  Nonlinear 
Microscopy 
Applications

Chenxi Duan et al.

http://dx.doi.org/10.1007/978-1-4939-0470-9_17


195

enhanced photoresistance, comparable to that of its parent EGFP. 
Recent modifi cations of this variant resulted in an even faster RSFP, 
named rsEGFP2, in which, as compared to rsEGFP, the mutations 
Val150Ala and Ser205Asn have been back-mutated and the fi rst 
amino acid of the chromophore was modifi ed (Thr65Ala) [ 39 ]. 
RsEGFP2 allows the application of RESOLFT microscopy with no 
more light than in conventional confocal microscopy and at 
unprecedented speed. 

 Similarly, very weak illumination intensities can be used when 
RSFPs are employed in combination with Saturated Structured 
Illumination Microscopy (SSIM), a nonlinear version of SIM [ 69 ]. 
In this wide-fi eld imaging technique, the sample is illuminated with 
a sine-shaped wavefront (structured illumination) that is modulated 
in phase and angle. From the interferences between the patterned 
illumination and the spatial response of the fl uorescent sample 
(Moiré fringes) a resolution increase by a factor of 2 can be achieved. 
To push the resolution further with standard fl uorophores, very 
intense illumination is required to saturate the singlet excited state 
S 1 , producing sharp fl uorescent fringes. The use of RSFPs such as 
Dronpa relies on saturating the long-lived off state instead of the 
short-lived S 1 , alleviating the need for high intensities [ 70 ].  

  Biphotochromic FPs combine the photophysical properties of 
both PCFPs and RSFPs into single PTFPs. IrisFP [ 35 ] was the fi rst 
member of this family: it can be irreversibly photoconverted from 
green to red and reversibly switched off in either the green or the 
red state. The monomeric variant mIrisFP was successfully used as 
a tool for two-color super-resolved pulse-chase imaging experi-
ments [ 71 ]. In this technique, a fraction of the molecules are fi rst 
photoconverted to their red-emitting state and let to diffuse within 
the cell. Using photochromic-based PALM, both the unphotocon-
verted (green) and photoconverted (red) molecules are then 
tracked at nanometric precision. Improved biphotochromic vari-
ants have been recently engineered [ 36 ]. In particular, NijiFP is a 
variant of the monomeric PCFP Dendra2 and demonstrated prom-
ising properties: low tendency to oligomerize, good spectral con-
trast between green and red states, and excellent photoswitching 
capability of the two forms. 

 PTFPs have been used to demonstrate the concept of biological 
data-storage, possibly in 3D [ 72 ]. Notably, rsEGFP has been shown 
to provide a remarkable support for rewritable ultrahigh density 
data storage [ 38 ]. Biphotochromic FPs open the route to quater-
nary data storage applications. Photoconverting to the red state half 
of a biphotochromic FP substrate spread on a surface, it becomes 
possible to achieve four optical combinations by switching off or on 
the green and red molecules. A base-4 encoding system is obtained: 
dark + dark = 0, dark + green = 1, dark + red = 2, red + green = 3, equiv-
alent in binary code to 00, 01, 10, and 11, respectively.  

5.3  Advanced 
Microscopy and 
Biotechnology with 
Bi-photochromic FPs
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  The use of RSFPs in optogenetics was recently introduced as an 
exquisite tool to control specifi c cellular activities through revers-
ible photoswitching [ 54 ]. Dronpa is a monomeric RSFP, but it was 
derived from a tetrameric parent. A single mutant of Dronpa 
(Lys145Asn), called PDM1-4 [ 73 ], was shown to exhibit a pro-
pensity to tetramerize in the switched-on state, whereas it remains 
monomeric in the off state. The crystallographic structure of 
PDM1-4 revealed a rigidifi ed tetramer interface, consistent with 
this fi nding [ 74 ]. A mixture of PDM1-4 and Dronpa was then 
shown to promote light-induced dimer-to-monomer conversion 
rather than tetramer-to-monomer conversion with PDM1-4 alone. 
The idea, then, consists in fusing a protein of interest (POI) at one 
end with PDM1-4 and at the other end with Dronpa. In the on- 
state, the two RSFP domains interact, “caging” the POI, while in 
their off state they split, restoring the POI activity. The method 
was applied to intersectin, a guanine nucleotide exchange factor 
that activates Cdc42. Upon 490-nm illumination, activation of 
Cdc42 by uncaged intersectin was monitored through the growth 
of fi lopodia, an obvious morphological change that was observed 
concomitantly with the disappearance of Dronpa fl uorescence due 
to switching. Using the same concept, it was possible to design a 
light inducible NS3-4A protease in the hepatitis C virus (HCV).  

