
HAL Id: tel-01100292
https://inria.hal.science/tel-01100292

Submitted on 6 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Reconciling Expressivity and Usability in Information
Access

Sébastien Ferré

To cite this version:
Sébastien Ferré. Reconciling Expressivity and Usability in Information Access: from File Systems to
the Semantic Web. Computer Science [cs]. Université de Rennes 1, 2014. �tel-01100292�

https://inria.hal.science/tel-01100292
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr

Habilitation Thesis

University Rennes 1

Reconciling Expressivity and Usability

in Information Access

from File Systems to the Semantic Web

Sébastien Ferré
Associate Professor

Team LIS, IRISA, University Rennes 1
ferre@irisa.fr

http://www.irisa.fr/LIS/ferre/

Defended on November 6th, 2014
in front of the defense committee, composed of:

Olivier Pivert Professor at Univ. Rennes 1 / president
Norbert E. Fuchs Senior researcher at Univ. Zurich / referee
Marianne Huchard Professor at Univ. Montpellier 2 / referee
Eero Hyvönen Professor at Univ. Aalto / referee
Karell Bertet Associate professor (HDR) at Univ. La Rochelle / examiner
Fabien Gandon Researcher (HDR) at INRIA Valbonne / examiner

http://www.irisa.fr/LIS/ferre/

2

To Sterenn, Yann, and Eléonore

3

4

Foreword

Since the start of my PhD in 1999, I have worked on various problems, and
produced a number of different contributions pertaining to several domains
and research communities. This habilitation thesis is an opportunity for me
to summarize them, and to open perspectives. However, that synthesis work
is made difficult by the fact that the set of my research tracks look more like
a bush than like a tree. In fact, I see the research process as an evolution
process where ideas, theories, softwares, and applications compete for sur-
vival, and are transformed by mutation and crossover. Some of my research
tracks have gone extinct (e.g., logic functors), while others have flourished
(e.g., Semantic Web). Some have appeared by mutation (e.g., guided edition
from guided search), while others have merged (e.g., conceptual navigation
and faceted search). At every time, there is not a single active research
track, nor a “best” research track, but a population of diverse and comple-
mentary research tracks. That evolution process makes it hard to synthesize
the different research results into one “all-inclusive” result. First, merging
different existing results in a coherent way is a research process in itself, and
a never-ending process. Second, the result of that merging would be a static
snapshot hiding the evolution process, and hence hiding both the past and
the future of the research activity, and that snapshot would soon become
outdated. An alternative approach would be to write a history of research
tracks and results, in chronological order. However, people generally do not
want to revive the past, which tends to be boring, but rather to know the
past in order to understand the present, and envision the future.

What I therefore chose to do is to write a synthesis of my research work
over the last 15 years such that it is rooted in the present, and yet, shows
the evolution process from past to future. To this purpose, I “datamined”
my different research results, and discovered a pattern that provides an uni-
fying framework for a number of quite different results: Abstract Conceptual
Navigation (ACN). Each result is presented as an instance of the ACN frame-
work, without trying to reformulate the original result, only using ACN as
a point of view over it. The presentation of successive results through a

5

6

same framework makes it easier to compare them, and therefore to highlight
progress over time. As an unifying framework, ACN helps to understand
the specificity of my research work, and what drived it from file systems to
the Semantic Web. The generality of ACN also opens the room for imagi-
nation, and helps suggest and structure a number of perspectives. ACN is
not a “hook in the sky”, and builds on strong information access paradigms:
query languages, navigation structures, and interactive views. In fact, ACN
is a proposal for a synthesis of those three information access paradigms.

This habilitation thesis is made of a synthesis chapter, and four selected
papers published in international journals as appendices. The selected papers
represent important milestones in my research work, and are shown exactly
as they were published. The synthesis is centered around Abstract Concep-
tual Navigation (ACN), and is made of three parts: state-of-the-art, main
contributions, and perspectives. The state-of-the-art is an overview over ex-
isting approaches to information access for structured data. It tries to be
complete at a coarse level of detail, but it ignores many details and speci-
ficities of existing approaches. This is justified, I think, by the objective to
introduce and motivate ACN, which is itself at a high level of abstraction. A
more detailed account of related work can be found in published papers. The
ACN framework is then introduced, and used as a basis for the presentation
of the main contributions of my work. Secondary contributions are associ-
ated to their closest main contribution, and only briefly presented. Finally,
the main contributions are summarized, and ACN is used again as a basis
for discussing a number of perspectives. In the synthesis, self-references are
distinguished by a boldface font. Each appendix paper has its own reference
list.

Even though I use the first-person singular in this foreword because I here
express my point of view, most of my work is our work. First of all, all this
work would not even exist without the original ideas of Olivier Ridoux in the
late nineties, and the opportunity he gave me to work on them. Then, I was
lucky to work with many colleagues and students, who largely contributed
to the “population growth” of my research tracks. This is why the use of the
first-person plural in the synthesis is not only for scientific tradition, but also
an acknowledgement of their contributions on many results. I will not try
and list all of them here, but the reader will see them all along the synthesis,
and as co-authors in self-references.

Contents

Foreword 5

Synthesis 9

1 Introduction . 9

2 State of the Art . 12

2.1 Query Languages . 13

2.2 Navigation Structures 15

2.3 Interactive Views . 20

2.4 Summary and Comparison 24

3 Main Contributions . 26

3.1 Abstract Conceptual Navigation (ACN) 27

3.2 Logical Concept Analysis (Camelis) 30

3.3 Cubes of Concepts (Abilis) 34

3.4 Query-based Faceted Search (Sewelis) 37

3.5 Updating Through Interaction (Utilis) 41

3.6 Possible World Exploration (PEW) 44

3.7 An Expressive CNL for the Semantic Web (Squall) . 47

4 Conclusion and Perspectives 48

4.1 Theoretical Perspectives 50

4.2 Applicative Perspectives 55

References 61

Index 77

Acronyms 79

A Introduction to Logical Information Systems (2004) 81

B Camelis: a Logical Information System to Organize and
Browse a Collection of Documents (2009) 127

7

8 CONTENTS

C Reconciling Faceted Search and Query Languages for the
Semantic Web (2012) 153

D SQUALL: a Controlled Natural Language as Expressive as
SPARQL 1.1 (2014) 173

Synthesis

1 Introduction

In many domains where information access plays a central role, there is a gap
between expert users who can ask complex questions through formal query
languages, and lay users who either are dependent on expert users, or must
restrict themselves to ask simpler questions. In everyday practice, tools like
folder trees, search engines, and spreadsheets are far more often used than
databases and semantic knowledge bases (formal information systems), even
though the later tools offer much more expressivity and precision in search. In
fact, formal information systems are so tedious to use that even expert users
do not generally use them for their everyday activities. When a database
is used, only a limited number of pre-defined queries are generally made
available to end users through interfaces. We think this is because there are
two bottlenecks in the use of formal information systems. The first bottleneck
is the input of data, which requires the formal representation of data. The
second bottleneck is the expression of formal queries (e.g., in SQL). The
common point between those two bottlenecks is the use of formal languages,
an update language for the former, a query language for the latter. Because
of the formal nature of those languages, there seems to be an unescapable
trade-off between expressivity and usability in information systems. The
objective of this synthesis is to present a number of results and perspectives
that show that the expressivity of formal languages can be reconciled with
the usability of widespread information systems. The final aim of this work
is to empower people with the capability to produce, explore, and analyze
their data in a formal way.

We focus on formal languages and systems because they are key to a
high expressivity and precision. Therefore we restrict the scope of our
work to structured and semantic information, i.e. information represen-
tations that are amenable to (logical) reasoning. This includes relational
databases (RDB) [Codd, 1970], spreadsheets, classification hierarchies, and
the Semantic Web (SW) [Berners-Lee et al., 2001, Hitzler et al., 2009]. This

9

10 CONTENTS

a priori excludes unstructured texts, images and other multimedia objects
as those would be seen as mere strings and bitmaps in our approach. How-
ever, a large number of works aim at automatically extracting structured
and semantic information from such contents (e.g., natural language pro-
cessing, clustering/classification, segmentation). A notable example is DB-
pedia [Lehmann et al., 2013], a Semantic Web version of Wikipedia that ex-
tracts and formally represents about 2 billions facts. More generally, the
extension of the Web of documents with a Web of data, which includes the
Semantic Web, means that more and more information is available in struc-
tured formats, ranging from simple CSV files to Linked Open Data (LOD)1.
Because of its structured and semantic nature, its openness, and its support
by the W3C, the Semantic Web is the playground of choice for our work, even
though similar results could have been obtained on the more established re-
lational databases.

Our work focuses on two important properties of information access:
expressivity and usability. We here propose idealized definitions of them
whose purpose is more to clarify their meaning than to drive practical eval-
uations. Expressivity is a measure of how many and which questions can
be answered by a system. The set of expressible questions is generally de-
fined as a query language, which helps when comparing the expressivity of
different systems. A system A is more expressive than a system B if ev-
ery B-question can be translated into an equivalent A-question. This def-
inition shows the importance of semantics in the definition of query lan-
guages, as it is necessary to define query equivalence. All of this can also
be said for update languages, which define the set of expressible state-
ments. SPARQL [Angles and Gutierrez, 2008, SPARQL11, 2012] is the ref-
erence query and update language for the Semantic Web, and plays the same
role as SQL for relational databases. Both SPARQL and SQL are recog-
nized as very expressive, and are therefore used as a gauge for evaluating
and comparing existing systems, including ours.

Usability is a measure of how many and which people can use effectively
a system. Because of human factors, it is more difficult to define usability
than to define expressivity. We propose to define that a system A is more
usable (for some task) than a system B if every user that can perform the
task in system B can also perform it in system A. This definition implies
that systems can only be compared on their common tasks. When system A
is more expressive than system B, it supports tasks that are not supported
by system B, and is therefore “more usable” on those tasks by definition.
However, “more usable than impossible” is not very informative as only a few

1http://www.w3.org/DesignIssues/LinkedData.html

http://www.w3.org/DesignIssues/LinkedData.html

1. INTRODUCTION 11

people may be able to leverage the additional expressivity. A way to compare
them is then to evaluate the proportion of B-users (defined as all persons
that can perform all tasks supported by B) that can effectively perform the
additional tasks supported by system A. Beyond the objective measure of
performance (success rate and time), the subjective experience of users is also
important when comparing different systems. For example, system properties
such as response times, reliability, understandability of results, serendipity
strongly affect the user experience.

Since the beginning of my PhD (1999), we have proposed a number of
theories and implementations to better reconcile expressivity and usability,
and applied them to a number of contexts going from file systems to the
Semantic Web. In this synthesis, we introduce a unifying framework to fac-
tor out the main ideas of all those results: Abstract Conceptual Navigation
(ACN). The principle of ACN is to guide users by letting them navigate in
a conceptual space where places are concepts connected by navigation links.
Concepts are characterized by a formal expression (e.g., a query, an update),
and are made of two parts: an extension and an intension. The extension is
made of concrete objects (e.g., entities, values) while the intension is made
of formal expressions. The conceptual space is not static but is induced by
concrete data, and evolves with it. Navigation promotes usability by guiding
users, and freeing them from the burden of writing formal expressions. Be-
cause those formal expressions are generated through navigation, instead of
being parsed from user input, it is easier to improve their display and under-
standability. The formal characterization of concepts promotes expressivity
because the conceptual space results from the combination of a formal lan-
guage and a dataset. Therefore, ACN can be made more expressive by using
a more expressive language. ACN is safe if every navigation path avoids un-
safe places (e.g., empty results). ACN is complete if there is a navigation path
to every safe place. ACN is abstract in the same way an abstract class is in
Java: it only defines a structure to be filled with a concrete definition of the
conceptual space. Our theories and implementations qualify as instances of
ACN, reaching increasing degrees of expressivity and usability, and covering
different kinds of tasks.

This synthesis is made of three parts. Section 2 shortly presents the
different kinds of solutions that have been proposed for information access.
Those solutions are organized into three main categories, and compared to
each other according to a number of criteria. Section 3 organizes and presents
most of our contributions into a unifying framework: Abstract Conceptual
Navigation (ACN). ACN is a contribution of this thesis, and helps at the
same time to understand past work (What they have in common? How
do they compare?), and to sketch future work. Section 4 summarizes our

12 CONTENTS

core contribution to information access, i.e. the reconciliation of expressivity
and usability. It also discusses less addressed properties such as readability
and scalability. Finally, it opens a number of theoretical and applicative
perspectives for future research.

2 State of the Art

In this section, we try and cover the different kinds of existing solutions to
access structured information. Given the importance of information access as
a research problem, a huge number of works has been done, and is still being
done. We only cite a few of them, but after more than ten years working
on this problem, we are pretty confident that the vast majority of existing
works fall in at least one of the categories that we have identified. Those
categories are:

• query languages: e.g., SQL, SPARQL, Natural Language Interfaces
(NLI),

• navigation structures: e.g., file systems, hypertext,

• interactive views: e.g., faceted search, OLAP.

In the following, we define each category, and illustrate them with concrete
and well-known approaches that fit in the category. We evaluate each ap-
proach w.r.t. our objective to reconcile expressivity and usability. At a finer
level, we use the following properties in our evaluations and comparisons:

expressivity: What range of questions can be answered?

reliability: What degree of confidence can be put on answers?

readability: How easy is it for users to read and understand questions,
answers, and user interface controls?

guidance: Whether users are guided in the expression of their user needs?

safeness: Whether guidance prevents users to fall in dead-ends?

specificity: Whether guidance is made specific to actual data?

scalability: What amount of data can be accessed?

2. STATE OF THE ART 13

The complexity of usability is reflected by its decomposition into reliability,
readability, guidance, safeness, and specificity (this list is certainly not ex-
haustive). In practice, those properties are partially entangled, so that it may
be difficult to evaluate each property independently. For example, a limited
guidance may be the cause or the consequence of a limited expressivity.

2.1 Query Languages

This category includes all systems in which the user composes a query, and
the system returns query answers. They rely on the definition of a query lan-
guage (syntax), a domain of answers, and a mapping from queries to answers
(semantics). The query language can range from simple (e.g., keywords) to
complex (e.g., SQL); and from formal (e.g., SQL) to natural (e.g., English).
Answers are most often sets of objects, but can also be single values (e.g.,
query answering [Lopez et al., 2011]) or tables (e.g., SQL). Query languages
can be classified in three classes, even though there is a continuum between
them [Kaufmann and Bernstein, 2010]: formal languages, controlled natural
languages, and natural languages.

Formal languages. An archetypal formal query language is SQL for
querying relational databases. Other examples are SPARQL for querying
(and modifying) RDF graphs [SPARQL11, 2012], and XQuery for querying
and processing XML trees [XQuery3, 2013]. Formal languages are based on
logic, relational algebra, and structural matching. Their main advantages
are a high expressivity and reliability, and are only superseded on expres-
sivity by programming languages. Decades of research on the optimization
and execution of formal queries (in particular SQL) has led to highly scalable
solutions. However, the response time can vary drastically between differ-
ent queries, depending on their complexity. The main drawback of formal
languages is their formal syntax that exhibits low-level notions such as logic
and relational algebra. It takes a trained computer scientist to write SQL
or SPARQL queries. It is important to note that the difficulty is not only
about learning a particular syntax, but also about learning the data schema,
and understanding the low-level and technical notions.

Natural languages. The use of natural languages as query languages is at-
tractive because everybody masters at least one natural language since youth,
and because natural languages are very expressive. This gives the promise of
direct and natural information access. Unfortunately, despite a vast amount
of work in the past decades [Lopez et al., 2011], existing solutions are gen-

14 CONTENTS

erally either specific to a limited domain, or unreliable. In order to improve
reliability, systems are generally designed and trained for a restricted domain,
and for a restricted set of questions. Therefore, despite the high expressivity
of natural language, natural language interfaces (NLI) offer a limited ex-
pressivity, generally much lower than that of expressive formal languages.
In the Semantic Web, most systems (e.g., PowerAqua [Lopez et al., 2012],
QAKiS [Cabrio et al., 2012], FREyA [Damljanovic et al., 2010]) generate
only Basic Graph Patterns (BGP) [SPARQL11, 2012] with at most a few
triple patterns.

Controlled natural languages. Controlled natural languages (CNL)
have been introduced to eliminate or reduce the ambiguity problem of
natural languages. They have been used to improve communications
among humans (e.g., Caterpillar Fundamental English [Verbeke, 1973]), or
to provide natural notations for formal languages (e.g., Attempto Con-
trolled English (ACE)2 [Fuchs et al., 1999, Fuchs et al., 2006]). According to
Kuhn [Kuhn, 2013], “A controlled natural language is a constructed language
that is based on a certain natural language, being more restrictive concerning
lexicon, syntax and/or semantics while preserving most of its natural proper-
ties”. The main advantage of CNLs is to regain the expressivity and reliabil-
ity of formal languages, while retaining the readability of natural languages.
An analogy can be made with high-level programming languages, which offer
the same expressivity than machine language by translating high-level con-
structs into low-level instructions (e.g., translating a loop into a combination
of tests and jumps). While CNLs are generally designed to be readable with-
out training, it is generally more difficult to write correct sentences, similarly
to formal languages. Indeed, precise syntax and semantic conventions have to
be followed so that machine understanding agrees with user’s intended mean-
ing. Most CNLs are designed for the expression of statements and rules, and
few of them for the expression of queries [Kuhn, 2013].

Discussion. A common weakness of all query language approaches is the
lack of user guidance. Even though it is arguably simpler to use natural
languages than formal languages, formulating information needs as queries
is in all cases a difficult task. Even if users master the syntax of the query
language, they may not know the relevant vocabulary. Even if they know the
vocabulary, nothing prevents them to get empty results, which is frustrat-
ing for users and force them to search by trial-and-error. Flexible querying
approaches mitigate those difficulties by returning not only exact answers,

2http://attempto.ifi.uzh.ch/site/

2. STATE OF THE ART 15

but also approximate answers. Approximation can be based, for instance,
on semantic similarity [Corby et al., 2006, Hurtado et al., 2008] or on fuzzy
logic [Bosc and Pivert, 1995]. However, it remains necessary to have some
knowledge of the vocabulary, and users have generally little control on the
approximation process.

Moreover, users may not have a precise idea of what they are look-
ing for, and need to get some feedback from the system in order to re-
fine their information needs. Blank entry fields, the usual user interface
for query language approaches, can trigger a “writer’s block” on users. In-
deed, the lack of feedback makes it hard for users to predict the system
behaviour, and delays the detection of errors well after they have been en-
tered. Query forms, query builders, and auto-completion are improvements
to the entry field that offer some level of guidance. Query forms prevent
syntax errors by using different fields and menus, but expressivity is limited
to the simplest queries or to canned queries. Query builders (e.g., Seman-
tic Crystal [Kaufmann and Bernstein, 2010], a query constructor for fuzzy
databases [Smits et al., 2013a]) allow for the graphical construction of for-
mal queries. They also prevent syntax errors, and provide more expressivity
than forms, but they do not entirely solve the problem of readability and un-
derstandability because the graphical representations remain close to formal
languages. They make it easier for specialists to build syntactically correct
queries, but not much easier for non-specialists. Auto-completion can also be
used to avoid syntax errors (e.g., Ginseng [Bernstein et al., 2005], Aggrego
Search [Smits et al., 2013b]), or even to account for semantic relationships
between terms and concepts [Hyvönen and Mäkelä, 2006], but it is mostly
used to avoid vocabulary errors (e.g., typos, synonyms). However, those
improvements are not sufficient to provide a fine-grained guidance at both
lexical and syntactic levels, i.e., a guidance avoiding empty results (safeness)
and giving feedback about the actual contents of the dataset (specificity).

2.2 Navigation Structures

This category includes all systems in which users navigate from place to
place by following navigation links (e.g., file systems). They rely on the defi-
nition of a navigation graph where nodes are navigation places (e.g., folders),
and edges are navigation links (e.g., links to sub-folders). At each naviga-
tion step, the user interface shows some contents associated to the current
navigation place (e.g., the local files), and links to neighbour places (e.g.,
the sub-folders). Those systems can be classified in (at least) three classes,
according to the shape of their navigation structure: graphs, hierarchies,
and concept lattices. In order to formally compare navigation structures to

16 CONTENTS

query languages, we evaluate the expressivity of each category by analyzing
the kind of questions that can be answered through navigation.

Graphs. The historic example of a graph used as a navigation
structure is the hypertext that structures the World Wide Web
(WWW) [Berners-Lee et al., 1992], and maybe the Memex of V.
Bush [Bush, 1945]. In WWW’s navigation structure, navigation places are
Web pages, and navigation links are hypertext links. A more recent example
is the Semantic Web [Hitzler et al., 2009], whose RDF graphs can be used as
navigation structures: navigation places are here entities (e.g., people, loca-
tions, organizations), and navigation links are semantic relationships between
entities (e.g., “has parent”, “is an employee of”, “was born in”). When RDF
graphs are published according to the Linked Open Data (LOD) principles,
the Semantic Web can be navigated with a standard Web browser3. Ques-
tions are limited to starting from a particular place, and following a number
of navigation links. Answers are limited to a single place, which in general
represents a single entity. For example, it is possible to answer questions
like “What is the birth date of the father of Einstein?”. When there are
several outgoing links with same type (e.g., “child of”), only one of them
can be followed so that only one of several answers can be retrieved in one
navigation path. For example, for the question “What are the birth dates of
the children of Einstein?”, the birth date of only one child can be retrieved
at a time. Questions like “Who was born in Berlin, and died in Vienna?”
cannot be answered because they involve two starting points, here “Berlin”
and “Vienna”, and a join between two criteria.

Hierarchies. The archetypal hierarchy used as a navigation structure is
the file system, where navigation places are folders, and navigation links are
moving to a child folder or to the parent folder. The contents of a folder is a
set of files. Hierarchies of folders are also found in a number of applications,
where files are replaced by emails or bookmarks. Other examples of hierar-
chies are found in Web directories, library catalogues, and as the product of
clustering algorithms. At first sight, one could think that a hierarchy, as a
tree, is just a particular case of a graph, but there are important differences.
The first difference is that the objects of interest are not the folders, but
the items in them (e.g., files). Therefore, each folder materializes a ques-
tion, whose answers are the items in the folder. The second difference is
that an item does not only belong to its folder, but also indirectly to the

3You can give it a try by starting, for example, at http://dbpedia.org/resource/

Rennes.

http://dbpedia.org/resource/Rennes
http://dbpedia.org/resource/Rennes

2. STATE OF THE ART 17

parent folders, recursively. Therefore, the item set of a folder is included
in the item set of its parent folder, and the former can be considered as a
specialization or a refinement of the latter. For example, a folder “French
films” would be a subfolder of “European films”, which in turn would be a
subfolder of “films”. As a consequence, navigation is mostly top-down, mov-
ing from the most general folder towards more specific folders. Advantages
compared to graphs are that several items can be found as answers, and that
several criteria can be combined. For example, photos can be classified and
retrieved according to both date and location by using navigation paths like
/2013/Europe/France/Rennes/, where photos are classified first by year,
then by successively smaller locations. However, a hierarchy suffers from
“the tyranny of the dominant decomposition” [Tarr et al., 1999] because it
forces a fixed ordering of the different criteria, and therefore limits the set of
questions that can be answered, and hence expressivity. In the above exam-
ple about photos, photos can be retrieved for the combination of a year and
a location, for a year alone, but not for a location alone. The choice of folder
also impacts the granularity of criteria. In the above example, photos can be
retrieved by year, but neither by month nor by decade (using a single navi-
gation path). Using a different hierarchy like /Europe/France/2013/July/

only displaces the problem because it changes the set of possible questions
without making it larger. Because of those constraints on criteria ordering
and granularity, a hierarchy can only answer a small subset of conjunctive
queries. A drawback of hierarchies compared to graphs is the lack of navi-
gation links between items. For example, in a hierarchy of people classified
by, say, nationality, occupation, and birth date, it is not possible to repre-
sent and navigate relationships between persons (e.g., “is a child of”, “was
influenced by”).

Concept lattices. Concept lattices are a less known navigation struc-
ture [Godin et al., 1993] that comes from the theory of Formal Concept Anal-
ysis (FCA) [Wille, 1982, Ganter and Wille, 1999]. They are similar to hierar-
chies in that: (1) navigation places (called formal concepts) are ordered from
the more general to the more specific, (2) every formal concept contains a
set of items (called objects), and (3) every formal concept is characterized
by a conjunction of criteria (called attributes). A first advantage over hi-
erarchies is that concept lattices are formally derived from data. In FCA,
data is organised into a formal context, i.e. a binary relation between objects
and attributes. Therefore, users need only to describe objects by attributes,
not to classify them. Because concept lattices are derived from formal con-
texts, they can be automatically maintained up to date. In this way, the

18 CONTENTS

navigation structure can be maintained consistent and complete, properties
that are notoriously difficult to establish in graphs and hierarchies. A sec-
ond advantage of concept lattices is to remove the expressivity restrictions of
hierarchies by allowing arbitrary conjunctions of attributes as queries. This
is possible because a concept lattice can be understood as an overlaying of
all possible hierarchies for a given set of criteria [Guillas et al., 2008]. To be
more precise, all questions (i.e., sets of attributes) that share a same set of
answers (i.e., sets of objects) are merged into a same formal concept. For
a given concept, the set of answers is called its extension, and its most pre-
cise question is called its intension. A consequence is that there are often
several possible navigation paths to a same concept. The main problem is
that the number of concepts can be as high as exponential in the number
of objects or attributes. Even though it is much lower in practice, it is still
generally too high (e.g., a million concepts for a thousand objects) for the
visualization of the whole concept lattice. Therefore, a commonly followed
approach is to display only parent and child concepts of the current concept
(recall that here navigation places are concepts), which can be computed and
displayed in polynomial time [Lindig, 1995, Ducrou and Eklund, 2008]. To
our knowledge, navigation based on concept lattices has only been applied
to small formal contexts with tens to hundreds of objects. When applied to
a larger collection, an initial user query is generally used to extract a small
formal context [Carpineto and Romano, 1996]. Navigation in concept lat-
tices is interoperable with querying as it is possible to start with any query
(a set of attributes), to locate the corresponding concept by computing its
answers, then to navigate from it. When the query has no answer, a solu-
tion [Messai et al., 2008] is to add a dummy one to the formal context, so
that parent concepts contain the objects most similar to the query.

Discussion. We here discuss how navigation structures comply with the
above properties (Section 2, p. 12). The main advantage of navigation struc-
tures is their usability. The navigation paradigm is a very natural one, and
takes its roots in human cognition from navigation in the geographical space.
Analogies can be drawn between graph navigation structures and road maps,
and between hierarchies and the physical storage of books in a library. Only
concept lattices do not have obvious analogues in the physical world, and
are indeed more difficult to interpret by users. The user interface of naviga-
tion structures always follow the same structure: the identifier of the current
place, a view of the current place contents, and controls to navigate to related
places. The identifier can be a URL, a folder path, or a set of attributes. The
view strongly depends on the kind of contents. It can be a single document,

2. STATE OF THE ART 19

a list of files, a mozaic of pictures, or a combination of those. The navigation
links can be hypertext links, folders, or buttons. This kind of user interface
provides a high readability because every element is easy to understand and
use. It also provides guidance because each navigation link can be seen as
a system suggestion to go on in the search. It is possible to navigate from
every place, at least if we consider that going back in the navigation history
or moving up to the parent folder are valid navigation links. Specificity is
good in navigation structures, because they are built on top of data. Graphs
can only connect existing places (e.g., Web pages), hierarchies are generally
grown incrementally upon the addition of new items (e.g., file systems), and
concept lattices are automatically derived from data and adapt to changes.
Finally, safeness is guaranteed, except in hierarchies where there may be
empty folders. One may contend that guidance is not safe because it is a
common experience to follow a navigation path, and not to find the expected
information, while present in the navigation structure. However, this is the
expressivity of the navigation structure that should be blamed for that, rather
than its guidance properties.

The main limitation of existing navigation structures is their low ex-
pressivity. It is limited to relation paths in graphs, and to conjunctions of
attributes in concept lattices. In principle, it is easy to combine the two nav-
igation structures, like in the Web that combines hypertext links and Web
directories (in addition to search engines). However, the two kinds of queries
cannot be combined as such, and therefore the set of expressible queries is
only the set union of relation paths and conjunctions of attributes. For ex-
ample, assuming a hierarchy of films and people, and relationships between
them, it is not possible to find in one navigation path “all directors of French
films” but only “the director of a particular film” or “all French films”.

Navigation structures offer a very good scalability, when they are explic-
itly represented like graphs and hierarchies, because all computations are
local to the current place (e.g., using HTTP links in the current Web page,
reading the contents of the current folder). The best proof of that is the
World Wide Web, which counts tens of billions pages4. In the case of con-
cept lattices, the need to compute the navigation structure from data makes
it much less scalable, and in practice, they have only been applied on small
datasets.

4See http://www.worldwidewebsize.com/

http://www.worldwidewebsize.com/

20 CONTENTS

2.3 Interactive Views

This category includes all systems in which users interact with a dynamic
view over data. They follow the Model-View-Controller (MVC) paradigm:
the model is the underlying dataset, the view is a representation of a subset
of the dataset, and the controller is a set of available interactions that let
users modify or transform the view. An analogy can be made with navigation
structures with views playing the role of navigation places, and with controls
playing the role of navigation links. However, users do not feel that they
move in a navigation space, but on the contrary that it is data that moves
in front of them. A better analogy is that of a scientist looking at an object
through a combination of lenses and filters. The object is the dataset, and
does not change. The combination of lenses and filters defines the current
view, which can be controlled by adding or removing individual lenses or
filters. This category is not so common, but it is valuable because it offers
a rich user experience. For example, it is found under a simple form in
email tools, where lists of emails can be sorted according to different criteria
(e.g., by descending date or by ascending sender name), and filtered by some
keyword. It is also found in interactive maps (e.g., Google maps), where a
number of layers can be overlaid, and where it is possible to zoom in and out
at every position and at every scale (within some range). We discuss in more
details two techniques that have been well studied, and played an important
role in our own research: faceted search and OLAP.

Faceted search. Faceted Search (FS) [Hearst et al., 2002,
Sacco and Tzitzikas, 2009] covers a family of user interfaces for brows-
ing a collection of items. It is becoming a de facto standard in e-commerce
websites, and its scope of application is wide: e.g., multimedia information
bases [Hyvönen et al., 2002, Sacco, 2008, Amato and Meghini, 2008] (see
Chap. 9 in [Sacco and Tzitzikas, 2009]). The data model is generally a
collection of items described along a number of facets. This is similar to a
table in a relational database but FS supports heterogeneous data in that
some items may have no value for some facets, or on the contrary have
several values for a same facet. A couple (facet,value) is called a filter,
because it can be used to filter the collection to items having that value for
that facet. The view is made of a set of items (called selection), and the
subset of filters that overlap with the selection (called restrictions). This
set of restrictions can be seen as an index or a summary of the selection.
Assuming the selection is a set of photos taken in Australia, the restrictions
are the dates of those photos, people visible on them, more precise locations
in Australia, etc. Each restriction is generally displayed with the number

2. STATE OF THE ART 21

of items in the selection that match it. The selection is analogue to query
answers, and restrictions are an important enrichement of the view that
supports user feedback and understanding-at-a-glance of the dataset. In
fact, when FS is used to explore a dataset without looking for a particular
item, restrictions are the useful answers, and the selection is only a means
to get them. Restrictions are also useful to modify the selection. Indeed,
each restriction covers a subset of the selection, and that subset becomes the
new selection when the restriction is selected by the user. In some systems,
it is also possible to exclude a restriction, or to select/exclude an union of
restrictions. For example, in the previous selection of Australian photos, it
is possible to select photos taken in Sydney, or to exclude photos with an
animal, or to select those showing Alice or Bob.

The query of which the selected items are the answers is not always
explicit in FS, but it can be derived from the sequence of selection transfor-
mations chosen by the user. If only selections of restrictions are available,
the reachable queries are conjunctions of filters. The expressivity of FS is
then similar to concept lattices, where attributes play the same role as fil-
ters. If exclusions and unions are also available, the reachable queries are
conjunctions whose conjuncts are either filters, negated filters, or unions of
filters. This raises expressivity a little beyond concept lattices but far be-
low querying languages like SPARQL. In particular, like for hierarchies and
concept lattices, FS misses relationships between items.

Semantic faceted search covers a number of approaches that aim to ap-
ply faceted search to Semantic Web data. They all have in common to
assume that data is represented in a SW format, either RDF(S) or OWL.
Most of them, such as Ontogator [Mäkelä et al., 2006], mSpace5, and Long-
well6, do not claim for a contribution in term of FS expressiveness, and
contribute either to the design of better interfaces and visualizations, or
to methods for the user-centric configuration of faceted views over seman-
tic data [Hyvönen et al., 2005, Suominen et al., 2007]. The latter is impor-
tant for the readability of faceted views given the frequent heterogeneity
of semantic data. Therefore, their contributions are somewhat orthogo-
nal to ours, and could certainly complement them. Other approaches ex-
tend faceted search in order to offer more expressive power w.r.t. relation-
ships: e.g., /facet [Hildebrand et al., 2006], BrowseRDF [Oren et al., 2006],
SOR [Lu et al., 2007], gFacet [Heim et al., 2010], VisiNav [Harth, 2010]. In
this setting, facet-value pairs are property-object pairs, and other filters are
introduced such as classes, property domains, and property ranges. In addi-

5mSpace http://mspace.fm/
6Longwell http://simile.mit.edu/wiki/Longwell

22 CONTENTS

tion to selection and exclusion, an additional selection transformation is to
cross a relation. For example, starting from a selection of French films, the
relation “has director” can be crossed to reach the selection of all directors of
a French film. This is precisely the kind of query that could not be answered
with navigation structures because navigation was either from one item to
one related item, or from a set of items to a subset of items. However, even
though all ingredients of the core SPARQL are present (i.e., relationships,
join, union, negation), existing systems have a number of limitations that
makes them significantly less expressive than SPARQL. As we have shown
in detail [Ferré and Hermann, 2012], the main cause for such limitations
is that selection transformations are defined as set operations between the
selection and restrictions. In particular, this prevents to reach tree-shaped
queries like “Who directed a film produced in the US and starring a woman
born in France?”. This also prevents cycle-shaped queries like “Who directed
a film in which he/she also starred?”.

OLAP. On-Line Analytical Processing (OLAP) [Codd et al., 1993] was
introduced by E.F. Codd to facilitate the analysis of data warehouses
by people that are data specialists but not computer specialists. It is
an important technique in Business Intelligence (BI), and often works on
top of relational databases [Codd, 1970]. The OLAP model is the data
cube [Pedersen and Jensen, 2001]. A cube has a number of dimensions (e.g.,
city, date, and product), where each dimension has a finite domain of values
(e.g., a set of cities, a set of dates, and a set of products). The Carte-
sian product of those domains of values defines a set of cells, one for each
combination of a value for each dimension (e.g., (“Rennes”, “24 July 2013”,
“X-shoes”)). Each cell contains one or several values, called measures (e.g.,
quantity). Each cell represents a fact (e.g., “a sale”), i.e. a combination of
values for dimensions and measures (e.g., “12 X-shoes were sold in Rennes
on 24 July 2013”). In fact, a cube is equivalent to a relational table, where
dimensions and measures are attributes, and the set of dimensions is a key for
the table. OLAP cubes are often defined as views over a relational database
(R-OLAP), and several OLAP cubes may be defined on the same data to
support various data analyses. An important OLAP ingredient that is not
native in relational databases is the notion of hierarchies of values on dimen-
sions. A dimension hierarchy enables the grouping of dimension values at
different levels of granularity. For example, dates can be grouped by month
and years. Similarly, cities can be grouped by regions and countries, and
products can be grouped by categories. When different values are grouped
on a dimension, some cells are merged, and an aggregation operator needs to

2. STATE OF THE ART 23

be applied to still have one value per measure in each cell. In our example,
quantities can be summed when grouping dates by month or when grouping
products by category.

An OLAP view is simply an OLAP cube, possibly projected to a subset
of dimensions and measures, and with a chosen granularity level for each
dimension. As the presentation is generally 2-D, the first two dimensions
are presented as a two-dimensional table, and other dimensions are nested
in various forms: nested tables, histograms, pie charts, maps, etc. Users can
interact with the OLAP view by applying a number of possible operations.
The granularity level on each dimension can be made finer (drill-down) or
coarser (roll-up). Dimensions and measures can be shown or hidden. The
order of dimensions can be changed (pivot). On each dimension, subsets of
values can be selected in order to zoom on sub-cubes (slice and dice). In some
cases, it is also possible to change the aggregation operator on measures, and
to exchange the role between dimensions and measures.

We now relate OLAP views to SPARQL 1.1 queries in order to eval-
uate their expressivity. A data cube translates to a fixed graph pattern
that retrieves facts by relating values for dimensions and measures. Each
granularity level translates to another graph pattern that relates the finest-
level value to the coarser-level value. Dimensions translate to GROUP BY
clauses and projected variables, and measures translate to aggregations. Hid-
den dimensions and measures are simply removed from the SELECT and
GROUP BY clauses. This translation shows that OLAP supports complex
analytic queries that are not covered at all by faceted search and navigation
structures. However, an important limitation is that the main graph pattern
is fixed for a given data cube. In practice, this means that users depend on
the managers of the information system for the definition of new cubes, and
therefore can only get answers for predefined sets of questions. Another limi-
tation is that data cubes are mono-valued, i.e. each cell has only one value for
each measure. That limitation corresponds to the first normal form (1NF) in
databases. It is generally fine for numerical data, but can be problematic for
relational data. For example, one may want to visualize a cube of the actors
of films per director and year. In this case, the measure is a set of actors,
which could easily be displayed as a list in each cell of a two-dimensional
table. In fact, 1NF is seldom contested in databases, but deserves to be so
here because OLAP cubes are views over data, and not models of data.

Discussion. We here discuss how interactive views comply with the same
above properties. Interactive views have a usability that is similar to that
of navigation structures while offering more expressivity. The idea that an

24 CONTENTS

initial view is presented, and that users can trigger controls to transform
this view iteratively, is arguably a readable metaphor. For complex views
and transformations, user training may be necessary, unlike with naviga-
tion structures. However, the spreading use of faceted search in e-commerce
websites (see [Sacco and Tzitzikas, 2009], p. 265) demonstrates that interac-
tive views can be readable from scratch by users. Because views and controls
that transform them can be seen as a virtual navigation structure, interactive
views offer guidance to users, and can even be qualified as guidance-based,
where available controls play the role of system suggestions. Indeed, only
available controls are applicable, and every applicable control returns a valid
view. Therefore interactive views satisfy safeness and specificity.

The greater expressivity compared to navigation structures comes from
the fact that views are not defined explicitly and a priori, but are the re-
sult of a computation, i.e. the successive application of view transforma-
tions chosen by users. This enables a set of reachable views that can be
larger than any manually-defined navigation structure, be it the World Wide
Web. The more reachable views there are, the more expressivity is available.
This is interesting because it suggests that the expressivity of a system can
be increased “simply” by adding transformations, and possibly by adding
information into views. Because it is necessary to decide dynamically for
each view which transformations are applicable, and to compute the selected
transformations, the scalability of interactive views is lower than for explicit
navigation structures. However, a good deal of research in both faceted
search and OLAP has been devoted to scalability with results satisfactory
enough to allow for industrial application (in e-commerce for faceted search,
and in business intelligence for OLAP).

2.4 Summary and Comparison

Table 1 summarizes the approaches presented above by comparing them
w.r.t. our four main properties: expressivity, readability, guidance, and scal-
ability. The objective here is not to make a precise and technical comparison
between them, but rather to draw conclusions on how to combine them in
order to add their strengths. We have adopted for each property a coarse
scale that ignores many details, but is sufficient to exhibit the strengths and
weaknesses between approaches. For example, three levels of expressivity
have been retained: low, medium, and high. In fact, even in a same ap-
proach, different systems may have very different expressivity (e.g., CNL,
FS). Furthermore, different systems may not be comparable in that each has
features that the other misses (e.g., OLAP vs FS). FL exhibit the highest
expressivity, and no other approach gets close to them. At the other end

2. STATE OF THE ART 25

Approach expressivity readability guidance scalability
Formal languages (FL) high difficult unspecific database
Natural languages (NL) low natural unspecific database
Controlled NL (CNL) medium easy unspecific database
Graphs (G) low natural specific Web
Hierarchies (H) low natural specific Web
Concept lattices (CL) medium easy specific database
Faceted search (FS) medium easy specific database
OLAP medium easy specific database

Table 1: Comparison of the different approaches to information access w.r.t.
key properties.

of the scale, low expressivity concerns approaches where direct navigation
in data is used (G, H), or where queries must belong to a fixed number of
patterns (NL), or where the size of those patterns is bounded (NL). All other
approaches allow for combinatorial queries, generally conjunctive queries,
possibly with additional features (e.g., crossing relations in semantic FS, ag-
gregations in OLAP, conjunctive queries in FCA), and are given a medium
expressivity. CNL are scored higher than NL because their syntactic and
semantic analysis is easier, which enables the combinatorial aspect.

Readability is qualified as natural when no user training is necessary and
every user input is accepted, easy when some short training may be necessary
and most people can manage to use it, and difficult when a longer training is
necessary and only a few specialists can use it. Graphs, hierarchies, and NL
are qualified as natural because they are already well-known by everybody.
FL are obviously the most difficult to use approaches. Other approaches
(CNL, CL, FS, OLAP) have precisely been designed to be easy to catch on,
and offer a good usability.

Guidance comes in various forms, but can be classified in only two lev-
els, depending on the specificity (and safeness) of the guidance. For query
languages, only unspecific syntax-based and ontology-based guidance exists,
and there is often no guidance at all. In other approaches, guidance is always
available, and only leads to valid navigation places or views.

Scalability is tricky to compare between systems as different as a query
engine and faceted search, and it does not play a crucial role in our anal-
ysis. Therefore we simply discriminate between, on one hand, graphs and
hierarchies that can work at Web-scale, and, on the other hand, other ap-
proaches that can work at the scale of a large local database. Because of their
dynamic computations of navigation links and view transformations during

26 CONTENTS

interaction, FS, OLAP, and CL are more demanding in data access and com-
putation, and are therefore more difficult to scale than query languages.

From Table 1, four classes of approaches can be identified with their
strengths and weakness:

1. FL: formal languages offer the highest expressivity but the least usabil-
ity;

2. NL/CNL: (controlled) natural languages offer a trade-off between ex-
pressivity and readability;

3. G/H: explicit navigation structures are the most usable and scalable,
but offer only low expressivity;

4. FS/OLAP/CL: interactive views offer a balance between expressivity
and readability, plus specific guidance.

The classes FL and G/H are the more contrasted, and also the more
widespread today. The class FS/OLAP/CL is the more balanced by com-
bining medium expressivity, easy readability, and specific guidance. Those
observations are made graphically visible in Figure 1. The approaches NL
and CNL are displayed with dash-dot lines because they are respectively
included in G/H and FS/OLAP/CL classes. That inclusion is mostly the
consequence of our coarse scales, and NL/CNL remain the approaches of
choice for reconciling expressivity and readability.

3 Main Contributions

From the beginning, our objective has been to reconcile querying and naviga-
tion, i.e., to make querying more usable, or equivalently, to make navigation
more expressive. Therefore, our work has concentrated on combining and
increasing expressivity and guidance. However, we have also been concerned
with readability that ought to be at least easy, and with scalability that
should be similar to FS. Our contributions started with concept analysis
(FCA), and then integrated principles from faceted search (FS), the Seman-
tic Web (SW), OLAP, and controlled natural languages (CNL). The result
is a quite diverse collection of theoretical results and softwares. In order to
present a synthesized view over our main contributions, we introduce a gen-
eral framework that encompasses them all: Abstract Conceptual Navigation
(ACN). In Section 3.1, we first define ACN, and discuss how it integrates
the three categories of information access discussed in Section 2 (query lan-
guages, navigation structures, and interactive views), and how it promotes

3. MAIN CONTRIBUTIONS 27

expressivity

readability guidance

scalability

NL

CNL

FL

G/H

FS/OLAP/CL

Figure 1: Radial diagram comparing the different approaches.

the desired properties (expressivity, readability, guidance, and scalability).
We then shortly describe our main contributions as different instances of the
ACN framework. The last section, Section 3.7, describes Squall, a CNL
for the Semantic Web that is so far only a partial instance of ACN, but that
will help improve readability and expressivity in ACN.

3.1 Abstract Conceptual Navigation (ACN)

Abstract Conceptual Navigation (ACN) is analogous to an abstract class in
object-oriented programming in that it is made of a number of components
to be defined in order to build concrete information systems. ACN is useful
as a general framework for reconciling expressivity and usability, but not as a
concrete theory because no precise theoretical judgement can be made about
it. We reuse the term Conceptual Navigation from FCA because the key
idea is still to navigate from concept to concept, where each concept defines
a navigation place, and where each concept is made of an extensional part,
and an intensional part. The qualifier Abstract emphasizes the fact that those
extensional and intensional parts can be very different from the object sets
and attribute sets of FCA.

ACN is defined by the following components (see Figure 2 for a schematic

28 CONTENTS

query index
links

Knowledge

Base

concept

results

extension

intension

*

Figure 2: Schema showing the different components of Abstract Conceptual
Navigation (ACN), and their interactions.

representation):

knowledge base (K) K is a knowledge base that contains the formal rep-
resentation of facts, rules, ontological axioms, taxonomies, etc. Its
content is constrained by the needs of the application, and the avail-
ability of data and domain knowledge. It is an implicit parameter of
all ACN operations defined below.

query language (Q) Q is a query language, i.e. a set of expressible queries.
Here, query should be understood in a broad sense, and may include
closed and open questions, analytical questions (OLAP), sets of key-
words, folder paths, updates, commands, ontological assertions, etc.
The current query characterizes the current concept, and is part of its
intension.

extension (E and ext ∈ Q→ E) E is the set of all possible extensions
(a.k.a., query results), and ext is a mapping from queries to their ex-
tension, given a knowledge base K. The query extension is any piece of
data returned to users from the evaluation of the query. It can be a set
of values, an answer list, a table, etc. For some queries, e.g. updates,
the knowledge base may be modified as a side effect. The extension of
the current query makes up the extension of the current concept.

index (I and index ∈ Q× E → I) I is the set of all possible indexes over
the extension, and index is a mapping from queries and their extension
to their index. An index is at the same time a summary over the

3. MAIN CONTRIBUTIONS 29

extension, and a set of query refinements. It is part of the intension of
the current concept because it is made of query elements. Its role is to
provide feedback and guidance.

links (links ∈ Q× E × I → 2Q) component links defines a set of navigation
links from the current query to neighbour queries. Links can be derived
from any component of the current concept: the query, the extension,
or the index.

The advantage and raison d’être of ACN is to subsume the three categories
of information access discussed in Section 2: query languages, navigation
structures, and interactive views.

• ACN as a query language. Q is the query language, and ext defines
query results for each query. Indexes and links are void. For instance,
SPARQL editors can be seen as partial ACN instances where the query
language is SPARQL, and where extensions are tables of results or RDF
graphs.

• ACN as a navigation structure. Navigation places are specified by
queries in Q, and navigation links are given by the ACN compo-
nent links . Extensions and indexes may be used to compute the links,
and may be used to define the contents of navigation places. For in-
stance, file system hierarchies can be seen as partial ACN instances
where queries are directory paths, extensions are file lists, and naviga-
tion links lead to children directories and the parent directory.

• ACN as an interactive view. For recall, interactive views follow the
MVC architecture (model-view-controller). In ACN, the model is the
knowledge base K. The view is the composition of a query, its exten-
sion, and its index (an element of Q× E × I). The controller is made
of the links, which are derived from the view contents. Each link acti-
vation generates a new view by computing a new extension (ext) and a
new index (index) from the target query. For instance, faceted search
can be seen as an ACN instance where a query is a set of facet-values,
an extension is a selection of items, an index gives the frequency of
facet-values among those items, and links allow the addition and re-
moval of facet-values to the query.

On the positive side, ACN inherits expressivity from query languages, and
guidance from navigation structures and interactive views, which achieves
our main objective to reconcile expressivity and usability. However, it must
be noted that the actual expressivity may be less than the expressivity of

30 CONTENTS

the query language in the case where navigation links are not rich enough
to reach all valid queries. Ideally, links should be both safe and complete.
Safeness means that no navigation path leads to dead-ends (e.g., empty re-
sults). Completeness means that every safe query can be reached through
a finite navigation path. Safeness is important for the quality of guidance
as it avoids users to “bump in the walls”, and completeness is important to
leverage the expressivity of the query language. Therefore, a critical issue
in ACN is the definition of links, and hence the definition of extensions and
indexes because links are derived from them.

On the negative side, ACN inherits the un-readability of query languages,
and the un-scalability of interactive views. Readability was not a big issue
in our first work because the query language was simple enough, but be-
came a bigger issue in more recent work with SPARQL-like expressivity. We
have started addressing this issue with the help of CNLs (see Section 3.7).
Scalability is the least addressed property in our work, but we have always
excluded approaches that could not scale in principle (e.g., computing con-
cept lattices), and strived to stick to linear-to-quadratic time complexities in
the size of the dataset (e.g., number of objects in a collection).

3.2 Logical Concept Analysis (Camelis)

The first ACN instance is based on the theory of Logical Concept Analysis
(LCA), and has been implemented as two systems, Camelis and LisFS, and
three Web interfaces on top of them: Geolis, Abilis, Portalis (more de-
tails below). We have introduced LCA [Ferré and Ridoux, 2000b,
Ferré, 2002, Ferré and Ridoux, 2004] as a logical general-
ization of FCA for the purpose of defining Logical Informa-
tion Systems (LIS) [Ferré and Ridoux, 2000a, Ferré, 2002,
Ferré and Ridoux, 2004, Ferré, 2009a]. LCA generalizes FCA by
replacing sets of attributes, which are used for the representation of object
descriptions and concept intents, by the formulas of ad-hoc logics. The
benefit is a gain in expressivity when using concept lattices as navigation
structures because this allows for more concepts and more links between
concepts. Whereas FCA only offers binary attributes and conjunction,
LCA can be plugged in with logics that offer valued attributes, patterns
over values (e.g., intervals of dates, string patterns), disjunction, and nega-
tion [Ferré and Ridoux, 2001b, Ferré, 2006]. To facilitate the design of
new ad-hoc logics, we have built a rich toolbox of logic components, called
logic functor [Ferré and Ridoux, 2001a, Ferré and Ridoux, 2006],
that can be composed in a plug-and-play fashion, while automatically
verifying that the composed logic satisfies properties that are necessary

3. MAIN CONTRIBUTIONS 31

for LIS (e.g., consistency and completeness of entailment). The notion of
functor has been extended to LCA knowledge bases, logical contexts, to
improve the efficiency of LIS [Ferré, 2009b].

A number of other generalizations of FCA have been pro-
posed. Generalized FCA [Chaudron and Maille, 2000] and pattern struc-
tures [Ganter and Kuznetsov, 2001] independently discovered the same core
definitions. However, those approaches have sticked to the computation and
display of concept lattices for data mining purposes, and have therefore been
limited in terms of expressivity and scalability for navigation purposes. We
have also pushed farther the generalization with generic pluggable imple-
mentations and the toolbox of logic functors. This genericity allowed us to
develop quickly new LIS applications with complex and very different logics
(e.g., function/method type signatures in programming libraries with Soazig
Bars [Bars et al., 2002], sequence motifs in bioinformatics with Ross D.
King [Ferré and King, 2004], lexicalized grammars in linguistics with An-
nie Foret [Foret and Ferré, 2010]).

Computing and displaying concept lattices in FCA as navigation struc-
tures does not scale well. This is even worse in LCA because a higher ex-
pressivity implies a higher number of concepts. However, the concept lattice
can still be used as a navigation structure by computing, on demand, links
to neighbour concepts only. However, our experiments have shown that an
interactive view is more readable than a large navigation structure, in which
users can get lost. The user experience in interactive views is the building of
more and more complex selections of objects, with a clear view of the current
selection at each step. In our approach, the index shows every feature that
occurs in the extension, and at which frequency (e.g., 50% of the photos in
the extension are portraits). Moreover, the index can be organized and dis-
played as a partial ordering according to logical entailment (e.g., all photos
taken in France are also taken in Europe). The index provides understanding
at a glance, and navigation through the selection of features.

Interestingly, other researchers converged to very similar ideas at
about the same time: dynamic taxonomies [Sacco, 2000] and faceted
search [Hearst et al., 2002] are closely related. Faceted search is more ad-
vanced in terms of usability and scalability, and we are more advanced
in terms of expressivity and formalization. We made contributions to dy-
namic taxonomies and faceted search by using logics for the design of tax-
onomies [Ferré and Ridoux, 2007], and by allowing for more complex se-
lections involving disjunction and negation [Ferré, 2008]. This led to a
collaboration with G.M. Sacco and Y. Tzitzikas that resulted in the edi-
tion of a book [Sacco and Tzitzikas, 2009], in which we contributed to five
chapters.

