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M. Francesco Ticozzi Université di Padova Examinateur





Résumé

De nombreux phénomènes de physique quantique ne peuvent être compris que par l’analyse
des systèmes ouverts. Un appareil de mesure, par exemple, est un système macroscopique en
contact avec un système quantique. Ainsi, tout modèle d’expérience doit prendre en compte
les dynamiques propres aux systèmes ouverts. Ces dynamiques peuvent être complexes :
l’interaction du système avec son environnement peut modifier ses propriétés, l’interaction
peu créer des effets de mémoire dans l’évolution du système, . . .

Ces dynamiques sont particulièrement importante dans l’étude des expériences d’optique
quantique. Nous sommes aujourd’hui capable de manipuler individuellement des particules.
Pour cela la compréhension et le contrôle de l’influence de l’environnement est crucial.

Dans cette thèse nous étudions d’un point de vue théorique quelques procédures com-
munément utilisées en optique quantique. Avant la présentation de nos résultats, nous in-
troduisons et motivons l’utilisation de la description markovienne des systèmes quantiques
ouverts. Nous présentons à la fois les équations mâıtresses et le calcul stochastique quantique.
Nous introduisons ensuite la notion de trajectoire quantique pour la description des mesures
indirectes continues. C’est dans ce contexte que l’on présente les résultats obtenus au cours
de cette thèse.

Dans un premier temps, nous étudions la convergence des mesures non destructives. Nous
montrons qu’elles reproduisent la réduction du paquet d’onde du système mesuré. Nous mon-
trons que cette convergence est exponentielle avec un taux fixé. Nous bornons le temps moyen
de convergence. Dans ce cadre, en utilisant les techniques de changement de mesure par mar-
tingale, nous obtenons la limite continue des trajectoires quantiques discrètes.

Dans un second temps, nous étudions l’influence de l’enregistrement des résultats de mesure
sur la préparation d’état par ingénierie de réservoir. Nous montrons que l’enregistrement des
résultats de mesure n’a pas d’influence sur la convergence proprement dite. Cependant, nous
trouvons que l’enregistrement des résultats de mesure modifie le comportement du système
avant la convergence. Nous retrouvons une convergence exponentielle avec un taux équivalent
au taux sans enregistrement. Mais nous trouvons aussi un nouveau taux de convergence
correspondant à une stabilité asymptotique. Ce dernier taux est interprété comme une mesure
non destructive ajoutée. Ainsi l’état du système ne converge qu’après un temps aléatoire. À
partir de ce temps la convergence peut être bien plus rapide. Nous obtenons aussi une borne
sur le temps moyen de convergence.

Mots-clefs : Systèmes ouverts, Calcul Stochastique Quantique, Trajectoires quantiques, Me-
sure non destructives, Ingénierie de réservoir.
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Abstract

Many quantum physics phenomena can only be understood in the context of open system
analysis. For example a measurement apparatus is a macroscopic system in contact with a
quantum system. Therefore any experiment model needs to take into account open system
behaviors. These behaviors can be complex: the interaction of the system with its environ-
ment might modify its properties, the interaction may induce memory effects in the system
evolution, . . .

These dynamics are particularly important when studying quantum optics experiments.
We are now able to manipulate individual particles. Understanding and controlling the envi-
ronment influence is therefore crucial.

In this thesis we investigate at a theoretical level some commonly used quantum optics
procedures. Before the presentation of our results, we introduce and motivate the Markovian
approach to open quantum systems. We present both the usual master equation and quantum
stochastic calculus. We then introduce the notion of quantum trajectory for the description
of continuous indirect measurements. It is in this context that we present the results obtained
during this thesis.

First, we study the convergence of non demolition measurements. We show that they
reproduce the system wave function collapse. We show that this convergence is exponential
with a fixed rate. We bound the mean convergence time. In this context, we obtain the
continuous time limit of discrete quantum trajectories using martingale change of measure
techniques.

Second, we investigate the influence of measurement outcome recording on state prepara-
tion using reservoir engineering techniques. We show that measurement outcome recording
does not influence the convergence itself. Nevertheless, we find that measurement outcome
recording modifies the system behavior before the convergence. We recover an exponential
convergence with a rate equivalent to the rate without measurement outcome recording. But
we also find a new convergence rate corresponding to an asymptotic stability. This last rate
is interpreted as an added non demolition measurement. Hence, the system state converges
only after a random time. At this time the convergence can be much faster. We also find a
bound on the mean convergence time.

Keywords: Open systems, Quantum Stochastic Calculus, Quantum trajectories, Non de-
molition measurement, Reservoir engineering.

3





Remerciements
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Je tiens à remercier aussi tous les postdoc et thésards qui ont participé de prêt ou de loin à
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1. Introduction

In 1947, in a celebrated experiment, W. E. Lamb and R. C. Rutherford measured a splitting
of the hydrogen emission–adsorption rays where the Dirac equation predicted the presence of
only one ray [70]. Later the same year this lifting of the hydrogen energy spectrum degeneracy
was explained by H. A. Bethe [31]. He showed that it was a consequence of the interaction
of the atom with the electromagnetic field. This effect was thereafter named the Lamb shift.

This well known result is an example of the importance of open systems in quantum physics.
Actually, since doing an experiment imply performing a measurement, it includes the inter-
action of a macroscopic apparatus with the system under study. It is intrinsically an open
system situation. Any system in an actual experiment is open.

This is particularly true in quantum optics. We have reach the point where individual
particles can be experimentally manipulated on the quantum level. The 2012 Nobel price was
awarded to S. Haroche and D. J. Wineland for such achievements. One of the goals of these
experiments is the preparation of systems in true quantum states. Hence, states including
entanglement or superposition of energy states, the so called Schrödinger cat states. The
environment has a tendency to destroy such states and unfortunately modeling its influence
is not always straightforward.

Consider for example the question of thermalization of an atom in interaction with a heat
bath. Its interaction with the electromagnetic field yields a splitting of the atom energy
levels, the Lamb shift. Should we expect a thermalization corresponding to the isolated
energy spectrum or to the one induced by the Lamb shift?

Also, the system evolution arising from its interaction with the environment includes, in
general, memory effects [36]. Thus, from the knowledge of the system state at present time
only, we cannot predict the system state at any future time.

In some physically motivated limits this memory effect can be neglected. Under these
approximations, the system evolution can be considered Markovian.

Markovian models are also pertinent to describe quantum optics experiments where systems
are manipulated through their repeated interaction with auxiliary systems (light pulses, atoms
. . . ) [63].

In this thesis report we introduce the different Markovian descriptions of open quantum
systems developed since the seventies. Particularly we present quantum stochastic processes
and the theory of continuous indirect measurements, quantum trajectories. We then focus
on the results obtained during this thesis on the longtime behavior of two specific indirect
measurement setups.

Markovian approximation for open systems To the author knowledge, the first complete
justification of a Markovian approximation was made by E. B. Davies in the seventies [46]. He
proved that when the evolution induced by the system–environment interaction takes much
more time than the evolution due to both the system and the environment being taken isolated
one from the other, the system evolution is effectively described by a Markovian evolution.
This limit is the weak coupling limit. It is valid when the interaction energy is much smaller
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1. Introduction

than all energy scales of both the system and the environment being taken isolated one from
the other. It is also called the rotating wave Born–Markov approximation.

This result leads to answer our previous question about which energy spectrum should
be considered for the thermalization of an atom, the isolated one or the Lamb shifted one.
As we will see in section 2.3.2, in the weak coupling limit and under some convergence
conditions [45,55,91], the atom thermalizes according to its isolated energy spectrum.

In the eighties, a quantum version of classical stochastic equations was developed, especially
by R. L. Hudson and K. R. Parthasarathy [64]. This Quantum Stochastic calculus was and
still is a tool frequently used to model quantum optics experiments [57]. We will see in
chapter 3 that they can be considered as Markovian limits keeping some information on the
environment through some quantum noises. These noises are the quantum equivalent of the
classical white noise and Poisson processes. From the nineties up to nowadays different limits
leading to quantum stochastic evolution for open systems have been found. Let us cite the
work of J. Derezinski and W. de Roeck on the weak coupling [48] and the work of S. Attal
and Y. Pautrat on the repeated interaction continuous limit [6].

One of the most interesting corollary to the description of open evolutions through quan-
tum stochastic processes is the derivation of stochastic differential equations modeling the
continuous indirect measurement of systems. These stochastic differential equations are
called quantum trajectories stochastic differential equations and where first derived from
quantum stochastic differential equations by V. P. Belavkin in the late eighties and early
nineties [26–28]. At the same time, physicists proposed similar stochastic differential equa-
tions either as a mean of master equation simulation (J. Dalibard et al. [44]) or as a description
of continuous indirect monitoring of quantum optics systems (H. Carmichael [40]). Of course
previous attempts to model continuous measurements had been made. We can cite for exam-
ple the instrument formalism approach of E. B. Davies [46] and the work of A. Barchielli et
al. [14]. Quantum trajectories are an ideal tool to describe typical quantum optics measure-
ments such as interferometry or photon counting [102].

During this thesis we particularly studied two indirect measurement setups: non demolition
measurements and state preparation through reservoir engineering.

Non demolition measurements and wave function collapse Based on a work by M. Bauer
and D. Bernard [21] inspired by S. Haroche’s group experiment [61] we studied the conver-
gence of non demolition measurements [35, 43]. Non demolition measurements are indirect
measurement that leave invariant a given set of system states called the pointer states. The
pointer states are generally the system energy eigenstates. By indirect we mean the system
is not directly connected to a macroscopic apparatus. An intermediate system, a probe, in-
teracts with the system and is then measured by a macroscopic apparatus. The name non
demolition may have two meanings in the literature: either it means that the measurement
procedure cannot demolish the measured states, or it means that the system is not destroyed
through the measurement process since it is not connected to a macroscopic apparatus di-
rectly. We are concern with the first definition. It is sometimes called the standard non
demolition condition. One expects that such measurements will push the system to one of
the pointer states with a distribution of the pointer states given by von Neumann projection
postulate. Hence one expects to reproduce wave function collapse on the system even if the
projective measurement was made only on the probe.

We recall the reader that von Neumann projection postulate states that a quantum system
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in state |φ〉 is, after a measurement of a non degenerate observable A =
∑

a∈spec(A) a|a〉〈a|,
in a state |a〉 with probability |〈a|φ〉|2. a takes value in the spectrum of A. The projection of
|φ〉 onto |a〉 is also called wave function collapse.

In [21] M. Bauer and D. Bernard showed that a repeated non demolition measurements leads
to a wave function collapse. They also showed that the convergence is exponential with an
explicit rate. In [20] with M. Bauer and D. Bernard we extended this result to any type of non
demolition measurement. In particular we allowed the use of different probing methods with
any procedure for the choice among the probing methods. Hence we allowed for a possibly
highly non Markovian procedure of measurement. We proved collapse in this context and
showed that the use of different probing methods can lead to an increased convergence rate
toward the collapse. We showed that even if one starts the computation with an estimated
state different from the physical one, one obtain the same limit pointer state. Hence we proved
estimation stability. We also studied degenerate measurements. All these results are presented
in section 4.3. We added a result on the mean time in which the convergence happen. This
result is not contained in the article. The main mathematical tools used to obtain these results
where bounded martingale convergence and martingale change of measure. To our knowledge
it is the first time such a complete study of wave function collapse through repeated indirect
measurement was made.

In the same article [20] we introduced a derivation of a diffusive continuous time limit
of repeated non demolition measurements. By continuous limit we mean that we search
for a continuous time process describing the limit where an increasing number of indirect
measurements are performed in a fixed time. The limit stochastic equation we obtained is
a diffusive quantum trajectory stochastic differential equation with an added non demolition
property. We proved collapse and exponential convergence for these non demolition diffusive
quantum trajectories.

Following this work in [24] with M. Bauer and D. Bernard we derived the continuous
time limit of general repeated non demolition measurements. We obtained general quantum
trajectory stochastic differential equations with an added non demolition property. This work
can be seen as a complementary approach to the continuous time approximation of repeated
indirect measurement made by C. Pellegrini [84–86]. In our derivation we used martingale
change of measure techniques and obtain the continuous limit of the measurement outcomes.
The two approaches to the continuous limit are presented in section 5.2.2.

We completed this work on non demolition measurements in [29] with C. Pellegrini. Starting
from a continuous time quantum trajectory stochastic differential equation we found the
sufficient and necessary conditions for it to correspond to a non demolition measurement.
We proved these conditions are equivalent to the pointer probabilities being martingales.
Finally using martingale convergence and change of measure techniques we showed collapse,
exponential convergence with explicit rate and estimation stability. Part of these results
where already known. But to our knowledge the exponential convergence and the stability of
the estimated state are new results. This work is presented in section 5.4. We added a result
on the mean time of convergence which is not included in the article cited.

Reservoir engineering and state preparation In late nineties and early two thousands, the
idea of engineering the interaction of a system with its environment to drive it autonomously
to a desired pure state emerged [41, 47, 71, 87, 88, 99]. Some experimental realizations of this
idea have been made since [19, 68, 72, 77, 90]. In [33, 96, 97] F. Ticozzi et al. gave necessary
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1. Introduction

and sufficient conditions on the mean Markovian evolution of a system such that it is driven
to a specific subspace of the whole state space. If this subspace is of dimension 1, the system
converges to a specific pure state.

In a work still in preparation with B. Cloez, C. Pellegrini and F. Ticozzi we investigate
such reservoir engineering but when the engineered environment is measured. Some results
where obtained on this subject in [94] by F. Ticozzi et al.. In our work we show, in any
case, that the convergence in mean is equivalent to the almost sure convergence of the state.
We find two different convergence rates. One is equivalent to the average convergence rate
and one is greater. This increased convergence rate is interpreted as the consequence of an
added non demolition measurement. We obtain also a bound on the mean convergence time.
This allows us to interpret of mean convergence rate as an actual convergence rate whereas
the increase obtained when measurements are recorded corresponds to an asymptotic stability
rate. Hence the first characterizes the time after which the state converges, whereas the second
characterizes the speed at which it converges when the convergence happen. To our knowledge
the convergence for any type of measurement and the characterization of the convergence are
both new results.

These early results are presented for the discrete time setup in section 4.4 and for the
continuous time setup in 5.5.

Structure The thesis report is structured as follow. In a first chapter we present the gen-
eral description of open quantum systems. We introduce the different models: Spin–boson,
repeated interactions, Caldeira–Leggett and path integral approaches. We focus on the evo-
lution of the system once the environment has been traced out. We call this evolution the
reduced system evolution. We introduce completely positive trace preserving maps. For the
Spin–Boson model we motivate the necessity of an infinite dimensional continuous energy
spectrum environment. We highlight the complexity of the evolution induced by the memory
of the environment. We present the general expression of Markovian reduced system evo-
lution. Thus we define completely positive trace preserving semi–groups. We discuss both
the long time behavior of completely positive trace preserving semi–groups and of repeated
action of completely positive trace preserving maps for the repeated interactions model. We
finish the chapter by a presentation of the main limits leading to Markovian reduced system
evolution.

In the second chapter, we introduce quantum stochastic calculus. We start by a pre-
sentation of the quantum noises and the unitary evolutions allowed by quantum stochastic
differential equations. Then we present the dilation of completely positive trace preserving
semi–groups through quantum stochastic unitary evolution. We also present two limits lead-
ing to quantum stochastic evolutions, the weak coupling limit and the continuous limit of
repeated interactions. We conclude this chapter with the presentation of the path integral
formalism equivalent to the quantum stochastic evolution. We use this path integral for-
malism to find the classical limit of quantum stochastic evolutions. We recover the usual
Langevin equations.

In a third chapter we present results on repeated indirect measurements, also called dis-
crete quantum trajectories. After a presentation of the setup, we introduce the results of B.
Kümmerer and H. Maassen on the long time behavior of general discrete quantum trajecto-
ries. Namely we present the ergodic theorem for discrete trajectories they obtained [69] and
explain how they showed that in the long time limit, in general, a system following a quantum
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trajectory tends to purify [75]. We conclude this chapter by the presentation of our results
on non demolition measurements and reservoir engineering in discrete time.

In a fourth and last chapter we present continuous time quantum trajectories. After a
general definition we present the different derivations we know of these equations. We present
a physical phenomenological approach, the continuous limit of repeated interactions, quantum
filtering and finally the unraveling of master equations. Then we present the general long
time behavior of such trajectories. First we present the continuous time ergodic theorem of
B. Kümmerer and H. Maassen [69]. Then we present the purification along the trajectory
showed by A. Barchielli and A. M. Paganoni [17]. In the two last sections of this chapter we
present our results on non demolition measurements and reservoir engineering in continuous
time.
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2. Open system Markovian description

2.1. Open systems

A system is considered open when it is in interaction with an environment. Namely one
does not consider only an atom but this atom and its interaction with the environment.
Thus the total system we consider is intrinsically bipartite. The first part is the system, the
second is the environment. The two parts have, of course, different roles. The environment is

Figure 2.1.: Open system situation.

formally all the world outside the system. Hence it is considered way larger that the system.
For example, the system can be a single particle when the environment is composed of a
macroscopic number of particles.

Let us recall the basic mathematical formalism of quantum mechanic we will use through
this thesis. Once this fixed the relative size criteria between the system and the environment
will be much clearer.

Hilbert spaces and states A quantum system is described by a Hilbert space H. The
state of the system is a positive semi definite trace class (hence bounded) operator from the
Hilbert space to itself. Its trace is equal to one. So the set of system states is S(H) = {ρ ∈
B(H) s.t. ρ ≥ 0, tr[ρ] = 1} 1. We prefer this description to the pure state one where the system
state is given by a normalized element of H. Indeed the former allow for the description of
pure states when the latter is not suited for the description of statistical mixture of pure
states. Since we are concerned with open systems, we often encounter mixed states and
therefore prefer using density matrices ρ as states.

1. Actually this definition is not really suitable for the description of macroscopic systems at strictly positive
temperature. One should instead define the state as a positive linear form on an operator algebra. Nevertheless
in this thesis we will assume any state can be described by a density matrix ρ.
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2. Open system Markovian description

In the traditional formulation of quantum mechanics, physical quantities are represented by
selfadjoint operators acting on the Hilbert space. They are not necessarily bounded. These
operators are called observables. When performing the measurement of a given observable O
on the system, the outcome o(ω) obtained is a random variable. Let us equip the spectrum
of O, spec(O), with a σ–algebra F . The distribution of o(ω) is given by P(o(ω) ∈ A) =
tr[PAρ] for any measurable subset A of spec(O). PA is the projector onto the eigensubspace
corresponding to the eigenvalues in A. If O has discrete non degenerate spectrum, P(o(ω) =
o′) = tr[Po′ρ] with Po′ = |o′〉〈o′| where |o′〉 ∈ H and ‖|o′〉‖ = 1. After a measurement where
we learned that the outcome is in A, the system state is projected to PAρPA

tr[PAρ] . Hence it is a
random variable distributed according to P. This is the von Neumann projection postulate.
The mapping between the observable and the state on one side and the probability space on
the other side, is made, in the most general case, thanks to the spectral theorem (see section
5.2.3).

In an open quantum system context we consider two such quantum systems, the actual
system and the environment. Let us write their Hilbert spaces Hsys. and Henv. respectively.
The difference between the system and the environment lies in the relative size of Henv. with
respect to Hsys.. It is often assumed that the system Hilbert space is a finite dimensional one,
in other words Hsys. = Cdsys. , dsys. < ∞, whereas the environment Hilbert space has infinite
dimension. It attempts to translate the macroscopic size of the environment. Actually these
conditions are neither sufficient nor the most general.

In many cases the system can be a simple particle, then its Hilbert space is L2(Rd;Ck), the
space of square integrable functions from Rd to Ck. It is infinite dimensional. Nevertheless in
this thesis we limit ourselves to finite dimensional system Hilbert spaces Hsys. = Cdsys. . They
are good representations of the systems we are interested in. For a particle or a field, one
can often cut off the higher energy level states. Note that the space of operators on Hsys. is
then the space of dsys.× dsys. complex matrices. Thus all the operators on Hsys. are bounded.
Their adjoint with respect to the canonical scalar product over Cdsys. are their Hermitian
conjugated X∗ = X†. We alert the reader whenever the system Hilbert space is not Cdsys. .

On the environment side, the condition of an infinite dimensional Hilbert space is not
sufficient. A single particle is not really a good model for a whole environment, yet its
Hilbert space is infinite dimensional. We need to furthermore assume that the environment
is macroscopic, thus we do not bound the possible number of particles. For simplicity we
assume the environment has a simple structure. Therefore the environment is assumed to be
a field of free bosons. The Hilbert space is then a symmetric Fock space over the one particle
space Γ(L2(Rd;Ck)). The one particle states take value in Ck the possibility of k > 1 allows
for the introduction of spin degrees of freedom. Note that we do not treat cases with fermions
in the environment.

Finally the Hilbert space we consider for the description of an open quantum system through
out this thesis is

Htot. = Hsys. ⊗Henv. = Cdsys. ⊗ Γ(L2(Rd;Ck)). (2.1)

It is the Hilbert space of the celebrated spin–boson model. The dimension d refers to the
dimension of space. Thus we should fix it to 3 since we consider we are in a non relativistic
situation, but we keep for now this freedom since we will encounter symmetric Fock spaces
with d = 1. We will also encounter environments which are not Fock spaces. We will describe
these later.
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2.1. Open systems

In full generality, the set of states we are concerned with is S(Htot.). Nevertheless we often
are interested only with the system state evolution. Thus from the total state ρtot. ∈ S(Htot.),
we defined a system state, the reduced state, by taking a partial trace over the environment
Hilbert space.

ρsys. = trHenv. [ρtot.]. (2.2)

The total system ρtot. is thus sometimes referred to as the extended state.
Note that if ρtot. = ρ⊗ρenv., then ρsys. = ρ. We always assume the initial total state has such

factorization property. Namely, the system and the environment are initially independent.
They are disentangled and statistically uncorrelated.

Evolution and Poincaré recurrence theorem The reversible evolution of a state between two
times is given by a unitary operator U . The state after the evolution is UρU∗. In continuous
time, the state at any time t is given by a group of unitaries Ut. We have ρ(t) = UtρU

∗
t . The

group generator is the Hamiltonian H, the total energy observable 2: Ut =−itH . We usually
write this Hamiltonian in three parts

H = Hsys. ⊗ Ienv. + Isys. ⊗Henv. +Hint.. (2.3)

The first two terms correspond to the free evolution of respectively the system and the en-
vironment. The term free refers to the evolution when the system and the environment do
not interact. Hsys. is the energy observable of the system alone and Henv. is the one of the
environment. We usually have Henv. =

´
dpω(p)a∗pap with ap and a∗p the annihilation and

creation operators acting on the bosonic Fock space. They satisfy the canonical commutation
relations (CCR)

[ap, a
∗
p′ ] = δ(p− p′). (2.4)

Note that we dropped the spin degrees of freedom. For the sake of simplicity for now let us
assume k = 1. We will specify later when k > 1. ω(p) is the dispersion relation giving the
energy given the impulsion of a particle.

The interaction Hamiltonian Hint. is an operator acting on Hsys.⊗Henv.. It assures that the
evolution does not reduce trivially to a free one. Note that we do not allow time dependent
Hamiltonian. Formally this would mean that there is an additional classical environment,
namely the experimenter adjusting a parameter, which is not described by the present Hamil-
tonian. This is a generalization beyond the scope of this thesis.

From now on whenever the definition is clear we will not adopt a different notations for X
acting on Hsys. and X ≡ X ⊗ Ienv. acting on Htot.. Similarly Y ≡ Isys. ⊗ Y for Y acting on
Henv.. Hence for example, Hsys. ≡ Hsys. ⊗ Ienv..

The reduced state evolution is given by a time dependent map Φt such that

ρsys.(t) = Φt(ρsys.) = trHenv. [Utρsys. ⊗ ρenv.U
∗
t ] (2.5)

with ρsys. the initial system state.
Often we expect the system state will relax to a stationary state. This adds a new constrain

on the spectrum of H, the energy observable of the total system (system+environment). Its

2. Through out the text we set ~ = c = 1. At one point we introduce back ~. We alert the reader at the
time.
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2. Open system Markovian description

spectrum should at least have a continuous part. If not the total state is quasi periodic and
therfore there is good chance that the reduced system state is also periodic. It is a consequence
of Poincaré recurrence theorem [32].

Assume H has a discrete spectrum spec(H) = {En}n∈N with eigenvectors {|n〉}n∈N ⊂ Htot..
Let ρ =

∑
n,k cnk|n〉〈k| be the initial state of the total system. We note the Frobenius norm

‖X‖2F = tr[X∗X]. We have explicitly

‖ρtot.(t)− ρtot.‖2F = 2
∑
k,n

(1− cos(ωnkt))|cnk|2 (2.6)

with ωnk = Ek − En. Since ‖ρ‖F ≤ 1 for any state ρ, the sum converges. Hence for any
ε > 0, it exists a time n0 such that 2

∑
n>n0

∑
k(1 − cos(ωnkt))|cnk|2 +

∑
n≤n0

∑
k>n0

(1 −
cos(ωnkt))|cnk|2 < ε/2. Hence

‖(ρtot.(t)− ρtot.‖2F ≤ 2

n0∑
k,n=1

(1− cos(ωnkt))|cnk|2 + ε/2. (2.7)

We have a finite number of different ωnk involved in the remaining sum. Thus using Dirichlet’s
theorem on diophantine approximations, it exists T0 < ∞ such that |1 − cos(ωnkT0)| ≤ ε/2
for any n, k ≤ n0. Since tr[ρ2

tot.] ≤ 1, we finally have

‖ρtot.(T0)− ρtot.‖2F ≤ ε. (2.8)

Thus whatever is the initial total state, we will get back as close as we want to it in a finite
time. Thus any total initial state is quasi periodic.

When spec(H) has at least a continuous part we can no longer apply Dirichlet’s theorem,
thus we are not sure we will have quasi periodicity for any initial state. In this case the
recurrence time T0 can be infinite. One can understand this saying the recurrence time is
of the order of the inverse of the minimal spacing between two energy levels. Hence if this
spacing goes to zero the recurrence time explodes towards infinity.

Let us remark that if both Hsys. and Henv. have discrete spectrum, then there is a good
chance that H has a discrete one too. To try to avoid this and for simplicity we assume Henv.

spectrum is the real line: spec(Henv.) = R. Note that since Hsys. is finite dimensional, there
is no chance Hsys. has continuous spectrum.

2.1.1. System evolution and completely positive maps

We can say a little more on the reduced evolution (Φt)t∈R+ . It is actually a family of
completely positive (CP) trace preserving (TP) map.

Complete positivity is a stronger property than only positivity. Positivity means that the
image of any positive operator through the map Φt is positive. Complete positivity impose
that any extended version of Φt to a larger finite dimensional Hilbert space is still positive.
Namely, for any k ≥ 0, Φt ⊗ Ik is positive with Ik the identity on the k × k complex matrix
space. Counter intuitively, positivity does not imply complete positivity.

Let T : B(C2) → B(C2), T (X) = Itr[X] −X. This map is positive. Let us now consider
its extension to B(C2 ⊗ C2). Let P− be the projector on |−〉 = 1√

2
(|0 ⊗ 1〉 − |1 ⊗ 0〉) where

{|0〉, |1〉} is an orthonormal basis of C2. Then

〈−|T ⊗ I2(P−)−〉 = 〈−|(1

2
I4 − P−)−〉 = −1

2
< 0. (2.9)
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2.1. Open systems

Hence T ⊗ I2 is not positive, therefore T is not completely positive.
It is clear why we expect quantum evolution to be completely positive and not only positive.

A system can be in contact with any other system of arbitrary size. Their joint state can be
entangled. But if the evolution only acts on the initial system and not on the second one, the
joint state obtained should still be positive. If it is not the case, we could have measurement
on the resulting joint state with outcomes of negative probability. To assure that the operator
obtained after the evolution is actually a state we must also have tr[Φt(ρ)] = tr[ρ] = 1. Hence
the evolution completely positive map must be also trace preserving (TP).

CPTP maps have nice properties [103]. For instance they always accept at least one in-
variant state ρinv., Φt(ρinv.) = ρinv.. For a general family of CPTP maps {Φt}, ρinv. might
depend on t. We also have that Φ : B(Hsys.) → B(Hsys.) is a CP map if and only if we can
find a family of operators {Mj}1≤j≤d2

sys.
⊂ B(Hsys.) such that

Φ(ρsys.) =
∑
j

Mjρsys.M
∗
j . (2.10)

It is the Kraus (or Stinespring) decomposition of CP maps. If moreover Φ is TP,
∑

jM
∗
jMj =

Isys..
Let us now show that the map corresponding to the reduced evolution of the system state

up to time t is always a CPTP map. Actually we prove that the dual of the map is a CP
unital map. The dual Φ∗t of Φt is the map such that for any system state ρsys. and any
X ∈ B(Hsys.), tr[Φ∗t (X)ρsys.] = tr[XΦt(ρsys.)]. It is unital if Φ∗t (Isys.) = Isys.. It is clear that
this is equivalent to Φt being TP. Let ρenv. : B(Htot.) → B(Hsys.) be the positive map such
that for any X ∈ B(Htot.), ρenv.(X) = trenv.[X(Isys. ⊗ ρenv.)]. Hence it maps the operators
on the total Hilbert space to “reduced” operators on the system Hilbert space. Then for any
X ∈ B(Hsys.),

Φ∗t (X) = ρenv.(U
∗
t XUt). (2.11)

We decompose Ut on an orthonormal basis of B(Hsys.), {Bj}1≤j≤d2
sys.

: Ut =
∑

j Bj ⊗ Uj(t)
with {Uj(t)} a family of operators on Henv.. It follows that

Φ∗t (X) =
∑
j,k

ρenv.(Uj(t)
∗Uk(t))B

∗
jXBk. (2.12)

The matrix P (t) = (ρenv.(Uj(t)
∗Uk(t)))1≤j,k≤d2

sys.
is positive semi definite. Thus it can be

diagonalized. Let the unitary u(t) be such that P (t) = u∗(t)D(t)u(t) with D(t) a non negative
diagonal matrix. Let Mj(t) =

√
Dj(t)

∑
k ujk(t)(t)Bk, then

Φ∗t (X) =
∑
j

Mj(t)XM
∗
j (t). (2.13)

Moreover since U∗t Ut = Itot., Φ∗t (Isys.) = Isys..
Finally the reduced system evolution is given at each time by a time dependent CPTP map

ρsys.(t) = Φt(ρsys.) =
∑
j

Mj(t)ρsys.M
∗
j (t). (2.14)

Note that we never used the specific properties of the environment. Actually any reduced
evolution starting from a bipartite system leads to a CPTP map for the reduced system
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2. Open system Markovian description

evolution as soon as the states of the two parts are independent. Namely, as soon as the joint
initial state can be factorized into a direct product of states of each part.

Conversely using Stinespring representation of CP unital maps, one can show that for any
CPTP map Φ, there exists a Hilbert space Cd′ , a unitary operator U acting on Cdsys. ⊗ Cd′

and a state ρ′ on Cd′ such that

Φ(ρsys.) = trCd′ [U(ρsys. ⊗ ρ′)U∗]. (2.15)

Hence a CPTP map can always be thought as the reduced evolution of a larger system unitary
evolution [103]. This is called the CPTP map dilation.

2.1.2. Repeated interactions

Besides the Spin–Boson model another open system model has recently gained attention
from theoretical physicists and mathematicians [6, 20, 21, 24, 33, 37, 86], the repeated interac-
tion model. It does not really correspond to a natural physical situation, but it has a true
experimental relevance [62, 63, 101]. In this model, the environment is not a free boson field
but is composed of infinitely many auxiliary systems (or probes) whose Hilbert spaces are
finite dimensional.

Figure 2.2.: Schematic of a repeated interaction setup.

The setup goes has follows. A set of identical auxiliary systems (probes) described by copies
of a finite dimensional Hilbert space Hprobe = Cdprobe are prepared in the same state ρprobe.
Thus the total Hilbert space is

Hsys. ⊗
∞⊗
n=1

Hprobe (2.16)

and the initial state is

ρtot. = ρsys. ⊗
⊗
n

ρenv. (2.17)

The evolution is given by repeated interactions of the system with the probes. First the
system interacts with the first probe for a given time. Then the interaction stops and the
system interacts with the second probe during the same time. The interaction sequence is
then repeated.

Let U be the unitary interaction operator between the system and one probe. Let Un be
the corresponding interaction between the system and the nth probe. Namely it acts non
trivially only on Hsys. and the nth copy of Hprobe. We have the recurrence equation

ρtot.(n+ 1) = Un+1ρtot.(n)U∗n+1. (2.18)
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2.1. Open systems

Hence at time n the total state is

ρtot.(n) = (UnUn−1 . . . U2U1(ρsys. ⊗
n⊗
k=1

ρenv.)U
∗
1U
∗
2 . . . U

∗
n−1U

∗
n)⊗

⊗
k>n

ρenv.. (2.19)

Up until now we did not assume anything on what happens to the probes after they have
interacted with the system. We will see that we can either assume they still exist or they
can be measured. The former leads, in the continuous time limit, to a quantum stochastic
evolution of the system state. In the latter case, the system state evolution is described by a
stochastic process called quantum trajectory. For now we will look at what happens when we
forget about the probes after their interaction with the system. Namely when we trace out
their degrees of freedom.

Since the probes are all initially independent and the interaction happens each time between
the system and only one probe, the recurrence equation for the system reduced state evolution
can be simplified to

ρsys.(n+ 1) = trprobe[Uρsys.(n)⊗ ρprobeU
∗] = Φ(ρsys.(n)). (2.20)

Hence the evolution corresponds to the repeated action of the CPTP map Φ.

ρsys.(n) = Φn(ρsys.). (2.21)

We can then learn a lot on the long time limit of ρsys.(n) from the properties of CPTP
maps. First the spectral radius of a CPTP map is 1, thus its eigenvalues are all on the
complex unit disc. Second, let us assume Φ is irreducible, namely if there is no Hermitian
projector P 6∈ {0, Isys.} such that the subset of state S(PHsys.) is stable under Φ. We can
apply Perron–Frobenius theorem for CP maps [54]. Thus, Φ accept a unique positive definite
invariant state ρinv. > 0. Still it is not necessarily the only eigenvector with unit norm
eigenvalue, we can have eigenvectors ρper. such that Φ(ρper.) = eiθρper., θ ∈ R. Hence it can
exist periodic states.

If Φ has no periodic state and a unique invariant state then limn ρsys.(n) = ρinv. for any
initial system state. The only Φ eigenvalue with unit norm is 1. Thus the convergence is
exponential. Let λ1 = max{|λ|, λ ∈ spec(Φ) \ {1}} < 1. Then for any ε > 0,

ρsys.(n) = ρinv. +O((λ1 + ε)n). (2.22)

Hence as long as λ1 + ε < 1, we have exponential convergence. This is always allowed since
ε = (1− λ1)/2 is suitable.

Of course Φ is not always irreducible. Particularly, for non demolition measurements and
reservoir engineering, Φ will be reducible.

2.1.3. Caldeira–Leggett model

In this subsection let us just cite a celebrated model for the treatment of open quantum
systems, the Caldeira–Leggett model [38]. It was introduced by O. Caldeira and A. Leggett
as a quantum Brownian particle model. Using a high temperature and weak coupling limit,
they obtained stochastic differential equations equivalent to the classical damped Langevin
equations. Though this limit has important issues. If they are not corrected they can lead to
negative probabilities [53].
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2. Open system Markovian description

The idea of Caldeira–Leggett model is to let a particle we are interested in interact with
infinitely many independent harmonic oscillators. The Hamiltonian is

H(x, p, q, π) =
p2

2M
+ V (x)

+
∑
n

π2
n

2mn
+

1

2
mnω

2
nq

2
n

− x
∑
n

κn

√
~

mnωn
qn

+ x2
∑
n

κn
2mnω2

n

(2.23)

where x, p are the system particle position and impulsion operators respectively. {qn, πn}
are position and impulsion operators of the environment harmonic oscillators. The first line
corresponds to the free evolution of the system, the second line to the one of the environment.
The third line is the interaction Hamiltonian. We note

B =
∑
n

κn

√
~

mnωn
qn (2.24)

the environment field entering in the interaction. Remark that the interaction is assumed
linear in the environment degrees of freedom. The last term is a counter term compensating
some renormalization appearing in the high temperature–weak coupling limit. The interaction
Hamiltonian can be generalized by replacing x by any function of x or of p.

Note that if we assume that the environment spectrum is actually continuous and that the
potential is confining enough such that the isolated system spectrum is discrete, we fall back
to the spin–boson model but with an infinite dimensional system Hilbert space.

This model was used, for example, by O. Caldeira and A. Leggett to study the effect of
dissipation on tunneling. They did a semi-classical analysis of the path integral corresponding
to the thermal equilibrium state of the total system+environment [39].

We refer the interested reader to the book Theory of Open Quantum Systems by H.P. Breuer
and F. Petruccione [36] for a more general discussion of this model. The book Quantum
Dissipative Systems by U. Weiss [100] maybe a good choice for a comprehensive review on
such approach to open quantum systems.

2.1.4. Path integral approach

A widely used computational tool of quantum physics is the celebrated Feynman path
integral. In the context of open systems two special applications of path integral may be
distinguished.

First, there is the equivalent to the reduced evolution, the Feynman–Vernon influence
functional. One assumes that the environment is composed of harmonic oscillators and that
the initial environment state is a Gaussian stationary state of the environment free evolution.
Then one expresses the evolution of the system in terms of a path integral and traces over
the environment degrees of freedom. Hence starting from the Hamiltonian we have given for
Caldeira–Leggett model, the path integral giving the probability to measure a particle in xf
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2.1. Open systems

after a time t knowing it started at position xi is

Pt(xf ;xi) =

ˆ x±(t)=xf

x±(0)=xi

D[x±]ei(S0[x+]−S0[x−])−Γ[x+,x−] (2.25)

where

S0[x] =

ˆ t

0

1

2
mẋ(s)2 − V (x(s))ds. (2.26)

If B = 0 for any n then Γ = 0 and we recover the path integral of the isolated system. One
could wonder if we should have a non null counter term still present. Actually since B = 0
implies that the counter term is null. We truly recover the free system evolution.

If B 6= 0, then the influence functional

e−Γ[x+,x−] (2.27)

is not null. The expression of Γ[x+, x−] only depends on the two time correlation func-
tion of B(t) = eitHenv.Be−itHenv. : G(t − s) = tr[B(t)B(s)ρenv.]. Note that G(t− s) =
tr[B(s)B(t)ρenv.]. We have

Γ[x+, x−] =

ˆ t

0
ds

ˆ s

0
dux+(s)G(s− u)x+(u) + x−(s)G(s− u)x−(u)

− x+(s)G(s− u)x−(u)− x−(s)G(s− u)x+(u).

(2.28)

In this case we cannot reduce the number of path involved in the integral. We have a forward
path x+ and a backward one x−. The forward one corresponds to the path integral description
of the unitary forward evolution Ut when x− corresponds to U∗t . Once the environment path
are integrated they are correlated with one another.

If one perform a classical limit on this path integral, namely setting x± = xc ± ~q and
taking the limit ~ to 0, one recover the classical Martin–Siggia–Rose path integral for diffusive
stochastic processes [76].

Second, if one is interested in questions like transport through random media, one would
like to keep the information on the evolution of the environment. Then one cannot use the
influence functional since the environment degrees of freedom cannot be traced out.

The path integral used to compute the different correlation functions between the different
observables of the total system+environment are computed using a full path integral. Let
O[x, q] = x̂1(t1) · · · x̂k(tk) be the observable whose expectation is to be computed. The
operators x̂j(tj) are either position operators on the system or the environment. The time
parameter tj indicate that the measurement of such observable is performed at this time. We
assume j > k ⇔ tj < tk. We could have choose the inverse time ordering. Then the path
integral used to compute the average of O[x] is

〈O[x]〉 =

ˆ
D[x±, p±; q±, π±]

∏
j

x+,j(tj)

 exp
[
i(S0[x+, p+]− S0[x−, p−])

+ i(Senv.[q+, π+]− Senv.[q−, π−])

+ i(Sint.[x+, q+]− Sint.[x−, q−]
]

× ρsys.(x+(0), x−(0))ρenv.(q+(0), q−(0)).
(2.29)
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2. Open system Markovian description

If the inverse time ordering is chosen, the + index of x+,j(tj) is changed to −. The different
parts of the action are the following.

S0[x, p] =

ˆ ∞
0

p(s)ẋ(s)− p(s)2

2M
− V (x(s))ds (2.30)

is the free system action.

Senv.[q, π] =
∑
n

ˆ ∞
0

πn(s)q̇n(s)− πn(s)2

2mn
− 1

2
mnω

2
nqn(s)2ds (2.31)

is the free environment action.

Sint.[x, q] = −
ˆ ∞

0
x(s)B(s)− x(s)2 κn

2mnω2
n

ds (2.32)

is the interaction action. The second term under the integral is the counter term. The two last
terms ρsys.(x+, x−) and ρenv.(q+, q−) fix the initial conditions on the paths from the initial
states. If they are thermal states they can be expressed through an imaginary time path
integral.

The environment part can be changed to an harmonic field depending on the context. Note
that the forward and backward paths are not correlated.

Starting from this path integral a common improvement is made using Keldysh formalism.
Using an adapted change of variables and the symmetries in the two times correlation func-
tions without interaction, one can simplify diagrammatic expansion based computations. We
refer the interested reader to [66] for a presentation of this formalism.

In chapter 3 we will give the path integral formulation for quantum stochastic differential
equations and recover through this formalism their classical limit.

2.2. Markovian evolution

2.2.1. Memory issue

Let us turn back to the system reduced evolution ρsys.(t) = Φt(ρsys.). Let us introduce a
typical open system Hamiltonian. We assume the interaction is linear in the field operators
of the environment. We have

H = λ2Hsys. ⊗ Ienv. + Isys. ⊗Henv. + λ(D∗ ⊗ a(g) +D ⊗ a∗(g)) (2.33)

where a(g) =
´
Rd g(k)akdk with g is the complex conjugate of g. The scaling in λ we introduce

here is, for now, purely practical.

We say the interaction Hamiltonian is dipolar like: Hint. = λ(D∗ ⊗ a(g) + D ⊗ a∗(g)).
The Hamiltonian describing the interaction of a spin with the electromagnetic field has such
expression.

Let Uenv.(t) = e−itHenv. and Vt = U∗env.(t)Ut. Vt is a time dependent unitary operator.
From now on the total state evolution is given by ρtot.(t) = Vtρtot.V

∗
t . Any system observable

X expectation at time t is given by tr[Xρtot.(t)]. Whereas any environment observable Y
expectation is then given by tr[Y (t)ρtot(t)] with Y (t) = U∗env.(t)Y Uenv.(t).
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2.2. Markovian evolution

We are only interested in the evolution of the system. So we look at the evolution of the
reduced system state.

Φt(ρsys.) = trenv.[Vt(ρsys. ⊗ ρenv.)V
∗
t ]. (2.34)

Let us also assume that ρenv. is a Gaussian stationary state of the evolution given by the
group of unitaries (e−itHenv.). Then tr[a(g)ρenv.] = 0. We note

G(t− s) = tr[ei(t−s)Henv.a∗(g)e−i(t−s)Henv.a(g)ρenv.] (2.35)

and G0(t− s) =
´
Rd dpe

i(t−s)ω(p)|g(p)|2 the two time environment correlation functions. We

have G(t− s) =
´
Rd dpe

i(t−s)ω(p)n(p)|g(p)|2 with n(p) the density of particle with impulsion
p.

Expanding Φt in Dyson series up to λ2 terms, we obtain

ρsys.(t)− ρsys. = −iλ2

ˆ t

0
[Hsys., ρsys.]ds

− λ2

ˆ t

0
ds

ˆ s

0
du
{
G(s− u)

(
DD∗ρsys. + ρsys.D

∗D −Dρsys.D
∗ −D∗ρsys.D

)
+ h.c.

+G0(s− u)
(
ρsys.D

∗D −Dρsys.D
∗
)

+ h.c.
}

+ · · · .

(2.36)

The terms in λ2n missing are not necessarily of order lower than O(λ2) as we will soon see.
Already we learn a lot from this first λ2 term. We see that the memory effect due to the
bath and given by G(t− s) and G0(t− s) implies a complex time dependency of the dynamic.
It involves a double integration of the two times correlation functions. Higher power of λ
terms involve even more complex integrals. This complexity is a signature of the memory
of previous effect of the system on the environment. One can rely on Nakajima-Zwanzing
projection technique [36] to try to simplify the problem, but in general it is not much more
simpler than the total system+environment evolution.

In this thesis we are interested in cases where the complexity implied by the memory
actually disappear. The memory effect becomes negligible, namely G(t− s) ∼ δ(t− s). The
reduced system evolution becomes Markovian. The system state at time t only depends on
the state at a previous time s and not on the whole history from 0 to t. We have ρsys.(t) =
Φt−s(ρsys.(s)) for any t ≥ s.

In next subsection we unravel the differential equation the system state must satisfy if we
assume the evolution is Markovian. We study its properties. Afterwards we present some
physically meaningful limits leading to Markovian reduced system evolution.

2.2.2. The master equation and relaxation to equilibrium

We already saw that every CPTP map can be decomposed in terms of Kraus operators.
Namely Φ is a CPTP map if and only if Φ(ρsys.) =

∑
jMjρsys.M

∗
j with {Mj} a family of

operators on the system Hilbert space such that
∑

jM
∗
jMj = Isys..

Similarly if the reduced evolution in continuous time is Markovian, then it is given by a
continuous semi–group of CPTP maps whose generator L has a characteristic expression.
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2. Open system Markovian description

Namely if for any t ≥ s and any ρsys., Φt(ρsys.) = Φt−s(Φs(ρsys.)) then

Φt(ρsys.) = etLρsys. (2.37)

with

L(ρsys.) = −i[H, ρsys.] +
∑
j

Ljρsys.L
∗
j −

1

2
{L∗jLj , ρsys.} (2.38)

where {Lj} is a family of operators on the system, H is an Hermitian system operator and
{A,B} = AB +BA. This expression can be separated into two parts. The unitary like part
−i[H, ρsys.] would correspond to a unitary evolution of the system if the second part is null.
The second part,

∑
j Ljρsys.L

∗
j − 1

2{L
∗
jLj , ρsys.}, is some times called the dissipative part. It

is responsible for the non reversible evolution. Note that this decomposition is not unique. If
we change

Lj → Lj + cjIsys. (2.39)

H → H +
i

2

∑
j

(cjLj − cjL∗j ) (2.40)

L is not modified. Similarly let u be a unitary matrix then the modification Lj →
∑

k ujkLk
does not modify L. Hence we have different Lj ’s and H giving the same semi–group generator.
In particular, we can always choose the Lj and H such that all the Lj ’s have null trace.

The operator L is called a Lindblad operator or Lindbladian. It is named after one of the
researchers who established the general form of CP map semi–group generators [42,59,73]. A
derivation of the expression of L starting from the semi–group property can be found in [36].

Note that actually the characterization of CP map semi–groups through the expression
of their generator is not restricted to trace preserving maps. In general a semi–group of
maps acting on the space of operators acting on the system Hilbert space, Φ′t = etL

′∗
, is a

semi–group of CP maps if and only if it exists a CP map Ψ∗ and a system operator K such
that

L′∗(X) = K∗X +XK + Ψ∗(X) (2.41)

If moreover K∗ + K + Ψ∗(Isys.) = 0, the maps are unital. Namely Φ′t
∗(Isys.) = Isys. for any

t. We say the semi–group etL
′∗

is unital. Therefore the dual maps Φ′t
∗ are trace preserving.

Note that the expression we gave above for L imply directly the trace conservation. We
have tr[L(Xsys.)] = 0 for any system operator Xsys.. We say the CP semi–group etL is trace
preserving if every map etL is trace preserving.

In the physics literature the reduced system evolution differential equation

dρsys.(t)/dt = L(ρsys.) (2.42)

is often called the master equation in reference to its classical counter part.
From the study of Φ we can study L spectrum and therefore the large time behavior of

etLρsys.. First since etL is trace preserving, the spectrum of L is in the non positive real part
half plane of the complex plane. L has at least one eigenvector ρinv. with eigenvalue 0.

If et0L is irreducible then etL is irreducible for any t [103]. So we say the semigroup is
irreducible. If etL is irreducible, it accepts a unique positive definite invariant state ρinv. > 0
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2.3. Reduced Markovian approximations

such that L(ρinv.) = 0. Moreover for CPTP semi–groups, irreduciblity implies that the unique
invariant state is attractive [103]. Thus for any initial system state limt→∞ e

tLρsys. = ρinv..
The convergence is exponential with a rate depending on the spectrum of L [65]. Let −α0 =
max{Re(α)/α ∈ spec(L) \ {0}} < 0. Then for any ε > 0,

etLρsys. = ρinv. +O(e−(α0−ε)t). (2.43)

Irreduciblity criteria

We recall that etL is irreducible if and only if there is no projector P 6∈ {0, Isys.} such
that S(PHsys.) is stable under etL. Namely if there is no P 6∈ {0, Isys.} such that ρsys. ∈
S(PHsys.)⇒ etLρsys. ∈ S(PHsys.).

For a general CP semi–group, if Ψ is irreducible then etL
′

is irreducible [65]. In particular
if it does not exists an Hermitian projector P 6∈ {0, Isys.} such that (Isys. − P )LjP = 0 for
any j then etL is CPTP semi–group is irreducible.

A sufficient criteria leading to the non existence of such projector is the following (see [91]
and references therein, particularly [45, 55]). Let linspan{Lj} be the space of complex linear
combinations (i.e. the linear span) of the operators Lj . If linspan{Lj} is Hermitian, namely
X ∈ linspan{Lj} ⇒ X∗ ∈ linspan{Lj}, and if the only system operators commuting with
all the Lj ’s are multiples of the identity (i.e. {Lj}′ = CIsys.), then it does not exists an
Hermitian projector P 6∈ {0, Isys.} such that (Isys. − P )LjP = 0 for any j. Hence etL is an
irreducible CPTP semigroup and its unique invariant state is attractive. This criteria was
originally developed to give a condition under which the invariant state is attractive. But as
we saw irreducibility implies attractiveness fro CPTP semi–groups.

We see that if we can prove that a system evolution is given by a CPTP semi–group, then
the study of relaxation towards a stationary state is simpler. As for repeated interactions it
will not be the case for non demolition measurements and reservoir engineering.

2.3. Reduced Markovian approximations

Let us now motivate the Markovian description of open quantum systems with the presenta-
tion of some physical limits leading to memoryless reduced dynamics. Hence we present some
limits where G(t)→ δ(t) and G0(t)→ δ(t). For a more comprehensive presentation of Marko-
vian limit of the reduced evolution, we refer the reader to the review of H. Sophn [92]. The
only limit not contained in this review is the continuous time limit of repeated interactions.

2.3.1. Singular limit

Let us first introduce the singular limit. It is a good first example of Markovian limit. The
derivation of this limit is due to P. F. Palmer [81].

For this limit, let us keep the scaling in Htot. we introduced in last section.

Htot. = λ2Hsys. +Henv. + λ(D ⊗ a∗(g) +D∗ ⊗ a(g)). (2.44)

We are interested in the limit λ→ 0. In this limit, the system energy becomes much smaller
than all environment energy scales. The scaling of the interaction implies that the typical
relaxation rate is of the same order as the system energy scale. Hence the typical system
evolution time is of the same order as the relaxation time due to the environment. The typical
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2. Open system Markovian description

environment evolution time is much smaller. Hence we expect that the intrinsic environment
evolution will drive it. Thus it should rapidly forgot the effect of the interaction with the
system.

The typical system evolution time is modified from t to tλ−2. We are interested in the
system evolution so we scale time such that the new time is coherent with the system typical
evolution time. This time scale as the inverse of the energy, thus as λ−2. Hence the new time
scale tnewλ

−2 = tinit. is convenient. Under this new time scale, the Hamiltonian becomes

Htot. = Hsys. + λ−2Henv. + λ−1(D∗ ⊗ a(g) +D ⊗ a∗(g)). (2.45)

This Hamiltonian scaling is more common in the literature on singular coupling than the
previous one. It is actually in this scaling that singular coupling is meant. At first glance it
could be interpreted as a strong coupling limit. But as we saw it is more a weak coupling limit
where the system energy is also considered small. Hence the environment should drive the
evolution at short times. This is what is meant by the scaling of the environment Hamiltonian.

Computing the two time correlation functions with this scaling we obtain a scaling λ−2G(sλ−2)
and λ−2G0(sλ−2). If we assume that G and G0 are integrable over R+, then

lim
λ→0

λ−2G(|s|λ−2) = Cδ(s) (2.46)

lim
λ→0

λ−2G0(|s|λ−2) = cδ(s) (2.47)

with C = 2
´∞

0 G(s)ds and c = 2
´∞

0 G0(s)ds. In the new time scale and in the limit λ→ 0,
the memory effect disappear.

It remains to show this limit consequence on the reduced evolution. We need an additional
slightly more constraining assumption on the two time correlation functions. We assume it
exists ε > 0 such that sεG(s) and sεG0(s) are integrable. Let

D1(ρsys.) = DD∗ρsys. + ρsys.D
∗D −Dρsys.D

∗ −D∗ρsys.D (2.48)

L−(ρsys.) = Dρsys.D
∗ − 1

2
{D∗D, ρsys.} (2.49)

L+(ρsys.) = D∗ρsys.D −
1

2
{DD∗, ρsys.}. (2.50)

Remark that D1(ρsys.) + D1(ρsys.)
∗ = 2(L−(ρsys.)) + L+(ρsys.) and D1(ρsys.) − D1(ρsys.)

∗ =
[(DD∗ −D∗D), ρsys.].

Let Φt = trenv.[Vtρsys.V
∗
t ] with Vt = eitλ

−2Henv.e−itHtot. . We study the Dyson expansion
of Φt. First let us remark that all odd orders in the field operators a(g), a∗(g) vanish since
tr[
∏2n+1
j=1 a](fj)ρenv.] = 0 where ] = ∗ or nothing. Similarly if we do not have the same

number of a∗ and a operators, the term vanishes. For the non vanishing even orders, let us
consider terms where Hsys. is not present. We use Wick’s theorem to decompose the multitime
correlation function into a sum of product of two time correlation functions. We encounter
two types of terms. First we have terms which we call standard pairing terms. For the 2nth
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2.3. Reduced Markovian approximations

order in the expansion the standard pairing term is

(−1)n
ˆ

0<t1<...<t2n<t

2n∏
k=1

dtk (2.51)

n∏
j=1

{
λ−2G((t2j − t2j−1)λ−2)D1 (2.52)

+ λ−2G((t2j − t2j−1)λ−2)D∗1 (2.53)

− (λ−2G((t2j − t2j−1)λ−2) + λ−2G((t2j − t2j−1)λ−2))2L− (2.54)

+ (λ−2G((t2j − t2j−1)λ−2)− λ−2G((t2j − t2j−1)λ−2))adD∗D
}

(ρsys.) (2.55)

where adX(ρsys) = [X, ρsys.] and D∗1(ρsys.) = D1(ρsys.)
∗.

They correspond, in the sum over the pairing in the Wick theorem, to pairing of nearest
neighbors. One can picture it as cases where only two succeeding interactions are correlated.
Let C = γ+ ih and c = γ0 + ih0 with γ(0), h(0) reals. From the convergence of λ−2G(0)(|s|λ−2)
to a Dirac delta, these standard pairing terms become in the limit

tn

n!

{
− iadHren. + (γ + γ0)L− + γL+

}
(ρsys.) (2.56)

with Hren. = (h+ h0)D∗D − hDD∗ the change in the system Hamiltonian due to the inter-
action with the bath.

The other type of terms involves pairing such that at least two two time correlation functions
have non neighboring times. Hence we have terms involving integrals such as

ˆ
0<t1<t2<t3<t4<t

dt1dt2dt3dt4λ
−4G(0)((t1 − t3)λ−2)G(0)((t2 − t4)λ−2). (2.57)

Since we assumed that it exists ε > 0 such that sεG(s) is integrable, this integral converges to
0 when λ goes to 0. One can interpret this cancellation saying that two interactions between
the system and the environment become uncorrelated if they are not following one another.
The environment is not perturbed enough for a new interaction with the system to happen
before it has relaxed from its last one.

Putting together all the pairing terms, only the standard pairing terms contribute in the
limit. If we reintroduce the terms with Hsys., then

dρsys.(t)/dt = L(ρsys.(t)) (2.58)

with the Lindbladian

L(ρsys.) = −i[Hsys. +Hren., ρsys.] + (γ + γ0)L−(ρsys.) + γL+(ρsys.). (2.59)

One can check that L has actually the suitable expression for a Lindbladian generating a
CPTP semi–group. Therefore the reduced system evolution is given by the CPTP semi–
group Φt = etL.

In next section we present the more known weak coupling limit.
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2. Open system Markovian description

2.3.2. Weak coupling limit

The limit we present now has become a standard example of a situation where Markovian
limit is relevant. It is also know as the rotating wave Born–Markov approximation.

This limit was first shown by E.B. Davies [46]. Actually the singular coupling limit was
obtained as a modification of the weak coupling limit proof. Complete derivations of the
rotating wave Born–Markov approximation can be found in [36,57].

Contrary to the previous limit, here, no scaling is made on the system Hamiltonian. The
only assumption is that the interaction with the environment is weak and that the environment
behave well. Namely, the two time correlation functions of the environment must decay rapidly
enough as the time interval grows. Hence, the memory of the environment should be short
enough. This translates into the same assumption as before for the two time correlation
functions. We assume it exists ε > 0 such thatˆ ∞

0
G(0)(s) <∞ and

ˆ ∞
0

G(0)(s)s
ε <∞. (2.60)

Born-Markov approximation

The total Hamiltonian is scaled as follows

Htot. = Hsys. +Henv. + λ(D∗ ⊗ a(g) +D ⊗ a∗(g)). (2.61)

We wish to study the limit λ → 0. Hence the limit where both the typical system and
environment evolution time are much shorter than the system relaxation time due to the
interaction with the environment. Hence, as before, we wish to study the long time behavior
of the system. Thus we scale the time such that tλ−2 is the initial time and t is the time scale
one which we wish to study the system evolution. The scaling of the Hamiltonian under this
new time scale is

Htot. = λ−2Hsys. + λ−2Henv. + λ−1Hint.. (2.62)

As before we wish to compute the limit of Φt(ρsys.) = tr[Vtρsys. ⊗ ρenv.V
∗
t ] but this time

with Vt = eitλ
−2(Hsys.+Henv.)e−itHtot. . Hence we subtract the free evolution of both the system

and the environment. We have

dVt/dt = −iλ−1(D(tλ−2)⊗ a∗(eitλ−2henv.g) +D∗(tλ−2)⊗ a(eitλ
−2henv.g))Vt (2.63)

with D(tλ−2) = eitλ
−2Hsys.De−itλ

−2Hsys. and henv. is the one particle environment Hamiltonian.
Hence (henv.g)(k) = ω(k)g(k). We want to get rid of the D(t) time dependency. We thus
decompose them on the system Hamiltonian eigenbasis. Let (PE) be projectors on the system
energy eigenspaces. Namely, Hsys. =

∑
E EPE . Let us define

Dω =
∑

E,E′;E−E′=ω
PE′DPE . (2.64)

Thus D(tλ−2) =
∑

ω e
−itλ−2ωDω and D∗(tλ−2) =

∑
ω e

itλ−2ωD∗ω. The sum on ω runs over
the set of all energy differences: spec(Hsys.)− spec(Hsys.). Then

dVt/dt = −iλ−1
∑
ω

(Dω ⊗ a∗(eitλ
−2(henv.−ω)g) +D∗ω ⊗ a(eitλ

−2(henv.−ω)g))Vt. (2.65)
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2.3. Reduced Markovian approximations

In the Dyson expansion of Φt as before all odd terms cancel and all even terms with a non
standard (non near neighbor time) pairing vanish in the limit. The standard pairing terms
involve now integrals over time of the two time correlation functions with different system
frequencies ω added. Let

Dω1,ω2(ρsys.) = Dω1D
∗
ω2
ρsys. + ρsys.D

∗
ω2
Dω1 −Dω2ρsys.D

∗
ω1
−D∗ω2

ρsys.Dω1 (2.66)

D−;ω1,ω2(ρsys.) = Dω2ρsys.D
∗
ω1
− ρsys.D

∗
ω2
Dω1 . (2.67)

The second non vanishing term of the Dyson expansion of Φt is,

−
∑
ω1,ω2

ˆ t

0
ds

ˆ s

0
du
{
e−isλ

−2(ω1−ω2)λ−2e−i(s−u)λ−2ω2G((s− u)λ−2)Dω1,ω2(ρsys.) (2.68)

+ h.c. (2.69)

− e−isλ−2(ω1−ω2)λ−2e−i(s−u)λ−2ω2G0((s− u)λ−2)D−;ω1,ω2 (2.70)

+ h.c.
}

(ρsys.) (2.71)

Let 2
´∞

0 e−isωG(0)(s)ds = γ(0)(ω) + ih(0)(ω) with γ(0)(ω) and h(0)(ω) reals. In addition to

the singular coupling limit besides the convergence of λ−2e−i|s|λ
−2ωG(0)(|s|λ−2) to (γ(0)(ω) +

ih(0)(ω))δ(s), the phase e−isλ
−2(ω1−ω2) set the limit to 0 whenever ω1 6= ω2. This phase

comes from the subtraction of the free system evolution. Since its typical time scale is much
shorter, the rapid system evolution imposes that the transition happen only between energy
eigenstates of the system.

In the limit λ→ 0 this second non vanishing term is equal to

tL(ρsys.) (2.72)

with

L(ρsys.) = −i[Hren., ρsys.] +
∑
ω

(γ(ω) + γ0(ω))[Dωρsys.D
∗
ω −

1

2
{D∗ωDω, ρsys.}] (2.73)

+ γ(ω)[D∗ωρsys.Dω −
1

2
{DωD

∗
ω, ρsys.}] (2.74)

where Hren. =
∑

ω(h(ω) + h0(ω))D∗ωDω − h(ω)DωD
∗
ω is the modification of the unitary part

of the system evolution due to the interaction with the environment. For an environment
corresponding to the electromagnetic field in its vacuum state (h(ω) = 0) this modification
corresponds to the Lamb shift. Remark that this Hamiltonian commutes with the system free
Hamiltonian.

[Hren., Hsys.] = 0. (2.75)

We can infer that in the limit λ → 0, Φt(ρsys.) = etLρsys.. Since L has the expression
of a Lindbladian generating a CPTP semi–group we further more know that Φt is a CPTP
semi–group. Note that the limit gives a specific expression for the Lindbladian. The part
corresponding to the dissipation and the part corresponding to a unitary evolution are fixed
by the limit.
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2. Open system Markovian description

The reduced system state evolution is given by

dρsys.(t)/dt = L(ρsys.(t)). (2.76)

From the limit we just obtained we can recover Fermi’s Golden rule. Let ρsys. = |E〉〈E|.
Then transition rate from |E〉 to |E′〉 with E′ − E = ω is 〈E′|L(ρsys.)E

′〉 = (γ(ω) +
γ0(ω))|〈E′|DE〉|2 + γ(ω)|〈E|DE′〉|2. Assuming D is Hermitian, set µ(ω) = 2γ(ω) + γ0(ω), we
have

〈E′|L(ρsys.)E
′〉 = µ(ω)|〈E′|DE〉|2. (2.77)

The density of states is contained in µ(ω).

Thermal relaxation

A nice property of the weak coupling is that it shows that, in this approximation, the
system tends to thermalize. If the environment is initially in a thermal equilibrium at inverse
temperature β, the system Gibbs state at same inverse temperature,

ρtherm. =
e−βHsys.

tr[e−βHsys. ]
, (2.78)

is a stationary state of Φt.
Let us show that L(ρtherm.) = 0. Assume that the environment is initially at thermal

equilibrium. Following KMS condition, we have

G(s) = G(s+ iβ) +G0(s+ iβ). (2.79)

Thus γ(ω)eβω = γ(ω)+γ0(ω). From the definition of ρtherm. we have ρtherm.Dω = eβωDωρtherm..
Moreover ρtherm. commutes with Hren. and D∗ωDω for each ω. Commuting ρtherm. with Dω in
Dωρtherm.D

∗
ω and D∗ωρtherm.Dω, we obtain

L(ρtherm.) = 0 +
∑
ω

(γ(ω) + γ0(ω))[D∗ωDωρtherm. −
1

2
{D∗ωDω, ρtherm.} (2.80)

+ γ(ω)[DωD
∗
ωρtherm. −

1

2
{DωD

∗
ω, ρtherm.}] (2.81)

= 0. (2.82)

Hence ρtherm. is an invariant state of Φt. Moreover since D∗ω and Dω both appear in the sum
whenever β > 0, linspan{Dω, D

∗
ω} is Hermitian. We only need to check that {D∗ω, Dω}′ =

CIsys. to assure that ρtherm. is the unique invariant state and that limt Φt(ρsys.) = ρtherm. for
any initial state ρsys..

Multitime correlations

As pointed out by R. Dümcke [51], the convergence of Φt is not enough to truly have a
Markovian evolution. If we turn to Heisenberg picture, we have Φt(A) = etL

∗
A in the weak

coupling limit, with L∗ the dual of L and A a system operator. The dynamic should be
considered Markovian only if tr[V ∗t AVtV

∗
s BVsρenv.] converges to e(t−s)L∗AesL

∗
B. For weak

coupling, the proof of this convergence is a simple extension of the proof of the convergence
of Φt.

34



2.3. Reduced Markovian approximations

2.3.3. Repeated interactions continuous limit

As explained earlier another good open system model is the repeated interaction one. By
construction, in discrete time, it is Markovian. Knowing the system state at time k, the
system state state at time n ≥ k is simply ρsys.(n) = Φn−k(ρsys.(k)).

As pointed out by S. Attal and Y. Pautrat [6], this model should also be a good discrete time
approximation of continuous time Markovian open system evolutions. They actually showed
that, in the continuous time limit, with an adapted scaling, the repeated interaction model
(without tracing out the probes degree of freedom) leads to a quantum stochastic evolution.
We will discuss this limit in next chapter. For now let us sketch how the continuous time
limit of the reduced system dynamic should lead to a CPTP semi–group evolution.

Assume the interaction happen during a time 1/n. Actually this 1/n is simply a scaling of
the interaction time. It is an adimensional quantity. The time factor needed to obtain the
actual time is included in the definition of the operators involved in the Hamiltonian. Hence
the eigenvalues of each part of the Hamiltonian are also adimensional. In this whole thesis
we will often consider such adimensional time.

For the interaction to remain relevant at any scale, assume also that the Hamiltonian scales
as

Htot. = Hsys. +Hprobe +
√
nHint.. (2.83)

Hence the interaction unitary is U = exp[−i( 1
nHsys. +

1
nHprobe + 1√

n
Hint.)]. Our time scale is

here arbitrary. Assume moreover that the probe state and the interaction Hamiltonian are
such that 〈Ψ|Hint.Ψ〉 = 0. Then we can expand Φ is series of 1/

√
n. We have

Φ(ρsys.) = ρsys. +
1

n
L(ρsys.) + o(1/n) (2.84)

with

L(ρsys.) = −i[Hsys., ρsys.] +
∑
j

Ljρsys.L
∗
j −

1

2
{L∗jLj , ρsys.} (2.85)

where Lj = 〈j|Hint.Ψ〉.
At time t, the system has interacted with [tn] probes where [tn] the integer part of tn.

Hence we can define

Φt = Φ[tn] = (Isys. +
1

n
L+ o(1/n))[tn]. (2.86)

In the limit n→∞ we thus have Φt = etL.

We will encounter again this limit two times in the rest of the text. Thus we do not extend
the interpretation of this limit here.

2.3.4. Low density limit

Before we turn to the presentation of quantum noises and quantum stochastic differential
equations, let us cite a last Markovian limit, the low density limit obtained by R. Dümcke [52].

We consider a gas of particles interacting through collisions with the system. Hence the
interaction is a scattering one: Hint. = D ⊗ (a∗(g)a(f) + a∗(f)a(g)) with D∗ = D. The
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2. Open system Markovian description

environment is assumed to be in thermal equilibrium at inverse temperature β and chemical
potential µ. Low density means the fugacity ε2 = eµβ should vanish. Hence the limit is
obtained as ε→ 0 with a time scale tε−2.

We refer the interested reader to the original article or to the short presentation with the
full expression of the generator made in [36].

We just motivated the Markovian description of the reduced dynamic of the system. But,
as we will see, one may be interested in keeping some information about the evolution of the
environment, say to compute the statistic of some measurement on it. In the next chapter
we present quantum stochastic differential equations as a tool for the description of the
evolution of Markovian open quantum systems. The quantum noises we introduce hold some
information on the environment.
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3. Markovian environment description –
Quantum noises

Stochastic calculus is a common tool of classical statistical physics. One approximates an
environment through some noises which obey some constraints enforced to assure it models
the right environment.

A famous example is the damped Langevin dynamic

ẍ(t) = −γẋ(t)− V ′(x(t)) +
√

2γ/βη(t). (3.1)

V is a potential and η a white noise: 〈η(t)〉 = 0, 〈η(s)η(t)〉 = δ(s − t) with 〈·〉 the expecta-
tion.The environment is modeled by the noise η and γ is the damping due to the environment.
The factor

√
2γ/β before η is fixed by the fluctuation dissipation relation.

This equation can be viewed as a shorthand notation for a system of stochastic differential
equations(SDE)

dx(t) = p(t)dt (3.2)

dp(t) = −γp(t)dt− V ′(x(t))dt+
√

2γ/βdBt (3.3)

with Bt a Wiener process (Brownian motion). Note that we adopt Itô convention for SDE.
Hence computation of SDE for C2 functions of p(t) and x(t) can be made using the rule
dBtdBs = dtδs,t.

One can generalize such equations by introducing Poisson processes Nt which are at each
time Poisson random variables of parameter λt with λ a parameter called the intensity.

We would like to find an equivalent stochastic formulation of open systems in the quantum
world. Thus we need some noises that do not always commute. This is the purpose of
Quantum Stochastic Differential Equations(QSDE).

In this chapter we introduce QSDE’s and quantum noises. Their complete mathematical
formulation is due to R. L. Hudson and K. R. Parthasarathy [64].

The chapter is structured as follow. In first section we present the Fock space on which the
quantum noises are defined. We present the quantum noises themselves and their Itô rules.
We give the general expression of QSDE for unitary evolutions. In a second subsection we
present two physical limits leading to quantum stochastic(QS) dynamics: the weak coupling
and the continuous limit of repeated interactions. In a third and last section we present the
equivalent formulation of QSDE in terms of path integral and derive their classical limit in
this context.

3.1. Quantum noises

We will only deal with bosonic noises. The Fock state on which we define the quantum
noises is therefore the symmetric Fock space of particles evolving on a one dimensional positive
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3. Markovian environment description – Quantum noises

half line.

Γ(L2(R+)). (3.4)

We sometimes call this space or its tensorial combination with the system Hilbert space, the
quantum stochastic space. Not surprisingly, R+ corresponds to the time set. We do not
describe the particle states in energy representation but in time representation. So the one
particle states are functions of time an not energy.