  The interrelation between Dronpa photoswitching and β-barrel 
plasticity allowed yet another surprising application of this RSFP, 
this time as a sensor for solvent viscosity. Hydrodynamic changes 
exerted on Dronpa by an increasing viscosity were found to reduce 
the photoswitching rate of its chromophore [ 55 ]. Moreover, the 
authors demonstrated that fast-switching variants and more spe-
cifi cally Dronpa[Val157Ile/Met159Ala], named Dronpa-3 [ 29 ], 
are especially sensitive to viscosity changes: the photoswitching 
rate of Dronpa-3 slowed down by a factor of 4 when the glycerol 
concentration was increased from 0 to 90 %. This makes Dronpa-3 
an effi cient genetically-encoded reporter for microviscosity in vivo 
as demonstrated in the case of chromatin: a slightly more viscous 
environment was repeatedly measured when cells were in mitosis.  

  The synthesis of photochromic organic fl uorescent dyes allowed, a 
decade ago, the development of a novel approach for quantitative 
Förster resonance energy transfer (FRET) [ 75 ,  76 ]. In this photo-
chromic FRET (pcFRET) approach, modulations of fl uorescence 
emission by a donor molecule can be induced by reversible switch-
ing of a photochromic acceptor, allowing quantitative and repeat-
able determination of the FRET effi ciency between two molecules 
without the need to apply corrections based on reference images. 

 The recent engineering of the red-shifted RSFPs rsCherryRev 
[ 77 ] and rsTagRFP [ 78 ] allowed the conception of similar pcFRET 
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experiments using solely genetically encoded reporters. Coupled 
to EYFP as a donor, rsTagRFP revealed to be an excellent photo-
chromic acceptor [ 78 ] and allowed a precise quantifi cation of 
protein–protein interactions within living cells.   

6    Conclusion: Future Prospects for RSFPs 

 Reversibly switchable FPs are astonishing macromolecules that 
nowadays play a key role in state-of-the-art techniques based on 
light-induced protein manipulation. 

 In contrast to photoconvertible FPs that are found in nature, 
all RSFPs known so far are man-made, developed on the basis of 
FPs from both the Anthozoan and the Hydrozoan classes. Thus, 
there is probably little functional advantage to such switching capa-
bilities in marine organisms. On the contrary, an incredibly wide 
palette of applications has already been found by researchers, in the 
fi elds of advanced fl uorescence microscopy and biotechnology. 

 The mechanism underlying switching in RSFPs is generally 
based on  cis – trans  photoinduced isomerization of the chromo-
phore coupled with a protonation change. However, there are 
subtle differences between members, and despite signifi cant prog-
ress in the last years, reaction pathways and intermediate states pos-
sibly involved are still under debate. 

 An important aspect of future research in RSFPs photophysics 
will be to understand how blinking and bleaching, these phenom-
ena that are so characteristic in all FPs, interfere with photoswitch-
ing. Although hints have been provided already [ 79 ,  80 ], these 
stochastic events are diffi cult to capture and characterize. Yet, they 
are fundamental in the quest for future optimization of RSFPs, 
together with other properties, such as red-shifted fl uorescence or 
decoupled switching. 

 Our knowledge of fl uorescent proteins is constantly growing. 
However, experience has shown that the complex architecture of 
the β-barrel and its links to the chromophore is intricate to a degree 
that success in developing improved variants on the basis of ratio-
nal design alone has been so far the exception rather than the rule. 
It will be interesting to see if multi-residue rational design of a 
PTFP will eventually be successful, knowing that directed evolu-
tion approaches are currently bound to miss a large fraction of 
possible synergistic combinations of mutations. 