32 CONTENTS

We now sketch a formalization of LCA-based information sys-
tems as an ACN instance. Full details are available in Ap-
pendix A [Ferré and Ridoux, 2004] (for theoretical aspects) and Ap-
pendix B [Ferré, 2009a] (for practical aspects).

knowledge base K = (O,L, d): a logical context, where:

• O is a set of objects,

• L is a logic, defined as a set of formulas partially ordered by an
entailment relationship v, called subsumption,

• d ∈ O → L is a mapping from objects to their logical description.

query language Q = L: queries are logical formulas.

extension E = 2O and ext(q) = {o ∈ O | d(o) v q}: extensions are sets
of objects, and the results of a query are the objects whose description
entails, i.e. “matches”, the query.

index I = (L → N) and index (q, e) = {x 7→ n | x ∈ Features(K) ⊆
L, n = #(e ∩ extent(x)) > 0}: the index of a query is the set of
features x that are “matched” by a number n > 0 of query results.
Given a contextK, the features are automatically extracted from object
descriptions (indexation), and can also be manually specified by users.

links links(q, e, i) = {q and x | (x 7→ n) ∈ i} ∪ . . .: the main links consist
in conjuncting the query with a feature from the index. Other links
enable to reset the query, remove some feature from the query, or to
introduce disjunctions and negations of features in the query.

LCA-based information systems were first implemented as a
standalone application, Camelis7. It was first implemented in
λProlog [Miller and Nadathur, 1986, Belleannée et al., 1999] in 1999,
and then re-implemented in OCaml [Chailloux et al., 2000] in 2002. At the
beginning, it had a command-line interface that reused the cd/ls paradigm
of UNIX file systems. In 2005, it was equipped with a GUI that offered
richer visualizations, and better usability. Since then, I have been using
it for various purposes (e.g., bibliography, personal photos, homedir files),
and it has also been used by other members of the LIS team and beyond
(e.g., program execution traces, linguistic data, mushrooms, birds, calls for
papers). The efficiency of Camelis was progressively increased, and can

7http://camelis.gforge.inria.fr/

http://camelis.gforge.inria.fr/

3. MAIN CONTRIBUTIONS 33

now manage logical contexts up to 10 million object×feature, e.g. 100,000
objects with 100 descriptors each.

The second implementation, LisFS (Logical File Sys-
tem) [Padioleau and Ridoux, 2003], was developped by Yoann Padi-
oleau during his PhD [Padioleau, 2005]. The originality of LisFS is
that it is implemented as a real Linux file system, behind the VFS
(Virtual File System) interface. This implies that the standard cd/ls

shell commands behave according to LIS principles, and not accord-
ing to the classical hand-made folder hiearchy. For example, a file
path can be /author:Padioleau/author:Ridoux/title:"A Logic File

System"/year:2003/PadRid2003.pdf, where directory names are object
descriptors, whose order is not relevant. A directory path represents a query,
subdirectories correspond to index elements and navigation links, and local
files are the objects in the extension that do not belong to subdirectories.
For example, from the directory /title:*Logic*/year:>2000/ (i.e., files
whose title contains “Logic”, and whose year is after 2000), some valid
subdirectories are author:Padioleau, year:2003, title:*File*. LisFS
was also extended in order to refine the granularity from files to lines of
textual files [Padioleau and Ridoux, 2005]. This was applied to the browsing
of source code, e.g., selecting method definitions with a given class in their
signature.

Geolis [Bedel et al., 2006][Bedel et al., 2008b, Bedel et al., 2012]
is a Web interface working on top of LisFS, and was developped by Olivier
Bedel during his PhD [Bedel, 2009]. It extends LisFS as a Geographical
Information System (GIS) in order to browse geographical data. New logic
components were designed to represent spatial geometries (e.g., points, lines,
polygons), and the objects of the extension are displayed on a map instead
of as a list. When index features are spatial geometries themselves, they are
displayed on the map and can be selected to refine the selection, like any
other feature. Like for date intervals or string patterns, custom geometries
can also be drawn on the map for refining the query, and the index and
navigation links can still be computed by the system afterwards. The main
contribution of Geolis w.r.t. other GIS is to abstract over the distinctions
that are usually made between the different layers on one hand (e.g., water
layer, building layer), and between geographical data and thematic data on
the other hand. Indeed, each layer is simply represented as a descriptor for its
objects, and geographical/thematic data simply use different logics for their
representation. This abstraction allows for a more flexible and more uniform
exploration of geographical data. Another contribution is the first introduc-
tion of relationships between objects in a LIS system [Bedel et al., 2008a],
which were used for the representation of Euclidian and topological relations

34 CONTENTS

between objects (more about relationships in Section 3.4).

Abilis8 is a Web application on top of Camelis. Its purpose
is to make Camelis available without the burden of software installa-
tion, and also to enable collaborative work and group decision on logi-
cal contexts [Ducassé and Ferré, 2008]. It was developped by Benjamin
Sigonneau, Véronique Abily, and Vincent Alleaume, and is based on the Oc-
sigen framework9. In Section 3.3, we discuss how Abilis was extended by
Pierre Allard with OLAP views and maps.

Portalis is a Web portal for managing and accessing online Camelis
repositories. Its objective is to make it easy to define all sorts of clients
on top of Camelis, e.g. Web applications, mobile applications, APIs. It
encapsulates Camelis as a Web service, and manages all aspects related to
available services, user sessions, and access rights. It has been developed by
Yves Bekkers and Benjamin Sigonneau under a FEDER funding from Europe
and the Brittany region.

3.3 Cubes of Concepts (Abilis)

Search results are not always expected to be lists of objects. OLAP views
(see page 22) are data cubes, i.e., multi-dimensional arrays of aggregated
measures. Such views are key to analytical questions such as “What are
the total sales per product category and per year?”. LCA-based information
systems have been extended with OLAP views and controls by Pierre Allard
during his PhD [Allard, 2011]. This relies on a clear distinction in LCA
between attributes and values, which is not required by LCA, but was already
done in practice anyway. Attributes play the role of dimensions and measures,
and values play the role of cube coordinates in the case of dimensions, and
cell contents in the case of measures.

A first contribution to existing work in FCA and OLAP is that we allow
attributes to be multi-valued, i.e. that an object may have several values for
a same attribute. This implies that a same fact can belong to several cells
of the cube, and that a cube cell may contain several values. This is useful,
for example, in a bibliography context when facts are documents, because
documents may have several authors, and several topics. It becomes possible
to answer questions like “What is the number of documents per author and
per topic?”, where each document will be counted once for each combination
of an author and a topic. In fact, considering multi-valued attributes is
equivalent to consider attributes as relations instead of as functions (e.g.,

8Try it at http://ledenez.insa-rennes.fr/abilis/
9http://ocsigen.org

http://ledenez.insa-rennes.fr/abilis/
http://ocsigen.org

3. MAIN CONTRIBUTIONS 35

the attribute “author” is a relation from documents to people). This is a
departure from the often undisputed first normal form of databases.

A second contribution to most OLAP approaches is that dimensions and
measures are symetrical, and their roles can be exchanged. All attributes
can be used in three different roles: as a dimension, as a measure, and as a
query element to select a subset of facts. Furthermore, a same attribute can
be used in the three roles at the same time, like in the question “Among the
documents written by Smith or Jones, what is the number of co-authors per
author?”:

• in the query: only documents with author Jones or Smith are consid-
ered,

• as a dimension: those documents are grouped by author (each docu-
ment may fall in several groups),

• as a measure: in each group, the authors are collected and counted.

A third contribution to OLAP is that drill-down and roll-up, which usu-
ally apply to dimensions, can also apply to measures. For example, in the
question “What are the publication decades per author?”, the measure is the
publication year (e.g., 1996) rolled-up at the level of decades (e.g., nineties),
and hence, the cell contents are sets of decades.

The principle of this ACN instance is to extend a LCA query with di-
mensions and measures. The selection of a bare attribute (no specified value)
is interpreted as selecting all values of this attribute in parallel, and hence
reaching a row of concepts. The selection of a second bare attribute is inter-
preted as selecting all possible values of this attribute, for each value of the
first attribute, and hence reaching a 2D-array of concepts. More generally,
after selecting several bare attributes, we obtain a cube of concepts, whose
dimensions are those attributes. Navigating to cubes of concepts is like fol-
lowing many navigation paths in parallel, and organizing the results into a
cube, like in OLAP. Measures then serve to define the rendering of concepts,
i.e., the contents of the cells of the cube. We here sktech this ACN instance
by reusing the definitions of Camelis (more details are available in a paper
at ICFCA’12 [Ferré et al., 2012]).

knowledge base K is a multi-valued logical context, i.e., a logical context
where objects are described by a number of attributes, where each at-
tribute may have multiple values (zero, one, or more). Equivalently, K
is a set of triples (object, attribute, value). Value domains are LCA
logics, hence partial ordering of values, and are extended with granu-
larity levels (e.g., days, months, years for dates), and with aggregators
(e.g., “sum” for numbers).

36 CONTENTS

query language A query is here made of three components:

1. a logical formula that selects a subset of objects, like in Camelis;

2. a vector of dimensions, where each dimension is an axis, i.e., the
combination of an attribute and a granularity level;

3. a vector of measures, where each measure can be any of: the
extension, the count of the extension, the index of an axis, an
aggregation of the index of an axis.

extension The logical formula of the query determines a selection of objects,
the global extension. The dimensions project this global extension into
a cube of local extensions, which may overlap each other because of
multi-valued attributes. Each cell of the cube corresponds to a partic-
ular valuation of the dimension attributes, and hence to a particular
refinement of the logical formula, and hence to a particular concept. A
local extension is the extension of a local concept. The measures define
the contents of each cell, and each measure is defined as a function of
the local concept. The extension (a set of objects) and the index (a
set of values with their frequency) of a local concept are defined like
in Camelis. The count of a concept is simply the cardinal of its ex-
tension. The aggregation of an index, is the aggregation of its values,
taking into account their frequency.

index The index is the same as in Camelis, based on the global extension.
Dimensions and measures have therefore no impact on it.

links The links of Camelis are safe, and modify the logical formula of the
query, and hence the global extension. Additional links are the addi-
tion/removal of attributes as dimensions and measures, the change of
granularity levels (drill-down and roll-up), and the choice of aggrega-
tions on measures.

Cubes of concepts have been implemented in Abilis by Pierre Allard. In
addition to the computation of extensions, indexes, and links, it deals with
the question of richly displaying cubes of concepts. Dimensions are rendered
according to their number, value domains, and user choices. If there are two
dimensions, they are rendered as a 2D table. If there are more dimensions,
those are nested as sub-tables. Innermost dimensions with a numeric measure
can be rendered as histograms or pie charts. Temporal dimensions can be
rendered as timelines, and spatial dimensions are rendered as maps. Measures
are rendered according to their type. Extensions are rendered as lists, and
indexes are rendered as tag clouds, based on the frequency of values.

3. MAIN CONTRIBUTIONS 37

Cubes of concepts have been applied to geographical data analy-
sis [Allard, 2011], and to group decision [Ducassé et al., 2011]. The ge-
ographical application demonstrated that geometries (here, polygons repre-
senting administrative areas) can be organized into a logic of values. Those
geometries define either a dimension of the cube on a map, or a measure
through geometric aggregations (e.g., union) or metric measures (e.g., area).
The group decision application helped a research team to define a publica-
tion plan for the next year based on a collection of about 1000 conferences.
Each conference was described by its topics, deadline, and rank (A, B, C, or
none). Abilis was useful to collaboratively define a selection of interesting
conferences, and then to assign team members as the main author for each of
those conferences. A concrete workplan was obtained in Abilis by reaching
the query “What are the selected conferences per deadline month and per
main author”.

Interestingly, we also found cubes of concepts useful for the discovery
of functional dependencies and association rules [Allard et al., 2010]. Let
us assume that the attributes x1, . . . xn have been chosen as dimensions,
and the index of the attribute y has been chosen as the measure. The rule
x1, . . . , xn → y is a functional dependency if every cell of the cube has at most
one value. Each cell that has exactly one value defines an exact association
rule. When a cell has several values, each value defines an approximate
association rule. In Abilis, values are displayed in a font size proportional
to their frequencies. Thus, the support and confidence of association rules
can be directly visualized. Cubes of concepts therefore allow to visualize large
sets of rules at once. The roll-up and drill-down operations are also useful
to explore functional dependencies and association rules. More functional
dependencies and exact association rules can be obtained by a drill-down
on a dimension (making the rule premise more precise) and by a roll-up on
a measure (making the rule conclusion more general). The main limitation
is that users are not guided in the selection of the premise and conclusion
attributes, whereas the number of discovered rules may vary a lot depending
on those selections.

3.4 Query-based Faceted Search (Sewelis)

The main limitation of Formal Concept Analysis (FCA) and Faceted Search
(FS), and hence of our LCA-based ACN, is the lack of relationships between
objects. Each object can be related to a number of features, and features
can be related together by subsumption relationships thanks to logic, but
objects cannot be related to each other. This restricts the application of ACN
to collections of one type of objects, e.g. photos, documents, people. For

38 CONTENTS

instance, in a bibliographical context, one has to choose whether documents
(as objects) are described by people (as author, editor, etc.), or the reverse.
In each case, not all useful queries can be answered, which is reminiscent of
hierarchies where no hierarchy could answer all useful queries (see page 16).
The importance of relationships is reflected by the fact that widespread query
languages like SQL and SPARQL not only support them, but are based on
them. SQL is the standard query language for relational databases, where
every input and output is a relation. SPARQL is the standard language for
the Semantic Web, which is relational by nature (RDF graphs).

There have been a number of proposals to extend both FCA and FS
with relationships. Relational Concept Analysis (RCA) [Hacene et al., 2007,
Rouane-Hacene et al., 2013] extends FCA by considering a context for each
type of objects and a context for each relation. A concept lattice is produced
for each type of object, and take into account relationships with other kinds
of objects. This is used for unsupervised data-mining, and applied in soft-
ware engineering, e.g. to model transformations [Dolques et al., 2010]. RCA
is not directly suitable to search because there is one concept lattice per
type of objects, and hence independent navigation spaces. We have indepen-
dently proposed a similar extension of LCA (RLCA) [Ferré et al., 2005]
except that a single concept lattice is defined that encompasses both object
descriptions and relationships. Like for LCA, this relational concept lattice is
not computed but serves as a navigation structure for the purpose of search
and exploration. However, the expressivity in RLCA is still quite limited
compared to SQL or SPARQL, as it is mostly restricted to linear navigation
paths through relations. This expressivity is in fact similar to extensions
of FS for the Semantic Web (see page 21 about semantic faceted search).
In both cases, neither tree patterns, nor graph patterns with cycles, can be
expressed, and even less their combination with disjunction and negation.

The ACN instance presented here enables to reach through navigation ar-
bitrary combinations of graph patterns (including cycles), disjunctions, and
negations, i.e. a large fragment of SPARQL [Ferré, 2010]. It is founded
on Query-based Faceted Search (QFS) [Ferré and Hermann, 2011,
Ferré and Hermann, 2012], a generalization of FS where navigation links
are defined as query transformations instead of set operations on the ex-
tension. This generalization is in fact the essence of Abstract Concep-
tual Navigation, and the key to higher expressivity. We now sketch a for-
malization of QFS as an ACN instance. Full details are available in Ap-
pendix C [Ferré and Hermann, 2012].

knowledge base K is an RDF graph, i.e. a set of triples. The triples may
be explicitly stated, or implicitly derived by logical inference. Inference

3. MAIN CONTRIBUTIONS 39

maybe based on an RDF schema, OWL axioms, or rules.

query language Q is based on LISQL, a high-level syntax for our SPARQL
fragment that minimizes the use of variables, and facilitates the inser-
tion of disjunctions and negations (see examples in Appendix C). An
ACN query q ∈ Q is the combination of a LISQL expression (a query
in the classical sense) and a distinguished sub-expression, called focus.
That focus is taken into account in the definition of the extension and
the index, and serves as an insertion point for query transformations.
It plays an essential role in the construction of complex queries, and
hence in the expressivity of QFS. Intuitively, different foci correspond
to different word ordering or intonation breaks in NL sentences. For
example, the sentence “The mouse, the cat plays with it.” has the
same meaning as the sentence “The cat plays with the mouse.”, but it
puts the focus on the mouse rather than on the cat.

extension Extensions are still sets of objects, but the membership of an
object to the extension depends on its relationships to other objects.
The extension ext(q) can be defined in terms of SPARQL. Given that
the LISQL expression of q translates to a SPARQL graph pattern P ,
and that the focus of q translates to a distinguished variable x of
that graph pattern, ext(q) is the answer set of the SPARQL query
SELECT x WHERE { P }.

index Given extensions are sets of objects, like in the LCA instance, the
index can be defined in a similar way. Here, the main index elements
are the types of objects (i.e., classes), and the properties that apply to
them.

navigation links Extension objects and index elements can be inserted at
the focus. The focus can be moved to another sub-expression of the
LISQL expression. Disjunction and negation can be inserted at the
focus. The sub-expression at the focus can be removed. This set of
navigation links is enough to build arbitrary LISQL expressions.

Our shift from FCA and LCA contexts to RDF graphs is not as big as
it seems. Most descriptors in LCA are valued attributes a = v, and the
association between an object o and a descriptor is then equivalent to a
triple (o, a, v), where v is then an RDF literal, and a is a data property. In
relational extensions of FCA and LCA, the association of a couple of ob-
jects (o1, o2) to a relation r is equivalent to a triple (o1, r, o2), where r is an
object property. Moreover, most subsumption relations between attributes,

40 CONTENTS

values, and relations can be expressed in RDFS with class and property hi-
erarchies. The main loss is the ad-hoc logics of LCA, but there are obvious
benefits in using the well-established W3C standards of the Semantic Web
(i.e., RDF, RDFS, OWL, SPARQL): e.g., comparability of our work to oth-
ers’ work, reusability of and interoperability with SW tools, availability of
datasets.

An important theoretical result of QFS is the proof of the safeness and
completeness of navigation. We informally define safe places and fully safe
LISQL expressions. A navigation place is safe if its extension is not empty,
and a LISQL expression is fully-safe if it generates a safe place for every
focus. A safe navigation means that every navigation path starting at a safe
place leads to a safe place. This implies that users cannot fall into dead-ends
by following suggested links. A complete navigation means that every fully-
safe LISQL expression can be reached through navigation from the initial
place. This implies that users never need to manually edit the query, and
can entirely rely on suggested navigation links to express their information
needs. This is a significant result given the expressivity of LISQL.

Sewelis10 (Semantic Web LIS) is our current implementation of QFS,
and evolved from Camelis in 2009 (it was first named Camelis 2). It is
a desktop application that enables to load and browse RDF files. Its user
interface has the same view structure, made of three parts: the query, the
extension, and the index. The main differences are a richer query language,
and more controls for navigation. A user study was performed by Alice Her-
mann, and is reported in Appendix C [Ferré and Hermann, 2011]. The
subjects were students in computer science but not aware of the Seman-
tic Web. The study showed that most students could answer many types
of questions on genealogical data after a short training time. There was
no problem of readability with LISQL, but there was some confusion about
the focus. Sewelis has also been applied by Clément Guérin et al to the
exploration of comicbooks, based on the content of panel images and on
metadata [Guérin et al., 2012].

In its most recent developments, Sewelis scales to a few millions triples,
which is high enough for many useful applications, but quite small com-
pared to the largest RDF datasets (several billions triples). However, Joris
Guyonvarc’h (as an MSc student) demonstrated the scalability of QFS up
to billions of triples by re-implementing the core of Sewelis as a Web ap-
plication on top of SPARQL endpoints [Guyonvarch et al., 2013]. That
was made possible by computing the index on a sample of the extension
(e.g., 1000 first results), and because SPARQL engines have been highly op-

10http://www.irisa.fr/LIS/softwares/sewelis/

http://www.irisa.fr/LIS/softwares/sewelis/

3. MAIN CONTRIBUTIONS 41

timized. This work was basis for the development of Sparklis11, a SPARQL
endpoint explorer that provides all querying features of Sewelis in a scal-
able way. Sparklis works on one of the largest dataset, DBpedia, which has
about 2 billions triples.

Finally, we list the missing SPARQL 1.1 expressivity features in the ver-
sion of Sewelis that is presented in Appendix C: multi-dimensional queries
(i.e., several variables in the SELECT clause), optional graph patterns (only
relevant on multi-dimensional queries), solution modifiers (i.e., subset of re-
sults, ordering of results), expressions and constraints based on built-in pred-
icates and functions, aggregations, named graphs and external services.

3.5 Updating Through Interaction (Utilis)

Previous ACN instances only consider queries literally, i.e., the retrieval
of information. We here consider the update of information in a new
ACN instance, Utilis (Updating Through Interaction with Logical In-
formation Systems), which was developed by Alice Hermann during her
PhD [Hermann, 2012]. Updating suffers the same trade-off as retrieval be-
tween expressivity and usability. In fact, a parallel can be drawn between the
different approaches of information retrieval (see Section 2), and the different
solutions that exist for information update:

• query languages → update languages, as formal languages or CNL;

• navigation structures → editors of graphs and hierarchies, often
through graphical user interfaces;

• interactive views → dialogs based on forms and tables.

Formal update languages like SQL and SPARQL are the most expressive, but
also the least usable, exactly like for their retrieval counterpart. Controlled
natural languages (CNL), such as GINO [Bernstein and Kaufmann, 2006] or
ACE [Fuchs et al., 2006, Kuhn, 2009], are designed to be more readable, and
their tools often have an auto-completion mechanism that helps users avoid
lexical and syntactic errors. Editors of graphs and hierarchies let users insert
one edge at a time, growing an existing structure interactively. For exam-
ple, Protégé [Noy et al., 2001] is an ontology editor for OWL and RDFS
languages, in which users can edit the hierarchy of classes, the hierarchy of
properties, and the graph of relationships between individuals. Its use is
rather intuitive but mostly for ontology designers who already have a good
knowledge of Semantic Web standards. QuiKey [Haller, 2010] requires no

11Try it at http://www.irisa.fr/LIS/ferre/sparklis/osparklis.html

http://www.irisa.fr/LIS/ferre/sparklis/osparklis.html

42 CONTENTS

such knowledge, and supports the quick creation of chains of triples with
an ergonomic auto-completion mechanism. Semantic wikis, such as Sweet-
Wiki [Buffa et al., 2008], ACEWiki [Kaljurand and Kuhn, 2013], or Seman-
tic Media Wiki [Völkel et al., 2006], extend well-known wikis with special
notations for RDF triples as labelled links. They encourage users to in-
put semantic data along textual data, and use the semantic data for im-
proved querying and navigation. Other systems, like OKM Ontology Man-
agement [Davies et al., 2010] or Freebase [Bollacker et al., 2008], use prede-
fined forms that abstract over the structure of semantic data. Forms are
well-known, and therefore easy to use, but not flexible, and therefore gener-
ally less expressive.

Utilis is defined as an extension of Query-based Faceted Search (QFS),
and implemented as an extension of Sewelis [Hermann et al., 2012]. It
can also be seen as a relational extension of an earlier work about the guided
insertion and description of objects in LCA [Ferré and Ridoux, 2002].
A key point is that Utilis is an instance of ACN, and can therefore be
rendered through the exact same interface as for retrieval. In Sewelis, the
distinction between the two modes is indicated by the highlighting color of
the focus: green for retrieval mode (existing information), red for update
mode (yet to be created information). We now sketch this ACN instance
(see paper [Hermann et al., 2012] for more details and illustrations):

knowledge base an RDF graph, like in Sewelis.

query language LISQL, like in Sewelis. In update mode, a LISQL expres-
sion is understood as an object description. Disjunction and negation
are not allowed in such descriptions, because they are not representable
semantically in RDF (but they would be representable in OWL).

extension When building the description of a new object, it finally hap-
pens that no suggestion fits the new object because no existing object
is like it. The safeness property is here too strong. Users can relax it
by triggering the update mode (red focus). In update mode, the query
(i.e., the current description of the object being created) is generalized
until results are found. Those results are the existing objects featuring
the most similarity with the object being created, i.e. approximate an-
swers. A query is generalized by replacing classes by their super-classes,
properties by their super-properties, and by removing sub-expressions.

index The index is defined like for Sewelis, but is based on similar objects
in update mode.

3. MAIN CONTRIBUTIONS 43

links The links of Sewelis allow the insertion of additional elements to the
object description under construction. The insertion of disjunction and
negation are not relevant in update mode. The selection of an element
can be done by browsing the index, and by auto-completion over the
index contents. New elements, such as entities, classes, properties, and
literal values, can be created on the fly with ad-hoc widgets (e.g., a
calendar for dates).

When a decription is judged as complete by the user, the Assert button
turns yet-to-be-created information into existing information, and switches
from update mode to retrieval mode. In other words, it performs the expected
update, and inserts a number of triples into the RDF graph. Conversely, a
Retract button deletes a number of triples, and switches to the update mode.

We now discuss the advantages of Utilis, compared to other approaches.

• Utilis does not need any preliminary preparation, nor any schema, to
give suggestions in the description of objects. Protégé needs an ontology
(e.g., the domain and range of properties) to give any suggestion. Form-
based approaches need the preliminary definition of forms by domain
experts. CNL approaches require the definition of a lexicon for the
application domain. Utilis uses existing RDF data as a basis for
suggestions.

• Utilis suggestions are based on individuals rather than on ontology ax-
ioms, and are therefore more precise (specificity). For example, after
specifying the collection of a comics panel, Protégé suggests all charac-
ters of all collections, while Utilis only suggests the characters of the
chosen collection.

• Utilis suggestions depend on the full description of the new object.
Other systems, e.g. Protégé, only consider the class of the new object
to suggest relevant properties, and then consider the range of properties
to suggest relevant values. For example, starting with a film described
by its director and an actor, Utilis would suggest other actors that
played for the same director or with the same actor, but Protégé would
suggest all actors.

• Utilis suggestions are available before any user input (guidance). All
systems, except Protégé and ACEWiki, require the user to enter at least
a few letters in order to give suggestions. In Utilis, the index provides
immediate suggestions. This is acceptable because suggestions are here
more specific, and therefore less numerous. In the case of long lists of

44 CONTENTS

suggestions, or when the user has a clue, QuiKey-like auto-completion
offers a powerful way to find the right suggestion.

A user study was performed to compare Utilis with Protégé, in terms
of usability. The task assigned to subjects was to describe comics panels
about their context and contents: e.g., collection, visible characters, speech
bubbles (who says what to whom). Subjects found Utilis more difficult to
use, compared to Protégé forms, because of the extra flexibility and novelty
of the user interface. However, subjects appreciated Utilis suggestions and
auto-completion, and effectively used them. Finally, the most important
result is that Utilis ensured a better consistency in the produced data,
which can be seen as the counterpart of safeness in information access. For
example, 27 duplicate entities were introduced in Protégé, while none in
Utilis. This means that existing entities are more easily identified and
reused in Utilis than in Protégé. Note that the identification and reuse of
resources is what distinguishes five stars linked open data (LOD) from four
stars LOD, according to the star scheme of LOD12.

3.6 Possible World Exploration (PEW)

In all above instances of ACN, there are concrete objects to be returned
as the extension of queries. However, it is common in the Semantic Web
to start with the design of an ontology that defines classes and properties,
logical axioms about them, but no objects (aka. individuals in OWL). OWL
semantics is based on Description Logics (DL) [Baader et al., 2003]. From
the viewpoint of formal semantics, the axioms of an ontology can be seen
as conditions or constraints which a world (called an interpretation in DL)
has to satisfy for matching what the ontology modeler has specified to be
“true” in the considered domain. Therefore, an ontology characterizes a set
of possible worlds (called models in DL), which the ontology modeler may
wish to explore and modify. Indeed, modeling a domain knowledge as an
ontology is an error-prone activity. For example, it has been observed that
negative constraints (e.g., “cars are not humans”, “animals have no social
security ID”) are often overlooked because they are less salient for human
beings than positive constraints (e.g., “every woman is a person”, “every
person has a lastname”). Missing constraints entail a discrepancy between
what the ontology modeler has in mind, and the formal semantics of the
ontology: there are more possible worlds than expected (e.g., a world where
“some animal has a social security ID”!).

12http://5stardata.info/

http://5stardata.info/

3. MAIN CONTRIBUTIONS 45

In a joint work with Sebastian Rudolph, during his visit at Irisa in
March 2012, we derived a new ACN instance from Sewelis, the Possi-
ble World Explorer (Pew13), to explore OWL ontologies and enrich them
with negative constraints [Ferré and Rudolph, 2012]. Pew is very sim-
ilar to Sewelis at the syntactic level, but strongly differs at the semantic
level because it is based on logical reasoning rather than on query evalu-
ation. We now sketch the principles of Pew as an instance of ACN (see
paper [Ferré and Rudolph, 2012] for more details):

knowledge base K is an OWL knowledge base, i.e., a set of OWL axioms.

query language A query q is the combination of a simple OWL class ex-
pression and a focus. Simple OWL class expressions are made of class
names, individual names, role names, inverse roles, existential restric-
tions, conjunction, disjunction, and atomic negation. Those expres-
sions are in fact very similar to LISQL expressions, with the exception
that generalized negation is excluded. The difference with LISQL lies
in the semantics of queries, i.e., in the definition of the extension and
index. The focus is the same as in Sewelis, and points to a sub-
expression of the OWL class expression.

extension The extension of the query is simply the yes/no answer to the
question “Is the query satisfiable?”. A navigation place is safe if the
extension is “yes”, i.e., if the query is satisfiable. The query is a class
expression, and a class expression is satisfiable if there exists a possible
world (i.e. a DL model) in which that class expression has a non-empty
set of instances. A class expression can therefore be seen as a pattern
that discriminates between possible worlds. The effect of navigation
is to refine the query, and hence the pattern, and hence to focus on
smaller subsets of possible worlds while maintaining that subset non-
empty (safeness).

index The index is the set of possible adjuncts. An adjunct is an elementary
class expression among: a class name (e.g., “a pizza”), an unqualified
existential restriction (e.g., “has some ingredient”), an individual name
(e.g., “tomato”), and their negations (e.g., “not a pizza”, “has no in-
gredient”, “not tomato”). A possible adjunct is an adjunct that, when
inserted at the focus of a satisfiable query, produces another satisfiable
query. In other words, possible adjuncts ensure navigation safeness by
avoiding users to reach unsatisfiable queries. A possible adjunct is also

13We adopt the Semantic Web practice of flipping letters in acronyms.

46 CONTENTS

a necessary adjunct if its negation is not a possible adjunct (e.g., “has
an ingredient” for a pizza).

links The navigation links are a subset of those in Sewelis: moving the
focus, inserting an element of the index, inserting a disjunction, and
deleting the sub-expression at the focus.

We have proved the safeness and completeness of navigation in Pew. This
means that navigation only leads to satisfiable queries, and that every satis-
fiable query is reachable by navigation. In other words, the navigation space
is made of all patterns on possible worlds that can be expressed as a simple
OWL class expression, and that are satisfiable in at least one possible world
of the ontology. Whenever the ontology modeler finds a satisfiable query
that should not be satisfiable according to her domain knowledge, a nega-
tive constraint can be added to the ontology. The effect of that additional
constraint is that the unexpected possible worlds are erased from the set of
possible worlds. The negative constraint simply states that the current class
expression C must have an empty set of instances (C v ⊥ in DL).

Pew is implemented on top of OWL API14 for handling ontologies, and
on the HermiT reasoning engine [Shearer et al., 2008] for checking the satis-
fiability of class expressions. It reuses the GUI of Sewelis. For immediate
readability by ontology modelers, class expressions (the query and adjuncts)
are displayed using standard OWL notations: both the DL notation and the
Manchester syntax are available. We experimented Pew on the well-known
pizza ontology. This ontology has the advantage of being well-known, cov-
ering a large subset of OWL constructs, and being representative of OWL
ontologies. While the pizza ontology is often referred to and was subject to a
number of refinements, we found in our exploration a number of unexpected
possible worlds, and hence missing axioms. For example, we found it is pos-
sible to have a vegeterian pizza that contains meat or fish as an ingredient,
despite an apparently explicit definition of what is a vegeterian pizza! The
explanation is that a vegeterian pizza was defined as not having meat or fish
as topping, but not all ingredients are toppings, opening the possibility of
meat in other kinds of ingredients (e.g., the base).

Pew is user-centered, while most approaches to the discovery of miss-
ing negative constraints are automated. Automated discovery is valuable,
but is not entirely reliable, and results need to be inspected manually
anyway. Moreover, those approaches are generally restricted to disjoint-
ness, the simplest form of negative constraints. Another user-centered ap-
proach to ontology completion is based on Formal Concept Analysis (e.g.,

14http://owlapi.sourceforge.net/

http://owlapi.sourceforge.net/

3. MAIN CONTRIBUTIONS 47

[Völker and Rudolph, 2008]), but it tends to patronize the ontology modeler
by forcing her to answer a prescribed row of questions. In contrast, Pew
lets users freely explore the space of possible worlds. However, it provides no
strategy to cover that space.

3.7 An Expressive CNL for the Semantic Web
(Squall)

This last contribution, Squall [Ferré, 2012, Ferré, 2013], is only a partial
instance of ACN because indexes and navigation links are not defined, like in
query language approaches. Squall stands for Semantic Query and Update
High-Level Language, and is a CNL for querying and updating RDF datasets
(see Appendix D for more details). The knowledge base is therefore the same
as for SPARQL and Sewelis. The ACN extensions (i.e., query results) are
the same as in SPARQL, i.e., tables of results for SELECT-queries, and are
more general than the lists of results in Sewelis. Compared to SPARQL,
Squall has a very similar expressivity, and a better readability. Indeed,
Squall covers all major features of SPARQL, and only misses a few minor
features: e.g., n-ary DESCRIBE-queries, regular expression modifiers. Unlike
SPARQL, Squall sentences are immediately readable because its grammar
is very close to that of English (see examples in Appendix D), while SPARQL
is a formal language that exhibits low-level notions such as logic, relational
algebra, and a lot of variables. Compared to Sewelis, Squall is at the
same time more expressive and more readable than LISQL, Sewelis’ query
language. The advantage of Sewelis is to provide feedback and guidance
through navigation. A major objective for future work is then to make
Sewelis and Squall converge into a system as expressive as SPARQL,
as readable as English, and as guided as Sewelis (see a more thorough
discussion in Section 4).

The syntax and semantics of Squall are defined with a Montague gram-
mar [Montague, 1970]. The semantics of a sentence is represented in a logical
intermediate representation, which is then translated to a target language,
here SPARQL. Therefore, existing SPARQL engines (e.g., Virtuoso) and
SPARQL endpoints (e.g., DBpedia) can be used to efficiently execute queries
and updates. We have implemented a Web application squall2sparql15

that translates Squall queries and updates to SPARQL, and send them
to SPARQL endpoints. The Web site also provides a number of exam-
ples, in particular the 200 questions from the QALD-3/DBpedia16 chal-

15http://lisfs2008.irisa.fr/ocsigen/squall/
16QALD: Question Answering over Linked Data

http://lisfs2008.irisa.fr/ocsigen/squall/

48 CONTENTS

lenge [Cimiano et al., 2013], reformulated in Squall. The results of our
participation to the challenge can be found at http://www.clef2013.org/.
Squall has a full coverage of QALD questions, and a very good precision
and recall (F-measure = 0.90), but it relies on a manual reformulation of ques-
tions. Sentences are generally natural at the syntactic level, but the main
limitation to readability is that there is so far no lexical treatment. This
means that URIs, generally in the form of qualified names (e.g. dbo:Film),
must be directly used as words. The advantage is that Squall is directly
applicable to any SPARQL endpoint, without requiring the costly design of
a domain-specific lexicon. However, an objective is to make the use of such
lexicons possible when available.

Many CNLs have been defined in the past decades [Kuhn, 2013], but
Squall is the only one that targets SPARQL queries and updates.
Most CNLs for the Semantic Web rather target ontological axioms (e.g.,
ACE [Fuchs et al., 2006], SOS and Rabbit [Schwitter et al., 2008]). A few
CNLs target SPARQL queries (e.g., Ginseng [Bernstein et al., 2005], Aggrego
Search [Smits et al., 2013b, Smits et al., 2014]) but cover a limited fragment
of SPARQL, typically tree patterns, and some filters. A number of sys-
tems have been developed to query semantic data in free natural language
(see Section 2.1). Their advantage is that they do not put constraints on
the user, contrary to CNL-based systems. They use NLP tools, external
resources (e.g., WordNet), and ontologies to try and translate spontaneous
questions to SPARQL. Because of ambiguity and synonymy in natural lan-
guages, those systems achieve a much lower precision and recall (at QALD-3,
CASIA got the best result with an F-measure equal to 0.36). Their main
limitation to this date is about expressivity as they can only answer the
simplest questions: 1-2 triples, counting, only lists of results, no tables, no
comparatives, no superlatives, no disjunctions, no negations, no expressions.
In fact, Squall occupies a new trade-off in the CNL community. Tradi-
tionnaly, CNLs have developed syntactic coverage in as much as semantics
follows. With Squall, we consider RDF/SPARQL as a target semantics,
and we give it a CNL syntax.

4 Conclusion and Perspectives

Abstract Conceptual Navigation (ACN) is a new paradigm of informa-
tion access that merges the fundamental concepts of query languages (e.g.,
SPARQL), navigation structures (e.g., file hierarchies, the Web), and interac-
tive views (e.g., faceted search, OLAP). Figure 3 shows the progress achieved
by the most recent ACN instances, QFS (Query-based Faceted Search) and

http://www.clef2013.org/

4. CONCLUSION AND PERSPECTIVES 49

expressivity

readability guidance

scalability

G/H

FL

QFS

FS/OLAP/CL

SQUALL

Figure 3: Radial diagram showing the contribution of ACN instances QFS
(Query-based Faceted Search) and Squall.

Squall, compared to existing approaches (see Figure 1 on page 27). QFS
inherits the usability (guidance and specificity) of faceted search, which is de
facto recognized by its adoption in e-commerce websites and others, because
QFS is based on the same interaction model. Users only have to make choices
among system suggestions (ACN navigation links) in order to iteratively re-
fine a set of results (ACN extension). Like faceted search, QFS supports
both classical search where users have a precise idea of what they want, and
exploratory search [Marchionini, 2006] where users do not have a precise aim,
and rather want to get a global understanding of a dataset. The definition of
navigation places by queries instead of selections of objects open the way to
very high expressivity, compared to classical faceted search. A key ingredient
to such an expressivity is the query focus, which defines at the same time:
(1) a subexpression of the query, (2) an insertion point in the query for query
refinements, and (3) a point of view on query results. While QFS does not
yet reach the full expressivity of SPARQL, I am confident that that objective
is reachable in the medium term, even though each new feature requires an
astute combination of query language theory and user interaction design. To
conclude, ACN seems to be a generic and effective solution to the combina-

50 CONTENTS

tion of expressivity and usability, which has been the main objective of our
research.

The main challenges for ACN regard the properties of readability and
scalability. The readability challenge, i.e. the user ability to clearly under-
stand the meaning of queries, indexes, and navigation links, increases with
expressivity. I think that the use of natural language (NL) is unavoidable
to this purpose because it is the only expressive language that everybody
knows, and because every other expressive language (e.g., maths, program-
ming languages) is only known by a minority of specialists. A big advantage
of ACN in this challenge is that NL understanding is not necessary, unlike
in Question-Answering (QA) systems, and instead, NL generation is used to
render queries and query refinements. Indeed, NL generation can use a sub-
set of natural language without reducing understandability by people, while
NL understanding must cope with full natural language, including syntactic
and lexical errors, ellipsis, etc. In this respect, Controlled Natural Languages
(CNL) are interesting because they embody a formal language into a sub-
set of a natural language, and this is why I started studying them recently.
Figure 3 shows that Squall reaches the full expressivity of SPARQL while
improving the readability compared to formal query languages (FL) and in-
teractive views (FS/OLAP).

The scalability challenge has two sides. The head side concerns the pos-
sibly large sets of system suggestions (i.e., large indexes) users may have to
choose from. Large indexes are unavoidable when datasets get as large as
DBpedia. For exploratory search, indexes should be ranked so as to show
first the most important elements for the dataset: e.g., the most frequent,
the most consistently used. For directed search, intelligent auto-completion,
e.g. based on NL understanding, could be used to locate index elements from
keywords. The tail side concerns the computation of indexes and extensions
over large datasets. While Query-based Faceted Search has been shown to
scale to large datasets like DBpedia (about 2 billion triples), the future of
semantic search is federated search, i.e. search over several datasets and
SPARQL endpoints. Some SPARQL endpoints are already quite optimized,
but they have only been optimized to the computation of query results, not
query refinements. There is probably an important source of improvement
there.

4.1 Theoretical Perspectives

We here sketch a number of theoretical perspectives that aim to improve
instances of ACN w.r.t. expressivity, readability, guidance, and scalability.
They are roughly ordered from short-term to long-term perspectives. Most

4. CONCLUSION AND PERSPECTIVES 51

of them are deemed to be integrated in Sewelis.

Analytical queries. Analytical queries are typically offered by OLAP and
used in Business Intelligence (BI) (see page 22), whose principles have been
integrated into Abilis (see page 34), as an extension of Camelis. Sewelis
does not yet support such queries, despite the fact that they can be ex-
pressed in SPARQL 1.1 thanks to multi-dimensional queries and aggrega-
tion operators. Therefore, extending Sewelis to analytical queries can
be done by increasing Sewelis’ expressivity and guidance to cover those
SPARQL features. ACN here provides an original approach that consists
in performing analytical queries directly against RDF graphs, while ex-
isting approaches in the Semantic Web generally propose to first extract
data cubes from RDF graphs, and then apply the OLAP approach to those
cubes [Kämpgen and Harth, 2011]. The problem with the latter approach is
that domain experts rely on SW experts for the extraction of data cubes,
and that it is difficult to anticipate all useful data cubes. Indeed, because of
their relational nature, RDF graphs can be the source of many different data
cubes, playing as different points of view on data. In our approach, the addi-
tional SPARQL features would translate to new query constructs, and OLAP
operators would translate to new navigation links. In this way, conceptual
navigation would smoothly combine selections, the choice of dimensions and
measures, and aggregations.

Visualization of results. On the user interface side, analytical queries of-
ten come with visualization components: e.g., tables, charts (e.g., histograms,
pie, scatter plot), maps, timelines, and combinations of those. Visualization
has already been experimented by P. Allard in Abilis. Our objective is to
adapt and improve it for semantic data in Sewelis. There is a lot of interest
for the visualization of semantic data, and we aim to contribute with a more
systematic way to build complex visualizations from simpler components.
ACN principles could be used to suggest the relevant visualization compo-
nents, and compose them. A difficulty is that a good default visualization
must be defined at each navigation place so that the system can present the
current results, and so as to save as many visualization choices as possible
to the user.

Computations in queries. A current limit of Sewelis (and Camelis)
is that it can only return values that are explicitly present in data, not
computed values. For example, one may want to retrieve the age of peo-
ple, computed as the duration from their birth date to the current day, or

52 CONTENTS

the distance between places, computed from their geographical coordinates.
Of course, ages and distances could be computed in a pre-processing stage
and inserted into the dataset as additional triples, but this has two major
drawbacks. The first drawback is synchronization with updates (e.g., every
day for ages, every time a coordinate is added or modified for distances).
The second drawback is that it is impossible to anticipate all computation
needs, and it can be costly to store computed information (e.g., the number
of distances is quadratic in the number of places). Fortunately, SPARQL 1.1
enables to return computed values through expressions. The standard sup-
ports basic computations on numbers and strings, and some SPARQL engines
extend them to time and space (e.g., Strabon [Kyzirakos et al., 2012]). Our
objective is to extend Sewelis’ guidance to the interactive construction of
expressions. The main difficulty is that an operation can only be evaluated
when all its operands are defined, which makes the usual computation of
ACN indexes from results impossible at some navigation places (e.g., what
to suggest for the second operand of an addition?). Our idea is to resort to
datatypes and operand signatures in those cases to suggest relevant refine-
ments.

Rules. When an expression is often needed, e.g. the age of people, it
would be useful to define it once for all as a function, instead of re-building
it every time. Such a definition can be seen as a rule saying that: “if a
person X has a birth date D, then the age of X is the number of years
from D to now”. Such rules exist under different forms in various domains
such as: databases (triggers, business rules), logic programming and Datalog,
knowledge bases, the Semantic Web (e.g., SWRL), dataflow programming
and spreadsheets (formula cells). The different kinds of rules differ in what
they can do (e.g., infer new facts, perform updates, trigger actions), their
semantics and decidability of inference, the kind of inference (e.g., forward
chaining vs backward chaining), and the cost of inference and synchronization
with updates and events. Therefore, a major difficulty is the choice of a
suitable kind of rules for the Semantic Web in general, and for Sewelis
in particular. However, whatever kind of rules is considered, ACN could
contribute to their authoring by domain experts. A rule can generally be
seen as the combination of a query (e.g., “Which person X has which birth
date D?”) and an update (e.g., “the age of X is the number of years from D
to now”), where the query corresponds to the rule premise, and the update
corresponds to the rule conclusion. Given that ACN has been instantiated
for both queries (Sewelis, Section 3.4), and updates (Utilis, Section 3.5),
an objective is to combine the two ACN instances more closely to allow for

4. CONCLUSION AND PERSPECTIVES 53

the authoring of rules.

NL verbalization of ACN queries. With ACN queries being more and
more expressive, it is important to find better and better NL verbaliza-
tions of the constructed queries. The task of translating from a formal
language to a natural language is known as natural language generation,
and is the opposite of natural language understanding. For recall, NL un-
derstanding is not necessary in the ACN approach because queries are con-
structed in an interactive and guided manner. NL verbalization has been
done for SPARQL [Ngomo et al., 2013], for instance. In short, NL ver-
balization requires to map constructs of the query language to grammati-
cal structures, and to map URIs to words. The former can be done once
for each target natural language, using the grammar of a controlled nat-
ural language, e.g. Squall. The latter, however, requires the definition
of a lexicon for each vocabulary, ontology or dataset. A meta-vocabulary,
Lemon [McCrae et al., 2011], has been designed for the description of such
lexicons but, unfortunately, those are rarely available. An alternative to the
manual edition of lexicons is to learn them from a corpus [Walter et al., 2013],
which was the second task of the QALD 2013 challenge [Cimiano et al., 2013].
Our first objective is to make use of lexicons, when they are available, to im-
prove the NL verbalization of ACN queries. Our second objective is to con-
sider the edition of lexicons along with the edition of RDF data in Utilis.
Indeed, it should be possible and economical to ask users for the NL form
whenever they create a new class or property. At the extreme, we could
imagine that users never see or specify a URI, but only NL forms from which
the system generates new URIs or retrieves existing URIs.

Machine learning. Utilis is already a form of machine learning because
it tries and predicts relevant elements to be added to the current descrip-
tion of an object, at each step of the conceptual navigation. More precisely,
it is a form of instance-based machine learning, like the nearest neighbours
approach, because it relies on similar objects to produce such elements. How-
ever, it has a number of characteristics that makes it difficult to transpose
existing results from the machine learning domain:

• training data is highly relational (the RDF graph),

• there is no fixed target as every entity, class or property is a potential
target,

• the type of instances depends not only on the object being described,

54 CONTENTS

but also on the current focus in the current description, which may
change at every navigation step,

• the user is tightly integrated to the incremental learning process, and
there is no separation between a training phase and an exploitation
phase.

A number of FCA-based approaches use concept lattices as the basis for
knowledge discovery and machine learning [Fu et al., 2004]. Among them,
NAVIGALA [Visani et al., 2011] is particularly interesting because it can be
used for incremental learning, where only small parts of the concept lat-
tice need to be computed on-demand. However, it only works on propo-
sitional data, and not on relational data. Inductive Logic Programming
(ILP) [Muggleton and Raedt, 1994] works on relational data but requires a
target and negative examples to work, and is computationally costly, even for
a single target, on large data. I am already familiar with ILP because during
my postdoc at the University of Wales, Aberystwyth, Ross D. King and I
made contributions to ILP using the LCA notion of logic, and applied them
to functional genomics [Ferré and King, 2005, Ferré and King, 2006].
Case-Based Reasoning (CBR) [Aamodt and Plaza, 1994] does not require a
fixed target but usually needs a clear separation between problems and so-
lutions, i.e., between known facts and predicted facts. We are interested in
studying the potential cross-fertilizations between our approach and exist-
ing work in machine learning, in particular FCA-based approaches, ILP, and
CBR.

Exploring the immaterial. All instances of ACN so far, except Pew,
have their extensions based on concrete instances, explicitely represented and
stored. Those instances are objects in Camelis, and RDF terms in Sewelis.
The originality of Pew is to define its extensions as the existence of possible
words, which are never explicitly represented, and even less stored. Keeping
instances implicit is a necessity when the domain of instances is untractably
large or infinite. This is a common situation in computer science, and it
would be interesting to investigate the application of ACN to them. We
here list a few examples, paraphrasing the sentence “objects as instances of
queries”:

• models as instances of logical theories (logic semantics),

• execution traces as instances of programs (program semantics),

• (frequent) patterns as instances of a pattern language (e.g., association
rules) over a dataset (data-mining),

4. CONCLUSION AND PERSPECTIVES 55

• solutions as instances of a set of constraints (constraint satisfaction
problem).

In each case, instances would not be computed a priori as a concrete dataset
to explore, but either their existence would be proved, like in Pew, or fi-
nite excerpts of them would be computed on-the-need. In each case, several
approaches could be followed. For example, in the case of programs and ex-
ecution traces, the program could be fixed with the objective to explore the
possible execution traces by adding constraints such as input data, branching
decisions. This could be useful for program understanding and debugging.
Alternately, the objective could be the guided construction of a program,
where excerpts of execution traces would provide feedback and guidance on
the refinement of the program under construction. This would allow for
coding and testing at the same time. The challenge of “exploring the im-
material” is that the computation of ACN extensions and indexes relies on
reasoning rather than retrieval. This reasoning can easily get untractable
or even undecidable. Two practical choices are to use decidable fragments
(e.g., Pew is based on the decidable logic of OWL-DL), and to resort to
approximate reasoning.

4.2 Applicative Perspectives

The scope of ACN applications is very large because ACN potentially applies
to every situation where there is a need for user-centered information access
and edition. In this section, we limit ourselves to applications that have
already been discussed in the LIS team. For each application, the main
actors (mostly LIS team members) are indicated in square brackets. Some
of those applications are already well-advanced, while others are yet purely
prospective. They are roughly ordered from most advanced to least advanced.

SPARQL endpoint explorer [Sébastien Ferré]. RDF datasets are gen-
erally made public both as RDF dumps and SPARQL endpoints. To explore
those datasets, Sewelis could in principle be used by loading the RDF
dumps. However, this loading process is tedious for users, and Sewelis does
not scale to the largest RDF datasets. The limit is about a few million triples,
compared to a few billion triples for the largest datasets such as DBpedia. If
users want to frequently switch between datasets, those difficulties get even
worse. The advantage of SPARQL endpoints is that the loading process has
been done once for all on a server, and that they are ready to answer any
question in the form of SPARQL queries. Moreover, SPARQL endpoints are
based on SPARQL query engines, some of which have been highly optimized

56 CONTENTS

(e.g., OpenLink Virtuoso17). Our objective is therefore to re-implement the
logic and user-interface of Sewelis on top of SPARQL endpoints. The main
difficulty is that we do not control the API of SPARQL endpoints, which
has not been designed for the incremental building of queries, and the re-
turn of rich feedback. Work on this application has been initiated by Joris
Guyonvarc’h during his MSc thesis [Guyonvarch et al., 2013]. It demon-
strated the feasability and scalability of the approach, which is based on the
automatic generation of SPARQL queries at each navigation step. Note that
this is transparent for users who do not ever see any SPARQL query. We
continue work on this application with a new prototype, Sparklis18, with a
first objective to cover all search functionalities of Sewelis. The advantage
of this new prototype is to depend only on SPARQL endpoints, and to run
entirely on the client browser as a Javascript application. Future objectives
would be: (1) to improve the user interface with visualization (e.g., timeline,
maps, charts), (2) to improve the NL verbalization of queries, and (3) to
address federated search, i.e. exploration over several SPARQL endpoints at
the same time.

Group Decision and Negotiation [Mireille Ducassé, Peggy Cellier].
Group Decision Support Systems (GDSS) are designed to help a group of
decision makers to collectively reach an agreement on a decision problem.
The general setting is that there are a number of alternative choices, which
are described according to a number of criteria. The decision problem is to
choose one of the alternatives, and one of the main difficulties is precisely
that there are several criteria (multicriteria decision), which are not directly
comparable. In a group, different persons may give different weights to the
different criteria. Another problem is the potentially large set of alternatives
and criteria, which leads to an information overload. The data associated
to a decision problem, a binary relation between alternatives and criteria,
has the shape of a logical context, and is therefore amenable to the applica-
tion of ACN, and in particular Camelis. The use of Camelis has already
been experimented on group decision use cases: an academic recruitment
process [Ducassé and Ferré, 2008], and a committee to validate students’
year at a technical university [Ducassé and Cellier, 2014]. Camelis was used
for its capability:

• to select subsets of alternatives (ACN extension) according to logical
combinations of criteria (ACN query),

17http://virtuoso.openlinksw.com/
18http://www.irisa.fr/LIS/ferre/sparklis/osparklis.html

http://virtuoso.openlinksw.com/
http://www.irisa.fr/LIS/ferre/sparklis/osparklis.html

4. CONCLUSION AND PERSPECTIVES 57

• to update on the fly the description of alternatives without interrupting
the decision process,

• to define rules that generate derived criteria or decisions.

