
HAL Id: tel-01099105
https://theses.hal.science/tel-01099105

Submitted on 31 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Addressing the Challenges of I/O Variability in
Post-Petascale HPC Simulations

Matthieu Dorier

To cite this version:
Matthieu Dorier. Addressing the Challenges of I/O Variability in Post-Petascale HPC Simulations.
Distributed, Parallel, and Cluster Computing [cs.DC]. Ecole Normale Supérieure de Rennes, 2014.
English. �NNT : �. �tel-01099105�

https://theses.hal.science/tel-01099105
https://hal.archives-ouvertes.fr

THÈSE / ENS RENNES
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L’ÉCOLE NORMALE SUPÉRIEURE DE RENNES

Mention : Informatique
École doctorale MATISSE

présentée par

Matthieu Dorier
Préparée à l’unité mixte de recherche 6074
Institut de recherche en informatique
et systèmes aléatoires

Addressing
the Challenges

of I/O Variability
in Post-Petascale
HPC Simulations

Thèse soutenue le 9 décembre 2014
devant le jury composé de :

Jean Roman / rapporteur
Professeur, Institut Polytechnique de Bordeaux, France

Toni Cortes / rapporteur
Associate Professor, Universitat Politècnica de Catalunya, Spain

Franck Cappello / examinateur
Senior Computer Scientist, Argonne National Laboratory, IL, USA

Jean-François Méhaut / examinateur
Professeur, Université de Grenoble 1, France

Gabriel Antoniu / directeur de thèse
Directeur de recherche, Inria Rennes - Bretagne Atlantique, France

Luc Bougé / directeur de thèse
Professeur, ENS Rennes, France

And word by word they handed down the light that shines today.
Alan Parsons Project (Ammonia Avenue)

Acknowledgements

I would like to start by thanking my reviewers: Toni Cortes and Jean Roman, as well
as the other members of my jury: Jean-François Mehaut and Franck Cappello, for taking the
time to evaluate my PhD thesis. I felt honored to see my work validated by such a committee.

This work was made possible thanks to the constant support and advice from my two
PhD advisors: Gabriel Antoniu, who shared his energy and his connections with the top
researchers in our field, and pushed me to publish in top conferences while providing me
all the help necessary to reach these targets. I want to thank Luc Bougé as well. Before
supervising this thesis, he welcomed me at ENS in 2008 as a bachelor student, hosted me for
an internship in 2009 in the KerData team, and later relied on me as a teaching assistant.

I owe the work presented here to the great collaboration that is the JLPC/JLESC, and to
its leaders Franck Cappello and Marc Snir. My internship under their joint supervision in
2010 decided of my future carrier. I can truly say that none of the contributions presented
hereafter would have been possible without them getting me access to top supercomputers
and introducing me to their professional network. I’m also very grateful to Rob Ross, with
whom I worked on many occasions since 2012. He hosted me twice at ANL, where I found
an excellent place to continue my work.

Many thanks go to all the other contributors: Leigh Orf for helping me understand a real
climate code and getting me to evaluate Damaris on a top supercomputer (Kraken), Tom
Peterka and Rob Sisneros for our collaboration around in situ visualization, Dries Kimpe
for our work on CALCioM, Shadi Ibrahim and Orçun Yildiz for the most recent work on
Omnisc’IO and the energy consumption in Damaris.

I would like to thank the present and former members of the KerData team (those I
haven’t mentioned already): Houssem, Radu, Viet-Trung, Alexandru, Tien Dat, Pierre, Lok-
man, Alvaro, Luis, Diana, Alexandra, and all the interns, engineers and visitors who made
this team such a convivial and lively group.

I was very lucky to have the support and encouragements of my family all these years:
my parents, my grand-parents, my uncle and my brothers. Most of them travelled across the
country to attend my defense, this meant a lot to me.

A special thank to Aurore, for our musical breaks at INRIA in 2013.
Finally my thoughts go to all the friends I have made while working in this field, and

that I’m always very happy to meet during conferences or internships: Amina, Ana, Tatiana,
Leo, Thomas, Francieli, Laércio, Kassick.

I still feel like many other would deserve an acknowledgment, from those who helped me
understand the code of some software, or solved technical problems, to the team assistants
who helped with all the paperwork and the missions... to all these people, thank you for
your support!

2

3

Résumé en Français

EN 2008, la communauté du calcul hautes performances (HPC) atteignait le Petascale
avec Roadrunner d’IBM, un supercalculateur de 122400 cœurs ayant une performance
de 1.375 Petaflops (1.375× 1015 floating point operations per second). La barre du million

de cœurs a été atteinte en 2012 avec le supercalculateur Sequoia à LLNL et, en suivant la loi
de Moore – laquelle indique que le nombre de transistors dans les systèmes de calculs de
pointe double tous les 18 mois –, des supercalculateurs dits Exascale (atteignant 1018 flops)
sont attendus pour 2018. Une telle puissance de calcul est mise à profit dans de nombreux
domaines de recherche tels que les sciences de la Terre, la biologie, le climat ou l’astrophy-
sique, domaines dans lesquels les simulations à large échelle sont employées pour mieux
comprendre les phénomènes physiques qui nous entourent. Ces simulations ont vocation
de remplacer des expériences réelles qui peuvent être trop coûteuses, trop dangereuses ou
simplement irréalisables, comme les études portant sur la jeunesse de l’univers. “We have
this problem in astrophysics that we can’t go and do experiments in the lab to test our theories”,1

explique Mark Vogelsberger, du MIT, dans une interview pour The Guardian2 au sujet des
résultats d’une récente simulation de l’univers.

Les entreprises de production utilisent également les supercalculateurs pour diminuer
leurs coûts de conception. Par exemple, l’utilisation de souffleries virtuelles (c’est-à-dire si-
mulées par ordinateur) a permis à Boeing de réduire à 11 le nombre de prototypes d’ailes
d’avions construits pour leur modèle 787 “Dreamliner” en 2005, en comparaison des 77
prototypes utilisés pour la conception du modèle 767 dans les années 80.3 Les simula-
tions hautes performances ont en effet l’avantage d’être plus rapides et moins chères que
la conception et les tests de prototypes réels. De plus, ces simulations peuvent être repro-
duites et les modèles virtuels peuvent être évalués dans des conditions variées avec une très
grande précision.

Mais comme Ken Batcher le dit, “a supercomputer is a device for turning compute-bound pro-
blems into I/O-bound problems”.4 En effet, de plus grosses machines mènent à une production
accrue de données. Ces données doivent être stockées et traitées efficacement en vue d’en
tirer un résultat scientifique. L’approche traditionnelle de gestion de données consiste à sto-

1Traduction : “En astrophysique, nous avons ce problème de ne pas pouvoir effectuer d’expériences en labo-
ratoire pour tester nos théories.”

2www.theguardian.com/science/2014/may/07/universe-recreated-computer-simulation-model-big-bang
3www.scientificamerican.com/article/big-computers-for-little/
4Traduction : “un supercalculateur est un appareil transformant un problème limité par les performances de

calculs en un problème limité par les performances des entrées/sorties”.

www.theguardian.com/science/2014/may/07/universe-recreated-computer-simulation-model-big-bang
www.scientificamerican.com/article/big-computers-for-little/

4

cker les données produites par la simulation dans des fichiers pendant que celle-ci s’exécute,
et à analyser ces fichiers plus tard, lorsque la simulation est terminée. On observe cependant
un fossé de plus en plus profond entre les performances des systèmes de stockage et les
performances des systèmes de calculs dans les supercalculateurs récents. Par exemple, alors
que le supercalculateur Jaguar à ORNL (premier du Top 500 en novembre 2009 et Juin 2010)
fournit un débit de 240 Go/s vers son système de stockage, pour une performance de pointe
de 1,75 Petaflops, son successeur Titan (premier au Top 500 en novembre 2012) fournit un
débit de stockage seulement six fois supérieur (1,4 To/s) pour une puissance de calculs dix
fois supérieure (17,59 Petaflops). Ce fossé rend obsolètes les approches traditionnelles pour
les entrées-sorties (E/S), qui prennent en effet une part grandissante du temps d’exécution
des applications et sont sujettes à une variabilité croissante de leurs performances.

D’une part, il devient donc nécessaire d’optimiser la pile d’E/S à tous les niveaux, de la
simulation jusqu’au système de fichiers, dans le but d’en améliorer les performances ainsi
que la predictibilité de ces performances. Cela implique également d’améliorer la manière de
gérer une concurrence croissante au niveau du système de fichiers, non seulement entre des
centaines de milliers de processus constituant une seule application, mais également entre
un nombre croissant d’applications qui s’exécutent sur la même machine et en partagent le
système de stockage.

D’autre part, il devient inévitable de rapprocher les tâches d’analyse et de visualisation
de la simulation elle-même afin d’éviter de stocker de larges quantités de données. Cette
tendance soulève de nouveaux défis liés aux moyens dont disposent les simulations pour
communiquer efficacement leurs données et partager ces dernières avec les outils d’analyse
sans dégrader leurs performances.

Enfin, la consommation énergétique des futurs supercalculateurs est un problème de
plus en plus important dans la communauté HPC. Alors que les machines actuelles
consomment une puissance d’environs 10 MW, la Defense Advanced Research Projects
Agency (DARPA) a imposé une limite de 20 MW pour les futures machines Exascale. Cela
représente une multiplication par deux de la consommation d’énergie pour des plateformes
qui devront être mille fois plus performantes en termes de calculs. Cette contrainte ne pourra
être satisfaite seulement par des améliorations matérielles, mais nécessitera par la conception
d’approches logicielles plus économes en énergie. Les mouvements et le stockage de grandes
masses de données constituent notamment des tâches coûteuses en énergie et doivent être
optimisées en conséquence.

Contributions

De nombreux problèmes de performance dans le contexte des simulations HPC proviennent
en réalité d’un problème de variabilité. Des différences dans le temps de complétion des
tâches d’E/S d’un processus à un autre au sein d’une application massivement parallèle
forcent tous les processus à attendre le plus lent d’entre eux. Ces processus gâchent ainsi un
temps précieux et de l’énergie. Dans les approches actuelles de gestion des données, cette
variabilité a de multiples causes. Premièrement, dans la majorité des applications les tâches
d’E/S sont exécutées de manière périodique par tous les processus en même temps, ce qui
produit des pics d’activité au sein du système de fichiers. Ce comportement engendre des
conflits d’utilisation des ressources et une variabilité des performances des E/S de chaque

5

processus, produisant un impact négatif sur les performances générales de l’application.
Deuxièmement, coupler les simulations avec des outils de visualisation et d’analyse accroît
cette variabilité, notamment lorsque les tâches de visualisation sont exécutées de manière in-
teractive. Enfin une troisième source de variabilité provient des accès concurrents au système
de stockage par plusieurs applications indépendantes s’exécutant sur la même machine.

Dans cette thèse, nous nous proposons de relever les défis posés par la variabilité des per-
formances des approches actuelles de gestion de données. Notre travail a été principalement
conduit dans le contexte du JLPC (Joint Laboratory for Petascale Computing), un laboratoire
commun à l’Inria, le National Center for Supercomputing Applications (NCSA) à l’Univer-
sité d’Illinois à Urbana-Champaign (UIUC) et Argonne National Laboratory (ANL). Ce tra-
vail a mené à différents projets communs entre l’équipe KerData, ANL et UIUC : FACCTS
(France and Chicago Collaborating in the Sciences), PUF (Partner University Fund), l’équipe
associée Data@Exascale. Les contributions de cette thèse peuvent être résumées comme suit.

Utilisation de cœurs dédiés pour cacher la variabilité des E/S

Alors que le nombre de cœurs dans les nœuds multicœurs augmente, des conflits appa-
raissent lorsque plusieurs processus d’un même nœud tentent d’accéder à la même interface
réseau. Ces conflits entraînent une variabilité substantielle des performances des E/S. On ap-
pellera jitter ce type de variabilité, qui trouve sa source dans les conflits d’accès au sein des
processus d’une même application. Dans ce travail, nous proposons une nouvelle méthode
de gestion des E/S, appelée Damaris, qui se sert de cœurs dédiés aux E/S sur chaque nœud
multicœur, ainsi que de mémoire partagée. Damaris permet réaliser les tâches de traitement
de données et d’E/S de manière asynchrone, et de cacher la variabilité de ces dernières en
conséquence. Nous évaluons Damaris sur trois plateformes différentes, notamment le su-
percalculateur Kraken (11e du Top500 au moment des expériences) avec la simulation atmo-
sphérique CM1. En permettant le recouvrement des E/S et des calculs, et en regroupant les
données dans des fichiers plus volumineux tout en évitant les synchronisations entre cœurs,
notre solution apporte un certain nombre d’avantages.

1. Elle permet de cacher complètement le jitter ainsi que tous les coûts liés aux E/S, ren-
dant les performances de la simulation prévisibles ;

2. Elle multiplie le débit en écriture par un facteur allant jusqu’à 15 en comparaison des
approches standard ;

3. Elle permet un passage à l’échelle de la simulation (testée jusqu’à 9000 cœurs) à l’in-
verse des approches standards qui ne passent pas à l’échelle ;

4. Elle permet d’atteindre un taux de compression des données de 600 % sans surcoût
pour l’application, menant à une réduction majeure de l’espace de stockage nécessaire.

En plus d’initier le développement d’une implémentation de Damaris, ce travail a été ré-
compensé du 2e prix à l’ACM Student Research Competition qui s’est tenue en marge de la
conférence ICS ‘11. Ce travail a également mené à une publication à la conférence CLUS-
TER ‘12.

6

Extension de l’usage des cœurs dédiés à la visualisation in situ

Réduire la quantité de données stockées par les simulations va devenir d’une importance cri-
tique pour les prochaines générations de supercalculateurs. En conséquence, de nombreuses
recherches tentent de promouvoir des approches dans lesquelles les tâches d’analyse et de
visualisation sont exécutées in situ, c’est-à-dire à proximité de la simulation et en partageant
les ressources de cette dernière. Ces approches possèdent l’avantage d’éviter de stocker de
grandes quantités de données pour des post-traitements. Elles peuvent cependant avoir un
impact important sur le temps d’exécution de la simulation si elles ne sont pas implémen-
tées correctement. Notre travail se concentre précisément sur le cas d’une visualisation in
situ où le code de visualisation est co-localisé avec le code de la simulation et s’exécute sur
les mêmes ressources. Il est important pour une telle technique de visualisation in situ de
nécessiter le moins de modifications possibles dans les codes existants, d’être adaptable et
d’avoir un faible impact à la fois sur le temps d’exécution et sur l’utilisation des ressources.
Nous accomplissons cela grâce à Damaris/Viz, une extension de Damaris fournissant un
support pour la visualisation in situ. L’utilisation de Damaris comme passerelle vers des
codes de visualisation existants permet

1. de réduire les modifications de code au maximum dans les simulations existantes,

2. de réunir les fonctionnalités de divers outils de visualisation pour offrir une interface
unifiée de gestion de données,

3. d’utiliser efficacement des cœurs dédiés pour cacher l’impact de la visualisation in situ
sur le temps d’exécution de la simulation, et

4. d’utiliser efficacement la mémoire au travers d’une couche de communication basée
sur de la mémoire partagée.

Damaris/Viz est évalué sur Blue Waters et Grid’5000 pour visualiser les données produites
par la simulation atmosphérique CM1 et la simulation de dynamique des fluides Nek5000.
Ce travail a mené à une publication à la conférence LDAV ‘13.

Analyse des compromis energie/performance dans diverses approches d’E/S

Un défi majeur pour les futures machines Exascale consiste à atteindre de hautes perfor-
mances tout en maintenant une faible consommation d’énergie. Beaucoup de travaux ré-
cents, et en particulier la première contribution de cette thèse, ont exploré de nouvelles ap-
proches pour les E/S visant à réduire le goulot d’étranglement présent au niveau des E/S
dans les applications large échelle (permettant ainsi d’améliorer leurs performances). Les
travaux évaluant l’impact de ces approches sur la consommation d’énergie restent pourtant
rares. Néanmoins, les approches qui permettent un recouvrement des E/S et des calculs ont
un effet bénéfique en termes de variabilité des performance et a fortiori en termes de consom-
mation d’énergie. Dans ce travail, nous avons complété notre implémentation de Damaris en
lui donnant la possibilité d’utiliser des nœuds dédiés à la place de cœurs dédiés, ainsi que
la possibilité d’exécuter les tâches de traitement des E/S en mode synchrone, c’est-à-dire
sans ressources dédiées. Nous examinons ces différentes approches d’E/S à l’aide d’expé-
riences avec la simulation CM1. Nos résultats, obtenus sur Grid’5000, montrent l’impact sur

7

les performances et sur la consommation d’énergie de ces différentes approches. Ils mettent
également en évidence les relations entre la consommation d’énergie et certains paramètres
de l’application et du matériel. Nous proposons ensuite un modèle mathématique permet-
tant d’estimer la consommation d’énergie d’une simulation en fonction de l’approche utili-
sée pour ses E/S. Ce travail a été en partie publié au workshop DIDC ‘14, tenu en marge de
la conférence HPDC ‘14.

Atténuation des conflits d’E/S par coordination inter-application

De plus grosses machines étant inévitablement exploitées par un plus grand nombre d’ap-
plications de manière concurrente, les interférences produites par plusieurs applications ac-
cédant à un système de fichiers parallèle partagé deviennent un problème majeur. Les in-
terférences perturbent souvent les optimisations des E/S utilisées par les applications indi-
viduellement, tels que les accès optimisés au préalable pour améliorer la localité des accès
disques. Ceci a pour effet de dégrader les performances des E/S de ces applications, d’ac-
croître leur temps d’exécution et la variabilité de ce temps d’exécution, réduisant d’autant
plus l’efficacité globale de la machine. Pour résoudre ce problème, nous proposons CAL-
CioM, une approche ayant pour but d’atténuer les interférences d’E/S au travers de la sélec-
tion dynamique d’une stratégie d’ordonnancement dépendant d’informations fournies par
les applications elles-mêmes. CALCioM permet à plusieurs applications s’exécutant sur un
supercalculateur de coordonner leurs stratégies d’E/S en vue d’éviter d’interférer les unes
avec les autres. Dans ce travail, nous examinons quatre stratégies qui peuvent être implé-
mentées par CALCioM : sérialiser, interrompre, interférer ou coordonner. Nos expériences
sur le supercalculateur BG/P Surveyor d’Argonne ainsi que sur plusieurs sites de Grid’5000
montrent comment CALCioM peut être utilisé pour implémenter des stratégies d’ordonnan-
cement entre des applications qui autrement interfèreraient, avec pour objectif l’optimisation
de l’efficacité globale de la machine. Ce travail, partiellement effectué durant un stage de 3
mois à ANL, a mené à une publication à la conférence IPDPS ‘14.

Prédiction des motifs spatiaux et temporels d’E/S des applications HPC

De nombreuses optimisations des E/S, tels que le préchargement, la mise en cache ou l’or-
donnancement, ont été proposées pour améliorer les performances de la pile d’E/S. Afin
d’optimiser ces techniques, modéliser et prédire les caractéristiques spatiales et temporelles
des E/S des applications HPC alors qu’elles s’exécutent s’avèrent crucial. Dans cette direc-
tion, nous proposons Omnisc’IO, une approche ayant pour but de faire un pas en avant vers
une gestion intelligente des E/S des applications HPC sur les futures plateformes. Omni-
sc’IO construit un modèle basé sur des grammaires formelles des E/S de n’importe quelle
application HPC. Il utilise ensuite ce modèle pour prédire quand les futures opérations
d’E/S vont se produire ainsi que la quantité et la localisation des données en jeu. Omni-
sc’IO est intégré de manière transparente dans les couches POSIX et MPI-I/O et ne nécessite
aucune modification dans les sources des applications ou des bibliothèques d’E/S de haut
niveau. Il ne nécessite pas d’information a priori sur les applications, et converge vers un
modèle permettant des prédictions précises en seulement quelques itérations. L’implémen-
tation d’Omnisc’IO est efficace à la fois en temps et en mémoire. Omnisc’IO a été évalué avec
quatre applications HPC réelles – CM1, Nek5000, GTC, and LAMMPS – utilisant différentes

8

bibliothèques d’E/S allant de POSIX à Parallel HDF5. Nos expériences montrent qu’Omni-
sc’IO peut atteindre une précision allant de 79.5 à 100% pour la prédiction des paramètres
spatiaux des futurs accès, et une précision moyenne de la date de ces futurs accès allant de
0.2 secondes à moins d’une milliseconde. Ce travail a mené à une publication à la conférence
SC ‘14 et a donné lieu au développement de la bibliothèque Omnisc’IO.

Publications

Conférences Internationales

• Bogdan Nicolae, Diana Moise, Gabriel Antoniu, Luc Bougé, Matthieu Dorier. BlobSeer :
Bringing High Throughput under Heavy Concurrency to Hadoop Map/Reduce Applications,
Proceeding of the 2010 IEEE International Parallel & Distributed Processing Sympo-
sium (IPDPS ‘10), Atlanta, septembre 2010. CORE Rank A (taux d’acceptation de 24%).

• Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, Leigh Orf. Damaris :
How to Efficiently Leverage Multicore Parallelism to Achieve Scalable, Jitter-free I/O, Pro-
ceedings of the 2012 IEEE International Conference on Cluster Computing (CLUSTER
‘12), Pékin, septembre 2012. CORE Rank A (taux d’acceptation de 28%).

• Matthieu Dorier, Roberto Sisneros, Tom Peterka, Gabriel Antoniu, Dave Semeraro.
Damaris/Viz, a Nonintrusive, Adaptable and User-Friendly In Situ Visualization Framework,
Proceedings of the 2013 IEEE Symposium on Large Data Analysis and Visualization
(LDAV ‘13), Atlanta, octobre 2013. (taux d’acceptation de 37%).

• Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries Kimpe, Shadi Ibrahim. CALCioM :
Mitigating I/O Interference in HPC Systems through Cross-Application Coordination, Pro-
ceedings of the 2014 IEEE International Parallel & Distributed Processing Symposium
(IPDPS ‘14), Phoenix, mai 2014. CORE Rank A (taux d’acceptation de 21%).

• Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, Rob Ross. Omnisc’IO : A Grammar-
Based Approach to Spatial and Temporal I/O Patterns Prediction, Proceedings of ACM/IEEE
2014 Supercomputing Conference (SC ‘14), La Nouvelle Orléans, novembre 2014. CORE
Rank A (taux d’acceptation de 21%).

Workshops dans des Conférences Internationalles

• Orçun Yildiz, Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu. A Performance and
Energy Analysis of I/O Management Approaches for Exascale Systems, in Proceedings of
the 2014 Data-Intensive Distributed Computing (DIDC ‘14) workshop, tenu conjoin-
tement avec le 23rd International ACM Symposium on High Performance Parallel and
Distributed Computing (HPDC ‘14), Vancouver, juin 2014.

Posters at International Conferences

• Matthieu Dorier. Damaris - Using Dedicated I/O Cores for Scalable Post-petascale HPC
Simulations, 2011 ACM/SIGARCH International Conference on Supercomputing (ICS
‘11), Tucson, avril 2011. 2eme prix de l’ACM Student Research Competition.

9

• Matthieu Dorier. Efficient I/O using Dedicated Cores in Large-Scale HPC Simulations, 2013
IEEE International Parallel & Distributed Processing Symposium (IPDPS ‘13) : PhD
Forum, Boston, mai 2013.

Logiciels

• Damaris est un intergiciel pour les noeuds multicœurs, leur permettant de gérer ef-
ficacement les transfères de données pour le stockage ou la visualisation en dédiant
un sous-ensemble des cœurs aux opérations d’entrées/sorties (E/S). Il permet des E/S
asynchrones efficaces et cache tout surcoût lié aux opérations d’E/S, tels que la com-
pression de données, le post-traitement ou la visualisation in situ (via son extension
Damaris/Viz). Damaris a été évalué sur Blue Waters (Cray XE6, NCSA), Kraken (Cray
XT5, NICS), Titan (Cray XK7, ORNL), Intrepid (IBM BlueGene/P, ANL), Grid’5000
(grille de calculs française), Blue Print (cluster Power5, NCSA), avec la simulation at-
mosphérique CM1 et la simulation de dynamique des fluides Nek5000. Damaris a été
formellement validé pour une utilisation sur le supercalculateur Blue Waters an NCSA.
A notre connaissance, il a été utilisé par plusieurs chercheurs du NCSA, de Central Mi-
chigan University et de l’Université Fédérale de de Rio Grande do Sul (UFRGS).
Lien : http://damaris.gforge.inria.fr
Taille and langage(s) : 19500 lignes, C++, Fortran, XML
License : LGPL

• Omnisc’IO est un intergiciel intégré dans les couches POSIX et MPI-I/O et permet
de capturer les E/S des applications HPC de manière transparente, d’en produire un
modèle et d’utiliser ce modèle pour prédire les futurs accès. Omnisc’IO est basé sur
des grammaires formelles et utilise une version modifiée de l’algorithme Sequitur. Elle
a été utilisé sur Grid’5000 avec la simulation atmosphérique CM1, la simulation de
dynamique moléculaire LAMMPS, la simulation de fusion GTC et la simulation de
dynamique des fluides Nek5000. Lien : http://omniscio.gforge.inria.fr
Taille et langage(s) : 4400 lines, C++
License : LGPL

• Darshan-Ruby/Darshan-Web Darshan-Ruby est une bibliothèque Ruby permettant de
lire les fichiers produits par Darhan (outil de trace d’E/S produit par Argonne National
Lab), en utilisant un paradygme orienté objets. Darshan-Ruby a été développé dans le
but de simplifier l’analyse du comportement d’E/S des applications à grande échelle.
Il accède directement au contenu des fichiers Darshan sans nécessiter de conversion
en format text. Darshan-Ruby est accessible comme Ruby Gem sur le dépot officiel
rubygems.org. Darshan-Ruby a mené au développement du projet Darshan-Web, qui
propose une plateforme web pour aider à l’analyse des traces d’E/S. Lien : http://
darshan-ruby.gforge.inria.fr
Taille and langage(s) : 400 lines, C, Ruby
License : LGPL

http://damaris.gforge.inria.fr
http://omniscio.gforge.inria.fr
rubygems.org
http://darshan-ruby.gforge.inria.fr
http://darshan-ruby.gforge.inria.fr

i

Contents

1 Introduction 1
1.1 Context . 1
1.2 Contributions . 2
1.3 Publications . 5
1.4 Software . 6
1.5 Organization of the Manuscript . 7

2 Background: I/O and Data Analysis in Supercomputers 9
2.1 The Era of Supercomputing . 10

2.1.1 Large-Scale Scientific Simulations . 10
2.1.2 Post-Petascale Supercomputers . 10

2.2 I/O and Storage in HPC Systems . 11
2.2.1 Parallel File Systems . 11
2.2.2 The MPI-I/O and POSIX Interfaces . 12
2.2.3 High-Level I/O Libraries . 13
2.2.4 Application-Level I/O Approaches . 13

2.3 Variability in Traditional I/O Approaches . 14
2.3.1 Causes and Effects of the I/O Variability 15
2.3.2 Approaches to Mitigate the I/O Variability 16
2.3.3 I/O Variability: Energy Concerns . 17
2.3.4 Variable I/O, Yet Predictable of I/O Patterns 18

2.4 Analysis and Visualization: an Overlooked Process 20
2.4.1 Visualization Software and Techniques 20
2.4.2 Toward Simulation/Visualization Coupling 21
2.4.3 A Taxonomy of In Situ Visualization Methods 21
2.4.4 From Offline to In Situ Visualization: Another Source of Variability . . 22
2.4.5 Our Vision: Pushing (Harder) Toward In Situ Visualization 22

2.5 Discussion: Addressing I/O Performance Variability 23

3 Damaris: Leveraging Dedicated Cores to Hide the I/O Variability 25
3.1 Addressing I/O Variability through Dedicated I/O Cores 26
3.2 The Damaris Approach . 27

3.2.1 Design Principles . 27
3.2.2 Architecture and Implementation . 28

ii Contents

3.2.3 Client API . 31
3.2.4 Writing with Damaris . 33

3.3 Experimental Evaluation . 33
3.3.1 The CM1 Application . 33
3.3.2 Platforms and Configuration . 34
3.3.3 Experimental Results . 35
3.3.4 Improvements: Leveraging the Spare Time 41

3.4 Related Work . 41
3.4.1 Positioning Damaris in the “I/O Landscape” 41
3.4.2 Dedicated-Core-Based Approaches . 42

3.5 Conclusions and Discussion . 43
3.5.1 Theoretical Usefulness . 43
3.5.2 Key Results . 44
3.5.3 Let’s Use our Spare Time . 44

4 Extending Damaris to Support In Situ Visualization 45
4.1 In Situ Visualization With Damaris . 46

4.1.1 Towards a New In Situ Visualization Framework 46
4.1.2 Damaris/Viz: an In Situ Visualization Framework Based on Damaris . 47
4.1.3 Connection to Existing Visualization Packages 49
4.1.4 Automatic Adaptation of Output Frequency 51

4.2 Impact on Development and Flexibility . 52
4.2.1 Data Access Code for In Situ Visualization 52
4.2.2 The Case of Enzo and YT . 55

4.3 Experimental Evaluation . 56
4.3.1 Experiments with the CM1 Simulation 56
4.3.2 Experiments with the Nek5000 Simulation 59

4.4 Related Work . 62
4.4.1 Loosely-Coupled Visualization Strategies 62
4.4.2 Tightly-Coupled In Situ Visualization 63

4.5 Conclusions and Discussion . 64
4.5.1 Our Contribution . 64
4.5.2 What Remains to Study . 65

5 Energy and Performance Tradeoffs in Data Management Approaches 67
5.1 All-in-One: a Third I/O Approach in Damaris 68

5.1.1 Three I/O Approaches . 68
5.1.2 From Dedicated Cores to Dedicating Nodes 68

5.2 Experimental Insight into the Energy/Performance Tradeoff 70
5.2.1 Methodology . 70
5.2.2 Experimental Results . 71

5.3 Model of Energy Consumption . 76
5.3.1 Model Formulation . 76
5.3.2 Application and Hardware Profiling . 77
5.3.3 Experimental Validation . 79

5.4 Discussion and Related Work . 81
5.4.1 Profiling Energy Consumption of HPC Simulations 81

Contents iii

5.4.2 Saving Energy . 81
5.4.3 Power Measurement Methods . 83

5.5 Conclusions . 83

6 CALCioM: Mitigating I/O Interference through Cross-Application Coordination 85
6.1 I/O Interference: an Increasingly Important Issue 86

6.1.1 Probability of Concurrent Accesses . 86
6.1.2 Studying I/O Interference: a Methodology 88
6.1.3 Impact of Interference on I/O Optimizations 89
6.1.4 From Diversity to System-wide Inefficiency 90

6.2 Mitigating Interference within the CALCioM Framework 91
6.2.1 Interference-avoiding Strategies . 91
6.2.2 CALCioM: Design Principles . 93
6.2.3 Architecture and API . 93

6.3 Experimental Evaluation . 97
6.3.1 Platforms and Methodology . 97
6.3.2 Interfere or Serialize Accesses? . 98
6.3.3 A Third Option: Access Interruption . 102
6.3.4 Dynamic Choice: Interfere, Serialize, or Interrupt? 102

6.4 Discussion and Related Work . 104
6.4.1 Application-Side I/O Scheduling . 105
6.4.2 Server-Side I/O Scheduling . 105
6.4.3 Application-Aware I/O Scheduling . 105

6.5 Conclusion . 107

7 Modeling and Predicting I/O: the Omnisc’IO Approach 109
7.1 Limitations of Current Approaches to I/O Prediction 110
7.2 The Omnisc’IO Approach . 112

7.2.1 Overview of Omnisc’IO . 112
7.2.2 Algorithmic and Technical Description 113

7.3 Experimental Evaluation . 119
7.3.1 Platform and Applications . 119
7.3.2 Experiments . 120
7.3.3 Results Discussion . 120
7.3.4 Limitations of Our Approach . 131

7.4 Discussion and Related Work . 131
7.4.1 Grammar-based Modeling . 131
7.4.2 I/O Patterns Prediction . 132

7.5 Conclusion . 134
7.5.1 Achievements of the Omnisc’IO Approach 134
7.5.2 Omnisc’IO as a Building Block for a Smart I/O Stack 134

8 Conclusion and Perspectives 135
8.1 Achievements . 136

8.1.1 Using Dedicated Cores for Data Services in Large Scale Simulations . 136
8.1.2 Addressing Cross-Application I/O interference 137
8.1.3 Predicting Spatial and Temporal I/O Patterns 137

iv Contents

8.2 Prospects . 138
8.2.1 Prospects Related to the Damaris Approach 138
8.2.2 Prospects Related to CALCioM and Omnisc’IO 139

Bibliography 141

v

List of Figures

2.1 The typical I/O Stack of HPC Simulations . 11
2.2 Traditional approaches to I/O in HPC simulations 14
2.3 Illustration of the I/O variability across processes and I/O phases 15
2.4 Two approaches to retrieve insight from large-scale simulations. 21

3.1 Software architecture of the implementation of Damaris 28
3.2 Simulation of a supercell producing a long-track EF5 tornado 34
3.3 Write time of CM1 on Kraken . 36
3.4 Write time of CM1 on BluePrint . 36
3.5 Cumulative distribution function of the write time of CM1 on Grid’5000 . . . 38
3.6 Scalability and total run time of CM1 on Kraken 39
3.7 Write and idle time of dedicated cores on Kraken and BluePrint 39
3.8 Aggregate throughput of CM1 on Kraken . 40
3.9 Write time in Damaris using compression and transfer delays 42

4.1 Semantics of Damaris’ direct data access functions 47
4.2 Example of rectilinear grid . 50
4.3 Example of visualizations from the CM1 and Nek5000 simulations 57
4.4 Rendering time of in situ ray-casting and isosurfaces of CM1 58
4.5 Run-time variability in CM1 due to ISV . 60
4.6 Iteration time of Nek5000’s MATiS configuration with and without ISV 61

5.1 Three approaches to I/O for HPC applications 68
5.2 Data transfer protocols using dedicated cores and dedicated nodes 69
5.3 Energy consumption and completion time of CM1 on Grid’5000 (Nancy) . . . 72
5.4 Energy consumption of CM1 on Nancy with different output frequencies . . . 73
5.5 Energy consumption and completion time of CM1 on Grid’5000 (Rennes) . . 74
5.6 Energy consumption of CM1 on Nancy and Rennes 75
5.7 Average power usage and throughput of CM1 on Nancy and Rennes 75
5.8 Scalability of CM1 on Grid’5000 (Rennes) . 78
5.9 Power usage of CM1 on Grid’5000 (Rennes) . 79
5.10 Observed and estimated energy consumption of CM1 on Grid’5000 (Rennes) 79
5.11 Observed and estimated energy consumption of CM1 on Grid’5000 (Nancy) . 80

6.1 Distribution of job sizes and concurrency on Intrepid 87

vi List of Figures

6.2 Example of ∆−graph: interference between two applications on Grid’5000 . . 88
6.3 Impact of interference on caching, experiment with IOR on Grid’5000 89
6.4 Throughput of interfering applications of different sizes on Grid’5000 90
6.5 Interference between applications of different sizes on Grid’5000, with differ-

ent starting delays between applications . 91
6.6 Three possible policies to deal with cross-application interference 92
6.7 Schema of the CALCioM approach . 94
6.8 CALCioM’s protocols for serialization and interruptions 96
6.9 ∆−graph of applications running on different numbers of cores (Grid’5000) . 98
6.10 ∆−graph of interference between two applications of the same size (Surveyor) 99
6.11 ∆−graph and proportion of communications vs. writes for applications inter-

fering on a strided pattern (Surveyor) . 100
6.12 ∆−graphs of applications with different sizes, using the three policies offered

by CALCioM (Grid’5000) . 101
6.13 ∆−graph of interference for applications with different write sizes (Surveyor) 103
6.14 Synthesis on CALCioM’s choices and their impact on computational efficiency 104
6.15 ∆−graph of interference between two small applications (Surveyor) 104

7.1 Overview of the Omnisc’IO approach . 112
7.2 Context prediction capability of Omnisc’IO . 121
7.3 Evolution of the size of Omnisc’IO’s main grammar 124
7.4 Relative error in the prediction of access sizes 125
7.5 Hit ratio using Omnisc’IO . 128
7.6 Matching between observed and predicted interarrival time of I/O events . . 129
7.7 Difference between predicted and observed interarrival times of I/O events . 130

vii

List of Tables

3.1 Average aggregate throughput of CM1 on Grid’5000 40

4.1 Amount of code modifications in example codes using VisIt and Damaris . . 54
4.2 Average iteration time of Nek5000’s MATiS configuration 62

5.1 Statistics on energy consumption of CM1 on Grid’5000 (Nancy) 73
5.2 Accuracy of the energy model on Grid’5000 (Rennes and Nancy) 81

7.1 List of approaches to I/O prediction in the literature 111
7.2 Examples of context-free grammars . 115
7.3 Predictors incrementation matching a given input 116
7.4 Discovery of new predictors matching the last input 116
7.5 List of applications used to evaluate Omnisc’IO and their I/O backends . . . 119
7.6 Proportion of correct offset predictions with Omnisc’IO 126
7.7 Average hit ratio achieved by Omnisc’IO . 127
7.8 Average time different between predicted and observed interarrival times . . 127
7.9 Run-time overhead of Omnisc’IO . 131

viii List of Tables

ix

List of Listings

3.1 Example of Fortran simulation using Damaris 32
3.2 Configuration file associated with the Fortran example 33
4.1 Description of a mesh in the Damaris/Viz configuration 51
4.2 Allocation for data accessed by Damaris . 52
4.3 Example of Damaris’ Python interface . 52
4.4 In situ data access functions using VisIt . 53
4.5 In situ data access functions using ParaView 55

x LIST OF LISTINGS

1

Chapter 1
Introduction

Contents
1.1 Context . 1

1.2 Contributions . 2

1.3 Publications . 5

1.4 Software . 6

1.5 Organization of the Manuscript . 7

1.1 Context

IN 2008, the high-performance computing (HPC) community reached Petascale capabili-
ties with IBM’s Roadrunner, a 122,400 core supercomputer with a peak performance of
1.375 Petaflops (1.375× 1015 floating point operations per second) [130]. Million-core ma-

chines have become a reality in 2012 with LLNL’s Sequoia supercomputer and, following
Moore’s law, which states that the number of transistors in cutting-edge computing systems
doubles every 18 months, Exascale supercomputers (capable of 1018 flops) are expected by
2018 [127]. Such an immense computational power is used in many research areas, including
earth sciences, biology, climate, or cosmology, where large scale simulations are conducted
to better understand the physical phenomena that surround us. These simulations aim to
replace real experiments that are either too expensive, too dangerous or simply unfeasible,
such as studies of the early universe: “We have this problem in astrophysics that we can’t go and
do experiments in the lab to test our theories” says Mark Vogelsberger, from MIT, in an interview
for The Guardian [112] on the results of a recent simulation of the universe [40, 136].

The manufacturing sector also uses supercomputers to decrease design costs. For exam-
ple, the use of virtual (i.e., numerically simulated) wind tunnels allowed Boeing to reduce

2 Chapter 1 – Introduction

to 11 the number of wing prototypes effectively constructed for their 787 “Dreamliner” air-
craft in 2005, in contrast with the 77 prototypes used in the design of the 767 model back in
the 1980s [65]. High performance simulations have indeed the benefits of being faster and
cheaper than designing actual prototypes. Besides, HPC simulations can be reproduced, and
virtual models can be evaluated in various conditions with very high accuracy.

But as Ken Batcher stated, “a supercomputer is a device for turning compute-bound problems
into I/O-bound problems”. Indeed, larger machines lead to the production of larger amounts
of data that have to be efficiently stored and processed in order to retrieve scientific insights.
The traditional approach to data management consists of storing the output of the simula-
tion in files during its run, move these files and analyze them later offline. Yet we observe
an increasing gap between the performance of storage systems and the computation ca-
pabilities of recent supercomputers. For instance, while ORNL’s Jaguar machine (ranked
1st in the Top 500 list of supercomputers [130] in November 2009 and June 2010) provided
240 GB/s of storage throughput for a peak performance of 1.75 Petaflops, its successor Titan
(ranked 1st in November 2012) was subject to a tenfold improvement of performance (achiev-
ing 17.59 Petaflops) for only a sixfold increase of storage throughput (achieving 1.4 TB/s).
This gap makes traditional approaches to I/O (input/output) unsustainable, as they take an
increasingly larger portion of the application’s run time and lead to a variability of this run
time.

On one hand, it becomes necessary to optimize the I/O stack at every level, from the
simulation down to the file system, in order to improve I/O performance together with the
predictability of these performances. This also involves improving the way storage sys-
tems deal with a higher degree of concurrency, not only from the hundreds of thousands of
processes that constitute a single application, but also from many applications concurrently
running on the machine.

On the other hand, bringing data analysis and visualization tasks closer to the simulation
will become inevitable to avoid storing massive amounts of data in the near future. This
rises challenges in the way simulations can efficiently communicate and share data without
impacting their performance.

Finally, the energy consumption of next-generation supercomputers is a rising concern
in the HPC community. While current Petascale machines run at around 10 MW, the US’s
Defense Advanced Research Projects Agency (DARPA) has set a 20 MW power budget for
Exascale machines [52]; a twofold increase of energy consumption for a thousandfold in-
crease of computation performance. This target will be achieved not only through hardware
improvements, but also with novel, energy-efficient software approaches. In particular, data
movements and storage constitute some of the most energy-demanding tasks in high per-
formance computing, and must now evolve with energy-efficiency in mind.

1.2 Contributions

Many performance issues in the context of data management for HPC simulations boil down
to a problem of performance variability. Differences in the time to complete an I/O task from
a process to another in a massively parallel application lead to all processes waiting for
the slowest one. These processes thus waste valuable computation time and energy. With
today’s approaches to data management, this variability has multiple causes. First, in most

1.2 – Contributions 3

HPC applications I/O is concurrently performed by all processes, which leads to I/O bursts.
This causes resource contention and substantial variability of the I/O performance of indi-
vidual processes, which significantly impacts the overall application performance. Second,
coupling simulations with visualization and analysis packages further increases this vari-
ability, especially when visualization tasks are performed interactively. A third source of
variability comes from concurrent accesses to the storage system by many independent ap-
plications running on the same machine.

In this thesis, we aim to address the challenges posed by the increasing variability in the
performance of current data management approaches. Our work was mainly carried out
in the context of the JLPC (Joint Laboratory for Petascale Computing), a joint laboratory be-
tween Inria, the National Center for Supercomputing Applications (NCSA) at the University
of Illinois at Urbana-Champaign (UIUC), and Argonne National Laboratory (ANL). It led to
several projects between the KerData team, ANL and UIUC: FACCTS (France and Chicago
Collaborating in the Sciences), PUF (Partner University Fund), and the Data@Exascale asso-
ciated team. The main contributions of this Ph.D thesis can be summarized as follows.

Using Dedicated Cores in Multicore Nodes to Hide the I/O Jitter

With an increasing use of massively multicore nodes, a first level of contention occurs when
many processes in the same node try to concurrently access the same network interface.
This causes substantial performance variability. We call I/O jitter this type of variability,
originating from I/O contention within a single application. In this work, we propose a new
approach to I/O, called Damaris, which leverages dedicated I/O cores on each multicore
SMP (Symmetric multiprocessing) node, along with the use of shared memory, to efficiently
perform asynchronous data processing and I/O in order to hide this jitter. We evaluate
Damaris on three different platforms including the Kraken Cray XT5 supercomputer [63],
with the CM1 atmospheric model [7]. By overlapping I/O with computation and by gather-
ing data into large files while avoiding synchronization between cores, our solution brings
several benefits: (1) it fully hides the jitter as well as all I/O-related costs, which makes the
simulation’s performance predictable; (2) it increases the sustained write throughput by a
factor of 15 compared to standard approaches; (3) it allows almost perfect scalability of the
simulation up to over 9,000 cores, as opposed to state-of-the-art approaches which fail to
scale; (4) it enables a 600% compression ratio without any additional overhead, leading to
a major reduction of storage requirements. In addition to initiating the development of an
implementation of Damaris, this work was awarded the 2nd prize at the ACM Student Re-
search Competition held in conjunction with the ICS ‘11 conference (see [23]). It also led to a
publication at the CLUSTER ‘12 conference (see [24]).

Bringing In Situ Visualization Capabilities to Dedicated Cores

Reducing the amount of data stored by simulations will be of utmost importance for the
next generation of large-scale computing. Accordingly, there is active research to shift anal-
ysis and visualization tasks to run in situ, that is, closer to the simulation by sharing its
resources. This approach is beneficial as it can avoid the necessity to store large amounts
of data for post-processing. However, it can lead to an important impact on the simula-
tion’s run time if not carefully implemented. This work focuses on the specific case of in

4 Chapter 1 – Introduction

situ visualization where analysis codes are collocated with the simulation’s code and run on
the same resources. It is important for an in situ technique to require minimum modifica-
tions to existing codes, be adaptable, and have a low impact on both run times and resource
usage. We accomplish this through the Damaris/Viz framework, which provides in situ vi-
sualization support to our implementation of the Damaris approach. The use of Damaris
as a bridge to existing visualization packages allows us to (1) reduce code modification in
existing simulations, (2) gather capabilities of several visualization tools to offer a unified
data management interface, (3) use dedicated cores to hide the run-time impact of in situ vi-
sualization and (4) efficiently use memory through a shared-memory-based communication
model. Experiments were conducted on Blue Waters and Grid’5000 [53] to visualize the CM1
atmospheric simulation and the Nek5000 CFD solver [98]. This work led to a publication at
the LDAV ‘13 conference (see [26]).

Analyzing the Energy vs. Performance Tradeoff in Diverse I/O Approaches

A major challenge of future Exascale machines consists of sustaining a high performance
per watt ratio. Many recent works, including the first contribution of this Ph.D. thesis, have
explored new approaches to I/O management aiming to reduce the I/O performance bottle-
neck exhibited by HPC applications (and hence to improve application performance). There
is comparatively little work investigating the impact of I/O management approaches on en-
ergy consumption. In particular, approaches that attempt to overlap computation with I/O
have a beneficial effect on performance variability and thus, on energy consumption. In this
work, we completed our implementation of the Damaris I/O middleware with various ap-
proaches to data management, including the possibility to use dedicated nodes instead of
dedicated cores, and the possibility to run I/O tasks synchronously, i.e., with no dedicated
resources at all. We closely examine these radically different I/O schemes and perform ex-
tensive experiments with the CM1 atmospheric model. Our experimental results obtained
on the Grid’5000 platform highlights the differences between these approaches and illus-
trates in which way various configurations of the application and of the system impact per-
formance and energy consumption. We then propose and validate a mathematical model to
estimate the energy consumption of a simulation under different I/O approaches. Part of
this work was published at the DIDC ‘14 workshop, held in conjunction with the HPDC ‘14
conference (see [140]).