 Whatever the engineering approaches, surprising new proper-
ties will continue to emerge and, based on these, the palette of new 
RSFPs-based applications will continue to grow, so it is worth to 
stay tuned for amazing new developments.     
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3.1. Conclusion 

 

In 2011, little was known about the photobleaching mechanisms of fluorescent 

proteins. During this thesis, we extensively studied the photobleaching mechanisms of one 

specific RSFP (IrisFP) and, based on the results, rationally engineered a more photostable 

variant. Our data suggests a general photobleaching mechanism in Anthozoan PTFPs.  

By combining X-ray crystallography, mass spectrometry, optical in crystallo 

spectroscopy and modeling approaches, we successfully revealed two completely different 

photobleaching mechanisms in IrisFP (Fig15.).  Depending on the intensity of the excitation 

light, IrisFP can be photobleached by two different mechanisms. Under relatively intense 

excitation (~100W/cm² in this study, approaching that of PALM microscopy), photobleaching 

occurs via an oxygen-independent pathway. The photobleached structure shows that the 

chromophore and its surrounding residues are dramatically altered. The loss of chromophore 

fluorescence resulted from an sp2-to-sp3 hybridization change of the Cα atom of the 

chromophore methylene bridge. Together with this hybridization change, decarboxylation of 

the highly conserved Glu212 (IrisFP numbering) occurs, followed by an extensive 

rearrangement of the H-bond network surrounding the chromophore. Under low excitation 

illumination (~10W/cm² in this study, typical of standard widefield fluorescence imaging), an 

oxygen-dependent photobleaching pathway dominates. In contrast to high-intensity 

illumination, there are very few structural modifications. The major modification is that next 

to the chromophore, Met159 -a highly conserved residue in Anthozoan PTFPs- becomes 

sulfoxided. The triplet excited state of the chromophore can interact with dissolved molecular 

oxygen within the chromophore pocket, forming singlet oxygen. This singlet oxygen in turn 

may diffuse to the nearby Met159 that undergoes a sulfoxidation reaction. The sulfoxided 

Met159 creates a new strong H-bond to the chromophore hydroxybenzylidene moiety and 

traps the chromophore in a permanent protonated and hence non-fluorescent state. Due to the 

very high sequence and structure similarity to other Anthozoan PTFPs such as Dronpa, EosFP 

and Dendra derivatives, this two-regime photobleaching mechanism could be a common 

phenomenon within these protein families. From our results we make a somewhat 

counterintuitive prediction that at constant integrated illumination dose, perhaps less 

cytotoxicity could be produced because under high-intensity illumination, less reactive 

oxygen species are likely to be generated and released.  
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Fig15. Proposed photophysical scheme for a two-regime photobleaching in IrisFP. Yellow 

arrows represent chemical steps involving electron/proton transfer or oxidation reactions. 

Blue arrows represent entry/exit of oxygen species. 

Based on our previous results on the IrisFP photobleaching mechanism, we rationally 

designed the IrisFP-M159A mutant in order to increase photoresistance against photofatigue 

under low-intensity illumination conditions. We obtained its native crystallographic structure 

and photophysically characterized IrisFP-M159A. We also investigated its photoswitching 

behavior and observed enhanced photoresistance in solution, in polyvinyl alcohol (PVA) gel, 

in fixed E.coli cells and in live E.coli cells compared to the parent protein IrisFP.  

By characterizing the photophysical properties of the mutant, we found that compared 

to the parent, it has a lower pKa (4.7 vs. 5.7), as well as slightly blue-shifted excitation and 

emission maxima at 484 nm and 513 nm, respectively. However it has a lower fluorescence 

quantum yield and brightness. 

