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Thèse dirigée par Cristiano Ciuti et co-dirigée par Ivan Favero

Soutenue le 3 octobre 2014

JURY

M. Markus ASPELMEYER Rapporteur

M. Fabio PISTOLESI Rapporteur

M. Olivier ARCIZET Examinateur

M. Serge REYNAUD Examinateur

M. Cristiano CIUTI Directeur de thèse
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“When engaged in combat, the vanquishing of thine enemy can be the warrior’s

only concern. Suppress all human emotion and compassion. Kill whoever stands

in thy way, even if that be Lord God, or Buddha himself. This truth lies at the

heart of the art of combat.”

Hattori Hanzo
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manente pour leurs leçons de science et de présentation devant un public. Merci
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English abstract

This PhD thesis presents the results of our theoretical exploration of unconven-

tional nonlinear coupling schemes in quantum optomechanical systems. Our re-

search was focussed on two main aspects, namely cooling mechanisms and creation

of non-classical states for a mechanical oscillator. The first two chapters of this

manuscript define the theoretical framework and numerical approaches used to

perform the theoretical investigations. The last two chapters present the main

original results obtained during the doctorate.

In chapter I we introduce the subject of optomechanics and describe in a gradual

and pedagogical way the theoretical framework necessary to treat the correspond-

ing physics. We start by deriving the Hamiltonian of a general optomechanical

system, consisting of an optical cavity resonator with a moving mirror, which can

oscillate harmonically around an equilibrium position. We introduce microscopic

Hamiltonians to take into account the coupling of the system to its radiative and

non-radiative environment at finite temperature. Using a quantum Langevin equa-

tions approach we describe optomechanical cooling of mechanical motion and by

doing so we introduce the main concepts, which were considered throughout this

manuscript. We also briefly discuss optomechanical amplification of mechanical

motion.

In chapter II we present the numerical algorithms and methods used to study the

open system dynamics of an optomechanical cavity coupled both to an electro-

magnetic vacuum field and to a thermal reservoir for the mechanical resonator.

We discuss numerical resolutions of the Lindblad master equation in order to gain

insight on the stationary and time-dependent behavior of the system. In partic-

ular we introduce the finite-dimension numerical representation of a discrete and

infinite Fock Hilbert space we used. We also present a numerical method of res-

olution of the equations of motion based on the truncated Wigner distribution of

the system. We map the Lindblad master equation on the system density ma-

trix onto a partial derivative equation on the corresponding Wigner distribution.

By neglecting the higher order terms, and thus neglecting quantum correlations

leading to negative values of the Wigner distribution, we obtain a Fokker-Planck

equation for the Wigner distribution. The system is then described in terms of

an equivalent set of stochastic equations for two scalar C-fields. We present the

Monte Carlo algorithm used to solve this set of equations. We discuss the con-

vergence of our numerical resolution and show that it yields the expected results

xv
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concerning the noise statistics and mean field behavior of an optomechanical cav-

ity. We also show that the numerical resolution is able to correctly describe cooling

of mechanical motion in single-cavity and auxiliary-cavity scenarios. Finally, we

show recent results on the synchronization appearing in a mechanically-coupled

array of optomechanical cavities.

Chapter III presents our contributions to the theoretical study of optomechanical

cooling of mechanical motion. We explore the quantum limits of photothermal

cavity cooling. We show that in this case the relevant time scale in the cooling

mechanism is the thermal relaxation time after photon absorption. It turns out

that photothermal cavity cooling is able to produce cooling close to the ground

state even in the “bad cavity” regime, in contrast to what happens with the more

standard radiation pressure coupling. We also present our calculations for an

optomechanical cavity coupled to an auxiliary cavity. We show that the spec-

tral modification introduced by the coupling to the auxiliary cavity changes the

spectral density of noise felt by the mechanical resonator. This modified spectral

density of noise is expected to lead to a richer stability diagram for the system as

well as cooling of mechanical motion by resonantly pumping the optomechanical

cavity.

Finally, chapter IV reports our results on a hybrid system combining cavity/cir-

cuit quantum electrodynamics and optomechanics. We analytically diagonalize a

Hamiltonian describing Jaynes-Cummings coupling between a cavity photon mode

and an artificial two-level atom and radiation pressure coupling between the same

cavity mode and a mechanical resonator. We explore the open system dynam-

ics and show that it leads to atom-enhanced resonant cooling (or amplification

depending on the pump frequency detuning) and to non-classical states of me-

chanical motion. We obtain expressions for the stationary state correlations of

the system under incoherent pumping. In particular we show that by incoherently

pumping the first two excited states of the Jaynes-Cummings ladder of dressed

atom-photon modes the system behaves as a single phonon emitter thus display-

ing truly non-classical behavior.

Our results on the photothermal cavity cooling are published in [1]. They were

presented in two international conferences (CLEO Europe 2011, March Meeting

2013) and during a poster session at les Houches summer school on “Quantum

Machines: measurement and control of engineered quantum systems” [2]. Our

results on the hybrid cQED-optomechanics system are published in [3]. They

have been presented in three international conferences and workshops (“frontiers
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of nanomechanics” at the ICPT in Trieste in 2013, March Meeting 2014 and the

Gordon Research Seminar on “Mechanical systems in the quantum regime” in Ven-

tura CA in 2014). These results were also showcased in a science communication

article [4].





Résumé en français

Ce manuscrit de thèse présente les résultats de notre travail théorique sur des cou-

plages non conventionnels dans des systèmes d’optomécanique quantique. Nous

nous sommes intéressés à deux problématiques particulières. D’une part l’étude

des effets de ces nouvelles formes de couplages sur le mécanisme de refroidisse-

ment ayant lieu dans ce type de systèmes. D’autre part nous avons aussi considéré

l’apparition d’états non classiques du mouvement d’un résonateur mécanique. Les

deux premiers chapitres de ce manuscrit définissent le cadre théorique et les outils

numériques utilisés pendant cette thèse. Les deux derniers chapitres présentent les

principaux résultats originaux obtenus pendant ce doctorat.

Dans le chapitre I nous introduisons les systèmes optomécaniques et décrivons

graduellement et pédagogiquement le cadre théorique nécessaire pour décrire la

physique en jeu. Nous commençons en introduisant le Hamiltonien général d’une

cavité optomécanique, composée d’un résonateur optique avec un miroir mobile

qui oscille sous un potentiel harmonique autour de sa position d’équilibre. Nous

introduisons des Hamiltoniens microscopiques pour prendre en compte le cou-

plage du système à des bains radiatives et non radiatives à température finie.

Utilisant des équations de Langevin quantiques nous décrivons le refroidissement

optomécanique d’un résonateur mécanique, nous en profitons pour introduire les

principaux concepts mobilisés tout au long de ce manuscrit. Nous discutons aussi

brièvement l’amplification du mouvement mécanique jusqu’à des régimes d’auto-

oscillation.

Le chapitre II présente les algorithmes et méthodes numériques utilisés pour me-

ner à bien l’étude de la dynamique d’une cavité optomécanique couplée au vide

électromagnétique et à un reservoir thermique pour le résonateur mécanique. Nous

discutons la résolution numérique de l’équation mâıtresse sous forme de Lind-

blad afin d’obtenir des informations sur le comportement dynamique et station-

naire du système. En particulier nous introduisons la représentation numérique

de taille finie d’un espace de Hilbert infini et discret utilisée pendant cette thèse.

Nous présentons aussi une méthode de résolution numérique des équations du

mouvement basée sur la distribution de Wigner tronquée du système. L’équation

mâıtresse sous forme de Lindblad de la matrice densité du système est projetée

vers une équation aux dérivées partielles sur la distribution de Wigner associée

au problème. En négligeant les termes d’ordre supérieur dans cette équation, et

donc en négligeant les corrélations quantiques menant à des valeurs négatives de

xix
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la distribution de Wigner, nous obtenons une équation de type Fokker-Planck

pour la distribution de quasi-probabilité. Le système peut alors être représenté

en termes d’un système d’équations de Langevin sur des variables scalaires com-

plexes. Nous présentons l’algorithme Monte Carlo mis en place pour intégrer ces

équations stochastiques. Nous discutons la convergence de l’algorithme et mon-

trons qu’il décrit correctement les statistiques du bruit et le comportement en

champ moyen du système. Nous montrons aussi que cette résolution donne une

représentation adéquate du refroidissement optique dans des scénarios à une et

deux cavités. Finalement, nous présentons des résultats récents sur la synchroni-

sation dans un réseau de cavités optomécaniques couplées mécaniquement.

Le chapitre III présente nos contributions à l’étude théorique du refroidissement

optomécanique d’un résonateur optomécanique. Nous explorons la limite quan-

tique du refroidissement photothermique de cavité. Nous montrons que dans ce

cas l’échelle de temps en jeu dans le processus de refroidissement est le temps

de relaxation thermique après absorption d’un photon. Il en résulte que le re-

froidissement photothermique en cavité est capable de refroidir le mouvement du

résonateur mécanique jusqu’à son état fondamental et ce dans un régime de ca-

vité non résolue (“bad cavity limit”) à différence de ce qui se produit dans le

cas standard de refroidissement par pression de radiation. Nous présentons aussi

nos calculs sur une cavité optomécanique couplée optiquement à une cavité auxi-

liaire. Nous montrons que la modification spectrale introduite par le couplage

à la deuxième cavité change la densité spectrale de bruit optique ressenti par le

résonateur mécanique. Cette nouvelle densité spectrale de bruit devrait mener à un

diagramme de stabilité plus riche pour le système ainsi qu’à du refroidissement du

mouvement mécanique en excitant de manière résonante la cavité optomécanique.

Finalement, le chapitre IV expose nos résultats sur un système hybride combi-

nant l’electrodynamique quantique (en cavité ou des circuits supraconducteurs) et

l’optomécanique quantique. Nous diagonalisons analytiquement un Hamiltonien

décrivant un couplage de type Jaynes-Cummings entre un atome artificiel à deux

niveaux et un mode optique et un couplage par pression de radiation entre le

même mode optique et un résonateur mécanique. Nous explorons la dynamique

en présence d’excitations et pertes et montrons qu’elle mène à un refroidissement

rehaussé par l’atome (ou amplification en fonction du désaccord entre la pompe

optique et la cavité) et à des états non-classiques du mouvement du résonateur

mécanique. Nous obtenons des expressions analytiques pour la statistique sta-

tionnaire du système sous excitation incohérente. En particulier nous montrons

que lorsque les deux premiers niveaux de l’échelle Jaynes-Cummings sont excités
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de manière incohérente le système se comporte comme un émetteur de phonons

uniques et donc qu’il présente un comportement non-classique.

Nos résultats sur le refroidissement photothermique sont publiés dans [1]. Ils ont

été présentés lors de deux conférences internationales (CLEO Europe 2011, March

Meeting 2013) et pendant une session poster de l’école d’été des Houches “Quan-

tum machines : Measurement and control of engineered quantum systems” [2].

Nos résultats sur le système hybride sont publiés dans [3]. Ils ont été présentés

lors de trois conférences internationales (“Frontiers of nanomechanics” à l’ICTP à

Trieste en 2013, March Meeting 2014 et au Gordon Research Seminar “Mechanical

systems in the quantum regime” à Ventura CA en 2014). Ces derniers ont aussi

été discutés dans un article de médiation scientifique [4].





General Introduction

“ But, in the end, can you see the electrons?

- Well, it depends.

- It depends on what?

- It depends on what you understand by seeing . . . ”

Conversation at a science museum.

The sensory act of “seeing” can be objectified in terms of the physical phenomena

taking place between the observer and the observed object. The object emits,

reflects or diffuses light that travels through some medium (usually air). After a

finite time light arrives at the observer’s retina. There the photons are absorbed

and converted into electrical signals sent to the brain. Finally the brain interprets

the electrical signals and the observer “sees” this manuscript. In this sense “seeing”

amounts to capturing some signal emitted by the object, analyzing it and obtaining

relevant information. By means of an ammeter or an oscilloscope it is possible

to detect electrons and obtain quantitative information about them such as the

associated current or voltage. Equipped with such apparatuses the observer “sees”

and measures the system under consideration. Quantitative data is then available

and can be used to infer or test a predictive theoretical model.

This far in the discussion the measurement process completely separates the ob-

server from the observed object. Indeed we just considered some information-

conveyor signal joining the latter to the former. The information travels in one

direction and the observed object remains unaltered while the observer steadily ac-

quires more and more information. When moving to the realm of quantum physics

the observer is placed in a radically new and exciting situation. The observer has

to face the intrinsic probabilistic nature of a quantum system. In order to com-

pletely determine the state (wave function) of the system a series of measurements

on an ensemble of copies is required. Simultaneously the state of the system it-

self is changed by the measurement. The measurement perturbs the system such

that the observer and the observed object interplay in a more intricate way. One

1



General Introduction 2

striking example is the Heisenberg microscope gedanken experiment. Let us now

briefly follow an insightful discussion on this problem which can be found in [5].

Figure 1: The Heisenberg microscope as discussed in [5].

Let us assume that we want to determine the position x1 of an object of mass m

by means of an optical measurement. The information between the object and the

observer is carried by the light shone on and diffracted by the mass. In order to

perform this measurement one attaches a sub-wavelength (in comparison to the

used light field) stick to the mass which will be able to scatter the light field. The

scattered photons are sent through a lens of focal length L1 into a photographic

plate where they are collected. Now, let us consider a stream of photons arriv-

ing at the mass/stick. An individual photon reaches the stick, is scattered, goes

through the lens aperture a and is finally absorbed by the photographic plate thus

leaving a mark at the position x2. By means of a simple Thales relation we obtain

that the position of the mass is x1 = −x2L1/L2. So far we are still performing

measurements as in the first paragraph. We obtain information on the system

without perturbing it.

The mark left on the photographic plate is not a point but an Airy disk with a

finite size. The position x2 can only be defined within a certain interval. We thus

know that the mass position is within an area centered in the previously computed

x1 and of finite width given by

∆xmeasure ∼
1

6
λ
L1

a
. (1)
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∆xmeasure is the error in the infered position of the mass. At this point we have

only taken into account the fact that due to diffraction there is no perfectly precise

optical measurement. We still have to describe the effects of the measurement on

the mass.

As was intuited by Kepler in 1619 [7], predicted by Maxwell in 1873 and exper-

imentally measured by Lebedew [8] in 1901 and by Nichols and Hull in 1903 [9]

light carries mechanical momentum and can exert pressure. A single photon of

frequency ω holds a mechanical momentum Pphoton = hω/c (c being the speed of

light) that can be transfered to the mass when the scattering takes place. We know

that the photon must have been diffracted by the aperture a, it thus gives to the

stick (and thus to the mass) a random momentum along the x axis ∆pperturb. This

random momentum kick has unknown sign but, for a� L1, it has a magnitude of

order

∆pperturb &
hω

c

a

2L1

. (2)

Measuring the mass position thus leads to a perturbation of its momentum in

a random fashion that ultimately perturbs further measurements of its position.

Multiplying these expressions we obtain the following relationship between the

imprecision of the measurement and its random recoil on the mass

∆xmeasure.∆pperturb ≥
h

2
. (3)

Eq.3 is reminiscent of the well known Heisenberg uncertainty principle linking

the simultaneous knowledge one can get on the position x and momentum p of a

quantum object :

∆x.∆p ≥ h

2
. (4)

Although Eq.3 and Eq.4 are both called “Heisenberg inequalities” they rise from

different physical pictures. Eq.4 is a property of any quantum object for which

one cannot have simultaneous and infinitely precise information about its position

and its momentum. Eq.3 on the other hand results from the properties of the

performed measurement, it links the imprecision of the position measurement to

the uncertainty on the recoil felt by the system. Both inequalities are nevertheless

closely related. If one was to perform a measurement of x1 with an imprecision

given by Eq.1 then the Heisenberg uncertainty principle (Eq.4) implies that the

momentum has been perturbed by at least the amount given in Eq.2. Quan-

tum mechanics imposes a fundamental limit on the precision of a position weak

measurement, the so-called standard quantum limit [5, 10].
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The achievable precision in a position measurement is of central interest in the

field of gravitational wave interferometry. In order to detect such astronomical

waves, optical interferometers with arms at the scale of the kilometer have been

set [11, 12]. Instead of measuring the position of a stick attached to a mass, these

interferometers aim at determining the changes in length of the interferometers’

arms down to a precision of 10−20 meters (we remind the reader that the Bohr

radius of an hydrogen atom is approximately 5.10−11 meters). Reaching such

precisions implies having control and understanding of the different noise sources

disturbing the measurement. The standard quantum limit was hence considered

as technologically relevant upon the development of these interferometers. In the

1970’s Vladimir Borisovich Braginsky et al. published a paper investigating the

mechanical effects of light in an interferometric position measurement [13]. At the

time these effects associated to photon recoil were considered to be detrimental

to the detection of gravitational waves. Nevertheless, further investigation showed

that the radiation pressure back action could lead to controllable and useful mod-

ification of the deformable interferometer mechanical properties.

In a Michelson interferometer the light intensity depends on the length of the arms.

On the other hand, radiation pression on the end mirrors changes this length. The

optical modification of the interferometer mechanical properties is a signature

of this optomechanical coupling between the light field and mechanical motion.

For about ten years now the interest for this coupling has quickly overflown the

field of gravitational wave interferometry and has become a whole field of physics

itself. The rise of optomechanical systems, where light and mechanical motion

are coupled, is supported by a solid community exploring and pushing further the

limits of optomechanical coupling [2, 14–17].

Using systems with masses ranging from the gram down to the zeptogram a

plethora of research groups are exploring the capabilities of optomechanical sys-

tems. It has been shown that the influence of light leads to a modification of the

mechanical resonance frequency (optical spring effect [13]), to a modification of the

dissipation constant as if light were a viscous medium (optical damping [18]) and

even to bistable behavior of mechanical motion for intense enough electromagnetic

fields [19]. Changing the mechanical properties of mechanical motion also induces

a modification of its response to the different noise sources at play in real life

experiments. In the 1950’s it was shown that it is possible to reduce the effects of

thermal Brownian motion on an electrometer by time-delayed electrical feedback

[20]. Following the same principles, in 1998 a theoretical article [21] proposed

using radiation pressure external feedback in order to cool mechanical brownian
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motion below its equilibrium temperature. Soon after, this proposition was exper-

imentally realized [22] and followed in 2004 by an experimental demonstration of

optical self-cooling of a cavity mirror using photothermal forces [23]. Similar cavity

self-cooling of a mirror, but with radiation pressure as the optomechanical force,

was achieved by four groups over 2006-2007 [24–27] and followed by several others.

By cooling the thermal fluctuations on the mirror position the frontier between

classical and quantum mechanics for mechanical motion became a reachable goal.

2007-2008 saw the publication of four theoretical papers [28–31] investigating the

limits of radiation pressure cooling and showing that it should indeed be possible

to reach the quantum ground state of mechanical motion. Mechanical systems in

their quantum ground state are now a reality, either by directly using cryogenic

techniques to put a 6 GHz microwave resonator in its ground state [32] or by com-

bining cryogenics and radiation pressure cooling in systems in the optical domain

[33] or in microwave superconducting circuits [34]. Recent experiments have suc-

cessfully measured radiation pressure shot noise [35] and measuring the position

of a moving mirror at the standard quantum limit seems to be within reach in a

not so distant future.

Experiments are now paving the way to quantum optomechanics where both

light and mechanical motion have to be described in terms of quantum observ-

ables. There have been many theoretical proposals to prepare and measure truly

quantum states in optomechanical systems. Early on radiation-pressure coupled

deformable interferometers were proposed as a mean to perform quantum non-

demolition measurements of the number of photons inside the cavity [36]. The

parametric dependance between the cavity resonance frequency and mechanical

motion can be understood in terms of an effective Kerr-like non-linearity leading

to squeezing of the photon field [37–39]. The radiation pressure coupling should

also lead to entanglement between mechanical motion and light [40–43] and even

to the creation of an EPR pair of two spatially separated mechanical resonators

[44]. Following the technological advances on the fabrication of optomechanical

resonators [45], reaching the vacuum “strong” coupling regime where a single pho-

ton is able to move the mechanical resonator by an amount comparable to its

zero point fluctuations may soon open the way for single photon quantum logic

using mechanical elements [46–48]. Finally, optomechanical systems are entering

the “zoology of tamed quantum systems” [15] and thus the possibility to study

optomechanical phenomena interplaying with other quantum systems has become

an important center of interest. The possibility to optomechanically couple the

center of mass motion of a cold atom cloud to a light field has been theoretically

explored [49, 50] and used experimentally to reach sensitivities near the standard

quantum limit [51]. Mechanical motion has already been coupled at the quantum
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level to the internal degrees of freedom of an artificial solid state atom [32] and

recent theoretical papers are now investigating the possibility to bridge cavity/

circuit quantum electrodynamics to optomechanics [3, 52–55].

This manuscript presents the theoretical work we undertook on the description

of quantum optomechanics with non conventional coupling schemes. We start in

chapter I by giving a theoretical introduction to quantum optomechanics. Chapter

II discusses the different numerical tools used during this PhD. Chapters III and IV

comprise our new contributions to the field of quantum optomechanics. In chapter

III we discuss the modifications of optomechanical cavity cooling by considering

photothermal forces and the coupling to an auxiliary cavity. Finally chapter IV

reviews our work and results on a hybrid cavity optomechanics-quantum electrody-

namics system. Appendices A and B present useful derivations for the formalisms

used during this thesis. These derivations can be found in the literature but we

have decided to present them here for the sake of consistency. Appendices C and

D present generalizations of some of the original calculations performed in the

main body of this manuscript.



Chapter I

Quantum optomechanics

I.1. The model system considered

I.1.1. Description of the system

The most simple example of the family of systems considered in this thesis is a

Fabry Perot cavity having one of its two end mirrors fixed in space (mirror 1 in

the following) and the other one (mirror 2) prone to move under the mechanical

effects of light (radiation pressure, photothermal distortion, . . . ). When mirror

2 is at its equilibrium position the cavity length is denoted L. For the sake of

simplicity let us consider only one cavity mode at frequency ωc (ωc is such that

there is a given k ∈ N such that ωc = kπc/L, c being the speed of light). This one

mode is excited by a coherent laser which injects photons at frequency ωp into the

cavity. The light intensity that eventually builds up in the cavity depends on the

difference ωc − ωp. A shift in the position of mirror 2 changes the cavity length

and thus leads to a modification of ωc. If the laser frequency remains unchanged,

the movement of mirror 2 modifies the intensity of the electromagnetic field inside

the cavity. Let us now consider that mirror 2 can move under the effects of an

optical force depending on the light intensity. The number of photons inside the

cavity depends on mirror 2 position, and the position of the mirror depends on the

number of photons in the cavity. This way we obtain a mutual coupling between

the electromagnetic field and the position of the moving mirror.

In order to study the quantum dynamics of such a configuration we first have to

obtain the Hamiltonian of a coupled mirror-field system.

7
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I.1.2. Closed system Hamiltonian

We follow the main steps of the historic derivation by Law [56] for the Hamiltonian

of a coupled field-mirror system in the case of a radiation-pressure-based optical

force.

I.1.2.1. Hamiltonian formulation for the deformable Fabry-Perot cav-

ity

Mirror 1 Mirror 2

x

y

z

q

0 L
x

Figure I.1: Fabry Perot cavity with a movable mirror. Mirror 2 can move
around its equilibrium position (q = 0).

As can be seen in Fig.I.1 we now consider a Fabry Perot cavity. The left side mirror

(mirror 1) is fixed at the position x = 0, the other mirror is prone to move along

the x-axis, thus modifying the cavity length. Let q be the position coordinate

around mirror 2 equilibrium position x = L (the actual cavity length is thus

L+ q). The dynamical variables of interest in this scenario are the mirror position

q along the x-axis and the electromagnetic field between the two mirrors. We

assume that the mirror moves in an energy potential V (q) and that the mirrors

are perfect conductors. The electromagnetic field and the mirror position are

coupled through the radiation pressure exerted by the former.

Let us consider that the dimensions of the mirrors along the y and z-axis are large

enough compared to the cavity length L so that the problem can be described

as a one-dimensional cavity. We also assume the dynamics of the mirror to be
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slow enough so that the system can be described in a non-relativistic way. The

electromagnetic field inside the cavity (0 ≤ x ≤ L + q(t)) will be described by its

vector potential A(x, t). Setting the speed of light to c = 1 one gets the following

wave equation for the vector potential,

∂2A(x, t)

∂x2
− ∂2A(x, t)

∂t2
= 0. (I.1)

The “perfect conductors” assumption for the mirrors leads to the following bound-

ary conditions

∀t, A(0, t) = A (L+ q(t), t) = 0. (I.2)

Finally, the mirror undergoes the forces arising from the potential energy V (q)

and from the radiation pressure exerted by the electromagnetic field. The non-

relativistic equation of motion for the mirror position is therefore

mq̈ = −∂V (q)

∂q
+

1

2

(
∂A(x, t)

∂x

)2
∣∣∣∣∣
x=L+q(t)

. (I.3)

The dynamics of the system is fully characterized by Equations I.1,I.2 and I.3.

In order to go further with our derivation of the Hamiltonian we now perform an

eigenmodes expansion of the cavity field that yields a set of generalized coordinates

{Qk}k∈N. Using Equation I.2, the generalized coordinates can be defined by

∀k ∈ N, Qk(t) =

√
2

L+ q(t)

∫ L+q(t)

0

dx A(x, t) sin

(
kπx

L+ q(t)

)
. (I.4)

Given the orthogonality of the mode functions, Eq.I.4 transforms the set of equa-

tions I.1 and I.3 into

Q̈k =− ωkQ2
k + 2

q̇

L+ q

∑

j

gkjQ̇j +
q̈(L+ q)− q̇2

(L+ q)2

∑

j

gkjQj

+
q̇2

(L+ q)2

∑

j,l

gjkgjlQl

(I.5)

mq̈ = −∂V (q)

∂q
+

1

L+ q

∑

k,j

(−1)k+jωkωjQkQj (I.6)



Chapter I. Quantum Optomechanics 10

where we introduced the position dependent eigen-frequencies {ωk} and the di-

mensionless coefficients {gkj} defined by

ωk(q) =
kπ

L+ q
(I.7)

gkj =

{
(−1)k+j 2kj

j2−k2 , k 6= j

0, k = j
. (I.8)

In order to get a quantized Hamiltonian for the system one has to find a way

to interpret the set of equations I.5 and I.6 as a set of Euler-Lagrange equations

with respect to some Lagrangian L. Law’s approach was to derive the following

Lagrangian which yields the adequate equations of motion,

L
(
q, q̇, {Qk, Q̇k}

)
=

1

2

∑

k

Q̇k
2 − ωk(q)2Q2

k +
1

2
mq̇2 − V (q)

− q̇

L+ q

∑

j,k

gk,jQ̇kQj +
q̇2

2(L+ q)2

∑

j,k,l

gkjgklQlQj.
(I.9)

The canonical momenta conjugate to Qk and q, Pk and p respectively, are obtained

by Legendre transformation and are defined as follows:

Pk = Q̇k −
q̇

L+ q

∑

j

gkjQj, (I.10)

p = mq̇ − 1

L+ q

∑

j,k

gk,jPkQj. (I.11)

From here it is then possible to define a Hamiltonian H associated to L. It can

be easily checked that H represents the total energy of the system (kinetic and

potential energies associated to the mirror’s motion and the energy stored by the

electromagnetic field inside the cavity).

H(q, p, {Qk, Pk}) = pq̇ +
∑

k

PkQ̇k − L(q, q̇, {Qk, Q̇k})

=
1

2m

(
p+

1

L+ q

∑

j,k

gkjPkQj

)2

+ V (q) +
∑

k

[
1

2
P 2
k + ωk(q)

2Q2
k

]

=
1

2
mq̇2 + V (q) +

1

2

∫ L+q(t)

0

dx

[(
∂A(x, t)

∂t

)2

+

(
∂A(x, t)

∂x

)2
]

(I.12)
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I.1.2.2. Main approximations

From the Hamiltonian I.12 one could “quantize” the problem by following the

canonical quantification procedure (replacing the variables q, p, Qk and Pk with

noncommuting operators on a Hilbert space). Doing so at this point would lead to

a Hamiltonian describing additional physical phenomena going beyond the scope

of this thesis. Let us now briefly discuss these phenomena and present the main ap-

proximations leading to the quantum optomechanics Hamiltonian used throughout

this manuscript.

Taking the infinite summations over the field modes into the quantum realm leads

to a divergent vacuum field energy arising from the vacuum fluctuations of each

mode. In order to get rid of such divergence one would have to take into ac-

count the field modes outside the cavity and by doing so introduce the well known

Casimir force [57]. This force, which results from a differential radiation pressure

force applied on both the internal and external faces of the mirror, would intro-

duce a term −~π/24(L + q) into the potential energy V (q). In the following we

assume the equilibrium cavity length is big enough so that the Casimir potential

can be neglected with respect to the other energies of the problem (kinetic en-

ergy and harmonic potential of the mirror motion and the energy stored in the

electromagnetic field inside the cavity).

The non-linearities in Hamiltonian I.12 also allow two photon emission and ab-

sorption processes as well as exchange of photons between the different cavity

modes. In the following we neglect these non linear processes and assume that

only one mode contributes dominantly to the cavity field. The mode subscripts

k are replaced by a single subscript c. The cavity field variables are thus Qc and

Pc and the cavity mode eigenfrequency will be denoted ωc. In order for this one

mode approximation to be valid the mirror motion has to be adiabatically slow

(with respect to the photon lifetime inside the cavity) so that no photon scattering

between cavity modes is possible.