Mitigating I/O Contention through Cross-Application Coordination

As larger machines are used by an increasing number of applications in a concurrent man-
ner, the interference produced by multiple applications accessing a shared parallel file sys-
tem in contention becomes a major problem. Interference often breaks single-application
I/O optimizations (such as access patterns preliminarily optimized to improve data locality
on disks), dramatically degrading application I/O performance, increasing run time vari-
ability and, as a result, lowering machine-wide efficiency. We addressed this challenge by
proposing CALCioM, a framework that aims to mitigate I/O interference through the dy-
namic selection of appropriate scheduling policies. CALCioM allows several applications
running on a supercomputer to communicate and coordinate their I/O strategy in order to
avoid interfering with one another. In this work, we examine four I/O strategies that can

1.3 – Publications 5

be accommodated in this framework: serializing, interrupting, interfering and coordinating.
Experiments on Argonne’s BG/P Surveyor machine and on several clusters of Grid’5000
show how CALCioM can be used to efficiently and transparently improve the scheduling
strategy between two otherwise interfering applications, given specified metrics of machine
wide efficiency. This work, partially carried out during a 3-month internship at ANL, led to
a publication at the IPDPS ‘14 conference (see [27]).

Predicting the Spatial and Temporal I/O Patterns of HPC Applications

Many I/O optimizations including prefetching, caching, and scheduling, have been pro-
posed to improve the performance of the I/O stack. In order to optimize these techniques,
modeling and predicting spatial and temporal I/O patterns of HPC applications as they run
have become crucial. In this direction we introduce Omnisc’IO, an original approach that
aims to make a step forward toward an intelligent I/O management of HPC applications in
next-generation post-Petascale supercomputers. It builds a grammar-based model of the I/O
behavior of any HPC application and uses this model to predict when future I/O operations
will occur, as well as where and how much data will be accessed. Omnisc’IO is transpar-
ently integrated into the POSIX and MPI-I/O stacks and does not require any modification
to application sources or to high-level I/O libraries. It works without prior knowledge of the
application, and converges to accurate predictions within a couple of iterations only. Its im-
plementation is efficient both in computation time and in memory footprint. Omnisc’IO was
evaluated with four real HPC applications – CM1, Nek5000, GTC [43], and LAMMPS [105]
– using a variety of I/O backends ranging from simple POSIX to Parallel HDF5 on top of
MPI-I/O. Our experiments show that Omnisc’IO achieves from 79.5% to 100% accuracy in
spatial prediction and an average precision of temporal predictions ranging from 0.2 seconds
to less than a millisecond. This work was published at the SC ‘14 conference and initiated
the development of the Omnisc’IO software (see [28]).

1.3 Publications

International Conferences

• Bogdan Nicolae, Diana Moise, Gabriel Antoniu, Luc Bougé, Matthieu Dorier. BlobSeer:
Bringing High Throughput under Heavy Concurrency to Hadoop Map/Reduce Applications,
in Proceeding of the 2010 IEEE International Parallel & Distributed Processing Sympo-
sium (IPDPS ‘10), Atlanta, September 2010. CORE Rank A (acceptance rate 24%).

• Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, Leigh Orf. Damaris:
How to Efficiently Leverage Multicore Parallelism to Achieve Scalable, Jitter-free I/O, in Pro-
ceedings of the 2012 IEEE International Conference on Cluster Computing (CLUSTER
‘12), Beijing, September 2012. CORE Rank A (acceptance rate 28%).

• Matthieu Dorier, Roberto Sisneros, Tom Peterka, Gabriel Antoniu, Dave Semeraro.
Damaris/Viz, a Nonintrusive, Adaptable and User-Friendly In Situ Visualization Framework,
in Proceedings of the 2013 IEEE Symposium on Large Data Analysis and Visualization
(LDAV ‘13), Atlanta, October 2013. (acceptance rate 37%).

6 Chapter 1 – Introduction

• Matthieu Dorier, Gabriel Antoniu, Rob Ross, Dries Kimpe, Shadi Ibrahim. CALCioM:
Mitigating I/O Interference in HPC Systems through Cross-Application Coordination, in Pro-
ceedings of the 2014 IEEE International Parallel & Distributed Processing Symposium
(IPDPS ‘14), Phoenix, May 2014. CORE Rank A (acceptance rate 21%).

• Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu, Rob Ross. Omnisc’IO: A Grammar-
Based Approach to Spatial and Temporal I/O Patterns Prediction, in Proceedings of
ACM/IEEE 2014 Supercomputing Conference (SC ‘14), New Orleans, November 2014.
CORE Rank A (acceptance rate 21%).

Workshops at International Conferences

• Orçun Yildiz, Matthieu Dorier, Shadi Ibrahim, Gabriel Antoniu. A Performance and En-
ergy Analysis of I/O Management Approaches for Exascale Systems, in Proceedings of the
2014 Data-Intensive Distributed Computing (DIDC ‘14) workshop, held in conjunc-
tion with the 23rd International ACM Symposium on High Performance Parallel and
Distributed Computing (HPDC ‘14), Vancouver, June 2014.

Posters at International Conferences

• Matthieu Dorier. Damaris - Using Dedicated I/O Cores for Scalable Post-petascale HPC
Simulations, 2011 ACM/SIGARCH International Conference on Supercomputing (ICS
‘11), Tucson, April 2011. 2nd prize at the ACM Student Research Competition.

• Matthieu Dorier. Efficient I/O using Dedicated Cores in Large-Scale HPC Simulations, 2013
IEEE International Parallel & Distributed Processing Symposium (IPDPS ‘13): PhD
Forum, Boston, May 2013.

1.4 Software

• Damaris is a middleware for multicore SMP nodes allowing them to efficiently han-
dle data transfers for storage and visualization by dedicating one or a few cores to
the application I/O. It allows efficient asynchronous I/O, hiding all I/O related over-
heads such as data compression, post-processing and in situ visualization (through its
Damaris/Viz extension). Damaris was evaluated on Blue Waters (Cray XE6, NCSA),
Kraken (Cray XT5, NICS), Titan (Cray XK7, ORNL), Intrepid (IBM BlueGene/P, ANL),
Grid’5000 (French grid testbed), Blue Print (Power5 cluster, NCSA), with the CM1 at-
mospheric simulation and the Nek5000 CFD simulation. Damaris is at the core of
Chapters 3 to 5 of this thesis. Damaris was formally validated for use on NCSA’s Blue
Waters supercomputer. To our knowledge, it has been used successfully by several re-
searchers from NCSA, Central Michigan University and the Federal University of Rio
Grande do Sul (UFRGS).
Link: http://damaris.gforge.inria.fr
Size and language(s): 19500 lines, C++, Fortran, XML
License: LGPL

http://damaris.gforge.inria.fr

1.5 – Organization of the Manuscript 7

• Omnisc’IO is a middleware integrated in the POSIX and MPI-I/O stacks to trans-
parently observe, model and predict the I/O behavior of any HPC application. It is
based on formal grammars and implements a modified version of the Sequitur al-
gorithm. Omnisc’IO has been used on Grid’5000 with the CM1 atmospheric simu-
lation, the LAMMPS molecular dynamics simulation, the GTC fusion simulation and
the Nek5000 CFD simulation. Omnisc’IO is at the core of Chapter 7 of this thesis.
Link: http://omniscio.gforge.inria.fr
Size and language(s): 4400 lines, C++
License: LGPL

• Darshan-Ruby is an object-oriented extension to simplify the analysis of ANL’s Dar-
shan [10] log files (a tool that traces the I/O of simulations running on supercomputers)
using the Ruby language. It was developed to help us get a faster insight into the I/O
behavior of large-scale applications. Darshan-Ruby efficiently accesses Darshan data
without intermediate conversion into text format. It is available as a Ruby Gem pack-
age on the official rubygems.org repository and, as of September 2014, was downloaded
1600 times. Darshan-Ruby led to the Darshan-Web project, which proposes a web plat-
form that analyzes traces and provides users with hints on how to improve the I/O
performance of their applications.
Link: http://darshan-ruby.gforge.inria.fr
Size and language(s): 400 lines, C, Ruby
License: LGPL

1.5 Organization of the Manuscript

The rest of this manuscript is organized in seven chapters.

The first chapter presents the context of our research. We introduce the applications and
platforms, as well as the traditional approaches to data management in post-Petascale sys-
tems. We then dive into the challenges posed by these approaches in terms of I/O variability
at large scale and highlight the opportunities that drove our contributions.

Chapters 3 to 5 focus on contributions related to the Damaris approach. Three major ob-
jectives are being tackled: (1) hiding the I/O costs and variability from HPC applications, (2)
offering a non-impacting and adaptable way of conducting in situ analysis and visualization
of large-scale simulations and (3) understanding the effect of I/O on energy consumption
under different I/O approaches. Chapter 3 addresses the first objective. It presents the core
of our Damaris approach and its results in addressing the challenge of hiding the I/O vari-
ability while improving I/O performance. Based on the observation that dedicated cores
in Damaris remain idle an important fraction of the time, we added the support for in situ
visualization. Our results on leveraging Damaris to provide in situ visualization capabilities
to simulations are presented in Chapter 4. Finally, in order to compare different approaches
to I/O in terms of energy consumption, we added the support for dedicated I/O nodes in
Damaris and conducted an extensive evaluation of the energy/performance tradeoff. This
contribution is described in Chapter 5. While each chapter focuses on a particular challenge
related to data management, the use of Damaris as a common framework for all three chap-
ters allows us to zoom on particular implementation details relevant for each of them.

http://omniscio.gforge.inria.fr
rubygems.org
http://darshan-ruby.gforge.inria.fr

8 Chapter 1 – Introduction

Chapter 6 takes a step back from optimizing a single application. It studies the effect of
I/O contention between different applications at the level of the file system, on the efficiency
of the supercomputer. It proposes CALCioM, an approach based on cross-application coor-
dination that aims to mitigate I/O interference. Based on the observation that CALCioM,
as well as many optimizations to I/O such as scheduling, caching or prefetching, require a
model of the I/O behavior of applications, we introduce the Omnisc’IO approach in Chap-
ter 7. Its goal is to transparently capture, model, then predict the spatial and temporal I/O
access patterns of HPC applications.

Chapter 8 concludes our thesis by summarizing our contributions and presenting per-
spectives.

9

Chapter 2
Background: I/O and Data Analysis in

Supercomputers

Contents
2.1 The Era of Supercomputing . 10

2.1.1 Large-Scale Scientific Simulations . 10

2.1.2 Post-Petascale Supercomputers . 10

2.2 I/O and Storage in HPC Systems . 11

2.2.1 Parallel File Systems . 11

2.2.2 The MPI-I/O and POSIX Interfaces 12

2.2.3 High-Level I/O Libraries . 13

2.2.4 Application-Level I/O Approaches 13

2.3 Variability in Traditional I/O Approaches 14

2.3.1 Causes and Effects of the I/O Variability 15

2.3.2 Approaches to Mitigate the I/O Variability 16

2.3.3 I/O Variability: Energy Concerns . 17

2.3.4 Variable I/O, Yet Predictable of I/O Patterns 18

2.4 Analysis and Visualization: an Overlooked Process 20

2.4.1 Visualization Software and Techniques 20

2.4.2 Toward Simulation/Visualization Coupling 21

2.4.3 A Taxonomy of In Situ Visualization Methods 21

2.4.4 From Offline to In Situ Visualization: Another Source of Variability . 22

2.4.5 Our Vision: Pushing (Harder) Toward In Situ Visualization 22

2.5 Discussion: Addressing I/O Performance Variability 23

10 Chapter 2 – Background: I/O and Data Analysis in Supercomputers

THIS chapter aims to draw a picture of scientific simulations as well as the architecture
of current “post-Petascale” infrastructures on which they run. We then dive into the
details of data management approaches on these machines, including data storage,

analysis and visualization. Finally, we show the challenges they pose.

2.1 The Era of Supercomputing

2.1.1 Large-Scale Scientific Simulations

Numerical simulations are parallel programs that solve a system of mathematical equations
describing a physical phenomenon. These simulations usually distribute a large dataset
across a number of processes that solve the equations on their parts of the data. Each chunk
of data is called a subdomain (e.g., a subset of particles in nuclear simulations, or a chunk of
atmosphere in climate simulations). While the speed of these simulations depends on the
number of processes on which they run, this number of processes also impact the accuracy
at which the physical phenomena is simulated.

For example, the CM1 simulation [7, 8], used later in this work, models relatively
small-scale processes in the Earth’s atmosphere, such as thunderstorms and tornadoes.
It discretizes a cube of atmosphere that is distributed across processes following a two-
dimensional grid.

Many simulations work in an iterative manner, alternating between computation-
intensive phases that solve the equations, and I/O phases that output data representing
the current state of the simulated model. These outputs are used for later analysis and visu-
alization purpose, or as a mean to restart the simulation in case of failure.

To achieve high accuracy in a reasonable amount of time, scientific simulations require
important computation resources as well as large amounts of memory. Therefore they are
parallelized to run on high-performance machines such as supercomputers.

2.1.2 Post-Petascale Supercomputers

Supercomputers are highly parallel machines developed to push the frontiers of compu-
tation performance. As opposed to other distributed environments such as grids, which
consist of heterogeneous commodity hardware, or clouds, which employ virtualization, su-
percomputers are clusters of homogeneous cores using cutting-edge hardware, along with
libraries and software that are specifically optimized for this hardware.

Post-Petascale supercomputers nowadays have a more and more hierarchical architec-
ture: the traditional cluster of single-CPU nodes interconnected through a network has given
way to cabinets of blades of massively multicore nodes. Within a node, these cores share
common caches and main memory, while communication across nodes is made available
through specialized high-performance interconnects such as InfiniBand or Cray HSN.

The hardware also diversifies, with a popularization of GPGPUs (General Purpose
Graphics Processing Unit, as in the Cray XK7 architectures used by NCSA’s Blue Waters [5]
and ORNL’s Titan [129] supercomputers), local storage such as SSDs attached to computa-
tion nodes and replacing or complementing DRAM (as in the Cray CS300 Catalyst super-

2.2 – I/O and Storage in HPC Systems 11

Figure 2.1: The typical I/O Stack of HPC Simulations.

computer, which will be delivered at LLNL [58]), or cores dedicated to the operating system
(as in the BlueGene/Q architecture used by the ANL’s Mira supercomputer [83]).

On such a machine, users can reserve a number of cores for a given duration. Each pro-
cess of a large-scale simulation runs on a core of the supercomputer. The MPI (Message
Passing Interface) standard [86] was introduced to offer a portable communication interface
between cores, providing point-to-point communication primitives as well as complex col-
lective communication algorithms. On recent machines with multicore nodes, this interface
is sometimes used for inter-node communications only, while parallelism within a node is
handle by a multithreading library such as OpenMP [95].

One important part of these high-performance computing machines in our context is the
storage system, which typically consists of a clustered NAS (Network-Attached Storage) on
which a parallel file system is deployed. The next section describes the I/O stack from this
storage area up to the application level.

2.2 I/O and Storage in HPC Systems

The I/O stack of HPC applications typically consists of three layers, plus the application it-
self, as shown in Figure 2.1. Data output by large scale simulations are commonly stored in a
parallel file system (PFS) and formatted using a high-level I/O library for portability across plat-
forms and software. These libraries interact with the file system either through the POSIX or
MPI-I/O interfaces. The following sections examine these layers in more detail.

2.2.1 Parallel File Systems

The PFS runs on a set of I/O servers in a storage area separated from the computation nodes
by a network. These servers provide an interface between computation nodes and a large
number of disks. For example the Blue Waters supercomputer features 25 petabytes of stor-
age capacity from a set of 1440 disks managed by a Lustre [22] file system. PFSs are re-
sponsible for distributing data across disks and for exposing a consistent namespace with a

12 Chapter 2 – Background: I/O and Data Analysis in Supercomputers

hierarchy of directories and files to the user in a way similar to a simple workstation, offering
the illusion of a single-disk file system with very large capacity.

Data accesses in PFSs can be parallelized by distributing requests across I/O servers. To
handle metadata operations (i.e., opening or creating a file, listing a directory retrieving file
permissions, etc.), PFSs such as Lustre [22] features a metadata server. This single metadata
server can become a bottleneck when an application accesses hundreds of thousands of files
at the same time. In other PFSs such as GPFS [114] and PVFS2 [11], I/O servers also act as
metadata servers and, thus, metadata operations can be distributed as well, avoiding this
bottleneck.

The POSIX Consistency Semantics

Most parallel file systems expose a POSIX consistency semantics for concurrent accesses: a
process reading a file will see either all or none of the effects of a write operation performed
by another concurrent process (atomicity of write operations). This consistency semantics
is borrowed from traditional file systems. Yet it is the source of performance issues in the
context of parallel file systems due to the distribution of data across servers. In such a con-
figuration, a single write can indeed result in a series of requests to multiple servers that
have to be serviced in a consistent manner even under concurrency.

The obvious approach to ensure the POSIX consistency semantics consists of locking an
entire file through the metadata server when the file is accessed. However, more elaborate
methods can be employed. GPFS enforces this consistency through a distributed byte-range
locking protocol [114], which issues access authorizations to individual processes only for
the region of the file that is accessed. Even though this algorithm allows better performance
than a centralized lock on the whole file, it adds an overhead in small accesses. Other file
systems such as PVFS2 openly don’t provide this consistency semantics to avoid this over-
head.1

2.2.2 The MPI-I/O and POSIX Interfaces

Accesses to the file system can be done simply through the standard POSIX system calls,2 i.e.,
open, close, read, write, etc., as well as their LibC versions fopen, fclose, fread, fwrite,
etc. and equivalent functions in C++ and Fortran. These functions, provided essentially
for compatibility with commodity machines, allow one process to access a file but do not
handle concurrent accesses by multiple processes to the same file. They are thus restricted
to a file-per-process approach.

Since MPI 2, MPI-I/O is provided as part of the MPI standard [39] to provide a portable
I/O interface on top of the diversity of parallel file systems. It provides a generic interface
for opening, reading and writing files stored in parallel file systems, such as MPI_File_open,
MPI_File_write, etc. as well as functions enabling collective accesses to a single file by
multiple processes.

1See http://www.pvfs.org/cvs/pvfs-2-7-branch.build/doc/pvfs2-guide/pvfs2-guide.php.
2Not to be confused with the notion of POSIX semantics defined earlier.

http://www.pvfs.org/cvs/pvfs-2-7-branch.build/doc/pvfs2-guide/pvfs2-guide.php

2.2 – I/O and Storage in HPC Systems 13

Optimizations in MPI-I/O

MPI-I/O provides a number of optimizations [125]. Most of them aim to reduce the number
of requests issued to the file system, or the number of processes from which these requests
are issued.

Data sieving [18] is a common technique to overcome the inefficiency of reading many non-
contiguous regions of a file. Instead of reading one by one each requested segment of
the file, the process issues a large, contiguous request covering all requested segments.
The unnecessary data is then discarded.

Collective buffering [19] takes place when a set of processes collectively accesses a shared
file in a strided pattern, that is, each process issues a series of requests to interleaving
segments of the file. In this scenario, the processes involved in the collective operation
merge their requests into a subset of processes that issues bigger and more contiguous
requests. This algorithm is sometimes termed “two-phase I/O”.

2.2.3 High-Level I/O Libraries

The need for scientists to be able to read output data on different platforms and with various
general-purpose analysis programs has led to the development of high-level I/O libraries
such as HDF5 [50, 35], NetCDF [90] or ADIOS [2, 1]. They use metadata-rich formats that
let users provide a descriptions of their variables, together with the type of the data (e.g.,
float, integer, bytes, arrays, etc.) or its layout (e.g., number of dimensions, endianness for
numerical values, etc.). These formats present datasets in a hierarchical manner, grouping
variables in a way similar to the namespace of a file system. A file written in such a format is
machine-independent, language-independent and easy to read by other applications, in par-
ticular by post-processing tools. In some ways, these formats represent to scientific datasets
the equivalent of the PNG or JPG formats for images.

These high-level libraries have shown to provide highly-featured formatting capabilities
without much overhead in I/O operations [16] compared to raw MPI-I/O or POSIX outputs.
They also provide compression capabilities such as scale-offset (reduction of floating point
values from 32 to 16 bits representation), Szip, Gzip or LZF.

While HDF5 and NetCDF use the POSIX interface for independent I/O accesses, parallel
versions of these libraries, namely PHDF5 [16] and Parallel-NetCDF [71], support collective
I/O through MPI-I/O. ADIOS provides its own data format but can also be configured to
output in HDF5 or NetCDF formats. As a result, ADIOS can be seen as an extra software
layer between the simulation and I/O libraries allowing more flexible I/O [76].

Contrary to other I/O libraries, ADIOS leverages an XML configuration file that de-
scribes the data being read and written by the simulation. This configuration allows a more
flexible interface, as the user does not need to recompile his application to change its I/O
methods and output format. Besides, the a priori knowledge of the data being accessed
helps ADIOS efficiently manage its buffer.

14 Chapter 2 – Background: I/O and Data Analysis in Supercomputers

(a) File-per-process Approach (b) Collective I/O Approach

Figure 2.2: Traditional approaches to I/O in HPC simulations.

2.2.4 Application-Level I/O Approaches

At the application level finally, two I/O approaches are commonly employed. These ap-
proaches are summarized in Figure 2.2.

The File-per-process approach consists of having each process access its own file. This is
usually done through the POSIX interface, which does not handle concurrency and is
thus appropriate when the simulation ensures that different processes will not access
the same file.

Collective I/O leverages communication phases between processes to aggregate access re-
quests and re-organize them. These operations are typically used when several pro-
cesses need to access different parts of a shared file, and benefit from tight interactions
between the file system and the MPI-I/O layer in order to optimize the application’s
access pattern [106], as explained in Section 2.2.2.

While the file-per-process approach avoids synchronization between processes, parallel
file systems are not well suited for this type of load when scaling to hundreds of thousands
of processes. In particular, file systems that feature a single metadata server suffer from an
important bottleneck when hundreds of thousands of files are created simultaneously.

Collective I/O helps alleviating the problem of metadata overhead by gathering data into
very large files, but this comes at the price of an important synchronization overhead be-
tween processes.

2.3 Variability in Traditional I/O Approaches

The periodic nature of scientific simulations, which alternate between computation and I/O
phases, leads to I/O bursts. With larger machines, the higher degree of I/O concurrency
between processes of a single application or between concurrent applications pushes the
I/O subsystem to its limits. This leads to a substantial variability in the I/O performance.
Reducing this variability is critical, as it is an effective way to make a more efficient use of
these new computing platforms through improved predictability of the behavior and of the
execution time of applications.

2.3 – Variability in Traditional I/O Approaches 15

Figure 2.3: Variability between processes and across I/O phases in the IOR benchmark using
a file-per-process approach, on Grid’5000 with a PVFS file system. Each graph represents a
write phase. Processes are sorted by write time on the y axis and a line is draw with a length
that is proportional to this write time. These graphs are normalized so that the longest write
time spawns the entire graph. Each graph is colored according to a color scale that gives the
aggregate throughput of the phase, that is, the total amount of data written divided by the
write time of the slowest process.4

Figure 2.3 illustrates this variability with the IOR applications [116], a typical benchmark
used to evaluate the performance of parallel file systems with ideal I/O patterns. It shows
that even with very well optimized I/O (each process here writes the same amount of data
contiguously in a separate file) there is a large difference in the time taken by each process
to complete its I/O operations within a single I/O phase and also across I/O phases. Since
during these I/O phases all processes have to wait for the slowest one, this I/O variability is
the source of a wast of performance, a wast of energy, and unpredictable overall run times.
I/O variability is therefore a key issue that we aim to address in this Ph.D. thesis.

2.3.1 Causes and Effects of the I/O Variability

Skinner at al. [117] point out four causes of performance variability in supercomputers (here
presented in a different order):

1. Communication, causing synchronization between processes that run within the same
node or on separate nodes. In particular, network access contention causes collective
algorithms to suffer from variability in point-to-point communications.

2. Kernel process scheduling, together with the jitter introduced by the operating system.
3. Resource contention within multicore nodes, caused by several cores accessing shared

caches, main memory and network devices.
4. Cross-application contention, which constitutes a random variability coming from si-

multaneous accesses to shared components of the computing platform, such as the
network or the storage system, by distinct applications.

Issues 1 and 2 respectively cause communication and computation jitter. Issue 1 can be ad-
dressed through more efficient network hardware and collective communication algorithms.
The use of lightweight kernels with less support for process scheduling can alleviate issue 2.
Issues 3 and 4, on the other hand, cause I/O performance variability.

4Due to the use of colors, this figure may not be properly interpretable if this document was printed in black
and white. Please refer to an electronic version.

16 Chapter 2 – Background: I/O and Data Analysis in Supercomputers

At the level of a node, the increasing number of cores per node in recent machines makes
it difficult for all cores to access the network all at once with an optimal throughput. Requests
are serialized in network devices, leading to a different service time for each core. This
problem is further amplified by the fact that an I/O phase consists of many requests that are
thus serialized in an unpredictable manner.

Parallel file systems also represent a well-known bottleneck and a source of high variabil-
ity [134]. The time taken by a process to write some data can vary by several orders of mag-
nitude from one process to another and from one I/O phase to another depending on many
factors, including (1) network contention when several nodes send requests to the same I/O
server [27], (2) access contention at the level of the file system’s metadata server(s) when
many files are created simultaneously [25], (3) unpredictable parallelization of I/O requests
across I/O servers due to different I/O patterns [75], (4) additional disk-head movements
due to the interleaving of requests coming from different processes or applications [36].

Lofstead et al. [75] present I/O variability in terms of interference, with the distinction
between internal interference caused by access contention between processes of the same ap-
plication, and external interference that are due to sharing the access to the file system with
other applications, possibly running on different clusters. While the sources of I/O per-
formance variability are numerous and difficult to track, we can indeed observe that some
of them originate from contentions within a single application, while other come from the
contention between multiple applications concurrently running on the same platform. The
following section describes how these two sources of contention can be tackled.

2.3.2 Approaches to Mitigate the I/O Variability

While most efforts today address performance and scalability issues for specific types of
workloads and software or hardware components, few efforts target the causes of perfor-
mance variability. We highlight two practical ways of hiding or mitigating the I/O variabil-
ity, and we show their limitations.

Approach 1: Asynchronous I/O

The main solution to prevent an application from being impacted by its I/O consists of using
asynchronous I/O operations, i.e., non-blocking operations that proceed in the background
of the computation.

The MPI 2 standard proposes rudimentary asynchronous I/O functions that aim to over-
lap computation with I/O. Yet these functions are available only for independent I/O op-
erations. Besides, popular implementations of the MPI-I/O standard such as ROMIO [126]
actually implement most of these functions as synchronous. Only the small set of functions
that handle contiguous accesses have been made asynchronous, provided that the backend
file system supports it.

Released in 2012, the MPI 3 standard completes this interface with asynchronous collec-
tive I/O primitives. Again, their actual implementation is mostly synchronous. As of today,
there is no way to leverage completely asynchronous I/O using only MPI-I/O. Higher-level
libraries such as HDF5 or NetCDF have also no support for asynchronous I/O.

2.3 – Variability in Traditional I/O Approaches 17

The Damaris approach that we introduce in Chapter 3 precisely aims to alleviate the lack
of support for asynchronous I/O by using dedicated cores on multicore nodes. The use of
dedicated cores mitigates the contention for the access to the network and the file system,
as only one of the cores in each multicore node actually accesses the network. As a result,
Damaris is shown to be an effective way to completely hide the I/O variability.

Approach 2: I/O Scheduling

I/O variability can be mitigated by better addressing multi-application contention. In paral-
lel file systems, this contention is resolved through the use of schedulers. At a network level,
individual schedulers from different I/O servers will try to service requests from the same
application at the same time, in order for all processes of the application to experience the
same throughput [147]. At the disk level the requests can be reordered and cached in order
to optimize disk accesses.

While most parallel file systems use a scheduler that treats requests in a first-come-first-
served manner, more elaborate systems have been proposed that use deadlines [109, 120], or
quality of service (QoS) requirements [148]. Other [147, 69] attempt to improve data locality
(i.e. minimize disk-head movements). These schedulers usually target either better perfor-
mance, better QoS, or better fairness. They all work at the level of the parallel file system,
and thus impose an overhead on the communications between clients and I/O servers.

We propose a radically different approach in Chapter 6 with CALCioM. Instead of a PFS-
level scheduler, CALCioM provides a communication layer across concurrent applications.
This communication layer can be used by applications to coordinate there I/O behavior and
avoid interfering with one another. CALCioM thus appears as an effective way to deal with
performance variability induced by inter-application I/O contention.

2.3.3 I/O Variability: Energy Concerns

The Cost of Energy in HPC

Power has become an essential issue in the design of modern computing systems. Power
bills become a substantial part of the total cost of ownership (TCO) of supercomputers: a
typical supercomputer of thousands of cores consumes several MegaWatts of power [102],
which in turn represents almost 40% of the total cost [44]. Performance has long been the
major focus of the HPC community, today’s supercomputers are therefore equipped with
millions of processing cores that consume a large amount of energy when running parallel
programs. For example, Tianhe-2, ranked first in the Top 500 supercomputers list in Novem-
ber 2013 [130], is a 3,120,000 processor supercomputer with a Linpack performance of 33.8
Petaflops, but with 17 MegaWatt of power consumption [42]. This amount of energy will
even increase as we reach the era of Exascale systems.

Solutions to consuming less energy include building supercomputers with slower cores.
The power consumption of a core is indeed proportional to its frequency. The frequency
and voltage of a core can also be adapted dynamically using DVFS (Dynamic Voltage and
Frequency Scaling) [68] depending on the computation load.

New hardware tend to put components (memory, arithmetical units, etc.) closer to one
another in order to reduce energy dissipation in wires. The use of optical interconnects [104]

18 Chapter 2 – Background: I/O and Data Analysis in Supercomputers

also reduces the energy consumption.

Energy and I/O Variability

While data movements themselves consume a lot of energy, the cause of energy inefficiency
in I/O approaches can be much more diverse.

In particular, the variability in the duration of I/O tasks performed in parallel by many
cores forces some cores to remain idle while waiting for other cores to complete their I/O.
During this time, idle cores remain powered on and consume unnecessary energy. Using a
data management approach that reduces I/O variability can thus be beneficial in terms of
energy consumption as well.

Several approaches have been proposed to overlap I/O and computation in order to hide
the I/O variability and make a better use of the platform. Considering the rising concerns
on energy consumption in the HPC community, we have tackled in Chapter 5 the important
challenge of determining the impact of some of these I/O approaches on both performance
and energy consumption. Additionally, we provide a theoretical model to help users chose
the best I/O approach with respect to energy consumption.

Parallel file systems also consume a lot of energy. Part of the energy consumed by su-
percomputers is spent keeping hundreds of thousands of disks spinning [38]. Many factors
impact the energy consumption of the parallel file system [61], such as disk-head move-
ments induced by unoptimized scheduling of I/O requests. While Solid State Disks (SSDs)
are more and more common on compute nodes of recent supercomputers and have a lower
energy footprint than hard disks (HDDs) as they do not feature mechanical components,
they are still not economically viable as a replacement of HDDs in parallel file system due to
their higher cost.

2.3.4 Variable I/O, Yet Predictable of I/O Patterns

While the performance of I/O in HPC systems is subject to a high variability, the periodic
and repetitive behavior of large-scale simulations makes most of their I/O patterns (i.e.,
which file is accessed, when and how) predictable. This section explores how this pre-
dictability can be used to solve I/O performance issues, and what are the challenges of
predicting I/O patterns.

A Silver Lining for a “Smarter” I/O Stack

As non-interactive programs periodically solving a system of equations, most HPC applica-
tions actually exhibit a spatially and temporally predictable I/O behavior. That is, a process is
likely to repeat the same access patterns across the various files it produces, and to do so at predictable
moments.

This predictability is an opportunity to address many of the challenges posed by post-
Petascale I/O; it can lead to the development of a “smarter” I/O stack, that is, an I/O stack
capable of modeling, understanding and adapting to the behavior of the applications. We ex-
emplify here three common techniques that can benefit from a prediction of I/O behavior.

2.3 – Variability in Traditional I/O Approaches 19

Leveraging Predictions for Buffering and Caching: When writing large amounts of data
in a series of small accesses, buffering is a useful way to aggregate requests and improve per-
formance. Buffering systems can benefit from a prediction of the I/O patterns by estimating
when the buffer should be flushed to the file system (i.e., preferably when enough requests
have been aggregated), as well as how much memory should be allocated for the buffer to
work efficiently. When the parallel file system leverages caching mechanisms, understand-
ing the behavior of running applications helps appropriately provisioning separate caches
for each application instead of letting them compete for the access to the same cache.

Leveraging Predictions for Prefetching: Prefetching is a common technique for improv-
ing read performance. It consists of reading some data that are likely to be requested later by
the application ahead of time. This proactive approach self-advocates for I/O predictions,
as knowing in advance what will be read (and sometimes when) can help improving the
efficiency of the prefetching system. While the most common strategy consists of prefetch-
ing segments of data that immediately follow the segment previously read in the file [139],
this strategy is limited when the simulation uses a high-level library, since these libraries
move the file pointer in a noncontiguous manner to update headers and metadata sections
in the file. Better strategies to predict the future access patterns are thus required to improve
prefetching.

Leveraging Predictions for I/O Scheduling: I/O scheduling is implemented in parallel file
systems to properly service multiple applications at the same time. The knowledge of the
number of requests that an application will send in a near future as well as the location of
corresponding accesses in files can help achieving better data locality in disks, better fair-
ness across applications, better quality of service, and better performance overall. Currently,
some I/O schedulers [147] assume that an application currently accessing the file system is
likely to re-access it immediately, and use time windows (or “reuse distances”) allocated to
applications. Yet this assumption that replaces an actual prediction of request inter-arrival
times is limited. The scheduler is indeed unable to predict the end nor the duration of an
I/O phase, nor what will be accessed and how. The time windows can also be too short to
offer a chance to an application with slightly large inter-arrival times to benefit from them.

I/O Predictions: a Few Challenges

While predicting the I/O patterns of HPC applications has long been an important goal in
large-scale supercomputers, researchers have focused mainly on statistical methods (e.g.,
hidden Markov models [94], ARIMA models [131]) to help with I/O predictions. These ap-
proaches often focus exclusively on either spatial or temporal I/O behaviors. Furthermore,
they require a large number of observations to accomplish good prediction; hence, they ei-
ther need long execution times (several runs in some cases) [9] or they are doomed to offline
trace-based training [80] in order to converge.

We list five main requirements for the design of a good I/O-prediction system hereafter:

• Run time learning: The system should learn a model of the application’s behavior at
run time with no or little prior knowledge of the application. It should thus converge
fast in order to rapidly make correct predictions.

20 Chapter 2 – Background: I/O and Data Analysis in Supercomputers

• Spatial and temporal predictions: The system should be capable of both spatial and
temporal predictions, that is, it should be capable of predicting where in the files the
next operations will occur, how much data will be accessed, and when these operations
will be performed.

• Low run time overhead: The system should not negatively impact the performance of
the application, nor make this performance more variable.

• Low memory footprint: The system should be memory-efficient.

• Transparent integration: The integration of the prediction system should not require
any modification in the application nor any high-level I/O library that the application
may use. Besides, it should not depend on these libraries.

To address these challenges, we introduce the Omnisc’IO approach in Chapter 7. Omnisc’IO
leverages grammar-based models to predict the I/O behavior of any HPC application at run
time. It specifically addresses all the requirements presented here by transparently building
a model as the simulation runs, with minimal run-time and memory overhead. It then uses
this model to predict the location of future accesses (size and offset in file) and the date of
these accesses.

2.4 Analysis and Visualization: an Overlooked Process

Data produced by HPC simulations can serve several purposes. One of them is fault toler-
ance using a checkpoint/restart method. The other, and most important, is the analysis and
visualization of the simulated phenomenon.

Analysis and visualization are important components of the process that leads from run-
ning a simulation to actually discovering knowledge. Yet scientists tend to leave aside opti-
mizations of the visualization process to focus on the performance of their simulation only.
This section describes common techniques and software used for analysis and visualization,
as well as the trend toward simulation/visualization coupling.

2.4.1 Visualization Software and Techniques

Analysis and visualization are traditionally carried out in an offline manner. Data produced
by a simulation is read back from the file system by visualization software after the simula-
tion has completed. This process is illustrated in Figure 2.4 (a). The visualization and anal-
ysis processes are often performed on a dedicated cluster, different from the cluster used by
the simulation. For instance, while NICS provides the 1.17 Petaflops Cray XT5 Kraken ma-
chine [63] to run simulations, the 8.2 Teraflops SGI Altix UV Nautilus machines [89] is used
for analysis and visualization tasks. This machine features GPUs (Graphics Processing Unit)
and a set of software specialized for analysis and visualization. Yet due to the increasing
amount of data, it becomes more and more common to perform analysis and visualization
on the machine that produced the data, rather than having a secondary cluster for this pur-
pose. This further motivates the adoption of GPUs in recent supercomputers.

2.4 – Analysis and Visualization: an Overlooked Process 21

(a) Traditional Scientific Workflow (b) Coupling Simulation/Visualization

Figure 2.4: Two approaches to retrieve insight from large-scale simulations.

Several general purpose tools such as VisIt [135] or ParaView [101] propose a wide range
of visualization algorithms (e.g., iso-surface, streamlines, etc.) to deal with the variety of sci-
entific datasets. Some post-processing tools are designed for specific fields as well. YT [133]
is an example of Python library specifically targeting data produced by several cosmology
codes.

All these software run in parallel and are able to read files written in common scientific
formats such as the ones described in Section 2.2.3. As a rule of thumb, as much as 10% of
the number of cores needed to produce the data is used to perform visualization [17].

2.4.2 Toward Simulation/Visualization Coupling

Given the increasing computation power and the trend toward leveraging GPUs on com-
putation nodes, it also becomes more and more common to couple the simulation with the
analysis and visualization tools. Simulation/Visualization coupling consists of making the
simulation send its data directly to a visualization software instead of storing it and process-
ing it offline. This approach, termed in situ visualization (ISV) and illustrated in Figure 2.4
(b), has the advantage of bypassing the storage system and produces results faster. It also
allows scientists to control their simulations as they run, efficiently overlapping simulation
and knowledge discovery.

2.4.3 A Taxonomy of In Situ Visualization Methods

Several ISV strategies exist that we separate in two main categories – tightly coupled and
loosely coupled – depending on the location of the visualization tasks.

Tightly-Coupled In Situ Visualization

In a tightly-coupled scenario, the analysis and visualization codes run on the same node than
the simulation and share its resources. The main advantage of this scenario is the proximity
to the data, which can be retrieved directly from the memory of the simulation. Its drawback
lies in the impact that such analysis and visualization tasks can have on the performance

22 Chapter 2 – Background: I/O and Data Analysis in Supercomputers

of the simulation and on the variability of its run time. Within this category, we make a
distinction between time-partitioning and space-partitioning.

Time-partitioning visualization consists of periodically stopping the simulation to per-
form visualization tasks. This method is the most commonly used. For example, it is imple-
mented in VisIt’s libsim library [138] and ParaView’s co-processing library [34].

In a space-partitioning mode, dedicated cores are used to perform visualization in paral-
lel with the simulation. This mode poses challenges in efficiently sharing data between the
cores running the simulation and the cores running the visualization tasks, as these tasks
progress in parallel. It also imposes to reduce the number of cores used by the simulation.

Loosely-Coupled In Situ Visualization

In a loosely coupled scenario, analysis and visualization codes run on a separate set of re-
sources, that is, a separate set of nodes located either in the same supercomputer that runs
the simulation [149, 110], or in a remote cluster [81]. The data is sent from the simulation to
the visualization nodes through the network.

Some ISV frameworks such as GLEAN [49] can be viewed as hybrid, placing some tasks
close to the simulation in a time-partitioning manner while other tasks run on dedicated
nodes.

2.4.4 From Offline to In Situ Visualization: Another Source of Variability

The increasing amounts of data generated by scientific simulations also leads to performance
degradations when it comes to reading back data for analysis and visualization [17, 141].
While I/O introduces run time variability, in situ analysis and visualization can also neg-
atively impact the performance of the simulation/visualization compound. For instance,
periodically stopping the simulation to perform in situ visualization in a time-partitioning
manner leads to a loss of performance and an increase of run-time variability. Contrary to
the performance of the simulation itself, the performance of visualization tasks highly de-
pends on the content of the data and is therefore unbalanced across processes and across
iterations. This variability is further amplified if the ISV framework is interactive, in which
case the user himself impacts the performance of his application.

In a loosely-coupled approach to ISV, sending data through the network potentially im-
pacts the performance of the simulation and forces a reduced number of nodes to sustain
the input of a large amount of data. Transferring such large amounts of data through the
network also have a potentially larger impact on the simulation than running visualization
tasks in a tightly-coupled manner.

2.4.5 Our Vision: Pushing (Harder) Toward In Situ Visualization

Despite the limitations of the traditional offline approach, the fact that scientists are seldom
accepting in situ visualization is a recurrent ascertainment [142, 78, 77]. Decades of traditions
in offline analysis strengthened the idea that computer scientists will always find new solu-
tions to the storage challenges and let users produce massive amounts of data. We postulate
that four main requirements drive the adoption of an ISV framework.

2.5 – Discussion: Addressing I/O Performance Variability 23

Low impact on run time: As explained earlier, using computational resources collocated
with the simulation can affect the performance of the underlying simulation. This
is especially true when interactive visualization systems directly connect users to their
running simulation.

Optimized resource utilization: Collocated simulations and visualization codes share re-
sources such as local memory and network bandwidth. Efficiently using these re-
sources is critical for an approach to be suitable at a very large scale.

Low impact on the code: Users are less likely to adopt an ISV approach if it requires many
code changes in their simulation and the understanding of new tools [128], or if a
visualization specialist should be consulted.

High adaptability: The adaptability of a system is its capability to offer a wide range of
features without the need for a user to make changes in the connection between a
(potentially running) simulation and a visualization backend.

These requirements motivate our work on leveraging the Damaris approach to support ISV
in Chapter 4. Indeed, the main design principle of Damaris –namely, using dedicated cores
to offload data processing tasks and I/O– offers a unique opportunity to develop a frame-
work that addresses these four points.

2.5 Discussion: Addressing I/O Performance Variability

As supercomputers become larger and more complex, one main challenge consists of dealing
with the large amounts of data generated by large-scale simulations. The current approach
consists of periodically writing data in a parallel file system, using a high-level I/O library
on top of a standardized interface such as MPI-I/O. This data is then read back for analysis
and visualization purpose.

As we have shown, one major issue posed by this traditional approach to data manage-
ment is the high performance variability it introduces. This variability can be observed at
different levels. Within a single application, I/O contention across processes leads to large
variations in the time each process takes to complete its I/O operations. From one I/O phase
to another, this variability is further amplified, in particular due to interference with other
applications sharing the same parallel file system. Finally, the trend of coupling simulations
with visualization tools also exposes simulations to higher performance variability, as their
run time does not depend anymore on their own scalability only, but also on the scalability of
visualization algorithms. This particular problem is further amplified in the context of inter-
active in situ visualization, where the user himself and his interactions with the simulation
become the cause of run-time variability.

To make an efficient use of future Exascale machines, it becomes important to provide
data management solutions that do not solely focus on pure performance, but address per-
formance variability as well. Addressing this variability is indeed the key to ensure that each
and every component of these future platforms is used optimally.

The next chapters describes how, through a number of contributions, we addressed the
challenges posed by the different aspects of this variability.

25

Chapter 3
Damaris: Leveraging Dedicated Cores

to Hide the I/O Variability

Contents
3.1 Addressing I/O Variability through Dedicated I/O Cores 26
3.2 The Damaris Approach . 27

3.2.1 Design Principles . 27
3.2.2 Architecture and Implementation . 28
3.2.3 Client API . 31
3.2.4 Writing with Damaris . 33

3.3 Experimental Evaluation . 33
3.3.1 The CM1 Application . 33
3.3.2 Platforms and Configuration . 34
3.3.3 Experimental Results . 35
3.3.4 Improvements: Leveraging the Spare Time 41

3.4 Related Work . 41
3.4.1 Positioning Damaris in the “I/O Landscape” 41
3.4.2 Dedicated-Core-Based Approaches . 42

3.5 Conclusions and Discussion . 43
3.5.1 Theoretical Usefulness . 43
3.5.2 Key Results . 44
3.5.3 Let’s Use our Spare Time . 44

IN this Chapter, we propose the Damaris approach. Damaris leverages dedicated cores in
multicore nodes of recent supercomputers to hide the I/O variability from the applica-
tion and improve its overall performance. We describe the Damaris approach together

26 Chapter 3 – Damaris: Leveraging Dedicated Cores to Hide the I/O Variability

with its implementation. We then evaluate Damaris on three real HPC platforms: NICS’s
Kraken [63], NCSA’s BluePrint and the French Grid’5000 testbed [53].

3.1 Addressing I/O Variability through Dedicated I/O Cores

The typical behavior in large-scale simulations, described in Chapter 2, consists of alternat-
ing computation phases and write phases. Often due to explicit barriers or communication
phases, all processes perform I/O at the same time, causing network and file system con-
tention. It is commonly observed that some processes exploit a large fraction of the available
bandwidth and quickly terminate their I/O, then remain idle (typically from several seconds
to several minutes) waiting for slower processes to complete their I/O. This variability, or
jitter, can even be observed at relatively small scale, where measured I/O performance can
vary by several orders of magnitude between the fastest and slowest processes [134]. With
multicore architectures, this variability becomes even more of a problem, as multiple cores
in a same node compete for the network access.

While most studies address I/O performance in terms of aggregate throughput and try
to improve this metric by optimizing different levels of the I/O stack ranging from the file
system to the simulation-side I/O library, few efforts have been made in addressing the
I/O jitter. Yet it has been shown that this variability is highly correlated with I/O perfor-
mance [134]. The origins of this variability can substantially differ due to multiple factors,
including the platform, the underlying file system, the network, and the I/O pattern of the
application. For instance, using a single metadata server in the Lustre file system causes a
bottleneck when following the file-per-process approach (described in Chapter 2), a prob-
lem that PVFS or GPFS are less likely to exhibit. In contrast, byte-range locking in GPFS or
equivalent mechanisms in Lustre cause lock contentions when writing to shared files. To
address this issue, elaborate algorithms at the MPI-I/O level are used in order to maintain a
high throughput [106]. Yet these optimization usually rely on all-to-all communications that
impact their scalability.

The main contribution of this chapter is precisely to propose an approach that completely
hides the I/O jitter exhibited by most widely used approaches to I/O management in HPC
simulations: the file-per-process and collective-I/O approaches. Based on the observation
that a first level of contention occurs when all cores of a multicore SMP node try to access
the network for intensive I/O at the same time, our new approach to I/O, called Damaris
(Dedicated Adaptable Middleware for Application Resources Inline Steering), leverages ded-
icated I/O cores in each multicore SMP node along with shared memory to perform asynchronous
data processing and I/O. These key design choices build on the observation that it is often not
efficient to use all cores for computation, and that reserving one core for tasks such as I/O
management may not only help reducing jitter but also increase overall performance. Be-
sides, most data written by HPC applications are only eventually read by analysis tasks but
not used by the simulation itself. Thus write operations can be delayed without consistency
issues.