In some cases we need to extend the time parameter set to the whole real line. Hence the
quantum stochastic space is Γ(L2(R)). On this space, in the time representation, the environ-
ment one particle Hamiltonian is no longer the multiplication by the energy operator but the
generator of a time shift group: henv. = i ddt . This extension of the quantum stochastic space
and the explicit representation of the environment one particle Hamiltonian is useful mainly
in derivations of stochastic evolutions from Hamiltonian ones. The initial non stochastic evo-
lution is described by a strongly continuous group. As pointed out in [9,60], this description
is not possible if the time set is only the positive real half line. Since we need to describe both
the initial and the quantum stochastic evolution on the same space, we need to extend the
quantum stochastic space time set to the whole real line. The weak coupling limit we present
in section 3.2.2 is an example where such an extension is needed. This extension is, on the
contrary, not needed for the stochastic limit of repeated interactions since in this model, the
initial evolution is not given by a strongly continuous group.

In any case, the quantum stochastic evolution obtained can be restricted to a quantum
stochastic space involving only the positive half real line: Γ(L2(R+)). The limit operators
obtained act trivially on Γ(L2(R− \ {0})). This factorization of the space will soon be ex-
plained.

In this space we define some useful vectors, the exponential vectors. Let f ∈ L2(R+), then
the exponential vector of f is

|e(f)〉 = 1⊕
∞⊕
n=1

1√
n!
f⊗n. (3.5)

Each part of the direct sum corresponds to a state of n similar particles. Note that these
vectors are not normalized. Their normalized version |c(f)〉 = e−

1
2
‖f‖2 |e(f)〉 are the coherent

states of the field. The vacuum of the field is |0〉 = |e(0)〉 = 1⊕ 0.
The set of finite complex linear combinations of exponential vectors is dense in Γ(L2(R+))

[3, 9]. All the operators we will be interested in can be define only through their action on
exponential vectors.

The canonical creation annihilation operators on this space are a∗(f) and a(g) with f, g
elements of L2(R+) and [a(g), a∗(f)] = 〈g, f〉 where

〈g, f〉 =

ˆ ∞
0

g(s)f(s)ds. (3.6)

We have

a(g)|e(f)〉 = 〈g, f〉|e(f)〉. (3.7)

The creation operator is the dual of a(g). Hence 〈e(f)|a∗(g) = 〈e(f)|〈f, g〉.
These operators are more often written a(f) =

´∞
0 f(t)atdt with at|e(f)〉 = f(t)|e(f)〉.
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3.1. Quantum noises

From these operators we can define the two first quantum noises.

At = a(1[0,t[) =

ˆ t

0
asds (3.8)

A∗t = a∗(1[0,t[) =

ˆ t

0
a∗sds. (3.9)

They are the quantum equivalent of Brownian motion. We will soon see more clearly why.
For now let us just say that since a∗t creates a particle at time t, A∗t creates a particle who
lives up until time t. Let |Ψ〉 ∈ Γ(L2(R+)). We can also see the noise At as At|Ψ〉 6= 0 if
there is at least one particle in the environment who survived at least a non vanishing time
between time 0 and t.

Another quantum noise, is somehow the counter part of the Poisson process.

Λt =

ˆ t

0
a∗sasds. (3.10)

Hence 〈e(g)|Λte(f)〉 = 〈g, 1[0,t[f〉e〈g,f〉. This noise is a particle number operator. It counts
the number of particles in the field up to time t.

The noises At, A
∗
t ,Λt have a nice time increment independence property. First, their dif-

ferent time increments commute one with the other. We have [Zt − Zs, Ys] = 0 with Z and
Y any linear combination of noises and t, s two times. Second, Γ(L2(R+)) can be factorized
such that we can isolate on which part the increments act non trivially. We have a mapping

Γ(L2(R+)) ≡ Γ(L2([0, s[))⊗ Γ(L2([s, t[))⊗ Γ(L2([t,∞[)). (3.11)

With the following exponential states factorization. Let f[s,t[ be the restriction of f to [s, t[.
Then

|e(f)〉 ≡ |e(f[0,s[)〉s,0 ⊗ |e(f[s,t[)〉t,s ⊗ |e(f[t,∞[)〉∞,t (3.12)

with the subscript t, s indicating that this vector is an element of Γ(L2([s, t[)).
The corresponding mapping of At − As = a(1[s,t[) and all the other noise operator same

time increments, act non trivially only on Γ(L2([s, t[)). They act as the identity on the other
parts of Γ(L2(R+)).

Hence for any exponential vector |e(g)〉 and any Hermitian noise operator Zt, we have for
any s ≤ t

〈e(g)|eiλsZs+iλt(Zt−Zs)e(g)〉 =s,0〈e(g[0,s[)e
iλsZs |e(g[0,s[)〉s,0

× [s,∞[〈e(g∞,s)|eiλt(Zt−Zs)e(g[s,∞[)〉∞,s.
(3.13)

Particularly if the environment is in a coherent state |c(g)〉 and we note φX(λ) the character-
istic function 〈c(g)| exp[iλX]c(g)〉, we have

φZs,Zt−Zs(λs, λt) = 〈c(g)|eiλsZs+iλt(Zt−Zs)c(g)〉
= φZs(λs)φZt−Zs(λt).

(3.14)

Hence the increments are independent. This is especially true when the environment is in its
vacuum state.
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3. Markovian environment description – Quantum noises

Let us turn to the definition of quantum stochastic processes using their integral formu-
lation. We note dXt the infinitesimal increment Xt+dt − Xt. Let (Ht), (Gt), (Ft) and Et be
adapted process, meaning Ht, Gt, Ft and Et act non trivially only on the Γ(L2([0, t[)) part of
the quantum stochastic space. They can also act non trivially on any other Hilbert space.
Particularly they can act non trivially on Hsys.. Let the process Xt be

Xt =

ˆ t

0
Hsds+ FsdAs +GsdA

∗
s +HsdΛs. (3.15)

Then for any f, g ∈ L2(R+),

〈e(f)|Xte(g)〉 =

ˆ t

0
(〈e(f)|Hse(g)〉+ 〈e(f)|Fse(g)〉g(s)

+ 〈e(f)|Gse(g)〉f(s) + 〈e(f)|Hse(g)〉f(s)g(s))ds.

(3.16)

We have defined Xt through its quantum stochastic integral 1 . This result is due to R. Hudson
and K.R. Parthasarathy [64].

As in the classical case, some Itô rules make computations of product of such quantum
stochastic processes easier. The following table gives the value of dXtdYt depending on Xt

and Yt.

dXt\dYt dAt dA∗t dΛt dt

dAt 0 dt dAt 0
dA∗t 0 0 0 0
dΛt 0 dA∗t dΛt 0
dt 0 0 0 0

Reading this table, the non commutation of the noises at same times is clear. Using this table,
we can compute the differential equation for any product of two quantum stochastic processes.
Let Xt and Yt be two quantum stochastic processes, then d(XtYt) = dXt Yt+Xt dYt+dXtdYt.

We have now the definition and the computation rules needed to study quantum stochastic
processes.

We focus on two processes which have an interesting classical interpretation. Let us assume
the environment is in its vacuum state |0〉.

First let us define Bt = At + A∗t . The operators Bt are all Hermitian operators and
the different time increments of (Bt) commute one with another at different times. Thus
through spectral theorem there is an isomorphism mapping ((Bt)t∈R+ , |0〉) to a process Wt

on a probability space (Ω,F , µ) such that Eµ(f(Wt)) = 〈0|f(Bt)|0〉 for any bounded function
f . Eµ is the expectation with respect to µ. Furthermore, using commutation relations we
obtain that

〈0|eiλ(Bt−Bs)0〉 = e−
1
2
λ2(t−s). (3.17)

Hence the characteristic function of Bt match the characteristic function of a Brownian mo-
tion. As we already explained, the increments (Btk −Btk−1

)tk>tk−1
are independent when the

environment is in its vacuum state. Hence the probabilistic counter part of (Bt) through the

1. We do not discuss here the complete conditions on the adapted process and especially existence and
uniqueness of Xt. In general, whenever it is needed existence and uniqueness are assumed. We refer the
interested reader to [64] for the complete definition of quantum stochastic integrals.
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3.1. Quantum noises

isomorphism should be a Wiener process. The only remaining property we would need to
check is that (Bt) is almost surely continuous. It is actually the case. Thus (Bt) has a clear
interpretation as a classical Brownian motion (or Wiener process) using the isomorphism.
One can further characterize Bt as a multiplication operator by a Brownian motion. This
interpretation and its proof are due to S. Attal [3].

Second, let us define Nt = Λt +At +A∗t + t. We have dN2
t = dNt and

〈0|eiλ(Nt−Ns)0〉 = e(t−s)(eiλ−1). (3.18)

Hence, following the same arguments as for (Bt), (Nt) can be interpreted as a classical Poisson
process with unit intensity. As for (Bt), one can characterize Nt as a multiplication operator
by a Poisson process. Again this interpretation and its proof are due to S. Attal [3].

One need to be careful. We can interpret independently (Bt) and (Nt) as classical processes
but we cannot interpret both of them as classical processes together. This limitation is a
consequence of the non commutation of Nt and Bt. They cannot be mapped together to a
probability space.

It is also important to assume the environment is in its vacuum state. If for example it is
in a coherent state |c(g)〉, the mean of (Bt) and the intensity of (Nt) are modified.

The interpretations as classical process will turn useful when we will study continuous
measurements.

Unitary evolution

Since these quantum noises are meant to describe environment and the evolution of open
system keeping the information on the environment, we would like to be able to describe
reversible, hence unitary, evolution with them.

The general form of a unitary evolution for a system interacting with an environment
described by quantum noises was found by R. L. Hudson and K. R. Parathasarathy [64, 82].
Let Ut be a family of operators on the quantum stochastic space Hsys. ⊗ Γ(L2(R+)), solution
of the QSDE

dUt = −i(H − i

2
L∗L)Utdt+ L∗WUtdAt − LUtdA∗t + (Isys. −W )UtdΛt (3.19)

U0 = Isys. ⊗ IΓ (3.20)

with H,L and W operators on the system Hilbert space where H∗ = H, and W ∗W = WW ∗ =
Isys.. Then (Ut) is a family of unitary operators. Since Hsys. is finite dimensional, the solution
of this QSDE always exists and is unique [82].

We will not take into account unitary evolutions involving Λt noises. Hence we setW = Isys..
Then one can see Ut as the family of unitary operators whose time dependent Hamiltonian is

Htot.(t) = H ⊗ IΓ + i(L∗ ⊗ at − L⊗ a∗t ). (3.21)

We would have Ut = T>e−i
´ t
0 Htot(s)ds with T> a time ordering such that T>f(s)g(t) = f(s)g(t)

if s > t and T>f(s)g(t) = g(t)g(s) otherwise.
One can remark that Ut acts non trivially only on Hsys. ⊗ Γ(L2([0, t[)). Hence (Ut) is an

adapted process. Furthermore, Ut,s = UtU
∗
s acts non trivially only on Hsys. ⊗ Γ(L2([s, t[))

since it is equal to

Ut,s = Isys. +

ˆ t

s
−i(H − i

2
L∗L)Uu,sdu+ L∗Uu,sdAu − LUu,sdA∗u. (3.22)
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3. Markovian environment description – Quantum noises

Hence it is the sum of operators acting non trivially only on Hsys. ⊗ Γ(L2([s, t[)).
The unitary evolution of the system operators under Ut is jt(X) = U∗t XUt,

djt(X) = jt(L∗(X))dt− jt([L∗, X])dAt + jt([L,X])dA∗t (3.23)

with

L∗(X) = i[H,X] + L∗XL− 1

2
{L∗L,X} (3.24)

the dual of the Lindbladian we encountered in last chapter.
Assume the environment is in its vacuum state |0〉, then the reduced system dynamic is

given by

dX(t) = L∗(X)(t)dt. (3.25)

Hence by duality, the system state evolves as

dρsys.(t) = L(ρ(t))dt. (3.26)

We recover the Markovian reduced dynamics we encountered in last chapter. Hence such
quantum stochastic dynamics should be good candidates for the description of extended
Markovian evolutions of open quantum systems. They are the quantum counter part of the
Langevin dynamics. Thus unitary QSDE are some times called quantum Langevin equations.

Let us point the interested reader to references [5, 57] for a more thorough definition and
presentation of quantum stochastic calculus. The second one may be more suitable for physi-
cists.

In next section we motivate the use of QSDE for the description of Markovian open quantum
systems with two example of physical limits leading to quantum stochastic evolutions.

3.2. Open systems extended Markovian limits

3.2.1. Master equation dilation

In last section, we saw that the reduced dynamic implied by a quantum stochastic (QS)
extended one is Markovian. Thus one can expect that any reduced dynamic can be dilated
to a unitary QS one. This is the dilation of CP unital semi–groups.

Let us consider the CP unital semi–group etL
∗

with

L∗(X) = −i[H,X] +
∑
j

L∗jXLj −
1

2
{L∗jLj , X}. (3.27)

Let jt(X) be the unitary QS dynamic generated by Ut solution of

(dUt)U
∗
t = −i(H − i

2

∑
j

L∗jLj)dt+
∑
j

L∗jWjdAj(t)− LjdA∗j (t) + (I −Wj)dΛj(t) (3.28)

U0 = I (3.29)

with {Aj(t)}, {Λj(t)} independent quantum noises. By independent we mean they are defined

on a tensor product of Fock spaces
⊗d2

sys.

j=1 Γ(L2(R+)) ≡ Γ(L2(R+;Cd2
sys.)) with each Aj(t) or

Λj(t) acting non trivially only on the jth copy. Then 〈0|jt(X)0〉 = etL
∗
X.
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3.2. Open systems extended Markovian limits

Hence for any CP identity preserving semi–group etL
∗

we can build a QS unitary evolution
such that the corresponding reduced evolution match the semi–group. This dilation is not
unique. Beside the obvious non uniqueness arising from the non uniqueness of the expression
of the Lindbladian we already encountered, we can chose any unitaries {Wj} for the dilation.
Hence we can freely add or suppress Λt noises from the dilation. The choice of dilation must
then be supported by other physical arguments.

In next two subsections we present two limits were the dilation is fixed. No ad–hoc physical
assumptions are needed.

3.2.2. Weak coupling

The extended weak coupling limit was obtained, in the form we present here, by Y. Derezin-
ski and W. de Roeck [48]. A first, less complete limit, was obtained before by L. Accardi et
al. [1]. In [22] M. Bauer and D. Bernard investigated the weak coupling limit for an harmonic
oscillator in interaction with a bath of independent harmonic oscillators.

This limit is the extended counter part to the reduced weak coupling limit we derived in sec-
tion 2.3.2. This time we have a limit for the family of unitaries Vt = ei(Hsys.+Henv.)tλ−2

e−itλ
−2Htot.

and not only the reduced dynamic Φt.
We recall that

(dVt)V
∗
t = −i

∑
ω

(Dω ⊗ a∗(λ−1ei(henv.−ω)tλ−2
g) +D∗ω ⊗ a(λ−1ei(henv.−ω)tλ−2

g))dt. (3.30)

We assume the environment is in its vacuum state |0〉. This is not a limitation since for any
state, one can always find a representation in which the state is a pure one.

From the dilation of the reduced evolution an the fact that the interaction Hamiltonian is
dipolar like, we expect the limit QS evolution unitary Ut to be the solution of

(dUt)U
∗
t = −i(Hren. −

i

2

∑
ω

γ0(ω)D∗ωDω)dt− iDωcωdA
∗
ω(t)− iD∗ωcωdAω(t) (3.31)

with |cω|2 = γ0(ω). We have as many noises as the number of transition frequencies ω. Hence
the space on which the noises are defined is⊗

ω

Γ(L2(R+)) ≡ Γ(L2(R+;Ck)) (3.32)

with k the number of frequencies ω. Each Γ(L2(R+)) can be called a channel. It has not the
same meaning as channels in the context of quantum information.

The operator A∗ω(t) creates a particle in the channel corresponding to ω up to time t. Hence
the action of dA∗ω(t) corresponds to the emission of a ω energy quantum in the environment
during a time dt. After this time the energy quantum should be reabsorbed by the system.
Hence when integrated over time it will create quanta of energy ω in the environment up
to the interaction time. The statistic of this emission depends on the interaction with the
system and the system state. Each channel keeps track of the emission and adsorption of
specific energy quanta by the system into and from the environment.

The solution of (3.31) corresponds to the weak coupling limit of Vt obtained in [48]. The
only additional assumption to the ones made for the reduced weak coupling limit is that g
needs to be integrable. It is not an important constrain and it is usually the case in physics.
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3. Markovian environment description – Quantum noises

One may just need to add suitable cutoffs in energy to g. If one consider an environment living
in a one dimensional physical space, then cω =

√
2πg(ω). If the environment lives in a higher

dimensional physical space, irrelevant degrees of freedom must be kept. Then the notation
cωdA

∗
ω(t) is not clear. The noises should be defined as the infinitesimal time increment

of aω(1[0,t[

√
2πgω(p)) with gω(p) =

´
R dωδ(ω(p) − ω)g(p). If the dispersion relation ω(p)

depends only on the norm of p, then gω(p) depends only on the orientation of p, hence on
p/‖p‖.

Let us present the simple case of a two level system in interaction with an environment
living in a one dimensional physical space. Hence the total Hilbert space is

Htot. = C2 ⊗ Γ(L2(R)). (3.33)

The QS Hilbert space will be the same. Particularly, as we indicated earlier, we extend the
usual one from L2(R+) to L2(R). The extension is easily made setting: As,t = a(1[s,t[) for
any s < t ∈ R. The limit QS unitary evolution will act non trivially only on Γ(L2(R+)).

Contrary to [48] we work in time representation. The time dependent Hamiltonian defining
Vt is

Htot.(t) = σ− ⊗ a∗(λ−1ei(henv.−ω)tλ−2
g) + σ+ ⊗ a(λ−1ei(henv.−ω)tλ−2

g) (3.34)

with σ+ = σ∗− =

(
0 1
0 0

)
the usual spin 1

2 raising operator.

First we define an isometry Jλ : L2(R)→ L2(R)

(Jλg)(s) = λe−iωsg(sλ2). (3.35)

We have

(J∗λg)(s) = λ−1eiωsλ
−2
g(sλ−2) (3.36)

and J∗λJλ = JλJ
∗
λ = IL2 . Jλ adapts the time scale of the QS environment to match the

initial environment one. J∗λ does the opposite. In the general case J∗λ also split the initial
environment to match the many Fock spaces of the QS one. The only two properties needed
for the mapping Jλ between the QS one particle space and the initial one particle space are

JλJ
∗
λ = IL2(Rd) (3.37)

lim
λ→0

J∗λJλ = IL2(R;Ck). (3.38)

Let us study the limit of the function in the creation operator of the interaction under such
mapping between the Fock spaces. We have

(J∗λλ
−1ei(henv.−ω)tλ−2

g)(s) = λ−2eiω(s−t)λ−2
g((s− t)λ−2). (3.39)

since g is integrable, for any L2(R) function f ,

lim
λ→0

ˆ ∞
−∞

du

ˆ t

0
ds(J∗λλ

−1ei(henv.−ω)sλ−2
g)(u)f(u) =

√
2πg(ω)

ˆ t

0
f(s)ds. (3.40)

We used g(ω) =
´

ds√
2π
eiωsg(s). This could seem contradictory with the definition of G0(s) but

we actually have (eithenv.g)(s) = g(s−t). From the representation of henv. as the multiplication
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3.2. Open systems extended Markovian limits

by ω, the change from energy representation to time representation for the interaction function
g is therefore g(s) =

´
dω√
2π
e−iωsg(ω). Therefore g(ω) =

´
ds√
2π
eiωsg(s). Computing explicitly

〈g, eithenv.g〉 we recover G0(t).
We now introduce the exponential (or second quantized) version of Jλ.

Γ(Jλ)|e(f)〉 = |e(Jλf)〉. (3.41)

Moreover Γ(Jλ)∗ = Γ(J∗λ). Thus Γ(J∗λ)Γ(Jλ) = Γ(Jλ)Γ(J∗λ) = IΓ. We have

Γ(J∗λ)a(g)Γ(Jλ) = a(J∗λg). (3.42)

Then from convergence (3.40), we have for any exponential vector |e(f)〉,

lim
λ→0

ˆ t

0
dsΓ(J∗λ)a(λ−1ei(henv.+ω)sλ−2

g)Γ(Jλ)|e(f)〉 =
√

2πg(ω)a(1[0,t[)|e(f)〉. (3.43)

Hence Γ(J∗λ)a(λ−1ei(henv.+ω)sλ−2
g)Γ(Jλ) converges strongly to

√
2πg(ω)At. This convergence

is a consequence of the convergence of J∗λg to a Dirac delta. Hence the initially spread in
time interaction, becomes localized in time. Equivalently the interaction localized in energy
becomes spread on all environment energy levels.

The strong convergence of Γ(J∗λ)VtΓ(Jλ) to Ut solution of

(dUt)U
∗
t = −i(Hren. −

1

2
γ0(ω)σ+σ−)dt− i

√
2π g(ω)σ+dAt − i

√
2πg(ω)σ−dA

∗
t (3.44)

follows from the convergence we just showed and the insertion of the identity Γ(Jλ)Γ(J∗λ)
between each a] in the Dyson expansion of Γ(J∗λ)VtΓ(Jλ).

Note that we do not have convergence of Vt but of the image of Vt through Γ(Jλ). Actually
it corresponds to pushing Vt to the right space. Γ(Jλ) maps states from the QS space to
the initial space. Hence Γ(J∗λ)VtΓ(Jλ) is a realization of Vt on the QS space. The condition
JλJ

∗
λ = IL2 is therefore important. We do not want to lose information on the states by

pushing them to the QS space. Hence Jλ should be surjective and therfore J∗λ should be
injective. Several QS states can correspond to the same initial space state but any initial
space state should correspond to a unique QS state. Thus, in the general case, the fact that
J∗λJλ 6= IL2 for all λ and is equal only in the limit is not limiting. The QS space holds many
more states than the one we can construct from the initial space through Γ(J∗λ).

Thanks to this extended limit we keep the information on the exchange of energy between
the system and the environment. The noises Aω(t) correspond to limits of environment
operators. Using quantum filtering (section 5.2.3) one shoud be able to describe continuous
measurements of the energy exchange. This is possible if we interpret Λω(t) as the particle
counting operator up to time t in the channel ω.

3.2.3. Repeated interactions continuous limit

In [6], S. Attal and Y. Pautrat showed the strong convergence of the repeated interaction
unitary evolution we presented in section 2.1.2 to a unitary evolution solution of a QSDE.

In this case the limit is not a limit from non Markovian to Markovian evolution. It is a
limit from discrete time evolution to continuous time evolution. Hence the discrete version
can be though as a discrete approximation of the continuous time Markovian evolution. Or,

45



3. Markovian environment description – Quantum noises

the continuous limit can be seen as the approximation of the discrete evolution. We shall
encounter a similar limit when we will deal with continuous indirect measurement situations.

Let us present a simpler version of S. Attal and Y. Pautrat general result. We recall that
in a repeated interaction situation, the environment Hilbert space is an infinite product of
identical finite dimensional Hilbert spaces. Here we consider only two dimensional Hilbert
spaces for the environment.

Htot. = Cdsys. ⊗
⊗
N

C2. (3.45)

The initial state is a tensor product of the initial system state and the identical probe pure
states |0〉.

ρtot. = ρsys. ⊗
⊗
N
|0〉〈0|. (3.46)

The unitary evolution is a product of unitary operators acting non trivially only on the system
Hilbert space and one part of the environment. Let Uk act non trivially only on the system
Hilbert space and the kth part of the environment. Thus Uk =

∑
j=0,1,2,3 uj ⊗

⊗n−1
k=1 I2⊗σj ⊗⊗

k>n I2 with σj the usual Pauli matrices

σ0 = I2, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(3.47)

in the basis (|1〉, |0〉). The evolution up to time n is given by

V (n) = UnUn−1 . . . U2U1. (3.48)

We assume, without loss of generality, that each interaction happens during a time 1/n.
Hence during a interval of time equal to 1, n interactions are realized. At time t, [nt] full
interactions are realized. We wish to take the limit n → ∞. Hence to have more and more
interactions in a fixed time. As for the reduced evolution, the limit is well defined and not
trivial only for a well chosen interaction scaling. We assume the unitary interaction Un is

Uk = exp[−i 1
n
Hsys. +

1√
n

(L⊗ σ+,k − L∗ ⊗ σ−,k)] (3.49)

with L an operator on the system Hilbert space and σ±,n=
1
2(σ1,k±iσ2,k). The index k indicates

that the operator acts non trivially only on the kth part of the environment.
A trivial continuous time version of V (k) is given by V (t) = V ([nt]). But before we take

the limit n→∞ we need to represent the discrete evolution in a quantum stochastic space.
Let the quantum stochastic space be Cdsys. ⊗ Γ(L2(R+)). Let us slice Γ(L2(R+)) in time

intervals of size 1/n. We write Γk = Γ(L2([k/n, (k+1)/n[)). We have Γ(L2(R+)) ≡
⊗

k∈N Γk.
We define

|0〉k = |e(0)〉k
|1〉k = 0⊕ |

√
n1[k/n,(k+1)/n[〉k

⊕
l>1

0

an(k) = ak(
√
n1[k/n,(k+1)/n[)P

1]
n (k)

a∗n(k) = P 1]
n (k)a∗k(

√
n1[k/n,(k+1)/n[).

(3.50)
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3.2. Open systems extended Markovian limits

The index k everywhere indicates that it is an object on the kth part of the environment. For

the operator ak(n) it means it acts trivially on all the other parts of the environment. P
1]
n (k)

is the projector onto the subspace of 0 or 1 particle of the kth part of the Fock space. Hence

P 1]
n (k)|e(f)〉 = |e(f)〉<k ⊗ (|0〉k + fn(k)|1〉k)⊗ |e(f)〉>k (3.51)

where fn(k) =
√
n
´ (k+1)/n
k/n f(s)ds and |e(f)〉<k is the limitation of |e(f)〉 to

⊗
l<k Γl. |e(g)〉>k

is defined identically. We furthermore define the projector Pn =
∏
k P

1]
n (k). It associates to

|e(f)〉 a state which can be uniquely identified with a vector of
⊗

NC2.

Pn|e(f)〉 =
⊗
k

|0〉k + fn(k)|1〉k. (3.52)

We just mapped the ground state of each two level probe in the environment to the ground
state of a part of the quantum stochastic space. Similarly we mapped the excited state to a
one particle state. The projection allows us to restrict the states of the quantum stochastic
space to states we can uniquely identify to vectorss of the original environment.

With these definitions we have

an(k)|0〉 = 0

an(k)|1〉k = |0〉k
a∗n(k)|0〉k = |1〉k
a∗n(k)|1〉k = 0

(3.53)

where |0〉 =
⊗

k |0〉k. The operators act trivially on all states |1〉j , |0〉j with j 6= k. Hence we
have a realization of the operators σ±,k in the quantum stochastic space. an(k) corresponds
to σ−,k and a∗n(k) to σ+,k.

We are now equipped to present the convergence of the operators. First let us remark that

Pn and all P
1]
n (k) converge strongly to the identity. They are self dual, P

1]
n (k)2 = P

1]
n (k) and

〈e(g)|Pn|e(f)〉 and 〈e(g)|P 1]
n (k)|e(f)〉 converge to 〈e(g)|e(f)〉 for any L2(R+) g and f . The

convergence of the operator P
1]
n is crucial to obtain the convergence of the evolution. At one

point we need to map all the states of the quantum stochastic space to states of the initial
environment. But this projection should disappear in the limit. If not we would not have
convergence of V (0) = I for example.

Let us define the approximations of At and A∗t .

an(t) =
1√
n

[nt]−1∑
k=0

an(k) (3.54)

a∗n(t) =
1√
n

[nt]−1∑
k=0

a∗n(k). (3.55)

These approximations converge strongly to respectively At and A∗t .
We sketch the proof for an(t), the proof for a∗n(t) is equivalent. For any |e(f)〉, we have

‖(an(t)−At)|e(f)〉‖ ≤ ‖
ˆ t

0
f(s)(|e(f)〉\[ns] − |e(f)〉)ds‖

+ ‖
ˆ [nt]

n

t
f(s)|e(f)〉\[nt−1]ds‖

(3.56)
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3. Markovian environment description – Quantum noises

with |e(f)〉\k = |e(f)〉<k ⊗ |0〉k ⊗ |e(f)〉>k.
We have

‖
ˆ [nt]

n

t
f(s)|e(f)〉\[nt−1]ds‖ ≤

ˆ [nt]
n

t
|f(s)|ds‖|e(f)〉‖ (3.57)

≤ 〈1
[
[nt]−1
n

,
[nt]
n

[
, |f |〉dse

1
2
‖f‖2 (3.58)

≤ 1

n
‖f‖e

1
2
‖f‖2 . (3.59)

And we also have

‖
ˆ t

0
f(s)(|e(f)〉\[ns] − |e(f)〉)ds‖ ≤

ˆ t

0
|f(s)| ‖|e(f)〉\[ns] − |e(f)〉)‖ds. (3.60)

For any s, ‖|e(f)〉\[ns] − |e(f)〉)‖ converges to 0 when n→∞ and it is bounded for any n by
2‖|e(f)〉‖.

Thus using dominated convergence theorem,

lim
n→∞

‖(an(t)−At)|e(f)〉‖ = 0. (3.61)

Hence an(t) converges strongly to At.
Let us now develop the representation of V (n+ 1)−V (n) on the quantum stochastic space

in series of 1/
√
n terms.

(V (n+ 1)− V (n))V ∗(n) =

− i(Hsys. −
i

2
L∗LP 0]

n (k))
1

n
+

1√
n

(L⊗ a∗n(k)− L∗ ⊗ an(k)) + o(1/n)
(3.62)

with P
0]
n (k) the projector on the vacuum state of Γk. We have limn→∞ ‖P 0]

n (k)−IΓ|e(f)〉‖ = 0.

Thus P
0]
n (k) converges strongly to the identity.

Set now Ut the unique solution of

(dUt)U
∗
t = −i(Hsys. −

i

2
L∗L)dt+ LdA∗t − L∗dAt

U0 = I.
(3.63)

We can infer that V ([nt]) converges strongly to Ut when n goes to infinity. S. Attal and Y.
Pautrat proved this convergence in [6]. Actually to complete the mapping from the initial
environment to the quantum stochastic space we should have mapped the operators 1

2(I2,k +
σ3,k) too. Doing it explicitly is not really interesting here. Just note that they are mapped
to the process Λt. Hence Λt counts the number of probes in the excited state up to time t.

If we summarize, we started from repeated interactions of a system with two levels probes.
We mapped the probes states to linear combinations of vacuum and one particle states of a
quantum stochastic space Γ(L2(R+)). We identically mapped the operators σj,k. In the limit
we obtain that the raising operators on the probes σ+,k become dA∗t similarly, σ−,k becomes
dAt. Hence the quantum noises keep track of transitions between the energy level in the
probes. The tensor product of states of two level probes become multiple bosonic particle
states. The presence of one particle corresponds to the excitation of the probes. One can
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3.3. Corresponding path integral description and classical limit

understand the presence of more than one particle as the excitation of many probes regrouped
in a small time interval. If the time interval is small enough the states with more than one
particle become irrelevant since the norm of |f1[t,t+dt[〉 ⊗ |g1[t,t+dt[〉 is of order dt2.

Of course the results of [6] are much more general than what we presented here. They allow
for probes with Cdprobe , 2 < dprobe < ∞ Hilbert spaces. In this case the quantum stochastic
space becomes Γ(L2(R+;Ck)) with k = dprobe − 1. Hence each noise Aj(t) corresponds to a
lowering of the probe state from the excited state j to the ground state. The operators Λj,i(t)
perform transitions from the state i to state j. When j = i these operators count the number
of probes in the excited state j. The authors also prove the convergence of Hamiltonian
including scattering interaction like D⊗ (δi,j+1 + δj+1,i)1<i,j≤dprobe

with D = D∗. In this case
the limit stochastic unitary evolution involves processes Λj,j+1(t). When both dipolar like
and scattering interactions are present in the Hamiltonian, the unitary stochastic evolution
has an unexpected expression. To illustrate it, the corresponding Lindbladian can be

L(ρsys.) = −i[K, ρsys.] +Wρsys.W
∗ − 1

2
{W ∗W,ρsys.} (3.64)

with

K = Hsys. + L∗D−2(sin(D)−D)L (3.65)

W = D−1(eiD − I)L. (3.66)

Hence the limit evolution is not intuitively the direct limit of the initial one. These type of
processes should be more thoroughly investigated.

3.3. Corresponding path integral description and classical limit

In this section we formulate QSDE in terms of path integrals. It makes the link with the
usual path integral formulation and allows us to compute the classical limit of QSDE.

Since we use path integral formalism we do not seek the most failproof demonstrations.
Hence all the result of this section must be though as inferred and not actually proved in the
mathematical sense.

3.3.1. Path integral for an environment in its vacuum state

We limit ourselves to the case of one particle in interaction with a bath. We can of course
generalize the following derivation to more complex cases, but for now let Hsys. = L2(R).
H and L are then functions of P and X the canonical impulsion and position operators.
We want to compute multi–time correlations of observable functions of X through a path
integral formalism. For the sake of simplicity we start with two time correlations. We want
to compute

E(B(s)C(t)) = tr[U∗sBUsU
∗
t CUtρtot.] (3.67)

with B and C functions of X. ρtot. is the initial state of the total system+environment. Recall
that Ut is the solution of

(dUt)U
∗
t = −i(H − i

2
L∗L)dt+ L∗dAt − LdA∗t

U0 = Isys..
(3.68)
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3. Markovian environment description – Quantum noises

In this section we assume the environment is in its vacuum state. We have ρtot. = ρsys.⊗|0〉〈0|.
We want to find a formulation like the following for E(. . .):

E(B(s)C(t)) = (3.69)ˆ
x+(∞)=x−(∞)

dx±dp±dfB±(s)C±(t)ρsys.(x+(0), x−(0))eiG[x±,p±,f ] (3.70)

with f a square integrable function of R+, B±(s) = 〈x±(s)|B|x±(s)〉 and ρsys.(x, x
′) =

〈x|ρsys.|x′〉. G is some action to be defined. We will refer to the function f as a “path”
on the environment. The indexes ± correspond to different time ordering. If both indexes
are + (resp. −) then the correlation computed is E(B(s)C(t)) (resp. E(C(t)B(s)) if s > t
and E(C(t)B(s)) (resp. E(B(s)C(t))) if s < t. If the index for B is + (resp. −) and the one
of C is − (resp. +) then the correlation computed is E(C(t)B(s)) (resp. E(B(s)C(t))).

The full derivation of the path integral is presented in Appendix B.1. Here we just give the
action obtained and a sketch of the main steps of the proof.

The action G[x±, p±, f ] we obtain is:

iG[x±, p±, f ] = −|f |2 + iS[x+, p+, f ]− iS[x−, p−, f ] (3.71)

S[x±, p±, f ] =

ˆ ∞
0

ds
(
p±(s)ẋ±(s)−H±(s) +

i

2
L∗L±(s) (3.72)

+iL±(s)f(s)
)
. (3.73)

O±(s) = 〈p±(s)|O|x±(s)〉/〈p±(s)|x±(s)〉 for any operator O acting on H. If we make a
classical analogy, −|f |2 stands for the “law” of the noises, (3.72) corresponds to the predictable
part of the evolution and (3.73) corresponds to the noisy part of the evolution.

This simple formula can, of course, be generalized to any multi time correlation

E(Bn(tn) . . . B1(t1)C1(s1) . . . Ck(sk)) (3.74)

with an ordering tn > tn−1 > . . . > t1 > 0 and sk > sk−1 > . . . > s1 > 0.
The proof leading to iG is based on two important properties that allows us to then use

the usual path integral derivation proof. First we use the factorization in time property of
Γ(L2(R+)) we saw in section 3.1. We can cut it in different time part. We have L2(R+) ≡
L2([0, t[)⊕L2([t,∞[) which imply Γ(L2(R+)) ≡ Γ(L2([0, t[))⊗Γ(L2([t,∞[)). At acts only on
the first half of this decomposition. Since Ut depends only on noise operators As, A

∗
s with

s < t, it also only acts on the first half of the decomposition. Idem, Ut,s = UtU
∗
s only acts on

a Γ(L2([s, t[) part of Γ(L2(R+)). Hence when we perform a trace over the environment we
can decompose it on each time part.

E(B(s)C(t)) = trsys.[Ctr[s,∞[[Ut,str[0,s[[Usρtot.U
∗
s ]BU∗t,s]] (3.75)

Second, the exponential vectors of the environment can be decomposed in the same way.
We write |e(f)〉t,s the limitation of |e(f)〉 to this Γ(L2([s, t[) part (i.e. |e(f)〉 = |e(f)〉t,0 ⊗
|e(f)〉∞,t). The environment vacuum state is |0〉〈0|t,0⊗|0〉〈0|∞,t. Since, Ut acts as the identity
on |0〉〈0|∞,t we can put each part of the environment initial state in the corresponding trace.

E(B(s)C(t)) = trsys.[Ctr[s,∞[[Ut,str[0,s[[Usρsys. ⊗ |0〉〈0|s,0U∗s ]⊗ |0〉〈0|∞,sBU∗t,s]] (3.76)
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3.3. Corresponding path integral description and classical limit

We can express the trace over the environment degrees of freedom as an integral over square
integrable functions using the exponential vectors.

trenv.[. . .] =

ˆ
L2(R+)

dfe−|f |
2〈e(f)| . . . |e(f)〉 (3.77)

with the measure over the function f such that
´
dfe−|f |

2
= 1. We use again the decomposition

of exponential vectors and it remains to compute the path integral formalism for Uft,s =

t,s〈e(f)|Ut,s|e(0)〉t,s. Indeed we have

E(B(s)C(t)) =

ˆ
dfe−|f |

2
trsys.[CU

f
t,sU

f
s,0ρsys.U

f
s,0

∗
BUft,s

∗
] (3.78)

The rest of the demonstration is a usual path integral one. As indicated earlier the full
derivation can be found in Appendix B.1.

Characteristic functional We can resume any multi time correlation function E(. . .) into
one characteristic functional. Let G[λ±] be

G[λ±] =

ˆ
dx±dp±dfρsys.(x+(0), x−(0))δ(x+(∞)− x−(∞)) exp

[
iG[x±, p±, f ]

+
´∞

0 dsx+(s)λ+(s) + x−(s)λ−(s)
]
.

(3.79)

Then E(X(tn) . . . X(t1)X(t′1) . . . X(t′p)) = δ
δλ+(tn) . . .

δ
δλ+(t1)

δ
δλ−(t′1)

. . . δ
δλ−(t′p)G[λ±]

∣∣∣
λ±=0

Example We illustrate this path integral formalism with a simple example. Let Hsys. =
P 2/2m + V (X) and L = αX + βP . If L is a usual annihilation operator, α =

√
mω
2~ and

β = i
√

1
2~mω . We assume V (X) is polynomial. We write the differential equations for

Xt = U∗t XUt and Pt = U∗t PUt. The computation using Itô rules leads to

dXt = Pt/mdt− γXtdt+ dW β
t (3.80)

dPt = −V ′(Xt)dt− γPtdt− dWα
t (3.81)

with dWµ
t = iµdA∗t − iµdAt and γ = Im(αβ). Each one of the Wµ

t can be individually
interpreted as a Brownian motion times |µ| but they do not commute unless α = cβ, c ∈ R.
So we cannot replace both with a combination of two independent Brownian motions.

In order to find the corresponding path integral formalism, we start from the unitary
description given at the beginning of this section with the operators H and L we just defined.
We turn to the path integral formulation of this simple one particle case. We find the action
directly from the expressions of H and L:

S[x, p, f ] =

ˆ ∞
0

ds
(
p(s)ẋ(s)− p(s)2

2m
− V (x(s)) +

i

2
|αx(s) + βp(s)|2 (3.82)

+i(αx(s) + βp(s))f(s)
)

. (3.83)

We got rid of a αβ constant which is included in the normalization of the path integral.
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3. Markovian environment description – Quantum noises

Remark that if one integrates over f , one recover Feynman–Vernon influence functional. If
we compare with usual path integral including the environment the term i/2|αx(s) + βp(s)|2
is unexpected. In the derivation it is directly linked to the presence of noises instead of the
usual full interaction. The noise creates additional terms of order dt in the slicing of the
evolution.

3.3.2. Out of vacuum environments

Environment state characterization

If the environment is not initially in its vacuum state, from different limits [4, 22], we can
infer the Itô rules between dA∗t and dAt are

dAtdA
∗
s = δs,tntdt, dA

∗
tdAs = δs,t(nt + 1)dt.

The other multiplications of infinitesimal increments are still zero. nt characterizes the state
of the environment. In order to find the corresponding path integral, we want to find a
positive semi definite hermitian operator ρenv. on the environment such that tr[ρenv.dA

∗
tdAs] =

δs,tntdt.

Let ρenv. ∝ eΛ(−λ) with λ : R+ → R+ and Λ(λ) =
´∞

0 dsλ(s)a∗sas. Hence it is a de-
formed version of Λt. Suppose tr[ρenv.] = 1. We would like to use the commutation rela-
tions between At, A

∗
t and Λ(−λ) to compute the corresponding nt. We have [dAt, dA

∗
s] =

δs,tdt, [Λ(−λ), dAt] = λ(t)dAt. From usual relations on exponential of operators, it follows
eΛ(−λ)dA∗t = e−λ(t)dA∗t e

Λ(−λ). Thus we have

e−λ(t)tr[(dA∗tdAs + δs,tdt)ρenv.] = tr[dA∗tdAsρenv.]. (3.84)

Solving this equation for n(t, s)dt = tr[dA∗tdAsρenv.], we obtain n(t, s) = (eλ(t) − 1)−1δs,tdt.
Hence nt = (eλ(t) − 1)−1. If we choose λ(t) such that nt is the one expected, we find a state
fulfilling our expectations. We can even compute its normalization.

tr[eΛ(−λ)] =

ˆ
dfe−|f |

2〈0|ea(f)eΛ(−λ)ea
∗(f)|0〉. (3.85)

We use once again usual properties on commutations of operator exponentials and the fact
that Λ(−λ)|0〉 = 0.

tr[eΛ(−λ)] =

ˆ
dfe−(f,(1−e−λ)f) = det(1− e−λ)−1. (3.86)

Hence ρenv. = det(n+ 1)−1eΛ
(

ln( n
n+1

)
)
. If nt = n0 is constant, ρenv. = e

ln(
n0
n0+1

)Λ(1)
/(n0 + 1).

Note that actually eΛ(−λ) is not necessarily a trace class operator. Hence det(1− e−λ) is not
necessarily well defined. If we wanted to assure that ρenv. is trace class we should have used the
right representation for the environment (GNS construction, Araki–Woods representation).

Thermal path integral

Now we want to get the path integral formalism of our QSDE when the initial environment
state is a populated state: ρtot. = ρsys. ⊗ ρenv., ρenv. = det(1 − eλ)eΛ(λ). The demonstration
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3.3. Corresponding path integral description and classical limit

follows the same path as earlier, but this time we need two more “paths” on the environment
taking into account the fact that the environment state is no longer a coherent one.

E(B(s)C(t)) =

ˆ
dfdg±e

−|f |2−|g−|2−|g+|2trsys.

[
〈e(f)|BUs,tCUt,0|e(g+)〉 (3.87)

ρsys.〈e(g+)|ρenv.|e(g−)〉〈e(g−)|U∗s,0|e(f)〉
]
. (3.88)

Hence we expect we will find a path integral like

E(B(s)C(t)) =ˆ
x+(∞)=x−(∞)

dfdg±dx±dp±B+(s)C+(t)ρsys.(x+(0), x−(0))eiG[x±,p±;f,g±] (3.89)

As in the previous section we will not give here a full demonstration but only point out the
important changes from the vacuum one. The elements missing here are given in Appendix
B.2. The action we obtain for the populated case is

iG =− |f |2 − |g+|2 − |g−|2 + (g+, e
−λg−) + (f, g+) + (g−, f) (3.90)

+iS[x+, p+; f, g+]− iS[x−, p−; f, g−] (3.91)

with

S[x, p; f, g] =

ˆ ∞
0

ds
(
ẋ(s)p(s)−H(s) + i/2L∗L(s) (3.92)

+iL(s)f(s)− iL∗(s)g(s)
)

. (3.93)

Note that contrary to usual Keldysh formalism, the influence of the initial environment state
appear directly in the action through the term including λ. We do not have an integral in
imaginary time to thermalize the initial state for example. The influence of the state on the
“measure” over the environment path is explicit in the action.

The demonstration follows the same path as the one for the vacuum case. The only change
is that here we do not have |0〉〈0| as an environment state. Instead we have

ρenv. =

ˆ
dg±e

−|g+|2−|g+|2ρenv.(g+, g−)|e(g+)〉〈e(g−)|

with
ρenv.(g+, g−) = det(1− e−λ)〈0|ea(g+)eΛ(−λ)ea

∗(g−)|0〉.
Baker–Campbell–Hausdorff formula leads to

ρenv.(g+, g−) = det(1− e−λ)e(g+,e−λg−). (3.94)

Including this in the full demonstration leads to the result.
As in the vacuum case, any correlation function can be computed with the following char-

acteristic functional. Let G[λ±] be

G[λ±] = (3.95)ˆ
dx±dp±dfdg±ρsys.(x+(0), x−(0))δ(x+(∞)− x−(∞)) (3.96)

exp
[
iG[x±, p±; f, g±] +

´∞
0 dsx+(s)λ+(s) + x−(s)λ−(s)

]
. (3.97)
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3. Markovian environment description – Quantum noises

Then

E(X(tn) . . . X(t1)X(t′1) . . . X(t′p)) = (3.98)

δ

δλ+(tn)
. . .

δ

δλ+(t1)

δ

δλ−(t′1)
. . .

δ

δλ−(t′p)
G[λ±]

∣∣∣∣
λ±=0

(3.99)

3.3.3. Classical limit

An interesting result we can obtain from this path integral formalism is the classical limit
of QSDE’s. We have little hope to find a limit when nt = 0 since then the environment is
in its vacuum state (i.e. is at zero temperature) and the classical world is a strictly positive
temperature world. Hence we limit our selves to nt 6= 0.

Usually one computes the classical limit ~ → 0 from the influence functional. In other
words the limit is taken once the environment degrees of freedom have been traced out. We
want to keep the noise induced by the environment in our classical limit. First we need to
reintroduce the ~ factors in the action G. We can directly introduce 1/~ in the formal solution
of Ut,s.

Ut = T>e
−i t~Hsys.−

1√
~

(L⊗A∗t−L∗⊗At).

The 1/
√
~ in front of L corresponds to the standard expression of as. It is the inverse

Fourier transform of a family of standard harmonic oscillator creation annihilation operators
aω = 1√

2~
(
√
mωx̂ + 1√

mω
p̂) with x̂, p̂ canonical position and impulsion operators. Hence At

includes already a factor 1/
√
~. Thus it remains only a factor 1/

√
~ in front of L.

We compute the usual classical limit ~ → 0 (see Appendix B.3 for the proof) with the
addition that, following the thermal example e−λ(s) = 1 − ~λ̃(s) + o(~) with λ̃ = λ/~ fixed.
We apply the result to our example L = αX + βP . We obtain the action

iGcl.[x, p, q, π; η1, η2] = (3.100)

−
ˆ ∞

0
ds
λ̃(s)

4
(η1(s)2 + η2(s)2) (3.101)

+ i

ˆ ∞
0

dsπ(s)
(
ẋ(s)− p(s)/m+ γx(s)− Im(β)η1(s) + Re(β)η2(s)

)
(3.102)

− i
ˆ ∞

0
dsq(s)

(
ṗ(s) + V ′(x(s)) + γp(s) + Im(α)η1(s)− Re(α)η2(s)

)
(3.103)

with γ = Im(αβ). If we integrate now over the noises ηi we recover Martin–Siggia–Rose path
integral. The corresponding Langevin equation system is

ẋ(s) = p(s)/m− γx(s) + Im(β)η1(s)− Re(β)η2(s) (3.104)

ṗ(s) = −V (x(s))− γp(s)− Im(α)η1(s) + Re(α)η2(s). (3.105)

The noises η1 and η2 are independent white noises with correlation 〈ηi(s)ηj(t)〉 = δ(s −
t)δi,j2λ̃(s)−1. If λ̃ correspond to a thermal case were λ̃(s) = βE(s), the correlation is
〈ηi(s)ηj(t)〉 = δ(s − t)δi,j 2kBT

E(s) . Hence we recovered the usual classical stochastic equations
for Markovian diffusive open systems.

If L is not linear in X and P some normal order issues can arise. Although if L is only a
function of X or of P but not both it is always possible to derive the classical limit.
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3.3. Corresponding path integral description and classical limit

Now let us compare with the quantum stochastic differential equations for the observables
X and P . A simple computation leads to

dXt = Pt/mdt− γXtdt− iβdAt + iβdA∗t (3.106)

dPt = −V ′(Xt)dt− γPtdt+ iαdAt − iαdA∗t . (3.107)

It is the same expression as in the vacuum case. The only population dependency is in the
noises Itô laws. We change the noise setting Qt = At + A∗t and Pt = −i(At − A∗t ). Remark
that [Qt, Ps] = 2imin(t, s), dQ2

t = dP 2
t = (2nt + 1)dt and dQtdPt = −dPtdQt = idt. With

these noises we have

dXt = Pt/mdt− γXtdt+ Im(β)dQt − Re(β)dPt (3.108)

dPt = −V ′(Xt)dt− γPtdt− Im(α)dQt − Re(α)dPt. (3.109)

These equations do look like the classical ones we obtained. Moreover if we take the classical

limit for 2nt + 1 we also obtain 2nt + 1 = λ̃−1

~ + 1 +O(~). Hence it must be possible to take
the classical limit directly from these stochastic equations. Indeed if we include back the ~
factor in the previous equations we have the same equations but with dQt =

√
~(dAt + dA∗t )

and dPt = −i
√
~(dAt − dA∗t ). Thus in the limit ~ → 0: dQtdPt = dPtdQt = 0 and dQ2

t =
dP 2

t = 2λ̃(t)−1dt which corresponds to the classical limit we just found.
This result can be though as a consistency with classical stochastic equation test.

In this chapter we saw that we can describe, in some limits, open quantum systems using
quantum stochastic evolutions. From now on we will use either this formalism or the repeated
interaction one, without continuous limit, to describe open system settings. The benefit of
keeping some information on the environment through the noises will appear clearly when we
will deal with the description of the system evolution when continuous measurements on the
environment are performed.
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4. Repeated indirect measurements

As first explained in section 2.1.2, a common technique of system manipulation in quantum
optics consists in sending prepared probes towards the system being studied [63]. Once the
probes have interacted with the main system they can be measured. Actually this technique
is a cornerstone of 2012 Nobel prize awarded to S. Haroche [62] and D. J. Wineland [101]. In
this chapter we discuss such repeated indirect measurement procedures.

It is the first time we introduce quantum trajectories. Here this term has no relation with
the paths of Feynman path integral. The trajectory is the evolution of the system with respect
to the probe measurement results.

The chapter is structured as follows. In a first section we present the general setup of dis-
crete quantum trajectories. The system state evolution is a stochastic process which depends
on the indirect measurements outcomes. We identify the mean evolution with the repeated ac-
tion of a CP map onto the system state. In the second section we present some general asymp-
totic properties of quantum trajectories obtained by B Kümmerer and H. Maassen [69, 75].
First we present the ergodic behavior of the trajectories. The Cesaro mean of trajectories
converges with probability one towards one of the invariant states of the CP map correspond-
ing to the indirect measurement. Then we discuss the purification of the state along the
trajectory. If the state is initially mixed, it will, in general, purify along the trajectory. In
the long time, the state becomes pure. The third section is devoted to the study of the con-
vergence of discrete trajectories corresponding to non demolition measurements. These are
used to perform high precision measurement of a system through the knowledge obtained by
the indirect measurements. We explain how these specific indirect measurements reproduce
von Neumann projection postulate on the system while we used it only to project the states
of the probes. We also give the exponential rate of convergence toward the projection. When
different methods of indirect measurement are used during one measurement, we show this
rate can be improved. These are results from [20, 21]. The last section deals with attractive
subspaces. Based on results concerning the convergence of the system state toward a subspace
of the complete system Hilbert space under the repeated action of a CP map [33], we show
the convergence property is kept when taking the measurement outcomes into account. The
system behavior is nevertheless a bit different. We find two different convergence rates. One
corresponds to the mean evolution and another is similar to the action of a non demolition
measurement and corresponds to an asymptotic stability rate. We then identify two phases
during the evolution. During a random time the state does not show sign of convergence and
can even stay far from the limit subspace. After this time, the state converges rapidly toward
the limit subspace. The duration of the first phase seem to depends only on the mean con-
vergence rate whereas the speed of convergence after this time seem to depend on asymptotic
stability rate.

4.1. Discrete time quantum trajectories

In this section we present the general setup of repeated indirect measurements.
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4. Repeated indirect measurements

4.1.1. Indirect measurement

Let us first review one step of the repeated indirect measurement process. We consider a
system described by a finite dimensional Hilbert space Hsys. and an auxiliary system or probe
whose Hilbert space Hprobe is also finite dimensional. The term probe is here meaningful
since we use the auxiliary systems to actually probe the main one. We assume the probe is
prepared in a pure state |Ψ〉. We could generalize by taking a mixed state as probe state,
but for the sake of simplicity we limit here ourselves to a pure state. It is actually the most
relevant situation in quantum optics experiments. We address this potential generalization
when needed. In quantum optics, the systems and probes we are talking about can be either
atoms, pulses of light, artificial quantum dots (Josephson junctions for example) or photon
fields in cavities. For the latter the original infinite dimensional Hilbert space is reduced to
a finite dimensional one by assumption since the highest numbers of photon states are often
negligible.

An indirect measurement corresponds to a cycle of a unitary interaction between the system
and the probe and a measurement on the probe. The interaction entangles the system and
the probe and the measurement result determines the resulting evolution of the system. We
assume the probe measurement is non degenerate. Let U be the interaction and {j} the set
of probe measurement outcomes. In Serge Haroche’s group experiment [61] the interaction
would be similar to U = ei∆tλn̂⊗σ3 with n̂ the photon number operator and σ3 the operator
differentiating between the two states for the atoms (i.e. the third Pauli matrix 1). |Ψ〉 is
the initial state the atoms would be prepared in. Hence a superposition of their ground and
excited states. The outcomes {j} would be either e or g depending on whether the atom is
measured in its excited or ground state respectively. The excited and ground states depend
of course on the axis along which they are measured.

If the system state before a cycle is ρ, the system state after one indirect measurement is

ρ′ =
MjρM

∗
j

tr[M∗jMjρ]
, Mj = 〈j|UΨ〉 (4.1)

with outcome j obtained with probability tr[M∗jMjρ]. The Mj ’s are operators acting on the
system Hilbert space. They are complex sums of the Uji blocs of U in the probe basis {|j〉}:
Mj =

∑
i Uji〈i|Ψ〉.

The system update rule is obtained from Born rule. One can remark that any measurement
on the system is compatible with the measurement on the probe. It means that we can
simultaneously measure the probe and any observable on the system. Therefore, for any
system observable we can define a joint probability of its measurement and the measurement
on the probe. Let X be a system observable. From Born’s rule the joint distribution of its
outcomes and the probe measurement outcomes are

p(x, j) = tr[Px ⊗ PjU(ρ⊗ |Ψ〉〈Ψ|)U∗Px ⊗ Pj ] (4.2)

We can use the definition of conditional probability to obtained the distribution of X outcomes
with respect to the probe measurement outcome j.

p(x|j) =
tr[Px ⊗ PjU(ρ⊗ |Ψ〉〈Ψ|)U∗Px ⊗ Pj ]

tr[Isys. ⊗ PjU(ρ⊗ |Ψ〉〈Ψ|)U∗Isys. ⊗ Pj ]
= tr

[
Px

MjρM
∗
j

tr[M∗jMjρ]

]
. (4.3)

1. The Pauli matrices are: σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.
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4.1. Discrete time quantum trajectories

Since this is true for any system observable X, Born’s rule implies that after the probe
measurement the system state is given by the update rule we gave. So we did not use
the projection postulate. This is possible because we do not keep track of the probe state
after the measurement. In most experiment the probe is destroyed or discarded after its
measurement [11].

The measurement we just described is usually called positive operator valued measurement
(POVM). It means that the outcome distribution is given by a family of CP maps, here ρ 7→
MjρM

∗
j . If we had not assumed the initial state of the probe was pure, instead of having maps

with a single Mj we would have had a more complex CP maps. Let ρprobe =
∑

a pa|Ψa〉〈Ψa|
be the initial probe state. Let Φj(ρ) =

∑
a paMa,jρM

∗
a,j with Ma,j =

∑
i Uji〈i|Ψa〉. The

update rule in this case is ρ′ = Φj(ρ)/tr[Φj(ρ)] with j obtained with probability tr[Φj(ρ)].
The measurement is still a POVM but this time with the outcome distribution given by the
CP maps Φj . The general description of operator valued measurements is made through
the instrument formalism [11]. POVM’s include projective measurements. In this case the
operators Mj are just projectors.

Before we start to introduce the repetition of such indirect measurement, let us check a few
properties on a unique cycle. First an outcome j with tr[M∗jMjρ] = 0 has a null probability
to be picked. Hence ρ′ is almost surely always well defined. Then, since

∑
jM

∗
jMj = Isys.,∑

j tr[M∗jMjρ] = 1 and (tr[M∗jMjρ]) is a well defined probability distribution for the out-
comes. We also have tr[ρ′] = tr[ρ] = 1 hence a state is always mapped onto a state, whatever
is the outcome. Therefore, after an indirect measurement, we almost surely stay in the set of
system states.

When looking at the average update of ρ, we find it corresponds to the action of a CP map
Φ such that Φ(ρ) =

∑
jMjρM

∗
j . Since

∑
jM

∗
jMj = Isys., Φ is trace preserving. Thus this

average evolution matches the criteria for a good deterministic quantum evolution given in
section 2.1.1.

We can also see this indirect measurement as an unraveling of a CP map. Given a CP
map and a Kraus decomposition of it, we can interpret the CP map as the average action of
an indirect measurement whose outcomes would have been the index of the Kraus operators.
For this reason, in general, we call the Mj ’s Kraus operators. This idea of unraveling will be
more significant when we will deal with continuous quantum trajectories.

4.1.2. Repeated indirect measurements

Discrete quantum trajectories correspond to the repetition of the process just described.
An experimenter repeatedly indirectly measures the system. The global process is presented
in figure 4.1. If the system state is ρ(n) at time n, then at time n+ 1,

ρ(n+ 1) =
Mjn+1ρ(n)M∗jn+1

tr[M∗jn+1
Mjn+1ρ(n)]

(4.4)

with the probability of jn+1 = j equal to tr[M∗jMjρ(n)]. The state at time n depends on
all n previous measurements: ρ(n) = ρ(n; j1, . . . , jn). Hence the system state evolution is
a stochastic process depending on the measurements outcomes. A measurement realization
or record is an infinite sequence of outcomes ω = j1, . . . , jn, . . .. The probability space is
then Ω = {(j1, . . . , jn, . . .) s.t. ∀k, jk ∈ {j}}. The probability measure P with which these
outcomes are picked is defined according to quantum physics laws by P({ω s.t. ωk = jk∀k ≤
n}) = tr[M∗j1 . . .M

∗
jn
Mjn . . .Mj1ρ(0)]. Particularly it depends on the initial system state ρ(0).
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4. Repeated indirect measurements

Figure 4.1.: Schematics of the repeated indirect measurements setup. A sequence of probes
prepared in a given state is sent to interact with the system. The probes are then
measured. The system state is updated with respect to the probe measurement
outcomes.

One first important remark is that ρ(n) is a Markov process since the expectation of
any function of ρ(n + 1) with respect to the whole history (ρ(k))0≤k≤n can be reduced to
the expectation with respect to the last known system state: E(f(ρ(n + 1))|(ρ(k))0≤k≤n) =
E(f(ρ(n+ 1))|ρ(n)) where E is the expectation under the measure P.

Second, the average evolution of the system corresponds to a repeated action of the CP
map Φ.

E(ρ(n)) = Φn(ρ(0)). (4.5)

Equivalence between continuous monitoring and complete final measurement

Now let us reintroduce the interpretation of the auxiliary systems as an environment we
used in the sections about repeated interaction (2.1.2 and 2.3.3). If we consider the Hilbert
space of all the probes at once we have Hprobes = Hprobe ⊗Hprobe ⊗ . . .⊗Hprobe ⊗ . . . Hence
we have an infinite dimensional Hilbert space. We consider it as our environment. Its initial
state is simply |ψ0〉 = |Ψ〉 ⊗ |Ψ〉 ⊗ . . .⊗ |Ψ〉 ⊗ . . .

The projector corresponding to the measurement on the nth probe we have to use in Born’s
rule is

P
(n)
j = Isys. ⊗

n−1⊗
k=1

Iprobe ⊗ |j〉〈j| ⊗
∞⊗

k=n+1

Iprobe. (4.6)

The interaction between the system and the nth probe is

Un =
∑
i,j

Uji ⊗
n−1⊗
k=1

Iprobe ⊗ |j〉〈i|
∞⊗

k=n+1

Iprobe. (4.7)

The projector P
(n)
j commutes with any operator which acts as the identity on the nth probe

Hilbert space. Hence [Uk, P
(n)
j ] = [P

(k)
i , P

(n)
j ] = 0 for any j, i and any different k and n. This

is this commutation property that allows us to only use Born’s rule and not the projection
postulate.

Using the commutation we can use Born’s rule in two ways that correspond to two different
measurement picture. Either, as we have already done, Born’s rule is used considering the
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4.2. Asymptotic behavior

probability of each probe outcome is computed just after the system–probe interaction. Then,
formally the probability of one indirect measurement realization is

tr[· · ·P (n)
jn
UnP

(n−1)
jn−1

Un−1 · · ·P (1)
j1
U1(ρ⊗ |ψ0〉〈ψ0|)U∗1P

(1)
j1
· · ·U∗n−1P

(n−1)
jn−1

U∗nP
(n)
jn
· · · ]. (4.8)

This probability distribution is equal to the one when we consider a measurement on the
probes only after all the interactions. This joint measurement is allowed by the commutation
between the different projectors on different probes. The equality is allowed because an
interaction of the system with a probe acts trivially on any other probe. It is the meaning of

the commutation [Uk, P
(n)
j ] = 0 for k 6= n. Using commutation relations we have

tr[· · ·P (n)
jn
UnP

(n−1)
jn−1

Un−1 · · ·P (1)
j1
U1(ρ⊗ |ψ0〉〈ψ0|)U∗1P

(1)
j1
· · ·U∗n−1P

(n−1)
jn−1

U∗nP
(n)
jn
· · · ]

=
tr[P...,jn,jn−1,...,j1 · · ·UnUn−1 · · ·U1(ρ⊗ |ψ0〉〈ψ0|)U∗1 · · ·U∗n−1U

∗
n · · ·P...,jn,jn−1,...,j1 ]

(4.9)

with

P...,jn,jn−1,...,j1 =
∞∏
k=1

P
(k)
jk
. (4.10)

Hence it is equivalent to measure the probes along the time or all at once at the end. We
will encounter a similar equivalence in chapter 5. We will show that in the context of contin-
uous quantum trajectories, the usual two time measurement is equivalent to the continuous
measurement of the environment.

Before we move to the general asymptotic behavior of discrete quantum trajectories let us
just highlight that the setup we presented here, even if very general, does not cover all the
quantum optics experiments we referred to. Here we lack the possibility to change the probe,
the interaction and the measurement on the probes with respect to time and the previous
measurement outcomes. It does not include feedback control for example. We will introduce
this freedom in section 4.3 for the specific case of non demolition measurements.

4.2. Asymptotic behavior

4.2.1. Ergodicity

A question often asked, mainly when discrete quantum trajectories are used in numerical
simulation, is the equivalence between ensemble average and time average for the system
state. Do we have

lim
n→∞

E(ρ(n)) equals lim
n→∞

1

n

n∑
k=1

ρ(k)? (4.11)

The second limit is the limit of the Cesàro mean of the quantum trajectory. We will see in
next section on non demolition measurements that the answer to this question can also have
implications on the characterization of some state convergence. But let us first detail the
answer. It was given by B. Kümmerer and H. Maassen in [69] for any quantum trajectory
either in discrete time or continuous time. Here we extract the results for discrete time
trajectories.
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4. Repeated indirect measurements

Let us first remark that the limit of the mean evolution limn E(ρ(n)) = limn Φn(ρ(0)) is
not always well defined. If Φ is irreducible it is since it admits a unique invariant state. But
if Φ is reducible there is no guaranty the limit exists. Φ can have several invariant states. A
CP map corresponding to a unitary evolution, Φ(ρ) = UρU∗ is a good example where this
limit does not always exists.

Every projector onto an eigenstate of U is an invariant state of Φ. But if we start in a
state which is not a linear combination of these projectors, the mean state will not converge
in general. We are in a finite dimensional Hilbert space so, as we discussed in chapter 2.1,
the evolution given by repeated actions of Φ is quasi periodic. Let ρ be the initial system
state. Assume ρ is not an invariant state of Φ. For any ε > 0 there is a divergent sequence of
times (nk) such that ‖ρ(nk)−ρ‖ < ε for any k. But for the same ε it exists another divergent
sequence of times (n′k) such that ‖ρ(n′k)−UρU∗‖ < ε. The state will be as close as we want to
ρ an infinite number of times. And it will be as close as we want to UρU∗ an infinite number
of times. Since by assumption ‖ρ − UρU∗‖ > 0, this is incompatible with a convergence of
Φn(ρ) as n tends to infinity.

Fortunately, even if the mean state E(ρ(n)) does not converge, we will find a convergence
of the Cesàro mean of (ρ(n)) towards one of the invariant states of Φ.

We define a projector onto the set of these invariant states.

PΦ(ρ) = lim
n

1

n

n∑
k=1

Φk(ρ). (4.12)

This projector is well defined since Φ always accept at least one invariant state ρinv.. The
invariant states are the eigenstates of Φ with eigenvalue 1. All other eigenvalues have a norm
smaller or equal to 1 and are different from 1. Using the Jordan decomposition on the matrix
representation of Φ and the expression of geometric sums

∑N
n λ

n = (λ − λN+1)/(1 − λ) for
λ 6= 1, one directly finds the convergence towards the projector PΦ [103].

Of course if Φ admits only one invariant state ρinv., we have PΦ(ρ) = ρinv. for any system
state ρ.

Let (ρ(n)) be a quantum trajectory as we defined in previous section. Hence it is a real-
ization of a system state evolution under an indirect measurement process. The evolution
depends on the measurement outcomes. In [69] the authors showed that almost surely

lim
n

1

n

n∑
k=1

ρ(k) = ρ(∞) (4.13)

with ρ(∞) one of the invariant states of Φ. Moreover the expectation of ρ(∞) is equal to the
projection of the initial state onto the set of invariant states.

E(ρ(∞)) = PΦ(ρ(0)). (4.14)

Hence even if we do not have a unique invariant state for Φ, the system state Cesàro mean
converges to an invariant state depending on the outcomes.

The two main elements of the demonstration are based on martingale convergence theorems
[80]. Let us write the system state evolution according to the Doob decomposition.

ρ(n) = ρ(0) +
n∑
k=1

Φ(ρ(k − 1))− ρ(k − 1) +
n∑
k=1

Mjkρ(k − 1)M∗jk
tr[M∗jkMjkρ(k − 1)]

− Φ(ρ(k − 1)). (4.15)
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4.2. Asymptotic behavior

The first sum over k is a predictable process and the second one is a martingale with respect

to the measurement outcomes. Let Mn =
∑n

k=1

Mjk
ρ(k−1)M∗jk

tr[M∗jk
Mjk

ρ(k−1)] − Φ(ρ(k − 1)),

E(Mn|j1, . . . , jn−1) =Mn−1. (4.16)

Since E((∆Mn)2|j1, j2, . . . , jn−1) is almost surely bounded, we have

∞∑
n=1

1

n2
E((∆Mn)2|j1, j2, . . . , jn−1) <∞ (4.17)

almost surely. Thus the law of large numbers for martingales apply and limnMn/n = 0
almost surely. Then, since ρ(n) and ρ(0) are bounded, we obtain

lim
n

1

n

n−1∑
k=0

Φ(ρ(k))− ρ(k) = 0 (4.18)

almost surely. Hence, the Cesàro mean of the predictable drift process converges to 0.
The other convergent martingale used corresponds to the evolution of the projected state

PΦ(ρ(n)). From the definition of PΦ applied to the Doob decomposition of ρ(n) we see that
no drift part remains in the evolution of PΦ(ρ(n)). Hence PΦ(ρ(n)) is a martingale. If there
is a unique invariant state then this martingale is trivially a constant. The system states are
bounded, so in any case, this martingale is bounded. Thus it converges almost surely. Since
the expectation of a martingale is conserved we have E(PΦ(ρ(n))) = PΦ(ρ(0)). The last step
of the proof consists in showing that limn

1
n

∑n
k=1 ρ(k)−PΦ(ρ(k)) = 0. We refer to the article

for this part.
As a corollary of this result we find a law of large numbers for the counting processes of

the measurement outcomes.
Let Nj(n) be the number of times j was obtained as an outcome up to time n. The Doob

decomposition of Nj(n) is

Nj(n) =
n∑
k=1

tr[M∗jMjρ(k)] +Nj(n)−
n∑
k=1

tr[M∗jMjρ(k)]. (4.19)

Nj(n) −
∑n

k=1 tr[M∗jMjρ(k)] is a martingale and as before the law of large numbers for

martingales apply. Thus limn
1
n(Nj(n)−

∑n
k=1 tr[M∗jMjρ(k)]) = 0. From the ergodic property

of ρ(n) we know that

lim
n

1

n

n∑
k=1

tr[M∗jMjρ(k)] = tr[M∗jMjρ(∞)] (4.20)

almost surely. It follows directly that

lim
n→∞

Nj(n)/n = tr[M∗jMjρ(∞)] (4.21)

almost surely. In the long time limit the frequencies of the outcomes correspond to the
frequencies expected when the system is in one of the invariant states of Φ. If there is a
unique invariant state the frequencies will correspond to it. We will use this property to prove
an exponential convergence of the system state in the case of non demolition measurements
in section 4.3.
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4. Repeated indirect measurements

4.2.2. State purification

One interesting property of quantum trajectories is that in general they preserve pure
states. Of course this is not true when the system is subject to an additional dissipation or
the probe state is a mixed one. In these cases the state might get mixed. But here we do not
take into account these possibilities.

If we look at our state update rule applied to a pure system state, the purity conservation
is obvious. Let the system pure state be |φ〉. After an indirect measurement it becomes

|φ′〉 =
Mj |φ〉
‖Mj |φ〉‖

with probability ‖Mj |φ〉‖2. (4.22)

Hence the state stays pure.

In [75] H. Maassen and B. Kümmerer proved that not only the purity is conserved, but
mixed states tend to purify along the trajectory. Of course this is not always true. If all the
Kraus operators are proportional to unitary operators (Mj =

√
λjUj), then the state after

the measurement is unitarily equivalent to the state before. So the eigenvalues of ρ′ are the
same as the ones of ρ. Hence pure states stay pure and mixed states stay mixed.

The result obtained in the cited article, is the following. Either a quantum trajectory
purifies with probability one, or it exists a, at least two dimensional, subspace ofHsys. on which
the action of any M∗jMj corresponds to a multiplication by a positive scalar: PM∗jMjP = λjP
with P the projection on the subspace. Equivalently, either ρ(n) purifies when n goes to
infinity with probability one or it exists a mixed state ρ such that for any j, it exists a
unitary operator Uj such that ρ′ = UjρU

∗
j .

