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Abstract

Precision metrology is one application of optical frequency combs. Classical noise
in their properties typically limits achievable measurement sensitivity. Amplitude
and phase noise in optical frequency combs have already been studied extensively.
So far, noise sidebands close to the carrier of either individual optical frequencies or
of the mean field have been considered. This thesis develops methods to precisely
characterize amplitude and phase noise down to the quantum limit. To this aim
a transmissive, broadband passive cavity is developed. It filters and inter-converts
amplitude and phase noise. The analysis of its signal by the use of homodyne
detection provides a quantum limited measurement of phase noise. The application
of ultrafast pulse shaping enables the measurement of the spectral correlations of
amplitude and phase noise. Being represented by the use of covariance matrices, the
entire noise correlations over the optical spectrum are characterized on the example
of a Ti:Sapph oscillator. The measured noise correlations exhibit spectral structures,
so-called modes. Their shape matches with the theoretical prediction. This concept
known from multi-partite optical quantum systems is consequently applicable to
classical noise in frequency combs. The knowledge of the intrinsic noise modes is
likely provide an improvement of precision metrology experiments with combs.

Résumé

La métrologie de haute précision est une application des peignes de fréquences
optiques. Typiquement, la sensibilité de mesure est limitée par le bruit classique des
propriétés des peignes. Leur bruit d’amplitude et de phase a été largement étudié
et jusqu’à présent. Pourtant, uniquement des bandes latérales de bruit proche de la
porteuse ont été caractérisées pour des fréquences individuelles et le champ moyen.

Cette thèse développe des méthodes de caractérisation de bruit d’amplitude et
phase à la limite quantique. A cette fin, une cavité passive et large bande est
développée. Elle filtre et inter-convertit les bruits d’amplitude et phase. L’analyse
de son signal à l’aide d’une détection homodyne permet la mesure du bruit de phase
d’un peigne avec une sensibilité à la limite quantique. L’application d’un faconnage
des impulsions ultra brèves rend possible la mesure des corrélations spectrales du
bruit. Tout en étant représentés par des matrices de covariance, l’ensemble des
corrélations du bruit sur le spectre optique d’un oscillateur Ti:Sapph est caractérisé.

Les corrélations mesurées montrent des structures spectrales, dites modes, qui
sont en accord avec la prédiction théorique. Ce concept apparait comme analogue
au formalisme décrivant des systèmes multi-partites en optique quantique. Il est
par conséquent aussi un moyen de description de bruit classique. La connaissance
des modes intrinsèques du bruit est susceptible de mener à une amélioration de la
précision de mesures avec des peignes de fréquences optiques.
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Chapter 1

Introduction

Femtosecond optical frequency combs have revolutionized optical metrology [1]

given their intrinsic, relative and absolute phase lock of optical frequencies. Recent

experiments have demonstrated that they can even be applied to massively parallel

optical spectroscopy, within a dual comb configuration [2, 3].

In general, frequency combs permit numerous measurements. Therein, one do-

main is optical metrology and two main types of measurement can be distinguished:

First, the link of optical frequency standards such as transitions of Sr-atoms to the

radio-frequency domain [4]. The comb is used here as a transfer-oscillator and its

linewidth limits the measurement precision. The second type exploits their dual time

and frequency structure to perform multi-spectral interferometry. In such comb-comb

interference measurements, e.g. periodic displacements are measurable with highest

sensitivity [5]. Such measurements render them an ideal candidate for ranging or

clock synchronization [6, 7]. For example, this approach has been proven to be

optimal when used in a homodyne configuration with a pulse shaped reference

beam [5]. The underlying concept of projection on a temporal mode carrying the

information can even be extended to general parameter estimation [8].

In this context of very high sensitivity metrology, measurements are ultimately

limited by the intrinsic noise of the laser source, whether it be of classical or

quantum nature. The lowest level classically possible is set by the zero-point

fluctuations of the electromagnetic field. The corresponding noise level is defined

as the standard quantum limit (SQL). Classical noise in frequency combs down to this

limit is in the focus of this thesis.



CHAPTER 1. INTRODUCTION 3

Noise in femtosecond oscillators. The analysis of laser noise can be divided into

three main time scales: First, the long-term stability of the absolute/relative comb

frequencies on timescales of seconds. Drifts, jitter and 1/f noise are compensated here

by active lock mechanisms and external radio-frequency references. Their properties

typically determine the comb linewidth [9]. Second, the millisecond regime in a quiet

environment: In this extensively studied regime [10, 11, 12, 7] the lowest noise levels

of the comb generating ultrafast oscillator may be set by spontaneous emission (the

Shawlow-Townes limit) and noise coupling processes related to the mode-locking

principle. A third regime is expected for shorter timescales in the microsecond range:

the standard quantum limit SQL of white noise properties. This regime is of particular

interest as the low noise levels are promising for metrology experiments [5]. The

main underlying idea is to detect signals at timescales where the laser is at the SQL.

The decrease of signal associated with short integration times is compensated by the

lowest possible level of noise.

The investigation of continuous wave Titanum-Sapphire (Ti:Sapph) lasers, indi-

cated that the SQL could be reached at microsecond timescales [13]. For the repetition

rate of a femtosecond oscillator, a very recent work [14, 15] studied the SQL, but only

for exceptionally high photocurrents.

In summary, although the noise of Ti:Sapph and fiber oscillators has been char-

acterized extensively relative to the carrier [16, 17, 18], no data are so far available

relative and close to the quantum limit.

Spectral noise properties. The study of the noise in frequency combs at microsec-

ond timescales was pioneered by Haus et al.[10]. Nevertheless, the results ignored

any possible dependence of the noise on the optical frequency within the comb. It

has been pointed out later by Paschotta et al. that this implicit assumption has to be

questioned at RF-detection frequencies above 100 kHz [19]. A slight dependence of

the linewidth on the optical frequency has been shown theoretically for a Ti:Sapph

oscillator [20]. Another, indirect approach to spectral phase noise in frequency combs

is the fix-point model [21]. It has recently been applied to a Ti:Sapph generated

comb [16].

Spectral noise correlations. Furthermore, no experimental information has been

previously available concerning the correlations of spectral noise properties for

classical noise close to the SQL.

Noise correlations among various optical frequencies have been studied so far

only for non-classical quantum states of light in frequency combs [22, 23, 24]. Such

non-classical noise correlations introduced by nonlinear processes are most readily
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detected under vanishing classical noise at the SQL. It turned out that spectral

structures of noise are a suitable formalism to describe such correlations [25, 24]. They

enable the use of frequency-combs as on-demand quantum-networks [22, 23, 24] and

may even form so-called cluster-states [26].

It is nevertheless not clear how far this representation applies to classical noise

in frequency combs close to the SQL. It turns out here that such noise modes are

the underlying concept of a suggested, highly sensitive measurement scheme for

femtosecond pulse timing jitter [5]. The direct measurement of the classical comb

noise modes is the main purpose and result of this thesis. This concept is applied

here for the first time to quantify the entirety of classical amplitude and phase noise

correlations across a frequency comb. It is also important to note that the well

known oscillator noise theory of H.A.Haus [10] relies implicitly on temporal modes

of classical noise in frequency combs.

The typically characterized repetition rate and CEO-phase fluctuations [7, 27, 28]

are both mean field properties of the entire frequency comb. They have been erstwhile

measured ignoring spectral phase noise. Using the concepts of [5], it turns out

here that both correspond to well-defined structures of noise correlations over the

frequency comb.

Passive cavities and combs. Passive cavities are suitable filters of lowest levels of

classical noise in continuous wave lasers [29]. It is shown here that the concept of a

noise filtering resonator can be extended to optical frequency combs. In addition,

their transmission and reflection turn out to be highly sensitive to phase noise of

the resonant seed [30]. It is used in this thesis to precisely analyze low level noise

properties and structures of spectral phase noise. The analysis has been accomplished

for a approximately 60 nm broad optical frequency comb.

Furthermore, balanced homodyne detection is a well-known tool to characterize

intensity and phase noise of lasers. It is used here together with the broadband

passive cavity and femtosecond pulse shaping to measure the noise correlations in

an optical frequency comb. Unprecedented, quantum-limited sensitivity is achieved.

The eigendecomposition of the corresponding covariance matrices reveal correlated

spectral structures of classical noise.

In summary, this thesis aims to characterize the entire structure of amplitude and

phase noise in an optical frequency comb close to the standard quantum limit (SQL).

Techniques aimed at improving these noise properties are developed.
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Structure of this document. The organization of this thesis is depicted by the chart

on the following page. To start, the capacity of a frequency comb to be quantum-

limited in amplitude and phase is put in the context of accessible measurements of

noise. As such, the theoretical proposition for precision homodyne measurements [5]

is placed in a realistic framework. A Ti:Sapph oscillator is subsequently analyzed

using well-established measurement principles. Two possibilities for reducing its

lowest levels of classical noise are studied. One is the further improvement of the

pump laser properties by passive filtering and is discussed in the appendix. The

second introduces a broadband passive cavity for filtering noise in a frequency comb.

In addition to improving the noise properties of the comb, this new tool also turns out

to be very versatile for characterizing the lowest levels of phase noise in frequency

combs.

By interfering the cavity transmitted signal with a part of the seed, the phase noise

of the frequency comb is measured with an unprecedented sensitivity down to the

quantum limit. A simplified, but equivalent scheme using the reflection of a cavity is

applied to study the phase noise of a fiber-based frequency comb.

Subsequently, it is shown that a spectrally resolved analysis of the cavity trans-

mission signal reveals the spectral phase noise of a frequency comb close to the SQL.

Without using this approach, similar results could only be obtained within a setup

of highest complexity. Several single frequency lasers would have to be locked to a

common reference to be beated with the frequency comb [16].

The principal result of this thesis stems from combining the cavity transmission

with a homodyne detection, in which the local oscillator is subject to ultrafast

pulse shaping [31]. This technique measures the correlations of spectral amplitude

and phase noise in the frequency comb with quantum-limited sensitivity. With

this information spectral correlations of classical noise are identified. A basis

transformation is applied and reveals a set of independent, uncorrelated spectral

structures. These structures are termed noise modes. They are a new representation

for classical noise in frequency combs. The commonly used formalisms to describe

phase noise in frequency combs (e.g. the repetition rate) turn out to be special cases

of the noise mode representation.
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Chapter 2

Theoretical considerations
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2.1 Optical frequency combs

This chapter gives an overview on the key theoretical aspects used in this thesis.

Starting with the principal methods describing laser radiation and optical frequency

combs, concepts for noise analysis are discussed in the following. The focus is

subsequently set on lower limits of noise in laser radiation and methods to analyze

them.

2.1.1 Time- and Frequency representation of optical combs

The electric field at the output of a mode-locked laser is the coherent superposition

of the individual longitudinal modes simultaneously resonant in the laser cavity and

for which the gain is not vanishing [32]. In general, we write

E(z, t) = Re

{
∞∑
m=0

Eme
i(ωmt−kmz+φm)

}
, ωm = ωCEO +m∆ω, km =

ωm
c

(2.1)

The spacing of the underlying frequency comb ωm is given by the laser cavity length L

and the integer m multiples of the free spectral range ∆ω = 2πc/L. The field E(z, t) of

Eq.(2.1) is a periodic signal with the repetition time Trep = 2π/∆ω. This is the inverse

of the repetition rate frep = ωrep/2π = ∆ω/2π of the pulse train, and corresponds to the

round-trip time of a pulse in the laser oscillator cavity. To describe the general case,

an additional frequency shift ωCEO is necessary. It is discussed below and corresponds

to a slowly evolving phase property, the carrier-envelope-phase (CEO). The possible

representations of this quasi-periodic field have been studied in detail in [33].

A frequency comb can also be represented in the time domain. To this aim, one

defines the carrier frequency ω0 as the optical frequency of the spectral center of gain. In

an ideal situation giving rise to shortest pulses, the spectral phase parameters φm are

constant for all frequenciesm. Using the definition of a light-cone variable u = t− z/c,
Eq.(2.1) can be written using the complex temporal envelope v(u):

E(u) = Re

{
eiω0u

∞∑
m=−∞

Eme
im∆ωu+φm

}
= Re

{
v(u)eiω0u

}
. (2.2)

This is the temporal representation of a coherent pulse train. Note that the envelope v(u)

is here a pulse train.
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The CEO-phase. The temporal representation above distinguishes a carrier

frequency ω0 and an envelope v(u). The phase of the carrier propagates with the phase

velocity vφ = c/n where n is the refractive index of the media at ω0. The envelope

propagates with the group velocity vgr = [∂k/∂ω]−1 at ω0. A difference of both

velocities leads to a relative phase between envelope and carrier per pulse round-trip

in the laser oscillator cavity. Being sampled periodically by the repetition rate Trep, all

comb frequencies ωm are shifted by

ωCEO =
ωrep

2π
∆φCEO, ∆φCEO =

(
1

vg
− 1

vφ

)
. (2.3)

The CEO-frequency is a property common to all longitudinal modes

ωm = ωCEO +m∆ω in an optical frequency comb. It can be used to define a

common phase for all comb lines.

The spectral phase. During propagation in a dispersive medium, a femtosecond

pulse undergoes temporal broadening. The phase term for each tooth of the frequency

comb in Eq.(2.1) contains the so-called spectral phase φm = φ(ωm). The mode-locking

in the optical oscillator sets these values to a constant for all m. A propagation

in dispersive media with n(ωm) 6= const. will modify this spectral phase. The

consequences can be analyzed by using a Taylor-series approach. A constant offset

φ0 has no consequences, and a linear spectral phase φ′ 6= 0 will delay the pulse. In

contrast, a quadratic phase φ′′ 6= 0 changes the temporal pulse length. It is called the

Group Velocity Dispersion (GVD). A Gaussian pulse of duration τ0 propagating through

a medium of dispersion φ′′ � 0 in fs2 will spread to τGVD ' φ′′/τ0, see [34].

Figure 2.1: The two principal representations of coherent ultrashort optical pulse trains. left: the
temporal representation, a fast oscillating carrier is modulated by an ultrafast envelope, their relative
position defines the carrier-envelope-phase, shown are two subsequent pulse envelopes, the single pulse
mode ṽ(u), right: the frequency comb representation, a superposition of longitudinal modes
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2.1.2 Temporal/Spectral-mode representation

The representation of the pulse train Eq.(2.2) shows that a coherent train of pulse

envelopes can be considered as a single envelope function v(u): E(u) = Re{v(u)eiω0u}.
For this thesis, the individual pulse envelope v with a factorization of the CEO-phase

will play a significant role:

v(u) =
∑
m̃

v(u− m̃Trep)eim̃θCEO (2.4)

This single pulse envelope v is well defined, square integrable and non zero in the

interval [0, Trep], see [33]. It can consequently be written in a suitable basis vj :

v(u) =
∑
i

aivi(u),

∫ Trep

0

v∗i (u)vj(u)du = δij (2.5)

The elements of this basis are called temporal modes. This representation can be entirely

transposed into the frequency domain. The general expression for the electric field

envelope is:

E(u) = Re

{∑
m

v(u−mTrep)eiω0ueimθCEO

}
(2.6)

Equation (2.6) together with (2.5) are the modal representation of a coherent train of

ultrashort pulses, in terms of the single pulse temporal modes v(u). Eq.(2.6) can be

simplified for a non-fluctuating field: There exists always a mode v(u) proportional

to the mean of the classical electric field [35]. This leads to a basis v(u) with only one

element, the mean electric field of a single pulse. Note that the mode representation

discussed here is analog to the decomposition of transverse beam intensity profiles

into e.g. Hermite-Gauss modes of a light beam.

Figure 2.2: Mode representation of a coherent pulse train/a frequency comb. 1. Time domain:
the horizontal axis is the time. Any pulse envelope v(u) can be represented as a superposition of
orthogonal envelopes vi(u). They are called temporal modes. 2. Frequency domain: This representation
can be transposed to the spectral domain. The horizontal axis is then the optical frequency and the
orthogonal envelopes are called spectral modes. Each spectral mode is a superposition of a large
number of single frequency, longitudinal modes.
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2.1.3 Photodetection and shot noise

Photodetection allows to link light properties to measurable, electrical quantities

[36, 37]. The following discussions rely on [38].

Balanced homodyne detection. In order to detect the mode- and noise properties

of the frequency combs described above, balanced homodyne detection plays an essential

role in this thesis. It is depicted in Fig. 2.3. The principal application is here the mode

selective detection of the relative phase noise of two beams. They are typically a

bright Local Oscillator (LO) and an attenuated Signal (S). If both LO and S contain

similar input powers, the scheme is subsequently called balanced interference detection.

It is applied in the experimental section 4, page 96.

Considering the individual combs lines of the same optical frequency, the complex

fields in both input ports can be written asELO,S(t) = ALO,Se
iωt. After the beamsplitter,

the fields E1 and E2 are incident to the photodetectors:

E1 =
1√
2

(ELO − ES), E2 =
1√
2

(ELO + ES) (2.7)

Assuming ideal quantum efficiency and time-response, noting q the elementary

charge and assuming a suitable normalization, the difference of the two photocur-

rents becomes i(t) = q(|E2|2 − |E1|2) = q(E∗LOES + ELOE
∗
S). Using the notation

φ = arg(E∗LOES), the mean squared signal is:

i2s = q2|E∗LOES + ELOE
∗
S|2 = 4q2|ALO|2|AS|2 cos2 φ (2.8)

Using the setup Fig. 2.3, it is possible to lock the mean relative phase 〈φ〉 of the two

beams. Nevertheless, small fluctuations δφ = 〈φ〉 − φ may still be present. Locking

〈φ〉 = 0 the output i2s is sensitive to amplitude fluctuations but in the first order

insensitive to phase noise δφ. The opposite situation is of key importance for this

thesis. Locking 〈φ〉 = π/2, the mean square output current is highly sensitive to the

relative phase fluctuations between the two interferometer arms:

i2s = 4q2|ALO|2|AS|2 sin2 δφ = 4q2|ALO|2|AS|2(δφ)2 (2.9)

In order to evaluate best possible signal to noise ratios for such a measurement, the

impact of shot noise is considered in the next section. To reduce the sensitivity to

amplitude noise, one of both beams can be of significantly higher amplitude. This

configuration is called homodyne detection.
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Figure 2.3: Balanced homodyne detection - the principal detection scheme used in this thesis. The
principal elements are: a local oscillator beam much brighter than the signal beam, a 50/50 beam splitter,
two identical photodetectors and an analog subtraction using electronic phase shifting and mixers. The
resulting difference signal can be applied to the piezo-mounted mirror to lock the relative phase of the
two input beams. To this aim it is low-pass filtered and proportional-integral amplified. The high-
passed signal part is the output of the measurement scheme. A relative phase of the two beams of π/2
leads to a detection of the noise in their relative phase.

Discrimination of multimode structure. A balanced homodyne detection is

sensitive to the mode-content of a beam and can be used to analyze it [24]. In a

simplified classical representation, the field-strength products Eq.(2.8): E...E
∗
... are

measured with detectors significantly slower than the femtosecond timescales of

the temporal pulse envelopes. Considering the example of one signal pulses the

photocurrent difference is:

〈i〉 =
1

Trep

q

∫ Trep

0

E∗LO(t′)ES(t′) + ELO(t′)E∗S(t′)dt′ (2.10)

This structure is equivalent to a symmetrized temporal scalar product. By choosing

the mode of the local oscillator, the balanced detection measures its scalar product

Eq.(2.10) with the signal field. It consequently discriminates between the temporal

modes described in Eq.(2.5).

It is remarkable that the same scalar-product appears in the theory of H.A.Haus

concerning fluctuations of properties of coherent pulse trains [10]. The signal

corresponds there to the investigated pulse train, the LO to a specific pulse property

that can be represented in a corresponding temporal mode.
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Field quantization. Fundamental noise properties of optical frequency combs

are studied in this thesis. They are linked to the commutation relations of the

operators that describe the measurement. A coherent train of light pulses can also be

described using the formalism of quantum optics [36]. Using the second quantization

formalism, the operator valued equivalent to Eq.(2.6), the field operator Ê(u), can

be decomposed in pulse-train modes vi(u). It is then a superposition of modes

associated which annihilation operators âi. Under the reasonable assumption of a

finite measurement time T , this statement reads [36]:

Ê(u) = Ê(+) + Ê(+)†, Ê(+)(u) = iE
∑
i

âivi(u), E =

√
~ω0

2ε0cT
(2.11)

In analogy to the harmonic oscillator, the photon number operator associated to a

mode vi can be defined as N̂i = â†i âi, where â and â† follow [âi, â
†
j] = δij . This is a

consequence of the orthogonality of the modes vi.

Field quadratures and quantum noise. Observables are obtained from linear

combinations of âi and define the quadrature operators Pi and Qi:

Q̂i = â†i + âi, P̂i = i(â†i − âi), [Q̂i, P̂j] = 2iδij (2.12)

For any mode i, the commutation relation Eq.(2.12) leads directly to a Heisenberg

inequality for the two operators and thus sets minimal variances for an ideal coherent

state of light:

σ2
P,min = σ2

Q,min = 1. (2.13)

These are the variances of the outcomes of a large number of measurements. They

can be associated with noise in the measurement that is in consequence equally

distributed on both quadratures.

The classical analog to the observables P̂ and Q̂ are under a suitable transforma-

tion the amplitude and phase of the electric field. They will be used in section 2.7.2 to

describe the noise properties of the transmission and reflection of a passive cavity.
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Shot noise in photodetection. A large part of the experimental results of this

thesis calibrate recorded intensity noise levels to the shot noise level. Its emergence

can be shown as follows [38]: For a given time interval, propagation constant and

ideal photodetection, assume the charge registered by the detector to be the Hermitian

operator Q̂ = qâ†â. For a coherent state |α〉, the expectation value of the charge is

proportional to the expected photon number 〈n〉:

〈α|Q̂|α〉 = q〈α|â†â|α〉 = q|α|2 = q〈n〉 (2.14)

In order to calculate the photon number variance, σ2
Q̂

= 〈α|Q̂2|α〉 − 〈α|Q̂|α〉2:

〈α|Q̂2|α〉 = q2〈α|â†ââ†â|α〉 = q2〈α|â†â†ââ+ â†â|α〉 (2.15)

= q2|α|4 + q2|α|2 = q2〈n〉2 + q2〈n〉 (2.16)

The variance of the photon number is consequently equal to the average photon

number:

σ2
Q̂

= q2〈n〉 (2.17)

This is the property of a Poisson process, a completely random flow of charges.

It arises from the bosonic commutation relation of â and â† that enters Eq.(2.15). The

zero-point fluctuations of the vacuum are its cause. Applied here to a coherent state,

these fluctuations are the fundamental origin of shot noise.

Signal-to-noise ratio. Assume the detection of an optical signal at a single carrier

frequency. The detected, squared d.c. photocurrent signal is 〈i2S〉 = 〈iS〉2 = q2γ2〈n〉2.

Here γ is a proportionality constant. The mean square current fluctuations are

obtained using Eq.(2.17). Being originated by white shot noise, the detected noise

level is addition a function of the measurement bandwidth B: 〈i2N〉 = q2γ〈n〉 · 2B.

A detailed derivation is given in [38]. The signal-to-noise ratio S/N is consequently:

S

N
=
〈i2S〉
〈i2N〉

=
γ〈n〉
2B

(2.18)

It is proportional to the photon number current and to the inverse measurement

bandwidth.

The sensitivity of any measurement is proportional to the signal to noise ratio S/N

and Eq.(2.18) provides the following insight: For shot noise limited classical noise, the

S/N can always be improved by either by increasing the detected photon number or

by decreasing the measurement bandwidth.
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Figure 2.4: The balanced detection. This type
of photodetection directly measures the shot noise
level of a beam. It consists of two identical, broad-
band photodetectors, a 50/50 beamsplitter and
an analog signal sum/difference. The difference
photocurrent supresses all classical modulations.
Its noise level is the shot noise of the signal beam.

Balanced detection. One main focus of this thesis is the characterization of noise

relative to the shot noise level. In order to calibrate such measurements for intensity-

noise, a balanced detection as shown in Fig. 2.4 can be used. It distinguishes between

classical optical noise (intensity modulations) and noise on the photon level [39]:

If the sum of the photocurrents is analyzed, the two detectors appear as a single

one and the classical noise is detected. The photocurrent difference ideally suppresses

all classical intensity noise. Any classical noise or signal modulation is detected

identically by both photodetectors. The attenuation of this common signal reaches in

practice 20 to 30 dB. Nevertheless and in a simplified representation, single photons

are not split by the beamsplitter. Photocurrent noise arising from their uncorrelated

detection in time domain is summed up although the current difference is measured.

Recorded with a spectrum analyzer, the resulting level of white noise is the shot noise

level of the signal beam. A comparison of the sum signal to this level permits to

calibrate classical noise relative to the shot noise level.
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2.2 Principal concepts for noise analysis

This thesis analyzes noise properties of frequency combs: relative to the lower

limits set by quantum mechanics and based on measurements. The measured noise

data will be interpreted in a unified form, using the spectral variance defined

in this section. It is obtained as a time-independent property of a stationary

noise process either by the use of the Parseval-Theorem or the Wiener-Khintchine-

Theorem. The spectral variance is subsequently compared to another common choice

of phase/frequency noise quantification, the Allan variance.

2.2.1 The definition of the spectral variance

Spectral density of a noise-process - Parseval Theorem. In order to analyze the noise

of any physical quantity X0 characterizing an optical frequency comb, its fluctuations

X(t) = X0 − X̄0 can be assumed to be given as a real continuous time series X(t).

This is called a stochastic process with zero mean, and stationarity is assumed for large

measurement times T . The process X(t) can be developed in a Fourier series and the

coefficients follow:

A(f) =

∫ +∞

−∞
dtX(t)e−2πift,

∫ +∞

−∞
|X(t)|2dt =

∫ +∞

−∞
|A(f)|2df (2.19)

The variance σ2 of the process X(t) can be expressed starting from this Parseval

Theorem [40]. Nevertheless, the Fourier Transform (FT) may not always exist. In

order to insure integrability for large measurement times T , it is suitable to introduce

a truncated FT:

AT (f) =

∫ +T/2

−T/2
dtX(t)e−2πift (2.20)

The variance σ2 of the process X(t) can now be expressed in terms of the spectrum

using Eq.2.20 and division by the interval size:

σ2 = lim
T→∞

1

T

∫ +T/2

−T/2
|X(t)|2dt (2.21)

= lim
T→∞

1

T

∫ +∞

−∞
|AT (f)|2df. (2.22)
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Since X(t) is real, one has A(f) = A∗(−f) and |A(f)| is an even function. The

variance σ2 can consequently be written in terms of a density S(f) that is only defined

for positive frequencies:

σ2 =

∫ ∞
0

S(f)df with S(f) = lim
T→∞

2

T
|AT (f)|2 (2.23)

The distribution S(f) is called the single side-band (SSB), power spectral density of

the process X(t).

Spectral density of a noise-process - Wiener-Khintchine-Theorem. The variance

σ2 above is defined based on the limit of a truncated Fourier Transform. An other

approach uses the autocorrelation function Γxx(τ), that is always well defined:

Γxx(τ) = 〈X(t)X(t+ τ)〉 = lim
T→∞

1

T

∫ +T/2

−T/2
X(t)X(t+ τ)dt (2.24)

The Wiener-Khintchine theorem [41] states that Γxx is a Fourier transform pair with a

spectral density. Using the Fourier integral theorem it can be shown that the single

side-band, power spectral density of X(t) is obtained using a cosine transform [40]:

S(f) = 4

∫ ∞
0

Γxx(τ) cos(2πfτ)dτ (2.25)

Both definitions of the power spectral density, using the autocorrelation function or

the Parseval Theorem are equivalent.
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The spectral variance. Experimentally, the measurement of the variance σ2

corresponds to an r.m.s. noise measurement with an oscilloscope of large bandwidth.

In order to obtain more detailed information on the noise process, a spectral resolved

link between the density S(f) and the variance is necessary. This corresponds to a

spectrum analyzer measurement resolving the variance for each detection frequency:

Assuming a known spectral density S(f), the variance σ2 of the process X(t) can

also be defined for frequency intervals. They can be infinitely small:

σ2(f1, f2) =

∫ f2

f1

S(f)df, so for f2 → f1 = f̃ : S(f̃) =
∂σ2(f)

∂f
|f̃ (2.26)

For the considerations of this thesis, the function S(f) can be assumed

to be slowly varying on a frequency interval of 1 Hz and consequently

σ2(f1, f1 + 1 Hz) ≈ S(f)·1 Hz. This gives the possibility to a normalization and

the important definition:

σ2
X(f) = S(f) · 1Hz (2.27)

The quantity σ2
X(f) is called the spectral variance ofX(t). It is defined from the power

spectral density S(f). It is of fundamental importance for this thesis in following

context:

Quantum optical noise calculus normalizes e.g. shot noise to σ2
shot = 1 without

specifying detection conditions [5]. In an experiment, the spectral density of shot- and

classical noise S(f) is measurable with a spectrum analyzer and can be normalized

to 1 Hz measurement bandwidth. It is Eq.(2.27) that links the two. The variance of

e.g. intensity noise can be written in terms of simplified units and for any detection

frequency f :

σ2
X(f) =

S(f)

Sshot

σ2
shot =

S(f)

Sshot

(2.28)

This relation is of principal importance for the interpretation of the experimental

results in sections 4.1 and 4.2. The established relation between variance and spectral

density occurs in the literature [42, 43, 44, 45] but without detailing the background.
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2.2.2 Other noise quantifiers and the Allan variance

The characterization of the stability of oscillators has been a subject of research

for many years. Excellent reviews are given by [46, 47, 48]. There exists a large

zoology of stability measures and criteria. Distinguishing them requires significant

expertise. In this thesis, only the power spectral density SX(f) and the spectral

variance σ2
X(f) = SX(f) · 1 Hz are used to characterize phase noise. This section puts

them in the context of other commonly used measures.

Frequency fluctuations. To characterize the stability of oscillators, an often used

measure is the Allan Variance σ2
y(τ), see e.g. [49]. A comparison to the spectral variance

σ2
X(f) from above can be established as follows: In the metrology domain, the

noise process X(t) from Eq.(2.19) typically affects the phase of a classical oscillator

E(t) = E0 sin(ω0t+X(t)). The main interest lies on the fluctuations of the instanta-

neous frequency y(t):

y(t) =
1

ω0

dX

dt
(t) (2.29)

For a noise frequency f , the spectral densities of phase and frequency fluctuations are

related by

Sy(f) =
4π2f 2

ω2
0

SX(f) . (2.30)

On the definition of a variance for frequency fluctuations. Using the Wiener-

Khintchine theorem, the variance of the instantaneous frequency σ̃2
y has been ex-

pressed in terms of Sy(f) by Cutler and Searle [50]:

σ̃2
y(τ) = 2

∞∫
0

Sy(f)

[
sin(πfτ)

πfτ

]2

df = 2

∞∫
0

Sy(f)α(f)df (2.31)

A typical metrology purpose is the characterization of drifts of frequency sources on

time-scales τ larger than seconds. In practice, measured frequency noise distributions

typically follow Sy(f) ∼ 1/f or 1/f 2 laws. The integral Eq.(2.31) diverges here due

to the factor α(f) in the limit of a small detection frequencies/long time-scales. The

variance σ̃2
y(τ) is consequently not of practical use. The highest integrable order is

white Shawlow-Townes frequency noise with a constant Sy(f), see Tab. 2.1, page 26.
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A commonly used solution. The Allan variance σ2
y(τ) solves this problem. It is a

well-defined estimator of the variance σ̃2
y(τ) of a frequency signal. It can be defined

either from a given frequency noise density Sy(f), or from the two-sample fractional

frequency variance:

σ2
y(τ) = 2

∞∫
0

Sy(f)
sin4(πfτ)

(πfτ)2
df =

1

2
〈(ȳ1 − ȳ2)2〉, ȳn =

f̄n − f̄0

f̄0

(2.32)

The underlying approach is to apply an additional filter H(f) = sin(πfτ)2 to the

signal. In a typical measurement one continuously counts a frequency signal, records

the data and calculates this two sample variance. The Allan variance is the most

common example of a larger class of variance estimators, see [46] for details.

As an example, the quantum-limited, white phase noise discussed in section 2.3

corresponds in an Allan variance plot to a distribution of σ2
y(τ) ∼ τ−2.

Allan Variance versus spectral phase noise. The Allan variance is typically used

to characterize frequency sources at detection frequencies below kHz frequencies, i.e.

timescales significantly larger than seconds. Therein, frequency counting plays an

essential role. The main focus of this work is phase noise at detection frequencies

above 100 kHz, at lowest levels close to the quantum-limit. Typical measurement

schemes of the Allan variance are difficult to apply to such side-band frequencies

while keeping high measurement precision. In addition, this work focuses on

the characterization of broadband noise distributions. The Allan variance and its

modifications are in conclusion not useful here.
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2.3 Lower limits of amplitude and phase noise

This thesis aims to provide a better understanding of noise of optical frequency combs

close to the lower limits set by quantum mechanics. As an example, the results

are applied to determine the ultimate sensitivities of a pulse-timing measurement

proposed in [5].

Related to lowest noise properties of light, different terms exist in the literature

and have to be distinguished by their physical origin. As sketched below, this

section is consequently organized as follows: The lowest noise levels in any radiation,

originated by the vacuum-fluctuations, are described first. Second, spontaneous

emission in lasers is considered. After applying these concepts to an ultrafast

oscillator, the complex noise coupling processes in such lasers are studied.
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2.3.1 The Standard Quantum Limit.

The noise level of a perfectly coherent light beam with an average power P̄ is

called standard quantum limit, SQL. This lowest level of classical noise arises from

the quantization of the electromagnetic field, the so-called vacuum fluctuations. It

has been shown in Eq.(2.17), that the variance of the photon number N follows

(∆N)2 = N and that their arrival time is a δ-correlated Poisson process. The aim

is here to quantify the corresponding measurable noise density S. First for shot noise,

but in general for both amplitude and phase fluctuations.

Considering a beam of power P (t) = P̄ + δP (t), the autocorrelation function of its

fluctuations δP is

ΓδP (τ) = 〈δP (t)δP (t+ τ)〉 = P̄ hvδ(τ). (2.33)

Using the Wiener-Khintchine theorem, the single-sided power spectral density of shot

noise is obtained to be

Sshot(f) =
2

P̄ 2

∫ +∞

−∞
ΓδP (τ)e2πifτdτ =

2hν

P̄
(2.34)

It describes the shot noise in units relative to the carrier power, commonly known

as a relative intensity noise RIN - density [51]. To unify the representation of noise

in this thesis, spectral densities will always be given in the single side-band (SSB)

representation, relative to the carrier power. In addition, the noise level of vacuum

fluctuations are called the standard quantum limit, SQL. This leads to the following

definition of the symbol SSQL:

SSQL =
2hν

P̄
= const. [SSQL] = dBc/Hz (2.35)

It is here the spectral density of shot noise. Due to the isotropy of vacuum, it will turn

out that the same symbol and formula applies to phase noise at the SQL.

Optical frequency combs have a high coherence length and can be considered as

an individual coherent state. Eq.(2.35) can consequently be applied to them. The

optical frequency ν = ω0/2π is then the center of gravity of the spectrum, see Eq.(2.2).
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Quantum-limited phase noise: Two approaches

The isotropy of vacuum. At the quantum limit, the variances of both field quadra-

tures Q and P of a quasi-classical coherent light state, σ2
P , σ

2
Q, are both equal to one

for any timescale [36]. The spectral noise distributions SQ,P (f) are stationary and

independent of the chosen quadrature. The field quadratures can be defined such

that one, Q, represents the amplitude- and the other, Q the phase quadrature. At the

quantum limit, the power in the side-bands originating from amplitude and phase

noise S(f) has to be the same. The SQL is consequently the same:

SSQL,phase = SSQL,amplitude = SSQL =
2hν

P̄
(2.36)

This fact is of fundamental importance: it permits to calculate the SQL for phase

noise in units that are experimentally simple to access. It simplifies the formula that

calculates the sensitivity of a realistic homodyne timing measurement [5]. This leads

to the simple and easy to interpret result Eq.(2.72), page 39.