As expected, our IrisFP-M159A mutant has a photoresistance enhancement in all 

investigated samples under low-intensity illumination (< 40 W/cm²). Photofatigue 

experiments comparing the performance of mutant and parent protein showed that the results 

vary a lot depending on the experimental environment. These results together with the 

absorption spectrum of the photofatigued sample confirm our previous hypothesis that the 

sulfoxidation of Met159 trapped the chromophore in a non-fluorescent state. Replacing the 

sulfur-containing residue by a sulfur-free residue avoids this trapping and improves the 

photoresistance of the protein (Fig16.). 
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Fig16. Fluorescence decay during photofatigue of IrisFP (A) and IrisFP-M159A (B) in 

solution. Absorbance of IriFP (C) and IrisFP-M159A (D) before and after photofatigue. 

 

3.2. Perspectives 
 
After this thesis, we understand more about the photobleaching mechanism of RSFPs 

at the structural level. In the near future, we could use the same approaches to reveal the 

photobleaching mechanisms in Hydrozoan RSFPs and employ our findings to other proteins 

in order to generate new mutants with better photostability. However, there are still questions 

that remain unanswered that need to be investigated in the future. 

1. Computer simulation of the sulfoxidation reaction of Met159 in IrisFP under 

low-intensity illumination conditions and the diffusion of molecular oxygen.  

In our first article (Duan et al., 2013), we proposed a hypothesis of a possible 

sulfoxidation reaction pathway of Met159 and Cys171. Highly reactive singlet oxygen 

molecules are produced via a triplet-triplet energy transfer between chromophore and 

molecular oxygen, and then the singlet oxygen diffuses to nearby Met159, finally the sulfur-

containing Met159 gets sulfoxided (Pattison et al., 2012). As the product of the reaction, a 

hydrogen peroxide (H2O2) is produced. This H2O2 can oxidize the nearby Cys171 (Luo et al., 



3 Conclusion and Perspectives 

 

122 
 

2005). Our collaborators Mikolaj FELIKS and Martin FIELD (Dynamo lab, IBS) are working 

on this question by using QM/MM methods. This process could be simulated to see if this 

reaction pathway is valid or not. Likewise, the possible diffusion pathways of the 

triplet/singlet oxygen molecules inside and outside the FP molecule could be explored.   

2. Crystallographic structures of IrisFP-M159A after low- and high-intensity 

illumination photobleaching 

By using the same approaches as described in our first article, we tried to obtain the 

photobleached crystallographic structures of IrisFP-M159A. However, those attempts were 

not successful. The main reason is that the mutant is more photostable and requires much 

more photoswitching cycles to photobleach, which introduces damage to crystals by local 

heating of the illuminated area. To rescue the crystal’s diffraction quality, compromise 

conditions will have to be found for photobleaching, such as slightly cooling the crystal in the 

presence of oxygen.  

3. Mutating Met159 in monomeric RSFPs 

Our studies demonstrated an enhancement of photoresistance by a single mutation at 

Met159. Therefore, such a mutation could be applied to other Anthozoan RSFPs. However, 

IrisFP, as most other “native” RSFPs, is tetrameric and hence not very suitable for serving as 

a biological marker. The mutation of Met159 thus should be applied to monomeric RSFPs 

such as NijiFP or mIrisFP. In this context, it is noteworthy that mutations of Met159 already 

do exist in Dronpa variants such as Dronpa2 (Met159Thr), Dronpa3 (Met159Ala) and 

bsDronpa (Met159Cys). However, their photoresistance was not systematically studied. 

Further studies of photoresistance should be carried out. Substitution by other residues could 

be attempted at the Met159 position as well, to generate potentially more photostable mutants.  

4. Mutant with enhanced photostability under high-intensity illumination 

Although we have identified that residue Glu212 is involved in the high-intensity 

illumination photobleaching pathway within IrisFP, however, our E212Q mutant is not 

suitable for biological applications. Because of the essential role of the Glu212 residue during 

the chromophore maturation process, the substitution of Glu by Gln can largely slow down 

the maturation of the chromophore. However, in the second paper (Duan et al., 2014) we still 

demonstrated enhanced photostability of IrisFP-M159A in bacterial cells under such 

illumination condition, which suggests that Met159 has unknown indirect effect to the high-
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intensity illumination photobleaching. Probably other neighboring residues are involved as 

well. 