Damaris takes into account user-provided information related to the behavior of the ap-
plication and the intended use of the output in order to perform high-level I/O and data
processing within SMP nodes. Some of these ideas have been explored partially in other ef-
forts parallel to ours: a detailed positioning of Damaris with respect to these works is given

3.2 – The Damaris Approach 27

in Section 3.4.

3.2 The Damaris Approach

To sustain a high throughput and a low variability, it is preferable to avoid as much as possi-
ble access contention at the level of the network interface and at the level of the file system.
One solution consists of reducing the number of writers (which reduces the network over-
head and allows data servers to optimize disk accesses and caching mechanisms) and the
number of generated files (which reduces the overhead in metadata servers). As the first
level of contention occurs when several cores in a single SMP node try to access the same
network interface, it becomes natural to work at the level of a node.

We propose to gather the I/O operations into one single core that will perform writes
of larger data in each SMP node. In addition, this core is dedicated to I/O (i.e., it does not
run the simulation code) in order to overlap writes with computation and avoid contention
for accesses to the file system. The cores running the simulation and the dedicated cores
communicate data through shared memory. We call this approach Damaris. Its design,
implementation and API are described below.

3.2.1 Design Principles

The Damaris approach is based on four main design principles described hereafter.

Dedicated Cores

The Damaris approach is based on a set of processes running on dedicated cores in every
SMP node. Each dedicated core performs post-processing and I/O in response to user-
defined events sent by the simulation. We call “client” a process running the simulation,
and “server” a process running on a dedicated core. One important aspect of Damaris is
that dedicated cores do not run the simulation. With the current trend in hardware solu-
tions, the number of cores per node increases. Dedicating one or a few cores thus has a
diminishing impact on the performance of the simulation. Hence, our approach primarily
targets SMP nodes featuring a large number of cores per node: 12 to 24 in our experiments.

Data Transfers through Shared Memory

Damaris handles large data transfers from clients to servers through shared memory. This
makes a write as fast as a memcpy and also enables direct allocation of variables within the
shared memory. This design principle will be especially useful in Chapter 4, where it will be
used to efficiently share data between the simulation and visualization tools.

High-Level Data Abstraction

Clients write enriched datasets in a way similar to scientific I/O libraries such as HDF5 or
NetCDF. That is, the data output by the simulation is organized into a hierarchy of groups
and datasets, with additional metadata such as the description of variables, their type, unit,

28 Chapter 3 – Damaris: Leveraging Dedicated Cores to Hide the I/O Variability

Figure 3.1: Software architecture of the implementation of Damaris.

and layout in memory. The dedicated cores thus have enough knowledge of incoming
datasets to write them in an existing high-level formats. This design principle differs from
other approaches that capture I/O operations at a lower level [72, 79]. These approaches
indeed lose the semantic of the data being written. While our design choice forces us to
modify the simulation so that it writes its data using Damaris’ API, is allows to implement
semantic-aware data processing functionalities in dedicated cores.

Extensibility through Plugins

Servers can perform data transformations prior to writing them. One major design principle
in the Damaris approach is the possibility for users to provide these transformations through
a plugin system, thus adapting Damaris to the particular requirements of their application.
Implementing such a plugin system at a lower level would not be possible, as it would not
have access to the high-level structure of the data (e.g., dimensions of arrays, data types,
physical meaning of the variable within the simulation, etc.).

3.2.2 Architecture and Implementation

Figure 3.1 presents the software architecture underlying the Damaris approach. While
Damaris can dedicate several cores in large multicore nodes, only one client and one server
are represented here.

Damaris has been designed in a highly modular way and features a number of decou-
pled, reusable software components: The Shared Memory component handles the shared
buffer and ensures the safety of concurrent allocations/deallocations. The Distributed Re-

3.2 – The Damaris Approach 29

actor handles communications between clients and servers, and across servers. The Meta-
data Manager stores high-level information related to the data being transferred (type, size,
layout, etc.). Finally the Plugin Manager on the server side loads and runs user-provided
plugins.

This modular architecture greatly simplified the adaptation to several HPC platforms
and simulations, as well as the development of the extensions that are presented in Chap-
ters 4 and 5. Therefore its implementation deserves an extensive description hereafter, in-
cluding the technical choices that made our various contributions possible.

Shared Memory

Data communications between the clients and the dedicated cores are performed through
the Shared Memory component. A large memory buffer is created on each node by the
dedicated cores at start time, with a size set by the user (typically several MB to several
GB). Thus the user has a full control over the resources allocated to Damaris. When a client
submits new data, it reserves a segment of this shared-memory buffer. It then copies its data
using the returned pointer so that the local memory can be reused.

Implementation: Damaris leverages the Boost.Interprocess library1 to implement several
versions of the Shared Memory component. The default version uses POSIX interprocess
communication (IPC) primitives (e.g., shm_open, shm_create). These primitives being absent
from some platforms such as BlueGene/P machines running CNK (IBM’s Compute Node
Kernel), other implementations are available that use System-V IPC (e.g., shmget, shmat).

As HPC simulations aim to run for days to weeks or even months, an important as-
pect when implementing the Damaris approach was to ensure the absence of memory leaks.
In particular, letting users implement their own plugins leads to a high risk that the user
loses a reference to an object in shared memory, and that the shared memory becomes full.
In most of Damaris’ implementation, we minimized this risk by using Boost’s shared point-
ers. This ensures that when the last instance of a shared pointer to an object disappears, the
object’s destructor is invoked. But shared pointers do not work in shared memory. We there-
fore replaced them by a custom DataSpace abstraction that borrows the semantics of shared
pointers while supporting the transfer of ownership between processes: a client writing data
in shared memory creates a DataSpace and is responsible for it, i.e., the DataSpace will be
deleted from memory if the client looses all references to it. Eventually, the client notifies the
server of the existence of the DataSpace in shared memory, and transfers the responsibility
to deallocate it to the server. That is, the existence of the DataSpace no longer depends on
whether the client still holds a reference to it. The DataSpace will be effectively deallocated
when all references to it in the server have disappeared.

Distributed Reactor

The Distributed Reactor is the most complex component of Damaris. It is primarily used for
clients to send events to servers. These events indicate that some data has been written in
shared memory, or that a plugin should be executed.

1See http://www.boost.org/

http://www.boost.org/

30 Chapter 3 – Damaris: Leveraging Dedicated Cores to Hide the I/O Variability

The Distributed Reactor builds on the Reactor design pattern [113] to provide the mean
by which different cores communicate. Reactor is a behavioral pattern that handles requests
concurrently sent to an application by one or more clients. The Reactor asynchronously lis-
tens to a set of channels connecting it to its clients. The clients send small events that are
associated with event handlers (i.e., functions) in the Reactor. A synchronous event demulti-
plexer is in charge of queuing the events received by the Reactor and calling the appropriate
event handlers. Contrary to a normal Reactor design pattern (as used in Boost.ASIO for ex-
ample), our Distributed Reactor also provides elaborate collective operations.

Asynchronous atomic multicast: A process can broadcast an event to a group of processes
at once. This operation is asynchronous, that is, the sender does not wait for the event
to be processed by all receivers to resume its activity. A receiver only processes the
event when all other receivers are ready to process it as well. It is also atomic, that is, if
two distinct processes broadcast a different event, the Distributed Reactor ensures that
all receivers will handle the two events in the same order.

Asynchronous atomic labeled barrier: We call a “labeled” barrier across a set of processes
a synchronization barrier associated with an event (its label). After all processes reach
the barrier, they all invoke the event handler associated with the event. This ensures
that all processes agree to execute the same code at the same logical time. This primitive
is asynchronous: it borrows its semantics from MPI 3’s MPI_Ibarrier non-blocking
barrier. It is atomic according to the same definition as the asynchronous atomic mul-
ticast.

These two distributed algorithms are very important in the design of post-processing tasks
that involve communications between servers.

Implementation: Our implementation of the Distributed Reactor relies on MPI 2 com-
munication primitives and, in particular, non-blocking send and receive operations. Events
are simply implemented as 0-byte messages with the MPI tag carrying the type of the
event. Since the MPI 3 standard provides new non-blocking collective functions such as
MPI_Ireduce or MPI_Ibarrier, our Distributed Reactor could be easily re-implemented with
these MPI 3 functions without any impact on the rest of Damaris’ implementation.

Metadata Manager

The Metadata Manager component keeps information related to the data being written, in-
cluding variables, layouts (describing the type and shape of blocks of data), parameters, etc. It
is initialized using an XML configuration file.

This design principle is directly inspired by ADIOS [76] and also present in other tools
such as EPSN [32]. In traditional data formats such as HDF5, several functions have to be
called by the simulation to provide metadata information prior to actually writing data. The
use of an XML file in Damaris presents several advantages. First, the description of data
provided by the configuration file can be changed without changing the simulation itself,
and the amount of code required to use Damaris in a simulation is reduced compared to
existing data formats. Second, it prevents clients from transferring metadata to dedicated

3.2 – The Damaris Approach 31

cores through shared memory. Clients communicate only data along with the minimum in-
formation required by dedicated cores to retrieve the full description in their own Metadata
Manager.

Implementation: The XML file constitutes a model of the data being produced by the sim-
ulation. We used Model-Driven Engineering (MDE) techniques to implement the Metadata
Manager. Most of the source code of the Metadata Manager is indeed automatically gener-
ated from an XSD metamodel. This metamodel describes the concepts of variables, layouts, etc.
as well as their relations to one another and how they are described in an XML format. The
XSD file is used to synthesize C++ classes that correspond to the metamodel.

These engineering techniques greatly simplify the extensions of Damaris. They allow us
to implement new features simply by adding a few lines in the XSD metamodel instead of
manually programming all C++ classes required by this feature. For instance, we used this
facility to extend Damaris to support complex data structures such as meshes (see Chapter 4).

Plugin Manager

Finally the Plugin Manager is the component that loads and stores plugins. Plugins are
pieces of C++ or Python codes provided by the user. The Plugin Manager is capable of load-
ing functions from dynamic libraries or scripts as well as from the simulation’s code itself. It
is initialized from the XML configuration file. Again, the use of a common configuration file
between clients and servers allows different processes to refer to the same plugin through
an identifier rather than its full name and attributes.

A dedicated core can call a plugin when it receives its corresponding event, or wait for
all clients in a node or in the entire simulation to have sent the event. In these later cases,
the collective algorithms provided by the Distributed Reactor ensure that all servers call the
plugins in the same order.

Implementation: The Plugin Manager uses system calls such as dlopen to locate plugin
functions in shared libraries or the program’s code itself. To allow Python plugins, we use
Boost.Python and the Python/C API [108] to wrap data in shared memory using NumPy
arrays. NumPy is a very common data structures used in many Python libraries such as
MatplotLib [82].

3.2.3 Client API

The Damaris approach is intended to be the basis for a generic, platform-independent,
application-independent, easy-to-use tool. Our implementation provides client-side inter-
faces for C, C++ and Fortran applications written with MPI. This API can be summarized by
the following functions.

• damaris_initialize("config.xml") initializes the resources used by Damaris using
the configuration file given as parameter. All cores (clients and servers) call this func-
tion at the beginning of the simulation.

32 Chapter 3 – Damaris: Leveraging Dedicated Cores to Hide the I/O Variability

• damaris_start() is called by all cores to start servers on dedicated cores. The servers
block within this function, while the clients return and proceed with the simulation.

• damaris_get_client_comm() provides an MPI communicator gathering only clients.
Indeed the MPI_COMM_WORLD communicator contains both clients and servers and
cannot be used by the simulation anymore for its collective communications.

• damaris_write("var_name",data) is called by clients. It copies the data in shared
memory along with minimal information and notifies the server on the same node. All
additional information such as the size of the data and its layout can be found by the
servers in the configuration file.

• damaris_signal("event_name") is called by clients to send a custom event to the
server in order trigger a plugin predefined in the configuration file.

• damaris_end_iteration() notifies the servers that the simulation has reached the end
of an iteration and will start the next one. This allows dedicated cores to know that the
data written in shared memory is consistent and nothing more should be expected for
this iteration.

• damaris_stop() stops the servers on dedicated cores, making them leave the
damaris_start function.

• damaris_finalize() frees the resources used by Damaris. It is called by all processes
after servers have been stopped on dedicated cores (using damaris_stop) before ter-
minating the simulation.

Listing 3.1 is an example of a Fortran program that makes use of Damaris. It writes a 3D
array and sends an event to the dedicated core. The associated configuration file, shown in
Listing 3.2, describes the data that is expected to be received by the servers, and the action
to perform upon reception of the event. More specifically, line 11 of this XML file defines a
layout, which describes the type and dimensions of a piece of data. Line 13 defines a variable
that uses this layout. Finally line 17 associates an event with a function (or action) to be called
when the event is received. It also locates the function within a dynamically-loaded library.

3.2.4 Writing with Damaris

Damaris is not a data format. It only provides a framework to dedicate cores for custom
data processing and I/O tasks, to transfer data through shared memory and to call plugins.
Following this approach, we implemented a plugin that gathers data from client cores and
write them into HDF5 files. The next section uses this plugin to show how Damaris can hide
all I/O costs and I/O variability from the simulation and improve its overall performance.

3.3 Experimental Evaluation

We evaluated our approach based on dedicated I/O cores by comparing it with standard ap-
proaches (file-per-process and collective I/O) with the CM1 atmospheric simulation, using
three platforms: NICS’s Kraken, Grid’5000 and NCSA’s BluePrint cluster.

3.3 – Experimental Evaluation 33

1 program example
2 integer ierr, is_client
3 real, dimension(64,16,2) :: my_data
4
5 ! initialization
6 call damaris_initialize_f("my_config.xml", MPI_COMM_WORLD, ierr)
7 call damaris_start_f(is_client, ierr)
8
9 if(is_client.eq.1) then

10 do while(...) ! simulation main loop
11 ...
12 call damaris_write_f("my_group/my_variable", my_data, ierr)
13 call damaris_signal_f("my_event", ierr)
14 call damaris_end_iteration_f(ierr)
15 ...
16 enddo
17 ! stopping the servers
18 call damaris_stop_f(ierr)
19 endif
20
21 ! finalization
22 call damaris_finalize_f(ierr)
23 end program example

Listing 3.1: Example of Fortran simulation using Damaris.

Figure 3.2: Simulation of a supercell producing a long-
track EF5 tornado. This simulation was realized on
NCSA’s Blue Waters supercomputer by Leigh Orf
(Central Michigan University) and Bob Wilhelmson
(NCSA) using the CM1 code. See [46].

3.3.1 The CM1 Application

CM1 [7] (Cloud Model 1) is used for atmospheric research and is suitable for modeling small-
scale atmospheric phenomena such as thunderstorms and tornadoes. It follows a typical
behavior of scientific simulations, which alternate computation phases and I/O phases. The
simulated domain is a fixed 3D array representing part of the atmosphere. Each point in this
domain is characterized by a set of variables such as local temperature or wind speed. CM1 is
written in Fortran 90. Parallelization is done using MPI, by distributing the 3D array along
a 2D grid of equally-sized subdomains, each of which is handled by a process. The I/O

34 Chapter 3 – Damaris: Leveraging Dedicated Cores to Hide the I/O Variability

1 <?xml version="1.0"?>
2 <simulation name="example" language="fortran"
3 xmlns="http://damaris.gforge.inria.fr/damaris/model">
4 <architecture>
5 <domains count="1"/>
6 <dedicated cores="1"/>
7 <buffer name="the_buffer" size="67108864" />
8 <queue name="the_queue" size="100" />
9 </architecture>

10 <data>
11 <layout name="my_layout" type="real" dimensions="64,16,2" />
12 <group name="my_group">
13 <variable name="my_variable" layout="my_layout" />
14 </group>
15 </data>
16 <actions>
17 <event name="my_event" action="my_function" using="my_plugin.so" />
18 </actions>
19 </simulation>

Listing 3.2: Configuration file associated with the Fortran example.

phase leverages either HDF5 to write one file per process, or pHDF5 to write in a shared
file in a collective manner. One of the advantages of using a file-per-process approach is
that compression can be enabled, which cannot be done with pHDF5. However, at large
process counts, the file-per-process approach generates a large number of files, making all
subsequent analysis tasks intractable.

3.3.2 Platforms and Configuration

We conducted our experiments on three machines. Since our initial goal was to optimize
CM1 for a future use on the upcoming Blue Waters Petascale supercomputer, we started with
NCSA’s BluePrint as it was supposed to be representative of Blue Waters’ hardware. On this
platform, we evaluate the scalability of the application with respect to the size of its output,
with the file-per-process and Damaris approaches. We then experimented on the French
Grid’5000, in particular, its parapluie cluster. This cluster features 24-core nodes, which makes
it very suitable to our approach based on dedicated cores. Finally, we experimented on
NICS’s Kraken supercomputer, which, in addition to allowing runs at much larger scales,
has a hardware configuration very close to that of Blue Waters’ final design. These three
platforms are detailed hereafter, along with the configuration of CM1 we used.

BluePrint

BluePrint is a test platform used at NCSA until 2011 when IBM was still in charge of deliv-
ering the Blue Waters supercomputer.2

2As IBM terminated its contract with NCSA in 2011 and Blue Waters was finally delivered by Cray, BluePrint
was later decommissioned and replaced with a test platform, JYC, matching the new Blue Waters’ design.

3.3 – Experimental Evaluation 35

BluePrint features 120 Power5 nodes. Each node consists in 16 cores and includes 64 GB
of memory. As file system, GPFS is deployed on 2 I/O servers. CM1 was run on 64 nodes
(1024 cores), with a 960× 960× 300-point domain. Each core handles a 30× 30× 300-point
subdomain with the standard approaches, that is, when no dedicated cores are used. When
dedicating one core out of 16 on each node, computation cores handle a 24× 40× 300-point
subdomain. On this platform we vary the size of the output by enabling or disabling some
of the variables from the output. We enabled the compression feature of HDF5 for all the
experiments done on this platform.

Grid’5000

Grid’5000 [53] is a French grid testbed. We use its parapluie cluster (featuring 40 nodes of
2 AMD 1.7 GHz CPUs, 12 cores/CPU, 48 GB RAM) to run CM1 on 28 nodes (672 cores) and
38 nodes (912 cores). We deploy PVFS on 15 nodes of the parapide cluster (2 Intel 2.93 GHz
CPUs, 4 cores/CPU, 24 GB RAM, 434 GB local disk). Each PVFS node was used both as I/O
server and metadata server. All nodes communicate through a 20G InfiniBand 4x QDR link
connected to a common Voltaire switch. We use Mpich [87] with ROMIO [125] compiled
against the PVFS library, on a Debian operating system.

The total domain size in CM1 is 1104× 1120× 200 points, so each core handles a 46×
40× 200-point subdomain with a standard approach, and a 48× 40× 200-point subdomain
when one core out of 24 is used by Damaris.

Kraken

Kraken is a supercomputer deployed at NICS. It was ranked 11th in the Top500 at the time
of the experiments, with a peak Linpack performance of 919.1 Teraflops. It features 9408
Cray XT5 compute nodes connected through a Cray SeaStar2+ interconnect and running
Cray Linux Environment (CLE). Each node has 12 cores and 16 GB of local memory. Kraken
provides a Lustre file system using 336 block storage devices managed by 48 I/O servers
and one metadata server.

On this platform, we have studied the weak scalability of the file-per-process, collective
I/O and Damaris approaches, that is, we measured how the run time varies with a fixed
amount of data per node. When all cores in each node are used by the simulation, each
process handles a 44× 44× 200-point subdomain. Using Damaris, each client process (11
per node) handles a 48 × 44 × 200-point subdomain, which makes the total problem size
equivalent for a given total number of cores.

3.3.3 Experimental Results

In this section, we present the results achieved in terms of I/O variability, I/O performance
and resulting scalability of the application. We also evaluate two improvements to Damaris:
compression and transfer delays.

36 Chapter 3 – Damaris: Leveraging Dedicated Cores to Hide the I/O Variability

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

 1
00

00

W
ri
te

 T
im

e
 (

s
e
c
)

Number of Cores

Collective I/O
File-Per-Process

Damaris

Figure 3.3: Duration of a write phase on Kraken
(average and maximum). For readability reasons
we don’t plot the minimum write time. Damaris
shows to completely remove the I/O variability
while file-per-process and collective-I/O have a
big impact on the run-time predictability.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25

W
ri
te

 T
im

e
 (

s
e
c
)

Data Size (GB)

File-Per-Process
Damaris

Figure 3.4: Duration of a write phase (average,
maximum and minimum) using file-per-process
and Damaris on BluePrint (1024 cores). The
amount of data is given in total per write phase.

3.3 – Experimental Evaluation 37

How Damaris Affects the I/O Variability

Impact of the Number of Cores on the I/O Variability: We studied the impact of the three
I/O approaches –file-per-process, collective I/O, and Damaris– on the simulation’s write
time, with different number of cores. To do so, we ran CM1 on Kraken with 576, 2304 and
9216 cores.

Figure 3.3 shows the average and maximum duration of an I/O phase on Kraken from
the point of view of the simulation. It corresponds to the time between the two barriers
delimiting the I/O phase. This time is extremely high and variable with Collective I/O,
achieving more than 800 seconds on 9216 cores. The average of 481 seconds still represents
about 70% of the overall simulation’s run time, which is unacceptable given the 5% limit
usually accepted by users.

By setting the stripe size to 32 MB instead of 1 MB in Lustre, the write time went up to
1600 seconds with a collective I/O approach. This shows that bad choices of file system’s
configuration can lead to extremely poor I/O performance. Yet it is hard to know in advance
what configuration of the file system and I/O libraries will lead to good performance.

Unexpectedly, the file-per-process approach appears to lead to a lower variability, espe-
cially at large process count, and better performance than collective I/O. Yet it still represents
an unpredictability (difference between the fastest and the slowest phase) of about ±17 sec-
onds. For a one month run, writing every 2 minutes would lead to an uncertainty of several
hours to several days of run time.

When using Damaris, we dedicate one core out of 12 on each node, thus potentially re-
ducing the computation performance for the benefit of I/O efficiency (the impact on overall
application performance is discussed in the next section). As a means to reduce the I/O
variability, this approach is clearly effective: the time to write from the point of view of the
simulation is cut down to the time required to perform a series of copies in shared mem-
ory. It leads to a write time of 0.2 seconds and does not depend anymore on the number of
processes. The variability is in order of ±0.1 seconds (too small to be represented here).

Impact of the Amount of Data on the I/O Variability: On BluePrint, we vary the amount
of data. We aim to compare the file-per-process approach with Damaris with respect to
different output sizes.

The results are reported in Figure 3.4. As we increase the amount of data, the variabil-
ity of the I/O time increases with the file-per-process approach. With Damaris however,
the write time remains in the order of 0.2 seconds for the largest amount of data and the
variability in the order of ±0.1 seconds again.

Impact of the Hardware: Finally, we studied the impact of the hardware on the I/O vari-
ability using Grid’5000. With its large number of cores per node (24) and a network that
is substantially less performant than that of Kraken and BluePrint, we aim to illustrate the
large variation of write time across cores for a single write phase.

We ran CM1 using 672 cores, writing a total of 15.8 GB uncompressed data (about 24 MB
per process) every 20 iterations. With the file-per-process approach, CM1 reported spending
4.22% of its time in I/O phases. Yet the fastest processes usually terminate their I/O in less
than 1 second, while the slowest take more than 25 seconds. Figure 3.5 shows the CDF of

38 Chapter 3 – Damaris: Leveraging Dedicated Cores to Hide the I/O Variability

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

%
 o

f
C

lie
n
ts

 D
o
n
e
 W

ri
ti
n
g

Time (sec)

Damaris
File-per-Process

Figure 3.5: Cumulative distribution function of
the write time when running CM1 on 672 pro-
cesses of Grid’5000.

write times for one of these write phases, with a file-per-process approach and with Damaris.
It shows that, with a file-per-process approach, there is a large difference in write time be-
tween the fastest and the slowest process, due to access contention either at the level of the
network or within the file system. With Damaris however, all processes complete there write
at the same time. This is due to the absence of contention when writing in shared memory.

Conclusion: Our experiments show that by replacing write phases with simple copies
in shared memory and by leaving the task of performing actual I/O to dedicated cores,
Damaris is able to completely hide the I/O variability from the point of view of the simula-
tion, making the application run time more predictable.

Application’s Scalability and I/O Overlap

Impact of Damaris on the Scalability of CM1: CM1 exhibits a very good weak scalability
and very stable performance when it does not perform any I/O. Thus, as we increase the
number of cores, the scalability becomes mainly driven by the scalability of the I/O phases.
To measure the scalability of an approach, we define the scalability factor as follows:

S = N ∗ C
TN

, (3.1)

where N is the number of cores considered. We take as a baseline the time C of 50 iterations
of CM1 on 576 processes without dedicated core and without any I/O. TN is the time CM1
takes to perform 50 iterations plus one I/O phase, on N cores. A perfect scalability factor on
N cores should equal N.

The scalability factor on Kraken for the three approaches is given in Figure 3.6 (a). Fig-
ure 3.6 (b) shows the associated application run time for 50 iterations plus one write phase.
Damaris exhibits a nearly perfect scalability where other approaches fail to scale. In particu-
lar, going from collective I/O to Damaris leads to a 3.5× speedup on 9216 cores.

Spare Time in Damaris: Since the scalability of our approach comes from the fact that I/O
overlaps with computation, we still need to show that the dedicated cores have enough time
to perform the actual I/O while computation goes on.

3.3 – Experimental Evaluation 39

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

 1
00

00

S
c
a
la

b
ili

ty
 F

a
c
to

r

Number of cores

Perfect Scaling
Damaris

File-per-Process
Collective I/O

(a) Scalability Factor on Kraken

 0

 200

 400

 600

 800

 1000

576 2304 9216

T
im

e
 (

s
e
c
)

Number of Cores

No Write
Damaris

File-Per-Process
Collective I/O

(b) Run Time on Kraken

Figure 3.6: Scalability factor (a) and overall run time (b) of the CM1 simulation for 50 itera-
tions and 1 write phase, on Kraken.

 0

 50

 100

 150

 200

 250

 300

576 2304 9216

T
im

e
 (

s
e
c
)

Number of Cores

Write Time
Idle Time

(a) Write / Idle Time on Kraken

 0

 50

 100

 150

 200

0.05 5.8 15.1 24.7

T
im

e
 (

s
e
c
)

Data Size (GB)

Write Time
Idle Time

(b) Write / Idle Time on BluePrint

Figure 3.7: Time spent by the dedicated cores writing data for each iteration, and time spared
(idle). The spare time is the time dedicated cores are not performing any task.

Figure 3.7 shows the time used by the dedicated cores to perform the I/O on Kraken and
BluePrint, as well as the time they remain idle, waiting for the next iteration to complete.

As the amount of data on each node is the same, the only explanation for the dedicated
cores to take more time at larger process count on Kraken is the access contention for the
file system. On BluePrint the number of processes is constant for each experiment, thus the
differences in write time come from the different amounts of data. In all configurations, our
experiments show that Damaris spares a lot of time, during which it remains idle. Similar
results were obtained on Grid’5000.

40 Chapter 3 – Damaris: Leveraging Dedicated Cores to Hide the I/O Variability

 0.01

 0.1

 1

 10

 100

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

 9
00

0

 1
00

00

T
h
ro

u
g
h
p
u
t
(G

B
/s

)

Number of Cores

Damaris
File-Per-Process

Collective I/O

Figure 3.8: Average aggregate throughput
achieved on Kraken with the different ap-
proaches. Damaris shows a 6 times improvement
over the file-per-process approach and 15 times
over Collective I/O on 9216 cores.

Aggregate throughput
File-per-process 695 MB/s

Collective-I/O 636 MB/s
Damaris 4.32 GB/s

Table 3.1: Average aggregate throughput on
Grid’5000, with CM1 running on 672 cores.

Conclusion: On all platforms, Damaris shows that it can fully overlap writes with com-
putation and still remain idle 75% to 99% of time (see Figure 3.7). Thus, without impacting
the application, it becomes possible to further increase the frequency of output or perform
in situ data analysis and visualization. The later case will be the focus of Chapter 4.

Effective I/O Throughput

We then studied the effect of Damaris on the aggregate throughput observed from the sim-
ulation to the file system. Note that in the case of Damaris, this throughput is only observed
by the dedicated cores.

Figure 3.8 presents the aggregate throughput obtained with the three approaches on
Kraken. At the largest scale (9216 cores) Damaris achieves an aggregate throughput about
6 times higher than the file-per-process approach, and 15 times higher than collective I/O.
The results obtained on 672 cores of Grid’5000 are presented in Table 3.1. The throughput
achieved with Damaris here is more than 6 times higher than the other two approaches.
Since compression was enabled on BluePrint, we don’t provide the resulting throughputs,
as it would depend on the overhead of the compression algorithm and the resulting size of
the data.

Conclusion: By avoiding process synchronization and access contention at the level of a
node and by gathering data into bigger files, Damaris reduces the pressure on metadata
servers and issues bigger operations that can be more efficiently handled by storage servers.
As a result, on all platforms, Damaris substantially increases the aggregate throughput, thus
making a more efficient use of the file system.

3.4 – Related Work 41

3.3.4 Improvements: Leveraging the Spare Time

Section 3.3.3 showed that, with the CM1 application, dedicated cores remain idle most of the
time. In order to leverage the spare time in dedicated cores, we implemented two improve-
ments: compression, and transfer delays.

Compression

We used dedicated cores to compress the output data prior to writing it. Using lossless gzip
compression, we observed a compression ratio of 187%. When writing data for offline visu-
alization, the floating point precision can also be reduced to 16 bits, leading to nearly 600%
compression ratio when coupling with gzip. On Kraken, the time required by dedicated
cores to compress and write data was twice longer than the time required to simply write
uncompressed data. Yet contrary to enabling compression in the file-per-process approach,
the overhead and jitter induced by the compression phase is completely hidden within the
dedicated cores, and do not impact the running simulation. In other words, compression is
offered for free by Damaris.

Data Transfer Delays

Additionally, we implemented in Damaris the capability to delay data movements. The algo-
rithm is very simple and does not involve any communication between processes: each ded-
icated core computes an estimation of the duration of an iteration of the simulation by mea-
suring the time between two consecutive calls to damaris_end_iteration (about 230 sec-
onds on Kraken). This time is then divided into as many slots as there are dedicated cores.
Each dedicated core waits for its slot before writing. This avoids access contention at the
level of the file system. We evaluated this strategy on 2304 cores on Kraken, the aggregate
throughput reaches 13.1 GB/s on average, instead of 9.7 GB/s when this algorithm is not
used.

Summary: These two improvements have also been evaluated on 912 cores of Grid’5000.
All results are synthesized in Figure 3.9, which shows the average write time in dedicated
cores. The delay strategy reduces the write time in both platforms. Compression however
introduces an overhead on Kraken, thus we are facing a tradeoff between reducing the stor-
age space used or reducing the spare time. A potential optimization would be to enable
or disable compression at run time depending on the need to reduce write time or storage
space.

3.4 Related Work

3.4.1 Positioning Damaris in the “I/O Landscape”

Through its capability of gathering data into larger buffers and files, Damaris can be com-
pared to the data aggregation feature in ROMIO [125]. This feature is an optimization of
collective I/O that leverages a subset of processes, called “aggregators” to actually perform

42 Chapter 3 – Damaris: Leveraging Dedicated Cores to Hide the I/O Variability

 0

 5

 10

 15

 20

 25

 30

 35

Grid5000 Kraken

T
im

e
 (

s
e
c
)

No Optimization
With Compression

With Transfer Delays

Figure 3.9: Write time in the dedicated cores
when enabling compression or transfer delays.

the I/O on behalf of other processes. Yet, data aggregation is performed synchronously in
ROMIO: all processes that do not perform actual writes in the file system must wait for the
aggregator processes to complete their operations. Besides, aggregators are not dedicated
processes, they run the simulation after completing their I/O. Through space partitioning,
Damaris can perform data aggregation and potential transformations in an asynchronous
manner and still use the idle time remaining in the dedicated cores.

Other efforts focus on overlapping computation with I/O in order to reduce the impact
of I/O latency on overall performance. Overlap techniques can be implemented directly
within simulations [103], using asynchronous communications. Non-blocking I/O primi-
tives started to appear as part of the current MPI 3 standard, but as explained in Chapter 2,
these primitives are still implemented as blocking in practice.

Other approaches leverage data-staging and caching mechanisms [93, 56], or forwarding
approaches [3] to achieve better I/O performance. Forwarding architectures run on top of
dedicated resources in the platform, which are not configurable by the end-user, that is, the
user cannot run custom data processing in forwarding resources. Similarly to the parallel
file system, these dedicated resources are shared by all users. This leads to cross-application
access contention and thus, to I/O variability. However, the trend toward I/O delegate
systems underlines the need for new I/O approaches. Our approach relies on dedicated I/O
cores at the application level rather than relying on hardware I/O-dedicated or forwarding
nodes, with the advantage of letting users configure their dedicated resources to best fit their
needs.

The use of local memory to alleviate the load on the file system is not new. The Scalable
Checkpoint/Restart (SRC) by Moody et al. [84] already makes use of node-level storage
to avoid the heavy load caused by periodic global checkpoints. Yet their work does not
use dedicated resources or threads to handle or process data, and the checkpoints are not
asynchronous.

3.4.2 Dedicated-Core-Based Approaches

Space partitioning at the level of multicore SMP nodes, along with shared memory, has also
successfully been used to optimize communications between coupled simulations [144]. In

3.5 – Conclusions and Discussion 43

contrast to this work, which does not focus on I/O, our goal is precisely to optimize I/O
to remove the performance bottleneck usually created by massively concurrent I/O and the
resulting variability.

Closest to our work are the approaches by Li et al. [72], and Ma et al. [79]. While the
general goals of these approaches are similar (leveraging service-dedicated cores for non-
computational tasks), their design is different, and so is the focus and the (much lower)
scale of their evaluation. The first one mainly explores the idea of using dedicated cores in
conjunction with SSDs to improve the overall I/O throughput. Architecturally, it relies on a
FUSE interface, which introduces unnecessary copies through the kernel and reduces the de-
gree of coupling between cores. Using small benchmarks we noticed that such a FUSE inter-
face is about 10 times slower in transferring data between cores than using shared memory.
In the second, active buffers are handled by dedicated processes that can run on any node
and interact with cores running the simulation through the network. In contrast to both ap-
proaches, Damaris makes a much more efficient design choice using the shared intra-node
memory, thereby avoiding costly copies and buffering. The approach defended by Li et al.
is demonstrated on a small 32-node cluster (160 cores), where the maximum scale used in
the work by Ma et al. is 512 cores on a Power3 machine, for which the overall improve-
ment achieved for the global run time is marginal. Our experimental analysis is much more
extensive and more relevant for today’s scales of HPC simulations: we demonstrated the
excellent scalability of Damaris on a real supercomputer (Kraken, ranked 11th in the Top500
supercomputer list at the time of the experiments) with up to almost 10,000 cores, and with
the CM1 tornado simulation, one of the target applications of the Blue Waters post-Petascale
supercomputer project. We demonstrated not only a speedup in I/O throughput by a fac-
tor of 15 (never achieved by previous approaches), but we also showed that Damaris totally
hides the I/O jitter and substantially cuts down the application run time at such high scales.
With Damaris, the execution time for CM1 at this scale is even divided by 3.5 compared
to approaches based on collective I/O! Moreover, we further explored how to leverage the
spare time of the dedicated cores. We demonstrated for example that it can be used to com-
press data by a factor of 6.

3.5 Conclusions and Discussion

Efficient management of I/O variability on Petascale and post-Petascale HPC infrastructures
is a key challenge. I/O variability indeed has a huge impact on the ability to sustain high
performance at the scale of such machines. Proposing efficient solutions to reduce its effects
is critical for preparing the advent of Exascale supercomputers and their efficient usage by
applications at full-machine scale.

The Damaris approach can efficiently overlap computation with I/O by using dedicated
cores in multicore nodes. As a result, all I/O costs and their associated variability are hidden
from the simulation. This makes the simulation’s overall run time less subject to variability.

3.5.1 Theoretical Usefulness

An important concern that potential users of Damaris have is whether or not our approach
will effectively bring an improvement to their application. While our experiments demon-

44 Chapter 3 – Damaris: Leveraging Dedicated Cores to Hide the I/O Variability

strate such an improvement with one simulation (CM1), it can be useful to understand, from
a theoretical perspective which conditions are necessary for Damaris to be useful.

We consider a machine featuring N cores per nodes. Let us call Wstd the time spent
writing and Cstd the computation time between two I/O phases with a traditional approach
(i.e., file-per-process or collective I/O), Cded the computation time when the same workload
is divided across N − 1 cores per node. We here assume that the I/O time is null or neg-
ligible when using the dedicated core from the point of view of the simulation, which is
experimentally verified. We call Wded the time that the dedicated cores spend writing. A
theoretical performance benefit of our approach occurs when

Wstd + Cstd > max(Cded, Wded) (3.2)

Assuming a perfect scalability of the program when parallelized across N cores per node,
we have Cded = N

N−1 Cstd. Provided that the dedicated cores fully manage to overlap compu-
tation with I/O the inequality 3.2 becomes

Wstd + Cstd > Cded, (3.3)

which is true when the program spends at least p = 100
N−1 percent of its time in I/O phase

with a traditional approach. As an example, with 24 cores p = 4.35%, which is already
under the 5% usually admitted for the I/O phase of such applications. Thus assuming that
the application effectively spends 5% of the time writing data, on a machine featuring more
than 24 cores per node, it is already more efficient to dedicate one core per node to hide
the I/O phase. With recent supercomputers featuring more and more cores per node, this
percentage decreases, making the Damaris approach more and more relevant to use.

3.5.2 Key Results

Results obtained with the CM1 atmospheric simulations, one of the challenging target ap-
plications of the Blue Waters post-Petascale supercomputer, clearly demonstrate the bene-
fits of Damaris in experiments with up to 9216 cores performed on the Kraken supercom-
puter. Damaris completely hides the I/O variability and all I/O-related costs and achieves
a throughput 15 times higher than existing approaches. Besides, it reduces the application’s
execution time by 35% compared to the conventional file-per-process approach. The execu-
tion time is divided by 3.5 compared to approaches based on collective I/O. Moreover, it
substantially reduces storage requirements, as the dedicated I/O cores enable overhead-free
data compression with up to 600% compression ratio.

3.5.3 Let’s Use our Spare Time

We have seen in Section 3.3.3 that dedicated cores remain idle a substantial fraction of the
time. This brings room for potential improvements. In the next Chapter, we use this spare
time to provide efficient in situ visualization.

45

Chapter 4
Extending Damaris to Support In Situ

Visualization

Contents
4.1 In Situ Visualization With Damaris . 46

4.1.1 Towards a New In Situ Visualization Framework 46
4.1.2 Damaris/Viz: an In Situ Visualization Framework Based on Damaris 47
4.1.3 Connection to Existing Visualization Packages 49
4.1.4 Automatic Adaptation of Output Frequency 51

4.2 Impact on Development and Flexibility . 52
4.2.1 Data Access Code for In Situ Visualization 52
4.2.2 The Case of Enzo and YT . 55

4.3 Experimental Evaluation . 56
4.3.1 Experiments with the CM1 Simulation 56
4.3.2 Experiments with the Nek5000 Simulation 59

4.4 Related Work . 62
4.4.1 Loosely-Coupled Visualization Strategies 62
4.4.2 Tightly-Coupled In Situ Visualization 63

4.5 Conclusions and Discussion . 64
4.5.1 Our Contribution . 64
4.5.2 What Remains to Study . 65

AS we approach Exascale, the limits of offline analysis [51] will be magnified. The
previous chapter showed that simulations already endure scalability issues arising
from unmatched computation and I/O performance as well as higher I/O variabil-

ity. Also, with an increase in problem size it becomes more difficult to transfer data from one

46 Chapter 4 – Extending Damaris to Support In Situ Visualization

supercomputer to another, and data-parallel visualization tasks start to suffer from the same
I/O bottleneck [17, 141]. Consequently, in situ visualization (ISV) has been proposed to cou-
ple the simulation with visualization tools and perform visualization while the simulation
runs.

This chapter explores the use of dedicated cores for in situ visualization. Based on re-
quirements drawn for in situ visualization in Chapter 2, we extend the Damaris approach
presented in Chapter 3. We illustrate this extension through a new framework, called
Damaris/Viz, which provides the following contributions to the field of ISV.

1. It reduces visualization-related code modifications to a minimum in existing simula-
tions;

2. It adapts to the specific needs of simulations by gathering the capabilities of existing
visualization packages under a unified data management interface;

3. It hides the performance impact of a coupled visualization code by using dedicated
cores to execute it in parallel with the simulation;

4. It efficiently leverages double-buffering techniques with shared memory to optimize
the memory usage.

We compare our framework to representative packages: VisIt [135], ParaView [101], and
custom analysis modules written using the C/Python interface. We evaluate it in the context
of two real simulations: CM1, and the Nek5000 [98] CFD solver. These experiments were
carried out on the Blue Waters [5] machine at NCSA and on the Grid’5000 testbed, with
representative visualization scenarios.

4.1 In Situ Visualization With Damaris

4.1.1 Towards a New In Situ Visualization Framework

Coupling simulations with visualizations requires understanding the interfaces of both
pieces of software. These interfaces can be difficult to master and the coupling may ne-
cessitate significant changes to the code of the simulation. Additionally, changing from one
visualization software to another requires other modifications in the code to adapt to each
software’s API. Yet, many software provides the same features. For instance, both Para-
View and VisIt can work with rectilinear meshes, but the codes required to support VisIt or
Para View in situ are very different. It thus becomes necessary to unify the API provided by
different visualization packages under a common interface. This interface should be simple
and flexible enough to get widely accepted by HPC users.

A useful feature for ISV is the ability to work on raw in-memory data without perform-
ing any copy, thus reducing the memory consumption of in situ analysis tasks. There is a
trend to reduce local memory per core on next-generation supercomputers; consequently
this “zero-copy” property becomes invaluable. In addition, the ability to overlap simula-
tion with visualization has performance benefits. Periodically stopping the simulation to
perform visualization tasks increases the overall run time of a simulation as well as the run
time variability. Interactivity with an end-user imposes additional overhead and variability.

4.1 – In Situ Visualization With Damaris 47

(a) After damaris_alloc (b) After damaris_commit (c) After damaris_clear

Figure 4.1: Semantics of the three functions: (a) at iteration 1, an segment is allocated for
a given variable through damaris_alloc, the simulation holds it. (b) Eventually, a call to
damaris_commit notifies the dedicated core of the location of the data. From there on, the
segment can be read by both processes, but should not be written or deleted by neither of
them. Finally, (c) a call to damaris_clear indicates that the simulation does not need the
segment anymore, dedicated cores can modify it, delete it or move it to a persistent storage.

Therefore, users take the risk of slowing down their computation with every connection they
make to their running simulation.

These considerations motivated our choice to build our framework using Damaris. As
shown in the previous chapter, the dedicating cores still remain idle a large fraction of the
time that could be leveraged for additional data processing. Additionally, the use of intra-
node shared memory in Damaris enables efficient resource sharing in the context of simula-
tion/visualization coupling. In this chapter we show that Damaris can also serve as a bridge
between a simulation and various visualization software through a unified interface. We call
this new framework Damaris/Viz.

4.1.2 Damaris/Viz: an In Situ Visualization Framework Based on Damaris

The initial implementation of Damaris, seen in Chapter 3 provides a damaris_write func-
tion, with the idea of imitating classical file-based I/O libraries (for example HDF5, NetCDF
or ADIOS). When entering an I/O phase, the simulation calls this function to copy its lo-
cal data into a shared memory segment, and notifies the dedicated cores that data has been
written. This API is suitable when the simulation is not memory-constrained. With a visu-
alization process sharing the simulation’s resources however, it becomes necessary to limit
the memory used by Damaris.

The use of space-partitioning in Damaris presents two problems: the first is to expose the
data to visualization components, and the second, more important is to ensure the consis-
tency of simultaneous accesses from different components to the same data.

Leveraging Built-in Double Buffering

By studying several simulations using time-varying data, we noticed a frequent use of
double-buffering techniques, where two buffers are used to store different versions of the

48 Chapter 4 – Extending Damaris to Support In Situ Visualization

same variable: a first buffer holds data as input for the solver and another one is used for
storing the results. The two buffers are then swapped before entering the next iteration so
that the buffer that contains the most recent output serves as the new input, and the old
input buffer, no longer useful, serves as output buffer.

We can thus decompose the life of a buffer in three phases:

1. Equations are solved and the output data is written in one of the buffers, to serve as
input for the next iteration. During this step, the buffer is intensively written;

2. The data in this buffer serves as input for the next iteration and is not written over,
however it is intensively read;

3. The data in this buffer is no longer needed by the simulation. The buffer can be reused
to write the output of the next iteration.

These observations indicate that there is potential for using the input buffer also as input
for visualization tasks, as this buffer is only read by the simulation and not modified until
the swap phase. Using dedicated cores and shared memory, doing so requires to allocate
these buffers directly in shared memory so that dedicated cores can access them. We thus
provided new functions to the Damaris API in order to better leverage this double-buffering
techniques.

• damaris_alloc("variable") is similar to malloc (or allocate in Fortran, new in C++). It
is called by clients to allocate a portion of shared memory to hold the variable for a
given iteration and returns a pointer. Only the simulation is aware of this allocation,
dedicated cores cannot access the data. The returned buffer is expected to be used as
output buffer for the next iteration.

• damaris_commit("variable") is called by clients when the simulation has finished
writing to the current buffer associated with the variable. It sends the location of the
data to the dedicated cores. Both the simulation and dedicated cores can read the data.
At this point, clients will use the buffer as input for the next iteration while dedicated
cores will use it as input for visualization tasks.

• damaris_clear("variable") is called by clients to notify the dedicated cores that the
committed data for this variable will no longer be used by the simulation. It can safely
be processed, stored or removed from shared memory. The clients will issue another
damaris_alloc to get a new portion of shared memory to use as output buffer.

The only modification needed in the code of the simulation involves changing the allo-
cation methods of visualizable variables, in order to allocate them in a place from which the
dedicated cores can immediately access them. The damaris_clear function does not free
the memory; simulation processes expect the dedicated cores to maintain enough free space
in shared memory by removing old data. Dedicated cores must free the memory quickly
enough to avoid consuming all of the shared memory. In the event that shared memory is
full rather than blocking the simulation, damaris_alloc uses the local memory of the pro-
cess instead of the shared memory; damaris_commit has no effect; damaris_clear frees the
memory, and damaris_end_iteration (already presented in Chapter 3) will notify servers

4.1 – In Situ Visualization With Damaris 49

that the data has not been placed in shared memory. A blocking version of this API, in
which damaris_alloc waits for enough memory to be available, is also provided. Figure 4.1
summarizes the semantics of the three functions.

Similarly to the original API of Damaris, the only parameter needed for most Damaris
functions is the name of a variable. Other required information such as the size of the data
and number of domains are supplied by the configuration file.

Synchronizing Dedicated Cores

One challenge posed by in situ visualization using Damaris is that all dedicated cores should
be synchronized to perform ISV tasks at the same moment. In particular, if a user connects
a visualization software, it may happen that not all dedicated cores see the same iteration as
completed if some clients have called damaris_end_iteration and some haven’t yet.