Uncertainty relation between photon flux and phase. The equivalence of the

amplitude and phase SQL becomes also evident within another perspective: An

uncertainty relation for the photon flux ΦPhot and the phase φ of a given optical carrier

can be obtained starting from first principles of quantum optics. The quantization of

radiation in free space, the commutation relations for the quadrature operators and

a large photon number have to be considered. Defining the acquisition bandwidth

from the measurement time T as B = 1/T , this uncertainty relation yields [36]:

σΦσφ ≥ B. (2.37)

It is minimized by a coherent state. The variance of the photon flux is given by

σ2
Φ(B) = BP̄/hν [36]. For a frequency interval B = [f2 − f1] → [1/T − 0] the spectral

density of the SQL of phase fluctuations is:

σ2
φ(B) = B · hν

P̄
=

1/T∫
0

hν

P̄
df =⇒ Sφ =

hν

P̄
(2.38)

Extending the analysis to the negative frequencies, the single side-band phase noise

density is again SSQL,phase = 2Sφ = 2hν/P̄ as in Eq.(2.36), above.
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2.4 Lower noise limits for laser radiation

Noise quantification by the linewidth. Although one can calculate the quantum-

limited noise levels using Eq.(2.36) for an ideal coherent state of light, it is not clear

if a realistic light-source can attain these noise levels. Lasers are a source of light

with highest coherence length and consequently best quasi-classical properties. The

coherence length ∆L of a laser beam is a stability criterion for phase properties. Phase

stability is typically limited by fluctuations of the laser cavity length, by spontaneous

emission in the active medium or by gain fluctuations. Cavity length fluctuations are

typically of below 10 kHz bandwidth and can be eliminated by careful engineering

and vibration isolation. In the domain of frequency metrology, laser noise properties

are typically characterized by the 3 dB linewidth ∆ν = c/∆L. The linewidth ∆ν is

defined from the phase noise single side-band power spectral density Sφ(f):

1

π
=

∞∫
∆ν/2

Sφ(f)df (2.39)

In the case of amplitude noise, the factor π has to be replaced by 2. The aver-

age linewidth of two different frequency combs is experimentally determined in

section 3.1.4, page 74.

2.4.1 Shawlow-Townes-Limit

Spontaneous emission in the laser active medium and the coupling of the cavity field

to the outside vacuum are the principal drivers of phase noise and set a lower limit

to the laser linewidth ∆ν. First studied by [52], the resulting linewidth is called the

Shawlow-Townes linewidth ∆νST. In the case of a free-running laser, there is no force

to these phase fluctuations fixing its mean. In this framework, spontaneous emission

leads to white frequency noise Sν(f) = const. The corresponding phase noise density

is:

Sφ(f) =
Sν
f 2

(2.40)

The resulting laser line I(ω) is of Lorentzian shape. Typical Shawlow-Townes limited

linewidths ∆ωST are 10−3 Hz for a 1 mW He-Ne and 106 Hz for a 1 mW diode laser. The

value of ∆ωST is proportional to the cavity linewidth ∆ωcav and the inverse number

of photons in the cavity N : ∆ωST ∼ ∆ωcav/N .
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Broadband noise drivers besides spontaneous emission and shot noise. In

practice, lasers are typically pumped by a diodes which are subject to a number of

instabilities. To classify different types of phase noise drivers as shown in Tab. 2.1,

one typically fits several known power laws fβ to the experimentally obtained

distribution Sφ(f).

Sφ(f) =
∑
β

bβf
β (2.41)

A 1/f distribution is commonly interpreted as to be of electronic origin. This method

of phase noise characterization will not be extensively exploited in this thesis, but is

part of the typical methods used in the frequency- and phase-noise literature.

β denomination electronic oscillator optical oscillator
0 white PM shot noise

-1 Flicker PM recombination noise,
resistance fluctuations

-2 white FM Shawlow-Townes
phase random walk

Table 2.1: Phase noise distributions and their origins. For an exhaustive list and further
interpretaton see e.g. [53] or [48]. PM: phase modulation, FM: frequency modulation

2.4.2 Noise in optical frequency combs

One of the aims of this thesis is the estimation of realistic sensitivities of a highly

sensitive pulse timing measurement [5]. It turns out in section 2.5, page 36, that the

fluctuations of the CEO-phase and the repetition rate of an optical frequency comb

limit any achievable sensitivity. Both contribute to the phase noise in any individual

line of a frequency comb, but it is so far not clear which of the two is the principal

limitation.

As a first step, their orders of magnitude are estimated here from a priori

considerations. To this aim, an approach used from the literature [54, 19] is

summarized here. Starting from the results above on the Shawlow-Townes limited

laser linewidth, expected orders of magnitude and power laws for the phase noise of

the repetition rate ωrep and the CEO frequency ωCEO can be calculated. In addition,

the phase noise of individual lines m of the comb ωopt = ωCEO +m · ωrep is studied.
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Shot noise and timing jitter of a coherent pulse train. In addition to amplitude

and the CEO-phase property common to an entire frequency comb, a coherent train

of ultrashort pulses carries two other fundamental properties [10]: the pulse timing

and the central frequency, see section 2.4.3. The fluctuations of the pulse timing,

or the repetition rate, are of principal importance for this thesis. It is consequently

interesting to consider the impact of shot noise on the pulse timing within a coherent

train - without considering the generating oscillator. An excellent overview of the

relevant arguments is given by [54]. The principal results therein are:

For a pulse of an optical power P (t) = P̄ (t) + δP (t) within a reference frame

moving with the pulse, the noiseless part P (t) is centered at time t = 0. Here t is a

fast timescale and the average P̄ is calculated over a large number of pulses. The

variance of the pulse position turns out to be a function of the pulse energy Ep and its

duration τp. In a very shortened form, the calculus of [54] is:

σ2
tm =

1

E2
p

〈
(∫

tδP (t)dt

)2

〉 =
hν

E2
p

∫
t2P̄ (t)dt ≈ hν

Ep
τ 2
p (2.42)

The underlying method is the definition of the pulse within a center of gravity

approach. It is shown in [55] that this approach is equivalent to the one using

temporal modes [5], to which this thesis refers most often. From Eq.(2.42), the

power spectral density of the phase noise of a repetition rate signal recorded with

a photodiode is obtained to:

Sφ,tm = SSQL,TOF ≈ (2πfrepτp)
2SSQL (2.43)

This noise level will subsequently be called the SQL of the Time of Flight: SQL-TOF. It is

important to note that this result is equivalent to the one recently obtained by [14, 15].

This literature considers a non-stationary distribution of photons and calculates the

SQL-TOF from this assumption. For typical fs-oscillators with MHz repetition rates

and fs-pulse durations one obtains different quantum limits for amplitude/phase and

the phase of the repetition rate:

SSQL,TOF � SSQL (2.44)

This result shows that a detection scheme sensitive to timing jitter but being also

sensitive to the shot noise carried by the signal(s) - e.g. simple detection with a

photodiode or homodyne detection - will not be able to resolve the shot-noise induced

timing jitter in a coherent pulse train.
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CEO-phase noise from repetition rate noise. The aim is here to express the noise

of the CEO-phase SCEO in terms of those of the repetition rate Srep and of an individual

line Sopt. This could permit to estimate lowest levels for CEO-phase noise. The SQL

for a single comb line can be calculated easily and an approach to the SQL of repetition

rate phase noise was given by Eq.(2.43).

The repetition rate induced CEO phase noise can be calculated as follows [19]: For

a timing fluctuation ∆t, the repetition rate phase undergoes a shift φt = ωrep∆t. The

noise spectral densities are linked by Sφ,t(f) = ω2
repS∆t(f). The timing phase of an

arbitrary comb frequency ω = ω0 + ∆ω = ωCEO + nωrep can be written as:

φt(ω0 + ∆ω) = φt(ω0) +
∂φt
∂ω

∆ω = φt(ω0) + ∆ω∆t. (2.45)

This approach can be extended to the lowest possible comb frequency ωCEO, by setting

∆ω = −ω0. This leads to the spectral density of CEO phase noise:

Sφ,ωCEO
(f) = Sφ,ω0(f) + ω2

0S∆t(f) (2.46)

= · · · +
ω2

0

ω2
rep

Sφ,∆t(f) (2.47)

The same statement written in the usual notation of this thesis is:

SCEO(f) = Sω0(f) +
ω2

0

ω2
rep

Srep(f) (2.48)

The minimal CEO-phase noise, driven only by repetition rate noise is consequently

expected to be several orders higher than this repetition rate noise.

CEO-phase noise from shot noise. Assuming only shot noise in the frequency

comb, Sω0 is at the SQL. Srep has been determined in Eq.(2.43) and can be expressed in

terms of the SQL. The CEO-phase noise is consequently:

SCEO(f) ' Sω0(f) + ω2
0τ

2
pSSQL ∼ SSQL (2.49)

In a first approximation, the expected lowest level of the CEO-phase noise is conse-

quently equivalent to the SQL. This is an important statement: In later considerations,

the phase quadrature of an entire frequency comb will be assumed to be equivalent

to the CEO-phase of the frequency comb. Measured noise levels will be compared to

the SQL for the CEO-phase noise, given here by Eq.(2.49).
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A laser source: Shawlow-Townes limits to frequency-comb noise. In addition

to the intrinsic properties of the radiation, spontaneous emission in the laser source

drives the noise in the emitted frequency comb. The simplest approach to consider

such effects is to assume Shawlow-Townes phase noise [52]: Sω0(f) ∝ 1/f 2. From

this, it is possible to estimate and compare Sω0(f), Sφrep(f) and SCEO(f) for a typical

oscillator1:

Srep, ST(f) = k · τ 2
pω

2
rep · f−2, τ 2

pω
2
rep ≈ 10−9 (2.50)

Sω0, ST(f) = k · f−2, (2.51)

SCEO, ST(f) = k · τ 2
pω

2
0 · f−2, τ 2

pω
2
0 ≈ 10 (2.52)

All phase noise properties follow the the Shawlow-Townes f−2-slope. Compared

to the CEO frequency and the optical carrier, the repetition rate phase noise is

significantly smaller:

SCEO,ST ∼ Sω0,ST � Srep,ST (2.53)

The phase noise on the RF-signals of repetition rate and CEO-frequency have to

be well distinguished from their contribution to the phase noise in any line of the

optical frequency comb. The relative impact can be compared by taking into account

the mode number n of 105...106 under the gain profile. Nevertheless, although if

this aspect is integrated into the comparison of Eq.(2.50) and Eq.(2.52), repetition rate

phase noise is expected to be negligible.

2.4.3 The oscillator noise model of H.A.Haus

The estimations above consider either an ideal optical frequency comb or a CW-laser

like source that is only subject to spontaneous emission as additional noise driver.

Nevertheless, compared to a CW-operation, the generation of coherent femtosecond

light pulses is linked to additional physical conditions [10, 56, 57] that provide

stable mode-lock. The essential contributions are an intracavity non-linearity and

dispersion. They can be summarized in a non-linear Schrödinger equation (NLSE).

Their stable soliton-solutions describe the behavior and time dependent dynamics of

such optical oscillators well [58]. Based on partial derivatives of these solutions, the

noise properties of such oscillators can be described as follows [10, 59].

1 for the here considered Ti:Sapph: average power P̄ = 1W , k = θ3hνopt/4π
2P̄ , θ...total cavity losses
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A model for noise of ultrafast oscillators. Starting from the NLSE, using a

linearization and projecting the solutions on a set of four envelope functions, the noise

of a fs-soliton laser can be described [10, 59]. A Langevin-Type system of coupled

differential equations is obtained for timescales T ≥ 2π/ωrep. For a vector v containing

the fluctuating properties of a soliton pulse, the following, simple form is obtained:

dv

dT
= −A · v(T ) + S(T ), (2.54)

The vector v = (δθ, δw, δt, δω̄)T contains θ the CEO phase, w the instantaneous power,

t the temporal center of gravity of the pulse (timing jitter) and ω̄ the central frequency.

For each of these properties x, an operating laser will work at an equilibrium xeq and

undergo fluctuations δx: x = xeq + δx. The fluctuations are coupled by the coupling

matrix A and driven by the noise driver S. The latter represents the spontaneous

emission in the gain medium and classical noise sources.

The off-diagonal elements of the coupling matrix A are of principal importance,

they describe the coupling of fluctuating pulse-properties. Using only the most

important couplings aθw and atω̄, the matrix A is obtained to

A =

1 aθw 0 0

0 1 0 0

0 0 1 atω̄

0 0 0 1

v =

δθ

δw

δt

δω̄

(2.55)

Most important for this thesis, the fluctuations of the intracavity power δw (arising

from pump and gain fluctuations) drive the CEO-phase noise δθ through the coeffi-

cient aθw. See [60] for a nice summary. Fluctuations of the central frequency δω̄ drive

the timing jitter δt through atω̄. It is essentially a function of the oscillator dispersion.

All noise parameters are driven by spontaneous emission. The matrix A has been

extensively characterized for a Ti:Sapph oscillator [61, 62]. Nevertheless, only the

principal results concerning expected noise levels and distributions are important for

this thesis.
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Figure 2.5: Calculated qualitative behaviour
of CEO 1© and repetition rate 2© phase noise
spectral densities for the Ti:Sapph oscillator. To
distinguish their origin according to Eq.(2.56):
dashed line direct impact of spontaneous emission,
continuous line coupling from another, sponta-
neous emission driven property. These are for
CEO: the gain fluctuations, for the repetition rate:
the central frequency fluctuations. The transition
frequency for the CEO phase noise 1/f2 → 1/f4

depends on gain parameters.

Spectral densities of noise from the model of H.A.Haus. The focus of this thesis

lies on the analysis of CEO and repetition-rate phase noise: SCEO and St. The theory

above has been verified experimentally for both [63, 42]. For detection frequencies up

to several MHz, their power spectral densities are given by [10]:

St(f) =
Dω̄

(2πf)2[(2πf)2 + τ−2
ω̄ ]

+
Dt

(2πf)2

SCEO(f) =
Dw

(2πf)2[(2πf)2 + τ−2
w ]

+
Dθ

(2πf)2
(2.56)

The constants D and τ are obtained from the properties of the oscillator and depend

essentially on the intracavity dispersion D and the oscillator gain properties2.

Dω̄ = 16D2f2r
3w0τ2

· κ, Dt = π2τ2

3w0
· κ, Dw = 4D2f2rw0

τ4
· κ, Dθ = 5

w0
· κ, κ = ghνfr

τω̄ =
3Ω2

Gτ
2

4gfr
, τw = g−α

fr

(2.57)

The time constants τ are decay constants for fluctuations of the center frequency τω
and the pulse energy τw. The second term in the sums Eq.(2.56) arises directly from

spontaneous emission. It is typically neglectable compared to the first term that

describes the influence of the spontaneous emission driven gain fluctuations/central

frequency on the CEO/repetition rate through coupling. The time constants in these

first terms can be estimated to τω̄ � 1 and τw < 1/frep.

Conclusion: As shown in Fig. 2.5, and in contrast to an 1/f 2 Shawlow-Townes

behavior, the CEO and repetition rate phase noise are expected to follow

SCEO(f) ∼ 1/f 4 Srep(f) ∼ 1/f 4 (2.58)

Depending on the gain properties, the CEO-phase noise follows a 1/f 2 up to 1/τω̄.
2 For the oscillator used in this thesis: the repetition rate fr = 156 MHz, the 1/e pulse duration
τ ≈ 25 fs. It is possible to approximate the saturated gain g ≈ 0.05, the intracavity pulse energy at 1 W
output power w0 ≈ 60 nJ, the central frequency ν = 3.75 · 1014 Hz, the gain bandwidth ΩG = 5 · 1013 Hz
and the effective saturable absorber action α.
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A global minimum for spectral phase noise. The formalism of Haus et al. can be

extended to obtain information about the phase noise distribution over the optical

spectrum [20]. The vector v = (δθ, δw, δt, δω̄)T of laser fluctuations, the coupling

matrix A and the noise driver S are used again. In addition, the second-order

moments of v: 〈δviδvj〉 are considered. After the experimental measurement of the

entire noise coupling matrix A [61, 62], the underlying equations can be solved

according to Wai et al.[64].

It is useful to note Ω = ω − ω0 the distance of a comb line ω to the central

frequency ω0. The PSD of the fluctuations of the line SΩ(f) turns out to be a quadratic

function in Ω [20]. The spectral position of the minimum is set by the PSDs of

timing St and CEO-phase Sθ and the correlation term 〈δt δθ〉:

SΩ ' Ω2St − 2Ω〈δt δθ〉+ Sθ (2.59)

The position of this frequency is shifted from the spectral center by the correlation

term 〈δtδθ〉. It arises from the Kerr-effect that affects both phase and timing.

Simulation of a realistic oscillator. Wahlstand et al. [20] characterized a 15 fs,

100 MHz, 5 W, Ti:Sapph oscillator. It is similar to the commercial SYNERGY, 25 fs,

156 MHz, 1 W, investigated here. The shift of the frequency of minimal noise from

spectral center is given there as follows: It is of positive sign for timing and phase

jitter driven by intensity fluctuations. It is of negative sign for timing jitter caused by

oscillator dispersion.

A principal result of this thesis is the measurement of the distribution of phase

noise over the comb’s spectrum. Therein, the phase noise distribution is revealed to

be asymmetric relative to the central frequency. It decreases to the lower frequency

part of the comb. This is equivalent to a negative sign of the term 〈δtδθ〉. With the

above, it can be supposed that it is the non-zero, residual dispersion of the oscillator -

required for stable soliton generation - that governs this behavior.
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2.4.4 The rubber band model of spectral phase noise

The model of comb noise Eq.(2.45) above is bottom-up: the equations describ-

ing the oscillator are used to determine noise couplings and the distribution for

each comb parameter. Another, more phenomenological model is the so-called

rubber-band-model [21]. It describes how different noise drivers as pump power,

spontaneous emission or mechanical fluctuations influence the noise properties of

each individual line of a frequency comb. This model will be useful within the

analysis of spectral phase noise of a frequency comb using the experimental results of

section 4.2, page 107.

It consists of the following [66]: Any mode frequency of the comb can be

represented as a sum of the CEO-frequency ωCEO and the repetition rate ωrep. The

same is valid for the phase/frequency fluctuations of this line.

ωn = n · ωrep + ωCEO, δωn = n · δωrep + δωCEO (2.60)

The fluctuations of the constituents can now be represented in terms of their origin,

the noise driver X :

δωCEO =
dωCEO

dX
· δX, δωrep =

dωrep

dX
· δX (2.61)

Figure 2.6: A visualization of the rubber-band model as shown in [65]. An oscillator cavity
with a mirror of variable position and tilt is assumed. The horizontal axis of the right plots are
indicate the magnitude of perturbation. above Pure repetition-rate fluctuations lead to a fix-point
close to zero frequency. below Fluctuations of the geometry (mirror tilt) in a prism-based dispersion
compensating oscillator cavity lead to a non-zero fix-point frequency. Both rep-rate and CEO-
frequency are concerned. The fix-points are abstract values, for a realistic comb they may be situated
even outside the laser gain profile.
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from the literature this work

δL δPpump SE δL δPpump

fix-point in THz ∼ 2.5 ∼ 150 ∼ 375 ∼ 1.7 ∼ 233

driving strength ∼ 10−18 ∼ 10−17 ∼ 10−28 - -

Table 2.2: Lines of minnimal phase noise (fix-points) and driving strength to the repetition rate
fluctuations. Here for fluctuations of a Ti:Sapph oscillator length, the pump intensity and spontaneous
emission (SE). Left: from the litterature [16], right: for the Ti:Sapph oscillator characterized in this
thesis, section 3.1, Note: 800 nm ' 375 THz.

These equations define a fix-point frequency for the driver X, at which the frequency

noise of line n vanishes δωn = 0:

ωXfix = nXfixωrep + ωCEO, nXfix = −

dωCEO

dX
dωrep

dX

(2.62)

This fix-point is consequently readily measurable from the ratio of repetition rate and

CEO-frequency change under the perturbation X . The comb will breathe around

the fix-point of minimal phase noise and linewidth. Nevertheless, the frequency ωfix

does not necessary lie in the gain profile of the spectrum. As an example, a length

perturbation changes the round-trip time of a pulse-train but that is negligible to

the carrier-frequency of a pulse. It will have a fix-point frequency near the zero

frequency. Such fix-point frequencies have been extensively studied for an Er-fiber

based comb [66] and recently for a 17 nm FWHM Ti:Sapph based frequency comb [16].

The obtained fix-points for length-fluctuations δL, pump-noise δP and spontaneous

emission are shown in Table 2.62.

Noise distribution from the fix-point model. In chapter 4.2, page 107, the spectral

phase noise distribution of a Ti:Sapph oscillator will be analyzed experimentally. The

fix-point model may predict the general shape of the expected noise distribution along

the frequency comb. A pre-requisite is the knowledge of how the different noise

drivers X contribute to the phase noise distribution of individual comb-lines.

Once the fix-point ωXfix of a frequency comb is known, the fluctuations of each line ω

are given by [16]:

SXω (f) ' (ω − ωXfix)2SXrep(f) (2.63)

The symbol SXrep(f) is the so-called driving-strength to the repetition rate originated

by the noise driver X : SX(f). Example values are given in Tab. 2.2.
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The most important noise drivers X are fluctuations of the cavity-length and the

pump-power, amplified spontaneous emission (ASE) and Shawlow-Townes noise.

A simple approach to quantify their weighting experimentally is to determine SXrep

at a low modulation frequency providing thermal equilibrium, e.g. 1 Hz. Such a

characterization has been done by [16] and the results are depicted in Tab. 2.2: pump-

power fluctuations are, together with mechanical issues by far the most important

noise driver. From this low frequency property, pump power noise decays with

1/f where mechanical noise decays by 1/f 2 and is typically strongly attenuated

above 10 kHz. It is consequently possible to simplify the analysis of the entire comb

noise within the rubber-band model to the analysis of the impact of pump power

fluctuations. This leads for a comb frequency ω to:

Sω(f) ' (ω − ωfix)2Spump
rep (f) (2.64)

The fix-point frequency ωfix Eq.(2.62) is simple to measure by a modulation exper-

iment and found at approximately 233 THz on the IR-side of the frequency comb

spectrum. With Eq.(2.64) the phase noise of the frequency comb is consequently

expected to decrease towards this IR-side of the spectrum. This confirms the general

slope of the measured spectral phase noise distribution in chapter 4.2, page 107.
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2.5 Homodyne noise measurements with combs

It has been shown in the literature that any pointing deviation of a CW beam can be

interpreted as a superposition of spatial modes [67]. Balanced homodyne detection

can precisely discriminate any such mode structure of a beam, and has been used to

measure pointing fluctuations with ultimate precision [68]. As shown in Eq.(2.11), a

coherent pulse train can be represented as a superposition of orthogonal temporal

pulse-envelopes. These spectral/temporal envelopes will subsequently be called

modes.

It has been demonstrated theoretically that an envelope- or mode-selective mea-

surement can resolve timing fluctuations of coherent fs-pulse trains [5]. The principal

measurement scheme of this reference is shown in Fig. 2.7. Homodyne detection of

temporal modes is used to obtain relative space-time information between two signal

sources which are femtosecond oscillators. In order to generalize the concept towards

applicability, in this section realistic noise conditions are added to the considerations

of [5].

This section is organized as follows: first, the theoretical concept of a timing

measurement by homodyne detection is revisited. Realistic measurement conditions

with classical noise are then associated to the theory of its sensitivity. Subsequently,

it is shown how the CEO-phase noise of the involved frequency combs sets the lower

limit of sensitivity.

Figure 2.7: The suggested experiment that was the principal motivation for this thesis. Picture from
[5]. Both signals of femtosecond oscillators interfer in a homodyne configuration. The bright local
oscillator is in a special temporal mode. Precise information about the relative space-time position
u = r − ct of the two oscillators can be obtained from the signal. If the relative space-time position of
both signals is constant, the phase noise of source Observer A can be precisely characterized.
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2.5.1 Realistic homodyne timing jitter measurement

A pulse delay can be measured by the arrival time of the maximum of the pulse

envelope, called the time-of-flight (TOF) measurement. This corresponds to a simple

time-dependent intensity measure with a photodiode. Another method consists in

using the phase of the electric field oscillation. It corresponds to an interference

between the signal pulses and a reference pulse train. We denote this reference the

Local Oscillator (LO) and the method is called a phase measurement. Both techniques

can be combined as follows:

Timing shift as a superposition of modes. The electric field operator of a

pulse train can be written as a superposition of an arbitrary number of temporal

modes vn(u), see Eq.(2.5). They are a function of the general space-time light-cone

variable u = z − ct. In addition, there exists always one mode v0 to which the mean

field is proportional [35]:

E+
0 (u) = E

√
Nv0(u), v0(u) = g0(u)e−iω0u (2.65)

Here E is a normalization constant and N the photon number. Assuming a space-

time shift u′ = u−∆u, this single mode v0(u−∆u) field can be written in a Taylor

series [5]:

v0(u−∆u) ' v0(u)−∆u · dv0(u)

du
(2.66)

= v0(u) + ∆u ·
[
iω0 · g0(u)− dg0(u)

du

]
e−iω0u (2.67)

The temporal mode that contains the information on ∆u is a superposition of two

modes that are proportional to g0 (I) and dg0/du (II), see Fig. 2.8. They represent two

types of measurements: a CW like phase measurement (I) and a detection of the time-

of flight (group delay) of the light-pulses (II), see Fig. 2.8.

Figure 2.8: Illustration of the representation of a timing-shift using temporal modes.
According to Lamine et al. [5], a pulse undergoing a timing shift can be represented as a superposition
of two different temporal modes. One is the initial envelope. The second is a superposition of two
modes itself: they are equivalent to a separate phase- and group delay/time-of-flight measurement.
The coefficients of the carrier ω0 and the pulse bandwidth ∆ω ensure same normalization for both
modes. The timing shift ∆u appears as a linear coefficient measurable by homodyne detection.
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The value of ∆u can be extracted from a pulse by measuring the signal via

balanced homodyne detection. As shown in Fig. 2.7, the equivalent experiment

detects the signal comb with a local oscillator (LO) in the superposition of the modes

I and II. Unprecedented sensitivities for pulse delays down to 10−24 s (yoctoseconds)

have been predicted theoretically for this scheme.

Quantum limited sensitivities. For a pulse train of an optical bandwidth ∆ω, a

carrier frequency ω0 and N detected signal-photons one can compare the sensitvity

of the time-of-flight/group delay (I), the phase-based (II) and the combined homodyne (I+II)

measurement scheme [5]:

(∆u)I
SQL =

1

2ω0

√
N
, (∆u)II

SQL =
1

2∆ω
√
N
, (∆u)I+II

SQL =
1

2
√
N
√
ω2

0 + (∆ω)2
(2.68)

The minimum is given if the detecting (LO) is in the superposition of modes I+II.

Nevertheless, the underlying key assumption is, if the classical noise in the LO does

not contribute to the output, a signal in a perfect coherent state. This is equal to a

noise level in both field quadratures at the standard quantum limit SQL [5].

Realistic sensitivities. Within the definitions of Eq.(2.11), the noise of a perfect

coherent state is at the SQL. The variances of the amplitude and phase quadrature

operators Q̂ and P̂ of the modes I and II are:

SQL: σ2
P = σ2

Q = 1 (2.69)

Regarding Eq.(2.67), a homodyne measurement of ∆u corresponds to the detection of

the phase quadrature of the normalized modes: I proportional to g0 and the amplitude

quadrature of mode II proportional to dg0/du. For a signal to noise ratio of one,

SNR=1, the sensitivity of the homodyne measurement of ∆u is given by

∆umin =
α√
τ
·
[
ω2

0σ
2
PI

+ (∆ω)2σ2
QII

]1/2
(∆ω)2 + ω2

0

, α =

√
~ω0

P0

(2.70)

Here τ is the measurement time, P0 the average signal power and σ2 the variance

of the quadratures P and Q of the modes I and II respectively. It is a choice of

normalization to set the quantum-limited variance to one: σ2
P,Q = 1.
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Realistic sensitivities from measured noise spectral densities. It has been shown

in Eq.(2.27) that the variance of a noise process X(t) can be expressed in terms of a

spectral density SX : σ2
X(f) = S(f) · 1 Hz. The spectral density of amplitude and phase

noise of a frequency comb at the quantum limit can be calculated in units relative to

the carrier power, dBc/Hz. Classical amplitude and phase noise is typically measured

- even down to the SQL - in densities dBc/Hz.

In order to allow an interpretation of Eq.(2.70) under not quantum-limited noise

conditions, the quadrature variances σ2
X , X = P,Q can be expressed in terms mea-

sured noise levels S(f) relative to the expected or measured quantum limit:

σ2
X(f) =

SX(f)

SSQL

(2.71)

Inserted into Eq.(2.70), it permits to link and apply the results of a quantum optical

calculus to classical noise3.

The fluctuations of the phase of the repetition rate of a frequency comb have been

shown to be negligible compared to the CEO-phase noise. In order to study the impact

of noise in a frequency comb to the sensitivity in Eq.(2.70), the CEO-phase noise can

be identified with the measurement of mode I of the comb, as it contains all the phase

noise common to the comb. The repetition rate noise can be identified with the time-

of-flight or group-delay measurement.

The experimental part of this thesis considers in addition a frequency comb

centered at 800 nm with a bandwidth of 40 nm FWHM. By the scaling factors arising

from normalization, the resulting ∆ω � ω0 in Eq.(2.70) transforms the homodyning

of both modes I and II essentially into a phase measurement.

Applying Eq.(2.71) to Eq.(2.70) and as shown in [69], one obtains the following

realistic sensitivity for a homodyne measurement of ∆u:

∆umin(f) ≈ 1

2
√
τ

√
SCEO(f)

ω0

(2.72)

The sensitivity ∆umin for a timing modulation at the homodyning frequency f scales

with the integration time of detection τ . It is principally limited by the single side-

band power spectral density of the carrier-envelope-phase fluctuations SCEO(f).

3 For a frequency comb of central frequency ν and average power P̄ , the single side-band
power spectral density of quantum limited amplitude and phase noise was found in Eq.(2.36) to
SSQL = 2hν/P̄ .
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Spectral interpretation of the mode-based timing-jitter measurement. In the

considerations above, a deviation of the space-time position of a pulse train, ∆u is

measured and interpreted in terms of temporal modes. It is instructive and necessary

for the experimental considerations of section 4.5, to transpose these considerations

in the spectral domain. From an experimental point of view it is in addition always

simpler to characterize and manipulate the spectral properties of a pulse train. Using

Eq.(2.65), the mean field E+
0 (u) = E

√
Nv0(u) of a frequency comb can be written as

v0(u) = g0(u)eiω0u =

∫
g̃0(Ω)e−iωudω, Ω = ω − ω0 (2.73)

in the spectral domain. Using Ω = ω − ω0, a small space-time deviation ∆u can then

be written as:

v0(u+ ∆u) =

∫
g̃0(Ω)e−iω(u+∆u)dω (2.74)

=

∫
g̃0(Ω)e−iωu(1− iω∆u)dω, ω = Ω + ω0 (2.75)

' v0(u) + ∆u

∫
−iω0g̃0(Ω)− iΩg̃0(Ω)dω (2.76)

The deviation ∆u is consequently represented by the phase quadrature of two spectral

modes:

I: ω0g̃0(Ω), II: Ωg̃0(Ω) (2.77)

In analogy to Eq.(2.67), the mode I corresponds to a phase measurement of a

CW-signal and the mode II to a measurement of the deviation time-of-flight or the

group-delay of the light pulses. The comparison of the modes I and II shows here

directly that a homodyne measurement in a superposition mode I+II corresponds

essentially to a measurement of I, unless the frequency spread ∆Ω of g̃0 is similar

to ω0. This means that homodyne measurements with frequency combs are only

advantageous to CW measurements if their bandwidth covers at least one octave.

It is remarkable from Eq.(2.76) that both modes I and II appear in the phase

quadrature. This shows that any modulation of the spectral amplitude of the

frequency comb will never change either CEO-frequency (I) or repetition rate (II).
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2.6 Aspects of practical noise measurements

According to Eq.(2.72), the sensitivity of a homodyne timing measurement with

a 25-fs Ti:Sapph oscillator is essentially limited by the CEO-phase noise. The

quantification of phase noise can be done with different techniques and within

different units. The possible choices are depicted in this section in order to provide

all necessary tools for the experimental part of this thesis. An additional method to

measure timing-jitter is cited from the literature.

A coherent pulse train contains a number of possible noise terms. The most

prominent are fluctuations of the repetition rate δfrep and of the carrier-envelope

offset frequency, δfCEO. The first can be detected by an intensity measurement using

a photodiode. The latter requires a more involved scheme:

CEO phase noise, the f-2f method. The most common technique to detect the

CEO-frequency and its phase noise is to beat the second harmonic of the lower

frequency part of an optical frequency (I) comb with the comb itself at the doubled

frequency (II). This is the so-called f-2f beating technique [1]:

fceo = 2(n · frep + fceo︸ ︷︷ ︸
I

)− (2n · frep + fceo︸ ︷︷ ︸
II

) (2.78)

If the spectrum of the laser does not cover one octave it can be broadened coherently

in a photonic crystal fiber (PCF). The beating-signal is typically detected with an

avalanche photodiode (APD) and gives rise to a classical periodic electronic signal:

V (t) = A(t) · cos [2πfceot+ φ(t)] (2.79)

A signal of the same structure is obtained when detecting the repetition rate. Here,

amplitude A(t) and phase φ(t) vary slowly compared to the optical carrier frequency.

The following subsection discusses theoretical aspects of the measurement of φ(t).

Details of the measurement apparatus and data are presented in section 3.1.
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2.6.1 The measurement of phase noise

When the total modulation power noise of the signal V (t) is considered, a simple RF

power spectrum measurement with a spectrum analyzer cannot distinguish PM from

AM noise. Nevertheless, this disadvantage indicates the natural, common units of

amplitude and phase noise on a given carrier: dBc/Hz, side-band power relative to

the carrier power. A discussion of the origin of these units provides a link between

measured noise levels and calculated standard quantum limits Eq.(2.36) for both

amplitude and phase noise.