The experiments have shown that using Camelis as a GDSS guarantees
more fairness and speed because it enables to iterate on criteria rather than
on each alternative in turn. Moreover, the queries and rules built in the
decision process enable to keep track of all decisions and their motivations,
and help decision makers to collectively take responsability of sensitive de-
cisions. However, those experiments have a number of limits that require
tool development and more experiments to be done. First, Camelis was
not yet used in the actual meetings, but in a replay of them with some of
the concerned actors. Second, those meetings were controversial only to a
limited extent, and it remains to evaluate the approach on more sensitive and
controversial multicriteria decisions. Finally, it will be necessary to design,
implement, and evaluate a user interface dedicated to group decision, rather
than the generic user interface of Camelis. Indeed, this interface constitutes
the view shared by all decision makers, and therefore plays a crucial role in
the decision process.

Workflow composition for biologists [Mouhamadou Ba, Mireille
Ducassé, Sébastien Ferré]. Biologists face more and more data (e.g.,
sequences, annotations), and more and more services to process those
data (e.g., Blast for sequence search, ClustalW for sequence alignment).
However, those services perform elementary tasks, and need to be com-
bined into workflows to address real biological problems [Romano, 2008,
Barker and van Hemert, 2007]. Designing workflows is a form of program-
ming where services play the role of high-level instructions. In fact, bioin-
formatic workflows are often written in script languages, where the script
specifies the connections between services, and hence the dataflow. Note
that bioinformatic services are essentially functional in that they have no
inner state, and therefore return the same outputs for the same inputs. The
connection with ACN is that there is the same trade-off about workflows
as about queries. Programming languages and script languages are a very
expressive and generic way to define workflows, but they are too low-level
for widespread use by biologists. A number of graphical editors have been
proposed to alleviate this difficulty. They are similar to syntactic editors for
queries, and let users drag-and-drop services and connections between ser-
vices. However, those graphical editors are limited to the simplest control
structures (chaining, conditional) compared to programming languages (e.g.,

58 CONTENTS

iterations, exceptions, higher-order, backtracking). Moreover, users are gen-
erally not guided in the choice of services and connections. Our objective in
this application is to apply the ACN approach to the design of bioinformatic
workflows. This objective can be split in two main tasks. The first task is
to define a workflow language (ACN query language) that is at the same
time expressive and high-level, similarly to LISQL in Sewelis or Squall.
This language will be the starting point for, on one hand, the generation of
an executable workflow in a target programming or script language (ACN
extension), and on the other hand, the generation of a graphical represen-
tation when it is prefered to a textual representation. The second task is
to define for each focus of a workflow under construction which services can
be inserted (ACN index). The main constraint on service insertion is the
type of service inputs and outputs. Because those constraints are based on
intentional knowledge (type signature of services) rather than on extensional
knowledge (e.g., workflow execution traces), this application is yet another
example of the above theoretical perspective “Exploring the immaterial”.
Mouhamadou Ba has worked on this application since September 2012, as
his PhD work [Ba, 2013], under supervision of Mireille Ducassé and my-
self, and with the support of the GenOuest bioinformatic platform led by
Olivier Collin. He has so far worked on the second task, which is now well-
advanced [Ba et al., 2014]. Given two services S1 and S2, we can decide
whether an output of S1 can be connected to an input of S2 based on the
respective types of the output and the input. To address data heterogeneity,
the relation between types that we use is not equality or subtyping, as in
existing work, but convertibility, i.e. whether the output can be converted
to the input. Convertibility is decided automatically from the structural de-
scription of types, and actual converters can be generated along with the
decision process. This will potentially save a lot of effort to workflow design-
ers who often have to implement ad hoc converters for each workflow.

User-centered mining of geographical data [Soda M. Cissé, Olivier
Ridoux, Peggy Cellier, Erwan Quesseveur]. Data mining techniques
are used to extract knowledge from large datasets. The extracted knowledge
generally takes the form of a set of patterns, where each pattern represents
a statistically significant regularity in the data. A common problem is that,
for combinatorial reasons, the set of patterns is too large for systematic
manual inspection, and sometimes even larger than the initial dataset itself.
Existing approaches tackling this problem generally propose a pruning of the
set of patterns, e.g. by applying user-defined constraints, or by selecting the
top-k patterns based on some ranking. There is again a trade-off between

4. CONCLUSION AND PERSPECTIVES 59

expressivity, and usability. On one hand, a top-k approach based on some
ranking is easy to use, and can return as few patterns as wanted. However, it
provides no freedom in the selection of patterns as the ranking is the same for
all users and datasets. On the other hand, expressive constraint languages
provide freedom in the selection of small subsets of patterns but may be
difficult to use. This is similar to the difference between search engines,
based on ranking, and structured query languages, like SQL or SPARQL.
The difference is that the searched objects are not items in data, but patterns
about data. Our objective is here to put users in the loop by applying the
ACN approach, thus allowing them to interactively explore a large set of
patterns, and striving to reconcile expressiveness and usability. Inductive
Databases (IDB) [de Raedt, 2002] could be a good starting point as their
aim is to lift the database approach to data mining by designing powerful
pattern query languages and their efficient evaluation by computing patterns
on demand. Results about IDB could provide definitions for ACN queries and
extensions, and the remaining challenge would be to define ACN indexes, i.e.
relevant pattern contraints to filter out the current selection of patterns. The
possibility to compute patterns on demand indicates that this application can
be seen as an instance of the above perspective “Exploring the immaterial”.
We have done a first application of Camelis to the exploration of a set
of sequential patterns, where the partial ordering over patterns was used to
express constraints [Cellier et al., 2011]. The objective of the PhD of Soda
Marème Cissé, supervised by Olivier Ridoux and Peggy Cellier, is to study
this approach on the mining of sequential patterns over geographical data, in
particular GPS tracks, in order to discover behaviour patterns. This work is
led in collaboration with Erwan Quesseveur, a researcher in geography from
University Rennes 2, who provides data from real social studies.

Memory prosthesis [Olivier Ridoux, Sébastien Ferré]. The capac-
ity and persistency of digital memories have long suggested to use it to
extend human memory, and palliate its deficiencies, hence the term of
memory prosthesis. Many models of memory prostheses have been pro-
posed, from the early Memex of Vannevar Bush [Bush, 1945] to the more
recent MyLifeBits at MicroSoft Research [Gemmell et al., 2006]. Lamming
et al. [Lamming et al., 1994] identify a number of guidelines for the design of
a human memory prosthesis: (a) sensing of the environment, (b) automatic
data capture, (c) manual data capture, note taking, (d) focusing on relevant
information for retrieval, (e) easy to use, (f) available where needed, (g) inte-
grated with other applications, (h) reliable and fail-safe, (i) respectful of pri-
vacy. Today, the availability of wearable computers (smartphones) provides

60 CONTENTS

material support for guidelines (a), (b), and (f). Lifelogging applications of-
fer automatic data capture (b) such as GPS tracks, health monitoring. We
think the ACN approach can contribute to the guidelines about information
retrieval (d), manual data capture (c), and ease of use (e). Sewelis already
fulfills the three aspects in an integrated fashion. The first challenge is to
make it even simpler to use so that it can be used on a smartphone, i.e. on a
small screen with no physical keyboard. The second challenge is to integrate
it with automatic data capture, and sensing of the environment (e.g., GPS
position). A difficulty here is that automatically captured data tends to be
numeric (e.g., GPS coordinates, temperature), while manually captured data
tends to be symbolic (e.g., place name, hot/warm/cold), and it is necessary
to reconcile them for effective retrieval. A third challenge is to integrate
the memory prosthesis with other applications (guideline (g)). First, other
applications can be a source of information (e.g., calendar events, emails);
and second, other applications are helpful to visualize some contents (e.g.,
calendar events, videos), or to act on them (e.g., to send by email). Lamming
et al. also insist on the prospective memory in addition to the retrospective
memory. The former is concerned with anticipation and the recall of events
or things to do, and it should trigger recalls based on the user context, hence
the importance of sensing the environment. Therefore, a fourth challenge
is to extend Sewelis so that it can initiate interaction with the user (e.g.,
trigger recalls) based on explictly stated recalls (todo items) or on previous
behaviour (lifelogging).

Bibliography

[Aamodt and Plaza, 1994] Aamodt, A. and Plaza, E. (1994). Case-based
reasoning: foundational issues, methodological variations, and system ap-
proaches. AI Communications, 7(1):39–59. Cited on page 54.

[Allard, 2011] Allard, P. (2011). Logical modeling of multidimensional anal-
ysis of multivalued relations - Application to geographic data exploration.
PhD thesis, Thèse de l’Université de Rennes 1 - École doctorale MATISSE.
supervised by S. Ferré and O. Ridoux. Cited on pages 34 and 37.

[Allard et al., 2010] Allard, P., Ferré, S., and Ridoux, O. (2010). Discovering
functional dependencies and association rules by navigating in a lattice of
OLAP views. In Kryszkiewicz, M. and Obiedkov, S., editors, Concept
Lattices and Their Applications, pages 199–210. CEUR-WS. Cited on
page 37.

[Amato and Meghini, 2008] Amato, G. and Meghini, C. (2008). Faceted
content-based image retrieval. In Sacco, G., editor, DEXA Work. Dynamic
Taxonomies and Faceted Search (FIND), pages 402–406. IEEE Computer
Society. Cited on page 20.

[Angles and Gutierrez, 2008] Angles, R. and Gutierrez, C. (2008). The ex-
pressive power of SPARQL. In et al, A. P. S., editor, Int. Semantic Web
Conf., LNCS 5318, pages 114–129. Springer. Cited on page 10.

[Ba, 2013] Ba, M. (2013). Guided composition of tasks with logical informa-
tion systems - application to data analysis workflows in bioinformatics. In
Cimiano, P., Corcho, O., Presutti, V., Hollink, L., and Rudolph, S., edi-
tors, Extended Semantic Web Conf., LNCS 7882, pages 661–665. Springer.
Cited on page 58.

[Ba et al., 2014] Ba, M., Ferré, S., and Ducassé, M. (2014). Generating data
converters to help compose services in bioinformatics workflows. In Int.
Conf. Databases and Expert Systems Applications (DEXA). Springer. To
appear. Cited on page 58.

61

62 BIBLIOGRAPHY

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi,
D., and Patel-Schneider, P. F., editors (2003). The Description Logic
Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press. Cited on page 44.

[Barker and van Hemert, 2007] Barker, A. and van Hemert, J. I. (2007). Sci-
entific workflow: A survey and research directions. In Wyrzykowski, R.,
Dongarra, J., Karczewski, K., and Wasniewski, J., editors, Int. Conf. Par-
allel Processing and Applied Mathematics, LNCS 4967, pages 746–753.
Springer. Cited on page 57.

[Bars et al., 2002] Bars, S., Ferré, S., and Ridoux, O. (2002). Logic functors
for types as search keys. In Int. Workshop on Isomorphisms of Types.
Cited on page 31.

[Bedel, 2009] Bedel, O. (2009). GEOLIS : Un Système d’information logique
pour l’organisation et la recherche de données géolocalisées. PhD thesis,
Thèse de l’université de Rennes 1. coencadrée par O. Ridoux et S. Ferré.
Cited on page 33.

[Bedel et al., 2008a] Bedel, O., Ferré, S., and Ridoux, O. (2008a). Handling
spatial relations in logical concept analysis to explore geographical data. In
Medina, R. and Obiedkov, S., editors, Int. Conf. Formal Concept Analysis,
LNAI 4933, pages 241–257. Springer. Cited on page 33.

[Bedel et al., 2012] Bedel, O., Ferré, S., and Ridoux, O. (2012). GEOLIS:
a logical information system to organize and search geo-located data.
In Bucher, B. and Ber, F. L., editors, Innovative Software Development
in GIS, Geographical Information Systems Series, pages 151–188. Wiley.
Cited on page 33.

[Bedel et al., 2008b] Bedel, O., Ferré, S., Ridoux, O., and Quesseveur, E.
(2008b). GEOLIS: A logical information system for geographical data.
Revue Internationale de Géomatique, 17(3-4):371–390. Cited on page 33.

[Bedel et al., 2006] Bedel, O., Ridoux, O., and Quesseveur, E. (2006). Com-
bining logical information system and OpenGIS tools for geographical data
exploration. In Int. Conf. Free and OpenSource Sofware for Geoinformat-
ics. Cited on page 33.

[Belleannée et al., 1999] Belleannée, C., Brisset, P., and Ridoux, O. (1999).
A pragmatic reconstruction of λprolog. The Journal of Logic Programming,
41:67–102. Cited on page 32.

BIBLIOGRAPHY 63

[Berners-Lee et al., 1992] Berners-Lee, T., Cailliau, R., Groff, J.-F., and
Pollermann, B. (1992). World-Wide Web: the information universe. In-
ternet Research, 2(1):52–58. Cited on page 16.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O.
(2001). The semantic web. Scientific American. Cited on page 9.

[Bernstein and Kaufmann, 2006] Bernstein, A. and Kaufmann, E. (2006).
GINO - a guided input natural language ontology editor. In et al., I. F. C.,
editor, Int. Semantic Web Conf., LNCS 4273, pages 144–157. Springer.
Cited on page 41.

[Bernstein et al., 2005] Bernstein, A., Kaufmann, E., and Kaiser, C. (2005).
Querying the semantic web with Ginseng: A guided input natural language
search engine. In Work. Information Technology and Systems (WITS).
Cited on pages 15 and 48.

[Bollacker et al., 2008] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and
Taylor, J. (2008). Freebase: a collaboratively created graph database for
structuring human knowledge. In ACM SIGMOD Int. Conf. Management
of data, pages 1247–1250. ACM. Cited on page 42.

[Bosc and Pivert, 1995] Bosc, P. and Pivert, O. (1995). SQLf: a relational
database language for fuzzy querying. Transactions on Fuzzy Systems,
3(1):1–17. Cited on page 15.

[Buffa et al., 2008] Buffa, M., Gandon, F., Ereteo, G., Sander, P., and Faron,
C. (2008). Sweetwiki: A semantic wiki. Web Semantics: Science, Services
and Agents on the World Wide Web, 6(1):84–97. Cited on page 42.

[Bush, 1945] Bush, V. (1945). As we may think. The atlantic monthly,
176(1):101–108. Cited on pages 16 and 59.

[Cabrio et al., 2012] Cabrio, E., Cojan, J., Aprosio, A. P., Magnini, B.,
Lavelli, A., and Gandon, F. (2012). QAKiS: an open domain QA system
based on relational patterns. In Glimm, B. and Huynh, D., editors, Int.
Semantic Web Conf. (Posters & Demos), volume 914 of CEUR Workshop
Proceedings. Cited on page 14.

[Carpineto and Romano, 1996] Carpineto, C. and Romano, G. (1996). A lat-
tice conceptual clustering system and its application to browsing retrieval.
Machine Learning, 24(2):95–122. Cited on page 18.

64 BIBLIOGRAPHY

[Cellier et al., 2011] Cellier, P., Ferré, S., Ducassé, M., and Charnois, T.
(2011). Partial orders and logical concept analysis to explore patterns
extracted by data mining. In Int. Conf. on Conceptual Structures for
Discovering Knowledge, pages 77–90. Springer. Cited on page 59.

[Chailloux et al., 2000] Chailloux, E., Manoury, P., and Pagano, B. (2000).
Developping Applications with Objective Caml. O’Reilly. Cited on page
32.

[Chaudron and Maille, 2000] Chaudron, L. and Maille, N. (2000). General-
ized formal concept analysis. In Mineau, G. and Ganter, B., editors, Int.
Conf. Conceptual Structures, LNCS 1867. Springer. Cited on page 31.

[Cimiano et al., 2013] Cimiano, P., Lopez, V., Unger, C., Cabrio, E., Ngomo,
A.-C. N., and Walter, S. (2013). Multilingual question answering over
linked data (QALD-3): Lab overview. In Forner, P., Müller, H., Paredes,
R., Rosso, P., and Stein, B., editors, Information Access Evaluation. Mul-
tilinguality, Multimodality, and Visualization - Int. Conf. CLEF Initiative,
LNCS 8138, pages 321–332. Springer. Cited on pages 48 and 53.

[Codd et al., 1993] Codd, E., Codd, S., and Salley, C. (1993). Providing
OLAP (On-line Analytical Processing) to User-Analysts: An IT Mandate.
Codd & Date, Inc, San Jose. Cited on page 22.

[Codd, 1970] Codd, E. F. (1970). A relational model of data for large shared
data banks. Communications of the ACM, 13(6):377–387. Cited on pages
9 and 22.

[Corby et al., 2006] Corby, O., Dieng-Kuntz, R., Gandon, F., and Faron-
Zucker, C. (2006). Searching the semantic web: Approximate query pro-
cessing based on ontologies. Intelligent Systems, 21(1):20–27. Cited on
page 15.

[Damljanovic et al., 2010] Damljanovic, D., Agatonovic, M., and Cunning-
ham, H. (2010). Identification of the question focus: Combining syntactic
analysis and ontology-based lookup through the user interaction. In Lan-
guage Resources and Evaluation Conference (LREC). ELRA. Cited on
page 14.

[Davies et al., 2010] Davies, S., Donaher, C., and Hatfield, J. (2010). Making
the Semantic Web usable: interface principles to empower the layperson.
Journal of Digital Information, 12(1). Cited on page 42.

BIBLIOGRAPHY 65

[de Raedt, 2002] de Raedt, L. (2002). A perspective on inductive databases.
SIGKDD Explorations, 4(2):69–77. Cited on page 59.

[Dolques et al., 2010] Dolques, X., Huchard, M., Nebut, C., and Reitz, P.
(2010). Learning transformation rules from transformation examples: An
approach based on relational concept analysis. In Enterprise Distributed
Object Computing Conference Workshops (EDOCW), pages 27–32. IEEE.
Cited on page 38.

[Ducassé and Cellier, 2014] Ducassé, M. and Cellier, P. (2014). Fair and fast
convergence on islands of agreement in multicriteria group decision making
by logical navigation. Group Decision and Negotiation. To appear. Cited
on page 56.

[Ducassé and Ferré, 2008] Ducassé, M. and Ferré, S. (2008). Fair(er) and
(almost) serene committee meetings with logical and formal concept anal-
ysis. In Eklund, P. and Haemmerlé, O., editors, Proceedings of the Inter-
national Conference on Conceptual Structures, LNAI 5113, pages 217–230.
Springer. Cited on pages 34 and 56.

[Ducassé et al., 2011] Ducassé, M., Ferré, S., and Cellier, P. (2011). Building
up shared knowledge with logical information systems. In Napoli, A. and
Vychodil, V., editors, Proceedings of the 8th International Conference on
Concept Lattices and their Applications, pages 31–42. INRIA. ISBN 978-
2-905267-78-8. Cited on page 37.

[Ducrou and Eklund, 2008] Ducrou, J. and Eklund, P. (2008). An intelli-
gent user interface for browsing and search MPEG-7 images using con-
cept lattices. Int. J. Foundations of Computer Science, World Scientific,
19(2):359–381. Cited on page 18.

[Ferré, 2002] Ferré, S. (2002). Systèmes d’information logiques : un
paradigme logico-contextuel pour interroger, naviguer et apprendre. Thèse
d’université, Université de Rennes 1. Accessible en ligne à l’adresse
http://www.irisa.fr/bibli/publi/theses/theses02.html. Cited on page 30.

[Ferré, 2006] Ferré, S. (2006). Negation, opposition, and possibility in logi-
cal concept analysis. In Missaoui, R. and Schmid, J., editors, Int. Conf.
Formal Concept Analysis, LNCS 3874, pages 130–145. Springer. Cited on
page 30.

[Ferré, 2008] Ferré, S. (2008). Agile browsing of a document collection with
dynamic taxonomies. In Tjoa, A. M. and Wagner, R. R., editors, DEXA

66 BIBLIOGRAPHY

Int. Work. Dynamic Taxonomies and Faceted Search (FIND), pages 377–
381. IEEE Computer Society. Cited on page 31.

[Ferré, 2009a] Ferré, S. (2009a). Camelis: a logical information system to
organize and browse a collection of documents. Int. J. General Systems,
38(4):379–403. Cited on pages 30, 32, and 127.

[Ferré, 2009b] Ferré, S. (2009b). Efficient browsing and update of complex
data based on the decomposition of contexts. In Rudolph, S., Dau, F., and
Kuznetsov, S. O., editors, Int. Conf. Conceptual Structures, LNCS 5662,
pages 159–172. Springer. Cited on page 31.

[Ferré, 2010] Ferré, S. (2010). Conceptual navigation in RDF graphs with
SPARQL-like queries. In Kwuida, L. and Sertkaya, B., editors, Int. Conf.
Formal Concept Analysis, LNCS 5986, pages 193–208. Springer. Cited on
page 38.

[Ferré, 2012] Ferré, S. (2012). SQUALL: a controlled natural language for
querying and updating RDF graphs. In Kuhn, T. and Fuchs, N., editors,
Controlled Natural Languages, LNCS 7427, pages 11–25. Springer. Cited
on pages 47 and 173.

[Ferré, 2013] Ferré, S. (2013). Squall: A controlled natural language as ex-
pressive as SPARQL 1.1. In Métais, E., Meziane, F., Saraee, M., Sug-
umaran, V., and Vadera, S., editors, Int. Conf. Applications of Natural
Language to Information System (NLDB), LNCS 7934, pages 114–125.
Springer. Cited on pages 47 and 173.

[Ferré, 2014] Ferré, S. (2014). SQUALL: The expressiveness of SPARQL
1.1 made available as a controlled natural language. Data & Knowledge
Engineering. Cited on page 173.

[Ferré et al., 2012] Ferré, S., Allard, P., and Ridoux, O. (2012). Cubes of con-
cepts: Multi-dimensional exploration of multi-valued contexts. In Dom-
enach, F., Ignatov, D. I., and Poelmans, J., editors, Int. Conf. Formal
Concept Analysis, LNCS 7278, pages 112–127. Springer. Cited on page
35.

[Ferré and Hermann, 2011] Ferré, S. and Hermann, A. (2011). Semantic
search: Reconciling expressive querying and exploratory search. In Aroyo,
L. and Welty, C., editors, Int. Semantic Web Conf., LNCS 7031, pages
177–192. Springer. Cited on pages 38 and 40.

BIBLIOGRAPHY 67

[Ferré and Hermann, 2012] Ferré, S. and Hermann, A. (2012). Reconcil-
ing faceted search and query languages for the Semantic Web. Int. J.
Metadata, Semantics and Ontologies, 7(1):37–54. Cited on pages 22, 38,
and 153.

[Ferré and King, 2004] Ferré, S. and King, R. D. (2004). BLID: an applica-
tion of logical information systems to bioinformatics. In Eklund, P., editor,
Int. Conf. Formal Concept Analysis, LNCS 2961, pages 47–54. Springer.
Cited on page 31.

[Ferré and King, 2005] Ferré, S. and King, R. D. (2005). A dichotomic search
algorithm for mining and learning in domain-specific logics. Fundamenta
Informaticae – Special Issue on Advances in Mining Graphs, Trees and
Sequences, 66(1-2):1–32. Cited on page 54.

[Ferré and King, 2006] Ferré, S. and King, R. D. (2006). Finding motifs
in protein secondary structure for use in function prediction. Journal of
Computational Biology, 13(3):719–731. Cited on page 54.

[Ferré and Ridoux, 2000a] Ferré, S. and Ridoux, O. (2000a). A file system
based on concept analysis. In Sagiv, Y., editor, International Conference
on Rules and Objects in Databases, number 1861 in Lecture Notes in Com-
puter Science, pages 1033–1047. Springer. Cited on page 30.

[Ferré and Ridoux, 2000b] Ferré, S. and Ridoux, O. (2000b). A logical gen-
eralization of formal concept analysis. In Mineau, G. and Ganter, B.,
editors, International Conference on Conceptual Structures, number 1867
in Lecture Notes in Computer Science, pages 371–384. Springer. Cited on
page 30.

[Ferré and Ridoux, 2001a] Ferré, S. and Ridoux, O. (2001a). A framework
for developing embeddable customized logics. In Pettorossi, A., editor, Int.
Work. Logic-based Program Synthesis and Transformation, LNCS 2372,
pages 191–215. Springer. Cited on page 30.

[Ferré and Ridoux, 2001b] Ferré, S. and Ridoux, O. (2001b). Searching for
objects and properties with logical concept analysis. In Delugach, H. S. and
Stumme, G., editors, International Conference on Conceptual Structures,
LNCS 2120, pages 187–201. Springer. Cited on page 30.

[Ferré and Ridoux, 2002] Ferré, S. and Ridoux, O. (2002). The use of asso-
ciative concepts in the incremental building of a logical context. In U. Priss,
D. Corbett, G. A., editor, Int. Conf. Conceptual Structures, LNCS 2393,
pages 299–313. Springer. Cited on page 42.

68 BIBLIOGRAPHY

[Ferré and Ridoux, 2004] Ferré, S. and Ridoux, O. (2004). An introduction
to logical information systems. Information Processing & Management,
40(3):383–419. Cited on pages 30, 32, and 81.

[Ferré and Ridoux, 2006] Ferré, S. and Ridoux, O. (2006). Logic functors:
A toolbox of components for building customized and embeddable logics.
Research Report RR-5871, Irisa. Cited on page 30.

[Ferré and Ridoux, 2007] Ferré, S. and Ridoux, O. (2007). Logical infor-
mation systems: from taxonomies to logics. In DEXA Work. Dynamic
Taxonomies and Faceted Search (FIND), pages 212–216. IEEE Computer
Society. Cited on page 31.

[Ferré et al., 2005] Ferré, S., Ridoux, O., and Sigonneau, B. (2005). Arbi-
trary relations in formal concept analysis and logical information systems.
In ICCS, LNCS 3596, pages 166–180. Springer. Cited on page 38.

[Ferré and Rudolph, 2012] Ferré, S. and Rudolph, S. (2012). Advocatus di-
aboli - exploratory enrichment of ontologies with negative constraints. In
ten Teije et al., A., editor, Int. Conf. Knowledge Engineering and Knowl-
edge Management (EKAW), LNAI 7603, pages 42–56. Springer. Cited on
page 45.

[Foret and Ferré, 2010] Foret, A. and Ferré, S. (2010). On categorial gram-
mars as logical information systems. In Kwuida, L. and Sertkaya, B.,
editors, Int. Conf. Formal Concept Analysis, LNCS 5986, pages 225–240.
Springer. Cited on page 31.

[Fu et al., 2004] Fu, H., Fu, H., Njiwoua, P., and Mephu Nguifo, E. (2004).
A comparative study of fca-based supervised classification algorithms. In
Int. Conf. Formal Concept Analysis, LNCS 2961, pages 313–320. Springer.
Cited on page 54.

[Fuchs et al., 1999] Fuchs, N., Schwertel, U., and Schwitter, R. (1999). At-
tempto controlled english not just another logic specification language. In
Logic-based program synthesis and transformation (LOPSTR), pages 1–20.
Springer. Cited on page 14.

[Fuchs et al., 2006] Fuchs, N. E., Kaljurand, K., and Schneider, G. (2006).
Attempto Controlled English meets the challenges of knowledge represen-
tation, reasoning, interoperability and user interfaces. In Sutcliffe, G. and
Goebel, R., editors, FLAIRS Conference, pages 664–669. AAAI Press.
Cited on pages 14, 41, and 48.

BIBLIOGRAPHY 69

[Ganter and Kuznetsov, 2001] Ganter, B. and Kuznetsov, S. (2001). Pat-
tern structures and their projections. In Delugach, H. S. and Stumme,
G., editors, Int. Conf. Conceptual Structures, LNCS 2120, pages 129–142.
Springer. Cited on page 31.

[Ganter and Wille, 1999] Ganter, B. and Wille, R. (1999). Formal Concept
Analysis — Mathematical Foundations. Springer. Cited on page 17.

[Gemmell et al., 2006] Gemmell, J., Bell, G., and Lueder, R. (2006).
Mylifebits: a personal database for everything. Commun. ACM, 49(1):88–
95. Cited on page 59.

[Godin et al., 1993] Godin, R., Missaoui, R., and April, A. (1993). Experi-
mental comparison of navigation in a Galois lattice with conventional infor-
mation retrieval methods. International Journal of Man-Machine Studies,
38(5):747–767. Cited on page 17.

[Guérin et al., 2012] Guérin, C., Bertet, K., and Revel, A. (2012). An ap-
proach to semantic content based image retrieval using logical concept
analysis. application to comicbooks. In Int. Work. What can FCA do
for Artificial Intelligence? (FCA4AI), co-located with ECAI, pages 53–56.
Cited on page 40.

[Guillas et al., 2008] Guillas, S., Bertet, K., Visani, M., Ogier, J.-M., and
Girard, N. (2008). Some links between decision tree and dichotomic lattice.
In Belohlavek, R. and Kuznetsov, S., editors, Int. Conf. Concept Lattices
and Their Applications (CLA), CEUR 433, pages 193–205. Cited on page
18.

[Guyonvarch et al., 2013] Guyonvarch, J., Ferré, S., and Ducassé, M. (2013).
Scalable Query-based Faceted Search on top of SPARQL Endpoints for
Guided and Expressive Semantic Search. Research report PI-2009, LIS -
IRISA. Cited on pages 40 and 56.

[Hacene et al., 2007] Hacene, M. R., Huchard, M., Napoli, A., and Valtchev,
P. (2007). A proposal for combining formal concept analysis and descrip-
tion logics for mining relational data. In Kuznetsov, S. O. and Schmidt,
S., editors, Int. Conf. Formal Concept Analysis, LNCS 4390, pages 51–65.
Springer. Cited on page 38.

[Haller, 2010] Haller, H. (2010). QuiKey – an efficient semantic command
line. In Knowledge Engineering and Management by the Masses (EKAW),
pages 473–482. Springer. Cited on page 41.

70 BIBLIOGRAPHY

[Harth, 2010] Harth, A. (2010). VisiNav: A system for visual search and
navigation on web data. J. Web Semantics, 8(4):348–354. Cited on page
21.

[Hearst et al., 2002] Hearst, M., Elliott, A., English, J., Sinha, R., Swearin-
gen, K., and Yee, K.-P. (2002). Finding the flow in web site search. Com-
munications of the ACM, 45(9):42–49. Cited on pages 20 and 31.

[Heim et al., 2010] Heim, P., Ertl, T., and Ziegler, J. (2010). Facet graphs:
Complex semantic querying made easy. In et al., L. A., editor, Extended
Semantic Web Conference, LNCS 6088, pages 288–302. Springer. Cited
on page 21.

[Hermann, 2012] Hermann, A. (2012). Création et mise à jour d’objets dans
une base de connaissances. PhD thesis, Thèse de l’INSA Rennes - École
doctorale MATISSE. supervised by M. Ducassé and S. Ferré. Cited on
page 41.

[Hermann et al., 2012] Hermann, A., Ferré, S., and Ducassé, M. (2012).
An interactive guidance process supporting consistent updates of RDFS
graphs. In ten Teije et al., A., editor, Int. Conf. Knowledge Engineer-
ing and Knowledge Management (EKAW), LNAI 7603, pages 185–199.
Springer. Cited on page 42.

[Hildebrand et al., 2006] Hildebrand, M., van Ossenbruggen, J., and Hard-
man, L. (2006). /facet: A browser for heterogeneous semantic web reposi-
tories. In et al, I. C., editor, Int. Semantic Web Conf., LNCS 4273, pages
272–285. Springer. Cited on page 21.

[Hitzler et al., 2009] Hitzler, P., Krötzsch, M., and Rudolph, S. (2009).
Foundations of Semantic Web Technologies. Chapman & Hall/CRC. Cited
on pages 9 and 16.

[Hurtado et al., 2008] Hurtado, C., Poulovassilis, A., and Wood, P. (2008).
Query relaxation in RDF. In Spaccapietra, S., editor, Journal on Data
Semantics X, LNCS 4900, pages 31–61. Springer. Cited on page 15.

[Hyvönen and Mäkelä, 2006] Hyvönen, E. and Mäkelä, E. (2006). Semantic
autocompletion. In The Semantic Web (ASWC), pages 739–751. Springer.
Cited on page 15.

[Hyvönen et al., 2005] Hyvönen, E., Mäkelä, E., Salminen, M., Valo, A., Vil-
janen, K., Saarela, S., Junnila, M., and Kettula, S. (2005). Museumfinland

BIBLIOGRAPHY 71

- finnish museums on the semantic web. Web Semantics: Science, Services
and Agents on the World Wide Web, 3(2):224–241. Cited on page 21.

[Hyvönen et al., 2002] Hyvönen, E., Styrman, A., and Saarela, S. (2002).
Ontology-based image retrieval. In Hyvönen, E. and Klemettinen, M.,
editors, Towards the Semantic Web and Web Services, pages 15–27. XML
Finland Association. Cited on page 20.

[Kaljurand and Kuhn, 2013] Kaljurand, K. and Kuhn, T. (2013). A multi-
lingual semantic wiki based on attempto controlled english and grammat-
ical framework. In The Semantic Web: Semantics and Big Data, pages
427–441. Springer. Cited on page 42.

[Kämpgen and Harth, 2011] Kämpgen, B. and Harth, A. (2011). Transform-
ing statistical linked data for use in OLAP systems. In Int. Conf. Semantic
systems, pages 33–40. ACM. Cited on page 51.

[Kaufmann and Bernstein, 2010] Kaufmann, E. and Bernstein, A. (2010).
Evaluating the usability of natural language query languages and interfaces
to semantic web knowledge bases. J. Web Semantics, 8(4):377–393. Cited
on pages 13 and 15.

[Kuhn, 2009] Kuhn, T. (2009). How controlled English can improve semantic
wikis. In Semantic Wiki Work. (SemWiki) at the Eu. Semantic Web Conf.
(ESWC), volume 464. CEUR-WS. Cited on page 41.

[Kuhn, 2013] Kuhn, T. (2013). A survey and classification of controlled nat-
ural languages. Computational Linguistics. Cited on pages 14 and 48.

[Kyzirakos et al., 2012] Kyzirakos, K., Karpathiotakis, M., and Koubarakis,
M. (2012). Strabon: A semantic geospatial DBMS. In Int. Semantic Web
Conf., pages 295–311. Springer. Cited on page 52.

[Lamming et al., 1994] Lamming, M., Brown, P., Carter, K., Eldridge, M.,
Flynn, M., Louie, G., Robinson, P., and Sellen, A. (1994). The design of a
human memory prosthesis. The Computer Journal, 37(3):153–163. Cited
on page 59.

[Lehmann et al., 2013] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kon-
tokostas, D., Mendes, P. N., Hellmann, S., Morsey, M., van Kleef, P., Auer,
S., and Bizer, C. (2013). DBpedia - a large-scale, multilingual knowledge
base extracted from wikipedia. Semantic Web Journal. Under review.
Cited on page 10.

72 BIBLIOGRAPHY

[Lindig, 1995] Lindig, C. (1995). Concept-based component retrieval. In
IJCAI Work. Formal Approaches to the Reuse of Plans, Proofs, and Pro-
grams. Morgan Kaufmann. Cited on page 18.

[Lopez et al., 2012] Lopez, V., Fernández, M., Motta, E., and Stieler, N.
(2012). PowerAqua: Supporting users in querying and exploring the se-
mantic web. Semantic Web, 3(3):249–265. Cited on page 14.

[Lopez et al., 2011] Lopez, V., Uren, V. S., Sabou, M., and Motta, E. (2011).
Is question answering fit for the semantic web?: A survey. Semantic Web,
2(2):125–155. Cited on page 13.

[Lu et al., 2007] Lu, J., Ma, L., Zhang, L., Brunner, J., Wang, C., Pan, Y.,
and Yu, Y. (2007). SOR: A practical system for ontology storage, reasoning
and search (demo). In Int. Conf. Very Large Databases (VLDB), VLDB
Endowment, pages 1402–1405. ACM. Cited on page 21.

[Mäkelä et al., 2006] Mäkelä, E., Hyvönen, E., and Saarela, S. (2006). On-
togator - a semantic view-based search engine service for web applications.
In et al., I. F. C., editor, Int. Semantic Web Conf., LNCS 4273, pages 847–
860. Springer. Cited on page 21.

[Marchionini, 2006] Marchionini, G. (2006). Exploratory search: from find-
ing to understanding. Communications of the ACM, 49(4):41–46. Cited
on page 49.

[McCrae et al., 2011] McCrae, J., Spohr, D., and Cimiano, P. (2011). Link-
ing lexical resources and ontologies on the semantic web with lemon. In
Extended Semantic Web Conference (ESWC), LNCS 6643, pages 245–259.
Springer. Cited on page 53.

[Messai et al., 2008] Messai, N., Devignes, M.-D., Napoli, A., and Smäıl-
Tabbone, M. (2008). Extending attribute dependencies for lattice-based
querying and navigation. In Eklund, P. W. and Haemmerlé, O., editors,
Int. Conf. Conceptual Structures, LNCS 5113, pages 189–202. Springer.
Cited on page 18.

[Miller and Nadathur, 1986] Miller, D. A. and Nadathur, G. (1986). Higher-
order logic programming. In Shapiro, E., editor, In Third Int. Conf. Logic
Programming, LNCS, pages 448–462, London. Springer-Verlag. Cited on
page 32.

[Montague, 1970] Montague, R. (1970). Universal grammar. Theoria,
36:373–398. Cited on page 47.

BIBLIOGRAPHY 73

[Muggleton and Raedt, 1994] Muggleton, S. and Raedt, L. D. (1994). In-
ductive logic programming: Theory and methods. Journal of Logic Pro-
gramming, 19,20:629–679. Cited on page 54.

[Ngomo et al., 2013] Ngomo, A.-C. N., Bühmann, L., Unger, C., Lehmann,
J., and Gerber, D. (2013). Sorry, I don’t speak SPARQL: translating
SPARQL queries into natural language. In WWW, pages 977–988. Cited
on page 53.

[Noy et al., 2001] Noy, N., Sintek, M., Decker, S., Crubezy, M., Fergerson,
R., and Musen, M. (2001). Creating semantic web contents with Protege-
2000. Intelligent Systems, IEEE, 16(2):60–71. Cited on page 41.

[Oren et al., 2006] Oren, E., Delbru, R., and Decker, S. (2006). Extending
faceted navigation to RDF data. In et al, I. C., editor, Int. Semantic Web
Conf., LNCS 4273, pages 559–572. Springer. Cited on page 21.

[Padioleau, 2005] Padioleau, Y. (2005). Logic File System, un système de
fichier basé sur la logique. Thèse d’université, Université de Rennes 1.
supervised by O. Ridoux. Cited on page 33.

[Padioleau and Ridoux, 2003] Padioleau, Y. and Ridoux, O. (2003). A
logic file system. In Usenix Annual Technical Conference, pages 99–112.
USENIX. Cited on page 33.

[Padioleau and Ridoux, 2005] Padioleau, Y. and Ridoux, O. (2005). A parts-
of-file file system. In USENIX Annual Technical Conference, General Track
(Short Paper). Cited on page 33.

[Pedersen and Jensen, 2001] Pedersen, T. B. and Jensen, C. S. (2001). Mul-
tidimensional database technology. Computer, 34(12):40–46. Cited on
page 22.

[Romano, 2008] Romano, P. (2008). Automation of in-silico data analysis
processes through workflow management systems. Briefings in Bioinfor-
matics, 9(1):57–68. Cited on page 57.

[Rouane-Hacene et al., 2013] Rouane-Hacene, M., Huchard, M., Napoli, A.,
and Valtchev, P. (2013). Relational concept analysis: mining concept
lattices from multi-relational data. Annals of Mathematics and Artificial
Intelligence, 67(1):81–108. Cited on page 38.

[Sacco, 2000] Sacco, G. M. (2000). Dynamic taxonomies: A model for large
information bases. IEEE Transactions Knowledge and Data Engineering,
12(3):468–479. Cited on page 31.

74 BIBLIOGRAPHY

[Sacco, 2008] Sacco, G. M. (2008). Rosso tiziano: A system for user-centered
exploration and discovery in large image information bases. In Tjoa, A. M.
and Wagner, R., editors, DEXA Work. Dynamic Taxonomy and Faceted
Search (FIND), pages 297–311. IEEE Computer Society. Cited on page
20.

[Sacco and Tzitzikas, 2009] Sacco, G. M. and Tzitzikas, Y., editors (2009).
Dynamic taxonomies and faceted search. The information retrieval series.
Springer. Cited on pages 20, 24, and 31.

[Schwitter et al., 2008] Schwitter, R., Kaljurand, K., Cregan, A., Dolbear,
C., and Hart, G. (2008). A comparison of three controlled natural lan-
guages for OWL 1.1. In Clark, K. and Patel-Schneider, P. F., editors,
Workshop on OWL: Experiences and Directions (OWLED), volume 258.
CEUR-WS. Cited on page 48.

[Shearer et al., 2008] Shearer, R., Motik, B., and Horrocks, I. (2008). Her-
mit: A highly-efficient OWL reasoner. In OWLED, volume 432. Cited on
page 46.

[Smits et al., 2013a] Smits, G., Pivert, O., and Girault, T. (2013a). Towards
reconciling expressivity, efficiency and user-friendliness in database flexible
querying. In Int. Conf. Fuzzy Systems (FUZZ), pages 1–8. IEEE. Cited
on page 15.

[Smits et al., 2013b] Smits, G., Pivert, O., Jaudoin, H., and Paulus, F.
(2013b). An autocompletion mechanism for enriched keyword queries to
RDF data sources. In Flexible Query Answering Systems, LNCS 8132,
pages 601–612. Springer. Cited on pages 15 and 48.

[Smits et al., 2014] Smits, G., Pivert, O., Jaudoin, H., and Paulus, F. (2014).
AGGREGO SEARCH: Interactive keyword query construction (demo). In
Int. Conf. Extending Database Technology, pages 636–639. Cited on page
48.

[SPARQL11, 2012] SPARQL11 (2012). SPARQL 1.1 query language.
http://www.w3.org/TR/sparql11-query/, W3C Recommendation.
Cited on pages 10, 13, and 14.

[Suominen et al., 2007] Suominen, O., Viljanen, K., and Hyvönen, E. (2007).
User-centric faceted search for semantic portals. In Franconi, E., Kifer, M.,
and May, W., editors, Eu. Semantic Web Conf., LNCS 4519, pages 356–
370. Springer. Cited on page 21.

BIBLIOGRAPHY 75

[Tarr et al., 1999] Tarr, P., Ossher, H., Harrison, W., and Sutton, S. (1999).
N degrees of separation: Multi-dimentional separation of concerns. In
ICSE, pages 107–119. IEEE Computer Society. Cited on page 17.

[Verbeke, 1973] Verbeke, C. (1973). Caterpillar fundamental English. Train-
ing & Development Journal, 27(2):36–40. Cited on page 14.

[Visani et al., 2011] Visani, M., Bertet, K., and Ogier, J.-M. (2011). Nav-
igala: an original symbol classifier based on navigation through a galois
lattice. Int. J. Pattern Recognition and Artificial Intelligence, 25(04):449–
473. Cited on page 54.

[Völkel et al., 2006] Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., and
Studer, R. (2006). Semantic wikipedia. In Int. Conf. World Wide Web,
pages 585–594. ACM. Cited on page 42.

[Völker and Rudolph, 2008] Völker, J. and Rudolph, S. (2008). Lexico-
logical acquisition of OWL-DL axioms. In Medina, R. and Obiedkov,
S. A., editors, Int. Conf. Formal Concept Analysis, LNCS 4933, pages
62–77. Springer. Cited on page 47.

[Walter et al., 2013] Walter, S., Unger, C., and Cimiano, P. (2013). A
corpus-based approach for the induction of ontology lexica. In Int. Conf.
Applications of Natural Languages to Information Systems (NLDB), LNCS
7934, pages 102–113. Springer. Cited on page 53.

[Wille, 1982] Wille, R. (1982). Ordered Sets, chapter Restructuring lattice
theory: an approach based on hierarchies of concepts, pages 445–470. Rei-
del. Cited on page 17.

[XQuery3, 2013] XQuery3 (2013). XQuery 3.0: An XML query language.
http://www.w3.org/TR/xquery-30/, W3C Proposed Recommendation.
Cited on page 13.

76 BIBLIOGRAPHY

Index

aggregation, 22, 35, 41, 50
application

bibliography, 36
bioinformatics, 57
comicbooks, 40, 43
genealogical data, 40
geographical data, 33, 36, 59
group decision, 33, 36, 56
ontology completion, 44
software engineering, 33, 54

approximate answers, 14, 42
association rule, 37
auto-completion, 15, 41, 50

Business Intelligence (BI), 22, 34, 50

Case-Based Reasoning (CBR), 54
completeness, 11, 29, 39, 45
concept lattice, 17, 31, 38, 53
conceptual navigation, 27, 48
controlled natural language, 14, 41,

46, 50
cube, 22, 34, 35, 51

data-mining, 54, 58
DBpedia, 10, 40, 47
disjunction, 30, 32, 38, 45
dominant decomposition, 17
dynamic taxonomy, 31

exploratory search, 48
expressivity, 10, 12, 15, 19, 23, 29, 38,

40, 47, 48
extension, 11, 18, 27, 28, 54, 58

faceted search, 20, 31, 38
federated search, 56
file system, 16, 32
focus, 38, 40, 48
Formal Concept Analysis (FCA), 17,

27, 38, 46, 53
formal language, 13
functional dependency, 37

Geographical Information System
(GIS), 33, 51

graph, 15
graphical editor, 41
guidance, 12, 14, 18, 23, 29, 43

hierarchy, 16, 22, 37
hypertext, 15

index, 28, 31
Inductive Database (IDB), 58
Inductive Logic Programming (ILP),

53
information access, 9
intension, 11, 18, 27, 28, 58
interactive view, 19, 29, 41, 48

knowledge base, 27

lexicon, 43, 47, 53
Linked Open Data (LOD), 10, 16, 44
logic, 30, 44, 54
logic functor, 30
Logical Concept Analysis (LCA), 30,

34
Logical Information System (LIS), 30

77

78 INDEX

machine learning, 53
Memex, 15, 59
memory prosthesis, 59
Model-View-Controller (MVC), 19,

29
multicriteria decision, 56

natural language, 13, 48, 49, 52, 56
navigation link, 15, 28
navigation structure, 15, 29, 41, 48
negation, 30, 32, 38, 45

OLAP, 22, 34
ontology, 44, 48

people
Alice Hermann, 40, 41
Annie Foret, 31
Benjamin Sigonneau, 33, 34
Clément Guérin, 40
Erwan Quesseveur, 58
Joris Guyonvarc’h, 40, 55
Mireille Ducassé, 56, 57
Mouhamadou Ba, 57
Olivier Bedel, 33
Olivier Ridoux, 58, 59
Peggy Cellier, 56, 58
Pierre Allard, 34
Ross D. King, 31, 54
Sebastian Rudolph, 44
Soazig Bars, 31
Soda M. Cissé, 58
Véronique Abily, 33
Vincent Alleaume, 33
Yoann Padioleau, 32
Yves Bekkers, 34

pizza, 46

query builder, 15
query language, 10, 13, 27, 29, 37, 41,

46, 48, 58

Query-based Faceted Search (QFS),
38, 42

RDF, 16, 39, 46, 55
readability, 12, 15, 18, 23, 29, 40, 47,

49
Relational Concept Analysis (RCA),

38
reliability, 12

safeness, 11, 12, 15, 19, 24, 29, 39, 44,
45

scalability, 12, 19, 24, 29, 40, 50, 55
Semantic Web, 16, 21, 41
software

Abilis, 33, 36, 50, 51
Camelis, 32
Geolis, 33
LisFS, 32
PEW, 44
Portalis, 33
Sewelis, 40, 42, 44, 50
Sparklis, 40
squall2sparql, 47

SPARQL, 13, 21, 23, 37, 40, 41, 47,
50, 51

SPARQL endpoint, 40, 55
spatial geometry, 33
specificity, 12, 15, 18, 24, 43
SQL, 13, 37, 41
Squall, 46

update language, 41, 46
usability, 10, 12, 18, 23, 29, 43, 48

visualization, 23, 37, 51, 56

workflow, 57
World Wide Web, 15

XQuery, 13

Acronyms

ACN Abstract Conceptual Navigation

BI Business Intelligence

CNL Controlled Natural Language

DL Description Logic

FCA Formal Concept Analysis

FS Faceted Search

GIS Geographical Information System

LCA Logical Concept Analysis

LIS Logical Information System

LOD Linked Open Data

NL Natural Language

NLI Natural Language Interface

NLP Natural Language Processing

OLAP On-Line Analytical Processing

OWL Web Ontology Language

QA Question Answering

QFS Query-based Faceted Search

RCA Relational Concept Analysis

RDB Relational Databases

79

80 INDEX

RDF Resource Description Framework

SW Semantic Web

Appendix A

Introduction to Logical
Information Systems (2004)

This journal article [Ferré and Ridoux, 2004] has been published in In-
formation Processing & Management in 2004. It summarizes the different
contributions of my PhD: Logical Concept Analysis (LCA), querying and
guided navigation based on logical concept lattices, non-monotonic logical
update of logical contexts, data mining and machine learning for the guided
update of logical contexts, and implementation aspects including logic func-
tors.

81

Introduction to Logical Information Systems

S. Ferré a,1, O. Ridoux b

aUWA, Penglais, Aberystwyth SY23 3DB, UK,
Tel: +44 1970 621922, Fax: +44 1970 622455,

Email: sbf@aber.ac.uk
bIrisa/IFSIC, Campus de Beaulieu, 35042 Rennes cedex, France,

Tel: +33 2 99 84 73 30, Fax: +33 2 99 84 71 71,
Email: ridoux@irisa.fr

Abstract

Logical Information Systems (LIS) use logic in a uniform way to describe their
contents, to query it, to navigate through it, to analyze it, and to maintain it.
They can be given an abstract specification that does not depend on the choice
of a particular logic, and concrete instances can be obtained by instantiating this
specification with a particular logic. In fact, a logic plays in a LIS the role of a
schema in data-bases. We present the principles of logical information systems, the
constraints they impose on the expression of logics, and hints for their effective
implementation.

Key words: information systems, information search and retrieval, query
formulation, representation languages, deduction and theorem proving.

1 Introduction

Several researchers have recognized the name problem in information sys-
tems (Gifford, Jouvelot, Sheldon, and O’Toole, 1991; Gopal and Manber,
1999). In these systems, things are given names and very often a thing has
only a few names (frequently only one). For instance, in the most rudimen-
tary information systems, like hierarchical file systems, a thing is a file and its
name is the only path that leads from the root to the file.

1 This work was achieved at Irisa (Rennes, France), and funded by a scholarship
from CNRS and Région Bretagne.

Preprint submitted to Elsevier Science 13th January 2003

The problem with having only a few names is that they must be very carefully
chosen to tackle for all future usages of the things. Experience shows that this
is impossible to do for a wide range of future usages. For instance, there is no
hierarchical organization of many pieces of software that fits all the needs of
software development: programming, testing, documenting, debugging, etc. A
non-IT example is a cook-book. Cook-books are often organized following the
course of a meal, and it is thus very difficult to search for a recipe according
to other criteria, like the (un)availability of a oven, or a diet constraint. Note
that even electronic cook-books often follow this structure. Electronic or not,
the classical solution to this problem is to search in the whole information
system/document to find the desired thing. However, this is only a partial
solution because query language used in search engines are often too restricted.

There have been several attempts for solving the name problem. We mention
here only two of them that we have selected because they illustrate the dif-
ficulty of the enterprise, SFS (Gifford, Jouvelot, Sheldon, and O’Toole, 1991)
and HAC (Gopal and Manber, 1999). They have in common to combine hier-
archical naming and boolean querying.

Hierarchical naming is frequently found in computer tools: e.g., file systems,
book-marks, or menus. In this model, searching is done by navigating in a
classification structure that is often built and maintained manually. Navigating
implies a notion of place; being in a place, and going to another place. A notion
of neighborhood helps specifying the “other places” relatively to the place one
is currently in. Many applications require that a place is a place to read from
as well as a place to write on.

Boolean querying is often found in information servers such as search engines
on the Web (e.g., Google). In this model, searching is done by using queries,
generally expressed in a kind of propositional logic. A well-recognized difficulty
of this model is the necessity of having a good knowledge of the terminology
used in the information system, and of having a precise idea of what is searched
for. However, it is easier to recognize an object than to describe it, and the
necessity of expressing a query can repel casual users.

Then, which search model should be preferred: navigation or querying? In fact,
it depends on situations, and it is sometimes needed to use both of them in the
same search. For instance, someone could wish to begin his search by a query
and then refine it with navigation. Hybrid systems combining hierarchical
classification and boolean querying have been proposed in the domain of file
systems:

— SFS (Semantic File System, Gifford, Jouvelot, Sheldon, and O’Toole, 1991)
extends the hierarchical model of usual file systems with virtual directories that
correspond to queries. These queries concern file properties that are automat-

2

ically extracted by transducers, and are expressed with valued attributes. So,
two organization and storage methods coexist: the standard hierarchy that
gives a name to files, and virtual directories that enable associative searches
on intrinsic file properties. Unfortunately, these two methods cannot be com-
bined freely in general. In particular, virtual directories are not places to write
into.