Finally we assume that the mirror displacement is small enough so that the dy-

namics can be well described by keeping terms only to second order on q. The

potential energy V (q) is thus set to a harmonic potential V (q) = 1
2
mω2

mq
2, where

ωm is the frequency of the mechanical oscillation in this potential.
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I.1.2.3. Quantum optomechanics Hamiltonian

Taking into account these approximations we now move to a quantum mechanical

frame by applying the canonical quantization procedure. We let the variables q,

p, Qc and Pc be operators obeying the commutation relations

[q̂, Q̂c] = [q̂, P̂c] = [p̂, Q̂c] = [p̂, P̂c] = 0 (I.13)

[q̂, p̂] = [Q̂c, P̂c] = i~. (I.14)

From here it is possible to introduce the usual annihilation and creation operators,

â and â† respectively, for the cavity field

â =

√
1

2~ωc

[
ωcQ̂c + iP̂c

]
(I.15)

â† =

√
1

2~ωc

[
ωcQ̂c − iP̂c

]
. (I.16)

We thus get the usual quantum optomechanics Hamiltonian for the system under

consideration (single mode optical cavity field coupled to the motion of a mechan-

ical harmonic oscillator via radiation pressure)

Ĥ = ~ωc
(
â†â+

1

2

)
+

p̂2

2m
+

1

2
mω2

mq̂
2 − ~Gcmâ

†âq̂, (I.17)

where we have introduced the optomechanical coupling between the cavity and

the mechanical oscillator Gcm = −∂ωc/∂q|q=0 (Gcm = kπc/L2 for the linear model

introduced in this Chapter, k is the mode number associated to the cavity mode

under consideration). Here again we can introduce annihilation and creation op-

erators for the mechanical resonator,

b̂ =

√
mωm

2~
q̂ + i

√
1

2m~ωm
p̂, (I.18)

b̂† =

√
mωm

2~
q̂ − i

√
1

2m~ωm
p̂. (I.19)

Introducing the newly defined operators into the Hamiltonian I.17 yields the stan-

dard form of the Hamiltonian used in quantum optomechanics

Ĥ = ~ωc
(
â†â+

1

2

)
+ ~ωm

(
b̂†b̂+

1

2

)
− ~gcmâ†â

(
b̂† + b̂

)
, (I.20)
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where we introduced gcm = Gcm

√
~/2mωm = Gcmxzpf , the single photon op-

tomechanical coupling strength. gcm represents the cavity frequency shift due to

a displacement equal to the zero point fluctuations of the mechanical resonator

position (xzpf =
√

~
2mωm

).

Before moving to the next step of our description of the system (the description of

the dissipative baths responsible for the decoherence of the system) we would like

to introduce a new transformation on the Hamiltonian which will prove useful in

the following. Let us consider the dimensionless position and momentum operators

for the mechanical resonator

q̂m =
b̂+ b̂†√

2
=

√
mωm
~

q̂

p̂m =
b̂− b̂†
i
√

2
=

√
1

m~ωm
p̂.

(I.21)

These operators satisfy the dimensionless commutation relation [q̂m, p̂m] = i. In-

jecting them into the hamiltonian I.17 leads to the following form

Ĥ = ~ωc
(
â†â+

1

2

)
+ ~ωm

(
p̂2
m

2
+
q̂2
m

2

)
−
√

2~gcmâ†âq̂m. (I.22)

I.1.3. Open system dynamics

Since the optomechanical coupling term in the Hamiltonian I.20 is proportional to

the number of photons in the cavity, reaching a large photonic population boosts

the optomechanical effects. In usual experimental realizations this is achieved

by driving the system with a coherent laser. This drive not only populates the

cavity but it also enables acquisition of information on mechanical motion via the

detection of the photons exiting the cavity. The optomechanical cavity is thus

receiving and giving information from and to the exterior world. Taking into

account these information exchanges and the noise intrinsic to them requires a

proper description of the coupling to the environment.

Another reason for taking into account the environment is the inclusion of the

effects of finite temperature on the mechanical resonator dynamics. Indeed, given

the usual orders of magnitude of the mechanical frequency (ωm ∼ 1 kHz-1 GHz),

even dilution cryostat environments lead to a mean thermal occupation of the

mechanical resonator nth � 1. Neglecting the effects of the thermal environment

would give an incomplete description of the dynamics. Furthermore, as will be

presented later on in this Chapter, by taking into account this two environments
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(the cavity field environment and the mechanical resonator thermal environment)

it is possible to show that the optomechanical interaction can reduce the pseudo-

thermal occupation of the mechanical resonator taking it close to its ground state.

In the following paragraphs we present a Hamiltonian description of the total

system {optomechanical cavity + environment}. We first discuss in general terms

the properties of the environment and of the coupling between it and the system,

and then we give the hamiltonian formulation used during this research project.

I.1.3.1. Modelling the environment

Let us first consider a simple optical cavity. We showed before that a single cavity

mode can be described in terms of a harmonic oscillator at frequency ωc. It is

a well known result [58] that in quantum mechanics such a closed system has a

discrete energy spectrum with equidistant energy levels separated by ~ωc. If one

was to linearly probe the spectral response of such a system the resulting spectrum

would yield a delta peak at frequency ωc. But in real life experiments the spectral

response of the cavity does not present a Dirac delta shape, rather the delta peak

is convoluted with a Lorentzian distribution thus giving rise to a finite linewidth.

The same holds for the problem of an atom with discrete eigenstates but whose

spectral lines (obtained by means of an absorption experiment for example) are not

sharp. Gardiner and Zoller give the following interpretation of the finite linewidths

of atomic spectra: “The origin of the spectral linewidth is the coupling of the atom

to the electromagnetic field, which has infinitely many degrees of freedom, and it

is only because of this infinity that the irreversible phenomenon of atomic decay

takes place” [59]. In the following we follow this guideline in order to describe the

coupling to the environment. We assume that the cavity mode can either absorb

a photon from the environmental field thus creating a cavity photon or it can

emit/destroy a cavity photon in order to excite one of the vacuum modes outside

the cavity. The optical bath is described as a collection of harmonic oscillators

coupled to the cavity mode of interest. We assume that the coupling is linear in

the bath and cavity operators. On the mechanics side the dissipative processes

at play can have diverse origins. They can result from clamping losses due to

the structural connection of the mechanical resonator to its support, they can

also arise from fluidic damping due to the motion in the surrounding fluid (air

or liquid) for example. In any case, we assume that the mechanical resonator

undergoes Brownian motion and we describe it by assuming that it is also linearly

coupled to an infinity of harmonic oscillators.
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I.1.3.2. Optical Bath

Let us first take into account the optical bath leading to dissipative processes on

the cavity field. We assume the following form for the Hamiltonian of the system

{optomechanical cavity + optical bath},

Ĥ + Ĥopt
bath = Ĥ +

∫

q

dq
{
~ωqα̂qα̂†q + i

√
κq
(
α̂qâ

† − α̂†qâ
)}
. (I.23)

Each mode of the environment is indexed by the subscript q and α̂q, α̂
†
q are annihi-

lation and creation operators for each mode. The first term under the integral on

the right hand side of equality I.23 amounts for the energy of each environmental

mode, the other two terms give the coupling between the system and its bath.

The system can absorb a photon from one of the modes thus creating a photon in

the cavity mode (α̂qâ
†) or one cavity photon can be lost to the extra cavity field

(α̂†qâ). The reservoir exchanges excitations with the system, at zero temperature

(~ωc � kbT , with kb Boltzmann’s constant and T the environment temperature)

the reservoir only absorbs energy from the system.

Let us assume that mode p is driven by a coherent pump. We consider it is

in a coherent state |A(t)〉 such that α̂p|A(t)〉 = A(t)|A(t)〉 with A(t) ∈ C. Let

us now consider the unitary transformation given by the displacement operator

D̂ (A(t)) = exp
[
A(t)α̂†p − A(t)∗α̂p

]
. Up to a constant scalar term which can be

forgotten, the Hamiltonian now reads

Ĥ + Ĥopt
bath = Ĥ + iFp

(
e−iωptâ† − eiωptâ

)

+

∫

q

dq
{
~ωqα̂qα̂†q + i

√
κq
(
α̂qâ

† − α̂†qâ
)}
,

(I.24)

where we assumed the amplitude of the coherent state has a constant norm such

that A(t) = Fp/
√
κp exp(−iωpt) and we have chosen Fp ∈ R without loss of gen-

erality. The Hamiltonian I.24 corresponds to an optomechanical cavity driven by

a coherent laser at frequency ωp and coupled to the vacuum electromagnetic field

whose modes are all in their ground state.

I.1.3.3. Mechanical bath

Let us now propose a Hamiltonian description for the dissipative dynamics under-

gone by the mechanical resonator. The train of thought is similar to what was

just discussed but with the major difference that the relevant frequencies of the
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mechanical resonator are such that the thermal occupancy of the modes has to be

taken into account (ωm ∼ kbT/~).

As stated before, the dissipative processes acting on the moving mirror can have

diverse and multiple origins. They can arise from clamping losses in which case

the dissipative processes can be understood in terms of energy exchanges between

the mechanical resonator and the vibrational modes of the structure on which it is

attached. The dissipation can also result from the action of the surrounding fluid

on the motion of the mechanical resonator. In both cases and at equilibrium the

problem is well described in terms of Brownian motion [60].

Figure I.2: A mechanical resonator linearly coupled to an infinity of oscillators.
The coupling is mediated by the positions of the resonator and of the oscillators.

Looking for a Hamiltonian description for the dissipative processes undergone by

the mechanical resonator amounts to choosing a microscopic description of the

mechanical resonator’s environment and of the coupling between the two of them.

The picture we have chosen follows the schematics of Fig.I.2 : the mechanical

resonator is coupled to an infinity of modes with a linear coupling via its posi-

tion. We thus consider the following Hamiltonian for an optomechanical cavity

whose moving mirror undergoes Brownian motion due to its coupling to a thermal

environment of harmonic oscillators [61].

Ĥ + Ĥmech
bath = Ĥ +

∫

k

dk

{
~ωk

p̂2
k + (q̂k − gkq̂)2

2

}
, (I.25)

where k is an index for the modes of the bath, q̂k and p̂k are position and momen-

tum operators for each mode, ωk is the energy for mode k and gk is the coupling
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strength between the mechanical resonator and the mode. The Hamiltonian I.23

can be deduced from equation I.25 by introducing annihilation and creation op-

erators and by neglecting the anti-resonant terms resulting from the coupling term.

I.1.4. Total Hamiltonian and extensions

The Hamiltonian of the complete system, optomechanical cavity and baths, is

thus:

Ĥtot =~ωc
(
â†â+

1

2

)
+ ~ωm

(
b̂†b̂+

1

2

)
− ~gcmâ†â

(
b̂† + b̂

)

+ iFp
(
e−iωptâ† − eiωptâ

)

+

∫

q

dq
{
~ωqα̂qα̂†q + i

√
κq
(
α̂qâ

† − α̂†qâ
)}

+

∫

k

dk

{
~ωk

p̂2
k + (q̂k − gkq̂)2

2

}
.

(I.26)

This Hamiltonian takes into account the dynamics of the closed optomechanical

system (a cavity mode coupled to mechanical motion via radiation pressure), the

driving of the cavity by a laser of frequency ωp and intensity Fp, the cavity coupling

to an optical bath modeled by a collection of harmonic oscillators in their ground

state and the coupling of the mechanical resonator to a bath of thermally populated

harmonic oscillators.

The Hamiltonian I.26 is the starting point of the physics studied in this thesis. In

the following chapters we consider variations to this Hamiltonian, which are not

derived in detail. Nevertheless, each time the modifications to the Hamiltonian

are explicitly stated. In the case of the optomechanical arrays (Chapters II and

III), each optical cavity is coupled to the same optical bath as in the Hamiltonian

I.23 (they are subject or not to a coherent drive) and each mechanical resonator

undergoes Brownian motion described by the Hamiltonian I.25. In the situation

considered in Chapter IV, just as the cavity, an artificial atom is coupled to the

vacuum electromagnetic field outside the cavity, which allows us to take into con-

sideration the phenomenon of spontaneous emission from the atom.

At the beginning of this thesis, one of the guidelines of our work was to study the

cooling mechanisms arising in optomechanical systems. The original description

of this phenomenon can be found in Refs.[28–31]. The review [17] also presents the

principles and limitations of optomechanical ground state cooling of the mechanical
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resonator. In the following we present the main aspects of optomechanical cooling

theory. We feel that this discussion provides an easy-to-follow scenario on which

to discuss the relevant concepts in theoretical quantum optomechanics. Doing so

also allows us to set-down important ideas that will be revisited in the following

chapters.

I.2. Langevin equations

In this section we discuss the dynamics of the system within the Heisenberg rep-

resentation. The time-varying behavior is carried by the operators while the state

of the system remains unchanged. The time evolution for any given operator Ô(t),

acting on the system or the environment, can be deduced from the Hamiltonian

I.26 by simply applying the Heisenberg equation :

~
dÔ(t)

dt
= −i

[
Ô(t), Ĥtot

]
. (I.27)

We thus get the following set of equations on the system’s observables of interest,

˙̂a = −iωcâ+ igcmâ(b̂+ b̂†) + Fpe
−iωpt +

∫

q

dq
√
κqα̂q

˙̂
b = −iωmb̂+ igcmâ

†â+

∫

k

dk
√
κkβ̂k.

(I.28)

The set of equations I.28 includes terms corresponding to the environment’s dy-

namics, for which similar equations can be derived. Dealing with the complete

set of dynamical equations would amount to follow at each time t the evolution

of the whole system {optomechanical cavity + environment}. Given the size of

the environment this would be impossible and inconvenient since in the end only

the behavior of the optomechanical system is of interest. By using the Langevin

equations formalism it is possible to overlook the environment’s time evolution

and keep track of its dissipative influence on the system altogether. We do not

present the whole derivation of the Langevin equations [61–63] but rather give

the essential assumptions, arguments and steps leading to the set of equations

considered during this thesis.
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By formally integrating the dynamical equations on the environment’s observables

one can rewrite the set I.28 in the following form

˙̂a = −iωcâ−
∫ t

−∞
dt′γc(t− t′)â(t′) + igcmâ(b̂+ b̂†) + Fpe

−iωpt + ξ̂c(t)

˙̂
b = −iωmb̂−

∫ t

−∞
dt′γm(t− t′)b̂(t′) + igcmâ

†â+ ξ̂m(t).

(I.29)

I.2.1. Dissipation and noise operators

The coupling to the environment leads to the presence of two terms in the equations

of motion of the observables of interest. The first term (γj(τ), j = c,m), is

responsible for the dissipation, which in general can be delayed (memory effect).

The second term (ξ̂j(t)) is an operator acting on the environment, it represents

the noise introduced by the environment onto the system.

By determining the properties of the memory kernel and the noise spectrum of the

Langevin force it is possible to continue the study of the system dynamics. We

assume that the optomechanical cavity is weakly coupled to the environment and

that the environment is Markovian. The latter approximation implies that any sys-

tem information dissipated to the environment is irreversibly lost. The markovian

environment is thus memoryless and we set the memory kernel to γj(t) = γjδ(τ),

where γj is a constant amplitude decay rate for the cavity (γc) and for the me-

chanical resonator (γm) and δ(τ) is the Dirac delta distribution.

The Langevin forces are treated as stochastic terms with zero mean value and

their noise spectrum is determined by the following two relations

〈[ξ̂j(t), ξ̂†j (t′)]〉 = γjδ(t− t′), (I.30)

〈ξ̂j
†
(t)ξ̂j(t

′)〉 = γj
1

exp(~ωj/kT )− 1
δ(t− t′). (I.31)

In the correlation function in Eq.I.31 we see the appearance of a factor giving the

average thermal occupation of an harmonic oscillator in equilibrium with a tem-

perature T . As previously stated we assume that for the characteristic frequencies

related to the cavity (ωj ∼ ωc) this occupation factor is 0. For frequencies related

to the mechanical resonator (ωj ∼ ωm) we consider occupations given by a finite

temperature.
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The equations of motion for the cavity and mechanical degrees of freedom are thus

˙̂a = −iωcâ− γcâ+ igcmâ(b̂+ b̂†) + Fpe
−iωpt + ξ̂c(t)

˙̂
b = −iωmb̂− γmb̂+ igcmâ

†â+ ξ̂m(t).
(I.32)

The equations of motion in terms of the mechanical resonator position will also

be useful when discussing the effects of the radiation pressure coupling on the

mechanical frequency and dissipation rate. Considering the normalized position

operator the corresponding set of equations is :

˙̂a = −iωcâ− γcâ+ i
√

2gcmâq̂m + Fpe
−iωpt + ξ̂c(t)

¨̂qm = −ω2
mq̂m − γm ˙̂qm +

√
2gcmωmâ

†â+ Ξ̂m(t).
(I.33)

Eq.I.32 and Eq.I.33 are not strictly equivalent as they result from two different

Hamiltonians describing two different couplings to the thermal environment of the

mechanical resonator. Eq.I.33 results from a coupling to the mechanical environ-

ment as described by the Hamiltonian in Eq.I.25. On the other hand Eq.I.32 arises

from a coupling where the anti-resonant terms have been neglected, in which case

the coupling to the mechanical bath is formally identical to that considered in

Eq.I.23.

If the coupling to the mechanical environment is weak enough (in other terms if

the mechanical quality factor is large enough, Qm = ωm/γm � 1) both equations

describe the same physics. The correlation function of the Langevin force acting

on the mechanical resonator position is given by

〈Ξ̂m(t)Ξ̂m(t′)〉 = ~γm
∫

R
dω eiω(t−t′)coth

(
~ω

2kbT

)
. (I.34)

The sets of differentials equations I.32 and I.33 contain a non-linear term propor-

tional to â†â, which is treated with a mean field approach. By separating the mean

fields and the fluctuations it is possible to linearize the optomechanical interac-

tion and use a Fourier transform to analyze the cavity and mechanical spectral

response.
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I.3. Non-linear mean-field approach

Moving to the frame rotating at the pump frequency1 we are able to eliminate

the time dependance in the equations of motion. In this rotating frame the co-

herent pump term is now a constant Fp, and the cavity annihilation operator now

oscillates at the cavity detuning defined as ∆ = ωc − ωp. Being coupled to the

light field by the number of photons, the mechanical resonator is insensitive to

this change of frame.

Having lost the time dependance in the equations we assume that the cavity and

mechanical resonator reach a stationary state characterized by time-independent

mean fields defined as : α = 〈â〉 and β = 〈b̂〉. Injecting the definition of the mean

fields into the equations of motion we obtain the following algebraic expressions:

0 =− (i∆ + γc)α + igcmα(β + β∗) + Fp

0 =− (iωm + γm)β + igcm|α|2.
(I.35)

Absorbing the equation on the mechanical mean field we derive a third order

polynomial equation relating the intra-cavity photon intensity Ic = |α|2 to the

pump intensity |Fp|2.

|Fp|2 = (∆2 + γ2
c )Ic − 4∆

g2
cmωm

ω2
m + γ2

m

I2
c + 4

g4
cmω

2
m

(ω2
m + γ2

m)2
I3
c . (I.36)

Such third order equation can lead to multistable regimes, reminiscent of Kerr

non-linearities, in which for a given intensity of the coherent pump one has more

than one solution to the mean field equation I.36. By looking at the polynomial it

is possible to show that the multistability appears if and only if ∆ >
√

3γc, which

is to say only for a red-detuned pump with respect to the cavity resonance.

Let us now take into account the fluctuations of the system around its mean-field.

We write â = α+ δâ and b̂ = β + δb̂. We limit ourselves to terms up to first order

in the fluctuations.

δ ˙̂a = −(i∆nl + γc)δâ+ iαgcm(δb̂+ δb̂†) + ξ̂c(t)

δ
˙̂
b = −(iωm + γm)δb̂+ iαgcm(δâ+ δâ†) + ξ̂m(t)

(I.37)

1The change of frame is performed by applying a unitary transformation to the Hamiltonian

defined by the unitary operator : Ûp = eiωptâ
†â.
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The average stationary number of photons in the cavity |α|2 displaces statically

the equilibrium position of the mechanical resonator thus shifting the resonance

frequency of the cavity. We take into account this mean-field effect by introducing

the non-linear detuning of the cavity ∆nl = ∆ − (β + β∗)gcm. In the set of

equations I.37 we have assumed without loss of generality that the coherent pump

phase is such that α ∈ R. Having linearized the equations on the fluctuations

the non-linear optomechanical coupling gcmâ
†â(b̂† + b̂) is reduced to an effective

linear coupling between the quadratures of the light field and the mechanical

resonator. This effective linear coupling can be described by an interaction term in

the Hamiltonian of the form αgcm(δâ†+δâ)(δb̂†+δb̂). The effective optomechanical

coupling is enhanced by the square root of the average number of photons inside

the cavity.

The linear set of equations I.37 can be solved by considering the Fourier transform

of the operators. For any time dependent quantity c(t) its Fourier transform is

defined as follows

c̃(ω) = F [c(t)](ω) =

∫
dteiωtc(t). (I.38)

The Fourier transform of the Hermitian conjugate of an operator will be noted

F [ĉ†(t)](ω) = ˜̂c†(−ω) 2.

In frequency space the equations of motion link linearly the operators of the system

to the noisy inputs by the environment.

M[ω]




δ̃â(ω)

δ̃b̂(ω)

δ̃â†(−ω)

δ̃b̂†(−ω)


+ i




˜̂
ξc(ω)
˜̂
ξm(ω)

ξ̃†c(−ω)

ξ̃†m(−ω)




= 0, (I.39)

where we have introduced the Bogoliubov matrix of the system

M[ω] =




∆nl − ω − iγc −αgcm 0 −αgcm
−αgcm ωm − ω − iγm −αgcm 0

0 αgcm −∆nl − ω − iγc αgcm

αgcm 0 αgcm −ωm − ω − iγm


 .

(I.40)

The stability of the mean-fields α and β can be checked by looking at the eigen-

values of the Bogoliubov matrix M[ω]. The mean-fields are stable if and only if

2
∫ +∞
−∞ dteiωtĉ†(t) =

(∫ +∞
−∞ dte−iωtĉ(t)

)†
= (c̃(−ω))

†



I.3. Non-linear mean-field approach 23

all the eigenvalues of the matrix have strictly negative imaginary parts, which is

reminiscent of the well knwon Routh-Hurwitz criterion for stability [64]. Fluctu-

ations diverge in time if any imaginary part changes sign, one then moves from

damped to amplified fluctuations.

I.3.1. Bistability

Having this stability criterion for the mean-field solutions it is possible to separate

the stable from unstable solutions of the mean-field equations. As shown in Fig.I.3

it is possible to obtain multistable regimes where the curve α(Fp) has an “S”-like

shape displaying unstable solutions for the middle branch. As soon as ∆ <
√

3γc

the multistability is lost, for every value of the pump intensity there is one and

only one mean-field solution. In the case where the multistability is possible, the

center of the “S”-like curve (the center of the two points at which the derivative

of the function Fp(α) changes sign) corresponds to an intracavity intensity Ic =

|α|2 = (γ2
b +ω2

m)∆/3g2
cmωm. Higher values of the optomechanical coupling lead to

the appearance of the bistability for smaller number of photons. Inversely if the

detuning between the cavity and the pump increases the bistability is pushed to

larger values of the number of photons. For an early experimental demonstration

of the bistable behavior of optomechanical systems the reader is invited to consult

the reference [19].

Figure I.3: Solutions of the mean-field equation for the cavity field α as a
function of the coherent pump intensity Fp for different values of the cavity
detuning ∆ = ωc − ωp. Stable (unstable) solutions are shown as solid (dashed)

lines. γm/ωm = 10−6, γc/ωm = 10−3, gcm/ωm = 10−3.

In the following section we discuss cavity cooling of mechanical motion in the

regime where the linearization with respect to the mean-field holds. We implicitly

assume that the system reaches a stable stationary state and that it is far from

bistability.
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I.4. Cavity cooling of mechanical motion

I.4.1. Linearized optomechanics

The linear set of equations of motion I.37 can be recovered from an effective linear

Hamiltonian,

Ĥlin = ∆δâ†δâ+ ωmδb̂
†δb̂− αgcm(δâ† + δâ)(δb̂† + δb̂). (I.41)

By performing an unitary transformation defined by the operator Û(t) = exp[i(∆δâ†

δâ + ωmδb̂
†δb̂)t] it is easy to see that the optomechanical effects on the mechan-

ical resonator are tailored by the cavity-pump detuning ∆ [2]. For a pump red-

detuned so that ∆ = ωm the resonant terms in the optomechanical interaction

are δâ†δb̂ + h.c, which allows transfer of excitations between the mechanical res-

onator and the cavity. Given that δâ is an oscillator at zero temperature it is

possible to cool down the mechanical resonator, the surplus thermal energy being

extracted by the photons and dissipated into the vacuum electromagnetic field. For

gcm � (γm, γc) δâ and δb̂ hybridize and it becomes possible to coherently transfer

photonic information to mechanical states and vice-versa. On the other hand, for

a blue detuned pump (∆ = −ωm) the resonant interaction is δâ†δb̂† + H.c, which

can lead to two-mode squeezing, entanglement and even mechanical instabilities

if the amplification rate is larger than the losses.

Starting from the Langevin equations on the fluctuations around the mean field

we now study how optomechanical effects of light on mechanical motion lead to its

modification. This is discussed by considering the equations coupling the light field

fluctuations δâ to the mechanical resonator position around the new equilibrium

position δq̂. We show how radiation pressure leads to the optical spring effect and

to the introduction of an optomechanical damping rate, ultimately responsible for

either cooling or amplification of mechanical motion.

I.4.2. Langevin equations on fluctuations

The set of equations of motion we consider is

ȧ = −(i∆nl + γc)â+ i
√

2gαqm + ξc(t)

ȧ† = −(−i∆nl + γc)â
† − i
√

2gαq̂m + ξ†c(t)

q̈m = −ω2
mqm − γmq̇m +

√
2gαωm(a+ a†) + Ξm(t),

(I.42)
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where we have omitted the δ’s and the hats in the fluctuation operators for sim-

plicity and we have introduced the coherently enhanced optomechanical coupling

gα = αgcm. Just as we did before, we move to Fourier space in order to obtain an

equivalent set of algebraic equations:

ã(ω) = i
√

2gαχc(ω)q̃m(ω) + χ(ω)ξ̃(ω)

ã†(−ω) = i
√

2gαχ
∗
c(−ω)q̃m(ω) + χ∗c(−ω)ξ̃†(−ω)

q̃m(ω) =
√

2gαωmχm(ω)
(
ã(ω) + ã†(−ω)

)
+ χm(ω)Ξ̃m(ω)

(I.43)

Here we see the appearance of the optical and mechanical susceptibilities, χc(ω)

and χm(ω) respectively, which define the cavity and the mechanical resonator

spectral response to the inputs. This suceptibilites are

χ−1
c (ω) = i(∆nl − ω) + γc

χ−1
m (ω) = ω2

m − ω2 − iγmω.
(I.44)

The cavity displays an usual Lorentzian response while the spectral response of

the mechanical resonator is that of a well-known damped harmonic oscillator.

By eliminating the cavity degrees of freedom it is possible to get an equation only

on the mechanical position fluctuation. These equations can be written in the

form

χ−1
eff (ω)q̃m(ω) = Ξ̃opt(ω) + Ξ̃m(ω) (I.45)

As can be seen in Eq.I.45 the coupling to the light field has two major consequences.

First, a modification of the mechanical spectral response, which is taken into

account by the effective mechanical susceptibility

χ−1
eff (ω) = χ−1

m (ω)− i2g2
αωm (χc(ω)− χ∗c(−ω)) . (I.46)

Second, the mechanical resonator is effectively coupled to an additional noise

source of optical origin Ξ̃opt(ω). This Langevin force describes how the fluctua-

tions arising from the coupling between the cavity photons and their environment

affect mechanical motion. This additional noise can be cast in terms of the noise

operators acting on the cavity as follows:

Ξ̃opt(ω) =
√

2gαωm

(
χc(ω)ξ̃c(ω) + χ∗c(−ω)ξ̃†c(−ω)

)
. (I.47)
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The effective susceptibility in Eq.I.46 can be interpreted as resulting in a mod-

ification of the mechanical resonance frequency and of the mechanical damping

rate, such that one can write χ−1
eff = ω2

eff (ω)− ω2 − iωγeff (ω). This modification

leads to what is known as the optical spring effect, in which the stiffness of the

mechanical resonator can be controlled by the laser pumping of the cavity [65]. Of

particular interest is the modification of the mechanical damping rate:

γeff (ω) = γm + 2g2
α

γcωm
ω

[
1

(∆nl − ω)2 + γ2
c

− 1

(∆nl + ω)2 + γ2
c

]
. (I.48)

For weak optomechanical coupling and large enough mechanical quality factors,

this effect can be analyzed by just considering the problem at the unperturbed

mechanical frequency (ω = ωm). For red-detuned pumps ∆nl > 0 one obtains

extra-damping that for strong enough pump intensities should completely elim-

inate the effects of thermal noise thus cooling down the mechanical resonator’s

motion. Blue-detuned pumps ∆nl < 0 on the contrary induce anti-damping lead-

ing to heating or even instability if the effective mechanical damping rate becomes

negative.

In a classical approach to the cooling problem, we can assume that the optical

environment is at zero temperature whereas the mechanical environment is at

temperature T . The mechanical resonator couples with strength γm to its thermal

environment and, due to the optomechanical coupling, is effectively coupled to

the optical bath with a strength Γopt. The mechanical resonator total decay rate

is thus γeff = γm + Γopt, and its final effective temperature should be given by

Teff = γmT/(γm + Γopt). By red-detuning the cavity and increasing sufficiently

the laser power the optical damping Γopt should overcome the intrinsic damping

rate γm and take the mechanical resonator down to its quantum ground state.

Nevertheless with this approach we are not taking into account the fluctuations

of the electromagnetic field, which will prevent us from getting exactly to the

ground state. In the following section we present a rate equation approach to

optomechanical cooling that gives a more precise insight into these fluctuations

effects.

I.4.3. Optically induced transitions

The cooling of mechanical motion can be treated with rate equations for the pop-

ulations of the mechanical resonator density matrix. In order to take into account
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the optomechanical coupling it is necessary to know how it enters these rate equa-

tions. Based on usual time-dependent perturbation theory, we first derive a Fermi

Golden Rule in terms of the spectral noise density of the perturbation. With this

form of the Fermi Golden Rule we describe the optomechanically excited tran-

sitions of the mechanical resonator, which ultimately allows us to calculate the

final occupancy of the mechanical resonator, thus giving the quantum limits of

optomechanical cooling.

I.4.3.1. Fermi Golden Rule for noisy perturbations

Let us consider a system described by the following time-dependent Hamiltonian:

Ĥ = Ĥ0 + λΘ̂.F̂ (t). Ĥ0 is the unperturbed Hamiltonian, which we assume has a

discrete diagonalization basis labeled {|n〉} that verifies Ĥ0|n〉 = ωn|n〉. Θ̂ is an

operator acting on the system. F̂ (t) is a noisy external operator perturbing the

system. At any given time t the system is in a state |ψ〉t =
∑

nCn(t)|n〉 and we

assume that initially its state is |q〉, meaning Cn(t = t0) = δnq. The objective of

the calculation is to derive the probability to find the system in the |n〉 state after

some small period of time t > t0. We do so by performing an usual perturbative

treatment on the coupling strength λ [66].