A short modulation theory. It is instructive to review the effect of a modulation

on a periodic electric signal i(t) with a carrier power Pc (on 1Ω). It is obtained by ideal

photodetection from V (t), Eq.(2.79). As done in [12], for an amplitude modulation

depth/index α and a modulation frequency ωα, an AM signal is equivalent to:

iAM(t) =
√

2PC [1 + α cos(ωαt)] cos(ω0t) (2.80)

=
√

2PC Re
{
eiω0t[1 +

α

2
(eiωαt + e−iωαt)]

}
(2.81)

The same decomposition can be done for a phase modulation PM using Bessel

functions and for β being the phase modulation index:

iPM(t) =
√

2PC cos(ω0t+ β sin(ωβt)) (2.82)

≈
√

2PCRe

{
eiω0t[1 +

β

2
(eiωβt − e−iωβt)]

}
(2.83)

The structure of Eq.(2.81) and Eq.(2.83) can be compared for the resulting single

side-band modulation-to-carrier power ratio (dBc). Side-band to carrier power ratio

densities are denominated by L(f) in the literature:

LAM =
PSSB−AM

PC

=
α2

4
, LPM =

PSSB−PM

PC

≈ β2

4
(2.84)

For any modulation frequency, both equations relate modulation depth, side-band

power and carrier power in the same way. Any measured LAM/PM(f) in units dBc/Hz

is consequently in the same way proportional to the modulation depth of amplitude

and phase. As depicted in the next section, single side-band noise to carrier ratios

L(f) are very simple to measure. Their link to the r.m.s. deviation spectral densities

S(f) provides a comparison to then calculated noise levels of the standard quantum

limit SSQL, see also Eq.(2.36).
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Noise levels relative to carrier L(f) versus r.m.s. S(f). The link is obtained by

extending the considerations of [70] to amplitude noise: The mean squared deviation

of a stochastic process X(t) is 〈X2〉 =
∫
SX(f)df , see Eq.(2.23). If an amplitude

modulation a(t) and a phase modulation φ(t) are given at frequency f , the mean

squared deviations S(f) are easily obtained:

a(t) = α · sin(ωαt), φ(t) = β · sin(ωβt), (2.85)

Sa(ωβ) = α2/2, Sφ(ωβ) = β2/2. (2.86)

Using Eq.(2.84) for both quadratures, the SSB noise/carrier-ratio L(f) is therefore

linked to the mean squared fluctuations S(f) by:

L(f) =
PSSB(f)

PC
=
S(f)

2
(2.87)

This conclusion is also important as it links the units: dBc/Hz = (1/2) · rad2/Hz

for phase modulations. Another measure for phase noise is the spectral density of

frequency fluctuations Sf0(f) = f 2
0Sφ(f) in Hz2/Hz. To avoid ambiguities in the case

of strong phase modulations L(f) is defined by S(f), see [70].

The measurement of phase noise: principal techniques. Figure 2.9 shows the

two main techniques used in this thesis. If amplitude noise is negligible, the direct

measurement technique can be applied. It is the simplest method to quantify phase

noise and uses directly a spectrum analyzer. Any measured side-band corresponds

to a phase modulation. Taking into account the measurement resolution bandwidth

and the carrier linewidth, one can easily obtain the ratio of the side-band power to

the carrier power at 1 Hz resolution bandwidth. This distribution is L(f), in dBc/Hz.

It is linked to Sφ(f) by Eq.(2.87) above. The carrier power PC be determined defined

by a simple band-power measurement over the -3dB bandwidth of the signal.

Figure 2.9: The two most important techniques
to measure phase noise of an electronic signal:
1© direct measurement of the noise side-bands with

a spectrum analyzer, 2© the phase-lock-loop (PLL)
technique: the signal is demodulated by a voltage
controlled oscillator (VCO) locked to the signal
carrier frequency and its phase quadrature, within
a feedback loop of low bandwidth. The phase
noise is analyzed outside this bandwidth.
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The phase-lock loop technique is insensitive to amplitude noise but more complex:

It is depicted in Fig. 2.9 and consists of passing a given signal through a phase

comparator and measuring the detector’s output spectrum. The phase of the reference

RF-source is locked in a low bandwidth phase-lock-loop (PLL) [71]. The mean

squared signal of the phase comparator 〈V 2(f)〉 is measured with a spectrum analyzer

in V2/Hz and normalized by the resolution bandwidth (RBW) of the measurement.

Together with the phase-to-voltage conversion factor Kd of the mixer/comparator,

the distribution of Sφ(f) is directly obtained:

Sφ(f) =
1

RBW

〈V 2(f)〉
K2

d

(2.88)

The sensitivity Kd in V/rad is measured with an oscilloscope at the output of the

comparator: The beating of the signal with a reference slightly shifted in frequency

is recorded with an oscilloscope. The slope of a linear fit at the zero-crossing of the

output is Kd. If the phase fluctuations σφ are large and exceed 1 rad, the error signal

of the mixer PLL has to be exploited for phase noise analysis.

The measurement of phase noise is a science and an art by itself. Further

techniques are depicted in [72] and [12].
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Figure 2.10: Amplitude and timing-phase noise
side-bands as a function of the harmonic of the
repetion rate. In the case of perfect photode-
tection, the measured amplitude noise side-bands
are invariant against the considered harmonic of
the repetition rate. In contrast, the detected
side-bands arising from the timing-phase noise
increase with the squared order of the repetition
rate harmonic. Picture similar to [73].

Timing phase noise of a periodic pulse train. The measurement concept above

can be applied to electronically available repetition rate and CEO-frequency of an

optical frequency comb. Nevertheless, phase noise in a periodic pulsed signal,

so the repetition rate, has an additional property: Being of a temporal periodicity

of T = 1/frep, the ideal case of Dirac like pulses corresponds to a Dirac comb in

frequency space: each line is a harmonic of frep. For an average power P̄ the pulsed

temporal signal P (t) gives rise to the spectral density S(ω):

P (t) = P̄ T
n=+∞∑
n=−∞

δ(t− nT ), S(ω) = P̄ 2

n=+∞∑
n=−∞

δ(ω − nωrep) (2.89)

Introducing zero mean power fluctuations N(t), P (t) = P̄ (1 +N(t)), one obtains:

P (t) = (1 +N(t))P̄ T
n=+∞∑
n=−∞

δ(t− nT ), S(ω) = P̄ 2

n=+∞∑
n=−∞

[δ(ω − nωrep) + SN(ω − nωrep)]

Repetition rate fluctuations δT imply the spectral density [73]:

P (t) = P̄ T
n=+∞∑
n=−∞

δ(t− nT − δT (t)) (2.90)

S(ω) = P̄ 2

n=+∞∑
n=−∞

[
δ(ω − nωrep) + n2ω2

repSδT (ω − nωrep)
]

(2.91)

It grows with the square of the order of the repetition rate harmonic n. This is in

contrast to the amplitude noise, which appears for each harmonic with the same

coefficient. This behavior is schematically shown in Fig. 2.10. It can be used to

quantify and to distinguish repetition-rate phase noise.
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2.7 Passive cavities: filtering and analysis of noise

The main experimental results of this thesis, chapter 4, are obtained from the

interaction of a broadband passive cavity with the noise of an optical frequency comb.

The generic underlying measurement concept is depicted in Fig. 2.11. The frequency

comb to analyze seeds a passive cavity and is transmitted at resonance. Subsequent

homodyne or direct photodetection provide a sensitive detection of phase noise in the

frequency comb.

A pre-requesite to this scheme is a broadband resonant passive cavity. Its

theoretical and necessary properties are studied in this section. A special focus is

set on the interaction of the noise in resonant optical frequency comb with the cavity:

Its filtering could provide for an increased sensitivity of a possible homodyne timing

measurement see section 2.5.1, page 37. Homodyne detection with the seed itself

can be used to detect phase noise with highest sensitivity. The conversion of phase-

to amplitude noise permits a simple, direct detection of spectral phase noise. In the

beginning, the context of the literature is summarized.

Figure 2.11: Main experimental scheme of this thesis. The signal of a Ti:Sapph osciallator is
transmitted by a cavity. The resulting signal is either directly analyzed or compared to the initial
seed within a homodyne detection.
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Context of the literature. A transmissive passive cavity can act as a spatial and

temporal filter on an optical signal. It has been shown in the literature that even the

intensity noise of an 10 W Nd:YAG laser beam can be filtered down to the shot noise

level at detection frequencies in the MHz region [74]. On the example of noisy diode-

lasers, a passive optical cavity has also been proven to filter phase noise efficiently

[29]. An optical cavity converts in addition phase noise into amplitude noise. This

can be understood as a rotation of the noise ellipse in the Fresnel plane [75] or within

the transfer functions of the noise quadrature operators [29].

Several techniques are available to lock a passive cavity on the mean incident

field. Their frequency response and bandwidth have to be considered, when the

noise properties of cavity-transmitted or -reflected beams are studied. A sufficiently

high locking bandwidth (kHz) prevents also the cavity length fluctuations to couple

on the transmitted field [76]. Three principal locking methods are suitable for

consideration in this thesis: first, using the transmitted intensity; second, using the

dichroic properties of a cavity [77] and third, based on the interference of phase

modulation side-bands. The latter is known as the Pound-Drever-Hall (PDH) scheme,

[78, 79]. The two first do not require modulation and are consequently more sensitive

to environmental noise. The PDH-scheme uses a MHz phase modulation and is

simple to implement. A demodulation of the transmitted or reflected beam provides

the error signal. Typically, the cavity reflection is used: the cavity bandwidth may

limit the error signal in transmission [80].

Broadband cavities have been developed for molecular spectroscopy [81] and field

enhancement [82, 83]. A transmissive passive broadband cavity has been reported for

repetition-rate filtering [84].

The focus of this thesis is filtering of amplitude and phase noise in a 45 nm FWHM

broad frequency comb [69], the detection of its spectral phase noise [85] and the

complete analysis of phase noise correlations [86]. The underlying studies rely on

a broadband resonant passive cavity. Its theory is developed in this chapter.
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2.7.1 Cavity resonances

The optical resonance frequencies of a passive cavity are determined by its round-

trip length L. The minimal difference between resonant frequencies ωn is the free

spectral range ∆ΩFSR. Another principal parameter is the cavity finesse F . It is a

function of the transmission coefficient of all mirrors: T =
∑

i Ti, of all other losses

l and corresponds to the quality factor of a resonator. The finesse determines the

FWHM of the cavity resonances ΩBP. For small T � 1:

F =
2π

T + l
=

∆ΩFSR

ΩBP

, ΩFSR =
2πc

L
= ωn − ωn+1 (2.92)

An important case is an empty cavity consisting of an arbitray number of high-

reflective mirrors RHR = 1− THR ≈ 1 and two coupling mirrors with TOC > THR. This

type of cavity is called impedance matched. If dispersion and intracavity losses can be

neglected, it has a transmission of one at resonance.

Geometrical stability condition. A typical laser beam fulfills the paraxial approx-

imation and the propagating field amplitude is described by the paraxial Helmholtz

equation. An orthogonal basis solving this equation is the one of transverse Hermite

Gauss modes un. They correspond to the property of many lasers to have transverse

reflection symmetry. Along the two transverse coordinates, the electric field propa-

gating along z, E(x, y, z), can be factorized into the transverse modes un:

E(x, y, z) ∝ umn(x, y, z) = un(x, z)um(y, z). (2.93)

It is called a transverse electric mode TEMm,n. For such a Gaussian beam, the

propagation along the longitudinal coordinate z can be described by the beam

parameter q that takes into account the beam radius w, the radius of curvature R of

the wave-fronts and the central wavelength λ0 = 2πc/ω0:

1

q
=

1

R
− iλ0

πnw2
(2.94)

The condition of identical spatial field properties after each cavity round-trip can

be written using the Gaussian beam parameter q and the transfer matrix formalism:

Every mirror and free-space propagation step corresponds to a matrix M . It is given

for the principal interactions of the cavity with the light beam: propagation over a

distance d and the reflection by a spherical mirror of radius of curvature R.
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Any sequence of linear optical elements, e.g. one round-trip in a even more

involved cavity, results in a transfer-matrix M :

M =

A B

C D

 , Mpropag =

1 d

0 1

 , Msphericalmirror =

 1 0

−2/R 1

 (2.95)

The transverse round-trip condition, i.e. unchanged q per round-trip, becomes [87]:

q2 =
Aq1 +B

Cq1 +D
and q2 = q1 (2.96)

Here q1 and q2 are the beam parameters at the beginning and the end of a resonator

round-trip. For the setup of a cavity of a priori undefined mirror distances di, radii

Ri and a beam radius w, suitable combinations of values are found numerically. The

stability criterion above can be written as: [88]:

Tr|M | = |AD −BC| < 2 (2.97)

As a consequence of this criterion and the properties of Gaussian beam propagation,

any stable cavity contains at least one beam waist w0. It turns out that any

beam acquires the so-called Gouy phase φGouy when passing through a waist. This

behavior is sketched in Fig. 2.12, right. The acquired phase depends on the indices

m,n of the transverse mode TEMm,n and can be written with a constant α as

φGouy,n,m = (n+m+ 1) · α. See [89] for details. It impacts the resonance condition

of a passive cavity as follows:

Transmission of a resonant cavity. A cavity transmits most intensity at resonance.

With Eq.(2.92), this transmission I(ω) is a function of the optical frequency ω. It

can also be written as a function of the spectral phase φ(ω) mod 2π, acquired by

propagation over one cavity length. From the energy conservation for the fields that

are incident to, transmitted by and stored in the cavity [90] one obtains:

I(ω) ' I0(ω)

1 +
(

2F
π

)2 sin2(φ(ω)
2

)
(2.98)

The typical shape of I(ω) is sketched in Fig. 2.12, left. The resonances are consequently

located at φ(ω) = p · π.
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Figure 2.12: Left: The transmission of a passive cavity. The spacing of the individual resonances by
the free spectral range ∆ΩFSR corresponds to the repetition frequency ωr of a frequency comb.
Right: Example of a Gouy phase shift φGouy. Beam parameters as used in the following
section: wavelength 800 nm, beam waist 350µm. The beam undergoes the Gouy phase periodically
at each round-trip. This causes a collective shift of the cavity resonance frequencies by
ΩGouy = φGouy/2π ·∆ΩFSR. It corresponds to an eigen-CEO frequency of a broadband resonant
cavity ωn = n · ωr + ωCEO. In order to transmit a frequency comb through a passive cavity with best
efficiency, its CEO-frequency has to be set with respect to the cavity’s ΩGouy.

In a realistic cavity, φ(ω) depends also on the refractive index n(ω) of the gas inside

the cavity. Chirped mirrors may lead to a non constant round-trip cavity length L(ω).

The complete resonance condition is consequently:

φ(ω) = ωnmp
n(ω)L(ω)

c
− (n+m+ 1)α = p · π, p, n,m ∈ N (2.99)

This definition of the resonant frequencies ωnmp has two important consequences:

Spatial mode discrimination. Eq.(2.99) can be considered for a given seed optical

carrier ω0 in the mode TEMm,n. It defines different lengths Lm,n at which the

mode TEMm,n is resonant in the cavity. As these lengths are well distinguished, a

transmissive cavity is a spatial mode filter at a the resonant length L.

A resonant frequency comb and the eigen-CEO. For a given cavity length L and

an arbitrary selected mode TEM00, Eq.(2.99) sets the resonant frequencies.

ωp = (pπ + α)
c

nL
, ωCEO = α

c

nL
, p ∈ N (2.100)

This is a filter with equally spaced frequency resonances and an offset ωCEO to the

zero frequency. An optical frequency comb can be matched to it, if both have the same

frequency spacing and offset ωCEO. This offset will be called eigen-CEO of a broadband

resonant cavity. In a realistic situation the cavity resonances are not equally spaced

due to intracavity dispersion. The possible transmission of a seeding, equally spaced

frequency comb will therefore depend also on the linewidth of each resonance and

the spacing between neighboring resonances.
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Secondary resonances. The free spectral range of the cavity ΩFSR might be slightly

different from the spacing of the seeding comb ωrep = ΩFSR + ε. If the round-trip

cavity length is in addition a multiple m of the central wavelength λ of the comb

L′ = c/ΩFSR +m · λ the resonance is called the secondary resonance of order m. If the

cavity is resonant at ωp,res, any comb frequency acquires a frequency dependent phase

Φm(ω) per round-trip. This leads to resonance properties depending on the comb line

frequency ωn:

Φm(ωn) = 2πm
ωn
ωp,res

⇒ Iωn(ω) ' I0(ωn)

1 +
(

2mF
ωp,res

)2

ω2
n

(2.101)

Secondary resonances can be distinguished from primary resonances by their smaller

bandwidth. Figure 2.13 shows the typical effect of secondary resonances on a

recorded transmission signal when sweeping the cavity length. With increasing order

of the secondary resonance, simultaneous resonance is provided for a less broad

spectrum: When sweeping the cavity-length, the apparent peak power decreases and

the apparent with of the resonance peak increases. See also [91] for further discussion.

Figure 2.13: The secondary resonances of a swept, broadband cavity. Picture from [34]. A frequency
comb of 800 nm central wavelength, 6 nm FWHM is assumed to seed a cavity of finesse 125.
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2.7.2 Transfer function of the noise field quadratures

The aim of this section is to show that a passive cavity is an intrinsic filter of amplitude

and phase fluctuations of seeding fields [29]. It inter-converts in addition amplitude

and phase fluctuations [75]. The necessary theory can be developed by considering an

individual noisy line ω0 of a frequency comb seeding a cavity at or close to resonance.

In the carrier-envelope representation, the real electric field of the frequency comb can

be written using the complex field envelope α(t):

Ein(t) = E0α(t)e−iω0t + c.c. (2.102)

A Fourier transform gives the field in the spectral domain:

Ein(ω) = E0
1√
2π

∫
dt α(t)e−i(ω−ω0)t + c.c. (2.103)

= E0 [α(ω − ω0) + ᾱ(ω0 − ω)] (2.104)

with ᾱ(ω) =
1√
2π

∫
dt ᾱ(t)e−iωt → α(ω) = ᾱ(−ω) (2.105)

Using Ω = ω − ω0 the noise field- or side-band quadratures or P (Ω) and Q(Ω) are defined

as:

Pin(Ω) = i [ᾱ(−Ω)− α(Ω)] , Qin(Ω) = α(Ω) + ᾱ(−Ω) (2.106)

The next paragraph studies the formal description of the transmission of noise

through a passive cavity. It turns out that a description in terms of Q(Ω) and P (Ω)

is of a particular simple form. They correspond to a modulation of the amplitude (Q)

and phase (P) of a carrier ω0 at the side-band frequency Ω. See also section 2.6.1.

Transmission and reflection of a passive cavity. The transmission and reflection

of a passive linear cavity can be modeled using the complex amplitudes of the

respective fields and the assumption of energy conservation [87]. It is sufficient to

study a cavity of two identical mirrors to obtain the relations necessary for this thesis.

This model is depicted in Fig. 2.14, left. WithR and T being the coefficients of intensity

reflection and transmission of the mirrors, the respective coefficients for the field

and mirror i are ri =
√
Ri, ti =

√
Ti. Loss-less reflection Ri + Ti = 1 can be assumed,

so T = t1t2 and R = r1r2 for identical mirrors. The ratio of the complex incident,

reflected and transmitted fields Ein, Erefl, Etr give rise to the complex transmission

and reflection coefficients tc and rc.
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Figure 2.14: Left: Model of a transmissive cavity. The incident field is Ein, the reflected Erefl, the
intracavity Ec and the transmitted Etr. The field- reflectivity and transmission of the mirrors is given
by r and t. The model defines the complex transmission and reflection coefficients tc and rc.
right: Modulus and phase of the cavity transmission and reflection coefficients. Calculated for a
cavity length 1.92 m, finesse 1500. Transmsission τ 1© and Φt 2©, reflection ρ 3© and Φr 4©.

Assuming the cavity to be resonant at a frequency ω, one obtains for a noise side-

band frequency Ω:

tc(Ω) =
Etr
Ein

=
Teiφ(Ω)/2

1−Reiφ(Ω)
= τ(Ω)eiΦt(Ω), φ(Ω) =

ΩL

c
(2.107)

rc(Ω) =
Erefl
Ein

=
T (eiφ(Ω) − 1)

1−Reiφ(Ω)
= ρ(Ω)eiΦr(Ω) (2.108)

This is a decomposition into absolute value and phase: τ(Ω) = |tc(Ω)|, ρ(Ω) = |rc(Ω)|.
Their RF-spectral dependence on Ω is shown in Fig. 2.14, right. Nevertheless, a

simpler representation is obtained using tc(−Ω) = t∗c(Ω), rc(−Ω) = r∗c (Ω). The noise

field quadratures can be written in terms of the transmission (tr) and reflection (refl)

coefficients as well as the incident field amplitudes α. For example:

Qtr(Ω) = −i[tc(−Ω)α(−Ω)− tc(Ω)α(Ω)] (2.109)

= τ(Ω)

[
i
eiΦt(Ω) − e−iΦt(Ω)

2
Pin(Ω) +

eiΦt(Ω) + e−iΦt(Ω)

2
Qin(Ω)

]
(2.110)

Similar equations are obtained for Ptr, Prefl and Qrefl.
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Figure 2.15: Noise quadrature conversion by an optical cavity. Parameters as in the experimental
section 4: cavity length 1.92 m, finesse 1500. Shown is the contribution of the seeding field to the left
transmitted and the right reflected field quadratures. Q and P are the amplitude and phase quadrature.

They can be summarized in matrix form for transmission (out) or reflection

properties τ , ρ and Φ:

vout(Ω) = τ(Ω)Atr(Ω)vin(Ω) (2.111)

Atr(Ω) =

 cos Φt(Ω) sin Φt(Ω)

− sin Φt(Ω) cos Φt(Ω)

 , vin(Ω) =

Pin(Ω)

Qin(Ω)

 (2.112)

The same structure is obtained in the case of reflection. It is clear from the above

equations that a resonant cavity rotates the (noise) field quadratures v by the unitary

matrix A - as a function of the side-band frequency Ω. The additional attenuation of

noise is described by the factors τ or ρ, depending if either transmission or reflection

is considered. Figure 2.15 shows the conversion on the example of the Q quadrature,

in reflection and transmission. Used in reflection, the cavity acts as a notch filter for

the resonance frequency. In transmission, phase and amplitude noise are attenuated

with increasing side-band frequency. The effect of quadrature interconversion is

significant above the 3 dB cutoff-frequency of the cavity. This fact will be exploited

in the experimental section to detect phase noise of an optical frequency comb.
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Quadrature conversion and dispersion. A passive cavity can be simultaneously

resonant for an entire frequency comb. To provide this, its free spectral range (FSR)

must be equal to the signal repetition rate and the accumulated phase per round-trip

equivalent to the CEO-phase of the frequency comb.

The round-trip phase and thus the eigen-CEO of the cavity can be fine-tuned using

the air-pressure inside the cavity-container. This pressure also tunes the linear change

of the round-trip phase with the optical frequency, the cavity round-trip length.

As this parameter can be compensated by the mechanical positioning of the cavity

mirrors, the eigen-CEO of the cavity can be independently accessed.

Nevertheless, this approach of pressure tuning cannot compensate for the residual

higher order dispersion of the cavity mirrors, φcavity(ω), shown in Fig. 2.16, left scale.

The resulting spectral phase at the comb frequency ωn leads to a change of the cavity

FSR by

∆ωFSR(ωn) = ωrep · φcavity(ωn)/2π. (2.113)

Assuming a cavity lock at the comb central wavelength of 800 nm, this frequency shift

is also shown in Fig. 2.16, right scale. For the entire comb, this frequency shift can be

estimated to be inferior to 100 kHz. The cavity used here has a linewidth of the same

order of magnitude, so this effect will not significantly impact the over-all transmitted

intensity at resonance.

Nevertheless, for any noise side-band of a comb line ωn, the side-band frequency

"seen" by the cavity will change to the apparent value ΩA:

ΩA(ωn) = Ω±∆ωFSR(ωn) (2.114)

As discussed below, this change may have significant impact on the phase-to-

amplitude noise conversion of phase noise sidebands.

Figure 2.16: Realistic spectral phase and shift
of the apparent side-band frequency. Shown is
the estimated, minimal spectral phase (dispersion)
of the passive cavity studied in the experimental
part of this thesis (6 quarter-wave zero dispersion
mirrors, 1.92 m laboratory air at 70 mbar). If the
cavity is resonant at the comb central frequency,
a spectral phase (left scale) is equivalent to
a frequency shift (right scale) of the cavity-
resonances compared to regular spaced optical
signal.
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Figure 2.17: Impact of the cavity’s spectral phase on the conversion of phase noise side-bands
to amplitude noise. For two detection detection frequencies of 100 kHz and 200 kHz, the impact on
left: the attenuation τ , right: the factor sin(...) in the conversion efficiency

The noise quadrature conversion Eq.(2.111) is a possible application of a passive

cavity. It provides the analysis of phase noise in the seeding comb from a simple noise

measurement on the transmitted intensity. Assuming negligible amplitude noise

and for a transmitting cavity, the phase to amplitude noise quadrature conversion

described in Eq.(2.110) is given by:

Qout(Ω) = −τ(Ω) · sin[Φt(Ω)] · Pin(Ω) (2.115)

The conversion efficiency is consequently a function of the side-band frequency Ω.

By a subsequent analysis over the optical spectrum, even the spectral phase noise

of the comb becomes accessible. In this case and with respect to Eq.(2.114), the

conversion efficiency depends then on the apparent side-band frequency ΩA that

varies over the optical spectrum:

Qout(Ω) = −τ(ΩA) · sin[Φt(ΩA)] · Pin(Ω) (2.116)

Figure 2.17 shows the dependence of the factors τ and sin(...) on the dispersion of

the cavity for a noise side-band at the cavity 3 dB cutoff-frequency Ωc. The residual

cavity dispersion affects mostly the attenuation of the signal τ . The relative impact

of the cavity dispersion on the conversion efficiency diminishes at higher detection

frequencies Ω� Ωc.

Although the analysis of intensity noise in the resonant transmitted signal seems

initially to be promising, care has to be taken when a quantitative analysis is done.

Precise information on the cavity dispersion is necessary to determine absolute values

of spectral phase noise in the seeding comb without ambiguity.



CHAPTER 2. THEORETICAL CONSIDERATIONS 57

Phase noise and amplitude-phase correlation measurements. The principal

effects of a passive cavity on a seeding resonant beam are the filtering and the

interconversion of the noise field quadratures, see Eq.(2.111). Nevertheless, in order

to use and quantify such effects, it has to be considered that the measurable noise

densities are the mean squares S = 〈|.|2〉 at any detection angular frequency Ω:

SI(Ω) = 〈|Q(Ω)|2〉, Sφ(Ω) = 〈|P (Ω)|2〉 (2.117)

In a typical experiment like section 4.2, the intensity noise of the seed and the resonant

transmitted beam are readily available. By the use of Eq.(2.111), they are related by:

Qout = τ cos[Φ]Qin − τ sin[Φ]Pin (2.118)

Holding for all side-bands Ω, this relation can be written in terms of the measurable

noise densities S(Ω). An amplitude-phase correlation term appears and one obtains:

SI,out = τ 2 cos2[Φ]SI,in + τ 2 sin2[Φ]Sφ,in + 2τ 2 cos[Φ] sin[Φ]〈PinQin〉︸ ︷︷ ︸
cPQ

(2.119)

If the correlation term cPQ is negligible, the phase noise of the seeding beam can be

calculated. Only the intensity noise of the seed SI,in and the cavity output SI,out are

required:

Sφ,in =
SI,out − τ 2 cos2[Φ]SI,in

τ 2 sin2[Φ]
(2.120)

For typical detection frequencies above the cutoff frequency and typical intensity

noise levels recorded within this thesis this result can be simplified. The intensity

noise of the seed is close to the SQL and negligible compared to the output:

SSQL ' SI,in � SI,out. The phase noise of the seed is readily calculated by

Sφ,in ≈
SI,out

τ 2 sin2[Φ]
(2.121)

In order to underline the applicability of Eq.(2.121) and to provide a simple

accessible conclusion, the coefficients of the intensity noises Eq.(2.120) are plotted in

Fig. 2.18. They are 1© for SI,in and 2© for SI,out. Above the cavity cutoff frequency at

100 kHz, it is the coefficient 2© that contributes most significantly. The output intensity

noise of a resonant transmitting cavity contains consequently major information

about the phase noise of the cavity seeding beam.
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Figure 2.18: Phase noise measurements based
on cavity intensity excess noise - the seed
intensity noise as a possible error source. The
phase noise Sφ,in of the seed of a transmitting
cavity can be represented in terms of: the intensity
noise of this seed SI,in with coefficient 1© and the
intensity noise at the cavity output SI,out with
coefficient 2©. This approach assumes vanishing
amplitude-phase noise correlations for the seed of
the cavity.

Assuming a signal-to-noise ratio SNR=1, the sensitivity of a phase noise mea-

surement based on Eq.(2.121) is the inverse of the curve 2© in Fig. 2.18. For typical

detection frequencies above 100 kHz, the sensitivity to phase noise is 10 to 30 dB above

the SQL. In consequence, the measurement of phase noise using noise quadrature

conversion by a passive cavity is not of quantum-limited sensitivity.

Amplitude-Phase noise correlations. It is a special feature of optical frequency

combs that the phase noise property common to all combs lines, the CEO-phase noise

SCEO, can be measured separately by e.g. an f-2f beating. This permits to access the

term Pin in Eq.(2.119) and consequently the direct measurement of the amplitude-phase

noise correlations of the seed. In a simplified representation of the functional dependence

F [...] one obtains:

cPQ = F [Si,in, Si,out, SCEO] (2.122)

The required data is readily accessible in an experiment. A corresponding measure-

ment is presented in section 4.2.

Conclusions - transfer of noise field quadratures

Transmissive passive cavities are in conclusion a powerful tool to measure phase

noise in optical frequency combs. Their interconversion of noise field quadratures

makes phase noise in optical frequency combs readily measurable. Even the analysis

of phase noise over the optical spectrum of the seeding comb might be possible

- a measurement of highest complexity with other techniques. Nevertheless, care

has to be taken if such a broadband resonance is exploited. Even smallest levels of

intracavity dispersion may have a significant influence on the quadrature conversion,

see the experiment in section 4.2. Transmissive passive cavities filter amplitude and

phase noise of the seeding field. The resulting beam can be used as a "quiet" reference

for phase noise measurements, as done in numerous experiments of chapter 4.
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This chapter prepares the main results of this thesis: a filtering scheme and new

measurement principles for noise in optical frequency combs, close to the standard

quantum limit (SQL). To this aim and in the first part, the noise of a Ti:Sapph oscillator

is characterized extensively with standard methods. The second part of this chapter

characterizes the principal new measurement tool of this thesis: a broadband resonant

passive cavity.

3.1 Properties of the Ti:Sapph oscillator

The timing measurement depicted in Fig. 2.8, page 37, requires a broadband, fem-

tosecond light source with low phase noise. A passively mode locked Ti:Sapph

oscillator is such a source. Here, the properties of a commercial Femtolaser SYNERGY

HP system pumped by a Coherent Verdi V10 are studied. The aim is to apply

this oscillator to a proof-of-principle timing jitter measurement in the future. The

oscillator provides pulses of shorter then 30 fs, with a bandwidth of 40 nm FWHM,

centered at 800 nm and with a repetition rate of 156 MHz. Stable mode-locking is

achieved between 750 mW and 1.6 W output power. As shown in section 2.5, the

sensitivity of the homodyne timing measurement depends essentially on the phase

noise of the used oscillator. Its intensity noise is nevertheless not neglected here: it is

important for a better understanding of the underlying noise sources and processes.

Both amplitude and phase noise will be characterized relative to the SQL. This

chapter does not develop new methods, but tries to use standard techniques at their

highest sensitivities. The detailed characterization of the oscillator noise indicates its

origin and provides conclusions on how to reduce it. This could finally increase the

realistic sensitivity of the homodyne timing measurements.

For the following considerations, note that a passively mode-locked femtosecond

laser generates a coherent pulse train with a coherence length of up to 106 m. It is

consequently always also a CW laser. Intensity and phase noise properties are conse-

quently well defined at side-band frequencies Ω well below the repetition rate ωrep.
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Figure 3.1: Sketch of the transimpedance ampli-
fication of the photodiode signal. The photodiode
is polarized at -15V to increase the quantum
efficiency of detection. The amplification is done
separately for the DC part (low passed, not shown)
and the AC signal (high passed). The cutoff
frequency of the latter is choosen not lower than
several kHz in order to prevent the OPA 657 from
saturation by low frequency noise. The output
gain is flat up to 10 MHz detection frequency.

3.1.1 Intensity noise

The circuit shown in Fig. 3.1 is used for shot noise resolving detection of optical

signals. It provides high gain and avoids saturation by a separated amplification

of the DC and the AC part of the signal. Standard Hamamatsu S5971 photodiodes

are applied to characterize amplitude noise in a band from above 20 kHz to 10 MHz.

The gain is restricted to this bandwidth as the Ti:Sapph oscillator considered here

is expected to be at the shot noise level above 10 MHz detection frequency. Signif-

icant gain at the repetition rate 156 MHz would in addition saturate the amplifier.

Intensity noise at low detection frequencies DC to MHz can also be analyzed using a

complementary Thorlabs PDA36 detector. This off-the-shelf detector was measured

to have signal dependent gain and is not suitable for shot noise resolving signal

analysis. Nevertheless, the measurements with both detectors can be combined to

the RF-broadband intensity noise analysis shown in Fig. 3.2, left. The shot noise level

obtained by balanced detection Fig. 3.2, right, can be normalized to the carrier power

P of the beam by Eq.(2.35): SSQL = 2hν/P . Due to detector saturation, typical signals

here detected are attenuated to below 10 mW average power. The entire detection of

the available 1 W optical power would lead to a much lower SQL, but requires the

development of highly evolved electronics [14, 15].

According to Fig. 3.2, left, the intensity noise of the Ti:Sapph oscillator and the

Verdi V10 pump laser follow the same 1/f power law over 3 decades of detection

frequency. They are therefore strongly correlated. The intensity noise of the Verdi

pump laser is consequently the principal origin of the Ti:Sapph intensity noise.

The broad noise peak at 500 Hz to 1 kHz lies in the same frequency region as the

mechanical resonances of the typically used opto-mechanical assemblies. The optical

table has been characterized to strongly attenuate mechanical vibrations above 1 kHz,

see Fig. A.12. The 1/f intensity noise of the DPSS-laser Verdi V10 is supposed to arise

from electronic noise processes in the pump diodes.
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Figure 3.2: Intensity noise of the Ti:Sapph oscillator and its pump.

left: Broadband RF-analysis. Independently of mode-locked or CW-operation, the broadband
1/f RF-distribution of the Ti:Sapph intensity noise 2© is originated by the pump laser 1©. The data
shown consist of two measurements in the RF domain: one with a spectrum analyzer close to the SQL
using a linear frequency scale, a second covering 20 Hz to above 100 kHz with a network analyzer. Its
log-scaling does not record the singular relaxation oscillation line of the Verdi at 100 kHz.

right: Close to the SQL. Typical intensity noise 3© close to the shot noise limit SQL 2©, well
above the measurement noise background 1©. The significant RO-peak in the amplitude noise can be
reduced by careful alignment of the laser. Inset: Balanced detection discriminates between shot noise
(difference) and any classical amplitude noise (sum). At 1 mW detected optical power, the shot noise
level is 10 dB above the electronic noise of the detector used here.

Figure 3.2, right, puts the focus on the shot noise limit. Independent of the

alignment of the Ti:Sapph laser, the intensity noise reaches the shot noise level (SQL)

at approximately 3 MHz for 5 mW of detected power. The relaxation-oscillation peak

at 1 MHz is in contrast related to the strength of the Kerr-lens [92]. It can be reduced

to below 2 dB above the continuous 1/f intensity noise distribution by optimizing the

oscillator power and alignment.

The roll-off of intensity noise above the relaxation-oscillation (RO) frequency at

1 MHz can be explained by a simple rate equation model [39]. The competition of

different longitudinal modes in the Coherent Verdi pump laser may also be an issue.

Concerning all such effects, a detailed experimental and theoretical characterization

has been done in [13] relative to the quantum limit. Their results are consistent with

the data presented here. Note that the intensity noise properties have been observed

to be independent to continuous wave or mode locked operation of the Ti:Sapph

oscillator.
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The pump laser intensity noise is close to the shot noise level at 1 MHz detection

frequency. This region of detection frequencies and noise levels might appear to

be of minor relevance in terms of quantum-limited intensity noise of the Ti:Sapph

oscillator. However, the pump laser intensity noise is supposed to be a major driver

of CEO-phase noise of the oscillator, see section 2.4.3. The only other "high frequency"

noise source, spontaneous emission, adds only uncorrelated noise to the lines of the

frequency comb.