— HAC (Hierarchy And Content, Gopal and Manber, 1999) also uses queries
to build directories based on file contents, but these directories are integrated
in the hierarchy. This enables to combine hierarchy and contents in searches.
However, users are allowed to move a file in a directory even if it does not
satisfy the query associated to the directory, which results in consistency prob-
lems.

The drawback of these hybrid systems is their lack of consistency. Indeed,
they have two search models that are not tightly connected, which makes it
difficult to switch from one model to the other, and to combine both in the
same search.

We propose a scheme called Logical Information Systems (LIS) in which
queries are really places to read from and to write into. The scheme is flexible
in the sense that the neighborhood relation is very dense (i.e., things have
many names). It incurs no inconsistency or dangling links problem, because
the neighborhood relation is managed automatically. Finally, it supports both
querying and navigation, and arbitrary combinations of both because names
and queries belong to the same language (Godin, Missaoui, and April, 1993;
Lindig, 1995). This scheme is based on a variant of Formal Concept Analy-
sis (Barbut and Monjardet, 1970; Wille, 1982; Ganter and Wille, 1999) called
Logical Concept Analysis (Ferré and Ridoux, 2000).

The article is organized as follows. Section 2 presents the principles of Logical
Concept Analysis, and then Section 3 shows how it can be used for navigating
and querying. How to create and update the content of a LIS is presented in
Section 4. These sections refer to a logic passed as a parameter which is to be
used for naming, querying and navigating. Section 5 presents other functions
of a LIS like automated updating, data-mining and learning. Section 6 explains
how all this can be done practically. Finally, conclusions and perspectives are
given in Section 7.

2 Logical Concept Analysis

The origin of this work is the search for flexible organizations for managing,
updating, querying, or navigating in data. In this context, several roles are

3

played by possibly different people: e.g., designer, administrator, and end-
user. Hierarchical organizations are not flexible, and updating, querying and
navigation are difficult to conciliate (see for instance the view update prob-
lem in data-bases (Keller, 1985)). The literature shows that Formal Concept
Analysis (FCA, Ganter and Wille, 1999) is a good candidate for supporting
querying and navigation.

The basis of FCA is a formal context that associates attributes to objects;
objects are the things of the introduction of this article, and the collection
of attributes associated to one thing/object is its name. FCA has received
attention for its application in many domains such as in software engineer-
ing (Snelting, 1998; Lindig, 1995; Krone and Snelting, 1994). The interest of
FCA as a navigation tool in general has also been recognized (Godin, Mis-
saoui, and April, 1993; Lindig, 1995; Vogt and Wille, 1994). However, we feel
it is not flexible enough as far as the naming of things is concerned, and the
literature on FCA insists more on analyzing a given context than on managing
evolving contexts. In this section, we present an extension to FCA that allows
for a richer name language.

The variety of application domains brings the need for more sophisticated
formal contexts than the mere presence/absence of attributes. For instance,
many application domains use numerical values (e.g., lengths, prices, ages),
and the need to express negation and disjunction is often felt. In a much more
specialized scope, it is imaginable to use the type of software components
as search keys (Di Cosmo, 1995). So, one cannot fix a priori limits to the
sophistication of attributes. Several enrichments to the attribute structure
have been proposed: e.g., many-valued attributes (Ganter and Wille, 1999),
and first-order terms (Chaudron and Maille, 1998). However, not a single
extended FCA framework covers all the concrete domains, and no one can
pretend covering all the concrete domains to come.

For the same reasons, logic has already been proposed, in information re-
trieval, for expressing object descriptions and queries (van Rijsbergen, 1986;
Meghini, Sebastiani, Straccia, and Thanos, 1993). In this setting, the relevance
of an object to a query relies on logical inference. As with Description Log-
ics (Brachman, 1979; Napoli, 1997), we use an exact relevance relation, called
subsumption, as some applications may need precise retrieval mechanisms; but
uncertain relevance has also been considered (Crestani and Lalmas, 2001). See
also a discussion on the management of uncertainty in the conclusion of this
article. So, we propose to construct a more general framework for concept anal-
ysis, Logical Concept Analysis (LCA), in which attributes are replaced by the
formulas of a logic . Moreover, we make this logic a parameter of LCA. This
allows for instantiating the general framework by merely filling in a dedicated
logic.

4

2.1 Logic

Logical Concept Analysis (LCA) is a generalization of FCA, where sets of
attributes are replaced by formulas of an (almost) arbitrary logic. More details
about the relation with previous works in FCA can be found in (Ferré and
Ridoux, 2000), and all proofs can be found in (Ferré and Ridoux, 1999).

We first define what we call a logic in this article.

Definition 1 (logic) A logic is a 6-tuple (L,v,u,t,>,⊥), where

• L is the language of formulas,
• v is the subsumption relation (pre-order over L),
• u and t are respectively conjunction and disjunction (binary operations),
• > and ⊥ are respectively tautology and contradiction (constant formulas).

Such a logic must form a lattice (Davey and Priestley, 1990), whose order
is derived in the usual way from the pre-order v, and such that u and t are
respectively the infimum (greatest lower bound) and the supremum (least upper
bound), and > and ⊥ are respectively the top and the bottom. The notation L
can be used as a name for the logic lattice.

If f v g and g v f , f and g are called logically equivalent, which is denoted
as f ≡ g; we consider them as different representations of the same equivalence
class, and in fact we will consider that elements of L are the equivalence
classes. We just assume, for practical reasons, that operations v, u, and t
are computable. Some semantics is usually used to define a logic, but we delay
the discussion about it until Section 6.2 as we do not need it here. Just keep in
mind that formulas are here interpreted by sets of individuals or objects (like
in Description Logics), rather than by truth values (like in first-order logic).
In order to clarify things, here is an example of a logic.

Example 2 (Propositional logic) An example of logic that can be used in
LCA is propositional logic. On the syntactic side, the set of propositions P
contains atomic propositions (taken in a set A), formulas 0 and 1, and is
closed under binary connectives ∧ and ∨, and unary connective ¬. We say that
a proposition p is subsumed by another one q if ¬p ∨ q is a valid proposition
(p ² q). Then, (P ,²,∧,∨, 1, 0) satisfies Definition 1, because it is the well-
known boolean algebra.

This example shows that though the interface of the logic is limited to the
tuple (L,v,u,t,>,⊥), an actual logic may have more connectives: ¬ in this
example.

We now define the main notions and results of LCA: context, concept lattice,

5

and contextualized subsumption.

2.2 Logical context and Galois connection

A logical context plays the role of tables in a database, as it gathers the
knowledge one has about objects of interest (e.g., files, bibliographic references,
recipes).

Definition 3 (logical context) A logical context (context for short) is a
triple K = (O,L, d) where:

• O is a finite set of objects,
• L is a logic (as in Definition 1),
• d is a mapping from O to L that describes each object by a formula.

Then, we define two mappings between sets of objects (2O) and formulas (L)
in a context K, that we prove to be a Galois connection (Davey and Priestley,
1990). A first mapping τK connects each formula f to its instances, i.e., ob-
jects whose description is subsumed by f ; τK(f) is the extent of f . A second
mapping σK connects each set of objects O ⊆ O to the most precise formula
subsuming all descriptions of objects in O; σK(O) is the intent of O.

Definition 4 (mappings τK and σK) Let K = (O,L, d) be a context,
O ⊆ O, and f ∈ L,

• σK (σ for short) : 2O → L, σK(O) :=
⊔

o∈O d(o)
• τK (τ for short) : L → 2O, τK(f) := {o ∈ O | d(o) v f}

Lemma 5 (Galois connection) Let K be a context. The pair (σK , τK) is a
Galois connection because

∀O ⊆ O, f ∈ L : σK(O) v f ⇐⇒ O ⊆ τK(f).

In the following, we will drop the subscript K when possible.

Example 6 (Triv) An example context will illustrate the rest of our de-
velopment on LCA. Context KTriv is deliberately small and simple as it is
aimed at illustrating theoretical notions, and not at showing a realistic ap-
plication of LCA. The logic used in this context is propositional logic P
(see Example 2) with a set of atomic propositions A = {a, b, c}. We de-
fine context KTriv by (OTriv,P , dTriv), where OTriv = {x, y, z}, and where
dTriv = {x 7→ a, y 7→ b, z 7→ c ∧ (a ∨ b)}.

A Logical Information System (LIS) is essentially a logical context equipped
with navigation and management tools. Formulas serve as queries, and extents

6

as answers via mapping τK . This is only a rough description. We will see in
Section 3 that a LIS answer can also be a formula. For illustration purpose,
we consider a bibliographical information system.

Example 7 (Bib) Let Bib = (O,Pv, d) be a logical context where objects are
bibliographical references, whose description are composed of a type (e.g., ar-
ticle, in-proceedings), a list of authors, a title, and a year of publication.
The logic Pv, used for expressing descriptions, is similar to the proposi-
tional logic P (see Example 2) except that atoms are replaced by valued at-
tributes in the form attr value: attr is the name of an attribute (e.g., author,
year), and value expresses a logical property about the value of the at-
tribute. For instance, numerical attributes can be described in an interval logic
(e.g., year in 1990..2000, year in 1995), and string attributes can be de-
scribed by a string (e.g., title is "Logical Information Systems") or a
substring (e.g., title contains "System"). We now show as an example the
logical description of our article on LCA (Ferré and Ridoux, 2000).

type is "InProceedings"

∧ author is "Sébastien Ferré, Olivier Ridoux"

∧ title is "A Logical Generalization of Formal Concept Analysis"

∧ year in 2000

In the sequel of this article, the context Bib refers to all ICCS publications
until the year 1999, which consists in 209 objects.

2.3 Concept lattice and labelling

A formal concept, central notion of LCA, is the association of a set of objects
and of a formula, which is stable for the Galois connection (σ, τ).

Definition 8 (formal concept) In a context K = (O,L, d), a formal con-
cept (concept for short) is a pair c = (O, f) where O ⊆ O, and f ∈ L, such
that σK(O) ≡ f and τK(f) = O.

The set of objects O is the concept extent (written ext(c)), whereas formula f
is its intent (written int(c)).

We write =c for concept equality. The set of all concepts that can be built in
a context K is denoted by CK , and is partially ordered by ≤c defined below.
The fundamental theorem of LCA is that 〈CK ;≤c〉 forms a lattice, which is
finite, hence complete.

Definition 9 (partial order ≤c) Let c1 and c2 be in CK,

7

c1 ≤c c2 ⇐⇒ ext(c1) ⊆ ext(c2)
(could be defined equivalently by int(c1) v int(c2)).

Theorem 10 (concept lattice) Let K be a context. The partially ordered
set 〈CK ;≤c〉 is a finite lattice, whose supremum and infimum are as follows
for every set of indices J :

• ∨c
j∈J(Oj, fj) =

c (τK(σK(
⋃

j∈J Oj)),tj∈Jfj)
• ∧c

j∈J(Oj, fj) =
c (

⋂
j∈J Oj, σK(τK(uj∈Jfj)))

extent intent

{x,y,z}

{x,z} {y,z}

{z}{x} {y}

{}

c /\ (a \/ b) ba

a \/ (c /\ b) b \/ (c /\ a)

a \/ b

00

1 2 3

4 5

6

concept

(a) (b)

4 5

1 2 3

0

6

a c b

a \/ c b \/ c

a \/ b

a \/ b \/ c

0

concept formula

Figure 1. The concept lattice of context KTriv (a) and its labelling (b).

Example 11 (Triv) Figure 1.(a) represents the Hasse diagram of the concept
lattice of context KTriv (introduced in Example 6). Concepts are represented by
a number and a box containing their extent on the left, and their intent on the
right. The higher concepts are placed in the diagram the greater they are for
partial order ≤c. It can be observed that the concept lattice is not isomorphic
to the power-set lattice of objects 〈2O;⊆〉. Indeed, set {x, y} is not the extent
of any concept, because τ(σ({x, y})) = τ(a ∨ b) = {x, y, z}.

To make the concept lattice more readable, it is possible to label it with
formulas and objects. Mapping µ labels with a formula f the concept whose
extent is the extent of f . Mapping γ labels with an object o the concept whose
intent is the intent of o, that is its description.

Definition 12 (labelling) Let K = (O,L, d) be a context, o ∈ O,
and f ∈ L,

• µK (µ for short) : L → CK , ext(µK(f)) = τK(f)
• γK (γ for short) : O → CK , int(γK(o)) ≡ d(o).

The interesting thing with this labelling is that it enables to retrieve all data
of the context: an object o satisfies (v) a formula f in some context K if and

8

only if the concept labelled with o is below (≤c) the concept labelled with f
in the concept lattice of K.

Lemma 13 (labelling) Under the conditions of Definition 12,

d(o) v f ⇐⇒ γK(o) ≤c µK(f) .

Example 14 (Triv) Figure 1.(b) represents the same concept lattice as Fig-
ure 1.(a) (see also Example 11), but its concepts are decorated with the µ
labelling instead of with the extents and intents. Formulas of the form

∨
A

where A ⊆ A (
∨ ∅ ≡ 0) are placed on the right of the concept that they label.

For instance, concept 1 is labelled by formula a (i.e., µ(a) =c 1). In Fig-
ure 1.(b) we have restricted labels to be formulas of the form

∨
A, but it is

only to have a finite number of labels that are not all in the formal context.

2.4 Contextualized subsumption

In most contexts, it is possible to order some properties, although they are not
comparable by v. For instance, if in some context every bird flies, then we can
say that property “bird” is contextually subsumed by the property “fly”, al-
though we have not necessarily bird v fly in L. We introduce a contextualized
subsumption as a generalization of implications between attributes that are
used in standard CA for knowledge acquisition processes (Ganter and Wille,
1999; Snelting, 1998).

Definition 15 (contextualized subsumption) Let K = (O,L, d) be a
context, and f, g ∈ L. One says that f is contextually subsumed by g in
context K, which is noted f vK g, if and only if τK(f) ⊆ τK(g), i.e., if every
object that satisfies f also satisfies g.

Every arc of vK is called a contextualized implication.

Contextualized subsumption has a close connection with the concept lattice.

Theorem 16 (contextualized subsumption vs. concept lattice)
Let K be a context. The partially ordered set of formulas 〈L;vK〉, derived
in the usual way from the pre-order vK, is isomorphic to the concept lat-
tice 〈CK ;≤c〉. The morphism from formulas to concepts is µK (Definition 12);
and the morphism from concepts to formulas is int (Definition 8).

A context plays the role of a theory extending the subsumption relation and
enabling new entailments. Contextualized subsumption can also be seen as a
means for extracting knowledge from contexts. Thus, two kinds of knowledge
can be extracted: knowledge about context by deduction, and knowledge on

9

the domain from which the context is extracted by induction (e.g., generalizing
“every bird flies” from bird vK fly).

Example 17 (Triv) As the contextualized subsumption is isomorphic to the
order on concepts (Theorem 16), it is possible to use the labelled concept lattice
(see Figure 1.(b)) to study contextualized subsumption in context KTriv. For
instance, as concept 2 is smaller than concept 5 relation c vKTriv

b∨ c stands,
which is already true in P. More generally, it can be seen that all valid sub-
sumptions in P are retained in contextualized subsumption. Examination of
the labelled concept lattice shows that the context adds new valid entailments
between formulas: e.g., c vKTriv

a ∨ b, because 2 ≤c 4 .

In the following sections, formal contexts will be used to formalize the content
of an information system, and the concept lattice (or equivalently, the contex-
tualized subsumption) will be used to organize things. It is the contextualized
equivalence relation that gives so many names to things.

2.5 Feature Context

Logical languages contain usually infinitely many formulas, whose complexity
is unbounded. This is a problem for algorithms that perform a search among
formulas (e.g., for automated learning, Ganter and Kuznetsov, 2001). For ef-
ficiency and readability of results, we restrict the search space of formulas to
a finite subset F ⊆ L whose elements are called features. Features differ from
attributes of standard formal contexts in three ways:

(1) features belong to a fixed logical language and so, have a semantics,
(2) features are automatically ordered according to the subsumption v, and
(3) a newly introduced feature can have a non-empty extent.

It is possible to extract a formal context, with F as the set of attributes,
from the logical context: we call it the feature context. This context is not
intended to be actually build from the logical context, but it is defined to
allow reasoning about the logical context with a coarser grain than the full
logic.

Definition 18 (feature context) Let K = (O, 〈L;v〉, d) be a logical
context, and FK ⊆ L be a finite set of features, that may depend
on K. The feature context of K is the formal context KF = (O, FK , IKF

),
where IKF

= {(o, x) ∈ O × FK | d(o) v x}. We also define description fea-
tures for any object o by DKF

(o) =↑F d(o), where for any f ∈ L,
↑F f = {x ∈ F | f v x}.

10

The content of FK is not strictly determined but depends on the context K.
It should contain simple formulas subsuming logical descriptions (in K), fre-
quently used formulas (in queries), and more generally, every formulas that
users expect to see in answers. In fact, FK acts as the vocabulary that a LIS
uses in its answers.

Example 19 (Triv) From boolean descriptions (like in context KTriv, see
Example 6) one can consider as features the clauses (i.e., disjunctions) of
the conjunctive normal form of the descriptions. Thus, the features of con-
text KTriv would be FKTriv

= {a, b, c, a ∨ b}, and relation IKF
would be

{(x, a), (x, a ∨ b), (y, b), (y, a ∨ b), (z, c), (z, a ∨ b)}.

From the description given in Example 7, one can extract the following features
(amongst others): author contains "Ridoux", year in 1950..2000.

concept : extension intention

{x,y,z} {a \/ b}

{z}{x} {y}

{}

{b, a \/ b}{a, a \/ b}

{a, b, c, a \/ b}

{c, a \/ b}

Figure 2. The feature concepts of context KTriv

Feature concepts can be derived from a feature context as for ordinary logical
contexts. See for instance Figure 2 for the lattice of feature concepts of context
KTriv.

Lemma 20 relates the Galois connections of logical and feature contexts.

Lemma 20 (logical vs. feature Galois connections)
Let O ⊆ O, X ⊆ F ,

• σKF
(O) =↑F σK(O)

• τKF
(X) = τK(uX).

Theorem 21 shows the existence of a mapping that approximates a logical
concept in a feature concept and then defines equivalence classes among logical
concepts.

Theorem 21 (approximation of concept) Let (O, f) ∈ CK be a logical

11

concept. The feature concept generated from O (intent: σKF
(O)) and the fea-

ture concept generated from f (extent: τKF
(↑F f)) are in fact the same feature

concept (τKF
(↑F f), ↑F f), the smallest concept in CKF

whose extent is larger
than or equal to O.

2.6 Sub-context

It is often useful to reason on a sub-context by restricting the set of objects
and the set of features. For instance, the need for views has been recognized
in databases (Ullman, 1989) (see also Definition 31).

Definition 22 (sub-context) Given a domain D ⊆ O, restricting the
set of objects, and a view V ⊆ F , restricting the set of features, we
define the sub-context of a feature context KF by the formal context
KF (D,V) = (D,V, IKF

∩ (D × V)).

Example 23 (Triv) We define 4 sub-context of KTriv (see Example 6).

(1) D = O and V = FKTriv
\{c}:

IKF
= {(x, a), (x, a ∨ b), (y, b), (y, a ∨ b), (z, a ∨ b)}.

(2) D = O and V = {c}:
IKF

= {(z, c)}.
(3) D = O\{z} and V = FKTriv

:
IKF

= {(x, a), (x, a ∨ b), (y, b), (y, a ∨ b)}.
(4) D = O\{z} and V = FKTriv

\{c}:
IKF

= {(x, a), (x, a ∨ b), (y, b), (y, a ∨ b)}.

Lemma 24 relates the Galois connections of feature contexts and sub-contexts.

Lemma 24 (feature vs. sub-context Galois connection) Let O ⊆ D,
and X ⊆ V ,

• σKF (D,V)(O) = σKF
(O) ∩ V ,

• τKF (D,V)(X) = τKF
(X) ∩D.

Example 25 (Triv) The concept lattices of the four subcontexts of Exam-
ple 23 are as in Figure 3.

A domain can be specified by the extent τK(q) of a formula, i.e., the
answers τK(q) to a query q. A view can be specified as the set of
features subsumed by a query v, i.e., ↓F v = {x ∈ F | x v v}. E.g., in
the logic presented in Example 7, the formula (author contains ""

∨ title contains "concept" ∨ year in 1900..2000) would select all
features of attributes author, title and year, restricted to years in the last

12

{x,y,z}

{x} {y}

{}

{b, a \/ b}{a, a \/ b}

{a, b, a \/ b}

(1)

{a \/ b}

{x,y} {a \/ b}

{x} {y}

{}

{b, a \/ b}{a, a \/ b}

{a, b, c, a \/ b}

(3)

concept : extension intention

{x,y} {a \/ b}

{x} {y}

{}

{b, a \/ b}{a, a \/ b}

{a, b, a \/ b}

(4)

{x,y,z}

{z} {c}

{}

(2)

Figure 3. Four subconcept lattices of context KTriv

century, and titles that contain the word “concept”.

3 Navigating and Querying in a Logical Context

3.1 Navigating vs. Querying

Information systems offer means for organizing data, and for navigating and
querying. Though navigation and querying are not always distinguished be-
cause both involve queries and answers, we believe they correspond to very
different paradigms of human-machine communication. In fact, the difference
can be clarified using the intent/extent duality.

Navigation implies a notion of place, and of a relation between places (e.g., file
system directories, and links or subdirectory relations). Through navigation, a
user may ask for the content of a place, or ask for related places. The ability to
ask for related places implies that answers in the navigation-based paradigm
belong to the same language as queries. In terms of the intent/extent duality,
a query is an intent, and answers are extents for the content part, and intents
for the related places.

In very casual terms, we consider navigation with possibly “no road-map”,
i.e., no a priori overview of the country. Related places form simply the land-

13

scape from a given place as shown by a “viewpoint indicator”. However, our
proposal is compatible with any kind of a priori knowledge from the user.

With querying, answers are extents only. A simulation of navigation is still
possible, but forces the user to infer what could be a better query from the
unsatisfactory answer to a previous query; i.e., infer an intent from an extent.
This is difficult because there is no simple relation between a variation in the
query, and the corresponding variation in the answer. The experience shows
that facing a query whose extent is too vast, a user may try to refine it, but the
resulting extent will often be either almost as vast as the former or much too
small. In the first case, the query lacks of precision (i.e., number of relevant
items in the answer divided by total number of items in the answer), whereas
in the second case, the query recall (i.e., number of relevant items in the answer
divided by number of relevant items in the system) is too low.

Godin et al. (1993) and Lindig (1995) have shown that Formal Concept Anal-
ysis is a good candidate for reconciliating navigation and querying. We follow
this opinion, but we believe that care must be taken to make formal contexts
as close to the description languages of the end-users, and we have proposed
Logical Concept Analysis (LCA) where formal descriptions are logical formu-
las instead of being sets of attributes (Section 2.1).

Our goal in this section is to show how a form of navigation and querying
can be defined, so that a user who knows neither the content of a Logical
Information System, nor the logic of its descriptions, can navigate in it and
discover the parts of the contents and the parts of the logic that are relevant
to his quest. Note that a more expert user may know better and may navigate
more directly to his goal, but since almost everybody has his shortcomings,
the no-knowledge assumption is the safest one to do.

3.2 A Logical Information System

In this section, we will insist on navigation tools, and will delay the manage-
ment of a logical context (e.g., creating, updating objects) until Section 4.

A LIS needs a user interface. We will formalize a shell-based interface, though
this is not the most modern thing to do. This is because we believe that shell
interfaces (like in UNIX or MS-DOS) are familiar to many of us, and because
this abstraction level exposes properly the dialogue of queries and answers. A
higher-level interface like a graphical one would hide it, whereas lower-level
interfaces, like a file system, would expose irrelevant details. However, nothing
prevents one to give a graphical interface to a LIS, or to implement it as a file
system.

14

The shell commands are those of the UNIX shell, reinterpreted in the LIS
framework. Main changes are the replacement of paths by formulas of L re-
ferring to concepts via mapping µK , and the use of contextualized subsump-
tion vK . For the rest, commands have essentially the same effects. The cor-
respondence between a UNIX file system and a logical information system is
as follows:

UNIX shell −→ LIS shell

file −→ object

path −→ logical formula

absolute name of a file −→ object description

directory −→ formula/concept

root −→ formula >/concept >c

working directory −→ working query/concept

Navigation commands cd, ls, and pwd are defined in Section 3.3; and the
querying command ls -R is defined in Section 3.4. Creation and update com-
mands touch, mkdir, rm, mv, and cp will be defined in Sections 4.1 and 4.2.

3.3 Navigating in a Logical Context

Once objects have been logically described and recorded in a logical
context K = (O,L, d), one wants to retrieve them. One way to do this is
navigating in the context. As already said, this way of searching is partic-
ularly useful in a context where the logic or the content are unknown. The
aim of navigation is thus to guide the user from a current place to a target
place, which contains the object(s) of interest. For this, a LIS offers to the user
3 basic operations (the corresponding UNIX-like command names are placed
between parenthesis):

(1) to ask to LIS what is the current place (command pwd),
(2) to go in a certain “place” (command cd place),
(3) to ask to LIS effective ways towards other “places” (command ls).

3.3.1 Places as formal concepts

In a hierarchical file system, a “place” is a directory. In our case, a “place” is
a formal concept, which can be seen as a coherent set of objects (extent) and

15

properties (intent) (see Definition 8). In large contexts, concepts cannot be
referred to by enunciating either their extent or their intent, because both are
generally too large. Formulas of the logic L can play this role because every
formula refers to a concept through the labelling map µ (see Definition 12),
and every concept is referred to by one or several formulas, which are often
much concise than its intent. For instance in Figure 1, one can see that c is a
concise name for the concept ({z}, c ∧ (a ∨ b)).

We now describe the 3 navigation operations listed above. First of all, going
from place to place implies to remember the current place, which corresponds
to the working directory. In a LIS, we introduce the working query, wq, and
the working concept, wc := µK(wq); we say that wq refers to wc. This working
query is taken into account in the interpretation of most LIS commands, and
it is initialized to the formula >, which refers to the concept whose extent is
the set of all objects. Command pwd displays the working query to the user.

The second navigation operation, command cd, takes as argument a query
formula q saying in which place to go, and it changes the working query
accordingly. We call lwq (i.e., elaboration of wq) the mapping that associates
to the query q a new working query according to the current working query wq.
The query q can be seen as a link between the current and the new working
query. Usually, cd is used to refine the working concept, i.e., to select a subset
of its extent. In this case, the mapping lwq is defined by lwq(q) := wquq, which
is equivalently characterized by

µK(lwq(q)) =
c wc ∧c µK(q) and τK(lwq(q)) = τK(wq) ∩ τK(q).

However, it is useful to allow for other interpretations of the query argument.
For instance, we can allow for the distinction between relative and absolute
queries, similarly to relative and absolute paths in file systems. The previous
definition of the mapping lwq concerns relative queries, but can be extended
to handle absolute queries by lwq(/q) := q, where ’/’ denotes the absolute
interpretation of queries. This allows to forget the working query. We can also
imagine less usual interpretations of queries like lwq(|q) := wqt q. Finally, the
special argument .. for the command cd enables to go back in the history
of visited queries/concepts. This works much like the “Back” button in Web
browsers.

The last navigation operation, command ls, is intended to guide the user
towards his goal. More precisely, it must suggest some relevant links that could
act as queries for the command cd to refine the working query. These links are
formulas of L. A set of links given by ls should be finite, of course (whereas L is
usually infinite), even small if possible, and complete for navigation (i.e., each
object of the context must be accessible by navigating from >c).

16

3.3.2 Navigation Links

The following notion of link corresponds to the case where the elaboration
mapping satisfies lwq(q) = wq u q. To avoid to go in a concept whose extent
is empty (a dead-end), we must impose the following condition on a link x:
τK(wq u x) 6= ∅. Furthermore, to avoid to go in a concept whose extent is
equal to the extent of wq (a false start), we must impose this other condi-
tion: τK(wq u x) 6= τK(wq). These conditions state that the extent of the new
working query must be strictly between the empty set and the extent of the
current working query. This characterizes relevant links (Lindig, 1995).

Now, as L is a too wide search space (it is often infinite), we will consider a
finite set of features F ⊆ L in a context K in which links are selected.

Furthermore, we retain only greatest links (in the subsumption order) as they
correspond to smallest navigation steps. Indeed, recall that each link is a sug-
gestion to the user. Therefore, if the link year in 1990..2010 is suggested,
it is not worth suggesting the link year = 2000, because the former subsumes
the latter. Following this principle, every conjunctive formula xu y can be ex-
cluded from the search space for links, and so, of the set of features, because
it is redundant with x and y. Thus, a way to build the set of features is to
split object descriptions on outermost conjunctions (i.e., a ∧ b is split into a
and b, whereas (c ∧ d) ∨ e cannot be split this way).

However, to limit the number of links, it is useful to also extract ab-
stracted form of these features, so as to allow a still more progres-
sive navigation. For instance, the system would suggest the successive
links title, title contains "System", and then title is "Logical

Information Systems"; instead of directly suggesting the latter. Only this
latter feature appears explicitly in the description. The others are abstrac-
tions of it, and plays a role of “factorization” among links.

We now summarize this part by defining the set of links in a given context
and working query.

Definition 26 (Navigation links) Let K = (O,L, d) be a context. The set
of navigation links for every working query wq ∈ L is defined by

LinkK(wq) := Maxv{x ∈ FK | ∅ 6= τK(wq u x) 6= τK(wq)}.

3.3.3 Local Objects and Navigation Completeness

As navigation aims at finding objects, command ls must not only suggest
some links to other places, but also present the objects belonging to the current
place, called the objects of wq or the local objects. We define a local object

17

as an object that is in the current place, but in no place reachable through a
link.

Definition 27 (local object) Let K = (O,L, d) be a context. The set of
local objects is defined for every working query wq ∈ L by

LocalK(wq) := τK(wq) \
⋃

x∈LinkK(wq)

τK(x).

Given a place, there can be no local object, but there can also be several
objects in some place. The less local objects there are, the better it is for nav-
igation. More precisely, if two local objects have non-equivalent descriptions,
it should be possible to make this difference appear in the links. Thus, the
choice the user has to do is intentional (between one or several logical links)
rather than extensional (between several objects). This idea is formalized as
the completeness of navigation.

Definition 28 (navigation completeness) Let K = (O,L, d) be a context.
Navigation is complete in K if and only if for every working query wq ∈ L,
the following holds

∀o, o′ ∈ LocalK(wq) : d(o) ≡ d(o′).

This completeness can be guaranteed by ensuring that the set of features FK is
such that if two objects have non-equivalent descriptions there exists a feature
that is satisfied by one object and not by the other.

Theorem 29 (navigation completeness) A necessary and sufficient con-
dition for navigation completeness in a context K is that for every objects o, o′

d(o) 6≡ d(o′) ⇒ ∃x ∈ FK : d(o) v x ⇔ d(o′) 6v x.

In the case where all objects have different descriptions, there is never more
than one local object. This must be compared to Web querying where the
number of objects returned in response to a query is generally large. This is
because with navigation, non-local objects are hidden behind the intentional
properties that enable to distinguish these objects. It is the end-user who
selects an intentional property to reveal its content.

Another interesting thing to notice is that the working query can be, and
often is, much shorter than the whole description of the local object (which is
also the intent of the working concept), as in the following example where the
first formula is contextually equivalent (in context Bib, see Example 7) to the

18

second one for accessing the object.

author contains "Mineau" ∧ author contains "Missaoui"

≡

author is "Mineau, Missaoui" ∧ title is "The Representation of

Semantic Constraints in Conceptual Graph Systems" ∧ type is

"InProceedings" ∧ year in 1997

3.3.4 Links and Views

Even if the set of links is restricted to relevant and greatest ones among fea-
tures, it appears in practice that it is too large and heterogeneous. For in-
stance, in the context Bib (see Example 7), the set of links is a mix of author
names, title words, etc. Our idea is to abstract the set of all author names
(features author contains ...) by a single feature author (meaning “the
attribute author is defined”). This feature is not useful for selecting objects,
but it is useful to select links about the attribute author. We call this kind
of features views as they present the navigation from a “point of view”. We
introduce a working view wv, similar to the working query, under which links
must be searched for. For instance, if the working view is (author), links
will be author names. We take it into account in the definition of navigation
links, where the relation x @ wv denotes a strict subsumption (i.e., x v wv
and wv 6v x).

Definition 30 (Navigation links with views) Let K = (O,L, d) be a
context. For every working query wq ∈ L and every working view wv ∈ L,
the set of navigation links is defined by

LinkK(wq,wv) := Maxv{x ∈ FK | x @ wv, ∅ 6= τK(wq u x) 6= τK(wq)}.

As a link is a variation of the working query that restricts the current extent,
one defines a view as a variation of the working view that restricts the set of
links. Moreover, if a view is not also a link, it must subsume at least two links.
Indeed, if some view hides only one link, it is worth presenting the link directly.
Finally, we define a set of links and views where views can be understood as
summaries of sets of links, whose selection by the user allows him to see these
underlying links in a narrower view.

Definition 31 (Navigation links and views) Let K = (O,L, d) be a con-
text. The set of navigation links and views for every working query wq ∈ L
and every working view wv ∈ L is defined by (‖E‖ denotes the cardinality of

19

a set E)

LVK(wq,wv) := Maxv{x ∈ FK | x @ wv, ∅ 6= τK(wq u x) 6= τK(wq)

or ‖LinkK(wq,wv u x)‖ ≥ 2}.

To summarize, the view-based variant of command ls takes as argument a
view v, sets the working view to lwv(v) (where lwv works similarly to lwq),
shows the local objects if they exist, displays each link or view x of the
set LVK(wq,wv) along with the size of its selected extent τK(wq u x), and
finally displays the size of the working extent τK(wq). Links and views are
distinguished according to their cardinality compared to the size of the work-
ing query; views simply have the same size as the working concept, whereas
links have strictly smaller sizes.

3.3.5 User/LIS Dialogue

We now show how commands cd and ls compose a rather natural dialogue
between the user and LIS. The user can refine the working concept with com-
mand cd, and asks for suggested links and views with the command ls. LIS
displays to the user relevant links for forthcoming cd’s, and relevant views for
forthcoming ls’s. With commands cd and ls, and links and views, both the
user and a LIS can assert facts and ask questions;

• Command cd and links are assertions from the user and LIS.
user: cd kind (i.e., “I want this kind of object!”),
LIS: links to kind (i.e., “I have this kind of object!”).

• Command ls and views are questions from the user and LIS.
user: ls kind (i.e., “What kind of object do you have?”),
LIS: view kind (i.e., “What kind of object do you want?”).

It should also be noticed that both the user and LIS can answer to questions
both by assertions and by questions.

Example 32 (Bib) A complete example of a dialogue is given in Table 1. The
left part of this table shows what is really displayed by our prototype, and the
right part is an english translation of the dialogue. Notice that this translation
is rather systematic and could be made automatic. (n) is the prompt for the
n-th query from the user. On the 2nd query, the question of the user is so
open, that LIS only answers by questions. On the 3rd query, the user replies
to one of these questions (title) by an assertion; but on the 4th query, he
sends back to LIS another of these questions (author) to get some relevant
suggestions. On the 5th query, he just selects a suggested author, "Wille",
and then gets his co-authors on Concept Analysis with the 6th query. On the

20

7th query, he selects a co-author and finally finds an object at the 8th query.

Table 1
Example of User/LIS Dialogue in context Bib.

(1) pwd (1) What is currently selected?

1 All objects.

(2) ls (2) What do you have?

209 type What kind of type do you want?

209 author What kind of author do you want?

209 year What kind of year do you want?

209 title What kind of title do you want?

209 object(s) 209 objects are currently selected.

(3) cd title contains "Concept A" (3) I want objects whose title contains "Concept A"!

(4) ls author (4) What kind of author do you have (for this)?

1 author contains "Mineau" I have 1 object with author "Mineau"!

1 author contains "Lehmann" I have 1 object with author "Lehmann"!

1 author contains "Stumme" I have 1 object with author "Stumme"!

1 author contains "Prediger" I have 1 object with author "Prediger"!

3 author contains "Wille" I have 3 objects with author "Wille"!

4 object(s) 4 objects are currently selected.

(5) cd author contains "Wille" (5) I want objects with author "Wille"!

(6) ls (6) What kind of author do you have (now)?

1 author contains "Mineau" I have 1 object with author "Mineau"!

1 author contains "Lehmann" I have 1 object with author "Lehmann"!

1 author contains "Stumme" I have 1 object with author "Stumme"!

3 author contains "Wille" What kind of author "Wille" do you want?

3 object(s) 3 objects are currently selected.

(7) cd author contains "Mineau" (7) I want objects with author "Mineau"!

(8) ls (8) What do you have?

#200 Mineau, Stumme, Wille. Conceptual Structures Represented by Conceptual Graphs

and Formal Concept Analysis. INPROC, 1999.

1 object(s) 1 object is currently selected.

(9) pwd (9) What is currently selected?

author contains "Wille" ∧ Objects with authors "Wille"

author contains "Mineau" ∧ and "Mineau",

title contains "Concept A" and whose title contains "Concept A".

3.4 Querying a Logical Context

Extensional queries, as in data-bases or some Web browsers like Google, can
be submitted to a logical information system using the -R option with com-
mand ls. The answer to query ls -R q is simply τK(lwq(q)), i.e., the extent

21

of the concept referred to by lwq(q) (see Section 3.3).

(1) ls -R /title contains "Logic" ∧ ¬ title contains "Concept" ∧

year in 1990..1995

#3 Gaines. Representation, discourse, logic and truth: situating

knowledge technology. INPROC, 1993.

#2 Sowa. Relating diagrams to logic. INPROC, 1993.

#72 Van den Berg. Existential Graphs and Dynamic Predicate Logic.

INPROC, 1995.

3 object(s)

4 Creating and Updating a Logical Context

Whereas much has been said on the construction of concept lat-
tices (Kuznetsov and Objedkov, 2001), the construction of contexts is often
left in the background. The construction process can fall into two categories:
off-line and on-line. In the off-line case, the context is built once for all after
the data have been gathered and the problem is to find an object description
language appropriate to the intended analysis. The typical application of this
category is the analysis of surveys. In the on-line case, the context is built
progressively along the arrival of data and a problem is to properly describe
new objects at the time they arrive. Information systems are the typical ap-
plication of this category, but this is not the mainstream approach to using
Concept Analysis.

Hypothesis 1 (on-line construction) We consider here only the on-line
case, as we focus on information systems. For each new piece of data that
arrives, an object is created, and added to the context, with this piece of data
as content.

We propose that the description given to an object is two-parts. The first part,
the intrinsic description, is automatically extracted from the object content,
and depends on the kind of content and on the logic of the application. For
instance, let us consider that objects are incoming e-mail messages. In this
application, the building of the context is clearly on-line; and possible compo-
nents of the intrinsic description are the from, to, and subject fields.

The second part, the extrinsic description, is manually assigned by users ac-
cording to personal intentions and preferences. We must consider there are no
known rules to infer extrinsic properties, as if the contrary holds they could be
integrated in the intrinsic description. In a usual e-mail application, extrinsic
properties are managed by storing e-mail messages in different folders accord-

22

ing to personal needs. However, extrinsic properties need not be organized in
a hierarchical relation as folders often are.

4.1 Creating a Logical Context

The objects we want to represent in a context are often defined in the “world”
by a content. We want to describe these objects both by an intrinsic proper-
ties (automatically extracted from their contents), and by extrinsic properties
(manually assigned by users). All these elements are the context data, from
which a logical context can be built.

Definition 33 (context data) Context data are defined as a 6-tuple
D = (O, C,L, c, di, de), where

• O is a set of objects,
• C is the domain of contents,
• L is a logic,
• c ∈ O → C maps every object to its content,
• di ∈ C → L extracts an intrinsic description from every content,
• de ∈ O → L maps every object to its extrinsic description.

The building of a context from its data consists in keeping the set of objects
and the logic, and composing a description that maps every object to its
intrinsic description “plus” its extrinsic description. This “plus” denotes an
update operation ¦ that we present in more details in Section 4.2.

Definition 34 (context building) Let D = (O, C,L, c, di, de) be context
data. The context built from data D is defined as

K(D) = (O,L, d),where for every o ∈ O, d(o) = di(c(o)) ¦ de(o).

Example 35 (E −Mail) In this section, we consider that objects are e-mail
messages. An example of a simplified e-mail message content is:

From: Alice@paris.fr

To: Bob@berlin.de, Chloe@madrid.es

Date: 2 May 2002, 14:52

Subject: Hello world!

When do you come in Paris?

See you,

Alice

From such a content, an intrinsic description that retains only fields from,

23

to, and subject can be extracted and formulated in logic Pv (see Example 7).
This is only a matter of choice, as other fields could be taken into account.
In particular, the message body would certainly be useful in a real application,
but it is not necessary to our explanations. The intrinsic description we obtain
from the above content is the following formula.

from is "Alice@paris.fr"

∧ to is "Bob@berlin.de, Chloe@madrid.es"

∧ subject is "Hello world!"

Then, the user (e.g., Bob) can add his personal comments by formulating an
extrinsic description. For instance, the extrinsic description

personal ∧ ¬spam

means the message is “personal” (opposite of “professional”), and is not a
“spam”. The expected result of updating the intrinsic description with the ex-
trinsic description is

from is "Alice@paris.fr"

∧ to is "Bob@berlin.de, Chloe@madrid.es"

∧ subject is "Hello world!"

∧ personal ∧ ¬spam

The LIS shell commands for creating new entries in a context are
mkdir and touch. Command mkdir creates a new feature. For instance,
mkdir subject begins with "H" introduces a finer feature than those that
are obtained by simply splitting conjunctions. Command touch simply creates
an object with empty content at some place designated by a formula. How-
ever, objects are normally created by applications that give objects a content
(and so, an intrinsic description) and an extrinsic description, which is usually
based on the working query.

4.2 Updating a Logical Context

From the definition of context data (see Definition 33), a logical context can
be updated in 4 ways:

(1) addition of an object with its initial content and extrinsic description
(commands touch, cp, and applications),

(2) update of the content of an object (applications),
(3) update of the extrinsic description of an object (command mv), and
(4) deletion of an object (command rm).

24

The only difficulty that arises from these operations is the update opera-
tion, which is used to change an extrinsic description in an incremental way
(i.e., without completely redefining it), and to compose intrinsic and extrinsic
descriptions. A naive solution would be to manually change extrinsic descrip-
tions, and to directly integrate them in intrinsic descriptions. However, this
has two important drawbacks. First, the intrinsic description changes with the
contents and so, it is not a persistent support for extrinsic properties. Second,
practice shows that one often wishes to express an update operation for a set of
objects in a single command: for instance, add property “personal” (personal)
to all e-mail messages sent from “Alice” (i.e., from contains "Alice").

We give now a specification of such an operation, as it is given by Herzig and
Rifi (Herzig and Rifi, 1999). This puts constraints on what a logical update
operation should be.

Definition 36 (update) Let L = (L,v,u,t,>,⊥) be a logic. The result of
updating a description d ∈ L by an entry e ∈ L is the result of an operation
d ¦ e, which must satisfy the following postulates:

(1) (HR) d ¦ e v e ;
(2) (HR) d u e v d ¦ e ;
(3) (HR) d ¦ > ≡ d ;
(4) (HR) d 6v ⊥ and e 6v ⊥ implies d ¦ e 6v ⊥ ;
(5) (HR) for every d′ ≡ d, d′ ¦ e ≡ d ¦ e ;
(6) (HR) for every e′ ≡ e, d ¦ e′ ≡ d ¦ e ;
(7) (HR) for every d1, d2 ∈ L such that d ≡ d1td2, d¦ e ≡ (d1 ¦ e)t (d2 ¦ e) ;
(8) (involution) (d ¦ e) ¦ e ≡ d ¦ e.

All postulates are from Herzig and Rifi, except postulate 8. Postulate 1 means
that the entry must always be taken into account, and so, satisfied in the
result. Postulate 2 adds that everything satisfied in the result comes from
either the description d or the entry e. In the case where the entry is the
tautology, i.e., brings no information, postulate 3 states that the description
must be kept unchanged. Postulate 4 forces the result to be consistent, unless
the description or the entry is already inconsistent. Postulates 5 and 6 mean
that results must not depend on the syntax of formulas. Finally, postulate 7
says that operation ¦ must be distributive for disjunction, and postulate 8
says that it must be an involution.

Herzig and Rifi (1999) present an update operation for propositional logic with
dependencies between atoms, denoted by WSS ↓dep , that satisfies all postu-
lates in Definition 36. In logic, dependency between atoms is subsumption.

Example 37 (Bib) Logic Pv is a propositional logic, whose usual
atoms are replaced by valued attributes. This means that we must
consider dependencies between such atoms. For instance, the atom

25

from is "Alice@paris.fr" implies the atom from contains "Alice",
contradicts the atom from is "Bob@berlin.de", but is independent from the
atom subject contains "Hello".

The LIS shell commands rm, mv and cp perform LIS updates. Command rm q

suppresses the local object of lwq(q) (if it exists, see Section 3.3.3). Command
mv moves a file from a place to another: mv q e moves the local object o
of lwq(q) in concept µ(d(o) ¦ e). Similarly, cp q e creates a new copy of the
local object in the same concept. With option -r, every object of the extent
of lwq(q) is concerned, instead of only the local object.

(1) cd /from contains "Alice"

(2) mv . personal

(3) rm -r /spam

The move command (line 2) adds the feature personal to the local object of
the working query from contains "Alice". The remove command (line 3)
deletes all objects described as spam.

Contents can also be changed by applications. This changes indirectly de-
scriptions (their intrinsic parts), but the ensuing reorganization of the formal
concept lattice is automatic and transparent. In fact, it costs not so much
since the concept lattice is not actually represented (see Section 6).

5 Data-mining, automated updating and learning

Previous sections 3 and 4 present the core operations of a LIS. More operations
can be defined. Some are derived from core operations, like a form of data-
mining, and others are disjoint from the core but can be added to it.

5.1 Data-mining

The definition of links (see Definitions 3.3.2 and following) is a specific case
of Knowledge Discovery in a formal context. It can be generalized to recover
more classical KD operations like machine-learning through the computation
of necessary or sufficient properties (modulo some confidence), or data-mining
through association rules. Indeed, CA has been often applied in domains such
as data-analysis, data mining, and learning.

Data-analysis consists in structuring data in order to help their understand-
ing. These data are often received as tables or relations and structured by
partitions, hierarchies, or lattices. With CA, formal contexts (binary relations

26

between objects and attributes) are structured in concept lattices (Ganter and
Wille, 1999). This is applied for instance in software engineering for config-
uration analysis (Krone and Snelting, 1994). Data-mining is used to extract
properties from large amounts of data. These properties are association rules
satisfied (exactly or approximately) by the data. This is analogous to implica-
tions between attributes in FCA (see Ganter and Wille, 1999, p. 79), and to
contextualized subsumption in LCA (see Section 2.4). Unsupervised learning
is similar to data-analysis in the sense that one tries to discover some prop-
erties, and to understand some data, whereas supervised learning is similar
to data-mining as some rules are searched to explain a target property using
known properties. For instance, Kuznetsov applied CA to the learning of a
positive/negative property from positive and negative instances (Kuznetsov,
1999).

The aim of this section is to show that these features of Knowledge Discov-
ery (KD) can be incorporated in LIS, and how.

A context K plays the role of a theory by extending the subsumption relation
and enabling new entailments (e.g., bird vK fly when every bird flies in the
context). All these contextual entailments are gathered with logical entail-
ments to form the contextualized logic, which is thus a means for extracting
some knowledge from the context. Two kinds of knowledge can be extracted:
knowledge about the context by deduction (“Every bird of this context do
fly”), and knowledge about the domain (which the context belongs to) by
induction (“Every bird of the domain may fly”).

Concept lattices produced by data-analysis are isomorphic to contextualized
logics (see Theorem 16). Associations rules produced by data-mining or super-
vised learning match the contextualized subsumption relation, possibly qual-

ified by a confidence defined by conf(f vK g) =
‖τK(f) ∩ τK(g)‖

‖τK(f)‖ and a

support defined by supp(f vK g) = ‖τK(f) ∩ τK(g)‖.

Considering two properties f, g ∈ L, their contextual relation is deter-
mined by the cardinalities of 3 sets of objects: πl

K(f, g) := ‖τK(f) \ τK(g)‖,
πc
K(f, g) := ‖τK(f) ∩ τK(g)‖ and πr

K(f, g) := ‖τK(g) \ τK(f)‖. For instance,
f contextually entails g if and only if πl

K(f, g) = 0, f and g are contextually
separated if and only if πc

K(f, g) = 0, or x is a link of wq (see Section 3.3.2) if
and only if πc

K(x,wq) 6= 0 and πr
K(x,wq) 6= 0. Note that the superscripts, l, c,

and r refer to the left, center, and right part of the following Venn diagram:

f g g \ ff \ g

f g

27

So, the procedure that computes links for navigating in a LIS can be gener-
alized to compute necessary or sufficient conditions, association rules, and
links, only by specifying constraints on πc

K , πr
K , and πl

K . Observe that

conf(f vK g) =
πc
K(f, g)

πl
K(f, g) + πc

K(f, g)
, and that supp(f vK g) = πc

K(f, g).

Definition 38 (Data-mining) Let K = (O,L, d) be a context. For every
working query wq ∈ L and working view wv ∈ L a set of facts is defined by

FactK(wq,wv) := Maxv




(x, rank(x,wq)) ∈ FK ×Rank

| x @ wv, property(x,wq)




,

where Rank is a domain of ranking values, and rank and property are an
application and a predicate defined using πc

K, π
r
K, and πl

K.

Example 39 (Generalized navigation)

Links: Consider
rank(x,wq) = πc

K(x,wq) and property(x,wq) = πc
K(x,wq) > 0.

Then, FactK(wq,wv) computes all links from working query wq under
view wv.

Necessary conditions: Consider
rank(x,wq) = conf(wq vK x)

and property(x,wq) = conf(wq vK x) ≥ confmin,
where confmin ∈ [0, 1].

Then, FactK(wq,wv) computes all necessary properties to wq (i.e., prop-
erties entailed by wq) with a confidence greater than confmin.

Sufficient conditions: Consider
rank(x,wq) = (supp(x vK wq), conf(x vK wq))

and property(x,wq) = supp(x vK wq) ≥ suppmin ∧ conf(x vK wq) ≥ confmin,
where suppmin, confmin ∈ [0, 1].

Then, FactK(wq,wv) computes all sufficient conditions to be in the extent
of wq with a support and confidence greater than suppmin and confmin.

5.2 Context Maintenance based on Learning

A context associates to objects a description that combines automatically ex-
tracted properties (intrinsic) and manually assigned ones (extrinsic) (cf. Sec-
tion 4). The extrinsic properties are expressed by users according to intentions
that are often subjective and changing, and that determine the classification
and retrieval of objects. So, we believe it is important to assist users in this
task through the automatic suggestion of extrinsic properties to be assigned

28

and even the discovery of rules to automate these assignments. The principle
is to learn from the relationship between extrinsic and intrinsic descriptions
of existing objects the extrinsic description of a new object whose intrinsic
description is computed from its content. Because of the changing nature of
users’ intentions, the assistance given in the incremental building of a logical
context must be interactive. We present formal principles, and an application
to the classification of e-mail messages. Proofs can be found in (Ferré and
Ridoux, 2002b).

5.2.1 Induction through Associative Concepts

Let us consider the situation where a new object o∗ is added to a logical
context K = (O,L, d) along with an intrinsic description d∗(o∗) to form a new
context K∗ = (O] {o∗},L, d∗) with d∗(o) = d(o) for all o ∈ O. Our aim is to
induce from the old context K a set of extrinsic properties IndKF

(o∗) ⊆ F for
the new object.

We first define associative concepts as the concepts of K when one considers
only description features of o∗, DKF

(o∗).

Definition 40 (associative concept) A non-empty concept of the sub-
context KF (O, DKF

(o∗)) is called an associative concept of o∗ in KF . The
set of all such associative concepts is denoted by ACKF

(o∗).

ACKF
(o∗) organizes the feature context KF in a concept lattice (where the

empty concept is missing) that is less finely detailed than CKF
. However, this

coarser concept lattice is relevant to the features of o∗. Conversely, the finer
details in CKF

cannot be expressed with the features of o∗.

Then, an induced feature can be defined as a feature that contextually sub-
sumes the intent of some associative concepts.

Definition 41 (induced property) We say a feature x is an induced prop-
erty for o∗ if and only if there exists an associative concept c ∈ ACKF

(o∗),
such that uint(c) vK x or, equivalently, ext(c) ⊆ τK(x). IndKF

(o∗) denotes
the set of all induced properties of o∗ in KF .

Intuitively, an associative concept c of a new object o∗ is an already existing
concept (for previous objects in K) that has some similarity with the descrip-
tion of o∗. When x ∈ IndKF

(o∗) is induced from an associative concept c,
ext(c) is the support of the induction, and int(c) is the explanation. A given
associative concept can induce several features; and a given feature can be in-
duced by several associative concepts, and so, it can have several explanations.
Induced features that do not belong to description features are called expected
features, which are the features suggested to users as extrinsic properties.