Let us introduce the probability amplitude of finding the state in the state |n〉,
bn(t) = Cn(t)eiωnt. The Schrödinger equation leads to the following set of equations

on these amplitudes:

∀n, ḃn = −iλ
∑

m

F̂ (t)Θnme
−iωmntbm, (I.49)

where Θmn = 〈n|Θ̂|m〉 is the matrix element between two coupled states, and

ωmn = ωm − ωn is the energy difference between the two states. Developing the

perturbative treatment up to first order one finds that the probability amplitudes

are given by:

∀n 6= q, bn(t) = −iλΘnq

∫ t

t0

dτe−iωqnτ F̂ (τ) + O
(
λ2
)
, (I.50)

By averaging over the noise source we obtain that the probability to find the

system in the state |n〉 at time t is,

∀n 6= q, Pn(t) = λ2|Θnq|2
∫ t

t0

∫ t

t0

dτdτ ′e−iωqn(τ−τ ′)〈F̂ (τ)F̂ (τ ′)〉. (I.51)
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If we assume that the whole system is in a stationary state so as to have 〈F̂ (τ)F̂ (τ ′)〉 =

〈F̂ (τ − τ ′)F̂ (0)〉 we can introduce the spectral noise density for the noisy pertur-

bation

SFF [ω] =
1

2π

∫
dτeiωτ 〈F̂ (τ)F̂ (0)〉, (I.52)

which then leads to

Pn(t) = λ2|Θnq|2
∫
dω

∫ t

t0

∫ t

t0

dτdτ ′e−i(ω+ωqn)(τ−τ ′)SFF [ω]. (I.53)

By performing two variable changes on the integrals over τ and τ ′ the previous

expression can be rewritten

Pn(t) = λ2|Θnq|2
∫
dωSFF [ω]e−i(ω+ωqn)t/2

(
2

sin((ω + ωqn)t)

ω + ωqn

)2

. (I.54)

The last factor under the integral is well approximated by πtδ(ω+ωqn), which gives

us the result we were looking for: the rate at which the state |n〉 is populated from

the initial state |q〉

Γq 7→n =
dPn(t)

dt
= λ2|Θnq|2SFF [ωn − ωq] (I.55)

I.4.3.2. Optically induced phonon transitions

For weak values of gcm we can treat the optomechanical interaction perturbatively.

In this case the noisy external perturbation is applied by the number of photons

inside the cavity, F̂ = â†â. The spectral noise density of interest is thus the

spectral density of the number of photons. The corresponding operator acting on

the system is in this case b̂†+ b̂, which couples an initial mechanical Fock state |l〉
to its neighbouring states |l + 1〉 and |l − 1〉.

In order to use the previously derived perturbative formula we need an expression

for the spectral density of noise for the number of photons in the cavity. This can

be obtained by using â = (α+δâ) exp(−iωpt) and 〈δâ(t)δâ(0)〉 = exp(i∆nlt−γc|t|)
thus leading to

Snn[ω] =
2γc|α|2

(ω + ∆nl) + γ2
c

. (I.56)

Let us for a moment consider a simple mechanical resonator at frequency ωm only

coupled to a thermal environment at temperature T. At equilibrium the oscillator
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has a mean number of excitations nth given by the Boltzmann distribution: nth =

1/(exp(~ωm/kbT ) − 1). The dynamics of such a system can be described (as

is discussed in further details in chapter II and in appendices A and B) by the

following master equation on its density marix ρ̂:

˙̂ρ = −i[ωmb̂†b̂, ρ̂] + γm(nth + 1)D[b̂]ρ̂+ γmnthD[b̂†]ρ̂, (I.57)

where γoD[Ô]ρ̂ is a Lindbladian super-operator acting on the density matrix. It

describes a dissipative process characterized by a rate γo and a jump operator Ô.

From this master equation we can obtain equations of motion for the probability

Pl(t) = Tr(|l〉〈l|ρ̂) of finding the mechanical resonator in the Fock state |l〉.

Ṗl =γm(nth + 1)(l + 1)Pl+1 − γm(nth + 1)lPl

+γmnthlPl−1 − γmnth(l + 1)Pl.
(I.58)

In the thermal rate equation Eq.I.58 we see that the state |l〉 is populated by decay

of the state |l + 1〉 (upper left term) or excitation of the state |l − 1〉 (lower left).

Similarly, decay of the state |l〉 populates |l − 1〉 (upper right) and excitation of

|l〉 populates |l + 1〉 (lower right).

The optomechanical coupling proportional to (b̂† + b̂) induces similar transitions.

The Fermi Golden Rule previously derived allows us to define optical transition

rates corresponding to the optically induced excitation and decay of a Fock state.

These rates are noted γ↑opt and γ↓opt respectively. They are defined as follows:

γ↑opt = g2
cmSnn[ωm] =

2γc|α|2g2
cm

(∆nl + ωm)2 + γ2
c

γ↓opt = g2
cmSnn[−ωm] =

2γc|α|2g2
cm

(∆nl − ωm)2 + γ2
c

.

(I.59)

Once again we see that the cavity-pump detuning plays a central role in deter-

mining how the mechanical resonator statistics will be modified by the photons

in the cavity. Introducing this optical rates to Eq.I.58 we obtain the following

optomechanical rate equation for the mechanical resonator.

Ṗl =γm(nth + 1)(l + 1)Pl+1 − γm(nth + 1)lPl

+γmnthlPl−1 − γmnth(l + 1)Pl

+γ↓opt(l + 1)Pl+1 − γ↓optlPl
+γ↑optlPl−1 − γ↑opt(l + 1)Pl

(I.60)
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We introduce an optical decay rate Γopt = γ↓opt−γ↑opt that yields the effective decay

rate of the mechanical resonator γeff = γm + Γopt. By doing so we can rewrite

Eq.I.60 as the rate equation of an harmonic oscillator coupled with strength γeff

to a thermal environment at an effective temperature Teff . The stationary state

thus has an effective occupancy given by

neff =
γmnth + γ↑opt
γm + Γopt

. (I.61)

This treatment allows us to correctly compute the stationary number of phonons

in the optomechanical resonator. In particular we are able to recover the effects

of the photon number noise on the final phonon population. Even in the case

where the coupling and the pump are strong enough to erase the thermal effects

on the phonons, Γopt � nthγm, there is an inferior limit to the final occupation of

the mechanical resonator, reached when the red-detuning matches the mechanical

frequency ∆nl = ωm. The minimal number of phonons in this situation is given by:

nmin = (Snn[−ωm]/Snn[ωm] − 1)−1 = γ2
c/ω

2
m. Approaching the quantum ground

state by radiation pressure optomechanical cooling should hence be feasible in

systems placed in what is known as the “resolved-sideband” or “good cavity”

regime where ωm � γc.

I.5. Amplified motion of a mechanical resonator

So far we have discussed red-detuned pumping regimes, which lead to extra-

damping of mechanical motion Γopt > 0 and ultimately cooling close to the ground

state. Blue-detuned pumps on the other hand lead to anti-damping Γopt < 0 that

results in heating-amplification of mechanical motion. For strong enough pump

intensities (or strong enough effective optomechanical couplings) a blue-detuned

pump can lead to an overall negative damping γeff = γm + Γopt < 0, thus setting

unstable dynamics. In this case any small mechanical perturbation will expo-

nentially grow in time until non-linear effects saturate the growth of mechanical

motion amplitude. In this regime, parametric instability sets in giving rise to self-

sustained oscillations of the mechanical resonator, which oscillates at frequency

ωm with constant amplitude A.

This mechanical instability was first discussed in classical terms [6]. In that work

the position x of the mechanical resonator was assumed to evolve in time according

to x(t) = x̄ + A cos(ωmt). By comparing the power injected to the system Pinj

to the power dissipatedPdiss the authors showed that a classical optomechanical
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Figure I.4: Dynamical multistability in classical optomechanical systems.
Density plot of the ratio of injected power to dissipated power as a function
of mechanical oscillation amplitude A and cavity detuning x0. The contour

plots indicate possible oscillation amplitudes. Figure from [6].

system should display a rich array of dynamical attractors as seen in Fig.I.4. This

figure shows a density plot of the ratio Pinj/Pdiss as a function of the mechanical

oscillation amplitude A and the cavity detuning x0. The white contour plots

displayed in the figure correspond to values for which this ratio goes to one thus

yielding suitable solutions to the equations of motion.

The mechanical instability has also been studied in the quantum regime [46, 67, 68].

The signatures of the instability on the quantum statistics have been studied

by considering the mechanical Wigner distribution. The cross-over from below-

threshold to above-threshold statistics have been discussed [46]. It has been shown

that above the instability threshold the mechanical resonator is in “a coherent state

undergoing circular motion in phase space but with an undetermined phase” [67].

The possibility to attain non-classical states for the mechanical resonator, corre-

sponding to Wigner functions presenting negative values, has been discussed both

numerically [67] and analytically [68].

In this chapter we presented the theoretical framework within which this thesis

was undertaken. Starting from the classical equations of motion for a deformable

Fabry Perot cavity we derived the Hamiltonian formulation of the standard op-

tomechanics system. We presented some of the main tools used in order to describe

the dissipative behavior of such systems and reviewed briefly the cooling capabil-

ities of optomechanical systems.
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The following chapters present the work and results that were obtained during this

PhD. They include the application of the tools presented in this chapter to other

cooling mechanisms (see chapter III), the implementation of numerical resolution

methods for optomechanical systems (see chapter II) and the study of a hybrid

cQED-optomechanics system (see chapter IV).



Chapter II

Numerical methods for

optomechanical systems

In this chapter we present the numerical methods used and implemented during

this thesis. The methods under discussion rely on the Lindblad master equation for

the density matrix of the optomechanical cavity. We start by quickly reviewing

the basic properties of the density matrix and we present the master equation

studied during this thesis. We then present the methods used to numerically solve

the Lindblad master equation in order to acquire information about the stationary

state and dynamical behavior of the system. These methods rely on a truncation

of the Hilbert space of an harmonic oscillator and are thus best suited for problems

exploring a low number of excitations. In the second part of this chapter we present

the truncated Wigner Monte Carlo method we implemented in order to explore

semi-classical regimes of parameters by solving stochastic differential equations on

scalar fields.

II.1. Density matrix and master Equation

So far we have discussed the coupling of the system to its environment with quan-

tum Langevin equations on the observables of the system. Within a Heisenberg

representation, the dynamical behavior has been carried on by the operators while

implicitly assuming that the state vector (of both the system and the environment)

remains constant in time. We assumed a memory-less, Markovian, environment

and by doing so we arrived to a set of damped first order non-linear differential

33
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equations. In chapter I the equations were tackled with a mean-field approxima-

tion and we described the effect of the noisy environment in terms of spectral

densities of noise.

Here we change the point of view and switch to the Schrödinger representation in

which the observables are constant operators and the time dependance is encoded

on the system state. Given the coupling to the environment the system is no

longer described by a one dimensional vector state but rather by a density matrix

operator ρ̂. In this chapter we start by introducing the main properties of a proper

density matrix 1. Then we present and discuss the master equation on ρ̂, a first-

order differential equation with time-independent terms that takes into account

the coupling of the system to its environment. The form of the Lindblad master

equation can be recovered from very general assumptions on the structure and the

properties of the time dynamics of a proper density matrix. This discussion can be

found in [69], we present a brief summary in appendix A. The master equation and

the coefficients on the dissipative terms can also be recovered from a microscopic

Hamiltonian describing the interaction between the system and its environment.

We present the corresponding derivation for a harmonic oscillator coupled to a

finite temperature environment in appendix B.

II.1.1. Density Matrix

The density matrix is an hermitian operator describing statistical mixtures of

states. Given its hermiticity it can be rewritten under its diagonalized form

ρ̂ =
∑

k

pkρ̂k, (II.1)

where {ρ̂k = |ψk〉〈ψk|}k is a set of projectors into the vectors |ψk〉 which form an

orthonormal basis of the Hilbert space. pk is the probability to find the statistical

mixture in the state |ψk〉, and thus we have

Tr[ρ̂] =
∑

k

pk = 1. (II.2)

The expectation value of any observable Ô is given by

〈Ô〉 = Tr
[
Ôρ̂
]
. (II.3)

1 Reference [58] was a wise companion throughout this thesis and an avid reader will find in
it deep insight into more general considerations on density matrices.
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If the dynamics of the system under consideration is ruled by some Hamiltonian

Ĥ, then the time evolution of the density matrix is determined by the Schrödinger

equation

i~
dρ̂

dt
=
[
Ĥ, ρ̂

]
. (II.4)

Finally, for any given density matrix one has Tr[ρ̂2] ≤ 1 where the equality is met

if and only if there is only one pk = 1, the other probabilities being zero, in which

case the system is said to be in the pure state |ψk〉〈ψk|.

II.1.2. Lindblad Master Equation

In the previous chapter we described the dynamics of an optomechanical cavity

coupled to its environment by means of the total Hamiltonian defined in eq.I.26.

The environment dynamics are of little or no interest and thus we formally in-

tegrated it. Doing so we obtained a set of quantum Langevin equations for the

photon and phonon operators. In the set of equations I.29 the coupling to the envi-

ronment leads to a causal memory kernel and to the introduction of an stochastic

force acting on the system operators. When assuming weak coupling to a Marko-

vian environment the memory kernel results in a time independent dissipative

term related to the noise by the fluctuation-dissipation theorem. From there the

expectation value of any operator ô(t) can be computed by solving the Langevin

equations and calculating the average over the total system state.

The system density matrix ρ̂ is obtained by averaging over the environment degrees

of freedom via a partial trace operation. If we assume that the system is weakly

coupled to a Markovian environment, the dynamics of the optomechanical cavity

under consideration is ruled by the following master equation

dρ̂

dt
= − i

~

[
Ĥ, ρ̂

]
+ γcD[â]ρ̂+ γm(nth + 1)D[b̂]ρ̂+ γmnthD[b̂†]ρ̂, (II.5)

where Ĥ is the optomechanics Hamiltonian defined in Eq.I.20. D[ô]ρ̂ = ôρ̂ô† −
1/2(ô†ôρ̂ + ρ̂ô†ô) is the Lindbladian super operator with an associated quantum

jump operator ô. nth is the mean thermal occupancy of the mechanical resonator

when at equilibrium at temperature T ,

nth =
1

e
~ωm
kbT − 1

. (II.6)
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The Lindbladian terms in the master equation II.5 account for the dissipative

processes enforced by the memory-less environment on the system. The irreversible

loss of a photon to the electromagnetic vacuum field outside the cavity at a rate

γc is described by the term ∝ D[â]. The term ∝ D[b̂] describes the process

of losing a phonon to the mechanical resonator environment. Finally, the term

∝ D[b̂†] accounts for the fact that at finite temperature (nth 6= 0) the environment

can excite thermal phonons. While the set of Langevin equations I.29 contains

stochastic forces the master equation is a time independent equation. The effects

of the environment noise are here averaged by the partial trace operation over the

environment degrees of freedom.

II.2. Numerical resolution of the Liouvillian op-

erator

We now present the numerical tools used to study the master equation II.5. We

begin by presenting the matrix representation chosen to numerically describe the

system density matrix and the corresponding operators.

II.2.1. Truncation of a discrete Fock Hilbert space

Both the phonons and the photons evolve in infinite and discrete Hilbert spaces.

Let us consider a pair of annihilation and creation operators â and â†. In the Fock

states basis {|l〉}l∈N (which we label by increasing number of excitations) they are

represented by the following infinite matrices

â ≡




0
√

1 0 . . . 0 . . .
...

. . .
√

2
. . .

...
...

. . . . . . 0

0 . . . . . . 0
√
l

. . .
...

. . . . . .




, â† ≡




0 . . . . . . 0 . . .
√

1
. . .

...

0
√

2
. . .

...
...

. . . . . . 0

0 . . . 0
√
l

. . .
...

. . . . . .




. (II.7)

In order to perform the numerical calculations we introduce a cutoff to the Hilbert

space dimension. Let lmax be the maximum number of excitations taken into ac-

count. We truncate the Hilbert space to the subspace spanned by the set of states

{|l〉}0≤l≤lmax . We then introduce numerical annihilation and creation operators,



II.2. Numerical resolution of the Liouvillian operator 37

ânum and â†num, defined by truncating the actual operators. These numerical op-

erators are represented by the following matrices in the truncated Hilbert space

of dimension lmax + 1.

ânum ≡




0
√

1 0 . . . 0
...

. . .
√

2
. . .

...
...

. . . . . . 0
...

. . .
√
lmax

0 . . . . . . . . . 0



, â†num ≡




0 . . . . . . . . . 0
√

1
. . .

...

0
√

2
. . .

...
...

. . . . . . . . .
...

0 . . . 0
√
lmax 0



. (II.8)

While the real annihilation and creation operators follow the commutation relation

[b̂, b̂†] = 1l, their numerical representations present a slightly different commutator:

[ânum, â
†
num] ≡=




1 0 . . . . . . 0

0 1
. . .

...
...

. . . . . . . . .
...

...
. . . 1 0

0 . . . . . . 0 −lmax



. (II.9)

Except for the terms acting on the last vector of the truncated basis, |lmax〉, the

numerical operators verify the proper commutation relation. As long as the sys-

tem does not populate this last vector the numerical operators verify the algebraic

properties necessary to properly simulate the system. The choice of lmax is de-

pendent on the kind of statistics considered for the system. Describing a coherent

or thermal state requires a bigger cut-off than the one needed to describe a Fock

state with few excitations. In the following we choose values of lmax ensuring that

the system state is accurately described by states in the truncated Hilbert space.

In some cases, mainly when there is amplification of mechanical motion, the sys-

tem can be driven out of the truncation thus leading to incorrect results from the

numerical treatment. Choosing an a priori big enough cut-off is not sufficient and

one should ensure that at every step of the numerical treatment the truncation of

the Hilbert space is adequate.

II.2.2. Stationary state of the master equation

In the most general case the dynamics of a system weakly coupled to a Markovian

environment can be cast under the form of a Lindblad master equation of the
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form:
dρ̂

dt
= −i

[
Ĥ, ρ̂

]
+
∑

o

γoL[Ô]ρ̂, (II.10)

with Ĥ the Hamiltonian of the system and {Ô, γo}o a set of jump operators and

their corresponding dissipative rates. Eq.II.10 is a first order linear differential

equation for the density matrix which can be rewritten:

˙̂ρ = Lρ̂, (II.11)

where we have introduced the linear Liouvillian superoperator L acting on the

density matrix. If the system Hamiltonian is time-independent then the superop-

erator L is a constant operator. If the master equation II.10 has a stationary state

ρ̂stat it verifies ˙̂ρstat = 0. Such a state is thus an eigenvector of the superoperator

L with zero eigenvalue. We can thus recover the stationary state by diagonalizing

the Liouvillian super operator and considering the zero-eigenvalued matrix.

This procedure presents a few mathematical problems which go beyond the scope

of this thesis. First, the problem of the existence of such a stationary state is not

an easy question. Even if there exists one such state the system could present mul-

tiple stationary states. Second, the superoperator being non-hermitian the usual

discussions in terms of a basis of diagonalizing eigenvectors is not straightforward

and so the general methods for first order differential equations do not necessarily

apply to this problem. Finally, even if such a zero-eigenvalue matrix exists there

is no a priori way of knowing if it defines a proper density matrix for a physi-

cal system. We thus make the following assumptions which were never violated

during this thesis. First, the physical systems under consideration do possess a

stationary state. Second, such a stationary state can be found by diagonalizing the

Liouvillian superoperator and taking the zero-eigenvalue density matrix (which we

assume to be unique).

Given that we are dealing with infinite Hilbert spaces (spanned by the infinite ba-

sis of Fock states for the mechanical resonator) there is no simple way to tackle the

diagonalization of the corresponding superoperator. We thus opted for a numeri-

cal diagonalization. With the numerical representation previously discussed it is

rather straightforward to construct the superoperator Lnum corresponding to the

numerical version of the hamster equation II.5. The density matrix is mapped into

a finite size vector and the superoperator is represented by a matrix which is then

numerically diagonalized. For small dimensions of the numerical Hilbert space it
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is possible to implement an exact and complete diagonalization of the super oper-

ator. When the dimension becomes too big it is possible to exploit the sparsity of

Lnum and use the ARPACK library [70] in order to obtain the eigenvectors with

the smallest eigenvalues.

By diagonalizing this matrix and extracting the corresponding zero-eigenvalued

eigenmatrix we get the stationary density matrix of the system. This matrix con-

tains all the information necessary to calculate the system statistics, observable

mean values, equal time correlation functions between observables and the sta-

tionary Wigner density function of the mechanical resonator. In chapter IV we

present the results obtained concerning the stationary statistics of the mechanical

resonator when coupled to a Jaynes-Cummings atom-cavity system.

II.2.3. Time resolved dynamics

Let us now present the method used to study the time dependent evolution of

the system. Looking into the dynamical evolution of the system we are able to

gain additional insight into how the system evolves from one state to another thus

completing the knowledge we obtain from the study of the stationary state.

The master equation under consideration is a first order differential equation that

can be numerically solved with usual Runge-Kutta algorithms [71]. A fine tuning of

the resolution parameters (mainly those controlling the tolerance of the integration

step) is required in order to ensure the “unitary” evolution of the master equation.

The conservation of the density matrix norm, Tr[ρ̂] = 1, for every time step

was chosen as a first validity check on the resolution precision. When tuning

the values of the resolution tolerances a compromise has to be made. Too-big

tolerances lead to non unitary evolutions. Too-small values conserve the trace but

imply an integration time which is way too long making the method unusable in

practice. The tuning of these parameters is strongly dependent on the numerical

values of the system parameters considered (frequencies, couplings and dissipative

constants). In the case of optomechanical systems, the orders of magnitude of

difference between the photon and mechanical time scales may also lead to a

stiff problem which should be handled with care. In the end we chose a set of

parameters (parameters inherent to the physical problem and parameters inherent

to the numerical resolution itself) allowing unitary evolution within a reasonable

range (comparable to the unavoidable numerical noise rising from the finite number

of available decimals), and integration times that for the biggest Hilbert spaces

considered, lmax ∼ 100, were of the order of a few hours.
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We created a set of functions and data structures in order to calculate, store

and treat the produced numerical data. We also established parallel computing

routines in order to take full advantage of the material at hand (two 48-cores servers

where acquired by the theory group of Laboratoire Matériaux et Phénomènes

Quantiques in 2011). Parallel computing was not used directly in the solving

routine but was rather implemented in order to accelerate the study for different

sets of parameters, each iteration calculating a distinct set of parameters.

II.3. Truncated Wigner distribution and Monte

Carlo simulations of stochastic equations

on scalar fields

The numerical resolution methods presented this far rely on the truncation of the

Hilbert space. In principle if the truncation is big enough then the numerical

resolution yields the proper results. In practice the computational power of a

machine is finite and thus there is a limit on the dimension of the Hilbert space

that can be handled. We now present a numerical resolution based on stochastic

differential equations for scalar fields rather that on a master equation for a density

matrix. The equations for the scalar fields are obtained by mapping the problem

from a matricial point of view (master equation for the density matrix) to a partial

derivative equation for a quasi-probability distribution on the system fields (the

truncated Wigner function of the photons and phonons).

We start by introducing quasi-probability distributions for a quantum system. We

then draw the equivalence between the master equation II.5 and a partial derivative

equation on the Wigner function of the system. Under certain assumptions this

partial derivative equation becomes a Fokker-Planck equation. The problem is

then well described by a set of first order stochastic differential equations which

we solve numerically with a Monte Carlo code. Finally, we present the principle

of the numerical resolution and the results obtained during this thesis on single

cavity optomechanics and arrays of coupled optomechanical cavities.

II.3.1. Quasi-probability distributions

Let us consider a classical system consisting of n interacting particles with masses,

positions and momenta {mi, qi, pi}1≤i≤n. The system dynamics is ruled by the
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classical Halmiltonian

H({xi, pi}) =
p2

1

2m1

+
p2

2

2m2

+ . . .+
p2
n

2mn

+ V (x1, . . . , xn). (II.12)

If the system is at thermodynamic equilibrium at temperature T it is possible to

introduce a probability distribution P (x1, . . . , xn; p1, . . . , pn) such that the prob-

ability of finding each particle i at a position xi with momentum pi within the

ranges xi ∈ [xi, xi + dxi] and pi ∈ [pi, xi + dpi]
2 respectively is given by

P (x1, . . . , xn; p1, . . . , pn)dx1 . . . dxndp1 . . . dpn. (II.13)

The probability distribution is given by the Gibbs-Boltzmann formula

P ({xi, pi}) = exp

[
−H({xi, pi})

kbT

]
. (II.14)

The average value of any function of the positions and momenta of the particles

can then be calculated by integrating it all over the parameter phase space as

follows

〈f({xi, pi})〉 =

∫

Rn
f({xi, pi})P ({xi, pi})

∏

1≤i≤n

dxidpi. (II.15)

In 1932 Eugene Wigner published an article [72] where he explored the possibility

to introduce a similar probability distribution for a quantum mechanical version of

the system. It is far from a trivial problem since the non-commutation of position

and momentum operator, [x̂i, p̂j] = i~δi,j, excludes the definition of simultaneous

probabilities for both position and momentum. Nevertheless he managed to intro-

duce a quasi-probability distribution presenting similar properties as in Eq.II.15.

This distribution is nowadays known as the Wigner quasi-probability distribution

and since then quasi-probability distributions in phase space have become impor-

tant tools for the study of quantum optics systems [73].

Defining a probability distribution in order to describe a quantum system statistics

as in Eq.II.15 poses a number of problems among which the non-commutation of

operators in a Hilbert space. The introduction of a scalar representation for non-

commuting operators of a harmonic oscillator was thoroughly tackled in a series

of papers by Cahill and Glauber in 1969 [74, 75]. They discussed the existence

and convergence of a Taylor series expansion of any given operator ô in terms of

2dxi and dpi being the differential elements in phase space.
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powers of the creation and annihilation operators, â† and â, of the system,

ô =
∑

m,n

cn,m(â†)nâm. (II.16)

In Eq.II.16 we chose a normally ordered expansion on the creation and annihilation

operators where powers of â† are always to the left. Antinormal ordering, â† to the

right, or symmetric ordering, where â† and â are in equal footing with respect to

order, are also possible. In [74, 75] the authors discuss such power series expansions

by introducing a continuous ordering parameter s which for s = 1, 0,−1 yields

normal, symmetric and anti-normal ordering respectively. Here we quickly review

the results presented in those references.

Let us consider a system described by a single pair of operators â, â† verifying

the commutation relation [â, â†] = 1. Such a system evolves in an infinite Hilbert

space spanned by a discrete and complete set of orthonormal eigenvectors of the

hermitian operator â†â, the Fock basis {|n〉}n∈N:

∀n ∈ N, â†â|n〉 = n|n〉. (II.17)

Let us now introduce the unitary operator

∀α ∈ C, D̂(α) = exp
(
αâ† − α∗â

)
, (II.18)

which obeys the relation D̂(α)−1 = D̂†(α) = D̂(−α). Usually called a “displace-

ment operator”, its action on the annihilation operator is

D̂(α)−1âD̂(α) = α + â. (II.19)

It displaces the Fock state |0〉 into an eigenvector of â with eigenvalue α, the

coherent state |α〉:
â|α〉 = âD̂(α)|0〉 = α|α〉. (II.20)

The overlap between two coherent states is

〈β|α〉 = exp

[
−1

2
|α|2 − 1

2
|β|2 + β∗α

]
. (II.21)

Two coherent states are not orthogonal but their overlap vanishes if |α − β|2 7→
+∞. The set of coherent states forms a continuous and overcomplete set of vectors
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of the Hilbert space as ∫

C
|α〉〈α|π−1d2α = 1l, (II.22)

where the differential element of phase space is given by π−1d2α = π−1d<(α)d=(α).

We define the s-ordered product {(â†)nâm}s by means of a Taylor series expansion

of the operator

D̂(α, s) = D̂(α)es|α|
2/2

= exp

[
αâ† − α∗â+

1

2
s|α|2

]

=
∞∑

n,m=0

αn(−α∗)m
n!m!

{(â†)nâm}s.

(II.23)

The normal and anti normally ordered products are recovered by setting s = 1,−1

respectively,

{(â†)nâm}1 = (â†)nâm (II.24)

{(â†)nâm}−1 = âm(â†)n. (II.25)

The symmetrically ordered product {(â†)nâm}0 is the average of all ways of order-

ing the product of n factors of â† and m factors of â. For example we have

{â†â}0 =
1

2

(
â†â+ ââ†

)
(II.26)

{â†â2}0 =
1

3

(
â†â2 + ââ†â+ â2â†

)
. (II.27)

From the completeness of the coherent states basis {|α〉}α∈C it is possible to in-

troduce a set of complete operators {T̂ (α, s)}α∈C spanning the Hilbert space of

operators. This set of operators is obtained by complex Fourier transform of the

operators D̂(α, s) as follows

∀α ∈ C, T̂ (α, s) =

∫

C
D̂(ε, s)eαε

∗−α∗επ−1d2ε. (II.28)

It is then possible to expand any arbitrary operator ô over phase space in the

following form

ô =

∫

C
O(α,−s)T̂ (α, s)π−1d2α. (II.29)
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The weight function is given by

O(α,−s) = Tr
[
ôT̂ (α,−s)

]
. (II.30)

For a given value of s it is then possible to establish a one to one correspondence

between operators and functions of scalar C-numbers3.

An operator of particular interest is the density matrix ρ̂ of a system. It encodes

the statistical information about the system so that the expectation value of any

observable ô is given by 〈ô〉 = Tr[ρ̂ô]. By means of the previous one-to-one cor-

respondence between operators and functions we are able to obtain an expression

of the average value of an observable in terms of an integral over phase space of

some “probability” distribution.

Tr [ôρ̂] =

∫

C
O(α,−s)R(α, s)π−1d2α, (II.31)

where O(α,−s) is the weight function associated to ô by Eq.II.30 and R(α, s) is the

scalar function associated to ρ̂ by R(α, s) = Tr[ρ̂T̂ (α, s)]. In general the function

R(α, s) can have negative values forbidding us to treat it as an actual probability

distribution. Nevertheless, given the relation in Eq.II.31 we will call it a quasi-

probability distribution over the phase space of eigenvalues of the annihilation

operator â. For a given value of the ordering parameter s we have in particular

Tr[{(â†)nâm}sρ̂] =

∫

C
(α∗)nαmR(α, s)π−1d2α. (II.32)

II.3.2. Fokker-Planck like equation for the Wigner Distri-

bution

Let us now move back to the problem at hand, an optomechanical cavity coupled

both to an electromagnetic environment, treated as if it were at zero temperature,

and to a thermal environment at finite temperature T for the mechanical resonator.