The demonstration of [75] is based on an inequality obtained by M. Nielsen in [79]. For
any natural integer m,

∑
j

tr[M∗jMjρ]tr

[(
MjρMj

tr[M∗jMjρ]

)m]
≥ tr[ρm]. (4.23)

It follows that the processes (tr[ρ(n)m]) are submartingales. They are bounded and thus
converge almost surely. The value of tr[ρm] for m > 1 characterizes if ρ is pure or not. We
have tr[ρm] = 1 for m > 1 if and only if ρ is pure (i.e. is a rank one projector). So either
tr[ρ(n)m] converges almost surely to one and the state purifies, or there is a possibility it
converges to a value strictly smaller than one.

If the second possibility hold, the authors of [75] showed that with a non null probability
(ρ(n)) will be infinitely many times as close as we want from a mixed state ρacc.. This state
is such that for any j, either tr[M∗jMjρacc.] = 0 and we have PM∗jMjP = 0 with P the
projection on the support of ρacc.. Or tr[(ρ′acc.)

m] = tr[ρmacc.] for any m ≥ 0 which shows
unitary equivalence between ρ′acc. and ρacc.. This is actually equivalent to PM∗jMjP = λjP
with P the projector onto the support of ρacc.. Note that there is no reason for ρ′acc. to
be supported on PHsys.. Hence the action of the measurement on ρ′acc. is not necessarily
equivalent to a unitary one.

In next section we illustrate these result for a specific class of discrete quantum trajectories,
non demolition measurements. The system state evolution under non demolition measure-
ments is nevertheless not a direct consequence of the results we just presented.
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4.3. Non demolition indirect measurements and wave function collapse

4.3. Non demolition indirect measurements and wave function
collapse

In this section, we review results on discrete quantum trajectories obtain first in [21] by M.
Bauer and D. Bernard and then generalized in [20]. They, in part, correspond to discrete time
version of the results on wave function collapse for continuous time quantum trajectories [2,98].
In next chapter we will deal with these continuous time trajectories adding to the cited articles
results of [20,29].

This work was inspired by a photon number measurement experiment performed by S.
Haroche’s group [61]. In this experiment they were able to measure the number of photons
inside a super conducting cavity without destroying them. In most cases measuring photons
means converting them into an electric signal and therefore destroying them. In this exper-
iment, using a repeated quantum non demolition measurement strategy they were able to
obtain an electromagnetic field in a fixed photon number Fock state.

The idea of non demolition (QND) measurements was formulated in 1980 by V. B. Bra-
ginsky et al. [35]. Non demolition means that a set of states, the pointer states, are invariant
under the measurement procedure. If the system is in one of this pointer states, no future
measurement will get it out of it. In S. Haroche’s group experiment these states would
be the fixed photon number Fock states. Non demolition measurements can sometimes be
called weak measurements when they also aim at the smallest perturbation of the system by
the measurement. The down side being that only partial information is obtained with one
measurement.

In Serge Haroche’s group experiment, a sequence of two level atoms were sent through
the cavity. Their orientation was then measured along a varying axis. Hence it is a typical
quantum trajectory implementation. The interaction between the atoms and the photon
field was tuned such that the fixed photon number Fock states were invariant under the
measurement. After a large number of such indirect measurements, the photon field state was
found to be one of the fixed photon number Fock states. The distribution of the limit states
corresponded to what is expected by von Neumann projection postulate. Hence the indirect
measurement was equivalent to a direct projective measurement of the photon number. But
this time the photons where still inside the cavity and not destroyed by the measurement.

In this section we show why repeated QND measurements lead to a wave function collapse
following the von Neumann postulate.

The following results may look like a specific case of the previous ergodic and purification
results, but they concern actually specific situations where stronger results can be obtained.
We are here interested in the convergence of the state it self not of its Cesàro mean. This
is allowed by the introduction of the pointer states. Their definition is directly inspired by
the previously cited experiments. Certainly, the pointer probabilities martingales qα(n) =
〈α|ρ(n)α〉 we will introduce correspond to the diagonal elements of PΦ(ρ(n)) in the pointer
basis. But their introduction allows us to unravel a non degeneracy criteria which leads to
the wave function collapse. Finally the exponential convergence of the state we find is not
contained in previous results. Even if we use the ergodic theorem in one of the proofs.

The section is structured as follow. In the first subsection, we present a simpler version
of our results. We obtain the collapse through a martingale convergence theorem. We show
that the convergence is exponential with a rate given by a relative entropy between different
distributions of the measurement outcomes. This first part corresponds mainly to [21]. In the
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4. Repeated indirect measurements

second subsection we generalize these results to cases where the indirect measurement method
can be changed at anytime keeping the non demolition property. We link the wave function
collapse with a martingale change of measure. We show how the freedom in the choice of
probes allow us to tune the convergence rate. Finally, we analyze degenerate measurements
and compare non degeneracy criteria with the purification criteria we gave in previous section.

4.3.1. Introduction to non demolition measurements

The first and only requirement of non demolition measurement is the stability of the pointer
basis under the measurement process. It exists an orthonormal basis P of Hsys. such that for
any measurement outcome j and any vector |α〉 ∈ P,

ρ = |α〉〈α| ⇒
MjρM

∗
j

tr[M∗jMjρ]
= |α〉〈α|. (4.24)

This is the non demolition condition for P. Once we are in one of the pointer states we almost
surely stay in this pointer state as would be expected for a measurement process. It does
not modify the system state if it is already in one of the state we want to measure. The non
demolition condition is fulfilled if and only if all the Kraus operators Mj ’s are diagonal in the
basis P. Obviously it is fulfilled if the unitary interaction between the system and the probe,
U is bloc diagonal in the basis P.

non demolition for P
{
⇔Mj =

∑
αm(j|α)|α〉〈α|

⇐ U =
∑

α |α〉〈α| ⊗ U(α)
. (4.25)

With this condition any state diagonal in the pointer basis is stationary under the average
evolution. If ρ =

∑
α qα|α〉〈α|, Φ(ρ) =

∑
jMjρM

∗
j = ρ.

In the rest of this section we will not make a difference between the set of index of the
pointer states and the set of pointer states. We have an obvious bijection between the two
sets and the meaning of P is never ambiguous.

Wave function collapse

We turn to the evolution taking into account the measurement outcomes {j1, . . . , jn, . . .}.
The study of the diagonal elements of ρ(n) in P will lead us to almost all the results we
expect. We define qα(n) = 〈α|ρ(n)|α〉. These processes correspond to the evolution of the
probabilities to find the pointers α as the result of a direct measurement of P. If at time n we
stop our indirect measurement and perform a direct von Neumann measurement of P on the
system, we obtain α as a result with probability qα(n). These qn(α) are almost surely positive
and bounded by 1. Their sum is equal to 1. Hence (qα(n))α∈P is a probability distribution
over P.

Since the Kraus operators are all diagonal in P, the evolution (qα(n)) does not depend on
the off diagonal elements. qα(n) update rule knowing {j1, . . . , jn} is

qα(n+ 1) = qα(n)
p(j|α)∑

β∈P qn(β)p(j|β)
with probability

∑
β∈P

qn(β)p(j|β), (4.26)

where p(j|α) = |m(j|α)|2. This is a direct consequence of the definition of the process (ρ(n))
and the diagonal property of the Kraus operators. The update rule corresponds to a Bayesian
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4.3. Non demolition indirect measurements and wave function collapse

update. qα(n) is the initial distribution, p(j|α) is the probability of the outcome j knowing
the system is in the state α and

∑
β qβ(n)p(j|β) is the probability to obtain the outcome j

when the pointers are distributed by (qα(n)). Hence we are reduced to a classical random
variable convergence problem.

From the update rule we immediately find that the qα(n)’s are martingales. The expectation
of qα(n+ 1) knowing the first n outcomes {j1, . . . , jn} is equal to qα(n).

E(qα(n+ 1)|{j1, . . . , jn}) =
∑
j

qα(n)p(j|α) = qn(α). (4.27)

The probabilities of the pointers are conserved in mean. Using bounded martingale conver-
gence theorem [80], we immediately find that all the qα(n) converge almost surely when n
tends to infinity. We write qα(∞) this limit. Of course qα(∞) is a random variable. The char-
acterization of this random variable depends on the degeneracy status of our non demolition
measurement.

Assume that for two different pointers there is always one outcome which has a different
probability either if the system is in one or the other pointer state. Formally

∀α, β ∈ P, α 6= β,∃j s.t. p(j|α) 6= p(j|β). (4.28)

We call this condition the non degeneracy condition. In [21] M. Bauer and D. Bernard showed
that this non degeneracy condition implies that qα(∞) is a random variable which is either 0
or 1 almost surely. Moreover only one qα(∞) can be equal to 1 the others are 0. We call Υ
the pointer corresponding to qΥ(∞) = 1. It is a random variable on the set of pointer states.
The probability of Υ being equal to a specific pointer α is equal to the initial probability
qα(0) = 〈α|ρ(0)|α〉 of this pointer.

The proof is the following. From the expression of the update rule, it is shown in [20], that
(qα(∞))α∈P must be such that

qα(∞)qβ(∞)(p(j|α)− p(j|β)) = 0. (4.29)

for any j and any α and β. Hence, either qα(∞)qβ(∞) = 0 or p(j|α) = p(j|β). Since the latter
is false for at least one outcome, we have that qα(∞)qβ(∞) = 0 for any two different pointers.
Hence, only one limit pointer probability can be strictly positive. Since

∑
β qβ(∞) = 1, this

limit pointer probability must be 1. From the conservation of the expectation of martingales,
we have E(qα(∞)) = qα(0). Hence qα(∞) = 1 with probability qα(0).

The translation of this pointer distribution convergence to the convergence of the system
state is straightforward. We have ρ(·) = |α〉〈α| if and only if qα(·) = 1 with the dot equal to
any n or ∞. We can summarize the results obtained so far: If the non demolition and non
degeneracy conditions are fulfilled,

lim
n→∞

ρ(n) = |Υ〉〈Υ|, P(Υ = α) = qα(0). (4.30)

Hence in the limit, the system state is projected onto one of the pointer states with a proba-
bility corresponding to the von Neumann projection postulate applied to the initial state.

Exponential convergence

We end this subsection with the derivation of the exponential rate of convergence towards
the collapse. We will generalize our setup and give a better understanding of this exponential
convergence in next subsection.
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The following elements of proof are different than what was done in [20]. They correspond
more to [21]. Let us study the limit of ln(qα(n))/n. From now on we assume p(j|α) > 0 for
any outcome and any pointer to avoid infinities.

First off, we have an equivalence between the limit of ln(qα(n))/n and ln(qα(n)/qΥ(n))/n
since qΥ(n) converges almost surely to 1. Let us give an explicit expression of ln(qα(n)/qΥ(n))
that we deduce from the update rule of qα(n).

ln(qα(n)/qΥ(n)) = ln(qα(0)/qΥ(0)) +
∑
j

ln(p(j|α)/p(j|Υ))Nj(n) (4.31)

with Nj(n) the number of time the outcome j was obtained up to time n. In section 4.2.1
we saw that limnNj(n)/n = tr[M∗jMjρ(∞)] with ρ(∞) = limn

1
n

∑n
k=0 ρ(k). Of course here

ρ(∞) is known. We have ρ(∞) = |Υ〉〈Υ|. Thus limnNj(n)/n = p(j|Υ). We immediately
obtain

lim
n

ln(qα(n)/qΥ(n))/n = −S(Υ|α) (4.32)

with

S(Υ|α) =
∑
j

p(j|Υ) ln(p(j|Υ)/p(j|α)) (4.33)

the relative entropy of the distribution of the outcomes knowing the limit pointer with respect
to the same distribution knowing the pointer we are interested in. This relative entropy is
always strictly positive unless the two distributions are equal. Hence it is strictly positive
when the two pointers are different. But if α = Υ, S(Υ|α) = 0.

Going back to the probability of α,

qα(n) = e−nS(Υ|α)+o(n), α 6= Υ. (4.34)

Hence the system state converges exponentially to |Υ〉〈Υ| with a rate given by the relative
entropy S(Υ|α). Let Smin(γ) be the minimum of these rates when the limit state is γ:
Smin(γ) = minα6=γ S(γ|α). Then using Cauchy–Schwarz inequality for semi definite matrices,
almost surely,

‖ρ(n)− |Υ〉〈Υ|‖max = e−nSmin(Υ)/2+o(n). (4.35)

The norm ‖X‖max is equal to the maximum of the norm of the elements of X.

4.3.2. Non demolition measurement and martingale change of measure

Generalized non demolition measurements

In S. Haroche’s group experiments [61, 83], they tried to optimize the rate of convergence.
They used different axes for the atom measurements. They even tried to choose the probe
measurement with respect to previous measurement outcomes [83]. In this section we intro-
duce the possibility of such a change of indirect measurement method depending on the whole
history of the measurement. This subsection refers to results obtained in [20].

We assume we have a finite number of different methods of indirect measurements available.
A measurement method is a set of Kraus operators {Mo,j |j ∈ {j}} with o fixed. For any o we
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4.3. Non demolition indirect measurements and wave function collapse

have
∑

jM
∗
o,jMo,j = I. The index o correspond to the measurement method. The different

methods can differ either by the initial probe state, the system–probe interaction or the
measurement performed on the probe. In the case where the same measurement method is
used every time, o takes only one value and then can be forgotten. Each method of indirect
measurement is a well define indirect measurement on its own.

Since we can use any of the indirect measurement methods, they a priori all need to fulfill
the non demolition condition. Actually this time we are not sure we will be using all the
methods. So we have only an implication.

∀j, o,Mo,j =
∑
α∈P

m(j|o, α)|α〉〈α| ⇒ non demolition condition for P. (4.36)

Of course this is true if for all methods the system–probe interaction is bloc diagonal in the
basis P. From now on we assume this non demolition condition is fulfilled.

We need to implement the way we choose the measurement method at each time. Remem-
ber that the way we choose it can depend on the whole history of the measurement. Hence at
time n the measurement method is chosen with the distribution cn(o|o1, j1, . . . , on−1, jn−1).
Hence for any n ≥ 0, for any finite sequence (o1, j1, . . . , on−1, jn−1), for any o we have
cn(o|o1, j1, . . . , on−1, jn−1) ≥ 0 and

∑
o cn(o|o1, j1, . . . , on−1, jn−1) = 1. The distribution of

the measurement method can depend both on time and the history of the measurement.

The update rule for qα(n+ 1) knowing o1, j1, . . . , on, jn is now

qα(n+ 1) = qα(n)
p(j|o, α)∑

β qβ(n)p(j|o, β)
with probability cn+1(o| . . .)

∑
β

qβ(n)p(j|o, β) (4.37)

with p(j|o, α) = |m(j|o, α)|2. A straightforward computation confirms that qα(n) is still a
martingale. It is still bounded, thus as before it converges almost surely to qα(∞).

The non degeneracy condition is here a bit trickier that when we only used one method.
To find the most general one, let us step back a little. Let us define a family of probability
measure (Pα). Each measure is indexed by a pointer state. The measures Pα are probability
measures on the set of measurement realizations Ω = {o1, j1, . . . , on, jn, . . .}. Pα corresponds
to the probability measure if the system state was initially in the pointer state α. We have
an explicit expression for each of these measures.

Pα(o1, j1, . . . , on, jn) = c1(o1)p(j1|o1, α) . . . , cn(on|o1, j1, . . . , on−1, jn−1)p(jn|on, α). (4.38)

The probability measure when the initial system state is general is simply a weighted sum of
these measures.

P =
∑
α

qα(0)Pα (4.39)

Thus we have absolute continuity of all the Pα such that qα(0) 6= 0 with respect to P:
P(A) = 0⇒ Pα(A) = 0.

As shown in [20], qα(∞)/qα(0) is actually the Radon-Nikodym derivative of Pα with respect
to P. Hence for any integrable random variable X,

qα(0)Eα(X) = E(qα(∞)X). (4.40)
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This definition of qα(∞) allows us to find an equivalence between the wave function collapse
and the mutual singularity of the measures Pα.

The mutual singularity of the measures means it exists a partition {Ωα}α∈P of our mea-
surement realization space Ω such that Pβ(Ωα) = δα,β with δ the Kronecker delta.

Let us illustrate this property with the case where only one method is used. We can define
parts of Ω: Ωα = {ω ∈ Ω s.t. limnNj(n)/n = p(j|α)}. The part corresponding to α is
the set of all realizations whose outcome frequencies are p(j|α). Let Ω̃ be the part of Ω
not covered by the union of these Ωα: Ω̃ = Ω \ ∪αΩα. Let us redefine Ω0 as Ω0 = {ω ∈
Ω s.t. limnNj(n)/n = p(j|0)} ∪ Ω̃. Let us assume the measurement is non degenerate, then
∪αΩα = Ω and Ωα ∩ Ωβ = ∅ for α 6= β, so Pβ(Ωα) = δα,β. We have explicitly build a
partition of Ω such that Pα(Ωβ) = δα,β. Hence the measures Pα are all mutually singular.
This construction is possible if and only if the measurement is non degenerate. If not there
is at least two different pointers corresponding to a same Ω part.

In general we have the following equivalence

Pα’s are mutually singular⇔ It exists a partition (Ωα) of Ω s.t. qα(∞) = 1Ωα (4.41)

where 1Ωα(ω) is equal to 1 if ω ∈ Ωα and to 0 otherwise. Hence either qα(∞) = 0 or 1. But
only one qα(∞) can be equal to 1 for each realization. We note Υ the corresponding pointer.
Since qΥ(·) = 1 imply ρ(·) = |Υ〉〈Υ|, we have ρ(∞) = |Υ〉〈Υ|. We can write explicitly

ρ(∞)(ω) = |Υ(ω)〉〈Υ(ω)| =
∑
α

|α〉〈α|1Ωα(ω). (4.42)

From the martingale property of qα(n) we also have P(α = Υ) = E(1Ωα) = qα(0).
As before we have an almost sure collapse of the wave function onto one of the pointer with

a distribution of the limit pointer given by the von Neumann postulate applied to the initial
state.

Let us give the equivalence proof. Assume the Pα are all mutually singular. Then it exists
a partition (Ωα) of Ω such that Pα(Ωβ) = δα,β. Since qβ(∞)/qβ(0) is the Radon-Nikodym
derivative of Pβ with respect to P, we have E(qβ(∞)1Ωα) = qβ(0)Eβ(1Ωα) = qβ(0)δα,β. More-
over qβ(∞)1Ωα ≥ 0 so, qβ(∞)1Ωα = qβ(∞)δα,β almost surely. Then summing over β on both
sides, we obtain qα(∞) = 1Ωα . For the converse, assume it exists a partition (Ωα) of Ω such
that qα(∞) = 1Ωα . Then qα(0)Eα(1Ωβ ) = qα(0)Pα(Ωβ) = E(1Ωα1Ωβ ) = E(qα(∞))δα,β. Since
E(qα(∞)) = qα(0), we obtain Pα(Ωβ) = δα,β.

A general condition to assure mutual singularity is given in [20]. Essentially, the experi-
menter must, for any two different pointers, use infinitely many times a method which ful-
fill the previous non demolition condition for these two pointers. For example if 4 point-
ers are involved, if the experimenter use alternatively every time two methods such that
p(j|0, 0) = p(j|0, 2) for any j and p(0|0, 1) 6= p(0|0, 3) for the first and p(0|1, 0) 6= p(0|1, 2) and
p(j|1, 1) = p(j|1, 3) for any j, for the second, the state will collapse even if the first method
does not fulfill non demolition condition for 0 and 2 and the second method does not for 1
and 3.

We can also apply this condition of mutual singularity to direct projective measurements.
The probability space is, in this case, the set of eigenvalues of an observable, hence P di-
rectly. The pointers are the corresponding eigenvectors. Each part of the probability space
corresponds to the singlet Ωα = {α} and the measure with respect to the pointers are
Pα({β}) = δα,β. There is no actual martingale since the measurement process is assumed
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4.3. Non demolition indirect measurements and wave function collapse

instantaneous. We only have the Radon-Nikodym derivatives of Pα with respect to P which
are 1{α}/qα(0). We only have a two step process for the probabilities of the pointers. Before
the measurement qα(0) and after it qα(after) = 1{α}.

Estimated state stability

From this mutual singularity condition, we can see that we only need the measurement
outcomes to know in which state the system collapse. We do not need to compute the
updated state. Each realization belong only in one of the parts Ωα and since we have a
bijection between these parts and the pointer states, the realization will correspond to one
and only one part and thus to one and only one limit pointer state. Thus when we use only
one method, looking only at the limit of the outcome frequencies Nj(n)/n is sufficient to know
the limit pointer.

With no surprise we can thus show that if we start the computation of the state evolution
with a estimated state which is not the physical initial state we will nevertheless find the right
pointer state on which the system has collapsed. Assume we start with an estimated state
ρ̂(0) such that q̂α(0) > 0 whenever qα(0) > 0. For example ρ̂(0) = I/ dim(Hsys.) is a good
estimate. We update this state using the same formula as for the physical state. Knowing
the n first methods and outcomes,

q̂α(n+ 1) = q̂α(n)
p(j|o, α)∑

β q̂β(n)p(j|o, β)
. (4.43)

The distribution of the method and outcome is still the physical one. For example, the
probability to have jn+1 = j knowing all measurement results up to time n and all method
choices up to time n+ 1 is

∑
β qβ(n)p(j|on+1, α). Hence q̂α(n) is not a martingale under the

measure P so its convergence is not guarantied.

Instead we can define a new probability measure, an estimated probability measure P̂ =∑
β q̂β(0)Pβ. It is the measure as if the estimated state was the physical state. Under this

measure q̂α(n) is a martingale. Repeating our previous discussion we have q̂α(∞) = 1Ωα P̂
almost surely. But we want an almost sure collapse under P, the physical measure not under
P̂. Conveniently, the definition of our estimated state guaranties we have absolute continuity
of P with respect to P̂, hence P̂(A) = 1 ⇒ P(A) = 1. So P̂ almost sure convergence implies
P almost sure convergence. Since the definition of the sets Ωα depends only on the measures
Pα, we have

lim
n
q̂α(n) = lim

n
qα(n) = 1Ωα (4.44)

P almost surely. Hence

lim
n
ρ̂(n) = lim

n
ρ(n) = |Υ〉〈Υ| (4.45)

P almost surely.

Exponential rate improvement

Another interesting property is that imposing the limit pointer state of the system is equiv-
alent to project initially the system in this pointer state. Formally we have for any measurable
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subset A of Ω,

P(A|Υ = α) = Pα(A). (4.46)

This follows directly from the expression of P and the conditional probability and from the
mutual singularity of the Pα’s. It allows us to study any process under the law conditioned
on the limit state and then go back to the law P. We use this to compute the convergence
rate of the system state.

We cannot use an ergodic argument as before since the result does not hold a priori when
we change the method at each time. Instead we will use the usual law of large numbers under
each measure Pα.

Assume the way we chose the measurement method only depends on the preceding method
used and measurement outcome obtained. Especially it does not depend on time. We have

cn+1(o|o1, j1, . . . , on, jn) = c(o|on, jn). (4.47)

Under each measure Pα, the process corresponding to the couple measurement method and
outcome, ((on, jn))n∈N is a Markov chain with kernel

Kα(o′, j′|o, j) = p(j|o, α)c(o|o′, j′). (4.48)

Note that ((on, jn)) is not a Markov chain under P since the distribution of (on+1, jn+1)
depends not only on (on, jn) but also on (qn(α)). The expression of the kernel invites us to
define a reduced kernel only for the measurement method process.

Kred
α (o′|o) =

∑
j′

p(j′|o′, α)c(o|o′, j′). (4.49)

If the Markov chain corresponding to this kernel is irreducible and a periodic, it admits only
one invariant distribution of the methods µredα (o). It follows that Kα(o′, j′|o, j) has also a
unique invariant distribution which is

µα(o, j) = µredα (o)p(j|o, α). (4.50)

Hence the law of large numbers for Markov chains implies

lim
n
No,j(n)/n = µredα (o)p(j|o, α), Pα almost surely, (4.51)

with Nj,o(n) the number of time o was used and j obtained as an outcome up to time n.
Since under Pα, Υ = α almost surely, or equivalently Υ = α on Ωα, we can replace α by Υ in
the limit. Hence for any pointer α,

lim
n
No,j(n)/n = µredΥ (o)p(j|o,Υ), Pα almost surely. (4.52)

Since P =
∑

α qα(o)pα and
∑

α qα(0) = 1 we immediately conclude

lim
n
No,j(n)/n = µredΥ (o)p(j|o,Υ), P almost surely. (4.53)

Hence we have a law of large numbers were the limit frequencies of the methods and outcomes
depend on the limit pointer state as in the one method case.
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4.3. Non demolition indirect measurements and wave function collapse

Following the same path as before we obtain again an exponential convergence rate for
qα(n).

qα(n) = e−nS(Υ|α)+o(n). (4.54)

The new rate corresponds to a mean of the one method rates corresponding to each method
used. The distribution of the methods is given by the invariant distribution of the reduced
chain Kred

Υ .

S(Υ|α) =
∑
o

µΥ(o)So(Υ|α), (4.55)

So(Υ|α) =
∑
j

p(j|o,Υ) ln(p(j|o,Υ)/p(j|o, α)). (4.56)

This freedom in the rate of convergence introduced by the choice of measurement method
allows for some tuning of the convergence rate. For instance, the mean convergence rate
will always be greater or equal to the minimum of the convergence rate corresponding to the
different methods taken alone. Let Smin(γ) = minα 6=γ S(γ|α) and Smin,o(γ) = minα 6=γ So(γ|α).
We have

Smin(γ) ≥ min
o
Smin,o(γ). (4.57)

Let us give an example of such rate improvement. A four dimensional system is subject to a
non degenerate, non demolition measurement. The pointers are indexed 0 to 3. At each step
we choose independently with an equiprobability between two measurement methods a and
b. They both have two possible outcomes 0 or 1. It is typically the setup of Serge Haroche’s
group experiment where they used 4 methods with two possible outcomes. The distribution
of the outcomes given the pointers are

p(j|o, α) pointers
outcomes 0 1 2 3

method a
0 3/4 1/3 2/3 1/4
1 1/4 2/3 1/3 3/4

method b
0 1/3 1/4 2/3 3/4
1 2/3 3/4 1/3 1/4

and c(a) = c(b) = 1/2.

We compute Smin,a(γ), Smin,b(γ) and Smin(γ):

γ 0 1 2 3

Smin,a(γ) 0.016 0.017 0.016 0.017
Smin,b(γ) 0.017 0.017 0.016 0.017

Smin(γ) 0.12 0.12 0.12 0.28

The minimal mean rate is almost always ten times greater than each of the minimal rates
corresponding to the two methods. From this data we are tempted to say that the state will
take almost 10 times less time to converge. We can make this statement more accurate by
studying mean convergence times.
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4. Repeated indirect measurements

Let us define a stopping time for the first time we have a much greater probability to end
up in the state Υ instead of the state α:

τ(α|Υ) = inf{n ≥ 0 such that qα(n)/qΥ(n) ≤ ε}. (4.58)

At time τ(α|Υ), the probability to project onto α is at most equal to ε times the probability
to project onto Υ. Hence, if ε is small enough, we have a much greater chance to project
onto Υ than onto α. Thus we call this stopping time a convergence time. It is the first time
the probability to project onto α will be negligible. The notation τ is sometimes used as a
shorthand for τ(α|Υ).

When we choose the methods independently with the same distribution at each time (i.e.
cn(o| . . .) = c(o)), we can compute the mean of this convergence time conditioned on the
limit pointer state through Wald’s identity. Under the law conditioned on the limit pointer
state, the methods and measurement outcomes are i.i.d. random variables with PΥ((on, jn) =
(o, j)) = c(o)p(j|o,Υ). In this context ln(qα(n)/qΥ(n)) is a sum of i.i.d. random variables.

ln(qα(n)/qΥ(n)) = ln(qα(0)/qΥ(0)) +

n∑
k=1

ln(p(jk|ok, α)/p(jk|ok,Υ)). (4.59)

Using Markov’s inequality we show the expectation of τ under PΥ is finite 2. Thus we can
use Wald’s equation. It gives us

EΥ(τ) =
ln(qα(0)/qΥ(0))− EΥ(ln(qα(τ)/qΥ(τ)))

S(Υ|α)
. (4.60)

Of course this is well defined only when α 6= Υ. When α = Υ we set it formally to ∞ since
we have qα(n)/qΥ(n) = 1 at any time.

This result may appear unnatural at first sight. Usually using Doob’s optional stopping
theorem, one can show that since EΥ(τ) < ∞, EΥ(qα(τ)/qΥ(τ)) = qα(0)/qΥ(0). In our
situation the almost sure upper bound ε on qα(τ)/qΥ(τ) contradicts this last equality. But it
is not the condition E(τ) <∞ that fails. It is the condition that it exists a C > 0 such that

EΥ

(∣∣∣ qα(n+1)
qΥ(n+1) −

qα(n)
qΥ(n)

∣∣∣ ∣∣∣ j1, . . . , jn) < C on the event n < τ . For n < τ , qα(n)
qΥ(n) is finite but can

be as large as possible.

Let ∆minl(α|γ) = minj ln
[
p(j|α)
p(j|γ)

]
> −∞. It is the minimal (negative) increment of

ln(qα(n)/qΥ(n)) possible. Hence ln(qα(n)/qΥ(n)) − ln(qα(n − 1)/qΥ(n − 1)) ≥ ∆minl(α|γ)
almost surely for any time n. Since ln(qα(τ − 1)/qΥ(τ − 1)) > ε, we have the following almost
sure bounds ln(ε) + ∆minl(α|Υ) ≤ ln(qα(τ)/qΥ(τ)) ≤ ln(ε). We obtain

ln(qΥ(0)/qα(0))− ln(ε)

S(Υ|α)
≤ EΥ(τ(α|Υ)) ≤ ln(qΥ(0)/qα(0))− ln(ε)−∆minl(α|γ)

S(Υ|α)
. (4.61)

The introduction of ∆minl(α|γ) allows us to deal with cases where ln(qα(τ)/qΥ(τ)) overshoots
ln(ε). Then the maximal value of the overshoot is ∆minl(α|Υ).

We see that the greater the convergence rate is, the shorter the mean convergence time
is. The simulations of figure 4.2 using our previous example show this influence. When the
convergence rate increases we expect that the convergence will happen sooner.

2. See proof in Appendix A.1.
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4.3. Non demolition indirect measurements and wave function collapse

Figure 4.2.: Simulations of the pointer probability evolution for one realization of the exam-
ple in the text. On the left (a) only the measurement method a is used. On
the right (b) both methods are used. They are picked up at each time indepen-
dently with equiprobability. The colored curves correspond to different pointers
(red=0,blue=1,green=2,yellow=3). The black line in both graphs corresponds to
the maximum over α of the mean convergence time lower bound corresponding
to the limit pointer of the realization: maxα 6=3 E3(τ(α|3)), when ε = 0.01. It cor-
responds to the first time 3 has at least 100 more chance to be the limit pointer
than any other pointer. We explicitly see that we can expect a larger number of
realizations leading to an earlier collapse when using two measurement methods.
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4. Repeated indirect measurements

Actually, in next section we will see that the rate and the mean time of convergence
correspond, in an other context, to two different characterizations of the convergence. While
the mean convergence time indicates when we can expect the state to converge, the rate
corresponds to how sharply, or how fast, it will converge once it starts converging. This is
enlightening when looking at the graphs of figure 4.2. In the QND case the two improvements
of the measurement seem to happen together when the rate increase. We have both a sharper
and an earlier convergence.

To conclude our discussion on the convergence rate, let us recall that since we have an
exponential convergence for the pointer probabilities, we have an exponential convergence for
the state

‖ρ(n)− |Υ〉〈Υ|‖max = e−nSmin(Υ)/2+o(n). (4.62)

4.3.3. A note on degenerate measurements

Up to now we assumed the non demolition measurement was non degenerate. Of course
measurements are not always non degenerate and several pointers might share the same value
for the physical quantity we are interested in. In this subsection we discuss the possibility of
degenerate non demolition measurements when only one measurement method is used. The
generalization to different methods is straight forward and does not lead to radically different
results.

Let us recall that the almost sure convergence of qα(n) does not depend on the degeneracy
status of the measurement. The degeneracy will only change the limit value qα(∞) which
may no longer be 0 or 1.

In order to have degeneracy we need two different pointers such that p(j|α) = p(j|β) for
any outcome j. We define sectors which are sets of pointers sharing the same conditional
outcome distribution. The sector in which α belong is denoted Pα. We have an equivalence
relation between the pointers of a same sector.

α ≡ β ⇐⇒ ∀j, p(j|β) = p(j|α) ⇐⇒ β ∈ Pα. (4.63)

Pα is the equivalence class of α. We can define the probabilities of theses sectors.

qPα(n) =
∑
β∈Pα

qβ(n). (4.64)

The update rule for qPα(n) is actually the same as for qα(n).

qPα(n+ 1) = qPα(n)
p(j|α)∑

Pβ qPβ (n)p(j|β)
with probability

∑
Pβ

qPβ (n)p(j|β). (4.65)

Between the sectors, the non degeneracy criteria is fulfilled. For two different sectors Pα,
Pβ, it exists a j such that p(j|α) 6= p(j|β). If it was not the case, we would have Pα = Pβ.
Therefore we have almost surely

lim
n
qPα(n) = 1α∈PΥ

(4.66)

with PΥ one of the sectors. As before the probability for the limit sector to be Pα is qPα(0).
Hence we recover, in the long time limit, the same behavior as for an initial degenerate
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4.4. Invariant subspace stabilization

von Neumann projective measurement. This is true at least for the probabilities of the
sectors. But as showed in [20], it is also true for the probabilities of the pointers. We have
qα(∞) = qα(0)/qPα(0) if Pα = PΥ and qα(∞) = 0 else.

The convergence of the state is on the contrary not always obtained. We are in a typical
situation where the state will not purify in the long time limit. Let us decompose the eigen-
values of the Mj ’s in their modulus and argument: m(j|α) = eiθ(j|α)

√
p(j|α). The Kraus

operators Mj can be written as a weighted sum of unitaries.

Uj(α) =
∑
β∈Pα

eiθ(j|β)|β〉〈β| (4.67)

Mj =
∑
Pα

√
p(j|α)Uj(α). (4.68)

We recover here the action of the measurement as equivalent to a unitary action when the
system state is supported on a subspace of the system Hilbert space. If qβ(n) = 0 for any
β 6∈ Pα, then ρ(n+ 1) = Ujn+1(α)ρ(n)Ujn+1(α)∗.

Let us define a unitary operator process

U ′(n) =
∑
β

ei
∑n
k=1 θ(jk|β)|β〉〈β|. (4.69)

The limit of the system state is obtained when the rotation induced by this unitary evolution
U ′(n) is compensated. This is necessary since, contrary to the projective measurement, the
measurement is not instantaneous.

lim
n
U ′(n)∗ρ(n)U ′(n) = ρ(∞). (4.70)

The limit state is the initial state projected on the system Hilbert space subspace correspond-
ing to the limit sector. Let Pα =

∑
β∈Pα |β〉〈β|.

ρ(∞) =
PΥρ(0)PΥ

tr[PΥρ(0)]
. (4.71)

Of course this limit state can be a mixed state. That contradicts the almost sure purification
as expected.

For the estimated state we also have a convergence towards the same sector. But the limit
state is the estimated initial one projected onto the limit sector.

lim
n
U ′(n)∗ρ̂(n)U ′(n) =

PΥρ̂(0)PΥ

tr[PΥρ̂(0)]
(4.72)

almost surely.

4.4. Invariant subspace stabilization

One of the current aim of quantum optics experiments is not to measure a set of pointer
state but the preparation of specific pure system states, a Bell state for example. Maybe
the most common technique used for state preparation is feedback control. The system state
is continuously, or repeatedly indirectly measured and given the result a feedback action
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is performed on the system, driving it to the desired state [102]. Serge Haroche’s group
experiment [89] is a good example of such a setup in the discrete time case. In the late nineties
and early two thousands the idea of engineering the coupling of the system to its environment
such that it is autonomously driven to the desired state emerged [41, 47, 71, 87, 88, 99]. This
reservoir engineering can also be implemented by specific types of feedback. It is the case
for example of the Markovian feedback unitary control models [74, 95]. The feedback is
minimal since only the last measurement result is used to determine the feedback action. Some
experiments have already implemented this idea of reservoir engineering [19,68,72,77,90].

In this section we study discrete time quantum trajectories driving the system state toward
an invariant subspace of the system Hilbert space. In the case where this subspace is one
dimensional, it corresponds to a pure state preparation. If the evolution given the state is
supported on the subspace is unitary then the limit subspace is a decoherence free subspace.

This section presents preliminary results of an article in preparation in collaboration with
B. Cloez, C. Pellegrini and F. Ticozzi. This work was inspired by [94].

First we define precisely what we mean by invariant subspace and “driven towards”. Then
we recall the results of [33] on the invariance and global asymptotic convergence of the system
state when the evolution is given by the repeated action of a CP map corresponding to the
average evolution of an indirect measurement procedure. From these results we show that the
convergence still holds when the measurements are taken into account. Moreover, recording
the measurement results leads to a greater exponential convergence rate compared to the one
obtained for the average evolution. Hence the convergence towards the invariant subspace is
characterized by two time scales. We conclude with a discussion about these time scales.

4.4.1. Invariant and globally asymptotically stable subspaces

Recall that Hsys. is our finite dimensional system Hilbert space. We define an orthogonal
decomposition of Hsys.. We define HS and HR two Hilbert spaces such that Hsys. = HS⊕HR
is an orthogonal decomposition of Hsys.. HS is the Hilbert space towards which we want the
state to converge. We can decompose any linear operator X on Hsys. in four blocs:

X =

(
XS XP

XQ XR

)
(4.73)

XS is a linear operator on HS , XR a linear operator on HR, XP a linear operator from HR
to HS and XQ a linear operator from HS to HR.

Let IS(Hsys.) be the set of states such that ρR = 0, so ρP = 0 too.

ρ ∈ IS(Hsys.) ⇐⇒ ρ =

(
ρS 0
0 0

)
. (4.74)

Let also IR(Hsys.) be the set of states such that ρS = 0, so ρP = 0 too.

ρ ∈ IR(Hsys.) ⇐⇒ ρ =

(
0 0
0 ρR

)
. (4.75)

We say that HS is an almost surely invariant subspace of the indirect measurement process
if almost surely,

ρ(0) =

(
ρS(0) 0

0 0

)
implies ρ(n) =

(
ρS(n) 0

0 0

)
(4.76)
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for any time n > 0. Hence, if we started with a state in IS(Hsys.), the state will stay in
IS(Hsys.).

For example, take a Hsys. = C2 system. We define HS = linspan({|0〉}) and HR =
linspan({|1〉}). HS almost surely invariant means that if our initial state is the ground state,
then with probability one, at any later time the system state is the ground state.

Equivalently we say HS is an invariant subspace in mean if the average system state stays
in IS(Hsys.) for any time n > 0. In other words:

ρ(0) =

(
ρS(0) 0

0 0

)
implies E(ρ(n)) =

(
E(ρS(n)) 0

0 0

)
(4.77)

for anytime n > 0. We will see later that the almost sure invariance and invariance in mean
are in fact equivalent.

We say that HS is an almost surely globally asymptotically stable (GAS) subspace if with
probability one, for any initial system state ρ(0),

lim
n→∞

∥∥∥∥ρ(n)−
(
ρS(n) 0

0 0

)∥∥∥∥ = 0. (4.78)

Hence, in the long time limit the system state is in IS(Hsys.). In our C2 example it means
that for any initial state, the system converges with probability one towards its ground state.

As before we also say that HS is GAS in mean if the convergence property is fulfilled by
the state average evolution whatever is the initial state ρ(0):

lim
n→∞

∥∥∥∥E(ρ(n))−
(

E(ρS(n)) 0
0 0

)∥∥∥∥ = 0. (4.79)

If HS is simply a one dimensional space corresponding to an entangled state, we just define
the invariance of this state with probability one or in mean and the convergence towards this
state with probability one or in mean.

The question we might ask is whether the conditions are the same if we want these properties
in mean or almost surely. In next subsection we show that they are effectively the same.

4.4.2. Invariance and asymptotic stability in mean

In [33] necessary and sufficient conditions were found such that a subspace HS is invariant
and GAS in mean when the system undergoes repeated indirect measurements. Here we recall
the results we are interested in that can be found in this article.

Let us recall that the mean evolution of the state is given by the repeated action of a trace
preserving CP map. Let us write ρ(n) = E(ρ(n)). For any time n we have

ρ(n+ 1) = Φ(ρ(n)) with Φ(ρ) =
∑
j

MjρM
∗
j ,
∑
j

M∗jMj = I. (4.80)

Invariance

A simple computation of Φ(ρ) leads to the equivalence

HS is invariant in mean if and only if Mj,Q = 0 ∀j. (4.81)

79



4. Repeated indirect measurements

Hence Mj =

(
Mj,S Mj,P

0 Mj,R

)
. If moreover we consider the trace preserving condition∑

jM
∗
jMj = I, we have

∑
jM

∗
j,PMj,S = 0,

∑
jM

∗
j,SMj,S = IHS and

∑
jM

∗
j,PMj,P +

M∗j,RMj,R = IHR . As we could have expected, HS is invariant in mean if and only if no
transition form states of HS to states of HR is induced by the measurement process. This is
actually a well known condition in the study of reducible CP maps.

Using this decomposition we can define two new CP maps which will be useful afterwards.
First ΦS(ρS) =

∑
jMj,SρSM

∗
j,S is a trace preserving CP map on the states of HS , S(HS). If

ρ is in IS(H), we have

Φ(ρ) =

(
ΦS(ρS) 0

0 0

)
(4.82)

with tr[ΦS(ρS)] = tr[ρS ] = 1. Hence ΦS corresponds to the effective evolution when ρ is in
IS(Hsys.).

Then we define ΦR(ρR) =
∑

jMj,RρRM
∗
j,R. Since

∑
jM

∗
j,PMj,P + M∗j,RMj,R = IHR ,

tr[ΦR(ρR)] = tr[ρR] − tr[
∑

jM
∗
j,PMj,PρR] ≤ tr[ρR]. Hence ΦR is trace non increasing. It

corresponds to the evolution of the R bloc of the system state. We have

Φ(ρ) =

(
? ?
? ΦR(ρR)

)
(4.83)

with tr[ΦR(ρR)] ≤ tr[ρR]. The next state R bloc only depends on the previous one and not
on the other blocs of the state. This property is in fact a manifestation of the invariance in
mean of HR under the dual map Φ∗. Let X be a linear operator on Hsys. such that XS = 0,
XP = 0 and XQ = 0, then

Φ∗(X) = Φ∗
((

0 0
0 XR

))
=

(
0 0
0 Φ∗R(XR)

)
. (4.84)

Asymptotic stability

Let us now turn to the conditions under which HS is GAS in mean. Hence when the
mean effect of the measurement is to drive the state into IS(Hsys.). It is obvious that HS is
GAS when ΦR is strictly trace decreasing. Let λ0 be the largest eigenvalue of

∑
jM

∗
j,RMj,R.

Since HR is finite dimensional and ΦR is strictly trace decreasing, we have λ0 < 1 and
tr[ΦR(ρR)] ≤ λ0tr[ρR] for any ρR. Thus tr[ρR(n)] ≤ λn0 tr[ρR(0)] and tr[ρR(n)] converges to
0 when n tends to infinity. Thanks to Cauchy–Schwarz inequality on positive semi definite
matrices it implies ρ(n) converges to the subset IS(Hsys.) in the long time limit. Moreover
we can characterize the convergence as exponential with a rate

√
λ0 for the ρP (n) bloc and

λ0 for the ρR(n) bloc.

Actually it is not the only case where HS is GAS. In [33] the authors proved using La Salle’s
invariance principle that HS is GAS if and only if there is no invariant subspace included in
the kernel of

∑
jM

∗
j,PMj,P . If such a subspace existed the system could be stuck in it.

Let us make this necessary and sufficient condition more explicit. Let HR0 be a subspace of∑
jM

∗
j,PMj,P kernel. We writeHR1 its orthogonal complement inHR. We can decompose the

operators Mj,R and Mj,P with respect to the direct sum decomposition H = HS⊕HR1⊕HR0 .
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4.4. Invariant subspace stabilization

We have

Mj,R =

(
Mj,R1 Mj,R10

Mj,R01 Mj,R0

)
(4.85)

Mj,P =
(
Mj,P1 0

)
. (4.86)

Then HS is invariant if and only if we cannot find any HR0 such that ∀j, Mj,R10 = 0.
This criteria is interesting since we can know if HS is GAS directly from the shape of the

Kraus operators Mj . But the exponential convergence can be a bit trickier to find since we
can have tr[

∑
jM

∗
j,RMj,RρR] = 1. May be the most simple example of such situation is when

we have a C3 system with two measurement outcomes j = 0, 1 such that

M0 =

 0 1 0
0 0 1
0 0 0

 ,M1 =

 1 0 0
0 0 0
0 0 0

 . (4.87)

In the long time limit the state will be ρ(∞) =

 1 0 0
0 0 0
0 0 0

. If ρR =

(
0 0
0 1

)
, then

tr[ΦR(ρR)] = tr[ρR] = 1. Actually in this example we have Φ2(ρ(0)) = ρ(∞) but it never-
theless shows that our previous approach cannot be generalized. We will come back on this
issue later.

4.4.3. Almost sure invariance and asymptotic stability

Let us now turn to the equivalence between the almost sure and in mean invariance and
asymptotic stability. We show that the invariance and GAS of HS do not depend on the
tracking of the outcomes.

Let PS and PR be the projectors onto respectively HS and HR.

PS =

(
IS 0
0 0

)
, PR =

(
0 0
0 IR

)
. (4.88)

First remark that ρ ∈ IS(Hsys.) is equivalent to tr[PRρ] = 0 or tr[PSρ] = 1. We define
V (ρ) = tr[ρPR].

ρ ∈ IS(Hsys.) ⇐⇒ V (ρ) = 0. (4.89)

The function V is strictly positive outside of IS(Hsys.) and null on IS(Hsys.). Thus V is a
good Lyapunov candidate function for our convergence problem. Since V (Φ(ρ))− V (ρ) ≤ 0,
it is a good Lyapunov function for the mean evolution.

Invariance

Suppose HS is invariant in mean. From the result of the previous subsection we have that if
initially the state is in IS(Hsys.), then ρ(n) is in this same set of states. Hence if V (ρ(0)) = 0,
we have for any time n ≥ 0, V (ρ(n)) = 0. Since Hsys. is finite dimensional and V linear, for
any time n E(V (ρ(n))) = 0. Moreover we have V (ρ) ≥ 0 for any state, thus if ρ(0) ∈ IS(H),
almost surely for any time n V (ρ(n)) = 0. Hence ρ(n) ∈ IS(H) almost surely which proves
the almost sure invariance of HS . The converse implication is trivial.

HS invariant in mean⇔ HS almost surely invariant. (4.90)
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4. Repeated indirect measurements

Global asymptotic stability

We now discuss the global asymptotic stability of HS . We first show the GAS of HS in L1

norm and then turn to the almost sure GAS.

Suppose HS is GAS in mean. Then limn→∞ V (ρ(n)) = 0. Once again we equivalently have
limn→∞ E(V (ρ(n))) = 0. Since V (ρ) ≥ 0 we immediately have the L1 norm convergence of
V (ρ(n)) towards 0.

For the almost sure convergence we use the supermartingale convergence theorem [80].
We have E(V (ρ(n + 1))|j1, . . . , jn) = tr[ΦR(ρR(n))]. Recall that ΦR is trace non increas-
ing, hence tr[ΦR(ρR(n))] ≤ V (ρR(n)) and (V (ρ(n)))n∈N is a supermartingale. Moreover
V (ρ(n)) is bounded, so from the supermartingale convergence theorem, we have that V∞ =
limn→∞ V (ρ(n)) exists almost surely. Since V (ρ(n)) converges in L1 to zero, using the exis-
tence of an almost sure convergent sub sequence and the uniqueness of the limit, we obtain
V∞ = 0. Hence HS is almost surely GAS. Using dominated convergence, the converse is once
again trivial and we finally have.

HS GAS in mean ⇔ HS almost surely GAS. (4.91)

From this equivalence between the properties in mean and almost surely one could think
that taking into account the measurement outcomes instead of averaging them would not
change much the behavior of the system state. But as we will see in next section, taking into
account the measurement outcome recording can lead to a peculiar evolution.

4.4.4. Exponential convergence

Mean rate

We can prove that the mean convergence is exponential with a rate corresponding to the
spectral radius of ΦR. To show this, we need to modify our Lyapunov candidate function.
One can remark that any function VK(ρ) = tr[Kρ] with K a positive semi definite operator
with HR as its support is suitable (HS is its kernel). We have

ρ ∈ IS(H) ⇐⇒ VK(ρ) = 0. (4.92)

For simplicity we write K either for the positive semi definite operator on Hsys. or the positive
definite operator on HR. Let λ0 be ΦR spectral radius. Our idea is to find K such that
VK(Φ(ρ)) ≤ λ0VK(ρ).

If ΦR is irreducible the existence of such K follows directly from Perron–Frobenius theorem
for irreducible positive maps [54]. If ΦR is irreducible, it exists a unique definite positive K
such that Φ∗R(K) = λ0K. Hence VK(ΦR(ρ)) = λ0VK(ρ).

If ΦR is reducible it exists a positive semi definite operator K ′ on HR such that Φ∗R(K ′) =
λ0K

′ but K ′ can have a non trivial kernel on HR. So VK′ is not always a good Lyapunov
candidate function. Helpfully, following the demonstration of the existence of K ′ in [54], we
can always find a K corresponding to a convergence rate as close as we want from λ0.

∀ε > 0,∃Kε ∈ B(HR),Kε > 0 s.t. ΦR(Kε) ≤ (λ0 + ε)Kε. (4.93)

Let Φη = ΦR + ηΨ with η > 0 and Ψ an irreducible CP map. Φη is an irreducible CP
map and its spectral radius λη converges continuously to the one of ΦR (i.e. λ0) when η
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4.4. Invariant subspace stabilization

goes continuously to 0. Hence for any ε > 0 we can find a ηε > 0 such that ληε ≤ λ0 + ε.
Then it exists a Kε > 0 such that Φ∗ηε(Kε) = ληεKε ≤ (λ0 + ε)Kε. It follows Φ∗R(Kε) ≤
(λ0 + ε)Kε− ηεΨ∗(Kε) ≤ (λ0 + ε)Kε which is what we wanted. Of course we need λ0 + ε < 1.
It is always possible to find such a ε. For example ε = (1− λ0)/2 match the requirements.

Finally whatever is the reducibility status of ΦR, for any strictly positive ε it always exists
a K > 0 such that VK(Φ(ρ)) = tr[Φ∗(K)ρ] = tr[Φ∗R(K)ρR] ≤ (λ0 + ε)VK(ρ).

Hence in any case we have that for all ε > 0, it exists K > 0 on HR such that

VK(ρ(n)) ≤ (λ0 + ε)nVK(ρ(0)). (4.94)

This inequality implies that VK(ρ(n)) = O((λ0+ε)n) with O the usual asymptotic comparison
when n goes to infinity.

We translate this exponential convergence to an exponential convergence of ρR(n) norm at
the end of this section.

Almost sure rate

Let us first find back the equivalent of the mean convergence rate when measurement
outcomes are recorded.

The process (VK(ρn)(λ0 + ε)−n)n∈N is a positive supermartingale.

E(VK(ρ(n+ 1))(λ0 + ε)−n−1|j1, . . . , jn) = (4.95)

VK(Φ(ρ(n)))(λ0 + ε)−n−1 ≤ VK(ρ(n))(λ0 + ε)−n. (4.96)

Hence VK(ρ(n))(λ0 + ε)−n converges almost surely by Doob supermartingale convergence
theorem. Thus VK(ρ(n)) = O((λ0 + ε)n) with O an almost sure asymptotic comparison when
n tends to infinity.

We recovered the mean convergence rate in an almost sure sense. This bound may seem
the best we can find but actually, in some cases, we can obtain a higher convergence rate.

Rate improvement

From now on we fix ε and the corresponding K. Accordingly we redefine λ0 as λ0 =
spectral radius(ΦR) + ε. Hence Φ∗R(K) ≤ λ0K.

In this section we use the knowledge we have on the convergence rate in the non demolition
case to try to improve the convergence rate toward HS . As in the QND case, our aim is to
find a bound for ln(VK(ρ(n)))/n when n goes to infinity.

To avoid infinities, let us assume M∗jMj and M∗j,RMj,R are definite positive for any j and
VK(ρ(n)) > 0 almost surely at any time n. Hence the limit is reached only in infinite time.
Thus at any time ln(VK(ρ(n))) is well defined. These assumptions are the equivalent of the
one we made in the non demolition case for the derivation of the convergence rate.

We define two new processes ρ̂S(n) = ρS(n)/tr[ρS(n)] which is well defined at least after a
fixed bounded time n0 and ρ̂K(n) = K1/2ρR(n)K1/2/tr[KρR(n)] which is always well defined
since we assumed VK(ρ(n)) > 0 almost surely. (ρ̂S(n))n∈N and (ρ̂K(n))n∈N are processes of
states on respectively HS and HR. We also define new operators Mj,K = K1/2Mj,RK

−1/2

and the corresponding ΦK(ρK) =
∑

jMj,KρKM
∗
j,K . These definitions may seem artificial

but they lead to great improvements in the notations. We have a simpler bound for Φ∗K :
Φ∗K(IR) ≤ λ0IR. K is replaced by IR for ΦK and ρ̂K is normalized so VK(ΦR(ρ))/VK(ρ) =
tr[ΦK(ρ̂K)] ≤ λ0.
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4. Repeated indirect measurements

We write ln(VK(ρ(n))) as a sum of a predictable process and a martingale using Doob
decomposition,

ln(VK(ρ(n))) = ln(VK(ρ(0))) +
n−1∑
k=0

∑
j

tr[M∗jMjρ(k)] ln

(
tr[M∗j,KMj,K ρ̂K(k)]

tr[M∗jMjρ(k)]

)
+M(n)

(4.97)

with M(n) a martingale. Using martingale law of large numbers, under the assumptions
we gave at the beginning of this section we have limn→∞M(n)/n = 0. We also have
tr[M∗jMjρ(n)] = tr[M∗j,SMj,S ρ̂S(n)] +O(

√
VK(ρ(n))) as n tends to infinity.

Since VK(ρ(n)) is almost surely bounded and VK(ρ(n)) = O(λn0 ),
∑∞

k=0

√
VK(ρ(k)) < ∞

almost surely. Thus we have,

ln(VK(ρ(n)))/n =
1

n

n−1∑
k=0

∑
j

tr[M∗j,SMj,S ρ̂S(k)] ln

(
tr[M∗j,KMj,K ρ̂K(k)]

tr[M∗j,SMj,S ρ̂S(k)]

)
+ o(1) (4.98)

almost surely as n tends to infinity.

This rate seems to have an expression equivalent to the relative entropy we obtained in the
previous section for the non demolition measurement. But this time (tr[M∗j,KMj,K ρ̂K(k)])j
is not a probability distribution since we have

∑
j tr[M∗j,KMj,K ρ̂K(k)] < 1. Actually here the

rate can never be equal to zero. It will always be strictly negative.

We have tr[M∗j,SMj,S ρ̂S ] > 0 for any j and
∑

j tr[M∗j,SMj,S ρ̂S ] = 1. So using Jensen
inequality and the concavity of ln, we obtain

∑
j

tr[M∗j,SMj,S ρ̂S ] ln

(
tr[M∗j,KMj,K ρ̂K ]

tr[M∗j,SMj,S ρ̂S ]

)
≤ ln(tr[ΦK(ρ̂K)]) ≤ ln(λ0). (4.99)

For any ρ̂K and any ρ̂S .

Hence

lim sup
n

ln(VK(ρ(n)))/n ≤ ln(λ0). (4.100)

Thus VK(ρ(n)) ≤ λn0eo(n). We seem to have used a complicated derivation for a weaker version
of the bound we already had. As a matter of fact, as announced earlier, in some cases we can

find a better bound for
∑

j tr[M∗j,SMj,S ρ̂S ] ln
(

tr[M∗j,KMj,K ρ̂K ]

tr[M∗j,SMj,S ρ̂S ]

)
. We write this bound ln(λ1).

The improvement origin can be understood as the presence of a non demolition measurement
between HS and HR added to the convergence towards HS . For example let us take a C2

system with two measurement outcomes possible j = ±. Let the Kraus operators be

M± =

(
1√
2
±1

2

0 1
2

)
. (4.101)

Then M∗j,KMj,K and M∗j,SMj,S are just positive numbers. The rate λ1 is equal to λ0 and is

λ1 = λ0 = 1
2 .
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Now assume just after each of these measurement we perform a non demolition measurement
with outcomes j′ = 0, 1 and Kraus operators

M0 =

(
1√
3

0

0 1√
2

)
and M1 =

( √
2
3 0

0 1√
2

)
. (4.102)

We have four outcomes possibles j ∈ {(+, 0), (+, 1), (−, 0), (−, 1)}. The corresponding Kraus
operators are

M0,± =

(
1√
6
± 1

2
√

3

0 1
2
√

2

)
and M1,± =

(
1√
3
± 1√

6

0 1
2
√

2

)
. (4.103)

We have λ0 = 1/2 and λ1 ' 0.47 < λ0. Here the improvement is not great but it can be
increased. We are left with two different rates. We need to understand their meanings better.

Mean convergence time

The difference between the mean rate λ0 and the almost sure rate λ1 is best understood
when studying the mean convergence time.

Let us define a stopping time

τε = inf{n ≥ 0 s.t. VK(ρ(n)) ≤ ε}. (4.104)

It corresponds to the first time VK(ρ(n)) will be smaller or equal to ε. Following the similar
discussion we had in the non demolition case, we expect that if ε is small enough, VK(ρ(n))
will stay “close” to zero afterwards. With this limit in mind we nevertheless call τε the
convergence time and E(τε) the mean convergence time.

Remark that ε here is different from the ε used to approach the spectral radius of ΦR.

Let ε′ be such that ln(ε′) = ln(ε) + minj,ρ,ρ̂K ln
[

tr[M∗j,KMj,K ρ̂K ]

tr[M∗jMjρ]

]
. ε′ is strictly positive and

smaller than ε. This is assured by the boundness and positive definiteness of the operators
M∗jMj and Mj,KM

∗
j,K . ln(ε′) − ln(ε) is the minimal (negative) increment of ln(VK(ρ(n)))

possible between two times. For any time n, ln(VK(ρ(n+ 1)))− ln(VK(ρ(n))) ≥ ln(ε′)− ln(ε)
almost surely.

We define the stopped supermartingale (ln(VK(ρ(τε ∧ n)))) where k ∧ n = min(k, n).

E(ln(VK(ρ(τε ∧ n)))) =

ln(VK(ρ(0))) + E

τε∧n−1∑
k=0

∑
j

tr[M∗jMjρ(k)] ln

(
tr[M∗j,KMj,K ρ̂K(k)]

tr[M∗jMjρ(k)]

) .
(4.105)

As before we can use Jensen’s inequality to bound each term of the sum over time.

∑
j

tr[M∗jMjρ(k)] ln

(
tr[M∗j,KMj,K ρ̂K(k)]

tr[M∗jMjρ(k)]

)
≤ ln(λ0),∀k. (4.106)

We cannot find a better bound since we need a bound at any time and the ln(λ1) bound is
valid only in the large n limit. We have

E(ln(VK(ρ(τε ∧ n)))) ≤ ln(VK(ρ(0))) + ln(λ0)E(τε ∧ n). (4.107)
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Figure 4.3.: Simulation of the evolution of VIR for a 2 level system with λ0 = λ1 = 7
8 . The blue

curve corresponds to the mean evolution (VIR(ρ(n))) and the grey lines to ten
different realizations of the evolution when taking into account the measurement
results (VIR(ρ(n))).

Since for n < τε, ln(VK(ρ(n))) > ln(ε) we have 0 ≥ ln(VK(ρ(τε ∧ n)) ≥ ln(ε′) for any time
n. Thus ln(VK(ρ(τε ∧ n))) is almost surely bounded and thus converge almost surely and in
L1. Using Markov’s inequality, one can show E(τε) is finite 3. The sequence τ ∧n is monotone
in n so limn E(τε ∧ n) = E(τε) using Lebesgue’s monotone convergence theorem.

Taking the limit n to infinity in our last inequality, we have

E(ln(VK(ρ(τε)))) ≤ ln(λ0)E(τε) + ln(VK(ρ(0))). (4.108)

Recall that ln(VK(ρ(τε))) ≥ ln(ε′) almost surely. Since ln(λ0) < 0, we have

E(τε) ≤
ln(ε′)− ln(VK(ρ(0)))

ln(λ0)
. (4.109)

Of course this is valid only for ε < VK(ρ(0)). For ε ≥ VK(ρ(0)), τε is trivially 0 almost surely.

As in the non demolition case the introduction of ε′ allowed us to deal with cases where
VK(ρ(τε)) overshoots ε.

We remark that the mean convergence time depends on λ0 and not λ1. Looking at figures
4.3 and 4.4, we can see that when taking into account the measurement results, for some
realizations the time after which the state converges is much shorter. For some other they
stay chaotic and then converge rapidly. They can even get close to being completely supported
in HR (VK(ρ) = 1). Recall that the result for λ1 is true only in large time, when n � 1,
whereas λ0 is a bound in mean for any time. Hence λ1 is more an asymptotic stability rate,
when λ0 is characteristic of the time it takes to converge. The improvement of λ1 is in the
convergence speed when the convergence happen but it can happen after a long time. The
distribution of this time depends on λ0. The smaller is λ0 the more chance the convergence
will happen after short time.

3. The proof is given in Appendix A.2.
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Figure 4.4.: Simulation of the evolution of VIR for a 2 level system with λ0 = 7
8 and λ1 =

21/40. The blue curve corresponds to the mean evolution (VIR(ρ(n))) and the
grey lines to ten different realizations of the evolution when taking into account
the measurement results (VIR(ρ(n))).

This observation is similar to the behavior of the zero temperature case of [23]. In this arti-
cle, the authors showed that a two level system connected to a thermal bath and continuously
monitored by a diffusive non demolition measurement will, when the non demolition mea-
surement have a large convergence rate, jump from one energy state to the other with time
between the jumps distributed exponentially with a parameter depending on the temperature.

Here we have the same behavior, but once the state reaches the equivalent of the ground
state (HS) it stays in it.

In next chapter we will discuss the same type of processes for continuous quantum trajec-
tories. The influence of the added non demolition measurement on the convergence rate will
be much clearer.

Exponential convergence for the state

As conclusion for this section, we translate the convergence rate for VK(ρ(n)) to a conver-
gence rate for our system state. For now we only have a convergence rate for VK(ρ(n)). The
generalization to the state is quite straightforward.

We have an exponential convergence rate for our Lyapunov candidate function VK(ρ(n)) ≤
λn1 e

o(n). We need to get back to a characterization of the exponential convergence for the
state. Since K is definite positive, its smallest eigenvalue k0 is such that K ≥ k0IR with
k0 > 0. Hence tr[ρR(n)] ≤ 1

k0
λn1e

o(n) = λn1e
o(n). Using the Cauchy-Schwarz inequality for

semi definite positive matrix,

‖ρR(n)‖max ≤ λn1eo(n) (4.110)

and ‖ρP (n)‖max ≤ λ
n
2
1 e

o(n). (4.111)

Hence, all the matrix blocs different from ρS(n) converge almost surely to zero. The conver-

gence is exponential with a rate λ1 for ρR(n) and λ
1/2
1 for ρP (n).
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Continuous time quantum trajectories are meant to describe the evolution of a quantum
system undergoing some continuous indirect measurements. As in the discrete case, one
consider the system and its environment. By their interaction they become entangled. One
then measures the environment and tries to evaluate the influence of this measurement on the
system state. Contrary to discrete quantum trajectories, the environment in not considered to
be a sequence of probes but is a large other system continuously in interaction with the system.
Thus it is not a priori renewed between each indirect measurement. Moreover the environment
is continuously monitored. Thus at every time a measurement is beeing performed not only
at discrete fixed times. Hence the measurement outcomes are described by classical stochastic

Figure 5.1.: Principle of continous indirect measurement.

processes defined in continuous time. Thus the system evolution is described by a continuous
time stochastic process.

Maybe the first attempts at describing continuous time measurements were made, using
the instrument formalism, by E. B. Davies for the counting case [45,46] and A. Barchielli, L.
Lanz and G. M. Prosperi for the diffusive case [14,15]. A. Barchielli and G. Lupieri made the
connections with quantum stochastic calculus in [7, 16].

Not long after this first approach, V. P. Belavkin formulated and used quantum filtering
theory to derive quantum trajectories SDE from quantum stochastic differential equations
(QSDE) [26–28]. Sometimes, quantum trajectories SDEs are called Belavkin’s equations.
Referring to the technique used in the derivation, they are also called quantum filters.

The link between the two approaches was made by A. Barchielli and V. P. Belavkin in [10].
They derived both counting and diffusive SDE’s found by V. P. Belavkin using instrument
formalism. They also give the connection with parallel works of N. Gisin and L. Diosi.
In [12], A. Barchielli and M. Gregoratti also showed the equivalence of quantum filtering and
instrument formalism derivations starting from a quantum stochastic evolution.
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These two authors postulated stochastic generalizations of the Schrödinger equation repro-
ducing wave function collapse [49, 58]. Quantum trajectories equations, in their pure state
formalization, are therefore sometimes called stochastic Schrödinger equations. In section 5.4,
we will see that these postulated stochastic differential equations (SDE) are merely special
case of indirect measurements. This was first noticed in [10].

Independently, J. Dalibard et al. proposed a similar stochastic Schrödinger equation with
jumps as a mean of master equations simulation [44]. Their idea was to consider that the
master equation corresponds to the mean evolution of a system undergoing successive indirect
“gedanken” measurements at random times. Their work has been an important contribution
to numerical computation of master equations. Although, they only considered these mea-
surements as merely computational tools and did not linked them to actual time continuous
measurements. Their idea was further pursed through the study of what may now be called
master equation unraveling [8, 10, 13]. The link with Davies’ instrument formalism was done
by A. Barchielli [8]. H. Carmichael used a similar approach. He added physical motivations
justifying the distribution of the measurement outcomes [40].

In 2010, C. Pellegrini proved what can be seen as a consistency between discrete and
continuous quantum trajectories. The latter can be found as a continuous time approximation
of the former [84–86].

Beside this work on the physical situations where quantum trajectories are applicable, a lot
of work has been done on the properties of these quantum trajectories SDE. They are now a
widely used tool in quantum optics [36,102].

Note that here we refer only to Markovian quantum trajectories. Non Markovian physical
extensions deal with a classical source of memory (i.e. feedback) which is a subject beyond
the scope of this thesis. The interpretation of non Markovian versions of quantum trajectories
as the evolution of a continuously monitored system interacting in a non Markovian manner
with its environment is yet not clear [18,56,93].

The main purpose of this chapter is to present results obtained during this thesis on the
long time behavior of continuous quantum trajectories in two situations. Either the quantum
trajectory reproduces effectively a direct projective measurement of the system through the
measurement of its environment. Or the quantum trajectory drives the system state towards
a subspace of the state space. For example, towards one specific pure state. In both cases
we prove convergence, compute an exponential rate of convergence and bound the mean
convergence time. Before the discussion of these results, we give a general presentation of
quantum trajectories.

The chapter is structured as follows. In a first section we define the stochastic differential
equations (SDE) corresponding to quantum trajectories and fix our notations. In a second
section we review the different derivations of quantum trajectories from physical situations.
For instance we will not present the postulated equation of N. Gisin [58] and L. Diosi [49] as
they are specific cases of the SDEs obtained by other means. In a third section we discuss
general long time behavior of quantum trajectories. We have the same ergodic and purification
properties as in the discrete case. In a fourth section we present the convergence results for
non demolition quantum trajectories. We recover results equivalent as the ones obtained in
the discrete case. In the long time limit the system wave function collapse with a distribution
of the limit state given by von Neumann projection postulate. The convergence is exponential.
We give its rate and bound the mean convergence time. In a fifth and last section we present
results on globally attractive subspaces. As in the discrete case, we show that a convergence
in mean is equivalent to a convergence when measurement outcomes are recorded. We show
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5.1. Continuous time quantum trajectories

that the asymptotic exponential convergence rate can be increased by the measurements and
we compute a bound on the mean convergence time. We conclude by a discussion on the
different significations of the rates in mean and when measurement outcomes are recorded.

5.1. Continuous time quantum trajectories

Let us consider a finite dimensional system. Hence its Hilbert space is Hsys. = Cdsys. with
dsys. <∞. We recall that the set of system state is S(Hsys.) = {ρ ∈ B(Hsys.) s.t. ρ ≥ 0, tr[ρ] =
1}. Let us define useful functions on S(Hsys.).

L(ρ) = −i[H, ρ] +

n∑
j=1

LjρL
∗
j −

1

2
{L∗jLj , ρ} (5.1)

Dj(ρ) = Ljρ+ ρL∗j − tr[(Lj + L∗j )ρ] ρ, j = 1, . . . , p− 1 (5.2)

Jj(ρ) = LjρL
∗
j , vj(ρ) = tr[Jj(ρ)], j = p, . . . , n. (5.3)

The system Hamiltonian H and the Lj ’s are operators on Hsys.. Since we are in finite
dimension they are automatically bounded. In the rest of the text we may omit the lower
bound 1 and upper bound n for the sums over j but they are always assumed. This lighten
the notations.

Let (Ω,F , (Ft),P) be a filtered probability space with usual conditions. Let (Wj(t)), j < p
be p − 1 independent Wiener processes and let (Ñj(dx, dt)), j ≥ p be n − p + 1 indepen-
dent adapted Poisson point processes of intensity dxdt; they are independent of the Wiener
processes. We assume (Ft) is the natural filtration of the processes W, Ñ and we assume
F∞ =

∨
tFt = F .

If the system undergo Markovian continuous indirect measurement, then its evolution is
given by a SDE on (Ω,F , (Ft),P) of the following form.

dρ(t) =L(ρ(t))dt

+
∑
j<p

Dj(ρ(t))dWj(t)

+
∑
j≥p

(
Jj(ρ(t)

vj(ρ(t))
− ρ(t)

)
[dNj(t)− vj(ρ(t))dt]

(5.4)

with the initial system state ρ(0) fixed. The increments dNj(t) are for now shorthand no-

tations for the increments of
´ t

0

´
R 10<x<vj(ρs)Ñj(dx, ds). This shorthand notation being un-

derstood we have the definition of the quantum trajectory SDE. Once this definition is set
we have that the processes Nj(t) =

´ t
0

´
R 10<x<vj(ρ(s))Ñj(dx, ds) are counting processes with

stochastic intensities (vj(ρ(t))). Hence, we have E(dNj(t)|Ft) = vj(ρ(t))dt with E the expec-
tation under P [29, 86]. This construction of the couting processes (Nj(t)) is not the only
one possible. One can also build, using Girsanov transformation, a probability measure un-
der which initially Poisson processes with unit intensities become counting processes with
stochastic intensities (vj(ρ(t)). We will use this technique when we will present quantum
filtering in section 5.2.3 and master equation unraveling in section 5.2.4.