The distributed algorithms provided by the Distributed Reactor (described in Chapter 3)
help alleviating this problem. Upon reception of an “end of iteration” event from its clients,
a dedicated core enters an atomic asynchronous labeled barrier, with the iteration number
as label. The connection of any visualization software triggers a uniform broadcast from
the first dedicated core (i.e., the dedicated core who’s rank is 0 in MPI_COMM_WORLD) to
all dedicated cores. The uniform nature of both primitives ensures that either all dedicated
cores execute the barrier then the visualization task, or the other way around. Having some
dedicated cores execute the barrier while other execute the visualization task would lead to
a deadlock. The Distributed Reactor ensures that this does not happen.

Providing a Time-Partitioning Mode

Although we advocate for using dedicated cores as a mean to hide the performance vari-
ability induced by in situ visualization tasks, some simulations may not be able to afford
dedicating cores, or some researchers could still prefer to perform visualization in a time-
partitioning manner. Thus we also implemented in Damaris the possibility to use time par-
titioning.

The use of dedicated cores in Damaris can be simply turned off using the XML file as
follows: <dedicated cores="0" />. In this mode, any call to damaris_signal triggers the
plugin locally, in a synchronous way. In situ visualization is performed at every call to
damaris_end_iteration and all cores synchronously participate in the ISV task.

This mode also allows us to compare the time-partitioning and space-partitioning ap-
proaches on the basis of the same framework, that is, without the need for different modifi-
cations in the simulation’s code.

4.1.3 Connection to Existing Visualization Packages

Now that Damaris provides an API to enable efficient communication through shared mem-
ory, we can connect it to existing visualization and analysis packages, including VisIt or
ParaView, in order to build a full ISV framework.

50 Chapter 4 – Extending Damaris to Support In Situ Visualization

Figure 4.2: Example of a 4 × 4 × 4 recti-
linear grid described by three arrays of
coordinates. In this example there is a
scalar value (such as temperature or wind
velocity) at each node. The mesh itself
is described through three coordinate
arrays: mesh_x = {0.0,1.0,2.0,3.0};
mesh_y = {0.0,1.0,2.0,3.0}; mesh_z
= {0.0,1.2,1.8,3.0}.

Support for VisIt and ParaView

Both VisIt and ParaView perform in situ visualization from in-memory data. Given that each
of these software has strengths, a major advantage of our approach is the ability to switch
between them with no code modification in the simulation.

We leverage the configuration file in Damaris to provide the necessary information to
bridge the simulation to existing visualization software. By investigating the in situ inter-
faces of different visualization packages including ParaView, VisIt, ezViz [33] and VTK [115],
we devised with a generic description of visualizable structures such as meshes, points or
curves. Listing 4.1 presents how a mesh drawn in Figure 4.2 is described using an XML
configuration file. The coordinates of the points in the mesh are variable entries, declared in
lines 21 to 28. These variables are not themselves visualizable, since they compose a mesh.
The mesh is described lines 15 to 19. Each coord entry refers to the variable from which to
get the coordinates. The type of mesh (rectilinear here) is provided, as well as the topolog-
ical dimension, to help visualization software build the mesh from its coordinates. Finally,
a variable such as “temperature”, declared in line 30, can be mapped onto a mesh using its
mesh attribute that has to refer to a declared mesh entity.

This file provides the necessary information for Damaris to execute VisIt or ParaView
codes, but hides from the user the details of those interfaces. Therefore, both VisIt and
ParaView (or other visualization software) can be used without code modification in the
simulation. Listing 4.2 shows the lines of code changed in the simulation itself.

Python Support for Simple Analysis

We enhanced the plugin system of Damaris to load Python scripts. From these scripts, all
variables are wrapped into NumPy arrays. Related metadata information (current iteration
number, boundaries of a data chunk, process IDs for writers) are also accessible to Python.
Wrapping C arrays into NumPy arrays does not produce a copy of data, thus Python plugins
work on the original data supplied by the simulation and provide an easy way to write
analysis tasks without any modification to simulation code. Listing 4.3 provides an example
of a statistical computation performed on all chunks of iteration 1 of the data. The SciPy and

4.1 – In Situ Visualization With Damaris 51

1 <simulation name="mesh" language="c"
2 xmlns="http://damaris.gforge.inria.fr/damaris/model">
3 ...
4 <data>
5 <parameter name="w" type="int" value="4" />
6 <parameter name="h" type="int" value="4" />
7 <parameter name="d" type="int" value="4" />
8
9 <layout name="mesh_x_layout" type="float" dimensions="w" />

10 <layout name="mesh_y_layout" type="float" dimensions="h" />
11 <layout name="mesh_z_layout" type="float" dimensions="d" />
12
13 <layout name="data_layout" type="double" dimensions="w,h,d"/>
14
15 <mesh name="mesh3d" type="rectilinear" topology="3">
16 <coord name="coordinates/x3d" unit="m" label="Width"/>
17 <coord name="coordinates/y3d" unit="m" label="Height"/>
18 <coord name="coordinates/z3d" unit="m" label="Depth"/>
19 </mesh>
20
21 <group name="coordinates">
22 <variable name="x3d" layout="mesh_x_layout"
23 visualizable="false" time-varying="false" />
24 <variable name="y3d" layout="mesh_y_layout"
25 visualizable="false" time-varying="false" />
26 <variable name="z3d" layout="mesh_z_layout"
27 visualizable="false" time-varying="false" />
28 </group>
29
30 <variable name="temperature" layout="data_layout" mesh="mesh3d"/>
31 </data>
32 ...
33 <visit>
34 <path>/usr/local/visit</path>
35 </visit>
36 </simulation>

Listing 4.1: Description of a mesh in the Damaris/Viz configuration.

Matplotlib Python libraries provide a wide range of functionalities to write diagnostic tasks
or generate images from simulation data. However, upon initial testing, we noticed that
performance degrades when loading Python modules simultaneously from many processes;
we thus recommend using Python for small analyses, and we decided to make performance
comparisons among only those packages appropriate for large scales.

4.1.4 Automatic Adaptation of Output Frequency

The choice of non-blocking allocation functions, described in Section 4.1.2 has an immediate
impact on the behavior of Damaris with respect to visualization. Rather than stalling the
simulation, a shortage of memory causes the dedicated cores to skip rendering frames and

52 Chapter 4 – Extending Damaris to Support In Situ Visualization

1 float* mesh_x = damaris_alloc("coordinates/x3d");
2 float* mesh_y = damaris_alloc("coordinates/y3d");
3 float* mesh_z = damaris_alloc("coordinates/z3d");
4 double* temp = damaris_alloc("temperature");
5 ...
6 damaris_commit("coordinates/x3d");
7 damaris_commit("coordinates/y3d");
8 damaris_commit("coordinates/z3d");
9 ...

10 damaris_commit("temperature");
11 ...
12 damaris_clear("temperature");
13 ...
14 damaris_end_iteration();

Listing 4.2: Allocation for data accessed by Damaris. The size is given in the Damaris con-
figuration file.

1 var = damaris.open("temperature")
2 for chunks in var.select(iteration = 1)
3 print numpy.average(chunks.data)

Listing 4.3: Accessing simulation’s data through the Damaris Python interface: computing
the average of a value.

free memory instead. Thus, Damaris self-adapts to the complexity of the visualization task
and outputs the maximum number of frames that the dedicated cores are able to render
without impacting the simulation. In other words, it is possible that visualization is only
performed when it doesn’t cost anything to the simulation nor impact the variability of its
run time, which fits well with certain typical in situ use cases, such as simply verifying that
a simulation is producing correct output.

4.2 Impact on Development and Flexibility

We compared our framework to two representative software packages used for tightly-
coupled ISV, VisIt and ParaView, in terms of code modification and adaptability. We con-
ducted this study around a particular scenario of a rectilinear mesh with temperature values.
This scenario, already used in Section 4.1, will be applied in Section 4.3 to the CM1 atmo-
spheric simulation, and is characteristic of a climate simulation handling a 3D temperature
array of double precision values. This array represents the temperature at the vertices of a
rectilinear mesh. The coordinates of the vertices are given by three arrays x3d, y3d and z3d
of respective extents w, h and d.

4.2 – Impact on Development and Flexibility 53

VisIt Damaris
Simulation C C XML
curve.c 144 lines 8 lines 32 lines
mesh.c 167 lines 10 lines 46 lines
var.c 271 lines 15 lines 63 lines
point.c 161 lines 9 lines 33 lines
blocks.c 188 lines 10 lines 45 lines
life.c 305 lines 10 lines 40 lines

Table 4.1: Code modifications of different
VisIt examples. Damaris requires code modi-
fications and an external XML file.

4.2.1 Data Access Code for In Situ Visualization

Damaris vs. VisIt

VisIt was described in Chapter 2 as one of the major software for parallel scientific visual-
ization. It offers in situ visualization capabilities through the libsim [138] library. This li-
brary allows the simulation to act as a parallel rendering engine when receiving commands
from a VisIt client. Visualization tasks can also be scripted to run without user interven-
tion. VisIt works directly on the data provided by the simulation without making a copy.
The “Getting data into VisIt” manual [74] provides a complete documentation on how to
instrument a simulation. This instrumentation requires to restructure the simulation’s main
loop in order to periodically check for pending visualization requests from the user, using
the VisItDetectInput(...) function. When a connection is started with a client, the sim-
ulation has to provide callback functions to the libsim library. These callbacks access data,
metadata and issue commands. In our example, two callback functions are provided in ad-
dition to the callback functions required for metadata access and response to commands.
Listing 4.4 presents an overview of these data access functions.

In contrast, the code modifications required by Damaris boil down to the few lines pre-
sented in Listing 4.2 in previous section.

In addition to our previous example and to quantify more precisely the modification
costs in VisIt and in Damaris, we rewrote the examples provided in VisIt’s source to work
with Damaris. Table 4.1 summarizes the number of lines of code required to instrument
these examples with the two frameworks.1 We removed all comments and blank lines in
order to count only the lines of code relevant to the simulation/visualization coupling. Note
that all of these examples except the last are serial. The last one, life.c, requires further mod-
ifications with VisIt to provide callback functions for collective communications. All these
codes (including the unmodified ones from VisIt) are available in the Damaris release.2

These number of lines clearly show that Damaris greatly simplifies the code modifica-
tions required to couple existing simulations with visualization tools, thus helping users
adopt in situ visualization as an alternative to offline visualization.

1These numbers might differ from the paper in which the results presented in this chapter were published,
as a newer version of Damaris with a slightly different API was used here.

2See http://damaris.gforge.inria.fr.

http://damaris.gforge.inria.fr

54 Chapter 4 – Extending Damaris to Support In Situ Visualization

1 // This function is called to retrieve the mesh
2 visit_handle get_mesh_data(int domain,
3 const char *name, void *cbdata) {
4 visit_handle h = VISIT_INVALID_HANDLE;
5 if(strcmp(name, "my_mesh") == 0) {
6 if(VisIt_RectilinearMesh_alloc(&h) == VISIT_OKAY) {
7 visit_handle hxc, hyc, hzc;
8 VisIt_VariableData_alloc(&hxc);
9 // ... idem for hyc and hzc

10 VisIt_VariableData_setDataF(hxc, VISIT_OWNER_SIM, 1, NX, mesh_x);
11 // ... idem for hyc and hzc
12 VisIt_RectilinearMesh_setCoordsXYZ(h,hxc,hyc,hzc);
13 }
14 }
15 return h;
16 }
17 }
18
19 // This function is called to retrieve the data
20 visit_handle get_variable_data(int domain, const char *name, void *cbdata) {
21 visit_handle h = VISIT_INVALID_HANDLE;
22 if(strcmp(name, "temperature") == 0) {
23 if(VisIt_VariableData_alloc(&h) == VISIT_OKAY) {
24 int size = NX*NY*NZ;
25 VisIt_VariableData_setDataD(h, VISIT_OWNER_SIM, 1, size, temp);
26 }
27 }
28 return h;
29 }
30
31 // When a VisIt client connects, the callback functions has to be provided using
32 VisItSetGetMesh(get_mesh_data,NULL);
33 VisItSetGetVariable(get_variable_data,NULL);

Listing 4.4: Data access functions for our sample application using VisIt. The first function
retrieves the mesh coordinates, while the second retrieves the temperature field. The two
last lines register the two functions as callbacks handling data accesses. This sample code
does not show the modifications to the simulation’s main loop.

Damaris vs. ParaView

Like VisIt, ParaView is based on VTK. The ParaView in situ interface, called Catalyst3 or co-
processing library [34] integrates a visualization pipeline (written in C++ or in Python) into
the simulation. The simulation periodically feeds this predefined pipeline with data in order
to produce visualization outputs, for example images.

While VisIt’s libsim is based on callback functions and works in C, C++ and Fortran, Cat-
alyst requires the simulation to wrap its data into VTK C++ objects. One solution consists
of writing C++ classes that inherit from the right VTK objects such as vtkDoubleArray. An-

3See http://catalyst.paraview.org/.

http://catalyst.paraview.org/

4.2 – Impact on Development and Flexibility 55

other is to write functions that wrap the original data by creating instances of existing VTK
classes. This solution is especially more appropriate when it comes to instrumenting C or
Fortran simulations. Indeed ParaView does not provide any C or Fortran binding, leaving
the developer with the difficult task of bridging the languages. Listing 4.5 summarizes the
main steps in creating the right VTK objects for our sample application.

1 // Create the variable data
2 vtkDataArray* wrapMyData(...)
3 {
4 vtkDoubleArray* myArray = vtkDoubleArray::New();
5 myArray->SetName("temperature");
6 vtkIdType size = NX*NY*NZ;
7 myArray->SetArray(temp, size, 1);
8 return myArray;
9 }

10
11 // This function is called to retrieve the mesh
12 vtkObject* wrapMeshData(...)
13 {
14 // creates the necessary coordinate arrays
15 vtkFloatArray* xCoords, yCoords, zCoords;
16 xCoords = vtkFloatArray::New();
17 xCoords->setArray(mesh_x,PTX,1);
18 // ... idem for yCoords and zCoords
19 vtkRectilinearGrid *grid = vtkRectilinearGrid::New();
20 grid->setDimensions(NX,NY,NZ);
21 grid->setXCoordinates(xCoords);
22 // ... idem for Y and Z coordinates
23 vtkDataArray* array = wrapMyData(); // see above
24 grid->GetPointData()->AddArray(array);
25 array->Delete();
26 return (vtkObject*)grid;
27 }

Listing 4.5: Data access functions for our sample application using ParaView. The first func-
tion wraps the temperature field into the VTK object which is used by the second function
that adds information related to the mesh coordinates. This code does not show all the ad-
ditional codes required to initialize the visualization pipeline.

The advantage of an a priori definition of the visualization pipeline in ParaView is the
possibility to start a simulation and be able to periodically check the generated images. The
downside is the lack of interactivity and flexibility at run time of the visualization tasks.
Note also that part of the ParaView pipeline can be relocated to a visualization cluster. This
case is out of the scope of our work.

Other visualization software such as ezViz have a C or C++ API that can be used to
perform in situ visualization in a way similar to ParaView and VisIt.

A first attempt to provide in situ visualization through VTK objects was done with the
Nek5000 [98] simulation (later used in our experiments). The VTK code was made of 600
lines of C++ code, that we reduced to 20 lines of Fortran with Damaris, along with 60 lines

56 Chapter 4 – Extending Damaris to Support In Situ Visualization

of XML, for the same visual result using VisIt as a backend.

4.2.2 The Case of Enzo and YT

Finally, we studied how Damaris would compare to a simulation that already uses in situ
visualization. We choose the Enzo [97] code for this purpose.

Enzo is a well known astrophysical simulation based on adaptive mesh refinement
(AMR). The particular needs of the Enzo community in terms of visualization led to the
development of the YT [133] package, a Python library working on top of Matplotlib and
supporting most visualization scenarios of AMR simulations. YT was originally designed to
work as an offline visualization package, fed with Enzo’s output files. Yet in recent versions
of Enzo, interesting developments have been made towards in situ visualization capabilities.

The current version of Enzo4 periodically wraps its data and metadata hierarchy into
Python structures, in particular NumPy arrays. It then calls a user-provided Python script
from which these information can be accessed for in situ analysis purpose. Wrapping Enzo
structures in Python represents about 800 lines of C++ code spread in five different files,
where Damaris would require less than 100 lines. This number is based on manually count-
ing the number of variables that Enzo exposes to Python, knowing that Damaris would
require at most two lines of code per variable. Some of these variables are however cosmo-
logical or structural constants that can be supplied directly within the configuration file. The
actual number of lines required should thus be even lower.

The aforementioned in situ visualization scenario is specific to Enzo and uses its YT pack-
age. Yet any simulation developer could use these techniques to offer in situ analysis capa-
bilities to his application. Damaris alleviates the task of building the C/Python interface.

4.3 Experimental Evaluation

In this section, we evaluate our Damaris/Viz framework with respect to performance im-
pact and scalability. We use VisIt version 2.5.2 for visualization along with two real-life sim-
ulations: the CM1 atmospheric simulation, and the Nek5000 computational fluid dynamic
(CFD) solver. We use both the time-partitioning and space-partitioning mode implemented
in Damaris to compare their performance.

4.3.1 Experiments with the CM1 Simulation

CM1 was already described in Chapter 3. Its data layout corresponds to the sample code we
have considered in previous sections, that is, a rectilinear 3D mesh on which variables are
mapped.

The experiments were done on the Blue Waters supercomputer, NCSA’s Cray XE6 Petas-
cale supercomputer [5]. Our goal is to show that ISV approaches depend on the scalability
of the rendering algorithm being used. We therefore complete a strong-scaling evaluation of
two rendering methods described bellow.

4Version 2.1 as we write this thesis.

4.3 – Experimental Evaluation 57

Using VisIt for 2D and 3D Rendering

Some of CM1’s visualization scenarios including 2D and 3D rendering of various fields.
Two-dimensional visualization in CM1 consists of slicing 3D fields horizontally, and con-
verting real values into pixels using colormaps, isocontours or quiver maps. Some examples
of such fields to be visualized include potential temperature (th) on the ground (z = 0),
horizontal wind velocity (u and v) and vertical wind velocity (w) at different altitudes, or
reflectivity dbz (as exemplified in Figure 4.3 (c)). Examples of 3D rendering in CM1 include
volume rendering of the reflectivity dbz (as exemplified in Figure 4.3 (a) and (b)), or wind
velocity (u, v and w). These tasks are available in VisIt and can be made interactive with our
modification of CM1 with Damaris/Viz.

In our experiments, we focus on two scenarios of 3D rendering.

• Ray casting5 on the dbz field (image shown in Figure 4.3 (a)).

• 10-level isosurface rendering of this same field (which corresponds to Figure 4.3 (b)).

Methodology

CM1 requires a long run time before an interesting atmospheric phenomenon appears, and
such a phenomenon may not appear at small scale. Yet, we need visualizable phenomena
to appear in order to evaluate the performance of in situ visualization tasks. Thus we first
ran CM1 with the help of atmospheric scientists to produce relevant data. We generated a
representative dataset of 3840× 3840× 400 points spanning several iterations.

We then extracted the I/O kernel from the CM1 code and built a program that replays its
behavior at a given scale and with a given resolution by reloading, redistributing and inter-
polating the precomputed data. The I/O kernel, identical to the I/O part of the simulation,
calls Damaris/Viz functions to transfer the data to Damaris. Damaris/Viz then performs in
situ visualization, either in a time-partitioning or in a space-partitioning manner.

Time Partitioning vs. Space Partitioning: Results

We measured the time to complete a rendering (average of 15 iterations) using time parti-
tioning and space partitioning for each scenario. The comparative results are reported in
Figure 4.4.

The isosurface algorithm scales well with the number of cores using both in situ ap-
proaches. A time-partitioning approach would thus be appropriate if the user does not need
to hide the run time impact of in situ visualization. However, on 6400 cores, it takes as much
time to complete the rendering as on 400 dedicated cores. In terms of pure computational
power, a space-partitioning approach is thus 16 times more efficient.

The ray-casting algorithm on the other hand has a poorer scalability. After decreasing,
the rendering time goes up again at a 6400-core scale, and it becomes about twice more
efficient to use a reduced number of dedicated cores to complete this same rendering.

5Ray casting compositing (Sobel gradients, rasterization sampling, 2500 samples per ray).

58 Chapter 4 – Extending Damaris to Support In Situ Visualization

(a) CM1 Ray Casting (b) CM1 Isosurface

(c) CM1 Color Map (d) Nek5000 Isosurface

Figure 4.3: Example results obtained in situ with Damaris: (a) Ray-casting of the dbz vari-
able on 6400 cores (Blue Waters). (b) 10-level isosurface of the DBZ variable on 6400 cores
(Blue Waters). (c) Color map of the DBZ variable on 256 cores (Blue Waters). (d) Ten-level
isosurface of the y velocity field in the TurbChannel configuration of Nek5000.

Discussion: The choice of using a space-partitioning versus a time-partitioning ISV ap-
proach depends on (1) the intended visualization scenario, (2) the scale of the experiments
and (3) the intended frequency of visual output. Our experiments indeed show that at small
scale, the performance of rendering algorithms are good enough to be executed in a time-
partitioning manner, provided that the user is ready to increase the run time of his simula-
tion. At large scale however, it becomes more efficient to use a space-partitioning approach,
especially when using ray-casting, where the observed rendering performance is substan-

4.3 – Experimental Evaluation 59

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 64 128 256 512 1024 2048 4096 8192

T
im

e
 (

s
e
c
)

Number of Cores

Space Partitioning
Time Partitioning

(a) In Situ Isosurface

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 64 128 256 512 1024 2048 4096 8192

T
im

e
 (

s
e
c
)

Number of Cores

Space Partitioning
Time Partitioning

(b) In Situ Ray Casting

Figure 4.4: Rendering time using ray-casting and isosurfaces, with time-partitioning and
space-partitioning with CM1. Note that the number of cores represents the total number
used for the experiments; using a space-partitioning approach, 1/16 of this total number is
effectively used for in situ visualization, which explains the overall higher rendering time in
space-partitioning.

tially better when using a reduced number of processes.

4.3.2 Experiments with the Nek5000 Simulation

Our goal in this series of experiments is to show the impact of in situ visualization tasks on
the run-time variability of the simulation, and to show how space partitioning in Damaris
helps alleviating this variability. We show in particular the effect of interactivity on this
variability. We use the Nek5000 [98] code for this purpose.

Nek5000 is a computational fluid dynamics solver based on the spectral element method.
It is actively developed at ANL’s Mathematics and Computer Science Division. It is written
in Fortran 77 and solves its governing equations on an unstructured mesh. This mesh con-
sists of multiple elements distributed across processes; each element is a small curvilinear
mesh. Each point of the mesh carries the three components of the fluid’s local velocity. We
chose Nek5000 for this particular meshing structure, different from CM1, and for the fact that
it is substantially more memory-hungry than CM1. We modified Nek5000 in order to pass
the mesh elements and velocity data to Damaris/Viz and we used VisIt for visualization.

Configurations

Nek5000 takes as input the mesh on which to solve the equations, along with initial condi-
tions. We call this set a configuration. We used two configurations:

• the TurbChannel experiment, which runs well on 32 to 64 cores;

• the MATiS experiment, which was designed for 512 to 2048 cores.

60 Chapter 4 – Extending Damaris to Support In Situ Visualization

We used the first to assess the impact of interactivity on run time with a time-partitioning
and a space-partitioning approach. Figure 4.3 (d) shows the result of a 10-level isosurface
rendering of the fluid velocity along the y axis, with the TurbChannel case. We then used
the second configuration to show the scalability of our approach based on Damaris against
a standard time-partitioning approach.

Experiments with the TurbChannel Configuration

Experiments were carried out on the Reims stremi cluster of the French Grid’5000 testbed,
which features 40 nodes (HP ProLiant DL165 G7) with 24 cores per node, connected through
a 1G Ethernet network.

To assess the impact of in situ visualization on the run time, we run TurbChannel on 48
cores using the two approaches: first we use a time-partitioning mode, in which all 48 cores
are used by the simulation and synchronously perform ISV. Then we use a space-partitioning
mode with Damaris/Viz, in which the simulation uses 46 cores while 2 cores asynchronously
run the ISV tasks.

In each case, we consider four scenarios:

1. The simulation runs without visualization;

2. A user connects VisIt to the simulation but does not ask for any output;

3. The user asks for isosurfaces of the velocity fields but does not interact with VisIt any
further (letting the Damaris/Viz update the output after each iteration);

4. The user has heavy interactions with the simulations (for example rendering different
variables, using different algorithms, zooming on particular domains, changing the
resolution).

Results Discussion: Figure 4.5 presents a trace of the duration of each iteration during the
four aforementioned scenarios using the two approaches. Figure 4.5 (a) shows that ISV us-
ing a time-partitioning approach has a large impact on the simulation run time, even when
no interaction is performed. The simple fact of connecting VisIt without rendering anything
forces the simulation to at least update metadata at each iteration, which takes time. Fig-
ure 4.5 (b) shows that space-partitioning ISV, on the other hand, is completely transparent
from the point of view of the simulation.

Experiments with the MATiS Configuration

The MATiS configuration requires a larger scale; we ran it on 816 cores. Each iteration takes
approximately one minute and due to the huge number of points that the mesh contains, it
is difficult to perform interactive visualization. We therefore connect VisIt and simply query
for a 3D pseudo-color plot of the vx variable that is then continuously updated. For the
following results, the time-partitioning approach outputs one image every time step, while
the space partitioning method adapted the output frequency to one image every 25 time
steps.

4.3 – Experimental Evaluation 61

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 20 40 60 80 100 120 140

T
im

e
 (

s
e
c
)

Iteration Number

No Visualization
VisIt connected

Simple Visualization
Interactive Visualization

(a) Time-Partitioning

 0

 1

 2

 3

 4

 5

 0 20 40 60 80 100 120 140

T
im

e
 (

s
e
c
)

Iteration Number

No Visualization
VisIt connected

Simple Visualization
Interactive Visualization

(b) Space-Partitioning

Figure 4.5: Variability in run time induced by different scenarios of in situ interactive visu-
alization.

Iteration Time Average Std. dev.

Time Partitioning
w/o vis. 75.07 sec 22,93
with vis. 205.21 sec 57.15

Space Partitioning
w/o vis. 67.76 sec 20.09
with vis. 64.79 sec 20.44

Table 4.2: Average iteration time
of the Nek5000 MATiS configu-
ration with time-partitioning and
space-partitioning approaches,
with and without visualization.

Results Discussion: Figure 4.6 reports the behavior of the application with and without
visualization performed, and with and without dedicated cores. Corresponding statistics
are presented in Table 4.2.

Time-partitioning visualization not only increases the average run time but also increases
the standard deviation of this run time, making it more unpredictable. On the other hand,
the space-partitioning approach yields more consistent results. One might expect a space-
partitioning approach to interfere with the simulation as it performs intensive communi-
cations while the simulation runs. However, in practice we observe very little run time
variation.

We also remark that decreasing the number of cores used by the simulation actually
decreases its run time. This is due to the fact that Nek5000 reaches its limit of scalability.
Yet due to its memory requirements, it is still necessary to run it on this number of nodes.
In other words, as reducing the number of cores per node actually used by the simulation
increases its performance, it further motivates the use of these spare cores for extra tasks
such as visualization.

Finally, while the time-partitioning approach performs visualization at every time step
here, the space-partitioning approach has adapted the frequency of its output to 1 image
every 25 time steps. If a time-partitioning approach were to only output 1 image every 25
time steps (which corresponds to having only the 25th iteration being impacted in Figure 4.6
(b)), the completion time for 25 time steps would be 2007 seconds on average. With space-
partitioning in Damaris/Viz, this takes 1620 seconds, that is, a 20% speedup. Furthermore,

62 Chapter 4 – Extending Damaris to Support In Situ Visualization

 0

 50

 100

 150

 200

 250

 300

0 3 6 9 12 15 18 21 24

T
im

e
 (

s
e
c
)

Iteration Number

Simulation

(a) Time Partitioning, Without Visualization

 0

 50

 100

 150

 200

 250

 300

0 3 6 9 12 15 18 21 24

T
im

e
 (

s
e
c
)

Iteration Number

Simulation
Visualization

(b) Time Partitioning, With Visualization

 0

 50

 100

 150

 200

 250

 300

0 3 6 9 12 15 18 21 24

T
im

e
 (

s
e
c
)

Iteration Number

Simulation

(c) Space Partitioning, Without Visualization

 0

 50

 100

 150

 200

 250

 300

0 3 6 9 12 15 18 21 24

T
im

e
 (

s
e
c
)

Iteration Number

Simulation+Visualization

(d) Space Partitioning, With Visualization

Figure 4.6: Iteration time of the MATiS configuration without visualization (left) and with
visualization enabled (right). Top: with time partitioning, visualization time adds to the
simulation time. Bottom: With space partitioning, visualization time entirely overlaps with
simulation time.

since space partitioning in Damaris overlaps the visualization and simulation, the total run
time is unchanged with the addition of ISV.

4.4 Related Work

In this section, we discuss our contribution with respect to relevant works in the field of
simulation/visualization coupling. We separate loosely-coupled from tightly-coupled ISV.
We describe how each approach meets the requirements introduced in Chapter 2 and how
our approach differs from them.

4.4 – Related Work 63

4.4.1 Loosely-Coupled Visualization Strategies

Ellsworth et al. [31] propose to use distributed shared memory (DSM) to avoid writing files
when performing concurrent visualization. Such an approach has the advantage of decou-
pling the simulation and visualization processes, but reading data from the memory of the
simulation’s processors can increase run time variability. The scalability of a distributed
shared memory design is also a limiting factor.

Rivi et al. [111] introduce the ICARUS plugin for ParaView together with a description of
VisIt and ParaView’s ISV interfaces. ICARUS employs an HDF5 DSM file driver to ship data
to a distributed shared memory buffer that is used as input to a ParaView pipeline. This
DSM stores a view of the HDF5 files that can be concurrently accessed by the simulation
and visualization tools. The HDF5 API allows to bridge the simulation and ParaView with
minimum code changes (provided that the simulation already uses HDF5), but it produces
multiple copies of the data and a complete transformation of data into an intermediate HDF5
representation. Also, the visualization library on the remote resource requires the original
data to conform to this HDF5 representation. Damaris, on the other hand, is not based
on any data format and efficiently leverages shared-memory to avoid as much as possible
unnecessary copies of data. Besides, its API is simpler than that of HDF5 for simulations
that do not already use HDF5.

Malakar et al. [81] present an adaptive framework for loosely-coupled visualization, in
which data is sent over a network to a remote visualization cluster at a frequency that is
dynamically adapted depending on resource availability. Our approach also adapts output
frequency to resource usage.

The PreDatA [149] middleware proposes to dedicate a set of nodes as a staging area
to perform a first step of data processing prior to I/O for the purpose of subsequent visu-
alization. The coupling between the simulation and the staging area is done through the
ADIOS [76] I/O layer. The use of the ADIOS backend allows to decouple the simulation and
the visualization by simply integrating data analysis as part of an existing I/O stack [150].
While Damaris borrows the use of an XML file from ADIOS in order to simplify its API, it
makes the orthogonal choice of using dedicated cores rather than dedicated nodes. Thus it
avoids potentially costly data movements across nodes.

GLEAN [110] provides in situ visualization capabilities with dedicated nodes. The au-
thors use the PHASTA simulation on the Intrepid supercomputer and ParaView for analysis
and visualization on the Eureka machine. Part of the analysis in GLEAN is done in a time-
partitioning manner at the simulation side, which makes it a hybrid approach involving
tightly- and loosely-coupled in situ analysis. Our approach shares some of the same goals,
namely to couple a simulation with run-time visualization, but we run the visualization tool
on one core of the same node instead of dedicated nodes. GLEAN is also used in conjunction
with ADIOS [85].

EPSN [32] is an environment providing steering and visualization capabilities to existing
parallel simulations. Simulations instrumented with EPSN ship their data to a visualization
pipeline running on a remote cluster, thus EPSN is an hybrid approach including both code
changes and the use of additional remote resources. In contrast to EPSN, all visualization
tasks using Damaris can be performed on dedicated cores, closer to the simulation, thus
reducing the network overhead.

Zheng et al. [151] have provided a model to evaluate the tradeoff between in situ syn-

64 Chapter 4 – Extending Damaris to Support In Situ Visualization

chronous visualization and loosely-coupled visualization through staging areas. This model
can be applied to compare in situ space-partitioning using dedicated cores instead of remote
resources, with the difference being that approaches utilizing dedicated cores do not have
network communication overhead.

4.4.2 Tightly-Coupled In Situ Visualization

When it comes to tightly integrate analysis tasks in simulations codes, the existing solutions
often do not meet all of the requirements presented in Chapter 2.

SciRun [57] is a complete computational-steering environment that includes visualiza-
tion. Its in situ capabilities can be used with any simulation implemented with SciRun
solvers and structures. SciRun is an example of the trend towards integrating visualization,
data analysis and computational steering in the simulation process. Simulations are written
specifically for use in SciRun in order to exchange data with zero data copy, but adapting an
existing application to this framework can be a daunting task.

Tu et al. [132] propose an end-to-end approach for an earthquake simulation using the
Hercule framework. All the components of the simulation, including visualization, run in
parallel on the same machine, and the only output consists of a set of JPEG files. The data
processing tasks in Hercule are still performed in a synchronous manner, and any operation
initiated by a process to perform these tasks impacts the performance of the simulation.

In the context of ADIOS, CoDS (Co-located DataSpaces) [145] builds a distributed object-
based data space abstraction and can use dedicated nodes (and recently dedicated cores with
shared memory) with PreDatA, DataStager and DataSpace. ADIOS+CoDS has also been
used for code coupling [144] and demonstrated with different simulation models. While the
use of dedicated cores to accomplish two different tasks is a common theme in our approach,
our objective in this chapter was to compare the performance impact on the simulation of a
collocated visualization task with a directly embedded visualization. Besides, placement of
data in shared memory in the aforementioned works is done through the ADIOS interface,
which creates a copy of data from the simulation to the shared memory using a file-writing
interface. We leverage the double-buffering technique usually implemented in simulations
as an efficient alternative for sharing data.

Posteriorly to our work, Dreher and Rafin [29] built on the FlowVR framework (initially
proposed for real-time interactive parallel visualization in the context of virtual reality) to
provide a solution integrating both time partitioning and space partitioning using dedicated
cores and dedicated nodes. They address usability by providing a simple put/get interface
and a Python script that describes the various component of the visualization pipeline. They
went one step further by providing in situ interactive simulation steering in a cave-like sys-
tem with haptic devices [30], highlighting a case where the simulation process and research
are part of the same workflow.

4.5 Conclusions and Discussion

Tightly-coupled in situ visualization appears to be a viable approach to reduce the pressure
on file systems. Yet the synchronous aspect of existing solutions and their impact on the
simulation’s performance has limited their adoption in the HPC community.

4.5 – Conclusions and Discussion 65

4.5.1 Our Contribution

In this chapter we proposed Damaris/Viz, an in situ visualization framework based on the
Damaris approach. By leveraging dedicated cores, external high-level structure descriptions
and a simple API, our framework provides adaptable in situ visualization to existing simu-
lations at a low instrumentation cost.

Results obtained with the Nek5000 CFD solver and the CM1 atmospheric simulation
show that our framework can completely hide the performance impact of visualization tasks
and the resulting run-time variability. In addition, the proposed API allows efficient memory
usage through a shared-memory-based, zero-copy communication model.

4.5.2 What Remains to Study

In a 2013 report [14], the US Department of Energy (DOE) summarized the challenges of
data-intensive sciences at Exascale. The authors greatly emphasize the need for in situ vi-
sualization and provide a number of reasons why ISV is still not the mainstream approach.
These reasons include the software development costs and the run-time impact of ISV, two
key challenges that we had foreseen when starting our research on ISV and successfully
addressed with Damaris/Viz.

According to this report, another challenge of ISV, that we did not address, is resiliency.
The increasing complexity of coupled simulations and visualization codes and the interac-
tivity offered by some ISV frameworks indeed poses a great risk that a failure in ISV com-
ponents forces an otherwise healthy running simulation to crash. This challenge needs to be
addressed in the context of Damaris in order to push for its adoption by a larger number of
users.

Another challenge highlighted by the DOE report is the energy consumption of post-
Petascale machines. This challenge is presented in the context of both data storage, I/O and
analytics. This motivated us to investigate the tradeoffs between performance and energy
consumption in the next chapter.

67

Chapter 5
Energy and Performance Tradeoffs in

Data Management Approaches

Contents
5.1 All-in-One: a Third I/O Approach in Damaris 68

5.1.1 Three I/O Approaches . 68

5.1.2 From Dedicated Cores to Dedicating Nodes 68

5.2 Experimental Insight into the Energy/Performance Tradeoff 70

5.2.1 Methodology . 70

5.2.2 Experimental Results . 71

5.3 Model of Energy Consumption . 76

5.3.1 Model Formulation . 76

5.3.2 Application and Hardware Profiling 77

5.3.3 Experimental Validation . 79

5.4 Discussion and Related Work . 81

5.4.1 Profiling Energy Consumption of HPC Simulations 81

5.4.2 Saving Energy . 81

5.4.3 Power Measurement Methods . 83

5.5 Conclusions . 83

OVER the past few years, energy has become a growing concern in the HPC commu-
nity. While hardware optimizations allow for a lower energy consumption, a large
fraction of the energy consumed by a supercomputer when running an HPC appli-

cation can be spared through better software design. In particular, we have seen in previous
chapters that data management can introduce a substantial performance variability that, in

68 Chapter 5 – Energy and Performance Tradeoffs in Data Management Approaches

(a) Time Partitioning (b) Dedicated Cores (c) Dedicated Nodes

Figure 5.1: Three approaches to I/O for HPC applications.

turn, leads to a suboptimal use of computing resources and thus, higher energy consump-
tion.

With the rise of new I/O approaches leveraging dedicated cores or nodes, it becomes
important to understand their impact not only on performance, but also on the energy con-
sumption. This is precisely the problem we address in this chapter. We first build on the
Damaris middleware to provide the possibility to use dedicated nodes rather than dedi-
cated cores. We use three approaches implemented in Damaris, namely time partitioning,
dedicated cores and dedicated nodes, with the CM1 atmospheric simulation [8, 7] on the
Grid’5000 [53] testbed and bring out tradeoffs between performance and energy consump-
tion. Considering that choosing the most energy-efficient approach for a particular simu-
lation on a particular machine can be a daunting task, we provide a model to estimate the
energy consumption of a simulation under different I/O approaches. Our model is validated
experimentally using the CM1 simulation on Grid’5000.

5.1 All-in-One: a Third I/O Approach in Damaris

5.1.1 Three I/O Approaches

The mismatch between computation performance and the performance of storage systems
in recent supercomputers has led to the development of various novel approaches to data
management. While most simulations still use a time-partitioning approach, where the sim-
ulation periodically stops to perform I/O, we have presented an alternative approach in
Chapter 3, which consists of dedicating cores in multicore nodes. A third approach con-
sists of using dedicated nodes. This approach is sometimes called “staging area” [149] or
“forwarding layer” [3]. Figure 5.1 summarizes the architecture of these three approaches.

5.1.2 From Dedicated Cores to Dedicating Nodes

Damaris was initially proposed to enable dedicated I/O cores in HPC simulations. It was
later extended to support time partitioning. The time-partitioning mode was used in Chap-
ter 4 in the context of in situ visualization. It will be used here for I/O tasks. In order to

5.1 – All-in-One: a Third I/O Approach in Damaris 69

(a) Writing with Dedicated Cores (b) Writing with Dedicated Nodes

(c) Legend

Figure 5.2: Data transfer protocols using dedicated cores and dedicated nodes.

evaluate the energy/performance tradeoff of all three approaches presented in Section 5.1.1,
we implemented a third approach, based on dedicated nodes, within Damaris as well.

Implementation in Damaris

The implementation of dedicated nodes in Damaris relies on its Distributed Reactor, de-
scribed in Chapter 3. Each simulation core is associated with a server running in a dedicated
node. A dedicated node hosts one server on each of its cores. Different simulation cores may
thus interact with the same dedicated I/O node, but with a different core in this node.

The protocol used to send data from the simulation to dedicated nodes is shown in Fig-
ure 5.2 (b). As a comparison, the protocol used by dedicated cores is shown in Figure 5.2 (a).

When a client calls damaris_write, it first sends an event to the Reactor of its associated
server. This event triggers a RemoteWrite callback in the server. When the server enters this
callback, it starts a blocking receive to get the data sent by the client. The client sends its
data to the server, along with metadata information such as the id of the variable to which
the data belongs. A small buffer is maintained in clients to allow these transfers to be non-
blocking. When the client calls damaris_write, it copies the data into this buffer and issues a
non-blocking send to the server using the copied data. The status of this operation is checked
in later calls to the Damaris API and the buffer is freed when the transfer is completed.

This design is different and certainly less efficient than other solutions based on RDMA
(remote direct memory access) such as DART [21]. Yet it is sufficient to evaluate the dif-

70 Chapter 5 – Energy and Performance Tradeoffs in Data Management Approaches

ferences with dedicated cores and time partitioning in terms of their energy/performance
tradeoffs. Besides, the flexibility of our design, along with the recent addition of dynamic
RDMA windows in the MPI 3 standard, would ease such an RDMA-based implementation
in Damaris in a near future.

“Switching Gears”

The user can easily switch between each mode thanks to the configuration file, without even
recompiling the application.

• <dedicated cores="n" nodes="0"/> enables n dedicated cores per node. This num-
ber of dedicated cores must divide the number of cores per node.

• <dedicated cores="0" nodes="n"/> enables n dedicated nodes. The number of ded-
icated nodes must divide the total number of nodes.

• <dedicated cores="0" nodes="0"/> disables dedicated cores and nodes. It triggers
the time-partitioning mode.

This configuration would allow for a hybrid approach that uses both dedicated cores and
dedicated nodes. However this approach is not supported by Damaris yet, as we haven’t
found any real-life scenario that would benefit from it.

The implementation of all three approaches within the same framework allows us to
evaluate their respective energy consumption and performance in the next sections.

5.2 Experimental Insight into the Energy/Performance Tradeoff

In this section, we experimentally highlight the existence of a tradeoff between performance
(i.e., run time) and energy consumption when using the different I/O approaches described
earlier. First we present the methodology used to carry out our experiments. We then pro-
vide a detailed analysis of key results.

5.2.1 Methodology

Platforms

We run our experiments on the Rennes and Nancy sites of the Grid’5000 testbed. Contrary to
Petascale platforms such as Kraken or Blue Waters, used in the previous chapters, Grid’5000
includes several clusters equipped with hardware for measuring the energy consumption.

On the Nancy site: we use the graphene cluster. Each node of this cluster consists of a
4-core Intel Xeon 2.53 GHz CPU with 16 GB of RAM. Intra-cluster communication is done
through a 1G Ethernet network. A 20G InfiniBand network is used between these nodes and
the PVFS file system deployed on 6 I/O servers. 40 nodes of the cluster are equipped with
power monitoring hardware consisting of 2 Power Distribution Units (EATON PDUs), each
hosting 20 outlets mapped to a specific node.

5.2 – Experimental Insight into the Energy/Performance Tradeoff 71

On the Rennes site: we use the parapluie cluster. Each node of this cluster has two 12-core
AMD 1.7 GHz CPU with 48 GB of RAM. The nodes communicate with one another through
a 1G Ethernet network and with a PVFS file system deployed on 3 I/O servers across a 20G
InfiniBand network. 40 nodes of this cluster are equipped with power monitoring hardware
consisting of 4 EATON PDUs, each hosting 10 outlets mapped to a specific node.

We acquire coarse and fine-grained power monitoring information from PDUs using the
Simple Network Management Protocol (SNMP). We measure the energy consumption with
a resolution of one second.

Application and Experimental Deployment

We use the CM1 application, already extensively described in Chapters 3 and 4. We deploy
CM1 on 32 nodes (128 cores) on the Nancy site. On the Rennes site, we deploy it on 16 nodes
(384 cores). In both cases, we configure CM1 to complete 2520 time steps. We vary its output
frequency, using 10, 20 or 30 time steps between outputs. Damaris is configured to run
with CM1 in five different scenarios that cover the three I/O approaches considered: time
partitioning (abbreviated TP), dedicated cores (one or two – DC(ONE) and DC(TWO)), and
dedicated nodes using a ratio of 7:1 (DN(7:1), 7 compute nodes for one dedicated node) or
15:1 (DN(15:1), 15 compute nodes for one dedicated node). DN(7:1) thus uses four dedicated
nodes on the Nancy site, two on the Rennes site. DN(15:1) dedicates two nodes on the Nancy
site, one on the Rennes site.

In our first set of experiments, performed on Nancy, the output frequency is set to 10 time
steps. In order to understand the impact of the output frequency, we modify it to 20 and 30
in our second set of experiments. Finally to illustrate the impact of the system’s architecture,
the third set of experiments consists of running the first set of experiments on the Rennes
site.

5.2.2 Experimental Results

Impact of the I/O Approach

This first set of experiments is carried out on Nancy. We aim to show the impact of the I/O
approach chosen on overall performance and energy consumption.

Results Discussion: In terms of performance, Figure 5.3 (a) shows that the time partition-
ing approach performs poorly; an observation already made in Chapter 3. This poor perfor-
mance results from the contention for the access to the storage system, which causes a high
variability. As a result, all processes have to wait for the slowest one to complete its I/O
before starting the next iteration. This variability also results in significant waste of energy,
as idle cores remain powered on while waiting.

On the other hand, approaches that perform I/O asynchronously achieve considerably
better performance. Among these approaches, dedicating nodes with a 7:1 ratio outperforms
the other configurations in terms of run time. The larger impact of approaches based on ded-
icated cores on the simulation’s run time can be explained by the small number of cores
per node. Dedicating even one of these cores already removes a substantial fraction of the

72 Chapter 5 – Energy and Performance Tradeoffs in Data Management Approaches

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

TP

D
C
(O

N
E)

D
C
(T

W
O
)

D
N
(1

5:
1)

D
N
(7

:1
)

 0

 500

 1000

 1500

 2000

E
n
e
rg

y
 (

k
J
)

R
u
n
 T

im
e
 (

s
e
c
)

Energy Consumption
Run Time

(a) Energy vs. Completion Time

 0

 20

 40

 60

 80

 100

 120

 140

TP

D
C
(O

N
E)

D
C
(T

W
O
)

D
N
(1

5:
1)

D
N
(7

:1
)

P
o
w

e
r

(W
)

(b) Average Power Usage

Figure 5.3: Energy consumption, completion time and power usage of the different I/O
approaches on the Nancy site of Grid’5000, with CM1.

computation capacity from the simulation. In approaches based on dedicated nodes, the
ratio between computation nodes and I/O nodes is important: when only two nodes are
dedicated (i.e., with the 15:1 ratio), a bottleneck appears in the I/O nodes because they are
not able to complete their I/O in the time the simulation takes to complete 10 time steps.
Therefore, the simulation has to block.

In terms of energy consumption, Figure 5.3 (a) shows a strong correlation between com-
pletion time and energy consumption. We also note that the DC(ONE) and DN(15:1) config-
urations exhibit very similar performance both in terms of run time and energy consump-
tion, although one uses dedicated cores while the other leverages dedicated nodes.