As previously stated the dynamics of such system can be described by dealing with

3 Here we present a very brief discussion on this correspondence. The convergence domain
of the expansion of Eq.II.23 depends on the value of the ordering parameter s. This translates
into different domains of validity for the phase space expansion of Eq.II.29. For more details the
reader should refer to [74, 75].
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the following master equation

dρ̂

dt
=− i

[
ωcâ

†â+ ωmb̂
†b̂− gcmâ†â+ iFp(e

−iωptâ− eiωptâ†), ρ̂
]

+ γc

(
âρ̂â† − 1

2
(â†âρ̂+ ρ̂â†â)

)

+ γm(nth + 1)

(
b̂ρ̂b̂† − 1

2
(b̂†b̂ρ̂+ ρ̂b̂†b̂)

)

+ γmnth

(
b̂†ρ̂b̂− 1

2
(b̂b̂†ρ̂+ ρ̂b̂b̂†)

)
,

(II.33)

where we have taken into account a coherent drive of the photons at frequency ωp.

Now we use the density matrix to quasi-probability distribution mapping we just

presented to derive a partial differential equation on the corresponding function

representing our system. We have two coupled harmonic oscillators represented

by the operators â and b̂ and their adjoint operators. We thus have two scalar

fields α and β and two ordering parameters s and u for the cavity and the mechan-

ical resonator respectively. The corresponding time-dependent quasi-probability

distribution is noted R(α, β; s, u; t).

Given the linearity of the mapping, we derive the corresponding partial differential

equation by calculating the quasi-probability distribution associated to each term

in Eq.II.33. In order to do so we establish a series of correspondences to obtain the

quasi-probability distribution associated to the product of some arbitrary operator

ô and a system operator (â, â†, b̂, or b̂†) [76]. With f± = s±1/2 and g± = u±1/2

the necessary correspondences are given by

âô ←→ (α− f−∂α∗)O(α, β; s, u) b̂ô ←→ (β − g−∂β∗)O(α, β; s, u)

â†ô ←→ (α∗ − f+∂α)O(α, β; s, u) b̂†ô ←→ (β∗ − g+∂β)O(α, β; s, u)

ôâ ←→ (α− f+∂α∗)O(α, β; s, u) ôb̂ ←→ (β − g+∂β∗)O(α, β; s, u)

ôâ† ←→ (α∗ − f−∂α)O(α, β; s, u) ôb̂† ←→ (β∗ − g−∂β)O(α, β; s, u)

(II.34)

From now on we only consider the case of the Wigner distribution of the system,

W (α, β) = R(α, s = 0; β, u = 0), which is obtained by considering symmetrical

ordering4 of the operators and thus setting s = u = 0. In this case the time-

dependent Wigner distribution of the system W (α, β; t) follows the Fokker-Planck

like equation defined in Eq.II.35.

4 More details on the derivation for arbitrary ordering parameters can be found in Appendix
C
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∂

∂t
W (α, β; t) = ∂α

[
iωcα− igcmα(β + β∗) +

γc
2
α + Fpe

−iωpt
]
W (α, β, t)

+ ∂α∗
[
−iωcα∗ + igcmα

∗(β + β∗) +
γc
2
α∗ + Fpe

iωpt
]
W (α, β, t)

+ ∂β

[
iωmβ − igcm

(
|α|2 − 1

2

)
+
γm
2
β

]
W (α, β, t)

+ ∂β∗

[
−iωmβ∗ + igcm

(
|α|2 − 1

2

)
+
γm
2
β∗
]
W (α, β, t)

+
γc
2
∂2
α∗αW (α, β, t) + γm

(
nth +

1

2

)
∂2
β∗βW (α, β, t)

+ i
gcm
4
∂3
βα∗αW (α, β, t)− igcm

4
∂3
β∗α∗αW (α, β, t)

(II.35)

Phase space approaches have been recently used to successfully study the quantum

regime of optomechanical limit cycles appearing when the blue-detuned optical

pump leads to mechanical self-sustained oscillations [68]. In that work only the

mechanical Wigner distribution is introduced and analytical results on the me-

chanical resonator statistics show that it should be possible to obtain quantum

statistics (negative values of the mechanical Wigner distribution) when exciting

the mechanical resonator to a limit cycle. In the following we consider a Wigner

distribution over the photons and phonons and use the Fokker-Planck like equa-

tion to derive a set of stochastic differential equations on the scalar fields α and β

which can be numerically solved with Monte Carlo algorithms.

II.3.3. Equivalent stochastic equations on scalar fields

Eq.II.35 contains first order terms corresponding to a drift term determined by the

system Hamiltonian Ĥ. It should be noted that in the drift terms of the phonon

field the optomechanical coupling is represented by a term∝ |α|2−1/2. This comes

from the fact that the Wigner distribution favors symmetrical ordering of operators

in which the number of photons operator is written as â†â = 1/2(â†â+ ââ†− 1l) =

{â†â}0 − 1l/2. The second order terms are responsible for the diffusion of the

Wigner distribution in phase space. They rise from the dissipative coupling to

the environment. Finally the non-linear radiation pressure coupling between the

photons and phonons yields third order terms. Whenever the coupling constant

is stronger than the dissipative effects of the environment these third order terms

lead to the appearance of non-classical correlations in the system. In such a regime

the Wigner function presents negative values which forbid any interpretation in
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terms of actual probability distributions. In the following we neglect these terms.

Doing so we limit ourselves to positive gaussian distributions which in return can

be interpreted as probability distributions over phase space.

Without the third order terms we recover a Fokker-Planck equation with a definite

positive diffusion matrix. The dynamical and statistical behaviour of such an

equation can be recovered by considering the following set of stochastic equations

on the scalar fields

d

dt
α = −iωcα + igcmα(β + β∗)− γc

2
α + Fpe

−iωpt +

√
γc
2
ξc(t), (II.36)

d

dt
β = −iωmβ + igcm

(
|α|2 − 1

2

)
− γm

2
β +

√
γm

(
nth +

1

2

)
ξm(t),(II.37)

where ξc(t) and ξm(t) are gaussian random variables with mean values to zero and

whose correlators are given by 〈ξc(t)ξ∗c (t′)〉 = 〈ξm(t)ξ∗m(t′)〉 = δ(t− t′). Such a set

of equations has been used to numerically study amplitude noise suppression in

cavity-driven oscillations of a mechanical resonator [77].

During this thesis we developed a numerical Monte Carlo code in order to numer-

ically solve the set of equations II.36 and II.37 . A similar procedure had been

developed in the theory group at Laboratoire Matériaux et Phénomènes Quan-

tiques in order to successfully study light-matter interactions in semiconductor

microcavities [78] and polariton super-fluidity [79–81]. We designed and tested an

implementation able to study the physics in an array of coupled optomechanical

cavities. Great effort was spent in order to tackle the stiffness of the correspond-

ing numerical problem. The orders of magnitude separating the mechanical and

cavity time scales lead to simulations requiring very precise integration time steps

(in order to have enough resolution to follow the photon dynamics) over a very

large time window (in order to properly describe the “slow” mechanical dissipa-

tion). The procedure crafted during this thesis also implements parallel computing

structures in order to best exploit the equipment at hand.

In the following we present the Monte Carlo code developed. We study the con-

vergence of the simulation and present the work undertaken in order to validate

this numerical resolution method. We tested incrementally the different physical

phenomena we wanted to study with our calculations and compared them to what

is obtained by analytical treatment of the equations of motion. First we study the

noise statistics for a system with no optomechanical coupling, gcm = 0, for which

the cavity and the mechanical resonator are described by coherent and thermal
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states respectively. Second, we consider the mean field behaviour of an optome-

chanical cavity under coherent pumping and show that our resolution method is

able to properly follow the bistable diagram solution discussed in Chapter I. Then

we take into account the fluctuations around the mean fields and show that we

are able to properly describe the cooling capabilities of a single optomechanical

cavity. Finally, the numerical resolution was conceived to simulate an array of

optomechanical cavities, we thus consider the auxiliary cavity scenario depicted

in Chapter III for which we get excellent agreement between the numerical and

analytical results and we present our results on synchronization of amplified me-

chanical motion in a 30× 30 optomechanical array.

II.3.4. Truncated Wigner Montecarlo simulations

II.3.4.1. Principle

The numerical integration of equations Eq.II.36 and Eq.II.37 is performed by in-

troducing a time step dt chosen small enough (we set dt−1 � ωmax, where ωmax is

the largest frequency at play in the system) so that we can write

α(t+ dt) =α(t) + dt×
[
−(iωc +

γc
2

)α(t) + igcm
(
β(t) + β∗(t)

)
α(t) + Fp(t)

]

+ ξc(t)

√
γc
4
dt

β(t+ dt) =β(t) + dt×
[
−(iωm +

γm
2

)β(t) + igcm

(
|α(t)|2 − 1

2

)]

+ ξm(t)

√
γm

nth + 1/2

2
dt.

(II.38)

For a single run of the integration we obtain a set of vectors α(t) and β(t) con-

taining the time evolution of the system fields. The Monte Carlo implementation

calculates N configurations, each configuration corresponding to a statistically

independent trajectory. As seen in Fig.II.1 we obtain a set of N independent

trajectories {αk(t), βk(t)}1≤k≤N .

The quantities of interest are the mean values of the observables of the system.

For any given observable ô
(
â, â†, b̂, b̂†

)
the correspondence between operators and
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Figure II.1: Schematics of the data structure produced by the Monte Carlo
algorithm. Here the simulation provides N = 2400 independent trajectories.
We represent for each trajectory the real part of the phonon field <[β(t)] as a

function of time.

distributions over phase space yields the following relation:

〈
ô
(
â, â†, b̂, b̂†

)〉
= Tr[ôρ̂]

=

∫

C
O(α, β)W (α, β)π−2d2αd2β.

(II.39)

With the Monte Carlo procedure the average over phase space is recovered by

averaging over the N independent configurations, so that

〈
ô(â, â†, b̂, b̂†)

〉
= lim

N→+∞

1

N

N∑

k=1

O(αk, βk). (II.40)

Let us now consider the field corresponding to the number of phonons after an

average over N configurations:

〈|β(t)|2 − 1/2〉N =
1

N

N∑

k=1

|βk(t)|2 −
1

2
. (II.41)

Fig.II.2 presents 〈|β|2−1/2〉N as a function of time for increasing values of N . The

set of parameters in Fig.II.2 corresponds to an optomechanical cavity pumped as

to have cooling of mechanical motion. 〈|β(t)|2〉N reaches a stationary state at a

time tstat. For times t > tstat the system fluctuates around this stationary state.

We then calculate the N -dependent mean value and standard deviation over time
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Figure II.2: Number of phonons as a function of time. The set of parameters
has been set to yield optomechanical cooling of mechanical motion. The dif-
ferent plots correspond to results after averaging over an increasing number of

configurations.

of the field in the stationary state as follows

〈|β|2〉N =
1

tend − tstat

∫ tend

tstat

dτ〈|β(τ)|2〉N ,

σ|β|2(N) =

√√√√√√
1

tend − tstat

∫ tend

tstat

dτ

(
〈|β(τ)]2〉N − 〈|β|2〉N

)2

(
〈|β|2〉N

)2 ,

(II.42)

where tend is the final time of the integration window.

Figure II.3: N-dependent standard deviation of the number of phonons in the
stationary state as function of the number of calculated configurations. The
blue line corresponds to numerical results. The red line gives a fit proportional

to the expected behavior ∝ 1/
√
N .

Fig.II.3 presents the evolution of the standard deviation σ|β|2(N) as a function

of the number of calculated configurations. As expected from a Monte Carlo
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algorithm computing statistically independent trajectories, the standard deviation

decreases as ∝ 1/
√
N .

II.3.4.2. Noise statistics

We now look closely at the noise statistics yielded by the truncated Wigner Monte

Carlo simulation. Let us discuss a scenario in which there is no optomechanical

coupling (gcm = 0), no coherent excitation of the cavity photons (∀t, Fp(t) = 0)

and the mechanical resonator is at equilibrium with a bath at zero temperature

(T = 0). Under this conditions the system density matrix is a product of the two

ground states and the Wigner distribution of the total system is a product of two

gaussians centered around 0.

W (α, β) =
4

π2
e−2|α|2 × e−2|β|2 . (II.43)

Given that we expect a gaussian distribution for the fields of both the cavity and

the mechanical resonator we only study the distribution moments up to second

order. In order to characterize the gaussian states of the cavity and the mechanical

resonator we consider the mean value of the number of photons and phonons

and the mean value of the square of one of the quadratures. The two harmonic

oscillators being in the ground state we should get

〈â†â〉 = 〈b̂†b̂〉 = 0

〈(â† + â)2〉 = 〈(b̂† + b̂)2〉 = 1.
(II.44)

In terms of an integral over phase space this expectation values are given by

〈â†â〉 =

∫

C

(
|α|2 − 1

2

)
W (α, β)d2αd2β (II.45)

〈(â† + â)2〉 =

∫

C
(α + α∗)2W (α, β)d2αd2β (II.46)

〈b̂†b̂〉 =

∫

C

(
|β|2 − 1

2

)
W (α, β)d2αd2β (II.47)

〈(b̂† + b̂)2〉 =

∫

C
(β + β∗)2W (α, β)d2αd2β. (II.48)

Fig.II.4 presents the results yielded by the numerical resolution. Averaging over

4800 configurations we obtain an excellent agreement between the expected theo-

retical value and the numerics, with differences of the order ∼ 10−2, showing that
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Figure II.4: Average values of the mechanical resonator (left column) and
cavity (right panel) number of excitations (upper panel) and squared quadrature
(lower panel). In blue the time evolution of the observables. Red-solid and
red-dotted lines correspond to the average value over time and the expected
theoretical value respectively. Results after averaging over 4800 configurations,

gcm = 0, Fp = 0, T = 10−8, ∆ = 0, γm/ωm = 10−3, γc/ωm = 10−1.

the simulation is able to describe the proper statistics of a harmonic oscillator in

its ground state coupled to the vacuum fluctuations.

We also checked the noise statistics for a cavity subject to non-zero coherent

pumps and for a mechanical resonator at equilibrium with an environment at

temperature T 6= 0. Under these conditions the cavity photons should be in a

coherent state and the mechanical resonator in a thermal state. The corresponding

Wigner distribution is then given by

W (α, β) =
4

π2
e−2|α−α0|2 tanh

(
~ωm
kbT

)
exp

[
−2|β|2 tanh

(
~ωm
kbT

)]
, (II.49)

where the photons are assumed to be in a coherent state |α0〉. The expected values

for the mean values of the observables are in this case

〈â†â〉 = |α0|2

〈(â† + â)2〉 = 1

〈b̂†b̂〉 = nth =
e−~ωm/kbT

1− e−~ωm/kbT
〈(b̂† + b̂)2〉 = 2nth + 1.

(II.50)

Fig.II.5 presents the stationary state standard deviation between the numerical

results and the expected theoretical values for different temperatures and different

coherent pump intensities. The standard deviation for any given observable o is
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defined as

σ[o] =

√√√√
〈

(o(t)− otheory)2

o2
theory

〉

erg

, (II.51)

where 〈.〉erg corresponds to the ergodic time average over the stationary state as

discussed before.

σ
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2
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Figure II.5: Stationary state standard deviation of the observables of interest
for an uncoupled system as a function of the equilibrium temperature (for the
phonons) and the coherent pump intensity (for the photons). Squares and
circles correspond to averaging over 800 or 4800 configurations respectively.

gcm = 0, ∆ = 0, γm/ωm = 10−3, γc/ωm = 10−1.

Fig.II.5 displays the standard deviations obtained for averages over 800 config-

urations (squares) and 4800 configurations (circles). The calculations with 800

configurations display relative differences of the order of the percent and were ob-

tained after roughly 2 hours of calculations using 12 parallelized processors. With

4800 configurations it is possible to reduce these differences by one or two orders

of magnitude and the calculation time needed was of about six hours when using

the same 12 processors. The deviation to the expected theoretical values is more

important for lower values of the temperature and the pump intensity. This rises

from the fact that properly describing such low number of excitations requires a

much bigger number of configurations. The quadratures on the other hand have a

lower bound ≥ 1, we thus get excellent an agreement with just 800 configurations.

These results show that the numerical resolution gives a proper description of

the coherent and thermal statistics as long as the average is performed over a

big enough number of independent configurations. Now we demonstrate it is also
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able to describe accurately the mean field behavior rising from the non-linear

optomechanical coupling.

II.3.4.3. Bistable mean-field behavior

In Chapter I we showed that the non-linear coupling between the photons and

phonons leads to multistable solutions to the mean-field equations of the system.

In particular we showed that for red-detuned pumps it is possible to reach a regime

in which there are two stable solutions and an unstable one. Increasing and de-

creasing the pump intensity can lead to an hysteresis cycle (for an experimental

observation of the optomechanical bistability see [19]). Fig.II.6 presents a numer-

ical simulation in which we slowly change the pump intensity in order to scan the

bistability diagram back and forth. We chose a pump with a gaussian shape over

time as to ensure an intensity modification over time as adiabatic as possible. The

blue line depicts the numerical dependance of the photon field absolute value as

a function of the changing pump intensity. The red line corresponds to the ana-

lytical curve described by Eq.I.36. We have an excellent agreement between the

analytical and numerical results.

|α
|2

Fp/ωm

0 1 32

104

102

100

Figure II.6: Numerical bistability of the optomechanical mean-field equa-
tions. Squared absolute value of the photon field as a function of the time
dependent pump intensity Fp. The red line depicts the expected theoretical
bistable relation obtained from the mean field equations. The blue line cor-
responds to the numerical results. The width of the gaussian profile pump is
given by twγc = 5/3. ∆/ωm = 10−1, γm/ωm = 10−3, γc/ωm = 10−2, gcm/ωm =
10−2, T = 4mK,ωm = 1GHz. Results after averaging over 800 configurations.
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The oscillations after the sudden jump on the cavity field are probably related to

a transient regime excited by the abrupt change in the number of photons leading

to a non adiabatic excitation of the mechanical resonator position.

II.3.4.4. Single cavity cooling

We now discuss the results of our numerical method beyond the mean fields. In

particular we want to determine whether or not the numerical resolution takes

properly into account the dynamics of the fluctuations around the mean field.

Fig.II.7 presents the time evolution of the number of phonons inside the mechanical

oscillator for a set of parameters chosen to give cooling from an initial thermal

occupation of 130 phonons. According to Eq.I.61 the stationary state of the system

should contain on average 1.44 phonons. The numerical treatment displays cooling

of the mechanical resonator as expected. Averaging over time in the stationary

state and over 800 configurations, the numerics yield a final occupation ∼ 1.61.

Time × ωm

|β
|2

−
1/

2

100

101

102
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Figure II.7: Mechanical resonator number of phonons as a function of time.
The red line corresponds to the final mechanical occupation computed with the
theoretical results of Chapter I. The set of parameters (∆/ωm = 1, γm/γm =
10−3, γc/ωm = 10−1, gcm/ωm = 10−3, Fp/ωm = 15, nth = 130) has been
chosen to lead to cooling of the mechanical resonator down to ∼ 1.44 excitations.

The disagreement between the theoretical value and the numerical result cannot

be explained by the number of configurations which should be enough to obtain

accuracy up to the percent. Given the pump intensity considered in the parameters

of Fig.II.7 we believe that the system is being excited to a point close to the

unstable solutions of the mean field approximation thus breaking the validity of

the linearized approach. We obtain better agreement for less intense coherent

pumps. Nevertheless we decided to show this figure for consistency with what is
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presented in Fig.II.9. Both figures share the same parameters and Fig.II.9 presents

our numerical results for the auxiliary cavity cooling scenario discussed in chapter

III.

The final phonon occupation is related to the intrinsic dynamical behavior of

the mechanical resonator (through γm), to the modifications to the mechanical

damping rate introduced by the coupling to the photons (through Γopt) and to

the effects of the optical noise (through Sopt[ω]). The fact that our numerical

resolution yields a result corresponding to what is expected from a theoretical

treatment shows that the resolution is capable of properly taking into account the

dynamical behavior of the fluctuations around the mean fields.

II.3.4.5. Linear optical coupling between cavities

We have stated before that the numerical implementation is well suited for the

study of an optomechanical array comprising many optomechanical cavities. The

scalar stochastic equations for the photon and phonons fields of the i-th optome-

chanical cavity are given by

d

dt
αi = −iωciαi + igiαi(βi + β∗i ) + i

∑

j 6=i

Jijαj −
γci
2
αi + Fpie

−iωpit +

√
γci
2
ξai(t),

d

dt
βi = −iωmiβ+igi

(
|αi|2 −

1

2

)
+ i
∑

j 6=i

Kijβj −
γmi
2
βi +

√
γmi

(
nth,i +

1

2

)
ξmi(t),

(II.52)

where the matrices {Jij} and {Kij} determine the coupling between cavities which

can be mediated by photons and/or phonons respectively.

Fig.II.8 presents a comparison between the analytical and numerical spectral re-

sponse of a double cavity system with no optomechanical coupling (g1 = g2 = 0)

and a site to site optical coupling ({Jij} 6= 0, {Kij} = 0). We obtain the spectral

response of cavity 1 by applying a gaussian pulse to both cavities and deconvolut-

ing the spectrum of the system excitation (coherent pump and white noise) from

the photons spectrum. The numerical results are in excellent agreement with the

theoretical predictions from Eq.III.24.
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Figure II.8: Double cavity system spectral response. Absolute value of cavity
1 field Fourier transform as a function of frequency and cavity 2 detuning. The
spectral response of the cavities is studied by applying a gaussian pulse of width
tw ∼ 6γc. The other parameters are ∆1 = 0, J = 10γc, γc/ωm = 10−1, gcm =
0, Fp/ωm = 20, {Kij} = 0. The numerical results, obtained by averaging over

800 configurations, are in excellent agreement with the theory.

II.3.4.6. Auxiliary cavity cooling

In order to test if the numerics is capable of describing properly both a linear

coupling between cavity photons and the optomechanical coupling we tested it

with the auxiliary cavity cooling presented in Chapter III. Fig.II.9 displays the

corresponding results for a calculation averaging over 1200 configurations. The

set of parameters has been chosen so that theoretically the mechanical resonator

reaches a stationary population of 14.4 phonons. Numerically (after ergodic av-

erage over the stationary state) we obtain a final occupation of 14.1 which is in

good agreement with the analytical values.

II.3.4.7. Synchronization of optomechanical arrays

Finally we would like to present some preliminary results on the study of optome-

chanical arrays. It has been shown [82] that an array of optomechanical cavities

coupled through the mechanical degrees of freedom can present synchronization

of the limit cycle oscillations of the mechanical resonators.

We consider an all to all coupling scenario for an array of identical optomechanical

cavities. We assume that the cavities are coupled via the mechanical degrees of
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Figure II.9: Numerical results for the auxiliary cavity cooling of Chapter
III. Number of phonons in cavity 1 as a function of time after averaging over
1200 configurations. The red line corresponds to the expected theoretical value.
∆1/ωm = 10−2, ∆2/ωm = 7.10−1, γm/ωm = 10−4, γci/ωm = 10−1, J/ωm =

1, g1/ωm = 10−3, g2 = 0, Fpi/ωm = 15, T = 1K, ωm = 1GHz.

freedom. The equations of motion of the i-th optomechanical cavity are then

d

dt
αi = −iωcαi + igcmαi(βi + β∗i )−

γc
2
αi + Fpe

−iωpt +

√
γc
2
ξai(t),

d

dt
βi = −iωmβi + igcm

(
|αi|2 −

1

2

)
+ iK

∑

j 6=i

βj −
γm
2
βi +

√
γm

(
nth +

1

2

)
ξmi(t).

(II.53)

In order to quantify the synchronization of the mechanical resonators we introduce

the phase coherence

χφ =

〈∣∣∣∣∣
1

N

∑

j

eiφj

∣∣∣∣∣

2〉
, (II.54)

where N is the number of cavities in the array. The average is performed over the

configurations. φj is the argument of the mechanical field in the j-th cavity:

eiφj =
βj
|βj|

. (II.55)

Complete synchronization of the mechanical resonators corresponds to having

∀j, φj = φ in which case χφ goes to 1. On the contrary, if there is no synchro-

nization the phases of all the resonators are independent from each other in which

case we have χφ = 1/N .
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Figure II.10: Phase coherence of a 30×30 optomechanical array as a function
of time. We consider an all to all mechanical coupling scenario in which Kij =
K = ωm/4. The other parameters are: gcm = γc = 0.3ωm, γm = 0.074ωm
and Fp = 1.1γc. Solid blue line corresponds to a synchronized array with ∆ =
ωc − ωp = −ωm/2. Dashed blue line corresponds to an unsynchronized array

with ∆ = −3ωm/4.

Fig.II.10 presents the phase coherence of a 30× 30 optomechanical array. The set

of parameters are identical to those considered in [82]. Fig.II.10 presents the tran-

sition from synchronized to unsynchronized dynamics of the optomechanical array

as the detuning between the coherent pump and the cavities frequency increases.

Our numerical results are in good agreement with the results from [82].

The numerical methods for the resolution of the Lindblad master equation are

extensively used in chapter IV in order to study the open system dynamics and

statistics of a hybrid architecture combining optomechanics and quantum electro-

dynamics. The semi-classical truncated Wigner Monte Carlo approach is still a

work in progress but given the promising results presented here we are confident

that it will prove to be an useful tool for the study of disordered optomechanical

arrays.





Chapter III

Non conventional optomechanical

cooling: dissipative forces and

auxiliary cavities

In chapter I we went through the theory of optical self cooling of mechanical

motion in an optomechanical cavity coupled via radiation pressure [28–31]. The

calculations show that for systems in the resolved-sideband regime, where the

mechanical frequency is larger than the cavity linewidth, it is possible to cool

mechanical motion down to the mechanical quantum ground state if the photons

are pumped with a coherent pump red-detuned from the cavity resonance by an

amount equal to the mechanical frequency. In this chapter we present two differ-

ent cooling mechanisms for optomechanical systems. First we present our work

on photothermal-based cooling [1]. We show that it is possible to cool mechanical

motion without relying on the resolved-sideband regime by considering photother-

mal forces. We also present our work on an optomechanical cavity coupled to an

auxiliary cavity. These new geometry modifies the optomechanical cavity spectral

response thus allowing cooling close to the ground state while pumping almost

resonantly the photons in the optomechanical cavity.

III.1. Limits of cavity optomechanical cooling by

photothermal forces

In usual optomechanical setups the coupling between mechanical motion and cav-

ity photons results from the reflection of photons on the mirror. The reflection

61
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of a photon with wave vector k induces a momentum exchange 2~k with the mir-

ror, thus leading to radiation pressure. If instead of reflecting every incoming

photon the moving mirror absorbs some energy from the light field, this extra

energy can be converted into thermoelastic deformation of the mirror yielding a

coupling between light and mechanics. The associated optically generated force

is call the photothermal (or bolometric) force. Actually, the first experimental

realizations of optomechanical self-cooling of mechanical motion were obtained

in setups where this kind of photothermal force was dominating the dynamical

effects [23, 83–85]. More recently several experimental groups have shown pho-

tothermal coupling between light and a variety of mechanical resonators such as

semiconductor nanomembranes [86], grating reflectors [87], silicon nanowires [88]

and graphene [89] among others.

When deriving a Hamiltonian formulation of the radiation pressure coupling we

assumed the two cavity mirrors to be perfectly reflective. Later, in order to take

into account the environment dissipative effects, we relaxed that approximation

by introducing an optical decay rate γc measuring the rate at which photons leak

out of the cavity. In the picture of a linear Fabry-Perot cavity this decay rate

can be understood as resulting from the finite transmission coefficient k of the

fixed mirror. The transmission decay rate of the amplitude γt is related to the

fixed mirror transmission coefficient and to the photons round-trip time τ0 by

the relation γt = k/τ0. In the following we consider that the moving mirror

absorbs photons with an absorption coefficient A, thus introducing an additional

loss channel described by a decay rate γabs = A/τ0. The cavity photons are then

lost at a total decay rate γc = γt + γabs.

The absorbed photons transfer thermal energy to the mirror thus inducing a tem-

perature field within the material. If this field is not uniform thermoelastic de-

formation of the mirror bulk material is possible and eventually leads to a mod-

ification of the cavity length. This mechanical effect is called photothermal or

bolometric force. This additional optomechanical coupling has been extensively

studied in the field of interferometric gravitational waves detection, where in order

to reach the precision required to measure gravitational waves one needs to bound

the different noise sources acting on the system. In particular, thermoelastic noise

induced by heat diffusion in the mirror material after the absorption of photons

has been taken into account [90, 91]. The noise on the number of absorbed pho-

tons has to be considered if one is to describe cooling to the ground state with

photothermal forces.

We just discussed radiation pressure as resulting from momentum exchange be-

tween the photons and the mechanical resonator. Following the same guideline to
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compute the amplitude of the photothermal force leads to the wrong conclusion

that the latter is half as intense as radiation pressure (the absorption of a photon

leads to a momentum exchange ~k). This was the scenario considered in a paper

discussing photothermal forces before the beginning of this PhD work [92]. By

doing so one fails to take into account the total energy transfer from the photon

to the mechanical resonator. It has been shown experimentally that in case of ab-

sorption photothermal forces can actually overcome radiation pressure by several

orders of magnitude [85]. The work we present here tackles a more general picture

in which the difference of magnitude between the two forces is not fixed and where

we take fully into account the effects of both radiation pressure and photothermal

forces on the cooling of mechanical motion close to the ground state.

III.1.1. Description of a dissipative force

It has been stated that photothermal forces arise from heat generation due to

photon absorption. Describing such a dissipative process from a Hamiltonian point

of view is a difficult if not impossible task. To do so we would have to describe

an infinite amount of degrees of freedom in order to describe the dissipative heat

diffusion within the phonon modes of the bulk. Even though we do not have a

Hamiltonian formulation of the problem, we tackle it with a quantum Langevin

approach where the photothermal force acts as a time-delayed force depending on

the number of photons absorbed by the mechanical resonator, and where the shot

noise of the absorption process is taken into account. This approach is theoretically

self-consistent and is supported by the fact that its classical limit has been shown to

reproduce the dynamics of a large number of bolometric optomechanical settings.