29

Example 42 (Triv) Consider d(o∗) = c ∧ d, then DKF
(o∗) = {c, d}.

ac = ({z}, {c}) is an associative concept of o∗, and a ∨ b is a feature of KTriv

(see Figure 2) such that ext(ac) ⊆ {x, y, z} = τKTriv
(a ∨ b). So, a ∨ b is an

induced feature.

5.2.2 Experimentation

The aim of this section is to present through experimentations the kind of
interactions that help a user to assign extrinsic properties to incoming objects,
and to gradually automate these assignments (e.g., for filtering spams).

5.2.2.1 Filtering spams We consider here the assisted filtering of spams.
The following display shows the initial description of a new (non-solicited) e-
mail message, with its expected features. The context on which the induction
of expected features is based is made of 200 e-mail messages.

Current description:

from is "hh2732774@dtcom.net" ∧

to is "undisclosed-recipients" ∧

subject is "earn money without a job!"

Expected features:

28 spam

<- from contains "net" ∧ to is "undisclosed-recipients"

<- to is "undisclosed-recipients"

<- from contains "net"

<- subject contains "earn" ∧ subject contains "money"

2 to contains "irisa"/ to contains "fr"/ from contains "com"

<- subject contains "earn" ∧ subject contains "money"

...

We can see that, whereas the from and subject field are new, several fea-
tures are induced. This is possible because message fields are split into
words, which enables to find common features between the new object
and existing ones: e.g., from contains "net", subject contains "money",
to is "undisclosed-recipients".

We also see that the above message is well-recognized as a spam, and this
feature is even the most strongly induced one with several explanations and a
weight of 28 supporting objects. These explanations suggest some rules such as
“every e-mail message sent to undisclosed-recipients is a spam”, or “every
e-mail message whose subject contains words earn and money is a spam”.

30

It is up to the user to validate these explanations, and to make them automatic
rules, or to be cautious, and to consider them only as hints.

Figure 4 shows the filtering rate of spams during the incremental building of an
e-mail context. The dashed line represents the rate of well-classified messages
(as spam or non-spam) at the n-th insertion. The solid line represents the
rate of classified messages (well or not). So, the part between the two lines
represents badly classified messages (e.g., spam classified as non-spam), and
the part above the solid line represents non-classified messages. This plot shows
that after a transient phase of about 50 messages, the rate of well classified
messages steadily reaches 85%, and there are nearly no bad classification.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 20 40 60 80 100 120 140 160 180 200

classified
well classified

Figure 4. Filtering spams

The rates in Figure 4 are accumulated from the start of the experiment:

classified(n) =
total classified(n)

n . So they take into account the bad
rates of the transient phase. The pseudo-instantaneous rates, classified(n) =
total classified(n)− total classified(n− δt)

δt are over 90% after the 80th mes-

sage for a time window (δt) of 50 messages (average number of messages per
week during the experiment).

5.2.2.2 Classifying e-mail messages The second application is a variant
of the first one in which keywords are not limited to two values. We classify e-
mail messages in about 20 non-exclusive categories such as teaching, research,
spam, call-for-paper, and so on. Note that these categories were not fixed a
priori, but appeared only when required by the meaning of incoming messages.
Thus, the vocabulary of categories remains open for ever.

Figure 5 shows the results of this experiment. The “automatic” line shows the
rate of automatic classification using rules that are suggested by the system
and accepted by the user (40 rules, including 15 for spams). The “suggested”
line shows the rate of correct suggested classification. It tends to decrease
simply because the sum of the two rates must be less than 1. Both rates are
measured in number of features. The solid line shows the sum of the two rates.

31

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250 300 350 400

automatic + suggested
suggested
automatic

Figure 5. Classifying e-mail messages

Note again that these rates are cumulative; the instantaneous rates of “auto-
matic+suggested” is constantly over 85% after the 100th message for a time
window of 50 messages.

6 Implementation of a LIS

Logic information systems are based on two choices: Concept Analysis and the
use of an arbitrary logic. Both choices ask for performance questions as the
complexity of concept lattices is exponential, and using logical descriptions
implies the introduction of a theorem prover. However, theorem proving may
be costly, e.g., exponential time for propositional logic.

6.1 Concept analysis without concept lattice

We first present the internal representation of a logical context we have chosen
for our prototype; we also describe operations on this representation. Then,
we give space complexity for the internal representation, and time complexity
for the operations. These complexities are based on hypotheses, justified by
experiments.

6.1.1 Internal Representation of a Logical Context

In a logical context K = (O,L, d), we are mainly interested in navigation
and querying. From their definition in Sections 3.3 and 3.4, it appears that all
needed elementary operations are:

• v: subsumption test between two formulas,
• τK : extent of a formula, which is based on subsumption v and on the set of

objects O,
• ∩: set intersection (between two extents),

32

• Maxv: selection of maximal formulas w.r.t. v, from a set of formulas.

Three of these operations use the subsumption test, i.e., they call the theorem
prover of the logic. As its complexity is high for some logics, it is preferable to
limit its use as much as possible. In particular, the computation of extents is
intensively used in the search for links, whereas each computation of an extent
means as many subsumption tests as the number of objects.

We propose to store subsumption relations between features, and between fea-
tures and object descriptions, in what we call a logical cache. We also propose
to cache extents of features, which are intensively used for navigation. Thus, a
logical context K is stored as a directed acyclic graph whose nodes are logical
formulas (features FK and object descriptions d(O)), equipped with their ex-
tent, and whose arcs are subsumption relations between these formulas (arcs
deducible by reflexivity and transitivity are not represented). This represen-
tation is the Hasse diagram of the partially ordered set 〈FK ∪ d(O);v〉.

Note that this representation is different from the concept lattice, which is
usually used in systems based on concept analysis (e.g., Godin, Missaoui, and
April, 1993; Cole and Stumme, 2000). We think the logical Hasse diagram is
more appropriate to logical navigation for several reasons:

• the order used to compare a potential link to the working view and to select
maximal links is the subsumption v, and not the order on concepts ≤c,

• it allows to search for navigation links among the features subsumed by
the working view, without testing x @ wv; and similarly to select maximal
features without actually checking subsumption,

• the number of concepts can be exponential with the number of objects,
whereas the set of features is sufficient for navigation, and its size is linear
with the number of objects (see Section 6.1.2),

• the order ≤c on concepts changes when objects are added, contrary to the
order v on formulas.

The principal operations we consider on this logical cache are:

insertion of a formula: a new feature or object description is inserted in
the graph and connected to other formulas according to the subsumption
relation;

addition of an object: a new object is placed on the node representing its
description, and extents of existing nodes are updated;

search for the maximal features satisfying some property: this is
used to search for navigation links and views.

These operations are sufficient to implement the shell commands we presented
for navigation and querying.

33

6.1.2 Theoretical and Practical Complexity

The two important parameters for determining complexities are the number
of objects, n, and the number of features per object, f (there are other pa-
rameters, but they are bounded by f). The space complexity of the Hasse
diagram is in O(f 2n). Among the three above operation, only the insertion
of a formula actually uses the subsumption test: the number of call to v is
in O(fn). Other operations find their results in the logical cache. The time
complexity of set operations is either in O(f 2) (insertion of a formula, and
addition of an object), or in O(fn) (search for links and views).

Our experiments have shown that the number of features per object f is nearly
constant for a given application (see Section 6.1.3). This is explained by the
fact that features are extracted from object descriptions automatically and
without considering other objects. The consequence for complexities is that
every operation is either constant, or linear with the number of objects. This
means that navigation and querying in a LIS are tractable.

6.1.3 Experiments

A prototype of a Logical Information System has been built for experimen-
tation purpose. It has been implemented in λProlog (Miller and Nadathur,
1986; Belleannee, Brisset, and Ridoux, 1999) as a generic system in which a
theorem-prover and a syntax analyzer can be plugged-in for every logic used
in descriptions. It is not meant to be efficient, though it can handle several
thousand entries. Contrary to other tools based on concept analysis, it does
not create the concept lattice. It only manages a Hasse diagram of the features
used so far.

For the ICCS Bib context (see Example 7), the Hasse diagram has 954 nodes
and 2150 arcs. In the experiments reported in this article, all response times
are shorter than 1 second. In other experiments with a full-sized Bib con-
text, i.e., all BibTeX fields (Lamport, 1985) are represented and there are
several thousand bibliographical references, the Hasse diagram has an average
of 15 nodes per object, 3 arcs per node, and a height of about 5. This experi-
ment and others support the idea that the number of features per object, f ,
is nearly constant for a given application; e.g., f is about 60 in Bib contexts.
This has a positive implication on the complexity of LIS operations, because
under this hypothesis their time complexity is either constant, or linear with
the number of objects (see above).

34

6.2 Logics for LCA and LIS

We present in this section how the generic scheme that takes a logic as a
parameter can be instantiated.

6.2.1 Principles

Using logics as schemas in data-bases implies that end-users or system ad-
ministrators will have to define and implement logics. Clearly, this is out of
reach for most of them. In order to make our principles practicable anyway,
we have designed a framework for specifying and implementing logics. This
framework is based on what we called logic functors. Using them, defining and
implementing a logic consists merely in combining parameterized logics. Each
logic functor consists in a logic component, e.g., propositional logic or interval
comparison. Functors can be composed to form new logics, e.g., propositional
logic on intervals.

Each functor is implemented as a parameterized theorem prover. Our goal is
that the theory and theorem prover of a combination of functors result from
a systematic combination of the theory and theorem prover of each functor.

All functors and their compositions implement a common interface which cor-
responds to the 6-tuple of Definition 1. This makes it possible to program
generic applications that can be instantiated with a logic component. Con-
versely, customized logics built using the logic functors can be embedded in an
application that respects this interface.

The whole framework development is geared towards manipulating logics as
lattices. So, subsumption is considered as a relation between formulas, and we
study the conditions under which this relation is a partial order.

Our idea is to consider that a logic interprets its formulas as functions of their
atoms. By abstracting atomic formulas from the language of a logic we obtain
what we call a logic functor. A logic functor can be applied to a logic to form
a new logic. For instance, if propositional logic is abstracted over its atomic
formulas, we obtain a logic functor called prop, which we can apply to, say, a
logic on intervals interv, to form propositional logic on intervals, prop(interv).

35

6.2.2 Logics and logic functors

We present the logic functor structure. More details can be found in (Ferré
and Ridoux, 2002a), particularly on the conditions for composability.

Definition 43 (logic) A logic L is a triple (ASL, SL, PL) where ASL defines
the abstract syntax of formulas of L, SL defines their semantics, and PL defines
their interface.

SL is a pair (IL, |=L) where

• IL is the interpretation domain of the formulas of L, and
• |=L∈ P(IL × ASL) is the satisfaction relation between interpretations
and formulas; i |=L f means that i is a model of f . We write
ML(f) = {i ∈ IL | i |=L f} the set of all models of a formula f .

PL is a 5-uple (vL,tL,uL,>L,⊥L) where

• vL∈ P(ASL × ASL) is the subsumption relation,
• tL,uL ∈ ASL ×ASL → (ASL ∪ {undef }) are conjunction and disjunction,
and

• >L,⊥L ∈ ASL ∪ {undef } are the tautology and contradiction for L.

All logics built with logic functors present the same interface
(vL,tL,uL,>L,⊥L), plus other operations like updating (operation ¦ in
Section 4.1), parsing and printing. So, they implement the same abstract
data-type. The 5 logic operations considered here correspond to a minimal
requirement about logics; the ability to test subsumption, to build new
formulas using conjunction and disjunction, and to determine if a formula is
a tautology or a contradiction. A logic may have more connectives, but they
will appear in its abstract syntax, not in its interface.

In order to simplify the presentation, we will only consider operations vL, uL,
and >L in the sequel.

The definition of uL needs not be total. Similarly, >L needs not be defined.
Moreover, there is no a priori relation between SL and PL. So, we need a notion
of completeness and consistency that takes into account partial definitions.

Definition 44 (completeness) Let L be a logic, the operations of its inter-
face PL, i.e., vL, uL, and >L, are complete w.r.t. a semantics SL, if and only
if for all formulas f, g ∈ ASL we have

• ML(f) ⊆ ML(g) =⇒ f vL g,
• >L 6= undef =⇒ ML(>L) = IL,
• f uL g 6= undef =⇒ ML(f uL g) ⊇ ML(f) ∩ML(g)),

36

An interface PL is complete w.r.t. a semantics SL if and only if each of its
operation is complete.

Definition 45 (consistency) Let L be a logic, the operations of its interface
PL, i.e., vL, uL, and >L, are consistent w.r.t. a semantics SL, if and only if
for all formulas f, g ∈ ASL we have

• f vL g =⇒ ML(f) ⊆ ML(g),
• >L is always consistent,
• f uL g 6= undef =⇒ ML(f uL g) ⊆ ML(f) ∩ML(g),

An interface PL is consistent w.r.t. a semantics SL if and only if each of its
operation is consistent.

By this definition, operations uL and >L (and also tL and ⊥L) of a completely
undef ined interface are trivially complete and consistent, but they makes a
useless interface. So, the game of designing a new logic is to make it defined
enough to be useful, but still complete and consistent.

Definition 46 (logic functor) Assuming L, AS, S, and P the collections of
all logics, abstract syntax, semantics, and interface, a logic functor F : Ln → L
is a triple (ASF , SF , PF) defined as follows:

• ASF : ASn → AS such that ASF (L1,...,Ln) = ASF (ASL1 , . . . , ASLn),
• SF : Sn → S such that SF (L1,...,Ln) = SF (SL1 , . . . , SLn),
• PF : Pn → P such that PF (L1,...,Ln) = PF (PL1 , . . . , PLn),

By convention, a logic will be considered as a logic functor of type L.

Logic functors are used as follows. SL describes the semantics; it acts as a
specification. PL implements an interface; its description must be constructive
enough, so that it leads directly to a program. A part of the interface describes
how the concrete syntax is parsed and printed (remember that ASL is only the
abstract syntax). The other part offers logic operations. The user composes
a logic by applying logic functors to logics, say F (L1, . . . , Ln), and a logic
composer takes such an expression and produces automatically the concrete
implementation of the logic by gluing together the concrete implementations
of F , L1, . . . , and Ln. This results in a software component, with a formally
specified interface, that can be plugged in any software system that assumes
the same interface.

This methodology leads to designing a library of logic functors for describing
objects of LIS: a unary propositional functor (prop), whose main quality is
to make a total logic out of a partial one (prop(partial) = complete), several
nullary logic functors for concrete domains like strings and intervals, several
n-ary logic functors for combining descriptions, and an auto-epistemic logic

37

functor for representing (un)completeness of knowledge.

It is worth insisting on the auto-epistemic logic functor. Very often, users ex-
pect that a description author is "Smith" implies ¬ author is "Jones".
However, this is false in standard propositional logic. One needs a form of
Closed World Assumption or a kind of Negation as Failure to prove that.
However, to be used in a LIS a logic must be monotonic (because its sub-
sumption relation must form a lattice). ONL (a.k.a. “All I Know” Levesque,
1990) is an epistemic modal logic that permits to express that a formula tells
the whole truth. It is a variant of ONL that we are using in LIS (Ferré,
2001); and its functor is called aik . Since it is very frequent to have to express
absolute knowledge, the idiom prop(aik(prop(. . .))) has become a mandatory
prefix of the logics used in LIS.

The principle of composing logic functors has been implemented in a proto-
type. It reads logic specifications such as prod(prop(atom), prop(interv)) and
produces automatically a printer, a parser, and a theorem-prover. This ex-
ample means that logic formulas are products of a proposition on atoms and
a proposition on intervals. The prototype reads such a constructed logic and
builds a theorem-prover for it by instantiating the theorem-prover associated
to each logic functor at every occurrence where it is used. The prototype,
each functor implementation, and the resulting implementations are written
in λProlog.

Coming back to the bibliography example of the introduction, we construct a
dedicated logic with logic functors as follows:

prop(aik(prop(sum(atom, valattr(sumn(interv, string, . . .)))))).

which means propositional logic on epistemic modal formulas on propositional
logic on a sum (i.e., a mix) of atomic formulas and valued attributes whose val-
ues are themselves made of interval formulas, string formulas, etc. According
to the theory of logic functors, the following theorem holds.

Theorem 47 (Bib logic is ok) The logic L used in Example 7,

L = prop(aik(prop(sum(atom, valattr(sum2 (interv , string)))))),

is such that PL is total, bounded, and consistent and complete in all five oper-
ations w.r.t. SL.

38

7 Conclusion

7.1 Summary of LIS

We have presented the specifications of a Logical Information System based
on (Logical) Concept Analysis. It is based on Concept Analysis and is generic
w.r.t. a logic for describing objects. In this framework, navigation/querying
and creation/updating can be seamlessly integrated.

In this way, standard commands of a file system shell can be mimicked in
a logical context. However, a simple generalization of the definition of links
forms a framework in which operations of data-analysis or data-mining can
also be expressed. Using this framework, purely symbolic navigation as well
as statistical exploration can be integrated smoothly as variants of the same
generic operation.

As opposed to previous attempts of using Concept Analysis for organizing
data, we do not propose to navigate directly in the concept lattice. Instead,
we use the contextualized logic (i.e., the logical view of the concept lattice) to
evaluate the relevance of navigation links. Those that do not narrow the focus
of the search are called views. They only restrict the language of available
navigation links. Other links, that do narrow the focus of the search, can be
used to come closer to some place of interest. The definition of links can be
generalized to encompass data-mining notions like necessary and sufficient
conditions, and association rules.

The advantage of LIS is a great flexibility which comes from two factors:

(1) the integration of operations that were exclusive in most systems,
(2) the use of logic with Concept Analysis, which solves the name problem.

We have experimented it in various contexts: e.g., cook-books, bibliographi-
cal repository, software repository (search by keywords, and search by types),
and simply a note-pad. Various logic components were used in these contexts:
atoms, intervals, strings, propositional logic, type entailment, taxonomies
(e.g., for ingredients). In all cases, a LIS goes beyond any a priori structure
and permits many kinds of views on the same information. For instance, in
the case of a cook-books, if every recipe is described by its ingredients, its
process, the required kitchen utensils, its dietetic value, its place in a meal,
and more cultural information, then a cook, a dietician, and a gourmet can
have very different views on the same data, and acquire new information by
data-mining and learning, simply by using a few LIS shell commands. Simi-
larly, if software components have intrinsic descriptions like their types and
languages, the modules they use, parts of specification, and requirements, and

39

extrinsic descriptions like their testing status, and who is using them, then
several software engineering operations like developing and testing, versioning
and configuring, and maintenance and evolution can be done using the same
repository under different views, and also going smoothly from one view to
another.

A thorough description of LIS can be found in the PhD thesis of the first
author (Ferré, 2002b). It contains all proofs, gives more details about im-
plementation, and in addition to this paper, considers the representation of
complete vs. incomplete object descriptions.

The exclusive use of logic for describing objects, and for designing operations
asks the question of whether uncertainty can be dealt with in LIS. In fact, LIS
can handle uncertainty at two levels.

First level is the logical language. Because LIS is generic w.r.t. logic, it can
accomodate uncertainty either in descriptions of objects or in queries by using
logics that handle uncertainty. Even propositional logic can handle a kind
of uncertainty with disjunctions, but other logics like interval logic or logic
“All I Know” can handle other kinds of uncertainty. Intervals can deal with
uncertainty of numerical values, and “All I Know” deals with the extent of
knowledge. Both have been implemented as logic functors (see Section 6.2).

LIS is not opposed to using fuzzy modeling languages (logic, sets, etc), but
it requires an entailment relation that forms a lattice. In particular, the en-
tailment relation must be monotonic. Note that “All I Know” is a monotonic
logic that handles a notoriously non-monotonic feature: the “Closed World
Assumption”. We take this as a hint that the restriction to monotonic logics
is not a restriction in expressiveness.

Second level is the data-analysis level. As we have shown in Section 5.1, it
is very natural to generalize navigation into data-analysis w.r.t. to indicators
like confidence and support. This makes it possible to extract knowledge that
is not necessarily 100% true.

7.2 Related Works

There have been several other proposal of navigation/querying based on Con-
cept Analysis. Lindig (1995) designed a concept-based component retrieval
based on sets of significant keywords which are equivalent to our links for
the logic of attributes underlying FCA. Godin et al. (1993) propose a direct
navigation in the lattice of concepts, which is in fact very similar to Lindig’s
approach except that only greatest significant keywords, according to the con-
textualized subsumption on attributes, are displayed to the user. They have

40

also notions common to our LIS such as working query, direct query specifi-
cation, and history of selected queries.

Cole and Stumme (2000) developed a Conceptual E-mail Manager (CEM)
where the navigation is based on Conceptual Scales (Prediger, 1997; Prediger
and Stumme, 1999). These scales are similar to our views in the sense that
they select some attributes acting as links and displayed, as for us, with the
size of the concept they select. A difference with our LIS is that these links
are ordered according to concept lattices of scales, but it can also be done in
LIS by a post-treatment on answers of command ls.

However, the main difference with all of these approaches is that we use an
(almost) arbitrary logic to express properties. This enables us to have auto-
matic subsumption relations (e.g., (author is "Wille, Mineau") v (author
contains "Wille") v (author)), and thus some implicit views (e.g., author,
year). Another difference is that we propose to handle in a uniform way, based
on CA, navigation and querying as above, but also, updating, data-mining,
learning, etc.

van Rijsbergen (1986) also combined information retrieval (IR) and logic by
introducing a logical model of IR, in which both object descriptions and queries
are logical. As for us, many logics could be used in this model, but a first
difference is that the relevance relation is defined as a measure combining the
exhaustivity and specificity of the object description to the query, rather than
an exact one (the subsumption v). This measure is used to rank the answers
of a query. A second difference is that navigation is not here combined with
querying. Later, Chiaramella (1997) added some navigation to this logical
model of IR. However, this navigation is structural rather than conceptual
as in a LIS, which means that a navigation step leads from a set of objects
to another, rather than from a query to a set of sub-queries. The fact that
our answers are intentional rather than extensional justifies we can rely on an
exact relevance relation because answers to queries are not flat sets of objects.
However, it is also possible to take into account uncertainties in a LIS (see the
end of Section 7.1).

7.3 Future Work

Our most practical perspective is to design a logical file system, which would
implement the ideas we have presented in this article, and serve as a Logic
Concept Repository for a LIS. The expected advantage is to offer the services
described here at a standard system level that is accessible for every applica-
tion. So doing, even applications that do not know about logical information
systems (like e.g., all existing compilers) would benefit from it. For this logi-

41

cal file system, it will also be important to make our ideas work with a large
volume of data in an efficient way.

A graphical user-interface to logical file systems would allow to display in an
integrated fashion the working query, the working view, and the corresponding
extent and set of links. For instance, a graphical interface for keeping trace of
navigation, like what is becoming standard for file browsers, has been already
experimented for a simple logic (attributes with values) but should be devel-
oped further. This amounts to keep a trace of the path from the start of the
navigation to the current place. Moreover, the set of links could be presented
graphically as a diagram of ordered formulas. A further refinement is to take
into account the contextualized subsumption, to get something similar to con-
cept lattices derived from scales (Cole and Stumme, 2000). This amounts to
represent an overview of possible future navigations.

The World Wide Web can also be explored using our techniques if one consid-
ers answers to web-queries as a formal context into which to navigate. More
ambitious is to think of a Web-based LIS. In this case, the main issues will be
distribution of data and computation.

An application of the learning schema exposed in Section 5.2.1 is to use
the learning schema for navigating. A description would play the role of a
query, and its associative concepts could be proposed to the user as alterna-
tive queries. The advantage is that though the initial query could have an
empty answer, the alternative ones always correspond to non-empty concepts.
So, it makes it possible to start a search with only an example of what the
user is looking for, and then see actual representatives of the queried concepts.

Another interesting perspective follows the observation that the notion of as-
sociative concepts is closely related to modified and new concepts in the incre-
mental concept formation (Godin, Missaoui, and Alaoui, 1995). We developed
further this correspondence, which led to an improved algorithm for incremen-
tally computing concepts of sparse contexts (Ferré, 2002a).

In all this article, names or descriptions are essentially unary predicates,
whichever is the actual logic used for this purpose. However, several appli-
cations require to express relations between objects, i.e., n-ary predicates. For
instance, a LIS for a software environment should permit to express such re-
lations as calls f or is connected to x, where f and x are objects. These
relations form concrete links between objects, which we plan to consider for
navigation in a future work. The main difficulty is to manage the concrete links
in a way that remains compatible with the other navigation links. This will
also permit to represent topological informations, e.g., West of x or 10 miles

from y, that are used in Geographical Information Systems.

42

References

Barbut, M., Monjardet, B., 1970. Ordre et classification — Algèbre et combi-
natoire (2 tomes). Hachette, Paris.

Belleannee, C., Brisset, P., Ridoux, O., 1999. A pragmatic reconstruction of
λprolog. The Journal of Logic Programming 41, 67–102.

Brachman, R. J., 1979. On the epistemological status of semantic nets. In:
Findler, N. V. (Ed.), Associative Networks: Representation of Knowledge
and Use of Knowledge by Examples. Academic Press, New York.

Chaudron, L., Maille, N., 1998. 1st order logic formal concept analysis: from
logic programming to theory. Computer and Information Science 13 (3).

Chiaramella, Y., 1997. Browsing and querying: two complementary approaches
for multimedia information retrieval. In: N. Fuhr, G. Dittrich, K. T. (Ed.),
Hypermedia - Information Retrieval - Multimedia. Universitätsverlag Kon-
stanz, pp. 9–26.

Cole, R., Stumme, G., 2000. CEM - a conceptual email manager. In: Mineau,
G., Ganter, B. (Eds.), Int. Conf. Conceptual Structures. LNCS 1867.
Springer, pp. 438–452.

Crestani, F., Lalmas, M., 2001. Logic and uncertainty in information retrieval.
In: Lectures in Information Retrieval. LNCS 1980. pp. 179–207.

Davey, B. A., Priestley, H. A., 1990. Introduction to Lattices and Order. Cam-
bridge University Press.

Di Cosmo, R., 1995. Isomorphisms of Types: from λ-calculus to information
retrieval and language design. Progress in theoretical computer science.
Birkhäuser.

Ferré, S., 2001. Complete and incomplete knowledge in logical information
systems. In: Benferhat, S., Besnard, P. (Eds.), Symbolic and Quantitative
Approaches to Reasoning with Uncertainty. LNCS 2143. Springer, pp. 782–
791.

Ferré, S., Oct. 2002a. Incremental concept formation made more efficient by
the use of associative concepts. Research Report RR-4569, Inria, Institut
National de Recherche en Informatique et en Automatique.
URL http://www.inria.fr/RRRT/RR-4569.html

Ferré, S., Oct. 2002b. Systèmes d’information logiques : un paradigme
logico-contextuel pour interroger, naviguer et apprendre. Thèse
d’université, Université de Rennes 1, accessible en ligne à l’adresse
http://www.irisa.fr/bibli/publi/theses/theses02.html.
URL http://www.irisa.fr/bibli/publi/theses/theses02.html

Ferré, S., Ridoux, O., Dec. 1999. Une généralisation logique de l’analyse de
concepts formels. Technical Report RR-3820, Inria, Institut National de
Recherche en Informatique et en Automatique, an english version is available
at http://www.irisa.fr/lande/ferre.

Ferré, S., Ridoux, O., 2000. A logical generalization of formal concept analysis.
In: Mineau, G., Ganter, B. (Eds.), Int. Conf. Conceptual Structures. LNCS
1867. Springer, pp. 371–384.

43

Ferré, S., Ridoux, O., 2002a. A framework for developing embeddable cus-
tomized logics. In: Pettorossi, A. (Ed.), Int. Work. Logic-based Program
Synthesis and Transformation. LNCS 2372. Springer, pp. 191–215.

Ferré, S., Ridoux, O., 2002b. The use of associative concepts in the incremental
building of a logical context. In: U. Priss, D. Corbett, G. A. (Ed.), Int. Conf.
Conceptual Structures. LNCS 2393. Springer, pp. 299–313.

Ganter, B., Kuznetsov, S., 2001. Pattern structures and their projections.
In: Delugach, H. S., Stumme, G. (Eds.), Int. Conf. Conceptual Structures.
LNCS 2120. Springer, pp. 129–142.

Ganter, B., Wille, R., 1999. Formal Concept Analysis — Mathematical Foun-
dations. Springer.

Gifford, D. K., Jouvelot, P., Sheldon, M. A., O’Toole, J. W. J., 1991. Semantic
file systems. In: 13th ACM Symposium on Operating Systems Principles.
ACM SIGOPS, pp. 16–25.

Godin, R., Missaoui, R., Alaoui, H., 1995. Incremental concept formation algo-
rithms based on Galois (concept) lattices. Computational Intelligence 11 (2),
246–267.

Godin, R., Missaoui, R., April, A., 1993. Experimental comparison of navi-
gation in a Galois lattice with conventional information retrieval methods.
International Journal of Man-Machine Studies 38 (5), 747–767.

Gopal, B., Manber, U., 1999. Integrating content-based access mechanisms
with hierarchical file systems. In: third symposium on Operating Systems
Design and Implementation. USENIX Association, pp. 265–278.

Herzig, A., Rifi, O., 1999. Propositional belief update and minimal change.
Artificial Intelligence 115 (1), 107–138.

Keller, A. M., Mar. 1985. Algorithms for translating view updates to database
updates for views involving selections, projections, and joins. In: 4th ACM
Symp. Principles of Database Systems. pp. 154–163.

Krone, M., Snelting, G., May 1994. On the inference of configuration struc-
tures from source code. In: Int. Conf. Software Engineering. IEEE Computer
Society Press, pp. 49–58.

Kuznetsov, S., 1999. Learning of simple conceptual graphs from positive and
negative examples. In: Żytkow, J. M., Rauch, J. (Eds.), Principles of Data
Mining and Knowledge Discovery. LNAI 1704. Springer, pp. 384–391.

Kuznetsov, S., Objedkov, S., 2001. Comparing performance of algorithms for
generating concept lattice. In: et al., E. M. N. (Ed.), ICCS-2001 Int. Work-
shop on Concept Lattices-based Theory, Methods and Tools for Knowledge
Discovery in Databases. Stanford University, CRIL – IUT de Lens, France.

Lamport, L., 1985. LATEX— A Document Preparation System. Addison-
Wesley, 2nd edition.

Levesque, H., Mar. 1990. All I know: a study in autoepistemic logic. Artificial
Intelligence 42 (2).

Lindig, C., 1995. Concept-based component retrieval. In: IJCAI95 Workshop
on Formal Approaches to the Reuse of Plans, Proofs, and Programs.

Meghini, M., Sebastiani, F., Straccia, U., Thanos, C., 1993. A Model of infor-

44

mation Retrieval based on Terminological Logic. In: 16th Annual Int. ACM
SIGIR Conference on Research and Development in Information Retrieval.
pp. 298–307.

Miller, D. A., Nadathur, G., 1986. Higher-order logic programming. In:
Shapiro, E. (Ed.), In Third Int. Conf. Logic Programming. LNCS. Springer-
Verlag, London, pp. 448–462.

Napoli, A., Dec. 1997. Une introduction aux logiques de descriptions. Rapport
de recherche RR-3314, Inria, Institut National de Recherche en Informatique
et en Automatique.

Prediger, S., 1997. Logical scaling in formal concept analysis. LNCS 1257 ,
332–341.

Prediger, S., Stumme, G., 1999. Theory-driven logical scaling. In: International
Workshop on Description Logics. Vol. 22. Sweden.

Snelting, G., Jul. 1998. Concept analysis — A new framework for program
understanding. ACM SIGPLAN Notices 33 (7), 1–10.

Ullman, J. D., 1989. Principles of Database and Knowledge-Base Bystems.
Computer Science Press, Rockville, Maryland.

van Rijsbergen, C. J., 1986. A new theoretical framework for information
retrieval. In: Int. ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, pp. 194–200.

Vogt, F., Wille, R., 1994. TOSCANA — a graphical tool for analyzing and
exploring data. In: Symposium on Graph Drawing. LNCS 894. pp. 226–233.

Wille, R., 1982. Ordered Sets. Reidel, Dordrecht Boston, Ch. Restructuring
lattice theory: an approach based on hierarchies of concepts, pp. 445–470.

45

Appendix B

Camelis: a Logical
Information System to
Organize and Browse a
Collection of Documents
(2009)

This journal article [Ferré, 2009a] has been published in a special edition of
the International Journal of General Systems in 2009. It contains a mature
and comprehensive description of the first generation of logical information
systems, and its main implementation Camelis. It contains only the neces-
sary theoretical elements, and emphasizes the practical aspects and the user
point-of-view. It illustrates the LIS principles on a real personal photo col-
lection. It also develops a richer user experience with various querying and
navigation modes: e.g., querying by formula, querying by example, navigat-
ing downward/upward/sideward. It also provides algorithmic results with a
data structure, the logic cache, basic operations and their complexity. A mod-
ular architecture facilitates the application to various application domains,
using different logics (for describing objects) and different transducers (for
importing external data).

127

International Journal of General Systems
Vol. 00, No. 00, Month 200x, 1–25

RESEARCH ARTICLE

Camelis: a logical information system

to organize and browse

a collection of documents

Sébastien Ferré∗

IRISA, Université de Rennes 1, 35042 Rennes cedex, France
(Received 00 Month 200x; final version received 00 Month 200x)

Since the arrival of digital cameras, many people are faced to the challenge of organizing
and browsing the overwhelming flood of photos their life produces. The same is true for all
sorts of documents, e.g. emails, audio files. Existing systems either let users fill query boxes
without any assistance, or drive them through rigid navigation structures (e.g., hierarchies);
or they do not let users put annotations on their documents, even when this would support
the organization and retrieval of any documents on customized criteria. We present a tool,
Camelis, that offers users with an organization that is dynamically computed from documents
and their annotations. Camelis is designed along the lines of Logical Information Systems
(LIS), which are founded on logical concept analysis. Hence, (1) an expressive language can
be used to describe photos and query the collection, (2) manual and automatic annotations
can be smoothly integrated, and (3) expressive querying and flexible navigation can be mixed
in a same search and in any order. This presentation is illustrated on a real collection of more
than 5,000 photos.

Keywords: document collection; annotation; browsing; information retrieval; formal
concept analysis; logical information systems

1. Introduction

Formal Concept Analysis (FCA) has been recognized as a good paradigm for in-
formation retrieval (Godin et al. 1993, Carpineto and Romano 1996, Martinez and
Loisant 2002, Cole et al. 2003) because it makes possible the combination of query-
ing and navigation in a same search. Querying alone is not satisfying because it
requires users to know the query language, and to have a precise idea of what they
search for. Navigation, by leading users to the result step by step, is more inter-
active, but the navigation structure is most often very rigid so that only one or a
few paths exist to each object (e.g., file hierarchy, hyperlink graph). In FCA, the
concept lattice plays the role of the navigation structure. Each concept combines a
query as a set of attributes (the intent), and a navigation place as a set of objects
(the extent). Attributes can be added to the query in any order, so that a concept
can be reached through several paths.

Logical Information Systems (LIS) (Ferré and Ridoux 2004) have been intro-
duced (1) to combine querying and navigation, (2) to make use of an expressive
language for object descriptions and queries, (3) to be generic w.r.t. the kind of
objects and the language, and (4) to be reasonably efficient on large collections of

∗Corresponding author. Email: ferre@irisa.fr

ISSN: 0308-1079 print/ISSN 1563-5104 online
c© 200x Taylor & Francis
DOI: 10.1080/0308107YYxxxxxxxx
http://www.informaworld.com

2

documents. Because of (2) it becomes necessary to do complex reasoning to de-
cide whether an object description matches a query (e.g., the object description
is a string, and the query is a regular expression). Logics are the right tools to
encapsulate representation and reasoning facilities. Because of (3), we cannot fix
the logic a priori. So we defined a generalization of FCA, Logical Concept Analy-
sis (LCA) (Ferré and Ridoux 2000), where logical formulas of an almost arbitrary
logic can be used instead of sets of attributes. This makes FCA an instance of
LCA, where object descriptions and queries are sets of attributes. Because of (4)
we propose, like other authors (Carpineto and Romano 1996, Ducrou and Eklund
2008), a local view on one concept at a time, instead of a global view on the whole
concept lattice. Indeed, the concept lattice has a size that can grow exponentially
with the size of the context. However, unlike other approaches, our local view is
defined only in terms of the document collection (objects and their properties), and
neither refers explicitly to the concept lattice, nor requires its effective computa-
tion. We show that such a concept view supports an intuitive, flexible, informative
and efficient exploration of the concept lattice.
Camelis1 is a complete implementation of a logical information system. It is

generic in that a logic module can be plugged in so as to cover different application
needs. It uses specific data structures and algorithms so that it scales up to 100,000
objects. It has a graphical interface that displays at all times the concept view: i.e.,
the query that led to the current concept, its extent, and an index of properties
that provides a summary of the extent, and navigation links to other concepts.
Both browsing and updating the context are done through this interface.

Among the various existing applications of Camelis, the most convincing is the
management of a photo collection. Indeed, photos can be described along many
facets like date, location, event, visible persons, visible objects. A file hierarchy
enforces a strict order between these facets, making some searches hardly possible.
Tag-based systems like FlickrTM are limited because a photo tagged with ’Syd-
ney’ as a location will not be an answer to a query containing ’Australia’; and a
photo tagged with “formal concept analysis” will not be an answer to “concept
analysis”. These limitations are easily solved by dedicated logics: here, a taxonomy
of locations, and a logic of string patterns. In this paper, we illustrate the capa-
bilities of Camelis and LIS on a real context, the personal photo collection of the
author. The collection contains more than 5,000 photos, and has been incrementally
defined since 2003, coinciding with the arrival of new photos.

There already exist other implementations of logical information systems.
LisFS (Padioleau and Ridoux 2003) instantiates the Virtual File System (VFS)
of Linux to provide LIS navigation at the system level, hence making it accessible
to existing applications. Geolis builds on top of LisFS (Bedel et al. 2008), and
is a Geographical Information System (GIS) with a Web interface. It displays the
extent as a map instead of a list, and this map is also the support of graphical
navigation links. Odalisque (Allard and Ferré 2008) applies to the Web semantic
by enabling the browsing of OWL-DL ontologies.

Section 2 recalls the main definitions of LCA, and introduces the concept view,
both formally and in the graphical interface. Section 3 assumes an existing context,
and presents all the facilities provided by Camelis to browse and retrieve photos,
from querying by formula and querying by example, to different kinds of navigation:
downward and upward, sideward, pivot, backward and forward. Section 4 illustrates
the incremental definition of the context with the arrival of a new pack of photos.
Section 5 sketches the different components of Camelis, and describes the main

1The version used in this paper is 1.4, down-loadable at http://www.irisa.fr/LIS/ferre/camelis/.

3

data structures and algorithms along with their complexities. Section 6 compares
LIS with state-of-the-art approaches.

2. Logical concept analysis

We recall the basics of Logical Concept Analysis (LCA) (Ferré and Ridoux 2000,
2004), whose principles are the same as in FCA, except that logical properties
partially ordered by a subsumption relation are used instead of attributes. This
subsumption relation is founded on a semantics that can be seen as a formal con-
text.

2.1 Logic

For genericity we do not want to fix the logic a priori, both in the theory and in
the implementation. So we define what we expect from a logic in the framework
of Logical Information Systems (LIS). A classical view is to define a logic as the
combination of a syntax that defines the language of formulas, and a semantics
that gives a meaning to those formulas.

Definition 2.1: A logic is a triple L = (I, L, |=), where:

• I is a set of interpretations,

• L is a set of well-formed formulas,

• and |= is a relation between interpretations and formulas, and means “is a
model of”.

L makes up the syntax, while I and |= make up the semantics of the logic.

In FCA terms, a logic can be seen as the formal context of the universe, where I
is the set of all possible objects, L is the set of attributes, and |= is the incidence
relation determining which object has which attribute.

If it happens that every model of some formula f is also a model of another
formula g, then we say that f is subsumed by g, and we write f v g.

Definition 2.2: Let L = (I, L, |=) be a logic, and f, g ∈ L be two formulas. The
subsumption v is a binary relation between formulas, defined by:

f v g ⇐⇒ ∀i ∈ I : i |= f ⇒ i |= g.

This subsumption relation plays a crucial role in LIS because it helps to organize
logical properties into taxonomies, and decides whether an object is an answer to
some query. Other logical operations could be defined for logics (e.g., least common
subsumer, conjunction, disjunction), but they are not necessary for LIS. From the
point of view of LIS, logics are black boxes that are invoked through an API that
contains a parser (from strings to formulas), a pretty-printer (from formulas to
strings), and a subsumption operation.

Our specification of logics are akin to Description Logics (DL) (Donini et al.
1997), where formulas are called concepts, and interpretations are called individuals.
A correspondence with first-order logic (FOL) exists, and states that a DL concept
is equivalent to a FOL formula with one free variable, and that subsumption is
then equivalent to implication. This implies that a concept is not interpreted by a
truth-value, but by a set of individuals. In our logics, a formula denotes a set of
interpretations, its models.

4

In the photo application, the formulas used to represent photo properties, and
to denote sets of photos, are valued attributes and taxonomic terms. Value do-
mains and taxonomies are defined as logics. In order to fix these ideas, we give
the definition of the value domain of dates, and the taxonomy of locations. Other
value domains exist for intervals of number (e.g., image size, exposure time), string
patterns (e.g., event, comment), time; and other taxonomies exist for representing
types of photos, visible persons, and visible objects.

Example 2.3 The logic of dates Ldate = (Idate, Ldate, |=date) is defined as follows:

• Idate is the set of all possible dates: e.g., 21/11/2007;

• Ldate is the set of all possible dates at different resolution (year, month, day):
e.g., 2007, nov 2007, 21 nov 2007;

• |=date is the obvious matching relation between interpretations and formulas:
e.g., 21/11/2007 |= nov 2007, 21/11/2007 6|= nov 2006;

• vdate is a similar matching relation extended to non-exact dates:
e.g., 21 nov 2007 v nov 2007 v 2007.

It is easy to prove that this definition of subsumption is correct w.r.t. the semantics.

Example 2.4 Let (Loc,≤) be a partial ordering representing the taxonomy of
locations. The logic of locations Lloc = (Iloc, Lloc, |=loc) is defined as follows:

• Iloc = Loc is the set of all possible locations (seen as atomic locations);

• Lloc = Loc is the set of all possible locations (seen as sets of locations);

• |= is equal to the partial ordering on locations:
e.g., Paris |= France (“Paris is in France”);

• v is also equal to this partial ordering:
e.g., Paris v France (“Paris is included in France”).

Note that the same location is distinguished as an atomic location (interpretation),
and as a set of locations (formula). This models the fact that the same location
(e.g., Paris) can be represented on a map as a point or as a region, depending on
the scale of the map.

Using one of the above logics would allow us to describe photos with only one
property, and querying them only with a pattern. We define the union logic of
a set of elementary logics so as to allow for several properties on objects, and
Boolean connectors in queries (and, or, not). We here define only the syntax and
subsumption, as the presentation of the semantics would take us out of the scope
of this paper (details are available in a research report (Ferré and Ridoux 2006)).

Example 2.5 Let {Lk}k be a finite set of elementary logics Lk = (Ik, Lk, |=k),
which are pair-wise disjoint (i.e., every interpretation and formula belongs to
a unique elementary logic). The union logic of the logics {Lk}k is a logic
L = (I, L, |=), where:

• L = Ld ∪ Lq: the language is made of descriptions (Ld), and queries (Lq);
descriptions are finite sets of elementary formulas, and queries are Boolean com-
binations of elementary formulas or the most general formula (all);

• and for every d ∈ Ld, q1, q2 ∈ Lq, xk, yk ∈ Lk, the subsumption is defined by

5

Figure 1. Property trees from logics of date, string, and location, as displayed in the graphical interface
of Camelis.

the following inference rules:

d v yk ⇐⇒ ∃xk ∈ d : xk vk yk
d v not q1 ⇐⇒ d 6v q1

d v q1 and q2 ⇐⇒ d v q1 ∧ d v q2

d v q1 or q2 ⇐⇒ d v q1 ∨ d v q2

d v all ⇐⇒ true
xk v yk ⇐⇒ xk vk yk

This definition of subsumption applies the closed world assumption as a descrip-
tion d is said to be subsumed by not q1 iff it cannot be proved that d is subsumed
by q1. This could be extended to compare two Boolean queries, but such compar-
isons are never used in Camelis.

A logic dedicated to the photo application is defined as the union of various
taxonomies (e.g., locations, types, persons), and valued attributes over various
domains (e.g., strings, dates, numbers). This logic has to be plugged in Camelis,
because the system has no fixed logic a priori. Figure 1 shows a screenshot of
Camelis showing trees of formulas derived from this logic. Each node is labelled
by a formula, and the child-parent relation corresponds to subsumption, like in
classical representations of taxonomies. Now, if taxonomies are embedded in logics,
and logics are presented as taxonomies, we may think that the use of logic is overkill.
In fact, the justification for logic is that most value domains are infinite, and
cannot be defined as a taxonomy, i.e. by enumerating formulas and subsumption
links. Moreover, in complicated logics (e.g., description logics), the semantics plays
a crucial role in ascertaining the correctness of the subsumption definition. In
summary, logic can be seen as a methodology to design infinite taxonomies in a
concise way.

6

2.2 Logical context

While a logic describes the universe, a logical context describes a finite set of
objects. In the following examples, we assume that the logic L is the union logic
of some elementary logics. So, each object description is assumed to be a set of
elementary formulas, and Boolean connectors are allowed in queries.

Definition 2.6: A logical context is a tuple K = (O,L, d), where O is a finite
set of object identifiers, L is a logic, and d ∈ O → L is a mapping from objects to
their logical description.

In the photo application, object identifiers are file paths or URLs to pho-
tos, and their description is a set of logical formulas such as location, date,
event. An example of description, for some object o, is d(o) = {Montpellier,
date = 24 oct 2007, event is "CLA 2007"}. An object can match a formula,
even if it does not belong to its description. For instance, the subsumption relation
d(o) v date = 2007 means that every model of the object description is a model
of date = 2007. So, date = 2007 is a property of the object o, and reciprocally, o
is an instance of date = 2007.

Definition 2.7: Let K = (O,L, d) be a logical context, o ∈ O be an object,
and f ∈ L be a formula. The formula f is a property of o, or equivalently the
object o is an instance of f , iff d(o) v f , which is denoted by o : f .

This implies that an object can have an infinite set of properties, while all de-
scriptions are finite. Hence, object descriptions can be kept small and precise at
the same time. For instance, an object described with location Montpellier will
automatically be an instance of any location that contains it, i.e., France and
Europe. Here lies the main benefit of logics w.r.t. attributes. A similar benefit can
be obtained with conceptual scaling (Ganter and Wille 1999), provided a set of
attributes A ⊆ L is selected. A formal context can be derived from a logical con-
text K and a set of attributes A, as K(A) = (O,A, :), where the incidence relation
is the “instance of” relation. However, this projection entails a loss of information:
(1) the subsumption relations between formulas, (2) which properties belong to
the description of objects, and which properties are inferred, and (3) the ability
to extend the set of attributes or to use arbitrary formulas in queries (without
referring to the logical context).

2.3 Concept view

Given a logical context K, LCA defines the extent of a formula, the intent of a set
of objects, shows that this forms a Galois connection, and hence that a concept
lattice is defined (Ferré and Ridoux 2004). This concept lattice plays the role of
a navigation structure in LIS as it does in other concept-based information sys-
tems (Godin et al. 1993, Carpineto and Romano 1996, Martinez and Loisant 2002,
Cole et al. 2003). However, the concept lattice derived from a logical context is
much too large and dense to be displayed to users. Even when considering the
formal context K(A) restricted to a finite set of formulas, the concept lattice is
still too large. We emphasize that the main problem is not computing concept
lattices (there exist efficient algorithms to this purpose (Kuznetsov and Objedkov
2001)), but making them readable to users: a lattice with only 100 concepts is
already a challenge to interpret, even for an expert. There exist solutions in FCA
to reduce the size of concept lattices, by removing concepts (e.g., iceberg concept
lattices (Stumme et al. 2002)), or merging nodes using similarity measures. How-
ever, reducing the concept lattice implies reducing the navigation space, whereas

7

we aim to make navigation the most flexible and expressive, which implies (in our
opinion) a large navigation space.

Our claim is that showing a rich view on a single concept at a time is enough
in most cases, and does not require to effectively compute the concept lattice.
Every formal concept (i.e., conjunctive query) can be reached just by following
navigation links, and this is also true for many logical concepts (use of disjunction
and negation). All other concepts can be made reachable by extending the sets of
navigation links, or by entering an arbitrary formula as a query. Section 3 presents
all the means that are available to browse the concept lattice downward, upward,
sideward, and to reach a concept from a query or from a set of examples.

The concept view is made of three parts: (1) the query, (2) the answers of that
query as a set of objects, and (3) a set of properties occurring in those answers.
The query is a logical formula, e.g., a Boolean combination of elementary properties
such as taxonomic terms or valued attributes (see Definition 2.5):

date in [aug 2007,may 2008] and (France or Germany) and not event

contains "secret",

which denotes photos taken between August 2007 and May 2008, in France or
Germany, and not related to a secret event.

The set of answers of a query is defined as the extent of that query, i.e., the set
of instances of that query.

Definition 2.8: Let K = (O,L, d) be a logical context, and q ∈ L be a query
formula. The extent of the query q is defined as the set of instances of q:

extent(q) = {o ∈ O | o : q}.

Different queries may have the same answers, and hence the same extent. In
such a case, we consider that those queries are different ways to identify and reach
the same navigation place. Every pair (extent(q), q) is an inf-semi-concept of the
logical context, i.e., a pair (O, f) where O is the set of all instances of the for-
mula f , but f is not necessarily the most specific formula that is a property of
every object in O (Ganter and Wille 1999). This is one of many views of the
concept (extent(q), i), where i is the intent of the concept, i.e., the most specific
formula that is a property of every instance of q.

The intent of the current concept is not computed as, in the frequent case where
the union logic is used, it would be trivially the disjunction of the descriptions of
the objects in the extension. An approximate intent can be computed given a finite
vocabulary X of formulas.

Definition 2.9: Let K = (O,L, d) be a logical context, X be a vocabulary
over L, and q ∈ L be a query. The intent of query q is the set of vocabulary
formulas shared by all answers of q:

intent(q) = {x ∈ X | extent(q) ⊆ extent(x)}.

This intent provides a description of the current concept, but provides no nav-
igation links to other concepts. To this purpose, we propose a richer description
of the current concept, that includes the above intent, and provides many navi-
gation links to move downward, upward and sideward in the concept lattice (see
Section 3.1). This richer description relies on a vocabulary X to show a kind of
index over the current answers. Every formula in the vocabulary that is a property
of some answer is displayed along with its count, i.e. the number of answers that
are instances of that formula.

8

Definition 2.10: Let K = (O,L, d) be a logical context, X be a vocabulary
over L, and q ∈ L be a query. The index of query q is the set of vocabulary
formulas occurring in the extent of q:

index (q) = {(n, x) | x ∈ X,n = |extent(q) ∩ extent(x)|, n > 0}.

Note that the finite set X does not affect the logical context, and does not replace
the use of logics. It plays the role of a vocabulary for summarizing the instances of
the current concept, and representing navigation links to other concepts. Chang-
ing the vocabulary only affects the concept view, not the logical context, nor the
concept lattice. Section 2.4 explains how a relevant navigation vocabulary can be
automatically extracted from the logical context.

A formula is not shown in the index if its count is 0, because it tells us nothing
about the current extent. In order to get fewer formulas in the index it is possible
to set a minimum count (the default is 1). If this minimum count is set to the
size of the extent, the set of formulas in the index is equal to the intent. An index
formula f that is not in the intent splits the extent in two non-empty subsets, and
thus determines two more specific inf-semi-concepts: (extent(q)∩extent(f), q and f)
and (extent(q) \ extent(f), q and not f).

The index of a query provides sets of properties of the query answers, such
as countries, date intervals, or events. Because the count of formulas depends on
the context and the current extent, indexes need to be recomputed each time the
context is updated or the query changes. This makes the indexes dynamic and
informative. Specific data structures are used to make their computation efficient,
i.e. linear in the size of the context (see Section 5).

Figure 2 shows the graphical interface of Camelis, which reflects the concept
view presented above. At every time, the query is displayed as a text field at the
top, the extent is displayed as a preview list at the right, and the index is displayed
as a set of property trees at the left. The query is editable, and the extent can
be scrolled page by page (the page size can be customized). The trees reflect the
subsumption ordering on index properties, and help to structure and control the
display of the index. As a logic can be any partial ordering, not necessarily a tree,
the same property can appear several times under different nodes. This is not a
problem as tree nodes are expanded on demand. Initially, all nodes are collapsed.
When expanding a node, options are available to change the minimum count or
the sorting of properties (e.g., logical ordering or decreasing count).

2.4 Navigation vocabulary

An important issue is which subset X of formulas should be used as a vocabulary
in the computation of concept views ? The idea is to make it depend on the actual
logical context, rather than to define it a priori, which would not be very different
from using a formal context and conceptual scaling. Given a logical context K,
we want to specify how the set of formulas X should be derived. Whenever the
logical context K changes, this set X should be updated accordingly. Users should
also have the ability to add and remove formulas in the vocabulary in order to
customize it.