In order to reduce intensity noise of the Verdi pump laser further down to the

SQL, a passive filtering cavity can be suggested. This approach is studied in the

appendix section A.1. It turns out to be not suitable. The Verdi laser is specified with

a MHz linewidth. Filtering of amplitude noise with a passive cavity down to the SQL

is not possible if significant phase noise is still present at the detection frequencies

considered. Indeed, passive cavities convert phase noise to intensity noise.
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Figure 3.3: The measurement of CEO-phase noise. Principal lock and in-loop, out of lock
bandwidth measurement.

Used components: 1. Ti:Sapph oscillator; 2. Menlo Systems f-2f interferometer, avalanche
photodiode APD210; 3. Menlo Systems feedback loop - digital phase counter DXD 210/212, kHz
bandwidth proportional-integrator-amplifier; 4. Agilent RF generator; 5. Rhode & Schwarz VCO/RF
generator; 6. MiniCircuits analog phase detector (Mixer); 7. PI-amplifier of kHz bandwidth closing
the phase-lock-loop PLL

Signal Analysis: A Spectrum analyzer: Direct spectrum method and phase noise analysis tool MXA,
B Network/Spectrum analyzer: phase quadrature obtaiened from the PLL, signal 10 kHz high-passed.

3.1.2 CEO-Phase noise

It has been found in the theoretical considerations above, see Eq.(2.72), that the CEO-

phase noise of a frequency comb is the limiting factor to a homodyne pulse-timing

measurement. The sensitivity ∆umin(f) at a detection frequency f was obtained to

be proportional to the CEO-phase SSB PSD ∆umin(f) ∼ SCEO(f). To evaluate this

statement more precisely, the CEO-phase noise has to be quantified relative to its

ultimate lower limit, the SQL.

This aim is different to the typical purpose of the literature: the characterization

and reduction of the CEO-linewidth. Figure 3.3, gives a schematic of the entire

experimental setup used here for phase noise characterization. In Fig. 3.4 the locked

CEO-signal is detected and directly plotted. Although the carrier is of less than kHz

bandwidth, noise side-bands are present up to 1 MHz detection frequency. These low

levels do not contribute to the linewidth, but they turn out to be the limiting factor for

the high sensitivity homodyne timing measurement.
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Figure 3.4: Typical data of the direct measure-
ment of the CEO-frequency. Signal measured with
3 kHz resolution bandwidth (RBW). To provide
comparison to other systems (data not shown):
The signal to noise ratio is 60 dB at 100 kHz RBW,
while seeding a polarization maintaining PCF with
a pulse train of average power 500 mW and less
than 30 fs pulse duration

Different phase noise measurement methods. Due to its complexity and required

high sensitivity, the measurement of phase noise is an art itself. Several methods with

different advantages and drawbacks are available. Three of them have been used to

analyze the Ti:Sapph’s CEO-phase noise and are described below.

Figure 3.3 shows the entire CEO-phase noise measurement setup containing all

three approaches. All three are in-loop with the low-passed lock of the mean CEO

frequency. The phase noise measurements themselves are nevertheless done far out-

of-bandwidth of this feedback loop.

In order to lock the CEO carrier frequency, the signed signal of CEO-phase

deviations is obtained from a f-2f beating. A Menlo Systems digital phase comparator

subsequently counts up to 12 bit phase difference, see Fig. 3.3 points 3. and 4. The

proportional-integral-feedback-bandwidth is set to the lowest possible value of below

10 kHz. To this aim, the low-pass comparator output and an additional higher-order

low pass filter are used. Corresponding to a π-phase shift in the low-pass PI-amplifier

chain, the first oscillation of the CEO-lock occurs then at approximately 11 kHz. All

CEO noise properties above this frequency will in consequence be considered to be

such as of a free-running oscillator.

I. The direct measurement method A©. Being shown in the setup Fig. 3.3 A© it

consists of: a direct recording of the electronic fCEO signal and its noise side-bands. The

assumption of negligible intensity noise allows then the interpretation of the signal as

phase noise. It is reasonable considering the data Fig. 3.7 below. The data obtained has

the advantage to be readily calibrated to the carrier power, so dBc-units. The phase

noise SQL being available in units dBc with Eq.(2.35), the data can directly be related

to the SQL. A typical measurement result is shown in Fig. 3.4. One distinguishes the

10 kHz CEO-lock bandwidth and a 100 kHz side-band arising from the relaxation-

oscillations of the Verdi pump laser.
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II. The Phase Lock Loop (PLL) method B© This method locks a second voltage

controlled oscillator (VCO) to the phase quadrature of the already locked fCEO. A

MiniCircuits Phase Comparator ZRPD-1 and a loop of a below kHz bandwidth

(Fig. 3.3, elements 5., 6., 7.) are used for this purpose. The high-passed signal of the

calibrated mixer is subsequently analyzed with a spectrum- or network analyzer.

This measurement provides the highest signal to noise ratio and an analysis of

the CEO phase noise to up to 700 kHz side-band frequency. In order to simplify

the measurement, it turned out that the phase-lock is even not necessary to detect

sidebands at high detection frequency. The same noise distributions were obtained

by just setting the oscillator element 5. in Fig. 3.3 to a frequency close to the CEO-

carrier without any feedback. Within this method of highest sensitivity, the avalanche

photodiode (APD) detecting the f-2f-beating was observed to be subject to 1/f 2 phase

excess noise. It is nevertheless only present below -100 dBc and for detected power

levels close to saturation at 1 mW. Being a function of the detected optical power, the

measurement sensitivity for CEO phase noise is consequently limited by the phase

distortion free dynamic range of the Menlo Systems APD210.

III. Spectrum analyzer built-in measurement C© The phase-noise measurement

tool available for spectrum analyzers Agilent MXA can be used for comparision.

Having a rather high measurement noise floor, the practical use is to verify the

calibrations for the CEO phase noise from the methods I. and II. above.

To summarize, a large number of measurement and calibration techniques are

available to characterize phase noise of radio-frequency oscillators. In order to

access lowest levels of phase noise, the main issue is typically a careful measurement

calibration and a comparison of different measurements. This motivates the following

measurement of a CEO-phase noise reference curve.
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The CEO phase noise reference data. Figure 3.5 shows typical results of all three

phase noise measurement types discussed above. Trace 1© is of highest dynamic range

and chosen to be the reference data for the further CEO-phase noise considerations

in this thesis. It combines the direct-spectrum technique I with the PLL method II.

The first calibrates the measurement and quantifies phase noise up to 100 kHz. The

second is of highest sensitivity and is overlayed with the first in the region 50 kHz to

100 kHz. A direct calibration of II leads to values within the 3 dB overall error-bar.

The local maximum and the shape below 10 kHz is highly sensitive to changes

of the CEO-lock parameters. The noise peak at 100 kHz arises from the relaxation

oscillation (RO) of the Verdi pump laser (diode pumped Nd:YAG). The Kerr effect

couples it to a modulation of the CEO frequency. The dashed shape of the trace 1©
below -120 dBc is due to phase excess noise from the APD.

Figure 3.5: Principal reference curve of the CEO phase noise from independent measurements and
with different methods. Trace 1© is the principal reference data used in this thesis.
Ti:Sapph oscillator parameters: CEO carrier frequency 20 MHz, output power 1 W, optimized
alignment to reduce relaxation oscillation amplitude noise peak at 1 MHz, photonic crystal fiber seed
500 mW. All signals smoothed using an FFT-filter. The estimated error bar is 3 dB for all traces.

Applied measurement methods:
green: Method III, measurement with spectrum analyzer software,
red: Method II, phase comparator measurement with 50 Ω impedance, Kd approximately 50 mV/rad,
blue: using I, the direct recording of the CEO carrier and noise spectrum; in addition II, the phase
comparator measurement with 1 MΩ impedance, Kd approximately 20 V/rad,
To optimize the dynamic range, the signal on the APD has been attenuated until the intensity
dependent 1/f2 phase modulation excess noise below -100 dBc vanished.
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Figure 3.6: Comparison of the CEO noise reference data of this thesis (Fig. 3.5) to non-fiber fs-
oscillators. SSB CEO phase noise of a similar, Verdi pumped Ti:Sapph oscillator [A], an octave
spanning Ti:Sapph oscillator [B], a direct diode pumped saturable absorber Yb:KYW system [C], the
data of this thesis [D]

Comparison of the CEO-phase noise reference data to other fs-oscillators

Non-fiber oscillators. The CEO-noise reference trace Fig. 3.5 can be compared to other

Ti:Sapph- and fs-oscillators, as shown in Fig. 3.6. The data obtained in this thesis [D]

are compared to a similar Ti:Sapph oscillator pumped by a Verdi [A]1, to an octave

spanning Ti:Sapph oscillator pumped by a diode-pumped solid state laser source [B]2

and to a fs-oscillator based on a saturable absorber Yb:KYW oscillator [C]3. All data

were extracted from the cited publications and FFT-filtered for better visualization.

The data of this work has the lowest measurement noise floor and shows the most

homogeneous shape over the covered RF-bandwidth. This confirms the quality of the

measurement scheme used here.

In a first approximation, the CEO noise distributions of all oscillators show either a

second or fourth-order decay. This is consistent with the theory of H.A.Haus, Eq.2.56.

The slope predicted therein is essentially a function of the oscillator gain parameters.

It arises from spontaneous emission in the gain medium and noise coupling processes.

Fig. 3.6 reveals that in comparison to the similar oscillators, it is the Synergy HP

oscillator that shows the lowest level of CEO noise in the MHz region. The CEO can

be expected to reach the SQL at lowest detection frequency. This oscillator is therefore

one of the best on the market for experiments sensitive to CEO noise close to the SQL.

1 Ti:Sapph, 20 fs, 105 MHz, 900 mW [27] 2 Ti:Sapph, 570-1140 nm, 200 MHz, 270 mW [93]
3 Yb:KYW, centered at 1040 nm, 160 MHz, 260 mW [17]
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Figure 3.7: Comparison of the Ti:Sapph oscillator of this thesis 1© to a Menlo Systems Fiber
comb 2©. Lower traces: intensity noise, above: phase noise. The fiber comb is of a linewidth of
approximately 300 kHz. The intensity measurements for the Ti:Sapph were done with two different
measurement configurations using a Network Analyzer and log-frequency scale: a first of the free
running oscillator using DC-to MHz detector (a), a second of the CEO-locked oscillator using a 10 kHz
high-pass detector (b). At 10 mW detected power, the noise of the fiber comb does not reach the SQL
for any detection frequency.

For a larger comparison, the CEO noise of a chirped mirror Ti:Sapph oscillator has

been compared to one using a prism pair in the literature [94]. Due to reduced beam

steering effects, the results suggest an approximately 10 dB lower CEO noise when

chirped mirrors are used.

Comparison to fibered oscillators. The Synergy Ti:Sapph oscillator can also be

compared to a fiber oscillator, here the Menlo Systems fiber frequency comb. Fig. 3.7

shows intensity and phase noise relative to the SQL for 10 mW detected power.

The mean-CEO frequency of the comb was locked using an f-2f-interferometer.

Nevertheless, a linewidth of approximately 300 kHz remained. This value is similar

to a 200 kHz linewidth reported in the literature for an Er-fiber oscillator [95]. The

CEO phase noise is defined only up to detection frequencies frep/2 = 50 MHz as it is

sampled by the repetition rate. Although taking into account the second order decay

out of the linewidth, the CEO phase noise never reaches the SQL until this limit. For

all detection frequencies, the intensity noise of the fiber-comb is approximately 20 dB

above the intensity noise of the Ti:Sapph oscillator.

In summary, the fiber based frequency comb studied here is not quantum-limited

for any detection frequency. It is not suitable for quantum-limited measurements.
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Conclusions on CEO-phase noise.

The CEO-phase noise of a commercial Ti:Sapph oscillator can be analyzed with

readily available methods down to lowest levels of -120 dBc. The primary signal is

obtained from an f-2f beating after coherent broadening of the initial frequency comb

(approx. 500 mW). The resulting beating signal is of less than 1 mW and has to be

detected with an avalanche photodiode. It is finally the dynamic range of this detector

that limits the measurement sensitivity.

Both intensity and phase noise of the Ti:Sapph oscillator reach the SQL pur-

portedly below 10 MHz detection frequency. This is not the case for the fiber

oscillator investigated here. The former is consequently not suitable for quantum-

limited measurements. Section 4.4 shows that quantum limited fiber oscillators might

nevertheless be technically feasible.

In order to overcome the limitations of the f-2f detection scheme, a new measure-

ment principle has been developed in this thesis. It is of quantum limited sensitivity

to phase noise in optical frequency combs and presented in section 4.
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Figure 3.8: Repetition rate phase noise of the Ti:Sapph oscillator.
left: Side-band noise distribution for several harmonics of the repetition rate, obtained from a direct
record of the photodiode signal with a spectrum analyzer, see [73]. In contrast to amplitude noise,
phase noise side-bands should increase with the indicated harmonic number. Phase noise was not
resolvable with this technique.
right: Phase noise of the 7th repetition-rate harmonic (1.090 GHz) obtained by homodyning the phase
quadrature in a PLL configuration using a Rhode&Schwarz voltage-controlled oscillator.

3.1.3 Repetition-rate phase noise

Besides the CEO phase, a mode-locked fs-oscillator carries an additional

phase/frequency property: the repetition rate. In the theory of H.A.Haus,

Eq.(2.55), the fluctuations of the gain spectral response are the principal driving

force for repetition rate fluctuations. They couple to the repetition rate by intracavity

dispersion. Noise levels well below those of the CEO are expected for the repetition

rate. Both originate from the phase fluctuations of the optical frequencies in the

comb. Nevertheless, the former is directly associated to an optical carrier frequency,

whereas the second is detected on the repetition rate (MHz) carrier.

A pulse train with a given repetition rate corresponds to an equally spaced Dirac-

comb in the frequency domain. A detection of such a pulse train always also records

the harmonics of the repetition rate. As is has been shown in Fig. 2.10, that phase noise

side-bands of the repetition rate appear with higher amplitude at higher harmonics.

Figure 3.8 shows the data of a measurement based on this approach. Nevertheless, in

the case of the measurement presented here, the directly recorded side-bands do not

systematically grow with the harmonic order. The method cannot be applied and the

origin of the side-bands observed is cannot be repetition rate phase noise. Intensity

noise of the Ti:Sapph oscillator or phase noise of the homodyning spectrum analyzer

could be the origin of the signals shown.
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Figure 3.9: Comparison of the intensity- and repetition rate noise to a similar Ti:Sapph oscillator.
Comparative data 1© form [12]. The oscillator studied here 2©. left: intensity noise, both oscillators
pumped by laser diodes. right: repetition rate phase noise both scaled to 156 MHz, in addition right
scale CEO phase noise recorded in this work; the dynamic range of the left and right scale is 100 dB, the
right is 30 dB above the left

To eliminate intensity noise as a possible error source, the Ti:Sapph repetition rate

signal phase noise has been characterized in a phase-lock-loop configuration. The

recorded data are shown in Fig. 3.8, right. The 7th harmonic of the repetition rate has

been chosen due to its best signal to noise ratio. The phase noise has been analyzed

down to 10 Hz side-band frequency.

The repetition rate phase noise decays with fourth power of the detection fre-

quency in the interval 10 Hz to 1 kHz. The deviations from this power law in

the interval 500 Hz to 1 kHz can be attributed to mechanical resonances within the

oscillator, see Fig. A.12. The noise level of detection is reached at -120 dBc. The

theory of H.A.Haus, page 31, predicts a fourth order decay of the repetition-rate phase

noise if spontaneous emission is the only noise driver. There is in consequence an

indication for such a spontaneous emission limited repetition rate phase noise. A

similar situation has been describe in the literature for a Ti:Sapph oscillator [42].

Comparison to the literature. It is in addition possible to relate the data observed

here to the detailed analysis of Scott et al.[12]. For a Ti:Sapph oscillator similar to the

one used here4, this reference compares different pump laser sources. It shows that

the repetition rate noise above 10 kHz is strongly correlated to the intensity noise of

the oscillator - and consequently the properties of the pump laser. In order to allow

comparison, Fig. 3.9, left, shows that the oscillator studied here exhibits nearly the

same intensity noise distribution as the one in [12].

4 KMLabs, average output power 750 mW, frep = 80 MHz
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The oscillator considered in [12] is based on prism based dispersion compensation.

Compared to the here used chirped mirror based oscillator a lower mechanical

stability is consequently expected below 10 kHz. The comparison of the repetition

rate phase noise of both oscillators is shown in Fig. 3.9, right. It confirms the argument

of reduced stability for a prism based system below 1 kHz detection frequency. When

approaching the measurement noise floor of -140 dBc both traces show similar values.

The intensity noise of both systems was measured to be comparable. It can

consequently be assumed here that both systems show similar repetition rate noise

at detection frequencies above 10 kHz. As such, the CEO-phase noise data of this

thesis available above 10 kHz detection frequency can be compared to the repetition

rate phase noise - using the data from [12].

Summary: Ti:Sapph repetition rate- and CEO-phase noise.

Figure 3.9, right, compares the repetition rate phase noise of both Ti:Sapph oscillators

to the CEO phase noise reference data of this thesis. The latter is significantly above

the repetition rate phase noise. The difference can be estimated to 70 dB at 100 kHz

side-band frequency. Compared to the repetition rate, the CEO noise decreases with

a much steeper slope.

Their respective impact on the phase noise of any individual line can be estimated

by multiplying the repetition rate noise level with the longitudinal mode number

105...106. Similar levels are obtained and it is not clear which comb property governs

the phase noise of the individual lines of the comb. It will be a key result of this thesis

to show that it is indeed the CEO-phase noise that is predominant, see section 4.5.1.

In addition, it is so far not clear how both will evolve close to the SQL. The theory

of H.A.Haus describes the decay of both phase noises of a Ti:Sapph oscillator. It

is predicted to be of the fourth power of the detection frequency, see Eq.(2.58) and

Fig. 2.5. It is again section 4.5.1 that will present a new measurement method to

analyze both phase noises close to the SQL.



74 3.1. PROPERTIES OF THE TI:SAPPH OSCILLATOR

3.1.4 Estimation of the free running linewidth

The considerations above concern the low level side-bands of the CEO-frequency

and the repetition-rate. In order to provide rapid comparison to other oscillators

and domains of laser metrology, it is always instructive to estimate the free running

linewidth of the oscillator.

The average levels and slopes of the CEO and repetition rate phase noise can be

compared using Fig. 3.9, right. In order to provide a comparison at a same carrier

frequency, 50 to 60 dB have to be added to the repetition rate phase noise. Similar

noise levels are reached. Anticipating the results of section 4.5.1, Fig. 4.37, right, it is

finally the CEO-phase noise that dominates the phase noise of the entire frequency

comb and all individual lines. It is consequently sufficient to consider this comb

property when estimating the average optical linewidth.

First approach. The simplest measure of the linewidth of an electronically

available signal is depicted in Fig. 3.10. It consists in an application of the band-

power function of spectrum analyzers. Due to slow drifts of the absolute value of

the CEO carrier frequency, this method is in practice not easy to apply to a free

running Ti:Sapph oscillator. However, the linewidth can still be estimated with the

following approach, considering the sensitivity of the CEO-frequency to oscillator

power fluctuations.

Figure 3.10: The simplest measurement of the
linewidth of a free-running RF-oscillator. It uses
the band power function of a spectrum analyzer.
Here the CEO-frequency of a Menlo Systems Fiber
comb is analyzed. After the measurement of
the power in the entire signal, the measurement
bandwidth is decreased until the 3 dB decay of
the band power. The resulting bandwidth is an
estimate of the oscillator CEO-signal linewidth.
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Second approach. Besides spontaneous emission, the principal noise driver of

the Ti:Sapph oscillator are fluctuations of the pump/output-power. A slow, step-

function modulation can be applied to the pump power while recording fCEO and

frep. Modulation timescales of approximately hundred milliseconds are sufficient

to provide for thermal equilibrium under small pump power modulations. Using

different modulation depths, one obtains at 0.3 Hz modulation frequency and 1 W

output power Pout:

dfCEO

dPout

= 0.25 MHz/mW,
dfrep

dPout

= 0.16 Hz/mW (3.1)

The low frequency deviations of the repetition-rate were recorded using the 10th

harmonic of the signal. It was demodulated with a GHz carrier in order to measure

the resulting kHz frequency frequency shift with an oscilloscope. With regard to the

measured values Eq.(3.1), the CEO-frequency is significantly more sensitive to pump

power/gain fluctuations than the repetition-rate. The values obtained here will be of

further use in the fix-point formalism, section 4.2.

At an output power of 1 W, 0.12% peak-peak and 0.014% r.m.s. output power

fluctuations have been recorded for the Ti:Sapph oscillator. These values imply the

following linewidths of in the limit of mHz detection frequencies.

∆fCEO ∼ 33 kHz ∆frep ∼ 20 mHz . (3.2)

The dependence of the these coefficients on the modulation frequency is analyzed

in the following section. Additional mechanical fluctuations will in practice lead to a

larger ∆frep. An active pump power stabilization system with only 20 kHz bandwidth

can significantly reduce the linewidth of the CEO-frequency.

Summary. The phase noise of an average comb-line arises from both CEO-phase

noise and repetition rate phase noise. The latter contributes times the mode-number n

to the phase noise of the line ωn = ωCEO + nωrep. The mode-number of the comb

central frequency is approximately 2, 5 · 106, leading to a linewidth estimation of

50 kHz. Independent to the comb property that governs the phase noise of the

individual lines, their free-running linewidth can be estimated to 50 kHz for the

Ti:Sapph oscillator considered here.
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3.1.5 Noise transfer functions

The sections above studied the fluctuations of the free running Ti:Sapph oscillator:

its intensity, the CEO phase and the repetition rate phase. Another way to characterize

the oscillator noise is to study its noise transfer functions H(f). They are the ratio of

the change of oscillator output intensity and phases of CEO frequency and repetition

rate, over the modulation amplitude of the pump power. Their knowledge permits

an experimental evaluation of noise origins and possible ways to reduce them.

The measurement setup. The modulating driver is chosen to be the oscillator

pump power: its fluctuations drive all oscillator noise properties. Small modulations

can be easily addressed using an acousto-optical modulator, see Fig. 3.11. All

properties of the stable free running oscillator change linearly with the perturbation.

A sweep of the modulation frequency f leads to the transfer function HY (f) for any

oscillator property Y . Fig. 3.11 shows the measurement setup. The absolute value of

the transfer functions is recorded with an Agilent E5061B network analyzer.

Intensity transfer function. The transfer properties of a Ti:Sapph oscillator in

terms of intensity modulations have been extensively studied by [96]. The behavior

measured here is similar to their results: According to Fig. 3.12, the Ti:Sapph oscillator

is with less than 10 dB a weak amplifier for intensity modulations. This holds up

to the relaxation-oscillation (RO) frequency at 1 MHz. Above, the transfer function

drops rapidly. This effect is consistent with the rate equation based laser amplitude

noise model of [97, 39, 13]. A tuning of the RO-frequency will turn out to be suitable

tool to reduce oscillator noise close to the SQL.

Figure 3.11: Measurement of the (noise) transfer functions of the Ti:Sapph oscillator. Characterized
are the CEO-phase (1 → 2), the output intensity (1 → 3) and the repetition rate phase (1 → 4). The
numbers from this scheme are used again in Figure 3.12 that shows the measurement results.
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Figure 3.12: Measurement of the noise transfer functions. Intensity (1→ 3), CEO-phase (1→ 2)
and the repetition rate phase (1→ 4). The intensity transfer function is the only calibrated curve of the
three. The others are plotted with an arbitrary constant chosen for visualization. At a 1 Hz modulation
of the pump power, the ratio of the CEO-frequency (20 MHz) modulation over the repetition-rate
(156 MHz) modulation is approximately 1.5 · 106.
Note: The bandwidth of the transfer function measurements is limited by the 1 MHz bandwidth of the
driving AOM. Its transfer function (not shown) drops to -100 dB/dec at 1.2 MHz and has been removed
from all curves.

Repetition-rate phase: The transfer function pump to repetition rate phase (1→ 4),

Fig. 3.12, increases slightly by approximately 0.5 dB/dec over two decades of RF

frequency up to 1 MHz. This behavior is in contrast to those of the output intensity

and the CEO-phase. Fluctuations of the repetition rate are equivalent to a less "rigid"

lock of the relative phase of the comb lines. The observed slope is consistent with the

findings of Paschotta et al.[19]. For detection frequencies above 100 kHz a decreasing

strength of the relative phase lock between the individual frequencies is predicted.

CEO-Phase: The slope of the transfer function pump to CEO phase is determined by

the properties of the active CEO-phase lock. It’s action is visible up to 50 kHz. Above,

the CEO-phase transfer function follows a fourth order decay up to the RO-frequency

at 1.05 MHz. For higher detection frequencies it drops off even more rapidly.

The theory of Haus Eq.(2.56) predicts a second order decay if spontaneous

emission (white intensity noise) is the major driving force. It predicts a fourth order

decay if spontaneous emission driven spectral fluctuations of the center frequency

drive the CEO-phase noise. The transfer functions are recorded using a white

spectral density of modulation. As such, the observed effects are equivalent to

those of spontaneous emission. In consequence, the coupling process and indirectly

spontaneous emission are identified to be the mayor contributors CEO-phase noise.
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Figure 3.13: The free running CEO-phase noise 1© and the intensity noise 2© compared to the
pump to CEO transfer function 3©. The CEO-phase noise is similar to the transfer function, indicating
that its driver is a white noise process. The additional CEO-phase noise arises most likely from
intensity noise.

Comparison of free-running oscillator noise to transfer functions. Figure 3.13

compares the CEO-phase transfer function 1© to the CEO-phase noise of the free

running oscillator 3© and its output intensity noise 2©. The free running CEO phase

noise is nearly of the same slope as the transfer function. Above 100 kHz the ratio

follows approximately the same distribution as the intensity noise of the Synergy. The

measurement of a transfer function is equivalent to an excitation of the system with

white noise. The CEO-phase noise of the free-running oscillator arises consequently

mostly from couplings to other oscillator parameters that are themselves driven by

spontaneous emission. The influence of the pump laser intensity noise is small

compared to these couplings.

General slope of the transfer functions above 1 MHz. All transfer functions

decrease significantly above the relaxation-oscillation (RO) frequency at approxi-

mately 1 MHz. In order to obtain quantum-limited properties at lowest possible

RF-frequencies, one would have to set the RO-frequency of the concerned oscillator

to the lowest possible values. The RO-frequency is given for resonator losses l, an

intracavity power Pint, a round-trip time TR and a saturation pulse energy5 Esat by

[98]:

fro ≈
1

2π

√
lPint

TREsat

(3.3)

5 The saturation energy Esat of a laser gain medium is the pulse energy of a short signal pulse which
leads to a reduction in the gain to 1/e of its initial value. It is this parameter that contains the
gain-properties in the formula for the RO-frequency.
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An optimization of the oscillator properties in order to obtain a low fro is

consequently possible. The simplest approach would be to reduce the oscillator

repetition rate to obtain quantum-limited noise properties at lowest possible RF-

frequencies.

3.1.6 Summary of the noise properties of the Ti:Sapph oscillator

The intensity noise of the Ti:Sapph oscillator is principally driven by the intensity

noise of the pump laser. The same holds for the CEO-phase noise, but spontaneous

emission and couplings from other noise sources contribute significantly. The

repetition rate phase appears to be significantly less sensitive to pump power

fluctuations than the CEO-phase. Nevertheless, if the point of view is the phase

noise of the individual comb lines, this property can so far only be attributed to the

significantly lower carrier frequency (radio frequency instead of an optical carrier).

The fluctuations of both repetition rate and CEO frequency contribute both to the

width of the individual lines of the frequency comb. It is section 4.5.1 that analyzes the

phase noise of individual comb lines and distinguishes the contribution of repetition-

rate and CEO fluctuations.

The oscillator noise is expected to be quantum-limited below timescales of

approximately 0.2 microseconds, both in intensity and phase. The frequency at which

the oscillator is quantum-limited is principally set by the relaxation oscillation of the

oscillator. All oscillator noise decreases rapidly above this frequency.
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3.2 Design of a passive broadband cavity

The previous section studied noise properties of a femtosecond Ti:Sapph oscillator

relative to the standard quantum limit SQL. Phase noise properties above the SQL

limit the precision of the timing measurement scheme introduced in section 2.5. To

filter such noise, a passive cavity has been studied theoretically in section 2.7. From

this point of view, it turned out to be a valuable tool to filter and even to analyze noise

in optical frequency combs.

The first suggestion to apply a passive cavity to optical combs is [99]. It

mentions the possibility to analyze the spectral phase noise of a comb. A cavity

assisted measurement of underlying low level, outer side-bands of phase noise has

been studied for a CW laser by [100]. Therein a Pound-Drever-Hall setup was

used reflection. White Shawlow-Townes limited frequency noise turned out to be

detectable down to -100 dBc from only 100µW optical carrier signal.

This chapter describes practical issues of the experimental implementation of such

a broadband cavity for a frequency comb. First of all, it has to be shown that a

passive, high finesse cavity can be simultaneously resonant on a sufficiently large

optical spectrum.

In order to lock such a cavity to a frequency comb, error signals for both

frep and fCEO can be obtained using spectral selective detection of a cavity

reflection [101, 34, 81].

3.2.1 Technical design of the cavity

A schematic of the passive broadband cavity is shown in Fig. 3.14. The cavity

consists of two output couplers of reflectivity R = 99.82%, two convex spherical high

reflectivity (HR) mirrors of radius of curvature ROC -2000 mm and two plane HR

mirrors, one of which is mounted on a piezo element. The pressure of the laboratory

air environment of the cavity can be tuned down to 0.5 mbar.

The matching of the transverse mode of the seed beam is done by a telescope of

3 spherical mirrors (ROC -2000, -1000, +500 mm). Compared to the use of lenses, this

approach does not add dispersion. Resulting chirp of the femtosecond pulses could

hinder subsequent future experiments.
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Locking the cavity to the seeding frequency comb. Locking is achieved using

a Pound-Drever-Hall (PDH) scheme in reflection. Other schemes like Hänsch-

Couillaud or Tilt-lock are more sensitive to low frequency fluctuations of the labo-

ratory environment. Two approaches can be used to obtain a phase modulation on a

beam injected into the cavity - without adding dispersion through an eventual EOM :

As one possibility, one of the mode-matching mirrors is placed on a piezo electrical

element. Driven at a mechanical resonance above 500 kHz, this approach can provide

a modulation depth sufficient for a lock of the cavity.

As a second possibility, a part of the seed beam is transmitted by an electro-

optical modulator EOM and injected in counter-propagation into the cavity. The non-

resonant EOM is used at a frequency of 1.6 MHz. The concerned beam part will be

called the reference beam. The Ti:Sapph oscillator being of a coherence length of larger

than 105 m, it would theoretically be possible to lock the cavity even with a reference

beam undergoing a delay up to this value. This technique is advantageous as it does

not perturb the signal transmitted by the cavity neither by a phase modulation nor by

dispersion.

The performances of both approaches are compared in detail in Fig. 3.19.

Figure 3.14: Implementation of the broadband cavity used in this thesis. The setup consists of:
mode matching of the bright seed 1© and the reference beam for PDH lock in reflection 2©, the reflected
reference is detected spectral resolved to obtain error signals for the PDH lock and CEO phase noise 3©,
the cavity itself in a vacuum chamber 4© consists of two output couplers, two spherical mirrors and
two mirrors of variable position 5© - one on a micro-translation and one on a piezo element
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3.2.2 Geometric properties

The optical path of the cavity Fig. 3.14 can be simulated using a Gaussian beam

propagation. For a given distance d of the spherical mirrors, the injection waist is

determined by their radius of curvature (ROC). The general dependence is shown

in Fig. 3.15, left. For an experimentally convenient, symmetric setup as shown in

Fig. 3.14, the distance d is set to 300 mm. Within the interval of theoretically possible

ROCs, spherical mirrors of ROC -2000 mm are readily available from suppliers. From

the simulations Fig. 3.15, an injection waist of approximately 0,35 mm is expected. No

singularity is observed for small deviations from these parameters. These two values

are consequently chosen for the setup.

The stability of this choice against variations of the beam parameters can be

verified using the round-trip propagation matrix M , see Eq.(2.97): With Tr|M | < 2

this criterion is satisfied, see Fig. 3.15, right. The astigmatism of the cavity due to the

non vanishing angles of optical incidence (AOI) has also to be quantified. Any AOI

θ leads to an apparent ROC R′ = R/ cos θ. For a realistic transverse beam distance of

20 mm at the spherical/piezo mounted mirror, the relative change of the horizontal

waist relative to the vertical is neglectable (<0.05%).

In addition, the following criterion has to be verified below: The Gouy-phase

shift of a TEMnm mode is a function of k = n+m, see Eq.(2.99) and [89]. From

this fact, a cavity may be degenerate for several transverse modes if the difference

in Gouy-phase mod 2π is very small. The cavity discussed here is non-degenerate.

Figure 3.15: Numerical simulation of suitable cavity parameters.
left: Simulation of the injection beam waist as function of the distance d and the ROC of the spherical
mirrors. The selected parameters are d=300 mm, ROC=-2000 mm. The only interest to plot the second
waist would be to calculate peak intensities within the analysis of intensity related effects. The second
waist is always larger than the injection one and no additional information would be obtained.
right: The cavity stability criterion is fulfilled for the chosen parameters and within possible deviations.
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3.2.3 Conditions for broadband simultaneous resonance

It turns out that intracavity dispersion is the limiting factor when broadband simulta-

neous resonance of a high finesse cavity is desired. The following subsection studies

this limitation in detail for the cavity presented here.

The optical path in a cavity is about the same for a single frequency beam or a

frequency comb. However, the spectral transmission of a broadband cavity locked at

a given wavelength is governed by the spectral phase φ(ω), see Eq.(2.98). For a cavity

of finesse F the spectral transmission T (ω) is approximately

T (ω) ' 1− F 2φ(ω)2/π2. (3.4)

A linear phase φ(ω) leads only to a change of the optical length of the cavity and

can be compensated by piezo or fine-mechanic elements. The possible bandwidth of

simultaneous resonance is limited by the higher order terms, the dispersion.

In Fig. 3.16, the main dispersion properties of two types of mirrors and laboratory

air are shown. According to these characteristics, there are in principle two ways to

achieve a cavity with zero dispersion over a largest possible bandwidth:

1. Chirped mirrors. One is to use standard broadband mirrors and at least

one with negative dispersion. The residual negative dispersion of the cavity is

subsequently compensated by tuning the pressure of a lab-air environment. The

GVD of air is approximately −21fs2/bar ·m, [102]. This technique has nevertheless

the disadvantage that chirped mirrors always exhibit a residual dispersion modula-

tion - or significant higher order dispersion. The amplitude depends on all parameters

of the mirror design (materials, bandwidth, mean dispersion). It turns out that

for the expected finesse of larger than 1200, this variation would limit the optical

transmission bandwidth of the cavity to approximately 25 nm.

Figure 3.16: Dispersion of cavity elements.
1© laboratory air, 2© a λ/4 stack mirror and 3© a

chirped mirror. It is the cavity dispersion that limits
the simultaneously resonant optical bandwidth.
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Figure 3.17: Influence of the mirror properties on the expected broadband cavity resonance.
The limited mirror bandwidth leads to a spectral variation of the finesse 1©. The average finesse
(measured in next section) is obtained by adding 1600 ppm losses per round-trip.
The calculated transmission of the cavity 2©: From the calculated mirror dispersion properties, a
transmission of 90 nm FWHM is obtained under vacuum below 1 mbar. Some mbar of lab-air
environment reduce the bandwidth and modify the shape of transmission.