III.1.1.1. Time-delayed photothermal force

At any time the number of absorbed photons by the mirror per unit time depends

on the total number of photons in the cavity. Nevertheless the thermoelastic

deformation will only change the position of the mechanical resonator after the

extra thermal energy has diffused across the resonator. We assume that this

diffusion has a characteristic finite time-scale τth. The photothermal force at time

t thus depends on the number of absorbed photons in the past. We describe this

time delayed force in terms of a convolution of the flux of absorbed photons with

some causal memory kernel reflecting the thermal relaxation process :

F̂photothermal(t) ∝
∫ +∞

−∞
du

1

τth
Θ(t− u)e

− t−u
τth Îabs(u), (III.1)
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where τ 7→ Θ(τ) is the Heaviside function and Îabs(τ) is the rate of absorbed

photons at time τ . This memory kernel plays an essential role in the discussion

of photothermal cavity cooling. As we will see, in the case where photothermal

force overcomes radiation pressure the thermal relaxation time τth replaces the

photons life time 1/γc as the typical time scale of the dynamical optomechanical

self-cooling process.

III.1.1.2. Fluctuation and dissipation

We assume that the equation of motion of the mechanical resonator can still be

written in the standard form

¨̂qm = −ω2
mq̂m − γm ˙̂qm + F̂opt + Ξ̂m(t), (III.2)

where F̂opt accounts here for the radiative forces (radiation pressure and pho-

tothermal force) applied by the light field. The mechanical damping rate γm and

the stochastic Langevin force Ξ̂m(t) are linked to each other via the fluctuation-

dissipation theorem. The fluctuation and dissipation described by this quantities

account for contributions from different noisy channels. On one hand the effects

due to the campling of the mechanical resonator to a support at finite temper-

ature. On the other hand the thermoelastic noise [90, 91] which finds its origin

in the steady state temperature fluctuations of the oscillator body. Finally, any

steady-state increase of the equilibrium temperature due to photon absorption will

also be included in this terms. It will simply translate into a shifted environment

temperature T . The Langevin force is thus still defined by the correlation function:

〈Ξ̂m(t)Ξ̂m(t′)〉 = ~γm
∫

R
dω eiω(t−t′)coth

(
~ω

2kbT

)
. (III.3)

One last key element is necessary to discuss optomechanical cooling close to the

ground state. As stated before, we have to take into account the effects of the

fluctuations in the number of absorbed photons, which enforce fluctuations of the

photothermal force. We do so by treating the absorbing mirror as an effective

transmission channel with transmission coefficient A. Under these circumstances

the photons in the cavity, the absorbed photons and the absorption shot noise are
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related by the following input-output relation [63]

âabs =

√
A

τ0

â− ξ̂abs

=
√
γabsâ− ξ̂abs,

(III.4)

where ξ̂abs is the noise operator corresponding to vacuum fluctuations entering the

cavity through the absorption process. The intensity of absorbed photons is given

by Îabs = â†absâabs. We also introduce the operator corresponding to the shot noise

entering from the fixed mirror ξ̂t.

Now we have all the ingredients to write down the set of equations of motion for

an optomechanical cavity subject both to radiation pressure and photothermal

forces:

˙̂a =− (iωc + γc) â+ i
√

2gcmâq̂m + Fpe
−iωpt +

√
γtξ̂t(t) +

√
γabsξ̂abs(t)

¨̂qm =− ω2
mq̂m − iγm ˙̂qm +

√
2gcmωm

(
â†â+ τ0β

∫

R
du

1

τth
Θ(t− u)e

− t−u
τth Îabs(u)

)

+ Ξ̂m(t).

(III.5)

Here we have introduced a phenomenological parameter β that quantifies the dif-

ference of amplitudes between the photothermal and radiation pressure forces.

Under constant illumination and for a fixed cavity this ratio would be given by

Fphotothermal/Frad = βA (reference [85] reports values of βA between 102 and 104).

III.1.2. Photothermal cavity cooling

The set of equations III.5 is dealt with in the same way we used to describe radi-

ation pressure cooling in chapter I. Using a mean field approach we linearize the

equations of motion, which can then be treated as algebraic equations by moving

to Fourier space.

Moving to the frame rotating at the frequency of the pump we find that the

stationary mean values of the position and the photon field are given by

〈q̂m〉 =
√

2
gcm
ωm

(1 + βA)α2

α = 〈â〉 =
Fp

i∆nl + γc
,

(III.6)
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where once again we assume that the pump phase is set to have α ∈ R and we

have introduced the effective detuning of the cavity ∆nl = ωc−ωp− 2g2
cm/ωm(1 +

βA)α2. We also introduce the non linear frequency shift induced by the steady-

state intracavity photon pressure on the movable mirror ωnl = 2g2
cmα

2/ωm(1+βA),

the effective detuning can then be rewritten ∆nl = ωc − ωnl − ωp.

Let us now consider the fluctuations around these mean fields : δĉ = ĉ− 〈ĉ〉. For

clarity in the expressions we will omit the hats on the operators. Only keeping

terms up to first order we get the set of coupled linear equations

δȧ =− (i∆nl + γc)δa+ i
√

2gαδqm +
√
γtξt +

√
γabsξabs

δq̈m =− ω2
mδqm − γmδq̇m +

√
2gαωm

(
δa+ δa† + βA

∫
du h(u− t)

(
δa(u) + δa†(u)

))

−
√

2gαωmβτ0
√
γabs

∫
du h(u− t)

(
ξabs(u) + ξ†abs(u)

)
+ Ξm(t),

(III.7)

h(τ) being the memory kernel introduced in Eq.III.1. At this point the set of equa-

tions III.7 presents a major difference with what we encountered with radiation

pressure. Given the nature of the photothermal force the mechanical resonator

is directly (without the formal integration of the photonic degree of freedom)

sensitive to the optical absorption shot noise,which is convoluted by the thermal

relaxation memory kernel h(u). The differences appear more clearly when moving

to Fourier space where, after integration of the equations on a and a†, the equation

on the mechanical resonator position can be rewritten

χ−1
m (ω)q̃m(ω) = i2g2

αωm

(
1 + βA

1

1 + iωτth

)
(χc(ω)− χ∗c(−ω))q̃m(ω)

+ Ξ̃m(ω)

−
√

2gαωmβτ0
1

1 + iωτth

√
A

τ0

(
ξabs(ω) + ξ†abs(−ω)

)

+
√

2gαωm

(
1 + βA

1

1 + iωτth

)√
A

τ0

(
χc(ω)ξ̃abs(ω) + χ∗c(−ω)ξ̃†abs(−ω)

)

+
√

2gαωm

(
1 + βA

1

1 + iωτth

)√
k
τ0

(
χc(ω)ξ̃t(ω) + χ∗c(−ω)ξ̃†t (−ω)

)
,

(III.8)

where we have introduced the cavity and mechanical bare suceptibilities : χ−1
m (ω) =

ω2
m − ω2 + iωγm and χ−1

c (ω) = i(∆nl − ω) + γc.
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We have obtained a result reminiscent of what was obtained for the radiation

pressure case in Eq.I.45. By integrating the photonic degrees of freedom we see that

the mechanical oscillator responds with an effective susceptibility to a modified

noise term. The first line of the right hand term in Eq.III.8 is responsible for the

mechanical resonator effective suceptibility. Once again, if the initial mechanical

quality factor Qm = ωm/γm is big enough this effects can be understood in terms of

both an optical spring effect (modification of the mechanical resonance frequency

ωeff = ωm + δωm) and the appearance of an optical damping rate (the decay

rate is then given by γeff = γm + Γopt). Given the additional damping rate, the

fluctuation-dissipation theorem tells us that there has to be an additional noise

term on the equation of motion of the mechanical resonator. This additional

optical noise has a slightly more convoluted form than what was discussed in

chapter I for radiation pressure. Indeed here we have taken into account the

absorption shot noise which is described by the third and fourth lines. But most

importantly, the thermal relaxation memory kernel introduces a “thermal low-pass

frequency filter” ∝ β/(1+ωτth) that completely modifies the optical force spectral

density with respect to the radiation pressure case. Setting the absorption rate A

to zero yields the exact same equations we obtained for radiation pressure cooling.

The normalized motional variance of the mechanical resonator is given by

〈q2
m〉 =

∫ +∞

−∞

dω

2π
〈q̃m(ω)q̃m(−ω)〉. (III.9)

Using Eq.III.8 this variance can be recast in the following form:

〈q2
m〉 =

∫ +∞

−∞

dω

2π
|χeff (ω)|2 (Sth[ω] + Sopt[ω]) , (III.10)

where Sth[ω] and Sopt[ω] are the spectral noise densities of the thermal Langevin

and optical noise forces respectively. The effective susceptibility of the mechanical

oscillator is given by

χ−1
eff (ω) = χ−1

m (ω)− 4∆nlg
2
αωm

(
1 + βA

1

1 + iωτth

)
χc(ω)χ∗c(−ω). (III.11)

Before discussing the cooling limits let us introduce the following set of normalized

variables.
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Normalized variable Physical Meaning

b = ωm
γc

Normalized mechanical frequency

ϕ = ∆nl

γc
Normalized cavity detuning

ϕnl = ωnl
γc(1+βA)

= 2g2α
ωmγc

Normalized non-linear frequency shift

d = ωmτth Normalized thermal relaxation time

Ω = ω
ωm

Normalized frequency

With this normalized notations the spectral density of optical noise Sopt[Ω] (in-

cluding both radiation pressure and photothermal contributions) is given by:

((1− b2Ω2 + ϕ2)2 + 4b2Ω2)Sopt[Ω] =

(
2T

T + A

∣∣∣∣1 +
βA

1 + iΩd

∣∣∣∣
2

(1 + ϕ2 + b2Ω2 − 2bΩϕ)

+
2A

T + A

∣∣∣∣(1 + iΩb− iϕ)

[
1 + β

T + A

2(1 + iΩd)

(
A− T
T + A

− iϕ− ibΩ
)] ∣∣∣∣

2
)
,

(III.12)

The effective damping of the mechanical resonator is given by

γeff = γm

[
1 + ϕnl

2ϕQm

(1− b2 + ϕ2)2 + 4b2

(
(1− b2 + ϕ2)d

βA

1 + d2
+ 2b

(
1 +

βA

1 + d2

))]
.

(III.13)

We are only interested in discussing the quantum limits of strong optomechanical

cooling, where the optical spring effect remains moderate but the effective me-

chanical damping of motion allows efficient quenching of the mechanical oscillator

Brownian fluctuations (γeff � γm). In this regime, and if the effective mechanical

susceptibility has a sharp frequency response, the normalised position variance of

the mechanical resonator reduces to

〈q2
m〉 ∼=

γm
γeff

(
1 + 2nth +

ϕnl
2
Qm(Sopt[Ω = 1] + Sopt[Ω = −1])

)
(III.14)

Fig.III.1 displays the normalised variance 〈q2
m〉 as a function of the normalized cav-

ity detuning ϕ = ∆nl/γc and the normalized thermal relaxation time d = ωmτth

in the regime of strong cooling and in the limit of strong optomechanical coupling

ϕnl � 1. As can be seen in the figure, the quantum ground state is approached

(which corresponds to variances 〈q2
m〉 ∼ 1) for a large set of values of the detuning

and thermal relaxation time. Large values of the detuning reduce the influence of

radiation-pressure noise and could be a favourable route to approach the ground

state in this configuration. But the system exhibits other regimes of interest. For
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Figure III.1: Normalized variance of the mechanical resonator as a function
of the normalized cavity detuning ϕ = ∆nl/γc and the normalized thermal
relaxation time d = ωmτth. The other parameters of the system A = 10−2, T =

10−3, β = 104, b = 10−2.

example, for ϕ = 1 increasing d from 0 to 100 gets the system closer to its ground

state. For values of d much bigger than 100 (that is values bigger than βA in the

specific case of Fig.III.1) the variance increases again reflecting the fact that the

optomechanical effects of photothermal origin no longer damp the mechanical mo-

tion response to radiation-pressure noise. Taking into account the noise originating

from radiation pressure and the noise of photothermal origin leads to an optimum

value of the parameter d. We used a numerical bound constrained minima search

algorithm to get statistical insights into the final mechanical resonator phonon

occupation. We found for example that it is possible to reach a state containing

∼ 4.10−2 phonons for a set of parameters putting the system in the bad cavity limit

and for a slightly detuned pump (ϕ ∼ 1.2, b ∼ 0.6, d ∼ 105, β ∼ 105, A ∼ 0.45).

However, because of the complexity of Eq.III.12 we were unable to find a simple

expression allowing an analytical survey of the minimal occupancy dependence on

all the involved parameters.

Just as we did in chapter I, the minimum number of phonons that can be reached

by optomechanical cavity cooling is computed by assuming that the thermal effects

become negligible due to optical damping (γeff � γm) and by applying a detailed

balance condition on the spectral density of optical noise [28, 29] (we assume that

the optical noise leads the mechanical resonator to a state described by an usual
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Boltzmann distribution at thermal equilibrium). The minimal occupancy is in

that case given by

nmin =

[
Sopt[−1]

Sopt[+1]
− 1

]−1

. (III.15)

Fig.III.2 plots nmin as a function of d = ωmτth, for a detuning ϕ = 1, in the bad

cavity limit b = 10−1 and for different values of βA. Occupation factors well below

one are obtained here by an appropriate choice of the parameter d. For example,

an occupancy of about 10−1 is reached for A = 10−1 and β = 104. More generally,

very small occupations are obtained in the “bad-cavity” (ωm < γc) regime by a

proper choice of the A and β parameters compatible with experimentally reported

values.

Figure III.2: Minimum phonon occupancy as a function of the normalized
thermal relaxation time d = ωmτth for a normalized detuning ϕ = 1 and for
different values of A and β. solid line: A = 10−2, β = 102, dashed line:
A = 10−2, β = 103, dashe-dotted line: A = 10−2, β = 104, dotted line:

A = 10−1, β = 104.

Photothermal cooling of mechanical motion allows to closely approach the quan-

tum ground state of the mechanical resonator even in the so-called bad-cavity limit

where the life time of cavity photons is smaller than the mechanical oscillation pe-

riod. This is very different from the standard radiation pressure cooling scenario

and opens interesting new experimental perspectives. Using photothermal cooling

the ground state can be reached without having to fulfill the good cavity condition

and for moderate detunings where a large number of incident photons can be more
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easily injected in the cavity. From a theoretical point of view, our calculations are

valid for any semi-classical force that can be written under the form of Eq.III.1

such as radiometric pressure or optoelectronic stresses.

Another theoretical paper [93] explored the quantum limits of photothermal cavity

cooling and reached similar conclusions to ours. The authors limited themselves to

the unresolved-sideband regime in which the dynamical modifications induced by

radiation pressure can be neglected. In [94] the authors describe exciton-mediated

photothermal coupling in GaAs membranes via a microscopic formulation of the

couplings between light, excitons and mechanics. Self-oscillation regimes of me-

chanical motion have also been discussed theoretically for semi-classical resonators

under photothermal forces [95].

III.2. Cooling with an auxiliary cavity

In recent years, a growing interesting for coupled cavity systems has emerged.

A few publications have discussed theoretically the physics of “optomechanical

arrays” [82, 96, 97]. Here we consider a scenario in which an optomechanical

cavity is coupled to a passive (without optomechanical coupling) auxiliary cavity.

By doing so we show that it should be possible to cool the mechanical resonator

close to its ground state while pumping the optomechanical cavity near its optical

resonance thus allowing to inject more easily a large number of intracavity photons.

The system under consideration is described by the following Hamiltonian.

Ĥ = ωc1â
†
1â1 + ωc2â

†
2â2 + ωmb̂

†b̂

− gcmâ†1â1(b̂† + b̂) + J(â†1â2 + â1â
†
2)

+ iFp(â
†
1e
−iωpt − â1e

iωpt) + Ĥbath,

(III.16)

where we use subscripts 1, 2 to distinguish the two cavities. gcm is the optome-

chanical coupling strength between cavity 1 and the mechanical resonator. The

two cavity modes are coupled with a coupling strength J (this coupling could re-

sult from evanescent overlap between the optical modes for example). Cavity 1

is pumped by a coherent pump of intensity Fp and frequency ωp. Finally Ĥbath is

responsible for the coupling to the baths.

Moving to the frame rotating at frequency ωp with respect to the photons and in-

tegrating the Markovian environment we get to the Langevin equations describing
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our system:

˙̂a1 = −(i∆1 + γc1)â1 − iJâ2 + i
√

2gcmâ1q̂m + Fp + ξ̂c1(t),

˙̂a2 = −(i∆2 + γc2)â2 − iJâ1 + ξ̂c2(t),

¨̂qm = −ω2
m − γm ˙̂qm +

√
2â†1â1 + Ξ̂m(t),

(III.17)

where ∆i, γci and ξ̂ci are the detuning (∆i = ωci − ωp), amplitude decay rate and

shot noise operator for the i-th cavity respectively. We deal with the optomechan-

ical non-linearity with a mean field approach. The mean fields αi = 〈âi〉, Qm =

〈q̂m〉 are linked by the following set of algebraic equations:

Fp =

[
i

(
∆1 −

√
2
g2
cm

ω
|α1|2 −∆2

J2

∆2
2 + γ2

c2

)
+ γc1 + γc2

J2

∆2
2 + γ2

c2

]
α1(III.18)

α2 =
−iJ

i∆2 + γc2
α1 (III.19)

Qm =
√

2
gcm
ωm
|α1]2. (III.20)

As can be seen in Eq.III.18 the level splitting induced by the coupling J introduces

an effective detuning for cavity 1

∆eff
1 = ∆1 −∆2

J2

∆2
2 + γ2

c2

. (III.21)

The amplitude decay rate is modified according to

γeffc1 = γc1

(
1 +

γc2
γc1

J2

∆2
2 + γ2

c2

)
. (III.22)

Linearizing the set of equations of motion III.17 around the mean fields and moving

to Fourier space we can reduce the set of equations to a single equation on the

Fourier transform of the mechanical resonator position operator

χeff (ω)−1q̃m(ω) = Ξ̃m(ω) + Ξ̃opt(ω). (III.23)

Eq.III.23 is formally identical to what we have encountered this far. Just as for

the photothermal force, the coupling to the second cavity modifies the spectral

response of the photons in cavity 1 leading to a modification of the spectral density

of optical noise acting on the mechanical resonator. Keeping similar notations as

in chapter I the susceptibility of cavity 1 is χ−1
1e (ω) = i(∆1e(ω) − ω) + γ1e(ω)),

where the frequency-dependent effective detuning and amplitude decay rate are
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given by

∆1e(ω) = ∆nl − J2 ∆2 − ω
(∆2 − ω)2 + γ2

c2

γ1e(ω) = γc1

(
1 +

γc2
γc1

J2

(∆2 − ω)2 + γ2
c2

)
.

(III.24)

∆nl is the non-linear detuning of cavity 1 when one takes into account the frequency

shift arising from the static shift of the mechanical resonator equilibrium position.

From these expressions we then get the optical force spectral density of noise on

the mechanical resonator and the effective mechanical damping:

Sopt[ω] = 2(gαωm)2
(
|χ1e(ω)|2

(
〈ξ̃c1(ω)ξ̃†c1(ω)〉+ J2|χc2(ω)|2〈ξ̃c2(ω)ξ̃†c2(ω)〉

))

(III.25)

γeff (ω) = γm

(
1 +
√

2g2
α

ωm
ω

[
γ1e(ω)

γm
|χ1e(ω)|2 − γ1e(−ω)

γm
|χ1e(−ω)|2

])
, (III.26)

where gα = α1gcm and χ−1
c2 (ω) = i(∆2 − ω) + γc2.

Figure III.3: Effective mechanical damping rate in a double cavity as a
function of the cavity detunings ∆nl and ∆2. The white regions correspond
to unstable regimes where γeff < 0. The other parameters are given by

γc1 = γc2 = 10−1ωm, γm/ωm = 10−4, gα/ωm = 10−1, J/γc1 = 5.

Fig.III.3 plots the effective mechanical damping rate as a function of the cavity

detunings ∆nl and ∆2. It is obtained by assuming that the initial mechanical qual-

ity factor is high enough as to evaluate Eq.III.26 on ω = ωm. The regions where

γeff < 0, which correspond to the onset of mechanical instability, are depicted in

white. The coupling between cavities yields a rather complicated stability diagram
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but it shows that it is possible to obtain optomechanical cooling (γeff � γm) for

a set of parameters for which cavity 1 is pumped near resonance ∆nl ∼ 0. In the

following we assume ∆nl = 0 and investigate the limits of optomechanical cooling

as a function of the auxiliary cavity detuning ∆2.

Figure III.4: Effective mechanical damping rate (blue solid and dashed line)
and final phonon occupancy (red dotted line) as a function of the auxiliary cavity
detuning ∆2. Gray areas correspond to unstable solutions (γeff < 0, dashed
blue line), white areas to stable solutions (γeff > 0, solid blue line). ∆nl = 0, the
temperature has been chosen so that the average number of thermally excited

phonons is nth = 130.45, all other parameters as in Fig.III.3.

Fig.III.4 presents the effective damping rate and the final number of phonons

under optomechanical cooling as a function of ∆2. The final number of phonons

neff is computed by assuming the optical noise leads the mechanical resonator

to a pseudo-thermal state and thus applying a detailed balance condition as in

Eq.I.61. The instability regions are colored in gray, they correspond to negative

values of the effective mechanical damping and their boundaries correspond to

points where the final occupancy of the mechanical resonator goes to infinity thus

breaking the validity of the linearization procedure. We consider an environment at

finite temperature T exciting an average number of thermal phonons nth = 130.45

(for a mechanical resonator in the GHz range this correspond to a temperature

of 1K). For ∆2/ωm = 0.74 the mechanical resonator is cooled down to a state

containing neff ∼ 0.6 phonons with a cavity 1 that can be pumped exactly at

its Lorentzian resonance (∆eff
1 ∼ −2.3γeffc1 ). According to these calculations it

should be possible to cool down the mechanical resonator close to its ground state

while pumping the optomechanical cavity near its resonance which allows more

efficient injection of photons into the cavity. These results might be useful to

experimentalists limited by undesirable absorption in their devices when faced to

strong out-of-resonance pumping of the cavity in the resolved-sideband regime.



Chapter IV

Hybrid cavity quantum

electrodynamics - optomechanics

Figure IV.1: Conceptual illustration of a system combining cavity quantum
electrodynamics and optomechanics.

Until recently the theoretical description of optomechanical systems was based on

a single optomechanical cavity strongly pumped in order to enhance, via the cavity

mean field, the effective optomechanical interaction. In this regime the optome-

chanical interaction is linearized around the cavity mean field. Such treatment

predicts important and already achieved results such as optical cooling of mechan-

ical motion close to the ground state [28–31, 33, 34], mechanical instability and

self sustained oscillations [6, 46, 67], pondemorotive squeezing of light [98] and

entanglement between photons and phonons [40, 42, 42]. More recently, confident

75
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on the promising future of experimental optomechanics, theoretical studies have

started exploring more ambitious configurations. Regimes of strong optomechan-

ical coupling in which a single photon is sufficient to yield a visible effect on the

mechanics [47, 99–101] have been discussed. There have been works exploring the

pathway to non-classical states (other than the gaussian ground state) for the me-

chanical resonator [43]. And recently the problem of hybrid optomechanical setups

comprising more complex systems, such as optomechanical arrays [82, 96, 102] or

hybrid cold-atoms-optomechanics systems have been proposed [50, 51, 103–105].

In this chapter we present our contribution to these new perspectives for future

hybrid optomechanical systems. We detail our results on the physics of a quantum

system where a cavity photon mode is coupled to an artificial two-level atom and

to a mechanical resonator. The coupling between a cavity mode and an atom has

been explored within the field of cavity Quantum Electrodynamics (QED), which

has undertaken experiments exploring light-matter interactions at the quantum

level [69, 106]. Similar physics have been successfully studied in solid state imple-

mentations such as semiconductor systems [107, 108] or superconducting circuits

[109, 110]. Experimental optomechanical systems have successfully coupled cavity

photons to mesoscopic mechanical resonators [17, 111]. Given these experimental

results the maturity of solid-state quantum devices will soon allow to bridge cavity

and circuit QED and cavity optomechanics.

The basic principle of inserting a two-level artificial atom in an optomechanical

setting was discussed in classical terms for fine tuning of dispersive and dissipative

optomechanical interactions [111]. The coupling of an optomechanical cavity to

an atom motion [105] or to collective excitations of an ensemble of atoms [112] was

also discussed, resulting in the physical situation of two linearly coupled harmonic

oscillators. In that case the anharmonic internal structure of a single atom and

its corresponding nonlinear dynamics, a key feature of cavity and circuit QED, is

absent. Since optomechanical systems progressively move towards regimes where

single photon coupling exceeds dissipation [33, 45, 47, 48, 113, 114] we decided to

study a scenario in which artificial atoms, photons and phonons are all strongly

coupled at the quantum level.

In the following we present our findings reported in [3] concerning such a hybrid

system. We start by introducing the system Hamiltonian, which combines Jaynes-

Cummings coupling between the cavity mode and a two-level artificial atom and

radiation pressure coupling between the cavity mode and mechanical motion. At

the expense of some reasonable approximations, we are able to analytically di-

agonalize the Hamiltonian. We discuss the dynamics in presence of losses and

driving. We show atom-assisted cooling of mechanical motion close to the ground
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state, atom-assisted unusual mechanical amplification and the appearance of non-

classical states for the mechanical resonator. Last, we discuss the emission of

strongly antibunched phonons in such tripartite atom-cavity-mechanics systems.

IV.1. The system under consideration

Figure IV.2: Scheme of the considered hybrid system. A confined photon
mode of frequency ωc couples both to a two-level system (ωa is its transi-
tion frequency) and to a mechanical resonator of frequency ωm. gac (gcm) is
the coupling strength of the Jaynes-Cummings (radiation pressure) atom-cavity

(cavity-mechanics) coupling.

As depicted in Fig.IV.2 the system under consideration consists of a single cavity

mode at frequency ωc, a mechanical resonator at frequency ωm and an artificial

two-level atom with a transition energy ωa. We assume that the cavity is coupled

both to the artificial atom and the mechanical resonator.

IV.1.1. Uncoupled Hilbert space

The Hilbert space on which the cavity photon operators act can be spanned by

an infinite and discrete set of orthogonal Fock states which we label {|k〉}k∈N, the

same holds for the mechanical resonator Hilbert space which is spanned by a set

of Fock states labeled {|l〉}l∈N.

The artificial two-level atom evolves in a two dimensional Hilbert space spanned

by the vector states corresponding to the ground, |g〉, and excited, |e〉, states of the

atom. Any operator acting on the artificial atom can be written as a combination
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of the Pauli matrices, which in the basis {|g〉, |e〉} are defined as follows:

σ̂z =

[
−1 0

0 1

]
, σ̂x =

[
0 1

1 0

]
, σ̂y =

[
0 i

−i 0

]
. (IV.1)

We also define atomic lowering and raising operators as follows:

σ̂− = |g〉〈e| =
[

0 1

0 0

]
, σ̂+ = |e〉〈g| =

[
0 0

1 0

]
. (IV.2)

A hybrid system combining these three subsystems is described in a Hilbert space

obtained by tensor product of the three separate Hilbert spaces just discussed.

These new Hilbert space is spanned by a basis labeled {|ξ〉⊗|k〉⊗|l〉}ξ∈{g,e},k∈N,l∈N
that diagonalizes the uncoupled Hamiltonian of the system:

Ĥuncoupled = ωcâ
†â+ ωmb̂

†b̂+
ωa
2
σ̂z. (IV.3)

IV.1.2. Closed system Hamiltonian

Let us now discuss the couplings between the different sub-systems. First, the

cavity is coupled to the two-level atom via a dipolar electric coupling of the form

∝ ~d. ~E, where ~d is the atom electric dipole and ~E is the electric quadrature of

the electromagnetic field. By quantizing the operators of both the atom and the

field and neglecting the resulting counter-rotating terms we obtain the Jaynes-

Cummings Hamiltonian [69, 115, 116]. The interaction term between the cavity

mode and the two-level system can be cast in the following form:

V̂ac = igac
(
σ̂+â− σ̂−â†

)
. (IV.4)

The mechanical resonator can be coupled to the atom-cavity system either by a

radiation pressure coupling to the photons, which is described by an interaction

term of the form ∝ â†â(b̂† + b̂), or it could be directly coupled to the artificial

atom. A promising experimental candidate to explore the physics described in

this chapter is a miniature Gallium-Arsenide optomechanical resonator combining

strong optomechanical coupling [45, 113, 114] with strong cavity QED couplings

[107, 108]. In such architectures the artificial atom is a semiconductor quantum

dot embedded in the crystalline optical-mechanical resonator. The strain in the

lattice induced by the resonator mechanical movement can modify the spatial
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properties of the quantum dot thus modifying the energy splitting between ground

and excited states. Such an effect can be accounted for by introducing a term in

the Hamiltonian of the form ∝ σ̂z(b̂
† + b̂). Here we only consider the radiation

pressure term.

The closed system Hamiltonian for our hybrid atom-cavity mechanics system is

thus:

Ĥ =ωcâ
†â+

ωa
2
σ̂z + igac

(
σ̂+â− σ̂−â†

)

+ ωmb̂
†b̂− gcmâ†â

(
b̂+ b̂†

)
.

(IV.5)

IV.2. Hamiltonian diagonalization

In this section we present the steps of the analytical diagonalization of the Hamil-

tonian IV.5.

IV.2.1. Diagonalization of the atom-cavity Hamiltonian

Figure IV.3: Polariton energy levels of the Jaynes-Cummings Hamiltonian.
Restriction to the subspaces Hn, n ≤ 2.