A first fact is that all formulas appearing in object descriptions should be part of
the vocabulary X, because they are obviously relevant to it. However, this is not
enough because this would make the vocabulary an almost flat list of formulas. We
can safely exclude from X any formula that has no instance. Of course, when the
classification changes, a formula can become relevant by gaining instances, hence

9

Figure 2. A screenshot of Camelis after a few navigation steps.

the need to synchronize the set X w.r.t. the logical context. Therefore, we may
define the vocabulary as the set of all formulas having at least an instance,

X = {f ∈ L | ∃o ∈ O : (o : f)},

but this is in general too large or even infinite. Indeed, we would get all date inter-
vals containing any date occurring in some object description, and all substrings
of strings occurring in the logical context. An alternative is to equip the logic with
an additional operation that returns a set of abstract formulas from a concrete
formula.

Definition 2.11: Let L be a logic. An abstraction operation over the logic L is
a function from any formula f ∈ L to a finite set of formulas abstr(f) ⊆ L such
that, for every g ∈ abstr(f), g is an abstraction of f , i.e., we have f v g.

In the logic of the photo application, we can define the abstraction oper-
ation such that every precise date generates the month, the year, and the
decade; every location generates encompassing locations; and, every string gen-
erates a substring for each word. For instance, the formula Montpellier gener-
ates the formulas France and Europe; the formula date = 24 oct 2007 gener-
ates the formulas date = oct 2007, date = 2007, and date in [2000,2010];
and the formula event is "CLA 2007" generates event contains "CLA", and
event contains "2007". From this abstraction operation, we can now define the
default definition of X, as proposed by the system given a logical context.

10

Definition 2.12: Let K = (O,L, d) be a logical context. The derived vocabulary
is the set of formulas

X = {f ∈ L | ∃o ∈ O : f ∈ abstr(d(o))}.

As said above, the derived vocabulary is incrementally synchronized with the
logical context. If a formula f is added to the description of an object, then f and
all its abstractions are automatically added into the derived vocabulary. If, after
removing a formula from the description of an object, some formulas in X have
no more instances, they are removed from the derived vocabulary. In this way, the
derived vocabulary is always maintained consistent with the actual data.

In the event the logic is the union of some elementary logics, the vocabulary is
made only of elementary formulas because Boolean combinations can be composed
through the navigation process by selecting elementary formulas (see Section 3.1).
Because the derived vocabulary is automatically produced, it may not fit exactly
user needs. It may contain spurious formulas, and lack useful formulas. This is why
we allow users to add and remove formulas in the vocabulary at any time, in the
course of navigation for instance.

The following sections show how the concept view can be used to navigate among
photos along various directions, and to get feedback about selected extents.

3. Browsing a collection of documents

Browsing a logical context takes place in the full logical concept lattice, where
every set of objects that can be characterized by a logical query forms a concept.
Navigation in this concept lattice consists of following navigation links that lead
from one concept view to another. A navigation link is not defined by the desti-
nation concept itself, but by a transformation of the current query, which leads
to another concept, and which results in the update of the extent and the index,
thus producing a new concept view. Different kinds of query transformations, i.e.
navigation links, are available by acting on different parts of the concept view. Nav-
igating downward, upward and sideward in the concept lattice, as well as pivoting,
are available through the selection of index properties (Section 3.1). Querying by
formula is available by directly editing the query (Section 3.2). Querying by ex-
ample is available through the selection of objects in the extent (Section 3.3). A
history of concept views is also maintained so as to support navigation backward
and forward in the history. The initial query is all, such that the initial concept
is the one whose extent contains all objects.

Those browsing modes are illustrated on a collection of personal photos taken
over the period 1999-2007. The logical context contains 5,820 objects with an av-
erage of 40 descriptors. The derived formal context has a vocabulary of 35,712
formulas, and is filled with as much as 763,614 crosses, i.e. an average of 131
properties per object (including the 40 descriptors). Indeed, whenever a photo is
described by a formula (e.g., a date), it acquires abstractions of this formula as
additional properties (e.g., month, year). The process of building such a context is
developed in Section 4, and on average, only 10 descriptors were provided by hand
for each photo.

11

3.1 Navigation

The principle of navigation is to interpret index properties as navigation links
from the current concept to other concepts. Intent properties link to more general
concepts (upward navigation), and non-intent properties link to more specific con-
cepts (downward navigation). Upward and downward navigation can be combined
in such a way as to provide sidewards navigation. Pivot navigation makes use of
index properties as new starting points for browsing. Because navigation links are
defined as query transformations rather than edges in the Hasse diagram repre-
sentation of the concept lattice (Carpineto and Romano 1996, Cole et al. 2003),
concepts that are accessible in one navigation step are not necessarily lower and
upper neighbors of the current concept. For instance, long downward jumps in the
concept lattice are possible with the most specific properties of the index. The ad-
vantage of our approach is that the set of navigation links is defined in terms of the
vocabulary and the current selection of objects (the extent), instead of the concept
lattice. We think the concept lattice is relevant to researchers and developers of
information systems, but not to end users, who only want to focus on their data
(objects and their properties).

A navigation link is decomposed into a selection and a navigation mode. This
means that a same selection can be used in different ways to reach different con-
cepts. In the simple case, a selection is a property from the index. In the general
case, a selection is the disjunction of the properties selected in the index (e.g.,
France or Germany or Italy). Buttons in the interface can be activated to ap-
ply modifiers on such selections: adding negation (e.g., not (Animal or Plant)

from the selection of Animal and Plant), replacing equalities by inequalities (e.g.,
date >= 2002 from the selection of date = 2002). We define and illustrate the
following four navigation modes: downward for specializing the query, upward for
generalizing the query, sideward as a combination of downward and upward navi-
gation, and pivot for restarting a new search from the results of a previous search.
The definitions of navigation modes rely on the fact that queries can be put in con-
junctive normal form, i.e. conjunctive sets of simpler queries. For instance, France
and not date <= 2000 is equivalent to {France, not date <= 2000}.
3.1.1 Downward navigation

Firstly, suppose some user, say Lisa, wants to find some photos from Australia.
She first expands the property Location, and finds photos from Europe (5346),
Africa (162), and Australia (148). After selecting the property Australia1:

• the query becomes Australia,

• the extent displays the first page of the 148 selected photos.

• the property Australia becomes part of the intent (count = 148), and it is
automatically expanded to show sub-locations of Australia,

• the properties Europe and Africa are no more visible, because no more
relevant (count = 0),

Then Lisa expands the property Type and see there are different types of photos:
e.g., buildings (29), animals (34), plants (6). She gets interested in Australian
living things, so she selects both Animal and Plant, which leads to the refined
query Australia and (Animal or Plant), whose extent contains 40 photos. One
of those photos is a portrait, which Lisa does not want, so she selects the negation of
Portrait, which leads her to the new query Australia and (Animal or Plant)

1French words can be seen in screenshots because it is the real photo collection of the author, but English
translations are used in the text for better understanding.

12

and not Portrait (39 photos). By expanding more properties, she discovers that
those photos were taken in February and March 2004, mainly in Sydney and the
Feather Dale Park, and that 5 photos of three different species of marsupials are
present: e.g., kangaroo, koala, wallaby.

Figure 2 shows the interface obtained after the previous navigation operations. At
this stage, Lisa can either browse the 39 photos in Camelis, or launch a slideshow
in an external application.

Those three navigation steps led to concept views with more and more precise
queries, and hence smaller and smaller extents. This is called downward naviga-
tion, or zoom-in, because it corresponds to moving downward in the concept lattice,
towards smaller extents. Its principle is to specialize the current query q by the
selection x. A simple definition of the resulting query would be q and x, but this
would entails redundancy in queries: e.g., Australia and Sydney which is equiv-
alent to Sydney because Sydney is subsumed by Australia in the logic. A better
definition is to replace by x every part of the query that is subsumed by x:

q (q \ {y ∈ q | x v y}) ∪ {x}.

When the selection is a non-intent property, the new concept view is always
strictly smaller but not empty. This is a big advantage compared to pure query-
ing systems, where it is common to get empty results. Another advantage is that
the index gives an informative feedback on the current extent. For instance, after
selecting photos having some location and type, the index displays the dates and
visible objects of those photos, and for each property, how many of them have it.

3.1.2 Upward navigation

During downward navigation, Lisa sometimes wants to remove or generalize some
properties in the query so as to obtain larger extents: this is upward navigation, or
zoom-out, because it corresponds to moving upward in the concept lattice, towards
larger extents. For instance, she realizes there are not enough photos of animals and
plants. If she wants to remove the last selection, moving backward in the history
is a simple way to achieve this. But if she wants to remove the first selection
Australia, she would need to move three steps backward, and re-select the last
two refinements. She could also edit the query by hand, but users usually prefer
to navigate rather than to edit queries. Further, intent properties are shared by all
extent objects, and so cannot be used for downward navigation. This makes them
available for upward navigation. When an intent property occurring in the query
is selected, it is removed from the query.

q q \ {x}.

For instance, if Lisa selects Australia, the new query is (Animal or Plant) and

not Portrait (282 photos from multiple locations). When an intent property sub-
suming parts of the query is selected, it replaces those subsumed parts in the query.

q (q \ {y ∈ q | y v x}) ∪ {x}.

For instance, if she selects Pacific, the new query is (Animal or Plant) and

not Portrait and Pacific.

3.1.3 Sideward navigation

We show in this section that downward and upward navigation can be com-
bined in two forms of sideward navigation. From the previous query Australia

13

and (Animal or Plant) and not Portrait, we first select the property Plant

to navigate downward to the query Australia and not Portrait and Plant (6
photos). This is our starting point for sideward navigation.

At this point, Lisa sees that 1 photo has also the type Landscape, which inter-
ests her. So she selects this property (downward navigation), and as the result has
only 1 photo, she generalizes it by removing the property Plant from the query
(upward navigation). We have done a sidestep from Australian plants (6 photos)
to Australian landscapes (80 photos), replacing in the query the property Plant by
the property Landscape. From there, she performs a new sidestep from the prop-
erty Landscape to the property Building, now watching 28 photos of Australian
buildings. These steps are suggested and supported by photos sharing two prop-
erties. This illustrates the relevance of assigning several types to photos, which is
common in this photo context. The same would apply to persons visible on photos,
as a photo often shows several people.

The same does not apply to locations, as a photo cannot be taken in two in-
comparable locations (e.g., in Australia and in Europe). However it is still possible
to navigate sideward among locations, through the taxonomy of locations. Sup-
pose Lisa wants to find building photos from other locations. She first generalizes
Australia by Location in the query (upward navigation), and then browses sug-
gested locations before selecting Spain (downward navigation). She thus has done a
sidestep from Australian buildings to Spanish buildings, and finds 18 photos (which
are, according to the index, mainly churches taken in the north-west of Spain in
2003).

The former form of sideward navigation is a downward-upward combination,
and can be qualified as contextual because it relies on objects sharing some proper-
ties. The latter form of sideward navigation is an upward-downward combination,
and can be qualified as logical because it relies on subsumption relations between
properties.

3.1.4 Pivot navigation

A user may not remember a property she wants to use to refine the query, but
she can find it through another query. For instance, suppose Lisa wants to retrieve
photos of the buildings of some town. She does not remember which town it is,
but she remembers that the ICFCA conference took place there in 2004. There-
fore, she can first reach the query event contains "ICFCA" and date = 2004 by
navigating downward. The resulting extension shows photos of ICFCA’04, and the
index shows relevant information about these photos, such as precise dates, loca-
tions, and so on. By expanding locations in the index, she discovers that Sydney,
in Australia, is the location of ICFCA’04. Then, she can make the query become
Sydney, and further refine it to the desired query Sydney and Building (down-
ward navigation). The property Sydney plays the role of a pivot between the two
queries.

Pivot navigation relies on the ability of the concept view to answer queries not
only by a set of objects (the extent), but also by a set of properties (the index).
In previous navigation modes, these properties where added or removed from the
query, whereas here they are used as new queries. Given a query q and a selection x,
the query transformation is defined by

q x.

Therefore, pivot navigation is a way to restart a search from the results of a
first search. This kind of navigation has also been applied in collaborative web-
sites (Millen et al. 2006, Zhou et al. 2008).

14

Figure 3. A screenshot of Camelis after entering a query.

There is an interesting analogy with natural language. Indeed, the query above
can be rephrased as “photos of buildings in the town, where the ICFCA conference
took place in 2004”. The idea of pivot is reflected by the fact that Sydney occurs
in the main sentence as “town”, and in the relative sentence as the relative pro-
noun “where”. The relative pronoun indicates which facet to browse for a pivot:
e.g., “where” indicates a location, “when” indicates a date, and “who” indicates
a person. Iterated pivot navigation then corresponds to nested relative sentences,
such as “photos of buildings in the town, where the ICFCA conference took place
in the year, when I also visited Hinterzarten”. The first pivot is the year 2004, and
the second pivot is the town Sydney.

3.2 Querying by formula

Most useful queries can be reached by a succession of navigation steps, but not
all. Indeed the logic allows the expression of string patterns (e.g., on events) and
arbitrary intervals (e.g., on dates), and the index cannot display them all. However
it is always possible to use these patterns and intervals by directly editing the
query. For instance, suppose Lisa wants to find ICFCA-related photos, she enters
event contains "ICFCA" in the query field, and find herself in the same situation
as if she had selected the corresponding property in the index. She finds that the
68 photos in the extent are scattered in three different years (2004, 2006, 2007) and
in three different locations (Dresden, Clermont-Ferrand, Sydney), and they show
people from the FCA community. She can further refine her search to photos taken
since 2006 by modifying the query into event contains "ICFCA" and date >=

2006. She now finds that both year 2004, and location Sydney have disappeared

15

q = Australie and not Portrait q = Batiment and Sydney

Figure 4. A screenshot of Camelis before and after querying by example.

from the index as they are no more relevant to the new query. The result can be
seen in Figure 3.

3.3 Querying by example

In all previous sections the query is modified either by the selection of properties,
or by direct edition. In this section we present how a query can be determined
by the selection of a subset of photos, thus supporting querying by example. The
principle is to make the query be the intent of the subset of photos.

Suppose Lisa starts with the query Australia and not Portrait. While brows-
ing photos in the result, she sees interesting photos of buildings (e.g., 2 photos of
the Opera, and 1 photo of the Harbor Bridge), and she would like to find more. By
selecting them she moves to a new query that is the conjunction of the properties of
the intent of those three photos (see Definition 2.9). She gets no additional photo,
because the intent query is often very specific. At this stage, upward navigation
can be used to generalize the query. Unlike approaches based on metrics, the user
can choose which properties of the intent should be generalized or removed from
the current query (Amato and Meghini 2008). By removing in the query properties
related to date and event, the query becomes Sydney and Building, and she finds
29 photos. Figure 4 shows the three selected photos in the initial query (left side),
and the resulting concept view of the final query (right side).

A special case of querying by example is when selecting only one photo. Then
there is only one object in the extent, because there are enough properties to
uniquely characterize each photo, and the query contains all the object properties,
which are more easily read as intent properties in the index. So this is an easy way
to access the full description of any object.

16

3.4 Browsing history

As in Web browsers, it is possible to navigate backward and forward in the browsing
history, i.e. a stack of concept views. This is useful for opening sub-explorations
in the course of an exploration. Imagine that, while browsing photos of Australian
animals, Lisa finds a photo of a koala, and wants to look at all other photos of
koalas. She first selects the property ’koala’, which leads her to a new concept
view with 2 photos, and then she can move back to the previous concept view.
When moving back, scrolling positions are remembered, so that Lisa can go on
easily browsing Australian animals.

4. Organizing a collection of documents

This section shows how the context that is used in Section 3 can be built in a
reasonably efficient way for the user. An important practical need is that this
process can be incremental with the arrival of new photos, and that everything
that is done can be undone. The parts of a logical context that can be updated
are (1) the set of objects (i.e., adding and removing photos), (2) the description of
objects (i.e., adding and removing properties to objects), and (3) the taxonomic
parts of the logic (i.e., moving a property downward and upward in a taxonomy).

4.1 Importing documents with intrinsic properties

After Lisa took part to CLA’07, she gets a new folder of photos taken during this
event. In order to add these new photos to the photo context, she applies the com-
mand Import files to this folder so that each photo it contains becomes a new
object in the context. These new objects come with an initial description that is
automatically computed from the file location (e.g., path on the disk, URL on the
Web) and file contents (e.g., JPEG picture, Java class). The navigation vocabu-
lary is also extended with properties that are extracted from the new descriptions
(e.g., the year and the month from an exact date). The properties making this
initial description are called intrinsic. The intrinsic properties of photos are the
file properties (e.g., path, size, last access date), and the EXIF metadata that is
embedded in JPEG files (e.g., date, time, orientation, exposure). From there it is
easy to select the newly imported photos by setting the query to the appropriate
file path property (e.g., file path contains "My Photos/CLA2007/").

4.2 Adding extrinsic properties to objects

The state of the art in image analysis (Datta et al. 2005) makes it possible to
make intrinsic low-level properties of photos, such as orientation, intensity, dom-
inant colors or textures (Martinez and Loisant 2002). However, most high-level
properties such as event or visible persons, which are the most useful, cannot be
determined automatically from their contents, and have to be tagged manually by
users (Hyvönen et al. 2002). Those properties are called extrinsic. In fact there is no
strict border between intrinsic and extrinsic properties. For instance, the location
could be made intrinsic with the help of a GPS-equipped camera and a geograph-
ical information system, but these features are rarely available. Some properties
(e.g., sunset) could be made intrinsic, but certainly not all. The borderline is fixed
as a trade-off between the cost of manually supplying properties, and the cost
of developing reliable property extraction algorithms. The advantage of extrinsic
properties is that they can be customized at will to the needs of users, and the

17

logic cache

User

Camelis

System

user interface

logics transducers

intrinsic

concept view extrinsic

data flow

control flow

Figure 5. The architecture of Camelis.

design of the interface makes it efficient enough as we have experienced with the
rich description of more than 5,000 photos.

The principle for efficiently giving new properties to photos is based on copy
and paste. A set of photos is first copied, and then pasted on a set of properties,
which can be either selected in the index, or directly entered in a text field. The
effect is that every selected property is added to the description of every selected
object. Removing properties is done by pasting on the negation of properties. All
the new photos of CLA’07 have the same event and location, so Lisa pastes all
of them into event is "conference CLA’07" and Montpellier. Both proper-
ties are new, and are then inserted in the property trees: event is "conference

CLA’07" is placed under event contains "conference" thanks to the logic on
strings, but Montpellier is placed at the highest level because it is a new location.
The taxonomy of locations is updated with Montpellier by the drag-and-drop of
Montpellier under France, which enforces a subsumption relation between the
two locations.

Other properties, e.g. types, persons, objects, are added in the same way. When
a property already exists, it suffices to find and select it in the property trees.
Otherwise it suffices to name it. In the latter case, either it is a valued attribute
and it is automatically inserted, or it is a taxonomic term and it can be moved once
and for all in a taxonomy. We have observed that after some number of photos there
is less and less often the need to name new properties, and that the user can rely
on the property trees to maintain consistency in the use of properties. Of course
the fact that there is only one author helps to construct a consistent vocabulary,
but we could imagine a collaborative system under the principles of WikipediaTM

or FlickrTM to incrementally develop shared taxonomies.

5. Implementation issues

A key issue in implementing logical information systems is to retain the genericity of
the approach. This implies separating the generic code from the code that is specific
to applications. The aspects that can change from one application to another are
the logic and the kind of files that can be imported. This is why Camelis comes
with two open toolboxes of components: logic functors for composing ad-hoc logics

18

(Section 5.2), and transducers for extracting objects and their descriptions from
files (Section 5.3). Those toolboxes are open in the sense that new components may
always be needed to satisfy new application needs.

Figure 5 sketches the architecture of Camelis and its relation to the system and
users. In addition to the two open toolboxes of logics and transducers, there are two
generic parts: the logic cache and the user interface. The logic cache (Section 5.1)
implements the generic definitions of LCA (Section 2) for rendering concept views
to the user through the user interface, and handling updates. Extrinsic updates
come from the user through the user interface, while intrinsic updates come from
the system through the transducers. The user interface is a separate module so
that it can easily be replaced by another such as a Web interface to build on-line
applications.

5.1 Logic cache

In this section, we present the data structure and algorithms, along with their
complexities, that are used in LIS for computing concept views, and updating the
logical context. Those algorithms were designed to be generic, and so can make
no assumption on the logic. They just rely on the existence of a procedure to test
whether there is a subsumption relation between two formulas, and an operation
to generate the set of abstractions of a formula. Because the subsumption test
may be costly for some expressive logics (e.g., NExpTime-complete for SHOIN,
the OWL-DL description logic (Tobies 2000)), the choice was made to minimize
its use in information retrieval operations, which are more frequent than update
operations. Therefore the cost of computing the subsumption test is moved to
update operations, in the form of an incremental pre-processing, whose result is
called a logic cache (Ferré and Ridoux 2004, Padioleau and Ridoux 2003).

The logic cache is the Hasse diagram of the navigation vocabulary of a logical
context, ordered by subsumption, where each formula is labelled by its extent in
the context. In this way, all subsumption relations between formulas are cached,
and only the insertion of a new formula requires the use of the subsumption test v.

Definition 5.1: Let K = (O,L, d) be a logical context, and X be a vocabulary
over L. The logic cache representing the context K is the structure C = (X,≺, ext),
where (X,≺) represents the Hasse diagram of the subsumption-ordered vocabu-
lary (X,v), and ext is a mapping from formulas to their extent in K (Defini-
tion 2.8).

The vocabulary is mainly produced on a per-object basis by the abstraction op-
eration (Definition 2.11), which means that every new object produces a set of
formulas that already exist or that extend the existing vocabulary. We assume in
the following that the size of object descriptions is bounded, which means that ele-
mentary formulas have a bounded size, and that the number of formulas produced
by each object is bounded, say by k. We now briefly describe the implementation
of the main LIS operations. For the evaluation of complexities, we name n = |O|
the number of objects, x = |X| the size of the vocabulary, and a the maximum
number of lower neighbors of formulas in the cache.

The addition of a formula into the vocabulary consists of inserting the formula f
in the logic cache as a new element, and computing its extent. The insertion consists
of locating the upper and lower neighbors of f , by traversing the logic cache and
performing subsumption tests. The extent of f is computed as the union of the
extents of the lower neighbors. The complexity is in O(x) subsumption tests for
the insertion, and O(an) basic instructions for computing the extent. The addition

19

of a new object o with description d(o) consists of adding into the vocabulary every
formula produced by the new object (its properties), and inserting the object o in
the extent of those formulas. So, its time complexity is in O(kx) subsumption tests,
and O(kan) basic instructions.

When the query q belongs to the vocabulary X, the computation of its extent
simply consists of one access in the logic cache. Its complexity is in O(1). More
generally, if the query is a Boolean combination of formulas, it suffices to combine
the extent of each formula by intersection, union, and complement with respect to
conjunction, disjunction, and negation. The complexity is then in O(n), if we con-
sider the size of queries is bounded. For the computation of the children properties
of some node in the property trees, it suffices to perform a selection among its lower
neighbor in the logic cache to keep only those having a count > 0 in the current
extent. This requires the intersection of two extents for each lower neighbor, hence
a complexity in O(an).

To summarize, the incremental computation of a logic cache (addition of n ob-
jects) relies heavily on the subsumption test, and its complexity is in O(kxn)
subsumption tests, and in O(kan2) basic instructions. The information retrieval
operations only rely on set operations on extents, and are both linear in the num-
ber of objects, i.e. in O(n) for computing the extent, and in O(an) for computing
the children property of a node in the property trees. The biggest context that has
been built is a complete home directory, which has 95,000 objects described by an
average of 50 properties each. The computation of the logic cache, including the
calls to transducers, takes about 20min (1.2GHz CPU, 1Gb memory, Linux Fedora
Core 6), and produces a data structure consuming 50Mb.

5.2 Logic functors

The advantage of having a system that is generic w.r.t. logic is counter-balanced
by the fact that defining and implementing a logic requires an expertise that most
application developers have not. For example, this requires to prove the correctness
of the subsumption algorithm w.r.t. the semantics of the logic. However, it can be
observed in practice that many parts of logics can be reused from one application
to another. For instance, the need to represent valued attributes, taxonomies, or
Boolean connectors is quite common.

We have introduced reusable logic components, called logic functors, that can be
composed to form more complex logics (Ferré and Ridoux 2002). Logic functors
are either atomic logics, or parametrized logics that expect one or several logics
as arguments. The formulas of a parametrized logic are composed of formulas
of its parameter logics. The same can be said for other aspects of logics: e.g.,
interpretations, subsumption, the abstraction operation. Section 2.1 gives three
examples of logic functors. The logic of dates and the taxonomy of locations are
atomic logics, while the union of logics is a parametrized logic whose parameters
are the elementary logics (see Example 2.5). LogFun1 is a toolbox of logic functors
that can be used in Camelis. It contains a few dozens of logic functors, which can
be grouped in the following categories:

(1) Concrete domains: Int (integers), Float (floating-point numbers), Time
(hours, minutes, seconds), Date (day, month, year), Char (characters, and
classes such as letters, vowels, digits), Nt (ADN nucleotides and chemical
classes), AA (amino-acids and chemical classes), String (strings, and string

1http://www.irisa.fr/LIS/ferre/logfun/.

20

patterns such “contains”, “begins with”), Atom (the classical atoms), Taxo
(custom taxonomies), Permission (UNIX file right access);
(2) Algebraic structures:
- Unit: logic with a single formula,
- Top(L1): adds a most general formula to the logic L1,
- Prod(L1,L2): product of logics, formulas are pairs of formulas from L1, L2,
- Sum({Lk}k): sum of logics, the language is the union of the languages of

the logics {Lk}k,
- Interval(L1): intervals over an ordered concrete domain L1,
- Enum(L1): formulas are enumerations, i.e. disjunctive sets of formulas of L1,
- Segment(L1): segments over an ordered concrete domain L1 (e.g., a period

of time),
- Multiset(L1): formulas are conjunctive multisets of formulas in L1,
- Motif(L1): complex motifs over sequences of L1-formulas (as used in bioin-

formatics),
- Union({Lk}k): the union logic (Definition 2.5);
- Option(L1) = Sum(Unit,L1): optional values from L1,
- List(L1) = Top(Option(Prod(L1,List(L1)))): lists of formulas of L1, and

patterns such as “begins with”,
- Vector(L1) = Option(Prod(L1,Vector(L1))): vectors of formulas of L1,
- Tree(L1) = Top(Prod(L1,List(Tree(L1)))): trees whose nodes are labelled

by formulas in L1, and patterns over trees,
- Prop(L1): Boolean combinations of formulas in L1,

(3) Dedicated logics: complex combinations of logic functors have been defined
to represent the types of various programming languages (Java, Caml, Mer-
cury), as well as of a natural language formalism (pregroups (Lambek 2006)).

Note how some logic functors are defined from other functors. Sometimes, those
definitions are recursive like in List, Vector, and Tree, thus allowing the repre-
sentation of recursive data structures.

An important feature of this framework is that all correctness proofs are made
at the level of functors. When composing functors, the correctness of the resulting
logic is automatically checked by the composer (Ferré and Ridoux 2006). This
allows for an engineering methodology where logic functors are developed by a few
logic experts, and certified ad-hoc logics are composed by application developers.

5.3 Transducers

A transducer is a component that is specific to a file format or file hierarchy, and
extracts from them a logical context, i.e. a set of objects and their description.
They save users from a lot of manual annotation. For instance, an MP3 transducer
extracts information such as the artist, or the song title. Some transducers can
extract several objects from a single file. This is the case of the BibTEX trans-
ducer, which produces an object for each bib-item, and a property for each field.
The transducers available in the current version of Camelis belong to different
categories:

(1) objects represent entire files, whose properties are:
- File: basename, directories, extension, last modification date, size, etc.,
- URL: hostname, directories, basename, extension,
- MP3: MP3 tags (e.g., artist, album, title, year), in addition to file properties,
- JPEG: EXIF tags (e.g., date, size, exposure), in addition to file properties;

(2) objects represent parts of files:

21

- Comma-separated files (.csv): lines of files, described by a valued at-
tribute for each column,

- Bibtex (.bib): bibliographical references (bib-items), described by authors,
title, type, journal/conference, year, etc.,

- Mozilla email folders: emails, described by date, sender, subject, and
email folders,

- Mozilla bookmarks: bookmarks, described by folders and URL properties,
- Java class (.java): methods, described by their class, argument types, return

type, etc.,
- Caml module interface (.mli): functions, described by their module, ar-

gument types, return type, etc.,
- DBLP result page: bibliographical references, described like in Bibtex;

(3) objects are collected through the traversal of a file hierarchy:
- Dir: the contents of a directory is recursively traversed, calling other trans-

ducers depending on the type of each file.

Transducers also help to synchronize the logical context with source files in an
incremental fashion.

6. Related systems

The domain of information management and retrieval is very large, and it is not
possible to compare LIS with all existing approaches. However, most of them fall
in three common paradigms: hierarchical systems, search engines, and tag-based
systems. We discuss those three paradigms as well as FCA approaches. We show
that each approach can be mapped into a subset of our concept view, such that
our approach encompasses most of their functionalities. The main limitation of our
approach is the maximum size of collections that can be handled efficiently, which
is about 100,000 at that time. This is a lot compared to other FCA approaches,
but little compared to Web search engines.

6.1 Hierarchical systems

They are found in file systems, email tools, bookmarks, etc. The navigation space
is a hierarchy of folders. In terms of concept view, the query is a folder path, the
extent contains only objects right in that folder, and the index is a flat list of sub-
folders. Because of the hierarchy, there is only one path leading to each navigation
place. This implies a strict order on the search criteria. For instance, if photos
are classified first by date intervals, and then by events, then an event cannot
be reached without specifying a date interval. Moreover, specifying only a date
interval results in no answer but only a list of events. Searching with other criteria
(e.g., visible persons), disjunction or negation is simply impossible. Of course, for
every search there exists an appropriate hierarchy, but no hierarchy is appropriate
to all searches. In fact, hierarchical systems would be suitable only if objects were
described by a single property, and all properties belong to a single taxonomy (e.g.,
locations), which is obviously rarely the case.

Some file systems have been extended with virtual folders, whose contents is
defined as the results of a query (e.g., Semantic File System (Gifford et al. 1991),
Smart Folder in Mac OS). Virtual folders belong to the paradigm of search engines,
and are integrated in the paradigm of hierarchical systems. However, virtual folders
are limited in that it is not possible to navigate from them, they are not logically
organized (e.g., in a taxonomy), and it is not possible to write in them, i.e., assigning

22

properties to files by moving them into a virtual folder.

6.2 Search engines

They are found on the Web, but also as utilities in systems and various software
(e.g., the command find in Unix, virtual folders). The navigation space is a more or
less expressive query language, from simple keywords to complex Boolean queries.
In terms of concept view, the extent is the set of answers to the query, and there
is no index. To compensate for the lack of an index, answers are usually ranked
w.r.t. relevance. The only possibility to move from place to place is to manually
edit the query. This means the user has no overview on the current answers, and
no suggestion on how to proceed. This makes it difficult to control the number
of results, and makes query results often too large or too small. Hence the need
for ranking results. However, ranking is a subjective task as it depends on the
intention the user has in mind. Another difficulty in the use of search engines is
that updating is performed with a different interface, and only intrinsic properties
are usually considered.

6.3 Tag-based systems

They are found in Web 2.0 applications, such as FlickrTM, YouTubeTM or
GmailTM. The navigation space is the same as in FCA, because queries are con-
junctive sets of tags, where tags are independent binary properties. So, there is no
subsumption relations between those properties, and they cannot be combined in
queries by Boolean connectors. In terms of concept view, the index is called a tag
cloud, and is the flat list of most frequent tags. A crucial difference with LIS is that
this frequency is always w.r.t. the whole context, not w.r.t. the current extent. This
means the tag cloud is always the same, whatever the navigation place. Moreover,
when selecting a tag, the query is usually replaced by that tag, instead of being
extended by it.

6.4 FCA tools

There also exist tools in the FCA community, which share the same navigation
space as tag-based systems. The difference is that the concept lattice adds a navi-
gation structure to suggest moves from place to place. Traditionally, a global view
on the concept lattice is presented to users. However, this hardly scales up above
a few dozen objects at most. This is why many concept-based information systems
also rely on a concept view (Lindig 1995, Carpineto and Romano 1996, Ducrou
and Eklund 2008). ImageSleuth (Ducrou et al. 2006, Ducrou and Eklund 2008)
is certainly the tool the most similar to Camelis w.r.t. presentation and naviga-
tion. In terms of concept view, the index is split in two lists: the intent, and other
properties leading to direct sub-concepts. It provides downward and upward navi-
gation, querying by attributes, and querying by example. It also uses perspectives
(sets of attributes), which are in fact simple cases of 2-level taxonomies: the 1st
level is made of perspectives like Location or Person for photos, and the 2nd level
is made of attributes such as concrete locations or persons. It also provides a way
to reach similar concepts according to some distance. According to the definition
of this distance, we can say that our sideward navigation are a way to reach such
similar concepts.

We think that the main advantages Camelis has is brought by the use of logic.
Logic enables to express different kinds of properties (e.g., dates, string patterns),

23

and to organize them according to a well-defined subsumption relation. Logic en-
ables users to create and customize several taxonomies. Logic enables to express
complex queries where all kinds of properties can be freely combined with Boolean
operators. This expressiveness is nevertheless accessible through navigation as il-
lustrated in Section 3.1. Another major advantage of Camelis is to provide infor-
mative indexes from any query, and to support all forms of navigation (downward,
upward, sideward, pivot) and querying (by formula, by example). Moreover, our
user interface is expressed only in terms that can be directly understood by users:
objects, their properties, the generalization ordering over properties. It provides the
same advantages as concept lattices in terms of flexibility, and it is more intuitive,
and also more efficient. The concept views supporting navigation and reflecting the
concept lattice are computed on the fly when moving to a new concept view, or
when expanding nodes in the property tree.

7. Conclusion

Logical Information Systems (LIS) reconcile querying and navigation by defining
a concept view that combines a logical query and a concept extent. The concept
views are connected together by the underlying concept lattice. The index part of
the concept view is at the same time a feedback or summary of the extent, and
a set of navigation links to other concepts. Those navigation links support the
exploration of the concept lattice in many directions. Querying by formula and
querying by example are also provided, but they are viewed as special kinds of
navigation links as they are just another way to reach a concept view. Properties
can be added or removed from the description of objects at any time, and this
incrementally entails the update of the concept views.
Camelis has greatly benefited from several years of application on our collection

of photos. This makes it a mature implementation of LIS, and solves the problem
of organizing and retrieving photos in a rich and flexible way. Camelis has also
deeply changed the way we take and share photos. We can quickly build customized
slideshows. For instance, to present our region Brittany to a group of visitors, we
selected all buildings and landscapes of this region, except those showing relatives.
We are not reluctant any more to take photos that are irrelevant to the current
event because we know we can easily find them afterwards: e.g., the photo of an
animal during a conference event. This allows us to progressively gather collections
of photos on various themes. For instance, we have photos for 51 different species
of animals, 17 different music instruments, and 255 named persons. Beside photos,
Camelis is also applied to music files (whose tags are automatically extracted
as intrinsic properties), and to sets of bibliographical references (imported from
BibTEX files and DBLP search results). It is possible to combine those collections
of documents in a same logical context so as to browse them together, e.g., to
retrieve photos and references about a same conference.

24 REFERENCES

Note on contributor

Sébastien Ferré is an assistant professor at the Univer-
sity of Rennes 1, France, and a member of the research
team LIS. He holds a PhD in Computer Science from
the University of Rennes 1, and has also been an assis-
tant researcher at the University of Wales, Aberystwyth.
He works on Logical Information Systems (LIS), and has
published papers about formal concept analysis, logics
for knowledge representation and reasoning, information
retrieval and exploration, and data-mining. His applica-
tion domains are personal information management, geo-
graphical information systems, and software engineering.

References

Allard, P. and Ferré, S., 2008. Dynamic Taxonomies for the Semantic Web. In:
G. Sacco, ed. Int. Work. Dynamic Taxonomies and Faceted Search (FIND)
IEEE Computer Society, 382–386.

Amato, G. and Meghini, C., 2008. Faceted Content-Based Image Retrieval. In:
G. Sacco, ed. DEXA Work. Dynamic Taxonomies and Faceted Search (FIND)
IEEE Computer Society, 402–406.

Bedel, O., Ferré, S., Ridoux, O. and Quesseveur, E., 2008. GEOLIS: A Logical Infor-
mation System for Geographical Data. Revue Internationale de Géomatique,
17 (3-4), 371–390.

Carpineto, C. and Romano, G., 1996. A Lattice Conceptual Clustering System and
Its Application to Browsing Retrieval. Machine Learning, 24 (2), 95–122.

Cole, R., Eklund, P. and Stumme, G., 2003. Document Retrieval for Email Search
and Discovery using Formal Concept Analysis. Journal of Applied Artificial
Intelligence, 17 (3), 257–280.

Datta, R., Li, J. and Wang, J.Z., 2005. Content-based image retrieval: approaches
and trends of the new age. In: H. Zhang, J. Smith and Q. Tian, eds. Int. Work.
Multimedia Information Retrieval ACM, 253–262.

Donini, F.M., Lenzerini, M., Nardi, D. and Nutt, W., 1997. The Complexity of
Concept Languages. Information and Computation, 134 (1), 1–58.

Ducrou, J. and Eklund, P., 2008. An Intelligent User Interface for Browsing and
Search MPEG-7 Images using Concept Lattices. Int. J. Foundations of Com-
puter Science, World Scientific, 19 (2), 359–381.

Ducrou, J., Vormbrock, B. and Eklund, P.W., 2006. FCA-Based Browsing and
Searching of a Collection of Images. In: H. Schärfe, P. Hitzler and P. Øhrstrøm,
eds. Int. Conf. Conceptual Structures, LNCS 4068 Springer, 203–214.

Ferré, S. and Ridoux, O., 2000. A Logical Generalization of Formal Concept Analy-
sis. In: G. Mineau and B. Ganter, eds. Int. Conf. Conceptual Structures, LNCS
1867 Springer, 371–384.

Ferré, S. and Ridoux, O., 2002. A Framework for Developing Embeddable Cus-
tomized Logics. In: A. Pettorossi, ed. Int. Work. Logic-based Program Synthe-
sis and Transformation, LNCS 2372 Springer, 191–215.

Ferré, S. and Ridoux, O., 2004. An Introduction to Logical Information Systems.
Information Processing & Management, 40 (3), 383–419.

Ferré, S. and Ridoux, O., Logic Functors: A Toolbox of Components for Build-
ing Customized and Embeddable Logics. , 2006. , Research Report RR-5871,
INRIA (103 p.).

REFERENCES 25

Ganter, B. and Wille, R., 1999. Formal Concept Analysis — Mathematical Foun-
dations. Springer.

Gifford, D.K., Jouvelot, P., Sheldon, M.A. and O’Toole, J.W.J., 1991. Semantic
file systems. ACM SIGOPS, 16–25.

Godin, R., Missaoui, R. and April, A., 1993. Experimental Comparison of Navi-
gation in a Galois Lattice with Conventional Information Retrieval Methods.
International Journal of Man-Machine Studies, 38 (5), 747–767.

Hyvönen, E., Styrman, A. and Saarela, S., 2002. Ontology-Based Image Retrieval.
In: E. Hyvönen and M. Klemettinen, eds. Towards the Semantic Web and Web
Services XML Finland Association, 15–27.

Kuznetsov, S. and Objedkov, S., 2001. Comparing Performance of Algorithms for
Generating Concept Lattice. In: E. Mephu Nguifo, ed. ICCS-2001 Int. Work-
shop on Concept Lattices-based Theory, Methods and Tools for Knowledge Dis-
covery in Databases CRIL – IUT de Lens, France: Stanford University.

Lambek, J., 2006. Pregroups and natural language processing. Science+Business
media, 28 (2), 41–48.

Lindig, C., 1995. Concept-Based Component Retrieval. Morgan Kaufmann.
Martinez, J. and Loisant, E., 2002. Browsing image databases with Galois’ lattices.

ACM, 791–795.
Millen, D.R., Feinberg, J. and Kerr, B., 2006. Dogear: Social bookmarking in the

enterprise. In: R.E.G. et al, ed. Conf. Human Factors in Computing Systems
(CHI) ACM, 111–120.

Padioleau, Y. and Ridoux, O., 2003. A Logic File System. USENIX, 99–112.
Stumme, G., Taouil, R., Bastide, Y., Pasquier, N. and Lakhal, L., 2002. Computing

iceberg concept lattices with Titanic. Data Knowl. Eng., 42 (2), 189–222.
Tobies, S., 2000. The complexity of reasoning with cardinality restrictions and

nominals in expressive Description Logics. J. Artificial Intelligence Research
(JAIR), 12, 199–217.

Zhou, D.X., Oostendorp, N., Hess, M. and Resnick, P., 2008. Conversation Pivots
and Double Pivots. ACM, 959–968.

Appendix C

Reconciling Faceted Search
and Query Languages for the
Semantic Web (2012)

This journal article [Ferré and Hermann, 2012] has been published in the
International Journal of Metadata, Semantics and Ontologies in 2012. It mo-
tivates and formalizes Query-based Faceted Search (QFS), and it also proves
the safeness and completeness of its navigation. It introduces Sewelis as
an implementation of QFS, and illustrates user interaction on a genealogi-
cal data. It reports on a user study on CS students that demonstrates the
usability and effectiveness of QFS and Sewelis.

153

Int. J. Metadata, Semantics, and Ontologies, Vol. ?, No. ?/?, 2012 1

Reconciling Faceted Search and Query Languages
for the Semantic Web

S. Ferré
IRISA,
University Rennes 1,
35042 Rennes, France
Fax: +33 2 99 84 71 71
E-mail: ferre@irisa.fr
*Corresponding author

A. Hermann
IRISA,
INSA Rennes,
35043 Rennes, France
Fax: +33 2 99 84 71 71
E-mail: Alice.Hermann@irisa.fr

Abstract Faceted search and querying are two well-known paradigms to search the
Semantic Web. Querying languages, such as SPARQL, offer expressive means for search-
ing RDF datasets, but they are difficult to use. Query assistants help users to write
well-formed queries, but they do not prevent empty results. Faceted search supports ex-
ploratory search, i.e., guided navigation that returns rich feedbacks to users, and prevents
them to fall in dead-ends (empty results). However, faceted search systems do not offer
the same expressiveness as query languages. We introduce Query-based Faceted Search
(QFS), the combination of an expressive query language and faceted search, to reconcile
the two paradigms. We formalize the navigation of faceted search as a navigation graph,
where navigation places are queries, and navigation links are query transformations. We
prove that this navigation graph is safe (no dead-end), and complete (every query that
is not a dead-end can be reached by navigation). In this paper, the LISQL query lan-
guage generalizes existing semantic faceted search systems, and covers most features of
SPARQL. A prototype, Sewelis, has been implemented, and a usability evaluation demon-
strated that QFS retains the ease-of-use of faceted search, and enables users to build
complex queries with little training.

Keywords: semantic web; faceted search; query language; exploratory search; navigation;
expressiveness.

Reference to this paper should be made as follows: Ferré, S. and Hermann, A. (2012)
‘Combining Faceted Search and Query Languages for the Semantic Web’, Int. J. Meta-
data, Semantics, and Ontologies, Vol. ?, Nos. ?/?, pp.???–???.

Biographical notes: S. Ferré is an assistant professor at the University of Rennes 1,
France, and a member of the LIS research team in the IRISA laboratory. He holds a PhD
in Computer Science from the University of Rennes 1, and has also been an assistant
researcher at the University of Wales, Aberystwyth. He works on Logical Information Sys-
tems (LIS), and has published papers about formal concept analysis, logics for knowledge
representation and reasoning, information retrieval and exploration, and data-mining.
His application domains are personal information management, geographical information
systems, and software engineering.

A. Hermann is a PhD student at INSA Rennes, and a member of the LIS research team
in the IRISA laboratory. Her PhD subject is to adapt and extend Logical Information
Systems (LIS) to the Semantic Web, both for data exploration and data creation.

Copyright c© 2009 Inderscience Enterprises Ltd.

2 S. Ferré and A. Hermann

1 Introduction

A key issue of the Semantic Web is to provide an easy
and effective access to them, not only to specialists, but
also to casual users. The challenge is not only to al-
low users to retrieve particular resources (e.g., flights),
but to support them in the exploration of a knowledge
base (e.g., which are the destinations? Which are the
most frequent flights? With which companies and at
which price?). We call the first mode retrieval search,
and the second mode exploratory search, following Mar-
chionini (2006). Exploratory search is often associated
to faceted search (Hearst et al. 2002, Sacco & Tzitzikas
2009), but it is also at the core of Logical Information
Systems (LIS) (Ferré & Ridoux 2000, Ferré 2009), and
Dynamic Taxonomies (Sacco 2000). Exploratory search
allows users to find information without a priori knowl-
edge about either the data or its schema. Faceted search
works by suggesting restrictions, i.e., selectors for sub-
sets of the current selection of items. Restrictions are
organized into facets, and only those that share items
with the current selection are suggested. This has the
advantage to provide guided navigation, and to pre-
vent dead-ends, i.e., empty selections. Therefore, faceted
search is easy-to-use and safe: easy-to-use because users
only have to choose among the suggested restrictions,
and safe because, whatever the choice made by users,
the resulting selection is not empty. The selections that
can be reached by navigation correspond to queries that
are generally limited to conjunctions of restrictions, pos-
sibly with negation and disjunction on values. This is
far from the expressiveness of query languages for the
semantic web, such as SPARQL1. There are seman-
tic faceted search systems that extend the expressive-
ness of reachable queries, but still to a small fragment
of SPARQL (e.g., SlashFacet (Hildebrand et al. 2006),
BrowseRDF (Oren et al. 2006), SOR (Lu et al. 2007),
gFacet (Heim et al. 2010), VisiNav (Harth 2010)). For
instance, none of them allows for cycles in graph pat-
terns, unions of complex graph patterns, or negations of
complex graph patterns.

Languages for querying the semantic web, such as
SPARQL (Angles & Gutierrez 2008), OWL-QL (Fikes
et al. 2004), or SPARQL-DL (Sirin & Parsia 2007), are
quite expressive but are difficult to use, even for spe-
cialists. Users are asked to fill an empty field (problem
of the writer’s block), and nothing prevents them to
write a query that has no answer (dead-end). Even if
users have a perfect knowledge of the syntax and seman-
tics of the query language, they may be ignorant about
the data schema, i.e., the ontology. If they also mas-
ter the ontology or if they use a graphical query editor
(e.g., SemanticCrystal (Kaufmann & Bernstein 2010),
the SCRIBO Graphical Editor2) or an auto-completion
system (e.g., Ginseng (Kaufmann & Bernstein 2010))
or keyword query translation (e.g., Hermes (Tran et al.
2009)), the query will be syntactically correct and se-
mantically consistent w.r.t. the ontology but it can still
produce no answer.

The contribution of this paper, Query-based Faceted
Search (QFS), is to define a semantic search that is (1)
easy to use, (2) safe, and (3) expressive. Ease-of-use and
safeness are retained from existing faceted search sys-
tems by keeping their general principles, as well as the vi-
sual aspect of their interface. Expressiveness is obtained
by representing the current selection by a query rather
than by a set of items, and by representing navigation
links by query transformations rather than by set op-
erations (e.g., intersection, crossing). In this way, the
expressiveness of faceted search is determined by the ex-
pressiveness of the query language, rather than by the
combinatorics of user interface controls. In this paper,
the query language, named LISQL, generalizes existing
semantic faceted search systems, and covers most fea-
tures of SPARQL. The use of queries for representing se-
lections in faceted search has other benefits than naviga-
tion expressiveness. The current query is an intensional
description of the current selection that complements its
extensional description (list of items). It informs users in
a precise and concise way about their exact position in
the navigation space. It can easily be copied and pasted,
stored and retrieved later. Finally, it allows expert users
to modify the query by hand at any stage of the navi-
gation process, without loosing the ability to proceed by
navigation.

The paper is organized as follows. Section 2 gives pre-
liminaries about the Semantic Web and Faceted Search.
Section 3 discusses the limits of set-based faceted search
by formalizing the navigation from selection to selection.
Section 4 introduces LISQL queries and their transfor-
mations. In Section 5, navigation with QFS is formalized
and proved to be safe and complete w.r.t. LISQL, as well
as efficient. Section 6 provides details about our proto-
type implementation Sewelis. Section 7 reports about a
user study that demonstrates the usability of our ap-
proach. Our approach is also compared in Section 8 to
other works in faceted search and query languages for
the Semantic Web. Finally, Section 9 concludes.

2 Preliminaries

2.1 Semantic Web

The Semantic Web (SW) is founded on several repre-
sentation languages, such as RDF, RDFS, and OWL,
which provide increasing inference capabilities (Hitzler
et al. 2009). The two basic units of these languages are
resources and triples. A resource can be either a URI
(Uniform Resource Identifier), a literal (e.g., a string, a
number, a date), or a blank node, i.e., an anonymous re-
source. A URI is the absolute name of a resource, i.e.,
an entity, and plays the same role as a URL w.r.t. web
pages. Like URLs, a URI can be a long and cumber-
some string (e.g., http://www.w3.org/1999/02/22rdf-
syntaxns#type), so that it is often denoted by a qual-
ified name (e.g., rdf:type). We assume pairwise dis-
joint infinite sets of URIs (U), blank nodes (B), and

Reconciling Faceted Search and Query Languages for the Semantic Web 3

literals (L). The set of resources is then defined as
R = U ∪B ∪ L.

A triple (s, p, o) is made of 3 resources, and can be
read as a simple sentence, where s is the subject, p is the
verb (called the predicate), and o is the object. For in-
stance, the triple (ex:Bob,rdf:type,ex:man) says that
“Bob has type man”, or simply “Bob is a man”. Here,
the resource ex:man is used as a class, and rdf:type

is used as a property, i.e., a binary relation. The
triple (ex:Bob,ex:friend,ex:Alice) says that “Bob
has friend Alice”, where ex:friend is another property.
The triple (ex:man,rdfs:subClassOf,ex:person) says
that “man is subsumed by person”, or simply “every man
is a person”. The set of all triples of a knowledge base
forms a RDF graph.

Definition 2.1: An RDF graph is defined as a set of
triples (s, p, o) ∈ (U ∪B)× U × (U ∪B ∪ L), where s is
the subject, p is the predicate, and o is the object.

A vocabulary is a set of resources having a mean-
ing defined by convention. RDF(S) is a vocabulary used
to represent the membership to a class (rdf:type),
subsumption between classes (rdfs:subClassOf), sub-
sumption between properties (rdfs:subPropertyOf),
the domain (rdfs:domain) and range (rdfs:range) of
properties, the meta-class of classes (rdfs:Class), the
meta-class of properties (rdf:Property), etc. OWL in-
troduces additional vocabulary to represent complex
classes and properties: e.g., restrictions on properties,
intersection of classes, inverse properties. The vari-
ant OWL-DL is the counterpart of Description Logics
(DL) (Baader et al. 2003), where resources are individu-
als, classes are concepts, and properties are roles. A RDF
graph that uses the OWL vocabulary to define classes
and properties is generally called an ontology. Each vo-
cabulary comes with a semantics, and the richer the vo-
cabulary is, the more expressive and the more complex
inference is.

Vocabulary for genealogy. For illustration purposes, we
consider RDF graphs about genealogical data. To this
purpose, we introduce a custom vocabulary for geneal-
ogy. The URIs of this domain are associated to a names-
pace (gen:). This prefix is omitted if there is no ambi-
guity. Resources can be persons, events, places or literals
such as names or dates. Persons belong either to the
class of men or to the class of women, may have a first-
name, a lastname, a sex, a father, a mother, a spouse, a
birth, and a death. A birth or a death is an event that
may have a date and a place. Places can be described
as parts of larger places. The classes of men and women
are declared as subclasses of the class of persons. Prop-
erties father and mother are declared as subproperties of
property parent. The transitive closure of property par-
ent is obtained by defining property ancestor as transi-
tive, and a super-property of parent. For illustration pur-
poses, we use genealogical datasets converted from GED

?x

?y

!=

?m

?f
gen

:mo
the

r

gen:mother

gen:father

gen:father

Figure 1 A graphical representation of a graph pattern.

files3. In particular, we use a small dataset about the as-
cendancy of George Washington, which we also used in
our user evaluation, reported in Section 7. This dataset
has about 400 resources, including 79 persons, and about
4000 triples.

Query languages provide on semantic web knowledge
bases the same service as SQL on relational databases.
They generally assume that implicit triples have been in-
ferred and added to the base. The most well-known query
language, SPARQL, reuses the SELECT FROM WHERE syn-
tax of SQL queries, using graph patterns in the WHERE
clause. For instance, pairs of siblings can be retrieved by
the following query:

SELECT DISTINCT ?x ?y FROM <mygen.rdf>

WHERE { ?x gen:mother ?m. ?x gen:father ?f.