2. Zero dispersion mirrors and air pressure tuning. An alternative to fine-

tune dispersion is the use of λ/4-stack mirrors [103]. They consist of cost-efficient,

alternating layers of high and low index of refraction dielectric material. Their

reflectivity increases rapidly with the number of layers. For the fused silica (n=1.45)

and niobium oxide (n=1.9) used here, 20 layer-pairs lead already to a reflectivity of

R=1-20 ppm. Within a given bandwidth, such mirrors also provide lowest broadband

dispersion. Using such mirrors the slight residual dispersion could be compensated

by air pressure. This is the approach used here and Figure 3.17 shows the expected

results. With calculated values of |GVD| ≤ 0.5 fs2 up to over 90 nm bandwidth are

expected.

Upper bounds for the GVD. The maximal dispersion providing still broadband

resonance can be estimated using a Taylor approach for the spectral phase and

Eq.2.98. For a given finesse F and a spectral bandwidth of 2∆ω, a 50% decay of the

transmission in the wings of the spectrum sets the maximum mean GVD to

T (ω0 + ∆ω) ≥ 1

2
T (ω0) → φ′′ ≤ 2π

F (∆ω)2
(3.5)

For a finesse of 1400, a transmitted spectrum of 100 nm FWHM centered at 800 nm,

one obtains a GVD below 0.2 fs2, for 40 nm FWHM a GVD below 1.2 fs2. For a more

detailed analysis, a numerical integration of the GVD has to be done.
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The configuration used here. The spectrum of the Ti:Sapph oscillator used here

is centered at approximatively 800 nm. Including even the spectral wings of lowest

intensity below 1% peak intensity, its spectrum coveres 100 nm. Nearly the entity of

this spectrum is covered by the low dispersion properties of the λ/4-stack mirrors

(centered at 800 nm). A simulation of the broadband resonance of a six λ/4 stack

mirror cavity (geometry as shown in Fig. 3.14), assuming four mirrors of 30 ppm

transmission and two output couplers of 1800 ppm transmission is shown in Fig. 3.17.

The variation of the cavity transmission due to varying reflection

coefficients/finesse is neglectable over the covered bandwidth of 100 nm. The

measured transmission values, which will be presented in detail in the next section,

are only obtained by adding 1600 ppm of losses per round-trip. They may arise

from e.g. impurities of the mirror surfaces or mirror roughness (scattering). These

losses are at the order of magnitude of the output couplers, and a transmission

of significantly more than 50% can consequently not be expected. The shown

simulations of the spectral transmission do not take into account these losses.

Nevertheless, they show that an up to 90 nm broad transmission is possible for

a cavity set up under vacuum. A laboratory air environment of several mbar is

supposed to slightly change the spectral shape of transmission.
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Figure 3.18: Unlocked/locked cavity transmission properties. left: unlocked cavity-ringdown
permits the determination of the finesse. right: Broadband resonance at lock: seed spectrum 1©,
transmitted spectrum 2© at p=68 mbar and calculated transmission at p=30 mbar (dotted).

3.2.4 Measured finesse and broadband transmission.

The finesse F of the cavity is another principal characterization parameter and has

been introduced in Eq.(2.92). It can be determined from the cavity linewidth ∆ω

relative to the free spectral range (FSR) ΩFSR: F = ΩFSR/∆ω. Using this method a

finesse of 1250 is measured for the setup presented here.

Another method to determine the finesse consists in measuring the ring-down

time of the cavity after a sufficiently fast sweep over a resonance. With a round-

trip reflectivity R and a round-trip time TR one obtains for at a short time t after the

resonance [104, 105]:

Icav(t+ n · TR) = Icav(t) ·Rn = Icav(t) · exp

(
−nTR

τ

)
(3.6)

R = exp

(
−TR
τ

)
= exp

(
−2π

F

)
(3.7)

The finesse is consequently measurable using the cavity decay time. A value of 1425

is obtained form the data. A typical trace is shown in Fig. 3.18, left. To avoid eventual

effects of dispersion that would increase the apparent linewidth or decay time, a

1.5 nm FWHM interference filter was used for these two measurements. Although

being different within a 15% error, the two measurements indicate a real finesse of

the cavity below the theoretical values. Ring-down measurements are typically more

reliable as they are independent to the linearity of sweep and include a high number

of measurement points. With a finesse of 1425, the cutoff frequency of this cavity is

110 kHz.
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The rapid oscillations of the signal shown in Fig. 3.18 are due to an interference

effect of the light stored in the cavity and the seed. The former undergoes a Doppler-

shift due to the speed of the piezo mounted mirror while sweeping the cavity. The

resulting frequency difference leads to the observed beating [105, 106].

Broadband simultaneous resonance. A typical broadband resonance of the cavity

is shown in Fig. 3.18. A transmission of 35 nm FWHM and more than 60 nm including

the spectral wings is obtained. To underline the dependence on the applied air

pressure, a the plotted simulation considers a slightly different one. This result

demonstrates that the concept of a broadband passive, high finesse cavity is in

principle applicable to a frequency comb.

3.2.5 Properties of the PDH-Lock

The cavity is locked to the Ti:Sapph oscillator with a Pound-Drever-Hall (PDH)

scheme [78]. The experimental scheme is illustrated in Fig. 3.14. A counter-

propagating reference beam is phase modulated at 1.6 MHz. When reflected by the

cavity, an interference amplitude signal is obtained. The error signal is generated

by subsequent demodulation. The PDH approach is applicable to a frequency

comb: a phase modulation of the entire comb is equivalent to a phase modulation

of each individual line. The detected error signal is consequently the sum of the

detected beating signals from all individual lines. As the cavity may have spectrally

inhomogeneous properties, the optical PDH-signal is detected spectrally resolved

with nm bandwidth. The wavelength of detection will subsequently be called the

lock-point and is typically set to 800 nm, the central wavelength of the comb.

Piezo versus EOM modulation. The phase modulation necessary for a PDH-

scheme can be obtained by using a higher order mechanical resonance of a piezo

element on which a mirror is mounted. A reflected light beam will be modulated

in phase. Another method is to apply an EOM on a reference beam that counter-

propagates through the cavity. Both methods do not to add significant amounts of

dispersion on the seed beam. This is an important aspect. Best timing precision for

the homodyne timing measurement scheme is only obtained for transform limited

pulses and dispersion would temporally spread the seed pulses.

Both modulation techniques can be compared based on the properties of error

signals of the same amplitude, see Fig. 3.19, left. Both signals were low pass filtered.

The low modulation depth of the piezo-based signal requires nevertheless important

amplification to obtain the same signal levels.
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Figure 3.19: Comparison of two techniques for the generation of Pound-Drever-Hall phase
modulation side-bands. The resonance of 1© an electro optical modulator EOM and 2© of a zero degree
AOI piezo mounted mirror are used.
left: PDH error signals when sweeping the cavity. right: Cavity transmission intensity excess noise
recorded with a 20 kHz low-pass filter. Curves obtained from the FFT of an oscilloscope record under
lock conditions minimizing rms noise. Both traces are normalized to the peak at below 10 kHz that is
the mechanical resonance of the intracavity piezo-mirror. This cavity property is independent to the
electronic lock (typical bandwidth of below 5 kHz).

As shown in Fig. 3.19, left, at the same amount of error signal, the signal to noise

ratio of the EOM based method is significantly better. When the cavity is locked

using those signals, the transmitted intensity exhibits significant excess noise in the

band kHz to 100 kHz, see Fig. 3.19, right. The EOM based modulation of a counter-

propagating reference beam (see Fig. 3.14) is in conclusion the method of choice in

order to obtain lowest possible kHz excess-noise in transmission.

The PDH-feedback bandwidth. The error signal of such a lock is shown in

Fig. 3.20, left. The bandwidth of the error signal and PI-gain of approximately

10 kHz is larger than the bandwidth of the piezo mounted mirror below 4 kHz (first

observed resonance). It leads to excess noise due to phase mismatch between error

and feedback. The bandwidth of this feedback signal is principally limited by the

mechanical resonance properties of the mirror-piezo-mount assembly. Methods to

reduce these resonances have been discussed in the literature [107]. Their application

is not necessary here, the implemented cavity shows low 0.5% r.m.s. intensity noise

in transmission at a lock.

The remaining error signal at lock, Fig. 3.20, left, between 100 Hz and 10 kHz, can

be attributed to mechanical fluctuations in the kHz range. They are not completely

compensated by the feedback-loop. The gain has to be sufficiently low at the first

resonances of the loop, situated in the kHz range. Outside the bandwidth of PDH-

lock of the cavity, but within the bandwidth of error signal generation, the PDH error

signal still provides information on the phase noise of the concerned beam [100]. Such
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Figure 3.20: Principal properties of the locked cavity. Left: PDH error signal: electronic noise floor
1©, cavity unlocked and out of resonance 2©, at lock 3©, right: Linearity of the cavity. The seed beam

power is scaled from 4 mW to 400 mW

a signal will be compared to other measures of phase noise in chapter 4.

A number of broadband cavities have been reported in the literature for intracav-

ity field enhancement [108, 109]. In these experiments, the intensity reaches the order

of 1014W/cm2. In the setup presented here, the peak intensity is about 1011W/cm2.

The linearity of the present cavity has been verified over two orders of magnitude

of seed intensity as shown in Fig. 3.20, right. No significant nonlinearity has been

observed. The vacuum chamber can be pressurized with laboratory air in the range

0.5 mbar to 1 bar. Simulations show that the impact of below 0.5 mbar air is negligible

for the transmission of the cavity.

The cavity itself is shown in the photograph Fig. 3.21.

Figure 3.21: Photograph of the broadband cavity in the vacuum chamber. The principal optical
elements are the mode matching of the seed (left) and of the reference via a 90/10 beamsplitter in
couterpropagation (right). The setup is equivalent to the scheme Fig. 3.14



90 3.2. DESIGN OF A PASSIVE BROADBAND CAVITY

3.2.6 The locked cavity - experimental characterization

Several main parameters determine the spectral transmission properties of the

present cavity:

• the air pressure/dispersion

• the seed CEO frequency

• the spectral lock-point, the electronic lock-point

Experimentally accessible characteristics of the locked cavity are the transmitted

spectrum and its noise properties. The lock stability is a separate property. It is

typically quantified by the r.m.s. of the error- or the transmitted signal. It contains

both the in-loop noise of the locking scheme and the phase noise of the seeding beam.

The following experimental analysis addresses the measurement of the three

cavity/comb parameters listed above. The aim is to provide optimal measurement

conditions for cavity based filtering and detection of noise in optical frequency combs.

Dispersion analysis - different methods The dispersion of the cavity is the

principal parameter limiting broadband simultaneous resonance - and therefore

broadband transmission or the build-up of high peak powers within short fs-pulses.

Due to the importance of this parameter, several methods have been reported in the

literature in order to determine cavity dispersion precisely:

1st method. The simplest method consists of using Eq.(2.98) that determines

the transmission I(ω) as a function of the spectral phase per round-trip Φ(Ω). Its

inverse can provide a first approximation of the cavity dispersion, but is typically of

insufficient sensitivity.

2nd method. The second method consists of locking the cavity to a comb

frequency ωn and sweeping the repetition rate frep of the cavity [110]. The transmitted

spectrum is recorded at the same time. Cavity dispersion leads then to a map of

transmission peaks as a function of frep. A sensitivity of 1 fs2 at 5 nm resolution

bandwidth has been reported [110]. A similar method [111], [112] has been used to

resolve magnetic dipole transitions in molecular oxygen in amplitude and phase and

for spectroscopic fingerprinting of molecular iodine vapor.
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Figure 3.22: Cavity dispersion measurement based on continuous sweep. Left: Experimental
measurement scheme. To avoid perturbations from slow cavity-length drifts, the resonance of the
central wavelength triggers 1© the measurement of the effective cavity length for each part of the comb
2©. The cavity length is swept by a piezo-mounted mirror 3©. Right: Typical oscilloscope output shows

the mapping of cavity dispersion to µs timescales. Vertical scale: Voltage in arbitrary units, horizontal:
time in µs

3rd method. Instead of sweeping the repetition rate, a further method consists

of scanning the other degree of freedom of a comb, the CEO-frequency fCEO, [113].

Using an automated setup, the resulting resonance map was used to determine the

dispersion of a cavity with above 5 fs2 sensitivity at 5 nm resolution bandwidth.

4th method. The remaining physical method is to interfere the incident and the

transmitted beam of a cavity within spectral-interferometry [114]. This method has

been used to characterize precisely the nonlinear dispersion of air with a sensitivity

of 0.2 fs at 5 nm resolution bandwidth. Although simple to implement, the technique

is difficult to calibrate as it requires the characterization of all optical elements in the

cavity-beam path besides the cavity.

5th method. All the above methods require a continuous lock of the cavity. It is

nevertheless also possible to adapt the method of [110, 115], that is a sweeping of the

relative repetition rate of the cavity and the comb with an unlocked cavity. Being the

most easy to implement, it has been chosen for the first characterizations of the cavity

presented here. A schematic of the setup is shown in Fig. 3.22, left.

The cavity is swept over the entire resonance within µs. To avoid perturbations

from slow mechanical drifts of the cavity, an oscilloscope is triggered to the resonance

of the comb central wavelength. As shown in Fig. 3.22, right, the resonance of any

other wavelength occurs then with a slight time shift due to dispersion.

It is worth mentioning that this method also has significant drawbacks. To avoid

perturbation from drifts of the cavity length, the position sweep has to be done in

µs timescales over the entire resonance. Nevertheless, the mirror position relative

to the applied voltage depends also on small drifts of the cavity length. It may be
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Figure 3.23: Measured dispersion of the cavity and comparison to expected values. Parameters
p = 105 mbar, fCEO=40 MHz, 30 nm FWHM transmission. Best transmission bandwidth is obtained at
60 mbar. left: Typical measurement data for a swept-measurement. Inset: the same value of 0.15 fs2 is
obtained for seed powers 50 mW to 150 mW. right: Average cavity dispersion for the entire transmitted
spectrum at different air pressures 1© (left scale). For comparison: the dispersion of air 2© (right scale).

corrected by a variable voltage offset and may vary during measurement time. This

necessitates a precise calibration. Using the readily implemented scheme Fig.3.22, the

average cavity dispersion has been be quantified with an error of only 0.02 fs2.

A dispersion measurement. A calibrated measurement of the cavity dispersion

is shown in Fig. 3.23. Depending on the air pressure, the average dispersion of the

cavity is close to zero and independent to a seed power variation of 300% (left graph).

Nevertheless, under a variation of the air pressure (right graph), the measured average

dispersion trace 1© does not follow the expected curve for pressurized laboratory air

trace 2©. The latter should be the dominant contribution. Even anomalous dispersion

is measured at pressures below 50 mbar. A change of sign is clearly observed at

approximately 50 mbar. This is consistent with the measurement of broadest spectral

transmission and highest transmitted intensity at this air pressure. Negative over-all

dispersion is measured down to 1 mbar vacuum. It can consequently be supposed to

be originated by the dielectric mirrors.

The possible emergence of nonlinearities. It has been observed in [114], that

intensities of GW/cm2 may cause negative dispersion in a cavity built of zero

dispersion mirrors. In this reference, for a cavity consisting of six zero dispersion

mirrors, -2 fs2 have been observed under vacuum and at GW/cm2 intensities. The

same order of magnitude is measured in the present setup. The negative dispersion

observed in [114] increases only slightly by a factor of ten when increasing the

intracavity intensity by 105. Higher intensities have been reported to lead to

significant, non-linear two/multiple-photon absorption in the mirrors and even their

damage [116].
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Figure 3.24: Possibly intensity dependent phase
properties of the cavity. Dispersion of the cavity
for different intensities, at 46 mbar 1© and at
102 mbar 2©.

Nevertheless, with regard to the linearity of the cavity observed here (Fig. 3.20,

right), pure phase effects have so far not been studied in the literature. Going along

with phase effects, the ionization of noble gasses has been reported for peak intensities

of TW/cm2, [117]. These intensities are not reached here.

To provide an outlook for further investigations, Fig. 3.24 shows additional data

from a preliminary measurement. The traces (GVD versus power) indicate that an

intensity dependence of the dispersion might be present.

Conclusions on dispersion measurements. It turns out that the possible broad-

band resonance of a cavity is highly sensitive to dispersion. A light vacuum of

50 mbar laboratory air permits to set up a zero dispersion cavity with six purportedly

zero-dispersion mirrors. It can not be excluded that intensity dependent dispersion

contributes to this unexpected value.
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Figure 3.25: Transmission maps for different air pressures I. Vertical: wavelength locked with PDH-
scheme, Horizontal: wavelength transmitted spectrum. left: 1 mbar right: 44 mbar.

Spectral effects at broadband transmission. An interesting representation of the

experimental properties of a broadband resonant cavity are the so-called resonance

plots. When the cavity is locked to the Ti:Sapph oscillator, two of the three parameters

lock-wavelength, CEO-frequency, air-pressure/dispersion can be fixed, and one varied, see

also [113] and [118]. The figures 3.25 and 3.26 show the spectrum transmitted by

the cavity at fCEO = 35 MHz. Broadest spectral transmission has been observed here

for the largest pressure range. The air-pressure is set to the values of 1, 44, 92 and

127 mbar and the lock-wavelength is scanned.

The resulting graphs contain a large amount of information. Its entirety is not of

use here. The plots are shown to underline the physical complexity of a broadband

resonant cavity. They also demonstrate how to identify the cavity/comb parameters

which maximize the transmitted bandwidth.

Figure 3.26: Transmission maps for different air pressures II. Vertical: wavelength locked with
PDH-scheme, Horizontal: wavelength of the transmitted spectrum. left: 92 mbar right: 127 mbar.
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The bandwidth of transmission is limited by intracavity dispersion, and the

graphs show implicitly a non vanishing dispersion-structure of the cavity for all air-

pressures. As expected from simulations, laboratory air can not perfectly compensate

the residual mirror dispersion.

Broadest transmission with lowest dependence to the pressure and lock-

wavelength is obtained at 50 to 60 mbar. At this range, the laboratory air

compensates best a slight spectral asymmetry of the mirror dispersion. The air

pressure determines the round-trip-phase acquired by the resonant beam and there

is one CEO frequency for each air pressure corresponding to this phase. This is the

configuration of broadest simultaneous resonance. For the observed optimal pressure

of approximately 60 mbar, the value is fCEO ≈ 50 MHz.
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Structure of this chapter

This chapter contains the main results of this thesis. It is organized as follows:

In the first section 4.1, the noise in an optical frequency comb is characterized

relative to the standard quantum limit in amplitude and phase. The methods

developed to this aim use the broadband resonant, passive cavity to filter and to

detect phase noise. High sensitivity to phase noise is obtained by shot noise resolving

interference detection of the resulting signals. The results are applied to determine

the realistic sensitivities of a homodyne measurement of pulse-timing jitter, predicted

to have ultimate sensitivity.

The second section 4.2 uses the broadband passive cavity to detect phase noise of

frequency combs close to the SQL spectraly resolved. The phase noise structure of a

Ti:Sapph oscillator comb is compared to the one of a photonic crystal fiber PCF.

The third section 4.4 simplifies the methods developed in the first and second

part significantly and applies them to a different Ti:Sapph- and a fiber-based oscillator.

The fourth section 4.5 introduces femtosecond pulse-shaping in order to reveal

spectral correlations of amplitude and phase noise in an optical frequency comb.

The resulting co-variance data contains the entire noise-information of the frequency

comb. Correlated structures of noise define the spectral modes of classical noise in the

comb. The underlying formalism is subsequently applied to compare CEO-phase

and repetition-rate noise close to the SQL. Both noise properties appear to be special

cases of noise modes.

In conclusion, it is shown that a broadband resonant cavity, together with

shot noise resolving detection and pulse shaping, can reveal the entire correlation

information of frequency comb noise. Amplitude and phase noise can be analyzed

with these techniques down to the SQL. For such noise levels, it is shown that CEO-

phase noise is the governing collective phase noise property of a Ti:Sapph oscillator.
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4.1 Analysis and filtering of phase noise in an optical

comb

Introduction. A highly sensitive homodyne timing measurement scheme using

femtosecond (fs) lasers [5] has been shown in Eq.(2.72) to be limited by carrier-

envelope-phase (CEO) noise close to the SQL. Although the noise of Ti:Sapph

oscillators has been characterized extensively relative to the carrier, see Fig. 3.5 and

[16], no data are available relative to the quantum limit. By the use of a broadband

passive cavity, the possibility of filtering and measuring phase noise at such low levels

is demonstrated here. To this aim, shot noise resolving intensity noise detection

is used. For completeness, also the amplitude fluctuations of the involved optical

signals are determined relative to the common quantum limit. Improved realistic

sensitivities are expected if the homodyne timing measurement scheme [5] would

use cavity filtered signals. This outcome is discussed at the end of the section.

Theoretical concept. In order to provide a clear motivation and understanding of

the experiments here done, it is useful to recall the principal theoretical context. The

ultra sensitive pulse-timing measurements introduced in [5] rely on the homodyne

detection of a pulse train. For the parameters of the 45 nm FWHM broad comb

centered at 800 nm used here, the sensitivity ∆u2
min(f) at a detection frequency f

simplifies to:

∆u2
min(f) ∼ SCEO(f)

SSQL

(4.1)

This recalls the result Eq.(2.72), assuming the measurement time to be an arbitrary

constant. Equation (4.1) points out that CEO-phase noise even close to the SQL

limits the sensitivity. This is due to the fact that the CEO-phase noise is the phase

noise common to all individual comb lines. Its characterization and filtering are

the principal issues of the following measurements. Active locking schemes are

typically of kHz-bandwidth. Side-bands above 100 kHz and levels close to the SQL

are difficult to reach with active feedback [27]. A passive cavity can filter phase noise

above 100 kHz down to the SQL. This is the approach studied here: The sensitivity

Eq.(4.1) is also proportional to the inverse of the measurement time. Quantum limited

phase noise at lowest detection frequency could provide space-time positionning with

femtosecond oscillators at highest sensitivity.

As an aid to the reader, several aspects already discussed in the previous sections

are recalled in the following.
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Figure 4.1: Experimental scheme. 1. Mode-locked Ti-Sapph oscillator, 2. selection of measurement
type using a flip 50/50 beam splitter: amplitude noise measurement if released, interference
measurement if set, 3. passive cavity in a mbar vacuum chamber, 4. PDH-locking scheme, 5. balanced
(homodyne) detection, 6. lock of the relative phase of the interfering beams, 7. f-2f interferometer

Optical setup. The setup to access and manipulate the intensity and phase

noise properties of an optical frequency comb is drafted in Fig. 4.1. It consists of

the commercial Ti:Sapph oscillator studied in section 3.1 and the passive cavity

characterized in section 3.2. The latter is placed in one arm of a Mach Zehnder-like

interferometer configuration. At resonance, the resulting interference with the seed-

beam is detected in a shot noise resolving, balanced configuration. A Menlo Systems

f-2f interferometer monitors in parallel the CEO frequency and its fluctuations after

coherent spectral broadening. It allows to lock the mean Ti:Sapph CEO frequency

with a separate feedback loop of less than 20 kHz bandwidth.
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Figure 4.2: Cavity transmission spectrum showing broadband simultaneous resonance. Same
graph as Fig. 3.18, right. 1© A typical seed spectrum of the mode-locked Ti:Sapph oscillator. 2©
Transmitted spectrum at a container laboratory air pressure p= 68mbar and fCEO = 45 MHz, dotted
simulation at p=30 mbar. At optimized conditions, approximately 38% of the seed power are
transmitted.

The filtering cavity. A transmissive optical cavity is a well known 2nd-order

low-pass filter acting on both phase and amplitude noise of the input field [29].

The 3-dB cutoff frequency fc = c/(F · L) is determined by the speed of light c, the

cavity finesse F , and its length L. Residual dispersion is compensated by laboratory

air. The constant pressure, set within 50 ± 30 mbar, is chosen to obtain best spectral

shape of transmission. A Pound-Drever-Hall scheme is used to lock the cavity on

resonance with the seed pulse train. To avoid the modulated reference to appear

in the detected signal, a counter-propagating reference-beam is used to generate

the error signal. When the cavity and the mean CEO-frequency are locked, the 45-

nm FWHM spectrum generated by the Ti:Sapph oscillator is almost entirely (35 nm

FWHM) transmitted through the cavity, see Fig. 4.2. The simulations agree well

with the spectra observed. A sightly different pressure is used for the simulation to

illustrate the pressure dependence of the transmitted bandwidth. Concerning noise

filtering, section 3.2 characterized an effective finesse of F ≈ 1200. A measurement of

the 3-dB cutoff frequency of this cavity confirmed fc ≈ 130 kHz.
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Measurement of relative phase noise. To quantify the effect of phase noise

filtering by the passive cavity, relative phase noise between a filtered and an unfiltered

beam have to be measured down to the SQL. A shot-noise-resolving, balanced

homodyne detection [119] can do so. Its implementation was shown in Fig. 4.1. It

measures phase noise differences before and after the filtering cavity.

Two incident fields Ei = Aie
iφi , i = 1, 2 interfere. Locking on the phase quadrature

〈φ〉 = 〈φ1 − φ2〉 = π/2 leads to the beating signal H = A1A2 sin(δφ) where δφ are the

zero mean fluctuations of the relative phase of the interfering fields. This signal

efficiently converts this relative phase noise into amplitude fluctuations. A homodyne

detection of the relative phase noise is used here. A bright local oscillator (LO) and

an attenuated signal interfere. This configuration makes the scheme less sensitive to

amplitude fluctuations. Using here an intensity ratio of 10 dB, higher order noise

terms are negligible in the measured signal.

Assuming perfect quantum efficiency of the photodetectors and setting the ele-

mentary charge to one, the mean squared homodyne signal is obtained using the

considerations in [38]:

S =
〈δH2〉
(~ω0)2

' A4
LO

10(~ω0)2
〈δφ2〉. (4.2)

This signal detects relative phase fluctuations δφ of the interfering beams relative

to the shot noise level N ' A2
LO/~ω0. The observed phase noise can be expressed

relative to the carrier in units dBc/Hz=(1/2) · rad2/Hz [12]. For a signal to noise ratio

SNR=S/N = 1 and a detected power P , the minimal resolvable relative phase noise

is

〈δφ2〉min =
5~ω0

P
' 2SSQL (4.3)

The measurement scheme Fig. 4.1 of relative phase noise is consequently of

quantum-limited sensitivity. Indeed, the assumed SNR=S/N = 1 is caused by a phase

noise level 3 dB above the SQL. For sufficiently high detection frequencies above the

cavity-cutoff, the phase noise in the filtered arm becomes negligible. The detected

signal is then proportional to the CEO-phase noise δφ ≈ δθCEO. With fc ≈ 130 kHz

used here, this holds at MHz detection frequencies. In conclusion, even absolute

levels of CEO-phase noise become measurable down to the SQL [86].
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Expected slope of the interference signal. The homodyne method presented

above measures classical phase noise with quantum-limited sensitivity. The slope

of a given CEO-phase noise distribution can be reconstructed as follows:

Both φ1 and φ2 originate from the same beam, they are - besides the filtering

effect for the signal - perfectly correlated random variables. Assuming a phase noise

transfer function of the cavity Hφ(f), the phases of the individual beams are for any

detection frequency f :

φ1(f) = δφ(f), φ2(t) = Hφ(f) · δφ(f) (4.4)

The detected signal is now proportional to

〈(δφ)2〉meas = 〈(δ(φ1 − φ2)2〉 (4.5)

= 〈(δφ)2〉+ 〈(−Hφ · δφ)2〉+ COV(δφ,−Hφ · δφ) (4.6)

= (1− 2Hφ +H2
φ)〈(δφ)2〉. (4.7)

With the definition of the spectral variance σ2(f) = S(f) · 1 Hz, see Eq.2.27, the above

can be written in terms of spectral noise densities:

Sφ,meas(f) = (1−Hφ(f))2 · Sφ(f) (4.8)

The homodyning signal being proportional to the cavity filter efficiency 1−Hφ(f), the

measurement sensitivity increases with f . In the limit case above the cavity cutoff

f � fc, the signal Sφ,meas is identical to the seeding phase noise Sφ.

Above the cavity cutoff, the filter efficiency is linear in frequency: (1−Hφ) ∼ f .

It is important to remind that a passive cavity is a first-order filter for amplitude

and phase noise. It only appears to intensity and measured mean squared phase

noise as a second order filter. For a CEO-phase noise density SCEO(f) seeding the

setup Fig. 4.1, the expected distribution of the homodyning signal Sφ,meas(f), f > fc is

consequently [86]:

Sφ,meas(f) ≈ f 2 · SCEO(f) (4.9)

For the observed SCEO(f) ∼ f−4 a signal Smeas(f) ∼ f−2 is expected. This result is

consistent with the observed signal slope shown in the following Fig. 4.4.
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Figure 4.3: Homodyne detection of relative phase noise close to the quantum limit. The beating
signal is independent to the detection configuration - the choice of the Local oscillator (LO). Signal
levels dBc relative to the LO carrier. Local oscillator at 8 mW, signal 10 dB below.
left: Ti:Sapph local oscillator, right: Cavity local oscillator.
both left and right: Blue Ti:Sapph purple Ti:Sapph SQL, black Cavity output grey Cavity SQL,
red Homodyning signal of the phase quadrature. right, dark red comparison of both configurations

Preliminary measurement data. The Mach-Zehnder interference measurement

Fig. 4.1 can be done in two different configurations, depending on the choice of the

local oscillator (LO) and the attenuated signal (S). First: the Ti:Sapph is the (LO) and

the cavity beam the (S), second: the Ti:Sapph is the (S) and the cavity beam is the (LO).

These configurations have to be distinguished, as the beam transmitted by the

cavity exhibits significant excess noise. Its origin is discussed in the next section.

Figure 4.3, left, shows the intensity noise of cavity (S) and oscillator (LO) in the first

configuration, together with the beating signal. Although the intensity noise of the

(S) is significantly rising towards low detection frequencies, it does not perturb the

significantly higher beating signal.

The situation is slightly different in the second configuration, shown in Fig. 4.3,

right. Here, the cavity beam is the (LO) and the Ti:Sapph the signal (S). The

cavity excess noise rises to levels equivalent to the beating signal and perturbs it.

Nevertheless, for sufficiently high detection frequencies, the beating signal in this

configuration is still equivalent to the one obtained with the first configuration.

This aspect confirms the validity of the measurement method. Being predicted to

measure relative phase noise between the two arms of the interferometer, its output

is insensitive to the relative intensities. In conclusion, it is the first configuration that

will be used for all further measurements.

As far as perturbations from intensity noise are negligible, both configurations

provide quantum-limited sensitivity to relative phase noise between the two arms,

see Eq.4.3.
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Figure 4.4: Relative phase noise after filtering with the cavity, detected with quantum limited
sensitivity. 1© SSB power spectral density of CEO phase noise from f-2f measurement, dotted f−4.5

power law, 2© Phase quadrature of the homodyne beating signal between the oscillator (local oscillator)
and the cavity-output (Signal), dotted f−2.5 power law, 3© Ti:Sapph RIN, 4© SQL for 8 mW detected
signal

Measurement Data. The Ti:Sapph oscillator used here has already been character-

ized in section 3.1. In order to provide a clear interpretation of the subsequent phase

noise analysis, those measurements are partially recalled here. Figure 4.4 shows all

measurement data necessary to characterize the Ti:Sapph oscillator phase noise down

to the SQL: intensity noise (RIN) of the Ti:Sapph oscillator 3©, f-2f beating signal 1©
and the output of the interference measurement Fig. 4.1 2©.

The intensity noise reaches the SQL trace 4© above 3 MHz detection frequency.

The only slightly distinguishable relaxation oscillation peak at 1.5 MHz depends on

oscillator alignment and output power. It has been minimized for this measurement.

The signal 2© itself arises from the phase noise of each individual comb line. For

the entire comb, both repetition-rate and CEO-phase noise contribute to it. The locked

fCEO can be considered as free running above the lock-resonance at 30 kHz. Its power

spectral density is shown by trace 1©. It has already been discussed in section 3.1.

As reported there, the levels observed are more than 60 dB above the repetition rate

phase noise. The measured repetition rate noise levels have to be multiplied by the

longitudinal mode number to estimate their contribution to the phase noise of an

individual line. In addition, such an estimation has to take into account the distance

to the noise fix-point frequencies discussed in the next section, Eq.4.12.
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From this perspective, it is not possible to distinguish here if either repetition rate

phase noise or CEO phase noise contribute mostly to phase noise of the individual

lines and consequently to the measurement trace 2©. Anticipating the results of

section 4.5.1, Fig. 4.37, right, it has been shown for a similar Ti:Sapph oscillator that

the CEO-phase noise is the governing collective phase noise property of the comb.

As confirmed below, it is this collective comb phase property that is detected by the

homodyne measurement Fig. 4.4, trace 2©.

Principal result: Phase noise filtering and detection. The measured homodyning

signal is given by trace 2© in Fig. 4.4. It arises from the interference of the signal

from the Ti:Sapph oscillator (LO) with the 10 dB less intense beam filtered from the

cavity (S). The two beams have a spectral overlap of 94%. The signal from the cavity

exhibits excess intensity noise arising from noise-quadrature interconversion by the

cavity (see Fig. 4.3). Nevertheless, this does not change the RF-spectral distribution of

the homodyning signal. Classical intensity noise of signal and local oscillator cancel

in the balanced measurement configuration and only contribute to higher order terms

of the signal S described in Eq.(4.2).

The homodyne signal of the phase quadrature follows an approximate f−2.5 power

law over nearly two decades of detection frequencies, see Fig. 4.4, trace 2©. This is

consistent with the considerations related to Eq.(4.9): The expected power law for the

seeding CEO-phase noise is two orders steeper, f−2.5−2. Indeed, the CEO-phase noise

of the Ti:Sapph oscillator was observed to follow an f−4.5 dependence, see Fig. 4.4,

trace 1©.

Two main outcomes of this measurement have to be distinguished: First, that shot

noise resolving homodyne detection provides a measurement of relative phase noise

down to the SQL. Second, that for the self-referenced setup used here even absolute

levels of phase noise of an ultrafast oscillator become measurable down to the SQL.

The latter insight opens the way to the main result of this thesis, the study of spectral

correlations of phase noise, see section 4.5 below.
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Figure 4.5: Predicted realistic sensitivity of the homodyne timing measurement using the Ti:Sapph
oscillator studied here [5]. First using the oscillator itself 1© and second after filtering with the passive
cavity described here 2©. dashed lines extrapolation of available data 3© Quantum limit for phase and
intensity noise for 8 mW detected signal at 1 s integration time.

Improved homodyne-timing-measurement sensitivities. The consequences of

the observed phase noise filtering for the timing measurement sensitivity discussed

with Eq.(2.70) are shown in Fig. 4.5. Using the f-2f CEO-phase noise data, the possible

precision of the homodyne timing measurement [5] can be calculated for a filtered

or an unfiltered beam. With Fig. 4.4 it follows in addition from the interference data

that the slope of the CEO-phase noise does not significantly change at microsecond

timescales. The achievable measurement precision shown in Fig. 4.5 can thus be

calculated using the known filtering properties of the cavity, and be extrapolated

down to the SQL. Using a passive cavity to filter phase noise, the expected sensitivity

of the timing measurement could be improved by up to one order of magnitude.