Our hybrid Hamiltonian shares an important symmetry with the usual Jaynes-

Cummings one (without the optomechanical part). Let us define a “number of

polaritons” operator as follows:

N̂polariton = â†â+ σ̂+σ̂−. (IV.6)

This operator counts the number of photons and atomic excitations inside the

cavity. Its commutation with the total Hamiltonian ([N̂polariton, Ĥ] = 0) tells us
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that the two operators can share a common basis. We now introduce the following

set of states:

∀n ∈ N, n 6= 0

|+(n)〉 =
1

2
(|g〉|k = n〉+ i|e〉|k = n− 1〉)

|−(n)〉 =
1

2
(|g〉|k = n〉 − i|e〉|k = n− 1〉)

n = 0

|G〉 = |g〉|k = 0〉

(IV.7)

This set of vectors constitutes an orthogonal basis of the atom-cavity Hilbert

space, which diagonalizes N̂polariton ( N̂polariton|±(n)〉 = n|±(n)〉). In the following

we assume that the atom and the cavity mode are at resonance ωa = ωc. Un-

der this condition the previously defined basis of polaritons also diagonalizes the

Jaynes-Cummings part of the Hamiltonian, thus yielding the well known Jaynes-

Cummings ladder of states:

ĤJC |±(n)〉 =
(
ωcâ

†â+
ωa
2

+ igac(σ̂+â− σ̂−â†
)
|±(n)〉

=

((
n− 1

2

)
ωc ±

Ω(n)

2

)
|±(n)〉,

(IV.8)

where Ω(n) =
√
ngac. Taking into account an asymmetry between the atom and

cavity frequencies (ωa 6= ωc) leads to more cumbersome expressions for the eigen-

vectors of the total Hamiltonian. For this reason we restrict the analytical di-

agonalization presented here to the resonant case. Nevertheless the numerical

exploration of the system was performed in order to allow non-resonant configu-

rations for the Jaynes-Cummings sub-system.

From this point on the atomic and cavity degrees of freedom will be discussed

in terms of upper, |+(n)〉, and lower, |−(n)〉, polaritons. The second and final

part of the diagonalization is performed by switching to the polariton-phonon

basis {|±(n)〉⊗ |l〉}n∈N,l∈N and projecting the optomechanical interaction into each

subspace containing n polaritons.
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IV.2.2. Atom-cavity-mechanics polarons

Given the comutation relation [Ĥ, N̂polariton] = 0, the two operators share a com-

mon diagonalization basis. The set {|±(n)〉 ⊗ |l〉}n,l∈N diagonalizes the Jaynes-

Cummings part of the Hamiltonian. In this basis the total Hamiltonian has a

block-diagonal structure that allows us to treat the projection of Ĥ into each

n-polariton subspace Hn independently. We present in the following how the ra-

diation pressure coupling is projected into the polariton basis, giving rise to a

coupling between the mechanical resonator and a series of polariton doublets. By

restricting ourselves to a single subspace Hn the system can be seen as an effec-

tive two-level system (upper and lower polaritons with n excitations) coupled to

a harmonic oscillator (the mechanical resonator). The effective coupling between

this two level system and the harmonic resonator is reminiscent in its form of the

original coupling between the artificial atom and the light field.

IV.2.2.1. Polaron eigenstates

After performing the change of basis we can study the system in each subspace

Hn. If put in any state |ψ〉 ∈ Hn the system remains within this subspace unless

an additional perturbation (coherent pump or dissipative processes acting on the

Jaynes-Cummings subsystem) is taken into account.

In the basis {|+(n)〉, |−(n)〉} the Jaynes-Cummings Hamiltonian, the number of

photons operator and the atomic σ̂z operator are represented by the following

2× 2 matrices:

ĤJC ≡
[

(n− 1/2)ωc + Ω(n)

2
0

0 (n− 1/2)ωc − Ω(n)

2

]
, (IV.9)

â†â ≡
[
n− 1

2
1
2

1
2

n− 1
2

]
, (IV.10)

σ̂z ≡
[

0 −1

−1 0

]
. (IV.11)

We introduce the corresponding Pauli matrices for this dimension 2 subspace σ̂
(n)
z ,

σ̂
(n)
x , σ̂

(n)
y as well as the two polaritonic lowering and raising operators σ̂

(n)
+ , σ̂

(n)
− . In
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the basis {|+(n)〉, |−(n)〉} these operators are represented by the following matrices

σ̂(n)
z =

[
1 0

0 −1

]
, σ̂(n)

x =

[
0 1

1 0

]
, σ̂(n)

y =

[
0 −i
i 0

]
, σ̂

(n)
+ =

[
0 1

0 0

]
, σ̂

(n)
− =

[
0 0

1 0

]
.

(IV.12)

The total Hamiltonian can thus be written Ĥ =
∑

n∈N Ĥ
(n), where the Hamilto-

nian projection to Hn, Ĥ(n), is given by :

Ĥ(n) =(n− 1/2)ωc1l
(n) +

Ω(n)

2
σ̂(n)
z

− gcm
(

1

2
σ̂(n)
x + (n− 1

2
)1l(n)

)(
b̂+ b̂†

)
+ ωmb̂

†b̂,

(IV.13)

with 1l(n) the identity matrix in the subspace spanned by the set {|+(n)〉, |−(n)〉}.
The first two terms correspond to the projection of ĤJC in this new basis. The

third term is the projection of the optomechanical coupling term. This coupling,

proportional to â†â, results in two different effects. An exchange term σ̂
(n)
x and a

static shift of the mechanical resonator position (n−1/2)1l(n). Indeed, the subspace

Hn holds n excitations of which in average n − 1/2 are stored as photons. This

average number of photons shifts statically the mechanical resonator equilibrium

position. The term ∝ 1l(n)(b̂+ b̂†) describes this effect. The other half excitation is

exchanged between the states, being half the time a photon and the other half an

atomic excitation. This exchange of polaritonic excitations is coupled to the posi-

tion of the mechanical resonator. The “1/2” proportion is changed if the artificial

atom and the cavity mode are no longer in resonance. Nevertheless the overall pic-

ture remains valid. The last term in Eq. IV.13 is the mechanical resonator energy,

reminding us that we are still working in the basis {|±(n)〉 ⊗ |l〉}n,l∈N. From here

we move to the second part of the diagonalization, which takes us to the polaron

eigenstates of the full Hamiltonian.

The term −gcm(n − 1/2)1l(n)(b̂ + b̂†) can be understood as an additional energy

potential linear in the position. In the Heisenberg picture this potential results in a

constant force applied on the mechanical resonator. We apply a translation to the

position operator in order to absorb this term. We thus set the new equilibrium

position of the mechanical resonator to q
(n)
0 =

√
2gcm/ωm(n − 1/2). This is done
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Figure IV.4: Description of the system in the polariton-phonon basis. The
mechanical resonator couples independently to each polariton doublet.

by making the following transformation to the mechanical resonator operators:

b̂ = b̂n +
q

(n)
0√
2

= b̂n +
gcm
ωm

(
n− 1

2

)
,

b̂† = b̂†n +
q

(n)
0√
2
.

(IV.14)

The transformation IV.14 introduces annihilation and creation operators1 b̂n and

b̂†n in a new translated basis of Hn. This new basis of Fock states is noted

{|m(n)〉}m(n)∈N, |m(n)〉 being the Fock state with m(n) phonons2 of a mechanical

resonator centered on q
(n)
0 . One should bear in mind that the mean value of any

operator 〈Ô〉 will depend on the basis used to calculate this mean value. Rewrit-

ing the Hamiltonian IV.13 in terms of the new operators we get the following

expression:

Ĥ(n) =

(
n− 1

2

)
ωc −

g2
cm

ωm

(
n− 1

2

)2

+ ωmb̂n
†
b̂n +

Ω(n)

2
σ̂(n)
z −

gcm
2
σ(n)
x

(
b̂†n + b̂n

)

− g2
cm

ωm

(
n− 1

2

)
σ̂(n)
x .

(IV.15)

1 The new operators follow the same commutation relation as the original ones, [b̂n, b̂
†
n] =

[b̂, b̂†] = 1l.
2 m(n) is an integer. The superscript (n) is superfluous but we decided to keep it to remind

the reader that this new Fock basis refers to the displaced annihilation and creation operators
b̂n, b̂

†
n.
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(n − 1/2)ωc is the reference energy of the n-polariton subspace Hn. g2
cm/ωm(n −

1/2)2 is the energy shift due to the static displacement of the mechanical resonator

in this subspace. The third line of Eq.IV.15 results from the translation transfor-

mation. In the displaced frame the static shift of the mechanical resonator leads to

a perturbative effect ∝ σ̂
(n)
x which induces a Stark-like shift in the eigenenergies.

The effects of this term could be accounted for with usual perturbation theory [66]

or they can be dealt with analytically at the expense of losing explicit expressions

for the eigenvectors and eigenvalues of the system [117]. We neglect this term in

the following. Its second order effects lead to a modification of the eigenenergies of

the system of the order ∼ gcm(gcm/ωm)2. Since in current experimental implemen-

tations we have gcm/ωm � 1 the approximation is valid. Nevertheless this ratio

may change in future systems, which would require more careful considerations of

the energy hierarchies at play in the system.

The central line in Eq.IV.15 is the one responsible for the main coupling between

the polariton and the mechanical resonator. It is formally identical to a Jaynes-

Cummings Hamiltonian [116] for which we have kept the anti-resonant terms.

Using a rotating wave approximation (thus assuming implicetly |ωm − Ω(n)| �
ωm + Ω(n) for the approximation to be valid) we get to the same Hamiltonian that

coupled originally the two level atom to the cavity:

Ĥ(n) ' ωmb̂n
†
b̂n +

Ω(n)

2
σ̂(n)
z −

gcm
2

(
b̂†nσ̂

(n)
− + b̂nσ̂

(n)
+

)
. (IV.16)

We can now introduce a polaron number operator (acting on the subspace Hn)

N̂
(n)
polaron = b̂†nb̂n + σ̂

(n)
+ σ̂

(n)
−

that commutes with the projected Hamiltonian, [Ĥ(n), N̂
(n)
polaron] = 0. From here,

if ωm = Ω(n) the diagonalization is identical to the one performed on the atom-

cavity Hamiltonian and we obtain the polaron basis {|±n,m(n)〉}n,m(n)∈N, which

diagonalizes the Hamiltonian IV.16.

∀m(n) 6= 0 :

|±n,m(n)〉 =
1√
2

(
|+(n)〉|(m− 1)(n)〉 ∓ |−(n)〉|m(n)〉

)

|±n,m(n)〉 =
1

2

[
|g〉|n〉|m(n)〉 ∓ |g〉|n〉|(m+ 1)(n)〉

−i(|e〉|n− 1〉|m(n)〉 ∓ |e〉|n− 1〉|(m+ 1)(n)〉)
]

(IV.17)
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The “ground” state in subspace Hn is

m(n) = 0 :

|Gn,0(n)〉 =|−(n)〉|0(n)〉

=
1√
2

(
|g〉|n〉|0(n)〉 − i|e〉|n− 1〉|0(n)〉

)
(IV.18)

From Eq.IV.17 we obtain the projector between a given ket in the final polaron-

diagonalizing basis |±n,m(n)〉 and a ket from the original atom-cavity-mechanical

resonator basis, |e, g〉 ⊗ |k〉 ⊗ |l〉:

〈±n,m(n) |e, k, l〉 =
i

2
δk,n−1

(
〈m(n)|l〉 ∓ 〈(m+ 1)(n)|l〉

)
(IV.19)

〈±n,m(n)|g, k, l〉 =
1

2
δk,n

(
〈m(n)|l〉 ∓ 〈(m+ 1)(n)|l〉

)
(IV.20)

The scalar products {〈m(n)|l〉}m(n)∈N do not assume the simple form of Kroenecker

deltas over two indices. Depending on the new equilibrium position q
(n)
0 the overlap

between Fock states of the original and displaced basis varies according to [118] :

∀m(n), l ∈ N, 〈l|m(n)〉 =

√
m(n)!

l!

(
q

(n)
0√
2

)l−m(n)

Ll−m(n)

m(n)

(
(q

(n)
0 /
√

2)2
)
e−(q

(n)
0 /
√

2)2 ,

(IV.21)

where x 7→ Ll−m(n)

m(n) (x) is the generalized Laguerre polynomial of degree m(n) and

index l −m(n).

In the most general case Ω(n) 6= ωm the polaron eigenvectors are given by

|+n,m(n)〉 = cos
θn,m

(n)

2
|+(n)〉|(m− 1)(n)〉+ sin

θn,m
(n)

2
|−(n)〉|m(n)〉,(IV.22)

|−n,m(n)〉 = sin
θn,m

(n)

2
|+(n)〉|(m− 1)(n)〉 − cos

θn,m
(n)

2
|−(n)〉|m(n)〉,(IV.23)

where

tan[θn,m
(n)

] = −
√
m(n)gcm√

(Ω(n) − ωm)2 +m(n)g2
cm

, θn,m
(n) ∈

]
−π

2
, 0
]
. (IV.24)
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The associated eigenenergies are

〈±n,m(n) |Ĥ(n)|±n,m(n)〉 = ω
(n)
0 +

(
m(n) − 1

2

)
ωm ±

√
(Ω(n) − ωm)2

4
+m(n)

g2
cm

4
.

(IV.25)

IV.2.3. Anharmonic energy structure

Figure IV.5: Energy levels in the subspaces Hn, n ≤ 1 as a function of the
Jaynes-Cummings coupling gac. Top half: Energy levels in the n = 1 subspace
for states with a number of polarons verifying 〈N̂polarons〉 ≤ 3. Lower half:

Energy levels in the uncoupled n = 0 subspace.

Fig. IV.5 presents the energy levels for a number of polaritons n = 0, 1 as a func-

tion of the atom-cavity coupling. The n = 0 subspace corresponds to states with

0 photons. When the system state is in this subspace the mechanical resonator is

uncoupled from the cavity and the two-level atom. The energy levels follow the

usual harmonic structure without any dependance on gac. The picture is radically

different in the subspace H1. The finite number of photons leads to a coupling

between the mechanical resonator and the non-linear 1-polariton doublet as was

previously discussed. In this subspace the energy levels present an anharmonic

structure resulting from the polaron splitting described by Eq. IV.25. Chang-

ing the coupling between the cavity and the artificial atom ultimately modifies

the polariton splitting Ω(n). As can be seen in Fig.IV.5, bringing in and out of
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resonance the atom-cavity and mechanical parts modifies the splitting between

polaron states eventually leading to crossing and anti-crossing of energy levels.

These considerations on the energy structure of the final polaron basis of the total

Hilbert space end our presentation of the analytical diagonalization of the prob-

lem. To obtain these analytical expressions we had to make a certain number

of approximations. First, we neglected the antiresonant terms in the polariton-

mechanics coupling. We neglected as well the effects of the term ∝ σ̂
(n)
x . Also, we

relied on the block diagonal structure of the Hilbert space in order to treat inde-

pendently each subspace Hn. From now on we take into account a coherent pump

on the cavity and the dissipative processes acting both on the cavity, the artifi-

cial two-level atom and the mechanical system. The presence of the environment

leads to a coupling between the different polariton subspaces. Nevertheless the

picture presented in this section establishes a good basis from which to interpret

the results presented in the following.

IV.3. Coupling to the environment

From here on we take into account the effects of the environment on the total

system. In order to describe the coupling between the cavity photons and an

external laser drive at frequency ωp we add the following time-dependent term to

the Hamiltonian of the system:

V̂p(t) = iFp(â
†e−iωpt − âe+iωpt). (IV.26)

The dissipative processes are described by Lindbladian terms of the form γsD[Ôs]ρ̂,

where γs is the decoherence rate associated to the jump operator Ôs acting on the

system. In the previous chapters of this manuscript we introduced and described

the noise terms acting on the cavity and the mechanical resonator. We now intro-

duce the dissipative processes experienced by the artificial two-level atom.

IV.3.1. Noise on the atom

In the following we assume that due to its coupling to the electromagnetic field

outside the cavity the two-level atom is subject to spontaneous emission. By

considering a coupling between the atom and the electromagnetic field of the form

Ĥint =
∫
dqκaq α̂q

†σ̂− + κa∗q α̂qσ̂+, it is possible [119] to derive a master equation



Chapter IV. Hybrid cQED-optomechanics systems 88

involving the operators σ̂− and σ̂+ as jump operators. Just as we did for the cavity,

we assume that the ratio between the atomic frequency and the temperature is

big enough so that the effects of transitions stimulated by thermal photons can

be neglected. We thus only add the Lindbladian term γaD[σ̂−]ρ̂ to the master

equation. This term accounts for the irreversible loss of an atomic excitation to

the electromagnetic environment. The two-level atom could also be subject to

other forms of dissipative processes such as non-radiative dephasing (described

by a term ∝ D[σ̂z]ρ̂), but we restrict the discussion in this manuscript to the

spontaneous emission of the atom.

IV.3.2. Final form of the master equation

We thus work with the following form of the master equation :

dρ̂(t)

dt
=− i[Ĥtot + V̂p(t), ρ̂]

+ γcL[â]ρ̂+ γaL[σ̂−]ρ̂

+ nthγmL[b̂†]ρ̂+ (nth + 1)γmL[b̂]ρ̂.

(IV.27)

In the following we assume that both the atomic excitations and cavity photons

decay with the same rate and thus set γa = γc = γac. We define polariton and

mechanical quality factors as follows: Qac = ωc/γac = ωa/γac and Qm = ωm/γm.

IV.4. Coherently pumped single polariton op-

tomechanics

From now on we restrict the discussion to the subspaces Hn with n ≤ 1. This

truncation of the polariton Hilbert space is allowed by a well-known phenomenon

in cavity and circuit quantum electrodynamics, the photon blockade effect. It is

a consequence of the strong Jaynes-Cummings coupling between the cavity mode

and the intrinsically non-linear two-level artificial atom. We first briefly discuss

the physics behind photon blockade effects and present the main consequences of

the Hilbert space truncation on the formalism.
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IV.4.1. Photon blockade effect in a coherently pumped

scenario

A bare cavity, one that is not coupled to any other system, has an harmonic

ladder of equidistant energy levels separated by an energy ~ωc. The equidistant

Fock states can be adressed by an external coherent drive at frequency ωc leading

to the excitation of a coherent state |α〉 =
∑

k exp(−|α|2/2)αk/
√
k!|k〉 overlapping

all the Fock states |k〉 of the Hilbert space.

It has been shown that a cavity coupled to an atom having a small number of

states, and thus highly non-linear, can present photon blockade effects [120–122].

Due to the resulting anharmonicity of the spectrum, a pump tuned to excite the

first photon will be off-resonance with respect to transitions exciting further the

system. Once the first photon is excited the injection of a second one is blocked. It

is important to note that in real life experiments the levels have a finite linewidth

and levels non-resonant with the pump could actually be excited. The appearance

of the photon blockade effects requires a spacing between levels larger than the

linewidths. For the Jaynes-Cummings Hamiltonian the photon blockade rises if

one is in the so-called strong coupling regime, gac/γac � 1. The pump intensity

has to be small enough as to avoid excitation of non resonant transitions. Here

we assume that the system parameters ensure photon blockade thus allowing us

to project the problem into the subspaces H0 and H1.

IV.4.2. Dimension 3 polariton Hilbert space

The atom-cavity degrees of freedom are thus described in a Hilbert space spanned

by the vectors |g, k = 0〉, |−(1)〉 and |+(1)〉. In this dimension-3 subspace the opera-

tors of interest are thus represented by 3×3 matrices in the basis {|G〉, |−(1)〉, |+(1)〉}.
The projection of the cavity photon annihilation and creation operators are rep-

resented by the following matrices:

â ≡ 1√
2




0 1 1

0 0 0

0 0 0


 , â† ≡ 1√

2




0 0 0

1 0 0

1 0 0


 . (IV.28)

For the atomic lowering and raising operators we get:

σ̂− ≡
1√
2




0 −i i

0 0 0

0 0 0


 , σ̂+ ≡

1√
2




0 0 0

i 0 0

−i 0 0


 . (IV.29)
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In the simple case of a resonant Jaynes-Cummings system (ωc = ωa) for which

the atomic and photonic decay rates are strictly identical (γc = γa) the dissipative

processes on both the atom and the photon are easily described in this new reduced

picture. The lower and upper polariton states decay indepently at a rate γac =

γa = γc towards the ground state. We introduce the jump operators:

ĉ− ≡




0 1 0

0 0 0

0 0 0


 , ĉ+ ≡




0 0 1

0 0 0

0 0 0


 , (IV.30)

responsible for the decay channels of the lower and upper polariton respectively.

The atom and photon Lindbladian terms then become γcL[â]ρ̂ + γaL[σ̂−]ρ̂ 7→
γacL[ĉ−]ρ̂+ γacL[ĉ+]ρ̂.

The corresponding density matrix of this reduced system is noted and represented

as follows:

ρ̂
(1)
JC ≡



ρGG ρG−(1) ρG+(1)

ρ−(1)G ρ−(1)−(1) ρ−(1)+(1)

ρ+(1)G ρ+(1)−(1) ρ+(1)+(1)


 . (IV.31)

IV.4.3. Joint spectral density of states

Let us consider that the system is initially in a generic uncoupled state of the form

|G〉〈G| ⊗ ρ̂m, which corresponds to a state with no photons in the cavity, the arti-

ficial atom in its ground state and an arbitrary state for the mechanical resonator.

By applying a coherent pump to the cavity the initial state previously defined

gets coupled to states in subspace H1 in which the distinction between photons,

atomic excitations and phonons no longer holds and the tripartite polarons are

the relevant elementary excitations.

Fig.IV.6 presents the transitions excited by the coherent pump between states in

H0 and states in H1. The pump links the initial atom-cavity-mechanics states to

polaron states containing a different number of phonons. Using the diagonalized

basis defined in Eqs.IV.22 and IV.23 we introduce a joint spectral density of states

that is useful to understand the possible transitions excited by the pump as a

function of the frequency pump. The joint spectral density of states, D[ω], is

defined as follows :

D[ω] =
∑

s=±
m,l∈N

|〈s1,m|V̂p|G, l〉|2δ[ω − (ωs1,m − ωG,l)]. (IV.32)
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Figure IV.6: Energy levels in the subspaces H0 and H1 and the transitions
induced by the coherent pump. In the upper half solid lines correspond to upper
polaron states (|+1,m(1)〉) while dashed lines correspond to lower polaron states

(|−1,m(1)〉). Green, blue and red arrows correspond to transitions conserving,
reducing and increasing the average number of phonons respectively. The atom-
cavity coupling is set to give a resonant single polariton-mechanics scenario,

Ω(1) = ωm. The optomechanical coupling is given by gcm/ωm = 10−1.

Where ω±n,m(n) is the eigenenergy of the state |±n,m(n)〉 and ωG,l is the energy of the

state |G, l〉 = |G〉 ⊗ |l〉. D[ω] explores the optically induced transitions between

states in H0 to states in H1. The generalization to transitions between other

subspaces is straightforward but here we are only exploring transitions exciting at

most one polaritonic excitation. The function w 7→ D[ω] presents a series of delta

peaks centered on the frequency (energy) difference between two coupled states,

each delta peak being weighted by the squared of the corresponding coupling

matrix element.

Fig. IV.7 presents D[ω] as a function of ω for two different sets of parameters. For

clarity the delta peaks have been convoluted by a Lorenzian3 of width γac. The

main panel shows D[ω] for gcm/ωm = 10−1. It displays two spectral structures

centered on the lower (upper) polariton energy ω
(1)
− (ω

(1)
+ ). Each structure is itself

split into a doublet with a splitting ∼ gcm. The inset of Fig.IV.7 presents D[ω] for

a weaker optomechanical coupling gcm/ωm = 10−3. In this case the polaron fine

3 The main contribution to the dissipative processes undergone by the polaron states comes
from the Lindbladian term with the fastest rate, in usual experiments this corresponds to the
atomic-photonic decay.
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Figure IV.7: Optical joint spectral density of polaron states describing transi-
tions between the states with 0 and 1 polaritons. Main panel: gcm/ωm = 10−1,
Qac = 104. Insight: gcm/ωm = 10−3, Qac = 106. For clarity, we only present
transitions between states with m(n) ≤ 5 polarons. Blue, green and red peaks
represent transitions reducing, conserving and increasing the number of phonons

respectively.

structure splitting ∼ gcm is no longer visible at a scale ∼ ωm and D[ω] presents

only two resonances at ω
(1)
± .

The structure of D[ω] is best understood by looking closely at the possible transi-

tions from subspace H0 to subspace H1 as depicted in Fig.IV.6. The form of D[ω]

arises from the fact that under the coherent pump the system can undergo three

different kinds of transitions. Let us assume that the system is initially in a state

of the form |G〉 ⊗ |m〉 with m 6= 0.

If the pump is set as to excite the lower polariton (ωp ∼ ω
(1)
− ) then the system is

roughly taken to the state |−(1)〉⊗ |m〉, which is in the m-polarons subspace H(1)
m .

The two eigenstates of the Hamiltonian that are actually excited are |±1,m(1)〉. The

corresponding transitions (shown as green arrows in Fig.IV.6 and green peaks in

Fig.IV.7) are split with respect to ω
(1)
− by an amount proportional to

√
mgcm.

Now, if the pump frequency is tuned to ωp ∼ ω
(1)
+ then the system is roughly taken

to the state |+(1)〉 ⊗ |m〉, which is in the (m + 1)-polarons subspace H(1)
m+1. The

two excited states are in this case |±1,(m+1)(1)〉 and the corresponding transitions

(depicted in red in Figs. IV.6 and IV.7) are split with respect to ω
(1)
+ by an amount

proportional to
√
m+ 1gcm.

Finally, the third kind of possible transitions (depicted in green) corresponds to

the transition |G〉|0〉 7→ |G1,0(1)〉. Here one starts from a state with 0 phonons and

excites a state with 0 polarons. Having no polaronic excitation in the final state

there is no energy splitting and this particular transition sits at ωp = ω
(1)
− .
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In Fig.IV.7 the peak at ω = ω
(1)
− (green peak) corresponds to the only transition

linking two states with the same number of phonons |G〉|0〉 7→ |G1,0(1)〉. The res-

onances around ω
(1)
− (blue peaks) correspond to transitions linking a state with

m phonons to a state with m polarons. Since the m-polarons states are super-

positions of the states |−(1)〉 ⊗ |m〉 and |+(1)〉 ⊗ |m − 1〉 these transitions lead to

an average reduction of the number of phonons. On the other hand the transi-

tions around ω
(1)
+ (red peaks) couple states with m phonons to states with m+ 1

polarons. These transitions increase the number of phonons (the final state is a

superposition of the states |−(1)〉⊗ |m+ 1〉 and |+(1)〉⊗ |m〉). Carefully tuning the

pump frequency to any one of these transitions will lead to cooling or amplification

of mechanical motion.

Here we have discussed the doublet structures in D[ω] in terms of the possible

transitions excited in the system by the coherent pump. In section IV.5.2 we show

that the Jaynes-Cummings coupling of the cavity to the two-level atom results

in a splitting of the standard optomechanical sidebands. These split sidebands

anti-cross when the hybrid system considered here is at resonance (Ω(1) = ωm),

which leads to the doublet structures we just discussed.

IV.5. Coherently pumped stationary statistics

Using the numerical methods presented in chapter II we study the properties of the

stationary state of the master equation IV.27. We discuss cooling and amplification

of mechanical motion. We also discuss the ability of the hybrid system to reach

non-classical “trajectories” of mechanical motion. Finally, we discuss such features

as a function of different parameters of the system.

IV.5.1. Stationary phonon statistics

As discussed before, by tuning the pump frequency to either one of the polariton

structures in the joint spectral density of states it is possible to cool or amplify

mechanical motion. In what follows we discuss the phonon stationary statistics

as a function of the pump frequency4. We do so by numerically diagonalizing the

Liouvillian superoperator for each value of ωp.

4 The time dependance of the additional pump terms in the Hamiltonian can be removed by
moving to the rotating frame via the unitary operator Û(t) = exp(−iωpt(â

†â+ σ̂z/2).



Chapter IV. Hybrid cQED-optomechanics systems 94

Figure IV.8: Stationary phonon statistics as a function of the pump frequency
ωp. Left panel (solid line): Stationary number of phonons. Right panel (dotted

line): Stationary second order autocorrelation function.
Qac = Qm = 104, 2gac = Ω(1) = ωm, gcm/ωm = 10−1, nth = 2.15.

Fig.IV.8 presents the mechanical resonator stationary number of phonons and

second order autocorrelation function as a function of the pump frequency ωp. We

consider a finite temperature environment and a strong enough optomechanical

coupling (compared to the loss rates) as to clearly separate the polaron resonances

previously discussed. When the pump is tuned far from the system resonances the

mechanical resonator statistics follow those dictated by the thermal environment.

The average phonon number is equal to the mean thermal occupancy 〈b̂†b̂〉 = nth

and the second order autocorrelation function has the value corresponding to a

thermal state 〈b̂†b̂†b̂b̂〉/〈b̂†b̂〉2 = 2. On the other hand, if the pump frequency is

tuned to excite the transitions described in Fig.IV.6 it is possible to drastically

change the mechanical resonator statistics. A pump tuned to match the lower

polariton energy will induce a decrease of the mechanical resonator occupation

number. This cooling is accompanied by strong bunching of phonons in comparison

to the statistics of a thermal state. If the pump is tuned to the upper polariton

energy the number of phonons in the stationary state is amplified leading to values

of the autocorrelation function closer to those of a coherent state 〈b̂†b̂†b̂b̂〉/〈b̂†b̂〉2 =

1.

Fig.IV.9 presents the stationary number of photons as a function of ωp for the

same set of parameters. It should be noticed that around the lower polariton

energy (ωp ∼ ω
(1)
− ) the number of photons does present the triple-peak structure

predicted by the joint spectral density of states of Eq.IV.32. As was previously

discussed this central peak corresponds to a transition linking two states with

the same number of phonons and does not lead to any modification of mechanical

motion. As expected the phonon statistics of Fig.IV.8 only present two split peaks

around this frequency.
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Figure IV.9: Stationary number of photons as a function of the pump fre-
quency ωp.

Qac = Qm = 104, 2gac = Ω(1) = ωm, gcm/ωm = 10−1, nth = 2.15.

IV.5.1.1. Resonant optomechanical effects on mechanical motion

In usual optomechanics (i.e for gac = 0) cooling or amplification of mechanical

motion are obtained by pumping the cavity on either its red or blue optomechanical

sideband. The off-resonant pumping of photons leads to second order transitions

modifying the mechanical properties. The hybrid system we study here has a

radically different behavior. By introducing the non-linear artificial atom in the

cavity we are able to modify the mechanical resonator statistics by resonantly

pumping the dressed photon states. Now cooling or amplification arise from first

order transitions between system states. Fig.IV.8 also presents the resonances

corresponding to the second order transitions which are off-resonance with respect

to the optical response. As can be seen in Fig.IV.9, when exciting these transitions

the number of photons actually injected into the system is much less leading to

smaller effects on the mechanics.