?y gen:mother ?m. ?y gen:father ?f.

FILTER ?x != ?y }

Figure 1 shows a graphical representation of the
graph pattern of this query, where arrows represent
triples oriented from the subject to the object. The query
reads “two persons ?x and ?y are siblings if they share a
same mother and a same father, and are different”. The
FILTER condition is necessary because nothing prevents
two variables to bind to a same resource. SPARQL pro-
vides a number of relational algebra operators to com-
bine basic graph patterns: join, set union (UNION), left
join (OPTIONAL), named graphs (GRAPH), and filtering by
various constraints (FILTER). SPARQL 1.1 extends its
expressiveness with set difference (MINUS), negation (NOT
EXISTS), subqueries, aggregations, and expressions.

2.2 Faceted Search

Faceted Search (Hearst et al. 2002, Sacco & Tzitzikas
2009) covers a family of user interfaces for browsing a
collection of items. It is becoming a de facto standard
in e-commerce websites, and its scope of application is
wide (see Chap. 9 in (Sacco & Tzitzikas 2009)). It is suit-
able for retrieval search, i.e., the quick retrieval of an
item already known to the user. It is also suitable for ex-
ploratory search (Marchionini 2006), i.e., the discovery of
the objects that best suits the needs of the user, who has
no prior knowledge of the item collection. An example of
the later is when users want to buy a new camera. They
do not know which models exist and what their features
are, but they have constraints and preferences such as

4 S. Ferré and A. Hermann

low cost, high resolution, or brand. Faceted search sys-
tems guide users through the item collection, and give
them the feeling to have considered all the possibilities.
At each navigation step, users only have to make a choice
among a set of alternatives that are suggested by the
system.

The data model underlying faceted search is simple.
Each item is described along a set of facets, or dimen-
sions. Each facet has a range of values. Therefore, each
item is described by a set of pairs facet-value, which
we call features. Conversely, each feature f has a set
of items, noted items(f). A facet is not necessarily de-
fined on all items. At any navigation step, the current
selection is defined as a set of items S. The initial selec-
tion S0 is generally the whole item collection. From the
current selection S, a set of restrictions are computed
and displayed to the user. A restriction is a feature f that
matches at least one item of the current selection, i.e.,
the intersection between S and the set of items items(f)
is not empty (S ∩ items(f) 6= ∅). Each restriction is gen-
erally accompanied by the number of items it matches
(‖S ∩ items(f)‖). Restrictions are organized by facets,
and for the sake of conciseness, most facets are initially
collapsed, and expanded on demand. On the one hand,
restrictions provide a summary of the current selection.
On the other hand, each restriction is a selector for a
subset of the selection. The summary plays a crucial role
in exploratory search because for each facet it shows only
and all of the relevant values for the current selection.
This allows for the informed choice of a restriction: e.g.,
the lowest price or the highest resolution that is available
given previous selected restrictions.

Exploration in faceted search is based on set opera-
tions between selections and restrictions. At each nav-
igation step, a new selection is derived by applying a
set operation between the current selection S and a re-
striction f chosen by the user. Typically, the set opera-
tion is intersection, i.e. S := S ∩ items(f). Extensions of
faceted search may allow for the exclusion of a restric-
tion (S := S \ items(f)), or the union with a restriction
(S := S ∪ items(f)). After a navigation step, a new set
of restrictions is displayed to reflect the new selection.
The list of chosen restrictions is generally displayed, and
any of them can be removed by users, leading to a larger
selection. This is useful to relax a constraint, for exam-
ple in order to get more items and restrictions. The list
of chosen restrictions can be seen as a query, which, in
general, is limited to a conjunction of features, while re-
stricted forms of negation and disjunction are sometimes
available.

Dynamic Taxonomies (DT) (Sacco 2000, 2006, Sacco
& Tzitzikas 2009) are a model of faceted search, where a
multidimensional taxonomy is used instead of facets and
values. In fact, facets and values form a two-level tax-
onomy, with facets at the first level, and values at the
second level. Using taxonomies of arbitrary depth allows
for features at different granularity levels. For instance,
a facet of date can be used at the levels of days, weeks,
months, years, etc. Weeks and months can be combined

because taxonomies need not be trees but can be directed
acyclic graphs. Features are called concepts, and the gen-
eralization ordering between features is called subsump-
tion. Taxonomies are multidimensional, in that several
features, even under a same facet, can be attached to
a same item. This is useful with a facet of topics as a
same item can match several topics. The term “dynamic
taxonomy” stands for the fact that the summary is now
a subset of the taxonomy, which dynamically adapts to
the selection.

Logical Information Systems (LIS) (Ferré & Ridoux
2000, 2004, Ferré 2009) are another model of faceted
search that has been developed in our team since 1999,
on the basis of Formal Concept Analysis (Ganter & Wille
1999) and logic-based information retrieval (van Rijsber-
gen 1986). For what concerns us here, logical information
systems can be defined as an extension of dynamic tax-
onomies, where features are the formulas of an ad-hoc
logic, and subsumption is defined by logical inference
rather than explicitly (Ferré & Ridoux 2007). Using log-
ics enhances the expressiveness of features and queries,
as well as the design and engineering of complex tax-
onomies (see Chapter 8 in (Sacco & Tzitzikas 2009)). In
LIS, the selection is defined as the set of answers, called
extension, of the query, and changes of the selection are
done through changes to the query. In addition to navi-
gation, LIS provide direct querying for expert users, and
query-by-examples to find items similar to a given set of
examples.

3 Limits of Set-based Faceted Search for the
Semantic Web

The notions of faceted search can be transposed to the
Semantic Web. Items and values are resources (URIs or
literals), and facets are properties. The association be-
tween an item and a facet-value is a triple, where the
subject is the item, the predicate is the facet, and the
object is the value. Because of the relational nature of
semantic data, new kinds of features and set operations
have been introduced in semantic faceted search (e.g.,
/facet (Hildebrand et al. 2006), BrowseRDF (Oren et al.
2006), SOR (Lu et al. 2007), gFacet (Heim et al. 2010),
VisiNav (Harth 2010)). In addition to facet-value pairs,
a feature can be the name of a resource, a class as a
type, the domain of a property, or the range of a prop-
erty (e.g., BrowseRDF). Table 1 defines the syntax and
semantics (set of items) of the various kinds of features,
where r denotes any RDF resource (URI or literal), c
denotes a RDFS class, p denotes a RDF property, and
S0 denotes the set of all items (possibly all resources
of a RDF dataset). In semantic expressions, we use the
following definitions of set-based operations involving a
property p and a RDF graph G:

p(., S) := {i ∈ S0 | ∃j ∈ S : (i, p, j) ∈ G}
p(S, .) := {j ∈ S0 | ∃i ∈ S : (i, p, j) ∈ G}

Reconciling Faceted Search and Query Languages for the Semantic Web 5

feature syntax semantics examples
f items(f)

name r {r} <JohnSmith>, "John", 2011
type a c rdf:type(., {c}) a person

facet-value p : r p(., {r}) year : 2011

inverse facet-value p of r p({r}, .) mother of <JohnSmith>

domain p : ? p(., S0) year : ?

range p of ? p(S0, .) mother of ?

Table 1 Syntax, semantics, and examples of the various kinds of features.

Those operations can be used in addition to intersection,
union, and exclusion (e.g., /facet, SOR, gFacet, Visi-
Nav). The operation p(S, .) is crossing forward p from the
selection S, while the operation p(., S) is crossing back-
wards. For example, starting from a set S of persons,
gen:lastname(S, .) returns their lastnames, while start-
ing from a set of lastnames, gen:lastname(., S) returns
the set of persons having one of those lastnames. Ta-
ble 2 defines the various kinds of operations that can be
used to navigate from one selection to another. Crossings
apply to domain and range restrictions, while other oper-
ations apply to arbitrary restrictions. In order to better
expose the limits of set-based faceted search, we intro-
duce in the table a syntax for those operations, where S
denotes the current selection.

operation syntax semantics
reset ? S0

intersection S and f S ∩ items(f)
exclusion S and not f S \ items(f)
union S or f S ∪ items(f)
crossing backwards p : S p(., S)
crossing forwards p of S p(S, .)

Table 2 Syntax and semantics of the various kinds of
set-based operations.

The syntactic form of selections in Table 2 implicitly
defines the language of queries (q) that can be reached
by set-based faceted search:

q → ? | q and f | q and not f | q or f |
p : q | p of q

This grammar already defines a rich language of ac-
cessible queries, but it has strong limits in terms of flex-
ibility and expressiveness. This can be seen at first sight
by the fact that the right-hand side of intersection, differ-
ence, and union are restricted to features, instead of arbi-
trary queries. This linearly recursive definition of queries
comes from the linear navigation of set-based faceted
search. The consequence of this linearity is that not all
combinations of intersection, union, and crossings are
reachable, which is counter-intuitive and limiting for end
users. For example, the following kinds of selections are
not reachable, where the Ri represent the set of items of
some features:

• unions of complex selections, e.g., (R1 ∩R2) ∪
(R3 ∩R4);

• or intersections of crossings from complex selec-
tions, e.g., p1(., R1 ∩R2) ∩ p2(., R3 ∩R4).

Note that a selection S1 ∩ p(., S2) cannot in general be
obtained by first navigating to S1, then crossing for-
wards p, navigating to S2, and finally crossing back-
wards p, because it is not equivalent to p(., p(S1, .) ∩ S2)
unless p is inverse functional.

Existing approaches to semantic faceted search often
have additional limitations, which are sometimes hid-
den behind a lack of formalization. In some systems
(e.g., BrowseRDF, gFacet), a same facet (a property)
cannot be used several times, which is fine for func-
tional properties but not for relations such as “child”:
p : (f1 and f2) is reachable but not (p : f1) and

(p : f2). In other systems (e.g., /facet), a property
whose domain and range are the same cannot be used as
a facet, which includes all family and friend relationships
for instance.

4 Expressive Queries and their Transforma-
tions

The contribution of our approach, Query-based Faceted
Search (QFS), is to significantly improve the expressive-
ness of faceted search, while retaining its properties of
safeness (no dead-end), and ease-of-use. The key idea is
to define navigation links at the syntactic level as query
transformations, rather than at the semantic level as set
operations. Indeed, the syntactic expression of a query
retains more information than its semantics (a set of
items) because a query has a single set of items, but a set
of items can be the semantics of many different queries.
The navigation from selection to selection, as well as the
computation of restrictions related to the current selec-
tion, are retained because a set of items of the current
query can be computed at any time.

In Section 4.1, we first define the syntax and seman-
tics of LISQL (LIS Query Language). LISQL generalizes
in a natural way the query language behind set-based
faceted search (see Section 3), by allowing for the free
combination of features, intersection, difference, union,
and crossings. We then define in Section 4.2 a set of
query transformations so that every LISQL query can
be reached in a finite sequence of such transformations.
This is in contrast with previous contributions in faceted
search that introduce new selection transformations, and

6 S. Ferré and A. Hermann

leave the query language implicit. We think that making
the language of reachable queries explicit is important for
reasoning on and comparing different faceted search sys-
tems. In Section 4.3, we give a translation from LISQL to
SPARQL, the reference query language of the Semantic
Web. This provides both a way to compute the answers
of queries with existing tools, and a way to evaluate the
level of expressiveness achieved by LISQL.

4.1 The LIS Query Language (LISQL)

query syntax semantics
q items(q)

name r {r}
type a c rdf:type(., {c})
all ? S0

crossing backwards p : q1 p(., S1)
crossing forwards p of q1 p(S1, .)
complement not q1 S0 \ S1

intersection q1 and q2 S1 ∩ S2

union q1 or q2 S1 ∪ S2

Table 3 Syntax and semantics of LISQL queries.

LISQL is obtained by merging the syntactic cate-
gories of features and queries in the grammar of Sec-
tion 3, so that every query can be used in place of a
feature.

Definition 4.1: The syntax and semantics of the
LISQL constructs is defined in Table 3, where r is a re-
source, c is a class, p is a property, S0 is the set of all
items, and q1, q2 are LISQL queries s.t. S1 = items(q1)
and S2 = items(q2).

The definition of LISQL allows for the arbitrary com-
bination of intersection, union, complement, and cross-
ings. In order to further improve the expressiveness of
LISQL from tree patterns to graph patterns, we add
variables (e.g., ?X) as an additional construct. Variables
serve as co-references between distant parts of the query,
and allows for the expression of cycles. For example, the
query that selects people who are an employee of their
own father can be expressed as a person and father :

?X and employee of ?X, or alternately as a person

and ?X and employee of father of ?X. The seman-
tics of queries with variables is given with the translation
to SPARQL in Section 4.3, because it cannot be defined
inductively, like in Table 3.

Syntactic constructs are given in increasing prior-
ity order (see Table 3), and brackets or indentation
are used in concrete syntax for disambiguation. The
most general query ? is a neutral element for inter-
section, and an absorbing element for union. In the
following, we use the example query qex = a person

and birth : (year : (1601 or 1649) and place :

(?X and part of England)) and father : birth :

place : not ?X, which uses all constructs of LISQL,

and selects the set of “persons born in 1601 or 1649
at some place in England, and whose father is born
at another place”. The same LISQL query with inden-
tation instead of brackets displays as follows (the and

connectors are omitted).

a person

birth :

year :

1601 or 1649

place :

?X

part of England

father : birth : place : not ?X

This notation better renders the structure of the
query, and is therefore used in our prototype Sewelis (see
Section 6).

4.2 Query Transformations

We have generalized the query language by allowing com-
plex queries in place of features: e.g., q1 and q2 instead
of q and f . However, because the number of suggested
restrictions in faceted search must be finite, it is not
possible to suggest arbitrarily complex queries as restric-
tions. More precisely, the vocabulary of features must be
finite. In QFS, we retain the same set of features as in
Section 3 (i.e., names, types, pairs facet-value, domain,
and range), which is a finite subset of LISQL for any
given dataset.

The key notion we introduce to reconcile this fi-
nite vocabulary and the reachability of arbitrary LISQL
queries is the notion of focus in a query. This notion al-
lows our approach to escape the linearity of set-based
navigation, and therefore to reach queries with arbitrary
syntax trees.

Definition 4.2: A focus of a LISQL query q is a node
of the syntax tree of q, or equivalently, a subquery of q.
The set of foci of q is noted Φ(q); the root focus cor-
responds to the root of the syntax tree, and represents
the whole query. The subquery at focus φ ∈ Φ(q) is
noted q[φ].

In the following, when it is necessary to refer to
a focus in a query, the corresponding subquery is un-
derlined with the focus name as a subscript, like in
mother of ?φ. Foci are used in QFS to specify on which
subquery a query transformation should be applied. For
example, the query (f1 and f2) or (f3 and f4) can
be reached from the query (f1 and f2) or f3 by apply-
ing intersection with restriction f4 to the subquery f3,
instead of to the whole query. Similarly, the query p1 :

(f1 and f2) and p2 : (f3 and f4) can be reached by
applying the intersection with restriction f4 to the sub-
query f3. This removes the problem of unreachable selec-
tions in set-based faceted search presented in Section 3.

Reconciling Faceted Search and Query Languages for the Semantic Web 7

Definition 4.3: A query transformation transforms a
query q into the query q[φ := q1] by replacing the sub-
query at focus φ ∈ Φ(q) by another query q1. One note
q[t1] . . . [tn] if several transformations are successively ap-
plied. The also define the following abbreviations for
common query transformations:

[φ and q1] = [φ := q[φ] and q1]
[φ and not q1] = [φ := q[φ] and not q1]
[φ or q1] = [φ := q[φ] or q1]

We show in the following equations how the intersec-
tion q[φ and δ] with any LISQL query δ that is not a
feature can be recursively decomposed into a finite se-
quence of intersections with features, and exclusions or
unions with the most general query ?.

δ q[φ and δ]
? q
p : q1 q[φ and p : ?φ1

][φ1 and q1]
p of q1 q[φ and p of ?φ1

][φ1 and q1]
not q1 q[φ and not ?φ1

][φ1 and q1]
q1 and q2 q[φ and q1φ1][φ1 and q2]
q1 or q2 q[φ and q1φ1][φ1 or ?φ2][φ2 and q2]

For example, the complex query qex = a person

and birth : (year : (1601 or 1649) and place :

(?X and part of England)) and father : birth :

place : not ?X can be reached through the navigation
path:

?φ0

[φ0 and a person]
[φ0 and birth : ?φ1

]
[φ1 and year : 1601φ2

]
[φ2 or ?φ3]
[φ3 and 1649]
[φ1 and place : ?φ4

]
[φ4 and ?X]
[φ4 and part of England]
[φ0 and father : ?φ5

]
[φ5 and birth : ?φ6]
[φ6 and place : ?φ7]
[φ7 and not ?φ8

]
[φ8 and ?X].

The classical facet-value features (p : r and p of r)
appear to be redundant for navigation as their inter-
section can be decomposed, but they are still useful for
visualization in a faceted search interface.

Sequences of query transformations are analogous to
the use of graphical query editors, but the key differ-
ence is that a valid query, answers, and restrictions will
be returned at each navigation step, providing feedback,
understanding-at-a-glance, no dead-end, and all benefits
of exploratory search. Despite the syntax-based defini-
tion of navigation steps, they have a clear semantic coun-
terpart. Intersection is the same as in standard faceted
search, only making it available on the different enti-
ties involved in the current query. In the above exam-
ple, intersection is alternately applied to the person, his

birth, his birth’s place, his father, etc. The set of relevant
restrictions is obviously different at different foci. The
union transformation introduces an alternative to some
subquery (e.g., an alternative birth’s year). The exclu-
sion transformation introduces a set of exceptions to the
subquery (e.g., excluding some father’s birth’s place). In
Section 5, we precisely define which query transforma-
tions are suggested at each navigation step, and we prove
that the resulting navigation graph is safe (no dead-end),
and complete (every “safe” query is reachable).

4.3 Translation to and Comparison with SPARQL

We propose a (naive) translation of LISQL queries to
SPARQL queries. It involves the introduction of vari-
ables that are implicit in LISQL queries. This translation
provides an alternative way to compute LISQL query an-
swers, in addition to Table 3. As this translation applies
to LISQL queries with co-reference variables, it becomes
possible to compute their set of items.

Definition 4.4: The SPARQL transla-
tion of a LISQL query q is sparql(q) =
SELECT DISTINCT ?x WHERE { S0(x) GP(x, q) },
where the graph pattern S0(x) binds x to an element
of the set of all items S0, and the function GP induc-
tively defines the graph pattern of q with variable x
representing the root focus.

GP(x, ?v) = S0(v) FILTER (?x = ?v)
GP(x, r) = FILTER (?x = r)
GP(x, a c) = ?x a c.
GP(x, p : q1) = ?x p ?y. GP(y, q1)

where y is a fresh variable
GP(x, p of q1) = ?y p ?x. GP(y, q1)

where y is a fresh variable
GP(x, ?) = { }
GP(x, not q1) = NOT EXISTS { GP(x, q1) }
GP(x, q1 and q2) = GP(x, q1) GP(x, q2)
GP(x, q1 or q2) = { GP(x, q1) } UNION { GP(x, q2) }

The graph pattern S0(x) may depend on the
application. By default, it is defined as (?x a

rdfs:Resource.), and allows to select all kinds of re-
sources, including classes, properties, and literals. The
use of S0(x) in graph patterns ensures that variables are
bound in filters and negations.

We now discuss the translations of LISQL queries
compared to SPARQL in general. They have only one
variable in the SELECT clause because of the nature
of faceted search, i.e., navigation from set to set. From
SPARQL 1.0, LISQL misses the optional graph pattern,
and the named graph pattern. Optional graph patterns
are mostly useful when there are several variables in the
SELECT clause. LISQL has the NOT EXISTS construct
of SPARQL 1.1. If we look at the graph patterns gen-
erated for intersection and union, the two subpatterns
necessarily share at least one variable, x. This is a re-
striction compared to SPARQL, but one that makes little

8 S. Ferré and A. Hermann

difference in practice as disconnected graph patterns are
hardly useful in practice.

The translation sparql(qex) of the above example
query qex = a person and birth : (year : (1601

or 1649) and place : (?X and part of England))

and father : birth : place : not ?X is the follow-
ing.

SELECT DISTINCT ?x

WHERE {

?x1 a gen:person.

?x1 gen:birth ?x2.

?x2 gen:year ?x3.

{ FILTER (?x3 = 1601)}

UNION { FILTER (?x3 = 1649) }

?x2 gen:place ?x4.

?X a rdfs:Resource.

FILTER (?x4 = ?X)

gen:England gen:part ?x4.

?x1 gen:father ?x5.

?x5 gen:birth ?x6.

?x6 gen:place ?x7.

NOT EXISTS {

?X a rdfs:Resource.

FILTER (?x7 = ?X)

}

This query can be manually improved as follows:

SELECT DISTINCT ?f

WHERE {

?p a gen:person.

?p gen:birth ?b.

?b gen:year ?y.

FILTER (?y=1601 || ?y=1649).

?b gen:place ?X.

gen:England gen:part ?X.

?p gen:father ?f.

?f gen:birth ?bf.

?bf gen:place ?pf.

FILTER (?pf != ?X) }

This example shows that LISQL is more concise, and
makes a minimal use of variables. It also replaces a num-
ber of logical and algebraic symbols (curly brackets, dot,
UNION, FILTER, =, !=, &&, ||, and !) by keywords for
the 3 Boolean operators (and, or, not) plus brackets or
indentation. The LISQL syntax follows the usual syntax
for expressions (infix operators and brackets/indentation
to fix priorities), and we think that this makes it easier
to read and learn.

5 A Safe and Complete Navigation Graph

In this section, we formally define the navigation space
over a RDF dataset as a graph, where vertices are nav-
igation places, and edges are navigation links. A navi-
gation place is made of a query q and a focus φ of this
query. The focus determines the selection of items to be

displayed, and the set of restrictions for that selection. A
navigation link is defined by a query transformation and,
possibly, a focus change. We prove the safeness of navi-
gation graphs in Section 5.1, and their completeness in
Section 5.2. Finally, we discuss the efficiency of our ap-
proach relative to set-based faceted-search in Section 5.3.
Before defining the navigation graph itself, we first de-
fine the set of items and the set of restrictions for some
query q and some focus φ ∈ Φ(q). The set of items is de-
fined as the set of items of the query flip(q, φ), which is
the reformulation of q from the point of view of the fo-
cus φ. For example, the reformulation, called the flip, of
the query a woman and mother of name : "John"

φ
is

the query name : "John" and mother : a woman.

Definition 5.1: The flip of a query q at a focus φ ∈
Φ(q) is defined as flip(q, φ) = flip′(q, φ, ?). The func-
tion flip′ inductively deconstructs the query q until
reaching the focus φ, and uses the additional (third) ar-
gument k as an accumulator for the resulting flipped
query. In the following equations, the subquery that con-
tains focus φ is underline.

flip′(p : q1, φ, k) = flip′(q1, φ, p of k)
flip′(p of q1, φ, k) = flip′(q1, φ, p : k)
flip′(q1 and q2, φ, k) = flip′(q1, φ, k and q2)
flip′(q1 and q2, φ, k) = flip′(q2, φ, k and q1)
flip′(q1 or q2, φ, k) = flip′(q1, φ, k)
flip′(q1 or q2, φ, k) = flip′(q2, φ, k)
flip′(not q1, φ, k) = flip′(q1, φ, k)
flip′(qφ, φ, k) = q and k

When the focus is in the scope of an union, only the
alternative that contains the focus is used in the flipped
query. This is necessary to have the correct set of restric-
tions at that focus, and this is also useful to access the
different subselections that compose an union. For ex-
ample, in the query a man and (firstname : "John"φ
or lastname : "John"), the focus φ allows to know the
set of men whose firstname is John without removing the
second alternative in the current query. When the focus
is in the scope of a complement, this complement is ig-
nored in the flipped query. This is useful to access the
subselection to be excluded. For example, in the query a

man and not father : ?φ, the focus φ allows to know
the set of men who have a father, i.e., those who are to
be excluded from the selection of men.

Definition 5.2: The items of a query q at focus φ is
defined as the items of the flip of q at focus φ, i.e.,
items(q, φ) = items(flip(q, φ)).

This enables the definition of the set of restrictions
at each focus in the normal way. The navigation graph
can then be formally defined.

Reconciling Faceted Search and Query Languages for the Semantic Web 9

Definition 5.3: The restrictions of a query q at fo-
cus φ is defined as the features that share items with the
query q at focus φ:

restr(q, φ) = {f | items(q, φ) ∩ items(f) 6= ∅}.

Definition 5.4: Let D be a RDF dataset. The navi-
gation graph GD = (P,L) of D has its set of navigation
places (vertices) defined by

P = {(q, φ) | q ∈ LISQL, φ ∈ Φ(q)},

and its set of navigation links (edges) defined by Table 4
for every place p = (q, φ). The notation p′ = p[l] denotes
the navigation place obtained by traversing the naviga-
tion link l from the navigation place p. One can note
p[l1] . . . [ln] when several links are traversed.

The number of navigation places is infinite because
there are infinitely many LISQL queries, but the number
of outgoing navigation links is finite at each navigation
place because the vocabulary of features is finite, and
the number of foci and variables in a query is finite. By
default, the initial navigation place is p0 = (?φ, φ).

Before stating and proving safeness and completeness
of the navigation graph, we state a few useful lemmas.
The first lemma relates the flip of transformed queries
to the transformation of flipped queries.

Lemma 5.1: For every query q, focus φ ∈ Φ(q), and
query q′, we verify:

1. flip(q[φ and q′φ′], φ′) = flip(q, φ) and q′,

2. flip(q[φ and not q′φ′], φ′) = flip(q, φ) and q′,
(see remarks after Definition 5.1)

3. flip(q[φ or q′φ′], φ′) = flip(q[φ := ?], φ) and q′.

The second lemma states that intersection navigation
links behave as in standard faceted search: intersection
with a feature f leads to a navigation place, whose set of
items is the intersection between the previous selection
and the set of items matching that feature f .

Lemma 5.2: For every query q, focus φ ∈ Φ(q), and
feature f , the following equality holds:

items((q, φ)[and f]) = items(q, φ) ∩ items(f).

Proof: items((q, φ)[and f])

= items(q[φ and fφ′], φ′) (Definition 5.4)

= items(flip(q[φ and fφ′], φ′)) (Definition 5.2)

= items(flip(q, φ) and f) (Lemma 5.1)

= items(flip(q, φ)) ∩ items(f) (Definition 4.1)

= items(q, φ) ∩ items(f) (Definition 5.2) �

The third lemma states that deletion navigation links
can only make the set of items larger, and therefore can-
not lead to dead-ends.

Lemma 5.3: For every query q, focus φ ∈ Φ(q), the
following equality holds:

items((q, φ)[delete]) ⊇ items(q, φ).

5.1 Safeness

Safeness is an important property to be retained from
faceted search. A navigation graph is safe if no navigation
path leads to a dead-end, unless it starts with a dead-
end. Safeness prevents frustation in user experience. We
prove that navigation graphs are safe, apart from the use
of focus change (see discussion below).

Theorem 1: Let D be a RDF dataset. The naviga-
tion graph GD is safe except for some focus changes,
i.e., for every path of navigation links without focus
change from (q, φ) to (q′, φ′), items(q, φ) 6= ∅ implies
items(q′, φ′) 6= ∅.

Proof: It suffices to prove that every navigation link l that
is not a focus change is safe, i.e., that items((q, φ)[l]) 6= ∅
assuming that items(q, φ) 6= ∅. The proof is based on Defini-
tions 5.2, 5.3, 5.4 and Lemmas 5.1, 5.2.

intersection: items((q, φ)[and f])
= items(q, φ) ∩ items(f) (Lemma 5.2)
6= ∅ because f ∈ restr(q, φ) (Definition 5.3).

exclusion: items((q, φ)[and not ?])
= items(q[φ and not ?φ′], φ′) (Definition 5.4)
= items(flip(q[φ and not ?φ′], φ′)) (Definition 5.2)
= items(flip(q, φ) and ?) = items(flip(q, φ))
(Lemma 5.1)
= items(q, φ) 6= ∅.

union: items((q, φ)[or ?])
= items(q[φ or ?φ′], φ′) (Definition 5.4)
= items(q[φ := q[φ] or ?φ′], φ′) (Definition 4.3)
= items(q[φ := ?φ], φ) (? is absorbing for union)
= items((q, φ)[delete]) (Definition 5.4)
⊇ items(q, φ) 6= ∅ (Lemma 5.3)
6= ∅.

name: items((q, φ)[name ?v])
= items(q[φ and ?vφ′], φ′) (Definition 5.4)
= items(flip(q[φ and ?vφ′], φ′)) (Definition 5.2)
= items(flip(q, φ) and ?v) (Lemma 5.1)
= items(flip(q, φ)) (because v is a fresh variable)
= items(q, φ) 6= ∅.

reference: items((q, φ)[ref ?v]) 6= ∅ by Definition 5.4.

delete: items((q, φ)[delete])
⊇ items(q, φ) (Lemma 5.3)
6= ∅. �

We justify to allow for unsafe focus changes by con-
sidering the following navigation scenario. The current
query has the form q = f1 or f2φ, i.e., the union of
two restrictions. The feature f3 is a restriction of q
such that items(f2) ∩ items(f3) = ∅, i.e., only items of f1
match f3. The intersection with f3 leads to the query
q′ = (f1 or f2) and f3φ′ , and a focus change on f2

10 S. Ferré and A. Hermann

navigation link notation (l) target ((q′, φ′) = (q, φ)[l]) conditions
focus change focus φ′ (q, φ′) for every focus φ′ ∈ Φ(q)
intersection and f (q[φ and fφ′], φ′) for every f ∈ restr(q, φ)
exclusion and not ? (q[φ and not ?φ′], φ′)
union or ? (q[φ or ?φ′], φ′)
name name ?v (q[φ and ?vφ′], φ′) for some fresh variable v
reference ref ?v (q[φ and ?vφ′], φ′) for every v ∈ vars(q) s.t. items(q′, φ′) 6= ∅
deletion delete (q[φ := ?], φ)

Table 4 Definition of the set of navigation links linking a navigation place (q, φ) to the target navigation place (q′, φ′).

leads to an empty selection. We could prevent intersec-
tion with f3 but this would be counter-intuitive because
it is a valid restriction for (q, φ). We could simplify the
query q′ by removing the second alternative f2 (q′ =
f1 and f3), or forbid the focus change, but we think
users should have full control on the query they have
built. Finally, allowing for the unsafe focus change is a
simple way to inform users that no item of f2 matches
the new restriction feature f3.

5.2 Completeness

Completeness is a key contribution of our approach, and
is based on the explicit definition of a query language.
A navigation graph is complete if there is a navigation
path to every query that is not a dead-end, starting from
the initial navigation place p0. Completeness is impor-
tant because it completely removes the need to manually
edit queries, which makes guided navigation as expres-
sive as the query language, here LISQL. This suggests
that, in order to improve the expressiveness of semantic
faceted search, one should first extend the query lan-
guage, then extend the navigation graph with additional
navigation links (i.e., query transformations), and finally
prove safeness and completeness.

To be precise, completeness is proved for safe queries,
i.e., queries without an unsafe focus change.

Definition 5.5: A query q is said to be safe under
φ ∈ Φ(q), which we note safe(q, φ), if for every focus
φ′ ∈ Φ(q) that is equal to or under φ in the syntax tree
of q, we have items(q, φ′) 6= ∅. Query q is said safe, which
we note safe(q), if it is safe under its root focus. By
extension, we say that a navigation place (q, φ) is safe
if safe(q, φ) holds.

Before stating and proving the main theorem on com-
pleteness, we need a few lemmas on the conservation
of the safeness of queries when they are simplified. The
proofs, not given here, are based on the translation of
queries to SPARQL (Definition 4.4).

Lemma 5.4: For every query q, and focus φ ∈ Φ(q), if
safe(q, φ), then the following propositions hold:

1. safe(q[φ := ?], φ),

2. q[φ] = (q1 and q2)⇒ safe(q[φ := q1], φ),

3. q[φ] = (q1 or q2)⇒ safe(q[φ := q1], φ),

4. q[φ] = (p : q1)⇒ safe(q[φ := p : ?], φ),

5. q[φ] = (p of q1)⇒ safe(q[φ := p of ?], φ).

Theorem 2: Let D be a RDF dataset. The navigation
graph GD is complete except for some queries having an
unsafe focus change, i.e., for every safe query q, there is
a navigation path from the initial navigation place p0 to
the navigation place (qφ, φ).

Proof: Suppose we have a navigation link [and q] for every
safe query q, with the same definition as intersection with a
restriction [and f] (Table 4). Then it would be possible to
navigate (in one step) from the initial place p0 to the place
(? and qφ, φ), which is equivalent to (qφ, φ).

Therefore, we can prove completeness by showing how the
hypothetical navigation link [and q] can be decomposed into
a valid and finite navigation path, for every safe query q.
The following table defines such a finite decomposition by
induction on the structure of q.

q [and qφ]

r [and r]
a c [and a c]
?v [name ?v] (if v is new)

[ref ?v] (otherwise)
? ε
p : q1 [and p : ?φ1][focus φ1][and q1][focus φ]
p of q1 [and p of ?φ1][focus φ1][and q1][focus φ]
not q1 [and not ?φ1][and q1][focus φ]
q1 or q2 [and q1φ1][or ?φ2][and q2][focus φ]

q1 and q2 [and q1][and q2][focus φ]

It remains to prove that every navigation step of the de-
composition is a valid navigation link, according to Table 4.
The first step is to prove that every intermediate navigation
place is safe. This can be done by recurrence, where the re-
currence hypothesis says that for every subquery, the initial
and final places are safe. This is true for the whole query q
(the base case), because q is assumed safe under φ, and p0 is
trivially safe. For subqueries that are decomposed into sev-
eral navigation steps, the intermediate vertices can be proved
safe by applying Lemma 5.4.

Finally, every atomic navigation link can be proved valid.
Focus change, exclusion, union, and deletion are always valid
navigation links. For intersection and reference, we can use
the fact that every intermediate place is safe, and therefore
that every intermediate place has a non-empty set of items.
This is enough for reference. For intersection, we can use
Lemma 5.2 to prove that the feature f is a restriction. �

Reconciling Faceted Search and Query Languages for the Semantic Web 11

This proof also provides an algorithm for finding
a path from the initial navigation place to the target
query q. It exhibits a linear complexity: the path has a
length that is linear in the size of the target query.

The restriction of completeness to safe queries is
not a problem in practice because every query q
such that items(q) 6= ∅ (the query has answers) and
not safe(q) (the query has no answer at some focus)
can be simplified into a safe yet equivalent query. It
suffices to delete from the query empty alternatives,
and empty exclusions. An empty exclusion is a sub-
query (not q1φ1) s.t. items(q, φ1) = ∅; and an empty al-
ternative is either q1 or q2 in a subquery (q1φ1

or q2φ2
)

s.t. items(q, φ1) = ∅ or items(q, φ2) = ∅. The simplified
query is equivalent to the original query in that it has
the same set of items at every remaining focus, and it is
safe.

5.3 Efficiency

Each navigation step from a navigation place (q, φ) re-
quires the computation of the set of items items(q, φ),
the set of restrictions restr(q, φ), and the set of naviga-
tion links as specified in Definition 5.4. In many cases,
the set of items can be obtained efficiently from the pre-
vious set of items, and the last navigation link. If the last
navigation link was an intersection, Lemma 5.2 shows
that the set of items is the result of the intersection that
is performed during the computation of restrictions, like
in standard faceted search. For an exclusion or a nam-
ing, the set of items is unchanged. For a reference, the
set of items was already computed at the previous step.
Otherwise, for an union or a focus change, the set of
items is computed with a LISQL query engine, possibly
reusing existing query engines for the Semantic Web (see
Section 4.3).

Computing the set of restrictions is equivalent to set-
based faceted search, i.e., amounts to compute set inter-
sections between the set of items of the current naviga-
tion place and the precomputed set of items of features.
The same datastructures and algorithms can therefore
be used. As features are LISQL queries, their set of items
can be computed like for queries, possibly with opti-
mizations given that features are simple queries. Finally,
determining the set of navigation links requires little ad-
ditional computation. A navigation link is available for
each focus of the query (focus change), and each restric-
tion (intersection). Three navigation links for exclusion,
union, and naming are always available. Only for refer-
ence navigation links it is necessary, for each variable
in the query, to compute the set of items of the target
navigation place, in order to check it is not empty. This
additional cost is limited as the number of variables in
a LISQL query is very small in practice, and is bounded
by the number of foci of the query.

6 User Interface and Interaction

Query-based Faceted Search has been implemented as
a prototype, Sewelis4. Figure 2 shows a screenshot of
Sewelis. From top to bottom, and from left to right, it
is composed of a menu bar (M), a toolbar (T), a query
box (Q), query transformations (QT), a suggestion area
(S) that is mainly composed of a facet hierarchy (F), a
set of value boxes (V), and an answer list (A). A query
engine can be derived from Sewelis by retaining only the
components Q and A. A standard faceted search system
can be derived by retaining only the components A, F,
and V.

The query box displays the current LISQL query q,
where the current focus φ is rendered by highlighting
the subquery q[φ]. In Figure 2, the whole query is high-
lighted because the current focus is the root focus. For
a better readability of queries, we use indentation in-
stead of brackets, URIs are represented by their labels if
available or abbreviated as qualified names if possible, a
concrete syntax is used for some datatypes (e.g., 42 in-
stead of "42"ˆˆxsd:integer), and resources are colored
according to their kind (orange for classes, purple for
properties, blue for other URIs, and green for literals).

The suggestion area (S) contains the set of restric-
tions for the current set of items. In fact, that set of
items is a subset of the restrictions, and is displayed in
the answer list (A). The classic restrictions, pairs facet-
value, are found in value boxes (V), one for each appli-
cable property (p : ?) and inverse property (p of ?).
If that property is transitive (an instance of the class
owl:TransitiveProperty), then the values are orga-
nized hierarchically accordingly. For instance, the value
box of ancestor : ? displays a descendancy chart,
while the value box of ancestor of ? displays an ances-
try chart. Similarly, the value box of part of ? displays
a taxonomy of locations. Other kinds of restrictions are
placed in the facet box (F). This includes co-reference
variables (e.g., ?X), classes as types (e.g., a man), and
properties as domains (e.g., parent : ?) and ranges
(e.g., child of ?). Classes and properties are hierar-
chically organized according to the rdfs:subClassOf

and rdfs:subPropertyOf transitive properties. For in-
stance, in Figure 2, the class a man is a subclass of a

person; and the properties father : ? and mother : ?

are subproperties of parent : ?, which is itself a sub-
property of ancestor : ?. In order to increase user feed-
back about suggestions, each restriction is prefixed by
the number of answers that match that restriction. If
a restriction matches all answers, that number is high-
lighted like the focus. If two restrictions match the same
subset of answers, this is indicated by highlighting the
two numbers with a same color. Finally, a dim font is
used for restrictions that are included in the current
query, hence emphasizing the other restrictions as “new”.
For example, in Figure 2, the restriction a man (bold
font) is a way to make the query more specific, while a

person (dim font) is already in the query (at the cur-
rent focus). The buttons “More” and “Less” are out the

12 S. Ferré and A. Hermann

Figure 2 A screenshot of the user interface of Sewelis. It shows the selection of “persons born in 1601 or 1649 somewhere in
England, and whose father was born at another place”.

scope of this paper, and are mostly used when editing
the RDF graph (Hermann et al. 2011).

Navigation links, i.e. the application of query
transformations, are available on most components
(T,Q,QT,S). Focus changes can be triggered by clicking
on the subquery of interest in Q, by keystrokes (CTRL
+ arrows), or by pushing the button “Focus Up” in QT.
Intersection with a feature and reference to a variable
can be performed by double-clicking a restriction in the
suggestion area (S). Other navigation links are available
as buttons in the component QT (Query Transforma-
tions): “ or ?” for union, “ and not ?” for exclusion,
“Name” for naming, and “Delete” for deletion. Other
useful transformations are available in QT and T areas:
“Back” and “Forward” for navigating in the history of
navigation places, “Root” for jumping to the initial nav-
igation place that contains all resources of the dataset,
“Home” for jumping to the user-defined home query, “P

and P ?” for adding a value to the same property (e.g.,
for describing a second child), “not ” for (un)applying
negation on the current subquery, “{ }” for (un)quoting
the current subquery as a literal, “Describe” for replac-
ing a resource by its full description in the query, “Se-
lect” for selecting the subquery and removing the rest of
the current query, “Reverse” for reformulating the query
from the current focus. Other buttons (“Assert”, “Re-
tract”, “...”) are used for edition.

The entry field at the top of the suggestion area (S)
and below the focus in the query box (Q) enables to
find and select a restriction by auto-completion. This is
useful when the number of restrictions is high, and the
user has a clue on the text of the restriction. Matching
is performed on the syntax of restrictions as rendered
in the user interface, which is based on labels (using
rdfs:label). For instance, the URI of George Washing-
ton can be retrieved by entering any of ”Georges Wash”,
”geo wa”, or even ”Wash ge”. The list of possible com-
pletion is updated after every keystroke. The “Create”
menu near entry fields gives access to domain-specific
dialogs for choosing dates, times, and filenames.

In Sewelis, data can be loaded either by importing
RDF files in various formats (RDF/XML, N-Triples,
Turtle), or by dereferencing URIs according to the
Linked Data5 principles. The former is available in the
“File” menu, and the latter is available on every re-
striction that includes a URI through the contextual
menu. The same contextual menu also provides means
to improve the presentation of restrictions by defin-
ing labels and namespaces. Sewelis supports RDFS in-
ference, as well as some OWL inference on properties
(owl:TransitiveProperty, owl:SymmetricProperty,
owl:inverse).

Reconciling Faceted Search and Query Languages for the Semantic Web 13

7 Usability Evaluation

This section reports on the evaluation of QFS in terms
of usability6. We have measured the ability of users to
answer questions of various complexities, as well as their
response times. Results are strongly positive and demon-
strate that QFS offers expressiveness and ease-of-use at
the same time.

Dataset. The datasets were chosen so that subjects had
some familiarity with the concepts, but not with the indi-
viduals. We found genealogical datasets about former US
presidents, and converted them from GED to RDF. We
used the genealogy of Benjamin Franklin for the training,
and the genealogy of George Washington for the test.
The latter describes 79 persons by their birth and/or
death events, which are themselves described by their
year and place, by their firstname, lastname, and sex,
and by their relationships (father, mother, child, spouse)
to other persons. Places are linked by a transitive part-of
relationship, allowing for the display of place hierarchies
in Sewelis.

Methodology. The subjects consisted of 20 graduate stu-
dents in computer science. They had prior knowledge of
relational databases but neither of Sewelis, nor of faceted
search, nor of Semantic Web, nor of US presidents. None
was familiar with the dataset used in the evaluation. The
evaluation was conducted in three phases. First, the sub-
jects learned how to use Sewelis through a 20min tuto-
rial, and had 10 more minutes for free use and questions.
Second, subjects were asked to answer a set of questions,
using Sewelis. We recorded their answers, the queries
they built, and the time they spent on each question.
Finally, we got feedback from subjects through a SUS
questionnaire (System Usability Scale (Brooke 1996))
and open questions. The test was composed of 18 ques-
tions, with smoothly increasing difficulty. Table 5 groups
the questions in 7 categories: the first 2 categories are
covered by standard faceted search, while the 5 other
categories are not in general. The first category, Visu-
alization, did not require the creation of a query. The
exploration of the suggested restrictions was sufficient:
e.g., “How many men are there?”. In the second cate-
gory, Selection, we asked to count or list items that have
a particular feature: e.g., “How many women are named
Mary?”. In the third category, Path, subjects had to fol-
low a path of properties: e.g., “Which man is married
with a woman born in 1708?”. The fourth category, Dis-
junction, required to use unions: e.g., “Which women
have for mother Jane Butler or Mary Ball?”. The fifth
category, Negation, required to use exclusions: e.g., “How
many women have a mother whose death’s place is not
Warner Hall?”. The sixth category, Inverse, required the
backward crossing of a property: e.g., “Who was born in
the same place as Robert Washington?”. In the seventh
category, Cycle, required the use of co-references: e.g.,
“How many persons have the same firstname as one of
their parent?”.

Results. Figure 3 shows the number of correct queries
and answers, the average time spent on each question
and the number of participants who had a correct query
for at least one question of each category. For example,
in category “Visualization”, the first two questions had
20 correct answers and queries; the third question had 10
correct answers and 13 correct queries; all the 20 partici-
pants had a correct query for at least one question of the
category; the average response times were respectively
43, 21, and 55 seconds. The difference between the num-
ber of correct queries and correct answers is explained
by the fact that some subjects forgot to set the focus on
the whole query after building the query, which we know
from the navigation trace of subjects.

All subjects but one had correct answers to more than
half of the questions. Half of the subjects had the correct
answers to at least 15 questions out of 18. Two subjects
answered correctly to 17 questions, their unique error
was on a disjunction question for one and on a negation
question for the other. All subjects had the correct query
for at least 11 questions. Among all questions, the worst
success rate is 50 percent. The subjects spent an average
time of 40 minutes on the test, the quickest one spent 21
minutes and the slowest one 58 minutes.

The first 2 categories corresponding to standard
faceted search, visualization and selection, had a high
success rate (between 94 and 100) except for the third
question. The most likely explanation for the latter is
that the previous question was so simple (a man) that
subjects forgot to reset the query between questions 2
and 3 (we know this from the navigation traces). All
questions of the first two categories were answered in less
than 1 minute and 43 seconds on average. Those results
indicate that the more complex user interface of QFS
does not entail a loss of usability compared to standard
faceted search for the same tasks.

For other categories, all subjects but two managed to
answer correctly at least one question of each category.
Within each category, we observed that response times
decreased, except for the Cycle category. At the same
time, for Path, Disjunction and Inverse, the number of
correct answers and queries increased. Those results sug-
gest a quick learning process of the subjects. The de-
crease in category Negation is explained by a design flaw
in the interface. For category Cycle, we conjecture some
lassitude at the end of the test. Nevertheless, all but two
subjects answered correctly to at least one of Cycle ques-
tions. The peak of response time in category Inverse is
explained by the lack of inverse property examples in
the tutorial. It is noticeable that subjects, nevertheless,
managed to solve the Inverse questions with a reasonable
success rate, and a decreasing response time.

SUS Questionnaire. Table 6 shows the answers to the
SUS questions, which are quite positive. The first notice-
able thing is that, despite the relative complexity of the
user interface, subjects do not find the system unneces-
sarily complex nor cumbersome to use. We think this is
because the principles of QFS are very regular, i.e., they

14 S. Ferré and A. Hermann

Category Question (# navig. links)

Visualization
1 How many persons are there? (0)
2 How many men are there? (0)
3 How many persons have a birth’s place in the base? (0)

Selection

4 How many women are named Mary? (4)
5 Who was born at Stone Edge? (4)
6 Which man was born in 1659? (5)
7 Who is married with Edward Dymoke? (3)

Path
9 Which man has his father married with Alice Cooke? (5)
11 Which man is married with a woman born in 1708? (7)

Disjunction
8 Which women have for mother Jane Butler or Mary Ball? (6)
12 Which men are married with a woman whose birth’s place is Cuckfields or

Stone Edge? (9)

Negation
10 How many men were born in the 1600 or 1700 years, and not in Norfolk? (12)
13 How many women have a mother whose death’s place is not Warner Hall? (7)

Inverse
14 Who was born in the same place as Robert Washington? (6)
15 Who died during the year when Augustine Warner was born? (6)

Cycle
16 Which persons died in the same area where they were born? (9)
17 How many persons have the same firstname as one of their parent? (8)
18 Which persons were born the same year as their spouse? (10)

Table 5 Questions of the test, by category, and the minimum number of navigation links to answer them.

Figure 3 Average time and number of correct queries and answers for each question

follow few rules with no exception. The second notice-
able thing, which may be a consequence of the first, is
that subjects felt confident using the system and found
no inconsistency. Finally, even if it is necessary for sub-
jects to learn how to use the system, they thought that
the system was easy to use, and that they would learn to
use it very quickly. The results of the test demonstrate

that they are right, even for features that were not pre-
sented in the tutorial (the Inverse category).

Reconciling Faceted Search and Query Languages for the Semantic Web 15

SUS Question (polarity) Score (on a 0-4 scale)

I think that I would like to use this system frequently + 2.8 Agree

I found the system unnecessarily complex − 0.8 Strongly disagree
I thought the system was easy to use + 2.6 Agree
I think that I would need the support of a technical person to use this system − 1.5 Disagree

I found the various functions in this system were well integrated + 2.9 Agree
I thought there was too much inconsistency in this system − 0.6 Strongly disagree
I would imagine that most people would learn to use this system very quickly + 2.5 Agree
I found the system very cumbersome to use − 1.0 Disagree

I felt very confident using the system + 2.8 Agree
I needed to learn a lot of things before I could get going with this system − 1.7 Neutral

Table 6 Results of SUS questions.

8 Related Work

We discuss other approaches for applying and extending
faceted search to the Semantic Web. We also compare
the expressiveness of LISQL with two expressive query
languages of the Semantic Web: SPARQL and SPARQL-
DL.

8.1 Faceted Search for the Semantic Web

As faceted search is becoming widespread, a number
of proposals have been made to apply it on the Se-
mantic Web (SW). They all have in common to as-
sume that data is represented in a SW format, ei-
ther RDF(S) or OWL. Most of them, such as Ontoga-
tor (Mäkelä et al. 2006), mSpace7, and Longwell8, do
not claim for a contribution in term of expressiveness,
and contribute either to the design of better interfaces
and visualizations, or to methods for the rapid or user-
centric configuration of faceted views (Suominen et al.
2007). Therefore, their contributions are somewhat or-
thogonal to ours, and could certainly complement them.
Other approaches, such as SlashFacet (Hildebrand et al.
2006) and BrowseRDF (Oren et al. 2006), extend faceted
search towards a more expressive navigation.

The most essential ingredient for an expressive and
flexible semantic search in RDF graphs is focus change.
It allows to change the perspective without changing the
underlying graph pattern. To the best of our knowledge,
no faceted search system offers this in a general way.
SlashFacet has the crossing operation that selects the
images of the items in the current selection through a
property. Crossing includes a focus change, but cross-
ing back a property is not equivalent to a focus change,
because it introduces an additional restriction: starting
from q and crossing p : ? and then p of ? leads to p :

p of q instead of q and p : ? (they are not equiva-
lent). Other systems allow to focus on different types of
items, but this focus cannot be changed in the course of
a search. For example, in a dataset about publications, a
choice has to be made between authors and documents.

It is generally considered that the query should be
hidden from the interface. In fact, in most faceted search

systems, the query is displayed as the list of the restric-
tion values users have already selected in the course of
their search. This is important so that users do not feel
lost, and can easily reverse previous selections. On our
case, the query is also important to specify focus changes.
Of course, displaying the query in SPARQL would ruin
those benefits: the display of the query is part of the
design of the user interface. Now, when the expressive-
ness is raised to SPARQL with graph patterns, disjunc-
tion, and negation, it becomes necessary to introduce
syntax. While, in Sewelis, the query is simply rendered
as a sentence following some grammar, nothing prevents
to render syntax through graphical widgets (e.g., lists
for conjunction, trees for restrictions, tab panels for dis-
junction). In our approach, LISQL is used to render the
query in a way that fits query-based faceted search (see
Section 4.1).

Disjunction and negation are either absent or strongly
limited in existing approaches. Disjunction is restricted
to build sets of values or sets of items, e.g., in SlashFacet.
Negation is restricted to restriction values, and also ap-
plies to unqualified restrictions (e.g., not father : ?)
in BrowseRDF. No other system allows to form cycles as
we do with co-references.

The value boxes of SlashFacet can handle only one
taxonomy of values, whereas we can use any transi-
tive property that link the values together. For instance,
when values are persons, we can use either ancestor :

(descendancy chart), or ancestor of (ancestry chart).

8.2 Query Languages for the Semantic Web

We compare our query language LISQL to SPARQL, as
the reference query language for the Semantic Web, and
to SPARQL-DL (Sirin & Parsia 2007) for the syntactic
similarity of complex classes with LISQL queries.

8.2.1 Comparison with SPARQL

Haase et al. (2004) define a set of 14 use cases for com-
paring the expressiveness of RDF query languages. We
use them to evaluate and compare the expressiveness of
SPARQL and LISQL. First, a significant difference is
that LISQL has mono-dimensional queries, i.e., LISQL

16 S. Ferré and A. Hermann

queries are translated to SPARQL queries having a sin-
gle variable after SELECT. This constraint comes from
the nature of faceted search, not from LISQL itself as
several foci could be selected to have several variables af-
ter SELECT. The facet hierarchy, the value boxes, and a
highlighting mechanism compensate for this constraint.
Assume users want to know who is the mother of each
male Washington. They first navigate to the query a

man and lastname : Washington. Then, they expand
the facet mother : ? in the facet hierarchy, which opens
a value box that lists the mothers of male Washingtons,
and for each mother, tells how many children she has
among them. The associations between male Washing-
tons and their mothers are accessible by a dynamic high-
lighting mechanism. When selecting a male Washington
(in the extension box), his mother is highlighted in the
value box. Symmetrically, when a mother is selected in
the value box, her children are highlighted in the exten-
sion box.