5. Study of Hydrozoan RSFPs photobleaching mechanisms 

Although most RSFPs are originally from Anthozoan species, based on EGFP and 

EYFP, Jakobs’s lab developed some Hydrozoan RSFPs with high switching performance 

such as rsEGFP, rsEGFP2 and Dreiklang, which were already successfully applied in 

RESOLFT nanoscopy. Despite high structure similarity between Anthozoan and Hydrozoan 

FPs, they share limited sequence identity. In Hydrozoan RSFPs, there is no sulfur-containing 

residue in the chromophore pocket. Thus the photobleaching caused by sulfoxidation of 

Met159 in low-intensity illumination pathway in Anthozoan RSFPs doesn’t exist in 

Hydrozoan RSFPs. Furthermore, the decarboxylation of Glu212 (IrisFP numbering) at the 

origin of photobleaching in Anthozoan RSFPs probably does not to occur in Hydrozoan 

RSFPs either. PA-GFP is the best example displaying that the decarboxylation of Glu222 

(GFP numbering) activates the chromophore and turns on the fluorescence. The Glu222 

initially favors the protonation of the chromophore that hardly absorbs 488 nm light. Upon 

UV illumination, decarboxylation of this residue favors the deprotonation of the chromophore 

that emits fluorescence under excitation by 488 nm light.  (Henderson et al., 2009). 

6. Engineering of photostable mutants of Hydrozoan FPs  

One possible photobleaching pathway in Hydrozoan FPs is that singlet oxygen 

diffuses to other residues more remote from the chromophore pocket and oxidizes them, 

which can result in photobleaching. Once the study of photobleaching mechanisms in 

Hydrozoan RSFPs progresses, key residues that are involved in photobleaching will be 

identified, and one could rationally design photostable mutants of Hydrozoan RSFPs like we 

did in Anthozoan RSFPs. 

7. Long-lived dark state 

In both articles, the photofatigue profiles display a clearly biphasic fluorescence 

amplitude decay suggesting that several photobleaching pathways occurs during photofatigue 

and that other photophysical process may be involved as well. One possible photophysical 

process is the establishment of a long-lived dark state with lifetime of several minutes. We 

speculate that, during the fast phase, a population of molecules enters in a long-lived dark 

state, creating a shelving effect and hence slowing down the photofatigue decay. Possibly, this 
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long-lived dark state could be trapped in a protein crystal and visualized by X-ray 

crystallography.  

8. Environmentally stable proteins 

As shown in our second article (Duan et al., 2014), the photoswitching behavior and 

the photostability of IrisFP and the M159A mutant differ a lot in different environments. 

Unlike the huge improvement that we found in solution, in some particular conditions, such as 

in PVA gel or live cells, the mutant showed less enhancement, possibly due to the complex 

external environment. To maintain the enhancement that we obtain within the isolated mutant, 

additional efforts are necessary. 

The importance of the super-resolution techniques that can serve as very powerful 

tools to investigate subtle cellular architectures or real life processes on the nanometer-scale 

was recently recognized. The Nobel Prize in Chemistry 2014 was awarded jointly to Eric 

Betzig, Stefan W. Hell and William E. Moerner for the development of super-resolved 

fluorescence microscopy (Fig.17).  

 

 

Fig17. The Nobel Prize in Chemistry 2014: Eric Betzig, Stefan W. Hell and William E. 

Moerner (image from internet) 

 

 In order to achieve a better spatial resolution of super-resolved fluorescence 

microscopy, the biological community demands new FPs particularly in the near-infrared 

range with better brightness and photoresistance. Our studies step forward to meet this 

demand. 
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Résumé 

 

Etude structurale des mécanismes de photoblanchiment des protéines 

fluorescentes photocommutables 

La découverte des Protéines Fluorescentes Phototransformables (PTFPs) issues 
d’espèces anthozoaires a ouvert, grâce à leurs propriétés photophysiques particulières, un 
vaste champ d’investigation pour l'imagerie biologique de fluorescence. L'un des sous-
groupes des PTFPs est formé des protéines fluorescentes réversiblement photocommutables 
(RSFPs), qui peuvent être commutées réversiblement entre des états non-fluorescent et 
fluorescent. Le photoblanchiment est la perte définitive d’émission de fluorescence sous 
excitation et est un phénomène commun à toutes les molécules fluorescentes. Le 
photoblanchiment a un impact important sur la qualité des images de microscopie, notamment 
en imagerie de super-résolution. Les RSFPs ont tendance à perdre de leur performance à 
chaque cycle de commutation, un processus dénommé “photofatigue”. Notre intérêt est centré 
sur  l'étude des mécanismes de photofatigue des RSFPs.  