Figure 5.3 (b) illustrates the power behavior of the different configurations by showing
the average power usage (energy consumption divided by run time). The power usage of
the time-partitioning configuration is lower than that of other approaches. This is a direct
consequence of the I/O performance variability across processes: many processes indeed
remain idle while waiting for the I/O phase to complete. The power usage of an idle core
is lower than the power usage of a core performing computation, which leads to a lower
average power usage.

Table 5.1 shows statistics on the cluster-wide energy consumption, including the mini-
mum, maximum and standard deviation of energy consumption across nodes. We observe
a higher variability in energy consumption with the dedicated-node approach (standard de-
viation of 4.5). This variability results from the fact that nodes running the simulation and
dedicated nodes don’t have the same workload to complete.

Offloading I/O to dedicated resources allows the cores running the simulation to keep
performing computation without waiting, increasing their average power usage. The vari-
ability in power usage is offloaded as well to dedicated resources, as they spend most of
their time idle, waiting for data to be sent by the simulation, or waiting for their I/O to com-
plete. Therefore, we observe a similar power usage among these configurations. Since the

5.2 – Experimental Insight into the Energy/Performance Tradeoff 73

Table 5.1: Statistics on energy consumption with different I/O approaches, on Nancy.
Approach Total (kJ) Average (kJ) Min (kJ) Max (kJ) Std. dev.
Time Partitioning 3324 101 94 108 3.4
Dedicated Core (ONE) 1777 54 38 56 2.9
Dedicated Cores (TWO) 2211 67 52 70 3
Dedicated Nodes (15:1) 1736 53 35 56 4.2
Dedicated Nodes (7:1) 1340 41 28 44 4.5

Figure 5.4: Energy consumption on Nancy with
different output frequencies.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

TP

D
C
(O

N
E)

D
C
(T

W
O
)

D
N
(1

5:
1)

D
N
(7

:1
)

E
n
e
rg

y
 (

k
J
)

Output every 10 iterations
Output every 20 iterations
Output every 30 iterations

average CPU utilization affects the completion time, we observe longer execution times for
lower CPU utilization.

Impact of the Output Frequency

How frequently a simulation outputs data is also a factor to consider when looking for the
best I/O configuration. We therefore varied the output frequency of the CM1 application by
making it output data every 10, 20 or 30 time steps.

Results Discussion: Figure 5.4 shows the total energy consumption with all five config-
urations with these different output frequencies. Unsurprisingly, these results show a cor-
relation between energy consumption and output frequency with the time-partitioning ap-
proach.

In configurations that use dedicated resources, there is no clear difference between the
last two output frequencies (i.e., every 20 and 30 seconds). This is due to the fact that in
both cases, I/O fully overlaps with computation, thus the run time is the same and the
energy consumption similar. We observe an increase in the energy consumption only when
the frequency is high enough to start impacting the simulation. DN(7:1) seem to provide
enough resources to sustain such a high output frequency without impact the simulation in
terms of energy consumption.

74 Chapter 5 – Energy and Performance Tradeoffs in Data Management Approaches

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

TP

D
C
(O

N
E)

D
C
(T

W
O
)

D
N
(1

5:
1)

D
N
(7

:1
)

 0

 1000

 2000

 3000

 4000

 5000

E
n
e
rg

y
 (

k
J
)

R
u
n
 T

im
e
 (

s
e
c
)

Energy Consumption
Run Time

(a) Energy vs. Completion Time

 0

 50

 100

 150

 200

 250

 300

TP

D
C
(O

N
E)

D
C
(T

W
O
)

D
N
(1

5:
1)

D
N
(7

:1
)

P
o
w

e
r

(W
)

(b) Average Power Usage

Figure 5.5: Energy consumption, completion time and power usage of the different I/O
approaches on the Rennes site of Grid’5000, with CM1.

Impact of the System’s Architecture

Our last set of experiments aims to show the effect of the system’s architecture on the per-
formance and energy consumption. We therefore reproduced on the Rennes site the experi-
ments carried out in Section 5.2.2 on the Nancy site.

Results Discussion: Figure 5.5 (a) presents the energy consumption and performance of
the five configurations. This time, dedicating one core per node outperforms the other con-
figurations both in terms of performance and energy consumption. The reason behind this
result is a lower impact on the simulation when 1 core out of 24 is dedicated to I/O, com-
pared to dedicating 1 core out of 4 on the Nancy site. Dedicating nodes seems to lower the
performance of the simulation and increase its energy consumption compared to dedicating
cores. We explain this result by the fact that a larger number of cores in computation nodes
send their data to dedicated nodes, which leads to a higher network utilization and, thus, an
increase of the simulation’s run time.

Figure 5.5 (b) presents the related power usage. Again, we notice a similar behavior
among approaches that leverage dedicated resources, while the average power usage of the
time-partitioning configuration is much lower.

Figure 5.6 compares the energy consumption on the Nancy and Rennes sites, and Fig-
ure 5.7 depicts the performance (in number of steps per second) and average power usage
during the simulation using the two system architectures. The results indicate that the com-
parative behavior of the different approaches with respect to performance and energy effi-
ciency depends on the system on which they run. With a larger number of cores per node, it
becomes more efficient both in terms of run time and energy consumption to dedicate some
of these cores to perform I/O tasks. Platforms with a smaller number of cores per node, on
the other hand, benefit from a configuration based on dedicated nodes.

5.2 – Experimental Insight into the Energy/Performance Tradeoff 75

Figure 5.6: Energy consumption on Nancy and
Rennes sites with different I/O approaches.

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

D
C
(O

N
E)

D
C
(T

W
O
)

D
N
(1

5:
1)

D
N
(7

:1
)

E
n
e
rg

y
 (

k
J
)

4 Cores/Node
24 Cores/Node

 0

 20

 40

 60

 80

 100

 120

 140

D
C
(O

N
E)

D
C
(T

W
O
)

D
N
(1

5:
1)

D
N
(7

:1
)

 0

 1

 2

 3

 4

 5

 6

P
o
w

e
r

(W
a
tt
)

T
h
ro

u
g
h
p
u
t
(S

te
p
s
/s

e
c
)

Power
Throughput

(a) Nancy (4 cores/node)

 0

 50

 100

 150

 200

 250

 300

D
C
(O

N
E)

D
C
(T

W
O
)

D
N
(1

5:
1)

D
N
(7

:1
)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

P
o
w

e
r

(W
a
tt
)

T
h
ro

u
g
h
p
u
t
(S

te
p
s
/s

e
c
)

Power
Throughput

(b) Rennes (24 cores/node)

Figure 5.7: Average power usage and throughput with different I/O approaches on the
Nancy and Rennes sites of Grid’5000.

Besides the number of cores per node, we can also attribute these different behaviors
to the different hardware used on each site (i.e., Intel 2.53 GHz CPU on Nancy and AMD
1.7 GHz CPU on Rennes).

Summary of our Findings

Our experiments have shown that there exists a tradeoff between energy consumption and
performance, and that a smaller run time does not necessarily implies a lower energy con-
sumption. Additionally, while a time-partitioning configuration always appears to perform
poorly and to consume more energy, the choice of the appropriate configuration, whether
one targets lower energy consumption or smaller run time, depends on many factors, in-
cluding the output frequency and the system’s architecture. In the following section, our
goal is precisely to provide a model of energy consumption that will help users select the

76 Chapter 5 – Energy and Performance Tradeoffs in Data Management Approaches

best configuration.

5.3 Model of Energy Consumption

5.3.1 Model Formulation

The model we develop aims to provide an estimation of the energy consumed by an appli-
cation under different I/O approaches and configurations of these approaches. We start by
assuming that any approach that uses dedicated cores or nodes perfectly hides the I/O time
from the point of view of the simulation. This implies that (1) the communication cost be-
tween the simulation and dedicated nodes, or the cost of memory copies in dedicated cores,
is negligible, and (2) the actual I/O time in dedicated resources is smaller than the dura-
tion of an iteration in the simulation, so the simulation does not block waiting for dedicated
resources to complete their I/O. These assumptions are realistic for computation-intensive,
periodic applications, that is, application whose primary task is to solve equation on in-
memory data and periodically checkpoint some results, with an I/O time that is intended to
be substantially smaller than the computation time. CM1, like most HPC simulations, fall
into this category of applications and experimentally verifies our assumptions.

Under these assumptions, the energy consumption can be expressed as follows:

E = Tsim × Psim, (5.1)

where Tsim is the total execution time of the simulation and Psim is the average power con-
sumption during this execution. Therefore, estimating E can be done by estimating the exe-
cution time Tsim and the average power usage Psim.

Estimating the Execution Time

The execution time depends on the number of nodes (nnode) on which the simulation runs,
the number of cores per node (ncore) used by the simulation, and the scalability of the ap-
plication with respect to these numbers. We call score(k) the scalability of the application
when using k cores on a single node, and snode(k) the scalability of the application when
deployed on k nodes. The scalability is defined as a value between 0 and 1, 1 representing
a perfect scaling of the application across the specified number of cores or nodes, that is, a
task distributed on twice as many resources will take half the time to complete. We call niter
the number of iterations that the application executes, and Tbase the time to complete one
iteration on one single core of one node. Putting all together,

Tsim =
Tbase × niter

(ncore × score(ncore))(nnodes × snodes(nnodes))
. (5.2)

This formula assumes an independence between the scalability across cores and across
nodes. The scalability functions score and snode, as well as Tbase, have to be profiled by running
the simulation on different numbers of cores and nodes without I/O.

5.3 – Model of Energy Consumption 77

Estimating the Power Usage

A node can be either computing or idle. These two states lead to two power usage metrics
Pmax and Pidle. Their respective values can be obtained through hardware profiling, and will
be used to estimate the power consumption Psim of the simulation during its run.

Since communication tasks constitute a very small part of computation-intensive appli-
cations, we consider that its related power consumption does not change significantly with
the different number of nodes involved. Modeling the energy actually consumed by com-
munications remains outside the scope of this work. The effect of communication phases
on the simulation’s run time is however still present in our model through the scalability
functions.

When using dedicated nodes, the nodes running the simulation have a power behav-
ior different from that of a dedicated node. We call cn the number of nodes used by the
simulation, and dn the number of dedicated nodes. We derive:

Psim =
cnPmax +

1
2 (Pidle + Pmax)dn

cn + dn
. (5.3)

To simplify our model, we set the power consumption of a dedicated node to the mean
between Pmax and Pidle. The results obtained when validating our model in Section 5.3.3
shows that our model remains good despite this simplification. A more precise model would
require to take into account the power usage when a node is performing I/O, and the ratio
between I/O time and idle time in dedicated nodes.

Using dedicated cores, all nodes are used for computation. We argue that the presence
of dedicated cores does not significantly changes the power consumption of the node, es-
pecially when the nodes feature a large number of cores. Therefore our model defines its
power consumption as:

Psim = Pmax. (5.4)

5.3.2 Application and Hardware Profiling

Our model is based on several parameters that depend on the considered application (the
efficiency functions score and snode), and on the hardware on which the application runs (the
power usage Pmax and Pidle). We perform a set of microbenchmarks to obtain these values.
We provide profiling results on Grid’5000’s parapluie cluster, described in Section 5.2.1.

Application Scalability

To assess the scalability of CM1, we run it on different numbers of cores and nodes. Fig-
ure 5.8 (a) shows the run time and the speedup as a function of the number of cores. Fig-
ure 5.8 (b) presents the run time and the speedup as a function of the number of nodes.
Similar strong-scaling tests (i.e., measured of performance with different numbers of nodes
for a fixed global domain size) have been conducted by the developers of CM1.1

1http://www2.mmm.ucar.edu/people/bryan/cm1/pp.html

78 Chapter 5 – Energy and Performance Tradeoffs in Data Management Approaches

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25
 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

S
p
e
e
d
u
p

T
im

e
 (

s
e
c
)

Number of Cores

Perfect Scaling
Time

Speedup

(a) Scalability with respect to the number of cores
within a node.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

S
p
e
e
d
u
p

T
im

e
 (

s
e
c
)

Number of Nodes

Perfect Scaling
Time

Speedup

(b) Scalability with respect to the number of nodes.

Figure 5.8: Scalability of CM1 with respect to the number of cores and with respect to the
number of nodes. Experiments done on the Rennes site of Grid’5000.

From these runs, we obtain Tbase = 18.1 seconds as the computation time with one core
on one node. The efficiency functions score and snode can be derived by dividing the measured
speedup by the perfect speedup.

Power Usage

To profile Pidle and Pmax we use the PDUs attached to some of the nodes. We retrieve the
power measurements using the Simple Network Management Protocol (SNMP) with a res-
olution of 1 second.

Figure 5.9 (a) presents the idle power consumption of a set of 8 nodes instrumented with
such PDUs. Figure 5.9 (b) shows the power consumption of the same 8 nodes when they run
the simulation.

After performing these measurements, we take their average as values for Pidle and Pmax.
The significant variance in the power used by the nodes of the same cluster shows the im-
portance of profiling on several nodes. A long-running HPC application can amortize the
cost of our profiling approach, which is performed only once for a particular hardware.

5.3.3 Experimental Validation

Rennes Cluster

In order to validate our model, we perform a set of experiments on Rennes’ parapluie cluster
of Grid’5000. We configure CM1 to run 2520 iterations on 16 nodes (384 cores), writing data
every 30 iterations. 3 other nodes are used by the PVFS file system.

Damaris uses one of four configurations: dedicating one (DC(ONE)) or two cores
(DC(TWO)), and dedicating one (DN(15:1)) or two nodes (DN(7:1)). We left out the time-

5.3 – Model of Energy Consumption 79

 160

 180

 200

 220

 240

 260

 280

 300

no
de

1

no
de

2

no
de

3

no
de

4

no
de

5

no
de

6

no
de

7

no
de

8

P
o
w

e
r

(W
a
tt
s
)

(a) Idle power usage.

 160

 180

 200

 220

 240

 260

 280

 300

no
de

1

no
de

2

no
de

3

no
de

4

no
de

5

no
de

6

no
de

7

no
de

8

P
o
w

e
r

(W
a
tt
s
)

(b) Average power usage during the simulation.

Figure 5.9: Power usage of the parapluie cluster of Grid’5000 when the nodes are idle and
when they run the simulation

Figure 5.10: Observed and estimated en-
ergy consumption with different I/O ap-
proaches on the Rennes site of Grid’5000.
Error bars represent minimum and maxi-
mum measured values our of five runs.

 0

 500

 1000

 1500

 2000

 2500

D
C
(O

N
E)

D
C
(T

W
O
)

D
N
(1

5:
1)

D
N
(7

:1
)

E
n
e
rg

y
 (

k
J
)

Measured
Model

partitioning approach, as we already demonstrated that it performs worse than all other
approaches.

We measure the energy consumption for each configuration. Each experiment is repeated
five times. Figure 5.10 shows the results of these experiments and the estimations provided
by the model. The worst relative difference we observe between our model and the exper-
imental results is 4%, when employing one dedicated core per node (i.e., DC(ONE)). We
observe a greater variability with the DN(7:1) configuration. This was due to a few itera-
tions during which the network bandwidth of the system dropped, most probably because
of contention with other users of the cluster, causing dedicated nodes to spend more time
writing data than the time needed for the application to complete 30 iterations.

One major result here is that our model is able to predict the best I/O approach among
the four proposed ones. In this case, dedicating one core per node appears to be the best
approach in terms of energy consumption, which conforts our core intuition underlying the

80 Chapter 5 – Energy and Performance Tradeoffs in Data Management Approaches

 0

 500

 1000

 1500

 2000

 2500

D
C
(O

N
E)

D
N
(1

5:
1)

D
N
(7

:1
)

E
n
e
rg

y
 (

k
J
)

Measured
Model

Figure 5.11: Observed and estimated energy con-
sumption with different I/O approaches on the
Nancy site of Grid’5000. Error bars represent
minimum and maximum measured values our of
five runs.

Table 5.2: Accuracy of the model on
Rennes and Nancy sites with all configu-
rations tested.

Site Approach Accuracy
Rennes Dedicated Core (ONE) 96.0%

Dedicated Cores (TWO) 96.9%
Dedicated Nodes (15:1) 97.3%
Dedicated Nodes (7:1) 98.0%

Nancy Dedicated Core (ONE) 95.0%
Dedicated Nodes (15:1) 94.3%
Dedicated Nodes (7:1) 95.0%

Damaris approach, initially designed to leverage the potential benefits of using dedicated
I/O cores.

Nancy Cluster

To further test our model’s accuracy, we conducted a set of experiments on the graphene
cluster of Grid’5000. We run CM1 on 32 nodes (128 cores) with 6 additional nodes for PVFS.
We used the configuration of CM1 presented earlier. Damaris was configured to run with
either one dedicated core per node (DC(ONE)), or one or two dedicated nodes (respectively
DN(15:1) and DN(7:1)). We left out the configuration featuring two dedicated cores, as it has
a large performance impact on a 4-core/node cluster (the performance of CM1 would drop
by half). We employed the same type of profiling method as described in Section 5.3.2.

Each experiment is repeated five times. Figure 5.11 shows the observed energy consump-
tion for each approach, as well as the estimations of our model. The worst relative difference
observed is 5.7%, when using one dedicated node (DN(15:1) configuration). Our model is
again able to predict the best configuration. In this case, the best configuration consists of
using one dedicated node. Here given the small number of cores per node, dedicating one
core (i.e. 1 out of 4) to I/O is not the best approach.

Table 5.2 summarizes the accuracy of our model on the two platforms and with all tested
configurations.

5.4 – Discussion and Related Work 81

5.4 Discussion and Related Work

5.4.1 Profiling Energy Consumption of HPC Simulations

Gamell et al. [37] provide a power model for the in situ analysis of the S3D turbulent com-
bustion code. They investigate the roles of the system’s architecture, the algorithm design
and various deployment options. In their power model, they use the Byfl compiler analy-
sis tool [99] to obtain the application’s behavior. While they explore the power behaviors
of the S3D code under different scenarios, they don’t address the impact of these different
scenarios in terms of performance.

Kamil et al. [59] extrapolate the power consumption of the machine from that of a single
rack, with AC to DC conversion in mind. They use the High Performance Linpack (HPL)
benchmark, which they claim to have a similar power behavior to other compute-intensive
scientific workloads. However, they also indicate that HPL is not an ideal workload for per-
formance measurements. Therefore, while they target power efficiency in their work, their
contribution is limited to the exploration of power behaviors of computation-intensive work-
loads. Additionally, they run the benchmarks for three minutes, which from our experience
is not sufficient to represent an application’s power behavior.

Song et al. [121] present a power performance profiling framework, PowerPack, to study
the power behavior of HPC Challenge benchmarks (HPCC). They focus on applications’
memory access patterns and the impact of the system size on the energy efficiency. They
find that workloads that have high temporal and spatial locality spend little time waiting for
data and consume more processor power compared to other workloads. In their HPCC tests,
they observe that memory is the second largest power consumer after CPU. For the energy
profiling, they find that embarrassingly parallel codes achieve better energy efficiency as
the size of the system increases. However, for codes that are not embarrassingly parallel,
the energy consumption increases faster than the performance of the workload. With the
MPI_FFT code they exemplify an energy consumption proportional to the number of node,
while performance remains sub-linear. Therefore, they indicate that the size of the system is
an important factor to consider along with application characteristics when trying to achieve
efficient energy consumption.

5.4.2 Saving Energy

Some researchers have considered methods for saving energy on HPC machines. Orgerie
et al. conducted a survey on the methods for improving the energy efficiency in large-scale
systems [96]. They discuss the methods to evaluate and model the energy consumed by
computing and network resources. They indicate that system energy consists of two parts:
static and dynamic. The former one depends on the system size and type of components
while the latter one results from the usage of the resources. They claim that we can improve
the energy efficiency by minimizing the static part and by obtaining more performance in
proportion to the dynamic part of the system. They model the energy consumption of com-
puting resources, then propose several techniques to save energy, such as Dynamic Voltage
Frequency Scaling (DVFS) [60, 73, 118, 137], software improvements [123] and hardware ca-
pabilities [13]. For networking resources, they find that switch fabrics are an important part
of the power consumption of the network, e.g., 90% for IBM InfiniBand routers. Similarly to

82 Chapter 5 – Energy and Performance Tradeoffs in Data Management Approaches

computing resources, the energy consumption of networking devices is not proportional to
their usage.

Laros et al. [68] present the impact of CPU frequency and network bandwidth scaling
on energy efficiency. They apply static changes in the CPU frequency to save energy at the
cost of performance degradations. They find that the impact of the CPU frequency scaling
depends on the type of workload. While computation-intensive workloads suffer from a
big degradation of their performance, the energy consumption of communication-intensive
workloads can be greatly improved.

A similar work has been carried out by Springer et al. [122]. They demonstrate that
significant potential exists for saving energy in HPC applications without sacrificing per-
formance. They apply dynamic frequency scaling by shifting the gears which represent the
different levels of CPU frequencies. They observe that well-tuned programs such as NAS
benchmarks can benefit from their approach especially during their idle time resulting from
communications. The biggest contribution of their work is to be able to switch energy gears
dynamically by observing the pressure on the memory and the location of MPI calls in the
program to obtain better energy efficiency.

Fault-tolerance protocols can also be subject to optimizations of their energy efficiency.
Diouri et al. [20] estimate the energy usage of different fault-tolerance protocols, including
protocols based on checkpoint/restart. They study the influence of various parameters such
as the checkpointing interval, number of processes, message size and number, etc. as well
as hardware parameters (number of cores per node, disk type, memory, etc.). They use a
calibration approach that inspired our profiling approach, in order to take into consideration
the specific hardware used in their energy estimations. Besides energy estimations, they also
apply power saving techniques to improve energy efficiency. Contrary to our work however,
they do not study different I/O approaches such as using dedicated cores or nodes, and the
impact of these approaches on energy consumption.

Most of the studies on energy efficiency in HPC target the entire system’s power. Gamell
et al. [37] separate the network component in their model, however they make assumptions
for the related component type since power information for every component (in particu-
lar the NIC) is not available. Son et al. [119] target the power usage of disks. They use
the SPEC2000 floating benchmark suite and generate statistical data for performance and
energy consumption via a simulator similar to DiskSim. They apply proactive disk power
management and also make use of code restructuring, which results in up to 43% of energy
savings compared to traditional power management. This work inspired ours by showing
us that software-driven approaches can be more efficient than existing hardware solutions
for energy efficiency.

5.4.3 Power Measurement Methods

The aforementioned works also differ in the methodology that they apply for power mea-
surements. Kamil et al. [59] investigate various power measurement methodologies such as
line meters, clamp meters, integrated meters and power panels, and opt for power panels in
their work. Other methods can be applied, including voltage regulator models that provide
current and voltage readings at node level [68], cluster specifications [37], simulators [119]
and wattmeters [20]. While there is a wide range of options for measuring the power, most
of them are subject to measurement errors. Therefore, power measurements are generally

5.5 – Conclusions 83

multiplied to reduce the impact of the measurement error. We also follow the same trend in
our work.

5.5 Conclusions

Power consumption has started to severely constrain the design of HPC systems and starts
influencing software solutions as well. As the amount of data produced by large-scale simu-
lations explodes, it becomes necessary to find solutions to I/O that are not only fast, but also
energy efficient.

Our detailed study of three I/O approaches, all implemented in the Damaris framework,
reveals significant differences in the performance of the CM1 application as well as its energy
consumption. Three factors at least contribute to such differences. First, the adopted I/O
approach and its configuration. Second, the output frequency. Third, the architecture on
which the application runs, and in particular the number of cores per multicore node.

As choosing the right I/O approach to save energy for a particular scenario can be dif-
ficult, we provided a model that helps scientist estimate the energy consumption of their
application on a particular platform and under different data management approaches. The
accuracy of our model (96.1% on average) and its validation with the CM1 application shows
that it can effectively guide the user toward the most energy-efficient configuration.

This work opens room for energy-saving approaches. In particular, dedicated resources
could benefit from DVFS techniques, or be more productively used by enabling compression
to reduce the amount of data and thus lower the energy consumption originating from data
transfers.

85

Chapter 6
CALCioM: Mitigating I/O Interference

through Cross-Application
Coordination

Contents
6.1 I/O Interference: an Increasingly Important Issue 86

6.1.1 Probability of Concurrent Accesses . 86
6.1.2 Studying I/O Interference: a Methodology 88
6.1.3 Impact of Interference on I/O Optimizations 89
6.1.4 From Diversity to System-wide Inefficiency 90

6.2 Mitigating Interference within the CALCioM Framework 91
6.2.1 Interference-avoiding Strategies . 91
6.2.2 CALCioM: Design Principles . 93
6.2.3 Architecture and API . 93

6.3 Experimental Evaluation . 97
6.3.1 Platforms and Methodology . 97
6.3.2 Interfere or Serialize Accesses? . 98
6.3.3 A Third Option: Access Interruption 102
6.3.4 Dynamic Choice: Interfere, Serialize, or Interrupt? 102

6.4 Discussion and Related Work . 104
6.4.1 Application-Side I/O Scheduling . 105
6.4.2 Server-Side I/O Scheduling . 105
6.4.3 Application-Aware I/O Scheduling 105

6.5 Conclusion . 107

86
Chapter 6 – CALCioM: Mitigating I/O Interference through Cross-Application

Coordination

AS of August 2014, the top five supercomputers have all more than 500,000 cores [130].
This tremendous computational power offers the possibility to run scientific sim-
ulations at very large scale and with high accuracy. But sustained Petascale (and

Exascale in a few years) is not achieved by running applications one at a time. The real
power of a million-core machine comes from the increased number of applications that can
run concurrently.

An important challenge at such a large scale is to deal with the data deluge coming
from these applications. Chapters 3 and 4 have proposed solutions to improve I/O and
visualization performance respectively, for a single application. Unfortunately, when several
concurrent applications access a shared parallel file system in an uncoordinated manner,
storage servers have to deal with interleaved requests coming from different sources, which
often breaks the access patterns optimized by each application individually. This negatively
impacts the I/O performance of these applications and increases the variability of their I/O
performance. We call this particular phenomenon cross-application I/O interference.

In this chapter, we propose the CALCioM approach to solve this problem. CALCioM is
radically different from traditional approaches where applications are optimized individu-
ally, disregarding potential cross-application interference, and where interference-avoiding
strategies are left to the file system’s scheduler, with no information on the constraints or
freedom of each application and no way to differentiate I/O requests. In contrast, CALCioM
provides a communication layer so that applications can expose their I/O behavior and co-
ordinate with one another in order to avoid interfering. We specifically study three coordina-
tion strategies: interfere, serialize, and interrupt accesses, which are made possible through
cross-application communications. We observed that these strategies are all suboptimal in
different contexts yet complement each other in a way that makes a dynamic selection desir-
able, especially when applications present different I/O behaviors and requirements.

6.1 I/O Interference: an Increasingly Important Issue

Interference can be defined as a performance degradation observed by an application in contention
with other for the access to a shared resource. In the context of I/O for HPC, the shared resource
is the parallel file system. This section tries to grasp how frequently I/O interference occurs
in a system. It then provides tools to analyze I/O interference, and examples of its effect on
real platforms.

6.1.1 Probability of Concurrent Accesses

Although computer scientists generally argue that their machines have been designed
mainly to run applications at full scale (i.e., large applications), current machines are already
used by many relatively small applications at the same time. For example, Figure 6.1 (a)
shows the distribution of job sizes on Argonne’s Intrepid machine. Half of the jobs on this
platform indeed run on less than 2,048 cores (i.e., 1.25% of the full machine); this assertion
remains true when weighting the jobs by their duration, that is, half of the machine time is
used by applications smaller than 2,048 cores. Given this observation, it becomes interesting
to compute the probability that at least two applications interfere with one another.

6.1 – I/O Interference: an Increasingly Important Issue 87

 0

 5

 10

 15

 20

 25

 30

 35

 40

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

98
30

4

13
10

72

16
38

40
 0

 20

 40

 60

 80

 100

%
 o

f
J
o
b
s
 (

D
is

tr
ib

u
ti
o
n
)

%
 o

f
J
o
b
s
 (

C
D

F
)

Number of Cores

Distribution
CDF

(a) Distribution of job sizes

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

1 6 11 16 21 26 31 36 41 46 51 56 61

P
ro

p
o
rt

io
n
 o

f
T

o
ta

l
T

im
e

Number of Concurrent Jobs

(b) Number of concurrent jobs

Figure 6.1: Job sizes and number of concurrent jobs by time unit on Intrepid, extracted from
the Parallel Workload Archive [100], using ANL-Intrepid-2009-1.swg (8 months of job sched-
uler’s traces, from January 2009 to September 2009).

The number of applications that run concurrently at any given moment on a supercom-
puter can be denoted as a discrete random variable X ∈ N. Figure 6.1 (b) shows the dis-
tribution followed by X on ANL’s Intrepid, and the corresponding CDF. The proportion of
time spent doing I/O by any application can also be seen as a random variable µ ∈ [0, 1]. As
a first approximation, we assume the independence between X and µ, that is, an application
will not spend more time in I/O as a result of a different number of applications running
concurrently. This assumption is optimistic and ignores the fact that the more applications
run, the more likely they are to interfere and therefore, the higher µ becomes. But it allows
us to compute a lower bound on the probability that several applications interfere.

At a given moment, we denote Y the random variable representing the number of ap-
plications currently in I/O phase. Knowing that n applications run on the machine at this
moment, we can compute P(Y = k|X = n) the probability that k applications are concur-
rently in I/O phase, for k ≤ n:

P(Y = k|X = n) =
(

n
k

)
E(µ)n(1−E(µ))n−k (6.1)

Indeed each application has an independent probability E(µ) to be in I/O phase, thus the
number of applications in I/O phase follows a binomial distribution. We can then derive the
probability P(Y > 1) that two or more applications are in I/O phase.

P(Y > 1) = 1−P(Y = 0)−P(Y = 1)

= 1−
+∞

∑
n=0

P(X = n)P(Y = 0|X = n)−
+∞

∑
n=1

P(X = n)P(Y = 1|X = n)

= 1−
+∞

∑
n=0

P(X = n)(1−E(µ))n −
+∞

∑
n=1

P(X = n)nE(µ)(1−E(µ))n−1

(6.2)

88
Chapter 6 – CALCioM: Mitigating I/O Interference through Cross-Application

Coordination

 6

 8

 10

 12

 14

 16

 18

-15 -10 -5 0 5 10 15

W
ri
te

 T
im

e
 (

s
e
c
)

dt (sec)

Expected
Observed (App A)
Observed (App B)

Figure 6.2: Experiments done on Grid’5000
(Nancy site) with PVFS deployed on 35 nodes;
two applications of 336 processes each write
16 MB per process in a contiguous collective pat-
tern. A (red) starts at the reference date (0), B
(blue) starts at an arbitrary date dt with respected
to the reference date.

As an example, assuming that the average portion of time spent in I/O by applications is
as small as E(µ) = 10%, and using the distribution shown in Figure 6.1 (b), the probability
to observe concurrent accesses as computed using Equation 6.2 is P(Y > 1) = 48%, that is,
at least two applications are competing for the access to the file system about half of the time. This
makes cross-application interference frequent enough to motivate our research.1

6.1.2 Studying I/O Interference: a Methodology

Throughout this chapter we will consider two applications A and B. To study the interference
between these applications, we introduce the concept of ∆-graphs and interference factors,
which are described in this section.

∆-graphs

Application A starts writing at a reference date t = 0; application B starts at a date t = dt,
and we measure the performance (for example, the time spent in an I/O phase) of A and
B as a function of dt. A single experiment with a particular value of dt gives us a point in
the graph. A set of experiments with different values of dt allows us to plot the measured
performance as a function of dt for each application. If dt < 0, B starts its access before A (as
a result, the ∆-graph of the pair of applications (A, B) is the mirror of the ∆-graph of (B, A)).

An example of a ∆-graph is shown in Figure 6.2, which reports experiments done on the
Nancy site of Grid’5000. Here two instances of the same application run on the same number
of cores. From this example, we observe that when two applications compete for the access
to the file system with the same I/O load, the first one to arrive is favored, although it still
observes a degradation of its write time. One can easily compute and display the expected
interference as a piecewise linear function, assuming a proportional sharing of resources
between the two applications. This theoretical performance is also plotted in the figure (the

1Note that the formula presented here differs from the one presented in our paper [27], which corresponds
to the probability to see at least one application performing I/O at any given moment, that is, the probability
for an application entering its I/O phase to observe another application already in its I/O phase and to interfere
with it, which is different from the probability presented in this thesis.

6.1 – I/O Interference: an Increasingly Important Issue 89

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Iteration Number

(a) Without Interference

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Iteration Number

(b) With Interference

Figure 6.3: Experiments done on the Nancy site of Grid’5000 with 35 PVFS servers across an
Infiniband network: (a) one instance of IOR runs on 336 cores and writes every 10 seconds;
(b) another instance is started on 336 other cores and writes every 7 seconds (the figure
represents the observed throughput of the first instance only).

term “∆-graph” has been chosen after its shape). When considering three applications the
∆-graph becomes a surface in a 3D graph, and is thus arguably more difficult to display.

Interference Factor

In the following, we will either consider the I/O time as a reference metric or use an interfer-
ence factor, defined for a single application as the measured access time divided by the time
it would require without the contention with the other application:

I =
T

Talone
> 1

I is arguably more appropriate to study interference because it gives an absolute reference
for a non-interfering system: I = 1. Moreover, it allows the comparison of applications that
have different size or different I/O requirements.

I could be computed for other metrics as well, such as the energy consumption: I =
E

Ealone
. This metric depends on the application considered but also on the platform and other

applications running simultaneously; it is therefore a context-dependent measure.

6.1.3 Impact of Interference on I/O Optimizations

Cross-application interference can have a severe impact on I/O optimizations at several lev-
els of the I/O stack. As an example, Figure 6.3 shows the consequences of cross-application
interference on a caching mechanism. Here two instances of the IOR benchmark [116] write
periodically, one with a 10 seconds delay between each write, the other one with a 7 seconds
delay. Kernel caching is enabled in the storage backend, so that applications see a higher

90
Chapter 6 – CALCioM: Mitigating I/O Interference through Cross-Application

Coordination

 0

 100

 200

 300

 400

 500

 600

 700

 800

 8 16 32 64 128 256 512

A
g
g
re

g
a
te

 T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Number of Cores for Application B

W/o Interference
Observed (App A)
Expected (App A)
Observed (App B)
Expected (App B)

Figure 6.4: Experiments done on Grid’5000
(Nancy site) with PVFS deployed on 35 nodes; A
runs on 336 processes; size of B varies; each pro-
cess writes 16 MB. Both applications start at the
same time.

throughput than what the disks actually provide; the file system indeed caches the writes
and flushes them in disks later, when the application is not writing anymore. When the two
applications happen to write at the same time (iterations 4, 5, 8, and 9), none of them benefits
from the cache, and their performance drops dramatically.

6.1.4 From Diversity to System-wide Inefficiency

Different applications usually run on different numbers of cores, for different durations and
access different amounts of data in a different manner. They also have different resource
constraints and I/O requirements. For example, the CM1 atmospheric simulation on Blue
Waters synchronously writes snapshot files every 3 minutes, for an amount of 23 MB/core
(See Chapter 3). The NAMD chemistry simulation, on the other hand, writes trajectory files
of a few bytes per core every second through a designated set of output processes, and in an
asynchronous manner.2 These behaviors and the I/O requirements that they imply cannot
be captured by the storage system, which sees only incoming raw requests.

This diversity among applications and lack of knowledge that the file system has from
them can lead to some applications being impacted more than they should by other appli-
cations. As an example, Figure 6.4 shows what happens to the aggregate throughput when
a small application interferes with a bigger one. When application B runs on 8 cores while
A runs on 336, B observes a 6× decrease of throughput compared with B running alone on
8 cores. As the number of cores used by B increases up to 336, A becomes more and more
impacted.

Figure 6.5 illustrates the interference factor when two applications of different sizes write
at the same time (a), or with a 5-second delay (b). Two conclusions can be derived from these
figures.

• A small application is more impacted by a big one than vice-versa. More generally,
an application with little I/O will observe a larger impact (relative to its I/O) when
competing against an application with larger I/O.

2This information was gathered through discussions with the Blue Waters PRAC (http://www.ncsa.illinois.
edu/BlueWaters/prac.html) users.

http://www.ncsa.illinois.edu/BlueWaters/prac.html
http://www.ncsa.illinois.edu/BlueWaters/prac.html

6.2 – Mitigating Interference within the CALCioM Framework 91

 0

 2

 4

 6

 8

 10

 12

 14

 100 200 300 400 500 600 700

 100 200 300 400 500 600 700

In
te

rf
e
re

n
c
e
 F

a
c
to

r

Number of Cores for Application B

Number of Cores for Application A

Application A
Application B

(a) dt = 0 sec

 0

 2

 4

 6

 8

 10

 12

 14

 100 200 300 400 500 600 700

 100 200 300 400 500 600 700

In
te

rf
e
re

n
c
e
 F

a
c
to

r

Number of Cores for Application B

Number of Cores for Application A

Application A
Application B

(b) dt = 5 sec

Figure 6.5: Experiments done on Grid’5000 (Rennes site). The total number of cores is 768,
Applications A and B share this numbers of cores (e.g. when A runs on 744 cores, B runs on
24 cores). The two graphs show the interference factor for different size of application given
dt = 0 or dt = 5.

• A small delay between the I/O phases can make an important difference in the ob-
served interference factor, preventing a small application from being impacted by a
bigger one (left part of Figure 6.5(b)).

More important than the performance of each application individually, cross-application
interference leads to a decrease of system wide efficiency. Depending on a given metric to measure
this efficiency (for example, the sum of run time of all applications, the number of FLOPs
used for actual science, etc.), it is desirable to find ways to decrease these interference factors.
Doing so, however, requires some knowledge about each application’s I/O behavior and
requirements.

6.2 Mitigating Interference within the CALCioM Framework

Having shown that I/O interference happens frequently and potentially has a high impact
on applications’ I/O performance, we here propose strategies to overcome this problem. We
then introduce our CALCioM framework, which integrates these strategies.

6.2.1 Interference-avoiding Strategies

Cross-application interference can have a big impact on the performance of some applica-
tions, in particular given the diversity of sizes and I/O requirements. This performance
impact results in a suboptimal use of the machine. In order to mitigate interference between
two applications, several strategies can be envisioned.

92
Chapter 6 – CALCioM: Mitigating I/O Interference through Cross-Application

Coordination

Serializing Accesses on a First-Come-First-Served Basis: With this strategy, only the ap-
plication that arrives second in its I/O phase is impacted in a way proportional to the re-
maining access time of the first application. This policy requires either to give applications a
(potentially dangerous) lock function, to ensure that the file system is accessed one applica-
tion at a time, or to give them a way to know that another application is currently doing I/O and
that there will be no advantage in interfering with it.

Interrupting an Application’s Access: In this situation, the application that arrived first is
impacted. Indeed, if its access can be paused quickly enough, the second application will
immediately get access to the file system and will not be impacted. This strategy specifically
requires a way for an application to be interrupted, that is, to know that another application
arrived and is expected to do I/O.

Allowing Interference: When the interference is low enough (for instance, between two
small applications) and the performance decrease can be afforded by all applications in-
volved, then letting the applications interfere can also be a valid choice in some cases and
lead to better performance than trying to schedule them.

Discussion: Adapting Dynamically to the Best Strategy

Each strategy having its own advantages and drawbacks, a mechanism can be implemented
to select the best option at run time depending on information exchanged between applica-
tions. The choice of a strategy over another should be made on the basis of a system wide
efficiency metric. For instance, if our goal is to minimize the sum of interference factors
f = ∑X∈App IX, we will try to avoid the case of a small application being largely impacted
by a big one, by serializing the big one after the small one or by interrupting the big one to
favor the small one.

The first three strategies are presented in Figure 6.6. These strategies all require that
an application becomes aware of other applications running on the system, or at least the
properties of ongoing I/O operations, and even have a way to contact other applications to
exchange these properties. To this end, we designed a coordination approach. This approach
is illustrated by the CALCioM framework, described in the next section. It includes all these
strategies and allows applications to communicate with one another in order to implement
them.

Note that these strategies can naturally be generalized to more than two applications.
The adaptive strategy would then consist of either choosing a place in a queue of appli-
cations that have requested access to the storage system, or interrupting the one currently
accessing it.

6.2.2 CALCioM: Design Principles

CALCioM provides a way for applications to communicate with one another in order to
make a decision on the best I/O scheduling strategy. Deciding could be done by the appli-
cations themselves or enforced by a system-provided entity (this detail is outside the scope
of this work, as our goal is to show the possibilities offered by the sharing of information

6.2 – Mitigating Interference within the CALCioM Framework 93

(a) Interference (b) First-Come-First-Served (c) Interruption

Figure 6.6: Three possible policies to deal with interference: (a) let applications A and B
interfere, both will be impacted; (b) serialize one application after the other, giving the ad-
vantage to the one that started its access first and impacting the second one only; and (c)
interrupt one application for the benefit of another one, impacting the first one only.

between applications through a common communication layer). CALCioM seeks the opti-
mization of a set of concurrent applications, rather than optimizing each application indi-
vidually, and thus considers the set of applications running concurrently rather than each
application individually. Figure 6.7 summarizes the the CALCioM framework.

A design choice central to our approach is that CALCioM does not give to the user a lock
function to prevent multiple applications from accessing the file system at the same time.
Nor does it offer a way for an application to force the interruption of another one. CALCioM
only provides the means by which applications can communicate. CALCioM can be integrated in
the I/O stack of applications and use the information exchanged by different applications to
make a decision on the their behavior.

CALCioM works with knowledge acquired in each layer of the I/O stack of each ap-
plication. It considers the I/O stack as a whole instead of a set of layers (application, I/O
library, MPI-I/O, file system) to be optimized individually. For instance, CALCioM will get
from the application level how many files (or how many bytes) are intended to be written
and from MPI-I/O the series of raw requests to the file system, the targeted storage servers,
the number of rounds of collective buffering, or other such information.

As an example of CALCioM-enabled behavior, consider an application A writing a large
amount of data. As another application B starts an I/O phase, it contacts A with some
information regarding its expected I/O operations, for example, a well-optimized write of
a small amount of data. If, targeting the optimization of a given metric, A (or a centralized
entity) considers that stopping and letting B execute its access will lead to better overall
performance, it will contact B back with this decision. B will proceed with its I/O. When B
finishes, it contacts A back and A resumes its own I/O operation.

6.2.3 Architecture and API

The communication between different applications and the gathering of information on
I/O behaviors are done only through one process in each application (typically rank 0 in
MPI_COMM_WORLD) or a reduced set of processes. This process, called a coordinator, is
responsible for gathering information from other processes inside the application, for inter-
acting with other applications, and for sending orders back to inner processes on accesses to
be performed. CALCioM is thus hierarchical in the sense that an application can internally

94
Chapter 6 – CALCioM: Mitigating I/O Interference through Cross-Application

Coordination

Figure 6.7: Schema of the CALCioM approach; a communication layer between independent
applications that can be leveraged at every level of the I/O stacks to communicate informa-
tion on the I/O behavior.

have its own way of managing I/O, and CALCioM acts as the root of each application’s
particular I/O management system.

Design and Implementation Options

CALCioM can be designed by using MPI as underlying communication layer in order to
be platform independent. Indeed MPI already provides functions to build a communicator
across multiple applications (MPI_Comm_{connect,accept}, MPI_Port_{open,close}), as ap-
plications start and leave. Yet, since an application cannot know when another one will try
to contact it, these connection primitives should be made non-blocking, either by extending
the MPI standard with MPI_Comm_{iconnect,iaccept} or by calling these functions from
a thread (something that is also done by Zounmevo et al. [152]). Such a thread would be
required only in coordinator processes, that is, one extra thread per application.

In a production system, one might want to implement these primitives at a system level,
in order to improve their security, and to back up the coordination algorithm with a central-
ized entity to enforce the decisions taken on the basis of the I/O behaviors. For large-scale
systems it might also be more effective to perform coordination via a separate service run-
ning on the system, rather than the peer-to-peer approach used in our prototype. Systems
such as BlueGene/Q running the operating system in a spare core [45] would offer a good
way of providing fully asynchronous, system-level communications with other applications.

CALCioM’s API

CALCioM provides a simple API to application/library/middleware developers. These
functions have to be called by all processes doing I/O.

• calciom_prepare(MPI_Info info) adds more information about the future I/O ac-
cesses. In order to be generic, it uses an MPI_Info structure, which contains a set of

6.2 – Mitigating Interference within the CALCioM Framework 95

(key,value) pairs, to represent knowledge on the application’s I/O behavior. As exam-
ples of values that can be leveraged, in Section 6.3 we communicate the number of
files, the number of rounds of collective buffering and the amount of data transferred
per round. A call to calciom_complete() will later unstack this information.

• calciom_inform() sends the information to the set of running applications currently
doing I/O, as well as applications interrupted or waiting. Suggestions of authoriza-
tions are eventually sent back by these applications.

• calciom_check(int* authorized) checks whether the application is “allowed” to ac-
cess the file system, based on other applications’ responses. That is, either this appli-
cation is alone, or other applications have reached a consensus (which may have been
enforced by a centralized entity) that it is best for this application to perform its I/O
now.

• calciom_wait() explicitly waits for all the other applications to agree that this appli-
cation should do its I/O access.

• calciom_release() ends a step in the I/O access, checks for pending requests from
other applications, reevaluates the global strategy (if new information has been sent),
and responds to other applications. A new call to calciom_inform is necessary before
the next I/O access.

In coordinators, all these functions perform communications with other applications.
Other processes perform communications with the coordinator of their application. Re-
trieving the list of other running applications is done through communications with the
machine’s job scheduler when the job starts and finishes.

Examples of Usage

Figure 6.8 shows the communications done through CALCioM in two scenarios. In Fig-
ure 6.8 (a) application B requests the access to the file system to application A, which is
already writing. Application A, aware that B is expected to perform I/O, sends a notifica-
tion using calciom_release when it is done writing. In Figure 6.8 (b) application B requests
the access to the file system to application A, which is already writing. Application A still
has some write calls to make but letting B write is considered more efficient. It thus answers
B, which can write. When B finishes writing, it sends a notification back to A, which restarts
writing.

Integration Level

The API presented above is intended to be used at each level of the I/O stack, from the
application level down to the MPI-I/O implementation. calciom_inform, calciom_check,
calciom_wait and calciom_release can be used at the low level between each atomic re-
quest to the file system, surrounding a complex write operation or even an entire I/O phase.
The reason for also offering these functions to application and library developers is that they
can also observe the load of the storage stack at any point in the program and decide to
schedule their operations differently (for instance, starting a new iteration of computation
and coming back to the I/O phase later). This is, however, beyond the scope of this work.

96
Chapter 6 – CALCioM: Mitigating I/O Interference through Cross-Application

Coordination

(a) Protocol for FCFS Serializations (b) Protocol for Interruptions

Figure 6.8: CALCioM’s protocols for serialization and interruptions. (a) Application B
waits for application A to call calciom_release before writing. (b) Application B interrupts
application A between two atomic write calls.