The solutions (ρ(t)) of this type of SDE are called quantum trajectories. And the SDE
itself is the quantum trajectory SDE. The existence and uniqueness of the solution for these
SDE in the set of state were proven in [11,13,84–86].
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5. Continuous indirect measurements

Quantum trajectory SDE’s are non linear SDE’s. As we will see in the different derivations
and particularly in section 5.2.4 on master equation unraveling, the non linearity is not an
ad–hoc assumption. It is the result of the system state normalization. Hence it is the result
of the conditioning on the measurement outcomes. The underlying quantum theory on which
quantum trajectories are based is not modified from the standard one, it stays linear.

The equation (5.4) contains three parts. Each corresponds to different contributions to the
system state evolution. On the first line appear the usual Lindblad operator. When we look
at the average evolution implied by the SDE we recover a master equation with Lindbladian
L. This is not a surprise since averaging over the measurements should be equivalent to
a trace over the environment degrees of freedom. As expected we recover a usual reduced
Markovian evolution.

dE(ρ(t)) = L(E(ρ(t)))dt. (5.5)

The second line corresponds to the effect of measurements whose outcomes are continuous
signals, namely currents. The third line corresponds to the effect of measurements whose
outcome signals are discontinuous, namely particle counting.

For discontinuous signal measurements it is not hard to see that the actual outcome mea-
sured is Nj(t) for each j. When an additional +1 count is recorded at time t a POVM is
performed on the system with the corresponding operator Lj . The probability to have such
POVM performed on the system between time t and t+ dt is vj(ρ(t))dt. Our first derivation
of quantum trajectories will be based on this interpretation.

For the continuous signal measurements, it is not that obvious. From the different deriva-
tions we will perform we know that actually the outcome recorded is

Yj(t) = Wj(t) +

ˆ t

0
tr[(Lj + L∗j )ρ(s)]ds (5.6)

The instantaneous mean current is then E(dYj(t)|Ft)/dt = tr[(Lj + L∗j )ρ(t)].

The trajectories involving only continuous signals are often call diffusive and the one in-
volving only discontinuous signal are called jump trajectories. We also talk about diffusive
part and jump part of a quantum trajectory SDE when referring to the continuous and dis-
continuous part respectively.

The processes (Nj(t)) and (Yj(t)) are what an experimenter as access to. In the section
on non demolition we will use this to compute the evolution of an estimation of the system
state.

One can generalize (5.4) by introducing time dependent random coefficients [13]. Here we
will not explore this possibility. So, when we will present quantum filtering theory in section
5.2.3, we will not discuss heterodyne detection schemes. The derivation is a straight forward
generalization of the homodyne case that we treat. Identically here we did not take into
account a possible faulty detection or the presence of an additional unmeasured environment.
Actually the results on non demolition and subspace stabilization still hold in the presence
of an additional unmeasured environment, has long has this environment fulfills the non
demolition or invariance conditions respectively. In the rest of the text we warn the reader
whenever the results might not hold with an additional unmeasured environment.
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5.2. Physical models of continuous indirect measurement

5.2.1. Phenomenological approach

Let us start with an enlightening phenomenological derivation. We follow the idea of
J. Dalibard et al. [44] to introduce jump quantum trajectories. From these we obtain the
diffusive one. The interested reader will find a similar derivation in [102]. H. Carmicheal
also investigated this approach to continuous measurement [40]. A more rigorous treatment
of this approach is made in [10]. It is actually in this last article that the limit form a jump
trajectory to a diffusive one is performed.

An experimenter counts the number of photon emitted by a system. Whenever a photon is
emitted it is detected by some macroscopic apparatus. There is no faulty measurement. At
each time the result on the detector is either 0 (no detection) or 1 (detection). If at a given
time the system state is ρ, then after a measurement the system state is either

M0ρM
∗
0

tr[M∗0M0ρ]
if no photon is detected, or

M1ρM
∗
1

tr[M∗1M1ρ]
if a photon is detected, (5.7)

with Mj the Kraus operators corresponding to each outcome. The probability to detect
a photon is p(1) = tr[M∗1M1ρ]. The conservation of the trace for the mean state evolution

imposes M∗0M0+M∗1M1 = Isys.. If ρ′ is the state after a measurement, then ρ′ =
M0ρM∗0

tr[M∗0M0ρ](1−

ε) +
M1ρM∗1

tr[M∗1M1ρ]ε where ε is a random variable equal to 1 with probability p(1) and 0 otherwise.

Hence ρ′ is a random variable.

Assume we know from the interaction between the system and the field that if a photon is
detected, the system state becomes LρL∗

tr[L∗Lρ] . The operator L corresponds to the energy level
jump the system undergoes when a photon is emitted. For example L ∝ σ− for a two level
atom 1. The probability of a photon detection during an infinitesimal time dt is tr[L∗Lρ]dt.
This jump probability corresponds to M1 := L

√
dt. The conservation of the trace imposes

that M0 is such that M∗0M0 + L∗Ldt = Isys.. Using the shorthand dt2 = 0 to obtain a
development up to order dt, one finds that M0 := Isys.− i(H − i/2L∗L)dt, with H Hermitian,
fits.

Let N(t) be the process counting the number of photons detected. At time t, dN(t) ≡ ε,
ρ ≡ ρ(t) and ρ′ ≡ ρ(t+ dt). Using the definition of ρ(t+ dt), we get

ρ(t+dt) =

(ρ(t)− i[H, ρ(t)]dt− 1/2{L∗L, ρ(t)}dt)
1− tr[L∗Lρ(t)]dt

× (1− dN(t)) +
Lρ(t)L∗

tr[L∗Lρ(t)]
dN(t).

(5.8)

Following Ito rules we have dtdN(t) = 0. Thus

dρ(t) =L(ρ(t))dt

+

(
Lρ(t)L∗

tr[L∗Lρ(t)]
− ρ(t)

)
(dN(t)− tr[L∗Lρ(t)]dt)

(5.9)

1. In this case σ− is the usual lowering operator σ− =

(
0 0
1 0

)
or σ− = 1

2
(σ1 − iσ2) in terms of Pauli

matrices.
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5. Continuous indirect measurements

with

L(ρ) = −i[H, ρ] + LρL∗ − 1

2
{L∗L, ρ}. (5.10)

This is our quantum trajectory SDE with one discontinuous signal measurement. We infer
this equation should describe photon counting measurement.

This counting equation is well suited for spontaneous emission experiments. In an inter-
ferometry experiment, the system is stimulated by an external strong coherent field. The
photon emission is not spontaneous anymore but driven by the external field. The measure-
ment result on the system is given by the perturbation of the external field induced by the
presence of the system. In optics, a canonical situation of interferometry is the homodyne
detection scheme (figure 5.2) . A laser beam is split. One part of the beam interacts with
the system, the other evolves freely. The two parts are then compared. Information on the
system is given by the phase difference of the two halves of the laser light beam. In these
experiments one detects not single photons but a continuous current [102]. So we expect to
find a diffusive quantum trajectory SDE in this case.

Figure 5.2.: Schematics of a typical homodyne measurement. A local oscillator (laser) is
added to stimulate photo emission by the system. The phase difference between
the free field (upper arm) and the field perturbed by the system (lower arm) is
then evaluated by the detector.

The passage from a counting quantum trajectory to a diffusive one has been done by A.
Barchielli and V. P. Belavkin in [10]. We present here a derivation inspired by this work. The
laser electromagnetic field state |α〉 is assumed highly coherent and powerful. We can treat it
classically. The presence of this new field α = |α|eiθ induce a rotation of the system in time.
The system is driven by the field. This translates to a modification of the operators describing
the evolution. The Hamiltonian in the Lindbladian is changed in H → H + i(αL∗ −αL) and
the L operator modeling the creation of a photon is modified in L′ = L− α.

The Hamiltonian modification can be motivated by a simple model. Let the system be a two
level one. The usual Jaynes–Cummings interaction Hamiltonian between the coherent laser
field and the atom is Hint. = −i(σ− ⊗ a∗ − σ+ ⊗ a) with a∗, a the usual creation, annihilation
operators of the laser field. Remark that we implicitly rescaled time such that no constant
appear in the interaction Hamiltonian. Since we consider the laser field to be classical we can
directly replace a by αe−iω0t, with H = 1

2ω0σ3 in our time scale. We can get rid of the time
t dependency by going into the rotating wave frame. We infer that the Hamiltonian in the
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5.2. Physical models of continuous indirect measurement

Lindbadian must be modified accordingly. The interaction between the laser coherent light
and the background electromagnetic field leads to the shift L → L − α. The justification of
such modification is similar using the dipolar interaction Hamiltonian between the background
electromagnetic field and the laser field. The justification for these modifications will be much
stronger and clearer in subsection 5.2.3 dedicated to quantum filtering.

The previously found jump equation is now:

dρ(t) =Lα(ρ(t))dt

+

(
Lρ(t)L∗ − |α|(eiθLρ(t) + e−iθρ(t)L∗) + |α|2ρ(t)

tr[L∗Lρ(t)]− |α|tr[(eiθL+ e−iθL∗)ρ(t)] + |α|2
− ρ(t)

)
× (dNα(t)− tr[L∗Lρ(t)]− |α|tr[(eiθL+ e−iθL∗)ρ(t)] + |α|2)dt).

The superscript α on dNα(t) reminds of the counting process intensity dependency on the
classical field. The introduction of the classical field only affects the unitary part of the mean
evolution.

dE(ρ(t)) = Lα(E(ρ(t)))dt

= −i[H + i(αL∗ − αL),E(ρ(t))] + LE(ρ(t))L∗ − 1

2
{L∗L,E(ρ(t))}.

(5.11)

We are interested in the limit where the photons cannot be distinguished individually. Namely
when the laser total energy sent per second is large compared with the typical energy of the
system. This assumption is far from being restrictive. For example a common red laser
pointer, namely a 3mW power 635nm wave length laser, emits about 1016 photons per second
when the typical energy of the system corresponds approximately to the energy of one photon.
Hence we can take the limit |α| → ∞ with no guilt. One gets, for the jump part of the
equation,

lim
|α|→∞

|α|
(
Lρ(t)L∗ − |α|(eiθLρ(t) + e−iθρ(t)L∗) + |α|2ρ(t)

tr[L∗Lρ(t)]− |α|tr[(eiθL+ e−iθL∗)ρ(t)] + |α|2
− ρ(t)

)
= −eiθLρ(t)− e−iθρ(t)L∗ + tr[(eiθL+ e−iθL∗)ρ(t)]ρ(t)

The increased intensity of the counting process make it converge to a continuous process. Let
Wα(t) be such that dWα(t) = 1

|α|(dN
α(t)− (tr[L∗Lρ(t)]−|α|tr[(eiθL+e−iθL∗)ρ(t)]+ |α|2)dt).

Has discussed in [10], in the limit |α| → ∞, we have dWα(t)dWα(s) → δs,tdt. Thus the
process Wα(t) converges in distribution to a Wiener process W (t). And in this limit, the
SDE satisfied by the system state is

dρ(t) =L(ρ(t))dt (5.12)

+ (Lρ(t) + ρ(t)L∗ − tr[(L+ L∗)ρ(t)]ρ(t))dW (t) (5.13)

The phase eiθ has been absorbed in the definition of L. We obtained the diffusive quantum
trajectory SDE as a limit of the photon counting one when a powerful driving field is added.

It is interesting to see how the measurement signal N(t) is modified in this limit. With the
introduction of the field, the measurement outcome is inside Wα(t). If we want to “extract”
it we can define

Y α(t) = Wα(t) +

ˆ t

0

1

|α|
(tr[L∗Lρ(s)] + |α|tr[(L+ L∗)ρ(s)])ds. (5.14)
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We added back the non diverging parts of the counting process intensity. Taking the limit
|α| → ∞ we obtain as expected a measurement outcome process

Y (t) = W (t) +

ˆ t

0
tr[(L+ L∗)ρ(s)]ds. (5.15)

It is the increased intensity of the jump process which leads to the apparition of a continuous
signal.

The diffusive quantum trajectory SDE can also be directly derived with well chosen M0

and M1. The suitable choice is not really physically meaningful for now. It makes sense in
the light of repeated indirect measurement continuous limit subsection results. Therefore we
do not try to give physical arguments for the choice of M0 and M1.

As before we consider that an experimenter continuously measures the environment of a
system. At each time he can obtain two different outcomes, 0 or 1. Now we suppose that
over an infinitesimal time dt the measurement effect is given by Kraus operators Mdt

0 and
Mdt

1 defined by

Mdt
0 =

1√
2

(Isys. +
√
dtL− 1

2
dtL∗L) (5.16)

Mdt
1 =

1√
2

(Isys. −
√
dtL− 1

2
dtL∗L) (5.17)

This choice fulfills the trace conservation condition Mdt
0
∗
Mdt

0 + Mdt
1
∗
Mdt

1 = Isys.. Of course
the notation

√
dt is a liberty we take.

From these definitions and the convention dt1+ε = dN(t)dt = 0 for any ε > 0 we obtain

ρ(t+ dt) =
ρ(dt) +

√
dt(Lρ(t) + ρ(t)L∗) + L(ρ(t))dt

1 +
√
dttr[(L+ L∗)ρ(t)]

(1− dN(t)) (5.18)

+
ρ(dt)−

√
dt(Lρ(t) + ρ(t)L∗) + L(ρ(t))dt

1− i
√
dttr[(L+ L∗)ρ(t)]

dN(t) (5.19)

with E[dN(t)|ρ(t)] = 1
2(1−

√
dttr[(L+ L∗)ρ(t)]). From this expression we get

dρ(t) =L(ρ(t))dt (5.20)

+D(ρ(t))
√
dt(1−

√
dttr[(L+ L∗)ρ(t)]− 2dN(t)) (5.21)

with D(ρ) = Lρ+ρL∗− tr[(L+L∗)ρ]ρ. If we define dW dt(t) =
√
dt(1− i

√
dttr[(L−L∗)ρ(t)]−

2dN(t)), then we get E[dW dt(t)|ρ(t)] = 0 and dW dt(t)
2

= dt thus we can infer that W (t) =´ t
0 dW

dt(t) is a Wiener process. We recover the diffusive quantum trajectory SDE

dρ(t) = L(ρ(t))dt+D(ρ(t))dW (t). (5.22)

This phenomenological approach motivates the use of quantum trajectories to describe
continuous indirect measurement. In next subsections we present more rigorous approach for
the physical justification of continuous time quantum trajectories.
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5.2.2. Repeated indirect measurement continuous approximation

In a series of articles [84–86] C. Pellegrini, showed that continuous time quantum trajectories
can be seen as continuous time approximations of discrete quantum trajectories. With M.
Bauer and D. Bernard we proved an equivalent result in the non demolition case using a
different method [20,24]. The idea of discrete time indirect measurement was also the starting
point in A. Barchielli, L. Lanz and G. M. Prosperi article [14].

We recall the basic definition of discrete quantum trajectories. A system repeatedly inter-
acts with probes. After each interaction the probe that just interacted is measured. Recording
these measurement outcomes implies the system state evolution is a Markov chain (ρ(n)) de-
fined as follow. Knowing all first n outcomes,

ρ(n+ 1) =
Mjρ(n)M∗j

tr[M∗jMjρ(n)]
with probability tr[M∗jMjρ(n)]. (5.23)

The operators Mj are Kraus operators acting on the system. They are defined by Mj =
〈j|UΨ〉 with |Ψ〉 the initial state of the probe, U the interaction and |j〉 the probe state
corresponding to the outcome j.

The continuous approximation is obtained when a large number of indirect measurements
are performed in a finite fixed time. We have a time t fixed and n measurements performed
during this time interval. We assume, without loss of generality that the time interval is 1.
Hence, each measurement happens during a time 1/n. Since the measurement on the probe
after the interaction is assumed to be instantaneous, 1/n is the interaction time. We take
the continuous limit by sending n to infinity. Of course as the interaction time decreases,
the interaction strength must increase. If not the effect of the interaction becomes irrelevant.
So, as in the repeated interaction continuous limit, let us take a Hamiltonian for the unitary
interaction with the following n scaling.

Htot. = Hsys. ⊗ Iprobe + Isys. ⊗Hprobe +
√
nHint.. (5.24)

The interaction unitary operator is

U (n) = exp(−i t
n
Htot.) (5.25)

= exp(−it[ 1

n
(Hsys. ⊗ Iprobe + Isys. ⊗Hprobe) +

1√
n
Hint.]). (5.26)

The subscript (n) is a reminder of the n dependency of this operator. The scaling of the Kraus

operators M
(n)
j follows from the unitary operator scaling. The purpose of the continuous time

limit is to make sense of the limit n→∞ for the discrete process (ρ(n)(t)) defined by

ρ(n)(t) = ρ([nt]) (5.27)

where [nt] is the integer part of nt. If t = k/n then ρ(n)(t) = ρ(k). Thus ρ(n)(t) is a process
in continuous time which is equal to the discrete time process for any time k/n with k an
integer which can be greater than n. Note that we use the convention that whenever ρ(·) as
an explicitly integer argument, it corresponds to the discrete time process. If the argument is
not explicitly integer, it corresponds to a continuous time process. Hence here ρ([nt]) is the
discrete time quantum trajectory at time [nt].
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The only other assumption we will need is that 〈Ψ|Hint.Ψ〉 = 0 with |Ψ〉 the initial probe
state. This assumption is needed to avoid infinities. During the derivation, this quantity
appears as a mean Hamiltonian acting on the system added to Hsys.. But it is scaled as

√
n

so it explode in the limit n→∞. Making sure it is null assures the unitary part of the limit
evolution does not include an exploding rotation of the system state. In the non demolition
case, this assumption is only needed for the convergence of the process ρ(n)(t) not for the

diagonal elements q
(n)
α (t). This is due to the bloc diagonal property of Hint. in the pointer

basis.

Before we present the general result, let us present the method, restricted to non demolition
measurements, we formulated with M. Bauer and D. Bernard [20,24]. The key tool is martin-
gale change of measure. On this aspect it makes the connection with the quantum filtering
approach on next subsection. The convergence of (ρ(n)(t)) and the measurement outcome
processes are obtained using the convergence of finite dimension distributions.

Non demolition continuous limit

We recall that in the non demolition case we have a specific system Hilbert space or-
thonormal basis P in which U (n) is bloc diagonal. Hence Hsys. =

∑
α∈P Eα|α〉〈α| and

Hint. =
∑

α |α〉〈α| ⊗ Hint.(α). The operators Hint.(α) are hermitian operators on the probe
Hilbert space.

The technique we used in [20,24], goes as follow. From the measurement outcome counting
processes we define processes which will have a continuous limit. We recall that the measures

P(n)
α are the measures on the outcome space when the system is initially in the pointer state

α. Under each law P(n)
α we use the i.i.d. properties of the outcome counting processes Nj(n)

to compute their limit finite dimensional characteristic functions. Using the expression of the

measure for any initial system state P(n) as a weighted sum of the measures P(n)
α we obtain

the limit finite dimensional characteristic functions under the measure P(n).

On the continuous side, we define a standard filtered probability space (Ω,F , (Ft), ν) which
support standard independent Wiener and Poisson processes. Using a push forward measure
and martingale change of measure we build a family of measure (µα) such that, under them,
the Wiener and Poisson processes finite dimensional characteristic functions are equal to the

continuous limit of the discrete time ones under each P(n)
α . We write the martingale performing

this change of measure (Mα(t)). Using these martingales we define a new one M(t). This
martingale is a weighted sum of the previous ones. The change of measure implied by this
martingale leads to a new measure µ. Under this measure the Wiener and Poisson processes
finite dimensional characteristic functions are equal to the continuous limit of the discrete
time ones under P(n).

Thus we constructed a probability space and processes such that their finite dimensional
distributions are equal to the continuous limit of the outcome process ones. Here it is only in
this sense we consider the continuous time limit. This is a weaker convergence than the usual
weak convergence. The interested reader can find an extensive discussion of the meaning of
this convergence and a comparison with weak convergence in Appendix B of [20].

Once the outcome processes convergence to continuous time processes is obtained, we re-
cover more readable SDE for those using Girsanov theorem. The continuous time limit of
the system state process should then formally be obtained through the limit of its finite di-
mensional characteristic functions and its identification to an equivalent finite dimensional
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characteristic function on the continuous time side. Though, we do not do it explicitly. From
the expression of the natural limit of the Doob–Meyer decomposition of the system state
process, the result we would obtain is obvious. And we infer this is the actual limit. In [20]
the interested reader can find a proof of the convergence for the pointer probabilities qα(t)
using Mellin transforms.

Let us now explain in details the continuous time limit.
First we find the continuous time limit of the outcome processes Nj(n). These processes

count the number of times the outcome j is obtained up to time n. If the initial system state
is one of the pointer states α, then the Nj(n)’s are just sum of i.i.d. random variables. Their

joint characteristic function at time n under the measure P(n)
α is then

E(n)
α (eλjNj(n)) =

(∑
j

p(n)(j|α)eλj
)n
. (5.28)

Note that the measures themselves depend on n. This is why we are not able to use standard
central limit theorems for the continuous limit derivation.

Let us define processes from the counting processes Nj(n). Let us organize the outcomes
such that for j = 1, . . . , p−1, 〈Ψ|j〉 6= 0 and for j = p, . . ., 〈Ψ|j〉 = 0. Hence for j ≥ p we have
a null probability to obtain the outcome j in absence of interaction. Let p0(j) = |〈Ψ|j〉|2 be
the probability to obtain the outcome j in absence of interaction. Then we define

Y
(n)
j (t) =

1√
n

(Nj([nt])− p0(j)nt) (5.29)

N
(n)
j (t) = Nj([nt]). (5.30)

The outcome probabilities can be expanded in series of 1√
n

powers.

p(n)(j|α) = p0(j)(1 +
1√
n
r(j|α) +

1

n
ϑ(j|α) + o(

1

n
)), j < p (5.31)

p(n)(j|α) =
1

n
θ(j|α) + o(

1

n
), j ≥ p. (5.32)

From the identity
∑

j p
(n)(j|α) = 1, we have

∑
j p0(j)r(j|α) = 0 and

∑
j<p p0(j)ϑ(j|α) +∑

j≥p θ(j|α) = 0. The different constants introduced are defined from the probe state, the
interaction Hamiltonian and the measurement outcomes.

r(j|α) = 2Im

(
〈j|Hint.(α)Ψ〉
〈j|Ψ〉

)
, j < p (5.33)

θ(j|α) = |〈j|Hint.(α)Ψ〉|2, j ≥ p. (5.34)

We recall that Hint.(α) is the α bloc of Hint.. We do not give the expression of the ϑ(j|α)’s.
From now on they disappear from our notations. One just need to care about their relation
with the θ(j|α) we just gave. Namely

∑
j<p p0(j)ϑ(j|α) +

∑
j≥p θ(j|α) = 0.

Using these expansions, a straightforward computation leads to the limit

lim
n

E(n)
α (e

∑
j<p λjY

(n)
j (t)+

∑
j≥p λjN

(n)
j (t)) = (5.35)

exp[t(
∑
j<p

p0(j)r(j|α) +
1

2

∑
i,j<p

λiσijλj +
∑
j≥p

θ(j|α)(eλj − 1))] (5.36)
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with σji = δi,jp0(j) − p0(i)p0(j). Note that
∑

i σji = 0. Since the processes Nn(j) have

independent increments under each P(n)
α , the generalization of this formula to any finite di-

mensional characteristic function of the processes Y
(n)
j (t) and N

(n)
j (t) under P(n)

α is direct.
Let us now build a filtered probability space supporting continuous time process with same

finite dimensional characteristic functions. Let (Ω,F , (Ft), ν) be a filtered probability space.
Let (Wj(t)), j = 1, . . . , p − 1 be independent Wiener processes and (Nj(t)), j = p, . . . be
independent Poisson point process with unit intensity under ν. The Poisson and Wiener
processes are also independent. We assume the filtration (Ft) is the natural filtration of the
processes W,N . Let µ0 be the image measure of ν under the map x(j) 7→

√
p0(j)(x(j) −√

p0(j)
∑

i

√
p0(i)x(i))1j<p + x(j)1j≥p. Hence under µ0, the processes (Wj(t)) are centered

Gaussian processes with covariance Eµ0(Wj(t)Wj(s)) = min(s, t)σji. The processes (Nj(t))
are still Poisson point processes with unit intensity.

Let us define a family of non negative martingalesMα(t) with respect to µ0 and the filtration
(Ft)t≤T .

Mα(0) = 1 (5.37)

dMα(t) = Mα(t)

∑
j<p

r(j|α)dWj(t) +
∑
j≥p

(θ(j|α)− 1)[dNj(t)− dt]

 . (5.38)

Using Radon-Nikodym change of measure we can define a family of measures (µα) defined
on FT by

dµα,T = Mα(T )dµ0. (5.39)

In the rest of the text we may omit the index T . But the definition is still limited to FT with
a T as large as we want. Note that it means the convergence is true only up to a arbitrary
large finite time T .

Using Girsanov theorem we deduce that under µα the processes Nj(t) are Poisson point
processes with intensity θ(j|α) and the processes (Wj(t)) Gaussian processes with independent
increments such that

Eµα(Wj(t)) = t
∑
i

σjir(i|α) = t p0(j)r(j|α) (5.40)

Cov.µα(Wj(t),Wi(s)) = min(s, t)σji. (5.41)

In the first line we used
∑

j p0(j)r(j|α) = 0. We have the characteristic function

Eµα(e
∑
j<p λjWj(t)+

∑
j≥p λjNj(t)) =

exp[t(
∑
j<p

p0(j)r(j|α) +
1

2

∑
i,j<p

λiσijλj +
∑
j≥p

θ(j|α)(eλj − 1))].
(5.42)

Once again, since the processes (Wj(t)) and (Nj(t)) have independent increments the gen-
eralization to any finite dimensional characteristic function is straightforward. Hence in the

meaning we gave earlier the processes (Y
(n)
j (t)) and (N

(n)
j (t)) under P(n)

α converge respectively
to the processes (Wj(t)) and (Nj(t)) under µα.

Note that, since
∑

i σij =
∑

j p0(j)r(j|α) = 0, we have
∑

jWj(t) = 0 at least in distribution
under each µα. This is a reminder that the measurement outcomes are not independent since
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5.2. Physical models of continuous indirect measurement

at least one must be obtained for each indirect measurement. Hence we defined one too
many measurement outcome process. Also if the initial probe state is exactly one of the
outcome eigenvectors, we only have Poisson processes as outcome continuous time processes.
Namely, if |Ψ〉 = |1〉 then p = 2, only the counting processes remain relevant since we
have σij = σ11 = p0(j)r(j|α) = p0(1)r(1|α) = 0, thus W1(t) = 0 at least in distribution
under each µα. Actually W1(t) = 0 µ0 almost surely, thus µα almost surely since the map
f(x) defining the push forward measure is identically 0. Hence for any element A of F ,
µ0(A) = ν(f−1(A)) = ν(Ω)10∈A = 10∈A.

Let us define a new measure µ =
∑

β qβ(0)µα. We recall that qα(0) is the initial “prob-
ability” of the pointer state α, qα(0) = 〈α|ρ(0)α〉. Since the convergence of the processes
is true for each µα it will also be for µ starting from the initial discrete time measure

P(n) =
∑

α qα(0)P(n)
α . We need to unravel a clearer expression for the law of the processes

under this new measure.
Let us define a new martingale M(t) =

∑
β qβ(0)Mβ(t). From the definition of µβ, we

obtain that M(t) is the Radon-Nikodym derivative of µ with respect to µ0.

dµ

dµ0

∣∣∣∣
Ft

= M(t), t ≤ T. (5.43)

We remark that, since M(t) = 0 implies Mα(t) = 0 for any pointers such that qα(0) 6= 0, the
corresponding measures µα are all absolutely continuous with respect to µ. Since M(t) is µ
almost surely strictly positive, using the chain rule, we obtain

dµα =
Mα(T )

M(T )
dµ (5.44)

for any α such that qα(0) 6= 0.
This martingale change of measure remind us of the one we used in the non demolition

discrete study. So let us define a process

qα(t) = qα(0)
Mα(t)

M(t)
. (5.45)

This process is a µ martingale with Eµ(qα(t)) = qα(0). In terms of these martingales the SDE
verified by M(t) is

dM(t) = M(t)

∑
j<p

∑
β

qβ(t)r(j|β)dWj(t) +
∑
j≥p

(
∑
β

qβ(t)θ(j|β)− 1)[dNj(t)− dt]

 . (5.46)

Hence Girsanov theorem tells us that under µ,

Xj(t) = Wj(t)−
ˆ t

0

∑
β

qβ(s)p0(j)r(j|β)ds (5.47)

is a centered Gaussian process with covariance E(Xj(t)Xi(s)) = min(s, t)σji. Under the same
measure, the processes Nj(t) are counting processes and

Nj(t)−
ˆ t

0

∑
β

qβ(s)θ(j|β)ds (5.48)
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5. Continuous indirect measurements

is a martingale. Thus Nj(t) are counting processes with stochastic intensity
∑

β qβ(t)θ(j|β).

From their similar status of Radon-Nikodym derivative the question naturally arising is:

can we show that the processes qα(t) are the continuous limit of the processes q
(n)
α (t). Let us

use the “naive scaling” approach used in [24]. We assume the state processes defined from
the outcome processes should well behave under the limit as long as the limit obtained is
coherent with the initial discrete process. We recall that if one seek rigor, we refer to the
computations of the Mellin transforms done in [20].

Let us consider the Doob–Meyer decomposition of the evolution of one density matrix
element in the basis P.

ρ
(n)
αβ (t+ 1/n)−ρ(n)

αβ (t) =

ρ
(n)
αβ (t)

∑
j

m(n)(j|α)m(n)(j|β)− 1


+ ρ

(n)
αβ (t)

∑
j

m(n)(j|α)m(n)(j|β)∑
γ q

(n)
γ (t)p(n)(j|γ)

[∆Nj([nt])−
∑
γ

q(n)
γ (t)p(n)(j|γ)]

(5.49)

with M
(n)
j =

∑
αm

(n)(j|α)|α〉〈α|. The expansion in 1/
√
n gives

ρ
(n)
αβ (t+ 1/n)− ρ(n)

αβ (t) =

ρ
(n)
αβ (t)× (−i(Eα − Eβ) +

∑
j

l(j|α)l(j|β)− 1

2
(|l(j|α)|2 + |c(j|β)|2)1/n

+ρ
(n)
αβ (t)

∑
j<p

(l′(j|α) + l′(j|β)−
∑
γ

r(j|γ)q(n)
γ (t))[∆Y

(n)
j (t)− 1/n

∑
γ

p0(j)r(j|γ)q(n)
γ (t)]

+ρ
(n)
αβ (t)

∑
j≥p

(
l(j|α)l(j|β)∑
γ q

(n)
γ (t)θ(j|γ)

− 1

)
[∆N

(n)
j (t)− 1/n

∑
γ

q(n)
γ (t)θ(j|γ)]

+o(1/n)
(5.50)

with Eα|α〉 = Hsys.|α〉, l(j|α) = −i〈j|Hint.(α)Ψ〉 and l′(j|α) = l(j|α)/〈j|Ψ〉 for j < p. Remark
that r(i|α) = 2Re(l′(j|α)). Hence, considering the limit of 1/n to be an infinitesimal time
increment dt, the natural limit of this discrete difference equation is the differential equation

dρ
(0)
αβ(t) =ρ

(0)
αβ(t)× (−i(Eα − Eβ) +

∑
j

l(j|α)l(j|β)− 1

2
(|l(j|α)|2 + |c(j|β)|2)dt

+ ρ
(0)
αβ(t)

∑
j<p

(l′(j|α) + l′(j|β)−
∑
γ

r(j|γ)q(0)
γ (t))[dY

(0)
j (t)− dt

∑
γ

p0(j)r(j|γ)q(0)
γ (t)]

+ ρ
(0)
αβ(t)

∑
j≥p

(
l(j|α)l(j|β)∑
γ q

(0)
γ (t)θ(j|γ)

− 1

)
[dN

(0)
j (t)− dt

∑
γ

qγ(t)(0)θ(j|γ)].

(5.51)
Let us define operators Lj = 〈j|Hint.Ψ〉 and L′j = Lj/〈j|Ψ〉 for j < p. We also define a new

process X
(0)
j = Y

(0)
j (t)−

´ t
0

∑
γ p0(j)r(j|γ)q

(0)
γ (s)ds. X

(0)
j (t) has the same finite dimensional

distribution under P(0) as Xj(t) under µ. Similarly N
(0)
j (t) under P(0) has the same finite
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5.2. Physical models of continuous indirect measurement

dimensional distribution as Nj(t) under µ. Then using our newly defined operators Lj , L
′
j , we

expect ρ(0) under P(0) to have the same finite dimensional distribution as ρ(t), the solution
of the following SDE, under µ.

dρ(t) =L(ρ(t))dt

+
∑
j<p

(L′jρ(t) + ρ(t)L′j
∗ − tr[(L′j + L′j

∗
)ρ(t)]ρ(t))dXj(t)

+
∑
j≥p

(
Ljρ(t)L∗j

tr[L∗jLjρ(t)]
− ρ(t)

)
[dNj(t)− tr[L∗jLjρ(t)]dt]

(5.52)

where

L(ρ) = −i[H, ρ] +
∑
j

LjρL
∗
j −

1

2
{L∗jLj , ρ} (5.53)

is the usual Lindbladian. Of course we assume identical initial values ρ(0)(0) = ρ(0).
We can deduce the expression of the limit SDE for the diagonal elements of ρ(0)(t) in the

basis P. These pointer probabilities are solution of the following SDE

dq(0)
α (t) =q(0)

α (t)
∑
j<p

(r(j|α)−
∑
β

q
(0)
β (t)r(j|β))dX

(0)
j (t)

+ q(0)
α (t)

∑
j≥p

 θ(j|α)∑
β q

(0)
β (t)θ(j|β)

− 1

 [dN
(0)
j (t)− dt

∑
β

q
(0)
β (t)θ(j|β)].

(5.54)

We can compare this expression with the SDE of qα(t) obtained using the usual Itô formula.

dqα(t) =qα(t)
∑
j<p

(r(j|α)−
∑
β

qβ(t)r(j|β))dXj(t)

+ qα(t)
∑
j≥p

(
θ(j|α)∑

β qβ(t)θ(j|β)
− 1

)
[dNj(t)− dt

∑
β

qβ(t)θ(j|β)].

(5.55)

Hence we infer that the q
(0)
α under P(0) has the same finite dimensional distribution as qα(t)

under µ. Thus we infer that the finite dimensional distribution of (ρ(n)(t)) converges to the
one of (ρ(t)).

The SDE defining ρ(t) has not exactly the same expression as usual quantum trajectories.
The processes Xj(t) are not Wiener processes under µ. But a simple computation shows that
the processes Xj(t) can be expressed in terms of p− 1 independent Brownian motions Bj(t)
under µ: Xj(t) =

∑
i

√
p0(j)(δi,j −

√
p0(j)

√
p0(i))Bi(t). Then the quantum trajectory SDE

becomes

dρ(t) =L(ρ(t))dt

+
∑
j<p

(Ljρ(t) + ρ(t)Lj
∗ − tr[(Lj + Lj

∗)ρ(t)]ρ(t))dBj(t)

+
∑
j≥p

(
Ljρ(t)L∗j

tr[L∗jLjρ(t)]
− ρ(t)

)
[dNj(t)− tr[L∗jLjρ(t)]dt]

(5.56)
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where the Lj are redefined by Lj =
√
p0(j) 〈j|Hint.Ψ〉

〈j|Ψ〉 for j < p. We used
∑

j p0(j)L′j = 0.

We recovered the usual quantum trajectory SDE. Each outcome j with p0(j) 6= 0 leads to
a diffusive part. The outcomes j such that p0(j) = 0 lead to the counting processes. This is
not a surprise since we expect to frequently measure outcomes which had originally a strictly
positive probability to be measured, and to measure just few times outcomes which had a
null probability to be measured without interaction with the system.

General continuous limit

In [84–86], C. Pellegrini proved a more general and stronger result. For instance, he did not
assume that the initial discrete quantum trajectory corresponds to a non demolition indirect
measurement. We briefly sketch the method he used in [86]. Note that the existence and
uniqueness in distribution of the solution of the quantum trajectory SDE is needed to obtain
the convergence. This result is also proven in [86].

The derivation technique is based on the convergence of Markov generators. We recall that
(ρ(n)(t)) is a continuous time step process version of the discrete quantum trajectory (ρ(n)).
We have ρ(n)(t) = ρ(k) for k/n ≤ t < (k + 1)/n. We define the following operator acting
on C2

c function f of operators acting on the system Hilbert space. The index c means f has
compact support. We define

Anf(ρ) = n
∑
j

(
f

(
MjρM

∗
j

tr[M∗jMjρ]

)
− f(ρ)

)
tr[M∗jMjρ]. (5.57)

This operator associates to f the increment of the predictable process
∑n

k=1 E(f(ρ(k))|ρ(k−
1))− f(ρ(k − 1)) =

∑n
k=1

1
nAnf(ρ(k − 1)). The operator An is called the Markov generator

of the Markov chain (ρ(k)) (or of the process (ρ(n)(t)).

Equivalently, we can compute the generator of the continuous time quantum trajectory for
any C2

c function f on the set of operators acting on the system.

Af(ρ) = lim
t→0

E(f(ρ(t))|ρ)− f(ρ)

t
. (5.58)

The operator A is a generalization of the dual of the more known Fokker-Planck operator for
Markov diffusive processes. It also describes Markov processes including jumps. Using Itô
formula it is easy to compute the generator corresponding to a given SDE. For example, for
the quantum trajectory SDE, we have

Af(ρ) =Dρf(L(ρ))

+
∑
j<p

D2
ρf(Dj(ρ), Dj(ρ))

+
∑
j≥p

[f(ρj)− f(ρ)−Dρf(ρj)]vj(ρ)

(5.59)
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where ρj =
Jj(ρ)
vj(ρ) . Dρ and D2

ρ are shorthand notations for

Dρf(X) =

2 dim2
sys.∑

k=1

Xk
∂f

∂ρk
(ρ) (5.60)

D2
ρf(X,Y ) =

2 dim2
sys.∑

k,l=1

XkYl
∂2f

∂ρk∂ρl
(ρ) (5.61)

where X,Y are operators on the system Hilbert space and Xk are the real and imaginary
parts of their elements of matrix. The first line of (5.59) corresponds to the mean evolution
which is given by the Lindbladian L. The second line corresponds to the continuous (diffusive)
outcome processes. Considering only these two lines we are in presence of the usual dual of
a Fokker-Planck operator. The third and last line corresponds to the discontinuous (jump)
outcome processes.

A rapid computation using Taylor expansion shows that limnAnf(ρ) = Af(ρ) on the set
of states. The convergence is uniform on S(Hsys.) since this set is compact and the functions
f are C2

c . Note that if |Ψ〉 = |1〉 then p = 2 and D1(ρ) = 0 for any ρ. Thus, in the continuous
limit, we will not have any continuous (diffusive) outcome process.

The continuous time process ρ(t) is actually the unique solution (in distribution) such that

f(ρ(t))− f(ρ(0))−
ˆ t

0
Af(ρ(s))ds (5.62)

is a martingale with respect to its natural filtration Fρt = σ(ρ(s), s ≤ t). Hence any process
such that the last expression is a martingale has the same distribution as ρ(t). We say (ρ(t))
is the solution of the martingale problem (A, ρ(0)). Note that we expressed the solution of
the martingale problem in terms of process and not measure. We found a process solving the
martingale problem on an already defined probability space.

We reduced the characterization of the distribution of ρ(t) to the expression of its generator.
Hence it will be the object we will be mostly interested in. We expect that computing the limit
of An when n→∞, will lead to A and that it will imply that ρ(n)(t) converges in distribution
(i.e. weakly) to ρ(t). Instead of computing the limit of all finite dimensional distributions,
we will formally need to compute only the limit of An and not the whole history of the state.

One down side compared to the martingale change of measure of the QND case is that we
do not obtain explicitly the limit distribution of the measurement processes. Moreover we
lose the explanation of the change of measurement distribution through a martingale change
of measure induced by the interaction with the system.

A theorem of Ethier and Kurtz cited and adapted to quantum trajectories in [86] (Theorem
5) gives us the conditions under which the weak convergence is obtained from the generator
convergence. We do not state the full theorem here and refer the interested reader to the cited
article. Let us just indicate that in addition to the quantum trajectories properties we already
gave (mainly uniqueness of the solution of the martingale problem (A, ρ(0)) in distribution),
the family of processes (ρ(n)(t)) need to be tight (equivalently the family of measures implied
by these processes) and we need that for any increasing sequence of times (tk)1≤k≤m such
that tm ≤ t < t+ s, for any family of C2

c functions (θk)1≤k≤m and for any C2
c function f ,

lim
n

E

((
f(ρ(n)(t+ s))− f(ρ(n)(t))−

ˆ t+s

t
Af(ρ(n)(u))du

) m∏
k=1

θk(ρ
(n)(tk))

)
= 0. (5.63)
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The convergence of the expectation assure finite dimensional distribution convergence up to a
finite, arbitrary large time T . The tightness condition assure that the convergence is actually
weak.

The tightness condition on the family of processes (ρ(n)(t))n∈N guaranties that they are
mostly concentrated on a same compact subset of probability space. More precisely, (ρ(n)(t))
is a thigh family of processes if the family of corresponding measure (µn)n∈N is such that for
any ε > 0 it exists a compact subset Kε of the probability space such that for all µn

µn(Kε) > 1− ε. (5.64)

If the tightness criteria is not fulfilled, the processes could escape indefinitely to a previously
unexplored part of the probability space.

A good example of a non tight family of measures is a family of Gaussian probability
measures on the real line. Let (νn) be this family of measures. Their means are Eνn(X) = n.
Their variances are Eνn((X − n)2) = 1. Assume it exists a compact subset of R such that
νn(K) > 1

2 for any n. From Heine–Borel theorem, K is bounded. Let x0 = max(K). For n

large enough we have νn(K) ≤ 1√
2π
λ(K)e−

1
2

(x0−n)2
< 1

2 with λ the Lebesgue’s measure on

R. This contradicts νn(K) > 1
2 for any n. Thus the family (νn) is not tight. We see that

(νn) is not tight because when n → ∞, the pointwise limit of the density corresponding to
νn vanishes. Hence as n increase, the random variable X will always be concentrated farther
towards infinity.

The tightness of (ρ(n)(t)) is proved in [86]. We do not reproduce the proof here. The
convergence of the expectation is, as expected, a direct consequence of An convergence to A
and the fact that f(ρ(n)(t+s))−f(ρ(n)(t))−

∑n
k=1

1
nAnf(ρ(n)(t)) is a martingale with respect

to the natural filtration of (ρ(n)(t)). We refer the interested reader to the cited article for the
complete proof.

We have weak convergence of general discrete quantum trajectories to general continuous
quantum trajectories. The discussion of the extension of this result to mixed and random
i.i.d. initial probe states is made in [78].

In order to better understand the meaning of this limit and in particular to obtain the distri-
bution of the measurement outcome processes, one may like to actually extend the technique
used in the QND case. This might be possible considering the process (tr[M∗jnMjnρ(n− 1)])n
as a martingale with respect to a measure with equiprobability for the outcomes j. Then
one could see the actual distribution of the measurements as a martingale change of measure
using tr[M∗jnMjnρ(n− 1)]. If we find a continuous limit for the initially equiprobable law and
for the probability outcome martingale we might be able to find the continuous limit using
Girsanov theorem. The introduction of a ad–hoc i.i.d. distribution for the outcomes should
allow avoiding the difficulty introduced by the state dependency of the counting processes
intensities.

In the next subsection we turn to a derivation of quantum trajectories directly from contin-
uous time Markovian open system dynamics. We recall that in section 3.2.3, we saw that the
limit of repeated interactions (without measurement) leads to quantum stochastic differential
equation (QSDE). Hence a natural question would be, can we derive continuous quantum
trajectories directly from the QSDE ? Is the result coherent with the one we just obtained ?
One of the purpose of next subsection is to answer these questions.
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5.2.3. Quantum filtering

As we saw in chapter 3 in some limits, the extended evolution of an open system is described
through quantum stochastic (QS) processes. Compared to the reduced Markovian limit,
the noises of the QS evolution hold some information on the environment. This will allow
us to describe continuous monitoring of these environment. We expect to derive quantum
trajectories SDE for the system state when the QS noises are measured and taken into account.

This derivation is here obtained using quantum filtering techniques. V.P. Belavkin was the
first to define and use quantum filtering to obtain quantum trajectories SDE [26–28]. As far
as the author knows, it was the first derivation of quantum trajectories with no added hypoth-
esis on the behavior of the system under measurement. Only the QS unitary evolution and
the projection postulate where used. Since then this derivation has been mostly applied to
quantum optics situations, namely interferometry and photo counting measurements. Quan-
tum filtering is not the only method one can use to derive quantum trajectories from QSDE’s.
Alternative derivations can be found in [9, 12,25,102].

In this subsection we present a sketch of derivation inspired by the more recent work of L.
Bouten et al. [34]. We begin with an application of quantum filtering to one simple indirect
measurement. We then generalize this approach to measurements on quantum noises. We
give elements of proof for the derivation of the quantum trajectory SDE, first for a simple
interferometry measurement and then for a spontaneous photon emission. The generalization
by combination of these cases is straightforward.

Note that we will not discuss the general meaning and purpose of quantum filtering theory.
We just use the technique to derive quantum trajectories.

Discrete introduction to quantum filtering

Let us first consider a more simple situation. We apply the ideas of quantum filtering to a
simple discrete indirect measurement.

The setup is the following. A finite dimensional Hilbert space probe in a definite pure state
interacts with a system and is then measured. The probe plays the role of the environment.
The total Hilbert space we are interested in is a tensor product of the system Hilbert space
and the environment Hilbert space.

Htot. = Hsys. ⊗Hprobe (5.65)

The system and the probe are entangled through a unitary operator U acting on the total
Hilbert space Htot.. Starting with a disentangled state ρ = ρsys. ⊗ ρprobe, the state becomes
UρU∗ after the interaction.

Let O be the observable one measures on the environment (i.e O ≡ Isys.⊗O). Its spectrum
is spec(O). O can be written as a weighted sum of projectors O =

∑
o∈spec(O) oPo. The

projectors only act on the environment part of the Hilbert space: Po ≡ Isys. ⊗ Po. After a
measurement of O, if the result of the measurement is o, the total state is

PoUρU
∗Po

tr[PoUρU∗]
(5.66)

The probability of this event is p(o) = tr[PoUρU
∗].

This measurement is described by the probability space (spec(O),FO, p) with FO the small-
est σ–algebra making any singlet {o} measurable.
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5. Continuous indirect measurements

We can compute the expectation of any observable conditioned on the measurement. The
expectation of any operator Y acting on the total Hilbert space is tr[Y PoUρU

∗Po]/p(o). Then
the expectation of Y conditioned on the measurement of O is the random variable∑

o

tr[Y PoUρU
∗Po]/p(o)× 1{o}(ω) (5.67)

where ω ∈ spec(O) and Ep(1o) = p(o). We would like to be able to interpret this conditioning
as an actual conditional expectation as defined in the context of probability theory. First we
need to have some sort of equivalence between the quantum physics objects we use and the
probability theory ones.

For now we drop the interaction U and just try to describe a measurement. Let P be the
probability measure defined by P(A) =

∑
o∈A p(o) for any A ∈ FO. We have P(A) = tr[PAρ]

with PA =
∑

o∈A Po. The triplet (spec(O),FO,P) defines a probability space. It is the same
as before but with a new measure P. Let L∞(spec(O),F ,P) be the algebra of bounded P
measurable complex functions of spec(O). Hence L∞(spec(O),F ,P) is the set of all complex
linear combinations of singlet indicator functions 1{o} : spec(O)→ {0, 1}. Let O be the set of
all complex linear combination of projectors (Po)o∈spec(O). There is obviously a *-isomorphism
ι between O and L∞(spec(O),F ,P). Just replace the projectors by the indicator functions
in the expression of the operator and conversely. Moreover E(X) = tr[Xρ] for any element
X of O or equivalently L∞(spec(O),F ,P). We have a *-isomorphism between the two spaces
we want to use.

Using spectral theorem we can build such *-isomorphism for any commutative von Neumann
algebra (i.e. a weakly closed commutative sub algebra of the bounded operators acting on the
total Hilbert space) and any well defined state. For any commutative von Neumann algebra
O, any well defined state ρ, it exists a probability space (Ω,F ,P) and a *-isomorphism ι
between O and L∞(Ω,F ,P) such that for any element O of O, ρ(O) ≡ tr[Oρ] = E(ι(O))
(see [34] Theorem 3.3). So, since they are equivalent through the *-isomorphism, from now
on we do not distinguish the notations between the probability and the operator contexts.
Actually through is this mapping we interpret some quantum noises as classical processes as
we explained in section 3.1.

We want to compute the expectation of some operator conditioned on the measurement
outcome. This quantity is obviously a random variable. A probability theory tool which would
correspond to such random variable is a conditional expectation. Let us give an example of
conditional expectation we would like to use expressed in operator terms.

E0(Y |O) =
∑

o∈spec(O)

tr[Y PoρPo]/p(o)× Po. (5.68)

This definition is a quite straightforward application of the postulates of quantum mechanics.
We actually defined an observable with eigenvalues corresponding to some operator Y expec-
tation with respect to a state depending on the measurement outcome. Alas it is actually well
defined only for Y commuting with every element of O. Hence for Y in O′ the commutant of
O.

Let us show that with this limitation, it is actually a conditional expectation. We need to
show that for any K in O (K =

∑
λ k(o)Po) and any Y in O′, E0(E0(Y |O)K) = E0(Y K) =

E0(KY ). The last equality is easy to prove from the commutation of Y with K. The proof
of the first equality needs more attention. From the definition of the conditional expectation,
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5.2. Physical models of continuous indirect measurement

the decomposition of K in a sum of the projectors Po and the commutation of Y with any
projector Po, we have

E0(E0(Y |O)K) =
∑
o

tr[Y Poρ]/p(o)× tr[k(o)Poρ]. (5.69)

Since p(o) = tr[Poρ], we obtain

E0(E0(Y |O)K]) =
∑
o

tr[Y k(o)Poρ] = E0(Y K). (5.70)

This achieves the proof that E0(·|O) is a conditional expectation defined for elements of O′.
For Y not commuting with every element in O, the last equality is not true. We are stuck with
a sum

∑
o tr[PoY k(o)Poρ] which cannot be simplified in general. This limitation comes down

to fundamental quantum mechanics. If we have two non commuting observables A and B,
they cannot be measured simultaneously because the order in which we need to compute the
probabilities is indefinite. Either p(a, b) = tr[PaPbρ] or p(a, b) = tr[PbPaρ] with a, b eigenvalues
of A and B respectively. Hence we cannot define a probability space corresponding to such
measurement unless [Pa, Pb] = 0 for any a, b. It is actually a manifestation of Heisenberg
uncertainty principle. We cannot exactly know the value of two non commuting observables
at the same time.

Let us stress that the conditional expectation is only well defined for operator of the form
Y =

∑
o∈spec(O)Xo⊗Po with Xo operators on the system Hilbert space. This is not surprising.

These type of observables can actually be mapped to random variables defined on spec(O)
and taking value in the space of system operators. we have

ι(Y ) =
∑

o∈spec(O)

Xo 1o (5.71)

Hence as we would have expected, following [34], the definition of the conditional expec-
tation can be extended to any commuting von Neumann algebra, its commutant and any
physical state. One just need to go back and forth between the operators and the proba-
bility space using the *-isomorphism ι. The definition of the conditional expectation in the
probability space is then translated in the operator space. The elements of the commutant
of the von Neumann algebra which are not themselves in the von Neumann algebra are then
mapped to random variables which take value in the set of system operators.

We are interested in indirect measurements. Thus let us introduce back an interaction
taking place before the measurement. Hence we have two probability measures.

P0(A) =tr[PAρ] (5.72)

P(A) =tr[PAUρU
∗]. (5.73)

Under P, we have

E(Y |O) =
∑

o∈spec(O)

tr[Y PoUρU
∗Po]/pU (o)× Po (5.74)

with pU (o) = P({o}).
We would like to find a non negative random variable allowing us to pass from P0 to P.

Hence we would like to find a Radon–Nikodym derivative of P with respect to P0. Let us
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5. Continuous indirect measurements

formulate this in operator terms. Assume it exists an operator V in O′ such that, for any
operator Y in O′, E[Y ] = E0(V ∗Y V ). Remark that E0(V ∗V ) = E(Itot.) = P(spec(O)) = 1.
The existence of such V will allow us to find the law of the random variables of O′ under P
knowing their law under P0. In particular for any Y ∈ O, following the rules for conditional
expectations,

E(Y ) = E0(V ∗V Y ) (5.75)

= E0(E0(V ∗V |O)Y ). (5.76)

Therefore if such V exits, P is absolutely continuous with respect to P0 and E0(V ∗V |O) is
the Radon-Nikodym derivative, restricted to O of P with respect to P0. Finding this V is a
key point of the derivation of quantum trajectories.

We finish this discrete measurement introduction by showing the following Bayes’ rule
equivalent. It will turn useful for the derivation of quantum trajectories. For any Y ∈ O′, we
have

E(Y |O) =
E0(V ∗Y V |O)

E0(V ∗V |O)
(5.77)

P almost surely.

First let us show that for any K in O and any Y in O′,

E0(E0(V ∗Y V |O)K) = E0(E0(V ∗V |O)E(Y |O)K) (5.78)

The left hand side is obviously equal to E[Y K]. The right hand side is equal to

E0(E0(V ∗V E(Y K|O)|O)) (5.79)

where we used that K is in O as well as E(Y K|O). Since V commutes with any element of
O, we have

E0(E0(V ∗V E(Y K|O)|O)) = E0(V ∗E(Y K|O)V ). (5.80)

Then, since E0(V ∗Y V |O)− E0(V ∗V |0)E(Y |O) is an element of O, we have

E0((E0(V ∗Y V |O)− E0(V ∗V |O)E(Y |O))2) = 0 (5.81)

Thus

E0(V ∗Y V |O) = E0(V ∗V |O)E(Y |O) (5.82)

P0 almost surely and therefore P almost surely.

Finally E0(V ∗V |O) is P almost surely strictly greater than zero. So, we can divide both
sides of the inequality by E0(V ∗V |O) and we obtain the expected result.

The benefit of this Bayes’ rule formula is that we extracted the interaction from the defi-
nition of the measure. The price is that we need to find a suitable V .
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5.2. Physical models of continuous indirect measurement

QSDE and continuous measurement

Before we derive the quantum trajectories let us review some useful properties of QSDE’s.
We either recall some results of chapter 3 or show properties based on results of this chapter.
The evolution unitary operator process is the solution of the following QSDE

U0 = I

dUt = −i(H − i1
2
L∗L)Utdt+ L∗UtdAt − LUtdA∗t .

(5.83)

The evolution of a system operator Xt = U∗t XU
t is given by

dXt = L(X)t + [L∗, X]tdAt − [L,X]tdA
∗
t . (5.84)

We do not take into account the possible presence of Λt noises in the QSDE. The generalization
to the presence of several noises is straight forward, thus we simplify the explanations by
considering only one noise and thus one operator L.

We have the Itô computation rules

dXtdYt dΛt dAt dA∗t dt

dΛt dΛt 0 dA∗t 0
dAt dAt 0 dt 0
dA∗t 0 0 0 0
dt 0 0 0 0

A continuous measurement up to time t corresponds to a measurement of an observable Zt
which is a Hermitian linear combination of Λt, At, A

∗
t and t. As the time of the measurement

is increasing, so is t in the index of Zt. Thus along a continuous time measurement we do
not have a commutative algebra generated by only one operators but a commutative algebra
Zt generated by a family of operator (Zs)s≤t.Thankfully the family is commutative. We have
[Zt, Zs] = 0 for any time s, t. If Ys ∈ Zs then [Ys, Zt] = 0 for any t. Thus the commutative
algebra increases when a new member is added to the generating family. The family of
commutative algebras (Zt)t has a filtration behavior. For any time s < t, Zs ⊂ Zt.

We would now like to map these algebras to a probability space. As we explained in chapter
3, when the environment is in its vacuum state, Bt = At + A∗t and Nt = Λt + At + A∗t + t
can be mapped to, respectively, a Brownian motion and a Poisson process with unit intensity
on definite probability spaces. Since [Nt, Bt] 6= 0, only one of the two mapping can be made
at once. Note that since Nt and Bt are unbounded, the spectral theorem we stated earlier
in this subsection can not be applied directly to the corresponding commutative algebra Bt
and Nt. Nevertheless, since Nt and Bt are Hermitian we can still define a *-isomorphism
between the commutative algebra and a probability space [34]. Moreover, in the case of
quantum noise, we already explained in chapter 3, that S. Attal proved that both Bt and
Nt can be interpreted as multiplication operators by respectively a Brownian motion and a
Poisson process of unit intensity [3]. Hence through the mapping to the probability space, we
can set Z = Z∞ =

∨
tZt and we have that (Zt)t is actually a filtration.

It remains only to check that we can define a probability measure Pt for evolved observables
U∗t ZtUt. Hence a measure after the interaction. From the quantum physics rules, the expec-
tation of any operator Y in Z ′t after time t should be E0(U∗t Y Ut). But we can have aY acting
trivially on Γ(L2([s,∞[)) with s < t. Hence a Y corresponding to a measurement only up to
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5. Continuous indirect measurements

time s only. Thankfully, since U∗s Y Us = U∗t Y Ut, its expectation is still the one given. So even
if we stopped the measurement at time s, we can compute the expectation using Ut. This is
actually necessary for the definition of the measure Pt. This one of the difficulty encountered
when one tries to derive non Markovian quantum trajectories using quantum filtering.

Assume it exists a QS process Vt in Z ′t such that for any Y ∈ Z ′t, E0(U∗t Y Ut) = E0(V ∗t Y Vt).
Let Y be Zt measurable. Then E0(U∗t Y Ut) = E0(E0(V ∗t Vt|Zt)Y ). Assume E0(V ∗t Vt|Zt) is a
(Zt) martingale under P0 defined at least up to a finite fixed time T as large as we want. Then
Pt is defined as the measure whose Radon–Nykodim derivative with respect to P0 restricted
to Zt is E0(V ∗t Vt|Zt). The expectation of any Y ∈ Z ′t under Pt is given from its definition on
Zt through

Et(Y ) = Et
(
E0(V ∗t Y Vt|Zt)
E0(V ∗t Vt|Zt)

)
. (5.85)

In the two following subsections we use these techniques to study two measurement situa-
tion. First an interferometry and then a photon counting.

Homodyne measurement scheme

In a coherent interferometry (Homodyne) measurement, the phase shift between two parts
of a laser beam is measured. The laser frequency is tuned with the system energy level
difference. One of the parts evolves freely when the other one interact with the system
before the measurement. This measurement corresponds to a continuous measurement of a
quadrature of the field. Namely of linear combinations of the position operator, A∗t +At, and
the impulsion operator −i(At −A∗t ) of the boson field of the coherent laser light.

We restrict our selves to the continuous measurement of Bt = At +A∗t . The generalization
is straightforward. Similarly we suppose the field is in its ground state |e(0)〉 = |0〉. It seems
to be in complete contradiction with the presence of an intense laser. Actually, the state
of the laser field is assumed to be coherent. If we limit our selves to measurement up to
time t the state is |α1[0,t[〉 = e−αAt+αA

∗
t |0〉. Fortunately, a simple modification of the unitary

evolution brings us back to a vacuum initial laser field. It would be sufficient to redefine Ut
as Uαt = Ute

−αAt+αA∗t and we would have Ut(|φ〉⊗|α〉) = Uαt (|φ〉⊗|0〉) on Hsys.⊗Γ(L2([0, t[))
with |φ〉 the initial system state. For now we assume that Ut already takes into account this
modification. Thus we consider the bosonic field in its ground state. Hence the total initial
state is

ρtot.(0) = ρ(0)⊗ |0〉〈0|. (5.86)

Let us look at the measurement outcome process. We already know that under P0, Bt is
a Wiener process. Let us investigate its distribution under PT = E0(V ∗T VT |BT )P0. Hence we
need to find a suitable process Vt.

Let Vt be the solution of

dVt = −i(H − i1
2
L∗L)Vtdt− LVt(dA∗t + dAt). (5.87)

We have E0((U∗t − V ∗t )(Ut − Vt)) = 0 thus this choice is a good one.
For any system operator X, let

πt(X) =
E0(V ∗t XVt|Bt)
E0(V ∗t Vt|Bt)

. (5.88)
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5.2. Physical models of continuous indirect measurement

We have

dE0(V ∗t XVt|Bt) =E0(V ∗Vt|Bt)πt(L∗(X))dt− E0(V ∗Vt|Bt)πt(L∗X +XL)dBt. (5.89)

Particularly

dE0(V ∗t Vt|Bt) = −E0(V ∗t Vt|Bt)πt(L∗ + L)dBt. (5.90)

Thus E0(V ′t
∗Vt|Bt) is a (Bt) exponential martingale under P′0.

Hence using Girsanov theorem we find that under PT , Wt = Bt +
´ t

0 πs(L
∗ + L)ds is a

Wiener process. Hence the measurement process Bt under PT is such that

Bt = Wt −
ˆ t

0
πs(L

∗ + L)ds (5.91)

with Wt a Wiener process.
We turn to the computation of the quantum trajectory itself. The expectation of any

system observable conditioned on the measurement of Bt is given by

Et(X|Bt) =
E0(V ∗t XVt|Bt)
E0(V ∗t Vt|Bt)

(5.92)

= πt(X) (5.93)

under Pt.
Using Itô rules we easily compute

dπt(X) = πt(L∗(X))dt− (πt(L
∗X +XL)− πt(X)πt(L

∗ + L))dWt (5.94)

with π0(X) = E0[X] and Wt the previously defined Wiener process under Pt.
Let us now come back to the state. Let ρ(t) be the process of system state such that

tr[Xρ(t)] = Et(X|Bt) for any operator X acting on the system Hilbert space. The distribution
of tr[Xρ(t)] is equal to the distribution of πt(X). Thus the SDE giving the distribution of πt
gives the distribution of tr[Xρ(t)]. We just have to replace πt(X) in the previous equation by
tr[Xρ(t)]. The SDE defining the distribution of ρ(t) under Pt is then

dρ(t) = L(ρ(t))dt− (Lρ(t) + ρ(t)L∗ − tr[(L+ L∗)ρ(t)]ρ(t))dWt. (5.95)

Note that if we had used Uαt instead of Ut we would have find the same stochastic equation
with just a different Hamiltonian. We have dUαt = −i(H− i1

2(L∗L+ |α|2−2αL∗)Uαt dt+(L∗−
α)Uαt dAt−(L−α)Uαt dA

∗
t . Thus a suitable V α

t is the solution of dV α
t = −i(H−i1

2L
∗L+ |α|2−

2αL∗)V α
t dt + (L − α)V α

t (dA∗t + dAt). Repeating the same procedure with these operators,
we obtain the same equation with a new Hamiltonian H → H + i(αL∗ − αL). The outcome
process depends also on α. We have

dBα
t = dWt − (παt (L+ L∗)− (α+ α))dt. (5.96)

Hence the drift is shifted by the non vacuum coherent state.
This derivation can also be done when L depends on time. For example for an heterodyne

measurement. But has announced at the beginning of the chapter we do not present in details
such time dependency.
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Photon counting

We now deal with the case where photons are individually counted. As we already saw, in
the limit of a large number of photons detected per second we recover a diffusive quantum
trajectory. Here we assume we can distinguish every photon individually. The term photon
can of course be changed to any bosonic particle. The measured observable is the particle
number operator Λt.

As before we assume the environment bosonic field is in its vacuum state. It will be easier
to work not with Λt but with a unitarily equivalent observable Nt = Λt+At+A

∗
t +t = RtΛtR

∗
t

with Rt = eAt−A
∗
t . In chapter 3 we saw that Nt = Λt+A

∗
t +At+t has the the distribution of a

classical Poisson process with unit intensity. We even saw that actually Nt is a multiplication
operator by a Poisson process. Let It and Nt be respectively the commutative algebras
generated by the Λs’s and the Ns’s up to time t. Let us remark that Nt = RtItR∗t . The
law Pt is defined through Et(Y ) = E0(U∗t Y Ut) for any Y ∈ I ′t. Since we will work with Nt
and not It, let us preferably define P′t through E′t(Y ′) = E0(U∗t R

∗
tY
′RtUt) for any Y ′ ∈ N ′t .

From the unitary equivalence between the two algebra, we have Et(Y ) = E′t(RtY R′t) for any
operator Y in I ′t. Thus any random variable Y has the same law under Pt as RtY R

∗
t under

P′t. Hence Λt has the same law under Pt as Nt under P′t. Hence we can do all the study with
Nt under the law P′t instead of Λt under Pt.

First let us give the QSDE for U ′t = RtUt.

dU ′t = −i(H − i/2(L∗L+ Isys. − 2L))U ′tdt+ (L− Isyys.)U
′
tdA

∗
t − (L∗ − Isys.)U

′
tdAt (5.97)

U0 = I. A suitable V ′t is the solution of

dV ′t = −i(H − i/2(L∗L− Isys.))V
′
t dt+ (L− Isys.)V

′
t dNt (5.98)

For any system operator X let

π′t(X) =
E0(V ′t

∗XV ′t |Nt)
E0(V ′t

∗V ′t |Nt)
. (5.99)

Then

dE0(V ′t
∗
XV ′t |Nt) = E0(V ′t

∗
V ′t |Nt)

[
π′t(L∗(X))dt+ (π′t(L

∗XL)− π′t(X))[dNt − dt]
]
. (5.100)

Particularly

dE0(V ′t
∗
V ′t |Nt) = E0(V ′t

∗
V ′t |Nt)(π′t(L∗L)− 1)[dNt − dt]. (5.101)

Thus E0(V ′t
∗Vt|Nt) is a (Nt) exponential martingale under P′0.

Hence using Girsanov theorem once again, we have that

Nt −
ˆ t

0
π′s(L

∗L)ds (5.102)

is a (Nt) martingale under P′T . Thus under P′t, Nt is a counting process with stochastic
intensity π′t(L

∗L).
We turn now to the evolution of the expectation of any system observable conditioned on

the measurement outcomes. Hence to π′t(X). Using Itô rules we find it is the solution of

dπ′t(X) = π′t(L∗(X))dt+

(
π′t(L

∗XL)

π′t(L
∗L)

− π′t(X)

)
(dNt − π′t(L∗L)dt) (5.103)
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with π′0(X) = E′0(X).We have π′t(L
∗L) = tr[L∗Lρ(t)]. Thus the equation for the system state

is,

dρ(t) = L(ρ(t)) +

(
L∗ρ(t)L

tr[L∗Lρ(t)]
− ρ(t)

)
(dNt − tr[L∗Lρ(t)]dt). (5.104)

We have recovered the jump quantum trajectory.

Note that the martingale change of measure we used here is not guarantied to work when
we consider not Nt but Λt. The latter can be seen as a counting process with zero intensity
when the environment is in the vacuum. Then the event Λt > 0 as zero probability 0 under
P0 whereas it would have a strictly positive probability under the probability measure after
the interaction Pt. So Pt is not absolutely continuous with respect to P0, thus we should not
be able to find a martingale to pass from P0 to Pt. If the environment is not in a vacuum state
but in a coherent state with parameter α this is not an issue. Under the induced probability
measure Pα, Λt is a Poisson process with intensity |α|2. And we have absolute continuity of
Pt with respect to Pα. The impossibility to obtain a positive intensity starting with a null
one is a limit of the approach through martingale change of measure. But as we saw we can
always find a way around this problem. Here we used Nt instead of Λt.

Both the results we just obtained can be combined adding more noises in the QSDE. Then
the general form of quantum trajectories SDE is recovered. One can also check that using
quantum filtering on the QSDE corresponding to the repeated interactions continuous limit
leads to the quantum trajectory SDE we found in last subsection.

For the present derivation, we assumed the environment was in a pure state. This is not
a limitation since we can always find a representation in which the environment state is a
pure one. Though, the identification of the observables corresponding to the actual physical
measurement might be harder. The only true limitation is that the unitary evolution must
correspond to a Markovian reduced one. The derivation and interpretation of non Marko-
vian quantum trajectories describing continuous measurements of a system whose reduced
evolution would be non Markovian is still an open question [18,56,93].

Continuous and two time measurements

Before we end this subsection let us stress the importance of the fact that U∗t ZsUt =
U∗sZsUs for s < t. Usually in quantum mechanics, the joint distribution of two measure-
ments with observable A and B at two different times, respectively s and t, is given by
G(λA, λB) = tr[U∗t e

λAAUtU
∗
s e
λBBUsρ]. The sometime used expression tr[eλAU

∗
t AUt+λBU

∗
sBUsρ]

has no clear physical meaning. But in the Markovian context these two quantities are ac-
tually equal. Let A be the measurement of Z at time t and B the measurement of Z at
time u. Their joint characteristic distribution is then G(λt, λs) = tr[U∗t e

λtZtUtU
∗
s e
λsZsUsρ].

Now since U∗sZsUs = U∗t ZsUt and [Zt, Zs] = 0, we have G(λt, λs) = tr[eλtU
∗
t ZtUt+λsU

∗
sZsUsρ].

Moreover, since tr[eλU
∗
t ZtUt−λU∗sZsUsρ] = tr[U∗t e

λ(Zt−ZsUtρ] = Et(eλ(Zt−Zs)), the statistics of
the two times measurement is given by the statistics of the continuous measurement outcome
process increment between the two times.

This is interesting for particle counting measurements. Λt count the number of particles
detected up to time t. Formally Λ∞ is the measurement of the total number of particles.
Before any interaction happen we have Λ∞ = 0 since the environment is considered in its
ground state. Let us consider a two time measurement of Λ∞. At time t we measure U∗t Λ∞Ut
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and at time s, U∗sΛ∞Us. Now, from the factorization property of Λ∞ and the fact that the
interaction up to time t only acts on Hsys. ⊗ Γ(L2([0, t[)), we have U∗t Λ∞Ut = U∗t ΛtUt. Thus
tr[U∗t e

λΛ∞UtU
∗
s e
−λΛ∞Usρ] = Et(eλ(Λt−Λs)) which is the characteristic function of the incre-

ment of the measurement outcome process (Nt) between time s and t. Thus the continuous
measurement is equivalent to a two time measurement. As pointed out by D. Bernard and B.
Doyon in [30] it should be in this continuous measurement context that quantum fluctuation
relations should be envisioned. In experiments we cannot measure the entire environment at
once. Experimenters use continuous measurement of currents.

5.2.4. Unraveling of master equation

Quantum trajectory SDE’s can be also be obtained through the unraveling of master equa-
tions [8,13,17]. The unraveling of the master equation consists in finding a classical stochastic
process preserving the purity of the states such that the mean evolution of this state corre-
sponds to a given master equation. The idea is to say that the master equation found by other
means is actually the mean evolution of a natural indirect measurement on the environment.
The link between this approach and the dilation of the master equation is clear. On one side
we try to find a measurement which would lead in average to the master equation. On the
other side we try to find an environment which, once traced out, would lead to the master
equation. Using quantum filtering we should be able to go from this environment to the
unraveling [13].

This approach can be understood as a more rigorous generalization of the phenomenological
approach we presented at the beginning of this section.

In this subsection we just present the unraveling of the master equation, without involving
instrument formalism. We neither do the unraveling in the most general context where the
operators Lj and H only have to be bounded adapted processes with respect to the natural
filtration of the system state process. This generality is actually the strength of this approach.
Here we only consider operators which are independent of time and of the system state.