Nous avons rapporté les structures cristallographiques d’IrisFP photoblanchie par une 
forte et une basse intensité d’illumination à température ambiante ainsi que les modifications 
spectroscopiques associées. Nos résultats démontrent que différentes intensités d'excitation 
peuvent donner lieu à différentes voies de photoblanchiment. Sous faible intensité d'excitation, 
une voie de photoblanchiment dépendante de l'oxygène a été mise en évidence. Les 
modifications structurales induites par la production d'oxygène singulet à l'intérieur de la 
poche du chromophore ont révélé l'oxydation de deux résidus soufrés, Met159 et Cys171, 
piégeant le chromophore dans un état  protoné non-fluorescent. Sous haute intensité 
d'excitation, une voie de photoblanchiment oxygène-indépendante totalement différente a été 
trouvée. Le Glu212, strictement conservé, subit une décarboxylation associée à un important 
réarrangement du réseau de liaisons hydrogènes autour du chromophore, et un changement 
d’hybridation sp2 vers sp3 du carbone reliant les cycles du chromophore est observé. En tant 
que résidu clé impliqué dans le photoblanchiment induit par faible intensité d'excitation, nous 
avons muté Met159 en alanine afin d'éviter une sulfoxydation. Nous avons trouvé que le 
mutant IrisFP-M159A démontre une photostabilité améliorée en solution, en gel PVA et dans 
des cellules E. coli. 

 

Mots-clés : protéines fluorescentes, photoblanchiment, cristallographie, spectroscopie, 

ingénierie rationnelle 
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Abstract 

Structural insight into photobleaching mechanisms of reversible 

photoswitchable fluorescent proteins  

The discovery of phototransformable FPs (PTFPs) from Anthozoa species, thanks to 
their photophysical properties, has opened a large field in biological fluorescence imaging. 
One of the PTFPs’ sub-groups consists of Reversible Photoswitchable Fluorescent Proteins 
(RSFPs), which can be reversibly switched between nonfluorescent and fluorescent states. 
Photobleaching is the permanent loss of the fluorescence-emitting capacity under excitation, 
which is a common phenomenon among all the fluorescent molecules. Photobleaching has a 
large impact on the microscopy image quality, notably on super-resolution imaging. 
Photoswitchable fluorescent proteins have a tendency to lose performance within every 
switching cycle, a process referred to as “photofatigue”. Our interest of study is focused on 
the photobleaching mechanisms of RSFPs. 

We have reported the crystallographic structure of photobleached IrisFP under high 
and low illumination intensity at room temperature as well as its spectroscopic modifications. 
We found that different illumination intensities can result in different photobleaching 
pathways. Under low illumination intensity, an oxygen-dependent photobleaching pathway 
was evidenced. Structural modifications induced by singlet-oxygen production within the 
chromophore pocket revealed the oxidation of two sulfur-containing residues, Met159 and 
Cys171, locking the chromophore in a nonfluorescent protonated state. Under high 
illumination intensity, a completely different, oxygen-independent photobleaching pathway 
was found. The conserved Glu212 underwent decarboxylation concomitantly with an 
extensive rearrangement of the H-bond network around the chromophore, and an sp2-to-sp3 
hybridization change of the carbon atom bridging the chromophore cyclic moieties was 
observed. As Met159 is the key residue involved in low-intensity illumination photobleaching, 
we have then mutated Met159 into Alanine in order to avoid sulfoxidation. We found that the 
IrisFP-M159A mutant display an enhanced photostability in solution, in PVA gel and in 
E.coli cells. 

 

Keywords:  fluorescent proteins, RSFPs, photobleaching, crystallography, spectroscopy 

rational design 
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