An Holistic View of the I/O Stack

The location of the calls to CALCioM’s API gives different degrees of freedom in adapting
the I/O behavior; using these functions only between each file access at the application level
gives fewer opportunities for the application to be interrupted upon request from another
application, for example. Calling CALCioM’s API at the lowest levels of the I/O stack (i.e.
within POSIX or atomic MPI-I/O calls) allows a complex I/O phase to be interrupted at any
moment between small, atomic I/O requests. However, a low-level-only implementation
will not have sufficient information on how many files will later be accessed and how they
will be accessed. Therefore it will not be able to give enough information to other applica-
tions.

These constraints force that each level of the I/O stack, including the applications and
high-level I/O libraries, use at least calciom_prepare and calciom_complete to provide
enough information for a better understanding of the application’s I/O behavior. Therefore,
not only the application developer has to use CALCioM in the application code, it also has
to be integrated within I/O libraries by their respective developers.

Additionally, CALCioM will have no effect if only a small number of applications use it.
An application that does not use CALCioM will still interfere with concurrent applications,
whether these applications use CALCioM or not.

6.3 – Experimental Evaluation 97

In the light of these requirements, the reader may object that it will be difficult to convince
every application or library developers to instrument their existing code with CALCioM’s
API. Fortunately, we will see in Chapter 7 a solution that provides all the information on the
I/O behavior without this development effort. Thus, while we did explicitly use CALCioM’s
API at every level of the I/O stack in the experiments presented in the next section, it is
possible to implement CALCioM in such a way that it does not require any change in the application’s
code, nor any I/O library.

6.3 Experimental Evaluation

The following experimental campaign aims to present four different policies that CALCioM
offers: (1) let applications interfere, (2) wait for another concurrent application to complete
its I/O, (3) interrupt an application’s access for the benefit of another one, and (4) dynami-
cally select one of the above policies to optimize the machine wide efficiency.

6.3.1 Platforms and Methodology

The study of cross-application interference requires reserving a full machine in order not to
impact (or be impacted by) other applications. We choose the following machines for this
purpose.

Surveyor

Surveyor is a 4096-core (1024 nodes) BlueGene/P supercomputer at Argonne, running at
13.6 TeraFlops. It exposes a 4-node PVFS2 shared file system for high-performance I/O.
Surveyor consists of one rack of Argonne’s Intrepid machine [54, 67] and therefore shares
the same architecture. Note that Surveyor’s PVFS2 file system is not shared with Intrepid;
thus, reserving the full machine ensured that at worst only a user connected to the frontend
of Surveyor could interfere with our experiments.

Grid’5000

Grid’5000 [53] was already extensively described and used in Chapters 3 to 5. We mainly
used the Rennes site, more specifically the parapluie cluster (40 nodes featuring 2 AMD
1.7 GHz CPUs, 12 cores/CPU, 48 GB RAM) and parapide (25 nodes featuring 2 Intel 2.93 GHz
CPUs, 4 cores/CPU, 24 GB RAM, 434 GB local disk). We leverage the InfiniBand network
that connects all nodes of these two clusters. The OrangeFS file system (a branch of PVFS2)
version 2.8.3 was deployed on 12 nodes of parapide, using an ext3 backend file system on
local disks with caching disabled in order to avoid the huge performance drop observed in
Section 6.1. Reserving these two clusters and deploying our own file system ensured us to
be the only users of the IB switch as well as the file system at the time of the experiments.

98
Chapter 6 – CALCioM: Mitigating I/O Interference through Cross-Application

Coordination

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

-30 -20 -10 0 10 20 30

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (sec)

384 cores
576 cores
672 cores
720 cores
744 cores

(a) ∆−graph of App A (big)

 0

 2

 4

 6

 8

 10

 12

 14

 16

-30 -20 -10 0 10 20 30

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (sec)

384 cores
192 cores
96 cores
48 cores
24 cores

(b) ∆−graph of App B (small)

Figure 6.9: Experiments done on Grid’5000. A total of 768 cores is split into two groups of N
(App B) and 768− N (App A) cores, for N ∈ {24, 48, 96, 192, 384}. Each application writes
16 MB (8 strides of 2 MB) per process.

Application

Using real-life applications to evaluate cross-application interference is arguably not appro-
priate because (1) it is difficult to differentiate inner and outer causes of performance degra-
dations in applications that exhibit a complex access pattern, (2) they may not be represen-
tative of generic interference patterns that applications with perfectly optimized I/O would
exhibit, and (3) we need a way to control precisely the moment when these applications
perform I/O. Therefore, we developed a simplified3 version of the IOR benchmark [116]
that starts by splitting its set of processes into groups running independently on different
nodes. This IOR-like benchmark allows us to control the access patterns of each group of
processes (for example, contiguous or strided with a specified number of blocks and block
sizes, in a way similar to IOR). For this work specifically, our study focused on collective
write operations and write/write interference between two applications only.

6.3.2 Interfere or Serialize Accesses?

Our first experiments aim to illustrate the potential advantage of serializing I/O accesses of
two applications as opposed to letting them interfere.

Benefits of Avoiding Interference through Serialization

Small Application vs. Large Application: Figure 6.9 completes our study of interference
initiated in Section 6.1 between applications running on different numbers of cores.

3Our version does not provides all the backends such as HDF5 that IOR provides, and I/O patterns are
hard-coded instead of being configurable.

6.3 – Experimental Evaluation 99

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

-20 -15 -10 -5 0 5 10 15 20

W
ri
te

 T
im

e
 (

s
e
c
)

dt (sec)

Interfering
Serialization FCFS

Expected

(a) 2× 2048 cores

 10

 12

 14

 16

 18

 20

 22

 24

-20 -15 -10 -5 0 5 10 15 20

W
ri
te

 T
im

e
 (

s
e
c
)

dt (sec)

Interfering
Serialization FCFS

Expected

(b) 2× 1024 cores

Figure 6.10: Experiments done on Surveyor. Two applications of the same size write 32 MB
per process using a contiguous pattern: (a) the applications are big enough to interfere with
each other; (b) the applications are smaller and the interference is not as high as expected.

We observe that the small application (B) is a lot more impacted than the big one, with an
interference factor going up to 14 for a 24-core instance competing with a 744-core instance.
On the left part of the graphs (dt < 0), B manages to write before A starts writing, which
prevents them from interfering. On the right part, however, B starts while A is already writ-
ing, thus leading to interference. Provided that we try to minimize the sum of write times,
or the sum of interference factors, regardless of the number of cores on which the applica-
tions run, a smarter strategy consists of having instance A wait for B to have completed its
write before starting its own operation (i.e., being on the left side of the ∆-graphs as often as
possible). This is possible only if B starts writing before A and A has a way to know that B
is writing, in which case the decision to wait for B to complete is taken either by A or by a
system-provided entity that enforces the decision.

Yet given a time interval [t1, t2] during which both A and B are expected to complete
exactly one I/O phase, we can show that the probability for B to start writing while A already
started (in which case B will either have to interfere with A or be serialized after it) follows
Equation 6.3.

P(dt < 0) =
TA(alone)

t2 − t1
(6.3)

The bigger the difference in size between the applications, the less likely relying only on an
FCFS (First-Come-First-Served) policy will allow us to achieve our target of system wide
efficiency.

Equally-sized Applications: Figure 6.10 (a) shows two accesses from instances of the same
size serialized one after the other. As opposed to the case where these applications interfere,
only the application that accesses second is impacted and experiences a performance degra-
dation that is equivalent to that of an interference with the first application. The application

100
Chapter 6 – CALCioM: Mitigating I/O Interference through Cross-Application

Coordination

 30

 35

 40

 45

 50

 55

 60

 65

-40 -30 -20 -10 0 10 20 30 40

W
ri
te

 T
im

e
 (

s
e
c
)

dt (sec)

Interfering
Serialization FCFS

Expected

(a) ∆−graph

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

Comm Write Total

T
im

e
 (

s
e
c
)

Phase of Collective Buffering

dt = 0 sec
dt = 15 sec
dt = 30 sec

(b) Phases of collective buffering

Figure 6.11: Experiments on Surveyor. Two applications of the same size (2048 cores each)
write 16 MB per process using a strided pattern (16 blocks of 1 MB per process), triggering
the collective buffering algorithm. Figure (a) shows the ∆−graph when the application in-
terfere and when their accesses are serialized one after the other. Figure (b) shows how each
of the two phases behave: the communication phase is almost not impacted (it is impacted
as a side-effect of the variability in the write phase of different processes), while the write
phase is the most impacted.

writing first, however, is not impacted anymore, hence leading to a better overall system perfor-
mance.

Limitations of the Fist-Come-First-Served Strategy

The limitations of the FCFS strategy are however numerous. Some of them are illustrated in
the following experiments.

Small Application vs. Small Application: Figure 6.10 (b) presents a case where the ap-
plications have the same size, but this size being small, the compound A+B tolerates rather
well the interference. Serializing the accesses will benefit only the first one, at the expense of
the second.

Using Strided Patterns: In Figure 6.11 (a), each instance uses a collective, strided access
pattern. This access pattern triggers the collective buffering algorithm (also termed “two-
phase I/O” and described in Chapter 2) that introduces collective communication steps.
These communications are less subject to interference, as shown in Figure 6.11 (b), and
therefore, serializing the accesses has a higher impact on the application arriving second
than blind interference. Note that this result is observed on Surveyor, where different ap-
plications don’t share their network (partitions on which they run in the supercomputer are
electrically isolated). This observation was not made on Grid’5000 where the sharing of a

6.3 – Experimental Evaluation 101

 0

 0.5

 1

 1.5

 2

-30 -20 -10 0 10 20 30

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (sec)

Interfering
FCFS

Interrupting

(a) App A (big) on 744 cores

 0

 5

 10

 15

 20

 25

-30 -20 -10 0 10 20 30

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (sec)

Interfering
FCFS

Interrupting

(b) App B (small) on 24 cores

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

-30 -20 -10 0 10 20 30

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (sec)

Interfering
FCFS

Interrupting

(c) App A (big) on 384 cores

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

-30 -20 -10 0 10 20 30

In
te

rf
e
re

n
c
e
 F

a
c
to

r

dt (sec)

Interfering
FCFS

Interrupting

(d) App B (small) on 384 cores

Figure 6.12: Experiments done on Grid’5000’s Rennes site. Two applications write 8 MB per
process using a strided pattern, from a different number of cores (App A runs on 744, 720,
672, 576, and 384 cores, and App B respectively on 24, 48, 96, 192, and 384, for a total of cores
of 768). We show how the interference factor behaves for the 3 policies: interfere, serialize
one application after the other (leading a an important performance degradation for B when
B is small, as shown in Figure (b)), and interrupt A (leading to a performance degradation
for A if B is of the same size, as shown in Figure (c)).

common InfiniBand switch for both I/O and communications makes communication steps
interfere as well.

Delaying Small Application: The experiments presented in Figure 6.12 show that FCFS
serialization has a positive effect when applications have a similar size or similar I/O re-
quirements (Figures 6.12 (c) and (d)). However, when they have very different sizes (Fig-
ures 6.12 (a) and (b)) or very different I/O requirements, the FCFS serialization leads to an
important performance degradation of the small application when this application arrives

102
Chapter 6 – CALCioM: Mitigating I/O Interference through Cross-Application

Coordination

second and is delayed after the big one. As explained above, at equivalent access frequency
between the two applications, the situation of a small application accessing before the big
one is less likely than its opposite. Depending on the global efficiency targeted, it may thus
be desirable in these situations that the big application be interrupted for the benefit of the small one.

6.3.3 A Third Option: Access Interruption

By frequently calling calciom_inform/release, an application has the possibility to receive
information from other applications more often, and also be interrupted at a finer grain.
These interruptions can overcome the limitations of the FCFS serialization strategy.

Preventing Small Applications from Being Delayed: Figure 6.12 also presents the results
of experiments where the application accessing second interrupts the one accessing first, re-
gardless of the size or I/O requirements of each application. These experiments are done
with a strided write pattern using collective buffering, and calciom_inform/release are
called before and after each atomic call to independent contiguous writes in a custom,
CALCioM-enabled ADIO layer for ROMIO. The interruption being possible only when
dt > 0 (e.g., there is someone to interrupt), the curves start at dt = 0. These figures show
that, as expected, the interruption strategy has the opposite effect to FCFS serialization; it is
effective when a small application interrupts a big one, but it becomes ineffective and even
counterproductive when applications have a similar size.

Impact of the Integration Level: Figure 6.13 shows results on Surveyor with interference,
FCFS serialization and interruptions. In these experiments, applications have the same size;
however, A writes four files while B writes only one. The calciom_inform/release func-
tions have been set up in two different levels: in the ADIO layer (between each round of
collective buffering) or at the application level between each file. The second case leads to
the “saw” pattern because A cannot be interrupted at a fine grain, and is forced to finish
writing a file before being interrupted. An implementation in the ADIO layer offers more
possibility for A to interrupt its access quickly enough for B not to be impacted.

6.3.4 Dynamic Choice: Interfere, Serialize, or Interrupt?

The previous sections have demonstrated the pros and cons of different policies made pos-
sible by CALCioM thanks to cross-application coordination. It also showed that the FCFS
and Interruption strategies are complementary, that is, they are both optimal under different
conditions.

To close the loop, we integrated all three policies in CALCioM and made it select the most
appropriate strategy dynamically, based on information exchanged between applications.
This selection is based on the targeted machine wide efficiency metric. In this section, we
consider an example of such a metric; namely, the total number of CPU hours actually used
for doing science, and show how CALCioM can select the best strategy. We thus aim at
minimizing the total number of CPU hours wasted in I/O phases: f = ∑X∈Apps NX × TX
where NX is the number of cores running application X, and TX is the observed I/O time.
Note that this metric does not necessarily favor a small application, since it weights the I/O

6.3 – Experimental Evaluation 103

 26

 28

 30

 32

 34

 36

-10 -5 0 5 10 15 20 25 30

W
ri
te

 T
im

e
 (

s
e
c
)

dt (sec)

Without CALCioM
FCFS

Round-Level Interruption
File-Level Interruption

(a) App A (big)

 5

 10

 15

 20

 25

 30

-10 -5 0 5 10 15 20 25 30

W
ri
te

 T
im

e
 (

s
e
c
)

dt (sec)

Without CALCioM
FCFS

File-Level Interruption
Round-Level Interruption

(b) App B (small)

Figure 6.13: Experiments done on Surveyor. App A and B run on 2048 cores each, App A
writes 4 files using 4MB per process (contiguous access), App B writes only 1 such a file.
These graphs show the interference factor of the two applications depending on the strategy
used and on dt.

time with the amount of computing resources. However, it will favor a big application with
small I/O requirements.

Theoretical Analysis: We consider the scenario presented in Figure 6.13 where NA = NB =
2048 cores on Surveyor, and B writes four times less data than A. The case of B starting before
A is trivial (A is serialized after B). Thus we consider only dt > 0; B either interrupts A or is
serialized after it. Using the above definition of f , we can compute the expected cost of each
of the policies using Equations 6.4.

fFCFS = NA × TA(alone)
+ NB × (TA(alone)

+ TB(alone) − dt)
f Interrupt = NA × (TA(alone)

+ TB(alone)) + NB × TB(alone)

(6.4)

Given NA = NB and TA(alone)
= 4× TB(alone) , A should be interrupted if and only if

f Interrupt < fFCFS, (6.5)

which translates into dt < 3
4 TA(alone)

. As a result,

• If B starts first, A is serialized after B;

• If B starts before A finished writing 75% of its data, A is interrupted;

• Otherwise B is serialized after A.

Experimental Results: The result of these decisions on the value of f is summarized in Fig-
ure 6.14 (lower is better) and compared with the situation of applications simply interfering
without CALCioM involved. Considering this specified metric of computational efficiency,

104
Chapter 6 – CALCioM: Mitigating I/O Interference through Cross-Application

Coordination

 32

 34

 36

 38

 40

 42

 44

 46

 48

-10 -5 0 5 10 15 20 25 30

C
P

U
 S

e
c
o
n
d
s
 p

e
r

C
o
re

dt (sec)

Without CALCioM
With CALCioM

Figure 6.14: Synthesis on CALCioM’s choices
and impact on the specified metrics (compu-
tational efficiency). Experiment performed on
the Surveyor machine (see configuration in Fig-
ure 6.13). The figure shows the CPU seconds per
core wasted in I/O under interference, and with
CALCioM selecting the appropriate approach de-
pending on dt.

 10

 12

 14

 16

 18

 20

 22

 24

-20 -15 -10 -5 0 5 10 15 20

W
ri
te

 T
im

e
 (

s
e
c
)

dt (sec)

Interfering
Serialization FCFS

Delayed
Expected

Figure 6.15: Experiment performed on the Sur-
veyor machine. 2× 1024 cores write 32MB/pro-
cess (contiguous pattern). The interference is not
as high as expected. As a consequence, serializ-
ing accesses is not a good decision. A tradeoff can
be found by slightly delaying one of the writes.

CALCioM always manages to make a decision that improves this metric; that is, it lowers
the global time wasted in I/O per core.

Beyond Serialization and Interruption: Selecting a policy does not necessarily mean sim-
ply choosing between FCFS and interruption. Indeed, in a context where the observed in-
terference is lower than expected, as in Figure 6.15, we have shown in Section 6.3.2 that
serialization (or interruption) is not a good option. More elaborate decisions could be made,
such as delaying an application and allowing some degree of overlap. This decision still
depends on the specified system wide efficiency metric to optimize, but it requires a better
estimation of the interference by the applications, an estimation outside the scope of this
work.

6.4 Discussion and Related Work

In this section we present and discuss related work. CALCioM is fundamentally different
from all approaches that address I/O interference. These approaches are indeed based on
scheduling requests in the parallel file system, while CALCioM proposes cross-application

6.4 – Discussion and Related Work 105

coordination by having each individual application communicate their I/O behavior.

6.4.1 Application-Side I/O Scheduling

The approach closest to ours has been proposed by Lofstead et al. [75], but addresses cross-
process I/O interference within a single application. Based on the observation that within
a single application, processes already interfere with one another, they introduce an adap-
tive I/O approach in which the processes of an application are gathered in groups. Each
group writes in a particular storage server, and one process in each group is chosen to coor-
dinate the accesses issued by all the other processes in the group. This drastically reduces
I/O variability within a single application. CALCioM targets the same goal but at machine
scale, across multiple applications. This task is inherently more difficult because of the lack
of knowledge that applications have about one another, the diversity of their I/O work-
loads and the fact that applications come and leave, making the set of entities to coordinate
dynamic.

6.4.2 Server-Side I/O Scheduling

I/O scheduling techniques implemented in parallel file systems aim at lowering disk-head
movements caused by unrelated requests (i.e., achieving better data locality). They also try to
better distribute I/O requests across multiple data servers. These objectives imply (1) trying
to service applications one at a time and (2) trying to force all the data servers to serve the
same application at the same time, while keeping fairness across multiple applications. Our
experimental evaluation clearly showed that serializing I/O requests without knowledge of
the applications’ I/O load can lead to machine-wide inefficiency.

Zhang et al. [147] leverage the notion of a “reuse distance” to state whether it is worth-
while for a data server to wait for an application’s new I/O request or to service other ap-
plications requests. In contrast, CALCioM coordinates all running applications without the
need for requests to carry an ID, or for the file system to wait arbitrarily for potential new
requests to arrive. Using CALCioM, the file system is, in fact, unaware of the coordination
strategies implemented by the applications themselves.

Other approaches such as the one from Lebre et al. [69] provide multi-application
scheduling with the goal of better aggregating and reordering requests. It also tries to main-
tain fairness across applications. However the proposed solution does not take into account
each application’s available resources and required I/O efficiency and does not check the
availability of the file system to potentially change the application’s behavior.

6.4.3 Application-Aware I/O Scheduling

Some research efforts consider information from the application level in order to improve
their scheduling strategies.

Qian et al. [109] present a network request scheduler built in Lustre [22]. They propose
to associate deadlines to requests, as well as their targeted object’s identifier, in order to
first service requests belonging to the same object while preventing starvation by taking
deadlines into account. They propose to dynamically adapt the deadline value depending

106
Chapter 6 – CALCioM: Mitigating I/O Interference through Cross-Application

Coordination

on the load on the file system, and to add mandatory deadlines for requests that correspond
to critical I/O operations (a cache becoming full in the client, for instance). The same goal
is achieved by Song et al. [120], with an application’s id instead of an object id. The use of
deadlines helps avoiding starvation but does not aim to reduce interference in any ways. The
information leveraged from clients is also very rudimentary. In contrast, exposing the I/O
behavior of applications in CALCioM allows CALCioM to know precisely in which order
the requests have to be issued and serviced for best overall performance.

Zhang et al. [148] propose to coordinate the schedulers of each data server in order to
meet QoS requirements set by each application in terms of application run time. The re-
quired application run time is converted into bandwidth and latency bounds through ma-
chine learning techniques. The application I/O behavior must be extracted from a first run
on a dedicated platform. I/O schedulers in data servers then allocate time windows to serve
one application at a time in a coordinated manner. Our approach does not require machine
learning techniques but requires information sharing between applications. We also aim to
improve machine-wide efficiency instead of improving the QoS of single applications.

Closer to our approach is the work from Batsakis et al. [4], where the observation is
made that different clients with different resource usage should be serviced differently by
the file system. In there solution, clients price their requests depending on their ability to
delay them (which depends on the memory usage on the client). The server also prices
all requests based on its own availability. An auction mechanism is then implemented to
chose whether a request should be serviced or delayed. This mechanism is constrained to
asynchronous requests and involves communications between the client and the server to
set up the auction. Our approach does not assume asynchronous requests.

Tanimura et al. [124] propose to reserve throughput from the storage system. Their sys-
tem is implemented in the Papio file system. Applications have to define their requirements
in terms of throughput either when submitting a job or at run time, and the level of service
is controlled by a centralized manager. Reserving throughput may not be an effective way
of improving machine wide efficiency, as it locks resources while most applications have a
periodic behavior, alternating between I/O intensive phases and computation phases dur-
ing which no I/O is performed. We approached the problem in a different way by giving the
maximum performance possible to all applications, and by resolving interferences as they
occur based on a specified metrics of platform efficiency.

Zhang et al. [146] propose an approach that couples the I/O scheduler and process sched-
uler on compute nodes. When an application becomes I/O intensive, processes fork to cre-
ate new processes that executes the same code only to retrieve information on the future
I/O requests that will be issued. These pre-execution processes are then killed and the main
processes can leverage knowledge from their own future I/O requests. Their implemen-
tation is done under MPI-I/O and in PVFS. This techniques is complementary to our ap-
proach; it manages to give a prediction of future I/O behavior that could then be leveraged
by CALCioM. Another techniques that does not require to spawn additional processes will
be proposed in the next chapter.

To our knowledge, none of the existing approaches to I/O scheduling and I/O optimiza-
tions leverage both the facts that (1) applications can themselves communicate with one
other and self-coordinate and (2) applications have different constraints related to their re-
sources usage, I/O load and behavior, which should be taken into account when targeting
machine wide efficiency.

6.5 – Conclusion 107

6.5 Conclusion

Distributed systems are by nature subject to concurrency. Performance variability as a con-
sequence of resource sharing is a well-known problem in cloud computing, for example.
Cloud users share not only network bandwidth, but also the hardware on which their VMs
run [88]. In this context, performance guarantees are part of the service-level agreement that
also defines the pricing model of the platform; hence, interference has economical conse-
quences. Pu et al. [107], for example, provide a study of interference specifically for I/O
workloads in the cloud.

In the supercomputing community however, the lack of an underlying pricing model,
along with the fact that computing resources are fully dedicated to a single job at a given mo-
ment, did not motivate much analysis of cross-application interference. Yet cross-application
contention is mentioned by Skinner and Kramer [117] as one of the five main causes of per-
formance variability in HPC systems, in particular at the level of parallel file systems, which
remains the main shared resource of the platform and thus the main point of contention be-
tween applications. In their own words, cross-application contention is in fact one of the most
complex manifestations of performance variability on large-scale parallel computers.

Uselton et al. [134] also mention that the high variability observed in the I/O perfor-
mance of HPC applications is caused by factors coming from both inside and outside the
application, which makes its analysis even more challenging.

Cross-application interference in HPC systems, and more particularly in their I/O sys-
tem, is therefore an important problem that can affect the efficiency of the entire machine.
This problem will be even more important with Exascale machines that will allow running
more applications in a concurrent manner. In this chapter we explored the effect of cross-
application contention on their I/O performance. We propose the CALCioM approach,
which provides a means by which independent applications can communicate with one
another in order to coordinate their I/O strategy, targeting system wide efficiency. We il-
lustrated the usefulness of our approach through experiments on two platforms: Argonne’s
Surveyor and the French Grid’5000 testbed. For example, CALCioM is able to prevent a
14× slowdown of a small application competing with a larger one, at a negligible cost for
the latest, by allowing the interruption of its ongoing I/O operations. CALCioM opens a
wide range of new possible scheduling optimizations through the sharing of I/O proper-
ties between applications. We intentionally focused our study on interference between two
applications only, as displaying interference factors in the context of more than two applica-
tions is arguably difficult.

An important limitation of CALCioM was described in Section 6.2.3: CALCioM requires
a global view of the I/O behavior of the application and thus, the I/O stack has to be in-
strumented at each level, from the application down to the low-level POSIX and MPI-I/O
layers. Additionally, we left aside the question of how an application knows about its own I/O,
assuming that this question could be partially answered at each level of the I/O stack. In the
following chapter, we provide an answer to this question through the Omnisc’IO approach,
which transparently captures and models any HPC application’s I/O behavior.

109

Chapter 7
Modeling and Predicting I/O: the

Omnisc’IO Approach

Contents
7.1 Limitations of Current Approaches to I/O Prediction 110
7.2 The Omnisc’IO Approach . 112

7.2.1 Overview of Omnisc’IO . 112
7.2.2 Algorithmic and Technical Description 113

7.3 Experimental Evaluation . 119
7.3.1 Platform and Applications . 119
7.3.2 Experiments . 120
7.3.3 Results Discussion . 120
7.3.4 Limitations of Our Approach . 131

7.4 Discussion and Related Work . 131
7.4.1 Grammar-based Modeling . 131
7.4.2 I/O Patterns Prediction . 132

7.5 Conclusion . 134
7.5.1 Achievements of the Omnisc’IO Approach 134
7.5.2 Omnisc’IO as a Building Block for a Smart I/O Stack 134

THE effectiveness of an approach like CALCioM, presented in the previous chapter,
strongly depends on a certain level of knowledge of the I/O access patterns. As ex-
plained in Chapter 2, this kind of knowledge can also be useful to other techniques

such as prefetching, caching, and scheduling [47, 131]. Prefetching and caching indeed re-
quire the location of future accesses (i.e., spatial behavior), while I/O scheduling leverages
estimations of I/O requests interarrival time (i.e., temporal behavior). For example, the

110 Chapter 7 – Modeling and Predicting I/O: the Omnisc’IO Approach

work by Boito et al. [143] shows a 46.3% performance improvement when the file system’s
I/O scheduler leverages trace-based prediction of future access patterns. The key challenges
inherent in these techniques thus include the proper comprehension and exploitation of the
application’s I/O behavior within the I/O stack itself [48, 47]. This makes modeling and pre-
dicting the applications’ I/O behavior of utmost importance.

7.1 Limitations of Current Approaches to I/O Prediction

Most of the works aiming to predict the I/O patterns of HPC applications either predict the
spatial location of future accesses, or their date, but rarely both at the same time. Addition-
ally, many of them do not work without prior knowledge of the applications: they either
require trace-based offline training or multiple pre-executions of the application to build an
accurate model. Table 7.1 lists a number of such approaches. While our proposed approach
is not the only one to satisfy all criteria, the approach proposed by Zhang et al. [146] have
some drawbacks that will be discussed in Section 7.4.

Our work addresses the limitations of current prediction systems and takes a step for-
ward toward intelligent I/O management of HPC applications in next-generation post-
Petascale supercomputers [55] that is capable of run-time analysis and adaptation to the
I/O behavior of applications. To this end, this chapter presents the design and implemen-
tation of Omnisc’IO, a grammar-based approach for modeling the I/O behavior of any HPC
application. Omnisc’IO leverages this model to predict when future I/O operations will oc-
cur (i.e., predict the inter-arrival time between I/O requests), as well as where and how much
data will be accessed (i.e., predict the file being accessed as well as the location – offset and
size – of the data within this file).

The intuition behind Omnisc’IO is that, on one hand, while statistical models are ap-
propriate mostly for phenomena that exhibit a random behavior, the (mostly) deterministic
behavior of HPC applications, inherent from their code structure, makes other representa-
tions of their I/O behavior possible. On the other hand, formal grammars, as natural models
to form a sequence of symbols, have been widely applied to areas of text compression, natu-
ral language processing, music processing, and macromolecular sequence modeling [62, 91].
Therefore, an approach based on formal grammars is suitable for I/O behavior modeling,
since it detects the hierarchical nature of the code that produced the I/O patterns, with its
nested loops and stacks of function calls. To the best of our knowledge, grammar-based models
have never been used in the context of HPC applications. Omnisc’IO is the first prediction system
that adopts this appealing approach.

Omnisc’IO solves the main limitation of CALCioM, which requires that every level of
the I/O stack be instrumented with CALCioM’s functions in order to provide information
on the I/O behavior of the application. In contrast, Omnisc’IO is transparently integrated into
the POSIX and MPI I/O stacks and does not require any modification in applications or higher-
level I/O libraries. It works without any prior knowledge of the application, and it converges to
accurate predictions of the I/O behavior within a couple of iterations of the simulation. Omnisc’IO
can be applied at the core of many I/O optimizations, including CALCioM but also any
prefetching, caching, or scheduling system as well.

In order not to undermine the generality of our approach, this chapter does not present
the use of Omnisc’IO in a particular context (i.e., prefetching, caching, or scheduling). The

7.1 – Limitations of Current Approaches to I/O Prediction 111

Table 7.1: List of approaches to I/O prediction, with the nature of the predictions (temporal
or spatial), run-time learning of the model, underlying method and subsequent usage.

A
pp

ro
ac

h
Te

m
po

ra
lp

re
d.

Sp
at

ia
lp

re
d.

R
un

-t
im

e
le

ar
ni

ng
M

et
ho

d
U

sa
ge

O
ly

an
d

R
ee

d
[9

4]
N

o
Ye

s
N

o
(t

ra
ce

-b
as

ed
)

M
ar

ko
v

m
od

el
s

Pr
ef

et
ch

in
g

C
he

n
et

al
.[

15
]

N
o

Ye
s

Ye
s

Sp
ec

ul
at

iv
e

ex
ec

ut
io

n
Pr

ef
et

ch
in

g
H

e
et

al
.[

47
]

N
o

Ye
s

N
o

(s
ev

er
al

ru
ns

)
K

no
w

le
dg

e
gr

ap
hs

Pr
ef

et
ch

in
g

K
ro

eg
er

an
d

Lo
ng

[6
4]

N
o

Ye
s

Ye
s

Pa
rt

it
io

ne
d

co
nt

ex
tm

od
el

in
g

N
on

e
G

ni
ad

y
et

al
.[

41
]

N
o

Ye
s

Ye
s

St
ac

k
fr

am
es

C
ac

hi
ng

M
ad

hy
as

th
a

N
o

Ye
s

N
o

(t
ra

ce
-b

as
ed

)
N

eu
ra

ln
et

w
or

ks
N

on
e

an
d

R
ee

d
[8

0]
N

o
(s

ev
er

al
ru

ns
)

H
id

de
n

M
ar

ko
v

m
od

el
s

H
e

et
al

.[
48

]
N

o
Ye

s
Ye

s
LZ

77
-i

ns
pi

re
d

Pr
ef

et
ch

in
g

Tr
an

an
d

R
ee

d
[1

31
]

Ye
s

N
o

Ye
s

A
R

IM
A

m
od

el
s

Pr
ef

et
ch

in
g

By
na

et
al

.[
9]

Ye
s

Ye
s

N
o

(s
ev

er
al

ru
ns

)
I/

O
si

gn
at

ur
es

Pr
ef

et
ch

in
g

Z
ha

ng
et

al
.[

14
6]

Ye
s

Ye
s

Ye
s

Pr
e-

ex
ec

ut
io

n
pr

oc
es

s
Sc

he
du

lin
g

O
m

ni
sc

’I
O

Ye
s

Ye
s

Ye
s

Se
qu

it
ur

gr
am

m
ar

s
N

on
e

112 Chapter 7 – Modeling and Predicting I/O: the Omnisc’IO Approach

Figure 7.1: Overview of the Omnisc’IO approach, its architecture (bottom) and integration
within the I/O stack (top).

previous chapter already demonstrated the benefits of exposing an application’s I/O be-
havior in the context of cross-application coordination. Other researchers have shown the
benefits of applying I/O predictions to enhance the performance in prefetching, caching, or
scheduling techniques [94, 131, 9, 80]. We focus our study on the prediction capabilities of
Omnisc’IO rather than its effective application in any of the aforementioned optimizations.

7.2 The Omnisc’IO Approach

This section first gives an overview of Omnisc’IO, then dives into its technical and algorith-
mic details.

7.2.1 Overview of Omnisc’IO

Figure 7.1 presents an overview of Omnisc’IO. Omnisc’IO captures each atomic request to
the file system (open, close, read, write) in a transparent manner within the POSIX and
MPI-I/O layers, without requiring any change in the application or I/O libraries. At each
operation, Omnisc’IO operates as follows.

7.2 – The Omnisc’IO Approach 113

1. The context in which the operation is executed is extracted by recording the call stack
of the program (upper-left part of Figure 7.1). This is a known techniques [41] that
helps to capture the structure of the code that issues the I/O operations. The context is
abstracted as a context symbol (a in the figure).

2. A grammar-based model of the stream of context symbols (upper-right part of Om-
nisc’IO’s architecture in Figure 7.1) is updated by using the Sequitur algorithm. Se-
quitur has been applied to text compression in the past [62] because of its ability to
detect several occurrences of substrings in a text and to store them into grammar rules.
We have adapted it to model the repetitive behavior of an HPC application, repre-
sented as a stream of context symbols. The application of Sequitur to the field of appli-
cation behavior modeling is novel and constitutes part of our contribution.

3. Spatial (size, offset, file) and temporal (interarrival time) access patterns are recorded in
tables associating context symbols or transitions among symbols with access patterns
(lower-left part of the architecture in Figure 7.1). The intuition is (for the example of the
access size) that a given context symbol will often be associated with the same access
size or with a reduced number of sizes whose sequence can also be learned.

4. We improved on the Sequitur algorithm to make predictions of future context symbols.
It then becomes easy to predict the characteristics of future accesses by looking up the
access patterns associated with the predicted context symbols in the aforementioned
tables (lower-right part of Figure 7.1) Turning Sequitur into a prediction system is a
challenge that, to the best of our knowledge, has never been addressed before. The
algorithmic details of our prediction model therefore constitutes another important
part of our contribution.

7.2.2 Algorithmic and Technical Description

As shown in Figure 7.1, Omnisc’IO is integrated within the POSIX I/O layer and in MPI-I/O.
The following sections provide more details on the four steps described above.

Tracking Applications’ Behavior

To give a context to each atomic I/O operation, we use the libc backtrace function to retrieve
the list of stacked program counters (array of void* pointers). When called within a function
f, this list of addresses represents the series of return addresses that leads from f back to
main. Different calls to f in distinct places in the program (or libraries) lead to different
call-stack traces. Omnisc’IO calls backtrace within wrappers of atomic I/O functions, stores
the returned array in a dictionary, and associates it with a unique integer. In the following,
such integers are called context symbols and represent the context in which an I/O operation
occurs.

Omnisc’IO is based on the observations that (1) a particular context is likely to be asso-
ciated with fixed parameters (e.g., two calls to write within the same context are likely to
involve the same amount of data); (2) transitions between two contexts can also be associated
with fixed parameters (tracking the evolution of the offset can be done by tracking transi-
tions between contexts) and with little-varying transition times; and, most importantly, (3)

114 Chapter 7 – Modeling and Predicting I/O: the Omnisc’IO Approach

the stream of context symbols is eventually predictable, and a model of it can be built at run
time.

In our prototype, we overloaded the POSIX I/O functions (write, read...) and the libc
functions (fwrite, fread...) using a preloaded shared library. In MPI-I/O we added an
intermediate layer within the ADIO layer in ROMIO, a popular implementation of MPI-
I/O [126], to track the lowest-level I/O functions that access files metadata (open, close...)
and atomic functions that access contiguous blocks of data and that are used by more elabo-
rate I/O algorithms.

While working at the lowest level of the I/O stack is necessary to capture the I/O behav-
ior at a fine grain (i.e., a series of atomic requests to the file system), the use of backtraces
lets Omnisc’IO have an information also on the upper layers that issued the I/O, including
I/O middleware, libraries and finally the application itself. This is specifically what allows
Omnisc’IO to overcome the limitation of CALCioM, shown in Chapter 6, which required an
instrumentation of each and every layer of the application’s I/O stack by its developers.

Learning the Grammar of the Application: While capturing a stream of symbols repre-
senting the behavior of the application, we aim to predict the next symbols given past ob-
servations. Omnisc’IO models the stream of symbols using a context-free grammar. This
grammar is learned at run time using an algorithm inspired by Nevill-Manning and Wit-
ten’s Sequitur algorithm [92].

As background, a context-free grammar G is a quadruple (Σ, V,R, S), where Σ is a finite
set of terminal symbols (in our case the symbols defined by the call stack traces); V is a finite
set of non terminal symbols disjoint from Σ;R is a finite relation from V to (V∪ Σ)∗, usually
written as a set of rules in the form A→ x1...xk, where xi ∈ (V∪ Σ); and S ∈ V is a starting
symbol. In the following, we call xi the nested symbols of A.

Sequitur builds a context-free grammar from a stream of symbols by updating the gram-
mar at each input. It starts with a single rule S. At each new input x, it appends x to the end
of rule S and recursively enforces two constraints:

Digram uniqueness: Any sequence of two symbols ab ∈ (V ∪ Σ)2 (digram) cannot
appear more than once in all rules. If one does, a new rule R→ ab is created and replaces
all instances of the digram ab, and the constraints are enforced recursively.

Rule utility: All rules should be instantiated at least twice. If a rule appears only
once, its instance is replaced with the content of the rule, the rule is deleted, and the
constraints are enforced recursively.

Examples of context-free grammars are given in Table 7.2, some of which violate the
Sequitur constraints. In the following, the grammar built from the context symbols is called
the main grammar of Omnisc’IO. Sequitur has a linear worst-case complexity both in space
and in time.

7.2 – The Omnisc’IO Approach 115

Table 7.2: Examples of context-free grammars. Lowercase letters represent terminal sym-
bols, while uppercase letters represent rules and their instances. Example 1 is correct from a
Sequitur perspective. Example 2 violates the rule utility (rule A is used only once; it should
be deleted an its only instance should be replaced with its content). Example 3 violates the
digram uniqueness (digram ab appears twice; a new rule B → ab can be created to replace
it).

Example 1 Example 2 Example 3
S→ abAAe S→ abAe S→ ababAAe
A→ cd A→ cd A→ cd

Predictions Using the Grammar Model: Sequitur builds a grammar from a stream of sym-
bols, but it does not predict the next incoming symbols from past observations. Therefore,
we enriched the algorithm to be able to make such a prediction.

This improvement works by marking some of the terminal symbols in the grammar as
predictors. This predictor characteristic is extended to non terminal symbols by using the
following constraints:

Predictor nesting: A non terminal can be a predictor only if at least one of its nested
symbols is a predictor.

Predictor utility: If symbol x (terminal or not) is a predictor in rule Y 6= S, then there
exists at least one rule Z such that an instance of Y is a predictor in Z.

These constraints enforce that (1) if the grammar contains at least one predictor, then rule
S contains at least one predictor, and (2) all the terminal predictors of the grammar can be
reached from a predictor in S (proofs of these properties are trivial). The relations linking
predictors together form a direct acyclic graph within the tree structure of the grammar.
These two structural properties have to be carefully preserved when updating the grammar.

In order to make predictions from the set of predictors, two operations are defined, re-
spectively, to update the set of predictors and to find new ones.

Updating predictors: We call incrementing a predictor the operation that consists of unmark-
ing a symbol previously marked as a predictor and marking as a predictor the symbol
that immediately follows it in the rule where it appears. Updating predictors consists
of first unmarking all terminal predictors that did not correctly predict the last input,
enforcing the predictor’s constraints, and then incrementing all remaining terminal
predictors. If a predictor is the last symbol of a rule, then non terminal predictors
that reference it are incremented recursively. Examples of this operation are shown in
Table 7.3, where predictor symbols are marked in red and underlined.

Discovering predictors: If all predictors have been removed because none of them correctly
predicted the last input, a new step is necessary to rebuild a set of predictors. This step

116 Chapter 7 – Modeling and Predicting I/O: the Omnisc’IO Approach

Table 7.3: Predictors incrementation matching a given input. The predictors are marked
in red and underlined. In the first input, a does not match and disappears from the set
of predictors, c matches and is incremented to d, and A stays a predictor. In the second
example, d matches but has no successor in rule A; thus A is incremented to e in rule S. The
resulting models correspond to the grammars before the input is appended and Sequitur’s
constraints are applied.

Before Update Input After Update
S→ abAAe c S→ abAAe
A→ cd A→ cd
S→ abAAe d S→ abAAe
A→ cd A→ cd

Table 7.4: Discovery of new predictors matching the last input (b, appended at the end of
rule S). The predictors are marked in red and underlined. The symbol b becomes a predictor
wherever it appears, and recursively any rule that leads to an occurrence of b becomes a
predictor. The predictors are then updated to predict the next expected input (here c or e).

Before Discovery After Discovery After Update
S→ abAAeb S→ abAAeb S→ abAAeb
A→ cdb A→ cdb A→ cdb

is completed by navigating through the grammar and setting as predictors all symbols
matching with the last symbol of rule S (after insertion of the last input). Parent rules
are also set as predictors recursively wherever they appear. Note that the last symbol of
rule S may be a non terminal, which forces new predictors to be searched only within
the context of its corresponding rule and thus reduces the number of predictors and
narrows down the prediction. An example of this operation is shown in Table 7.4.
After the discovery of these new predictors, an update is necessary.

The prediction of the model corresponds to the set of terminal symbols marked as pre-
dictors after inserting a new input, updating the predictors, and enforcing the constraints.
Although statistical methods could be used to weight each predicted symbol with a proba-
bility of appearance, considering equal probability for all predicted symbols appeared to be
sufficient to achieve good results in our experiments.

To implement our algorithm, we reused the simple C++ code provided by the authors of
Sequitur.1 For comparison, the original code has 358 lines, whereas our improved version
has 982 (without counting the I/O wrappers and the code related to access tables, which is
explained later).

1http://www.sequitur.info/sequitur_simple.cc

http://www.sequitur.info/sequitur_simple.cc

7.2 – The Omnisc’IO Approach 117

Context-aware Access Behavior

The final step in Omnisc’IO is the actual bookkeeping of per-context access behavior. This is
done differently for each type of tracked metrics.

Tracking Access Sizes: Access sizes are tracked on a per-context-symbol basis, so that pre-
dicting the next context symbol helps predicting the next access size. As will be shown in
Section 7.3, most context symbols are always associated with the same access size each time
they are encountered in an execution, making it easy to predict the exact size of the next
accesses given a correct prediction of the next context symbols.

For the minority of symbols associated with several access sizes, Omnisc’IO keeps track
of all access sizes encountered and builds a grammar from this sequence of sizes. The sizes
constitute the terminal symbols of this grammar, which we call a local size grammar. The local
size grammar associated with a context symbol is updated whenever the context symbol is
encountered, and it evolves independently of the main grammar and independently of local
size grammars attached to other symbols. It can then be used to make predictions of the size.

If the number of different access sizes observed for a given symbol is too large (typi-
cally larger than a configurable constant N), the local size grammar is replaced with simple
average, minimum and maximum values that are updated whenever the context symbol is
encountered. For our experiments, after analyzing the distributions of different access sizes
per symbol, we choose N = 24.

More elaborate methods could be implemented to predict the access sizes for context
symbols that exhibit apparently random sizes. We show in Section 7.3, however, that the
three cases presented above have been sufficient to cover the behavior of all our applications.

Tracking Offsets: Many prefetching systems, including those implemented in the Linux
kernel [139], are based on the assumptions of consecutive accesses; that is, the next operation
is likely to start from the offset where the previous one ended. As we will show in our
experiments, this assumption is held for the POSIX-based applications that we tested, but
it fails for applications that use a higher-level library such as HDF5. Indeed such libraries
often move the offset pointer backward or forward to write headers, footers, and metadata.

To predict the offset of the next operation, we define the notion of offset transformation. An
offset transformation can (1) leave the offset as it was at the end of the previous operation
(consecutive access transformation), (2) set it to a specific absolute value (absolute transforma-
tion), or (3) set it a value relative to the offset after the previous operation (relative transfor-
mation). Since it is not possible at low level to distinguish between absolute and relative
transformations, Omnisc’IO uses absolute transformations only for operations that reset the
offset to 0 (open and close). All other nonconsecutive offset transformations are considered
relative to the previous offset.

Omnisc’IO associates transitions between context symbols with offset transformations
the same way it associates context symbols with access sizes. For instance, if symbol B
follows A in the execution and A left the offset at a value from which B starts, then the
transition A → B is associated with a consecutive access transformation. When a transition
encounters different types of offset transformations, Omnisc’IO builds a local offset grammar
for the transition. Local offset grammars are the counterpart of local size grammars for offset

118 Chapter 7 – Modeling and Predicting I/O: the Omnisc’IO Approach

transformations. If the grammar associated with a transition grows too large (more than 24
symbols in our experiments), Omnisc’IO switches back to always predicting a consecutive
offset transformation for this transition of context symbols.

Tracking Files Pointers: In order for the prediction of offsets to work properly, Omnisc’IO
needs to know that two consecutive operations work on the same file or that an operation
works on a new file or a file that has already been accessed earlier. This is particularly
important when accesses to multiple files interleave. The prediction of files accessed is done
by recording opened file pointers and associating transitions between symbols with changes
of file pointers. Since in our experiments the case of interleaved accesses to different files did
not appear, we will not study this particular aspect further.

Tracking Interarrival Times: To keep track of the time between the end of an operation
and the beginning of the next one, Omnisc’IO uses a table associating transitions between
context symbols with statistics on the measured time. These statistics include the minimum
and maximum observed, the average, and the variance. We prefer these statistics rather
than keeping only the average because they represent the minimum required to answer (1)
whether an operation will immediately follow (maximum, minimum, average, and vari-
ance close to 0); (2) whether the next operation will follow in a predictable amount of time
(maximum, minimum, and average close to each other, small variance); or (3) whether the
time before the next operation is more unpredictable or depends on parameters that are not
captured by our system (large minimum-maximum interval, large variance). Thus, these
statistics, while minimal, are able to give us confidence in the predicted interarrival time,
which may be important in the context of scheduling, for example.

To quickly react to changes in interarrival times, Omnisc’IO also keeps a weighed inter-
arrival average time, updated every time the transition between symbols is encountered by
using the following formula,

T̂weighed
x→y ←

T̂weighed
x→y + T

2
, (7.1)

where x → y is the observed transition between context symbols x and y and T is the mea-
sured interarrival time. This weighed average is more efficient at making predictions of
interarrival time, especially in a context where this interarrival time varies a lot between
different observations of the same transition.