Conclusions. A broadband resonant, passive cavity has been shown to be a tool

for filtering and the detection of CEO-phase noise of a 45-nm FWHM frequency comb

- close to the standard quantum limit. The approach extends the known filtering

of noise in single optical frequencies [29] as frequency combs have a much more

complex frequency and noise structure. Together with shot noise resolving homodyne

detection, it is shown that a commercial Ti:Sapph oscillator is quantum-limited in

amplitude and phase above 4 MHz detection frequency. Passive filtering of phase

noise by the use of this cavity decreases this frequency by several MHz. It potentially

improves the sensitivity of a homodyne pulse-timing measurement scheme by up to

one order of magnitude.
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4.2 Broadband spectrally resolved phase noise analysis

This section discusses assets and drawbacks of a broadband passive cavity used as a

broadband detector for spectral phase noise in frequency combs.

Common comb noise properties. For optical metrology using frequency combs,

absolute calibration of the comb frequencies is achieved by beating individual

lines to external references. The inherent relative stability arises from the mode-

locking process. The strength of this lock determines the possible relative phase

deviations between individual lines. Such repetition rate fluctuations of Ti:Sapph

lasers have been characterized down to lowest noise levels [7] and the same holds

for fluctuations of the CEO-frequency [27]. Both are noise properties common

to all individual frequencies of the comb. Their origins were at first studied by

Haus et al. [10], see section 2.4.3. Assuming perfect mode-lock, this picture ignores

any possible dependence of the noise on the considered optical frequency. It were

Paschotta et al. [19] that pointed out that this ideal assumption has to be relaxed

at RF-detection frequencies above 100 kHz. Increased levels of phase noise at

microsecond timescales are the consequence.

Spectral phase noise. For a Ti:Sapph oscillator, the RF-distributions of phase

noise have been analyzed theoretically over the optical spectrum by Wahlstrand et

al. [20]. A slight dependence of the linewidth on the considered wavelength has been

predicted but not yet verified experimentally. Another, indirect approach is the fix-

point model of the comb [21]. It has been applied to a Ti:Sapph generated comb by

Sutyrin et al.[16]. Therein, the spectral position of the line with minimum linewidth

has been determined. Compared to Ti:Sapph oscillators, fiber based frequency combs

are much noisier, and their spectral phase noise has been extensively studied by

Newbury et al. [18]. Another experimental technique has been conceived for very

broad spectra [120]. It consists of a dispersive Fourier-transform. Being suitable for

very broad spectra, this scheme is nevertheless limited to 30 dB dynamic range. The

method presented here solves these problems and provides a high dynamic range,

direct measurement of CEO- and spectral phase noise at a glance.

This is achieved by exploiting the effect of phase (noise) to amplitude (noise)

conversion by a transmissive passive cavity. The cavity has been shown to be

broadband resonant. The spectral phase noise of the comb should consequently be

readily accessible.
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Figure 4.6: Experimental scheme to measure spectral phase noise through spectral resolved cavity
excess noise. 1. Mode-locked Ti:Sapph oscillator at 156 MHz repetition rate; 2. Photonic Crystal Fiber
PCF; 3. f-2f interferometer for CEO lock and signal analysis; 4. passive cavity in a mbar vacuum
chamber; 5. PDH-locking scheme in counterpropagation; 6. intensity noise detection either integrating
the whole spectrum (in the text referred as A), or spectrally resolved (B)

Experimental setup. The experimental setup is shown in Fig. 4.6. It uses the

Ti:Sapph oscillator characterized in section 3.1, the passive cavity of section 3.2 and

the shot noise resolving photo detection mentioned therein.

Intensity noise is characterized with shot noise resolving sensitivity before and

after the cavity. This can be done spectrally resolved or integrated over the whole

spectrum. Spectral resolution is obtained using dispersion by optical gratings. To

prevent the CEO-frequency from slow drifts that change the cavity transmission, the

CEO-phase is locked with a bandwidth below 20 kHz. The f-2f interferometer used

for this purpose also monitors the phase noise of the free-running Ti:sapph oscillator,

in-loop but out of the feedback-bandwidth.

Similar to the considerations done in section 3.2 above, Fig. 4.7 shows general

properties of the passive cavity. Emphasis is put on the influence of the spectral lock-

point on the transmitted spectrum, in the context of the expected cavity dispersion.

As discussed in section 3.2, it is the cavity dispersion that limits the bandwidth of

transmission. It leads in addition to a dependence of the transmitted spectrum on the

optical lock-point. Three typical situations are shown. In addition to these effects, it

turns out in this section that lowest levels of dispersion, see Fig. 4.7, trace 3©, may also

considerably affect the noise-conversion of the cavity.
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Figure 4.7: General properties of the broadband
passive cavity - small values of dispersion.
1© Spectrum of a 45 nm FWHM Ti:Sapph oscillator

seeding the passive cavity, 2© transmitted spectrum
as a function of the optical lock point at 780 nm,
797 nm and 818 nm. The transmission is maximal at
or close to the lock-point. 3© calculated dispersion
of the cavity arising from mirror and air-pressure
environment.

Noise quadrature interconversion. The transmission of the noise field quadra-

tures P (phase) andQ (amplitude) by a passive cavity can be described using a unitary

matrix A and an attenuation factor τ . They are both a function of the side-band

angular frequency Ω, see section 2.7.2. Whereas the previous section put emphasis

on filtering of phase noise, the interconversion of the seeding field quadratures is of

interest here:
vout(Ω) = τ(Ω)A(Ω)vin(Ω), v(Ω) = [P (Ω), Q(Ω)]T (4.10)

In practice, this equation is inverted in order to calculate the seeding noise vin and

especially Pin from vout and especially Qout. In general, the transformation A(Ω)

interconverts and mixes phase and amplitude noise. This holds especially for side-

bands above the cavity cutoff at 130 kHz and applies to any line ωn of the comb.

This approach has advantages and drawbacks: Measurable noise densities are

proportional to the mean squares of the field quadratures and Eq.(4.10) is a simplified

representation. Only under the assumption of negligible correlations between

amplitude and phase noise, the seed phase noise spectral density Sφ,in can be

calculated from the detected output intensity noise SI,out, see Eq.(2.121):

Sφ,in(Ω) ∼ Ω2 · SI,out(Ω) (4.11)

It is a special feature of optical frequency combs that one of the two global Ti:Sapph

phase noise properties, the CEO-phase noise SCEO, can be measured separately by

e.g. an f-2f beating. It can be compared to the calculated Sφ,in in order to verify the

assumption of negligible amplitude-phase correlations. In practice for a Ti:Sapph

oscillator and if considered in the same units dBc, the intensity noise has been shown

to be negligible compared to CEO phase noise and this consideration is even not

necessary.
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Figure 4.8: Noise quadrature conversion by the passive cavity for the Ti:Sapph oscillator (left) and
after coherent spectral broadening in a PCF (right). For both graphs: 1© standard quantum limit, 2©
intensity noise of the comb before the cavity and 3© after transmission through the cavity, 4© calculated
phase noise distribution of the seed beam assuming negligible amplitude-phase noise correlations,
shown with an arbitrary offset introduced for comparison with the CEO noise contribution, 5© CEO-
phase noise of the seeding frequency comb measured with an f-2f scheme, for comparison: the grey
area shows the difference of the calculated and the separately measured phase noise, it corresponds to
amplitude-phase noise correlations

Noise properties of frequency combs in the RF-domain. The experiment Fig. 4.6

is at first done without a spectral resolved photodetection. As such, the intensity

noise of the Ti:Sapph frequency comb and after coherent broadening in a photonic

crystal fiber (PCF) are measured. The signals are transmitted through the broadband

passive cavity and the intensity noise is measured before and after transmission. From

these measurements, the phase noise distribution of the cavity seed is calculated

using the exact form of Eq.(2.121). Nevertheless, this calculus assumes negligible

amplitude-phase noise correlations. An arbitrary constant has been added to the

calculated curves. It arises from the detection relative to shot noise levels of signals

of different intensity. The result is compared to an f-2f measurement. Both are shown

in Fig. 4.8. Indeed, for the Ti:Sapph oscillator the assumption of negligible amplitude-

phase noise correlations are verified:

For Ti:Sapph and PCF, the seed-intensity noise is significantly below the intensity

noise at the cavity output and can be neglected. In the case of the Ti:Sapph oscillator,

the calculated distribution of Sφ,in(Ω) is identical to the distribution of SCEO(Ω) from

the f-2f measurement. This confirms the assumption of negligible amplitude-phase

noise correlations that lead to Eq.(4.11). The low-level intensity noise of the Ti:Sapph

oscillator can be attributed to RIN properties of the pump laser, see section 3.1.
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Spontaneous emission limited phase noise. If the phase noise of the Ti:Sapph os-

cillator is uncorrelated to its intensity noise, it can only be originated by spontaneous

emission. This statement is equivalent to spontaneous-emission limited phase noise1. This

result is consistent with the theory of H.A.Haus [10]. By considering the coupling

of different noise terms, and assuming that spontaneous emission is the only noise

driver, this theory predicts a fourth order decay of the CEO-phase noise slope. This

dependence is similar to the here observed one.

The situation is different for the PCF signal. Here, the phase noise calculated with

the exact form of Eq.(4.11) only follows the slope of the f-2f signal in the limit case

of high detection frequencies Ω close to the noise limit of detection. The significant

difference is explicitly shown in Fig. 4.8, right: the difference between the curves 4©
and 5©. This difference indicates that for a the signal of the PCF, amplitude and phase

noise are - in contrast to the Ti:Sapph signal - significantly correlated. This effect may

be due to the number of phase sensitive nonlinear processes present in the PCF.

Note that an arbitrary constant has been added to the calculated curve for

comparison. No statement about the absolute amount of noise is possible here. This

is first related to the different shot noise levels of the measured beams - to which

the curves are intrinsically normalized. Second, the spectrum of the PCF signal is

significantly larger than the cavity bandwidth. Detailed information about the cavity

dispersion and the resulting apparent side-band frequency distributions would have

to be integrated into the calculations. This is beyond the scope of this prove-of-

principle experiment.

1 Spontaneous emission limited noise properties refer to an oscillator still providing noise coupling
terms. They lead to non-constant RF-distributions of phase noise. This behavior has to be distinguished
from quantum-limited phase noise at the SQL that has a constant spectral density. See section 2.3
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Figure 4.9: Typical measurement of the RF-distribution of spectral intensity noise for the cavity
seed/the cavity output. The linear frequency scale has been shown for better visualization. 1© Spectrum
analyzer measurement noise floor, 2© photodetector dark noise, 3©: intensity noise measurement for
left: Ti:Sapph oscillator SYNERGY, right: Cavity output when seeded with the Ti:Sapph oscillator left.

Phase noise analysis over the optical spectrum. The above analysis of RF-

spectral densities S(Ω) concerns the entire optical spectrum of the frequency comb.

The broadband simultaneous resonance of the passive cavity allows to do these

measurements resolved over the optical spectrum, as shown in Fig. 4.6B.

Typical measurement data Sλ(Ω) for this configuration are shown in Fig. 4.9 for

the Ti:Sapph oscillator. Intensity noise is measured for the oscillator itself (left) and

after transmission through the passive cavity (right). A variation of the recorded

noise level with the optical wavelength is evident from this data. In order to obtain

further conclusions, the considerable amount of data can be reduced by setting a

fixed analysis frequency Ω. It is chosen to 500 kHz: above the cavity-cutoff 130 kHz

and below 1 MHz where noise levels are close to the SQL. The variation of the

intensity noise slopes over the optical spectrum is negligible, see Fig. 4.9, left.

Two different ways to analyze the spectral phase noise Sλ(500 kHz) are presented

in the following. Both methods are subject to ongoing investigations.
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Figure 4.10: First experimental analysis of spectral phase and intensity noise. The Ti:Sapph oscillator
at 500 kHz side-band frequency and 8 mW detected signal. Right scale (intensity): 1© SQL and
3© intensity noise, Left scale (phase): 2© spectral phase noise for two different strengths of the mode-

locking Kerr-lens. For the beam waists in the Ti:Sapph crystal permitting stable mode-lock: thick mean
value, thin largest value (weakest Kerr effect), spline interpolation of data for visualization

First approach: The noise properties of the entire optical spectrum are recorded

using spectral windows of approximately 5 nm bandwidth, centered at ωn. To provide

identical measurement conditions, the detected intensity is set to the same value for

each window. The following method is used to calibrate the measurements: From

the f-2f technique, the CEO-phase noise SCEO(Ω) is available for a broad range of

detection frequencies. At a given Ω0 the intensity excess noise of the entire spectrum

of the cavity signal originates from this SCEO(Ω0). It is at the same time the integral of

the excess noise over the cavity transmitted spectrum. This is a reasonable statement

as the RF-spectra of cavity excess- and amplitude noise do not depend on the optical

wavelength. For discrete spectral bands n of power Pn and a given Ω0, the measured

signal levels S(ωn) are calibrated by the condition: SCEO =
∑

n S(ωn)P (ωn).

Figure 4.10 shows the measurement results. A non constant distribution, asym-

metric with respect to the central wavelength is measured for both intensity and phase

noise. The structure of both curves is independent of the noise detection frequency

Ω in an interval of 300 kHz. The spectral intensity noise shows a local minimum

close to central frequency ω0 and increases significantly towards the IR-wing of the

spectrum. The phase noise shows in contrast a decay by approx 10 dB towards the IR-

wing. For all wavelengths, the phase noise is by 40 to 50 dB larger than the intensity

noise (comparing the left and right scales in Fig. 4.10). In addition, a modulation-

like structure with a period of approximately 30 nm is present. By a variation of the

stability range of the Ti:Sapph oscillator cavity, this structure was reproduced to be

independent of the strength of the Kerr-effect.
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Figure 4.11: Second experimental analysis of spectral phase and intensity noise. The Ti:Sapph
oscillator at a 500 kHz side-band frequency and 1 mW detected signal. Data relative to the SQL,
1© intensity noise; phase noise for different optical lock wavelengths at 70 mbar, calculated from cavity

excess intensity noise in transmission: 2© 818 nm 3© 797 nm 4© 780 nm.

Second approach: In order to provide higher measurement precision and repro-

ducibility, the measurement above was automated. To this aim, a photodiode was

mounted on a translation stage to scan the dispersed optical spectrum of cavity-seed

and -transmission. The advantages are a short measurement time and a large number

of data-points, the disadvantage is the high dynamic range of detected intensities

over the covered spectrum. Figure 4.11 shows the amplitude and phase noise of the

Ti:Sapph oscillator. The latter has been calculated using Eq.4.11. In addition, the

cavity has been locked at three different optical wavelengths.

The variation of the intensity noise of the comb, first approach, Fig. 4.10, is

confirmed. Nevertheless, the detected spectral phase noise is different: the observed

noise levels 2©, 3© and 4© in Fig. 4.11 are a function of the optical lock-point. In

two cases they show a significant variation with a local minimum close to the

optical lock-point. This behavior may be explained with the considerations of

section 2.7.2: The apparent detection frequency Ω(ω) depends on the residual disper-

sion of the passive cavity φcavity(ω), see Fig. 4.7. The phase to amplitude conversion

factor τ(Ω) → τ(Ω[φcavity(ω)]) in Eq.(4.11) is consequently a function of the optical

wavelength. It is in addition a function of the optical and the electronic lock points in

the Pound-Drever-Hall scheme. This context explains the characteristic detected noise

minnima close to the lock-wavelengths. The effect disappears for a lock at 818 nm,

trace 2©. The variation of the apparent Ω being purportedly smallest for this measure,

it represents most-likely the phase noise distribution of the comb. The envelope is

similar to the spectral phase noise observed with the first method, Fig. 4.10, trace 2©.
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In summary, both measurements show the same difference between the distribu-

tions of intensity and phase noise over the optical spectrum. At 500 kHz detection

frequency, the phase noise is approximately 35 dB above the intensity noise. Both

are measured to vary by up to 10 dB over the optical spectrum. For the oscillator

investigated here, amplitude noise decays towards the VIS spectral wing and phase

noise decays towards the IR wing. The observed modulation like structure of spectral

phase noise requires further measurements to be confirmed.

Consistency with the rubber-band model. For a given frequency comb

ωn = nωrep + ωCEO, the distribution of phase noise over the optical frequencies of

a comb can be described by the rubber-band model [21]. It has been discussed in

section 2.4.4: For any perturbation of the oscillator generating the frequency comb, its

lines will expand and contract around a given fix-point frequency. For the oscillator

used here, fluctuations of the pump-intensity P were found to be a mayor driver of

phase noise. The corresponding fix-point frequency has been found to be a function

of the corresponding repetition-rate and CEO-frequency sensitivities, see Eq.(2.62):

ωfix '
dωCEO

dP

[
dωrep

dP

]−1

ωrep (4.12)

The phase noise spectral density S of a line ωn, originated by pump intensity

noise, is a function of the distance to the fix-point Sωn ∼ (ωn − ωfix)2. For the

Ti:Sapph oscillator considered here, the pump-power fix-point is determined to be

ωfix = 2π · 233 THz (1284 nm) and is located on the IR-side of the gain-profile centered

at 375 THz. The phase noise spectral density Sωn is in conclusion expected to rise from

the IR-side of the optical spectrum. This is indeed the case for the slope of the data

shown in Fig. 4.10 and Fig. 4.11.
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Consistency with further literature. These results are consistent with the consid-

erations of Wahlstrand et al.[20]. They simulate the linewidth of a frequency comb

using several experimental measured noise coupling parameters (see page 32). Al-

though this approach does not include a spectral variation of the oscillator dispersion,

it predicts the position of the comb line of lowest linewidth. The latter is a function of

the physical effect that dominates correlations between timing and CEO fluctuations.

If this is timing jitter that couples through dispersion to phase, the comb frequency

of lowest noise is predicted on the IR side of the covered spectrum. This is the case

for the general slope of the spectral phase noise distributions reported here. It is

therefore the cavity dispersion - and its variations - that governs the distribution of

spectral phase noise.

Structured spectral phase noise. The possible modulation like structure of

spectral phase noise visible in Fig. 4.10 could be interpreted using the theory of

H.A.Haus et al.[10]. Fluctuations of the shot noise driven central frequency drive

fluctuations of the repetition rate. The origin of this effect is a non vanishing

intracavity GVD. The latter is required for stable operation of soliton-fs lasers [92],

and obtained by the use of chirped mirrors. Nevertheless, these mirrors are always

subject to unavoidable higher order dispersion effects [92]. Their magnitude can be

estimated as below 10% of the mirror GVD [121] and they could be the origin of the

spectral modulation of phase noise. There is no other optical element in the oscillator

cavity with such spectral dependent properties. The observed structure is in addition

roubust against a variation of main parameters of the Kerr-Lens mode locked laser

used here. Nevertheless, the direct measurement of the residual dispersion of an

oscillator cavity is rather involved and beyond the scope of this thesis.

In contrast to the arguments above, the term coupling central frequency

fluctuations to the repetition rate is proportional to the square of the dispersion D of

the cavity [10]. In this context, a 10% modulation of the GVD cannot be the origin of

a 3 dB noise level change. The model of Haus et al. gives therefore only an indication

for the origin of the observed structure, but is insufficient to model it.

In summary, a modulation like structure of spectral phase noise cannot be

confirmed so far.
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Figure 4.12: Spectral intensity and phase noise from a PCF seeded with the Ti:Sapph oscillator.
1© spectrum of the generated supercontinuum seeding the passive cavity, 2© spectrum transmitted by

the cavity, 3© intensity noise of the PCF signal, 4© phase noise of the PCF signal obtained from the cavity
excess intensity noise in transmission, eventual amplitude-phase-noise correlations are neglected

Noise analysis over the optical spectrum - a supercontinuum source. When

seeded with the Ti:Sapph oscillator characterized above, a photonic crystal fiber (PCF)

generates a coherent octave spanning frequency comb. The coherent part of the PCF

signal can be transmitted through the broadband cavity, see Fig. 4.6. The measured

intensity excess noise in transmission allows to analyze its spectral phase noise. The

results are shown in Fig. 4.12. Data are obtained for a 50 nm broad spectral window of

the supercontinuum that is resonantly transmitted by the cavity. The intensity noise

trace 3© shows unstructured variations of 10 dB. In contrast, the phase noise trace 4©
calculated with the exact form of Eq.(4.11) is nearly constant. In order to provide a first

approximation, eventual amplitude-phase noise correlations have been neglected.

The slope is similar to the phase noise observed for the Ti:Sapph oscillator Fig. 4.10

and Fig. 4.11, and again orders of magnitude larger than the intensity noise.

The measurement scheme of phase noise suggested here is consequently appli-

cable to any coherent frequency comb. Other techniques techniques reported in the

literature [122, 120] are typically of less dynamic range and sensitivity.

Conclusions. A broadband passive cavity is described as an efficient detector

for CEO-phase noise and spectral phase fluctuations of optical frequency combs.

Together with shot noise resolving intensity noise detection it provides high dynamic

range and a sensitivity close to the SQL. It is intrinsically broadband concerning the

optical spectrum and the noise analysis frequency. Revealing here a structured, within

10 dB non constant spectral phase noise for a Ti:Sapph oscillator, it can be applied to

any coherent comb source.
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4.2.1 Additional considerations

I. Properties of the Ti:Sapph oscillator cavity. One result of the section above is the

precise measurement of non-constant spectral phase noise of a Ti:Sapph oscillator,

Fig. 4.10. From the related literature, this phase noise structure could be attributed to

spectral variations of dispersion in the oscillator cavity.

Intracavity dispersion of the oscillator used here is managed by chirped

mirrors [92]. A schematic of the setup of this oscillator is shown in Fig. 4.13. The

dispersion of such mirrors always exhibits a modulation in the order of several fs2

[121]. The modulation depth is essentially a function of the optical bandwidth of the

mirror. Considering all optical elements in a Ti:Sapph oscillator, the mirror dispersion

is the only property that may vary significantly within the 100 nm bandwidth.

Two sets of chirped mirrors are used in the oscillator (see Fig. 4.13), one in the

short- and one in the long arm. Their properties are directly measured by the use

of spectral interferometry [123, 124]. The setup is shown in Fig. 4.15, left. A Coherent

MIRA Ti:Sapph oscillator together with spectral broadening in a photonic crystal fiber

has been used as broadband light source. The spectrum I(ω) propagates through a

Michelson interferometer with exchangeable end-mirrors, see Fig. 4.14. A difference

in dispersion in both interferometer arms leads to constructive and destructive

spectral interference at the output port Ĩ(ω). Using a calibration of the interferometer

with metallic mirrors, the GVD of a mirror can be obtained from the interference

structure Ĩ(ω) recorded with a commercial spectrometer.

The measured values of spectral dependent GVD are shown in Fig. 4.15, left. It

turns out that the obtained data is of poor quality due to additional interferences in

the multimode fiber seeding the USB spectrometer. The obtained period of the GVD

modulation structure depends strongly on the bandwidth of the FFT-filter necessarily

applied to the measurement data. Nevertheless, the mean GVD value for the entire

spectrum reproduces the expected value for a known mirror set and is robust to

Figure 4.13: Scheme of the cavity of the Femto-
lasers SYNERGY Ti:Sapph oscillator considered
here. The cavity consists of two spherical mirrors
M1 and M5, an output coupler OC and two arms
containing chirped mirrors: a short (M2 +M3) and
a long one (M6, M7, M8). A pair of thin intracavity
edges provides static tuning of the CEO frequency.
The Ti:Sapph crystal is the gain medium.
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Figure 4.14: Measurement of the mirror dispersion by the use of spectral interferometry.
left: Michelson interferometer for spectral interferometry. A Ti:Sapph oscillator (120 fs, 5 nm FWHM)
is used together with a photonic crystal fiber to generate a spectrum of 100 nm bandwidth. The test
mirror replaces a metallic reference mirror that is used to measure the instrument function.
right: typical modulated spectrum recorded at the spectrometer

changes of the FFT-filter properties. The mean GVD values of the chirped intracavity

mirrors are obtained.

This experiment is in conclusion not sufficiently sensitive to reveal the fine-

structure of the intracavity dispersion of the SYNERGY oscillator. Nevertheless,

a much simpler, indirect measurement can be used to obtain the GVD properties

indirectly. This is the broadband measurement of the mirror transmission.

Figure 4.15, right, shows the normalized transmission of the SYNERGY cavity

Figure 4.15: Detailed analysis of the dispersion properties of the SYNERGY Ti:Sapph oscillator.
left: Measurement of the dispersion properties by spectral interferometry reproduces expected mean
values of the GVD. The quantification of the spectral modulation of the GVD is subject to significant
uncertainties. right: Transmission of the chirped mirrors of the Ti:Sapph cavity. A spectral shift
of otherwise identical mirror properties can compensate periodic dispersion variations of a mirror
assembly. The mirrors of the oscillator exhibit group-wise ( 1© and 2©) the same reflectivity structure
with a shift of approximately 10 nm for the two arms.



120 4.2. BROADBAND SPECTRALLY RESOLVED PHASE NOISE ANALYSIS

Figure 4.16: Phase to amplitude modulation transfer by the cavity. A comb can be phase modulated
in different ways (see text). left: All types of phase modulation lead to an amplitude signal in
transmission. Here for a cavity pressure of 106 mbar at 17 MHz and -3 MHz CEO-frequency.
right: Tuning the CEO-frequency of the comb, the conversion effect changes in different ways for the
different modulation types. The wedge is mounted on a piezo-element that is driven at a resonance.

mirrors when measured with an incoherent white light source. Within the two mirror

groups, the identical properties are shifted by approximately 10 nm. A designed shift

of the spectral properties of a set of chirped mirrors, by half the underlying dispersion

modulation period, is commonly used to reduce the dispersion variations for their

assembly. Although the measurements above present several indications on a spectral

variation of dispersion, they are insufficient to quantify this effect.

II. Transfer of different types of comb-phase modulation. The section above

describes a broadband passive cavity as a detector of phase noise. Nevertheless,

phase noise can have different meanings in an optical frequency comb. Repetition rate

and CEO-phase noise are examples of this ambiguity. In terms of experiments, the

following four types of phase modulation have been experimentally accessible for

the Ti:Sapph oscillator used here:

1. a modulation of the position of an end-mirror of the oscillator cavity leading to

a change of the repetition rate, the spacing of the frequency comb

2. a modulation of the pump-power of the oscillator, leading essentially to a

change of the CEO-frequency, thus a frequency shift of the entire comb

3. a phase modulation by an EOM leading to a homogeneous phase side-band

signal for any line of the comb spectrum

4. a rapidly moving wedge in the beam path leading to varying spatial and

temporal chirp
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Figure 4.16, left, shows that all the different phase properties of a frequency comb

are detectable by the intensity signal transmitted by the cavity. The right plot shows

that the transfer of these different phase modulations is in addition a function of the

mean CEO-frequency of the comb. The spectrum transmitted by the passive cavity

depends on the CEO-frequency. The modulation transfer is consequently a function

of the transmitted spectrum if the underlying phase modulation is not constant over

the optical spectrum. As expected, Fig. 4.16, right, shows that the modulation by the

EOM is the same for all parts of the optical spectrum. This is not the case for the other

types of phase modulation. It indicates in conclusion that their underlying spectral

distribution of phase modulation is different from a constant.
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4.3 The transfer function representation

The results of the sections 4.1 and 4.2 arise from the properties of a passive cavity

to filter and to interconvert the noise field quadratures. In order to complete the

characterization of the Ti:Sapph-cavity system, and to verify the consistency of the

observed signals, the so-called transfer function approach can be applied [96, 125].

The complex transfer function H(f) is defined as the ratio between the output

signal Y (f) to the input signal X(f) of a linear, time-invariant system. Only the

absolute value of H(f) and small perturbations δ of the oscillator mean properties

are considered here. In this context, H(f) is called the noise transfer function of the

system:

H(f) =
δY (f)

δX(f)
(4.13)

This approach is applied here to the entity of the electro-optical system of the

preceeding setups. It is shown in Fig. 4.17. The strength of the transfer function

approach is that the measurement ofH(f) corresponds to an exposure of the system to

white noise. The recorded slopes correspond thus to a characterization of the impact

of spontaneous emission on the optical system.

The characterizations done here consist of a measurement of the transfer function

of the cavity, the oscillator and different detection schemes for phase noise, see

Fig. 4.17. The source of amplitude modulation is an acousto optical modulator (AOM)

with a 3 dB cutoff at 1 MHz. Above, its transfer function decays by a slope of -

100 dB/dec at 3 MHz. Due to this steep slope, noise transfer functions of all other

elements can only be measured up to approximately 2 MHz.

Figure 4.17: The properties of all noise conversion/filtering setups presented in this thesis are
in principle acessible by transfer function analysis. Their measurement characterizes: A© the passive
cavity; B© and C© the Ti:Sapph oscillator; D© the phase noise measurement: self-referenced homodyning
of the cavity transmission. The intensity transfer function of the driving AOM has been characterized
separately.
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Figure 4.18: Characterization of the Ti:Sapph oscillator and the passive cavity. Noise transfer
functions of the principal experimental objects of this thesis. Intensity transfer function of A© the
passive cavity, B© the Ti:Sapph oscillator; C© the CEO-phase of the oscillator, in rad2/[Hz ·W]

Characterization of the Ti:Sapph oscillator and the passive cavity. At first, the

passive cavity itself is characterized. The setup Fig. 4.17, A©, is used to this aim. The

data are shown in Fig. 4.18. They determine the cutoff-frequency of the cavity to

approximately 130 kHz. This result is consistent with the ringdown measurement

of section 3.2.4.

Second, the sensitivity of the Ti:Sapph oscillator output power and CEO-phase to

pump power noise is characterized. To this aim the setups Fig. 4.17, B© and C© are

used. The results are shown in Fig. 4.18: trace B© for the output power, trace C© for

the CEO-phase. As shown by Scott et al.[96], the Ti:Sapph oscillator is a low gain

white amplitude noise amplifier up to the peak at approximately 1 MHz. This is

the relaxation oscillation (RO) of the oscillator. Above this frequency, the intensity

noise transfer function drops rapidly. A rate equation model predicts -20 dB/dec [96].

The transfer of amplitude noise to CEO-phase noise drops by 40 dB/dec out of the

bandwidth of the lock and below the RO-frequency. This behavior is consistent with

the theory of H.A.Haus [10]. It strengthens the conclusion of page 111, stating that

phase noise of the free running Ti:Sapph oscillator is spontaneous emission limited.

Indeed, the slope of the transfer function Fig. 4.18, trace C© is similar to the slope

of the CEO-phase noise reference data Fig. 3.5. A transfer function measurement

corresponds to a white noise excitation of the system. In consequence, the origin

of the free running oscillator CEO-phase noise is purportedly spontaneous emission.



124 4.3. THE TRANSFER FUNCTION REPRESENTATION

Figure 4.19: Characterization of different phase noise measurements. Noise transfer functions,
oscillator pump modulation to f-2f CEO C© and to the cavity-homodyne-measurement D©. The
multiplication of the cavity-homodyne signal with the predicted second order decay shows that this
beating measurement indirectly samples the CEO-phase (noise) distribution.

Characterization of the self-referenced cavity homodyne measurement.

Section 4.1 measured the phase noise of a Ti:Sapph oscillator down to the SQL using

a setup of self-referenced interference. The transmission of the broadband passive

cavity has been homodyned with the initial signal itself. Here, the transfer function

approach is used to confirm the validity of this scheme from a different perspective.

The measurement results are shown in Fig. 4.19. The slope of the CEO-phase C©
is reproduced if the detected signal D© is multiplied with the second order decay

predicted from theory, Eq.(4.8).

The results above only discuss slopes of signal, an absolute calibration is neglected

here. It is not necessary, the principal aim here is to underline the versatility of

transfer-function measurements on complex electro-optical systems. They confirm

here the outcomes of the previous sections.
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4.4 Quantum-limited measurement of phase noise -

ready to use

This section compares the methods to detect phase noise in frequency combs devel-

oped in the first and second section of this chapter. For sufficiently low intensity

noise, these methods can be significantly simplified. The resulting, ready to use

configuration is applied to compare phase noise of Ti:Sapph oscillators and a fiber-

based oscillator relative to the SQL.

Introduction. One focus of this work is to study of the noise properties of a

Ti:Sapph oscillator close to the SQL. The aim is to apply this oscillator to quantum-

limited measurements. Its amplitude and phase noise has been extensively charac-

terized close to the SQL in the previous sections. Both typically reach the SQL at

microsecond timescales. Nevertheless, stable Ti:Sapph oscillators are cost expensive

and not suitable for out-of-the-lab applications due to alignment issues.

Fiber-based oscillators are much more robust and can be low-cost. Although

their noise properties have been characterized extensively [17, 126] no information

is available relative to the SQL. A precise characterization relative to this limit will

help to evaluate their applicability for high precision metrology experiments on short

timescales [5] as also for quantum optical experiments with frequency combs [24].

This information becomes accessible here even if the comb is not suitable for coherent

broadening/f-2f beating schemes.

The method presented here provides a readily applicable tool to characterize

phase noise in any optical frequency comb close to the SQL. Similar to the previous

section 4.2, these methods could also be applied to a spectral resolved analysis of

phase noise.

This section is organized as follows: First, the different methods discussed so far

are put into a common context. Subsequently they are compared to the simplest

possible cavity-assisted phase noise detection. Second, the CEO-phase noise of a

Ti:Sapph oscillator is characterized again using the simplified method based on the

analysis of the reflection of a resonant passive cavity. For low noise levels at high side-

band frequencies, the phase noise distribution obtained with an f-2f measurement

is reproduced. Third, this approach is applied to a fiber oscillator not suitable for

coherent broadening within an f-2f measurement. It turns out that even the strongly

simplified experimental setup is sufficient to detect comb phase noise close to the

standard quantum limit.
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Figure 4.20: Left: Four methods to measure CEO-phase noise of a frequency comb. Repetition rate
noise is assumed to be negligible. 1© f-2f beat (after spectral brodening using a PCF if the oscillator is
not octave-spanning); By the use of a passive cavity: 2© homodyning the beam with a cavity-filtered
part of it, 3© intensity noise in reflection, 4© intensity excess noise in transmission
Right: Typical Pound-Drever-Hall-error signal providing information about the seed phase noise.
The signal depends on the cavity cutoff frequency: 1© electronic noise level, 2© 130 kHz, 3© 640 kHz

Comparison of different methods. Figure 4.20, left, shows possible methods for

a cavity-assisted measurement of frequency comb phase noise. In parallel to an f-2f

detection, the transmission of the cavity can be interfered with a part of the original

signal (see section 4.1). This measurement is called here: homodyne method. Another

approach is to evaluate the amplitude excess noise arising from incident phase noise,

in transmission from the cavity (see section 4.2). It is called here: transmission method.

The homodyne method is of highest sensitivity to phase noise and even quantum-

limited. The transmission method is less sensitive: the cavity also filters amplitude

excess noise that may arise from phase noise. It will turn out here that the cavity

reflection can also be used to detect phase noise down to the SQL. It has been shown

in the literature that this signal can be used to measure all the information about the

noise in a state of light [30].

All these four techniques can be compared to a direct evaluation of the Pound-

Drever-Hall error signal [100]: A typical data-trace for this method is shown in

Fig. 4.20, right, for a MIRA Ti:Sapph oscillator. This method is in practice subject to

amounts of electronic noise. It turns out to be not suitable for an evaluation of phase

noise properties close to the SQL.

For this reason, the following measurements apply only the transmission method

and the homodyne method to compare the phase noise of different oscillators close to

the SQL.
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Figure 4.21: Transmission method to characterize low peak power Ti:Sapph oscillators. The
intensity noise of a passive cavity in transmission exhibits excess noise arising from comb phase noise.
Data relative to the SQL 1©. SYNERGY: CEO phase noise from f-2f beating 6©, intensity noise of seed
2©, cavity output 5©. MIRA: intensity noise of seed 3©, cavity output 4©.