The linear process

First let us recall the expression of the master equation.

dρ̂(t) = L(ρ̂(t))dt

= (−i[H, ρ̂(t)] +
∑
j

Lj ρ̂(t)L∗j −
1

2
{L∗jLj , ρ̂(t)})dt. (5.105)

Suppose the initial state is pure, ρ(0) = |φ(0)〉〈φ(0)|. We want to find a process |φ(t)〉
on Hsys. such that ρ̂(t) = E(|φ(t)〉〈φ(t)|). Suppose only two operators Lj are involved in
the Lindbladian L, j ∈ {1, 2}. Suppose we expect one continuous in time measurement
outcome (a current) and one discrete (a counting). Thus let us define a filtered probability
space (Ω,F , (Ft),Q) supporting one Wiener process (W (t)) and one Poisson process with
unit intensity (N(t)). These two processes are independent. Let (Ft) be their joint natural
filtration. We define a process

d|φ(t)〉 = K|φ(t)〉+D1|φ(t)〉dW (t) +D2|φ(t)〉[dN(t)− dt]. (5.106)
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5.2. Physical models of continuous indirect measurement

with K,D1, D2 some linear operators on Hsys.. It is the most general linear SDE with time
independent coefficients. If one computes the expectation of ρ̂(t) = EQ(|φ(t)〉〈φ(t)|), one gets

dρ̂(t)/dt = Kρ̂(t) + ρ̂(t)K∗ +D1ρ̂(t)D∗1 +D2ρ̂(t)D∗2. (5.107)

Since the right hand side must be equal to L(ρ̂(t)), we shall choose

K = −i(H − i1
2

(L∗1L1 + L∗2L2 − 1))

D1 = L1

D2 = L2 − 1.

(5.108)

For any 2 × 2 unitary matrix u, D1 = u11L1 + u12L2, D2 = u21L1 + u22L2 − 1 are suitable
Dj operators. But let us stick with our initial definition.

We have a process with values in Hsys. such that the average evolution of the corresponding
density matrix is given by the master equation. Still there is an issue. The norm of |φ(t)〉 is
not almost surely conserved in time. Thankfully, a change of measure will allow us to define a
non linear SDE such that the normalized state stay pure and its average leads to the master
equation.

The non linear SDE

Let σ(t) = |φ(t)〉〈φ(t)|. The trace of σ(t) is the solution of the SDE

dtr(σ(t)) = tr[(L1 + L∗1)σ(t)]dW (t) + tr[(L∗2L2 − 1)σ(t)][dN(t)− dt] (5.109)

Let ρ(t) = σ(t)/tr[σ(t)] with ρ(t) = ρ̃ a fixed state whenever tr[σ(t)] = 0. Then tr[σ(t)] is the
solution of a Doleans–Dade SDE

dtr[σ(t)] = tr[σ(t)]dZ(t) (5.110)

with

dZ(t) = tr[(L1 + L∗1)ρ(t)]dW (t) + (tr[(L∗2L2ρ(t)]− 1)[dN(t)− dt]. (5.111)

Z(t) is a Ft local martingale under Q. The operators L1 and L2 are bounded and ρ(t) is
Q almost surely bounded too. Thus, up to a time T arbitrary large, tr[σ(t)] is a martin-
gale. Therefore we can define P the measure such that its Radon-Nikodym derivative with
respect to Q limited to FT is tr[σ(T )]. Using Girsanov theorem, we find that under P,
Xt = Wt −

´ t
0 tr[(L1 + L∗1)ρ(s)]ds is a Wiener process and Nt is a counting process with

intensity tr[L∗2L2ρ(t)].
Let us explicitly write the expectation of σ(t) under Q.

EQ(σ(t)) =

ˆ
Ω
σ(t)(ω)Q(dω). (5.112)

This expectation is equal to the expectation of ρ(t) under P. ρ(t) is the solution of the SDE

dρ(t) =L(ρ(t))dt

+ (L1ρ(t) + ρ(t)L∗1 − tr[(L1 + L∗1)ρ(t)]ρ(t))dX(t)

+

(
L2ρ(t)L∗2

tr[L∗2L2ρ(t)]
− ρ(t)

)
[dN(t)− tr[L∗2L2ρ(t)]dt].

(5.113)

117



5. Continuous indirect measurements

Note that tr[σ(t)] is almost surely never equal to 0 under P. Thus ρ(t) is almost always the
normalized state. We have recovered the quantum trajectory SDE since under P, X(t) is a
Wiener process and N(t) has intensity tr[L∗2L2ρ(t)].

The differential equation for EP(ρ(t)) is the master equation and tr[ρ(t)] = 1 P almost
surely at any time. Moreover, as we will see in next section, if the initial state is a pure one,
then ρ(t) corresponds also to a pure state P almost surely.

Note that we can relax the assumption of an initial pure system state to any system mixed
state. Then σ(0) is a convex linear combination of rank one projectors. And following the
same steps we obtain the same quantum trajectory SDE whatever is the initial system state.

The liberty in the choice of D1 and D2 shows that there is not a unique unraveling for a
given master equation. This is coherent with the fact that there is not a unique dilation. This
is actually a result of the non unicity of the form of the Lindbladian we discussed in section
2.2. But moreover, once the dilation is done, we can perform different measurements on the
environment obtained. Hence we could have chosen only continuous in time measurement.
We would have obtained a purely diffusive quantum trajectory. Equivalently we could have
chosen a purely jump type quantum trajectory. Thus the suitable unraveling depends on
the context. Either one tries to find the best match to an actual continuous measurement
experiment or one search for the best quantum trajectory suited for a numerical simulation
of the master equation.

We chose to organize the presentation of the quantum trajectory derivations with the
underlying physical microscopic model in mind. Other point of views are adopted in the
literature [8, 11].

5.3. Asymptotic behavior

We have covered all known derivations of quantum trajectories as a mean to model con-
tinuous indirect measurements. Now we study the behavior of these quantum trajectories.
We will recover the different results we obtained for discrete time quantum trajectories in the
continuous case.

5.3.1. Ergodicity

Continuous quantum trajectories are an important tool for numerical simulations of master
equations [44]. As we will see in next section they preserve the purity of states. In the context
of numerical simulations, dealing with pure states is much more efficient than dealing with
density matrices. For a system of dimension d, one needs to compute d coordinates for a
pure state where as, for a density matrix, one need to compute d2 matrix elements. The
complexity of the algorithm is thus reduced using pure states. The algorithm of computation
for the reduced Markovian evolution goes as follows. One simulates not the evolution given
by the master equation, but a quantum trajectory unraveling the reduced evolution. One
then average over a lot of realizations of such quantum trajectories. Usually since we have
the choice in the unraveling, one prefers to use jump quantum trajectories. They are much
simpler to compute. This is this idea that lead J. Dalibard et al. to the introduction of
quantum trajectories [44].

These numerical simulations raise one question. Do we need to simulate several realizations
of quantum trajectories or can we just average a single one over time? Hence we are faced
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5.3. Asymptotic behavior

with a question on the equality between the ensemble average and the time average. Do we
have

lim
t→∞

E(ρ(t)) = lim
t→∞

1

t

ˆ t

0
ρ(s)ds ? (5.114)

We face the same question as in the discrete case. We will answer it not only for jump quantum
trajectories but for any continuous time quantum trajectory. Indeed this question is not only
interesting for numerical situations but also to understand asymptotic behavior of quantum
systems subject to indirect measurements. For example, as in the discrete case, we will use the
ergodic properties of quantum trajectories to find an exponential rate of convergence toward
a collapse of the wave function in the context of non demolition measurements.

The results of this section where obtained by B. Kümmerer and H. Maassen in [69].
Again, the first remark we need to make is that limt E(ρ(t)) is not always well defined. For

example if all the Lj operators of the Lindbladian are proportional to the identity, we are left
with a unitary evolution and E(ρ(t)) has a limit if and only if ρ(0) is an eigenvector of the
Hamiltonian. Hence when E(ρ(t)) is a constant. As in the discrete case we avoid this issue
since the ergodic mean of the trajectory will converge with probability one towards one of the
invariant states of the mean evolution.

lim
t→∞

1

t

ˆ t

0
ρ(s)ds = ρ(∞) (5.115)

almost surely with L(ρ(∞)) = 0. Moreover

E(ρ(∞)) = PΦ(ρ(0)) (5.116)

with PΦ the projector on the invariant states of the semigroup Φt corresponding to the average
evolution.

PΦ(ρ) = lim
t→∞

1

t

ˆ t

0
esLρ ds. (5.117)

The proof of this convergence is once again obtained through the convergence of two specific
martingales. First if we apply PΦ to the integral expression for the trajectory, we remark that
the predictable part disappears.

PΦ

(ˆ t

0
L(ρ(s))ds

)
= 0. (5.118)

One can either compute 1
u

´ u
0 dv

´ t
0 dse

vLL(ρ(s)) =
´ t

0 ds
1
u(euL − I)ρ(s) and take the limit

u → ∞. It is 0 since euL preserves the set of states. Or one can express PΦ as a sum of
non Hermitian projectors onto the invariant states of etL. We have PΦ =

∑
k |ρk〉〈Mk| with

|Lρk〉 = 0 and 〈L∗Mk| = 0 [103]. |ρk〉 is the vector representation of the invariant state ρk. k
runs from 1 to the number of linearly independent invariant states. The cancellation is then
obvious.

Since its predictable part is null, PΦ(ρ(t)) is a martingale. It is bounded, so it converges
almost surely. Actually its limit is ρ(∞). It remains to prove that 1

t

´ t
0 ρ(s) − PΦ(ρ(s))ds

converges almost surely to 0. It is a consequence of the second martingale convergence. It is
actually a law of large numbers for a specific martingale.
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5. Continuous indirect measurements

The martingale part of the integral expression for the trajectory is∑
j<p

ˆ t

0
Dj(ρ(s))dWj(s) +

∑
j≥p

ˆ t

0

(
Jj(ρ(s))

vj(ρ(s))
− ρ(s)

)
[dNj(s)− vj(ρ(s))ds]. (5.119)

Let us write this martingale Mt and its quadratic variation [M ]t,

[M ]t =
∑
j<p

ˆ t

0
Dj(ρ(s))2ds+

∑
j≥p

ˆ t

0

(
Jj(ρ(s))

vj(ρ(s))
− ρ(s)

)2

dNj(s). (5.120)

All the integrands in this integral expression of [M ]t are almost surely bounded and the
intensity of the Nj(t)’s are also almost surely bounded. Hence, we have

ˆ ∞
1

tr

[
1

t2
dE([M ]t)

]
<∞. (5.121)

Thus the martingale law of large numbers [67] implies

lim
t→∞

Mt/t = 0 (5.122)

almost surely.
Since ρ(t) and ρ(0) are bounded we have limt

1
t

´ t
0 L(ρ(s))ds = 0. This result is sufficient

to prove limt
1
t

´ t
0 ρ(s) − PΦ(ρ(s))ds = 0. For the details we refer the reader to [69]. This

conclude the proof of B. Kümmerer and H. Maassen ergodic theorem for continuous quantum
trajectories.

Using this result we can prove a law of large numbers on the measurement record processes.
Let us recall that the continuous measurement record processes are

Yj(t) = Wj(t) +

ˆ t

0
tr[(Lj + L∗j )ρ(s)]ds. (5.123)

The discontinuous ones are just the counting processes Nj(t). From the Brownian law of large
numbers, we have limtWj(t)/t = 0. From the ergodic theorem we just presented, we have

limt
1
t

´ t
0 tr[(Lj + L∗j )ρ(s)]ds = tr[(Lj + L∗j )ρ(∞)]. Thus

lim
t

1

t

ˆ t

0
Yj(s)ds = tr[(Lj + L∗j )ρ(∞)]. (5.124)

Hence, the limit of the time average drift of the continuous measurement record corresponds
to the one expected with a system in an invariant state of Φt.

Has stated before, the intensities of the processes Nj(t) are almost surely bounded. It
follows that the related compensated Poisson process, which is a martingale, obey to the

martingale law of large numbers. So 1
t

(
Nj(t)−

´ t
0 vj(ρ(s))ds

)
converges almost surely to 0.

Thus

lim
t
Nj(t)/t = vj(ρ(∞)). (5.125)

Hence, the limit jump frequencies correspond to the one expected with a system in an invariant
state of Φt.

We will use these laws of large numbers to find the exponential rate of convergence of the
system state in the context of non demolition measurements.
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5.3. Asymptotic behavior

5.3.2. State purification

As announced in previous subsections a useful property of quantum trajectories is that they
preserve almost surely the purity of the system state. Of course if an additional dissipation
process takes place, this is no longer true. We concentrate on quantum trajectories which
conserve the purity, hence when no part of the environment is left unmeasured.

Maybe the most simple way to see that pure states stay pure almost surely along the
trajectory is that we can actually write a stochastic differential equation (SDE) for the pure
state |φt〉 corresponding to the density matrix ρ(t) = |φt〉〈φt|. Then we recover the usual
quantum trajectory SDE when we compute d(|φt〉〈φt|) using Itô rules.

A better proof of purity conservation was obtained by A. Barchielli and A. M. Paganoni
in [17]. A good indicator of purity is the linear entropy: G(ρ) = tr[ρ(I − ρ)]. It is positive
and bounded from above by 1. It is equal to 0 if and only if ρ corresponds to a pure state.

G(ρ) = 0 ⇐⇒ ∃|φ〉 s.t. ρ = |φ〉〈φ|. (5.126)

The conservation of purity follows directly from the expression of the mean evolution of
G(ρ(t)), E(G(ρ(t))).

E(G(t)) = G(0)−
ˆ t

0
E(y(ρ(s)))ds. (5.127)

with

y(ρ) =
∑
j<p

tr
[(√

ρ(Lj + L∗j − tr[(Lj + L∗j )ρ])
√
ρ
)2]

(5.128)

+
∑
j≥p

vj(ρ)tr

[(
√
ρ

(
L∗jLj

vj(ρ)
− I
)
√
ρ

)2
]
. (5.129)

Since y(ρ) is a sum of two positive terms, y(ρ(s)) is almost surely positive. Hence E(G(ρ(t))) ≤
G(0). Actually using the conditional expectation with respect to Fs, we have E(G(ρ(t))|Fs) ≤
G(ρ(s)). If the state is pure at time s, we have G(ρ(s)) = 0. Thus E(G(ρ(t))) ≤ 0. But
remember that G(ρ) is always non negative, so G(ρ(s)) = 0⇒ E(G(ρ(t))|Fs) = 0. It follows
that for any t > s, G(ρ(s)) = 0⇒ G(ρ(t)) = 0 almost surely. Hence once the state is pure it
stays pure.

As in the discrete case, we do not only have conservation of the purity but also a tendency
to purify mixed states along the quantum trajectory.

The inequality E(G(ρ(t))|Fs) ≤ G(ρ(s)) informs us that G(ρ(t)) is actually a supermartin-
gale. It is bounded thus it converges. Now the question is whether or not G(ρ(t)) converges
to 0. In [17] the authors gave a sufficient criteria for the almost sure purification, hence for
the almost sure convergence to zero of the linear entropy.

If it does not exists a, at least, two dimensional projector P and scalars rj and θj such that

∀j < p, P (Lj + L∗j )P = rjP and ∀j ≥ p, PL∗jLjP = θjP, (5.130)

then any initial state tends to purify along the trajectory when t goes to infinity. In other
words, if no such projector exists, then limtG(ρ(t)) = 0 almost surely.

The proof is based on the convergence to zero of E(y(ρ(t))). Remember that E(G(ρ(t))) =
G(ρ(0))−

´ t
0 E(y(ρ(s)))ds. Since G(ρ(t)) converges almost surely and is bounded, the integral
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5. Continuous indirect measurements

over s in last expression converges too. So limt E(y(ρ(t))) = 0. Since y(ρ) ≥ 0 for any state,
this last convergence means that y(ρ(t)) converges in L1 norm to 0. But y(ρ) = 0 if and only
if

√
ρ(Lj + L∗j − tr[(Lj + L∗j )ρ])

√
ρ = 0, ∀j < p (5.131)

and
√
ρ

(
L∗jLj

vj(ρ)
− I
)
√
ρ = 0, ∀j ≥ p. (5.132)

This is possible only if it exists a projector P and reals rj , θj such that

P (Lj + L∗j )P = rjP, ∀j < p (5.133)

and PL∗jLjP = θjP, ∀j ≥ p. (5.134)

If the condition on the projectors is true, this is true only for rank one projectors. Hence
y(ρ) = 0 only for pure states ρ. Thus we have a convergence in L1 norm towards pure states.
We would like an almost sure convergence.

Since y(ρ(t)) converges to zero in L1 norm, it exits a divergent subsequence of times (tn)
such that y(ρ(tn)) converges almost surely to 0. In [17], the authors show an implication
between the almost sure convergence of y(ρ(tn)) to zero and the almost sure converge of
G(ρ(tn)) to zero. For the details we refer the reader to this article. From this almost sure
convergence and the unicity of the limit we obtain limtG(ρ(t)) = 0 almost surely.

In next section on non demolition measurements we will discuss a typical case where the
condition on the non existence of a two dimensional projectors is violated. The non purity in
the limit is then obvious.

5.4. Non demolition indirect measurements and wave function
collapse

In this section and the following section we translate the results of sections 4.3 and 4.4.
In this first one we discuss continuous quantum trajectories corresponding to non demolition
measurements. As explain in the section on discrete time non demolition measurements, their
aim is to measure a system with minimal perturbation. Avoiding the direct measurement of
the system can also protect its integrity. A good example of this protection is of course
the photon number measurement performed by S. Haroche’s group [61]. As in the discrete
case we will give the conditions under which the quantum trajectory equation respects the
preservation of the pointer states. It is not a surprise that this condition imposes that H
and all the Lj operators need to be diagonal in the same basis. Under a non degeneracy
condition, we show that the state converges almost surely to one of the pointer states with
a distribution of the limit pointer states equal to the one expected for a direct measurement
of the pointers. We, once again, reproduce in the long time limit the behavior corresponding
to a projective von Neumann measurement. This result is not completely new. Actually,
the stochastic Shrödinger equation emerged in attempts to find a stochastic equation leading
to wave function collapse [49, 58]. In [2, 98], wave function collapse for different quantum
diffusive trajectories was shown.

During this thesis, in [20] with M. Bauer and D. Bernard and then using similar techniques
in [29] with C. Pellegrini we generalized these results to any kind of quantum trajectories.
The fact that these same evolution equations arise as a special case of quantum trajectories
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5.4. Non demolition indirect measurements and wave function collapse

shows that they indeed explain wave function collapse. But we still need to postulate Born’s
rule. It is applied to the environment in the derivation of quantum trajectories. We recall
that in the discrete indirect measurement setting, we saw in chapter 4 that only Born’s rule
is necessary to obtain the state update knowing the result of the indirect measurement. The
same is true for our derivations of continuous quantum trajectories. Hence the collapse we
obtain is a direct consequence of Born’s rule, not von Neumann postulate.

In these articles we also showed that the convergence is exponential and gave the explicit
rate of convergence. We showed stability of the estimated state. If one starts the computation
of the state evolution with a state different from the physical state and use the actual outcomes
to update it, the estimated state will collapse on the same state as the physical one almost
surely. In this section we present these new results.

Even if this might seem redundant with the discrete case, the continuous case applies to
different physical situations and is often used as an approximation of repeated indirect mea-
surements when the computation of the unitary U becomes too difficult. Hence knowing the
non degeneracy criteria and the convergence rate for continuous non demolition measurement
is of interest. We should stress that we do not aim at the same kind of generality as in the
discrete case. For example we do not discuss the introduction of a feedback. Hence we do
not treat the continuous approximation of a non i.i.d. choice of measurement methods. This
would need a general description of non Markovian quantum trajectory. A lot of work is done
nowadays on this subject [18,56,93] but the question is beyond the subject of this thesis.

As in the discrete case, even if this results may seem redundant with the results of previous
section, they concern actually a much more specific physically interesting case for which much
stronger results can be obtained. Once again we will introduce the concept of pointer states
which are directly related to experiments. Moreover the exponential convergence and the
stability of the estimated state are both new results.

The section is structured as follow. In a first subsection we give a necessary and sufficient
condition for a quantum trajectory SDE to be non demolition. We also prove that this is
equivalent to the pointer probability processes being martingales. In a second subsection
we present the non degeneracy condition and show the collapse. In a third subsection we
prove the exponential collapse and give the expression of the rate. In a fourth subsection we
evaluate the mean convergence time. In a fifth section we discuss the possibility of a collapse
in a finite time. Finally in a last subsection we show the stability of the estimated state.

5.4.1. Non demolition condition

A quantum trajectory SDE corresponds to a non demolition measurement if and only if
it preserves a set of states, the pointer states P. This set forms an orthonormal basis of
Hsys.. The stability means that if at time s the system state is one of the pointers, then,
with probability one, it will be in this pointer state at any later time. This non demolition
condition is fulfilled if and only if the Hamiltonian H and all the operators Lj are diagonal
in the basis of the pointers.

∀α ∈ P, ∀t ≥ s, ρ(s) = |α〉〈α| ⇒ ρ(t) = |α〉〈α| a.s.
m

H =
∑

α∈P E(α)|α〉〈α|, ∀j, Lj =
∑

α∈P l(j|α)|α〉〈α|.
(5.135)

If the former is true, then the invariance of the pointer state is also true in mean: E(ρ(t)) =
|α〉〈α| which implies L(|α〉〈α|) = 0. From this equality looking at the different matrix elements
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5. Continuous indirect measurements

of L(|α〉〈α|) we obtain that H and the Lj are diagonal in P.
If the latter is true, then the pointers are invariant under the mean (linear) evolution. Thus

if at time s ρ(s) = |α〉〈α|, at any later time t, E(1−tr[ρ(t)|α〉〈α|]|Fs) = 0 almost surely. Since
1 − tr[ρ(t)|α〉〈α|] ≥ 0, it means tr[ρ(t)|α〉〈α|] = 1 almost surely. Hence ρ(t) = |α〉〈α| almost
surely.

The fact that the pointer states are eigenvectors of H restrict the possibility of non de-
molition measurements to the measurement of effective energy state. It is the duty of the
experimenter to built a context in which the states he wants to measure are eigenstates of the
effective Hamiltonian. This effective Hamiltonian is usually different from the free one since
the presence of an environment often modifies the effective unitary evolution (Lamb shift for
example).

The non demolition condition is also equivalent to the processes qα(t) = tr[ρ(t)|α〉〈α|] being
martingales.

Assume our quantum trajectory SDE fulfills the non demolition condition for P. Then
the pointers are invariant states of the average evolution: L(|α〉〈α|) = 0. The rank one
projector corresponding to the pointer state is also invariant under the dual average evolution:
L∗(|α〉〈α|) = 0. Thus the drift part of the SDE for qα(t) is null and qα(t) is a martingale.

The converse is based on the same argument. Since qα(t) is a martingale, the drift part of
its SDE must be null for any state. Hence L∗(|α〉〈α|) = 0. It follows that H and all the Lj
must be diagonal. So the quantum trajectory SDE is non demolition for P.

As one can guess this martingale property will turn useful when showing wave function
collapse and studying the mean convergence time.

Now that we know that qα(t) is a martingale, let us define new quantities which simplify
its study.

r(j|α) = l(j|α) + l(j|α), ∀j < p (5.136)

θ(j|α) = |l(j|α)|2, ∀j ≥ p. (5.137)

Then qα(t) SDE is

dqα(t) = qα(t)

∑
j<p

(r(j|α)− 〈r(j)〉t)dWj(t) +
∑
j≥p

(
θ(j|α)

〈θ(j)〉t
− 1

)
[dNj(t)− 〈θ(j)〉tdt]


(5.138)

with 〈f(j)〉t =
∑

β∈P qβ(t)f(j|β). These r(j|α) and θ(j|α) are the eigenvalues of respectively
the operators Lj +L∗j and L∗jLj . Hence 〈r(j)〉t = tr[(Lj +L∗j )ρ(t)] and 〈θ(j)〈t= tr[L∗jLjρ(t)].
We have obtained a SDE similar to the one we found when computing the continuous limit
of the discrete time equivalents of qα(t).

5.4.2. Wave function collapse

Since the (qα(t)) are bounded martingales, they converge almost surely. We have a non
degenerate measurement when one and only one qα(∞) is equal to one and the others are
null.

Let us assume that for any couple of different pointer α, β, there is at least one j such that

r(j|α) 6= r(j|β) if j < p
θ(j|α) 6= θ(j|β) if j ≥ p. (5.139)

124



5.4. Non demolition indirect measurements and wave function collapse

This is our non degeneracy condition. If this condition is fulfilled, then the system state
converges with probability one towards one of the pointer states, and the distribution of this
limit state correspond to that of the projection postulate.

If the non degeneracy condition is fulfilled,

limt→∞ ρ(t) = |Υ〉〈Υ| almost surely,
P(Υ = α) = qα(0).

(5.140)

Υ is a random variable on the set of pointer states. This result was obtained in [20] for
diffusive trajectories and extended to any trajectory in [29]. It corresponds to a generalization
of previous results [2, 98].

The convergence of the state is once again obtained through the convergence of the pointer
state probabilities qα(t). These probabilities converge almost surely and are bounded. From
Lebesgue convergence theorem, we have that E(qα(t)2) converges. Hence using Itô–Levy
isometry, we have

limt E(qα(t)2(r(j|α)− 〈r(j)〉t)2) = 0, j < p
limt E(qα(t)2(θ(j|α)− 〈θ(j)〉t)2) = 0, j ≥ p. (5.141)

We have a L1 convergence to zero of the quantities inside the expectations since they are
positive. Using the almost sure convergence of an extracted subsequence and basic algebra
operations we obtain

qα(∞)qβ(∞)(r(j|α)− r(j|β)) = 0, j < p
qα(∞)qβ(∞)(θ(j|α)− θ(j|β)) = 0, j ≥ p. (5.142)

The non degeneracy condition implies qα(∞)qβ(∞) = 0 hence only one qα(∞) can be strictly
greater than zero. Since the sum of these probabilities is one, we have

qα(∞) = 1Υ=α. (5.143)

Moreover qα(t) is a martingale, so E(1Υ=α) = qα(0). Since qα(·) = 1 ⇐⇒ ρ(·) = |α〉〈α| we
obtain the expected result.

This convergence is not a completely new result. In next section we present new results on
the convergence rate towards the limit pointer state.

5.4.3. Exponential convergence rate

As in the discrete case we can find an exponential convergence rate towards the limit
pointer state Υ. We even have an explicit expression for the convergence rate. The results of
this section for diffusive quantum trajectories were proven in [20]. The generalization to any
quantum trajectory was made in [29]. The discussion of the mean convergence time is new.

The exponential convergence is found through the study of limt→∞ ln(qα(t))/t. Of course
for this quantity to be well defined we need qα(t) to be strictly positive. So for now we assume
that for any j and any α, θ(j|α) > 0. This guaranties that qα(t) > 0 almost surely for any
time t. One can check by studying the formal solution of qα(t) as a Doleans-Dade exponential
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martingale:

qα(t) = qα(0)

× exp

∑
j<p

ˆ t

0
(r(j|α)− 〈r(j)〉s)dWj(s)−

1

2

ˆ t

0
(r(j|α)− 〈r(j)〉s)2ds


×
∏
j≥p

∏
s≤t

(
1 +

(
θ(j|α)

〈θ(j)〉s
− 1

)
∆Nj(s)

)
× exp

[
−
ˆ t

0
(θ(j|α)− 〈θ(j)〉s)ds

]
.

(5.144)

∆Nj(s) is equal to 1 at each time where a jump j occurs and is equal to zero otherwise. With

our strict positive assumption on the θ(j|α)’s, we never have θ(j|α)
〈θ(j)〉t = 0 hence we can write

qα(t) as an exponential of a supermartingale.

qα(t) = qα(0)

× exp

∑
j<p

ˆ t

0
(r(j|α)− 〈r(j)〉s)dWj(s)−

1

2

ˆ t

0
(r(j|α)− 〈r(j)〉s)2ds

×
∑
j≥p

ˆ t

0
ln

(
θ(j|α)

〈θ(j)〉s

)
dNj(s)−

ˆ t

0
(θ(j|α)− 〈θ(j)〉s)ds

 .
(5.145)

From this last expression of qα(t) we can infer what will be our convergence rate. Let us
define a rate

σ(γ|α) =
1

2

∑
j<p

(r(j|α)− r(j|γ))2 −
∑
j≥p

θ(j|γ)

(
ln

[
θ(j|α)

θ(j|γ)

]
− θ(j|α)

θ(j|γ)
+ 1

)
. (5.146)

We have σ(γ|α) ≥ 0 with equality if and only if α = γ.
In [20] and [29] we showed that

qα(t) = e−tσ(Υ|α)+o(t) (5.147)

almost surely.
Here we do not use the same derivation of the rate. We prefer using the ergodic property

of quantum trajectory already discussed instead. We will use the derivation of [29] for the
study of the mean convergence time.

First let us remark that limt→∞ ln(qα(t))/t = limt→∞ ln(qα(t)/qΥ(t))/t since limt qΥ(t) is 1
almost surely. From the expression (5.145) of qα(t) we immediately find that

qα(t)/qΥ(t) = qα(0)/qΥ(0) exp[−tσ(Υ|α)]

× exp

∑
j<p

(r(j|α)− r(j|Υ))Xj,Υ(t) +
∑
j≥p

ln

(
θ(j|α)

θ(j|Υ)

)
Mj,Υ(t)

 (5.148)

with

Xj,γ(t) = Wj(t)− t r(j|γ) +

ˆ t

0
〈r(j)〉sds (5.149)

Mj,γ(t) = Nj(t)− tθ(j|γ). (5.150)
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5.4. Non demolition indirect measurements and wave function collapse

From the ergodic properties of Nj(t), Wj(t) and ρ(t) we obtain

lim
t→∞

Xj,Υ(t)/t = 0

lim
t→∞

Mj,Υ(t)/t = 0
(5.151)

almost surely.
It follows directly that

lim
t→∞

ln(qα(t))/t = lim
t→∞

ln(qα(t)/qΥ(t))/t = −σ(Υ|α) (5.152)

almost surely. Hence we have the the result we expected.
Let us define σmin(γ) = minα 6=γ σ(γ|α). Using Cauchy Schwarz inequality we have

‖ρ(t)− |Υ〉〈Υ|‖max = e−tσmin(Υ)+o(t) (5.153)

almost surely.
The exponential convergence rate we just obtained is an asymptotic one. As in the discrete

case we can expect an early chaotic behavior. Hence, once again, we would like to interpret
this exponential convergence in terms of mean convergence time.

5.4.4. Mean convergence time

As for the discrete case, let us define a convergence stopping time τ(α|Υ).

τ(α|Υ) = inf{t ≥ 0 s.t. qα(t)/qΥ(t) ≤ ε}. (5.154)

Since the convergence rate σ(Υ|α) is valid only in asymptotic time, we cannot evaluate the
mean of τ(α|Υ) directly under P. In the discrete case the mean convergence time depended
directly on the limit state. The mean was evaluated under the probability measure conditioned
on the limit pointer state. We need to build such conditioned probability measure in the
continuous case for the evaluation of the mean convergence time.

The following martingale change of measure is the key point of [29] and was inspired by
the similar technique used in [20].

The pointers probabilities are positive bounded martingales. So, using martingale change
of measure we can define a family of probability measures

dPtγ(ω) =
qγ(t)(ω)

qγ(0)
dP(ω), t ≥ 0 (5.155)

for all γ ∈ P such that qγ(0) 6= 0. Since qγ(t) = E(qγ(∞)|Ft), we can extend these measures
to unique measures Pγ such that

dPγ(ω) =
qγ(∞)(ω)

qγ(0)
dP(ω). (5.156)

Using Girsanov transformation we obtain that under Pγ , the Xj,γ(t) and Mj,γ(t) are Ft
martingales. The effect of this change of measure is to change the drift in the continuous
measurement processes Yj(t) from

´ t
0 〈r(j)〉sds to t r(j|γ) and the intensity of the discrete

measurement processes Nj(t) from 〈θ(j)〉t to θ(j|γ). Hence the measurement processes under
Pγ have laws corresponding to a system state in the pointer state γ.
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Let us remark that

dP(ω) =
∑

β∈P,qβ(0)>0

qβ(0)dP(ω|Υ = β) (5.157)

since P(Υ = β) = qβ(0). Multiplying by
qγ(∞)
qγ(0) on the left and the right, we see that it implies

dPγ(ω) = dP(ω|Υ = γ). (5.158)

Hence the family of measures we just defined are the measures conditioned on the limit pointer
state.

These measure being defined, we turn to the computation of the mean convergence time.
Let us first remark that (ln(qα(t)/qγ(t))− ln(qα(0)/qγ(0))) given from expression (5.148) is

a Levy process 2 under Pγ . We can prove, using Markov inequality, that the expectation of
τ(α|Υ) under PΥ is finite 3. Under these conditions we have (see [50] p.380)

EΥ(ln(qα(τ)/qΥ(τ))) = −σ(Υ|α)E(τ). (5.159)

This equality is a continuous time equivalent of Wald’s equality.

Now we need to bound
(

ln
[
qα(τ)
qΥ(τ)

])
. If the quantum trajectory was a purely diffusive one,

we would be almost sure that ε was reached, so we would have the equality ln
[
qα(τ)
qΥ(τ)

]
= ln(ε).

The possible introduction of jumps breaks this equality. But the discontinuities due to the
jumps are bounded so we are able to find the desired bound. Let us define ∆minl(α|Υ) =
min(0,minj ln(θ(j|α)/θ(j|Υ))) > −∞. Let us adopt the notation limh→0 f(t − h) = f(t−).
This is always well defined for càdlàg processes like (ρ(t)). We have almost surely for any

time t, ln
[
qα(t)
qΥ(t)

]
− ln

[
qα(t−)
qΥ(t−)

]
≥ ∆minl(α|Υ). Since ln

[
qα(t−)
qΥ(t−)

]
≥ ln(ε) for an time t ≤ τ , we

have the almost sure bounds ln(ε) ≥ ln
[
qα(τ)
qΥ(τ)

]
≥ ln(ε) + ∆minl(α|Υ).

Hence

ln(qα(0)/qΥ(0))− ln(ε)

σ(Υ|α)
≤ EΥ(τ(α|Υ)) ≤ ln(qα(0)/qΥ(0))− ln(ε)−∆minl(α|Υ)

σ(Υ|α)
. (5.160)

The mean convergence time is smaller when the convergence rate increases. Thus we can
expect more realizations leading to an early collapse. Of course the smaller the ε the greater
is the mean convergence time. We recover exactly the same behavior as in the discrete case.
We do not repeat here the same discussion.

Up until now we have never included the possibility of the equivalent of a i.i.d. choice of
probe. Actually, as shown in [20] for diffusive processes and in [78] the introduction of a i.i.d
choice of probe increases the number of measurement processes. One measurement process
corresponds to one probing method and one related measurement outcome. The effect on the
convergence rate is the same as in the discrete case, thus we do not repeat the discussion.

The discussion on the non degenerate cases is also equivalent to the discrete time one. Let
us just remark that the non degeneracy condition that there exist two different pointers α
and β such that for any j either r(j|α) = r(j|β) or θ(j|α) = θ(j|β) depending on the value
of j corresponds to cases where the almost sure purification criteria for the trajectory is not
matched. Hence we can have limtG(ρ(t)) > 0. In the non demolition case, any initial state
p|α〉〈α|+ (1− p)|β〉〈β|, 0 < p < 1 is invariant along the trajectory and thus it stays mixed in
the long time limit.

2. Its increments are independent, stationary, and it is right continuous.
3. See proof in Appendix A.3.
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5.4. Non demolition indirect measurements and wave function collapse

5.4.5. Collapse stopping time

In this subsection we discuss the cases where at least one θ(j|α) is null. In this case all
our previous discussion fail since infinities arise in the logarithms. This indicates that the
collapse can happen in a finite time. Here we make explicit the distribution of this collapse
time.

Let us define two family of stopping times.

Tj = min{t ∈ R+ s.t. Nj(t) > 0}, j ≥ p (5.161)

Tα = min{Tj s.t. θ(j|α) = 0} (5.162)

The first family corresponds to the first time jumps j are recorded. The second corresponds
to the first times the corresponding qα(t) will be equal to 0. Of course they stay almost surely
equal to 0 after this time. We have

PΥ(Tα ≥ t) = 1− e−λ(α|Υ)t (5.163)

with λ(α|Υ) =
∑

j s.t. θ(j|α)=0 θ(j|Υ). Hence, under the measure conditioned on the limit
pointer, the times at which the other pointers become null are distributed exponentially with
a parameter λ(α|Υ). If ever λ(α|Υ) = 0, then Tα =∞ PΥ almost surely.

Under the unconditioned measure P, we have

P(Tα ≥ t) = 1−
∑
β∈P

qβ(0)e−λ(α|β)t. (5.164)

Let us remark that

P(Tα =∞) ≥ P(Υ = α) (5.165)

thus, it can take an infinite time for qα(t) to reach zero even if it is not the limit pointer.

5.4.6. Estimated state stability

We finish this section with a discussion on the stability of state estimates. Remember
that in the discrete case we used the measures Pα to find that the estimated state reaches
the same limit state as the physical state. Here we do not have access to such Pα defined
without reference to any initial state besides the pointer states. Our Pα are defined relatively
to the physical initial state. If the continuous quantum trajectory is not the continuous
approximation of a discrete quantum trajectory, we do not have such initial state independent
measures. We use the exponential convergence rate we found earlier to prove the stability of
the estimated state.

Let us recall that the measurement processes are

Yj(t) = Wj(t) +

ˆ t

0
tr[(Lj + L∗j )ρ(s)]ds (5.166)

Nj(t) (5.167)

The evolution of the state ρ(t) given these processes is

dρ(t) = L(ρ(t))dt+
∑
j<p

Dj(ρ(t))[dYj(t)− tr[(Lj + L∗j )ρ(t)]dt] (5.168)

+
∑
j≥p

(
Jj(ρ(t))

vj(ρ(t))
− ρ(t)

)
[dNj(t)− vj(ρ(t))dt]. (5.169)
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If we start with a estimated state ρ̂(0), we will update it according to the SDE

dρ̂(t) = L(ρ̂(t))dt+
∑
j<p

Dj(ρ̂(t))[dYj(t)− tr[(Lj + L∗j )ρ̂(t)]dt] (5.170)

+
∑
j≥p

(
Jj(ρ̂(t))

vj(ρ̂(t))
− ρ̂(t)

)
[dNj(t)− vj(ρ̂(t))dt]. (5.171)

As shown in [29], we have

q̂α(t)

q̂Υ(t)
=
q̂α(0)

q̂Υ(0)

× exp

−σ(α|Υ)t+
∑
j<p

(r(j|α)− r(j|Υ))Xj,Υ(t) +
∑
j≥p

ln

(
θ(j|α)

θ(j|Υ)

)
Mj,Υ(t)

 .
(5.172)

This is well defined as soon as qα(0) > 0⇒ q̂α(0) > 0.
Hence, as before, from exponential convergence, we have that for any α 6= Υ, q̂α(t) converges

almost surely to 0.

q̂α(t) = q̂Υ(t)e−tσ(Υ|α)+o(t). (5.173)

Only one pointer, Υ, is such that q̂Υ(∞) can be greater than zero. From the conservation of
the trace of ρ̂(t), we have

∑
α∈P qα(∞) = 1. Thus q̂Υ(∞) = 1 almost surely and

lim
t→∞

ρ̂(t) = lim
t→∞

ρ(t) = |Υ〉〈Υ| (5.174)

almost surely. We have proved the stability of the estimate.

5.5. Invariant subspace stabilization

As presented in section 4.4, in the late nineties and early two thousands the idea of engi-
neering the coupling of the system to its environment such that it is autonomously driven to
a desired state emerged [41,47,71,87,88,99]. Some experimenters have already implemented
this idea of reservoir engineering [19, 68, 72, 77, 90]. Actually reservoir engineering is mostly
formulated and applied in a continuous time context. So in this section we study continu-
ous time quantum trajectories driving the system state toward an invariant subspace of the
system Hilbert space. Once again, the results will be equivalent to the ones obtained for
discrete quantum trajectories but they apply in a different context. We recall that in the case
where this subspace is one dimensional, it corresponds to a pure state preparation. If the
evolution given the state is supported on the subspace is unitary then the limit subspace is a
decoherence free subspace.

This section presents preliminary results of an article in preparation in collaboration with
B. Cloez, C. Pellegrini and F. Ticozzi. This work was inspired by [94]

The section is structured as follows. First we recall and adapt the definitions of invariant
subspace and “driven towards”. Then we recall the results of [96, 97] on the invariance and
global asymptotic convergence of a system state undergoing an evolution given by a CP semi–
group. From these results we show that the convergence still holds when measurements on the
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environment are performed. We obtain a bound on the exponential convergence rate which
is always greater or equal to the one obtained for the CP semi–group. The convergence is
characterized by two time scales. We conclude with a discussion about these time scales.

5.5.1. Invariant and globally asymptotically stable subspaces

Recall that Hsys. is our finite dimensional system Hilbert space. We define HS and HR two
Hilbert spaces such that Hsys. = HS ⊕HR is an orthogonal decomposition of Hsys.. HS is the
Hilbert space where we want the state to converge. We can decompose any linear operator
X on Hsys. in four blocs:

X =

(
XS XP

XQ XR

)
(5.175)

XS is a linear operator on HS , XR a linear operator on HR, XP a linear operator from HR
to HS and XQ a linear operator from HS to HR.

Let IS(Hsys.) be the set of states such that ρR = 0, so ρP = 0 too.

ρ ∈ IS(Hsys.) ⇐⇒ ρ =

(
ρS 0
0 0

)
. (5.176)

Let also IR(Hsys.) be the set of states such that ρS = 0, so ρP = 0 too.

ρ ∈ IR(Hsys.) ⇐⇒ ρ =

(
0 0
0 ρR

)
. (5.177)

We say that HS is an almost surely invariant subspace of the quantum trajectory process
if almost surely,

ρ(0) =

(
ρS(0) 0

0 0

)
implies ρ(t) =

(
ρS(t) 0

0 0

)
(5.178)

for any time t > 0. Hence, if we started with a state in IS(Hsys.), the state will stay in
IS(Hsys.).

Equivalently we say HS is an invariant subspace in mean if the average system state stays
in IS(Hsys.) for any time t > 0. In other words:

ρ(0) =

(
ρS(0) 0

0 0

)
implies E(ρ(t)) =

(
E(ρS(t)) 0

0 0

)
(5.179)

for any time t > 0. We will see later that, as in the discrete case, the almost sure invariance
and invariance in mean are equivalent.

We say that HS is an almost surely globally asymptotically stable (GAS) subspace if with
probability one, for any initial system state ρ(0),

lim
t→∞

∥∥∥∥ρ(t)−
(
ρS(t) 0

0 0

)∥∥∥∥ = 0. (5.180)

Hence, in the long time limit the system state is in IS(Hsys.).
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As before we also say that HS is GAS in mean if the convergence property is fulfilled by
the state average evolution whatever is the initial state ρ(0):

lim
t→∞

∥∥∥∥E(ρ(t))−
(

E(ρS(t)) 0
0 0

)∥∥∥∥ = 0. (5.181)

If HS is simply a one dimensional space corresponding to an entangled state, we have just
defined the invariance of this state with probability one and in mean. And the convergence
towards this state with probability one and in mean.

As in the discrete case, in next subsection, we show that the conditions under which the
above properties are true in mean and almost surely are actually the same.

5.5.2. Invariance and asymptotic stability in mean

In [96, 97] necessary and sufficient conditions where found such that a subspace HS is
invariant and GAS in mean when the system evolution is given by a CP semi–group. Here
we recall these results.

Let us write ρ(t) = Φt(ρ(0)) = etLρ(0) with L a Lindblad operator such that for any ρ,
tr[L(ρ)] = 0. ρ(t) is equal to the average evolution when measurements are performed on the
environment: ρ(t) = E(ρ(t)).

Explicitly we recall we have

L(ρ) = −i[H, ρ] +
∑
j

LjρL
∗
j −

1

2
{L∗jLj , ρ}. (5.182)

Invariance

In [96,97] the authors showed, using the semi–group structure of Φt, that

HS is invariant in mean ⇐⇒ Lj,Q = 0∀j and iHP −
1

2

∑
j

L∗j,SLj,P = 0. (5.183)

As we could have expected, HS is invariant in mean if and only if no transition form states
of HS to states of HR is induced by the environment and the Hamiltonian. This is actually
a well known condition in the study of reducible CP semi–groups.

Using this decomposition we define two new CP semi–groups which will be useful after-
wards. First ΦS,t(ρS) = etLSρS is a trace preserving CP semi–group acting on the states of
S(HS). The Lindbladian LS is

LS(ρS) = −i[HS , ρS ] +
∑
j

Lj,SρSL
∗
j,S −

1

2
{L∗j,SLj,S , ρS}. (5.184)

If ρ is in IS(Hsys), we have

Φt(ρ) =

(
ΦS,t(ρS) 0

0 0

)
(5.185)

with tr[ΦS,t(ρS)] = tr[ρS ] = 1. Hence ΦS,t corresponds to the effective evolution when ρ is in
IS(Hsys.).
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Then we define ΦR,t(ρR) = etLRρR. The generator LR is

LR(ρR) = −i[HR, ρR] +
∑
j

Lj,RρRL
∗
j,R −

1

2
{L∗j,PLj,P + L∗j,RLj,R, ρR}. (5.186)

Thus tr[LR(ρR)] = −tr[
∑

j L
∗
j,PLj,PρR] ≤ 0. Hence ΦR,t is trace non increasing. It corre-

sponds to the evolution of the R bloc of the system state. We have

Φt(ρ) =

(
? ?
? ΦR,t(ρR)

)
(5.187)

with tr[ΦR,t(ρR)] ≤ tr[ρR].

Asymptotic stability

Let us now turn to the conditions under which HS is GAS in mean. Hence when the mean
effect of the measurement is to drive the state into IS(Hsys.). It is obvious that HS is GAS
when ΦR,t is strictly trace decreasing. Hence when

∑
j L
∗
j,PLj,P is positive definite. Let α0

be the smallest eigenvalue of
∑

j L
∗
j,PLj,P . Since HR is finite dimensional and

∑
j L
∗
j,PLj,P is

positive definite, we have α0 > 0 and tr[LR(ρR)] ≤ −α0tr[ρR] for any ρR. Thus tr[ρR(t)] ≤
e−α0ttr[ρR(0)] and tr[ρR(t)] converges to 0 when t tends to infinity. Thanks to Cauchy Schwarz
inequality on positive semi definite matrices it implies ρ(t) converges to the subset IS(Hsys.)
in the long time limit. Moreover we can characterize the convergence as exponential with a
rate α0/2 for the ρP (t) bloc and α0 for the ρR(t) bloc.

As in the discrete case, it is not the only case where HS is GAS. In [96, 97] the authors
proved using La Salle’s invariance principle that HS is GAS if and only if there is no invariant
subspace included in the kernel of

∑
j L
∗
j,PLj,P . If such a subspace existed the system could

be stuck in it. Given its importance, let us make this necessary and sufficient condition more
explicit again. Let HR0 be a subspace of

∑
j L
∗
j,PLj,P kernel. We write HR1 its orthogonal

complement in HR. We can decompose the operators Lj,R and Lj,P with respect to the direct
sum decomposition H = HS ⊕HR1 ⊕HR0 . We have

HR =

(
HR1 H∗R01

HR01 HR0

)
(5.188)

Lj,R =

(
Lj,R1 Lj,R10

Lj,R01 Lj,R0

)
(5.189)

Lj,P =
(
Lj,P1 0

)
. (5.190)

Then HS is invariant if and only if we cannot find any HR0 such that ∀j, Lj,R10 = 0 and
−iHR01 − 1

2

∑
j L
∗
j,R01

Lj,R1 = 0.
As in the discrete case we can check the convergence to IS(Hsys.) directly from the shape

of the operators Lj and H. But once again, the exponential convergence is not obvious since
we can have tr[

∑
j L
∗
j,PLj,PρR] = 0.

5.5.3. Almost sure invariance and asymptotic stability

Let us now turn to the equivalence between the almost sure and in mean invariance and
asymptotic stability. We show that the invariance and GAS of HS do not depend on the
measurements preformed on the environment.
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Let PS and PR be the projectors onto respectively HS and HR.

PS =

(
IS 0
0 0

)
, PR =

(
0 0
0 IR

)
. (5.191)

We still have that ρ ∈ IS(Hsys.) is equivalent to tr[PRρ] = 0 or tr[PSρ] = 1. We define
V (ρ) = tr[ρPR].

ρ ∈ IS(Hsys.) ⇐⇒ V (ρ) = 0. (5.192)

The function V is strictly positive outside of IS(Hsys.) and null on IS(Hsys.). Thus V is a
good Lyapunov candidate function for our convergence problem. Since dV (ρ(t))/dt ≤ 0, it is
a good Lyapunov function for the mean evolution.

Invariance

Suppose HS is invariant in mean. From the result of the previous subsection we have that if
initially the state is in IS(Hsys.), then ρ(t) is in this same set of states. Hence if V (ρ(0)) = 0,
we have for any time t ≥ 0, V (ρ(t)) = 0. Since Hsys. is finite dimensional and V linear, for
any time t, E(V (ρ(t))) = 0. Moreover we have V (ρ) ≥ 0 for any state, thus if ρ(0) ∈ IS(H),
almost surely for any time t V (ρ(t)) = 0. Hence ρ(t) ∈ IS(H) almost surely which proves the
almost sure invariance of HS . The converse implication is trivial.

HS invariant in mean⇔ HS almost surely invariant. (5.193)

Global asymptotic stability

We now discuss the global asymptotic stability of HS . As for the discrete case, we first
show the GAS of HS in L1 norm and then turn to the almost sure GAS.

Suppose HS is GAS in mean. Then limt→∞ V (ρ(t)) = 0. Once again we equivalently have
limt→∞ E(V (ρ(t))) = 0. Since V (ρ) ≥ 0 we immediately have the L1 norm convergence of
V (ρ(t)) towards 0.

For the almost sure convergence we use the supermartingale convergence theorem [80]. We
then follow the same path as in the discrete case. Using dominated convergence theorem, the
converse is trivial and we finally have,

HS GAS in mean ⇔ HS almost surely GAS. (5.194)

As for the discrete case, in next section we show that even if we have this equivalence, the
measurements on the environment can greatly alter the behavior of the system state. This
time the interpretation in terms of an added non demolition will be more evident.

5.5.4. Exponential convergence

Mean rate

As in the discrete case, we need a new Lyapunov candidate function. As before any VK(ρ) =
tr[Kρ] with K a positive semi definite operator with HR as its support is a suitable Lyapunov
candidate function (HS is the kernel of K). We have

ρ ∈ IS(H) ⇐⇒ VK(ρ) = 0. (5.195)
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5.5. Invariant subspace stabilization

We write K either for the positive semi definite operator on Hsys. or the positive definite
operator on HR.

Let −α0 = max{Re(α)/α ∈ spec(L)}. Then the spectral radius of ΦR,t is e−α0t for any
t ≥ 0.

If ΦR,t is irreducible the existence of a K such that VK(Φt(ρ)) ≤ e−α0tVK(ρ) follows directly
from Perron Frobenius theorem for irreducible positive maps [54].

If ΦR,t is reducible we can, once again, follow a demonstration of the existence of a semi
definite eigenoperator K ′ of L∗R with eigenvalue equal to −α0. We can always find a K
corresponding to a convergence rate as close as we want from α0.

∀ε > 0, ∃Kε ∈ B(HR),Kε > 0 s.t. LR(Kε) ≤ −(α0 − ε)Kε. (5.196)

We reproduce here the proof for convenience. It is slightly different but follows the same idea
as in the discrete case.

Let Lη = LR + ηΨ with η > 0 and Ψ an irreducible CP map. etLη is a semi–group of
irreducible CP maps. The spectrum of Lη converges continuously to the one of LR when
η goes continuously to 0. Let −αη = max{Re(λ)/λ ∈ spec(Lη)}. For any ε > 0 we can
find a ηε > 0 such that αηε ≥ α0 − ε. We apply Perron-Frobenius theorem for irreducible
CP maps. It exists a Kε > 0 such that L∗ηε(Kε) = −αηεKε ≤ −(α0 − ε)Kε. It follows
L∗R(Kε) ≤ −(α0 − ε)Kε − ηεΨ

∗(Kε). Since Ψ∗ is a CP map, Ψ∗(Kε) > 0 and we have
L∗R(Kε) ≤ −(α0 − ε)Kε which is what we wanted. Of course we need α0 − ε > 0. It is always
possible to find such a ε. For example ε = α0/2 match the requirements.

Finally which ever is the reducibility status of ΦR,t, for any strictly positive ε it always
exists a K > 0 such that VK(Φt(ρ)) = tr[Φ∗t (K)ρ] = tr[Φ∗R,t(K)ρR] ≤ e−(α0−ε)tVK(ρ).

Hence in any case, for all ε > 0 it exists K such that

VK(ρ(t) ≤ e−(α0−ε)VK(ρ(0)). (5.197)

It implies that VK(ρ(t)) = O(e−(α0−ε)t) with O the usual asymptotic comparison when t goes
to infinity.

We translate this exponential convergence to an exponential convergence of ρR(t) norm at
the end of this section.

Almost sure rate

First we recover the mean rate. Again we remark that the process (VK(ρ(t))e(α0−ε)t)t∈R+

is a positive supermartingale. For any t ≥ s,

E(VK(ρ(t))e(α0−ε)t|Fs) = VK(Φt−sρ(s))e(α0−ε)t ≤ VK(ρ(s))e(α0−ε)s. (5.198)

Hence VK(ρ(t))e(α0−ε)t converges almost surely by Doob supermartingale convergence theo-
rem. Thus VK(ρ(t)) = O(e−(α0−ε)t) with O an almost sure asymptotic comparison when t
tends to infinity.

We recovered the mean convergence rate but in the almost sure sense.

As in the discrete case we now improve this convergence rate.
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5. Continuous indirect measurements

Rate improvement

From now on we fix ε and the corresponding K. Accordingly we redefine α0 as −α0 =
max{Re(λ)/λ ∈ spec(LR)}+ ε. Hence L∗R(K) ≤ −α0K.

Once again we search for an upper bound for ln(VK(ρ(t)))/t when t goes to infinity.

To avoid infinities, let us assume L∗jLj and L∗j,RLj,R are definite positive for any j and
VK(ρ(t)) > 0 almost surely at any time t. Hence the limit is reached only in infinite time.
Thus at any time ln(VK(ρ(t))) is well defined. These assumptions are the equivalent of the
ones we made in the non demolition case for the derivation of the convergence rate.

We define two new processes ρ̂S(t) = ρS(t)/tr[ρS(t)] which is well defined at least after a
fixed bounded time t0 and ρ̂K(t) = K1/2ρR(t)K1/2/tr[KρR(t)] which is always well defined
since we assumed VK(ρ(t)) > 0 almost surely. (ρ̂S(t))t∈R+ and (ρ̂K(t))t∈R+ are processes of

states on respectively HS and HR. We also define new operators Lj,K = K1/2Lj,RK
−1/2 and

the corresponding LK(ρK) = K
1
2LR(K−

1
2 ρKK

− 1
2 )K

1
2 . So we have L∗K(IR) ≤ −α0IR and

tr[LK(ρ̂K)] ≤ −α0.

We write ln(VK(ρ(t)) as a sum of a predictable process and a martingale using Doob–Meyer
decomposition,

ln(VK(ρ(t))) = ln(VK(ρ(0))) +

ˆ t

0
tr[LK(ρ̂K(s))]ds

− 1

2

∑
j<p

ˆ t

0

(
tr[(Lj,K + L∗j,K)ρ̂K(s)]− tr[(Lj + L∗j )ρ(s)]

)2
ds

+
∑
j≥p

ˆ t

0
tr[L∗jLjρ(s)]

(
ln

[
tr[L∗j,KLj,K ρ̂K(s)]

tr[L∗jLjρ(s)]

]
+ 1−

tr[L∗j,KLj,K ρ̂K(s)]

tr[L∗jLjρ(s)]

)
ds

+M(t)

(5.199)

with M(t) a martingale. Using martingale law of large numbers, under the assumptions we
gave at the beginning of this section, we once again have limt→∞M(t)/t = 0. We also have
tr[(Lj+L

∗
j )ρ(t)] = tr[(Lj,S+L∗j,S)ρ̂S(t)]+O(

√
VK(ρ(t))) and tr[L∗jLjρ(t)] = tr[L∗j,SLj,S ρ̂S(t)]+

O(
√
VK(ρ(t))) as t tends to infinity.

Since VK(ρ(t)) is bounded and VK(ρ(t)) = O(e−α0t),
´∞

0

√
VK(ρ(t))dt <∞ almost surely.

Thus we have,

ln(VK(ρ(t)))/t ≤ −α0

− 1

2

∑
j<p

1

t

ˆ t

0

(
tr[(Lj,K + L∗j,K)ρ̂K(s)]− tr[(Lj,S + L∗j,S)ρ̂S(s)]

)2
ds

+
∑
j≥p

1

t

ˆ t

0
tr[L∗j,SLj,S ρ̂S(s)]

(
ln

[
tr[L∗j,KLj,K ρ̂K(s)]

tr[L∗j,SLj,SρS(s)]

]
+ 1−

tr[L∗j,KLj,K ρ̂K(s)]

tr[L∗j,SLj,SρS(s)]

)
ds

+ o(1)

(5.200)

almost surely as t tends to infinity.
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5.5. Invariant subspace stabilization

We have recovered (painfully) our previous rate α0. But we also have two more negative
terms. Under some conditions similar to the QND measurements non degeneracy ones we
obtain an improved rate.

For each j, let us define two intervals of R,Rj,R/S = [min spec(Lj,R/S+L∗j,R/S),max spec(Lj,R/S+

L∗j,R/S)] and two intervals of R+, Θj,R/S = [min spec(L∗j,R/SLj,R/S),max spec(L∗j,R/SLj,R/S)].
These intervals are such that

tr[(Lj,K/S + L∗j,K/S)ρ̂K/S ] ∈ Rj,R/S (5.201)

tr[L∗j,K/SLj,K/S ρ̂K/S ] ∈ Θj,R/S (5.202)

for any states ρ̂K/S . Let us define

α(r, θ) =
1

2

∑
j>p

(rj,R − rj,S)2 − θj,S
(

ln

[
θj,R
θj,S

]
+ 1−

θj,R
θj,S

)
(5.203)

and

α1 = min
{
α(r, θ)

/
(rj,R/S , θj,R/S) ∈ Rj,R/S ⊗Θj,R/S

}
. (5.204)

α1 is always positive or null. And if for at least one j, d(Rj,R,Rj,S) 6= 0 or d(Θj,R,Θj,S) 6= 0
with d(x, y) = |x−y| the usual distance on R, then α1 > 0. Thus we can have an improvement
of the convergence rate α0. We have

lim sup
t

ln(VK(ρ(t))/t ≤ −(α0 + α1). (5.205)

The criteria for α1 > 0 is equivalent to the non degeneracy one we introduced for QND
measurements. If the system is a two level one. Then the Lj,R/S are just elements of C and
the criteria for α1 > 0 is that it exists j such that rj,R 6= rj,S or θj,R 6= θj,S depending on the
value of j. It corresponds exactly to the non degeneracy condition for a QND measurement
discriminating between HR and HS . α1 is the rate we obtained in the QND case. Hence, the
convergence rate improvement can be understood as an added non demolition measurement
effect.

Mean convergence time

As in the discrete case we study the meaning of the two convergence rates through mean
convergence times.

Let us define a stopping time

τε = inf{t ≥ 0 s.t. VK(ρ(t)) ≤ ε}. (5.206)

It corresponds to the first time VK(ρ(t)) will be smaller or equal to ε. We call τε the conver-
gence time and E(τε) the mean convergence time.
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5. Continuous indirect measurements

Let us define a stopped time τε ∧ t. As in the discrete case from (5.199) we have

E( ln(VK(ρ(τε ∧ t)))) ≤ ln(VK(ρ(0)))− α0E(τε ∧ t)

− 1

2
E

∑
j<p

ˆ τε∧t

0

(
tr[(Lj,K + L∗j,K)ρ̂K(s)]− tr[(Lj + L∗j )ρ(s)]

)2
ds


+ E

∑
j≥p

ˆ τε∧t

0
tr[L∗jLjρ(s)]

(
ln

[
tr[L∗j,KLj,K ρ̂K(s)]

tr[L∗jLjρ(s)]

]
+ 1−

tr[L∗j,KLj,K ρ̂K(s)]

tr[L∗jLjρ(s)]

)
ds


(5.207)

This time we do not have a better upper bound than 0 for the second and third line since the
bound α1 is true only for large times. We have

E(ln(VK(ρ(τε ∧ t)))) ≤ −α0E(τε ∧ t) + ln(VK(ρ(0))). (5.208)

We need a lower bound on E(ln(VK(ρ(τε∧t))). We have a bound on the maximal discontinuity

of our trajectory. Let ln(ε′) = ln(ε) + minj,ρ̂K ,ρ(0, ln
[

tr[L∗j,KLj,K ρ̂K ]

tr[L∗jLjρ]

]
). ln(ε′) − ln(ε) is the

minimal (negative) value of ln(VK(ρ(t)))− ln(VK(ρ(t−))) for any time t. Since ln(VK(ρ(τε ∧
t−))) ≥ ε almost surely, we have ln(VK(ρ(τε ∧ t))) ≥ ln(ε′). Hence 0 ≥ ln(VK(ρ(τε ∧ t))) ≥
ln(ε′), so ln(VK(ρ(τε ∧ t))) is almost surely bounded. It converges almost surely and in L1

when t goes to infinity. Then limt E(ln(VK(ρ(τε ∧ t)))) = E(ln(VK(ρ(τε)))). Moreover τε ∧ t is
monotone in t and the expectation of its point wise limit τε is finite 4. Taking the limit t to
infinity on both sides of (5.208) gives us

E(ln(VK(ρ(τε)))) ≤ −α0E(τε) + ln(VK(ρ(0))). (5.209)

Since ln(VK(ρ(τε))) ≥ ln(ε′) almost surely, we have

E(τε) ≤
ln(VK(ρ(0)))− ln(ε′)

α0
. (5.210)

The mean convergence time depends on α0 and not α1. Looking at figures 5.3 and 5.4, we
see that when measurements are performed with a non degeneracy like condition (α1 > 0),
for some realizations the time after which the state converges is much shorter. For some other
they stay chaotic and then converge rapidly. They can even get close to being completely
supported in HR (V(ρ) = 1). These observations are equivalent to the ones made in the
discrete case. Hence we can interpret α0 and α1 in the same manner. α1 + α0 is more an
asymptotic convergence (or stability) rate, when α0 is characteristic of the time it takes to
converge. The improvement of α0 + α1 is in the convergence speed when the convergence
happen but it can happen after a long time. The distribution of this time depends on α0.
The smaller is α0 the more chance the convergence will happen after short time.

The simulation presented corresponds exactly to the zero temperature case of [23]. In this
article, M. Bauer and D. Bernard showed that a two level system connected to a thermal
bath and continuously monitored by a diffusive non demolition measurement will, when the
non demolition measurement has a large convergence rate, jump from one energy state to the
other with time between the jumps distributed exponentially with a parameter depending on
the temperature. Hence we find a similar behavior here but with a null temperature and for
a general GAS subspace.

4. See proof in Appendix A.4.
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5.5. Invariant subspace stabilization

Figure 5.3.: Simulation of the evolution of VIR for a diffusive quantum trajectory of a 2 level
system with α0 = 1 and α1 = 0. The blue curve corresponds to the mean evo-
lution (VIR(ρ(t))) and the grey lines to ten different realizations of the evolution
when taking into account the measurement results (VIR(ρ(t))).

Figure 5.4.: Simulation of the evolution of VIR for a diffusive quantum trajectory of a 2 level
system with α0 = 1 and α1 = 1. The blue curve corresponds to the mean evo-
lution (VIR(ρ(t))) and the grey lines to ten different realizations of the evolution
when taking into account the measurement results (VIR(ρ(t))).
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5. Continuous indirect measurements

Exponential convergence for the state

In conclusion of this section, we translate the convergence rate for VK(ρ(t)) to a convergence
rate for the system state.

Since K is definite positive, its smallest eigenvalue k0 is such that K ≥ k0IR with k0 > 0.
Hence tr[ρR(t)] ≤ 1

k0
e−(α0+α1)t+o(t) = e−(α0+α1)t+o(t). Using the Cauchy–Schwarz inequality

for semi definite positive matrix,

‖ρR(t)‖max ≤ e−(α0+α1)t+o(t) (5.211)

and ‖ρP (t)‖max ≤ e−(α0+α1)t/2+o(t). (5.212)

Hence, all the matrix blocs different from ρS(t) converge almost surely to zero. The conver-
gence is exponential with a rate α0 + α1 for ρR(t) and (α0 + α1)/2 for ρP (t).
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6. Conclusion

In this thesis, after a general presentation and a discussion of the motivations of the formal-
ism we used, we investigated the large time behavior of systems undergoing indirect measure-
ments. The preliminary presentation included particularly a derivation of the path integral
formalization of quantum stochastic processes. We then studied non demolition measure-
ments and stabilization through reservoir engineering. In both cases we found new results
implied by the measurement recording.

For quantum non demolition measurements, indirect measurement recording leads to the
collapse of the wave function whereas the mean evolution would have lead only to decoherence.
Moreover we showed that the convergence rate is exponential with a fixed rate. This rate
allowed us to bound the mean time of convergence towards the collapse.

For discrete time quantum trajectories we did this analysis for the most general non de-
molition measurement possible. Hence we allowed for a change of probing method at each
time with an arbitrary method choice procedure. This generality was made possible by the
introduction of martingale change of measure techniques. Since the pointer probabilities were
bounded martingales, we pictured the measurement as a change of measure implied by these
martingales. This change of measure allowed us to study the quantum trajectories under
laws conditioned on the limit state. Under these laws the measurement outcome processes
become much more simple to study. For instance, if only one probing method is used, the
measurement outcomes become i.i.d. random variables.

We used this i.i.d. property to derive the continuous limit of non demolition quantum
trajectories. We again used martingale change of measure in the process and in particular
Girsanov’s theorem.

Inspired by these results we adapted the martingale techniques to continuous time non
demolition trajectories. Through martingale change of measure we showed that the measure-
ment outcome processes conditioned on the limit pointer state are Levy processes. It is thanks
to this property that we have been able to compute the bounds on the mean convergence time.

Concerning reservoir engineering, from the results of convergence of the system state for the
mean evolution, we showed an equivalence with convergence when measurement outcomes are
recorded. We found two convergence rates. The first one corresponds to the mean evolution
convergence rate whereas the second one corresponds to an asymptotic stability rate. This
last rate is interpreted as the consequence of an added non demolition measurement. It leads
to a peculiar evolution of the system state. When it becomes large enough, two phases appear
in the behavior of the system state. First during a random time the evolution does not show
any convergence towards the limit state. The state can even come close to have almost no
support on the limit Hilbert subspace. This random time distribution seems to depend only
on the mean convergence rate. Just after this first phase, the system state converges rapidly
towards the limit state and stays in this state afterwards. Hence the convergence is rapid but
can happen after a long time.

To conclude this thesis let us mention some future directions of research around the subjects
we presented that might be interesting.
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6. Conclusion

– Minimal feedback in the repeated indirect measurements scheme. As we presented in this
thesis, repeated indirect measurement continuous time limit leads to the usual quantum
trajectories (section 5.2.2). For discrete non demolition quantum trajectories we saw
that conditioning the next indirect measurement on the result of the last one could
lead to an increased wave function collapse convergence rate. The dependency on the
last predecessor can be seen as a minimal feedback. The next action on the system is
partly determined by the previous measurement. Hence it is a feedback without state
estimation. Besides the consequence of such dependency on the convergence rate in
the non demolition case, it could lead to more general results on convergence towards
specific states. Hence it could be useful to derive the continuous time approximation
of such minimal feedback repeated indirect measurements. We started to work on this
subject with C. Pellegrini.

– Error due to the continuous time approximation. As explained in last paragraph, con-
tinuous time approximation of repeated indirect measurement leads to continuous time
quantum trajectories. In order to use this approximation for the estimation of the system
state, one need to estimate the error it induces. The idea is to compare the error due
to the discretization of a quantum trajectory with the one due to a discretization of the
interaction between the system and the probe used for indirect measurement. Estimating
these errors could lead to better system state estimations. With C. Pellegrini, we plan
to investigate this subject.

– QSDE path integral applications. The path integral formulation for QSDE we derived
connect QSDE with a widely used tool in condensed matter. Hence it would be interest-
ing to adapt condensed matter related techniques to study these equations. For example,
these techniques should be useful for the study of systems including non integrable in-
teractions or disorder. A related subject of interest is the competition between tunneling
and dissipation for transport across potential barriers. This question has already been
studied by Caldeira and Leggett [39] and others after them using their model. But the
introduction of QSDE formalism may lead to a general Arrhenius like law. This idea was
first formulated by D. Bernard.

– Extended limits for scattering interactions. As we saw in section 3.2.3, scattering like
interactions between the system and the reservoir lead in the quantum stochastic limit
to unusual Lindbladian expressions. These limits have not been completely investigated
for now. In particular the quantum stochastic limits for out of vacuum reservoirs have
not been all fully studied. Yet this type of interaction, including number like operators
(a∗i aj) on the environment in the interaction Hamiltonian, appear in interesting physics
(Kondo model, Coulomb Blockade ...). Thus one should be interested in studying the
extended limit for such interactions. This limits obtained, the study of their behavior
under continuous measurement through quantum filtering could lead to new results in
quantum transport.

Let us conclude with a remark on the Markovian approximations we used through out this
report. They imply that the interaction between the system and its environment is extremely
localized in time. To be more precise, as we can infer from the repeated interactions model, it
is as if at each time a new environment interacts with the system. Some physical phenomena
cannot, at least up to now, be understood under such approximation. The coherence between
the system and the environment is at the heart of the phenomenon. As we explained in last
paragraph, their might still be problems which can be mapped to Markovian evolution in some
limits. But in general, as pointed out by D. Bernard and B. Doyon [30], in order to match the
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experiments, one would like to describe continuous measurement when the interaction between
the environment and the system is non Markovian. One expect it would lead to some non
Markovian quantum trajectories [18, 56, 93]. Yet, the interpretation of these non Markovian
quantum trajectories as the result of continuous measurements of some open system with non
Markovian system–environment interaction is not established. Even the possibility of such
interpretation is not assured. Hence up to now only continuous measurement of Markovian
open systems model are really understood. Non Markovian behavior can only come from the
action of the experimenter. For example through the choice of probes in the discrete non
demolition setup. Hence the question of whether it is possible to define quantum trajectories
modeling intrinsically non Markovian open quantum systems is also of interest.
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[69] B. Kümmerer and H. Maassen. A pathwise ergodic theorem for quantum trajectories.
J. Phys. A: Math. Gen., 37(49):11889, Dec. 2004.

[70] W. E. Lamb and R. C. Retherford. Fine structure of the hydrogen atom by a microwave
method. Phys. Rev., 72(3):241–243, Aug. 1947.

[71] Z. Leghtas, U. Vool, S. Shankar, M. Hatridge, S. M. Girvin, M. H. Devoret, and M. Mir-
rahimi. Stabilizing a bell state of two superconducting qubits by dissipation engineering.
Phys. Rev. A, 88(2):023849, Aug. 2013.