Overall Prediction Process and API

At each operation, Omnisc’IO updates its models (the main grammar and the tables of access
sizes, offset transformations and interarrival times). It then updates its predictors and builds
the set of possible next context symbols (this set often consists of a single prediction). From
these possible next symbols, a set of triplets (size, offset, date) is formed that can be used by
scheduling, prefetching, or caching systems. Although this kind of prediction can easily
be extended to the series of N next I/O operations, our experiments will focus only on the
capability of Omnisc’IO to predict the next one.

7.3 – Experimental Evaluation 119

Application Field I/O Method I/O Behavior
HDF5+POSIX One file per process, same

CM1 Climate HDF5+MPI-I/O I/O behavior in each process,
HDF5+Gzip same domain size per process.

GTC Fusion POSIX One file per node per iteration,
number of particles varies.

Nek5000 Fluid Dynamics POSIX I/O phase executed by rank 0
after a reduce phase.

LAMMPS Molecular Dynamics POSIX I/O phase executed by rank 0
after a reduce phase.

Table 7.5: List of applications used in our experiments and their I/O backends.

To use Omnisc’IO, any software aiming at optimizing I/O simply needs to be linked
against the Omnisc’IO library and to call the following function:

int omniscio_next(omniscio_req** prediction, int* n)

This function allocates the prediction array and fills it with a set of predicted request struc-
tures (including the size, offset, and date) representing the expected next I/O accesses.

7.3 Experimental Evaluation

In this section, we evaluate Omnisc’IO with real applications. We first assess its capability
to predict the next context symbols, and we show how the grammar grows in size as the
application continues to run. We then evaluate its performance in predicting the spatial and
temporal characteristics of the next operations.

7.3.1 Platform and Applications

Grid’5000

All our experiments are carried out at the Nancy site of the French Grid’5000 testbed [6]. The
applications run on griffon, a Linux cluster consisting of 92 Intel Xeon L5420 nodes (8 cores
per node, 736 cores in total), using Mpich 3.0.4. The OrangeFS 2.8.7 parallel file system [12]
is deployed on 12 nodes of the graphene cluster, which consists of Intel Xeon X3440 nodes.
All nodes, including the file system’s, are interconnected through a 20G InfiniBand network.
Grid’5000 was selected because it gives us a complete control over the software stack. In
particular, our experiments required the modify the code of Mpich to integrate Omnisc’IO,
a modification that can hardly be done on a production machine.

Applications

The list of applications used is presented in Table 7.5. These applications are real-world
codes representative of applications running on current supercomputers. They have been

120 Chapter 7 – Modeling and Predicting I/O: the Omnisc’IO Approach

used on NCSI’s Kraken [63] and NCSA’s Blue Waters [5] for CM1, ORNL’s Titan [129] for
GTC and LAMMPS, and ANL’s Intrepid and Mira [83] for Nek5000.

We run these applications on 512 cores of Grid5000, except for Nek5000, which we run
on 32 cores. These applications are written in Fortran except for LAMMPS (C++). Most
of them use a POSIX I/O interface. To show the generality of our approach with respect
to higher level I/O libraries, CM1 [8, 7] (already extensively used in Chapters 3 to 5) uses
the HDF5 I/O library over the default (POSIX) I/O driver, as well as the MPI-I/O driver
provided by pHDF5, and Gzip compression over the default POSIX driver. CM1 writes one
file per process per I/O phase. The domain decomposition in CM1 is such that the amount of
data remains the same over time and across processes. The use of compression exemplifies
the case of varying data size in a nonvarying domain decomposition. GTC [43] writes one
file per node per iteration, but the amount of data varies between files as particles move
from one process to another. Like CM1, the domain decomposition in Nek5000 [98] does
not vary over time, but the I/O phase is executed only by the rank 0 after a reduce phase.
LAMMPS [66, 105] also sends data to the rank 0 process only. This process then writes each
set of particles (of potentially different sizes) contiguously in a single file.

Although in CM1 and GTC all processes write data, we consider the results of Omnisc’IO
only on process rank 0 (for applications that issue I/O from all processes, these results are in
fact identical in all processes as they execute the same code and thus exhibit the same behav-
ior). We first evaluate how well our algorithm manages to predict future context symbols
based on past observations. We then evaluate the ability of Omnisc’IO to predict the location
(offset and size in the file) of the next I/O operations. We also evaluate its ability to predict
when future accesses will happen.

7.3.2 Experiments

Our experiments consist of running each application, and at each I/O operation use Om-
nisc’IO to predict the characteristics of the next operation, that is, the date, the location and
size, and the symbol. This prediction is then compared with the observed next operation.

7.3.3 Results Discussion

Context Prediction

Since Omnisc’IO is based on predicting context symbols, our first analysis aim to show how
well it performs this task. We use a sliding window of ten operations and report the percent-
age of correct predictions. When Omnisc’IO predicts several possible next symbols, they are
weighed as 1

number of predicted symbols . For instance if Omnisc’IO predicts that the next symbol

will be either a or b and the real next symbol is b, then this prediction is weighed 1
2 . For CM1

and GTC, which run for long periods of time, we show only several iterations starting from
the beginning of the run.

Results: Figure 7.2 shows the context prediction capabilities of Omnisc’IO for all six use-
cases. For all three configurations of CM1 as well as for LAMMPS and GTC, Omnisc’IO con-
verges to a perfect (steady 100%) prediction of symbols after the first iteration. The variation

7.3 – Experimental Evaluation 121

 0

 20

 40

 60

 80

 100

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

P
re

d
ic

ti
o
n
 %

Operations

(a) CM1+POSIX

 0

 20

 40

 60

 80

 100

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

P
re

d
ic

ti
o
n
 %

Operations

(b) CM1+Gzip

 0

 20

 40

 60

 80

 100

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

P
re

d
ic

ti
o
n
 %

Operations

(c) CM1+MPI-I/O

 0

 20

 40

 60

 80

 100

 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

 1
60

00

P
re

d
ic

ti
o
n
 %

Operations

(d) Nek5000

 0

 20

 40

 60

 80

 100

 0

 1
00

00

 2
00

00

 3
00

00

 4
00

00

 5
00

00

 6
00

00

 7
00

00

 8
00

00

 9
00

00

 1
00

00
0

P
re

d
ic

ti
o
n
 %

Operations

(e) GTC

 0

 20

 40

 60

 80

 100

 0

 5
00

0

 1
00

00

 1
50

00

 2
00

00

 2
50

00

P
re

d
ic

ti
o
n
 %

Operations

(f) LAMMPS

Figure 7.2: Context prediction capability of Omnisc’IO over the run of each application.
Configurations (a), (b), (c), (e), and (f) exhibit a clear learning phase after which Omnisc’IO
makes perfect predictions ((e) and (f) exhibit a drop of prediction at the end of the first
iteration).

122 Chapter 7 – Modeling and Predicting I/O: the Omnisc’IO Approach

observed during the first iteration corresponds to the moment the grammar starts detecting
the innermost loops.

Omnisc’IO seems to learn GTC’s behavior (Figure 7.2(e)) fast: the reason is that GTC’s
I/O phase consists of a loop over all particles, which is easily modeled in the grammar after
the first two particles are written out. The prediction quality drops at the end of the first
iteration when Omnisc’IO does not predict the end of this loop and the file being closed.
This mistake is never repeated in later iterations. The same pattern appears in LAMMPS.

The case of Nek5000 is more interesting: although it writes periodically the exact same
amount of data, the grammar model does not converge as fast and as perfectly as the other
applications. By investigating the code of Nek5000, we found that this is due to code
branches that process data in a different way depending on its content and then write it
in an identical manner, leading to the creation of several symbols that are actually inter-
changeable in the grammar. Moving the write call outside the branches would help remove
this indeterminism. Because we claimed our solution works with no prior knowledge of the
application and without the involvement of the application developer, we did not apply this
code modification.

We also observe a drop in prediction quality at the end of the LAMMPS and Nek5000
runs. This drop is due to the final results being output in a section of the code different from
the one used for the periodic checkpoints. Thus these symbols, which appear the first time
at the end of the execution could not have been predicted by any model.

Cost of a Failed Prediction

A failed prediction leads to searching new predictors within the grammar, instead of simply
updating existing ones. This operation is linear in the size of the grammar (number of sym-
bols). A failed prediction also has an effect on the system that leverages the prediction. For
instance, a prefetching algorithm would read unnecessary data and/or fail to read the data
that is actually needed by the program. The real cost would therefore depend on how much
the incorrect operation consumes resources that could be used more productively.

Grammar Size and Memory Footprint

We then estimated the memory footprint of our approach. This memory footprint, as will be
explained, is mainly dependent on the size of the grammar, which we evaluate hereafter.

Results: Figure 7.3 shows the evolution of the size of the main grammar as a function of
the number of operations. One can clearly distinguish a first learning phase during which
Omnisc’IO discovers the behavior of the application. This phase corresponds to the first
iteration (potentially preceded by an input phase). It is followed by a stationary regime during
which the model is updated in a mostly logarithmic manner. All the applications considered
here exhibit this logarithmic growth of the grammar size after the learning phase. GTC’s
grammar growth is logarithmic as well, but it exhibits a staircase pattern. This is due to a
variable number of particles written at each checkpoint, which leads to a variable number of
writes and thus prevents Omnisc’IO from grouping these writes into large rules. That said,
after 100,000 accesses the grammar has only 450 symbols.

7.3 – Experimental Evaluation 123

The memory footprint is directly linked to the size of the main grammar (a symbol in our
implementation is a 100-byte C++ object, making the grammar consume 26 KB in the case of
CM1+POSIX, for example), and the number of entries in the tables (one entry per symbol or
per transition, accounting also for a few bytes. CM1+POSIX uses 198 symbols, for example).
This part of the memory footprint does not increases after the learning phase. The memory
footprint of Omnisc’IO is thus correlated mainly with the grammar size and does not exceed
a few hundreds of kilobytes.

Prediction of Sizes

We analyzed how many different access sizes were associated with each context symbol.
We found that the vast majority of symbols were associated with just one size, potentially
different for each symbol (171 symbols out of 183 for CM1 using HDF5 are associated with
one size, and similar numbers with GZIP and pHDF5, 12 out of 17 for GTC, and all 38
of them for Nek5000). LAMMPS had the most interesting distribution, with 123 symbols
associated with a unique size (yet potentially different for each symbol), and one unique
symbol associated with a different size at almost every appearance. This distribution is
due to the fact that all n processes send their set of particles to the rank 0 process, which
writes them into a file in n successive write calls. As the number of particles varies between
processes and between checkpoints, this leads to the variation in observed sizes.

To evaluate the prediction of sizes, we use the relative error as a metric, as shown in
Equation 7.2.

Esize =
|sizep − sizeo|

sizeo
, (7.2)

where sizep is the predicted size and sizeo is the observed size. Intuitively, if the predictions
are always such that Esize ≤ ε, then allocating 1 + ε times the predicted size (in a caching
system, for example) will always be enough to cover the need for the next operation. In
a system like CALCioM, 1 + ε times the predicted size represents an upper bound of the
size expected to be accessed by a process. This information can be exchanged with other
applications for a better estimation of their potential interference.

Results: Figure 7.4 shows the relative error observed for all six cases. In all but Nek5000,
the error goes to 0 or close to 0 after the learning phase. Errors observed in Nek5000 match
the incorrect predictions of context symbols. In LAMMPS, the prediction is very close but not
equal to 0. The reason is that the number of particles written (and thus the size of each write)
varies slightly from one write to another. Thus, after trying to build a local size grammar out
of those random sizes, Omnisc’IO falls back to keeping track of the average only.

Note that the graphs are cut down to a maximum relative error of 5, whereas the ob-
served errors can be of up to several thousands. For instance, if Omnisc’IO predicts a write
or 5,000 bytes while the application actually writes only 2, the relative error is 2,499.

124 Chapter 7 – Modeling and Predicting I/O: the Omnisc’IO Approach

 0

 50

 100

 150

 200

 250

 300

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

G
ra

m
m

a
r

S
iz

e

Operations

(a) CM1+POSIX

 0

 50

 100

 150

 200

 250

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

G
ra

m
m

a
r

S
iz

e

Operations

(b) CM1+Gzip

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

G
ra

m
m

a
r

S
iz

e

Operations

(c) CM1+MPI-I/O

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

 1
60

00

G
ra

m
m

a
r

S
iz

e

Operations

(d) Nek5000

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0

 1
00

00

 2
00

00

 3
00

00

 4
00

00

 5
00

00

 6
00

00

 7
00

00

 8
00

00

 9
00

00

 1
00

00
0

G
ra

m
m

a
r

S
iz

e

Operations

(e) GTC

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0

 5
00

0

 1
00

00

 1
50

00

 2
00

00

 2
50

00

G
ra

m
m

a
r

S
iz

e

Operations

(f) LAMMPS

Figure 7.3: Evolution of main grammar size (sum of the length of each rule, in number of
symbols).

7.3 – Experimental Evaluation 125

-1

 0

 1

 2

 3

 4

 5

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

R
e
la

ti
v
e
 S

iz
e
 E

rr
o
r

Operations

(a) CM1+POSIX

-1

 0

 1

 2

 3

 4

 5

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

R
e
la

ti
v
e
 S

iz
e
 E

rr
o
r

Operations

(b) CM1+Gzip

-1

 0

 1

 2

 3

 4

 5

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

R
e
la

ti
v
e
 S

iz
e
 E

rr
o
r

Operations

(c) CM1+MPI-I/O

-1

 0

 1

 2

 3

 4

 5

 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

 1
60

00

R
e
la

ti
v
e
 S

iz
e
 E

rr
o
r

Operations

(d) Nek5000

-1

 0

 1

 2

 3

 4

 5

 0

 1
00

00

 2
00

00

 3
00

00

 4
00

00

 5
00

00

 6
00

00

 7
00

00

 8
00

00

 9
00

00

 1
00

00
0

R
e
la

ti
v
e
 S

iz
e
 E

rr
o
r

Operations

(e) GTC

-1

 0

 1

 2

 3

 4

 5

 0

 5
00

0

 1
00

00

 1
50

00

 2
00

00

 2
50

00

R
e
la

ti
v
e
 S

iz
e
 E

rr
o
r

Operations

(f) LAMMPS

Figure 7.4: Relative error in the prediction of access sizes in all simulations.

126 Chapter 7 – Modeling and Predicting I/O: the Omnisc’IO Approach

Table 7.6: Proportion of correct offset prediction using a naive contiguous offsets approach,
and using Omnisc’IO, rounded to closest 0.1%.

Application Contiguous Accesses Omnisc’IO
CM1 (POSIX) 47.4% 92.2%
CM1 (Gzip) 53.2% 83.0%
CM1 (MPI-I/O) 72.7% 98.0%
Nek5000 99.4% 99.7%
GTC 99.9% 100%
LAMMPS 99.9% 100%

Prediction of Offsets

We consider that an offset prediction is either correct or incorrect. When our algorithm
makes several predictions for the next context symbol (and therefore several predictions
of offset), correct predictions are weighed accordingly. We compare our solution with the
classical contiguous access estimation [139], which consists of always predicting that the next
offset will follow the previous access.

Results: Table 7.6 shows the proportion of contiguous accesses in our set of applications as
well as the proportion of correct predictions made by Omnisc’IO. In all cases, Omnisc’IO
achieves a better prediction of offsets than does the naive approximation based on con-
tiguous accesses. It is especially better suited when using a high-level I/O library such as
HDF5 in CM1, since it manages to model and predict the portion of accesses that are non-
contiguous. In particular, the prediction of offset in CM1 using HDF5 goes from 47.4%, when
using a contiguous access estimation, to 92.2% with Omnisc’IO.

Hit Ratio

We also combined the prediction of sizes and offsets to measure how accurately our solution
can predict the location of the next access. This information forms a predicted segment
S = Jxstart, xendK. The segment effectively accessed by the next I/O operation is denoted
S0 = Jystart, yendK. The hit ratio of S with respect to S0, denoted H(S|S0), is computed using
Equation 7.3.

H(S|S0) =

100× |S ∩ S0|

max(xend, yend)−min(xstart, ystart)

100 if S = S0 = ∅
(7.3)

This metrics yields the percentage of overlap between the two segments with respect to
the distance between their extrema: H(S|S0) = 100 ⇐⇒ S = S0. Since our approach
may propose several potential next locations, this formula is extended to multiple segment
S1 . . . Sn by considering the average of H(Si|S0) for i ∈ J1, nK.

7.3 – Experimental Evaluation 127

Table 7.7: Average hit ratio achieved by Omnisc’IO, rounded
to closest 0.1%.

Application Hit Ratio
CM1 (POSIX) 84.6%
CM1 (Gzip) 79.5%
CM1 (MPI-I/O) 96.0%
Nek5000 98.6%
GTC 100%
LAMMPS 99.4%

Results: Figure 7.5 shows the results obtained with our simulations, and Table 7.7 presents
the average hit ratio over the course of the entire run for each application. Note that for
CM1+POSIX and CM1+MPI-I/O, Omnisc’IO holds a perfect hit ratio after the learning
phase. Although the hit ratio in LAMMPS also seems to be perfect, it is actually slightly
lower than 100% because of the small error made in the prediction of the size (see earlier
explanation in Section 7.3.3). The lowest hit ratio achieved in our experiments was that of
CM1+Gzip (79.5%), which, considering the study made on the prediction of offsets and sizes
in earlier sections, is explained mainly by incorrect predictions of offsets. Our guess is that
HDF5 writes compressed data by blocks of predictable size but jumps back and forth in a
more unpredictable manner to update metadata.

Temporal Prediction

Temporal prediction involves estimating the time between the end of an I/O operation and
the beginning of the next one (interarrival time). We evaluate the temporal prediction capa-
bilities of Omnisc’IO by computing the absolute difference between the predicted and the
measured interarrival times.

Results: For qualitative analysis, Figure 7.6 presents the series of observed interarrival
times between consecutive operations, along with the predictions made by Omnisc’IO. We
note that Omnisc’IO is efficient at discriminating immediate transitions (low transition times,
which can be used as a hint that two consecutive operations belong to the same I/O phase)
from distant transitions, (corresponding to computation and communication phases that last
much longer).

Figure 7.7 presents the absolute difference between observed and predicted transition
times on a logarithmic scale. For readability reasons, we consider only the 1,000 last oper-
ations of each run, that is, during the stationary regime. Table 7.8 reports the average of
absolute difference over the course of each run (in its entirety, and not restricted to the sta-
tionary regime). We also compare the performance of Omnisc’IO with the immediate reaccess
estimation used by some I/O schedulers (e.g., [147]), which consists in assuming that the
next I/O operation is likely to immediately follow the current one (i.e., interarrival time are
always estimated to 0) and use a time window during which a potential new operation is
expected). In all situations, Omnisc’IO appears to be very good at predicting the interarrival
time of I/O accesses. In particular, the average difference between the predicted and ob-
served interarrival time is bellow a microsecond for LAMMPS, and at worst 0.199 seconds
for CM1+Gzip, as opposed to 0.003 and 0.791 seconds, respectively, when considering an
immediate reaccess estimation.

128 Chapter 7 – Modeling and Predicting I/O: the Omnisc’IO Approach

 0

 20

 40

 60

 80

 100

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

H
it
 R

a
ti
o
 (

%
)

Operations

(a) CM1+POSIX

 0

 20

 40

 60

 80

 100

 0
 2

00
 4

00
 6

00
 8

00

 1
00

0

 1
20

0

 1
40

0

H
it
 R

a
ti
o
 (

%
)

Operations

(b) CM1+Gzip

 0

 20

 40

 60

 80

 100

 0

 1
00

0

 2
00

0

 3
00

0

 4
00

0

 5
00

0

 6
00

0

 7
00

0

 8
00

0

H
it
 R

a
ti
o
 (

%
)

Operations

(c) CM1+MPI-I/O

 0

 20

 40

 60

 80

 100

 0

 2
00

0

 4
00

0

 6
00

0

 8
00

0

 1
00

00

 1
20

00

 1
40

00

 1
60

00

H
it
 R

a
ti
o
 (

%
)

Operations

(d) Nek5000

 0

 20

 40

 60

 80

 100

 0

 1
00

00

 2
00

00

 3
00

00

 4
00

00

 5
00

00

 6
00

00

 7
00

00

 8
00

00

 9
00

00

 1
00

00
0

H
it
 R

a
ti
o
 (

%
)

Operations

(e) GTC

 0

 20

 40

 60

 80

 100

 0

 5
00

0

 1
00

00

 1
50

00

 2
00

00

 2
50

00

H
it
 R

a
ti
o
 (

%
)

Operations

(f) LAMMPS

Figure 7.5: Measurement of the hit ratio using Omnisc’IO to predict the location of the next
accessed segment, as a function of the number of the number of operations completed.

7.3 – Experimental Evaluation 129

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

 1
00

0

In
te

r-
a
rr

iv
a
l
ti
m

e

Operations

Predicted
Observed

(a) CM1+POSIX

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

 1
00

0

In
te

r-
a
rr

iv
a
l
ti
m

e

Operations

Predicted
Observed

(b) CM1+Gzip

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

 1
00

0

In
te

r-
a
rr

iv
a
l
ti
m

e

Operations

Predicted
Observed

(c) CM1+MPI-I/O

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

 1
00

0

In
te

r-
a
rr

iv
a
l
ti
m

e

Operations

Predicted
Observed

(d) Nek5000

 0.0001

 0.001

 0.01

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

 1
00

0

In
te

r-
a
rr

iv
a
l
ti
m

e

Operations

Predicted
Observed

(e) GTC

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

 1
00

0

In
te

r-
a
rr

iv
a
l
ti
m

e

Operations

Predicted
Observed

(f) LAMMPS

Figure 7.6: Matching between observed and predicted interarrival times of I/O events.

130 Chapter 7 – Modeling and Predicting I/O: the Omnisc’IO Approach

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

 1
00

0

D
if
fe

re
n
c
e
 (

s
e
c
)

Operations

(a) CM1+POSIX

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

 1
00

0

D
if
fe

re
n
c
e
 (

s
e
c
)

Operations

(b) CM1+Gzip

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

 1
00

0

D
if
fe

re
n
c
e
 (

s
e
c
)

Operations

(c) CM1+MPI-I/O

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

 1
00

0

D
if
fe

re
n
c
e
 (

s
e
c
)

Operations

(d) Nek5000

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

 1
00

0

D
if
fe

re
n
c
e
 (

s
e
c
)

Operations

(e) GTC

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

 1
00

0

D
if
fe

re
n
c
e
 (

s
e
c
)

Operations

(f) LAMMPS

Figure 7.7: Difference between predicted and observed interarrival times of I/O events.

7.3 – Experimental Evaluation 131

Table 7.8: Average time dif-
ference between predicted
and observed interarrival
times (rounded to closest
millisecond), and com-
parison with an immediate
re-access estimation.

Application Time Difference Immediate Reaccess
CM1 (POSIX) 0.197 sec 0.735 sec
CM1 (Gzip) 0.199 sec 0.791 sec
CM1 (MPI-I/O) 0.060 sec 0.406 sec
Nek5000 0.012 sec 0.049 sec
GTC 0.001 sec 0.006 sec
LAMMPS 0.000 sec 0.003 sec

Table 7.9: Overhead of Omnisc’IO in
the run time of each application (in
microseconds per operation).

Application Average Overhead Std. dev.
CM1 (POSIX) 20.51 µsec 18.27 µsec
CM1 (Gzip) 20.20 µsec 15.56 µsec
CM1 (MPI-I/O) 19.95 µsec 14.50 µsec
Nek5000 23.44 µsec 18.96 µsec
GTC 19.03 µsec 27.79 µsec
LAMMPS 22.10 µsec 14.72 µsec

Note that combining the prediction of interarrival times and context symbols makes it
possible to give an estimation of how many accesses will happen within a given time win-
dow and how many consecutive operations will occur before the end of the I/O phase.
This type of information is especially important in the context of approaches like CALCioM,
which needs to know when an application can be interrupted and how many accesses remain
(together with the parameters of these accesses) before the end of an I/O phase.

Run-time Overhead

The run-time overhead of Omnisc’IO on a commodity hardware is presented in Table 7.9.
This overhead of a few microseconds is negligible compared with the time taken by the I/O
operations themselves (a few milliseconds to several seconds). However, since Omnisc’IO
works at the level of atomic, contiguous operations, these I/O operations can be made asyn-
chronous to hide the overhead of Omnisc’IO behind the I/O time.

7.3.4 Limitations of Our Approach

Like all systems, Omnisc’IO has limitations. As it leans on the repetitiveness of I/O patterns,
any nonperiodic application (e.g., applications that write their results only once at the end
of their run) will make Omnisc’IO incapable of discovering repetitive structures in the I/O
pattern. To deal with such applications, however, Omnisc’IO can save its model into files
and reload it before the next run.

As noted in Section 7.3.3, Omnisc’IO is sensitive to branches in the code that depend on
the content of the data. It is arguably more difficult to solve this problem, since it would
require for Omnisc’IO to know on which specific part of the entire simulation’s data the
branch depends.

132 Chapter 7 – Modeling and Predicting I/O: the Omnisc’IO Approach

7.4 Discussion and Related Work

This section discusses related work in the context of grammar-based modeling as well as
spatial and temporal I/O prediction.

7.4.1 Grammar-based Modeling

The first work related to ours is Sequitur [92]. As explained above, Sequitur is designed to
build a grammar from a sequence of symbols and has been used mainly in the area of text
compression [62], but also natural language processing, music processing, and macromolec-
ular sequence modeling [91]. The repetitive periodic I/O behavior of HPC applications [94]
is a very good candidate application for Sequitur. To our knowledge, our approach is the
first to take advantage of a grammar-based model to not only modeling but also making
real-time predictions (through improvements of the Sequitur algorithm) of the application’s
I/O pattern.

7.4.2 I/O Patterns Prediction

Spacial and temporal I/O access prediction is a challenge commonly addressed in the con-
text of prefetching, caching, and scheduling. Prefetching and caching indeed require a pre-
diction of the location of future accesses [139], while I/O scheduling leverages estimations
of I/O requests’ interarrival time. While these domains have been investigated for decades
in the context of commodity computers [70], we restrict our study of related works mostly
to their use in the HPC area, where applications have different (mostly more regular) I/O
behavior.

Spatial Predictions

Most of the work on spatial I/O patterns predication is done to assist I/O prefetching using
various approaches, including Markov models [94], speculative execution [15], and knowl-
edge accumulation [47]. These studies require either prior knowledge of the application or
several runs before the model converges. Moreover, the predictions were evaluated by mean
of performance improvements in a particular context such as prefetching. Our work focuses
on providing a general approach that can predict both spatial and temporal I/O patterns of
any HPC applications, at run time. Its evaluation focuses on its prediction capability, and
our results can therefore be transferred to any of the aforementioned applications.

Kroeger and Long [64] studied several spatial access pattern modelings techniques, some
of which are inspired by text compression algorithms such as variants of PPM (prediction by
partial matching). The contexts (or symbols) used in these models are parameters of system-
level I/O calls (i.e., file name, offset, size, etc.). Our solution builds a model of the program’s
structure using backtraces and keeps statistics only on the access parameters. Moreover, it
can predict when the next operations are going to happen, which the aforementioned ap-
proaches cannot do.

Gniady et al. [41] also use stack frames to optimize the prediction of disk accesses, using
existing pattern prediction techniques in the operating system. Their solution is used to im-
prove caching. We designed our own prediction model based on the Sequitur algorithm that

7.4 – Discussion and Related Work 133

builds a grammar-based model of the behavior of the application, and we applied this model
not only to predict spatial access patterns, but also interarrival times of I/O operations.

Madhyastha and Reed [80] use artificial neural networks (ANNs) and hidden Markov
models (HMMs) to classify access patterns in order to improve adaptive file systems. In
their paper, the authors show that ANNs are incapable of predicting future access patterns,
while HMMs need to be trained by using access patterns from several previous executions.
Again, the challenge of predicting when future accesses will occur is not addressed. Our
solution based on grammar models is able to converge at run time without prior execution
of the application and can make predictions of both spatial and temporal access patterns.

Closer to our approach is the work by He et al. [48], who propose an approach to spatial
I/O pattern detection to improve metadata indexing in PLFS. Their approach considers a
sequence of (offset,size) access parameters and tries to find repetitive patterns in the differ-
ences between consecutive accesses, using a method inspired by the LZ77 sliding window
algorithm. They also apply their algorithm to pattern-aware prefetching. While Omnisc’IO
targets the same goal, it differs in the underlying algorithm used (Sequitur-based versus
LZ77-inspired). Our approach also leverages stack traces to build a model of the program’s
behavior, whereas the solution proposed by He et al. works on the sequence of (offset,size)
pairs.

Temporal Prediction and Scheduling

Prediction of temporal access pattern has been investigated by Tran and Reed [131] using
ARIMA time series to model inter-arrival time between I/O requests. While the authors
propose a solution that builds the model at run time, such statistical models need a large
number of observations in order to converge to a good representation and, thus, good pre-
dictions. While ARIMA-based methods are effective at file system level when no knowledge
can be retrieved from the application, we have shown that accurate predictions of interar-
rival times are possible at the application level without the need for such stochastic methods.

Byna et al. [9] propose a notation called I/O signatures to assist I/O prefetching. I/O sig-
natures describe the historic access pattern including the spatiality, request size, repetitive
behavior, temporal intervals, and type of I/O operation. I/O signatures are stored persis-
tently and can be used only in later runs. Therefore contrary to Omnisc’IO, their approach
requires at least a first run to retrieve some knowledge about the application. Addition-
ally, this a priori knowledge becomes useless if the application’s configuration or its scale
changes.

Zhang et al. [146] couple I/O schedulers with process schedulers on compute nodes.
When an application enters an I/O phase, it spawns new processes that pre-execute the code
in order to find future I/O accesses while the main processes are waiting for the first access
to complete. The knowledge of future accesses is then leveraged by the main processes.
Considering the trend toward smaller operating systems with only restricted features, this
kind of approach is likely not to be applicable in future machines with no preemptive process
scheduler. Besides, running multiple processes in a single core is likely to increase run-time
variability.

Several schedulers have been proposed that leverage some knowledge from the applica-
tions. The network request scheduler from Qian et al. [109], built in Lustre [22], associates

134 Chapter 7 – Modeling and Predicting I/O: the Omnisc’IO Approach

deadlines to requests. A similar design is proposed by Song et al. [120]. These schedulers
are not based on any prediction, however, and could be greatly improved by knowledge
extracted by Omnisc’IO on future access patterns. This knowledge can indeed help decide
which application should be given priority to access the file system given its future access
pattern. The scheduler proposed by Lebre et al. [69] aims at aggregating and reordering re-
quests while trying to maintain fairness across applications, a task that would undoubtedly
be easier with any kind of prediction of future incoming I/O requests.

7.5 Conclusion

The unprecedented scale of today’s supercomputers forces researchers to consider new ap-
proaches to data management. In particular, self-adaptive and intelligent I/O systems that
are capable of runtime analysis, modeling, and prediction of applications I/O behavior with
little overhead and memory footprint will be of utmost importance to optimize prefetching,
caching, or scheduling techniques.

7.5.1 Achievements of the Omnisc’IO Approach

Partially based on limitations of the scheduling and coordination approaches illustrated by
CALCioM in Chapter 6, and their requirement for a component that transparently provides
information on any application’s I/O behavior, we have proposed an approach to I/O pre-
dictions based on formal grammar. This approach, called Omnisc’IO, precisely addresses
the challenges of modeling and predicting the spatial and temporal access patterns of any
HPC application. Omnisc’IO builds a model of I/O behavior using formal grammars. It is
transparent to the application, has negligible overhead in time and memory, and converges
at run time without prior knowledge of the application.

Our evaluation of Omnisc’IO with four real applications, in a total of six different scenar-
ios, showed that Omnisc’IO converges quickly to a stable model capable of predicting both
the date and location of future I/O accesses, achieving a near-perfect hit ratio (from 79.5%
to 100% in our experiments) and interaccess time estimation (up to 0.199 sec of average ab-
solute difference with the observed interaccess time).

7.5.2 Omnisc’IO as a Building Block for a Smart I/O Stack

Omnisc’IO represents a step toward the smart I/O stack presented in Chapter 2. In addition
to complementing our CALCioM approach by extracting information on the I/O behav-
ior, Omnisc’IO could be used by many other techniques including prefetching, caching and
scheduling.

Additionally, Omnisc’IO produces a very compact and yet very precise model of an ap-
plication’s I/O behavior. This compact representation leveraging formal grammars makes it
very suitable for a use in discrete event simulations of large-scale HPC storage systems.

These many possible use cases makes Omnisc’IO an excellent candidate as a building
block for a smart I/O stack, that is, an I/O system that dynamically models, understands
and adapts to the behavior of the applications that use it.

7.5 – Conclusion 135

Finally, Omnisc’IO is a proof that, while I/O performance suffers from an increasing vari-
ability in post-Petascale machines, the source of this I/O activity is predictable. This regularity
can thus be leveraged in the future to achieve better I/O performance, lower I/O variability,
and maybe close the gap between computation and storage performance at Exascale.

137

Chapter 8
Conclusion and Perspectives

Contents
8.1 Achievements . 136

8.1.1 Using Dedicated Cores for Data Services in Large Scale Simulations 136

8.1.2 Addressing Cross-Application I/O interference 137

8.1.3 Predicting Spatial and Temporal I/O Patterns 137

8.2 Prospects . 138

8.2.1 Prospects Related to the Damaris Approach 138

8.2.2 Prospects Related to CALCioM and Omnisc’IO 139

AS HPC resources exceeding millions of cores become a reality, science and engineer-
ing codes invariably must be modified in order to efficiently exploit these resources.
An important challenge in maintaining high performance is the presence of high

variability in the effective I/O performance observed by large-scale simulations. This vari-
ability comes from different sources.

1. I/O contention between processes of a single application already affect the perfor-
mance of the application and the variability of this performance. With large machines
and larger simulations, it becomes necessary to find approaches that reduce the num-
ber of writers and optimize accesses to the parallel file system.

2. When coupling a simulation with a visualization software, in situ visualization tasks
tend to negatively impact the performance of the simulation. This problem is further
amplified in the context of interactive in situ visualization. It is arguably more difficult
to solve because it involves multiple components (the simulation and the visualization
software) that have to share resources efficiently without impacting each other.

138 Chapter 8 – Conclusion and Perspectives

3. Finally, I/O interference between different applications is an increasingly important
problem, as we tend to run more and more concurrent applications on post-Petascale
platforms. Contrary to the two previous sources of performance variability, I/O inter-
ference can hardly be solved simply through application-level optimizations.

Our work tackled all three aspects of this I/O performance variability in a number of
contributions that we describe in the next section. These contributions also opened new
research directions that are explained in the latest section.

8.1 Achievements

8.1.1 Using Dedicated Cores for Data Services in Large Scale Simulations

The Damaris approach: As a first step toward addressing the challenges of I/O variability
in HPC simulations, we introduced the Damaris approach. Damaris leverages the increas-
ing number of cores per node in recent supercomputers by proposing to dedicate one or a
few cores in each node for data processing and I/O. It efficiently uses shared memory as a
communication medium between cores running the simulation and dedicated cores. Addi-
tionally, its high-level, XML-based data description and its plugin system make Damaris a
very flexible tool. An implementation of Damaris was developed that is subject to a registra-
tion at the APP (Agence de Protection des Programmes). As we finish this manuscript, this
implementation reaches its version 1.0 with almost 20,000 lines of code. This implementation
was used in several contributions of this manuscript.

Hiding the I/O variability with Damaris: First, we used Damaris to offload I/O tasks in
dedicated cores, and compared the resulting performance with the two standard approaches
to I/O in HPC simulations: the file-per-process and the collective I/O approaches. By gath-
ering I/O operations in a reduced number of cores and by avoiding synchronization between
these cores, Damaris was able to completely hide all I/O-related costs, and in particular the
I/O variability. Our experiments using the CM1 atmospheric simulation on up to 9216 cores
of the Kraken supercomputer showed that Damaris can achieve a 15 times higher through-
put compared with the collective I/O approach. Damaris also dramatically reduces the ap-
plication run time. Observing that dedicated cores still remain idle a large fraction of the
time, we implemented several improvement, including an overhead-free data compression
that achieved up to 600% compression ratio.

In situ visualization support in Damaris: We further leveraged the time spared by
Damaris on dedicated cores by extending it to support in situ visualization. We evaluated
our framework, called Damaris/Viz, with the CM1 atmospheric simulation and the Nek5000
computational fluid dynamic code, on the Grid’5000 and Blue Waters platforms. We showed
that Damaris/Viz can fully hide the performance variability induced by in situ visualiza-
tion tasks, even in scenarios involving interactions with a user. Besides, Damaris/Viz re-
duces visualization-related code modifications to a minimum in existing simulations. It also
adapts to the needs of users through a unified connection with several existing visualiza-
tion packages, including VisIt. Finally, it leverages the existing double-buffering techniques
implemented in simulations to optimize its memory usage.

8.1 – Achievements 139

Investigating the tradeoffs between performance and energy consumption: Finally,
Damaris served as a framework for studying the tradeoffs between performance and en-
ergy consumption in HPC simulations. We integrated in Damaris the option to use dedi-
cated nodes instead of dedicated cores. We used the CM1 application on Grid’5000 to eval-
uate its performance and its energy consumption under various configurations of Damaris
(time partitioning, dedicated cores and dedicated nodes), and various parameters of the ar-
chitecture and the simulation, including the number of cores per node and the frequency
of output. Based on these experiments, we formulated a model of the energy consump-
tion for computation-intensive simulations when using different I/O approaches. Ou model
achieved a 96.1% average accuracy. Its validation with the CM1 application showed that it
can effectively guide the user toward the most energy-efficient configuration.

8.1.2 Addressing Cross-Application I/O interference

The main limitation of Damaris in solving the challenges of I/O interference is that it works
at the level of a single application, or in the coupling between a simulation and a visualiza-
tion software. With larger machines, more and more applications run concurrently and tend
to interfere with one another when accessing a shared parallel file system. To specifically
address this issue, we proposed the CALCioM approach.

The CALCioM approach: CALCioM consists of a communication layer across otherwise
independent applications. This communication layer enables cross-application coordination
to avoid I/O interference. In particular, we studied several coordination strategies that can
be implemented within CALCioM, as well as ways to make a dynamic selection of the best
strategy in order to optimize the efficiency of the full machine. CALCioM was evaluated
on Grid’5000 and on ANL’s Surveyor machines with the IOR benchmark. Our experiments
showed that cross-application coordination can dramatically reduce the I/O interference.
In particular, we were able to prevent a 14 times decrease of I/O performance for a small
application in contention with a bigger one, and to substantially increase the machine wide
efficiency through a dynamic selection of the best coordination strategy.

8.1.3 Predicting Spatial and Temporal I/O Patterns

The effective implementation of CALCioM raised the challenge of transparently predicting
the spatial and temporal I/O patterns of any HPC simulation. To this end, we proposed the
Omnisc’IO approach.

The Omnisc’IO approach: Omnisc’IO precisely aims to model and predict the spatial and
temporal I/O patterns of any HPC simulation. It uses a grammar-based model built us-
ing an enhanced version of the Sequitur algorithm. It builds its model at run time with no
prior knowledge of the application, and does not require any modification of the applica-
tions and I/O libraries. Our extensive experimental campaign using four application –CM1,
GTC, Nek5000 and LAMMPS– in a total of six scenarios on Grid’5000, demonstrated that
Omnisc’IO converges to a stable model in a couple of iterations only. This model is capable
of predicting both the date and location of future I/O accesses, achieving a near-perfect hit

140 Chapter 8 – Conclusion and Perspectives

ratio (from 79.5% to 100% in our experiments) and interaccess time estimation (up to 0.199
sec of average absolute difference with the observed interaccess time).

Omnisc’IO constitutes a first step toward the design of a smart I/O stack, that is, an I/O
stack that is capable of adapting to the applications’ behavior and leverage knowledge about
this behavior to improve its performance.

8.2 Prospects

Our present work naturally opens a number of perspectives. This section lists the most
promising ones. We divide these perspectives in two sections: the first one groups potential
contributions related to Damaris, while the second one lists the directions opened by our
work on CALCioM and Omnisc’IO.

8.2.1 Prospects Related to the Damaris Approach

As an I/O approach, Damaris is relatively complete and has demonstrated its excellent capa-
bilities in improving I/O performance while reducing I/O variability. Therefore, apart from
engineering work to make Damaris even more flexible and adaptable, research perspectives
related to Damaris focus on two aspects: improving its support for in situ visualization, and
further studying the energy consumption of diverse I/O approaches. With respect to these
aspects, we present hereafter two directions that we plan to investigate.

Smart In Situ Visualization with Damaris: Our study of in situ visualization using
Damaris and CM1 revealed that in some simulations such as climate models, an impor-
tant fraction of the data produced by the simulation does not actually contain any part of
the phenomenon that are of interest to scientists. When visualizing this data in situ, it thus
becomes possible to lower the resolution of non-interesting parts in order to increase the per-
formance of the visualization process, an approach that we call “smart in situ visualization”.
Challenges to implement smart ISV include automatically discriminating relevant and non-
relevant data within the simulation while this data is being produced. This detection should
be made without user intervention and be fast enough to not diminish the overall perfor-
mance of the visualization process. The plugin system of Damaris together with its existing
connection with the VisIt visualization software provide an excellent ground to implement
and evaluate smart ISV. This perspective is part of the PhD subject of Lokman Rahmani.1

Tradeoff Between Compression and Energy Consumption: Chapter 5 studied the trade-
off between performance and energy consumption in the context of Damaris. In Chapter 3
we have seen that the time spared by dedicated cores in Damaris can be leveraged to com-
press the data prior to storing it. An immediate question that can be asked is to which extent
does compression in Damaris impacts this energy/performance tradeoff. On one hand, com-
pression reduces the amount of data transferred and thus, the network traffic, which leads
to lower energy consumption from data movements. On the other hand, compressing data

1PhD student at ENS Rennes / IRISA within the KerData team.

8.2 – Prospects 141

requires more computation time and higher energy consumption as a result of data move-
ment in the local memory hierarchy. We can thus expect again a tradeoff between energy,
performance and compression level.

8.2.2 Prospects Related to CALCioM and Omnisc’IO

The CALCioM and Omnisc’IO approaches both open thrilling research directions. CAL-
CioM illustrated the unconventional idea that applications could communicate with one
another in order to coordinate their I/O behavior and avoid interfering. Yet it remains to
be evaluated with real applications at large scale. On the other hand, Omnisc’IO provides a
very effective way to predict spatial and temporal behaviors, and remains to be applied in
optimization techniques such as caching, prefetching, or scheduling. We highlight hereafter
three main perspectives.

Coupling CALCioM and Omnisc’IO: Omnisc’IO provides predictions on the I/O behav-
ior of applications. These predictions can benefit the effectiveness of CALCioM as well as
its transparent integration into the I/O stack. Therefore, an important direction in the near
future will be to couple the two in order to come closer to the notion of a “smart I/O stack”,
described in Chapter 2. The evaluation of such a coupling is however challenging. Indeed
running and controlling several applications at the same time is a daunting task. It also re-
quires to reserve an entire Petascale machine in order to prevent any interference with other
users’ applications. Fortunately we can leverage the models of I/O behaviors produced by
Omnisc’IO to replay realistic interference scenarios in event-driven simulations. More gen-
erally we plan to use Omnisc’IO to improve caching and perfecting techniques.

Studying Communication Interference: Discussions with researchers from the University
of Illinois at Urbana Champaign brought to our attention the fact that recent supercom-
puters like Blue Waters are not only subject to I/O interference, but also to interference in
communications between the processes of the applications. It is indeed frequent to observe
some applications impacting others because of their heavy collective communication pat-
terns. One potential research perspective would thus consists of leveraging CALCioM not
only to avoid I/O interference, but to prevent communication interference as well.

Cross-Application Interference and Energy Consumption: Last but not least, while we
studied the energy consumption of different I/O approaches at the level of individual ap-
plications, the effect of cross-application interference on energy consumption remains to be
investigated. With the 20 MW power budget set by DARPA as a target for Exascale machines,
it would not be surprising in the near future to not only allocate CPU hours to projects, but
also fixed energy budgets. While this would drive the adoption of energy-saving techniques,
it would become necessary to investigate the effect of cross-application interference on the
energy consumption so that projects with a small energy budget don’t get unfairly impacted
by large applications that interfere with them.

142 Chapter 8 – Conclusion and Perspectives

143

Bibliography

[1] H. Abbasi, J. Lofstead, F. Zheng, K. Schwan, M. Wolf, and S. Klasky. “Extending
I/O Through High Performance Data Services”. In: Proceedings of the IEEE Interna-
tional Conference on Cluster Computing and Workshops (CLUSTER ’09). New Orleans,
Louisiana, USA, Sept. 2009. DOI: 10.1109/CLUSTR.2009.5289167.

[2] ADIOS, Oak Ridge National Laboratory (ORNL). https : / /www .olcf . ornl . gov/ center -
projects/adios/.

[3] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R. Ross, L. Ward, and P. Sa-
dayappan. “Scalable I/O Forwarding Framework for High-Performance Computing
Systems”. In: Proceedings of the IEEE International Conference on Cluster Computing and
Workshops, 2009. CLUSTER ’09. Sept. 2009. DOI: 10.1109/CLUSTR.2009.5289188.

[4] A. Batsakis, R. Burns, A. Kanevsky, J. Lentini, and T. Talpey. “CA-NFS: a Congestion-
Aware Network File System”. In: ACM Transactions on Storage (TOS) 5.4 (2009), p. 15.

[5] Blue Waters supercomputer, National Center for Supercomputing Applications (NCSA).
http://www.ncsa.illinois.edu/BlueWaters/.

[6] R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot, Y. Jégou, S. Lanteri,
J. Leduc, N. Melab, et al. “Grid’5000: A Large Scale and Highly Reconfigurable Ex-
perimental Grid Testbed”. In: International Journal of High Performance Computing Ap-
plications (IJHPCA) 20.4 (2006), p. 481. ISSN: 1094-3420.

[7] G. H. Bryan and J. M. Fritsch. “A Benchmark Simulation for Moist Nonhydrostatic
Numerical Models”. In: Monthly Weather Review 130.12 (2002), pp. 2917–2928. DOI:
10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

[8] G. Bryan. CM1. http://www.mmm.ucar.edu/people/bryan/cm1/.

[9] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp. “Parallel I/O Prefetching using
MPI File Caching and I/O Signatures”. In: Proceedings of the ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis (SC ’08).
Nov. 2008. DOI: 10.1109/SC.2008.5213604.