In our hybrid scheme the optical transitions inducing cooling of mechanical mo-

tion become aligned with the Jaynes-Cummings resonances. Fig.IV.10 presents

a comparison between the cooling capabilities of our scheme and the usual op-

tomechanical setup for moderate optomechanical couplings, gcm/ωm = 10−3. In

the atom-less scenario, the number of photons that can be injected into the cavity

by pumping the red sideband is hindered by the very narrow optical response,

and the phonon number barely deviates from the thermal occupation (solid line).

Whereas in a hybrid system coupled to a two-level artificial atom the possibility

to reduce the number of phonons by resonantly injecting photons into the system

leads to a much more efficient cooling of mechanical motion (dashed line).
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Figure IV.10: Stationary number of phonons as a function of ωp for Qm = 106,
Qac = 106, gcm/ωm = 10−3, Fp/γac = 100. The dashed blue line represents the
hybrid QED-optomechanics case with an atom (gac 6= 0) while the black solid
line corresponds to the usual atomless scenario(gac = 0). The inset depicts

schematically the doubly-resonant polariton cooling of motion.

IV.5.1.2. Amplification of mechanical motion and non-classical “tra-

jectories”

So far we have discussed the cooling capabilities of the system under consideration.

Let us now choose a pump frequency tuned to the resonances around the energy

of the upper polariton ω
(1)
+ . The transitions corresponding to these resonances

increase the number of phonons excited in the mechanical resonator thus leading to

amplification of mechanical motion. Optomechanically induced amplification and

instability of mechanical motion have already been discussed in the semi-classical

regime [6] and in the quantum regime [46, 67]. Here we revisit this concept with

our hybrid system and present some of the insight we gained by looking at the

phonon number distribution in the stationary state of the system. In the following

we set the pump frequency to ωp = ω
(1)
+ + gcm. As shown in Fig.IV.11 for strong

enough pump intensities, tuning the coherent pump to this frequency leads to

amplified statistics of mechanical motion.

In a pump-less scenario (Fp = 0, inset a in Fig.IV.11) the mechanical resonator

is only subject to the effects of its thermal environment. Its Wigner distribution

is given by a gaussian centered around 0. Without any optomechanical modifica-

tion the stationary probability distribution over the Fock states of the mechanical

resonator, T [l] = Tr[|l〉〈l|ρ̂], is given by the usual thermal distribution with an

average number of phonons equal to nth:

Tth[l] =
(nth)

l

(nth + 1)l+1
. (IV.33)
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Figure IV.11: Stationary state Wigner distribution of the mechanical res-
onator in the C-plane of the scalar field β (as discussed in chapter II) for
increasing values of the pump intensity Fp. In all the figures we have set :

gac = ωm/2, gcm = ωm/10, Qac = Qm = 104, ωp = ω
(1)
+ + gcm. The system

is coupled to a finite temperature environment exciting an average number of
thermal phonons nth = 2.15.

As can be seen in Fig.IV.11 increasing the pump intensity leads to the appear-

ance of non gaussian statistics for the mechanical resonator. Inset e) of the figure

presents the form of the Wigner distribution for values of Fp beyond threshold

for which the thermal-gaussian lobe centered in zero completely disappears giving

place to a ring-like shape of the Wigner distirbution. This kind of Wigner dis-

tributions has been discussed in the literature as corresponding to “ a coherent

state undergoing circular motion in phase space but with an undetermined phase”

[67]. Here we are interested on the effects of a finite temperature environment and

we have observed that the phonon statistics are best described by the so-called

cothermal distribution [123] which corresponds to a state having in average ncoh

coherent phonons and nth thermal phonons. The cothermal distribution is given

by the following formula:

Tcoth[l] = e−ncoh/(nth) (nth)
l

(nth + 1)l+1
Ll

[ −ncoh
nth(nth + 1)

]

= e−ncoh/(nth)Tth[l]Ll

[ −ncoh
nth(nth + 1)

]
,

(IV.34)

where x 7→ Ll[x] is the l-th Laguerre polynomial. The total number of phonons
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in such a state is 〈b̂†b̂〉 = nb = ncoh + nth and the second order autocorrelation

function is given by
〈b̂†b̂†b̂b̂〉
〈b̂†b̂〉2

= 2−
(
ncoh
nb

)2

. (IV.35)

As the coherent fraction of the stationary states becomes predominant the auto-

correlation function of the mechanical resonator approaches 1 corresponding to the

usual statistics of a coherent state. The stationary state of Fig.IV.11e is well fitted

by a cothermal distribution with nth = 0.095 thermal phonons and ncoh = 9.043

coherent phonons.

The different insets in Fig.IV.11 present how the mechanical resonator goes from

a pure thermal state to the “cothermal” state previously discussed. From the

thermal state (Fig.IV.11a), as the pump intensity Fp increases one first observes

the appearance of the ring like shape additional to the thermal lobe (Fig.IV.11b).

Then the thermal lobe starts fading away (Fig.IV.11d) until it completely disap-

pears giving rise to the cothermal distribution (Fig.IV.11e). Both the initial and

final states can be described in terms of an analytical description of the phonon

distribution. Nevertheless for those intermediate values for which the thermal

lobe and the cothermal ring coexist (Fig.IV.11c) we have not been able to find an

analytical description of the interplay between the polariton and the mechanics

leading to these “superpositions”. We remain confident though that the analytical

treatment that is presented in the following sections will shed new light into the

problem.

The state shown in Fig.IV.11e) does not result from a gaussian Wigner distribu-

tion. But it can be interpreted as a gaussian state having lost all information on

its phase (a coherent state undergoing circular motion in phase space). From this

point of view could it be called non-classical? Defining a non-classical state for a

harmonic oscillator is in itself a difficult question. A squeezed state for which the

noise on one of its quadratures is below the standard quantum limit is a gaussian

non-classical state. Entangled states are also non-classical states but defining a

good measure of entanglement for the kind of open systems considered here is not

a simple task. Here we loosely define a non-classical state as a state presenting

negative values on its Wigner distribution5.

As shown in Fig.IV.12 when pumped at the right frequency our system offers the

possibility to reach stationary non-classical statistics for the mechanical resonator.

The figure depicts the stationary statistics for a zero temperature environment.

We have checked that for small enough finite temperatures this negative values for

5 Ref.[43] gives an insightful discussion on other signatures of non-classicality for mechanical
resonators.
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the Wigner distribution can be reached by increasing slightly the pump frequency.

With the set of parameters in Fig.IV.12 a pump intensity of the order Fp =

10γac leads to non-classical statistics for dilution cryostat temperatures ∼ 4mK.

Evidently as the temperature rises the non-classicality succumbs under thermal

noise and the negative values dissapear as can be seen in the Wigner distributions

depicted in Fig.IV.11

Figure IV.12: Non classical Wigner distribution of a mechanical resonator.
Zero temperature environment, pump intensity below threshold.

Fp/γac = 1.15, gac = ωm/2, gcm = ωm/10, Qac = Qm = 104, ωp = ω
(1)
+ + gcm.

IV.5.2. Polaritonically split optomechanical sidebands

We studied the behavior of the system when the polariton splitting varies. The

polariton splitting is tailored by the Jaynes-Cummings coupling Ω(1) = 2gac. By

changing this parameter it is then possible to bring in and out of resonance the po-

lariton doublet and the mechanical resonator. This polariton-splitting-wise study

allowed us to better understand the doublet structures appearing in Fig.IV.7.

The density plot in Fig.IV.13 depicts the behaviour of the stationary number of

phonons as a function of the polariton splitting and the coherent pump frequency.

For zero coupling between the artificial atom and the cavity (gac = 0 = Ω(1))

we get the picture of standard optomechanics. The mechanical resonator proper-

ties are essentially modified when the cavity is pumped at its two optomechanical

sidebands (ωp = ωc ± ωm). For increasing values of the Jaynes-Cummings cou-

pling a splitting of the two optomechanical sidebands occurs. Eventually, when

Ω(1) = ωm, these split sidebands can cross or anticross depending on the observable

under consideration thus leading to the doublet structures appearing in the joint

spectral density of states.
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Figure IV.13: Logarithm of the stationary number of phonons as a function
of the pump frequency ωp and of the vacuum Rabi splitting Ω(1).

Fp/γac = 1, gcm = ωm/10, Qac = Qm = 104.

IV.5.3. Dependance on the decay rates

We also studied the influence of the polariton and mechanical quality factors.

Cooling and amplification of mechanical motion arise from the exchange of excita-

tions between the 1-polariton level structure and the mechanical resonator. When

exciting resonantly the lower polariton, the annihilation of a mechanical phonon

excites the Jaynes-Cummings system from the lower to the upper polariton level.

If the polaritonic excitation is rapidly lost (through non-radiative or radiative loss

mechanisms) and rapidly re-excited (by means of the optical pump) one can grad-

ually depopulate the mechanical oscillator thus leading to cooling of its motion.

This explains why worsening the cavity (smaller quality factor) in a certain range

enhances the cooling mechanism. A polariton quality factor of 103 leads to a

stationary phononic occupation ∼ 10−2 for a pump still obeying Fp/γc = 1. For

Qac = 104 we obtain a cooled phononic occupancy ∼ 4.10−1. Similarly, increas-

ing the polariton losses mechanisms leads to stronger amplification of mechanical

motion. One has to be careful though with the value of the quality factors. If the

atomic spontaneous emission and cavity photon leakages become too important

the polaritonic fine structure is no longer resolved and no cooling or amplification

is possible.
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The situation instead is radically different for the mechanical resonator. A re-

duction of the mechanical quality factor decreases the cooling and amplification

efficiencies in all cases. As the mechanical quality factor goes down much more in-

tense optomechanical effects are needed in order to counteract the thermalization

induced by the environment. This intensification could be achieved by either in-

creasing the optomechanical coupling or increasing the number of photons excited

in the cavity by considering stronger pump intensities.

IV.5.4. Time resolved thermalization of a Fock state

Fig.IV.14 presents the time evolution of the number of photons and phonons for a

coherently pumped system. Initially the state is in a state of the form |G〉⊗|l = 2〉
with the mechanical resonator in a Fock state with 2 phonons and no polaritons.

At a time t > 0 the pump, whose frequency has been set to ωp = ω
(1)
− , is turned

on with a heaviside profile. The discontinous profile of the pump enriches with

high frequencies the pump spectrum thus leading to an involved early transient

regime. As the stationary number of photons approaches a stationary state the

number of phonons exponentially decreases with an effective dissipation constant

γeff ∼= 18γm towards a state containing nmin ∼ 1/10 phonons.

Figure IV.14: Time evolution of the number of photons (red) and phonons
(blue) for an initial state of the form |G〉 ⊗ |l = 2〉. The coherent pump, with

frequency ωp = ω
(1)
− , is turned on at a time t > 0 with a heaviside profile.

Qm = Qac = 104, gac = ωm/2, gcm = ωm/10, Fp = 10
√

2γac.

In this scenario, the mechanical resonator starts in a highly non-classical Fock

state and ends up in a gaussian state, close to the ground state but having slightly

different statistics since its correlation function presents (in good agreement with
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Fig.IV.8) a bunched value in comparison to a thermal state. With the set of

parameters of Fig.IV.14 we obtain 〈b̂†b̂†b̂b̂〉/〈b̂†b̂〉2 = 3.36.

Fig.IV.15 presents the Wigner distribution of the mechanical resonator at five

different times marked by the vertical dashed lines in Fig.IV.14. Panel a) shows

the Wigner distribution for the 2 phonons Fock state with its negative values.

As time advances the system enters its transient regime (panels b and c ) where

first the negatives values are lost and it starts converging to a gaussian state.

From the point d) until the end the state remains in a gaussian state and the

phonon population exponentially decays leading to a state near the ground state

as previously discussed.

Figure IV.15: Mechanical resonator Wigner function at different times for a
system pumped as to induce cooling of mechanical motion. The different panels
correspond to snapshots taken at different times marked by the vertical dashed
lines in Fig.IV.14. The set of parameters considered is the same as in Fig.IV.14.

Given the non-linear couplings and the dimension of the Hilbert spaces it is not

necessarily straightforward to get analytical insight into the dynamical (time-

dependent) behavior of such systems. The kind of numerical resolution employed

here appears thus a good tool to obtain insights into how the decoherence processes

at play manifest themselves within the considered formalism.
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IV.6. Incoherently pumped single-polariton op-

tomechanics

Given the form of the considered optomechanical coupling it is essential to inject

energy from the “outside world” to excite photons and obtain optomechanical

effects. This far we have only considered a coherent pump at a given frequency

in order to excite the polariton system from the ground state |G〉 to either one

of the two 1-polariton states |±(1)〉. Now we discuss incoherent pumping of the

1-polariton subspace. While the coherent pump couples the coherences of the

density matrix, the incoherent one only couples the populations. We explore this

new experimental configuration with analytical tools that yield insight into the

stationary statistics of our tripartite system. We first briefly discuss the physical

process behind this so-called incoherent pumping and the master equation we

used to describe it. Then we present the analitycal method used to describe the

problem. This method is greatly inspired by a theoretical work studying the strong

light-matter coupling between a two-level system and a cavity mode [123]. Here we

generalize the method to our effective three level structure (the polariton system

spanned by the states {|G〉, |−(1)〉, |+(1)〉}) coupled to the mechanical resonator.

Finally we discuss the emission of strongly antibunched phonons under incoherent

pumping.

IV.6.1. Incoherent pumping

Up to this point the dynamics of the system have been described by the master

equation IV.27:

dρ̂(t)

dt
=− i[Ĥtot + V̂p(t), ρ̂]

+ γcL[â]ρ̂+ γaL[σ̂−]ρ̂

+ nthγmL[b̂†]ρ̂+ (nth + 1)γmL[b̂]ρ̂.

(IV.36)

The terms in the second line of this master equation rule the dissipative processes

undergone by the cavity and the two-level artificial atom. These dissipative pro-

cesses are characterized by two loss rates (γc and γa) measuring the rate at which

photonic and atomic excitations are lost to the environment and two jump op-

erators (â and σ̂−) determining how this information is lost. A photon can be

annihilated from the cavity and/or the atom can be deexcited from its excited to

its ground state.
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The incoherent pumping under consideration corresponds to a similar process but

performed in the opposite direction. The environment randomly excites the 1-

polariton states from the ground state |G〉. This excitation is described by a

similar Master Equation which now contains jump operators increasing the num-

ber of photonic and/or atomic excitations. From an experimental point of view,

this incoherent pumping can be achieved by coherently pumping higher energy

levels in the Jaynes-cummings ladder (n ≥ 2) and waiting for the decoherence

to kick-in and incoherently take the polariton excitations to the desired n = 1

subspace. We would like to add that incoherent pumping is an important method

in experimental quantum optics toolboxes. As an example, first proofs of strong

light-matter coupling between a quantum dot and a semiconductor microcavity

were first achieved with this configuration [107].

For the sake of simplicity we still continue restricting ourselves to the problem

projected to the subspace containing 1 polariton. We assume that the atom and

the cavity are resonant (ωc = ωa) and that the photonic and atomic loss rates

are identical (γa = γc = γac). Since the Jaynes-Cummings part of the problem is

symmetrical with respect to photon and atomic excitations, it will be clearer to

discuss the photonic and atomic properties of the system using the basis of states

{|G〉, |−(1)〉, |+(1)〉}. From now on the considered master equation for the system

is:

dρ̂(t)

dt
=− i[Ĥtot+, ρ̂]

+ γacL[ĉ−]ρ̂+ γacL[ĉ+]ρ̂

+ γ−incL[ĉ†−]ρ̂+ γ+
incL[ĉ†+]ρ̂

+ nthγmL[b̂†]ρ̂+ (nth + 1)γmL[b̂]ρ̂,

(IV.37)

where ĉ− = |G〉〈−(1)| and ĉ+ = |G〉〈+(1)| are the jump operators describing the de-

excitation of the lower and upper polariton respectively to the ground state. The

state |±(1)〉 is incoherently pumped with a rate γ±inc from the ground state, this

process being described by the corresponding jump operator ĉ†±. In this new config-

uration we omit the coherent photon pump. Here Ĥtot is the effective Hamiltonian

for the projected system for which we have neglected the anti-resonant terms in

the effective polariton-mechanics coupling.
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IV.6.2. “One-atom laser approach”

In order to follow the dynamics of the system we study the correlations between

the mechanical resonator and the three-level polariton system. Let us introduce a

series of operators measuring such correlations:

∀m ∈ N : Nb[m] = 〈b̂†m b̂m〉,
N+[m] = 〈b̂†m−1

b̂m−1σ̂
(1)
+ σ̂

(1)
− 〉,

N−[m] = 〈b̂†m−1
b̂m−1σ̂

(1)
− σ̂

(1)
+ 〉,

NG[k] = 〈b̂†m−1
b̂m−1|G〉〈G|〉,

Nbσ[m] = 〈b̂†m b̂m−1σ̂
(1)
− 〉,

Nb†σ+ [m] = 〈b̂†m−1
b̂mσ̂

(1)
+ 〉.

(IV.38)

The master equation IV.37 rules the evolution of the previously discussed correla-

tors. We do not present here the complete derivation of the equations but rather

present a simplified version by assuming that the environment is at zero temper-

ature, nth = 0, and that the incoherent pumping rates for both polariton states

are identical, γ+
inc = γ−inc = γinc. With these hypotheses the master equation now

reads

dρ̂(t)

dt
=− i[Ĥtot+, ρ̂] + γac(L[ĉ−]ρ̂+ L[ĉ+]ρ̂)

+ γinc(L[ĉ†−]ρ̂+ L[ĉ†+]ρ̂) + γmL[b̂]ρ̂.

(IV.39)

By tracing out the mechanical resonator degrees of freedom we obtain a reduced

density matrix on the polariton sub-system. This reduced density matrix being

unitary we have:

〈
|G〉〈G|+ |−(1)〉〈−(1)|+ |+(1)〉〈+(1)|

〉
= 1. (IV.40)

From Eq.IV.40 it follows that N+[m] +N−[m] +NG[m] = Nb[m− 1]. This allows

us to reduce the number of equations at play. We also introduce the following

notation:
Nbσ[m] = N r

bσ[m] + iN i
bσ[m]

Nb†σ+ [m] = N r
bσ[m]− iN i

bσ[m]
(IV.41)
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With this notations the set of first order differential equations for the mean values

of the system correlators is:

∀m ∈ N : Ṅb[m] = −2mgcmN
i
bσ[m]−mγmNb[m]

Ṅ+[m] = 2gcmN
i
bσ[m] + γincNG[m]− γacN+[m]− (m− 1)γmN+[m]

ṄG[m] = γac (N+[m] +N−[m])− (2γinc + (m− 1)γm)NG[m]

Ṅ r
bσ[m] = −(ωm − Ω(1))N i

bσ[m]− (γac + (m− 1/2)γm)N r
bσ[m]

Ṅ i
bσ[m] = (ωm − Ω(1))N r

bσ[m]− (γac + (m− 1/2)γm)N i
bσ[m]

−gcm (2N+[m+ 1] +mN+[m] +NG[m+ 1]−Nb[m]) .

(IV.42)

We are only interested in the stationary state properties of the system. We thus

set the time derivatives in the set of equations IV.42 to zero. It is then possible

to write all the correlators in terms of the phonon correlators Nb[m] as follows:

NG[m] =
γac

γac + 2γinc + (m− 1)γm
Nb[m− 1]

N r
bσ[m] =

(ωm − Ω(1))γm
gΓT [m]

Nb[m]

N i
bσ[m] =− γm

2gcm
Nb[m]

N+[m] =
γacγinc

(γac + 2γinc + (m− 1)γm)(γac + (m− 1)γm)
Nb[m− 1]

− γm
γac + (m− 1)γm

Nb[m],

(IV.43)

where we have introduced the total decoherence on states of the subspace with m

polarons

ΓT [m] = 2γac + (2m− 1)γm. (IV.44)

The stationary statistics are fully determined by the set of equations IV.43 and

the following second order recurrence relation on {Nb[m]}m∈N

A(m)Nb[m− 1] +B(m)Nb[m] + C(m)Nb[m+ 1] = 0. (IV.45)

The coefficients of the recurrence relation are given by:

A(m) =−m γacγinc
(γac + 2γinc + (m− 1)γm)(γac + (m− 1)γm

B(m) =m
γm

γac + (m− 1)γm
+m

γm
γac +mγm

+ Ceff [m]−1

C(m) =
2γm

γac +mγm
,

(IV.46)
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where we introduced the effective coupling and cooperativity

geff [m] =
gcm√

1 +
(

2(ωm−Ω(1))
ΓT [m]

)2

Ceff [m] =
4g2

eff [m]

γmΓT [m]
.

(IV.47)

By definition Nb[0] = 1 and Nb[1] = nb is the number of phonons in the stationary

state. The previous equations tell us that if one is able to obtain the stationary

number of phonons it is possible to calculate all the correlators of the system to

any order. As an example the stationary populations of the ground state |G〉 and

of the upper polariton |+(1)〉 are given by:

Pg =〈|G〉〈G|〉 =
γac

γac + 2γinc

P+ =〈|+(1)〉〈+(1)|〉 =
γinc

γac + 2γinc
− γm
γac

nb,
(IV.48)

and the mechanical resonator second order auto-correlation function is given by :

G2 =
〈b̂†2 b̂2〉
〈b̂†b̂〉2

=
1

n2
b

γac + γm
2γm

[
γinc

γac + 2γinc
−
(
γm
γac

+
γm

γp + γm
+ Ceff [1]−1

)
nb

]
.

(IV.49)

IV.6.3. Emission of strongly anti-bunched phonons

As shown in Fig.IV.16 the incoherent pump populates the excited polaritonic

states that, in the eigenbasis of the Hamiltonian, leads to excitation of polarons

and then emission of phonons. By looking at the statistics of the emitted phonons

we have seen that for weak enough values of γac (the broadening of the polaritonic

levels) the system exhibits emission of phonons with sub-poissonian, antibunched

statistics (second-order correlation function G2 � 1). In this regime, the system

acts as a single-phonon emitter under incoherent pumping. Hence, phonon block-

ade type effects arise from the non-linearity introduced into our hybrid system by

the artificial two-level atom.

In Fig.IV.16 we also present the analitycal results from the previously discussed

treatment. The stationary number of phonons is obtained from the numerical

resolution of the master equation. It is then injected into equation IV.49 and

compared to the numerical value. The analytical results (circles) and numerical

solutions of the master equation (continuous lines) are in excellent agreement.
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Figure IV.16: Phonon occupation number and second-order auto correlation
function G2 as a function of the polariton quality factor Qac. The incoherent
pump rate is set to γinc = γac. Black-solid, blue-dashed and red-dotted lines
correspond to numerical results obtained for mechanical quality factors Qm =
103, 102 and 101 respectively. The corresponding analytical values for G2 are
represented by circles and are in excellent agreement with the fully numerical

calculations.

The formalism introduced in this part of the manuscript allows us to compute the

stationary correlations of the system at all orders. Here we have only included

the calculations for a zero temperature environment and for an incoherent pump

populating at the same rate both polaritonic states. The generalization to finite

temperature and differential pumping can be found in Appendix D.

The set of correlators introduced in Eq.IV.38 respects the symmetries of the Hamil-

tonian considered in this part. We remind that we have neglected the counter-

rotating terms in the effective polariton-mechanics coupling and thus the number

of polarons (represented by the operator N̂
(1)
polaron = b̂†b̂ + σ

(1)
+ σ

(1)
− ) is a constant

of motion. Generalizing the method should allow us to study the effects of this

counter-rotating terms as well as to analytically study the statistics in a scenario

with a coherent pump. Finally, during this thesis we only considered the final

phonon statistics but understanding the signatures of these effects on the photon

statistics constitutes an important step for the experimental observation of these

non-classical states of mechanical motion.



Conclusion and perspectives

In this thesis, we have presented theoretical results for quantum optomechanical

systems with non-conventional nonlinear coupling schemes. In chapter I we in-

troduced the field of optomechanics and we set the theoretical framework of our

work. In chapter II we described the numerical methods used during this research

project. Chapters III and IV presented the original results of this thesis.

In Chapter III, we described our quantum theory of photothermal cavity cooling.

While in usual radiation-pressure optomechanics the main time scale at play in the

cooling mechanism is the photons lifetime 1/γc, in photothermal based systems this

role is played by the thermal relaxation time τth. The possibility to have τthγc � 1

and since photothermal forces can overcome radiation pressure by several orders

of magnitude it is possible to cool mechanical motion close to the ground state

even in the so-called “bad cavity” regime. Photothermal optomechanics could be

relevant for integrated solid-state optomechanical systems such as those based on

semiconductor microstructures.

In Chapter 4, we presented a theory for a cavity quantum optomechanical sys-

tem coupled to a single quantum emitter (two-level system artificial atom). We

showed that this tripartite configuration (cavity field, atom, mechanical oscilla-

tor) provides a way to explore single-photon optomechanics thanks to the large

nonlinearity provided by the two-level system. We investigated in detail single-

polariton resonant cooling and amplification of mechanical motion as well as the

peculiar quantum phonon statistics obtainable in this regime. This kind of system

could be obtained by using quantum dots in semiconductor microresonators or by

using circuit QED architectures with superconducting resonators and Josephson

junctions.
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Appendix A

Kraus sum representation of the

master equation

When describing a system A coupled to some environment E one should in prin-

ciple work with the density matrix ρ̂A+E of the total system. Nevertheless we are

only interested in the system density matrix ρ̂A which is obtained by tracing out

the environment degrees of freedom by means of a partial trace ρ̂A = TrE[ρ̂A+E].

In the case of weak coupling to a memory-less environment (a Markovian envi-

ronment) the evolution of the reduced density matrix of the system is ruled by

a Master Equation which is a first order differential equation on ρ̂A. Such an

equation can be obtained from the microscopic description of the coupling to the

environment, the derivation is carried through for the mechanical resonator in

Appendix B. Here we present a different derivation relying on very general con-

siderations on the algebraic structure and physical meaning of the variables under

consideration. We only give the main lines of an insightful derivation for which a

more thorough discussion can be found in [69].

When considering the evolution of a density matrix we are basically wondering

how the density matrix at any given time t, ρ̂A(t), is mapped at a later time

t + τ > t into a different density matrix ρ̂A(t + τ). We thus have to consider a

quantum process transforming a density matrix into another. We will note ρ̂A the

initial density matrix and LA(ρ̂A) the transformed density operator. LA is called

a quantum map described as a linear super-operator acting in the Hilbert space of

operators. In order to preserve the necessary physical (and algebraic) properties

of the density matrix the quantum map LA has to be a linear operation preserving
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the hermiticity, the trace and the positivity of ρ̂A,

LA(pρ̂A + qρ̂′A) = pLA(ρ̂A) + qLA(ρ̂′A), where p+ q = 1

(LA(ρ̂A))† = LA(ρ̂A)

Tr [LA(ρ̂A)] = 1

〈ψ|LA(ρ̂A)|ψ〉 ≥ 0, ∀|ψ〉.

(A.1)

Additionally the quantum map has to be completely positive, which is to say

that it has to be an acceptable physical process even if the system A were to be

entangled to some system B.

It can be shown [69] that if the system A is not initially entangled with any other

system (and this is a crucial hypothesis) then any quantum map can be cast in

the following Kraus sum form

LA(ρ̂A) =
∑

µ

M̂µρ̂AM̂
†
µ, (A.2)

where the Kraus sum in Eq.A.2 has at most NK ≤ N2
A terms, NA being the dimen-

sion of system A Hilbert space. In order to ensure the preservation of the density

matrix trace the set of Kraus operators {M̂µ}µ has to obey the normalization

condition ∑

µ

M̂ †
µM̂µ = 1l. (A.3)

We now use the Kraus sum representation in order to describe the dynamics of

system A when coupled to an environment E. Our aim is to derive a first order

differential equation with constant coefficients on ρ̂A(t). To do so let us assume

that the time interval τ is small enough for ρ̂A(t + τ) − ρ̂A(t) to be a first-order

quantity in τ , which can be identified with τdρ̂A/dt. These identification holds if

τ is small compared to the characteristic evolution time Tr of ρ̂A. In usual analysis

the identification becomes an equality by taking the limit τ 7→ 0 but we will see

that physically the equation of motion of our system coupled to an environment

can not be taken to this limit. The time slicing has to be coarse-grained, small

enough to allow a quasi-continuous following of the system evolution and long

enough to allow us to neglect the correlations building up between the system and

the environment.

We want to use the Kraus sum representation previously discussed in order to

describe the increment ρ̂A(t + τ) − ρ̂A(t). To do so we assume that at time t the

environment is in a steady state described by the density operator ρ̄E and that
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the total density operator is given by

ρ̂A+E(t) = ρ̂A(t)⊗ ρ̄E. (A.4)

Since there is no entanglement between the system and the environment we can

apply the previous results and we thus can write

ρ̂A(t+ τ) = Lτ [ρ̂A(t)] =

Nk−1∑

µ=0

M̂µ(τ)ρ̂A(t)M̂ †
µ(τ). (A.5)

Eq.A.5 holds as long as Eq.A.4 describes correctly the initial state of the total

system. But to be precise this initial state should actually be written under the

form

ρ̂A+E(t) = ρ̂A(t)⊗ (ρ̄E + δρ̂E(t)) + δρ̂A+E(t), (A.6)

where we have included the fluctuations of the environment around its steady

state, δρ̂E(t), and the entanglement between A and E, δρ̂A+E(t). These two

additional terms rise from the past interactions between the two parts of the total

system. Keeping these terms could forbid the use of the Kraus sum representation

(since A would be initially entangled with E), and even if it could be applied the

operators M̂µ(τ) would have to be functions of t in order to take into account

the history of the interaction between environment and system. Nevertheless if

the environment is large enough one can make a Markov approximation in which

the environment is memory-less, in this case the incremental evolution of ρ̂A over

a time interval τ takes place as if A + E was initially described by Eq.A.4. The

“big enough” environment has energy levels spanning over a wide range of energies

~∆ω, the typical correlation time of the environment observables τc is loosely given

by τc ∼ ~/∆ω. The environment fluctuation and the entanglement between A and

E quickly wash away for times longer than τc. For τ � τc the environment will

thus be Markovian and we can safely neglect the correlations between A and E.