148



Bibliography

[72] Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried,
and D. J. Wineland. Dissipative production of a maximally entangled steady state of
two quantum bits. Nature, 504:415–418, Dec. 2013.

[73] G. Lindblad. On the generators of quantum dynamical semigroups. Comm. Math.
Phys., 48(2):119–130, June 1976.

[74] S. Lloyd and L. Viola. Engineering quantum dynamics. Phys. Rev. A, 65(1):010101,
Dec. 2001.

[75] H. Maassen and B. Kümmerer. Purification of quantum trajectories. In IMS Lecture
Notes Monogr. Ser., volume 48, pages 252–261. Inst. Math. Statist., Beachwood, OH,
2006.

[76] P. C. Martin, E. D. Siggia, and H. A. Rose. Statistical dynamics of classical systems.
Phys. Rev. A, 8(1):423–437, July 1973.

[77] K. W. Murch, U. Vool, D. Zhou, S. J. Weber, S. M. Girvin, and I. Siddiqi. Cavity-
assisted quantum bath engineering. Phys. Rev. Lett., 109(18):183602, Oct. 2012.

[78] I. Nechita and C. Pellegrini. Quantum trajectories in random environment: the statis-
tical model for a heat bath. Confluentes Math., 01(02):249–289, Oct. 2009.

[79] M. A. Nielsen. Characterizing mixing and measurement in quantum mechanics. Phys.
Rev. A, 63(2):022114, Jan. 2001.

[80] B. Øksendal. Stochastic Differential Equations: An Introduction with Applications.
Springer Science, Jan. 2003.

[81] P. F. Palmer. The singular coupling and weak coupling limits. J. Math. Phys., 18(3):527–
529, Mar. 1977.

[82] K. R. Parthasarathy. An introduction to quantum stochastic calculus. Birkhäuser, 1992.
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A. Mean convergence time proofs

A.1. QND finite mean convergence time

Our aim is to prove that Eγ(τ(α|γ)) =
∑

n Pγ(τ > n) < ∞. First let us remark that
Pγ(τ > n) ≥ Pγ(qα(n)/qγ(n) ≥ ε). Hence, if we prove

∑
n Pγ(qα(n)/qγ(n) ≥ ε) < ∞ we

prove that the mean convergence time is finite. We actually prove by Markov inequality that
Pγ(qα(n)/qγ(n) ≥ ε) is bounded by the nth term of a geometric suite whose ratio is smaller

than 1. We have PΥ(qα(n)/qγ(n) ≥ ε) ≤
√

qα(0)
εqγ(0)p

n with p < 1.

Let us remark that Pγ( qα(n)
qγ(n) ≥ ε) = Pγ(

√
qα(n)
qγ(n) ≥

√
ε). By Markov inequality we have

Pγ

(√
qα(n)

qγ(n)
≥
√
ε

)
≤
√

1

ε
Eγ

(√
qα(n)

qγ(n)

)
. (A.1)

Since the outcomes jk are i.i.d. random variables under Pγ , the expectation on the right hand
side is easily computed.

Eγ

(√
qα(n)

qγ(n)

)
=

√
qα(0)

qγ(0)

∑
j

p(j|γ)

(
p(j|α)

p(j|γ)

) 1
2

n

. (A.2)

Since, from the non degeneracy condition, there is at least two outcomes j and j′ such that
p(j|α)
p(j|γ) 6=

p(j′|α)
p(j′|γ) , the strict concavity of x 7→

√
x, gives

p =
∑
j

p(j|γ)

(
p(j|α)

p(j|γ)

) 1
2

< 1. (A.3)

Thus we have

Eγ(τ) ≤

√
qα(0)

εqγ(0)

1

1− p
. (A.4)

Hence Eγ(τ) is finite.

Since 1
2S(γ|α) ≥ 1 − p and ln(qα(0)/qγ(0)) − ln(ε) −∆min(α|γ) ≤ 2

√
qα(0)
εqγ(0) , at least for ε

small enough, the bound we find in the text is better than the one we just found.

A.2. Asymptotic subspace finite mean converge time

As for the QND case, we want to show E(τε) =
∑

n P(τε > n) < ∞. We will bound this
sum by the following: E(τε) ≤

∑
n P(VK(ρ(n)) ≥ ε).
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A. Mean convergence time proofs

Recall we have E(VK(ρ(n))) ≤ VK(ρ(0))λn0 with λ0 < 1. Using Markov inequality, we have

P(VK(ρ(n)) ≥ ε) ≤ VK(ρ(0))

ε
λn0 . (A.5)

The convergence of
∑

n P(VK(ρ(n)) ≥ ε) follows directly from that of
∑

n λ
n
0 .

From this convergence we immediately have the bound E(τε) ≤ VK(ρ(0))
ε

1
1−λ0

. Since for a ε
small enough, ln(VK(ρ(0)))/ε′) ≤ VK(ρ(0))/ε and 1−λ0 ≤ ln(λ0), this is a worse bound than
the one of the text. At least when ε is small enough.

A.3. Continuous QND finite mean convergence time

We want to prove Eγ(τ(α|γ)) <∞.
First let us show that E(τ) =

´∞
0 P(τ > t)dt when limt tP(τ > t) = 0.

We have E(τε) = limt

´ t
0 sP(τε = s)ds. P(τ = s) = − d

dsP(τε > s). The equality E(τε) =´∞
0 P(τε > t)dt follows then directly from integration by part formula.

Here we use Markov inequality to bound Pγ( qα(t)
qγ(t) ≥ ε). Let us first remark that this

probability is an upper bound on P(τ > t). Then Pγ( qα(t)
qγ(t) ≥ ε) = Pγ(

√
qα(t)
qγ(t) ≥ ε1/2). From

Markov inequality,

Pγ(

√
qα(t)

qγ(t)
≥ ε1/2) ≤ 1√

ε
E(

√
qα(t)

qγ(t)
). (A.6)

The processes Xj,γ(t) and Nj(t) are independent Brownian motions and Poisson processes

with intensity θ(j|γ) respectively under Pγ . Using expression (5.148) for
√

qα(t)
qγ(t) , we can

compute explicitly Eγ(
√

qα(t)
qγ(t) ).

Eγ
(√qα(t)

qγ(t)

)
=√

qα(0)

qγ(0)
exp

− t
2

∑
j<p

1

4
(r(j|α)− r(j|γ))2 +

∑
j≥p

θ(j|γ)

(√
θ(j|α)

θ(j|γ)
− 1

)2
 . (A.7)

Let us write

σ′(γ|α) =
∑
j<p

1

8
(r(j|α)− r(j|γ))2 +

1

2

∑
j≥p

θ(j|γ)

(√
θ(j|α)

θ(j|γ)
− 1

)2

. (A.8)

We have

Pγ(τ > t) ≤

√
qα(0)

εqγ(0)
e−tσ

′(γ|α). (A.9)

Thus

Eγ(τ(α|γ)) ≤

√
qα(0)

εqγ(0)

1

σ′(γ|α)
. (A.10)
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A.4. Continuous asymptotic subspace finite mean convergence time

The rate involved in the bound is smaller than σ(γ|α) and for a ε small enough we have
ln(qα(0)/qγ(0))−ln(ε)−∆minl(α|γ) ≤

√
qα(0)/(εqγ(0)). Hence the bound of the text is better,

at least for a small enough ε.

A.4. Continuous asymptotic subspace finite mean convergence
time

We want to prove E(τε) <∞.
As in the discrete case we bound P(τε > t) by an exponentially decreasing quantity using

Markov inequality.
P(τε > t) ≤ P(VK(ρ(t)) ≥ ε). By Markov inequality P(VK(ρ(t)) ≥ ε) ≤ VK(ρ(0))

ε e−α0t.
From E(τε) =

´∞
0 P(τ > t), it follows

E(τε) ≤
VK(ρ(0))

εα0
. (A.11)

Again, this bound is worse than the text one when ε is small enough.
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B. Path integral derivations

B.1. Derivation of the path integral for an environment in its
vacuum

As explained in the text, the derivation of the path integral can be reduced to finding a
path integral for Uft,s = t,s〈e(f)|Uft,s|0〉t,s. Indeed,

E(B(s)C(t)) =

ˆ
dfe−|f |

2
trsys.[CU

f
t,sU

f
s,0ρsys.U

f
s,0

∗
BUft,s

∗
]

If we insert the closure relation for the system at well chosen places, we obtain

E(B(s)C(t)) =

ˆ
dfe−|f |

2

ˆ
dxBdxCdx0dx

′
0

B(xB)Ts,t(xB, xC ; f)C(xC)T0,t(xC , x0; f)

ρ(x0, x
′
0)Ts,0(x′0, xB; f)

with transition amplitudes Tt,s(xf , x0; f) = 〈xf |Uft,s|x0〉 and ρ(x0, x
′
0) = 〈x0|ρ|x′0〉.

Our last task is to compute the path integral formulation of Tt,s(xf , x0; f). First, using the

definition of At, we find that Uft,s is the solution of the differential equation

dUft,s/dt = −i(H − i/2L∗L)Uft,s − LU
f
t,sf(t), Ufs,s = Isys..

Using this expression, we can derive a path integral using standard techniques. It leads us to
the following expression.

Tt,s(xf , x0; f) =

ˆ x(t)=xf

x(s)=x0

dxdpei
´ t
s dup(u)ẋ(u)−H(u)+i/2L∗L(u)+iL(u)f(u).

Inserting this expression in E(. . .), we straight forwardly obtain the expression expected.
The generalization to multi time correlation functions and more general time ordering, is

straight forward too. It is sufficient to add a time slicing for each time an observable is
inserted. One can also extend the time over which the path integral is defined by inserting
U∞,s on the left just before B and U∗∞,s on the right after U∗s,0. Using the cyclic property of
the trace and the unitarity of U∞,s one immediately find that these insertions do not modify
the result for the correlation. This property is useful if one wants to compute correlation
functions with a characteristic functional.

B.2. Path integral derivation for nt 6= 0

As in the previous proof we divide the environment exponential states in different time
parts and include closure relations on the system wherever needed and obtain the following
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expression:

E(B(s)C(t)) =

ˆ
dfdg±dxBdxCdx0dx

′
0

e−|f |
2−|g−|2−|g+|2+(f,1[t,∞[g+)+(g−,1[t,∞[f)

B(xB)Tt,s(xB, xC ; f, g+)C(xC)Ts,0(xC , x0; f, g+)

ρsys.(x0, x
′
0)ρenv.(g+, g−)Tt,0(xB, x′0; f, g−),

with Tt,s(xf , x0; f, g) = 〈xf |Uf,gt,s |x0〉, Uf,gt,s = t,s〈e(f)|Ut,s|e(g)〉t,s and ρenv.(g+, g−) given in

the text. It remains to compute Tt,s(xf , x0; f, g) in order to conclude. Uf,gt,s is the solution of
the differential equation

dUf,gt,s /dt = [−i(H − i/2L∗L)− Lf(s) + L∗g(s)]Uf,gt,s and Uf,gs,s = Isys.e
(f,1[s,t[g).

This expression does not seem to correspond to the QSDE of Ut,s. Though if we look at the
formal solution of this equation, we have

Ut,s = T>e
´ t
s −iHdu−LdA

∗
u+L∗

´ t
s dAu

whatever is the value of nt. Hence, the solution does not depend on the state of the environ-
ment. Ut,s is an operator on Hsys.⊗Γ(L2(R+)). It is defined independently of the environment

state. Thus the differential equation for Uf,gt,s should only depend on f and g and not on nt.

This explains the expression for the differential equation of Uf,gt,s .

As earlier, given the expression of Ug,ft,s we use standard path integral derivation techniques
and obtain

Tt,s(xf ,x0; f, g) =ˆ x(t)=xf

x(s)=x0

dxdp exp
[
i

ˆ t

s
du
(
ẋ(u)p(u)−H(u) + i/2L∗L(u)

+iL(u)f(u)− iL∗(u)g(u)− if(u)g(u)
)]

.

(B.1)

Inserting this expression in E(. . .) we get

E(B(s)C(t)) =ˆ
x+(∞)=x−(∞)

dfdg±dx±dp±

B+(s)C+(t)ρsys.(x+(0), x−(0))eiG[x±,p±;f,g±]

(B.2)

with G given in the text.

B.3. Classical limit derivation

The first step in our demonstration is a change of variable on the paths x±, p±. We
consider that the forward (x+, p+) and backward (x−, p−) differ only because of quantum
non commutativity behavior. Hence their difference must be of the order of the quantum
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effects. More precisely their difference must be of order ~. Hence we make the change of
variables : x± = x±~q, p± = p±~π. We can then write a development of the action iG in ~:

iG =−
ˆ ∞

0
ds
(
|f(s)|2 + |g+(s)|2 + |g−(s)|2 − g+(s)e−λ(s)g−(s)

+ f(s)g+(s) + g−(s)f(s)
)

(B.3)

+ 2i

ˆ ∞
0

ds
(
π(ẋ(s)− ∂H

∂p
(s))− q(ṗ(s) +

∂H

∂x
(s)
)

) (B.4)

−
ˆ ∞

0
ds

1

~
L∗L(x, p; s) (B.5)

− 1√
~

ˆ ∞
0

ds
(
L(x, p; s)(f(s)− g+(s)) + L(x, p; s)(f(s)− g−(s))

)
(B.6)

+
√
~
ˆ ∞

0
ds
(∂L
∂x

q(s) +
∂L

∂p
π(s)

)
(f(s) + g+(s)) (B.7)

−
√
~
ˆ ∞

0
ds
(∂L
∂x

q(s) +
∂L

∂p
π(s)

)
(f(s) + g−(s)) (B.8)

+O(~).

Let us simplify the notations introducing:

S0
cl. =

ˆ ∞
0

ds
(
π(ẋ(s)− ∂H

∂p
(s))− q(ṗ(s) +

∂H

∂x
(s))

)
(B.9)

D(s) =
(∂L
∂x

q(s) +
∂L

∂p
π(s)

)
(B.10)

L(s) = L(x, p; s) (B.11)

At first glance on the dependency on ~ of the different parts of iG, we need to get rid of lines
(B.5) and (B.6) which would lead to infinities as ~ goes to 0. We suppress these infinities
through an integration over specific linear combinations of f and g±.

Let h± = f − g±. Then (B.3) becomes

−
ˆ ∞

0
ds
(
|h+(s)|2 + |h−(s)|2 − h+(s)h−(s) + g+(s)(1− e−λ(s))g−(s)

)
and (B.6) becomes

− 1√
~

ˆ ∞
0

ds
(
L(x, p; s)h+(s) + L(x, p; s)h−(s)

)
.

We do not take into account the change in the measure of the path integration since it is a
simple multiplication by a constant. After integration over h+ and h− we obtain for (B.3)

−
ˆ ∞

0
dsg+(s)(1− e−λ(s))g+(s).

Remark that g− = h+ − h− + g+. This point is important in the computation. After
integration, (B.6) disappears and two new terms appear. The first one depends only on L(s)
and D(s):

+
1

~

ˆ ∞
0

ds(L(s)− ~D(s))(L(s) + ~D(s)).
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The second one depends on D(s) and g+:

+2
√
~
ˆ ∞

0
dsg+(s)(1− e−λ(s))D(s).

Hence we obtain

iG =−
ˆ ∞

0
ds|g+(s)|2(1− e−λ(s)) (B.12)

+ 2iS0
cl. (B.13)

− 1

~

ˆ ∞
0

ds
(
L∗L(x, p, s)− L(s)L(s)

)
(B.14)

+

ˆ ∞
0

ds
(
L(s)D(s)−D(s)L(s)

)
(B.15)

+ 2
√
~
ˆ ∞

0
ds
(
D(s)g+(s)− g+(s)D(s)

)
(B.16)

+ 2
√
~
ˆ ∞

0
dsg+(s)(1− e−λ(s))D(s) (B.17)

+O(~). (B.18)

The next step would be to take the limit ~ → 0 but it remains an exploding term in this
limit. Thus we need to check under which conditions L∗L(x, p; s)− L(s)L(s) = 0. Of course
this is true if [L∗, L] = 0, hence if L = F (X) or L = F (P ) with F any complex function of
reals. It is also true if L = αX + βP . In this case L∗L(x, p; s) = |αx(s) + βp(s)|2 + i~αβ
and L(s)L(s) = |αx(s) + βp(s)|2. Hence L∗L(x, p; s) − L(s)L(s) = i~αβ. This additional
constant add the same exact weigh to any path. It could have been suppressed in the initial
definition of the path integral. Thus we can get rid of it. So from now on let us assume
L∗L(x, p; s)− L(s)L(s) = 0.

We are now equipped to take the limit ~→ 0. First let us make a simple change of variables
on g+ such that all ~ dependency remains in front of |g+(s)|2(1 − e−λ(s)): g(s) =

√
~g+(s).

Remember that λ is such that e−λ(s) = 1− ~λ̃(s) + o(~). Hence (1− e−λ(s))/~ = λ̃(s) +O(~).
It follows we have |g(s)|2(1− e−λ(s))/~ = |g(s)|2λ̃(s) +O(~) and g(s)(1− e−λ(s))D(s) = O(~).

We obtain the action

iGcl. = lim
~→0

iG =−
ˆ ∞

0
ds|g(s)|2λ̃(s) (B.19)

+ 2iS0
cl. +

ˆ ∞
0

ds
(
L(s)D(s)− L(s)D(s)

)
(B.20)

+ 2

ˆ ∞
0

ds
(
D(s)g(s)−D(s)g(s)

)
. (B.21)

We know modify this expression to match the classical MSR action one.

iGcl. = (B.22)

−
ˆ ∞

0
ds
λ̃(s)

4
(η1(s)2 + η2(s)2) (B.23)

− 2i

ˆ ∞
0

dsq(s)
(
ṗ(s) +

∂H

∂x
(s) + γx(s) + Ix(s)η1(s)−Rx(s)η2(s)

)
(B.24)

+ 2i

ˆ ∞
0

dsπ(s)
(
ẋ(s)− ∂H

∂p
(s)− γp(s)− Ip(s)η1(s) +Rp(s)η2(s)

)
(B.25)
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with

γy(s) = Im
(
L(s)

∂L

∂y
(s)
)

(B.26)

Iy(s) = Im
(∂L
∂y

(s)
)

(B.27)

Ry(s) = Re
(∂L
∂y

(s)
)
. (B.28)

This MSR action correspond to the Langevin equations

ẋ(s) =
∂H

∂p
(s) + γp(s)−Rp(s)η2(s) + Ip(x)η1(s) (B.29)

ṗ(s) = −∂H
∂x

(s)− γx(s) +Rx(s)η2(s)− Ix(x)η1(s). (B.30)

η1 and η2 are two independent white noises whose correlation function is 〈ηi(s)ηj(t)〉 = δi,jδ(t−
s)2λ̃(t)−1.
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Abstract

We analyze general enough models of repeated indirect measurements in which a quantum
system interacts repeatedly with randomly chosen probes on which Von Neumann direct
measurements are performed. We prove, under suitable hypotheses, that the system state
probability distribution converges after a large number of repeated indirect measurements,
in a way compatible with quantum wave function collapse. Similarly a modified version of
the system density matrix converges. We show that the convergence is exponential with a
rate given by some relevant mean relative entropies. We also prove that, under appropriate
rescaling of the system and probe interactions, the state probability distribution and the
system density matrix are solutions of stochastic differential equations modeling continuous-
time quantum measurements. We analyze the large time convergence of these continuous-time
processes and prove convergence.

C.1. Introduction

Repeated indirect quantum measurements aim at getting (partial) information on quan-
tum systems with minimal impact on it. A possibility consists in repeating non-demolition

1. michel.bauer@cea.fr
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4. CEA/DSM/IPhT, Unité de recherche associée au CNRS
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measurements (QND). At each step, one lets the quantum system under study interact with
another quantum system, called the probe, and performs a Von Neumann measurement [4]
on this probe. Information on the quantum system is gained through intrication between
the probe and the quantum system. If one is aiming at progressively measuring a quantum
observable, one has to make sure that a system prepared in one eigenstate of this observable
remains in it after a cycle of intrication and direct measurement on the probe, and that the
set of stable states, called pointer states, forms an orthonormal basis of the system Hilbert
space. The experiment of ref. [2], in which repeated QND measurements is used to fix and
measure the number of photons in a cavity without destroying them, illustrates this strategy.

Repeated indirect measurements were studied in ref. [1]. There, the discussion was lim-
ited to QND measurements consisting of identical probes, interactions and measurements
on the probe, and assuming a non-degeneracy condition. In the present article, we extend
these results to cases where different indirect measurements (probes, interactions and direct
measurements on probes) are used. We also study the degenerate case.

Let Qn(·) be the pointer state distribution after the nth indirect measurement, that is Qn(α)
is the probability to find the system in the state α after n steps (α labels the pointer states),∑

αQn(α) = 1. As explain in section C.3, each cycle of indirect measurement updates the
distribution through Bayes’ law. The analysis of the distribution is reformulated as a problem
in classical probability theory (with no quantum interference).

We shall prove that this sequence of distributions converges at large n, that is after a large
– strictly speaking, infinite – number of QND measurements. If a non-degeneracy assumption
is verified, the limit distribution is Q(α) = δΥ,α for some random limit pointer state Υ. This
reflects the collapse of the system wave function. The convergence is exponential,

Qn(α) ' const. exp(−nS(Υ|α)), for large n, α 6= Υ,

with rate given by an appropriate relative entropy S(Υ|α) defined in eq.(C.9). In probabilistic
terms, the limit Q(α) possesses a natural interpretation as a Radon-Nikodym derivative and,
Qn(α) = E(Q(α)|Fn) is a closed martingale with respect to an appropriate filtration, see
section C.5. As a consequence, we show that the expectations conditioned on the limit
pointer state are identical to expectations starting from this same pointer state. That is:
EΥ( · ) = E( · |A) where A is the tail σ-algebra, the smallest one making the limit distribution
measurable. See below for a precise definition of EΥ( · ).

Convergence of Qn(α) is also studied when the non-degeneracy hypothesis is not fulfilled. In
this degenerate case, the limit pointer state distribution vanishes outside a random finite set of
pointer states. The quantum system density matrix, when properly modified, also converges
in the limit of infinite number of QND measurements. The limit density matrix then coincides
with that predicted for degenerate Von Neumann measurements [4], see section C.5.

Of course repeated indirect measurements have already been studied in the physics litera-
ture, mostly through time continuous measurement formalisms – as far as we know, little was
done on the discrete setting as we do in the present paper. E. B. Davies [6] probably made
the first rigorous approach to time continuous quantum measurement. This was later studied
by N. Gisin [7] and L. Diosi [8] using the non linear Schrödinger equation. Simultaneously,
A. Barchielli and V. P. Belavkin derived the equations governing continuous measurements
in terms of instruments [9]. They derived jump equations which, when properly rescaled,
are equivalent to diffusive equations for continuous measurements. Another approach uses
quantum stochastic differential equations and quantum filtering theory to obtain the so-called
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Belavkin equations [10–14] and [15]. More recently, C. Pellegrini derived Belavkin equations
for continuous time measurements [20–22] using discrete repeated indirect measurement mod-
els. The problem of convergence of quantum density matrix has also been analyzed within
the time continuous measurement framework. In refs. [16, 17], V. P. Belavkin showed the
convergence of mixed states toward pure states. A derivation of wave function collapse from
the non-linear stochastic Schrödinger equation has been presented in refs. [18, 19]. It makes
use of martingale theory as we do in the present paper.

In the following we also connect our discrete model to the time continuous measurement
formalism. Taking the time continuous limit requires rescaling appropriately the interaction
between the quantum system under study and the probes. In that sense, the time continuous
model we consider is close to that of ref. [21] but our proofs are different and slightly more
general. Our derivation is based on the convergence of some discrete counting processes
– related to the number of occurrences of outputs in the successive indirect measurements
– toward a time continuous Gaussian process. Under appropriate hypotheses, spelled out
in section C.6, the pointer state distribution satisfies a random diffusive stochastic equation
driven by Gaussian processes. Suppose that at each step the probe system is randomly selected
(independently of the past history and with time independent probability, for simplicity)
among a finite set O whose elements are indexed by o ∈ O and that the output measurements
on the probe can take finite number of values indexed by i ∈ spec(o). Then, the pointer state
probabilities Qt(α) are time continuous martingales (with respect to an appropriate filtration)
whose evolutions are governed by the non linear stochastic equations:

dQt(α) = Qt(α)
∑
(o,i)

(
Γ(o)(i|α)− 〈Γ(o)(i)〉t

)
dXt(o, i)

where Xt(o, i) are some centered Gaussian processes, Γ(o)(i|α) are coding for the probabil-
ity of output probe measurement i within the probe system o conditional on the quantum
system be prepared in the state α and 〈Γ(o)(i)〉t =

∑
α Γ(o)(i|α)Qt(α). The pointer state

distribution again converges as a finite-dimensionnal bounded vector martingale. Under non-
degeneracy assumptions, the limit distribution is again Q(α) = δΥ,α and the convergence is
still exponential with a rate given by the scaling limit of the mean relative entropy.

These results extend to the system density matrix. In the time continuous scaling limit,
the system density matrix is a solution of a diffusive Belavkin equation (C.23), as expected.
Although not a martingale, properly modified, it converges to the density matrix predicted
by Von Neumann measurement theory.

The article is organized as follow : In section C.2 we define the repeated QND measurement
process we study. In section C.3 we establish the link with a classical random process in
which the pointer state distribution is repeatedly updated through Bayes’ law. In section C.4
we prove the convergence of the pointer state distribution under some assumptions and we
determine the convergence rate in general cases. In section C.5 we extend these results to
the degenerate case. Finally in section C.6 we study the time continuous scaling limit of our
model. Some technical details appearing along the article are postponed to appendices.

C.2. QND measurements as stochastic processes

The aim of this section is to describe the relation between repeated non-demolition measure-
ments, positive operator valued measurements (POVM’s) and classical stochastic processes.
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C.2.1. Repeated indirect quantum measurements

Let us consider a quantum system with initial density matrix ρ. Repeated non-demolition
measurements aim at getting indirectly information on the system (without demolishing it as
a projective quantum measurement à la Von Neumann or a direct connection to a macroscopic
apparatus might do).

To gain information, we let the system interact with another quantum system called the
probe, and then perform a Von Neumann measurement on the probe. Assume the probe is
initially in the pure state |Ψ〉〈Ψ|. Let U be the unitary operator, acting on the tensor product
Hilbert space Hsys. ⊗ Hprobe, coding for the interaction between the system and the probe.
After interaction, the system and the probe are entangled. Their joint state is

U(ρ0 ⊗ |Ψ〉〈Ψ|)U †

A perfect non-degenerate projective measurement is then performed on the probe. That is,
one is measuring an observable with a non-degenerate spectrum i ∈ I. Let {|i〉} be the
corresponding eigenbasis of Hprobe. If the output of the probe measurement is i, the system
state is projected into

ρ′(i) =
1

π(i)
〈i|U |Ψ〉ρ〈Ψ|U †|i〉

because the probe and the system have been entangled. This projection occurs with proba-
bility

π(i) := Tr[〈i|U |Ψ〉ρ〈Ψ|U †|i〉].

We do not have to worry about cases where π(i) = 0, because these cases, almost surely,
never happen.

The process of “interaction plus probe measurement” is an example of a positive operator
valued measurement (POVM). Let us define operators Mi, acting on the system Hilbert space,
by

Mi := 〈i|U |Ψ〉.

They satisfy
∑

iM
†
iMi = Isys. as a consequence of the unitarity of U . After measurement

with output i, the system density matrix ρ′(i) can be written as

ρ′(i) =
1

π(i)
Mi ρM

†
i ,

with π(i) = Tr[Mi ρM
†
i ]. This characterizes a POVM.

Let us now assume that we repeat the process of “interaction plus probe measurement”
ad libitum. As we shall see below, even for purely practical reasons, it is useful to keep the
freedom of changing some or all features of the process. For instance, the experimenter might
tune (or let fluctuate randomly, or tune but leaving a certain amount of randomness or ...) the
initial state |Ψ〉 of the probe at each step. Or he/she might tune (or let fluctuate randomly,
or ...) the interaction operator U at each step, for instance by playing on the time lapse that
the probe spends close enough to the system to interact significantly with it. He/She might
even tune (or ...) the type of probe (in particular the dimension of its Hilbert space) at each
step. Finally, he/she might tune (or ...) the non-degenerate probe measurement (equivalently
the Hprobe basis made of its eigenvectors {|i〉}).
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We let |Ψn〉, Un, In denote the initial state, interaction operator and set of possible out-
comes of the nth step. Setting ρ0 := ρ, ρ1 := ρ′ and so on, we get a random recursion equation,
namely that for i ∈ In:

ρn =
1

πn(i)
M

(n)
i ρn−1M

(n)
i

†
(C.1)

with probability πn(i) = Tr[M
(n)
i ρn−1M

(n)
i

†
] where M

(n)
i = 〈i|Un|Ψn〉 (note that the meaning

of the expectation itself, i.e. the Hilbert space with respect to which it is taken, might depend
on n, however we may arrange to choose the In’s so that i determines 〈i| completely).

It is worth noticing that, under such an evolution, a pure state remains a pure state, that

is: |φn〉 = M
(n)
i |φn−1〉/‖M (n)

i |φn−1〉‖ with probability 〈φn−1|M (n)
i

†
M

(n)
i |φn−1〉. This case is

included in that of density matrices.

Let us now specialize this scheme in such a way that it preserves a preferred basis of the
system Hilbert space. That is, we assume there exists a fixed basis {|α〉} of Hsys. such that
all interactions can be decomposed as

Un :=
∑
α

|α〉〈α| ⊗ Un(α) (C.2)

where the Un(α)’s are unitary operators on Hproben . The states |α〉 are called pointer states.
The density matrices |α〉〈α| with |α〉 a pointer state are fixed points of the recursion relation
(C.1).

The pointer states have to be eigenstates of the system Hamiltonian Hs for these indirect
measurements to be quantum non-demolition (QND) measurements, since there is a waiting
time between two successive indirect measurements during which the quantum system evolves
freely. That is, Hs =

∑
αEα|α〉〈α| where Eα is the energy of the pointer state |α〉 for the free

system.

After each indirect measurement one gains information on the system state. Repeating the
process (infinitely) many times amounts (as we shall explain) to perform a measurement of a
system observable whose eigenstates are the pointer states. This observable commutes with
the system free evolution. A system in one of the pointer states remains unchanged by the
successive indirect measurements.

It has been shown in ref. [1] that a system subject to repeated QND measurements as
described above converges toward one of the pointer states. This convergence was only proved
in the case where the probes, interactions and observables on the probes are all the same. A
non-degeneracy hypothesis was also used. One of the present article aim is to generalize the
convergence statements without those assumptions.

A word on terminology: we are going to name partial measurement one iteration of “inter-
action plus probe measurement” and complete measurement an infinite sequence of successive
partial measurements.

C.2.2. A toy model

We shall illustrate this framework and our results with a simple toy model inspired by
experiments done on quantum electrodynamics in cavities [2]. The present work is actually
inspired by these experiments. There, the system is a monochromatic photon field and the
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probes are modeled by two level systems. The observable we aim at measuring is the photon
number. This is a non-demolishing measurement.

The system-probe interaction is well described by the unitary operator

U = exp[−i(ε∆t p̂⊗ I2 +
π

4
p̂⊗ σ3) ]

where p̂ is the photon number operator, ε the energy of a photon and ∆t the interaction
duration.

This interaction amounts to the rotation of the two level system effective spin half if the
cavity happened to be in a photon number operator eigenstate. The probes are assumed to
be initially in a state |Ψ〉 = e−iθσ3 |+1〉 where |+1〉 is an eigenvector of σ1 corresponding to
the eigenvalue +1. The probe observables, which are measured after the interaction between
the system and the probe has taken place, are Oθ′ = e−iθ

′σ3σ2e
iθ′σ3 . Their eigenvectors are

|±′θ〉 = e−iθ
′σ3 |±2〉.

The resulting POVM operators for the process of “interaction plus probe measurement”
only depend on the difference between the two angles θ and θ′. They are M θ−θ′

± with

M θ−θ′
± =〈±2|eiθ

′σ3e−i(ε∆t p̂⊗I2+π
4
p̂⊗σ3)e−iθσ3 |+1〉

=e−iε∆t p̂〈±2|ei(θ
′−θ)σ3−iπ4 p̂⊗σ3 |+1〉

Using the identity e−iθσ3 = cos(θ)I2 − i sin(θ)σ3 and σ3|+1〉 = |−1〉, one gets

M θ−θ′
± =

1√
2
e−i(ε∆t p̂±

π
4

)
[

cos(θ − θ′ + π

4
p̂)± sin(θ − θ′ + π

4
p̂)
]

One may verify that M θ−θ′ †
+ M θ−θ′

+ + M θ−θ′ †
− M θ−θ′

− = I. Remark that if |p〉, p ∈ N is a fixed
photon number state, then |〈p|M θ

±|p〉| is identical to |〈p+ 4k|M θ
±|p+ 4k〉|, with k ∈ N. This

property leads to degeneracies in iterative QND measurement methods. Two states |p〉 and
|p+ 4k〉 can not be distinguished by this method. These degeneracies are discussed in section
C.5.1.

C.3. Measurement apparatus and Bayes’ law

The aim of this section is to reformulate (part of) of the iterative QND measurement
method in terms of classical probability theory. We are interested in the eigenstate probability
distribution qn(α), with

qn(α) := 〈α|ρn|α〉,

and its evolution during the iterative procedure. At each step, the system density matrix is
updated via the relation (C.1), and as a consequence of the factorization property (C.2), this
distribution is updated through the random recursion relation:

qn(α) = qn−1(α)
|M (n)(i|α)|2∑

β qn−1(β)|M (n)(i|β)|2

with probability
∑

β qn−1(β)|M (n)(i|β)|2. We have defined M (n)(i|α) := 〈i|Un(α)|Ψn〉.
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Since |M (n)(i|α)|2 is the probability to get a probe measurement result i conditioned on
the system state being |α〉, we introduce a (hopefully) suggestive notation

pn(i|α) := |M (n)(i|α)|2

We have
∑

i pn(i|α) = 1 since
∑

iM
(n)(i|α)†M (n)(i|α) = I. The recursion relation on the

distribution reads

qn(α) = qn−1(α)
pn(i|α)∑

β qn−1(β)pn(i|β)
(C.3)

with probability πn(i) =
∑

β qn−1(β)pn(i|β). This update rule corresponds to Bayes’ law.
The study of the eigenstate distribution convergence is thus a question of classical probability
theory.

Let us now put on stage the classical probability theory framework we shall be using.
We imagine building a measurement apparatus which performs a sequence of partial mea-

surements. As we have stressed above, we allow for a protocol where the characteristics of
partial measurements may vary at each step. However, we shall assume that these charac-
teristics are chosen within some finite set O called the set of measurement methods. In a
quantum setting, one measurement method o is a triplet (probe state |Ψ〉, interaction U ,
probe eigen-basis {|i〉} of direct measurement). Each measurement method o ∈ O defines a
set, called the spectrum of o and denoted by spec(o), of possible outcomes. For each o we
have a family of probability measures po(·|α) on spec(o) indexed by α ∈ S, where S is the
index set of pointer states.

As time goes by, the experimenter records the sequence o1, i1, o2, i2, · · · where o1 is the
first measurement method, i1 the outcome of the first partial measurement, performed using
method o1, and so on. So it is natural to take as the space of events the space Ω of infinite
sequences (o1, i1, o2, i2, · · · ) where each on belongs to O and each in to spec(on). To be even
more formal, set E := ∪o∈O{o} × spec(o), so that E is the set of couples (o, i) with o ∈ O
and i ∈ spec(o). Then Ω := EN∗ .

For a finite sequence (o1, i1, o2, · · · , in, on+1) ∈ En × O, Bo1,i1,o2,··· ,in,on+1 is defined as the
subset of Ω made of all those ω’s whose first 2n + 1 components are o1, i1, o2, · · · , in, on+1.
We define Bo1,i1,o2,··· ,on,in analogously. We let Fn be the σ-algebra generated by all the
Bo1,i1,o2,··· ,in,on+1 . Note that F0 is the σ-algebra generated by all the Bo1 , i.e. F0 codes
for the first measurement method choice. For convenience we define F−1 ≡ {∅,Ω}. Then
F := (F−1,F0,F1, · · · ) is an increasing sequence of σ-algebras. We take F to be the smallest
σ-algebra on Ω containing all the Fn, making (Ω,F ,F) a filtered measurable space. We could
define another filtration by taking F ′n to be the σ-algebra generated by all the Bo1,i1,o2,··· ,on,in .
While this may seem superficially a more natural choice of filtration, we shall see below that
F is slightly more convenient. There is a natural collection of measurable functions on (Ω,F),
namely the projections : for ω = (o1, i1, o2, · · · , on, in, · · · ) we set On(ω) = on, In(ω) = in.
These can be used to define counting functions that play an important role in the following.
We set εn(o, i) := 1On=o,In=i and Nn(o, i) :=

∑
1≤m≤n εm(o, i) (with the usual empty sum

convention N0(o, i) := 0).
The first task is to put a probability measure on Ω. The next one will be to define a

sequence of random variables on Ω solving the recursion relation (C.3).
If the measurement methods are given, the distributions of partial measurements are de-

scribed by the po(·|α). So what remains to be discussed is how the measurement meth-
ods are chosen, and we put the condition that this does not involve precognition. We
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suppose that a collection of non-negative numbers d−1 = 1, d0(o1) (for all o1 ∈ O), · · · ,
dn(o1, i1, o2, · · · , in, on+1) (for all o1 ∈ O, i1 ∈ spec(o1), · · · , on+1 ∈ O) is given in such a way
that ∑

on+1∈O
dn(o1, i1, o2, · · · , in, on+1) = dn−1(o1, i1, o2, · · · , in−1, on). (C.4)

It is not difficult to produce such a collection. For instance if c0(·) is a probability measure
on O and for each n ≥ 1 cn(·|o, i) is a probability measure on O indexed by (o, i) ∈ E then

dn(o1, i1, o2, · · · , in, on+1) ≡ c0(o1)c1(o2|o1, i1) · · · cn(on+1|on, in)

does the job. We call this special choice the Markovian feedback protocol. Some special cases
are of interest. If we assume that for n ≥ 1 cn(·|o, i) = cn(·) does not depend on o, i, we
arrive at something we call the random protocol. On the other hand, if b0 is an element of
O and bn, n ≥ 1 a family of maps from E to O, then taking c0(·) := δ·,b0 and, for n ≥ 1,
cn(·|o, i) := δ·,bn(o,i) we arrive at the description of an experimenter deciding of the next
measurement method by taking into account the previous measure outcome.

Given a collection of such non negative numbers dn(o1, i1, · · · , in, on+1), and using the
Kolmogorov extension theorem, it is easy to see that there is a unique probability measure
Pα on (Ω,F) such that

Pα(Bo1,i1,o2,··· ,in,on+1) = po1(i1|α) · · · pon(in|α)dn(o1, i1, o2, · · · , in, on+1).

Indeed, we see that the mandatory consistency condition is fulfilled : if the left-hand side
is summed over on+1 (using (C.4)) and then over in the formula for Pα(Bo1,i1,o2,··· ,in−1,on) is
recovered, which is needed since Bo1,i1,o2,··· ,in−1,on is the disjoint union of the Bo1,i1,o2,··· ,in,on+1

over the possible on+1 and in. The normalization condition Pα(Ω) = 1 and the positivity
condition are obvious.

Note that in general, conditional on the sequence of measurement methods o1, · · · , on, one
has Pα(i1, · · · , in|o1, · · · , on) 6= po1(i1|α) · · · pon(in|α). This is due to the feedback. For the
cases when the dn’s do not depend on the outcomes, in particular for the independent random
protocol, equality is recovered.

We define also,

P ≡
∑
α∈S

q0(α)Pα. (C.5)

We use Eα and E to denote expectations with respect to Pα and P respectively.
A simple computation shows that, for each α, the conditional probability

Pα(On+1 = on+1|O1, I1, · · · , On, In) =
dn(O1, I1, O2, · · · , In, on+1)

dn−1(O1, I1, 02, · · · , In−1, On)

whenever the denominator in nonzero. The same formula holds for P. The right-hand side
is simply cn(on+1|On, In) for the Markovian feedback protocol. So indeed, the functions
d−1, d0, d1, · · · embody the probabilistic description of the choice of measurement methods.

These definitions may seem arbitrary at that point, but now we can make contact with
the initial problem. Define a sequence of random variables Qn(α) by the initial condition
Q0(α) = q0(α) and the recursion relation

Qn(α) =
Qn−1(α)pOn(In|α)∑
β∈S Qn−1(β)pOn(In|β)

.
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To show that the recursion relation (C.3) is verified, we need to show that the transition
probabilities are correct. A simple way to do that is to solve this random recursion relation.
For ω ∈ Bo1,i1,o2,··· ,in,on+1 one checks that

Qn(α, ω) :=
q0(α)po1(i1|α) · · · pon(in|α)∑
β∈S q0(β)po1(i1|β) · · · pon(in|β)

(C.6)

whenever P(Bo1,i1,o2,··· ,in,on+1) 6= 0. Note that this condition ensures that the denominator of
Qn(α, ω) is nonzero. We observe that whenever defined, Qn(α, ω) ≥ 0 and

∑
αQn(α, ω) = 1.

If P(Bo1,i1,o2,··· ,in,on+1) = 0 the value of Qn(α, ω) is mostly immaterial from a probabilistic

viewpoint, because in any case the full sequence Qn(α, ω) is well-defined on a set Ω̃ of P-
measure 1 (note that the collection of all Bo1,i1,o2,··· ,in,on+1 is countable, so the collection of
those with P-measure 0 is countable as well, or empty).

Since there is no dependence on on+1 on the right-hand side we observe that for ω ∈ Ω̃,
and conditional on Fn−1,

Qn(α) =
Qn−1(α)pon(in|α)∑
β∈S Qn−1(β)pon(in|β)

with probability

∑
on+1∈O

P(Bo1,i1,o2,··· ,in,on+1)

P(Bo1,i1,o2,··· ,in−1,on)
=

P(Bo1,i1,o2,··· ,in)

P(Bo1,i1,o2,··· ,in−1,on)
=
∑
β∈S

Qn−1(β)pon(in|β).

So the recursion relation (C.3) is recovered with the identifications qn(α) → Qn(α) and
pn → pon . To summarize, we have accomplished our goal : find a probability space on which
(C.3) has a solution, which we have even written explicitly.

In the following sections we study the convergence of Qn(.) and its dependence with respect
to the initial pointer state distribution. On our way, we shall understand the probabilistic
meaning of the recursion relation (C.3).

C.4. Convergence

In [1] the convergence of qn(.) has been shown under the hypothesis that only one partial
measurement method o is used. The properties of the limit were elucidated under the further
assumption that for every couple of pointer states (α, β) there exists at least one partial
measurement result i such that po(i|α) 6= po(i|β). This last assumption can be understood as
a non-degeneracy hypothesis because two different pointer states α, β do not induce identical
partial measurement results distribution po(i|α). Our aim is to generalize the convergence of
Qn(.) while weakening the hypotheses made in [1]. We discuss the convergence when different
partial measurement methods are used. We focus on the influence of this extension on the
rate of convergence. The degenerate case will be studied in section C.5.1. In the case of one
measurement method, a convergence result similar to that of [1] has been obtained by H.
Amini, P. Rouchon and M. Mirrahimi through sub-martingale convergence in [3].
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C.4.1. Convergence with different partial measurement methods

The extension of the convergence result of [1] to cases with different measurement methods
is straightforward. From the fact that, conditional on Fn−1,

Qn(α) =
Qn−1(α)pon(in|α)∑
β∈S Qn−1(β)pon(in|β)

with probability
∑

β∈S Qn−1(β)pon(in|β), the average of Qn(α), again conditioned on Fn−1,
is ∑

in∈specon

Qn(α)
∑
β∈S

Qn−1(β)pon(in|β) = Qn−1(α).

So Qn−1(α) is conserved in average. Though the computation involved to prove it is essentially
the same, a mathematically cleaner statement is that

E(Qn(α)|Fn−1) = Qn−1(α),

i.e. each Qn(α) is an F-martingale.

In fact, Qn(α) has a deeper probabilistic meaning, which makes the martingale property
obvious.

For a while, forget the previous definition of Qn(α). Observe that, under the assumption
that q0(α) > 0 for every α ∈ S, any set of P-measure 0 has also Pα-measure 0. Then the
Radon-Nikodym theorem states that for each α ∈ S, there is a P-integrable non-negative
random variable Q(α) on (Ω,F) such that

q0(α)Eα(X) = E(Q(α)X)

for every Pα-integrable random variable X on (Ω,F). The random variable Q(α) is a Radon-
Nikodym derivative of q0(α)Pα with respect to P. It is obvious that two Radon-Nikodym
derivatives can differ only on a set of P-measure 0: in that sense the Radon-Nikodym derivative
is unique if it exists. We have also that, P-almost surely,

∑
αQ(α) = 1, so that, P-almost

surely, each Q(α) ≤ 1. This existence theorem is a bit abstract but if one replaces F by Fn
one can get a concrete formula. The same argument ensures the existence of a P-integrable
non-negative random variable Qn(α) on (Ω,Fn) such that q0(α)Eα(X) = E(Qn(α)X) for
every Pα-integrable random variable X on (Ω,Fn). As Fn is finite, it suffices to let X run
over the indicator functions for the Bo1,i1,o2,··· ,in,on+1 . This implies that

Qn(α, ω) = q0(α)
Pα(Bo1,i1,o2,··· ,in,on+1)

P(Bo1,i1,o2,··· ,in,on+1)

for every ω ∈ Bo1,i1,o2,··· ,in,on+1 (such that the denominator is nonzero, else the value of
Qn(α, ω) is immaterial). Explicitly one finds

Qn(α, ω) =
q0(α)po1(i1|α) · · · pon(in|α)∑
β∈S q0(β)po1(i1|β) · · · pon(in|β)

on Bo1,i1,o2,··· ,in,on+1 .
This is exactly our previous definition of Qn(α), which is probabilistically a Radon-Nikodym

derivative. This makes the martingale property obvious without any computation, just by
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the definition and general properties of conditional expectations. In fact, Qn(α) is a closed
martingale:

Qn(α) = E(Q(α)|Fn).

AsQn(α) is also bounded, the martingale convergence theorem [5] ensures thatQn(α)→ Q(α)
P-almost surely and in L1(Ω,F ,P). Since by assumption S is a finite set, all Qn(α)’s converge
simultaneously P-almost surely.

Let us now observe that the following two statements are equivalent:

— the measures Pα are all mutually singular,

— there is a collection (Ωα)α∈S of disjoint measurable subsets of Ω such that, P-almost
surely 1Ωα = Q(α).

The proof is simple. The statement that the measures Pα are all mutually singular is
equivalent to the existence of a collection (Ωα)α∈S of disjoint measurable subsets of Ω such that
Pβ(Ωα) = δα,β for all α, β ∈ S. From the defining property of Radon-Nikodym derivatives,
1ΩαQ(α) is also a Radon-Nikodym derivative of q0(α)Pα with respect to P, and E(Q(α)1Ωβ ) =
q0(α)δα,β which by positivity implies that, for α 6= β, Q(α)1Ωβ = 0 except maybe on a
set of P-measure 0. Hence P-almost surely 1ΩαQ(β) = Q(β)δα,β. Summing over β gives
1Ωα = Q(α) P-almost surely. The converse is also true: if there is a collection (Ωα)α∈S of
disjoint measurable subsets of Ω such that P-almost surely 1Ωα = Q(α), then the measures
Pα are all mutually singular and concentrated on the Ωα’s.

A striking consequence is that, if the measures Pα are all mutually singular, for each ω in
a set of P-measure 1, Qn(α) converges to either 0 or 1, and it converges to 1 with probability
P(Ωα) = q0(α).

Hence when the measures Pα are all mutually singular there is a full experimental equiva-
lence between an infinite sequence of partial measurements and a direct projective measurement
on the system. We further study this equivalence in section C.4.2.

We shall now give a criterion, that the experimenter may enforce on the protocol, ensuring
that the measures Pα are all mutually singular. This involves a non-degeneracy hypothesis,
similar but weaker than that made in [1].

We say that o ∈ O is recurrent in ω ∈ Ω if On(ω) = o for infinitely many n’s. Our
(sufficient) criterion for all the measures Pα to be mutually singular is:

There is a subset Os of O such that

– Each o ∈ Os is recurrent with probability 1 under each Pα
– For every α, β ∈ S, α 6= β there is some o ∈ Os and i ∈ spec(o) such that po(i|α) 6= po(i|β).

This condition says that with probability one, infinitely many partial measurements that
distinguish between any two states of the system will occur.

Consider the event Ao made of the ω’s such that Qn(α) converges for each α and o is
recurrent. Note that by our assumptions P(Ao) = 1. We show that for any i ∈ spec(o)

Q(α)
∑
γ

Q(γ)po(i|γ) = Q(α)po(i|α)

on Ao. There are two cases to consider. Either (On(ω), In(ω)) = (o, i) for infinitely many
n’s: then the announced relation follows by taking the limit of the basic recursion relation
along a subsequence. Or (On(ω), In(ω)) = (o, i) for only finitely many n’s: then, as shown in
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Appendix C.A,
∑

γ Q(γ)po(i|γ) = 0 so that in particular Q(α)po(i|α) = 0 and the announced
relation still holds.

This implies that

∀α, β ∈ S, Q(α)Q(β)(po(i|α)− po(i|β)) = 0 on Ao for every i ∈ spec(o). (C.7)

Then, by (C.7), ∀α, β ∈ S, α 6= β one has Q(α)Q(β) = 0 on AOs := ∩o∈OsAo, which has
P-measure 1. As the sum of the Q(α)’s is 1, this means that on AOs one has Q(α) = δα,Υ
where Υ(ω) is some ω-dependent element of S. So there is a family of disjoint subsets Ωα of
AOs such that ∪αΩα has P-measure 1, and Q(α) = 1Ωα except maybe on a set of P-measure
0.

We shall give two examples.

For the first one, the task to ensure that enough measurement methods o are recurrent is
left to the experimenter.

The second example is the Markovian feedback protocol. For this protocol, under Pα,
the process (on, in) is Markovian with transition kernel Kα,n(o, i; o′, i′) = po

′
(i′|α)cn(o′|o, i),

with initial distribution po(i|α)c0(o). Recurrence questions are well under control at least
when the kernels do not depend on n. So we assume that cn(o′|o, i) = c(o′|o, i) is time
independent 5 and set Kα(o, i; o′, i′) = po

′
(i′|α)c(o′|o, i). The product structure of Kα leads to

introduce the reduced transition kernel Kred
α (o; o′) :=

∑
i∈spec(o) p

o(i|α)c(o′|o, i). One can rely
on classical Markov chain computations to make sure that the measures Pα are all mutually
singular. Assuming that the reduced Markov chain Kred

α is irreducible and aperiodic, it
admits a unique invariant probability µredα on O, which is strictly positive. Then all partial
measurement methods with µredα (o) > 0 will be recurrent on a set of Pα-measure 1. Moreover
the full Markov chain has a unique invariant probability µα(o, i) = po(i|α)µredα (o). Then the
strong law of large numbers for Markov chains states that Nn(o, i), the number of occurrence
of (o, i) up to the nth experiment, satisfies

Nn(o, i) ∼ nµα(o, i) for large n

on a set of Pα-measure 1. This ergodicity result will be put in use in section C.4.3.

To summarize, we have proved that if there are enough Pα recurrent partial measurement
methods then the measures Pα are all mutually singular, so that there is a full experimental
equivalence between an infinite sequence of partial measurements and a direct projective
measurement on the system.

C.4.2. Conditioning or projecting

In the previous section we pointed out the connection between complete measurements and
direct projective measurements. This holds whenever the measures Pα are mutually singular.

Under this hypothesis, we show in this section that we can solve the random recursion
relation (C.3) on a space where the final pointer state is determined before the measurement
process starts: for the class of experiments we are dealing with, it is consistent to assess that
the total measurement outcome can be decided in advance and by a classical probabilistic
choice.

5. Were cn periodic in n we could look at a Markov chain with a larger state space to reduce to that case.
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We assume that the measures Pα are mutually singular, and, as usual, that all q0(α) are
> 0. To avoid clumsy statements, we remove from Ω the (P-negligible) set of events for
which either Qn(α) is not defined for all n’s, or Qn(α) does not converge to 0 or 1. So
we assume that the sets Ωα form a partition of Ω, and the random variable Υ defined by
limn→∞Qn(α, ω) = 1ω∈Ωα = δα,Υ(ω) is defined everywhere on Ω. We let A be the smallest
σ-algebra making any Ωα measurable. We claim that if X ∈ L1(Ω,F ,P) is any integrable
random variable,

E(X|A) = EΥ(X).

This can be rephrased as : conditioning P on the limit of Qn(α) being 1 leads to Pα. This is
essentially obvious from the Radon-Nikodym viewpoint and the fact that the measures Pα are
mutually singular. But a direct computation is easy. The fact that S is finite (countable would
do the job as well) has two consequences. First, any A-measurable random variable Y can be
written as a linear combination Y =

∑
α∈S yα1Ωα . Second, to test that E(X|A) = Y it suffices

to check that E(X1Ωα) = E(Y 1Ωα) for every α. Now, by definition, E(X1Ωα) = q0(α)Eα(X),
whereas E(Y 1Ωα) = q0(α)yα, so, if E(X|A) = Y , yα = Eα(X), i.e. Y =

∑
α∈S Eα(X)1Ωα =

EΥ(X). Hence E(X|A) = EΥ(X) as announced.
This proves the equivalence between projecting first on a given state α and conditioning

on the limit state being α.

C.4.3. Convergence rates and trial distribution independence

Experimentally, the initial distribution q0(·) may not be known. One would then use the
sequence of partial measurements to gain information and reconstruct it from these measure-
ments. This may be done using Bayes’ law starting from a trial distribution q̂0(·) (supposed
to be nowhere vanishing) and recursively improving it using the relation

q̂n(α) = q̂n−1(α)
pon(in|α)∑

β q̂n−1(β)pon(in|β)

if the outcome is i, which happens with probability
∑

β qn−1(β)pon(in|β). The difference
with eq.(C.3) is that the recursion involves q̂n(·) and not qn(·). However, the probability
is the one given by the qn(·). If the initial trial distribution q̂0(·) coincides with the initial
system distribution q0(·), then q̂n(·) = qn(·) for all n. Both q̂n(·) and qn(·) are realization
dependent. We shall define the random process Q̂n(·) as Qn(·) in (C.6) but with a different
initial distribution

Q̂n(α) := q̂0(α)
po1(i1|α) · · · pon(in|α)∑

β q̂0(β)po1(i1|β) · · · pon(in|β)

The probability law still depends on the true initial distribution. Notice that Q̂n(·) is not
an F-martingale under this law, contrary to Qn(·). As we shall show, they nevertheless have
identical limit, that is: limn→∞ Q̂n(α) exists and is equal to 1Ωα with P-probability 1.

Moreover, if a time independent Markovian feedback protocol is used, the convergence of
the state probability distribution is exponential. Its convergence rate is the mean relative
entropy of the partial measurement result distribution conditioned on the system be in the
state Υ with respect to the one conditioned on the system be in the state α. This means that
for n large enough,

Q̂n(α) ' e−nS(Υ|α), for α 6= Υ (C.8)
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with

S(β|α) :=
∑
o∈O

µredΥ (o)
∑

i∈spec(o)

po(i|β) ln

[
po(i|β)

po(i|α)

]
(C.9)

Here, all the po(i|α) are assumed to be strictly positive, thus any (o, i) with o ∈ Os is recurrent.
In the case of time independent random protocols, the rate is the same with µredΥ (·) replaced
by c(·) the distribution of measurement methods. This coincides with the result of [1] if O
contains only one partial measurement method.

The independence of the limiting distribution with respect to the initial trial distribution is
obtained whenever one starts with a trial distribution such that q̂0(α) > 0 wherever q0(α) > 0.
This happens for example if we start with q̂0(α) > 0 for any α ∈ S.

To see this, we analyse the behavior of Q̂n under the probability measure P̂ :=
∑

α∈S q̂0(α)Pα,
which can be seen as a trial probability measure on Ω as it corresponds to a system initialy
in the trial state. Under P̂, Q̂n(α) is a martingale, so by the above arguments, it converges
P̂ almost surely to 1Ωα . As by hypothesis q̂0(α) > 0 whenever q0(α) > 0 (which can be
rephrased as: P is absolutely continuous with respect to P̂), a subset of Ω of P̂ probability 1
has also P probability 1. So limn→∞ Q̂n(α) = 1Ωα = limn→∞Qn(α) with P probability 1.

What is less direct is the determination of the convergence rate. This requires controlling
the behavior of the counting processes Nn(o, i). As recalled at the end of section C.4.1,
Nn(o, i)/n→ µα(o, i) on a set 6 of Pα-measure 1. We want to infer that P-almost surely,

lim
n→∞

Nn(o, i)/n = µΥ(o, i).

To prove it, we set L(o, i) := {limn→∞Nn(o, i)/n = µΥ(o, i)} and write

P(L(o, i)) =
∑
α

q0(α)P(L(o, i)|Ωα) =
∑
α

q0(α) = 1,

where we used

P(L(o, i)|Ωα) = P( lim
n→∞

Nn(o, i)/n = µα(o, i)|Ωα)

= Pα( lim
n→∞

Nn(o, i)/n = µα(o, i)) = 1.

Observe now that Q̂n(α) can be expressed as a function of the counting processes:

Q̂n(α) =
q̂0(α)

∏
(o,i)∈E p

o(i|α)Nn(o,i)∑
β q̂0(β)

∏
(o,i)∈E p

o(i|β)Nn(o,i)

Under the hypothesis that all po(i|α)’s are ¿0, we have that Q̂n(α) > 0 for every n, and the
logarithm of the ratio between Q̂n(α) and Q̂n(β) is well defined. Using the previous result,
we have

lim
n→∞

1

n
ln

[
Q̂n(β)

Q̂n(α)

]
=

∑
(o,i)∈E

µΥ(o, i) ln

[
po(i|β)

po(i|α)

]

=
∑

(o,i)∈E

µredΥ (o)po(i|Υ)

(
ln

[
po(i|β)

po(i|Υ)

]
+ ln

[
po(i|Υ)

po(i|α)

])
6. For the record, the set {Nn(o, i)/n → µα(o, i)} is measurable, as it can be written⋂
m∈N∗

⋃
n0∈N

⋂
n>n0

{ω ∈ Ω, |Nn(o, i;ω)/n− µα(o, i)| < 1/m}.
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Then, for a large enough n,

Q̂n(β)

Q̂n(α)
' e−nS(Υ|β)enS(Υ|α)

with S(Υ|α) the mean relative entropy, S(Υ|α) =
∑

o∈O µ
red
Υ (o)So(Υ|α) where

So(Υ|α) =
∑

i∈spec(o)

po(i|Υ)(ln[po(i|Υ)]− ln[po(i|α)])

The relative entropy is always non negative, subsequently, the mean relative entropy is non
negative too. Moreover, the mean relative entropy is null if and only if Υ = β (all relative
entropies null).

Using this property and
∑

β Q̂n(β) = 1, we obtain for α 6= Υ,

Q̂n(α)
−1

=
∑
β

Q̂n(β)

Q̂n(α)
' enS(Υ|α)(1 +

∑
β 6=Υ

e−nS(Υ|β))

Then, to leading exponential order

Q̂n(α) ' e−nS(Υ|α)

Hence, for n large enough, we proved that

Q̂n(α) '
{

1 if α = Υ

const.e−nS(Υ|α) else

The limit distribution does not depend on the trial initial distribution but only on the complete
measurement realization. The probability to have Q̂∞(α) = δα,γ equals q0(γ). With time
independent Markovian feedback protocol, the convergence is exponential with a leading rate
S(Υ|α).

C.4.4. Convergence rate tuning

Most of the time, when performing a measurement, one prefers it to take as little time as
possible. The use of different partial measurement methods allows us to tune the convergence
rate. Let us take an example. Suppose we want to discriminate between three possible pointer
states of a system, and suppose that the partial measurement methods give only True/False
as possible outputs. We denote T, F the partial measurement results and 1, 2, 3 the pointer
states. Each partial measurement method can be tuned to maximize, up to a measurement
error ε � 1, the probability of one of its outcome knowing the system is in one of the three
pointer states. We shall show that this is not enough to maximize all convergence rates for
arbitrary limit pointer state. It is the use of different measurement methods picked randomly
that allows us to overcome this convergence rate problem.

Let us consider for instance two measurement methods. The first one, denoted a, has
conditioned probabilities

pa(T |1) = ε, pa(T |2) = q, pa(T |3) = 1− ε
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with q = O(1). The second one, denoted b, is obtained by switching the probability condi-
tioned on 1 and 2, that is

pb(T |1) = q, pb(T |2) = ε, pb(T |3) = 1− ε

Let us now look at the convergence rate conditioned on the limit pointer state to be 1. These
are coded in the relative entropies. If only the measurement method a is used, one has:

Sa(1|2) = ε ln

[
ε

q

]
+ (1− ε) ln

[
1− ε
1− q

]
∼ − ln[1− q] = O(1)

Sa(1|3) = ε ln

[
ε

1− ε

]
+ (1− ε) ln

[
1− ε
ε

]
∼ − ln[ε]� 1

The convergence of Qn(3) toward 0 is quick but the one of Qn(2) is rather slow. If measure-
ment method b is used the interesting relative entropies are now

Sb(1|2) = q ln
[q
ε

]
+ (1− q) ln

[
1− q
1− ε

]
∼ − ln[ε]

Sb(1|3) = q ln

[
q

1− ε

]
+ (1− q) ln

[
1− q
ε

]
∼ − ln[ε]

All the convergences rates are then high if the limit pointer state is 1. But if the limit pointer
state is not 1 but 2 then, using only the measurement method b, the relative entropy Sb(2|1)
is

Sb(2|1) = ε ln

[
ε

q

]
+ (1− ε) ln

[
1− ε
1− q

]
∼ − ln[q] = O(1)

and the convergence rate toward 2 is slow.
Now, if at each time one of the two measurement methods is used with equal probability

1
2 . The convergence rate for any i, j with i 6= j is

S(i|j) =
1

2
(Sa(i|j) + Sb(i|j)) ∼ − ln[ε]� 1

As a consequence, the convergence rate is always high, whichever the limit pointer state is.
In the toy model, if the first partial measurement method correspond to θ − θ′ = π

3 , then

S
π
3 (0|3) ∼ 0.116

This is the slowest of all convergence rates. If the partial measurement method with θ−θ′ = π
6

is introduced and the partial measurement methods are chosen with equal probabilities each
time, then

S(0|3) ∼ 1.18

and the slowest of all convergence rates is

S(1|3) ∼ 1.10

If only the π
3 measure is used and the limit pointer state is 0, then a theoretical 99% confidence

level is reached after about 50 measures. With the use of the two different partial measurement
methods the same confidence level for the same limit state is reached in 5 measures. The
same number of measurements is needed if the limit pointer state is 1, 2 or 3.

176



C.5. Degeneracy and limit quantum state

C.5. Degeneracy and limit quantum state

Often the quantity we measure is a property common to several pointer states. In the quan-
tum case, this corresponds to a degenerate projective Von Neumann measurement. There,
at least two different eigenstates share the same eigenvalue. For our measurement process,
degeneracies happen when several distributions po(·|·) are equal for different pointer states,
so that some states cannot be distinguished. For example, in our toy model, whatever θ − θ′
is, we have pθ−θ

′
(±|p) = pθ−θ

′
(±|p+ 4k) with k an integer. The pointer state with p photons

cannot be distinguished from the one with p+ 4k photons.

In this section we study the system state evolution when degenerate repeated partial mea-
surements are performed. In a first part we show the convergence of the system pointer state
distribution. In a second part we focus on the quantum case and the influence of phases
introduced between degenerate states by the repeated partial measurement process.

We shall partition the set of configurations into sectors. Let us define an equivalence
relation among pointers by identifying two pointers whose partial measurement distributions
are identical. That is: two pointers α and β are said to be equivalent (denoted α ∼ β) if, for
any partial measurement method o and result i,

po(i|α) = po(i|β).

By definition the sector α is the equivalence class of α. In the toy model the sectors are the
sets p = {p+ 4k, k ∈ N} with p = 0, 1, 2, 3.

C.5.1. State distribution convergence

We first look at the convergence of the pointer state distribution Qn(·) in case of degeneracy.
The system distributions Qn(·) induce probability distributions Q̄n(·) on sectors by

Q̄n(α) :=
∑
α′∈α

Qn(α′).

Since sectors form a partition of the set of pointer states, we have
∑

αQn(α) = 1. The initial
probability of a sector is q̄0(α) =

∑
α′∈α q0(α′). The recursion relation (C.3) can obviously be

lifted to a recursion relation for the sector distributions,

Q̄n+1(α) = Q̄n(α)
pon(in|α)∑

β Q̄n(β)pon(in|β)
.

It is identical in structure to eq.(C.3) but with the bonus that it now is non degenerate. Lets
assume that for two different sectors, it exists at least one P-recurrent partial measurement
method distinguishing between the two sectors: if α 6∼ β, it exists o ∈ Os and i ∈ spec(o)
such that po(i|α) 6= po(i|β). Thus we can use the non-degenerate case results but applied to
the sector distribution. Hence, Q̄n(·) almost surely converge and

Q̄(α) = δα,Υ

with Υ the realization dependent limit sector. The probability that the limit sector be γ is
equal to q̄0(γ).
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From the martingale property, the state distribution converge (not only the sector distri-
bution), and the point which remains to be discussed is what is this limit. Thanks to the
relation q0(α′)Qn(α) = q0(α)Qn(α′) valid for any n if α ∼ α′, we shall show that this limit is

Q(α) =

{
0 if α 6∈ Υ
q0(α)/q̄0(Υ) if α ∈ Υ

(C.10)

with Υ the limit sector.
Indeed, the state distribution satisfies the recursion relation (C.3). Thus, if (ik)k=0,··· ,n−1

are the n first partial measurements results, one has

Qn(α′)

q0(α′)
=

∏n
k=1 p

ok(ik|α)∑
β q0(β)

∏n
k=1 p

ok(ik|β)

for any α′ in the sector α. The right hand side only depends on the sector α, and thus
Qn(α)
q0(α) = Qn(α′)

q0(α′) if α′ ∈ α. From this equality, it follows that

Q(α′) = Q(α)
q0(α′)

q0(α)

Since, Q̄(α) = δα,Υ, we have Q(α) = 0 if α /∈ Υ and 1 =
∑

α′∈ΥQ(α′) = Q(α)
q0(α) q̄0(Υ), for any

α ∈ Υ. Hence,

Q(α) =
q0(α)

q̄0(Υ)
, for α ∈ Υ

The probability of convergence to a sector as well as the limit state distribution (C.10)
coincide, in quantum mechanics, with what would have been predicted by Von Neumann
rules for degenerate projective measurements. The approach we have been following so far,
based on tools from classical probability theory, gives no information on the convergence of the
density matrix off-diagonal elements. It is the next section’s purpose to discuss the evolution
of the density matrix ρn and not only the evolution of the probabilities Qn(α) = 〈α|ρn|α〉.

C.5.2. Density matrix convergence

We are now interested in the convergence of the system density matrix. In the basis of
pointer states we may write:

ρn =
∑
α,β

An(α, β)|α〉〈β|

with An(α, α) = Qn(α). It evolves according to the recursion relation (C.1). The processes
An(α, β), are not martingales, and their convergence can not be obtain through the martingale
convergence theorem. Actually, they do not always converge. To obtain convergence a unitary
evolution process has to be subtracted.

For each POVM, a phase between the pointer states is introduced by the operators M
(o)
i .

Even inside a sector this phase can be nonzero. This possibility comes from the degeneracy
criteria we unraveled previously. Two pointer states, α, β can have a nonzero limit probability
if they are in the same sector : α ∼ β. This criterion implies a norm equality |M (o)(i|α)| =
|M (o)(i|β)| for any i in the spectrum of any partial measurement, but not a full equality. So
M (o)(i|α) and M (o)(i|β) can differ by a phase. The density matrix converges either if this
phase can be set to zero or if we absorb it through a transformation of the evolution.
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Let us write the operators M (o)(i|α) in a phase times norm form

M (o)(i|α) = e−i∆t(Eα+θ(o)(i|α))
√
po(i|α)

The specific form of the phase is inspired by the Hamiltonian H(o) =
∑

α(EαI + H
(o)
p +

H
(o)
α )|α〉〈α|. This is the most general Hamiltonian if one want U to fulfill the non demolition

condition (C.2). In the above formula, ∆t is the interaction time between the probe and the
system.

Let us define a unitary operator process, diagonal in the pointer state basis,

Ũn =
∑
α

e−i∆t(nEα+
∑

(o,i)∈E θ
(o)(i|α)Nn(o,i))|α〉〈α|

and the unitary equivalent conjugate density matrix process

ρ̃n = Ũ †nρnŨn (C.11)

The diagonal elements of ρn in the basis {|α〉}, are not affected by this transformation. Their
limits stay the same. Thus if α or β are not in the limit sector Υ, according to the Cauchy-
Schwartz theorem, Ã∞(α, β) = 0. We are then interested in the limit of the elements Ãn(α, β)
with α, β ∈ Υ.

If β ∈ α, then q0(α)Ãn(α, β) = a0(α, β)Qn(α). Repeating the discussion made in the
section C.5.1, we get

Ã∞(α, β) =

{
a0(α, β)/q0(Υ) if α, β ∈ Υ
0 else

Hence, ρ̃n has an almost sure limit which coincides with the result of a Von Neumann
measurement: ρ̃∞ is equal to ρ0 projected on the system subspace corresponding to the
sector Υ.

lim
n→∞

ρ̃n =
1

q0(Υ)
PΥρ0PΥ (C.12)

where PΥ :=
∑

γ∈Υ |γ〉〈γ| is the projector on the subspace corresponding to the sector Υ.
In some cases the unitary operator process can be reduced to a deterministic one. For

example if θ(o)(i|α) = θ(o)(i|β) for every (o, i) ∈ E and every α ∼ β, then we can chose
Ũn = e−i∆tHs . This is the case in the toy model, from the periodicity of trigonometric
functions, in a given sector all phases introduced by partial measurements are equal. If the
limit sector is p = {p+ 4k, k ∈ N}, then the photon field limit state will be

lim
n→∞

ein∆tp̂ρn e
−in∆tp̂ =

∑
k,k′∈N

a0(p+ 4k, p+ 4k′)

q̄0(p)
|p+ 4k〉〈p+ 4k′|

One other example corresponds to the case where the phases θ(o)(i|α) do not depend on (o, i)
but depend on α. Then one can define Heff. = Hs +

∑
α θ(α)|α〉〈α| and Ũn = e−in∆tHeff. .

In most of the cases the unitary evolution Ũn is a stochastic process and then in the limit
n → ∞, it remains a stochastic rotation inside the limit sector. When Ũn is deterministic,
the remaining rotation is deterministic too.
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C.6. Continuous diffusive limit

We shall now prove the convergence of the discrete processes we consider toward processes
driven by time continuous Belavkin diffusive equations. Our proof, different from that used
in [21], allows us to derive the continuous measurement diffusive equation not only for the
quantum repeated indirect measurement process but also for the macroscopic Bayesian ap-
paratus we defined. The quantum case is a peculiar realization of it.