I. Transmission method - applied to a low peak power Ti:Sapph oscillator.

Fig. 4.21 compares the intensity and phase noise of different Ti:Sapph oscillators close

to the SQL. They are: the Femtolasers SYNERGY2 oscillator studied in the previous

sections and the Coherent MIRA oscillator3 used in the next section. An f-2f scheme

with preliminary coherent broadening cannot be applied to this oscillator due to its

lower peak power.

According to Fig. 4.21, the intensity noise of both oscillators (traces 2© and 3©) is

close to the SQL for the detection frequencies here relevant. The most significant

difference arises from the relaxation oscillation (RO) frequency. For the MIRA it is

approximately 300 kHz below the one of the SYNERGY. As discussed in Eq.(3.3),

page 78, intensity and phase noise of a laser strongly decrease above this frequency.

Quantum limited properties of the MIRA at lower radio-frequencies than for the

SYNERGY can consequently be predicted, see Fig. 4.21 and Fig. 4.22.

In order to characterize phase noise, the results of the transmission method are

shown in Fig. 4.21, traces 4© and 5©. Above the cavity cutoff 4 and below the relaxation

oscillation, the slope of the cavity excess intensity noise appears to be the same for

both oscillators. With respect to their negligible intensity noise and close to the SQL,

the phase noise properties of both oscillators are consequently very similar.

2 1 W, 30 fs, 156 MHz repetition rate 3 1 W, 140 fs, 75 MHz repetition rate 4 approximately 200 kHz
for the one applied to the MIRA
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Figure 4.22: Homodyne method. Homodyne detection of the cavity output (signal) with the oscillator
output itself (local oscillator), in phase quadrature. Data relative the SQL 1©.
SYNERGY: 2© homodyne signal, 4© f-2f signal, MIRA: 3© homodyne signal. Dotted lines as a guide to
the eye. Above the cavity bandwidth and below the relaxation oscillation-frequency the slopes of the
signals are identical.

II. Homodyne method - applied to a low peak power Ti:Sapph oscillator.

Applied to both oscillators, the homodyne method phase noise measurement

leads to the signals shown in Fig. 4.22. Trace 2© for the SYNERGY, trace 3© for the

MIRA. The method being of quantum-limited sensitivity to phase noise, the data

shown are of higher signal to SQL ratio then those of the transmission method

above. The conclusions from Fig. 4.21 are confirmed here: for a frequency interval

above the cavity cutoff and below the relaxation oscillation, the phase noise of

both oscillators follows the same slope. Nevertheless, due to different relaxation

oscillation frequencies, the MIRA oscillator phase noise is quantum limited at a lower

frequency then the SYNERGY oscillator.

Summary. It is in conclusion possible to characterize phase noise close

to the SQL of an oscillator with insufficient bandwidth/peak-power for

coherent broadening/f-2f beating. This is here the Coherent MIRA. By the use

of two different, cavity assisted measurements, it is shown that: A careful choice

of the relaxation oscillation frequency Eq.(3.3) could provide a Ti:Sapph oscillator,

quantum-limited below 1 MHz detection frequency.
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Figure 4.23: Experimental scheme used in this section together with the SYSNERGY oscillator.
1 Mode-locked Ti:Sapph oscillator at 156 MHz, output power 1 W, pulse duration below 30 fs,
2 selection of measurement type by a flip 50/50 beam splitter, no splitter: intensity noise measurement,
with splitter: cavity-homodyne measurement, 3 passive cavity in a mbar vacuum chamber, 4 PDH-
locking scheme, 5 balanced (homodyne) detection, 6 lock of the relative phase, 7 f-2f interferometer
and signal analysis, 8 shot noise resolving analysis of the reflected signal

4.4.1 Comb phase noise from the cavity reflection

It has been discussed in the previous sections that the transmission of a broadband

resonant cavity and shot noise resolving, interference detection can resolve phase

noise of frequency combs with quantum-limited sensitivity. The scheme requires a

lock of the mean relative phase of the two interfering beams, which adds experimental

complexity. In order to provide a simplest possible and readily applicable measure-

ment solution, it is shown here that for negligible intensity noise it is sufficient to

consider the signal reflected from the locked cavity. This strongly simplifies the setup.

The experimental setup. Figure 4.23 shows the setup used to compare cavity-

homodyne method to the direct analysis of the cavity-reflection. The interference

method has been extensively discussed above. To recall the basic principle: Above

its cutoff frequency the cavity filters the phase noise of the transmitted beam. This

leads to a phase noise-difference compared to the original seed. The difference can

be detected down to the SQL using a shot noise resolving, balanced interference

detection. A seed phase noise distribution f−n is detected within a f−n+2 slope.

Reflection of a passive cavity. An interference similar to the homodyne detection

occurs in the reflection of the passive cavity. Even at resonance, a part of the seeding

beam is reflected from the cavity. It interferes with a small signal leaking through the

coupling mirror from the field stored inside the cavity. The relative phase between

the directly reflected light and the one leaking from the resonant cavity is set by the

electronic lock-point on the Pound-Drever-Hall error signal.
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Figure 4.24: Equivalence of the cavity homodyne- and the cavity reflection-method for quantum-
limited phase noise detection. 1© SQL for 8 mW detected power, 2© intensity noise of the
Ti:Sapph oscillator, 3© cavity reflection at Pound-Drever-Hall lock point optimized for highest signal,
4© self-referenced cavity-homodyne signal, 5© CEO-phase noise recorded with an f-2f interferometer.

Note: The cavity reflection was recorded with a different setting of the oscillator stability range. This
changes the relaxation oscillation peak at 1 MHz between traces 3© and 4©.

To verify this concept, Fig. 4.24 compares the CEO noise obtained from an f-2f

beating, intensity noise, and the signals from cavity-homodyning and cavity reflection.

The two latter signals show identical slopes. They are well distinguishable from

amplitude noise. As expected, the slope of the CEO-phase noise times the squared

detection frequency f 2. This validates the approach.

Further remarks. First, the cavity-reflection measurement requires sufficiently

low intensity noise of the seeding beam. In contrast to the cavity-homodyne

measurement, the simplified approach in reflection is always sensitive to the intensity

noise of the seeding beam. Second, the mean relative phase of both beams is set

by the electronic lock point on the Pound-Drever-Hall error signal on which the

cavity is locked. It is in practice difficult to measure this point with high precision.

While tuning the electronic lock point, the maximum recorded intensity noise in

reflection indicates the experimentally best possible mean relative phase between the

two interfering beams.

Conclusions. The simplified approach using the cavity reflection is in conse-

quence only suitable to detect the slopes of phase noise and for the verification of

quantum-limited phase noise properties. Due to its sensitivity to intensity noise

and the uncertainty contained in the electronic lock point, absolute phase noise

quantification is subject to a number of uncertainties. This can nevertheless be solved

by referring to a measured SQL.
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Figure 4.25: Schematic of the cavity-reflection method to measure oscillator phase noise in a
simplified, ready to use configuration. It reduces the complexity of the homodyne scheme Fig. 4.23,
and is applied here to a mode-locked fiber oscillator. The reflection of the passive cavity interferes with
the leakage of the signal stored in the cavity.

4.4.2 A ready to use schematic - applied to a Yb-fiber oscillator.

The experimental setup. Figure 4.25 shows a schematic of the simplified exper-

imental setup, applied to a fiber oscillator: The Yb-doped fiber oscillator to be

characterized is of stretched-pulse type and is mode-locked by a saturable-absorber

mirror. The center wavelength of the spectrum is about 1035 nm. The laser possesses a

measured total GDD of 0.012 ps2. The repetition rate is 75 MHz. The stable operation

of the fiber oscillator manifests in a low repetition rate fluctuation, which is −80 dBc

at 100 Hz side-band frequency. The external resonator is locked to the laser by using

the Pound-Drever-Hall (PDH) technique. The PDH error signal is obtained from

the central frequency of the comb to avoid eventual bistabilites arising from cavity

dispersion. An electro-optical resonator imprints a 5 MHz phase modulation on the

laser’s output. Only the central part of the spectrum is used for the derivation of

the PDH error signal. By controlling the position of a piezo-actuated mirror, stable

locking is achieved over a time span larger than 10 minutes. To keep the design of

the external resonator as simple as possible, we chose a semi confocal resonator with

a 300 MHz free-spectral-range. The cavity’s linewidth is about 200 kHz. The seeding

beam, reflected from the locked cavity is analyzed in terms of RIN relative to the SQL.

Two cases are considered: First, the RIN measurement with the beam-path inside the

cavity blocked, and second, a measurement with a locked cavity.
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Figure 4.26: Recorded intensity noise with the ready-to use setup Fig. 4.25. Quantum limt 1©
measured with a balanced detection. If the intracavity beam is blocked, the trace 2© is observed. The
case of a locked cavity is shown by trace 3©. The additional noise is highlighted in grey. The grey
vertical line indicates the passive cavity linewidth.

Phase noise of a fiber-comb. Figure 4.26 shows the effect of the cavity on

the observed intensity noise. When the beam path inside the cavity is blocked,

the incoupling mirror acts as a normal mirror and a conventional intensity noise

measurement of the fiber oscillator is performed. The high levels, which are up to

30 dB above the SQL, are due to the intensity noise of the pump diodes. They are

10 to 20 dB above the levels observed for the Ti:Sapph oscillator. An independent

balanced detector measurement allows the presentation of the data with respect to the

SQL. If the cavity is locked, the laser’s phase noise is partially converted to intensity

fluctuations and manifest in an increase of intensity noise by a significant 6 dB. This

effect decreases for frequencies below the cavity’s linewidth of 200 kHz. Above 8 MHz

detection frequency, the two measurements collapse and are by 3 dB close to the SQL.

Consequently, both amplitude and phase noise reach levels close to SQL.

Assignment of the observed noise. The measurements Fig. 4.24 and Fig. 4.26 do

not discriminate between repetition rate phase noise Srep(f) and CEO-phase noise

SCEO(f). They are sensitive to the phase noise of any line of the comb and measure its

average over the considered optical spectral band.

For the Ti:Sapph oscillator it will be shown in section 4.5.1 that its governing phase

noise property is CEO-phase noise. An indication to this result was obtained earlier

in section 3.1: At 1 kHz side-band frequency, the Srep of the Ti:Sapph oscillator was

measured at approximately -100 dB below SCEO. The mode number of approximately

106 has to be taken into account to estimate its contribution to the phase noise of
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individual lines. Nevertheless, the contribution from Srep does not reach the levels

of the SCEO. As such, the phase noise observed in the measurements Fig. 4.24 has

already been attributed to CEO-phase noise.

For the fiber-comb, the unambiguous measurement method section 4.5.1 is not

available. The fiber oscillator pulse peak power is insufficient for coherent broadening

to obtain an f-2f beating. Argumentations similar to those for the Ti:Sapph oscillator

can give a first indication on the relative contribution of Srep and SCEO to the phase

noise in an individual line. The Srep was recorded at -80 dBc at 100 Hz side-band

frequency. For a similar fiber oscillator, SCEO was measured significantly above

this level [17]. In addition, noise simulations based theory of H.A.Haus [10] can

be applied. Therein, the level and the expected slope of SCEO can be calculated

using Eq.(2.56), where the parameter τw is equivalent to 1/frep. It is confirmed that

contributions of SCEO expected from theory are significantly above those of Srep. In

addition, the predicted second order decay of SCEO ∼ f−2 is two orders lower than the

predicted Srep ∼ f−4. Together with the∼ f 2 sensitivity of the measurement itself (see

Eq.4.9) the expected signal is constant. This is observed in Fig. 4.26: the 6 dB phase

signal from phase noise is nearly constant over one decade of detection frequencies.

In conclusion, the phase noise measured with the cavity-reflection principle

Fig. 4.26 characterizes most likely the CEO-phase noise of the fiber generated comb.

The measured phase noise rises with a less steep slope than for the Ti:Sapph oscillator,

and is supposed to follow a second order power law.

Conclusions of this section

Intensity and phase noise of the two different Ti:Sapph oscillators investigated here

are quantum-limited above detection frequencies of several MHz. The intensity noise

of these oscillators follows typically a first order decay. It is originated by the pump

source. The phase noise follows typically by a fourth order decay, arising from

spontaneous emission in the gain medium and subsequent coupling processes [10].

By simplifying the cavity based phase noise measurement method applied to the

Ti:Sapph oscillators, a ready-to-use schematic has been developed. It has been applied

to a low-cost Yb-fiber oscillator. For detection frequencies above 8 MHz, this fiber

comb reached by 3 dB quantum-limited behavior in intensity and phase. Further

improving the noise of its pump source could bring quantum-limited noise properties

into reach. This would provide an affordable source for quantum optical experiments

with frequency combs.
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4.5 Spectral noise correlations in frequency combs.

This chapter presents the main results of this thesis. The cavity based, quantum-

limited phase noise detection developed in section 4.1 is complemented by femtosec-

ond pulse shaping. This permits the analysis of spectral noise correlations, and

subsequently the development of a new perspective on classical noise in frequency

combs.

Context of metrology and quantum optics. The noise properties of frequency

combs have been studied in the frequency metrology literature for two different

regimes: in terms of the mean-field or for individual frequencies. Examples for the

first are e.g. the CEO-frequency [28] or the repetition rate [7]. The second compare the

properties of individual lines of the frequency comb [18, 16] by beating them to single

frequency reference lasers. The phase noise distribution over the entire comb is then

approximated by e.g. the rubber-band model [21] and has been modeled theoretically

[20] for lowest noise levels.

Nevertheless, no experimental information is until now available concerning the

spectral correlations of noise and how they evolve at MHz detection frequencies close

to the standard quantum limit (SQL). Such correlations, or modes are not accessible

from mean-field properties. Their knowledge could be used to reduce noise in

broadband optical measurements: by a careful selection of the measurement spectral

properties. It has been shown by B.Lamine et al.[5] that spectral modes can be used for

precision metrology experiments. The implicitly underlying concept of this work is

that repetition-rate and CEO-phase correspond to spectral modes of correlated noise.

Also the well known oscillator noise theory of H.A.Haus [10] relies on such modes. It

turns out that mean-field noise properties of frequency combs are special cases in the

framework of noise-modes.

A recently developed branch of noise analysis for frequency combs studies non-

classical quantum states of light [22, 24, 23]. The pre-requirement for the underlying

concepts are quantum-limited noise properties. Many lasers have such properties

at sufficiently short timescales of microseconds. The interaction of a frequency comb

with a nonlinear medium can under this assumption lead to non-classical correlations

of amplitude and phase noise in the frequency comb [22, 24]. It turned out that

so-called spectral modes, structures of correlated noise, are a suitable formalism to

describe these correlations [25, 24]. It is not clear how far this quantum-optical mode-

representation is applicable to classical noise of frequency combs. This section aims

to clarify this question.



CHAPTER 4. A PASSIVE CAVITY FOR COMB PHASE NOISE METROLOGY 135

Structure of this section. Spectral correlations of frequency comb noise are

studied here for levels close to the SQL. They are independent to fluctuations in

the laser environment which occur at lower detection frequencies. Concerning phase

noise, it has been shown in the sections 4.1 and 4.2, that such low levels are accessible

by the use of broadband transmissive, passive cavities and shot noise resolving,

homodyne detection [85, 69]. Adding here pulse-shaping to these methods, spectral

correlations of phase noise become accessible. The spectral amplitude and phase

noise co-variance matrices of a Ti:Sapph oscillator are subsequently measured. Their

eigendecompositions reveal the modes of correlated noise. In the second part of this

section, it is shown how repetition rate and CEO-phase noise of a frequency comb

are canonically represented by such modes. Using the phase noise covariance matrix

data, the levels of both can be calculated even close to the standard quantum limit.

Experimental setup and measurements. The setup to verify the concept of

spectral modes of classical noise in a frequency comb is shown in Fig.4.27. It consists

of fs-pulse-shaping, a passive optical cavity and shot noise resolving intensity noise

detection. The electric signals are analyzed using a spectrum analyzer. The pulse-

shaper acts as a binary switch on 10 individual parts of the spectrum. They are non-

overlapping and all together cover the entire spectrum. They permit to measure either

the noise levels in individual bands or noise correlations by pairwise combinations.

Figure 4.27: Experimental setup. A Ti:Sapph oscillator Coherent MIRA, repetition rate 78 MHz,
average power 1.5 W, pulse duration 140 fs, bandwidth 6 nm FWHM, central wavelength 795 nm, is
analyzed. A shutter selects one of two measurements: closed amplitude noise correlations, open phase
noise correlations. The remaining components are a 4-f line with a spatial light modulator SLM, a
passive cavity of Finesse 625, cutoff frequency at 125 kHz, a piezo-mounted mirror to lock the relative
phase of the interfering beams, and a shot noise resolving, balanced interference detection. Only one
detector is used if shutter is closed. The cavity is locked with a PDH-scheme in counterpropagation.
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Figure 4.28: Typical measurement raw data: recorded intensity noise used to calculate the
covariance matrices. Left for amplitude noise, right for phase noise. Shown are two example
measurements of noise in the center 1© and in the wing 2© of the spectrum. The covariance matrices are
subsequently calculated for a noise frequency Ω within a 30 kHz resolution bandwidth. The spurious
noise peaks below 500 kHz arise from non-stationary fluctuations (jumps of the longitudinal mode) of
the Ti:Sapph pump laser.

To analyze amplitude noise only the signal from the pulse-shaper is detected

by a single photodiode. To analyze phase noise, both arms Fig.4.27 interfere with

a mean relative phase of π/2. The signal is detected with with the balanced, two

detector configuration. The passive cavity filters comb phase noise in one arm of the

interferometer leading to a difference in phase noise in both arms. As discussed

in section 4.1, the resulting signal S(Ω) is proportional to the mean squared relative

phase noise 〈δφ2
rel(Ω)〉 and even proportional to the absolute phase noise of the

Ti:Sapph oscillator, see Eq.(4.3):

S(Ω) ∼ 〈δφ2
rel(Ω)〉 ∼ Ω2〈δφ2

Ti:Sapph(Ω)〉 (4.14)

This measurement has been shown to be of quantum-limited sensitivity to phase

noise, see Eq.(4.3). A homodyne configuration with one bright and one attenuated

signal turns out to be not necessary here: The intensity noise in both interferometer

arms was negligible compared to the phase noise signal. Typical measurement raw

data are shown in Fig.4.28 for both quadratures. The classical noise at detection

frequencies below 1 MHz is well distinguished from the white shot noise.
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Figure 4.29: Covariance matrix for spectral amplitude 1© and phase 2© fluctuations at 1.2 MHz
detection frequency. The amplitude noise 1© has predominant weight and correlations in the wings
of the spectrum. The spectral phase noise 2© has an opposite structure. Its weight and correlations are
predominant in the spectral center of the comb. Similar covariance matrices are found for all detection
frequencies below 1.5 MHz where noise is sufficiently above the SQL.

Spectral Noise Correlations. Using the pulse-shaper, the analysis above can be

resolved on the optical spectrum but also considering noise correlations. To this aim,

either one or two spectral regions i and j are transmitted i, j = 1..10. For x being either

amplitude or phase noise, the photo-detection records consequently the noise power

〈(xi + xj)
2〉 at RF-frequencies Ω/2π from 200 kHz to 4 MHz. The detected optical Pi

power is monitored in parallel. The individual elements of the covariance matrix

〈xixj〉 at the detection frequency Ω are subsequently constructed by

〈xixj〉Ω =

[
1

2
〈(xi + xj)

2〉Ω −
Pi

Pi + Pj
〈x2

i 〉Ω −
Pj

Pi + Pj
〈x2

j〉Ω
]
× Pi + Pj

2
√
PiPj

(4.15)

To build up the covariance matrix, the observed intensity noise 〈x2
i,Measure〉 is normal-

ized relative to the shot noise level 〈x2
i,shot〉: 〈x2

i 〉 = 〈x2
i,Measure〉/〈x2

i,shot〉. It can be shown

that, under this condition, Eq.(4.15) is directly the covariance-matrix for the noise field

quadratures amplitude and phase [127, 22, 25].

Typical properties of the covariance matrices obtained can be discussed using

examples measured at 1.2 MHz (Fig.4.29), and at 3.5 MHz (Fig.4.30). At the latter

detection frequency, both amplitude and phase noise covariance matrices are diagonal

in any basis: all correlations vanish. The noise of both quadratures is at the SQL.

Below 100 kHz, non-stationary classical noise is present in the Ti:Sapph pump laser.

At 1.2 MHz, classical stationary Gaussian noise is present. The covariance matrices for

amplitude and phase are significantly different and exhibit spectral noise correlations.
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Figure 4.30: Covariance matrix for spectral amplitude- 1© and phase-noise 2© at 3.5 MHz detection
frequency. Both amplitude and phase noise are here at the SQL. All spectral correlations represented
by off-diagonal elements vanish. The diagonal elements are all of the same value as the underlying
noise level is normalized to the photon number.

A further analysis of these covariance matrices has to distinguish the two principal

parameters of the measured covariance matrices: the optical spectrum described by

the indexes i and j and the detection frequency Ω. For a given detection frequency,

the following considerations can be done:

The measured 〈xixj〉 can be written in a generalized covariance matrix V . Writing

qi amplitude- and pi phase-noise measurements, it is the matrix V that describes the

entirety of noise correlations in the comb. It was partially probed here through the

amplitude and phase covariance matrices Vqq and Vpp:

V =



∆q1 〈q1q2〉 . . . 〈q1pn〉

〈q2q1〉 ∆q2 . . . 〈q2pn〉
...

... . . . ...

〈qnq1〉 . . . . . . ∆pn


=

 Vqq 0

0 Vpp

 (4.16)

All correlations between the two quadratures have been neglected here. This is

reasonable with the results of section 4.1 and 4.4. Amplitude and phase noise of the

Ti:Sapph oscillator close to the SQL are of different origins: The first arise from pump

power fluctuations, the second from spontaneous emission.

In order to characterize the entire system, one typically seeks a diagonalization

of V . The eigenvectors of V are the so-called noise-modes. With the assumption of

uncorrelated amplitude and phase noise, it is consequently sufficient to consider both

quadratures individually. The general case in quantum optics is called Williamson
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Figure 4.31: Evolution of the eigenvalues of the covariance matrices Fig.4.29 with the detection
frequency. Spectral amplitude noise left and spectral phase noise right. Each eigenvalue quantifies
the amount of noise in the corresponding eigenvector. All eigenvalues decay rapidly to the SQL above
the relaxation-oscillation frequency at 700 kHz. The level of the first eigenvalue 1© is well above the
others for all detection frequencies below the SQL. Two other groups of eigenvalues, 2© and 3©, can be
identified. The level of group 3© has been found to be significantly related to measurement instabilities
and noise of the Ti:Sapph pump laser.

decomposition. A diagonalization is seeked here using symplectic transforms that

maintain the commutation relations between the operators p̂i and q̂i [128, 129, 130, 25].

In this representation, the eigenvalues of the covariance matrices are associated

with the amount of noise contained in the corresponding eigenvector. In addition,

any eigenvector or noise mode describes a distribution of perfectly correlated noise

over the optical spectrum. This concept is applied here to classical noise. To this aim,

the matrices Vqq and Vpp are diagonalized.

Broadband analysis of covariance matrix eigenvalues. Figure 4.31 shows the

evolution of the eigenvalues of the noise covariance matrices for amplitude and phase

with the detection frequency Ω, from the classical regime at 100 kHz to the SQL. For

both quadratures, their value and thus the associated noise levels decay rapidly to

the SQL, especially above the relaxation oscillation frequency at 700 kHz. Such an

attenuation of classical noise for a Ti:Sapph oscillator has been discussed by [13]

using a rate-equation based model, see section 4.4. The data of Fig.4.31 reveal three

distinguishable groups of eigenvalues: A first one that carries approximately 75% of

the noise, a second one that is a group of similar eigenvalues. They form a degenerate

space of eigenvectors. The values of the third group are significantly smaller.

In order to study the relative evolution of the noise correlations with the detection

frequency Ω, the representation chosen in Fig.4.32 provides a different perspective:

All eigenvalues are normalized relative to the first one. At the SQL above 3 MHz

detection frequency and within the measurement uncertainties, all eigenvalues are
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Figure 4.32: Evolution of the eigenvalues of the covariance matrices Fig.4.29 with the detection
frequency. (same as Fig.4.31 - here the first eigenvalue is normalized to 1.) Above 1.5 MHz, all
eigenvalues of both quadratures converge rapidly and in the same way to 1., this is equivalent to
fully uncorrelated noise over the frequency comb.

equal to one. At microsecond timescales, all eigenvalues converge in the same way to

this equal distribution. This indicates that the coherence time of the frequency comb

is the same in any mode. The tripartite structure discussed in Fig. 4.31 is also visibile

Fig.4.32. In the linear scale of Fig. 4.32, also small, non-physical, negative eigenvalues

appear. The corresponding noise levels are negligible compared to the over-all noise

of the frequency comb. It has been observed in the experiment that these negative

eigenvalues go along with the presence of non-stationary noise from a longitudinal

mode instability of the pump-laser. In conclusion, they do not correspond to an

intrinsic noise property of the free-running Ti:Sapph oscillator.

Eigenvectors of the covariance matrix. The eigenvalues of the noise covariance

matrices contain the the amount of noise in the frequency comb. The eigenvectors

contain the spectral structure of noise correlations. It is their shape that will permit to

interpret them in terms of global comb noise properties.

Before discussing general aspects of such correlations, Fig. 4.33 and Fig. 4.34 give

an overview of the entire, experimentally observed noise structures. They show

the eigenvectors of the noise-covariance matrices for amplitude (Fig. 4.33) and phase

(Fig. 4.34) as a function of the detection frequency, from 200 kHz to the SQL. With

respect to the amount of noise carried by these vectors (given by the eigenvalues

Fig.4.31), only the first four eigenvectors are shown.

For both amplitude and phase, the first eigenvector 1© exhibits the most pro-

nounced structure. Its shape remains constant, independent to the detection fre-

quency until vanishing in shot noise at the SQL. For all other eigenvectors, it is more

difficult to attribute a unique structure. This might be due to degeneracy.
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Amplitude noise eigenvectors

Figure 4.33: Amplitude noise. Eigenvectors of the spectral amplitude noise covariance matrix
and their evolution with the frequency of detection. The plots 1© to 4© show the eigenvectors
corresponding to the eigenvalues (EV) plotted in Fig. 4.31. They are ordered by the magnitude of
their EV. For the largest EV 1©, a well defined structure is present below 2.2 MHz, independent of the
detection frequency. It vanishes in shot-noise for higher detection frequencies but is otherwise always
of the same shape. The same yields for 2© and 3©where the structure is already less obvious. This may
also be due to the nearly degeneracy of the corresponding EV. For the eigenvector No. 4© and higher, a
unique structure is not visible.
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Phase noise eigenvectors

Figure 4.34: Phase noise in analogy to Fig.4.33. Eigenvectors of the spectral phase noise covariance
matrix and their evolution with the frequency of detection. Similar to the observations for amplitude
noise, it is again the first eigenvector that has a well defined structure. This shape is independent of the
detection frequency and vanishes in shot noise at approximately 2.2 MHz. The structure of the nearly
degenerated eigenvectors 2©, 3© and 4© is, as for amplitude noise, less obvious.
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Figure 4.35: Spectral noise modes of the free running Ti:Sapph oscillator. The eigenvectors
(Fig. 4.33) of the covariance matrices (Fig. 4.29) weighted with the Gaussian spectral amplitude of the
field lead to the spectral noise modes. Spline interpolation of data points to improve visualization.
Left amplitude noise and right phase noise. Only the first three modes 1©- 3© are shown. They are
enumerated with and ordered by the magnitude of their contribution to the over-all comb noise. The
modes for amplitude and phase noise are significantly different. Measurement at 1.2 MHz detection
frequency.

Spectral modes from eigenvectors. The covariance matrices Eq.(4.15) are con-

structed from noise in a spectral band (diagonal elements) and noise correlations (off

diagonals). Their eigenvectors are shown in Fig.4.33 and Fig.4.34. They characterize

perfectly correlated noise structures over the entire frequency comb, in a decorrelated

base. Multiplying the eigenvectors with the Gaussian spectral amplitude distribution

of the comb field reconstructs the underlying field-distributions vj(ω).

These vectors are subsequently called spectral noise modes. They describe the

spectral distribution of perfectly correlated noise and are shown in Fig. 4.35. The

noise modes for amplitude and phase noise are significantly different. This indicates

different physical origins. The data shown in Fig.4.35 have been recorded at 1.2 MHz

detection frequency. The level of classical noise is here sufficiently above the

SQL at 3 MHz and the laser is not perturbed by non-stationary fluctuations of the

environment or the pump source as it occurs below 200 kHz. According to Fig. 4.33

and Fig. 4.34, the first eigenmode is independent to the detection frequency Ω. Due to

degeneracy, this statement is not verified for the subsequent ones.
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Within the context of noise models for ultrafast optical oscillators, the representa-

tion of noise by such spectral modes was first used implicitly by H.A.Haus et al.[10].

There, the modes are applied to describe the perturbations ∆E(Ω) of a train of

soliton-pulses with a spectrum E(ω). The independence of the spectral modes to the

frequency of detection Ω permits to write the perturbations as:

∆E(ω,Ω) =
∑
i

vi(ω) ·∆Xi(Ω) (4.17)

Examples for Xi are here the amplitude and phase of a considered pulse. The

envelope functions vi correspond to the noise-modes. The separability of femto-

and microsecond timescales is verified at least for the first measured eigenvectors of

amplitude and phase, see Fig. 4.34 and Fig. 4.33. They do not vary with the detection

frequency.

The representation Eq.(4.17) is in addition similar to the one of B.Lamine et al.[5].

Considering generalized timing deviations in a coherent pulse train, this concept is

discussed in the next subsection. Nevertheless, both approaches arise only from

theoretical considerations. No explicit measurement of spectral modes of classical

noise has yet been reported in the literature.

From Fig. 4.35 both amplitude and phase noise of the Ti:Sapph oscillator are

associated with well distinguished noise modes. The noise of each of the two

quadratures is in addition a superposition of several orthogonal modes. The

correlations of amplitude and phase noise over the optical frequency comb are

significantly different for spectral amplitude and phase noise. Finally, the amount

of noise detected within an arbitrary measurement will depend on the spectral mode

that can be attributed to the detection apparatus. This interpretation could permit to

optimize measurements with frequency combs for best signal to noise ratios.

Conclusions: The measurement of spectral noise modes. It has been shown that

pulse shaping together with a broadband transmissive, passive cavity and balanced

interference detection can reveal the entire correlation structure (covariance matrix)

of spectral amplitude and phase noise in a frequency comb. Noise correlations define

spectral modes of correlated noise. The underlying concepts hitherto only used

for nonclassical noise correlations in frequency combs [25, 24] can consequently be

applied to classical noise. When approaching the standard quantum limit at detection

frequencies of approximately 3 MHz, all classical noise modes disappear. As expected

for the SQL, the remaining noise is uncorrelated. A comparison to the theoretically

predicted spectral modes of a free-running Ti:Sapph is done in the next section.
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4.5.1 Timing-jitter measurement close to the SQL

The measured spectral noise modes are compared here to the theoretical predictions.

Using this concept and to demonstrate its versatility, timing jitter is obtained from

noise covariance data even close to the SQL.

Introduction. For frequency combs, the levels of timing jitter (group-delay,

time-of-flight) and CEO-phase noise of have been extensively characterized rela-

tive to the carrier power. Ultimate precision within homodyne detection timing

measurements [5] requires nevertheless quantum-limited jitter and phase noise prop-

erties. To date, no measurements have been reported studying the transition of CEO-

phase noise and timing jitter to this limit. It is shown here that both properties can

be calculated from the covariance matrix of spectral phase noise. They correspond

each to a specific noise mode into which the covariance matrix can be projected. The

measurements presented here confirm that CEO-phase noise is the governing noise

property of the Ti:Sapph oscillator studied here - even down to the quantum limit.

It is consequently the limiting factor to homodyne timing measurements of highest

sensitivity [5, 8].

The noise properties studied here are situated at detection frequencies above

100 kHz: Far above typical lock-bandwidths and impacts of the environment, the

frequency comb can be considered as free-running. Nevertheless, its noise is not

yet quantum-limited. The phase noise of ultrafast oscillators in this regime has

been studied in theory and experiment by [7, 11, 10, 12], see also section 3.1. Here,

repetition rate and CEO frequency are limited by spontaneous emission in the gain

medium and noise coupling processes related to the mode-locking principle. The

over-all expected decay of phase noise lies between f−2 (spontaneous emission) and

f−4 (noise couplings). Consequently, all noise levels are supposed to reach the SQL at

a given detection frequency.

For the repetition rate, the reach of the SQL has been studied by [14, 15]. The

analysis of the CEO-phase noise in section 4.1 gave first indications that the SQL

could be reached at microsecond timescales. Despite these considerations, it is not

yet clear if either repetition rate or CEO phase noise is the governing noise property

of frequency combs close to the SQL. The transition region close to the SQL is of

particular interest: the low noise levels at the SQL are promising for metrology

experiments [5, 8]. Nevertheless, low detection frequencies are required for numerous

experiments but go along with increasing classical noise.
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Multimode homodyne measurements. To measure timing jitter (group delay)

and CEO phase noise at lowest levels, the homodyne detection concept [5], of

section 2.5.1 can be used. It is convenient to recall here how the underlying theory

applies the concept of modes of correlated noise: The mean field of the signal can be

written in terms of a function v(u), u = r − ct containing both carrier and envelope

g(u) [35]:

〈E+
0 (u)〉 = Eg(u)e−iω0u = Ev(u) (4.18)

Assuming a space-time shift u′ = u−∆u, the mode v(u−∆u) can be written in form

of a Taylor series [5]:

v(u−∆u) = v(u) + ∆u · [vI(u)− vII(u)]︸ ︷︷ ︸
w(u)

(4.19)

The two emerging temporal modes are proportional to I: iv(u) and II: dv(u)/du. It

turns out that a homodyne detection of the space-time shifted signal with a local

oscillator in mode I corresponds to a measurement of CEO-phase noise, see also

section 4.1. A homodyne detection with mode II corresponds to the measurement

of the group delay (time-of-flight, TOF) noise using only a single photodiode.

Equation (4.19) also permits to define the term noise mode more precisely. With

Eq.(4.18), a mode v(u) is nothing but a field distribution on u. In the context of

Eq.(4.19), the mode w(u) is associated with the noise amplitude ∆u. Any noise ∆u

leads to perfectly correlated noise of shape w(u). It is the so-called noise mode.

Timing jitter- and CEO phase noise-modes in the frequency domain. The co-

variance matrices Fig. 4.29 are available from measurements in the optical frequency

domain. Writing ṽ(ω) the Fourier transform of the Gaussian envelope v(u) and

neglecting normalization constants, the spectral modes corresponding to I and II are

now given as follows, see Eq.(2.77):

ṽI(ω) ∼ iω0 · ṽ(ω), ṽII ∼ i(ω − ω0) · ṽ(ω) (4.20)

The mode ṽI is the spectral envelope of the initial field itself and corresponds to a

measurement of the CEO-phase noise. The mode ṽII corresponds to a measurement

of the group-delay (time-of-flight) jitter. Both CEO phase noise and timing jitter are

spectral modes of phase noise. This confirms the intuitive statement that any change of

the spectral envelope of a frequency comb will never modify neither the pulse timing

nor the CEO-phase.
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Figure 4.36: Main modes for frequency comb phase noise analysis. The continuous lines show the
theoretical modes of CEO-phase noise 1©, and timing-jitter/group delay 2©. The dotted lines show
the first two phase-noise modes obtained from the measured covariance data (see Fig. 4.35) at 1.2 MHz
detection frequency.