The system, coupled to an amnesiac environment, undergoes random walks that

have a duration ∼ τc. Each step induces a phase change of the order V τc/~, where

V is the order of magnitude of the coupling between A and E. After a time t the

system accumulates a phase dispersion ∆φ(t) that is related to Tr by

∆φ(t)2 =
V 2τ 2

c

~

2
t

τc
=

t

Tr
. (A.7)

The Markov condition of a very short environment memory time, τc � Tr, is thus

satisfied when V τc � ~. The Markov approximation and the quasi-continuous
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following of the evolution of A will be ensured as long as

τc � τ � Tr. (A.8)

Then it is safe to assume the increment given by Eq.A.4 and we are able to obtain

the Master Equation from Eq.A.5.

By definition Lτ [ρ̂A(t)] = ρ̂A(t + τ) = ρ̂A(t) + O(τ), among the Kraus operators

there is at least one of order unity (in order to obtain the equality when τ = 0)

which we assume to be M̂0. Without loss of generality we write it as

M̂0 = 1l− iK̂τ +O(τ 2). (A.9)

Let us introduce the hermitian and anti-hermitian parts of the τ -independent

operator K̂.

Ĥ = ~
K̂ + K̂†

2
and Ĵ = i

K̂ − K̂†
2

. (A.10)

All the other terms of interest in the Kraus sum are of order 1 in τ , we can thus

write ∀µ 6= 0, M̂µ =
√
τL̂µ. From the trace preservation condition we can see that

NK−1∑

µ=0

M̂ †
µM̂µ = 1l− 2Ĵτ +

∑

µ 6=0

τL̂†µL̂µ = 1l, (A.11)

which in the end leads to

Ĵ =
1

2

∑

µ6=0

L̂†µL̂µ. (A.12)

Finally we get to the master equation for ρ̂A(t) in the generic Lindblad form

dρ̂A
dt

= − i
~

[
Ĥ, ρ̂A

]
+
∑

µ6=0

(
L̂µρ̂AL̂

†
µ −

1

2
L̂†µL̂µρ̂A −

1

2
ρ̂AL̂

†
µL̂µ

)
. (A.13)

In Eq.A.13 Ĥ contains two contributions. On the hand the actual Hamiltonian

ĤA of system A, on the other an energy shift induced by the coupling to the

environment.

The Kraus sum representation can be interpreted by introducing an environment

simulator B which replaces the environment E. In this effective picture the quan-

tum map undergone by ρ̂A results from entanglement building between A and B

and a following unread measurement performed by B. The unread measurement
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procedure is then responsible for the statistical mixture (ρ̂A is then a probability-

weighted sum of all the states related to the possible outcomes of B’s measure-

ment), it erases the entanglement. The relaxation process undergone by the system

can thus be interpreted as an irreversible leakage of information to the environ-

ment. The Markovian environment does not keep any track of the information

received from A. In this effective picture an operator L̂µ can be understood as a

jump operator defining the projection undergone by A after a measurement by B

with a given result.

The presentation given here of the master equation does not explicitly yield the

precise form of the master equation. Nevertheless it is possible to infer the quan-

tum jump operators that affect the system, and an experiment can precise the time

constants associated to each quantum jump. In our case of interest we assume that

the optomechanical cavity is subject to two noisy channels. First, a photon can

leave the cavity and be lost to the electromagnetic vacuum beyond the mirrors.

Such channel is described by the jump operator â which destroys a photon in the

cavity. Second, the mechanical resonator is coupled to a thermal environment

at finite temperature T which is able to either excite or absorb one mechanical

excitation, this two processes are ruled by the quantum jump operators b̂† and b̂

respectively. The master equation ruling our system is then

dρ̂

dt
= − i

~

[
Ĥ, ρ̂

]
+ γcD[â]ρ̂+ γm(nth + 1)D[b̂]ρ̂+ γmnthD[b̂†]ρ̂, (A.14)

where Ĥ is the optomechanics Hamiltonian defined in Eq.I.20, D[ô]ρ̂ = ôρ̂ô† −
1/2(ô†ôρ̂ + ρ̂ô†ô) is the lindbladian super operator with an associated quantum

jump operator ô and nth is the mean thermal occupancy of the mechanical res-

onator when at equilibrium at temperature T ,

nth =
1

e
~ωm
kbT − 1

. (A.15)





Appendix B

Master equation derivation from

a microscopic Hamiltonian

In this appendix we derive the Lindblad master equation from a microscopic Hamil-

tonian coupling a mechanical resonator to a thermal reservoir at temperature T .

Total system Hamiltonian:

Let us consider a closed system comprising the mechanical resonator and the

thermal reservoir. Let us assume the following form for the total Hamiltonian:

Ĥ = ĤS + ĤR + V̂BR , (B.1)

where ĤS is the mechanical resonator Hamiltonian, ĤR is the reservoir Hamilto-

nian and V̂BR is the coupling term between the two of them.

ĤS is given by:

ĤS = ~ωm(b̂†b̂+ 1/2), (B.2)

where b̂ an b̂† are the usual annihilation and creation operators. We assume that

the coupling between the system and the reservoir is of the form:

V̂BR = i~
∫
dk
(
κkβ̂kb̂

† − κ∗kβ̂†kb̂
)
, (B.3)

where we have assumed that the mechanical resonator is coupled to the different

modes, labeled by the index k, of the reservoir. β̂k and β̂†k are the annihilation and

creation operators of the k-th mode of the reservoir. The form of the Hamiltonian
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in Eq.B.3 was discussed in chapter I. Briefly, it can be obtained by assuming that

the system position is linearly coupled to the positions of an infinite amount of

harmonic oscillators and then neglecting the resulting counter rotating terms.

The reservoir Hamiltonian is on the other hand given by:

ĤR =

∫
dk~ωkβ̂†kβ̂k. (B.4)

Before moving forward let us introduce the following notation:

Ĥ = Ĥ0 + V̂SR = (ĤS + ĤR) + (V̂BR). (B.5)

Time evolution of the master equation in the interaction picture:

Let ρ̂S,R be the total system density matrix. Its time evolution is given by the

Schrödinger equation:

i~
d

dt
ρ̂S,R =

[
Ĥ, ρ̂S,R

]
(B.6)

In the interaction picture with respect to Ĥ0 we have:

d

dt
ρ̃S,R(t) =

1

i~

[
ṼSR(t), ρ̃S,R(t)

]
(B.7)

ρ̃S,R(t) = eiĤ0t/~ρ̂S,Re
−iĤ0t/~ (B.8)

ṼSR(t) = eiĤ0t/~V̂SRe
−iĤ0t/~ (B.9)

By formally integrating Eq.B.7 twice we obtain the following expression for the

increment ∆ρ̃S,R(t) of the total density matrix between times t and t+ ∆t:

∆ρ̃S,R =
1

i~

∫ t+∆t

t

dt1

[
ṼSR(t1), ρ̃S,R(t1)

]

+

(
1

i~2

)∫ t+∆t

t

dt1

∫ t1

t

dt2

[
ṼSR(t1),

[
ṼSR(t2), ρ̃S,R(t2)

]]

(B.10)

This far Eq.B.10 is exact. By iterating the formal integration it is possible to

obtain higher order terms on V̂SR. Nevertheless we assume weak coupling to the

reservoir and we thus limit ourselves to second order. The first order term leads

to a Lamb-shift renormalization of the system energy, it will be neglected in the

following.
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Main approximations:

First of all let us assume that the time interval ∆t verifies:

τRb � ∆t� TS, (B.11)

where τRb is the typical time scale of the reservoir’s thermalization. TS is the

typical time scale of the interaction between the system and the reservoir. The

approximation in Eq.B.11 implies a coarse-grained slicing of time, small enough to

continuously follow the time evolution of the system dynamics and big enough for

the reservoir to “forget” any correlations that could have built between the two

parts.

In the following we also assume that the reservoir is sufficiently large to allow us

to neglect any initial correlation between the system and the reservoir. For any

given time t we write:

ρ̃S,R(t) = ρ̃S(t)⊗ ρ̃Rb(t), (B.12)

where ρ̂S(t) and ρ̂Rb(t) are the system and reservoir density matrices respectively.

Finally, we assume that the reservoir is at thermal equilibrium at temperature T

and thus its stationary density matrix is given by:

ρ̃Rb(t) = σ̂R = exp(−ĤR/kT ) = cte. (B.13)

Having made these approximations the increment of the density matrix over a

time interval ∆t is rewritten:

∆ρ̃S,R =
1

~2

∫ t=∆t

t

dt1

∫ t1

t

dt2

[
ṼSR(t1),

[
ρ̃S(t2)⊗ σR, ṼSR(t2)

]]
(B.14)

General considerations on the coupling Hamiltonian

In the following we work with these notations:

V̂SR =
∑

γ∈{β,β∗}

Âγ ⊗ X̂γ, (B.15)
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where we have introduced operators acting on the system {Âγ}γ and operators

acting on the reservoir {X̂γ}γ:

Âβ = b̂ , Âβ∗ = b̂† (B.16)

X̂β = −i~
∫
dk κ∗kβ̂k , X̂β∗ = i~

∫
dk κkβ̂

†
k = X̂†β. (B.17)

Let {|s〉}s be an orthonormal basis of eigenvectors of the system Hamiltonian ĤS

(ĤS =
∑

s ~ωs|s〉〈s|). We introduce the frequency dependent operators Âγ(Ω)

defined as follows:

Âγ(Ω) =
∑

s,r

δ(ωs,r − Ω) |r〉〈r|Âγ|s〉〈s|, where ωs,r = ωs − ωr. (B.18)

In the interaction picture with respect to Ĥ0 they are written:

Ãγ(Ω) =
∑

s,r

δ(ωs,r − Ω) eiH0t/~ |r〉〈r|Âγ|s〉〈s|e−iH0t/~

= e−iΩtÂγ(Ω).

(B.19)

Noting that
∑

Ω Âγ(Ω) = Âγ the coupling term becomes:

ṼSR(t) =
∑

Ω

∑

γ

e−iΩtÂγ(Ω)⊗ X̃γ(t) =
∑

Ω

∑

γ

eiΩtÂ†γ(Ω)⊗ X̃†γ(t) (B.20)

Autocorrelation functions

We now expand the nested commutators in Eq.B.14 and we perform a partial trace

over the reservoir degrees of freedom. We obtain:

∆ρ̃S
∆t

=
1

~2∆t

∫ t+∆t

t1

dt1

∫ t1

t

dt2TrR

{
ṼSR(t2) (ρ̃S ⊗ σR) ṼSR(t1)− (ρ̃S ⊗ σR) ṼSR(t2)ṼSR(t1)

−ṼSR(t1)ṼSR(t2) (ρ̃S ⊗ σR) + ṼSR(t1)ṼSR(t2) (ρ̃S ⊗ σR)
}

(B.21)
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Using Eq.B.20 this expression becomes:

∆ρ̃S
∆t

=
1

~2∆t

∫ t+∆t

t1

dt1

∫ t1

t

dt2
∑

γ,γ′

∑

Ω,Ω′

TrR { e−iΩt2Âγ(Ω)⊗ X̃γ(t2) (ρ̃S(t2)⊗ σR) eiΩ
′t1Â†γ′(Ω

′)⊗ X̃γ′(t1)

− eiΩt1Â†γ′(Ω′)⊗ X̃†γ′(t1)e−iΩt2Âγ(Ω)⊗ X̃γ(t2) (ρ̃S(t2)⊗ σR)

+HC}
(B.22)

We now introduce the stationary correlation functions for the reservoir operators:

Gγ,γ′(t1, t2) = TrR

{
X̃†γ′(t1)X̃γ(t2)σR

}

= TrR

{
X̃†γ′(t1 − t2)X̃γ(0)σR

}
= Gγ,γ′(t1 − t2)

(B.23)

Injecting Eq.B.23 into Eq. B.22 we get:

∆ρ̃S
∆t

=
~2∆t

∫ t+∆t

t

dt1

∫ t1

t

dt2
∑

γ,γ′

∑

Ω,Ω′{
ei(Ω

′−Ω)t1eiΩ(t1−t2)Gγ,γ′(t1 − t2)Âγ′(Ω)ρ̃SÂ
†
γ(Ω

′)

−ei(Ω′−Ω)t1eiΩ(t1−t2)Gγ,γ′(t1 − t2)Â†γ(Ω
′)ρ̃SÂγ′(Ω)

}

(B.24)

Integration variable substitution and discussion on time scales

This far on the discussion we have always integrated over t2 first then over t1. This

integration paths are represented in Fig.B.1. Now we integrate over the line lτ of

equation lτ : t2 = t1 − τ then we integrate over τ , as can be seen in Fig.B.2.

The double integral
∫ t+∆t

t
dt1
∫ t1
t
dt2 becomes an integral

∫ ∆t

0
dτ
∫ t+∆t

t+τ
dt1. We thus

write:

∆ρ̃S
∆t

=
1

~2∆t

∫ ∆t

0

dτ

∫ t+∆t

t+τ

dt1
∑

γ,γ′

∑

Ω,Ω′

ei(Ω
′−Ω)t1eiΩτGγ,γ′(τ)∗

[
Âγ′(Ω)ρ̃S(t1)Â†γ(Ω

′)− Â†γ(Ω′)Âγ′(Ω)ρ̃S(t1)
]

+ HC

(B.25)

The dependence on τ of Eq.B.25 arises from a term of the form eiΩτGγ,γ′(τ). Since

we have assumed ∆t � τR we can send the upper limit of the integration over τ



Appendix B. Master Equation 122

t2

t1

t2 = t1

t

t

t + ∆t

t + ∆t

Figure B.1: Paths of the double integration over time.

t2

t1

t2 = t1

t

t

t + ∆t

t + ∆t

ll : t2 = t1 − τ

τ

Figure B.2: Paths of the double integration after substitution of the time
variables.

to infinity. The term under the integral decays rapidly for times bigger than τ .

On the other hand, only small valleys of τ are of interest to us. We thus send

the lower limit of the integral over t1 to t (since ∆t � τRa , τRb it is as if we were

setting τ 7→ 0). Finally, we assume that ∆t � TS where TS is the typical time

scale of the information exchanges between the reservoir and the system. In the
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integration over t1 we thus set ρ̃S(t1) = ρ̃S(t), which ultimately leads to:

∆ρ̃S
∆t

=
1

~2∆t

∑

γ,γ′

∑

Ω,Ω′

[∫ ∞

0

eiΩτGγ,γ′(τ)

] [∫ t+∆t

t

dt1e
i(Ω′−Ω)t1

]

[
Âγ′(Ω)ρ̃S(t)Â†γ(Ω

′)− Â†γ(Ω′)Âγ′(Ω)ρ̃S(t)
]

+ h.c

(B.26)

Lindblad master equation

Let us introduce:

Wγ,γ′(Ω) =

∫ ∞

0

dτeiΩτGγ,γ′(τ) (B.27)

J(Ω′ − Ω) =

∫ t+∆t

t

dt1e
i(Ω′−Ω)t1

1

∆t
(B.28)

Injecting these variables into Eq.B.26 we get:

∆ρ̃S
∆t

=
1

~2

∑

γ,γ′

∑

Ω,Ω′

J(Ω′ − Ω)Wγ,γ′(Ω)
[
Âγ′(Ω)ρ̃S(t)Â†γ(Ω

′)

−Â†γ(Ω′)Âγ′(Ω)ρ̃s(t)
]

+ h.c

(B.29)

Given that ∆t � TS we replace the left hand side of the previous equality by an

usual time derivative of the density matrix:

dρ̂S
dt

= − i
~

[
ĤS, ρ̂S

]
+

1

~2

∑

γ,γ′

∑

Ω,Ω′

J(Ω′ − Ω)Wγ,γ′(Ω)ei(Ω
′−Ω)t

[
Âγ′(Ω)ρ̂S(t)Â†γ(Ω

′)− Â†γ(Ω′)Âγ′(Ω)ρ̂s(t)
]

+ HC

(B.30)

We have J(x) ∝ sin(x∆t
2

)/x∆t
2

. Since ∆t 7→ 0 we will replace every appearance of

J(Ω′ −Ω) by a Kroenecker delta δ(Ω′ −Ω). We also define Γγ,γ′(Ω) = Wγ,γ′(Ω) +

W ∗
γ′,γ(Ω) and ∆γ,γ′(Ω) = 1

2i
(Wγ,γ′(Ω) +W ∗

γ′,γ(Ω)). We obtain then the “standard”
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form of the master equation:

dρ̂

dt
= − i

~

[
ĤS, ρ̂S(t)

]
− i

~2

∑

Ω

∑

γ,γ′

∆γ,γ′(Ω)
[
Â†γ(Ω)Âγ′(Ω), ρ̂S(t)

]

+
1

~2

∑

Ω

∑

γ,γ′

Γγ,γ′(Ω)

{
Âγ′(Ω)ρ̂S(t)Â†γ(Ω)− 1

2

[
Â†γ(Ω)Âγ′(Ω), ρ̂S(t)

]
+

}

(B.31)

where [., .]+ corresponds to an operator anticommutator. The term ∝ ∆γ,γ′ renor-

malizes the energies of the system and is absorbed into the definition of ĤS.

Let us note that Γγ,γ′(Ω) can be rewritten as:

Γγ,γ′ =

∫ ∞

−∞
dτeiΩτGγ,γ′(τ). (B.32)

With this final modifications we get to the Lindblad master equation for the density

matrix:

dρ̂

dt
= − i

~

[
ĤS, ρ̂S(t)

]

+
1

~2

∑

Ω

∑

γ,γ′

Γγ,γ′(Ω)

{
Âγ′(Ω)ρ̂S(t)Â†γ(Ω)− 1

2

[
Â†γ(Ω)Âγ′(Ω), ρ̂S(t)

]
+

}

(B.33)

In order to obtain the final density matrix of the system we only have to calcu-

late the correlations by taking into account the coupling and the statistics of the

reservoirs under consideration.

Dissipative constants

We have Γγ,γ′(Ω) =
∫∞
−∞ dτ e

iΩτGγ,γ′(τ), where

Gγ,γ′(τ) = TrR

{
X̃†γ(τ)X̂γ′σ̂R

}
, and (B.34)

X̃†γ(τ) = eiH0τ/~X̂†γe
−iH0τ/~. (B.35)
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In the case under consideration the reservoir operators are given by:

X̂β = −i~
∫
dk κ∗kβ̂

†
q (B.36)

X̂β∗ = i~
∫
dk κkβ̂k (B.37)

(B.38)

We assume the reservoir is at equilibrium at temperature T , we thus have:

σ̂R = e−ĤR/kT . (B.39)

Since ĤR =
∫
dk ~ωkβ̂†kβ̂k the reservoir density matrix can be rewritten as a tensor

product of the density matrices of each mode:

σ̂R =
⊗

k

e−HR,k/kT =
⊗

q

σ̂R,k, where (B.40)

σ̂R,k =
1

Zk
e−~ωk(β̂†kβ̂k+1/2)/kbT . (B.41)

After calculation of the partition functions we get:

σ̂R =
⊗

k

(
1− e−~ωk/kT

)
e−~ωkβ̂

†
kβ̂k/kbT (B.42)

We have to calculate correlation functions of the form:

Gγ,γ′(τ) = TrR

(
X̃†γ(τ)X̂γ′σ̂R

)
, (B.43)

where the time dependent operators are given by:

β̃k(τ) = e−iωkτ β̂k

β̃†k(τ) = eiωkτ β̂†k.
(B.44)

Since the reservoir is at equilibrium at temperature T the density matrices are

diagonal in each associated Fock basis. The only non-zero terms are those coming

from terms of the form β̂†β̂ or β̂β̂†. We just have to calculate Gβ,β and Gβ∗,β∗ .
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They are given by:

Gβ,β(τ) = TrR

{
~2

∫ ∫
dk1dk2 κk1κ

∗
k2
β̂k1 β̂

†
k2
e−iωk1τ

⊗

q

σ̂R,k

}

= ~2

∫
dk |κk|2e−iωkτTr

{
β̂kβ̂

†
kσ̂R,k

}
,

(B.45)

and

Gβ∗,β∗(τ) = ~2

∫
dk |κk|2e+iωkτTr

{
β̂†kβ̂kσ̂R,k

}
. (B.46)

After calculations this autocorrelations functions are given by:

Gβ,β(τ) = ~2

∫
dk |κk|2 (nth(ωk) + 1) e−iωkτ

Gβ,β(τ) = ~2

∫
dk |κk|2nth(ωk)e+iωkτ ,

(B.47)

where nth(ω) is the number of excitations given by the Bose-Einstein distribution

at frequency ω.

We now assume a white noise spectrum for the bath so as to have ∀k, κk =
√
γm.

The coefficients in the dissipative terms of the master equation are then:

Γβ,β = ~2|κk|2 (nth(ωm) + 1)

Γβ∗,β∗ = ~2|κk|2nth(ωm).
(B.48)

Finally, the Lindblad master equation for a mechanical resonator weakly and lin-

early coupled to a reservoir at equilibrium at temperature T is:

dρ̂

dt
=− i

~
ωm

[
b̂†b̂, ρ̂

]
+ (nth + 1)

(
γmb̂ρ̂b̂

† − γm
2

(
b̂†b̂ρ̂+ ρ̂b̂†b̂

))

+ nth

(
γmb̂

†ρ̂b̂− γm
2

(
b̂b̂†ρ̂+ ρ̂b̂b̂†

))
.

(B.49)



Appendix C

Partial derivative equation for the

s-ordered quasi-probability

distribution

In this appendix we give the correspondences between the different terms in the

master equation of the system and the corresponding terms in the partial derivative

equation on the s-ordered quasi-probability distribution.

We remind the following set of correspondences between the product of an arbi-

trary operator ô and some system operator and the corresponding scalar represen-

tation:

âô ←→ (α− f−∂α∗)O(α, β; s, u) b̂ô ←→ (β − g−∂β∗)O(α, β; s, u)

â†ô ←→ (α∗ − f+∂α)O(α, β; s, u) b̂†ô ←→ (β∗ − g+∂β)O(α, β; s, u)

ôâ ←→ (α− f+∂α∗)O(α, β; s, u) ôb̂ ←→ (β − g+∂β∗)O(α, β; s, u)

ôâ† ←→ (α∗ − f−∂α)O(α, β; s, u) ôb̂† ←→ (β∗ − g−∂β)O(α, β; s, u)

(C.1)

And we remind the master equation considered during this thesis:
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dρ̂

dt
=− i

[
ωcâ

†â+ ωmb̂
†b̂− gcmâ†â+ iFp(e

−iωptâ− eiωptâ†), ρ̂
]

+ γc

(
âρ̂â† − 1

2
(â†âρ̂+ ρ̂â†â)

)

+ γm(nth + 1)

(
b̂ρ̂b̂† − 1

2
(b̂†b̂ρ̂+ ρ̂b̂†b̂)

)

+ γmnth

(
b̂†ρ̂b̂− 1

2
(b̂b̂†ρ̂+ ρ̂b̂b̂†)

)
.

(C.2)

Here we give the correspondences for the different terms for any given ordering

parameters s, u (f± = s± 1/2 and g± = u± 1/2):

â†â Photon number operator:

[
â†â, ρ̂

]
↔

{
(f− − f+)∂αα− (f− − f+)∂α∗α

∗}W (C.3)

b̂†b̂ Phonon number operator:

[
b̂†b̂, ρ̂

]
↔

{
(g− − g+)∂ββ − (g− − g+)∂β∗β

∗}W (C.4)

â†â(b̂† + b̂) radiation-pressure optomechanical coupling:

[
â†â(b̂† + b̂), ρ̂

]
↔

{
(f− − f+)∂αα (β + β∗)− (f− − f+)∂α∗α

∗ (β + β∗)

+ (g− − g+)
(
∂β|α|2 + f−∂β

)
− (g− − g+)

(
∂β∗ |α|2 + f−∂β∗

)

+ (f+g+ − f−g−)∂2
β,αα + (f−g+ − f+g−)∂2

β,α∗α
∗

− (f−g+ − f+g−)∂2
β∗,αα− (f+g+ − f−g−)∂2

β∗,α∗α
∗

+ f+f−(g− − g+)∂3
β,α∗,α − f+f−(g− − g+)∂3

β∗,α∗,α}
W

(C.5)
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â†b̂ and âb̂†: Linear resonant coupling between modes:

[
â†b̂, ρ̂

]
↔
{

(f− − f+)∂αβ − (g− − g+)∂β∗α
∗ + (f+g− − f−g+)∂2

α,β∗

}
W

[
âb̂†, ρ̂

]
↔
{

(g− − g+)∂βα− (f− − f+)∂α∗β
∗ + (f−g+ − f+g−)∂2

α∗,β

}
W

(C.6)

Photon dissipative processes

âρ̂â† ↔
{
|α|2 + f− − f−∂αα− f−∂α∗α∗ + f−f−∂2

α∗,α

}
W (C.7)

â†âρ̂+ ρ̂â†â ↔
{

2|α|2 + 2f− − (f− + f+)∂αα− (f− + f+)∂α∗α
∗

+ 2f+f−∂2
α∗,α

}
W

(C.8)

Phonon dissipative processes

b̂ρ̂b̂† ↔
{
|β|2 + g− − g−∂ββ − g−∂β∗β∗ + g−g−∂2

β∗,β

}
W (C.9)

b̂†b̂ρ̂+ ρ̂b̂†b̂ ↔
{

2|β|2 + 2g− − (g− + g+)∂ββ − (g− + g+)∂β∗β
∗

+ 2g+g−∂2
β∗,β

}
W

(C.10)

b̂†ρ̂b̂ ↔
{
|β|2 + g+ − g+∂ββ − g+∂β∗β

∗ + g+g+∂2
β∗,β

}
W (C.11)

b̂b̂†ρ̂+ ρ̂b̂b̂† ↔
{

2|β|2 + 2g+ − (g+ + g−)∂ββ − (g+ + g−)∂β∗β
∗

+ 2g+g−∂2
β∗,β

}
W

(C.12)





Appendix D

One-atom laser approach to single

polariton optomechanics. Finite

temperature and differential

incoherent pumping

In this appendix we present the generalization of the calculations presented in

the final section of chapter IV. We include here a finite temperature mechanical

reservoir as well as a differential incoherent pumping of the two 1-polariton states.

The master equation under consideration is:

dρ̂(t)

dt
=− i[Ĥtot+, ρ̂]

+ γacL[ĉ−]ρ̂+ γacL[ĉ+]ρ̂

+ γ−incL[ĉ†−]ρ̂+ γ+
incL[ĉ†+]ρ̂

+ nthγmL[b̂†]ρ̂+ (nth + 1)γmL[b̂]ρ̂,

(D.1)

where the state |−(1)〉 (|+(1)〉) is incoherently pumped from the ground state |G〉
at a rate γ−inc(γ

+
inc).

As we did in chapter IV we introduce the following set of correlators:
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∀m ∈ N : Nb[m] = 〈b̂†m b̂m〉,
N+[m] = 〈b̂†m−1

b̂m−1σ̂
(1)
+ σ̂

(1)
− 〉,

N−[m] = 〈b̂†m−1
b̂m−1σ̂

(1)
− σ̂

(1)
+ 〉,

NG[k] = 〈b̂†m−1
b̂m−1|G〉〈G|〉,

Nbσ[m] = 〈b̂†m b̂m−1σ̂
(1)
− 〉,

Nb†σ+ [m] = 〈b̂†m−1
b̂mσ̂

(1)
+ 〉.

(D.2)

We remind the reader that N̂−[m] = N̂b[m− 1]− N̂+[m]− N̂g[m]. Let us consider

the real and imaginary parts of the cross-correlators Nbσ[m] and Nb†σ+ [m] defined

as follows:
Nbσ[m] = N r

bσ[m] + iN i
bσ[m]

Nb†σ+ [m] = N r
bσ[m]− iN i

bσ[m].
(D.3)

The set of differential equations we consider is:

∀m ∈ N : Ṅb[m] = −2mgcmN
i
bσ[m]−mγmNb[m] +m2nthγmNb[m− 1],

Ṅ+[m] = 2gcmN
i
bσ[m] + γ+

incNG[m]− γacN+[m]

−(m− 1)γmN+[m] + (m− 1)2nthγmN+[m− 1],

ṄG[m] = γacNb[m− 1]−
(
γ−inc + γ+

inc + γac + (m− 1)γm
)
NG[m]

+(m− 1)2nthγmNG[m− 1]

Ṅ r
bσ[m] = −(ωm − Ω(1))N i

bσ[m]− (γac + (m− 1/2)γm)N r
bσ[m]

+m(m− 1)nthγmN
r
bσ[m− 1]

Ṅ i
bσ[m] = (ωm − Ω(1))N r

bσ[m]− (γac + (m− 1/2)γm)N i
bσ[m]

−gcm (2N+[m+ 1] +mN+[m] +NG[m+ 1]−Nb[m])

+m(m− 1)nthγmN
i
bσ[m− 1]

(D.4)

In chapter IV all the correlators in the stationary state were rewritten in terms of

Nb[m]. Here, because of the possibility to thermally excite phonons, it is no longer

possible. For example NG[m] is determined by the following recurrence relation:

NG[m] =
γacNb[m− 1] + (m− 1)2nthγmNG[m− 1]

γac + γ+
inc + γ−inc + (m− 1)γm

. (D.5)

It is nevertheless still possible to obtain a recurrence relation for the stationary

value of Nb[m] as follows:

AT (m)Nb[m− 1] +BT (m)Nb[m] + CT (m)Nb[m+ 1] = 0. (D.6)
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The temperature dependent coefficients of this recurrence relation are given by:

A(m) =
(
mnthγm

gcm
((2m− 1)(nth − 1)γm − 2γac)

+
4gcmγacγ

+
inc

((m−1)(nth−1)γm−γac)(γac+γ+inc+γ
−
inc−(nth−1)(m−1)γm)

+4mnthγm
gcm

(ωm−Ω(1))2

(2m−1)(nth−1)γm−2γac
,

B(m) = (mnth − 1) γm
4gcm

((2m− 1)(nth − 1)γm − 2γac)

+g

(
1 + mγm

(m−1)(nth−1)γm+γac
+

γac(γac+2γ+inc−m(nth−1)γm)
(m(nth−1)γm−γac)(γac+γ+inc+γ

−
inc−m(nth−1)γm

)

+(mnth − 1) γm
gcm

(ωm−Ω(1))2

(2m−1)(nth−1)γm−2γac
,

C(m) = 2gcmγm
γac−m(nth−1)γm

.

(D.7)
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