The time continuous equation is found as a scaling limit of the discrete evolution when
n goes to infinity with t = nδ fixed (δ = ∆t). We first study the pointer state distribution
scaling limit, Qt(α) := limδ→0Q[t/δ](α). The evolution equation for Qt(α) is given in eq.(C.15)
below. We then look at the time continuous limit of the density matrix evolution and get
the Belavkin diffusive equation eq.(C.23). In the quantum case, the continuous limit requires
rescaling appropriately the system-probe interaction Hamiltonian as

H = Hs ⊗ Ip + Is ⊗Hp +
1√
δ
HI (C.13)

We present in some details the case with a unique partial measurement method. The results
are then easily extended to cases with different measurement methods.

C.6.1. Continuous time limit of the pointer state distribution

We are here interested in the state distribution continuous time limit. The results presented
in this section apply to the general Bayesian recursion relation (C.3) — which in particular
includes the case of repeated QND measurements. To begin with, we assume that there is
only one partial measurement method 7. Henceforth we suppress o from all the notations and
let I stand for the index set of outcomes. Note that the two filtrations Fn and F ′n coincide
and carry the information on the first n partial measurements.

We assume that the conditional probabilities p(i|α) depend on a further small parameter
δ, and are of the form

p(i|α) = p0(i)(1 +
√
δ Γδ(i|α)) (C.14)

with p0(i) > 0 for all i’s and that Γ(i|α) := limδ→0+ Γδ(i|α) exists. Then
∑

i p0(i) = 1, so
that the p0(i)’s specify a probability measure, and for every δ,

∑
i p0(i)Γδ(i|α) = 0. The

important point is that p0(i) is independent of α.
These hypothesis are of course satisfied in the quantum case with QND interaction Hamilto-

nian HI =
∑

α |α〉〈α|⊗Hα and rescaling HI → 1√
δ
HI . Then p0(i) = |〈i|Ψ〉|2 is the probability

measure in absence of interaction, and

Γ(i|α) := 2 Im
(〈i|Hα|Ψ〉
〈i|Ψ〉

)
We assume that 〈i|Ψ〉 6= 0 for all i.

We first need to make precise the sense in which a limit on Qn(α) is to be taken.
For a fixed ω ∈ Ω the limit limδ→0Q[t/δ](α) is not expected to exist 8. But there is some

hope that, properly defined, a limit for the law of the process Q[t/δ](α), t ∈ R+ exists. We

7. This condition will be relaxed in section C.6.1.
8. Think of the simple random walk: the convergence to Brownian motion is not sample by sample because

S2n√
2n

has no reason to be close to Sn√
n

.
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shall prove in Appendix C.B that this is the case, specifying a bit the kind of convergence
that is involved. Under the limiting law, the process Qt(·) satisfies the stochastic equation

dQt(α) = Qt(α)
∑
i

(
Γ(i|α)− 〈Γi〉t

)
dXt(i) (C.15)

where
〈Γi〉t :=

∑
β

Qt(β)Γ(i|β).

Here Xt(i), with
∑

iXt(i) = 0, are continuous martingales with quadratic covariation

dXt(i)dXt(j) = dt
(
δi,j p0(i)− p0(i)p0(j)

)
. (C.16)

We shall show that a vector solving this equation is a bounded martingale, to which the
martingale convergence theorem can be applied with results similar to those in the discrete
case:

Q∞(α) =

{
0 if α 6∈ Υ
q0(α)/q̄0(α) if α ∈ Υ

with Υ the limit sector. However, the sector definition is not the same as in the discrete case.
In time continuous, α and β are in the same sector if and only if Γ(i|α) = Γ(i|β) for all partial
measurement result i. The probability for the system to be in the sector α in the limit t goes
to infinity is q̄0(α) =

∑
α′∈α q0(α′).

The convergence is still exponential

Qt(α) = exp (−t/τΥα), if α 6∈ Υ

with characteristic convergence time τγα,

2/τγα =
∑
i

p0(i)
(
Γ(i|α)− Γ(i|γ)

)2
(C.17)

This coincides with the convergence rate we would have found by taking the relative entropy
S(γ|α) scaling limit. However, it is somewhat difficult to decipher that it originates from a
relative entropy by only knowing its expression in the continuous-time limit.

Preparation

We work with the model (Ω,F ,P).
Our derivation is based on the use of the counting processes Nn(i). Recall that N0(i) = 0

and that Nn(i) :=
∑

1≤m≤n εm(i) for n ≥ 1, where εn(i) := 1In=i is 1 if the nth partial
measurement outcome is i and 0 otherwise.

We start by listing some properties of these counting processes and their relationship to
the solution of (C.3). Then we shall formulate and prove the analogous statements for the
continuous time limit.

It is obvious that the filtration F0,F1, · · · is the natural filtration of the vector counting
processes Nn.

Also recall that the random recursion relation (C.3) can be solved in terms of the counting
processes as

Qn(α) = q0(α)

∏
i p(i|α)Nn(i)∑

β q0(β)
∏
i p(i|β)Nn(i)

.
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A trivial but crucial observation is that under each Pα, Nn is the sum of independent
identically distributed (i.i.d) random vectors.

As a first consequence, a simple computation leads to

E
(
e
∑k
l=1

∑
i λl(i)(Nnl (i)−Nnl−1

(i))
)

=

∑
α

q0(α)
k∏
l=1

(∑
i

eλl(i)p(i|α)

)nl−nl−1

(C.18)

for k ≥ 1, arbitrary non-decreasing sequences of integers 0 = n0 ≤ n1 ≤ · · · ≤ nk of length
k, and arbitrary (complex) λl(i)’s. A second consequence is that under Pα each Nn(i) is
a sub-martingale and Nn(i) = (Nn(i) − np(i|α)) + np(i|α) is its Doob decomposition as a
martingale plus a predictable (in that case deterministic) increasing process. Moreover, if
n ≥ 1, and if X is an Fn−1 measurable random variable, we compute

E(Xεn(i)) =
∑
α

q0(α)Eα(Xεn(i))

=
∑
α

q0(α)Eα(X)p(i|α) =
∑
α

E(XQn−1(α))p(i|α).

For the last equality we used the Q’s characterization as Radon-Nikodym derivatives. This
proves that E(εn(i)|Fn−1) =

∑
αQn−1(α)p(i|α) = πn(i). Hence, setting

An(i) :=

n∑
m=1

πm(i),

an increasing predictable process, we find that Xn(i) := Nn(i) − An(i) is an Fn-martingale
under P, so each Nn(i) is again a sub-martingale with Doob decomposition

Nn(i) = Xn(i) +An(i) (C.19)

under P.
Finally, by some simple algebra we may rephrase the random recursion relation satisfied

by the Q’s as a stochastic difference equation

Qn(α)−Qn−1(α) = Qn−1(α)
∑
i

p(i|α)

πn−1(i)
(Xn(i)−Xn−1(i)). (C.20)

Derivation of the pointer state distribution evolution

Equation (C.20) admits eq.(C.15) as a naive continuous time limit when δ, the scaling
parameter, goes to 0+. To put the validity of this formal approach on a firmer ground,
one needs to prove the existence of a continuous time limit. This is a classical topic, but
the presence of the scaling parameter δ in various places prevents us from applying standard
theorems straightforwardly. So we rely on a down-to-earth approach, which is rather technical.
For this reason we relegated the argument to appendix C.B. This is where the interested reader
should look for some background, precise definitions, etc. We give here a brief summary:

– By an appropriate interpolation procedure, one defines a δ-dependent push-forward µα(δ)
of each Pα and µ(δ) of P in C0(R+,RI), the space of continuous functions from R+ to RI
vanishing at 0.
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– We are not able to prove the convergence in law of the µα(δ) or of µ(δ) when δ → 0+.

– However, the finite dimensional distributions of the joint processes Nn(i) and Qn(α) un-
der each P• (where • stands either for an element of S or for nothing) admit, after appropriate
time dependent centering and scaling, continuous time limits which are the joint finite dimen-
sional distributions, under a probability measure µ• on C0(R+,RI), for processes Wt(i), to
be thought of as

lim
δ→0+

√
δ(Nt/δ(i)− p0(i)t/δ),

and Qt(α), to be thought of as limδ→0+ Qt/δ(α).

– The process Wt is the canonical coordinate process on C(R+,RI), and its natural filtration
Gt is to be thought of as the continuous time limit of the natural filtration for Nn, i.e. as the
information collected by indirect measurements up to time t.

– The identity µ =
∑

α q0(α)µα holds. The Radon-Nikodym derivative of µ(α) with respect
to µ on Gt is Mt(α)/Mt where

Mt(α) := e
∑
i Γ(i|α)Wt(i)− t2

∑
i p0(i)Γ(i|α)2

, Mt :=
∑
α

q0(α)Mt(α)

For each α, M−1
t (α) is a Gt-martingale under µα, and M−1

t is a Gt-martingale under µ.

– For each T > 0, under the measure M−1
T dµ (which coincides with M−1

T (α)dµα for every
α), the process (Wt)t∈[0,T ] is a continuous time-homogeneous centered Gaussian process with
covariance min(t, s)

(
δi,j p0(i)−p0(i)p0(j)

)
. Thus, by Girsanov’s theorem, under each µα, Wt is

a continuous time-homogeneous Gaussian process with independent increments, characterized
by

Eµα(Wt(i)) = tp0(i)Γ(i|α)

Covµα(Wt(i),Ws(j)) = min(t, s)
(
δi,j p0(i)− p0(i)p0(j)

)
.

– There is an explicit formula for the Qt’s in terms of the Wt’s, namely:

Qt(α) = q0(α)
Mt(α)

Mt
= q0(α)

e
∑
i Γ(i|α)Wt(i)− t2

∑
i p0(i)Γ(i|α)2∑

β q0(β)e
∑
i Γ(i|β)Wt(i)− t2

∑
i p0(i)Γ(i|β)2

.

We are now in position to check that all the properties established in the discrete setting,
as listed in section C.6.1, have a direct naive counterpart in the continuous time setting.

The construction of the filtration Gt as the natural filtration for the canonical process was
already explained. We have also already mentioned that there is an explicit formula for
the Qt’s. The counterpart of (C.18), the Laplace transform of the counting processes joint
distributions is given for the canonical process in eq.(C.29), Appendix C.B.

The counterpart of the counting process Doob decomposition under Pα is Wt(i) = (Wt(i)−
tp0(i)Γ(i|α)) + tp0(i)Γ(i|α) under µα.

To get the counterpart of the counting process Doob-Meyer decomposition under P, i.e. the
Doob-Meyer decomposition of Wt(i) under µ, we use Girsanov’s theorem. As recalled above,
for every T > 0 (Wt(i))t∈[0,T ] is a continuous martingale under M−1

T dµ. From

dMt/Mt =
∑
α

q0(α)
Mt(α)

Mt

∑
i

Γ(i|α)dWt(i) =
∑
α

Qt(α)
∑
i

Γ(i|α)dWt(i),
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we infer that the increasing process

At(i) :=

ˆ t

0
ds
∑
α

Qs(α)p0(i)Γ(i|α)

is the compensator of Wt(i), i.e.

Xt(i) := Wt(i)−At(i)

is a Gt martingale under µ, with quadratic variation given by (C.16). It is easily seen that
At(i), Xt(i) are the obvious continuous time limits of An(i), Xn(i).

It remains to write down the stochastic evolution equations for the Qt’s. By Itô’s formula
for a ratio, we find

dQt(α)

Qt(α)
=

(
dMt(α)

Mt(α)
− dMt

Mt

)(
1− dMt

Mt

)
.

leading immediately to (C.15) which we reproduce for convenience:

dQt(α) = Qt(α)
∑
i

(
Γ(i|α)− 〈Γi〉t

)
dXt(i)

where 〈Γi〉t :=
∑

β Qt(β)Γ(i|β). Note again that this equation is also the naive continuous
time limit of the discrete equation (C.20).

To summarize, one makes no mistakes if one works naively and forgets about the lengthy
rigorous construction of the continuous time limit. This gives us confidence in what follows to
proceed straightforwardly in the derivation of continuous time equations in more complicated
situations.

Convergence of the continuous time evolution

We now prove the convergence of Qt(α) when t goes to infinity. Its almost sure convergence
is a direct consequence of its martingale property. We need to prove that the final distribution
is

Q∞(α) =

{
0 if α 6∈ Υ
q0(α)/q̄0(α) if α ∈ Υ

(C.21)

and that the convergence is exponential with the characteristic time τΥα.
First we prove that the limit of the sector distribution Q̄t(α) :=

∑
α∈αQt(α) is

Q̄∞(α) = δα,Υ

The equation of evolution for the sector distribution is

dQ̄t(α) =
∑
α′∈α

dQt(α
′) = Q̄t(α)

∑
i

(Γ(i|α)− 〈Γi〉t)dXt(i)

In the limit t → ∞, we have Q∞(α)(Γ(i|α) − 〈Γi〉∞) = 0 for all i, µ-almost surely. Then
either Q̄∞(α) = 0 or Γ(i|α) =

∑
i Q̄∞(β)Γ(i|β). Since Γ(i|α) 6= Γ(i|β) if α 6= β, the solution

to the limit equation is Q̄∞(α) = δα,Υ.
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C.6. Continuous diffusive limit

Second we show that Qt(α′)
Qt(α) = q0(α′)

q0(α) if α′, α are in the same sector. As in the discrete case,

this relation implies eq.(C.21). We compute:

Qt(α)

Qt(α′)
d
Qt(α

′)

Qt(α)
=
dQt(α

′)

Qt(α′)
− dQt(α)

Qt(α)
+ (

dQt(α)

Qt(α)
)2 − dQt(α

′)

Qt(α′)

dQt(α)

Qt(α)

Since, dQt(α′)
Qt(α′)

= dQt(α)
Qt(α) for α and α′ in the same sector, we obtain dQt(α

′)
Qt(α) = 0 if α, α′ ∈ α.

For all time t,
Qt(α

′)

Qt(α)
=
q0(α′)

q0(α)
if α ∼ α′

which achieves the proof for the limit pointer state distribution.
Finally we prove the exponential convergence. The tools we use are the convergence of

the pointer state distribution and the Itô calculus. From the distribution convergence, we
have 〈Γi〉t ' Γ(i|Υ) for t large enough. The evolution equation (C.15) for α 6∈ Υ becomes
dQt(α) ' Qt(α)

∑
i(Γ(i|α) − Γ(i|Υ))dXt(i). This equation is a well known stochastic expo-

nential equation. Thus, at large time t, with good approximation

Qt(α) ' const. e−
t
2

∑
i p0(i)(Γ(i|α)−Γ(i|Υ))2+

∑
iXt(i)(Γ(i|α)−Γ(i|Υ))

for α 6∈ Υ. Keeping only the leading term in the exponential we obtain the exponential
decrease, Qt(α) ' exp(−t/τΥα), with τΥα given in eq.(C.17).

Different partial measurement methods

The previous results can easily be extended to cases where different measurement methods
are randomly used. Since proofs are similar to those of previous sections, here we only present
a general outline of the approach. We limit ourselves to a time and realization independent
partial measurement method distribution. In this case dn(o1, i1, · · · , in, on+1) =

∏n+1
k=1 c(ok)

with
∑

o c(o) = 1.
To stay in the scope of the diffusive limit we assume that for any o, 〈i|Ψ(o)〉 6= 0.

Following previous sections, we define linear interpolations W
(δ)
t (o, i) of the counting pro-

cesses which naively read √
δ(Nt/δ(o, i)− c(o)po0(i)t/δ)

See Appendix C.C for precise definitions. As shown in this appendix, all finite dimensional

distribution functions of W
(δ)
t (o, i) under (a push-forward of) Pα (resp. P) have a finite limit

as δ → 0+ which coincide with those of continuous random processes, denoted Wt(o, i), under
appropriate measures denoted µα (resp. µ). Under µα, Wt(o, i) is a Gaussian process with

Eµα(Wt(o, i) = t c(o) po0(i) Γ(o)(i|α)

Covµα(Wt(o, i),Ws(o
′, j)) = min(t, s)

(
c(o)po0(i)δ(o,i),(o′,j) − c(o)po0(i)c(o′)po

′
0 (j)

)
.

with po0(i) = |〈i|Ψ(o)〉|2 and Γ(o)(i|α) = 2Im

(
〈i|H(o)

α |Ψ(o)〉
〈i|Ψ(o)〉

)
.

The measure µ is the sum µ =
∑

α q0(α)µα. The Radon-Nikodym derivative of µ(α) with
respect to µ is Mt(α)/Mt where Mt =

∑
α q0(α)Mt(α) with

Mt(α) = e
∑

(o,i)∈E Γ(o)(i|α)Wt(o,i)− t2
∑

(o,i)∈E c(o)p
o
0(i)Γ(o)(i|α)2
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As in the section C.6.1 we define

Xt(o, i) = Wt(o, i)−
ˆ t

0

∑
α

Qs(α)c(o)po0(i)Γ(o)(i|α)ds

The Xt(o, i) are martingales under µ. From this definition we obtain straightforwardly

dQt(α) = Qt(α)
∑

(o,i)∈E

(Γ(o)(i|α)− 〈Γ(o)(i)〉t)dXt(o, i)

with 〈Γ(o)(i)〉t =
∑

α Γ(o)(i|α)Qt(α) and

dXt(o, i)dXt(o
′, j) = dt

(
c(o)po0(i)δ(o,i),(o′,j) − c(o)po0(i)c(o′)po

′
0 (j)

)
The limit of Qt(α) is the same but the sectors are now the sets of basis states such that

Γ(o)(i|α′) = Γ(o)(i|α) for all partial measurement methods and all partial measurement results.
The convergence toward the limit distribution is exponential

Qt(α) ' exp
[
− t

2

∑
(o,i)∈E

c(o)po0(i)(Γ(o)(i|α)− Γ(o)(i|Υ))2
]

The approximation hold if t is large enough. The convergence is exponential with a charac-
teristic time

2

τΥα
=

∑
(o,i)∈E

c(o)po0(i)(Γ(o)(i|α)− Γ(o)(i|Υ))2

We find a convergence rate which is a mean convergence rate as in the discrete case. The
same result is found by taking the scaling limit of the discrete case mean relative entropy.

C.6.2. Density matrix evolution

We are now interested in the density matrix evolution.

As in section C.5.2, the density matrix at time n can be decomposed in the basis of pointer
states:

ρn =
∑
α,β

An(α, β)|α〉〈β|

The same decomposition applies to the time continuous density matrix we will define. The
recurrence relation (C.1) translates for An(α, β) in

An(α, β) =
An−1(α, β)M (on)(in|α)M (on)(in|β)

?∑
γ qn−1(γ)pon(in|γ)

Where M (o)(i|α) = 〈i|U (o)(α)|Ψ(o)〉. For α = β, this reproduces the pointer state distribution
recurrence relation (C.3), as expected.

We first limit ourselves to the case where only one partial measurement method is used and
we omit the index o. The results will then be generalized to different partial measurement
methods. We used a few hypotheses to get the continuous-time limit:
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C.6. Continuous diffusive limit

– The first two assumptions are related to the development in
√
δ of the conditional prob-

abilities p(i|α). As stated before, the interaction Hamiltonian must be rescaled HI → 1√
δ
HI

and for any partial measurement result i, 〈i|Ψ〉 6= 0. Then

p(i|α) = p0(i)(1 +
√
δ Γδ(i|α))

with p0(i) = |〈i|ψ〉|2. The assumption 〈i|Ψ〉 6= 0 leads to the diffusive limit. If this condition
is not fulfilled for every i, then a jump-diffusion limit is found as shown in [23].

– A third assumption is needed to obtain a convergence of the evolution of the phases
between different pointer states. The interaction Hamiltonian expectation must be zero :

〈Ψ|HI |Ψ〉 = 0

Under these assumptions, we show in Appendix C.D that the time continuous evolution
derived from the discrete time case is

At(α, β) = A0(α, β)
el(α,β)t−i

∑
i(c(i|α)−c(i|β)?)Wt(i)∑

γ q0(γ)e
∑
i−iΓ(i|γ)Wt(i)− t2p0(i)Γ(i|γ)2

(C.22)

with c(i|α) = 〈i|Hα|Ψ〉
〈i|Ψ〉 and

l(α, β) := −i(Eα − Eβ)− 1

2

∑
i

p0(i)(|c(i|α)|2 + |c(i|β)|2 − c(i|α)2 − c(i|β)?2)

If we set α = β we recover the result on the pointer state distribution.
A simple computation using Itô rules shows that this process is solution of a Belavkin

diffusive equation:

dρt = L(ρt)− i
∑
i

(Ciρt − ρtC†i − ρtTr[(Ci − C
†
i )ρt])dXt(i) (C.23)

with the Lindbladian

L(ρ) = −i[Hs, ρ] +
∑
i

p0(i)(CiρC
†
i −

1

2
{C†iCi, ρ})

and Ci :=
∑

α c(i|α)|α〉〈α| = 〈i|HI |Ψ〉
〈i|Ψ〉 .

As shown in [20], this equation corresponds to the time continuous limit of repeated POVM
processes (C.1) even if the non destruction assumption (C.2) is not fulfilled.

In the next section we study the long time behavior of such evolution in the non destructive
case.

Long time convergence of the density matrix

The pointer state distribution convergence indicates that, in the long time limit, the system
is in a subspace of basis Υ. This information only tells us what is the limit of the elements
At(α, β) when α or β are not in the limit sector Υ. From the Cauchy-Schwarz theorem,
limt→∞Qt(α)Qt(β) = 0 implies limt→∞At(α, β) = 0. For the elements At(α, β) with α, β ∈
Υ, the limit t→∞ is yet unknown.
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C. Article: Repeated quantum non-demolition measurements: convergence and continuous-time limit

We decompose the operators Ci in a sum of two hermitian operators

Ci = Ri + iSi

with Ri =
∑

α Re(c(i|α)) |α〉〈α| and Si =
∑

α
1
2Γ(i|α)|α〉〈α|.

As in the discrete time case, the density matrix evolution has to be modified by a unitary
process in order to get convergence when t goes to infinity. Let Ũt be the unitary diagonal
operator defined via

Ũ−1
t dŨt = −i

(
Hs −

∑
i

p0(i)[Ri(Si − 2〈Si〉t)−
i

2
R2
i ]
)
dt− i

∑
i

RidXt(i)

and let ρ̃t be the modified density matrix

ρ̃t = Ũ †t ρtŨt

As we show below it has an almost sure limit

lim
t→∞

ρ̃t =
1

q0(Υ)
PΥ ρ0 PΥ (C.24)

where PΥ :=
∑

γ∈Υ |γ〉〈γ| is the projector on the subspace corresponding to the sector Υ.
Therefore, ρ̃∞ is equivalent to the density matrix we would have found if an initial Von
Neumann measurement had been performed on the system. The unitary operator Ũt only
induces a rotation inside the limit subspace.

Recall that we only need to prove the convergence of the ρ̃t matrix elements corresponding
to two pointer states in the same sector. From the Belavkin equation (C.23) and using Itô
rules, we find the evolution equation for ρ̃t:

dρ̃t =
∑
i

p0(i)(Siρ̃tSi −
1

2
{SiSi, ρ̃t})dt− i

∑
i

({Si, ρ̃t} − 2Tr[Siρ̃t])dXt(i)

Thus, the time evolution of matrix elements Ãt(α, β) of ρ̃t with β and α in the same sector
is,

dÃt(α, β) = Ãt(α, β)
∑
i

(Γ(i|α)− 〈Γ(i)〉t)dXt(i)

Noticing that Qt(α)dÃt(α, β) = Ãt(α, β)dQt(α) and repeating the discussion of section C.6.1,
we get

Ã∞(α, β) =

{
A0(α,β)
q0(Υ) if α and β ∈ Υ

0 else

This proves the limit (C.24).

Extension to different partial measurement methods

We can extend our results to cases where different partial measurement methods are used.
Once again we limit ourselves to time independent random protocols. The density matrix
evolution is modified as follows:

dρt = L(ρt) dt+
∑

(o,i)∈E

D(o,i)(ρt) dXt(o, i)
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C.6. Continuous diffusive limit

with

D(o,i)(ρt) = −i
(
C

(o)
i ρt − ρtC(o)

i

†
− ρt Tr[C

(o)
i ρt − ρtC(o)

i

†
]
)

where C
(o)
i =

〈i|H(o)
I |Ψo〉
〈i|Ψo〉 and

L(ρt) = −i[Hs, ρt] +
∑

(o,i)∈E

c(o) po0(i)
(
C

(o)
i ρtC

(o)
i

†
− 1

2
{C(o)

i

†
C

(o)
i , ρt}

)
As before c(o) is the probability of using measurement method o. The limit density matrix
can be analyzed as above: we obtain identical convergence statements once the density matrix
has been rotated using an appropriate unitary Ũt.
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C.A. Details for mutual singularity

We prove that if o is recurrent but (o, i) is not then
∑

γ Q(γ)po(i|γ) = 0.

Observe that under Pα we have the Markov property

Eα(1In=i|Fn−1) = pOn(i|α) (C.25)

It says that, under Pα, On = o the next measurement outcome is i ∈ spec(o) with probability
po(i|α) independently of what happened before.

Now assume that under Pα measurement method o is recurrent with probability 1. Take
0 ≤ T1 < T2 < · · · < Tk · · · to be the times when the measurement method is o. We show,
using the strong Markov property, that IT1 , IT2 , · · · are independent identically distributed
random variables with distribution po(·|α). This is quite natural: the functions dn help
choosing the measurement method, but they do not influence the measurement result.

Indeed, note first that the above statement is trivial when there is only one measurement
method, because then there is no need to invoke stopping times and the strong Markov
property. In the general case, note the slight mismatch with usual notations: {Tk ≤ n} is
in fact Fn−1 measurable, so it is natural to write FTk−1 for the algebra associated to the
stopping time Tk. Then write

Eα(1IT1
=i1 · · ·1ITk=ik |FTk−1) = 1IT1

=i1 · · ·1ITk−1
=ik−1

Eα(1ITk=ik |FTk−1)

= 1IT1
=i1 · · ·1ITk−1

=ik−1
po(ik|α)

One can go on to condition with respect to FTk−1−1, · · · until one finds the plain expectation

Eα(1IT1
=i1 · · ·1ITk=ik) = po(i1|α) · · · po(ik|α).

As a consequence, for any α such that o is recurrent under Pα:

– either po(i|α) > 0 and with Pα-probability 1 the outcome i appears infinitely many times
in the sequence IT1 , IT2 , · · · , i.e. (o, i) is recurrent with probability 1,

– or po(i|α) = 0 and i never appears in the sequence IT1 , IT2 , · · · , i.e. (o, i) never appears.

Now assume that o is recurrent under all Pα’s. The above implies immediately that the
probability under P that (o, i) is non-recurrent (this event is denoted by Ã(o,i)) is given by∑

γ,po(i|γ)=0 q0(γ).

If po(i|β) = 0 then Q(β) = Q(β)1Ã(o,i)
because by the recursion relation Qn(β) = 0

whenever (o, i) has shown up before time n. So

E(Q(β)|Ã(o,i)) =
E(Q(β))

E(1Ã(o,i)
)

=
q0(β)∑

γ,po(i|γ)=0 q0(γ)

which implies that

E(
∑

γ,po(i|γ)=0

Q(γ)|Ã(o,i)) = 1

Hence, conditional on Ã(o,i), the Q(α)’s for which po(i|α) > 0 have to vanish. Equivalently,
Q(γ)po(i|γ) = 0 for each γ and

∑
γ Q(γ)po(i|γ) = 0, which was to be proved.
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C.B. Proof of existence of a continuous time limit

We first put the notion of continuous time limit in context.
Let V be the vector space C0(R+,RI) of continuous functions f· from R+ to RI such that

f0 = 0 ∈ RI . For each δ > 0, and each ω ∈ Ω we define a function W
(δ)
t (i) on R+ by

linear interpolation of W
(δ)
t (i) :=

√
δ(Nt/δ(i) − p0(i)t/δ) if t/δ is an integer. Explicitly, for

t ∈ [δn, δ(n+ 1)]

W
(δ)
t (i) =

√
δ ((n+ 1− t/δ)Nn(i) + (t/δ − n)Nn+1(i)− p0(i)t/δ) .

For every ω ∈ Ω the function W
(δ)
t (i) is continuous for t ∈ R+. So we have a map

W (δ) : Ω → V . But, as already pointed out before, there is no hope that, for a fixed ω ∈ Ω,

W
(δ)
t (i) has a limit when δ → 0+. The only clear fact is that for a fixed t, the central limit

theorem ensures that the distribution of W
(δ)
t (i) under each Pα has a Gaussian limit when

δ → 0+. Note that this observation fixes the scaling
√
δ as the only one possible.

But if we are interested in convergence as a process, a deeper approach is needed. If we
endow V with the topology of uniform convergence on compact sets T (V ) and with the
corresponding Borel σ-algebra B(V ), we can show that the map W (δ) is measurable from
(Ω,F) to (V,B(V )). This is not difficult, because by a classical result, B(V ) is the smallest
σ-algebra on V containing the family of sets

Bt,i,a := {f ∈ C0(R+,RI), a < ft(i)}

indexed by t ∈]0,+∞[, i ∈ I and a ∈ R. It is plain that the inverse image of Bt,i,a under
W (δ) is in Fn whenever n > t/δ. As the filtration on Ω is exactly the one making the Nn Fn-
measurable, the appropriate filtration on C(R+,RI) should be the natural one, the smallest
making the canonical process adapted 9. We denote it by Gt.

Then any probability measure on (Ω,F) induces viaW (δ) a probability measure on (V,B(V )).
Note that, via (C.14), the measures we defined previously on (Ω) depend on δ, and to be ex-

plicit we write P(δ), E(δ), etc. to stress this fact. Let µα(δ) be the image measure of P(δ)
α

pushed forward by W (δ) on (V,B(V )). As (V, T (V )) is a so-called Polish space, there is a
nice notion of convergence for measures on it, called “weak convergence” of measures, and we
could ask if the µα(δ)’s converge weakly to some probability measure on (V,B(V )) (and then,
so would µ(δ) =

∑
α q0(α)µα(δ)). Note that despite its name, weak convergence is strong

enough to ensure the convergence of the expectations of rather general functionals, so we
could hope to control the Q’s continuous time limit as well, because they are nice functionals
of the counting process.

It is usually in this context that continuous time limits have a meaning. In this setting,
there are a number of theorems, called functional central limit theorems, or Donsker invari-
ance principles, that express the continuous time limit of random walks (with independent
increments) in terms of Brownian motions in fine details. Alas, though under each Pα, Nn(i)
is a random walk with independent increments, the theorems we are aware do not apply im-
mediately. The problem is that the δ dependence is not only in W , but also in the Pα’s. This
problems would show up even more dramatically to deal with the Q’s convergence and there
relationships with W . While we think these are purely technical details in our case, we shall

9. Of course, as long as δ > 0, Wt looks a bit forward in the future, as it involves Nn+1 for t ∈ [δn, δ(n+1)],
but for continuous process this does not matter.
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not try to deal with them: we shall instead rely on a weaker and slightly less natural notion of
continuous time limit that will suffice for our purposes. To say things in more mathematical
terms: we shall content ourselves with proving that the joint finite dimensional distributions
of W ’s and Q’s converge to joint finite dimensional distributions of continuous processes we
can identify explicitly, but we do not embark on the more technical task of proving tightness.

We now turn to our explicit approach of the continuous time limit.
From the characteristic function (C.18) we obtain easily that

lim
δ→0+

E(δ)

(
e
∑k
l=1

∑
i λl(i)(W

(δ)
tl

(i)−W (δ)
tl−1

(i))
)

=(∑
α

q0(α)e
∑k
l=1(tl−tl−1)

∑
i λl(i)p0(i)Γ(i|α)

)
×

e
1
2

∑k
l=1(tl−tl−1)(

∑
i p0(i)λl(i)

2−(
∑
i p0(i)λl(i))

2) (C.26)

for k ≥ 1, arbitrary non-decreasing sequences 0 = t0 ≤ t1 ≤ · · · ≤ tk of length k and arbitrary
(complex) λl(i)’s.

By a standard theorem on characteristic functions, we have thus proved that the W
(δ)
t (i)

finite marginals (under each P(δ)
α and under P(δ)) have a limit for δ → 0+. This is much

weaker than what weak convergence of measures would ensure. It is enough to ensure that
the limit marginals satisfy the Kolmogorov consistency criterion, but it does not guarantee
that it is possible to concentrate the corresponding process on C0(R+,RI). However in the
case at hand, we can bypass this problem because of the simple form of the result, which is
Gaussian for each α.

Let ν be the Wiener measure of a standard Brownian motion on C0(R+,RI). The linear
map from RI to itself defined by

y(i) :=
√
p0(i)(x(i)−

√
p0(i)

∑
j

√
p0(j)x(j))

induces a map from C0(R+,RI) to itself. Let µ0 be the image measure of ν under this map.
It is easily seen that under this law, the canonical process W on C0(R+,RI) satisfies

Eµ
0
(
e
∑k
l=1

∑
i λl(i)(Wtl

(i)−Wtl−1
(i))
)

=

e
1
2

∑k
l=1(tl−tl−1)(

∑
i p0(i)λl(i)

2−(
∑
i p0(i)λl(i))

2) (C.27)

for k ≥ 1, arbitrary non-decreasing sequences 0 = t0 ≤ t1 ≤ · · · ≤ tk of length k and arbitrary
(complex) λl(i)’s.

As a consequence, Itô’s formula holds with

dWt(i)dWt(j) = dt
(
δi,j p0(i)− p0(i)p0(j)

)
.

Our aim is to use Girsanov’s theorem to deform the measure and go from the right-hand
side in (C.27) to the right-hand in (C.26). If the process Ut with values in RI is adapted and
satisfies some further technical integrability conditions,

MU
t := e

´ t
0

∑
i Us(i)dWs(i)− 1

2

´ t
0 (
∑
i p0(i)Us(i)2−(

∑
i p0(i)Us(i))2)ds
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is a martingale. Moreover, by Itô’s formula, dMU
t = MU

t

∑
i Us(i)dWs(i). Then, by Girsanov’s

theorem, for any T > 0, under the measure dµUT := MU
T dµ

0 on C0([0, T ],RI), the process

Wt(i) − p0(i)
´ t

0 (Us(i) −
∑

j p0(j)Us(j))ds, t ∈ [0, T ], has the same law as Wt(i), t ∈ [0, T ],

under dµ0.
Note that for t ≤ T , MU

t is a Radon-Nikodym derivative.

MU
t :=

[
dµUT
dµ0

]
t

= Eµ
0

(
dµUT
dµ0

∣∣∣Gt) ,
In general this construction cannot work for infinite T , because µUT and µ0 become singular.

However, T plays only a dummy role : for T ′ ≤ T , dµUT and dµUT ′ coincide on GT ′ . So it is
only a slight abuse, which lightens notations a bit, to write dµU for dµUT and

MU
t =

[
dµU

dµ0

]
t

= Eµ
0

(
dµU

dµ0

∣∣∣Gt) .
For the special choice Ut(i) := Γ(i|α), using

∑
i p0(i)Γ(i|α) = 0, we compute

Mt(α) := e
∑
i Γ(i|α)Wt(i)− t2

∑
i p0(i)Γ(i|α)2

which is certainly a martingale, and we obtain for every T a measure dµα on C0([0, T ],RI)
such that

Eµα
(
e
∑k
l=1

∑
i λl(i)(Wtl

(i)−Wtl−1
(i))
)

=

e
∑k
l=1(tl−tl−1)

∑
i λl(i)p0(i)Γ(i|α)e

1
2

∑k
l=1(tl−tl−1)(

∑
i p0(i)λl(i)

2−(
∑
i p0(i)λl(i))

2) (C.28)

for k ≥ 1, arbitrary non-decreasing sequences 0 = t0 ≤ t1 ≤ · · · ≤ tk ≤ T of length k and
arbitrary (complex) λl(i)’s.

Finally, setting Mt :=
∑

α q0(α)Mt(α) (trivially a martingale again) and dµ := Mtdµ
0 we

obtain for every T a measure dµ on C0([0, T ],RI) such that

Eµ
(
e
∑k
l=1

∑
i λl(i)(Wtl

(i)−Wtl−1
(i))
)

=(∑
α

q0(α)e
∑k
l=1(tl−tl−1)

∑
i λl(i)p0(i)Γ(i|α)

)
×

e
1
2

∑k
l=1(tl−tl−1)(

∑
i p0(i)λl(i)

2−(
∑
i p0(i)λl(i))

2) (C.29)

for k ≥ 1, arbitrary non-decreasing sequences 0 = t0 ≤ t1 ≤ · · · ≤ tk ≤ T of length k
and arbitrary (complex) λl(i)’s. So we have found the continuous time limit of the counting
process as the canonical process on C0([0, T ],RI) with the measure µ.

It remains to deal with the continuous time limit of the Qn’s.

We note that by the chain rule Mt(α)
Mt

=
[
dµ(α)
dµ

]
t

= Eµ
(
dµ(α)
dµ

∣∣∣Gt) is the Radon-Nikodym

derivative of µ(α) with respect to µ. So with some memory of what happened in the discrete

case, it is natural to define Qt(α) := q0(α)Mt(α)
Mt

.

Using the explicit formula for the Qn’s in terms of the counting processes, we define Q
(δ)
t

by an interpolation procedure:

Q
(δ)
t (α) := q0(α)

∏
i p(i|α)W

(δ)
t (i)/

√
δ+p0(i)t/δ∑

β q0(β)
∏
i p(i|β)W

(δ)
t (i)/

√
δ+p0(i)t/δ

,
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so that if t/δ = n, an integer, Q
(δ)
t (α) = Qn(α). Note that in this formula the p(i|β)’s depend

implicitly on δ via (C.14).

One can prove that the joint finite dimensional distributions of the processes (W
(δ)
t , Q

(δ)
t )

under P(δ) have limits when δ → 0+ and that these limit are nothing but the joint finite
dimensional distributions of the processes (Wt, Qt) under µ. In this precise sense, the Qn’s
continuous time limit is deciphered.

This result is really no big surprise, but to prove it we have to rely on an ad hoc trick
and an explicit elementary but tedious computation. The details are neither illuminating nor
elegant so we omit them.

When δ is small enough, all non-empty sets in Fn have strictly positive measure, so that if
q0(α) > 0 the same is true for Qn(α) for all n’s. As furthermore

∑
αQn(α) = 1 for all n, all

the information on the Qn’s (joint) laws is embodied in the joint laws of ratios of Qn’s.

As these ratios have a simple product structure in terms of the counting processes, the
explicit computation of

E

e∑k
l=1

∑
i λl(i)(Nnl (i)−Nnl−1

(i))
k∏
l=1

∏
α,β

(
Qnl(α)

Qnl(β)

)ηl(α,β)


for k ≥ 1, arbitrary non-decreasing sequences of integers 0 = n0 ≤ n1 ≤ · · · ≤ nk of length k,
and arbitrary (complex) λl(i)’s and ηl(α, β)’s is in some sense a special case of (C.18).

The same remark applies to computations involving ratios of Qt’s.

This allows to compute explicitly that

lim
δ→0+

E(δ)

e∑k
l=1

∑
i λl(i)(W

(δ)
tl

(i)−W (δ)
tl−1

(i))
k∏
l=1

∏
α,β

(
Q

(δ)
tl

(α)

Q
(δ)
tl

(β)

)ηl(α,β)
 =

Eµ
e∑k

l=1

∑
i λl(i)(Wtl

(i)−Wtl−1
(i))

k∏
l=1

∏
α,β

(
Qtl(α)

Qtl(β)

)ηl(α,β)
 (C.30)

for k ≥ 1, arbitrary non-decreasing sequences 0 = t0 ≤ t1 ≤ · · · ≤ tk of length k, and arbitrary
(complex) λl(i)’s and ηl(α, β)’s.

As such a mixture of Laplace and Mellin transforms characterizes the distributions com-
pletely, this concludes the existence of a natural continuous time limit.

C.C. Details on the continuous time limit with different partial
measurement methods

We use the linear interpolation of appendix C.B onW
(δ)
t (o, i) :=

√
δ(Nt/δ(o, i)−c(o)po0(i)t/δ)

if t/δ is an integer. Explicitly for t ∈ [δn, δ(n+ 1)],

W
(δ)
t (o, i) =

√
δ ((n+ 1− t/δ)Nn(o, i) + (t/δ − n)Nn+1(o, i)− c(o)po0(i)t/δ) .

We remind that E =
⋃
o∈O{o} ⊗ spec(o) is the set of all possible measurement methods

and outcomes. We expect the limit time continuous process to live on the vector space of
continuous function from R+ to RE .
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C.D. Derivation of the density matrix evolution

Compare to previous sections, the main changes are in the correlation functions calculations.
Thanks to the measurement method distribution time and realization independency, we find:

E
(
e
∑k
l=1

∑
(o,i)∈E λl(o,i)(Nnl (o,i)−Nnl−1

(o,i))
)

=

∑
α

q0(α)

k∏
l=1

 ∑
(o,i)∈E

eλl(o,i)c(o)po(i|α)

nl−nl−1

(C.31)

for k ≥ 1, arbitrary non-decreasing sequences of integers 0 = n0 ≤ n1 ≤ · · · ≤ nk of length k,
and arbitrary (complex) λl(o, i)’s.

As a consequence, in the limit δ → 0+,

lim
δ→0+

E(δ)

(
e
∑k
l=1

∑
(o,i)∈E λl(o,i)(W

(δ)
tl

(o,i)−W (δ)
tl−1

(o,i))
)

=(∑
α

q0(α)e
∑k
l=1(tl−tl−1)

∑
(o,i)∈E λl(o,i)c(o)p

o
0(i)Γ(o)(i|α)

)
×

e
1
2

∑k
l=1(tl−tl−1)(

∑
(o,i)∈E c(o)p

o
0(i)λl(o,i)

2−(
∑

(o,i)∈E c(o)p
o
0(i)λl(o,i))

2) (C.32)

for k ≥ 1, arbitrary non-decreasing sequences 0 = t0 ≤ t1 ≤ · · · ≤ tk of length k and arbitrary

(complex) λl(o, i)’s and with Γ(o)(i|α) = 2Im

(
〈i|H(o)

α |Ψ(o)〉
〈i|Ψ(o)〉

)
. Then each W

(δ)
t (o, i) under µ(δ)

converges toward a process Wt(o, i) under µ.
The demonstration is then as in previous section except for notational differences which

keep track of the o-dependency of Wt(o, i). As in the previous section, the measure µ0 is
defined as the push-forward measure of ν on RE under the linear map

y(o, i) :=
√
c(o)po0(i)(x(o, i)−

√
c(o)po0(i)

∑
(o′,j)∈E

√
c(o′)po

′
0 (j)x(o′, j)

The martingale Mt is defined by

Mt =
∑
α

q0(α)e
∑

(o,i)∈E Γ(o)(i|α)Wt(o,i)− t2
∑

(o,i)∈E c(o)p
o
0(i)Γ(o)(i|α)2

The measure µ is defined via Girsanov’s transformation: Eµ(·) = Eµ0
(Mt·).

C.D. Derivation of the density matrix evolution

Let us derive the density matrix continuous time limit. Recall that at time n its elements
are functions of the counting processes

An(α, β) =
A0(α, β)

∏
i(M(i|α)M(i|β)?)Nn(i)∑

γ q0(γ)
∏
i p(i|γ)Nn(i)

from this expression we define time continuous processes

A
(δ)
t (α, β) =

A0(α, β)
∏
i(M(i|α)M(i|β)?)W

(δ)
t (i)/

√
δ+p0(i) t

δ∑
γ q0(γ)

∏
i p(i|γ)W

(δ)
t (i)/

√
δ+p0(i) t

δ
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equal to An(α, β) if t/δ = n is an integer. The M(i|α)’s depend explicitly on δ via

M(i|α) = 〈i|e−iδ(EαI+Hp+ 1√
δ
Hα)|Ψ〉

We rewrite the products over the partial measurement results as exponentials of sums

A
(δ)
t (α, β) =

A0(α, β)e
∑
i ln(M(i|α)M(i|β)?/p0(i))(W

(δ)
t (i)/

√
δ+p0(i) t

δ
)∑

γ q0(γ)e
∑
i ln(p(i|γ)/p0(i))(W

(δ)
t (i)/

√
δ+p0(i) t

δ
)

A detailed analysis of the limit δ → 0+ would require to perform the same study as in section
C.B. However, at this stage we are confident enough to state that we can safely shortcut

a few steps and use directly that W
(δ)
t (i) converge. Using 〈Ψ|HI |Ψ〉 = 0, and the identity∑

i p0(i) 〈i|H
2
α|Ψ〉
〈Ψ|i〉 =

∑
i p0(i)|c(i|α)|2, we obtain

lim
δ→0

∑
i

ln(M(i|α)M(i|β)?/p0(i))(W
(δ)
t (i)/

√
δ + p0(i)

t

δ
)

= l(α, β)t− i
∑

i(c(i|α)− c(i|β)?)Wt(i)

where the limit as to be understood as the limit of any finite dimensional correlation functions.
Therefore

lim
δ→0

A
(δ)
t (α, β) = At(α, β)

with At(α, β) defined in (C.22). It is then a simple matter, using Itô rules for Wt(i), to derive
the Belavkin equation (C.23) for the density matrix ρt =

∑
α,β At(α, β)|α〉〈β|.
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Abstract

We describe a measurement device principle based on discrete iterations of Bayesian updating
of system state probability distributions. Although purely classical by nature, these measure-
ments are accompanied with a progressive collapse of the system state probability distribution
during each complete system measurement. This measurement scheme finds applications in
analysing repeated non-demolition indirect quantum measurements. We also analyse the
continuous time limit of these processes, either in the Brownian diffusive limit or in the Pois-
sonian jumpy limit. In the quantum mechanical framework, this continuous time limit leads
to Belavkin equations which describe quantum systems under continuous measurements.

D.1. Introduction

Informal and formal similarities between Bayesian inference [1] and quantum mechanics
have been noted quite some time ago, see e.g. [2]. Bayesian inference may be seen as a way
to update trial probability distributions by taking into account the partial information one
has gained on the system under study. Indirect quantum measurement consists in obtaining
partial information on a quantum system by letting it interact with another quantum system,
called a probe, and performing a direct Von Neumann measurement on this probe. Iterating
the process of system-probe interaction and probe measurement increases the information on
the system because of system-probe entanglements.
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2. Member of CNRS; denis.bernard@ens.fr
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This has been experimentally implemented in electrodynamics in cavities [3], but also in
superconductor circuits [4]. As shown by these experiments, repeating a large number of
times (formally, infinitely many times) indirect non-demolition measurements [5] reproduces
macroscopic direct measurements with collapse of the system quantum wave function. Each
collapse is stochastic and progressive, becoming sharper and sharper as the number of indirect
measurements increases.

Controlling quantum systems [7] by repeating measurements is, in some way, as old as
quantum mechanics, but it has recently been further developed aiming at quantum state
manipulations and quantum information processing [8]. At a theoretical level, the concept of
quantum trajectories [9,10] emerges from the need to describe quantum jumps and randomness
inherent to repeated measurements. In parallel, studies of open quantum systems [11] led to
the theory of quantum feedback [12] and quantum continual measurements [13]. Belavkin
equations [14] are stochastic non-linear generalizations of the Schrödinger equation adapted
to quantum systems under continual measurements.

Contact between experiments of the type described in ref. [3] and classical stochastic pro-
cesses was made in ref. [6], showing in particular that the approach to the collapse is controlled
by a relevant relative entropy. The aim of this note is to follow and complement the study of
ref. [6], by, in some way, reversing the logic. We start by forgetting quantum mechanics for a
while and we study a random process obtained by discretely and randomly updating a system
state probability distribution using Bayes’ rules. Iterated stochastic measurements refer to
this random recursive updating. We describe why and how this leads to a stochastic mea-
surement principle allowing to measure the initial system state probability distribution but
which implements a random collapse of the system state distribution at each individual com-
plete system measurement. The initial system state distribution is nevertheless reconstructed
by repeating the complete system measurements. We point out a connection between De
Fenetti’s theorem on exchangeable random variables, see e.g. ref. [15], and iterated stochastic
measurements. We also show that these discrete measurement devices admit continuous for-
mulations with continual updating. There are two limits: a Brownian diffusive limit in which
the random data used to update the system state distribution are coded into Brownian mo-
tions, this case was studied in ref. [16], and a Poissonian jumpy limit in which these random
data are coded in point processes. The construction of the continuous time process relies on
deforming an a priori probability measure on the updating data. The key tool is Girsanov’s
theorem. Then we transport these results, in an almost automatic way, to quantum mechan-
ics, and we show that quantum mechanical systems under repeated non-demolition indirect
measurements admit a continuous time limit described by Belavkin equations (D.18,D.19).
This completes results proved in ref. [17] and makes contact with those described in ref. [18].

D.2. Iterated indirect stochastic measurements

Let S be the system under study and A be a chosen countable set of system states α ∈ A
that we shall call pointer states 5. The model apparatus is going to measure the probability
distribution Q0(α), with

∑
αQ0(α) = 1, for the system S to be in one of the pointer state.

The model apparatus is made of an infinite series of indirect partial measurements. Let
I denote the set of possible results of one partial measurements, which we assume to be

5. According to the quantum terminology, but the concept of states is here more general as it simply refers
to a complete list of labels characterizing the system behavior.
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finite or countable. For each system complete measurement, the output datum is thus an
infinite sequence of data (i1, i2, · · · ), ik ∈ I, associated to the series of successive partial
measurements. The output data are random. The probability distribution Q0(α) is to be
reconstructed from the sequences (i1, i2, · · · ).

To be concrete one may keep in mind that the indirect partial measurements arise from
direct measurements on probes which have been coupled to the system. The model apparatus
is then made of an infinite set of in-going probes – which, for simplicity, are supposed to be
all identical – passing through the system S and interacting with it one after the other.
Measurements are done on the out-going probes.

Specifications of the model apparatus depend on the chosen set of pointer states. One of its
manufacturing characteristics is a collection of probability distributions p(i|α),

∑
i p(i|α) = 1,

for the output partial measurement to be i ∈ I conditioned on the system S be in the state
α ∈ A. For simplicity, we shall assume a non-degeneracy hypothesis which amounts to suppose
that all probability distributions p(·|α) are distinct, i.e. for any pair of distinct pointer states
α and β there exists i ∈ I such that p(i|α) 6= p(i|β).

D.2.1. Discrete time description

In the model apparatus, a complete measurement is made of an infinite series of partial
measurements such that each output of these partial measurements provides a gain of infor-
mation on the system. Our first aim is to decipher which informations one is gaining from the
nth first partial measurements. This will allow us to spell out the way the model apparatus
is working as a measurement device.

• Series of partial measurements and specification of the model apparatus. Suppose that
the first partial measurement gives result i1 ∈ I. Bayes’ law then tells us that the probability
for the system S to be in the state α conditioned on the first measurement be i1 is Q1(α|i1) =
Q0(α)p(i1|α)/π0(i1), with π0(i) :=

∑
αQ0(α)p(i|α), if Q0(α) is the initial probability for

the system S to be in the state α (this probability is yet unknown but shall be recovered
from the series of partial measurements making a complete measurement). Let us now ask
ourselves what is the probability to get i2 as second output partial measurement? By the
law of conditioned probabilities, π1(i2|i1) =

∑
α p(i1, i2|α)Q0(α)/π0(i1) with p(i1, i2|α) the

probability to measure i1 and i2 on the two first partial measurements conditioned on the
system to be in the state α. At this point we need to make an assumption: we assume that
the output partial measurements are independent and identically distributed (i.i.d.) provided
that the system S is in one of the pointer state α ∈ A. This translates into the relation

p(i1, i2|α) = p(i2|α) p(i1|α),

which implies that π1(i2|i1) =
∑

α p(i2|α)Q1(α|i1). That is the probability π1(i2|i1) is iden-
tical to the probability to get i2 as output partial measurement assuming that the system
distribution is Q1(α|i1).

Hence, as a defining characteristic property of our model apparatus, we assume that the
output of the nth partial measurements is independent of those of the (n − 1)-first outputs
provided the system S is in one of the pointer state α ∈ A, that is:

p(i1, · · · , in−1, in|α) = p(in|α) p(i1, · · · , in−1|α) =

n∏
k=1

p(ik|α), ∀α. (D.1)
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This specifies our model apparatus. This specification is clearly attached to the chosen set of
pointer states.

Conversely, the pointer states associated to this device are those system states for which
the values of the output partial measurements are independent, i.e. conditioned on the
system to be in a pointer state, the output variables i1, i2, · · · are independent and identically
distributed. If the system is initially in a pointer state α, that is its probability distribution
is peaked, Q0(·) = δ·;α, the occurrence frequency ν(i) of the value i in the output sequence
(i1, i2, · · · ) is p(i|α). As we shall see later, one may then identify the pointer states as the
system states for which independent infinite series of partial measurements (i.e. independent
complete measurements) provide identical occurrence frequencies ν(·), and this gives a way
to calibrate the device and to determine the conditioned probabilities p(·|α).

If the system is not in a pointer state, its initial distribution Q0(α) – to be determined
– is un-peaked. Let Qn(α|i1, · · · , in) be the probability for the system to be in the state α
conditioned on the n-first output partial measurements be i1, i2, · · · , in. From our hypothesis
(D.1), the probability to get i as the nth output conditioned on the (n− 1)th first outputs be
(i1, · · · , in−1) is

πn−1(i|i1, · · · , in−1) =
∑
α

p(i|α)Qn−1(α|i1, · · · , in−1). (D.2)

By Bayes’ law, the probability for the system to be in the state α conditioned on the n-first
measurements be i1, i2, · · · , in is then recursively computed by

Qn(α|i1, · · · , in) =
p(in|α)Qn−1(α|i1, · · · , in−1)

πn−1(in|i1, · · · , in−1)
, (D.3)

where πn−1 is the probability to get in as the nth output. To simplify notations we de-
note Qn(α|i1, · · · , in) by Qn(α) and πn−1(i|i1, · · · , in−1) by πn−1(i). Eq.(D.3) can be solved
explicitely:

Qn(α) = Q0(α)

∏
i p(i|α)Nn(i)∑

β Q0(β)
∏
i p(i|β)Nn(i)

, (D.4)

with Nn(i) the number of times the value i appears in the nth first outputs.
Let us point out an interesting reformulation of the above conditions on the outputs of the

model apparatus. A sequence (i1, i2, · · · ) of random variables is called exchangeable if the
distribution of (i1, i2, · · · , in) is the same as the distribution of (iσ1 , iσ2 , · · · , iσn) for each n
and each permutation σ of [1, 2, · · · , n]. A remarkable theorem due to De Finetti (see e.g.
ref. [15] or the last two items of ref. [19]) asserts that an infinite sequence (i1, i2, · · · ) of random
variables is exchangeable if and only if there is a random variable A such that, conditionally
on A, (i1, i2, · · · ) is a sequence of independent identically distributed random variables. In
our construction, the values taken by A are nothing but the pointer states and the measure
on A is Q0. So the hypotheses on the model apparatus can be rephrased as the fact that the
order of partial measurements is immaterial.

More concretely, let Ω be the data set of all complete measurements. This is made of all infi-
nite series ω := (i1, i2, · · · ), ik ∈ I, of output partial measurements. We may endow Ω with the
filtration Fn of σ-algebras generated by the sets Bi1,··· ,in := {ω = (i1, · · · , in, anything else) ∈
Ω}, i.e. Fn codes for the knowledge of the nth first partial measurements. This filtered space is
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D.2. Iterated indirect stochastic measurements

equipped with a probability measure recursively defined by P[in = i|Fn−1] = πn−1(i). Notice
that, given Q0(α), this probability measure decomposes as a sum

P =
∑
α

Q0(α)Pα

where Pα will be the probability measure induced on Ω if the system happened to be initially in
the pointer state α, i.e. if Q0(·) is peaked at α. Under Pα the partial outputs are independent
random variables so that

Pα[Bi1,··· ,in ] =

n∏
k=1

p(ik|α).

Let us then quote properties of the random probability distribution Qn(·), which will be
keys for specifying the model measurement device:

(i) Peaked distributions are stable under the recursion relation (D.3). That is, if Q0(·) = δ·;α
then Qn(·) = δ·;α for any n.

(ii) Given Q0(·) generic, the random variables Qn(α) converge as n goes to infinity almost
surely and in L1. The limiting distribution Q∞(·) is peaked at a random target pointer state.
That is:

Q∞(·) = δ·;γω

with target pointer state γω depending on the event ω. The probability for the target to be
a given pointer state α is the initial probability distribution:

P[γω = α] = Q0(α).

(iii) The asymptotic occurrence frequencies ν(i) := limnNn(i)/n, with Nn(i) the number
of times the value i appears in the nth first outputs, are those of the target pointer state.
That is:

lim
n→∞

Nn(i)/n = p(i|γω).

(iv) The convergence is exponentially fast:

Qn(α) ' exp(−nS(γω|α)), α 6= γω,

for n large enough, with S(γω|α) the relative entropy of p(·|γω) relative to p(·|α).

These facts have been proved in ref. [6]. They are based on the fact that the ran-
dom variables Qn(α) are bounded P-martingales with respect to the filtration Fn. That
is E[Qn(α)|Fn−1] = Qn−1(α). A classical theorem of probability theory [19] says that a
bounded martingale converges almost surely and in L1, so that Q∞(α) := limnQn(α) exists
and Qn(α) = E[Q∞(α)|Fn]. More general results, involving for instance extra randomness
on the partial measurements or relaxing the non-degeneracy hypothesis on the conditioned
probability p(·|α), have been obtained in ref. [16].

• How to read-off a complete measurement and consequences. Let us summarize how the
model apparatus is (concretely) working and how data are analysed, see Fig.D.1. For a
given system measurement, the data is an infinite sequence ω = (i1, i2, · · · ) of output par-
tial measurements. From its asymptotic behaviour, the apparatus computes the asymptotic
frequencies ν(i) of occurrences of the values i in the sequence ω, and it compares it to one
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Figure D.1.: A schematic view of iterated stochastic measurements: probes are send one after
the other to interact with the system for a while. After the interaction, a mea-
surement is performed on each probe. The information gained is summarized in
the occurrence frequencies, which allow to identify the limiting state.

of the apparatus data-base distributions p(i|α). By the non-degeneracy hypothesis and the
above convergence theorem [6], each of the asymptotic frequencies coincide with one of the
data-base distributions, so that the comparison identifies uniquely the target pointer state
and that identified state is by definition the result of a complete system measurement. Since
by the above theorem the distribution of the target pointer states is the initial distribution
Q0(·), the histogram of repeated independent complete system measurements yields the initial
distribution.

Notice that by the end of a complete measurement the system state distribution has col-
lapsed into one of the pointer states. The need for an infinite series of partial measurement
reflects the need for a macroscopic apparatus to implement the collapse. If the system mea-
surement is stopped after a finite number of partial measurements the collapse is only partial,
i.e. the probability distribution Qn(·) is still smeared around the target pointer state. The
target pointer state may nevertheless be identified with high fidelity if the differences be-
tween the data-base probability distributions p(·|α) are bigger than the fluctuations of the
frequencies νn(·) which generically scale like n−1/2.

D.2.2. Continuous time limit

We now describe continuous time limits of the previous model apparatus in which the
partial measurements are done continuously in time. There are different continuous time
limits, depending on the behaviour of the data-base conditioned probability distributions
p(·|α): a Brownian diffusive limit, a Poissonian jumpy limit, or a mixture of them.

These limits may be understood by looking at properties of the counting process Nn(i) :=∑n
k=1 Iik=i which is the number of times the value i appears in the nth first partial measure-

ments. Recall that πm−1(i) = E[Iim=i|Fm−1] is the probability to get i as the mth partial
output conditioned on the (m− 1)th first partial outputs. We may tautologically decompose
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D.2. Iterated indirect stochastic measurements

Nn(i) as

Nn(i) = Xn(i) +An(i), with An(i) :=
n−1∑
m=0

πm(i), (D.5)

where this equation serves as the definition of Xn(i), i.e. Xn(i) := Nn(i) − An(i), with∑
iXn(i) = 0 as both Nn(i) and An(i) add up to n. Then by construction E[Xn(i)|Fn−1] =

Xn−1(i), so that the processes Xn(i) are P-martingales with respect to the filtration Fn.
Equation (D.5) is the so-called Doob decomposition of Nn(i) as the processes An(i) are
predictable, i.e. An(i) is Fn−1-mesurable, see ref. [19]. The martingale property in particular
implies that E[Xn(i)] = 0.

Recall now the recursion relation (D.3) that we may rewrite as

Qn(α)−Qn−1(α) = Qn−1(α)
∑
i

p(i|α)

πn−1(i)
(Iin=i − πn−1(i))

which holds true because
∑

i p(i|α) = 1. By construction Iin=i − πn−1(i) = Xn(i)−Xn−1(i),
so that

(∆Q)n(α) = Qn−1(α)
∑
i

p(i|α)

πn−1(i)
(∆X)n(i). (D.6)

with (∆Q)n(α) := Qn(α) − Qn−1(α) and (∆X)n(i) := Xn(i) − Xn−1(i). We thus have
rewritten the recursion relation (D.3) as a discrete non-linear difference equation for the
probability distribution Qn(·) driven by discrete differences of the martingales Xn(i). This
will be the starting point of the continuous time limits.

Before going on let us point out a geometrical interpretation of Qn(α) which will be useful
later. On the set of complete measurements, we have defined a global measure P and a series
of measures Pα associated to each of the pointer states with P =

∑
αQ0(α)Pα. It is a simple

matter to check that Pα is non singular with respect to P, so that there exists a Radon-
Nikodym derivative of Pα with respect to P, see ref. [19]. This derivative is Q∞(α)/Q0(α).
More concretely, for any Fn-measurable integrable function X,

Q0(α)Eα[X] = E[Qn(α)X],

with Qn(α) = E[Q∞(α)|Fn], as may be checked directly.
We may tautologically refine this geometrical construction. Let us start from an arbitrary

probability measure P0 on Ω, and let us set zi1,··· ,in := P0[Bi1,··· ,in ], assuming that none of
these probabilities vanish. Let Zn and Zn(α) be Fn-measurable functions defined by

Zn(α)(i1, · · · , in) := Z−1
i1,··· ,in

∏
k

p(ik|α), Zn :=
∑
α

Q0(α)Zn(α),

so that Qn(α)/Q0(α) = Zn(α)/Zn. It is easy to check that each Zn(α) is a P0-martingale,
E0[Zn(α)|Fn−1] = Zn−1(α). As it is clear from their definition, the Zn(α)’s are the Radon-
Nikodym derivative of the measures Pα’s with respect to P0 on Fn-measurable functions, that
is

Eα[X] = E0[Zn(α)X],

for any Fn-measurable function X. Of course, Zn is the Radon-Nikodym derivatives of P with
respect to P0, i.e. E[X] = E0[ZnX] for any Fn-measurable function X. Choosing adequately
P0 helps taking the continuous time limit, a fact that we shall illustrate below.
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Brownian diffusive limit

The Brownian diffusive limit occurs when the conditioned probability p(·|α) depends on an
extra small parameter δ such that

p(i|α) 'δ→0 p0(i)
(
1 +
√
δ Γ(i|α) + · · ·

)
,

with all p0(i)’s non vanishing and α-independent. Since
∑

i p0(i) = 1, the p0(·)’s define
an α-independent probability measure on I. Note that

∑
i p0(i)Γ(i|α) = 0 for all α since∑

i p(i|α) = 1 for all δ. By the non-degeneracy assumption, the functions Γ(·|α) on I are all
different.

The continuous time limit is then obtained by performing the scaling limit δ → 0, n→∞
with t := n/δ fixed.

To understand the scaling limit of the counting processes Nn(i), let us look at its behaviour
under Pα, i.e. for a system in the pointer state α with initial distribution Q0(·) = δ·;α. Then
by hypothesis the output partial measurements are random independent variables, so that
Nn(i) =

∑n
k=1 Iik=i is the sum of n independent identically distributed (i.i.d.) variables εk(i)

with value 1 (if the output of kth partial measurement is i) with probability p(i|α) and zero
(if the output of kth partial measurement is different from i) with complementary probability.
By the law of large numbers, the Nn(i)’s at large n become Gaussian processes with mean
n p(i|α) and covariance min(n,m) (p(i|α)δi;j − p(i|α)p(j|α)). Under these hypotheses, the
probability πm−1(i) for the mth output partial measurement to be i is p(i|α) for all m, so
that An(i) = n p(i|α). Hence, under Pα and for such peaked initial distribution, the law of
the processes Xn(i) at large n is that of Gaussian processes with zero mean and covariance

Eα[Xn(i)Xm(j)] = min(n,m) (p(i|α)δi;j − p(i|α)p(j|α)), for Q0(·) = δ·;α.

After appropriate rescaling, this clearly admits a finite limit as δ → 0 which is α-independent.
Hence under this hypothesis, Xn(i) admits a continuous time limit Xt(i), formally to be
thought of as limδ→0

√
δX[t/δ](i). However, the previous equation is not enough to describe

this limit under the law P and some care has to be taken, see ref. [16].
So, let us define the scaling diffusive limit of the state distribution and the Doob martingales:

Qt(δ) := lim
δ→0

Q[t/δ](α), Xt(i) := lim
δ→0

√
δX[t/δ](i),

and of the counting processes,

Wt(i) := lim
δ→0

√
δ(N[t/δ](i)− p0(i)t/δ).

These equalities have to be thought in law, but we shall still denote by P =
∑

αQ0(α)Pα
the probability measure for the continuous time processes. By construction, Xt(i) are P-
martingales.

The discrete difference equation (D.6) naively translates into the non-linear stochastic equa-
tion for Qt(α). Recall that in the diffusive limit, p(i|α) ' p0(i)[1 +

√
δ Γ(i|α) + · · · ] as δ goes

to zero, so that πn−1(i) ' p0(i)[1 +
√
δ 〈Γ(i)〉t + · · · ] with 〈Γ(i)〉t :=

∑
α Γ(i|α)Qt(α). In the

continuous time limit, eq.(D.6) then becomes:

dQt(α) = Qt(α)
∑
i

(
Γ(i|α)− 〈Γ(i)〉t

)
dXt(i) (D.7)
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with Itô’s convention. We used
∑

iXt(i) = 0 and
∑

i p0(i)Γ(i|α) = 0 to take this limit. Re-
mark that this equation preserves the normalisation condition

∑
αQt(α) = 1. This equation

is that which governs the evolution of the system probability distribution under continuous
Bayes’ updating in the diffusive limit. The random fields Xt(i) code for the information of
the continuous time series of partial measurements. Not all of these fields are independent
since

∑
iXt(i) = 0. As we shall see, the main feature of the Brownian diffusive limit is that

the Xt(i)’s are Gaussian processes with zero mean and covariance

E[Xt(i)Xs(j)] = min(t, s) (p0(i)δi;j − p0(i)p0(j)), (D.8)

Alternatively, the fields Xt(i) are zero mean Gaussian martingales with quadratic variation

dXt(i)dXt(j) = (p0(i)δi;j − p0(i)p0(j)) dt,

which is of course compatible with the relation
∑

iXt(i) = 0. Actually the proofs of equation
(D.7) and of the correctness of (D.8) are a bit tricky, see [16] for details. We shall here present
an alternative less rigorous but quicker and simpler argument.

Let us now argue for eq.(D.8). Recall the Doob decomposition of the counting process
Nn(i) = Xn(i) +An(i). Its naive scaling limit reads

Wt(i) = Xt(i) +

ˆ t

0
ds p0(i) 〈Γ(i)〉s,

whose infinitesimal differential form is

dWt(i) = dXt(i) + p0(i) 〈Γ(i)〉t dt (D.9)

Contrary to the Xt(i)’s, the Wt(i)’s are not P-martingales but they are globally defined and
independent of the initial distribution Q0(·) because they are defined as limit of the counting
process. We however know that, under Pα, the Wt(i)’s are Gaussian processes with mean and
covariance

Eα[Wt(i)] = tp0(i)Γ(i|α),

Covα[Wt(i)Ws(j)] = min(t, s) (p0(i)δi;j − p0(i)p0(j)).

We now would like to use this information to read off properties of the martingalesXt(i)’s. The
key point consists in using Girsanov’s theorem [19]. Recall that Q∞(α) may be thought as the
Radon-Nikodym derivative of Pα with respect to P and that Qt(α) = E[Q∞(α)|Ft]. Assume
for a while that the Xt(i)’s are Gaussian processes under P with zero mean and quadratic
variation G(i, j)dt := 〈dXt(i), dXt(j)〉 to be determined. Girsanov’s theorem tells us that
modifying the measure P by multiplication by the martingale Qt(α) adds a supplementary
drift in the stochastic differential equation (D.9), given by the logarithmic derivative of the
martingales. In the present case, using eq.(D.7) Girsanov’s theorem implies that

dWt(i) = dX̂t(i) + p0(i) 〈Γ(i)〉t dt+
∑
j

G(i, j)
(
Γ(j|α)− 〈Γ(j)〉t

)
dt,

with X̂t(i)’s Gaussian processes under Pα with zero mean and identical quadratic variation
G(i, j)dt. Comparing now with the known properties of Wt(i) under Pα, spelled out above,
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we deduce that G(i, j) = (p0(i)δi;j − p0(i)p0(j)), as claimed 6, so that the previous equation
reduces to

dWt(i) = dX̂t(i) + p0(i)Γ(i|α)dt,

under Pα, as required. This ends our argument for equations (D.7,D.8).
A way to rigorously construct processes with all the above properties is to deform a suitable

a priori measure P0. Details have been given in ref. [16]. In this note, we shall illustrate this
strategy in the Poissonian case.

Eq.(D.7) may actually be integrated explicitly, see ref. [16]. Furthermore, as bounded
martingales the Qt(α)’s again converge almost surely and in L1. Under the non-degeneracy
assumption that all Γ(·|α) are different, the limit distribution is peaked, Q∞(·) = δ·;γω , at a
random target pointer state. The convergence is still exponential.

Poissonian jumpy limit

The Poissonian limit occurs when the conditioned probabilities p(i|α) vanish as a small
parameter δ vanishes. Not all p(i|α)’s may vanish simultaneously as they sum up to 1. So let
us single out one value i∗ for which p(i|α) goes to 1 as δ → 0 for all α and assume that all
other p(i|α) vanish in this limit:

p(i∗|α) 'δ→0 1, p(i|α) 'δ→0 δ θ(i|α) for i 6= i∗, ∀α.

By consistency p(i∗|α) = 1 − δ(
∑

i 6=i∗ θ(i|α)) + o(δ) and all θ(i|α) are positive and assumed
to be non-vanishing. In the limit δ → 0, the output of the partial measurements is most
frequently i∗ with sporadic jumps to another value i different from i∗ 7.

The continuous time limit is obtained by performing the scaling limit δ → 0, n→∞ with
t = n/δ fixed.

To understand the continuous time limit of the counting processes Nn(i), let us again look
at its behaviour under Pα. As before, the output partial measurements are then random
independent variables, so that Nn(i) =

∑n
k=1 Iik=i is the sum of n independent identically

distributed variables εk(i) with value 1 with probability p(i|α) and zero with complementary
probability. Let us first consider i 6= i∗ and compute logEα[ezNn(i)] = n log[(1 − p(i|α) +
ezp(i|α)]. In the scaling limit with n = t/δ and p(i|α) ' δ θ(i|α) we get

lim
δ→0

logEα[ezN[t/δ](i)] = tθ(i|α) (ez − 1), i 6= i∗.