Calculated and measured modes. Figure 4.36 shows the calculated and measured

modes relevant for timing-jitter and CEO-phase noise analysis. From the spectrum

of the frequency comb, ṽI 1© (CEO) and ṽII 2© (timing jitter) can be calculated using

Eq.4.20 (continuous lines). Weighted with the spectrum of the frequency comb, the

first two eigenvectors of the phase noise covariance matrix lead to the two dominant

spectral modes of phase noise (dotted lines).

These modes can be compared to the ones obtained from the measured phase

noise covariance matrix. The first mode that contains most noise shows an overlap

of 0.94 with mode ṽI representing the CEO phase noise. The measured mode of

second highest noise level shows an overlap of 0.91 with ṽII, representing the timing

jitter/group delay. For detection frequency of 1.2 MHz here considered, the CEO-

phase noise (I) in the comb is consequently larger than the timing-jitter (II).

In the following, this type of analysis is extended to all available detection

frequencies.
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Figure 4.37: Projection of the measured noise covariances onto different modes. Left: amplitude
noise, right: phase noise. For the comb spectrum v(ω) the modes are 1©: ω0ṽ(ω) and 2©: (ω − ω0)ṽ(ω).
In the case of phase noise, 1© corresponds to a CEO-phase and 2© to a group-delay measurement. For
amplitude noise, both modes are an examples of arbitrary, orthogonal modes. All noise levels relative
to the SQL. With respect to the entire recorded optical power for covariance matrix measurements, the
SQL is calculated at -175 dBc.

Indirect measurement of CEO- and TOF- noise down to the SQL. For a given

noise mode ṽ(ω), the noise level of the comb in this mode can be calculated by

projecting ṽ(ω) on any eigen-vector ṽi(ω) of the covariance matrix. The calculation

is done for any detection-frequency Ω where data are available. If the eigenvalues

k of the covariance matrix are ek,Ω and the eigenvectors are written as ṽk,Ω(ω), this

projection is:

σ2
ṽ,Ω =

∑
k

ek,Ω ·
∣∣∣∣∫ dω ṽ(ω) · ṽ∗k,Ω(ω) + c.c.

∣∣∣∣ (4.21)

The eigenvectors ṽ are real for the amplitude noise covariance matrix, imagi-

nary iṽ for the phase noise covariance. For the given comb spectrum ṽ(ω), the

method can be applied to the normalized modes 1©: ṽI ∼ iω0ṽ(ω) (CEO phase)

and 2©: ṽII ∼ i(ω − ω0)ṽ(ω) (timing jitter/TOF). The projection Eq.(4.21) corresponds

then to a CEO phase and timing-jitter measurement respectively.

The results of projecting the amplitude and the phase noise covariance matrix on

the absolute values of the modes 1© and 2© are shown in Fig. 4.37. For amplitude

noise, both modes are just examples of arbitrary, orthogonal modes. The calculated

noise level is similar for both modes. For phase noise, they correspond in contrast to

the measurement of timing/CEO noise described above. The calculated phase noise is

significantly different in the two modes. The level corresponding to CEO-phase noise

1© is up to 20 dB above the level corresponding to a timing/group-delay jitter 2©.



CHAPTER 4. A PASSIVE CAVITY FOR COMB PHASE NOISE METROLOGY 149

The CEO phase noise is consequently the governing noise property of the Ti:Sapph

oscillator considered here. This holds not only in the low kHz regime, but also for

any detection frequency up to the SQL. It is the key result of this section. At detection

frequencies where the comb noise is close to the quantum limit SQL, the sensitivity of

the homodyne timing measurement [5] is limited by the level of repetition-rate and

CEO-phase noise relative to the SQL, see section 4.1. Consequently, the sensitivity

is principally limited by the CEO-phase noise term. For a 6 nm FWHM frequency

comb, the timing/group-delay noise can be neglected for any RF-frequency.

From a generalizing point of view, using Eq.(4.21), it is possible to characterize

any noise property of a frequency comb by a spectral mode. The same holds for

any measurement of a frequency comb. This leads to the following, important

consequence: If the mode of detection can be modified with regard to the noise

modes of the comb, it might be possible to improve the signal to noise ratio of

measurements with frequency combs. An example is the measurement of a phase

modulation. If suitable with the type of phase modulation, it would be advantageous

to chose the mode of detection to the less noisier group-delay mode. This could

increase the signal to noise ratio.

Summary: Indirect measurement of common comb noise properties. Noise

covariance matrices have been shown in the literature to be a powerful tool for the

characterization of frequency combs with non-classical noise correlations [22, 24, 23].

By the use of pulse shaping, a broadband transmissive passive cavity and shot noise

resolving interference detection, the covariance matrices of spectral amplitude and

phase noise of a 6 nm FWHM frequency comb have been measured here for the first

time.

The obtained noise structure can be projected on any spectral noise mode. For

example, expected timing jitter/group delay- and CEO phase-noise of the comb

correspond to two orthogonal, spectral modes of phase noise. Projecting the phase

noise covariance matrix onto these two modes, timing jitter/group delay- and CEO

phase-noise have been calculated down to the SQL. Within this unprecedented

sensitivity, it has been shown that CEO-phase noise is the governing phase-noise

property of the investigated Ti:Sapph oscillator, even close to the SQL.
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Chapter 5

Summary and Outlook

The main purpose of this thesis was to study the noise of Ti:Sapph oscillators close

to the standard quantum limit (SQL). It was motivated by the theoretical work [5],

suggesting that multi-spectral interferometry with optical frequency combs can lead

to ultimate measurement sensitivity, provided that the comb noise is at the SQL.

Noise quantification. Due to the isotropy of vacuum, the SQL of amplitude and

phase noise for an optical signal of average power P and central frequency ν are at the

same level SSQL = 2hν/P . A convenient measure to quantify the noise levels of both

field quadratures are units relative to the carrier power dBc/Hz. For typical 1 mW of

detected power, the SQL of a comb centered at 800 nm is at -153 dBc/Hz.

A frequency comb has two common phase properties, the phase of the repetition-

rate and the carrier-envelope-offset (CEO). For the Ti:Sapph oscillators studied here

above 100 kHz detection frequency, it was found that the CEO-phase governs the

phase noise properties of the comb. It converges together with the repetition-rate

phase noise to the SQL at approximately 3 MHz detection frequency. A newly

developed measurement technique enabled this key result. In addition, the CEO-

phase noise has been shown to exhibit typically levels far above those of the intensity

fluctuations. Being at the origin of the mode-lock of the individual comb frequencies,

the Kerr effect is also the source of the high sensitivity of the comb phase to

even smallest intensity noise. Such intensity noise arises both from spontaneous

emission and pump power fluctuations. The lowest CEO-phase noise measurable

with optimized standard techniques was approximately -120 dBc/Hz for this work.

This level is still approximately 30 dB larger then the expected SQL, hence these

techniques did not provide quantum limited sensitivity to phase noise. In order to

characterize and even to filter especially phase noise of the frequency comb close to

the SQL, the following techniques have been developed.
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Figure 5.1: The principal experimental tech-
niques developed in this thesis. As shown
in section 4.5: A self-referenced interference of
the transmission of a broadband passive cavity
is detected in a shot noise resolving balanced
detection. It measures phase noise in the seeding
frequency comb with quantum limited sensitivity.
Pulse-shaping of the reference provides access to
the noise covariance of the frequency comb.

Noise filtering and broadband analysis. In order to reduce the CEO noise of the

Ti:Sapph oscillator outside the kHz bandwidth of typical active feedback schemes,

different approaches have been investigated. To start, a passive filtering cavity for

the pump of the Ti:Sapph system was constructed, with the hope of reducing its

intensity fluctuations. However, due to phase noise in the seeding pump beam, the

filtering cavity exhibited significant intensity excess noise. Together with the Kerr-

nonlinearity in the Ti:Sapph oscillator, this effect significantly increased the over-all

level of CEO-phase noise of the oscillator. Thus, this approach was found to be a not

suitable technique.

Another approach for reducing phase noise of an existing oscillator, even at levels

close to the SQL, is passive filtering of the frequency comb itself. For this purpose,

a broadband resonant optical cavity has been constructed. While filtering amplitude

and phase noise, it was shown to transmit simultaneously an up to 100 nm broadband

signal. Additionally, this cavity turned out to be a versatile tool for the analysis of

phase noise in optical frequency combs:

At first, a passive cavity interconverts the noise quadratures efficiently and

transforms CEO-phase noise to intensity noise which is readily detectable with shot

noise resolving sensitivity. This effect provides access to the spectral phase noise

properties of optical frequency combs, if the broadband transmitted signal is analyzed

spectrally resolved. The alternative of measuring individual comb lines by comparing

them to a number of optical reference signals would be an experiment of enormous

complexity. For absolute levels close to the SQL, it was found that the spectral phase

noise of a 45 nm FWHM Ti:Sapph comb varies by 10 dB over the covered spectrum.

Second, it was found that a passive cavity can provide phase noise detection with

quantum-limited sensitivity. This is possible using a self referenced interference of the

cavity-transmitted signal with a part of the original seeding beam and subsequent

shot noise resolving, balanced interference detection. If the reference beam is in

addition pulse-shaped, the covariance matrices of amplitude and phase noise become

accessible. This is the key experimental result of this thesis. The corresponding setup
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discussed in section 4.5 is drafted again in Fig. 5.1. The underlying physical principles

are the filtering of phase noise by the passive cavity and the detection of relative phase

noise by interference and shot noise resolving photodetection.

Both effects are also present in the reflection of a resonant passive cavity. For

sufficiently low intensity noise, the self-referenced interference can be replaced by

a noise analysis of the cavity reflection. This turns the concept into a ready-to-use

experiment. It was applied to characterize a low-cost fiber based oscillator close to

the SQL. In contrast to Ti:Sapph oscillators, the investigated system was not quantum-

limited for any observed detection frequency. Nevertheless, with the new technique

of characterization, this oscillator type can be systematically studied and improved.

In the future, this could provide low-cost quantum limited optical frequency combs

for quantum optical applications.

In some cases, the oscillator properties themselves can be modified. A reduction of

the oscillator’s relaxation-oscillation frequency might be a promising way to achieve

quantum limited noise properties at low detection frequencies. All classical noise

properties rapidly decay above this frequency. Compared to all other methods

considered in this thesis, this approach seems to be the most simple and robust.

Measurement of noise modes. Using the setup Fig. 5.1, the covariance matrices of

amplitude and phase noise have been determined over a broad range of detection

frequencies. Based on these findings, the emergence of classical noise from the

SQL and its correlations have been characterized precisely. In analogy to the

considerations of non-classical noise in frequency combs [25, 24], spectral modes of

perfectly correlated noise can be defined. Any measured noise covariances can be

represented in a decorrelated, orthogonal basis of modes. Any mode corresponds to

a global physical (noise) property. In this representation, the classical amplitude and

phase noise of the investigated oscillator exhibit a structure that is clearly multimode.

Considering spectral noise correlations, the commonly characterized repetition-rate

and CEO-phase noise correspond to phase noise of well defined spectral modes. Both

are consequently special cases of the modal representation of frequency comb noise.

For further analysis, the phase noise modes have been ordered by the amount

of carried noise. The governing phase noise mode was found to have an overlap

of ∼ 98% with the theoretical mode representing CEO phase noise. The second

experimental noise mode exhibited an overlap of ∼ 91% with the theoretical mode

representing repetition rate/group delay noise. This confirms that CEO-phase noise

and repetition rate are the fundamental noise properties of the investigated frequency

comb. Furthermore, the measurement of both quantities can be performed by
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Figure 5.2: Visualization of the principal out-
look of this thesis. The amplitude noise of the
Mira Ti:Sapph oscillator was found to be contained
by more than 60% in the mode 1©. For an
example experiment requiring the measurement of
a broadband absorption with highest sensitivity,
but at a detection frequency where the oscillator
noise is not at the quantum limit: If the homodyne
detection analyzes the absorption of mode 2© the
measurement will be insensitive to the intensity
noise contained in mode 1©. Both are orthogonal.

projecting the observed noise covariance matrices on the corresponding theoretical

modes. This led to one of the principal findings of this thesis: It is the CEO-phase

noise that governs the phase noise properties of the individual lines of the Ti:Sapph

frequency comb considered. For any detection frequency and down to the SQL, the

contribution of the CEO-phase is larger than the one of the repetition rate noise.

Outlook. The knowledge of the noise modes could improve the precision of

homodyne metrology experiments with frequency combs. The underlying idea is

depicted in Fig. 5.2 and can be understood by using the following example. The

amplitude noise of the oscillator was found to be maximal in mode 1©. If a given

measurement with a frequency comb corresponds to the mode 2©, the contribution

of amplitude noise to this measurement will be minimized as both modes are

orthogonal. The achievable signal to noise ratio and sensitivity will consequently

increase. In a general case, the mode of detection could be slightly modified from

the one associated with the aimed measurement: over-compensating the loss of

measurement precision by a reduction of measured laser noise. Such a technique

could increase the sensitivities of homodyne measurements with frequency combs,

especially at timescales of milliseconds where significant classical noise is present.



154



APPENDIX A. APPENDIX 155

Appendix A

Appendix

A.1 Filtering the oscillator’s pump laser

Contents

A.1 Filtering the oscillator’s pump laser . . . . . . . . . . . . . . . . . . . 155

A.1.1 Reducing pump intensity noise to the SQL . . . . . . . . . . . 155

A.1.2 A filtering cavity for the Ti:Sapph pump laser . . . . . . . . . 157

A.1.3 Origins of low frequency cavity excess noise . . . . . . . . . . 163

A.1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

A.1.1 Reducing pump intensity noise to the SQL

One of the aims of this thesis is to provide a frequency comb with quantum limited

noise properties down to the lowest possible RF-frequency. Intensity noise of the

Coherent Verdi pump laser has been shown to be the principal driver of intensity

noise of a Ti:Sapph oscillator, see section 3.1, Fig. 3.2. In addition, the CEO-phase

of this oscillator is highly sensitive to fluctuations of the pump intensity up to MHz

detection frequencies, see section 3.1.4 and 3.1.5.
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Figure A.1: Intensity noise of different lasers relative to the SQL. Left: The 10 W single mode Verdi
for different output powers 2© relative to the measured SQL 1©. The detected power is 8 mW for
all traces. Detection bandwidth 60 kHz to 10 MHz. Right: a passive cavity (inset) efficiently filters
intensity noise of a Nd:YAG source 2© down to the SQL (cavity output) 2©, figure from [131].

Being identified as an oscillator noise driver, the intensity noise of the Verdi pump

laser is evaluated relative to SQL in Fig. A.1, left. It is not proportional to the output

power. The lowest RIN is obtained at maximum output power. Driving the pump

laser at maximum output power optimizes consequently the overall setup.

For the detection frequencies above 60 kHz, the intensity noise is close to the SQL

but present up to 2 MHz. Active mechanisms are not suitable for a further reduction

of such noise: they are either limited in bandwidth or may not reach the SQL1. A

possible solution has been suggested in [131] for a low power Nd:YAG laser of a

specified linewidth of 1 kHz: the use of a passive filtering cavity. Figure A.1 shows

the result obtained therein. The filtering cavity reduces intensity noise by up to 20 dB

at microsecond timescales.

Nevertheless, it has been shown in section 2.7.2 that passive transmissive cavities

also transfer phase noise to the amplitude quadrature. As such, it has to be verified if

the specified Verdi linewidth does not prevent the applicability of a passive filtering

cavity. Using an optical frequency comb as reference, the linewidth of a similar Verdi

was measured in this thesis to above 300 kHz. The only available literature reference

concerning a cavity filtering of a quasi identical laser system is [74]. It demonstrates

intensity noise filtering but only considers detection frequencies above 4 MHz.

1 A simple noise eater scheme of a detector, a PI-amplifier and an AOM only reaches the SQL in the
limit of a entire detection of the beam.
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Figure A.2: Experimental implementation of the filtering cavity. The Verdi laser beam (green) is
phase modulated with a resonant electro-optical modulator at 11 MHz 1©, after mode-matching 2© the
beam is injected into the passive cavity 3©. The reflection is recovered to generate a Pound-Drever-
Hall (PDH) error signal. The transmitted signal is injected into the Ti:Sapph oscillator 4© after mode-
matching.

A.1.2 A filtering cavity for the Ti:Sapph pump laser

A passive cavity is implemented into the pump beam of the Ti:Sapph oscillator as

shown in Fig. A.2. This ring-cavity has an optical length of 1 m. It consists of three

mirrors, one high-reflectivity mirror two output couplers. A finesse of 680 for S-

polarization and 100 for P-polarization are measured. They correspond to cutoff-

frequencies of 400 kHz and 3.3 MHz respectively. The high-finesse is used here.

A transmission of up to 80% of the seed-power has been achieved. The Ti:Sapph

requiring 4.5 W of pump power, non-linear effects occured in the Pound-Drever-Hall

EOM at intensities above 40 W/mm2. Fig. A.3 shows that the thermal lens of the KTP

crystal and absorption are non-negligible. Nevertheless, a contrast of more than 95%

Figure A.3: Nonlinear properties of the used electro-optical modulator (EOM). Left: Transverse
beam profile after the EOM (the thermal lens) strongly depends on the intensity. A Gaussian beam
profile is obtained for sufficiently low optical power. Right: For a given intra-crystal beam diameter,
the transmission/absorption is a function of the incident optical power.
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Figure A.4: Resonance properties of the filtering
cavity in the kHz-band. The signal of the
transmission photodiode 1© shows measurable
fluctuations in the order of larger than 0,5 to 5%
r.m.s. Trace 2© shows the PDH error signal. The
intensity fluctuations are correlated with the error
signal.

between the TEM00 and the next resonant mode has been achieved in the experiment.

Taking all losses into account, the setup Fig. A.2, provided up to 5 W of filtered

pump light and thus a sufficient margin to drive a CEO-phase stabilization by pump

power feedback. It was possible to lock the cavity to the laser on more than 10 min

timescales using a standard Pound-Drever-Hall scheme [78] in reflection.

Results - Filtering pump intensity noise. The Verdi specifications indicate a

relative intensity noise (RIN) below 0.02% r.m.s. Using all available resources for

an improvement of the cavity-lock and alignment, the cavity filtered signal has never

been never better then 1% r.m.s.

From this value it is possible to estimate the resulting CEO-linewidth of the

Ti:Sapph, see section 3.1.4. The sensitivity of the CEO-frequency to the Ti:Sapph

output power has been measured to 0.25 MHz per mW output power. For a pump

power fluctuation of 1% r.m.s., a CEO-linewidth of several MHz is expected. This

result is in contrast to the aim to reduce also the phase noise of the Ti:Sapph

oscillator, and to obtain quantum-limited noise properties below MHz detection

frequencies. Note that the bandwidth of acusto-optical modulator based intensity

noise sabilization is typically limited to several hundred kHz. Although the cavity

filtering approach appears to be not suitable for the Verdi pump laser, it will verified

in the following if it can be further improved.

Excess noise characterization. The r.m.s. value of noise is a first indicator on

intensity stability of a light beam. Up to 5% of r.m.s. RIN has been observed in

transmission, see Fig. A.4. A typical signal transmitted by the cavity is shown

in Fig. A.4. Within the lock-bandwidth of several kHz, significant variations of

the transmitted intensity coincide with fluctuations of the PDH error signal. This

indicates a non perfect lock of the cavity resonance to the central frequency of the

Verdi.



APPENDIX A. APPENDIX 159

Figure A.5: Broadband analysis of the cavity resonance and excess noise in transmission. All traces
relative to the SQL 1©. Comparison of the intensity noise of the unfiltered 2© and the filtered beam 3©.
Significant error signal 4© is recorded above the kHz-bandwidth of the cavity lock.

Boradband RF noise analysis. Figure A.5 shows the principal effects of the cavity

on the distribution of intensity noise of the transmitted beam. Despite negligible filter

effects above 500 kHz detection frequency, the transmitted beam contains a significant

amount of excess noise: compare trace 3© (filtered) to trace 2© (unfiltered). The data

in Fig. A.5, is of poor quality as it fits together several independent measurements

after the end of the experiment. It only gives a qualitative statement. It may serve

for further, similar experiments as an example of a suitable characterization of a

transmissive passive cavity. The plot covers at the same time the kHz-bandwidth

of the lock-mechanism, the transition between intensity noise filtering and excess

noise and the quantum-limited noise regime at MHz detection frequencies. Above

the bandwidth of the cavity lock loop, the error signal itself contains information on

the phase noise of the seeding laser [100].
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Figure A.6: Distributions of error signal and cavity excess noise in the RF-band below 50 kHz.
left: The error signal has a significant weight in a band below 30 kHz, independent to the generation
principle: 2© intensity based, 3© Pound-Drever-Hall with and without carefully signal optimization,
1© error signal noise floor,

right: Reduction of intensity excess noise from the passive cavity with a subsequent AOM-based, active
stabilization. Intensity noise of the transmitted beam for an optimized PDH-lock 1©, AOM feedback
with low broadband gain (intermediate trace) and AOM feedback with high broadband gain 2©.

Improvement of excess noise in the 10 kHz band. Different ways to improve the

lock mechanism are studied in Fig. A.6. The left graph shows that the distribution of

the error signal generated with the PDH method is the same compared to a purely

intensity based signal. The generation of the PDH error signal adds therefore no

significant electronic noise terms and is not the origin of the excess noise discussed

in Fig. A.5. The filtering cavity is locked by a back-action on the position of a piezo-

mounted mirror. Note that typical here used HV-amplifiers for piezo-based feedbacks

are kHz low-pass filters. The same holds for the piezo element itself: its intrinsic

capacity limits the bandwidth of any driver. The resulting kHz bandwidth might be

insufficient to compensate for phase noise of the Verdi in the 10 kHz band.

The right graph of Fig. A.6 shows the effect of an additional AOM based, active

intensity stabilization (noise eater) after the passive cavity. Being a highly sensitive

active feedback, it added a sensitivity to any kind of electronic noise. It turned out to

be not beneficial to reduce the entire bandwidth of the cavity excess noise.
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Figure A.7: Effects of the filtering cavity on the intensity noise of a mode-locked Ti:Sapph oscillator
close to the shot noise level. 1© The measured SQL. 2© The oscillator directly seeded with the Verdi
pump. 3© The oscillator seeded using the filtering cavity.

Results - Effects on the Ti:Sapph oscillator intensity and phase noise

The intensity noise properties of the cavity-pumped Ti:Sapph are shown in Fig. A.7.

The use of the filtering cavity (400 kHz bandwidth) reduces and increases intensity

noise depending on the frequency band considered: A less than 1 dB noise reduction

is recorded above 1 MHz detection frequency whereas the excess noise reaches more

than 20 dB at 100 kHz. A mode-lock has a negligible effect on the Ti:Sapph intensity

noise. The excess noise depends on the quality of the lock of the filtering cavity.

Figure A.8: Comparison of the CEO-phase noise of the Ti:Sapph oscillator seeded with the cavity-
filtered and the unfiltered beam. The f-2f electronic beating signal is directly recorded with a spectrum
analyzer. left: Cavity filtered pump. At at video-bandwidth of 100 Hz, the instantaneous spectrum
analyzer traces (black) vary between the maximum (red) and the minimum (blue). A f-2f lock maintains
the center of gravity of the CEO-signal. right: Unfiltered pump. The CEO-frequency is locked with
kHz-bandwidth. Same picture as Fig. 3.4



162 A.1. FILTERING THE OSCILLATOR’S PUMP LASER

Taking into account all the available data, the filtering cavity could reduce the

intensity noise of a Ti:Sapph oscillator by 5 dB in the relaxation oscillation band at

1 MHz. Nevertheless, the intensity noise in this band can also be reduced to nearly

vanishing values by careful alignment of the oscillator.

In contrast, the filter cavity intensity excess noise significantly perturbs the CEO-

phase of the oscillator. The typical effect is shown in Fig. A.8, left. Using the filtering

cavity and a subsequent CEO-lock of more than 100 kHz bandwidth, a mean CEO-

frequency has been maintained for longer then one minute measurement time. The

underlying CEO-linewidth was of 500 kHz scale. This is a factor approximately 105

compared to a lock under direct Verdi pumping, see Fig. A.8, right. In this situation,

characterized in section 3.1, a linewidth of several Hz has been estimated.

Due to the phase to amplitude conversion discussed in section 2.7.2, it is in

conclusion not suitable to filter intensity noise of laser sources with passive cavities

of comparable line-widths.
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A.1.3 Origins of low frequency cavity excess noise

Excess noise of a transmitting, passive cavity, has been considered theoretically in

section 2.7.2. Phase noise is efficiently converted to amplitude noise above the cavity

bandwidth. Excess noise above the bandwidth of the feedback loop can be considered

to be a phase noise property of the seeding beam. The cavity-length is quasi-static at

the corresponding timescales. At lower detection frequencies, within the bandwidth

of the cavity, excess noise can arise from any electro-mechanical properties of the

feedback loop. This section studies such effects.

As shown in Fig. A.5, the excess noise of the cavity aimed to filter the Verdi laser

exhibits significant weight within the kHz bandwidth of the feedback loop. In order

to analyze possible origins in detail, it turns out to be instructive to characterize also

the loop properties themselves.

The transfer function of any feedback loop is always a combination of the complex

transfer functions of the feedback-gain and error signal generation G(Ω) and the one

of the servo S(Ω) [132, 133]. So-called proportional-integral-differentiate (PID) circuits

are typically used to amplify the error signal. The function G(Ω) is of non-constant

amplitude and phase. The same holds for any mechanical actuator. They can be

modeled by a second order transfer function containing the resonance frequency Ω0

and the quality factor ξ:

S(Ω)mechanical =
Ω2

0

Ω2
0 + iΩ0

ξ
Ω− Ω2

(A.1)

Any resonant behavior goes along with dephasing. If the overall feedback gain is not

vanishing at the transfer function phase π/2, the entire feedback loop will oscillate.

This is the so-called "ringing" typically observed when tuning cavity-lock parameters.

Its properties can be used to optimize the gain properties of a PID feedback loop [134].

Nevertheless, an remaining oscillation will appear as a signal in the transmission of

the resonant cavity. Resonances of a low quality factor will be recorded as broadband

signals, so excess noise. This is the principal approach for the following analysis.
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Figure A.9: Electronical and mechanical resonances of the standard piezo-actuator PI010.00H
used in this thesis. left: Electronic resonances measured with a Network Analyzer in reflection.
1© Amplitude, 2© phase. right: Mechanical resonances of the same piezo mounted with a 1/2” mirror

on a heavy counterweight. Measured in reflection with a quadrant detector geometry. 1©with and
2©without a mechanical counterforce.

Physical properties of a piezo-mounted mirror. A commonly used mechanical

actuator for the lock of optical cavities are mirrors glued on a piezoelectric element.

Including this actuator, a perfect feedback loop would have a linear behavior of the

mirror position with the applied voltage. To describe a realistic situation, electronic

and mechanical properties have to analyzed.

Piezo-elements are DC isolators and have a specific capacity, typically above 10 nF.

A piezo-element is consequently first of all an intrinsic low-pass and a phase retarder.

Together with the gain and inductance of the electronic signal drivers, it will exhibit

resonances.2 Figure A.9, left, shows the electronic resonances of a standard piezo-

element, measured in reflection. The first resonances appear above 80 kHz.

The mechanical resonances of a piezo+mirror system are shown in Fig. A.9, right.

They arise from both electronical and mechanical properties. Occurring above 50 kHz,

the first strong resonance of the mechanical system sets an upper frequency limit to

any possible feedback loop. Its frequency can be increased by the application of a

static counterforce [107]. Using this approach, Fig. A.9, right, shows the increase of

the first resonance frequency from approximately 25 kHz to 45 kHz.

With and without counterforce, the piezo+mirror system exhibits many subor-

dinate resonances at purportedly longitudinal vibrational overtones of the piezo-

element. It turns out that they can be exploited for high-frequency phase modulation

of optical beams. They may nevertheless give rise to excess noise within the realistic

bandwidth of a typical feedback loop as used in this thesis.

2 The output impedance of the high voltage amplifier used here is 10 kΩ, the gain bandwidth is below
10 kHz.
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Figure A.10: Mechanical resonance properties of different piezo-mirror configurations.
Left: amplitude, right: phase. Measured in reflection with a quadrant detector geometry. The signal
is proportional to the mirror displacement. Phase measurement relative to the signal driving the high-
voltage amplifier. Mirrors of fused silica, 6 mm diameter. Thick Piezo PI010.00H: red 6 mm mirror with
mechanical constraint, green 6 mm mirror, blue 1 mm mirror, Thin Piezo PL055.30: dark 1 mm mirror

Low kHz mechanical properties. The mechanical properties of a combined piezo-

mirror element are studied in detail in in Fig. A.10. The left and right plot show

how the slight resonances of these systems depend on a mechanical counterforce,

the mirror weight and the used piezo-element. It turns out that all of the off-the-shelf

combinations studied here exhibit a number of small resonances. The first significant

ones are localized at low kHz frequencies, a large number is present above 10 kHz.

They are located well below the fundamental electronic and mechanical resonances

discussed above in Fig. A.9. For a transmitting cavity locked at resonance, they may

lead to excess noise bands at kHz to above 10 kHz frequencies. In practice, it is

typically one of these resonances that starts the "ringing" when the kHz proportional

gain of a PDH feedback loop is too high. These resonances are less pronounced

in the case of the thinnest, 1 mm thick mirror of lowest weight. In all cases, the

mirror position is 180 deg out of phase to the electronic HV-amplifier input signal,

for frequencies above 10 to 20 kHz.

In conclusion, typical "off the shelf" mirror-piezo systems can be used with

feedback bandwidths below 10 kHz.3

3 The filtering cavity of section A.1 is locked using a 6 mm thick 1/2" mirror mounted on a PI010.00H
piezo element.
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Figure A.11: Amplitude and phase transfer function of the entire electronic feedback-loop without
the capacity of the piezo element itself. Transfer functions measured with a network analyzer.
A typical optimization procedure strongly modifies also the phase lag of the loop: 1© Typical
configuration and parameters of PI-controller and High-Voltage amplifier. 2© Additional 1 kHz low-
pass filter between PI controller and HV-amplifier improving r.m.s. excess noise of cavity transmission.
3© Double integration stage and 1 kHz low-pass do not lead to further signal improvement.

Electronic properties of the piezo-drivers. The error signal amplification is an

essential part of a feedback loop. A simple optimization of the gain parameters leads

nevertheless to a complex modification of the feedback properties. Figure A.11 shows

three typical configurations compared within section A.1.

The basic feedback loop consists typically of a proportional-integrate (PI) and a

high voltage (HV) amplifier. To permit for higher low-frequency gain, a low-pass

filter or a second integration stage can be added. The best results in terms of minimal

r.m.s. fluctuations of the cavity transmission section A.1 have been achieved with the

combination PI-HV-low pass, trace 2© in Fig. A.11.

Up to the gain roll-off at kHz scales, the feedback loop driven piezo mounted

mirror should compensate given phase perturbations of the cavity seeding beam.

Considering Fig. A.5, this requirement is not achieved in practice. The low-frequency

(integrator) gain might consequently be insufficient. Nevertheless, a potential

increase of gain is limited by the ringing of the first small resonances of the mechanical

actuator. It is at this point that the entire feedback loop of the filtering cavity is

intrinsically limited.



APPENDIX A. APPENDIX 167

Figure A.12: Analysis of table vibrations an their impact on beam steering. The transversal
coordinate left graph, longitudinal coordinate right graph. Plotted are the recorded signals.
left, transversal: Signal of a quadrant detector proportional to the beam deviation. 1© "Free running"
Verdi laser beam steering, 2© mechanical resonances of the optomechanics excited by a "white noise
like excitation"
right, longitudinal: Lock of the relative phase in a Mach-Zehnder interferometer of equal arms with
a piezo mounted mirror. One arm-length is of approximately 1 m. Feedback loop signal on the piezo:
1© electronic noise, 2© in-loop signal applied to the piezo, 3© error signal in-loop

Beam pointing and vibrations. Excess noise in the cavity transmission may,

under insufficient low frequency gain, also arise from vibrations of the setup. Such

mechanical noise impacts both the steering (transversal) and the phase (longitudinal)

of the seeding beam. The transverse fluctuations are qualitatively characterized in

Fig. A.12, left. Pointing fluctuations arising purportedly from the resonances of the

mechanical mirror mounts are present up to approximately 3 kHz. The data recorded

were obtained under strong vibrational (δ-like) excitation of the optical table.

Longitudinal fluctuations are characterized using a Mach-Zehnder interferometer.

The relative phase of both arms is locked using the output interference fringe pattern

and a piezo based mirror in one arm. The error signal of the loop permits to analyze

longitudinal beam steering fluctuations due to vibrational modes of the optical table

and the mirror mounts. The measured distribution shown in Fig. A.12, right, indicates

existing longitudinal perturbations at frequencies below 1 kHz.

One can conclude from Fig. A.12 that mechanical perturbations of the setup are

situated within the kHz bandwidth of the piezo based feedback loop of section A.1

above. Being in addition of lowest amplitude, they unlikely the origin of the excess

noise of the cavity. An absolute quantification is not necessary here. With the available

resources, the setup of the filtering cavity could not be optimized further.
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Figure A.13: Doppler-shift of the intracavity field induced by mirror movements. Such a frequency
shift may lead to interference patterns with the cavity seed. The transmission peak 1© and the Pound-
Drever-Hall error signal 2© show significant modulations for sufficiently high speed 3© of the piezo-
mirror.

Doppler shift of the intracavity signal. A further origin of excess noise from the

cavity can be the Doppler shift ∆ν of the photons of frequency ν inside the cavity. It

may arise due to the movement of the piezo-mirror with a speed v: ∆ν ' (v/c) · ν,

see [105]. It can be estimated as follows: a piezo-element of 1µm/1000 V can be

driven with a commercial Thorlabs HV amplifier at 400 V/µs. Assuming this speed

of 0.4 m/s, the intracavity field udergoes a shift of 105 Hz. This value is comparable

to the cavity-cutoff frequencies used here.

The lock of the cavity-resonance to a beam undergoing phase fluctuations leads

to a continuous variation of the mirror position. Figure A.13, shows that such

a movement could in principle significantly perturb the PDH-error signal. The

measurements show nevertheless, that this perturbation becomes only measurable

at mirror-speeds at least 100 times above those occurring at cavity lock. This is

an indication that lock-induced Doppler-shift plays a negligible role concerning the

emergence of excess noise from the filtering cavity.

PDH error signal generation. The generation of the PDH error signal requires two

RF signal sources that are in phase and of the same frequency. They can be provided

by a commercial two output signal generator. The jitter of the relative phases between

the two ports is not of concern if the the signal of one generator is devided and

different cable lengths provide for the necessary shift of the relative phases.
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A.1.4 Conclusions

A single longitudinal mode Coherent Verdi laser beam of several Watt power can be

resonantly transmitted through a passive cavity. Nevertheless, whether the amplitude

noise of the beam can be efficiently filtered depends on the cutoff frequency of the

cavity compared to the phase noise of the seeding beam. This is due to the noise-

quadrature interconversion by the transmitting cavity, discussed in section 4.2.

It has been shown here that the application of a passive filtering cavity to a

Coherent Verdi in order to pump a Ti:Sapph oscillator is not suitable. Its phase

noise limits the properties of the transmitted beam. The supplier specification of the

Verdi V10 linewidth is below 5 MHz. A beating measurement with a locked optical

frequency comb during this thesis measured above 300 kHz. Both values are not

compatible with significant filtering of amplitude noise at and below MHz frequency

scales using a passive cavity of approximately 400 kHz.
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