[10] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley. “24/7 Characterization
of Petascale I/O Workloads”. In: Proceedings of the IEEE International Conference on
Cluster Computing and Workshops (CLUSTER ’09). IEEE. 2009.

http://dx.doi.org/10.1109/CLUSTR.2009.5289167
https://www.olcf.ornl.gov/center-projects/adios/
https://www.olcf.ornl.gov/center-projects/adios/
http://dx.doi.org/10.1109/CLUSTR.2009.5289188
http://www.ncsa.illinois.edu/BlueWaters/
http://dx.doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2
http://www.mmm.ucar.edu/people/bryan/cm1/
http://dx.doi.org/10.1109/SC.2008.5213604

144 BIBLIOGRAPHY

[11] P. Carns, S. Lang, R. Ross, M. Vilayannur, J. Kunkel, and T. Ludwig. “Small-File Ac-
cess in Parallel File Systems”. In: IEEE International Parallel and Distributed Processing
Symposium (IPDPS ’09) (2009). DOI: 10.1109/IPDPS.2009.5161029.

[12] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. “PVFS: a Parallel File System
for Linux Clusters”. In: Proceedings of the 4th annual Linux Showcase & Conference -
Volume 4. Atlanta, Georgia: USENIX Association, 2000.

[13] E. V. Carrera, E. Pinheiro, and R. Bianchini. “Conserving Disk Energy in Network
Servers”. In: Proceedings of the 17th annual ACM International Conference on Supercom-
puting (ICS ’03). ACM. 2003, pp. 86–97.

[14] J Chen, A Choudhary, S Feldman, B Hendrickson, C. Johnson, R Mount, V Sarkar,
V White, and D Williams. “Synergistic Challenges in Data-Intensive Science and Ex-
ascale Computing”. In: DOE ASCAC Data Subcommittee Report, Department of Energy
Office of Science (2013).

[15] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, and W. Gropp. “Exploring Parallel I/O Con-
currency with Speculative Prefetching”. In: Proceedings of the 37th International Confer-
ence on Parallel Processing (ICPP ’08). IEEE. 2008, pp. 422–429.

[16] C. M. Chilan, M Yang, A. Cheng, and L. Arber. “Parallel I/O Performance Study
with HDF5, a Scientific Data Package”. In: TeraGrid 2006: Advancing Scientific Discov-
ery (2006).

[17] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, et al. “Extreme Scaling
of Production Visualization Software on Diverse Architectures”. In: IEEE Computer
Graphics and Applications (2010), pp. 22–31. ISSN: 0272-1716.

[18] A. Ching, A. Choudhary, W. keng Liao, R. Ross, and W. Gropp. “Non-Contiguous
I/O through PVFS”. In: Proceedings of the IEEE International Conference on Cluster Com-
puting (CLUSTER ’02). Chicago, Illinois, USA: IEEE Computer Society, 2002, p. 405.
ISBN: 0-7695-1745-5. DOI: 10.1109/CLUSTR.2002.1137773.

[19] P. M. Dickens and R. Thakur. “Evaluation of Collective I/O Implementations on Par-
allel Architectures”. In: Journal of Parallel and Distributed Computing (JPDC) 61.8 (2001),
pp. 1052–1076. ISSN: 0743-7315. DOI: 10.1006/jpdc.2000.1733.

[20] M. E. Diouri, G. L. T. Chetsa, O. Glück, L. Lefevre, J.-M. Pierson, P. Stolf, and G.
Da Costa. “Energy Efficiency in High-Performance Computing With and Without
Knowledge of Applications and Services”. In: International Journal of High Performance
Computing Applications (IJHPCA) 27.3 (2013), pp. 232–243.

[21] C. Docan, M. Parashar, and S. Klasky. “Enabling High-Speed Asynchronous Data
Extraction and Transfer Using DART”. In: Concurrency and Computation: Practice and
Experience (2010), pp. 1181–1204. ISSN: 1532-0634. DOI: 10.1002/cpe.1567.

[22] S. Donovan, G. Huizenga, A. J. Hutton, C. C. Ross, M. K. Petersen, and P. Schwan.
“Lustre: Building a File System for 1000-node Clusters”. In: Proceedings of the 2003
Linux Symposium. Citeseer. 2003.

[23] M. Dorier. “SRC: Damaris - Using Dedicated I/O Cores for Scalable Post-Petascale
HPC Simulations”. In: Proceedings of the International Conference on Supercomputing
(ICS ’11). ICS ’11. Tucson, Arizona, USA: ACM, 2011, p. 370. ISBN: 978-1-4503-0102-2.
DOI: 10.1145/1995896.1995953.

http://dx.doi.org/10.1109/IPDPS.2009.5161029
http://dx.doi.org/10.1109/CLUSTR.2002.1137773
http://dx.doi.org/10.1006/jpdc.2000.1733
http://dx.doi.org/10.1002/cpe.1567
http://dx.doi.org/10.1145/1995896.1995953

BIBLIOGRAPHY 145

[24] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf. “Damaris: How to Efficiently
Leverage Multicore Parallelism to Achieve Scalable, Jitter-free I/O”. In: Proceedings of
the IEEE International Conference on Cluster Computing (CLUSTER ’12). Beijing, China:
IEEE, Sept. 2012.

[25] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf. Damaris: Leveraging Multicore
Parallelism to Mask I/O Jitter. English. Research Report RR-7706. INRIA, Apr. 2012,
p. 36.

[26] M. Dorier, R. Sisneros Roberto, T. Peterka, G. Antoniu, and B. Semeraro Dave.
“Damaris/Viz: a Nonintrusive, Adaptable and User-Friendly In Situ Visualization
Framework”. In: Proceedings of the IEEE Symposium on Large-Scale Data Analysis and
Visualization (LDAV ’13). Atlanta, Georgia, USA, Oct. 2013.

[27] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim. “CALCioM: Mitigating
I/O Interference in HPC Systems through Cross-Application Coordination”. English.
In: Proceedings of the IEEE International Parallel and Distributed Processing Symposium
(IPDPS ’14). Phoenix, Arizona, USA, May 2014.

[28] M. Dorier, S. Ibrahim, G. Antoniu, and R. Ross. “Omnisc’IO: A Grammar-Based Ap-
proach to Spatial and Temporal I/O Patterns Prediction”. In: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’14). IEEE, ACM. New Orleans, United States, Nov. 2014.

[29] M. Dreher, B. Raffin, et al. “A Flexible Framework for Asynchronous In Situ and In
Transit Analytics for Scientific Simulations”. In: ACM/IEEE International Symposium
on Cluster, Cloud and Grid Computing (CCGrid ’14) (2014).

[30] M. Dreher, J. Prevoteau-Jonquet, M. Trellet, M. Piuzzi, M. Baaden, B. Raffin, N. Férey,
S. Robert, and S. Limet. “Exaviz: A Flexible Framework to Analyse, Steer and Interact
with Molecular Dynamics Simulations”. In: Faraday Discussions (2014).

[31] D. Ellsworth, B. Green, C. Henze, P. Moran, and T. Sandstrom. “Concurrent Visual-
ization in a Production Supercomputing Environment”. In: IEEE Transactions on Vi-
sualization and Computer Graphics (TVGC) 12.5 (2006), pp. 997–1004. ISSN: 1077-2626.
DOI: 10.1109/TVCG.2006.128.

[32] A. Esnard, N. Richart, and O. Coulaud. “A Steering Environment for Online Parallel
Visualization of Legacy Parallel Simulations”. In: Proceedings of the IEEE/ACM Inter-
national Symposium on Distributed Simulation and Real-Time Applications (DS-RT ’06).
IEEE. 2006, pp. 7–14.

[33] EzViz, ERDC DSRC. http://daac.hpc.mil/software/ezViz/.

[34] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion, B. Geveci, M. Rasquin,
and K. Jansen. “The ParaView Coprocessing Library: A Scalable, General Purpose In
Situ Visualization Library”. In: Proceedings of the IEEE Symposium on Large-Scale Data
Analysis and Visualization (LDAV ’11). 2011.

[35] M. Folk, A. Cheng, and K. Yates. “HDF5: A File Format and I/O Library for High
Performance Computing Applications”. In: Proceedings of the ACM/IEEE International
Conference on High Performance Computing, Networking, Storage and Analysis (SC ’99).
1999.

http://dx.doi.org/10.1109/TVCG.2006.128
http://daac.hpc.mil/software/ezViz/

146 BIBLIOGRAPHY

[36] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir. Scheduling the
I/O of HPC Applications under Congestion. Rapport de recherche RR-8519. INRIA, Apr.
2014.

[37] M. Gamell, I. Rodero, M. Parashar, J. C. Bennett, H. Kolla, J. Chen, P.-T. Bremer, A. G.
Landge, A. Gyulassy, P. McCormick, S. Pakin, V. Pascucci, and S. Klasky. “Explor-
ing Power Behaviors and Trade-offs of In-situ Data Analytics”. In: Proceedings of the
ACM/IEEE International Conference on High Performance Computing, Networking, Stor-
age and Analysis (SC ’13). Denver, Colorado: ACM, 2013. ISBN: 978-1-4503-2378-9. DOI:
10.1145/2503210.2503303.

[38] L. Ganesh, H. Weatherspoon, M. Balakrishnan, and K. Birman. “Optimizing Power
Consumption in Large Scale Storage Systems”. In: Proceedings of the 11th USENIX
Workshop on Hot Topics in Operating Systems (HotOS ’07). San Diego, California, USA:
USENIX Association, 2007.

[39] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir, T. Skjel-
lum, and M. Snir. “MPI-2: Extending the Message-Passing Interface”. In: Proceed-
ings of the International Conference on Parallel Processing (Euro-Par ’96). Springer. 1996,
pp. 128–135.

[40] E. Gibney. Model Universe Recreates Evolution of the Cosmos. http://www.nature.com/
news/model-universe-recreates-evolution-of-the-cosmos-1.15178. News. 2014.

[41] C. Gniady, A. R. Butt, and Y. C. Hu. “Program-counter-based Pattern Classification
in Buffer Caching”. In: Proceedings of the 6th Conference on Symposium on Operating
Systems Design & Implementation (OSDI ’04). San Francisco, California, USA: USENIX
Association, 2004.

[42] Green500 List of Supercomputers. http://www.green500.org/.

[43] GTC version 1, Plasma Theory Group, UCIrvine. http://phoenix.ps.uci.edu/GTC/.

[44] J. Hamilton. Cost of Power in Large-Scale Data Centers. http://perspectives .mvdirona.
com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx. Nov. 2008.

[45] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam, P. Co-
teus, P. Heidelberger, M. Blumrich, R. Wisniewski, A. Gara, G.-T. Chiu, P. Boyle, N.
Chist, and C. Kim. “The IBM Blue Gene/Q Compute Chip”. In: Micro, IEEE 32.2
(2012), pp. 48–60.

[46] A. Harmon. Breakthrough Simulation: A Supercell Producing a Long-Track EF5 Tornado.
http://www.isgtw.org/feature/breakthrough-simulation-supercell-producing-long-track-
ef5-tornado, viewed on July 2014. 2014.

[47] J. He, X.-H. Sun, and R. Thakur. “KNOWAC: I/O Prefetch via Accumulated Knowl-
edge”. In: Proceedings of the 2012 IEEE International Conference on Cluster Computing
(CLUSTER ’12). Washington, DC, USA: IEEE Computer Society, 2012. ISBN: 978-0-
7695-4807-4. DOI: 10.1109/CLUSTER.2012.83.

[48] J. He, J. Bent, A. Torres, G. Grider, G. Gibson, C. Maltzahn, and X.-H. Sun. “I/O Accel-
eration with Pattern Detection”. In: Proceedings of the 22nd International Symposium on
High-Performance Parallel and Distributed Computing (HPDC ’13). ACM. 2013, pp. 25–
36.

http://dx.doi.org/10.1145/2503210.2503303
http://www.nature.com/news/model-universe-recreates-evolution-of-the-cosmos-1.15178
http://www.nature.com/news/model-universe-recreates-evolution-of-the-cosmos-1.15178
http://www.green500.org/
http://phoenix.ps.uci.edu/GTC/
http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx
http://perspectives.mvdirona.com/2008/11/28/CostOfPowerInLargeScaleDataCenters.aspx
http://www.isgtw.org/feature/breakthrough-simulation-supercell-producing-long-track-ef5-tornado
http://www.isgtw.org/feature/breakthrough-simulation-supercell-producing-long-track-ef5-tornado
http://dx.doi.org/10.1109/CLUSTER.2012.83

BIBLIOGRAPHY 147

[49] M. Hereld, M. E. Papka, and V. Vishwanath. “Toward Simulation-Time Data Anal-
ysis and I/O Acceleration on Leadership-Class Systems”. In: Proceeding of the IEEE
Symposium on Large-Scale Data Analysis and Visualization (LDAV ’11). Providence, RI,
2011.

[50] Hierarchical Data Format HDF5. http://www.hdfgroup.org/HDF5/.

[51] A. Hoisie and V. Getov. “Extreme-Scale Computing - Where ’Just More of the Same’
Does Not Work”. In: Computer 42.11 (Nov. 2009), pp. 24–26. ISSN: 0018-9162. DOI:
10.1109/MC.2009.354.

[52] J. Hruska. DARPA Summons Researchers to Reinvent Computing. http : / / www .
extremetech.com/computing/116081-darpa-summons-researchers-to-reinvent-computing,
viewed on June 2014. 2012.

[53] INRIA Grid’5000. http://www.grid5000.fr.

[54] Intrepid supercomputer, Argonne National Laboratory. https://www.alcf.anl.gov/intrepid.

[55] F. Isaila, J. Garcia, J. Carretero, R. B. Ross, and D. Kimpe. “Making the Case for Re-
forming the I/O Software Stack of Extreme-Scale Systems”. In: Preprint ANL/MCS-
P5103-0314, Argonne National Laboratory (2014).

[56] F. Isaila, J. G. Blas, J. Carretero, R. Latham, and R. Ross. “Design and Evaluation of
Multiple Level Data Staging for Blue Gene Systems”. In: IEEE Transactions on Parallel
and Distributed Systems (TPDS) (2010). ISSN: 1045-9219. DOI: 10.1109/TPDS.2010.127.

[57] C. Johnson, S. Parker, C. Hansen, G. Kindlmann, and Y. Livnat. “Interactive Simula-
tion and Visualization”. In: Computer 32.12 (1999), pp. 59–65.

[58] D. B. Johnston. First-of-a-kind supercomputer at Lawrence Livermore available for collabo-
rative research. https://www.llnl.gov/news/newsreleases/2014/May/NR-14-05-02.html.
News Release. 2014.

[59] S. Kamil, J. Shalf, and E. Strohmaier. “Power Efficiency in High Performance Com-
puting”. In: Proceedings of the IEEE International Symposium on Parallel and Distributed
Processing, (IPDPS ’08). IEEE. 2008.

[60] N. Kappiah, V. W. Freeh, and D. K. Lowenthal. “Just In Time Dynamic Voltage Scal-
ing: Exploiting Inter-Node Slack to Save Energy in MPI Programs”. In: Proceedings of
the 2005 ACM/IEEE International Conference on High Performance Computing, Network-
ing, Storage and Analysis (SC ’05). IEEE Computer Society. 2005.

[61] C. Karakoyunlu and J. Chandy. “Techniques for an Energy Aware Parallel File Sys-
tem”. In: Proceedings of the International Green Computing Conference (IGCC ’12). June
2012. DOI: 10.1109/IGCC.2012.6322247.

[62] J. Kieffer and E. hui Yang. “Grammar-Based Codes: A New Class of Universal Loss-
less Source Codes”. In: IEEE Transactions on Information Theory 46.3 (May 2000),
pp. 737–754. ISSN: 0018-9448. DOI: 10.1109/18.841160.

[63] Kraken supercomputer, National Institute for Computational Sciences (NICS). http://www.
nics.tennessee.edu/computing-resources/kraken.

[64] T. Kroeger and D. Long. “The Case for Efficient File Access Pattern Modeling”. In:
Proceedings of the Seventh Workshop on Hot Topics in Operating Systems (HotOS ’99).
1999, pp. 14–19. DOI: 10.1109/HOTOS.1999.798371.

http://www.hdfgroup.org/HDF5/
http://dx.doi.org/10.1109/MC.2009.354
http://www.extremetech.com/computing/116081-darpa-summons-researchers-to-reinvent-computing
http://www.extremetech.com/computing/116081-darpa-summons-researchers-to-reinvent-computing
http://www.grid5000.fr
https://www.alcf.anl.gov/intrepid
http://dx.doi.org/10.1109/TPDS.2010.127
https://www.llnl.gov/news/newsreleases/2014/May/NR-14-05-02.html
http://dx.doi.org/10.1109/IGCC.2012.6322247
http://dx.doi.org/10.1109/18.841160
http://www.nics.tennessee.edu/computing-resources/kraken
http://www.nics.tennessee.edu/computing-resources/kraken
http://dx.doi.org/10.1109/HOTOS.1999.798371

148 BIBLIOGRAPHY

[65] D. Q. Lamb. Supercomputers Can Save U.S. Manufacturing. http : / / www .
scientificamerican . com/article /big - computers - for - little/, viewed on May 2014. Mar.
2012.

[66] LAMMPS, Sandia National Laboratory. http://lammps.sandia.gov/.

[67] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock. “I/O Performance
Challenges at Leadership Scale”. In: Proceedings of the ACM/IEEE International Confer-
ence on High Performance Computing, Networking, Storage and Analysis (SC ’09). Port-
land, Oregon, USA: ACM, 2009. ISBN: 978-1-60558-744-8. DOI: 10 . 1145 / 1654059 .
1654100.

[68] J. H. Laros III, K. T. Pedretti, S. M. Kelly, W. Shu, and C. T. Vaughan. “Energy
Based Performance Tuning for Large Scale High Performance Computing Systems”.
In: Proceedings of the 2012 Symposium on High Performance Computing (HPC ’12). Or-
lando, Florida, USA: Society for Computer Simulation International, 2012. ISBN: 978-
1-61839-788-1.

[69] A. Lebre, G. Huard, Y. Denneulin, and P. Sowa. “I/O Scheduling Service for Multi-
Application Clusters”. In: Proceedings of the IEEE International Conference on Cluster
Computing and Workshops (CLUSTER ’06). Sept. 2006.

[70] H.-Y. Li, C. S. Xie, and Y. Liu. “A New Method of Prefetching I/O Requests”. In:
Proceedings of the International Conference on Networking, Architecture, and Storage, (NAS
’07). July 2007, pp. 217–224. DOI: 10.1109/NAS.2007.3.

[71] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel,
B. Gallagher, and M. Zingale. “Parallel netCDF: A High-Performance Scientific I/O
Interface”. In: Proceedings of the ACM/IEEE International Conference on High Performance
Computing, Networking, Storage and Analysis (SC ’03). IEEE. 2003. ISBN: 1581136951.

[72] M. Li, S. Vazhkudai, A. Butt, F. Meng, X. Ma, Y. Kim, C. Engelmann, and G. Ship-
man. “Functional Partitioning to Optimize End-to-End Performance on Many-Core
Architectures”. In: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’10). IEEE Computer So-
ciety. 2010.

[73] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal. “Adaptive, Transparent Frequency and
Voltage Scaling of Communication Phases in MPI Programs”. In: Proceedings of the
2010 ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’06). IEEE. 2006.

[74] LLNL. Getting Data Into VisIt, https://wci.llnl.gov/codes/visit/manuals.html . 2006.

[75] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock, K. Schwan, and
M. Wolf. “Managing Variability in the IO Performance of Petascale Storage Systems”.
In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC ’10). Washington, DC, USA: IEEE Com-
puter Society, 2010. ISBN: 978-1-4244-7559-9. DOI: 10.1109/SC.2010.32.

[76] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. “Flexible IO and inte-
gration for scientific codes through the adaptable IO system (ADIOS)”. In: Proceedings
of the 6th international workshop on Challenges of large applications in distributed envi-
ronments. CLADE ’08. Boston, MA, USA: ACM, 2008. ISBN: 978-1-60558-156-9. DOI:
10.1145/1383529.1383533.

http://www.scientificamerican.com/article/big-computers-for-little/
http://www.scientificamerican.com/article/big-computers-for-little/
http://lammps.sandia.gov/
http://dx.doi.org/10.1145/1654059.1654100
http://dx.doi.org/10.1145/1654059.1654100
http://dx.doi.org/10.1109/NAS.2007.3
https://wci.llnl.gov/codes/visit/manuals.html
http://dx.doi.org/10.1109/SC.2010.32
http://dx.doi.org/10.1145/1383529.1383533

BIBLIOGRAPHY 149

[77] K.-L. Ma. “In Situ Visualization at Extreme Scale: Challenges and Opportunities”. In:
IEEE Computer Graphics and Applications 29.6 (2009), pp. 14–19. ISSN: 0272-1716. DOI:
10.1109/MCG.2009.120.

[78] K.-L. Ma, C. Wang, H. Yu, and A. Tikhonova. “In-situ Processing and Visualization
for Ultrascale Simulations”. In: Journal of Physics: Conference Series 78.1 (2007).

[79] X. Ma, J. Lee, and M. Winslett. “High-Level Buffering for Hiding Periodic Output
Cost in Scientific Simulations”. In: IEEE Transactions on Parallel and Distributed Systems
(TPDS) 17 (2006), pp. 193–204. ISSN: 1045-9219. DOI: 10.1109/TPDS.2006.36.

[80] T. Madhyastha and D. Reed. “Learning to Classify Parallel Input/Output Access Pat-
terns”. In: IEEE Transactions on Parallel and Distributed Systems (TPDS) 13.8 (2002),
pp. 802–813. ISSN: 1045-9219. DOI: 10.1109/TPDS.2002.1028437.

[81] P. Malakar, V. Natarajan, and S. S. Vadhiyar. “An Adaptive Framework for Simula-
tion and Online Remote Visualization of Critical Climate Applications in Resource-
constrained Environments”. In: Proceedings of the 2010 ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (SC ’10). Wash-
ington, DC, USA: IEEE Computer Society, 2010. ISBN: 978-1-4244-7559-9. DOI: 10 .
1109/SC.2010.10.

[82] MatplotLib. http://matplotlib.org/.

[83] Mira supercomputer, Argonne National Laboratory. http://www.alcf.anl.gov/mira.

[84] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski. “Design, Modeling,
and Evaluation of a Scalable Multi-Level Checkpointing System”. In: Proceedings of the
2010 ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’10). Los Alamitos, CA, USA: IEEE Computer Society, 2010.
ISBN: 978-1-4244-7559-9. DOI: 10.1109/SC.2010.18.

[85] K. Moreland, R. Oldfield, P. Marion, S. Jourdain, N. Podhorszki, V. Vishwanath, N.
Fabian, C. Docan, M. Parashar, M. Hereld, et al. “Examples of In Transit Visualiza-
tion”. In: Proceedings of the 2nd International Workshop on Petascale Data Analytics: Chal-
lenges and Opportunities (PDAC ’11). ACM. 2011.

[86] MPI Standard, MPI Forum. http://www.mpi-forum.org/.

[87] Mpich. http://www.mpich.org.

[88] R. Nathuji, A. Kansal, and A. Ghaffarkhah. “Q-clouds: Managing Performance Inter-
ference Effects for QoS-Aware Clouds”. In: Proceeding of ACM European Conference on
Computer Systems (EuroSys ’10). Apr. 2010, pp. 237–250.

[89] Nautilus supercomputer, National Institute for Computational Sciences (NICS). http : / /
www.nics.tennessee.edu/computing-resources/nautilus.

[90] NetCDF, Unidata. http://www.unidata.ucar.edu/software/netcdf/.

[91] C. G. Nevill-Manning. “Inferring Sequential Structure”. PhD thesis. 1996.

[92] C. G. Nevill-Manning and I. H. Witten. “Identifying Hierarchical Structure in Se-
quences: A Linear-Time Algorithm”. In: Journal of Artificial Intelligence Research 7.1
(Sept. 1997), pp. 67–82. ISSN: 1076-9757.

http://dx.doi.org/10.1109/MCG.2009.120
http://dx.doi.org/10.1109/TPDS.2006.36
http://dx.doi.org/10.1109/TPDS.2002.1028437
http://dx.doi.org/10.1109/SC.2010.10
http://dx.doi.org/10.1109/SC.2010.10
http://matplotlib.org/
http://www.alcf.anl.gov/mira
http://dx.doi.org/10.1109/SC.2010.18
http://www.mpi-forum.org/
http://www.mpich.org
http://www.nics.tennessee.edu/computing-resources/nautilus
http://www.nics.tennessee.edu/computing-resources/nautilus
http://www.unidata.ucar.edu/software/netcdf/

150 BIBLIOGRAPHY

[93] A. Nisar, W. keng Liao, and A. Choudhary. “Scaling Parallel I/O Performance
Through I/O Delegate and Caching System”. In: Proceedings of the ACM/IEEE Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis (SC
’08). 2008. DOI: 10.1109/SC.2008.5214358.

[94] J. Oly and D. A. Reed. “Markov Model Prediction of I/O Requests for Scientific Ap-
plications”. In: Proceedings of the 16th ACM/IEEE International Conference on High Per-
formance Computing, Networking, Storage and Analysis (SC ’02). ACM. 2002, pp. 147–
155.

[95] OpenMP. http://openmp.org/.

[96] A.-C. Orgerie, M. D. d. Assuncao, and L. Lefevre. “A Survey on Techniques for Im-
proving the Energy Efficiency of Large-Scale Distributed Systems”. In: ACM Comput-
ing Surveys (CSUR) 46.4 (2014), p. 47.

[97] B. O’shea, G. Bryan, J. Bordner, M. Norman, T. Abel, R. Harkness, and A. Kritsuk.
“Introducing Enzo, an AMR Cosmology Application”. In: Adaptive Mesh Refinement
- Theory and Applications. Vol. 41. Lecture Notes in Computational Science and Engi-
neering. 2005. ISBN: 978-3-540-27039-3.

[98] J. W. L. P. F. Fischer and S. G. Kerkemeier. Nek5000 Web page http:// nek5000.mcs.anl.
gov . 2008.

[99] S. Pakin and P. McCormick. Byfl: Compiler-based Application Analysis. https://github.
com/losalamos/Byfl. 2013.

[100] Parallel Workload Archive. http://www.cs.huji.ac.il/labs/parallel/workload/.

[101] ParaView, KitWare. http://www.paraview.org/.

[102] C. Patel, R. Sharma, C. Bash, and S. Graupner. “Energy Aware Grid: Global Workload
Placement Based on Energy Efficiency”. In: Proceedings of the International Mechanical
Engineering Congress and Exposition (ASME ’03). American Society of Mechanical En-
gineers. 2003, pp. 267–275.

[103] C. M. Patrick, S. W. Son, and M. Kandemir. “Comparative Evaluation of Over-
lap Strategies with Study of I/O Overlap in MPI-IO”. In: Operating Systems Review
(SIGOPS) 42 (6 Oct. 2008), pp. 43–49. ISSN: 0163-5980. DOI: 10.1145/1453775.1453784.

[104] P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt,
B. Offrein, and A. Benner. “Low Power and High Density Optical Interconnects for
Future Supercomputers”. In: Proceedings of the Optical Fiber Communication (OFC), col-
located with the Fiber Optic Engineers Conference, (OFC/NFOEC ’10). Mar. 2010.

[105] S. Plimpton. “Fast Parallel Algorithms for Short-Range Molecular Dynamics”. In:
Journal of Computational Physics 117.1 (1995). ISSN: 0021-9991. DOI: 10.1006/jcph.1995.
1039.

[106] J.-P. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges. “MPI-IO/GPFS an Opti-
mized Implementation of MPI-IO on Top of GPFS”. In: Proceedings of the ACM/IEEE
International Conference on High Performance Computing, Networking, Storage and Analy-
sis (SC ’01). Los Alamitos, CA, USA: IEEE Computer Society, 2001. ISBN: 1-58113-293-
X. DOI: 10.1145/582034.582051.

http://dx.doi.org/10.1109/SC.2008.5214358
http://openmp.org/
http://nek5000.mcs.anl.gov
http://nek5000.mcs.anl.gov
https://github.com/losalamos/Byfl
https://github.com/losalamos/Byfl
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.paraview.org/
http://dx.doi.org/10.1145/1453775.1453784
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1145/582034.582051

BIBLIOGRAPHY 151

[107] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu. “Understanding Performance
Interference of I/O Workload in Virtualized Cloud Environments”. In: Proceedings of
the IEEE International Conference on Cloud Computing (Cloud ’10). July 2010, pp. 51–58.
DOI: 10.1109/CLOUD.2010.65.

[108] Python/C API. http://docs.python.org/2/c-api/.

[109] Y. Qian, E. Barton, T. Wang, N. Puntambekar, and A. Dilger. “A Novel Network Re-
quest Scheduler for a Large Scale Storage System”. English. In: Computer Science -
Research and Development 23 (3-4 2009), pp. 143–148. ISSN: 1865-2034. DOI: 10.1007/
s00450-009-0073-9.

[110] M. Rasquin, P. Marion, V. Vishwanath, B. Matthews, M. Hereld, K. Jansen, R. Loy, A.
Bauer, M. Zhou, O. Sahni, et al. “Electronic Poster: Co-Visualization of Full Data and
In Situ Data Extracts from Unstructured Grid CFD at 160k Cores”. In: ACM/IEEE SC
Companion. ACM. 2011, pp. 103–104.

[111] M. Rivi, L. Calori, G. Muscianisi, and V. Slavnic. “In-Situ Visualization: State-of-the-
Art and Some Use Cases”. In: PRACE White Paper (2012), http:// www.prace- ri.eu/
Visualisation (2011).

[112] I. Sample. Universe Recreated in Massive Computer Simulation. http://www.theguardian.
com/science/2014/may/07/universe- recreated- computer- simulation-model- big- bang,
viewed on May 2014. News Article. 2014.

[113] D. C. Schmidt. Reactor - An Object Behavioral Pattern for Demultiplexing and Dispatching
Handles for Synchronous Events. 1995.

[114] F. Schmuck and R. Haskin. “GPFS A Shared-Disk File System for Large Computing
Clusters”. In: Proceedings of the First USENIX Conference on File and Storage Technologies
(FAST ’02). 2002.

[115] W. Schroeder, L. Avila, and W. Hoffman. “Visualizing with VTK: a Tutorial”. In: IEEE
Computer Graphics and Applications 20.5 (2000), pp. 20–27. ISSN: 0272-1716. DOI: 10 .
1109/38.865875.

[116] H. Shan and J. Shalf. “Using IOR to Analyze the I/O Performance for HPC Plat-
forms”. In: Proceedings of the Cray User Group Conference (CUG ’07). Seattle, Washing-
ton, USA, 2007.

[117] D. Skinner and W. Kramer. “Understanding the Causes of Performance Variability
in HPC Workloads”. In: Proceedings of the IEEE Workload Characterization Symposium
(IISWC ’05). IEEE Computer Society, 2005, pp. 137–149. ISBN: 0-7803-9461-5. DOI: 10.
1109/IISWC.2005.1526010.

[118] D. C. Snowdon, S. Ruocco, and G. Heiser. “Power Management and Dynamic Voltage
Scaling: Myths and Facts”. In: (2005).

[119] S. W. Son, G. Chen, M Kandemir, and A Choudhary. “Exposing Disk Layout to Com-
piler for Reducing Energy Consumption of Parallel Disk Based Systems”. In: Proceed-
ings of the tenth ACM/SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP ’05). ACM. 2005, pp. 174–185.

[120] H. Song, Y. Yin, X.-H. Sun, R. Thakur, and S. Lang. “Server-Side I/O Coordination
for Parallel File Systems”. In: Proceedings of the ACM/IEEE International Conference on
High Performance Computing, Networking, Storage and Analysis (SC ’11). Nov. 2011.

http://dx.doi.org/10.1109/CLOUD.2010.65
http://docs.python.org/2/c-api/
http://dx.doi.org/10.1007/s00450-009-0073-9
http://dx.doi.org/10.1007/s00450-009-0073-9
http://www.prace-ri.eu/Visualisation
http://www.prace-ri.eu/Visualisation
http://www.theguardian.com/science/2014/may/07/universe-recreated-computer-simulation-model-big-bang
http://www.theguardian.com/science/2014/may/07/universe-recreated-computer-simulation-model-big-bang
http://dx.doi.org/10.1109/38.865875
http://dx.doi.org/10.1109/38.865875
http://dx.doi.org/10.1109/IISWC.2005.1526010
http://dx.doi.org/10.1109/IISWC.2005.1526010

152 BIBLIOGRAPHY

[121] S. Song, R. Ge, X. Feng, and K. W. Cameron. “Energy Profiling and Analysis of the
HPC Challenge Benchmarks”. In: International Journal of High Performance Computing
Applications (IJHPCA) (2009).

[122] R. Springer, D. K. Lowenthal, B. Rountree, and V. W. Freeh. “Minimizing Execution
Time in MPI Programs on an Energy-Constrained, Power-Scalable Cluster”. In: Pro-
ceedings of the eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP ’06). ACM. 2006, pp. 230–238.

[123] J. Steele. “ACPI Thermal Sensing and Control in the PC”. In: Proceeding of Wescon/98.
Sept. 1998, pp. 169–182. DOI: 10.1109/WESCON.1998.716441.

[124] Y. Tanimura, R. Filgueira, I. Kojima, and M. Atkinson. “Poster: Reservation-Based
I/O Performance Guarantee for MPI-IO Applications Using Shared Storage Sys-
tems”. In: ACM/IEEE SC Companion. Nov. 2012, pp. 1384–1384.

[125] R. Thakur, W. Gropp, and E. Lusk. “Data Sieving and Collective I/O in ROMIO”. In:
Symposium on the Frontiers of Massively Parallel Processing (1999), p. 182. DOI: 10.1109/
FMPC.1999.750599.

[126] R. Thakur, W. Gropp, and E. Lusk. “On Implementing MPI-IO Portably and with
High Performance”. In: Proceedings of the sixth Workshop on I/O in Parallel and Dis-
tributed Systems (IOPADS ’99). ACM. 1999, pp. 23–32.

[127] P. Thibodeau. Scientists, IT Community Await Exascale Computers. http : / / www .
computerworld .com/s/article/345800/Scientists_IT_Community_Await_Exascale_
Computers, viewed on May 2014. Dec. 2009.

[128] D. Thompson, N. Fabian, K. Moreland, and L. Ice. Design Issues for Performing In Situ
Analysis of Simulation Data. Tech. rep. Technical Report SAND2009-2014, Sandia Na-
tional Laboratories, 2009.

[129] Titan supercomputer, Oak Ridge National Laboratory (ORNL). https://www.olcf.ornl.gov/
titan/.

[130] Top500 List of Supercomputers. http://www.top500.org/.

[131] N. Tran and D. A. Reed. “Automatic ARIMA Time Series Modeling for Adaptive I/O
Prefetching”. In: IEEE Transaction on Parallel and Distributed Systems (TPDS) 15.4 (Apr.
2004), pp. 362–377. ISSN: 1045-9219. DOI: 10.1109/TPDS.2004.1271185.

[132] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L. Ma, and D. R.
O’Hallaron. “From Mesh Generation to Scientific Visualization: an End-to-End Ap-
proach to Parallel Supercomputing”. In: Proceedings of the ACM/IEEE International
Conference on High Performance Computing, Networking, Storage and Analysis (SC ’06).
Tampa, Florida, USA: ACM, 2006. ISBN: 0-7695-2700-0. DOI: 10.1145/1188455.1188551.

[133] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel, and M. L. Nor-
man. “yt: A Multi-Code Analysis Toolkit for Astrophysical Simulation Data”. In: The
Astrophysical Journal Supplement Series 192.1 (2011).

[134] A. Uselton, M. Howison, N. Wright, D. Skinner, N. Keen, J. Shalf, K. Karavanic, and
L. Oliker. “Parallel I/O Performance: From Events to Ensembles”. In: Proceedings of
the IEEE International Parallel and Distributed Processing Symposium (IPDPS ’10). Apr.
2010. DOI: 10.1109/IPDPS.2010.5470424.

http://dx.doi.org/10.1109/WESCON.1998.716441
http://dx.doi.org/10.1109/FMPC.1999.750599
http://dx.doi.org/10.1109/FMPC.1999.750599
http://www.computerworld.com/s/article/345800/Scientists_IT_Community_Await_Exascale_Computers
http://www.computerworld.com/s/article/345800/Scientists_IT_Community_Await_Exascale_Computers
http://www.computerworld.com/s/article/345800/Scientists_IT_Community_Await_Exascale_Computers
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/
http://www.top500.org/
http://dx.doi.org/10.1109/TPDS.2004.1271185
http://dx.doi.org/10.1145/1188455.1188551
http://dx.doi.org/10.1109/IPDPS.2010.5470424

BIBLIOGRAPHY 153

[135] VisIt, Lawrence Livermore National Laboratory (LLNL). https://wci.llnl.gov/simulation/
computer-codes/visit.

[136] M. Vogelsberger, S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G. Snyder, S. Bird,
D. Nelson, and L. Hernquist. “Properties of galaxies reproduced by a hydrodynamic
simulation”. In: Nature 7499 (2014), 177––182. DOI: 10.1038/nature13316.

[137] L. Wang, G. Von Laszewski, J. Dayal, and F. Wang. “Towards Energy Aware Schedul-
ing for Precedence Constrained Parallel Tasks in a Cluster with DVFS”. In: Proceed-
ings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing
(CCGrid ’10). IEEE. 2010, pp. 368–377.

[138] B. Whitlock, J. M. Favre, and J. S. Meredith. “Parallel In Situ Coupling of Simulation
with a Fully Featured Visualization System”. In: Proceedings of the Eurographics Sym-
posium on Parallel Graphics and Visualization (EGPGV ’10). Eurographics Association,
2011.

[139] F. Wu. “Sequential File Prefetching in Linux”. In: Advanced Operating Systems and
Kernel Applications: Techniques and Technologies. IGI Global, 2010, pp. 217–236. DOI:
10.4018/978-1-60566-850-5.ch011.

[140] O. Yildiz, M. Dorier, S. Ibrahim, and G. Antoniu. “A Performance and Energy Analy-
sis of I/O Management Approaches for Exascale Systems”. In: Proceedings of the Sixth
International Workshop on Data Intensive Distributed Computing (DIDC ’14). Vancou-
ver, Canada: ACM, 2014, pp. 35–40. ISBN: 978-1-4503-2913-2. DOI: 10.1145/2608020.
2608026.

[141] H. Yu and K. Ma. “A Study of I/O Techniques for Parallel Visualization”. In: Journal
of Parallel Computing 31.2 (2005).

[142] H. Yu, C. Wang, R. Grout, J. Chen, and K.-L. Ma. “In Situ Visualization for Large-Scale
Combustion Simulations”. In: IEEE Computer Graphics and Applications 30.3 (2010),
pp. 45–57. ISSN: 0272-1716. DOI: 10.1109/MCG.2010.55.

[143] F. Zanon Boito, R. Kassick, P. Navaux, and Y. Denneulin. “AGIOS: Application-
Guided I/O Scheduling for Parallel File Systems”. In: Proceedings of the International
Conference on Parallel and Distributed Systems (ICPADS ’13). 2013, pp. 43–50. DOI: 10.
1109/ICPADS.2013.19.

[144] F. Zhang, M. Parashar, C. Docan, S. Klasky, N. Podhorszki, and H. Abbasi. “Enabling
In-situ Execution of Coupled Scientific Workflow on Multi-core Platform”. In: Pro-
ceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS
’12). IEEE. 2012.

[145] F. Zhang, S. Lasluisa, T. Jin, I. Rodero, H. Bui, and M. Parashar. “In-situ Feature-Based
Objects Tracking for Large-Scale Scientific Simulations”. In: ACM/IEEE SC Compan-
ion. IEEE. 2012.

[146] X. Zhang, K. Davis, and S. Jiang. “Opportunistic Data-driven Execution of Parallel
Programs for Efficient I/O Services”. In: Proceedings of the 26th IEEE International Par-
allel & Distributed Processing Symposium (IPDPS ’12). IEEE. 2012, pp. 330–341.

https://wci.llnl.gov/simulation/computer-codes/visit
https://wci.llnl.gov/simulation/computer-codes/visit
http://dx.doi.org/10.1038/nature13316
http://dx.doi.org/10.4018/978-1-60566-850-5.ch011
http://dx.doi.org/10.1145/2608020.2608026
http://dx.doi.org/10.1145/2608020.2608026
http://dx.doi.org/10.1109/MCG.2010.55
http://dx.doi.org/10.1109/ICPADS.2013.19
http://dx.doi.org/10.1109/ICPADS.2013.19

154 BIBLIOGRAPHY

[147] X. Zhang, K. Davis, and S. Jiang. “IOrchestrator: Improving the Performance of Multi-
Node I/O Systems via Inter-Server Coordination”. In: Proceedings of the ACM/IEEE In-
ternational Conference for High Performance Computing, Networking, Storage and Analysis
(SC’10). IEEE Computer Society. 2010.

[148] X. Zhang, K. Davis, and S. Jiang. “QoS Support for End Users of I/O-Intensive Appli-
cations using Shared Storage Systems”. In: Proceedings of the ACM/IEEE International
Conference on High Performance Computing, Networking, Storage and Analysis (SC ’11).
Seattle, Washington, USA, Nov. 2011.

[149] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky, M. Parashar, N. Pod-
horszki, K. Schwan, and M. Wolf. “PreDatA – Preparatory Data Analytics on Peta-
Scale Machines”. In: Proceedings of the IEEE International Symposium on Parallel Dis-
tributed Processing (IPDPS ’10). 2010. DOI: 10.1109/IPDPS.2010.5470454.

[150] F. Zheng, J. Cao, J. Dayal, G. Eisenhauer, K. Schwan, M. Wolf, H. Abbasi, S. Klasky,
and N. Podhorszki. “High End Scientific Codes with Computational I/O Pipelines:
Improving their End-to-End Performance”. In: Proceedings of the 2nd International
Workshop on Petascal Data Analytics: Challenges and Opportunities (PDAC ’11). Seat-
tle, Washington, USA: ACM, 2011, pp. 23–28. ISBN: 978-1-4503-1130-4. DOI: 10.1145/
2110205.2110210.

[151] F. Zheng, H. Abbasi, J. Cao, J. Dayal, K. Schwan, M. Wolf, S. Klasky, and N. Pod-
horszki. “In-situ I/O Processing: A Case for Location Flexibility”. In: Proceedings of the
Sixth Workshop on Parallel Data Storage (PDSW ’11). Seattle, Washington, USA: ACM,
2011, pp. 37–42. ISBN: 978-1-4503-1103-8. DOI: 10.1145/2159352.2159362.

[152] J. A. Zounmevo, D. Kimpe, R. Ross, and A. Afsahi. “Using MPI in High-Performance
Computing Services”. In: Proceedings of the European MPI Users’ Group Meeting (Eu-
roMPI ’13). Sept. 2013, pp. 43–48.

http://dx.doi.org/10.1109/IPDPS.2010.5470454
http://dx.doi.org/10.1145/2110205.2110210
http://dx.doi.org/10.1145/2110205.2110210
http://dx.doi.org/10.1145/2159352.2159362

	Introduction
	Context
	Contributions
	Publications
	Software
	Organization of the Manuscript

	Background: I/O and Data Analysis in Supercomputers
	The Era of Supercomputing
	Large-Scale Scientific Simulations
	Post-Petascale Supercomputers

	I/O and Storage in HPC Systems
	Parallel File Systems
	The MPI-I/O and POSIX Interfaces
	High-Level I/O Libraries
	Application-Level I/O Approaches

	Variability in Traditional I/O Approaches
	Causes and Effects of the I/O Variability
	Approaches to Mitigate the I/O Variability
	I/O Variability: Energy Concerns
	Variable I/O, Yet Predictable of I/O Patterns

	Analysis and Visualization: an Overlooked Process
	Visualization Software and Techniques
	Toward Simulation/Visualization Coupling
	A Taxonomy of In Situ Visualization Methods
	From Offline to In Situ Visualization: Another Source of Variability
	Our Vision: Pushing (Harder) Toward In Situ Visualization

	Discussion: Addressing I/O Performance Variability

	Damaris: Leveraging Dedicated Cores to Hide the I/O Variability
	Addressing I/O Variability through Dedicated I/O Cores
	The Damaris Approach
	Design Principles
	Architecture and Implementation
	Client API
	Writing with Damaris

	Experimental Evaluation
	The CM1 Application
	Platforms and Configuration
	Experimental Results
	Improvements: Leveraging the Spare Time

	Related Work
	Positioning Damaris in the ``I/O Landscape''
	Dedicated-Core-Based Approaches

	Conclusions and Discussion
	Theoretical Usefulness
	Key Results
	Let's Use our Spare Time

	Extending Damaris to Support In Situ Visualization
	In Situ Visualization With Damaris
	Towards a New In Situ Visualization Framework
	Damaris/Viz: an In Situ Visualization Framework Based on Damaris
	Connection to Existing Visualization Packages
	Automatic Adaptation of Output Frequency

	Impact on Development and Flexibility
	Data Access Code for In Situ Visualization
	The Case of Enzo and YT

	Experimental Evaluation
	Experiments with the CM1 Simulation
	Experiments with the Nek5000 Simulation

	Related Work
	Loosely-Coupled Visualization Strategies
	Tightly-Coupled In Situ Visualization

	Conclusions and Discussion
	Our Contribution
	What Remains to Study

	Energy and Performance Tradeoffs in Data Management Approaches
	All-in-One: a Third I/O Approach in Damaris
	Three I/O Approaches
	From Dedicated Cores to Dedicating Nodes

	Experimental Insight into the Energy/Performance Tradeoff
	Methodology
	Experimental Results

	Model of Energy Consumption
	Model Formulation
	Application and Hardware Profiling
	Experimental Validation

	Discussion and Related Work
	Profiling Energy Consumption of HPC Simulations
	Saving Energy
	Power Measurement Methods

	Conclusions

	CALCioM: Mitigating I/O Interference through Cross-Application Coordination
	I/O Interference: an Increasingly Important Issue
	Probability of Concurrent Accesses
	Studying I/O Interference: a Methodology
	Impact of Interference on I/O Optimizations
	From Diversity to System-wide Inefficiency

	Mitigating Interference within the CALCioM Framework
	Interference-avoiding Strategies
	CALCioM: Design Principles
	Architecture and API

	Experimental Evaluation
	Platforms and Methodology
	Interfere or Serialize Accesses?
	A Third Option: Access Interruption
	Dynamic Choice: Interfere, Serialize, or Interrupt?

	Discussion and Related Work
	Application-Side I/O Scheduling
	Server-Side I/O Scheduling
	Application-Aware I/O Scheduling

	Conclusion

	Modeling and Predicting I/O: the Omnisc'IO Approach
	Limitations of Current Approaches to I/O Prediction
	The Omnisc'IO Approach
	Overview of Omnisc'IO
	Algorithmic and Technical Description

	Experimental Evaluation
	Platform and Applications
	Experiments
	Results Discussion
	Limitations of Our Approach

	Discussion and Related Work
	Grammar-based Modeling
	I/O Patterns Prediction

	Conclusion
	Achievements of the Omnisc'IO Approach
	Omnisc'IO as a Building Block for a Smart I/O Stack

	Conclusion and Perspectives
	Achievements
	Using Dedicated Cores for Data Services in Large Scale Simulations
	Addressing Cross-Application I/O interference
	Predicting Spatial and Temporal I/O Patterns

	Prospects
	Prospects Related to the Damaris Approach
	Prospects Related to CALCioM and Omnisc'IO

	Bibliography