Similar computations, based on the general formula

Eα
[
e
∑k
l=1

∑
i zl(i)(Nnl (i)−Nnl−1

(i))
]

=
k∏
l=1

(∑
i

ezl(i)p(i|α)

)nl−nl−1

,

for k ≥ 1, arbitrary non-decreasing sequences of integers 0 = n0 ≤ n1 ≤ · · · ≤ nk of length
k, and arbitrary (complex) zl(i)’s, show that, in the limit δ → 0, the Pα-distributions of the
counting processes N[t/δ](i), i 6= i∗, converge to those of independent Poisson point processes

6. This expression for the quadratic variation of the Xt(i)’s is compatible with the relation
∑
iXt(i) = 0,

since
∑
iG(i, j) = 0 as it should.

7. We may generalize this by assuming that more than one conditioned probabilities remain finite as δ goes
to zero. In these cases, the continuous time limit will be a mixture between the Brownian and Poissonian
limits.

208



D.2. Iterated indirect stochastic measurements

with intensities θ(i|α) dt. Note that this statement is true under Pα but not under P. However,
we can compute their P-generating functions using the decomposition of the measure P =∑

αQ0(α)Pα. For instance

E[ezN[t/δ](i)] 'δ→0

∑
α

Q0(α)etθ(i|α) (ez−1), i 6= i∗.

The properties of Nn(i∗) and their limits are reconstructed using the sum rule,
∑

iNn(i) =
n. In particular, for small δ, N[t/δ](i

∗) ' t/δ up to order 1 random corrections.
So, let us define the scaling Poisson limits of the state distribution and of the Doob mar-

tingales Xn(i)’s,
Qt(α) := lim

δ→0
Q[t/δ](α), Yt(i) := lim

δ→0
X[t/δ](i)

and of the jump counting processes

Nt(i) := lim
δ→0

N[t/δ](i), for i 6= i∗,

and Mt(i
∗) := limδ→0

(
N[t/δ](i

∗) − t/δ
)
. Again, these equalities have to be thought in law,

but we still denote by P =
∑

αQ0(α)Pα the probability measure for the time continuous
processes. By construction, the martingales Yt(i) sum up to zero,

∑
i Yt(i) = 0, and have zero

mean, E[Yt(i)] = 0. Similarly, Mt(i
∗) +

∑
i 6=i∗ Nt(i) = 0.

Again, the naive scaling limit of the difference equation (D.6) yields a stochastic equation
for the system state distribution. In the Poissonian limit, one has p(i|α) ' δθ(i|α) + · · · for
i 6= i∗ as δ → 0, so that πn−1(i) ' δ 〈θ(i)〉t + · · · with 〈θ(i)〉t :=

∑
α θ(i|α)Qt(α), for i 6= i∗,

whereas both p(i∗|α) and πn−1(i∗) approach 1 as δ goes to zero. The continuous time limit
of eq.(D.6) is then

dQt(α) = Qt(α)
∑
i 6=i∗

( θ(i|α)

〈θ(i)〉t
− 1
)
dYt(i). (D.10)

where we used dYt(i
∗) = −

∑
i 6=i∗ dYt(i) to deal with the term associated to i∗ in eq.(D.6).

As we shall show just below, the Yt(i)’s are related to the counting processes by

dNt(i) = dYt(i) + 〈θ(i)〉t dt, i 6= i∗, (D.11)

We shall furthermore argue that the processes dNt(i), i 6= i∗, are point processes with in-
tensities 〈θ(i)〉t dt. This intensity is sample dependent – a point that we shall explain –, but
predictable. Equations (D.10,D.11) are those which governs the evolution of the system prob-
ability distribution under continuous Bayes’ updating in the Poissonian limit. The random
counting processes Nt(i) code for the informations on the continuous time series of partial
measurements.

Let us now argue for eq.(D.11). Consider again the Doob decomposition Nn(i) = Xn(i) +
An(i). Because π[t/δ](i) ' δ 〈θ(i)〉t for small δ, its naive scaling reads

Nt(i) = Yt(i) +

ˆ t

0
ds 〈θ(i)〉s, i 6= i∗.

Its infinitesimal version is eq.(D.11), as announced. Since p(i∗|α) ' 1 − δσ(i∗|α) with
σ(i∗|α) :=

∑
i 6=i∗ θ(i|α), the counting function Nn(i∗) slightly deviates from n, and Mt(i

∗) =

Yt(i
∗)−

´ t
0 ds 〈σ(i∗)〉s with 〈σ(i∗)〉s :=

∑
α σ(i∗|α)Qs(α).
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By the martingale property, E[dYt(i)|Ft] = 0 so that

E[dNt(i)|Ft] = 〈θ(i)〉t dt, i 6= i∗.

That is the number of jumps in the direction i in the time interval [t, t + dt) depends on
the past of the process and is equal to 〈θ(i)〉t dt in mean. We may go a little further and
compute the generating function of those jumps. Indeed, since the conditional measure E[·|Ft]
decomposes as a sum, E[·|Ft] =

∑
αQt(α)Eα[·|Ft], and since under Eα[·|Ft] the dNt(i)’s are

Poisson point processes with intensity θ(i|α)dt, we have

logE[ez dNt(i)|Ft] = dt 〈θ(i)〉t (ez − 1), (D.12)

with 〈θ(i)〉t =
∑

αQt(α)θ(i|α). That is, under P, the dNt(i)’s are point processes with
intensities 〈θ(i)〉tdt, as announced. As above, a similar computation shows that the dNt(i)’s,
for fixed t, are independent variables for i 6= j under Pα but not under P. An alternative
description of this limit is given in ref. [17], see also the forthcoming ref. [21].

Up to now, our arguments have been only in law. A rigourous construction 8 of processes,
living on a well-defined probability space, and having all the required properties, is to deform
a suitable a priori measure P0. The hint that this is possible is the formula for Qt(α) obtained
by taking the continuous time limit of eq.(D.4). There are some cancellations of powers of δ
between numerator and denominator yielding

Qt(α) = Q0(α)
Zt(α)

Zt
, with Zt :=

∑
β

Q0(β)Zt(β),

where

Zt(α) :=
∏
i 6=i∗

θ(i|α)Nt(i) e−t(θ(i|α)−1). (D.13)

One recognizes Zt(α) as the standard exponential Poisson martingale. So, let us start from
an a priori probability measure P0 accommodating for independent Poisson processes Nt(i),
i 6= i∗, of intensity dt. Define Pα := Zt(α)P0 on Ft. Then, under Pα, the Nt(i)’s are
independent Poisson processes with intensity θ(i|α)dt. Defining

P := (
∑
α

Q0(α)Zt(α))P0,

it is plain that the Qt(α)’s are P-martingales and the Nt(i)’s have the law we were after.
For instance, since Qt(α) = Q0(α)Zt(α)/Zt, we have E[·|Ft] =

∑
αQt(α)Eα[·|Ft] so that

dNt := Nt+dt(i)−Nt(i) is at most 1 and P[dNt(i) = 1|Ft] = dt〈θ(i)〉t.

D.3. Iterated indirect quantum measurements

Although purely probabilistic – involving classical probability only – the previous descrip-
tion of iterated stochastic measurements finds applications in the quantum world, in partic-
ular in the framework of repeated indirect non-demolition measurements [5]. Recall that an

8. Which is an alternative to ref. [17] in that case.
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indirect quantum measurement consists in letting a quantum system interact with another
quantum system, called the probe, and implementing a direct Von Neumann measurement
on the probe. One then gains information on the system because the probe and the system
have been entangled. Repeating the cycle of entanglement and measurement progressively
increases the information on the system as in the model apparatus we described above.

Let S be the quantum system and Hs be its Hilbert space of states. Pick a basis of states
{|α〉} in Hs, which are going to play the role of pointer states. Let P be the probe and
Hp be its Hilbert space. We assume that the probe-system interaction preserves the pointer
states: a system initially prepared in one of the pointer state remains in this state after having
interacted with the probes. This requires a peculiar form for the unitary operator U of the
probe-system interaction:

U =
∑
α

|α〉〈α| ⊗ Uα, (D.14)

with Uα an unitary operators on Hp. Alternatively, U |α〉⊗|ν〉 = |α〉⊗Uα|ν〉 for any |ν〉 ∈ Hp,
a property coding for the fact that the pointer states |α〉 are preserved by this interaction.

We imagine sending identical copies of the probe, denoted P1,P2, · · · , one after the other
through the system and measuring an observable on each probe after the interaction. We
assume that the in-going probes have all been prepared in the same state |ψ〉 ∈ Hp, and
that the observables measured in the out-going channel are all identical with non-degenerate
spectrum I. Let {|i〉} ∈ Hp, i ∈ I, be the basis of eigenstates of the measured observable.
We denote by ik the output of the measurement on the kth out-going probe. In analogy
with previous section, we call the cycle entanglement and measurement on a probe a partial
measurement. The results of repetitions of theses cycles of partial measurements are random
sequences (i1, i2, · · · ), ik ∈ I. As before, such infinite series of partial measurements will
be called a complete measurement. The unitary operator U codes for the probability of
measuring a given value i on the out-going probe. Suppose that the in-going probe has been
prepared in the state |ψ〉 and the system S in the state |α〉. After interaction, the system-
probe state is |α〉 ⊗Uα|ψ〉 and the probability to measure the value i of the probe observable
is

p(i|α) := |〈i|Uα|ψ〉|2,

by the rule of quantum mechanics. So |〈i|Uα|ψ〉|2 is the probability to measure i in the out-
going channel conditioned on the system state be |α〉. The analogy with the previous section
should start to become clear.

D.3.1. Discrete time description

Let ρ be the system density matrix. The system state probability distribution is Q(α) =
〈α|ρ|α〉. The aim of this section is to describe how the system state distribution and the
density matrix evolve when the cycles of entanglement and measurement are repeated, and
to make explicit contact with previous sections.

Assume that the system is initially prepared in a density matrix state ρ0, and let us look
at what happens during a cycle of entanglement and interaction. Recall that the probe is
assumed to be prepared in the density matrix state |ψ〉〈ψ|. After interaction, the joint system-
probe density matrix is Uρ0 ⊗ |ψ〉〈ψ|U †. The observable, with spectrum I, is then measured
on the probe. If i1 is the output value of this measurement, the joint system-probe state is
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projected into ρ1 ⊗ |i1〉〈i1| with

ρ1 :=
1

π0(i1)
〈i1|U |ψ〉 ρ0 〈ψ|U †|i1〉,

This occurs with probability π0(i1) = Tr
(
〈i1|U |ψ〉 ρ0 〈ψ|U †|i1〉

)
. Using the assumed property

of U , eq.(D.14), this can rewritten as

π0(i) := Tr
(
〈i|U |ψ〉 ρ0 〈ψ|U †|i〉

)
=
∑
α

p(i|α)Q0(α).

How this cycle is to be repeated is clear. Let ρn−1 be the system density matrix after the
n− 1 first partial measurements – this density matrix depends on the random values of these
measurements, so that ρn−1 = ρn−1(i1, · · · , in−1), but we simplify the notation by not writing
explicitly the values of the measurements. We let the system interact with the nth probe and
do a measurement on this probe. If in is the output value of this nth partial measurement,
the system state is projected into

ρn =
1

πn−1(in)
〈in|U |ψ〉 ρn−1 〈ψ|U †|in〉, (D.15)

where again we simplified the notation by not writing the values of the partial measurements
– ρn should have been written as ρn(in|i1, · · · , in−1) and similarly for πn−1. This projection
occurs with probability πn−1(in), with

πn−1(i) := Tr
(
〈i|U |ψ〉 ρn−1 〈ψ|U †|i〉

)
=
∑
α

p(i|α)Qn−1(α).

The diagonal matrix elements of the density matrix are the probabilities for the system be in
a pointer state, that is Qn(α) = 〈α|ρn|α〉. From eq.(D.15) we read that

Qn(α) =
p(in|α)Qn−1(α)

πn−1(in)
.

The two above equations exactly coincide with eqs.(D.2,D.3) defining iterated stochastic
measurements. So everything we wrote in the previous sections applies. In particular the
collapse of the system probability distribution is a discrete implementation of the wave func-
tion collapse in Von Neumann measurement. The quantum system observable measured by
the iteration of cycles of entanglement and indirect measurement is that with eigenstate basis
{|α〉}. The collapse happens only for an infinite sequence of partial measurement reflecting
the fact that the iterated stochastic measurement apparatus is macroscopic only if an infinite
sequence of partial measurements is implemented, see ref. [6].

D.3.2. Continuous time limit

The aim of this section is to take the continuous time limit of the discrete recurrence equa-
tion (D.15) for the quantum density matrix using the results of the previous section. Doing
this we will make contact with the so-called Belavkin equations [14], describing continuous
time measurements in quantum mechanics and which are non-linear stochastic Schrödinger
equations [20].
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The small parameter δ is the time duration of the system-probe interaction, so that the
unitary operator is U = exp(−ıδH) with H the system-probe hamiltonian 9. As is well known,
the dynamics of a quantum system under continuous measurements is frozen by continuous
wave packet reductions, a fact named the quantum Zeno effect. To avoid it, we have to rescale
the system-probe interaction at the same time we decrease the interaction time duration. So
we assume the following form of the hamiltonian H,

H = Hs ⊗ 1 + 1⊗Hp +
1√
δ
HI , (D.16)

where Hs is the system hamiltonian, Hp the probe hamiltonian and HI the interaction hamil-
tonian.

For the pointer state to be stable under the action of U = e−ıδH , eq.(D.14), we should
assume that Hs is diagonal in the pointer basis, Hs =

∑
α |α〉Eα〈α| for some energies Eα, –

this is linked to the non-demolition character of the measurement – and that

HI =
∑
α

|α〉〈α| ⊗Hα,

with Hα acting on Hp but α dependent. The conditioned probabilities p(i|α) are then

p(i|α) = |〈i|ψ〉 − ı
√
δ 〈i|Hα|ψ〉+ · · · |2,

so that the Brownian diffusive case corresponds 〈i|ψ〉 6= 0 and the Poissonian jumpy case to
〈i|ψ〉 = 0.

In both cases, the continuous time limit is then obtained by performing the scaling limit
δ → 0, n→∞ with t := n/δ fixed as above.

It is useful to recast the quantum recursion relation (D.15) into a difference equation. This
simplifies matter when taking the continuous time limit. Let us write ρn =

∑
i ρn(in) Iin=i

with ρn(in) defined in eq.(D.15). Recall that E[Iin=i|Fn−1] = πn−1(i) and write Iin=i =
(Iin=i−πn−1(i)) +πn−1(i). This leads to the Doob decomposition of the difference ρn− ρn−1

as,

ρn − ρn−1 = (Dρ)n−1 + (∆ρ)n, (D.17)

with (Dρ)n−1 := E[ρn|Fn−1]−ρn−1, which is Fn−1-measurable, and (∆ρ)n := ρn−E[ρn|Fn−1],
which satisfies E[(∆ρ)n|Fn−1] = 0. Explicitely,

(Dρ)n−1 =
∑
i

〈i|U |ψ〉 ρn−1 〈ψ|U †|i〉 − ρn−1,

(∆ρ)n =
∑
i

〈i|U |ψ〉 ρn−1 〈ψ|U †|i〉
πn−1(i)

(Xn(i)−Xn−1(i)),

where we used Iin=i − πn−1(i) = Xn(i) −Xn−1(i), as in previous section. In the continuous
time limit, the first term (Dρ)n−1 is going to converge towards the drift term and the second
one (∆ρ)n to the noisy source of the stochastic differential equation.

9. We use the notation ı, without a dot, to code for the square root of −1.
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Brownian diffusive limit

The Brownian diffusive limit occurs when 〈i|ψ〉 6= 0 for all i. Then p(i|α) ' p0(i)(1 +√
δ Γ(i|α) + · · · ) for δ small with,

p0(i) = |〈i|ψ〉|2, Γ(i|α) = 2Im
(〈i|Hα|ψ〉
〈i|ψ〉

)
.

This is the situation we encountered in the previous section on the classical diffusive limit, so
that we can borrow all results obtained there.

It is then a simple matter to naively take the continuous time limit of the difference equa-
tions (D.17). This limit exists only if 〈ψ|HI |ψ〉 = 0, which is equivalent to

〈ψ|Hα|ψ〉 = 0 for all α,

a criteria which we assume to hold true. Recall that this scaling limit consists in δ → 0
with t = nδ fixed. Let us first expand the term (Dρ)n−1 in power of

√
δ. The term of

order
√
δ vanishes due to the condition 〈ψ|HI |ψ〉 = 0, and for the term of order δ we get:

(Dρ)[t/δ] 'δ→0 Ld(ρt)δ, with Linbladian

Ld(ρt) := −ı[Hs, ρt] +
∑
i

p0(i)(Ci ρtC
†
i −

1

2
{C†iCi, ρt}),

where we defined the operators Ci’s acting on Hs by Ci := −ı 〈i|HI |ψ〉〈i|ψ〉 , or equivalently

Ci := −ı
∑
α

|α〉〈i|Hα|ψ〉
〈i|ψ〉

〈α|,

using the decomposition of HI on pointer states. Remark that
∑

i p0(i)Ci = 0 thanks to
the assumed condition 〈ψ|Hα|ψ〉 = 0. Similarly, expanding the term (∆ρ)n using πn−1(i) '
p0(i)[1 + δTr[(Cj + C†j )ρt] + · · · ], we get limδ→0(∆ρ)[t/δ] =

∑
j Dj(ρt) dXt(j), with

Dj(ρt) := Cjρt + ρtC
†
j − ρtTr[(Cj + C†j )ρt].

Note that computing these limits only uses the decomposition (D.16) of the hamiltonian H
and not the existence of a preferred pointer state basis 10. Gathering shows that the Brownian
limit of the difference equation (D.15) is

dρt = Ld(ρt) dt+
∑
j

Dj(ρt) dXt(j) (D.18)

where the Xt(j)’s are the Gaussian centred processes, with quadratic variation

dXt(i)dXt(j) = (p0(i)δi;j − p0(i)p0(j)) dt,

defined in eq.(D.8) and in the discussion around this equation. This is an example of the
diffusive Belavkin equation [14,18]. It is important to recall that

∑
i p0(i)Ci = 0 since without

this condition, but with
∑

iXt(i) = 0 as we do have, eq.(D.18) would not be positivity
preserving [18]. Contact with previous sections can be made explicit by recalling that the state

probability distribution is Qt(α) = 〈α|ρt|α〉 and by noticing that Tr[(Cj + C†j )ρt] = 〈Γ(i)〉t.
We only took a naive limit of the difference equation (D.15), to mathematically prove the
diffusive Belavkin equation for the system density matrix in the scaling limit would require
more delicate arguments.

10. The existence of the pointer state basis was however used in determining the statistical properties of the
fields Xt(i).
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Poissonian jumpy limit

The Poissonian limit occurs when 〈i|ψ〉 = 0. This cannot happen for all i as {|i〉} forms an
orthonormal basis of Hp and |ψ〉 is non zero. So, we assume, for simplicity, that one element
of this basis is |ψ〉, say |i∗〉 = |ψ〉, and all others are orthogonal to |ψ〉, i.e. 〈i|ψ〉 = 0 for all
i 6= i∗. Then, p0(i∗|α) 'δ→0 1 and p0(i|α) 'δ→0 δ θ(i|α), for i 6= i∗, with

θ(i|α) = |〈i|Hα|ψ〉|2.

This is the situation we encountered in the previous section on the classical Poisson jumpy
limit, so that we can borrow all results obtained there.

As in the diffusive case, it is a simple matter to naively take the continuous time limit of
the difference equation (D.17). This only uses the decomposition the hamiltonian H but the
limit exists only if 〈ψ|HI |ψ〉 = 0, and we assume this to be true. Expanding the first term
(Dρ)n−1 to second order in

√
δ, we get (Dρ)[t/δ] 'δ→0 Lp(ρt)δ, with Linbladian

Lp(ρt) := −ı[Hs, ρt] +
∑
i 6=i∗

(Di ρtD
†
i −

1

2
{D†iDi, ρt}),

where we defined the operators Di := −ı 〈i|HI |ψ〉 acting on Hs, that is

Di := −ı
∑
α

|α〉〈i|Hα|ψ〉〈α|.

To compute the limit of the second term (∆ρ)n, we notice that, to leading order in δ,

〈i|U |ψ〉ρ〈ψ|U |i〉 ' δ DiρD
†
i and πn−1(i) ' δTr[DiρtD

†
i ] for i 6= i∗, and we get limδ→0(∆ρ)[t/δ] =∑

i 6=i∗ D̂i(ρt) dYt(i), with

D̂i(ρt) :=
Di ρtD

†
i

Tr[DiρtD
†
i ]
− ρt,

where the last term −ρt comes from using dYt(i
∗) = −

∑
i 6=i∗ dYt(i) when computing the con-

tribution of the i∗-term in (∆ρ)n, as in previous section. Gathering shows that the Poissonian
limit of the difference equation (D.15) is

dρt = Lp(ρt) dt+
∑
i 6=i∗
D̂i(ρt) dYt(i) (D.19)

where the Yt(j)’s are the Poisson-like compensated martingales defined in eq.(D.11) above.
That is,

dNt(i) = dYt(i) + Tr[DiρtD
†
i ] dt, i 6= i∗,

where dNt(i)’s are the point processes with intensities 〈θ(i)〉t dt defined in previous section,
see e.g. eq.(D.12,D.13). Note that, using the decomposition of the interaction hamiltonian
HI on the pointer state basis, HI =

∑
α |α〉〈α| ⊗Hα, we have

Tr[DiρtD
†
i ] =

∑
α

θ(i|α)Qt(α) = 〈θ(i)〉t,

so that the previous equation indeed coincides with eq.(D.11). Equation (D.19) is an example
of a jumpy Belavkin equation [14]. Let us finally point out that the stochastic processes
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(D.18,D.19) are not the most general one because we assumed that they preserve the pointer
state basis 11 so that the operator Hs, Ci or Dj are diagonal in the pointer basis. This is of
course related to the non-demolition property. Eqs.(D.18,D.19) are also peculiar examples of
more general class of models for continuous quantum measurements whose long time behavior
leads to purification of mixed states, see e.g. [18, 22].

Acknowledgements: This work was in part supported by ANR contract ANR-2010-BLANC-
0414.01 and ANR-2010-BLANC-0414.02.

11. We made this assumption when computing the probability distributions of the processes Xt(i) and Yt(i)
but not when formally taking the continuous time limit of the discrete eq.(D.15).
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Lhomond 75005 Paris, France.
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Abstract

A quantum system S undergoing continuous time measurement is usually described by a
jump-diffusion stochastic differential equation. Such an equation is called a stochastic master
equation and its solution is called a quantum trajectory. This solution describes actually the
evolution of the state of S. In the context of Quantum Non Demolition measurement, we
investigate the large time behavior of this solution. It is rigorously shown that, for large time,
this solution behaves as if a direct Von Neumann measurement has been performed at time
0. In particular the solution converges to a random pure state which is related to the wave
packet reduction postulate. Using theory of Girsanov transformation, we determine precisely
the exponential rate of convergence towards this random state. The important problem of
state estimation (used in experiment) is also investigated.

Introduction

In quantum optics, indirect measurements are often used [28, 29]. Usually a system is
probed by light beams (direct photodetection, homodyne and heterodyne detection schemes)
or conversely, atoms probe a photon field trapped in a cavity. Such experiments are promising

1. tristan.benoist@ens.fr
2. clement.pellegrini@math.univ-toulouse.fr
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towards the manipulation of quantum states [3,4,29,32,37,39]. They are designed to extract
information from a quantum system on site and without destroying it. The idea is to avoid
direct interaction of the quantum system with a macroscopic apparatus (photo detector,
screen ...). Instead the physical setup is the following: a quantum system S (from which we
want to extract information) is put in interaction with an auxiliary quantum system E . After
interaction, a measurement on E is performed. Due to the entanglement between S and E ,
the result of the measurement holds some information on S. Conditionally to this result one
can compute the evolution of S.

One of the best example of such setups is Serge Haroche’s group experiment at LKB [27].
They have successfully implemented a scheme of repeated interactions and measurements
which allows to measure the number of photons in a cavity (without destroying the photons).
The principle consist in putting the system S (the cavity photon field) in contact with a
sequence of auxiliary systems (Rydberg atoms) Ek which interact one after the other with
S. After each interaction a measurement on the atom Ek which has just finish to interact
is performed. Such a procedure, called repeated quantum indirect measurements, allows to
monitor the system S and to have an estimation of the number of photons inside the cavity.

A particular feature in the Serge Haroche’s group experiment is that only Quantum Non
Demolition (QND) measurement are performed. Such a scheme is at the cornerstone of the
mathematical study of the long time behavior of S. In [13,14], the authors show that the state
of the system S converges when the number of interactions tends to infinity. More precisely
they show a convergence which is compatible with the wave function collapse postulate.
In particular it is shown that the state of S behaves in infinite time as if a direct Von
Neumann measurement on S would have been performed at time 0. Essentially these results
concern discrete time model where the time of interaction τ between S and a piece Ek is fixed.
They apply to general nondemolition measurement scheme of which Serge Haroche’s group
experiment is an example (see [22] and references therein).

When the time of interaction goes to zero, this yields to continuous time models. In [5]
it has been shown that quantum repeated interactions model are a powerful approximation
of the so called Quantum Langevin equation. In [33–35], it is shown that the continuous
time approximation (τ goes to zero) of repeated quantum indirect measurements lead to
jump-diffusion stochastic differential equations (see also [15]). Such equations are namely the
equations which describe the evolution of a quantum system undergoing indirect continuous
measurements [7–12, 18, 19, 25, 39]. They are called stochastic master equations and their
solutions quantum trajectories.

In this article, we focus on the stochastic master equations describing general continuous
time quantum nondemolition measurement. Our main purpose is to describe the long time
behavior of the state of S when the time t goes to infinity. In particular if (ρ(t)) 3 describes
the stochastic evolution of S undergoing indirect QND measurement, we show that (ρ(t))
converges to a pure state |Υ〉〈Υ|. This convergence is obtained by studying in detail the
quantities (qα(t)) defined by

qα(t) = Tr[ρ(t)|α〉〈α|], α ∈ P, t ≥ 0

where P is a preferred basis of the Hilbert space describing S. In particular the quantity qα(t)
gives the probability for S to be in the state |α〉 if a direct measurement on S would have

3. The process (ρ(t)) is actually the quantum trajectory describing the evolution of the state of S which
undergoes indirect continuous measurement
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ben performed at time t. The elements |α〉 are often called pointer states. We show that Υ
is a random variable on the set of pointer states. By studying the distribution of Υ we are
able to connect the convergence towards |Υ〉〈Υ| with the wave function collapse postulate at
time 0. From this convergence we study the behavior of the system conditioned on the limit
state Υ being γ. This conditioning corresponds to a particular martingale change of measure.
Using a standard Girsanov transformation, we show rigorously that the convergence towards
|Υ〉〈Υ| is exponentially fast and we give its explicit rate. The problem of estimation is also
investigated when we are in the situation where the initial state ρ(0) is unknown. In this
context, we only have access to the result of the measurements. Since ρ(0) is assumed to be
unknown, this is not sufficient for describing totally (ρ(t)). In particular we are only able to
describe the evolution of an estimate state of (ρ(t)) denoted by (ρ̃(t)). We show that this
estimation is efficient since (ρ̃(t)) converges in long time to the same limit |Υ〉〈Υ|. Such a
property often refers to the notion of stability of quantum filter [1, 2, 32,36,38].

The article is structured as follows. In Section 1, we introduce the stochastic models
describing the generic stochastic master equations. Next we present the particular case of
nondemolition stochastic master equations. This allows us to define the processes (qα(t)). We
then study the properties of these processes and show that they are bounded martingales.
Section 2 is devoted to the main convergence theorem. From the martingale and boundedness
property of (qα(t)), we conclude that these processes converge almost surely. This allows us
to present the main convergence result and to define precisely the random variable Υ. Next,
using appropriate Girsanov change of measure, we show that this convergence is exponentially
fast. Finally we investigate the problem of estimation.

E.1. Non destructive quantum trajectories

E.1.1. System state evolution

This section is devoted to present the continuous time stochastic processes which describe
quantum trajectories. As announced these stochastic processes are solutions of particular
type of jump-diffusion stochastic differential equations.

Before presenting the SDEs, let us introduce some notations. The quantum system is
represented by a finite dimensional Hilbert space denoted by H. We denote the set of density
matrices by S(H) = {ρ ∈ B(H), ρ ≥ 0,Tr[ρ] = 1}. A density matrix represents a general
system mixed state. A system in a pure state |φ〉 ∈ H corresponds to a special case where the
density matrix is the projector onto |φ〉. In this situation the corresponding density matrix
is ρ|φ〉 = |φ〉〈φ|. In the rest of the article, if not specified, the term state refers to a density
matrix.

Let us consider a family Ci, i = 0, . . . , n of operators in B(H) and let H ∈ B(H) such that
H = H∗ i.e. H is a Hermitian operator. On S(H), we introduce the following functions:

L(ρ) = −i[H, ρ] +
n∑
i=0

(
CiρC

∗
i −

1

2

(
C∗i Ciρ+ ρC∗i Ci

))
Ji(ρ) = CiρC

∗
i , i = 0, . . . , n

vi(ρ) = Tr[Ji(ρ)], i = 0, . . . , n

Hi(ρ) = Ciρ+ ρC∗i − Tr[(Ci + C∗i )ρ]ρ, i = 0, . . . , n,

(E.1)
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for all states ρ ∈ S(H).
Let (Ω,F , (Ft),P) be a filtered probability space with usual conditions. Let (Wj(t)), j =

0, . . . , p be standard independent Wiener processes and let (Nj(dx, dt)), j = p + 1, . . . , n be
independent adapted Poisson point processes of intensity dxdt; the Nj ’s are independent of
the Wiener processes. We assume that (Ft) is the natural filtration of the processes W,N

and we assume also that F∞ =
∨
t>0

Ft = F .

On (Ω,F , (Ft),P), we consider the following SDE

ρ(t) = ρ0 +

ˆ t

0
L(ρ(s−))ds

+

p∑
i=0

ˆ t

0
Hi(ρ(s−))dWi(s)

+
n∑

i=p+1

ˆ t

0

ˆ
R

(
Ji(ρ(s−))

vi(ρ(s−))
− ρ(s−)

)
10<x<vi(ρ(s−))[Ni(dx, ds)− dxds],

(E.2)

where ρ0 ∈ S(H).

Definition 1. The equation (E.2) is called a stochastic master equation and its solution is
called a quantum trajectory.

Equation (E.2) is a ”generic” 4 SDE describing the evolution of a system undergoing con-
tinuous indirect measurements. Results of existence and uniqueness of the solution of (E.2)
can be found in [8, 12,33–35].

In Eq. (E.2), the operator L is a usual Lindblad operator [26,30]. These operators appear in
the definition of the master equation in the Markovian approach of Open Quantum Systems.

From Eq. (E.2), one can introduce the measurement record counting processes:

N̂i(t) =

ˆ t

0

ˆ
R

10<x<vi(ρ(s−))Ni(dx, ds), i = p+ 1, . . . , n.

These processes are counting processes with stochastic intensity given byˆ t

0
vi(ρ(s−))ds, i = p+ 1, . . . , n.

In particular, for any i ∈ {p + 1, . . . , n}, the process (N̂i(t) −
´ t

0 vi(ρ(s−))ds) is a (Ft) mar-
tingale under the probability P.

During an experiment, these processes would correspond to the counting measurement
records an experimenter would obtain. For example N̂i(t) could correspond to the total
number of photons arrived on a detector up to time t. In section E.2.3 we discuss in more
details what would be the equivalent for a continuous measurement record.

In terms of N̂i(t), Eq. (E.2) can be written as

dρ(t) = L(ρ(t−))dt+

p∑
i=0

Hi(ρ(t−))dWi(t)

+

n∑
i=p+1

(
Ji(ρ(t−))

vi(ρ(t−))
− ρ(t−)

)
(dN̂i(t)− vi(ρ(t−))dt). (E.3)

4. One can generalize these equations by introducing time dependent and random coefficients [12]
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In the next section we introduce a nondemolition condition on this evolution and study the
large time behaviour of (ρ(t)).

E.1.2. Non demolition condition

A measurement process is called nondemolition if one can find a basis P of H such that
any element of P is unmodified by the measurement process. If, at a given time, a system is
in one of the basis states, it will remain in it at any future time with probability one.

Definition 2. Let P be a basis of H. A measurement process fulfills a nondemolition condition
for P if any state of P is stable under the measurement process: for any |α〉 ∈ P if at time
s, ρ(s) = |α〉〈α| then for any time t > s, ρ(t) = ρ(s), almost surely.

The stable states |α〉〈α|, α ∈ P, are called pointer states.

We assume from now on that H and the Ci’s are diagonal in the basis P. The main
result we prove in this section is the equivalence between this diagonal assumption and a
nondemolition condition for P.

The diagonal assumption can be expressed as follows. There exist ε(α) ∈ R, c(i|α) ∈ C
such that

H =
∑
α∈P

ε(α)|α〉〈α|

Ci =
∑
α∈P

c(i|α)|α〉〈α| , i = 0, . . . , n.

Attached to these decompositions we introduce the following quantities which will be used
further

r(i|α) = c(i|α) + c(i|α), i = 0, . . . , n,

θ(i|α) = |c(i|α)|2, i = 0, . . . , n.

Here z is z complex conjugate. In the basis P, we denote a matrix A = (Aαβ)α,β.

Our study of (ρ(t)) is mainly based on the study of the diagonal elements of (ρ(t)) in the
basis P. If a direct measurement identifying all the pointer states would have been performed
at time t = 0, then the system after this measurement would have been in the pointer
state |α〉〈α| with probability ραα(0) = Tr[ρ(0)|α〉〈α|]. If the same direct measurement is
performed at time t > 0 the probability to obtain the same system pointer state is ραα(t) =
Tr[ρ(t)|α〉〈α|]. So, the evolution of the diagonal elements of (ρ(t)) in P gives us information
on the distribution of such direct measurement outcomes.

In the sequel, for all α ∈ P, we use the notations

qα(t) = ραα(t) = Tr[ρ(t)|α〉〈α|], t ≥ 0. (E.4)

As a preliminary, let us prove that the (qα(t)), α ∈ P are (Ft) martingales solutions of
Dade-Doleans type of SDEs.
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Theorem 1. On (Ω,F , (Ft),P), the stochastic processes (qα(t)), α ∈ P satisfy the following
system of stochastic differential equations

dqα(t) = qα(t−)

[
p∑
i=0

(
r(i|α)− 〈ri(t−)〉

)
dWi(t)

+
n∑

i=p+1

(
θ(i|α)

〈θi(t−)〉
− 1

)(
dN̂i(t)− 〈θi(t−)〉dt

)]
, α ∈ P, (E.5)

where 〈ri(t)〉 =
∑
γ

r(i|γ)qγ(t) and 〈θi(t)〉 =
∑
γ

θ(i|γ)qγ(t), for all t ≥ 0.

In particular, the stochastic processes (qα(t)), α ∈ P are (Ft) martingales. As solution of
Dade-Doleans type of SDEs, they can be expressed in the following form

qα(t) = qα(0)× exp

[
p∑
i=0

(ˆ t

0

(
r(i|α)− 〈ri(s−)〉

)
dWi(s)−

1

2

ˆ t

0

(
r(i|α)− 〈ri(s−)〉

)2
ds

)]

×
n∏

i=p+1

∏
s≤t

(
1 +

(
θ(i|α)

〈θj(s−)〉
− 1

)
∆N̂i(t)

)
× exp

[
−
ˆ t

0
(θ(i|α)− 〈θj(s−)〉))ds

]

= qα(0)× exp

[
p∑
i=0

(ˆ t

0

(
r(i|α)− 〈ri(s−)〉

)
dWi(s)−

1

2

ˆ t

0

(
r(i|α)− 〈ri(s−)〉

)2
ds

)

+
n∑

i=p+1

(ˆ t

0
ln

(
θ(i|α)

〈θj(s−)〉

)
dÑi(s)−

ˆ t

0

(
θ(i|α)− 〈θj(s−)〉

)
ds

)]
. (E.6)

In the case where θ(i|α) = 0, for some i = p + 1, . . . , n, if a jump of the corresponding
N̂i occurs at some time t, one can see that qα(t) vanishes (qα(u) = 0, for all u ≥ t). In this
situation in order to give a sense to the second expression one can consider that ln(0) = −∞
and exp(−∞) = 0. Nevertheless the second expression will be used only when θ(i|α) > 0 for
all α ∈ P and for all i = p+1, . . . , n. Let us stress that in this situation, if qα(0) 6= 0, we have
qα(t) > 0, for all t ≥ 0. Although, in section E.2.2, we discuss some interesting properties of
(qα(t)) when θ(i|α) = 0 for some i.

Proof. In order to obtain the expression (E.5), we have to compute dραα(t) by using (E.3).
To this end we have to plug the diagonal condition into the expression of L, Hi, Ji and vi.
This way we can compute the following expression.

vi(ρ) =
∑
α∈P
|c(i|α)|2ραα, i = p+ 1, . . . , n

(Ji(ρ))αβ = ραβ × c(i|α)c(i|β), i = p+ 1, . . . , n

(Hi(ρ))αβ = ραβ ×

c(i|α) + c(i|β)−
∑
γ∈P

(c(i|γ) + c(i|γ))ργγ

 , i = 0, . . . , p

(L(ρ))αβ = ραβ ×

(
−i(εα − εβ) +

n∑
i=0

c(i|α)c(i|β)− 1

2
(|c(i|α)|2 + |c(i|β)|2

)
.

(E.7)
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From now on we only need the expression of the diagonal elements α = β in the pointer
basis. In other words the stochastic differential equations for (qα(t)) do not depend on the
off diagonal elements of the system state. This way remarking also that (L(ρ))αα = 0 for any
α ∈ P, it is easy to derive Equation (E.5).

The second part follows from the fact that the processes (Wi(t)) and (N̂i(t)−
´ t

0 vi(ρ(s−))ds)
are (Ft) martingales. This way the stochastic processes (qα(t)) are local martingales but since
they are bounded they are true martingales. The solution (E.6) is the usual expression of the
solution of a Dade-Doleans SDE.

We are now equipped to prove the equivalence between the diagonal assumption and the
nondemolition condition.

Theorem 2. The quantum stochastic master equation (E.3) fulfills a nondemolition condition
for P if and only if H and all the operators Ci are diagonal in the basis P.

Proof. Let us first prove that the diagonal condition imply the nondemolition condition. We
need to prove that if at time s, ρ(s) = |α〉〈α|, then at any time t > s, ρ(t) = |α〉〈α| almost
surely. Since ρ(t) is a Markovian process, we can, without loss of generality, set s = 0.

Put ρ(0) = |α〉〈α| for some α ∈ P. We have qβ(0) = 0 for any β 6= α, β ∈ P and Tr[ρ(t)] = 1
for any time t. Then, looking at (E.6), we have qβ(t) = 0 and qα(t) = 1 for all t ≥ 0 almost
surely. It implies

ρ(t) = |α〉〈α|, ∀t ≥ 0, a.s.

We now prove that the nondemolition condition implies the diagonal assumption. If at
time s, ρ(s) = |α〉〈α|, then for any time t > s, ρ(t) = |α〉〈α|, almost surely. The expectation
of ρ(t) conditioned on ρ(s) = |α〉〈α| with α ∈ P is:

E
[
ρ(t)

∣∣∣ρ(s) = |α〉〈α|
]
− ρ(s) = E

[ˆ t

s
L(ρ(u−))du

∣∣∣∣ ρ(s) = |α〉〈α|
]

+ E

[
p∑
i=0

ˆ t

s
Hi(ρ(u−))dWi(u)

∣∣∣∣∣ ρ(s) = |α〉〈α|

]

+ E

 n∑
i=p+1

ˆ t

s

(
Ji(ρ(u−))

vi(ρ(u−))
− ρ(u−)

)
(dN̂i(u)− vi(ρ(u−))du)

∣∣∣∣∣∣ ρ(s) = |α〉〈α|

 .
Since (Wi(t)) and (N̂i(t)−

´ t
0 vi(ρ(u−))du) are martingales,

E
[
ρ(t)

∣∣∣ρ(s) = |α〉〈α|
]
− ρ(s) =

ˆ t

s
E
[
L(ρ(u))

∣∣∣ρ(s) = |α〉〈α|
]
du.

At this stage, since ρ(u) = ρ(s) for all u ≥ s almost surely, we get

0 =E
[
ρ(t)

∣∣∣ρ(s) = |α〉〈α|
]
− ρ(s)

=L(ρ(s))(t− s), ∀t ≥ s a.s.

Let β ∈ P, β 6= α. The condition L(|α〉〈α|)ββ = 0 implies (Ci)βα = 0 for all i = 0, . . . , n.
Using this result, the condition L(|α〉〈α|)βα = 0 implies Hβα = 0. Hence, H and all the Ci’s
must be diagonal in the basis P.
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In the next section we use the martingale property of (qα(t)) to study its long time behavior.
Before let us prove that this martingale property is equivalent to the nondemolition condition.

Proposition 1. The processes (qα(t)) are (Ft) martingales if and only if (E.3) fulfills a
nondemolition condition for P.

Proof. We already proved that the nondemolition condition implies the martingale property
of (qα(t)). Let us prove the converse.

We suppose that for any α ∈ P, the process (ραα(t)) is a martingale. This assumption is
true only if the drift part of (E.3) for ραα(t) is null whatever is the initial state. Hence, for
any arbitrary ρ ∈ S(H), we must have L(ρ)αα = 0. Take ρ = |β〉〈β| with α 6= β. As seen
earlier, the condition L(ρ)αα = 0, implies that the Ci’s must be diagonal in the basis P. Now
put |α + β〉 = 1√

2
(|α〉 + |β〉). Take ρ = |α + β〉〈α + β|. The condition L(ρ)αα = 0 implies

Hαβ −Hβα = 0. Put |α + iβ〉 = 1√
2
(|α〉 + i|β〉). Take ρ = |α + iβ〉〈α + iβ|. The condition

L(ρ)αα = 0 implies Hαβ + Hβα = 0. We can thus conclude that H must also be diagonal in
the basis P.

As proved earlier this diagonal property is equivalent to the nondemolition condition.

The next section is devoted to the large time behavior of (qα(t)) and to interpretations of
the obtained convergence in terms of wave function collapse.

E.2. Convergence and wave function collapse

E.2.1. Wave function collapse

In this section we show the almost sure convergence of the processes (qα(t)) when t goes to
infinity. Under some non degeneracy conditions, we can identify the limit random variables
(qα(∞)). More precisely, in this context we show that qα(∞) is equal to 1 for a pointer Υ ∈ P
and 0 for the others. The pointer state Υ is a random variable and we find its distribution.
We next show that this imply that (ρ(t)) converges almost surely to one of the pointer states
|α〉〈α|. In particular, we show that the probability for the limit pointer state to be |α〉〈α| is
qα(0) = ραα(0). This is what is predicted by the von Neumann projection postulate if a direct
measurement would have been performed at time 0. Thinking of the limit state in terms of
random variable, in the limit t → ∞, the system state is a random variable with the same
law as the one predicted by von Neumann projection postulate for a direct measurement at
time 0.

In the following subsections we present some useful properties implied by this convergence.
Let us express our non degeneracy condition

Assumption (ND): For any (α, β) with α 6= β there exists i ∈ {0, 1, . . . , n} such that
– either r(i|α) 6= r(i|β) if i ≤ p
– or θ(i|α) 6= θ(i|β) if i > p.

Theorem 3. Under Assumption (ND), there exist random variables qα(∞), α ∈ P which take
values in {0, 1} such that

lim
t→∞

qα(t) = qα(∞), ∀α ∈ P, (E.8)

almost surely and in L1 norm. Moreover, we have E[qα(∞)|Ft] = qα(t), for all α ∈ P and
for all t ≥ 0.

226



E.2. Convergence and wave function collapse

The random variables qα(∞), α ∈ P, satisfy

P(qα(∞) = 1) = q0(α),∀α ∈ P, (E.9)

qα(∞)qβ(∞) = 0, ∀α 6= β, a.s. (E.10)

As a consequence there exists a random variable Υ with values in P such that

P(Υ = α) = qα(0), ∀α ∈ P

and such that
lim
t→∞

ρ(t) = |Υ〉〈Υ|, a.s.

Proof. Let α ∈ P be fixed. The almost sure convergence of (qα(t)) follows from the fact
that (qα(t)) are bounded (Ft) martingales. More precisely, the family (qα(t)) is uniformly
integrable. Therefore there exists qα(∞) such that limt→∞ qα(t) = qα(∞), almost surely and
in L1 norm and we have E[qα(∞)|Ft] = qα(t), for all t ≥ 0. It remains to show that these
random variables take values in {0, 1}. To this end, for α being fixed, using Itô-Lévy isometry,
we have for all t > 0

E[qα(t)2] = E[[qα(t), qα(t)]],

where [qα(t), qα(t)] corresponds to the stochastic bracket of (qα(t)). We then have

E[qα(t)2] =

p∑
i=0

ˆ t

0
E
[
qα(s)2(r(i|α)− 〈ri(s)〉)2

]
ds

+

n∑
i=p+1

ˆ t

0
E

[
qα(s)2

(
θ(i|α)

〈θi(s)〉
− 1

)2

〈θi(s)〉

]
ds (E.11)

Since the processes (qα(t)) converge almost surely and are bounded, using Lebesgue dominated
convergence Theorem, we have that the quantity E[qα(t)2] converges when t goes to infinity.
This implies that

ˆ ∞
0

E
[
qα(s)2(r(i|α)− 〈ri(s)〉)2

]
ds < ∞, i = 0, . . . , p,

ˆ ∞
0

E

[
qα(s)2

(
θ(i|α)

〈θi(s)〉
− 1

)2

〈θi(s)〉

]
ds < ∞, i = p+ 1, . . . , n. (E.12)

Again by the dominated convergence Theorem, the quantities

E
[
qα(t)2(r(i|α)− 〈ri(t)〉)2

]
, i = 0, . . . , p,

E

[(
θ(i|α)qα(t)

〈θi(t)〉
− qα(t)

)2

〈θi(t)〉

]
, i = p+ 1, . . . , n (E.13)

converge when t goes to infinity. Then from (E.12) it follows that necessarily

lim
t→∞

E[qα(t)2(r(i|α)− 〈ri(t)〉)2] = 0, i = 0, . . . , p (E.14)

lim
t→∞

E

[
qα(t)2

(
θ(i|α)

〈θi(t)〉
− 1

)2

〈θi(t)〉

]
= 0, i = p+ 1, . . . , n. (E.15)
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The above L2 convergences imply the almost sure convergences up to an extraction. More
precisely, there exist subsequences (tin) such that for all i = 0, . . . , n, limn→∞ t

i
n =∞ and such

that almost surely

lim
n→∞

qα(tin)2(r(i|α)− 〈ri(tin)〉)2 = 0, i = 0 . . . , p (E.16)

lim
n→∞

qα(tin)2

(
θ(i|α)

〈θi(tin)〉
− 1

)2

〈θi(tin)〉 = 0, i = p+ 1, . . . , n. (E.17)

Since the processes (qα(t)) converge almost surely, by uniqueness of the almost sure limits
and using the boundedness of 〈θi(t)〉, we can conclude that almost surely, for all α ∈ P

lim
t→∞

qα(t)2(r(i|α)− 〈ri(t)〉)2 = 0, i = 0 . . . , p (E.18)

lim
t→∞

qα(t)2(θ(i|α)− 〈θi(t)〉)2 = 0, i = p+ 1, . . . , n. (E.19)

Then it follows that, almost surely, for all α ∈ P

qα(∞)(r(i|α)− 〈ri(∞)〉) = 0, i = 0 . . . , p (E.20)

qα(∞) (θ(i|α)− 〈θi(∞)〉) = 0 i = p+ 1, . . . , n. (E.21)

This way, almost surely, for all α 6= β

qα(∞)
(
r(i|α)− 〈ri(∞)〉

)
= qβ(∞)

(
r(i|β)− 〈ri(∞)〉

)
= 0, i = 0 . . . , p (E.22)

qα(∞)
(
θ(i|α)− 〈θi(∞)〉

)
= qβ(∞)

(
θ(i|β)− 〈θi(∞)〉

)
= 0 i = p+ 1, . . . , n. (E.23)

It follows that, almost surely, for all α 6= β

qα(∞)qβ(∞)(r(i|α)− r(i|β)) = 0, i = 0 . . . , p (E.24)

qα(∞)qβ(∞)(θ(i|α)− θ(i|β)) = 0, i = p+ 1, . . . , n. (E.25)

Finally using Assumption (ND) one can conclude that

qα(∞)qβ(∞) = 0, ∀α 6= β a.s.

This way, there exists a set Ω′ such that P(Ω′) = 1 and such that for all ω ∈ Ω′ there exists
a unique Υ ∈ P such that qΥ(∞)(ω) 6= 0 and for all β 6= Υ, qβ(∞)(ω) = 0. Moreover,
since Tr[ρ(t)] = 1, we have that

∑
α∈P qα(∞)(ω) = 1. Therefore qΥ(∞)(ω) = 1. Then we

have proved that for all α, qα(∞) ∈ {0, 1}. Using now the martingale property, we have
E[qα(∞)] = qα(0), which implies that P(qα(∞) = 1) = qα(0) and the first part of the theorem
is proved.

For the second part, let us come back to the definition of Υ. This defines a random variable
taking values in the set of pointer states P (for ω ∈ Ω \ Ω′, we can put Υ(ω) = ψ, where
ψ /∈ P, this will appear with probability 0). It is then clear that

P(Υ = α) = P(qα(∞) = 1) = qα(0), ∀α ∈ P.

One can note in particular that qα(∞) = 1Υ=α. Now, we are in the position to conclude the
proof. Indeed, since qΥ(∞) = 1, we get

lim
t→∞

Tr[ρ(t)|Υ〉〈Υ|] = 1, a.s.
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Now let ω ∈ Ω′ and let µ be a limit of a convergent subsequence (ρ(tn)(ω)), we have that
Tr[µ|Υ(ω)〉〈Υ(ω)|] = 1 which implies that µ = |Υ(ω)〉〈Υ(ω)|. Therefore all convergent subse-
quences of (ρ(t)(ω)) converge to |Υ(ω)〉〈Υ(ω)| which implies

lim
t→∞

ρ(t) = |Υ〉〈Υ|, a.s.

This result is crucial in the following. In particular it will allow us to use a Girsanov
transformation ”in infinite time horizon”.

E.2.2. Exponential rate of convergence

In this section, we study the convergence speed of the processes (qα(t)). In particular, we
shall show an exponential convergence. To this end, we study the following quantities

lim
t→∞

1

t
ln

(
qα(t)

qγ(t)

)
, α, γ ∈ P.

Since (qt(α)) can vanish in the case where θ(i|α) = 0 for some i, this quantity can be finite or
infinite. Furthermore, we limit our study to pointer states α, γ ∈ P such that qα(0) 6= 0 and
qγ(0) 6= 0. Remark, if qβ(0) = 0 for some pointer state β we have qβ(t) = 0 for any time t.

First, let us start by studying the case where qα(t) > 0 and qγ(t) > 0, for all t ≥ 0, almost
surely. As already discussed this is ensured when for any i ∈ {p + 1, . . . , n}, θ(i|α) > 0 and
θ(i|γ) > 0. In this case, using (E.5), we have almost surely, for all t ≥ 0,

qα(t)

qγ(t)
=
qα(0)

qγ(0)
× exp

[
p∑
i=0

(ˆ t

0
(r(i|α)− r(i|γ))dWi(s)

− 1

2

ˆ t

0

[
(r(i|α)− 〈ri(s−)〉)2 − (r(i|γ)− 〈ri(s−)〉)2

]
ds

)

+
n∑

i=p+1

(ˆ t

0
ln

(
θ(i|α)

θ(i|γ)

)
dN̂i(s)−

ˆ t

0
(θ(i|α)− θ(i|γ)) ds

)]
. (E.26)

This can be rewritten as

qα(t)

qγ(t)
=
qα(0)

qγ(0)
× exp

[
p∑
i=0

(ˆ t

0
(r(i|α)− r(i|γ))dXγ

i (s)− 1

2

ˆ t

0
(r(i|α)− r(i|γ))2ds

)

+
n∑

i=p+1

(ˆ t

0
ln

(
θ(i|α)

θ(i|γ)

)
dM̂γ

i (s)−
ˆ t

0
(θ(i|α)− θ(i|γ))− ln

(
θ(i|α)

θ(i|γ)

)
θ(i|γ))ds

)]
, (E.27)

for all t ≥ 0, where

Xγ
i (t) = Wj(t)−

ˆ t

0

[
r(i|γ)− 〈ri(s−)〉

]
ds, i = 0, . . . , p

M̂γ
i (t) = N̂i(t)−

ˆ t

0
θ(i|γ)ds = N̂i(t)− θ(i|γ)t, i = p+ 1, . . . , n (E.28)
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for all t ≥ 0. Now we shall see that these processes are martingales under a suitable change
of measure. To this end we consider the family of probability measures (Qt

γ) defined by

dQt
γ(ω) =

qγ(t)(ω)

qγ(0)
dP(ω), t ≥ 0,

for all γ ∈ P such that qγ(0) 6= 0.

This family of probability measure is consistent. Moreover, since E[qγ(∞)|Ft] = qγ(t), for
all t ≥ 0, any element of this family can be extended to a unique probability measure Qγ on
F∞ = F . In particular, we have

dQγ(ω) =
qγ(∞)(ω)

qγ(0)
dP(ω) (E.29)

and in terms of filtration we get the following Radon Nykodim formula

E
[
dQγ(ω)

dP(ω)

∣∣∣∣Ft] =
qγ(t)

qγ(0)
=
dQt

γ(ω)

dP(ω)
, t ≥ 0. (E.30)

This way we can consider the quantity lim
t→∞

1

t
ln

(
qα(t)

qγ(t)

)
under Qγ . We shall need the fol-

lowing lemma which relies on Girsanov transformation.

Lemma 1. Let γ ∈ P such that qγ(0) 6= 0. Under Qγ, the processes (Xγ
j (t)), j = 0, . . . , p

and (M̂γ
j (t)), j = p + 1, . . . , n are (Ft) martingales. More precisely (Xγ

j (t)), j = 0, . . . , p are

standard Qγ Brownian motions and (N̂j(t)), j = p+ 1, . . . , n are usual Poisson processes with
deterministic intensities θ(i|γ).

The following theorem expresses the exponential convergence speed towards Υ.

Theorem 4. Assume Assumption (ND) is satisfied. Assume that α, γ ∈ P are such that
qα(0) 6= 0, qγ(0) 6= 0, and such that θ(i|α) > 0, θ(i|γ) > 0 for all i = p + 1, . . . , n. Then, we
have

lim
t→∞

1

t
ln

(
qα(t)

qγ(t)

)
= −1

2

p∑
i=0

(r(i|α) − r(i|γ))2 +
n∑

i=p+1

θ(i|γ)

[
1− θ(i|α)

θ(i|γ)
+ ln

(
θ(i|α)

θ(i|γ)

)]
,

(E.31)

Qγ almost surely.

More generally, in terms of the random variable Υ, we have

lim
t→∞

1

t
ln

(
qα(t)

qΥ(t)

)
= −1

2

p∑
i=0

(r(i|α)−r(i|Υ))2+

n∑
i=p+1

θ(i|Υ)

[
1− θ(i|α)

θ(i|Υ)
+ ln

(
θ(i|α)

θ(i|Υ)

)]
,

(E.32)

P almost surely.
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Proof. From (E.26), we have

1

t
ln

(
qα(t)

qγ(t)

)
=

1

t
ln

(
qα(0)

qγ(0)

)
+

p∑
i=0

(r(i|α)− r(i|γ))
Xγ
j (t)

t
− 1

2
(r(i|α)− r(i|γ))2

+

n∑
i=p+1

ln

(
θ(i|α)

θ(i|γ)

)
M̂γ
i (t)

t
+ (θ(i|γ)− θ(i|α)) + ln

(
θ(i|α)

θ(i|γ)

)
θ(i|γ).

(E.33)

Now from Lemma 1, we know that under Qγ , the processes (Xγ
j (t)) are standard Brownian

motions and (N̂i(t)) are a usual Poisson processes of intensities θ(i|γ). This way, using law
of large number for Brownian motion and Poisson processes, we get

lim
t→∞

1

t
ln

(
qα(t)

qγ(t)

)
= −1

2

p∑
i=0

(r(i|α) − r(i|γ))2 +

n∑
i=p+1

θ(i|γ)

[
1− θ(i|α)

θ(i|γ)
+ ln

(
θ(i|α)

θ(i|γ)

)]
,

(E.34)

Qγ almost surely.
Now let us remark that

dP(ω) =
∑

γ s.t. qγ(0)>0

qγ(0)dP(ω|Υ(ω) = γ)

which yields
dQγ(ω) = dP(ω|Υ(ω) = γ).

As a consequence

lim
t→∞

1

t
ln

(
qα(t)

qΥ(t)

)
= −1

2

p∑
i=0

(r(i|α)−r(i|Υ))2+
n∑

i=p+1

θ(i|Υ)

[
1− θ(i|α)

θ(i|Υ)
+ ln

(
θ(i|α)

θ(i|Υ)

)]
,

(E.35)

P almost surely and the result follows.

From the above Theorem since qΥ(∞) = 1, P almost surely, we get the following asymptotic
expansion. For all α ∈ P such that qα(0) 6= 0

qα(t) = e
−t
[

1
2

∑p
i=0(r(i|α)−r(i|Υ))2−

∑n
i=p+1 θ(i|Υ)

[
1− θ(i|α)

θ(i|Υ)
+ln

(
θ(i|α)
θ(i|Υ)

)]]
× (1 + ◦(1)), (E.36)

P almost surely. From the inequality ln(x) ≤ x− 1, we see that the rate

1

2

p∑
i=0

(r(i|α)− r(i|Υ))2 −
n∑

i=p+1

θ(i|Υ)

[
1− θ(i|α)

θ(i|Υ)
+ ln

(
θ(i|α)

θ(i|Υ)

)]
≥ 0, a.s. (E.37)

More precisely each term of the sums is nonnegative. Now from Assumption (ND), the
quantity (E.37) is equal to zero if and only if α = Υ. This underlines the exponential rate
convergence towards Υ.
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Remark. Let us assume the interaction of our measurement apparatus with the system in-
volves only one hermitian operator Ci = C. In other words n = 0. Let us also assume we can
choose either to have a continuous process as our measurement record or a counting process.
In other words, either the quantum stochastic master equation is

dρ(t) = L(ρ(t))dt+
(
Cρ(t) + ρ(t)C∗ − Tr[(C + C∗)ρ(t)]ρ(t)

)
dWt (E.38)

or

dρ(t) = L(ρ(t−))dt+

(
Cρ(t−)C∗

Tr[C∗Cρ(t−)]
− ρ(t−)

)
[dN̂(t)− Tr[C∗Cρ(t−)]dt]. (E.39)

In the diffusive case (E.38), the convergence rate (E.37) is equal to (c(α)− c(Υ))2. In the
counting case (E.39) it is equal to −c(Υ)2[ln(c(α)2/c(Υ)2)+1− c(α)2/c(Υ)2]. A simple study
shows that

(c(α)− c(Υ))2 ≤ −c(Υ)2[ln(c(α)2/c(Υ)2) + 1− c(α)2/c(Υ)2].

So the choice of a counting process may lead to a higher convergence rate. But it comes at a
price. Suppose C has two different eigenvalues of equal norm: c(α) 6= c(β), |c(α)| = |c(β)|.
The non degeneracy assumption (ND) is not fulfilled for the jump equation (E.39) whereas it
is fulfilled for the diffusive equation (E.38).

We now study the situation where it exists i ∈ {p + 1, . . . , n} and α ∈ P, such that
θ(i|α) = 0. In this case we shall study the following stopping times

Ti = min{t ∈ R+ s.t. N̂i(t) > 0}, i = p+ 1, . . . , n (E.40)

T (α) = min{Ti s.t. θ(i|α) = 0}, α ∈ P. (E.41)

Assume that qα(0) 6= 0, we have qα(T (α)) = 0 and qα(t) > 0, for all t < T (α) as well as
qα(t) = 0, for all t ≥ T (α). This way, if T (α) < ∞, the process (qα(t)) converges to zero in
finite time.

We have the following proposition which describes the distribution of T (α), α ∈ P.

Proposition 2. Let α ∈ P such that there exists i ∈ {p + 1, . . . , n} such that θ(i|α) = 0.
Then,

P(T (α) ≤ t|Υ = γ) = 1− e−λ(α|γ)t,

where λ(α|γ) =
∑

i, s.t. θ(i|α)=0

θ(i|γ).

Finally, we have

P(T (α) ≤ t) = 1−
∑
β∈P

qβ(0)e−λ(α|β)t.

Proof. Remember that, under Qγ , (N̂i(t)) are usual Poisson processes of intensities θ(i|γ).
So, under Qγ , the law of Ti is exponential with parameter equal to θ(i|γ), that is,

Qγ(Ti ≤ t) = 1− e−θ(i|γ)t, i = p+ 1, . . . , n.

Under Qγ , T (α) is thus the minimum of a finite set of random variables obeying exponential
laws. Since we have assumed that the Poisson point processes Ni(., .) are independent, under
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Qγ the processes (N̂i(t)) are also independent as well as the stopping times Ti. From the
properties of exponential law, we have

Qγ(T (α) ≤ t) = 1− e−λ(α|γ)t.

Since P =
∑

β∈P qβ(0)Qβ, we have

P(T (α) ≤ t) = 1−
∑
β∈P

qβ(0)e−λ(α|β)t,

which concludes the proof.

Let us note that taking t goes to infinity we get

P(T (α) =∞) =
∑

β, s.t.λ(α,β)=0

qβ(0) ≥ qα(0) = P(qα(∞) = 1).

In the next section, we address the problem of convergence when one does not have access
to the process (ρ(t)) but only to the measurement records.

E.2.3. Stability

Usually, in experiments the initial state ρ0 of the system H is unknown (this is sometimes
that we want to estimate). This way we cannot have access to the quantum trajectory (ρ(t)).
Nevertheless we have still access to the results given by the measurement apparatus. These
results are directly connected to the quantum trajectory (E.2). In terms of processes, the
results of the measurement are described by output processes in the following way. The
observed processes are given by

dyi(t) = dWi(t) + Tr[(Ci + C∗i )ρ(t−)]dt, i = 0, . . . , p

for the diffusive part of the evolution and by

dN̂i(t), i = p+ 1, . . . , n

for the counting processes. The quantities yi(t) and N̂i(t) are the measurements recorded by
the apparatus. In an homodyne or heterodyne detection scheme, yi(t) would represent the
detected photo current integrated up to time t whereas, in a direct photodetection scheme,
N̂i(t) would be the number of photons detected up to time t [19,39]. The quantum trajectory
can be expressed as follows

ρ(t) = L(ρ(t−))dt+

p∑
i=0

Hi(ρ(t−))(dyi(t)− Tr[(Ci + C∗i )ρ(t−)]dt)

+

n∑
i=p+1

(
Ji(ρ(t−))

vi(ρ(t−))
− ρ(t−)

)
(dN̂i(t)− vi(ρ(t−))dt), (E.42)

ρ(0) = ρ0. (E.43)
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In the case where we do not know the initial state ρ0, we can estimate the quantum trajec-
tory (ρ(t)) by using an estimate quantum trajectory (ρ̃(t)) satisfying the following stochastic
differential equation

ρ̃(t) = L(ρ̃(t−))dt+

p∑
i=0

Hi(ρ̃(t−))(dyi(t)− Tr[(Ci + C∗i )ρ̃(t−)]dt)

+

n∑
i=p+1

(
Ji(ρ̃(t−))

vi(ρ̃(t−))
− ρ̃(t−)

)
(dN̂i(t)− vi(ρ̃(t−))dt), (E.44)

ρ̃(0) = ρ̃0, (E.45)

where ρ̃0 is an arbitrary state. Let us stress that (yi(t)), i = 0, . . . , p and (N̂i(t)), i = p +
1, . . . , n are the output processes attached to the true quantum trajectory (ρ(t)). This way,
if ρ̃0 = ρ0 we get (ρ̃(t)) = (ρ(t)). In particular the estimate quantum trajectory (ρ̃(t)) is
governed by the measurement record as if it was the true quantum trajectory. This can allow
to simulate an estimation of the true quantum trajectory. Such an estimate is often called a
quantum filter. An important question is to know if the estimate become closer and closer to
the true quantum trajectory when t goes to infinity. In particular does the distance between
the estimate and the true quantum trajectory converges to zero? Such a property is related to
the so called stability of quantum filter. For general schemes of indirect measurement, partial
results in this direction has been developed in [2] (it is shown that the fidelity between (ρ(t))
and (ρ̃(t)) increases at least in average when t increases).

Here, in the context of QND we show that the estimate quantum trajectory converges to
the same state than the one of the true quantum trajectory. We shall show namely that
(ρ̃(t)) converges to |Υ〉〈Υ| when t goes to infinity. This is achieved by a direct analysis of the
quantities

q̃α(t) = Tr[ρ̃(t)|α〉〈α|],

for all α ∈ P and for all t ≥ 0. The processes (q̃α(t)) repesent actually the estimate of the
true (qα(t)).

From Equation (E.44), we can see that the processes (q̃α(t)) are solutions of

dq̃α(t) = q̃α(t−)

[
p∑
i=0

(
r(i|α)− 〈r̃i(t−)〉

)(
dWi(t) +

(
〈ri(t−)〉 − 〈r̃i(t−)〉

))
+

n∑
i=p+1

(
θ(i|α)

〈θ̃i(t−)〉
− 1

)(
dN̂i(t)− 〈θ̃i(t−)〉dt

)]
. (E.46)

Let us treat the case where θ(i|α) 6= 0, for all α ∈ P and for all i = p+ 1, . . . , n. Eq. (E.46)
are still Dade-Doleans exponential and the solution of (E.46) are given by
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q̃t(α) = q̃0(α)× exp

[
p∑
i=0

(ˆ t

0

(
r(i|α)− 〈r̃i(s−)〉

)(
dWi(s) +

(
〈ri(s−)〉 − 〈r̃i(s−)〉

)
ds
)

− 1

2

ˆ t

0

(
r(i|α)− 〈r̃i(s−)〉

)2
ds

)

+

n∑
i=p+1

(ˆ t

0
ln

(
θ(i|α)

〈θ̃i(s−)〉

)
dN̂i(s)−

ˆ t

0

(
θ(i|α)− 〈θ̃i(s−)〉

)
)ds

)]
, (E.47)

for all α ∈ P and for all t ≥ 0.
Let us stress that, in general, these processes are no more (Ft) martingales. We cannot

then conclude to their convergence by using martingale convergence results. Nevertheless the
quantity q̃t(α)/q̃t(γ) takes exactly the same form than the one of the true quantum trajectory.
More precisely, assume that q̃γ(0) 6= 0, after computations we get that

q̃α(t)

q̃γ(t)
=
q̃α(0)

q̃γ(0)
× exp

[
p∑
i=0

(ˆ t

0

(
r(i|α)− r(i|γ)

)
dXγ

i (s)− 1

2

ˆ t

0
(r(i|α)− r(i|γ))2ds

)

+
n∑

i=p+1

(ˆ t

0
ln

(
θ(i|α)

θ(i|γ)

)
dM̂γ

i (s)−
ˆ t

0
(θ(i|α)− θ(i|γ))− ln

(
θ(i|α)

θ(i|γ)

)
θ(i|γ))ds

)]
, (E.48)

for all α, γ ∈ P, where the processes (Xγ
i (t)), i = 0, . . . , p and (Mγ

i (t)), i = p + 1, . . . , n have
been defined in (E.28). Now we would like to consider the limit of this quantity under Qγ .
To this end, we first need to consider a γ such that qγ(0) 6= 0. In this case, if q̃α(0) 6= 0, we
get

lim
t→∞

1

t
ln

(
q̃α(t)

q̃γ(t)

)
= −1

2

p∑
i=0

(r(i|α) − r(i|γ))2 +
n∑

i=p+1

θ(i|γ)

[
1− θ(i|α)

θ(i|γ)
+ ln

(
θ(i|α)

θ(i|γ)

)]
,

(E.49)

Qγ almost surely. As a consequence, we get again

lim
t→∞

1

t
ln

(
q̃α(t)

q̃Υ(t)

)
= −1

2

p∑
i=0

(r(i|α)−r(i|Υ))2+
n∑

i=p+1

θ(i|Υ)

[
1− θ(i|α)

θ(i|Υ)
+ ln

(
θ(i|α)

θ(i|Υ)

)]
,

(E.50)

P almost surely. This yields that P almost surely

q̃α(t) = q̃Υ(t)e
−t
[

1
2

∑p
i=0(r(i|α)−r(i|Υ))2−

∑n
i=p+1 θ(i|Υ)

[
1− θ(i|α)

θ(i|Υ)
+ln

(
θ(i|α)
θ(i|Υ)

)]
+◦(1)

]
. (E.51)

Now we consider Ω′′ with P(Ω′′) = 1 and such that (E.51) is fulfilled for all ω ∈ Ω′′. Let
ω ∈ Ω′′ be fixed. For any α such that α 6= Υ(ω), under Assumption (ND) there exists i such
that either r(i|α) 6= r(i|Υ(ω)) or θ(i|α) 6= θ(i|Υ(ω)). Hence, since 0 ≤ q̃Υ(t) ≤ 1, we can
conclude that

lim
t→∞

q̃α(t)(ω) = 0.
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Now, since
∑
q̃α(t) = 1 still holds, we deduce that

lim
t→∞

q̃Υ(ω)(t)(ω) = 1.

Note that the result (E.50) requires only that q̃α(0) 6= 0 as soon as qα(0) 6= 0. Then, we
can express the following result.

Proposition 3. Assume that θ(i|α) > 0, for all α ∈ P and for all i = p+ 1, . . . , n. Assume
Assumption (ND) is satisfied. Assume that q̃α(0) 6= 0 for any α ∈ P such that qα(0) 6= 0.

Let (q̃α(t)) be the stochastic processes defined by (E.47) with q̃α(0) 6= 0. We have

lim
t→∞

q̃Υ(t) = 1,

lim
t→∞

q̃α(t)1Υ6=α = 0, (E.52)

P almost surely. Moreover, the convergence is exponentially fast, that is

lim
t→∞

1

t
ln

(
q̃α(t)

q̃Υ(t)

)
= −1

2

p∑
i=0

(r(i|α)−r(i|Υ))2+

n∑
i=p+1

θ(i|Υ)

[
1− θ(i|α)

θ(i|Υ)
+ ln

(
θ(i|α)

θ(i|Υ)

)]
,

(E.53)

P almost surely.
Finally

lim
t→∞

ρ̃(t) = |Υ〉〈Υ|,

P almost surely.

In particular, it appears clearly that

lim
t→∞

ρ̃(t) = lim
t→∞

ρ(t) = |Υ〉〈Υ|

which shows the stability of the estimation and the convergence rate is the same.
Remark that if q̃α(0) = 0, then the conditions of our proposition impose qα(0) = 0. Oth-

erwise the estimation would be irrelevant. In the case qα(0) = 0, this does not necessarily
impose that q̃α(0) = 0. In the case q̃α(0) 6= 0, we still have that limt→∞ q̃α(t) = 0, almost
surely (exponentially fast). In particular, in experiment a safe choice is to choose ρ̃(0) such
that q̃α(0) 6= 0, for all α ∈ P.

In the situation where it exists i ∈ {p + 1, . . . , n}, such that θ(i|α) = 0, it is interesting
to note that when a qα(t) vanishes, the same happens for the estimate q̃α(t). This follows
from the fact that we have access to the jumping times of the processes N̂i(.) through the
measurement records.
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