The use cases that SPARQL and LISQL have in com-
mon are path expressions (e.g., “the name of the au-
thor of some publication X”), union, partial support for
collections and containers, support for literals, and en-
tailment through class and property hierarchies. Com-
pared to SPARQL, LISQL has not the OPTIONAL con-
struct because it is useless in one-dimensional queries.
However, it covers the difference use case with the com-
plement construct (not), and recursion through tran-
sitive properties. The difference use case is covered in
extensions of SPARQL with the operator MINUS of An-
gles & Gutierrez (2008), or the operator NOT EXISTS
of SPARQL 1.1. The recursion use case is covered in
nSPARQL (Pérez et al. 2008), an extension of SPARQL
with nested regular expressions. The reification use case
is covered by SPARQL: e.g., “the person who has clas-
sified the publication X”. As defined in Section 4.1,
LISQL does not cover it, but its implementation in
Sewelis does. The LISQL query for the previous example
is (a publication and ?X and topic [classifier :

?] : ?), where the subquery into square brackets after
topic put a constraint on the reified triple whose pred-
icate is topic. This query can be navigated to, in the
same way as other queries.

In total, SPARQL scores 9.5/14, LISQL scores 8/14,
as defined in Section 4.1, and scores 10/14, as imple-
mented in Sewelis. In fact, SPARQL and LISQL have a
similar expressiveness, and most differences can be re-
moved by extending either language: adding difference
and recursion to SPARQL; adding multiple foci and op-
tional pattern to LISQL.

8.2.2 Comparison with SPARQL-DL

Syntactically, LISQL queries are similar to complex
classes as defined in OWL-DL. This suggests that
SPARQL-DL (Sirin & Parsia 2007) could be used in-
stead of SPARQL to translate from the LISQL syn-
tax. However, this is not possible because SPARQL-DL
is restricted to conjunctive queries, and variables can-

not occur in complex classes. On one hand, a LISQL
query that contains unions and complements but no vari-
ables (hence no cycles) and the root focus, can be trans-
lated to a SPARQL-DL query in the form Type(?x,q),
where q is a complex class that has the same abstract
syntax as the LISQL query. For example, the LISQL
query a man and birth : (year : (1601 or 1649)

and place : not part of England) can be translated
to

Type(?x, and(

man,

some(birth, and(

some(year, or({1601},{1649})),

some(place, not(some(partOf, {England})))

)))).

On the other hand, a LISQL query that contains vari-
ables but neither union nor complement, can be trans-
lated in a similar way to SPARQL-DL, using in fact
the common subset between SPARQL and SPARQL-DL.
For example, the LISQL query a man and father : ?X

and mother : spouse of ?X can be translated to

Type(?z,man),

PropertyValue(?z,father,?x),

PropertyValue(?z,mother,?y),

PropertyValue(?x,spouse,?y).

The two kinds of translations cannot be reconciled in the
general case, in particular when variables occur in the
scope of unions or complements.

In fact, SPARQL-DL and LISQL work at different
levels, and might complement each other by benefit-
ing from a comparable syntax. SPARQL-DL, like OWL-
DL, works at the intentional level, whereas LISQL and
SPARQL work at the extensional level. The intentional
level is associated to open world assumption, and on-
tological reasoning. The extensional level is associated
to closed world assumption, and query answering over a
unique and finite interpretation, namely a RDF graph.

9 Conclusion

We have introduced Query-based Faceted Search (QFS)
as a search paradigm for Semantic Web knowledge bases,
in particular RDF graphs. It combines the expressiveness
of the SPARQL query language, and the benefits of ex-
ploratory search and faceted search. Exploratory search
is formalized as a navigation graph, where navigation
places are queries, and navigation links are query trans-
formations. The navigation graph is proved to be safe,
because whatever the path of navigation links, the cur-
rent set of items is never empty. It is also proved complete
w.r.t. the query language, because for every safe query,
there is a navigation path that leads to it. Finally, it is
as efficient as standard faceted search w.r.t. the compu-
tation of facets and restrictions. The completeness proof

Reconciling Faceted Search and Query Languages for the Semantic Web 17

is the key result here because it draws an equivalence be-
tween expressive querying and exploratory search, there-
fore totally freeing users from editing queries, even the
most complex ones.

The user interface of QFS includes the user interface
of other faceted search systems, and can be used as such.
It adds a query box to tell users where they are in their
search, and to allow them to change the focus or to re-
move query parts. It also adds a few controls for applying
some query transformations such as insertion/deletion of
unions, complements, and co-references. Query transfor-
mations determines a new query language, LISQL, that
is similar to SPARQL in terms of expressiveness, and
with a more compact syntax. Beside the list of selected
items, the user interface has a hierarchy of facets orga-
nizing classes and properties by subsumption, and value
boxes that can be displayed as flat lists or as various
taxonomies automatically derived from the dataset.

QFS has been implemented as a prototype, Sewelis.
Its usability has been demonstrated through a user
study, where, after a short training, all subjects were
able to answer simple questions, and most of them were
able to answer complex questions involving disjunction,
negation, or cycles. This means semantic faceted search
retains the ease-of-use of other faceted search systems,
while offering the expressiveness of query languages such
as SPARQL.

We think that QFS is not tied to LISQL, and could
be adapted to other query languages. Indeed, the defi-
nition of a navigation graph only requires the definition
of the answers of a query, and the definition of query
transformations. The hard part is then to prove that the
resulting navigation graph is safe and complete, which
we have successfully done here for LISQL.

As future work, our main objective is to fully
match the expressiveness of SPARQL 1.1 by extend-
ing QFS to the few missing features: multi-dimensional
queries and the OPTIONAL construct, aggregations and
expressions, and built-in predicates. Other objectives
are to integrate Sewelis with existing SW tools (e.g.,
Solr/Lucence-index for fast literal-indexing), and to per-
form more user evaluation in order to improve its user
interface.

Acknowledgments. We would like to thank the 20 stu-
dents, from the University of Rennes 1 and the INSA
engineering school, for their volunteer participation to
the usability evaluation. We also thank the reviewers for
their useful remarks.

References

Angles, R. & Gutierrez, C. (2008), The expressive power of
SPARQL, in A. P. S. et al, ed., ‘Int. Semantic Web Conf.’,
LNCS 5318, Springer, pp. 114–129.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.
& Patel-Schneider, P. F., eds (2003), The Description
Logic Handbook: Theory, Implementation, and Applica-
tions, Cambridge University Press.

Brooke, J. (1996), SUS: A quick and dirty usability scale,

in P. Jordan, B. Thomas, B. Weerdmeester & A. Mc-

Clelland, eds, ‘Usability evaluation in industry’, London:

Taylor and Francis, pp. 189–194.

Ferré, S. (2009), ‘Camelis: a logical information system to

organize and browse a collection of documents’, Int. J.

General Systems.

Ferré, S. & Ridoux, O. (2000), A file system based on concept

analysis, in Y. Sagiv, ed., ‘Int. Conf. Rules and Objects

in Databases’, LNCS 1861, Springer, pp. 1033–1047.

Ferré, S. & Ridoux, O. (2004), ‘An introduction to logical in-

formation systems’, Information Processing & Manage-

ment 40(3), 383–419.

Ferré, S. & Ridoux, O. (2007), Logical information systems:

from taxonomies to logics, in ‘Int. Work. Dynamic Tax-

onomies and Faceted Search (FIND)’, IEEE Computer

Society, pp. 212–216.

Fikes, R., Hayes, P. J. & Horrocks, I. (2004), ‘OWL-QL - a

language for deductive query answering on the semantic

web’, J. Web Semantic 2(1), 19–29.

Ganter, B. & Wille, R. (1999), Formal Concept Analysis —

Mathematical Foundations, Springer.

Haase, P., Broekstra, J., Eberhart, A. & Volz, R. (2004),

A comparison of RDF query languages, in S. M. et al.,

ed., ‘Int. Semantic Web Conf.’, LNCS 3298, Springer,

pp. 502–517.

Harth, A. (2010), ‘VisiNav: A system for visual search and

navigation on web data’, J. Web Semantics 8(4), 348–

354.

Hearst, M., Elliott, A., English, J., Sinha, R., Swearingen, K.

& Yee, K.-P. (2002), ‘Finding the flow in web site search’,

Communications of the ACM 45(9), 42–49.

Heim, P., Ertl, T. & Ziegler, J. (2010), Facet graphs: Com-

plex semantic querying made easy, in L. A. et al.,

ed., ‘Extended Semantic Web Conference’, LNCS 6088,

Springer, pp. 288–302.

Hermann, A., Ferré, S. & Ducassé, M. (2011), Guided cre-

ation and update of objects in rdf(s) bases, in M. A.

Musen & Ó. Corcho, eds, ‘Int. Conf. Knowledge Capture

(K-CAP)’, ACM, pp. 189–190.

Hildebrand, M., van Ossenbruggen, J. & Hardman, L. (2006),

/facet: A browser for heterogeneous semantic web repos-

itories, in I. C. et al, ed., ‘Int. Semantic Web Conf.’,

LNCS 4273, Springer, pp. 272–285.

Hitzler, P., Krötzsch, M. & Rudolph, S. (2009), Foundations

of Semantic Web Technologies, Chapman & Hall/CRC.

Kaufmann, E. & Bernstein, A. (2010), ‘Evaluating the usabil-

ity of natural language query languages and interfaces

to semantic web knowledge bases’, J. Web Semantics

8(4), 377–393.

Lu, J., Ma, L., Zhang, L., Brunner, J., Wang, C., Pan, Y.

& Yu, Y. (2007), SOR: A practical system for ontology

storage, reasoning and search (demo), in ‘Int. Conf. Very

Large Databases (VLDB)’, VLDB Endowment, ACM,

pp. 1402–1405.

Mäkelä, E., Hyvönen, E. & Saarela, S. (2006), Ontogator - a

semantic view-based search engine service for web appli-

cations, in I. F. C. et al., ed., ‘Int. Semantic Web Conf.’,

LNCS 4273, Springer, pp. 847–860.

18 S. Ferré and A. Hermann

Marchionini, G. (2006), ‘Exploratory search: from finding to
understanding’, Communications of the ACM 49(4), 41–
46.

Oren, E., Delbru, R. & Decker, S. (2006), Extending faceted
navigation to RDF data, in I. C. et al, ed., ‘Int. Semantic
Web Conf.’, LNCS 4273, Springer, pp. 559–572.

Pérez, J., Arenas, M. & Gutierrez, C. (2008), nSPARQL: A
navigational language for RDF, in A. P. S. et al, ed., ‘Int.
Semantic Web Conf.’, LNCS 5318, Springer, pp. 66–81.

Sacco, G. M. (2000), ‘Dynamic taxonomies: A model for large
information bases’, IEEE Transactions Knowledge and
Data Engineering 12(3), 468–479.

Sacco, G. M. (2006), Some research results in dynamic tax-
onomy and faceted search systems, in ‘Faceted Search
Work. at ACM SIGIR 2006’, ACM.

Sacco, G. M. & Tzitzikas, Y., eds (2009), Dynamic tax-
onomies and faceted search, The information retrieval
series, Springer.

Sirin, E. & Parsia, B. (2007), SPARQL-DL: SPARQL
query for OWL-DL, in C. Golbreich, A. Kalyanpur &
B. Parsia, eds, ‘Work. OWL Experiences and Directions
(OWLED)’, Vol. 258, CEUR-WS.

Suominen, O., Viljanen, K. & Hyvönen, E. (2007), User-
centric faceted search for semantic portals, in E. Fran-
coni, M. Kifer & W. May, eds, ‘Eu. Semantic Web Conf.’,
LNCS 4519, Springer, pp. 356–370.

Tran, T., Wang, H. & Haase, P. (2009), ‘Hermes: Data
web search on a pay-as-you-go integration infrastruc-
ture’, Web semantics: Science, Services and Agents on
the World Wide Web 7, 189–203.

van Rijsbergen, C. J. (1986), A new theoretical framework for
information retrieval, in ‘Int. ACM SIGIR Conference
on Research and Development in Information Retrieval’,
ACM, pp. 194–200.

Note

1SPARQL http://www.w3.org/TR/rdf-sparql-query/
2The SCRIBO graphical editor http://www.scribo.ws/-

xwiki/bin/view/Blog/SparqlGraphicalEditor
3GED files http://jay.askren.net/Projects/SemWeb/
4Sewelis: see http://www.irisa.fr/LIS/softwares/-

sewelis/ for a presentation, screencasts, a Linux
executable, and sample data.

5Linked Data http://linkeddata.org/
6Usability evaluation: details can be found on http://-

www.irisa.fr/LIS/alice.hermann/camelis2.html
7mSpace http://mspace.fm/
8Longwell http://simile.mit.edu/wiki/Longwell

172APPENDIX C. RECONCILING FACETED SEARCH AND QUERY LANGUAGES FOR THE SEMANTIC WEB (2012)

Appendix D

SQUALL: a Controlled
Natural Language as
Expressive as SPARQL 1.1
(2014)

This journal article [Ferré, 2014] has been accepted and published on-
line in the Data and Knowledge Engineering journal in 2014. It ex-
tends two previous papers at the Workshop on Controlled Natural
Languages (CNL 2012) [Ferré, 2012], and at the International Con-
ference on Applications of Natural Language to Information Systems
(NLDB 2013) [Ferré, 2013]. It defines SQUALL as a high-level natural
syntax for SPARQL 1.1. SQUALL is first translated to a logical intermediate
representation, which is then translated to SPARQL. A Montague grammar
is used to define the syntax and semantics of SQUALL. SQUALL covers
almost all features of SPARQL 1.1, and is therefore more expressive than
LISQL in Sewelis. SQUALL’s naturalness is evaluated on questions of the
QALD challenge.

173

SQUALL: the expressiveness of SPARQL 1.1 made available
as a controlled natural language 1

Sébastien Ferréa

aIRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France

Abstract

The Semantic Web (SW) is now made of billions of triples, which are available as Linked
Open Data (LOD) or as RDF stores. The SPARQL query language provides a very
expressive way to search and explore this wealth of semantic data. However, user-
friendly interfaces are needed to bridge the gap between end-users and SW formalisms.
Navigation-based interfaces and natural language interfaces require no or little training,
but they cover a small fragment of SPARQL’s expressivity. We propose SQUALL, a
query and update language that provides the full expressiveness of SPARQL 1.1 through
a flexible controlled natural language (e.g., solution modifiers through superlatives, re-
lational algebra through coordinations, filters through comparatives). A comprehensive
and modular definition is given as a Montague grammar, and an evaluation of natural-
ness is done on the QALD challenge. SQUALL is conceived as a component of natural
language interfaces, to be combined with lexicons, guided input, and contextual dis-
ambiguation. It is available as a Web service that translates SQUALL sentences to
SPARQL, and submits them to SPARQL endpoints (e.g., DBpedia), therefore ensuring
SW compliance, and leveraging the efficiency of SPARQL engines.

Keywords: Query language, Semantic Web, Expressiveness, Controlled natural
language, SPARQL 1.1

1. Introduction

An open challenge of the Semantic Web [3] is semantic search, i.e., the ability for
users to browse and search semantic data according to their needs. Semantic search sys-
tems can be classified according to their usability, the expressive power they offer, their
compliance to Semantic Web standards, and their scalability. The most expressive ap-
proach by far is to use SPARQL [4], the standard RDF query language. SPARQL 1.1 [5]
features graph patterns, filters, unions, differences, optionals, aggregations, expressions,
subqueries, ordering, etc. However, SPARQL is also the least usable approach, because
of the gap between users and the formal languages that RDF and SPARQL are. There

1This paper extends previous papers [1, 2] with substantial improvement of the SQUALL language,
its presentation, and its evaluation.

Email address: ferre@irisa.fr (Sébastien Ferré)

Preprint submitted to Elsevier July 18, 2014

are mainly two approaches to make semantic search more usable: navigation and natural
language (NL). Navigation is used in semantic browsers (e.g., Fluidops Information Work-
bench2), and in semantic faceted search (e.g., SlashFacet [6], BrowseRDF [7], Sewelis [8]).
Semantic faceted search can reach a significant expressiveness [8], but still much below
SPARQL 1.1, and it does not scale easily to large datasets such as DBpedia3. Natu-
ral language is used in Ontology-based Query Answering (OQA) systems [9] in various
forms, going from full natural language (e.g., FREyA [10], PowerAqua [11]) to mere key-
words (e.g., NLP-Reduce [12]) through controlled natural languages (e.g., Ginseng [13]).
Existing systems devote the most effort to bridging the gap between lexical forms and
ontology triples (mapping and disambiguation), and process only the simplest questions,
i.e., generate SPARQL queries with only one or two triples. Most of them support none of
aggregations (e.g., counting), comparatives, or superlatives, even though those features
are relatively frequent [14]. This means that even if full natural language is allowed as
input, expressiveness is in fact strongly limited.

A less studied aspect is the update of RDF datasets, i.e., the insertion and deletion
of triples. SPARQL 1.1 offers an update language to this purpose but with the same
usability problem as the query language. Proposals for more usable interfaces have been
made in faceted search (e.g., UTILIS [15]), and as a controlled natural language (e.g.,
ACE [16]). We think that update (and creation) of RDF data is as important as querying
for end-users because it makes them first-class citizens, rather than consumers only.

In this paper, we define and evaluate SQUALL, a Semantic Query and Update High-
Level Language4. Its contribution is: (1) to offer the full expressiveness of SPARQL 1.1
Query/Update (SPARQL for short) apart from a few details, (2) to cover a significant
fragment of natural language (English), and (3) to be defined in a domain-independent
way and in a concise way (its grammar has about 120 rules). SQUALL qualifies as a
Controlled Natural Language (CNL) [17, 18] because it combines a fragment of natu-
ral language syntax, and the unambiguous semantics of formal languages. The main
advantage of CNLs over formal languages is a better readability and understandabil-
ity by people whose background knowledge does not cover logic or computer languages.
SQUALL provides a lot of syntactic flexibility in that a same SPARQL query/update
can be expressed in many different ways. To the best of our knowledge, no existing CNL
target SPARQL queries and updates. Other CNLs for the Semantic Web rather target
ontologies (e.g., ACE [19], SOS and Rabbit [20]). Because the focus of this paper is on
syntactic and semantic expressiveness, we only assume a domain-independent basic de-
fault lexicon that uses qualified names (e.g., dbo:Film) as content words. In this setting,
SQUALL is less natural at the lexical level, but applicable to SPARQL endpoints with-
out any preparation. However, our approach makes it possible to define a customized
lexicon (i.e., mapping words to possibly complex semantic forms), and is in principle
compatible with mapping techniques used in OQA systems (i.e., using external resources
such as ontologies and WordNet). SQUALL is also compatible with guided input (like
in Gingseng [13]), which is recognized as important to solve the habitability problem in
NL interfaces [12, 9].

2http://iwb.fluidops.com/
3http://dbpedia.org
4SQUALL’s homepage at http://www.irisa.fr/LIS/softwares/squall.

2

SQUALL is available as two Web services5. A translation form takes a SQUALL
sentence and returns its SPARQL translation. A query form takes a SPARQL endpoint
URL, namespace definitions, and a SQUALL sentence, sends the SPARQL translation
to the endpoint, which returns the list of query answers. The translation of SQUALL
to SPARQL ensures compliance w.r.t. SW standards, and scalability by leveraging the
efficiency of SPARQL engines.

Section 2 is a short introduction to Semantic Web formalisms (RDF and SPARQL).
Section 3 gives an overview of the coverage of SPARQL features by SQUALL through
examples. Section 4 develops a comprehensive definition of the syntax and semantics
of SQUALL, where it is shown how each feature is covered by NL constructs. The re-
sult of syntactic parsing is a semantic intermediate representation, whose translation to
SPARQL is addressed in Section 5. Section 6 evaluates SQUALL’s expressiveness by
defining a backward translation from each SPARQL construct to SQUALL. Section 7
evaluates the NL coverage, the naturalness, and the performance of SQUALL on ques-
tions from the QALD challenge (Query Answering over Linked Data) [14]. Finally,
Section 8 compares SQUALL to related work, and Section 9 concludes and discusses
perspectives.

2. Semantic Web: RDF and SPARQL

The Semantic Web (SW) is founded on several representation languages, such as
RDF, RDFS, and OWL, which provide increasing inference capabilities [3]. The two
basic units of these languages are resources and triples. A resource can be either a URI
(Uniform Resource Identifier), a literal (e.g., a string, a number, a date), or a blank node,
i.e., an anonymous resource. A URI is the absolute name of a resource, i.e., an entity,
and plays the same role as a URL w.r.t. web pages. Like URLs, a URI can be a long
and cumbersome string (e.g., http://www.w3.org/1999/02/22-rdf-syntax-ns#type),
so that it is often denoted by a qualified name, e.g., rdf:type, where rdf: is the RDF
namespace. In the N3 notation6, the default namespace : can be omitted for qualified
names that do not collide with reserved keywords (bare qualified names).

A triple (s p o) is made of 3 resources, and can be read as a simple sentence, where
s is the subject, p is the verb (called the predicate), and o is the object. For instance,
the triple (Bob knows Alice) says that “Bob knows Alice”, where Bob and Alice are
the bare qualified names of two individuals, and knows is the bare qualified name of
a property, i.e., a binary relation. The triple (Bob rdf:type man) says that “Bob has
type man”, or simply “Bob is a man”. Here, the resource man is used as a class, and
rdf:type is a property from the RDF namespace. The triple (man rdfs:subClassOf

person) says that “man is a subclass of person”, or simply “every man is a person”. The
set of all triples of a knowledge base forms an RDF graph.

RDF query languages [21] provide on semantic web knowledge bases the same service
as SQL on relational databases. They generally assume that implicit triples have been
inferred and added to the base. The standard RDF query language, SPARQL 1.1 [5],
reuses the SELECT FROM WHERE shape of SQL queries, using graph patterns in the WHERE

clause. A graph pattern G is one of:

5http://lisfs2008.irisa.fr/ocsigen/squall
6http://www.w3.org/TeamSubmission/n3/

3

• a triple pattern (s p o .) made of RDF terms and variables (e.g., ?x),

• a join of two patterns (G1 G2),

• an union of two patterns (G1 UNION G2),

• a difference of two patterns (G1 MINUS G2),

• an optional pattern (OPTIONAL G1),

• a filter pattern (FILTER C), where C is a constraint, i.e., a Boolean expression
based on predicates (e.g., comparing, matching), functions (e.g., arithmetic, string
concatenation), and the (un)satisfiability of a graph pattern ((NOT) EXISTS G1),

• an assignement to a variable: either of the result of an expression (BIND (expr AS

x)), or of a RDF resource (VALUES x { res }),

• a named graph pattern (GRAPH g G1), where g denotes a named graph, in which
the graph pattern G1 should be matched,

• a service graph pattern (SERVICE uri G1), where uri points to another SPARQL
endpoint against which the graph pattern G1 should be matched,

• a subquery.

Aggregations and expressions can be used in the SELECT clause (e.g., COUNT(?x),
SUM(?x), 2 * ?x), and GROUP BY clauses can be added to a query. Solution modifiers
can also be added to the query for ordering results (ORDER BY) or returning a subset
of results (OFFSET, LIMIT). Other query forms allow for closed questions (ASK), for re-
turning the description of a resource (DESCRIBE), or for returning RDF graphs as results
instead of tables (CONSTRUCT). SPARQL has been extended into an update language
to insert/delete triples in/from a graph (INSERT, DELETE), and to manage RDF graphs
(LOAD, CLEAR, etc.). The most general update form is DELETE D INSERT I WHERE G,
where I and D can be sets of triple patterns plus named graph patterns, and G is a
graph pattern that defines bindings for variables occuring in I and D.

3. SQUALL overview through SPARQL features

This section presents an overview of the SQUALL language by giving for each
SPARQL feature its counterpart in SQUALL. It aims to give the reader a first taste
of the language, and also a first assessment of its expressiveness compared to SPARQL.
This list of SPARQL features is adapted and extended from a comparison of RDF query
languages [21]. For each feature, SQUALL sentences are given as illustrations, with rel-
evant parts underlined. For the sake of simplicity, we assume that all resources belong
to a same namespace so that bare qualified names can be used (e.g., “person”, “author”,
“Paper42”). The SPARQL translation of SQUALL sentences can be obtained from the
translation form at http://lisfs2008.irisa.fr/ocsigen/squall/.

4

Triple patterns. Each noun or non-auxiliary verb plays the role of a class or predicate in
a triple pattern. If a question is about the class or predicate itself, the verbs “belongs”
and “relates” are respectively used.

• “Which person is the author of a publication whose publication year is 2012?”

• “To which nationality does John Smith belong?” (here, “nationality” is a meta-class
whose instances are classes of persons: e.g., “French”, “German”).

• “What relates John Smith to Mary Well?”

Updates. Updates are obtained by declarative sentences. A sequence of declarative sen-
tences generates a sequence of updates. Graph-level updates (e.g., LOAD, CLEAR) are
obtained by imperative sentences.

• “Paper42 has author John Smith and has publication year 2012.”

• “John Smith know-s Mary Well. Mary Well know-s John Smith.”

• “Load <http://example.org/data.rdf> into Graph1.”

• “Clear all named graphs.”

Queries. SELECT queries are obtained by open questions, using one or several question
words (“which” as a determiner, “what” or “who” as a noun phrase). Queries with a single
selected variable can also be expressed as imperative sentences. ASK queries are obtained
by closed questions, using either the word “whether” in front of a declarative sentence, or
using auxiliary verbs and subject-auxiliary inversion.

• “Which person is the author of which publication?”

• “Give me the author-s of Paper42.”

• “Whether John Smith know-s Mary Well?”

• “Does Mary Well know the author of Paper42?”

Solution modifiers. The ordering of results (ORDER BY) and partial results (LIMIT,
OFFSET) are expressed with superlatives.

• “Which person-s have the 10 greatest age-s?”

• “Who are the author-s of the publication-s whose publication year is the 2nd latest?”

• “Which person is the author of the most publication-s?”

Join. The coordination “and” can be used with all kinds of phrases. It generates complex
joins at the relational algebra level.

• “John Smith and Mary Well have age 42 and are an author of Paper42 and Paper43.”

5

Union. Unions of graph patterns are expressed by the coordination “or”, which can be
used with all kinds of phrases, like “and”.

• “Which teacher or student teach-es or attend-s a course whose topic is NL or DB?”

Option. Optional graph patterns are expressed by the adverb “maybe”, which can be
used in front of all kinds of phrases, generally verb phrases.

• “The author-s of Paper42 have which name and maybe have which email?”

Negation. The negative constraint on graph patterns (NOT EXISTS) is expressed by the
adverb “not”, which can be used in front of all kinds of phrases, and in combination with
auxiliary verbs. In updates, negation entails the deletion of triples.

• “Which author of Paper42 has not affiliation Salford University?”

• “John Smith is not a teacher and does not teach Course101.”

Quantification. Quantifiers have no direct counterpart in SPARQL, and can only be
expressed indirectly with negation or aggregation. In SQUALL, they are expressed by
determiners like “a”, “every”, “no”, “some”, “at least 3”, “the”. The latter “the” is inter-
preted existentially in queries, and universally in updates. The universal quantifier in
updates allows for batches of updates, and corresponds to the use of a WHERE clause in
SPARQL updates.

• “Every author of Paper42 has affiliation the university whose location is Salford.”

• “Which publication has more than 2 author-s whose affiliation is Salford University?”

Built-ins. Built-in predicates and functions used in SPARQL filters and expressions are
expressed by pre-defined nouns, verbs, and relational adjectives. They can therefore be
used like classes and properties.

• “Which person has a birth date whose month is 3 and whose year is greater than 2000?”

• “Give me the publication-s whose title contains ”natural language”?”

Expressions. Operators and functions are defined as coordinations so that they can be
applied on different kinds of phrases: e.g., relational nouns, noun phrases.

• “Which publication has the lastPage - the firstPage + 1 greater than 10?” (page number)

• “Return concat(the firstname, ” ”, the lastname) of all author-s of Paper42.” (fullname)

Aggregation and grouping. Aggregation is expressed by the question determiner “how

many”, by relational nouns such as “sum”, and by adjectives such as “total”, “average”.
Grouping clauses are introduced by the word “per”.

• “How many publication-s have author John Smith?”

• “What is the number of publication-s per author?”

• “What is the average age of the author-s of a publication per affiliation?”

6

Property paths. Property sequences and inverse properties are covered by the flexible
syntax of SQUALL. Alternative and negative paths are respectively covered by the coor-
dination “or” and the adverb “not”. Reflexive and transitive closures of properties have
no obvious linguistic counterpart, and are expressed so far by property suffixes among
“?”, “+”, and “*”. SQUALL does not yet support the transitive closure of complex
property paths (e.g., (^author/author)+ for co-authors of co-authors, etc.).

• “Which publication-s cite+ Paper42?” (i.e., Which publications cite Paper42 or cite a
publication that cites Paper42, etc?)

Named graphs. The GRAPH (resp. SERVICE) construct of SPARQL, which serves to re-
strict graph pattern solutions to a named graph (resp. to a distant service), can be
expressed using “in graph” (resp. “from service”) as a preposition. A prepositional phrase
can be inserted at any location in a sentence, and its scope is the whole sentence.

• “Who is the author of the most publication-s in graph Salford Publications?”

• “In which graph is John Smith the author of at least 10 publication-s?”

• “What is the dbpedia-owl:capital of dbpedia:France from service

<http://dbpedia.org/>?”

Graph literals. The SPARQL query forms CONSTRUCT and DESCRIBE return graphs, i.e.
sets of triples, instead of sets of solutions. A DESCRIBE query is expressed by the imper-
ative verb “describe” followed by a resource or a universally-quantified noun phrase. A
CONSTRUCT query is expressed by using a subordinate clause introduced by “that”, which
is reified into a graph literal.

• “Describe the author-s of Paper42.”

• “For every publication with an author X and with an author Y different from X, return that

X has coauthor Y and Y has coauthor X.”

Collection patterns. SPARQL has a special notation for collection literals (e.g., (1 2

3)) but not for collection patterns (e.g., Paper42 has an author list whose last element
is John Smith). In SPARQL, collection patterns are expressed by combining triple pat-
terns, blank nodes, and property paths: e.g., :Paper42 :authorList [rdf:rest* [

rdf:first :John Smith ; rdf:nil]]. SQUALL offers concise and powerful pat-
terns by reusing Prolog’s notations plus the ellipsis, and translating them into SPARQL.

• “What has authorList [..., John Smith]?”

• “Paper42 has authorList [..., who]?” (i.e., Who is the last author of Paper42?)

• “Paper42 has authorList [..., who, ...]?” (i.e., Who are the authors of Paper42?)

• “Paper42 has authorList [, who, ...]?” (i.e., Who is the second author of Paper42?)

7

4. Syntax and semantics

In this section, we formally define the syntax and semantics of SQUALL in the style
of Montague grammars. Montague grammars [22] are an approach to natural language
semantics that is based on formal logic and λ-calculus. It is named after the American
logician Richard Montague, who pioneered this approach [23]. A Montague grammar
is a context-free generative grammar, where each rule is decorated by a λ-expression
that denotes the semantics of the syntactic construct defined by the rule. The semantics
is defined in a fully compositional style, i.e., the semantics of a construct is always
a composition of the semantics of sub-constructs. The obtained semantics for a valid
SQUALL sentence is represented in an intermediate logical language, rather than directly
in terms of an existing query language for the Semantic Web. This is a common practice
in the compilation of high-level programming languages, and has a number of advantages.
First, it makes the semantics easier to write and understand because defined at a more
abstract level. As a side effect, it would also make it easier to redefine SQUALL for
other natural languages than English. Second, it gives freedom in the choice of the
implementation. For instance, the operational semantics of the intermediate language
can be given by translating it to an existing language, e.g., SPARQL; by interpreting it
in a relational algebra engine; or by using continuation passing-style, like in Prolog. In
Section 5, we describe a solution for the first approach.

SQUALL sentences are decomposed into noun phrases, verb phrases, relatives, de-
terminers, prepositional phrases, etc. As an illustration, we consider a complex sentence
that covers many features of SQUALL: “For which researcher-s X, in graph DBLP every publi-

cation whose author is X and whose publication year is greater than 2000 has at least 2 author-s?”.
Its syntactic analysis is

[S for [NP [Detwhich] [NG1 [Noun1 researcher-s] [App [LabelX]]]],

[S [PP [PrepNoun in graph] [NP [ProperNounDBLP]]]

[S [NP [Detevery] [NG1 [Noun1publication]

[Rel [Relwhose [NG2 [Noun2author]] [VP is [NP [LabelX]]]]

and [Relwhose [NG2 [Noun2publication year]]

[VP is [Relgreater than [NP [Literal2000]]]]]]]]

[VPhas [Detat least 2] [Noun2author-s]]]]],

and its semantic intermediate representation is

select λr.(triple r rdf:type :researcher)
λr.(context GRAPH :DBLP (forall

λp.(exists λy.(and
(triple p rdf:type :publication) (triple p :author r)
(triple p :publication year y) (pred > y 2000)))

λp.(exists λn.(and
(aggreg COUNT λ[].λa.(triple p :author a) n)
(pred >= n 2))))).

In the following, we successively define the semantic types and expressions (Sec-
tion 4.1) used for the intermediate representation, notations for Montague grammars
(Section 4.2), SQUALL’s lexical units and our default lexicon (Section 4.3), and

8

type definition variable names name of the type
e - x, y, z entity
s - s statement
p1 e→ s d description
p2 e→ e→ s r relation
s1 p1→ s q quantifier
s2 p1→ p1→ s q2 binary quantifier
mα α→ α m α-modifier
cα α→ α→ α c α-coordination

Table 1: List of semantic types along with their definition (except for base types), the common name of
their variables, and a short description of the type.

SQUALL’s syntactic rules (Section 4.4). We also explain how syntactic ambiguities
are resolved (Section 4.5), how non-local aspects are handled by semantic transforma-
tions (Section 4.6), and how the intermediate representation is semantically validated
(Section 4.7).

4.1. Semantic types and expressions

Montague grammar are based on simply-typed λ-calculus [24]. Every syntagm is
associated to some semantic type, and those types constrain the way semantic expressions
can be combined. The two base types are e for entities, and s for statements. The main
type constructor is α → β for functions from expressions of type α to expressions of
type β. The sub-types α and β can themselves be function types, recursively. For
instance, an expression of type p1 = e → s expects an entity, and returns a statement:
it can be seen as a statement missing an entity. For example, the verb phrase “knows

Mary” has semantic type p1 because it misses an entity (e.g., “John”) as the subject so
as to make a complete statement. Table 1 lists and defines the semantic types that are
used in this paper.

There are two kinds of semantic expressions associated to function types: applications
and abstractions. The application of an expression f of type α → β to an expression e
of type β is noted f e, and has type β. The abstraction of an expression e of type β by
a variable x of type α is noted λx.e, and has type α → β. In the notation of expres-
sions, abstraction has priority over application, and application is left-associative: e.g.,
e1 λx.e2 e3 = ((e1 (λx.e2)) e3). Expressions obtained by composition can be simplified
according to λ-calculus, through β-reduction ((λx.s) y =β s[x ← y], where s[x ← y]
denotes the substitution of x by y in s), and η-expansion (d =η λx.(d x), if d is a
function).

For convenience, we also introduce a type constructor for lists, i.e., [α] for lists whose
elements have type α. In semantic expressions, [x; y; z] denotes a list with 3 elements, []
is the empty list, and (x :: l) is a list whose first element is x, and whose rest is l7.

Constants in semantic expressions play the role of semantic constructors in the inter-
mediate representation of SQUALL sentences. Table 2 lists all the necessary constants,
called primitives, to define the semantics of SQUALL. Although they take their name

7The reader may have recognized the notations from ML [25].

9

primitive type description
triple e→ e→ e→ s triple pattern
command n→ [e]→ s command
pred n→ [e]→ s predicate call
func n→ [e]→ p1 function call
aggreg n→ ([e]→ p1)→ p1 aggregation
modif n→ ms solution modifier (e.g., ordering)
context n→ e→ ms context (e.g., named graph, service)
arg n→ e→ ms defining extra-argument
true s tautology
not ms negation
option ms optional
and cs conjunction
or cs disjunction
implies cs implication
where cs conditional
exists s1 existential quantifier
forall s2 universal quantifier
the s2 definite quantifier
forarg n→ s1 using extra-argument
ask ms query constructor
select s1 interrogative quantifier
select where s2 binary interrogative quantifier
return p1 interrogative imperative
label p2 entity labelling by a user variable
ref e→ e entity reference by a user variable
graphliteral s→ e graph reification as entity

Table 2: List of semantic primitives, along with their type and description.

from English, they are in fact determined by SPARQL features, and independent to the
source natural language. In types, the base type n is introduced as a sub-type of e for
primitive arguments that correspond to names (e.g., predicates, functions, solution mod-
ifiers, extra-arguments). The table is given here in full for reference, but the meaning of
each primitive is only explained on their first introduction in the Montague grammar. For
convenience, we define additional constants on top of those primitives for comparators
and counting:

eq : p2 = λx.λy.(pred = [x; y])
gt : p2 = λx.λy.(pred > [x; y])
between : e→ p2 = λx.λy1.λy2.(and (pred >= [x; y1]) (pred <= [x; y2]))
count : p1→ p1 = λd.λn.(aggreg COUNT λ[].λy.(d y) n)

4.2. Notations for Montague grammars

A Montague grammar is made of rules. Each rule has a syntactic part, and a semantic
part. The syntactic part is a generative rule (e.g., S → there is NP), where grammatical
words are in bold, and syntagms are in italic. The semantic part is a λ-expression

10

between curly brackets (e.g., { np λx.true }), where constants are in bold, RDF terms
are in teletype, and variables are in italic. For each syntagm (e.g., NP) in the right-
hand side of the generative rule, its semantics is denoted by a variable whose name is
a lowercase prefix of the syntagm name (e.g., np). Indices are used to disambiguate
between several occurences of a same syntagm (e.g., np1, np2). For brevity, alternative
words or syntagms are combined with a slash (e.g., is/are), instead of writing several
rules. Each syntagm is associated to a single semantic type, which is specified in the first
rule defining it (e.g., S : s). A default semantic can be defined at the same time (e.g.,
Rel : p1 (default : λx.true)), and allows to make the syntagm optional in right-hand
sides of rules (e.g., Rel?). In trivial rules like X → Y { y }, the semantic part may be
left implicit. To support modularity and avoid duplication of rules, we use higher-order
syntagms, i.e., syntagms parametrized by other syntagms. There are two parametrization
modes: X(Y) is used when the semantics of Y is incorporated into the semantics of X,
and X{Y } is used when the semantics of Y is not part of X, and is returned apart. The
latter is useful to parse non-contiguous constructs (e.g., “between . . . and . . . ”). A beauty
of Montague grammars is that they can be directly encoded in functional programming
languages because they are based on lambda-calculus. Therefore, the grammar detailed
in the following sections constitutes an executable specification of SQUALL’s semantics.

4.3. Lexical units and default lexicon

Table 3 lists the different lexical units that are used in SQUALL’s grammar, along
with their semantic type. That list could be different for other natural languages than
English, although there would probably be a large overlap. An entity can be any of a
proper noun, a literal, a number, and a label. A description (type p1) can be any of
a common noun, an adjective, an intransitive verb, and an imperative verb. A relation
can be any of a relation noun, a transitive adjective, and a transitive verb. A statement
modifier can be any of a preposition, and a superlative. Functions and operators return
a description of their result given a list of entities (arguments). Aggregators return a
description of their result (the aggregated value) given a description of what has to be
aggregated (p1→ p1). However, when there are dimensions (e.g., a GROUP BY clause), the
description of what has to be aggregated depends on the values taken on each dimension
([e]), hence the type ([e] → p1) → p1 for aggregators. This type is a complex analogue
of the type of quantifiers (p1→ s).

Because the focus of this paper is about the SQUALL language and its correspondence
with SPARQL, we do not elaborate much about the lexical analysis, i.e., about the
translation from concrete word forms to a Semantic Web vocabulary. There is active
research on this task (see Section 8), and integrating their results is left to future work.
The current implementation of SQUALL has a default definition of lexical units based
only on URIs, and SPARQL built-ins (see below), but the way it is coded makes it
relatively easy to extend those definitions for a particular vocabulary. Just to give an
exemple, assuming a data property ex:color, the adjective “green” can be defined by
the following rule:

Adj1 → green { λx.(triple x ex:color ”green”) }
This rule says that a “green” thing is a thing that has color "green".

By default, all URIs can be used as a proper noun (e.g., res:France); class URIs
can be used as common nouns (e.g., :Person); property URIs can be used as relation

11

syntagm type name (examples)
ProperNoun e proper noun (John, France)
Literal e literal value (2013, ”Hello”)
Number e number (3, 0.5)
Label e label (X, Y2, ?foo)
Noun1 p1 common noun (man, country)
Noun2 p2 relation noun (mother, birth date)
Adj1 p1 adjective (green, French)
Adj2 p2 transitive adjective (knowing, known by)
Verb1 p1 intransitive verb (works, drink)
Verb2 p2 transitive verb (knows, wrote)
VerbImp p1 imperative verb (load, print)
QueryImp p1 imperative question prefix (return, give me)
Func [e]→ p1 function (sqrt, pgcd)
Nulop p1 nullary operator (now, a random number)
Unop e→ p1 unary prefix operator (-)
Mulop e→ e→ p1 ×-priority infix operator (*, /)
Addop e→ e→ p1 +-priority infix operator (+, -)
NounAggreg ([e]→ p1)→ p1 aggregation noun (count, sum)
AdjAggreg ([e]→ p1)→ p1 aggregation adjective (total, average)
Prep e→ ms preposition (to, from)
PrepNoun{Det} e→ ms preposition (in {a} graph, from {the} service)
AdjSuper e→ ms superlative adjective (10 greatest, 2nd)
DetSuper e→ ms superlative determiner (the most, the 2nd most)

Table 3: List of the lexical units along with their semantic type, name, and concrete examples.

nouns (e.g., :author) and transitive verbs (e.g., :livesIn), and function URIs can be
used as functions. Absolute URIs, relative URIs, and qualified names are written like
in SPARQL. In the default namespace, bare qualified names can also be used, like in
notation N3 (e.g., author instead of :author). Qualified names allow for relatively
natural sentences, as shown in examples in this paper and on the Web page.

ProperNoun → URI { uri }
Noun1 → URI { λx.(triple x rdf:type uri) }
Noun2/Verb2 → URI { λx.λy.(triple x uri y) }
Func → URI { λlx.λy.(func uri lx y) }

In SPARQL triple patterns, a variable can be used in place of a class or a property.
To support this feature, a triple ?x rdf:type ?c is expressed as “X belongs to C”; and a
triple ?x ?p ?y is expressed as “P relates X to Y”. “belong(s)” is a predefined intransitive
verb, and “relate(s)” is a predefined transitive verb. They both rely on the predefined
preposition “to” to specify the object of the triple (see Section 4.4.6).

Verb1 → belong(s) { λx.(forarg to λc.(triple x rdf:type c)) }
Verb2 → relate(s) { λp.λx.(forarg to λy.(triple x p y)) }

12

SPARQL built-ins can be used under various forms, according to their semantic type.
Unary predicates can be used as common nouns (e.g., “literal” for isLiteral(.)), adjec-
tives (e.g., “numeric” for isNumeric(.)), and intransitive verbs. Binary predicates can
be used as relation noun (e.g., “prefix” for strStarts(.,.)), transitive adjective (e.g.,
“matching” for REGEX(.,.)), and transitive verbs (e.g., “contain(s)” for contains(.,.)).
All SPARQL functions can be used as SQUALL functions. Unary functions can also
be used like binary predicates (e.g., “length” for strlen(.)), and nullary functions can
be used as nullary operators (e.g., “a random number” for RAND()). Aggregations can be
used as aggregation nouns and adjectives (e.g., the adjective “total” for SUM). SPARQL
commands like DESCRIBE and LOAD are expressed as imperative verbs (resp., “describe”,
“load”). The SPARQL constructs GRAPH and SERVICE are expressed by the noun prepo-
sitions “in Det graph” and “from Det service”. Indeed, the latter constructs modify a
statement given an entity (either a named graph or a service). The other default prepo-
sitions are “into” and “to” to be used in the commands LOAD and ADD/MOVE/COPY. The
SPARQL solution modifiers combine the ordering of solutions (ORDER BY), and the se-
lection of a range of solutions (LIMIT and OFFSET). They are expressed as superlative
adjectives and determiners. For example, the adjective highest translates to the SPARQL
modifier ORDER BY DESC(x) LIMIT 1, where x is the entity passed to highest. We finally
give a few representative examples about defining SPARQL built-ins as lexical units.

Noun1 → literal { λx.(pred isLiteral [x]) }
AdjAggreg → total { λd.λx.(aggreg SUM d x) }
VerbImp → load { λy.(forarg into λz.(command LOAD [y; z])) }
AdjSuper → highest { λx.λs.(modif ”ORDER BY DESC(x) LIMIT 1” s) }
PrepNoun{Det} → in Det graph { λx.λs.(context GRAPH x s) }

4.4. Syntactic rules

In this section, we describe the syntactic rules of SQUALL in a modular fashion,
where each module corresponds either to some SPARQL feature, or to some natural
language feature, and often to a combination of both. This has the benefits to split the
whole grammar (about 120 rules) in smaller parts, and to emphasize the relationships
between SQUALL and SPARQL. This is also a way to assess the coverage of SPARQL
by SQUALL (see Section 6 for a more rigorous evaluation of expressiveness). The reader
should feel free to skip some modules, or to ignore the formal grammars on first reading.

4.4.1. Triples as sentences

A triple (s p o) can be seen as a basic sentence. The tradition in linguistics [26] is to
analyse s and o as noun phrases (NP), p o as a verb phrase (VP), and the whole triple
as a sentence (S). Here, noun phrases are either proper nouns or literal values, but they
are given the type s1 to prepare for the use of quantifiers in Section 4.4.2. Verb phrases
are based either on an intransitive verb (Verb1) followed by an optional complement
phrase (CP), or on a transitive verb (Verb2) followed by an object phrase (OP), which
is a noun phrase followed by an optional complement phrase. Complements are defined
in Section 4.4.6, and are assumed empty at this point.

13

S : s
→ NP VP { np vp }

NP : s1
→ Term { λd.(d term) }

Term : e
→ ProperNoun
→ Literal

VP : p1
→ VPdo

VPdo : p1
→ Verb1 CP? { λx.(cp (vp x)) }
→ Verb2 OP { λx.(op λy.(verb2 x y)) }

OP : s1
→ NP CP? { λd.(np λy.(cp (d y))) }

CP : ms (default : λs.s)

4.4.2. Quantifiers as determiners

Quantifiers are commonplace in natural languages in the form of determiners, whereas
they are notoriously difficult to express in SPARQL or SQL [27]. Determiners behave
as binary quantifiers (type s2), but unary quantifiers (type s1) can be cast as binary
quantifiers by conjuncting the two descriptions. The definite article the has its own
semantic primitive because it is interpreted either as the existential quantifier or as the
universal quantifier depending on its syntactic context (see Section 4.6). A noun phrase
can be formed by a determiner followed by a noun group (NG1). A binary noun phrase
(NP2) is a noun phrase abstracted over an entity, and is made of a relation noun group
(NG2). Noun groups are based on a noun (a relational noun for NG2), and may be
modified by an adjective, an apposition (App), and a relative clause (Rel) (to be defined
in the following sections). The keywords for and there introduce global quantifiers, in
a style close to mathematical logic.

The grammar rules are defined so that the scope of quantifiers are leftmost-outermost,
and are restricted to the scope of the related verb. Therefore, “every man love-s some

woman” means there is possibly a different woman for each man; while “there is a woman

that every man love-s” means there is a single woman that is loved.

14

Det : s2
→ Det1 { λd1.λd2.(det1 λx.(and (d1 x) (d2 x))) }
→ every/all { λd1.λd2.(forall d1 d2) }
→ the { λd1.λd2.(the d1 d2) }

Det1 : s1
→ a/an { λd.(exists d) }
→ some { λd.(exists d) }
→ no { λd.(not (exists d)) }

NP → Det NG1 { λd.(det ng1 d) }
→ NP2 of NP { λd.(np λx.(np2 x d)) }

NP2 : e→ s1
→ Det NG2 { λx.λd.(det λy.(ng2 x y) d) }

NG1 : p1
→ Adj1 ? Noun1 App? Rel? { λx.(and (app x) (noun1 x) (adj1 x) (rel x)) }

NG2 : p2
→ Adj1 ? Noun2 App? { λx.λy.(and (app y) (noun2 x y) (adj1 y)) }

S → for NP , S { np λx.s }
→ there is/are/was/were NP { np λx.true }

4.4.3. Labels as appositions and anaphoras

Labels are used to cover the phenomenon of anaphoras in natural languages. They
are introduced as appositions into noun groups, and referenced as terms. References
are resolved at the semantic level, taking into account the scope of variables to check
their validity, and to resolve ambiguities (see Section 4.7). Labels are the analogues of
variables in SPARQL queries, but are much less often necessary in the syntax of a natural
language.

App : p1 (default : λx.true)
→ Label { λx.(label x label) }

Term → Label { ref label }

4.4.4. Relative clauses

Relative clauses modify the nouns, and semantically, are statements abstracted over
an entity. Therefore, they can be derived from the syntax and semantics of sentences,
replacing a noun phrase by a keyword among that/which/who/whom, and moving
it at the beginning of the relative clause. Relative clauses can also be similar to a verb
phrase, only using adjectives (including participles) instead of verbs.

15

Rel : p1 (default : λx.true)
→ that/which/who VP { λx.(vp x) }
→ that/which/whom NP Verb2 CP? { λy.(np λx.(cp (verb2 x y))) }
→ NP2 of which VP { λx.(np2 x vp) }
→ whose NG2 VP { λx.(exists λy.(and (ng2 x y) (vp y))) }
→ Adj1 CP? { λx.(cp (adj1 x)) }
→ Adj2 OP { λx.(op λy.(adj2 x y)) }
→ such that S { λx.s }

4.4.5. Auxiliary verbs

A particular syntax and semantics is associated to the auxiliary verbs “to be” and “to
have”, and verb phrases take three forms accordingly. Auxiliaries can be negated, and
they are given the semantics of a sentence modifier, either negation or identity. The verb
“to be” can be followed by nothing (keyword there), a relative clause (mostly adjective
forms), and a copula noun phrase. Copula noun phrases (NPC and NPC2) have a syntax
similar to noun phrases (NP and NP2), but a different semantics (type p1 instead of s1).
They are parametrized by a semantic-less determiner syntagm, here an article. Copula
noun phrases are also used in queries (Section 4.4.7) and aggregations (Section 4.4.12).

The verb “to have” can be followed by a relation noun (playing the role of a transitive
verb) and an object phrase (e.g., “John Smith has spouse Mary Well”), or by a relational
noun group and an optional relative clause (e.g., “John Smith has every child that is a doc-

tor”). The prepositions “with/without” play the same role as “to have”, but for relative
clauses instead of verb phrases (e.g., “every man with a child”).

Aux (Root) : ms

→ Root { λs.s }
→ Root not { λs.(not s) }
→ Rootn′t { λs.(not s) }

VP → Aux (does/do/did) VPdo { λx.(aux (vp x)) }
→ Aux (is/are/was/were) VPbe { λx.(aux (vp x)) }
→ Aux (has/have/had) VPhave { λx.(aux (vp x)) }

16

VPbe : p1
→ there { λx.true }
→ Rel { λx.(rel x) }
→ NPC (a/an/the) { λx.(npc x) }

NPC (Det) : p1
→ Term { λx.(eq x term) }
→ Det NG1 { λx.(ng1 x) }
→ NPC2 (Det) of NP { λy.(np λx.(npc2 x y)) }

NPC2 (Det) : e→ p1
→ Det NG2 { λx.λy.(ng2 x y) }

VPhave : p1
→ Noun2 OP { λx.(op λy.(noun2 x y)) }
→ NP2 Rel? { λx.(np2 x rel) }

Rel → with VPhave { λx.(vp x) }
→ without VPhave { λx.(not (vp x)) }

4.4.6. Prepositional phrases

Prepositional phrases (PP) are used to handle verbs that expect arguments in ad-
dition to subject and object (e.g., “John belongs to the rdfs:Class that has rdfs:label

”human””), and also to express truth-contexts such as the named graphs and distant ser-
vices of SPARQL (e.g., “from the graph whose author is John Paris is the capital of France”).
A prepositional phrase is made of a preposition and a noun phrase. The noun phrase
is used like subjects and objects, and the preposition modifies the statement in function
of the variable z introduced by the noun phrase (e.g., passing the extra-argument to the
verb, see Section 4.6). In the case of a noun preposition (PrepNoun), the noun of the
noun phrase helps to determine the semantics of the preposition (e.g., “from {the} graph”).
A propositional phrase can occur at any position in a sentence: at the beginning or at
the end of the sentence, before or after the verb. The nesting of S, VP , OP , and CP
ensures the leftmost-outermost rule for the scope of quantifiers, and the free position
of complements allows for their flexible ordering. Finally, as a relative clause is a sen-
tence with a displaced noun phrase, a form of relative clause is generated for each form
of prepositional phrase (e.g., “to which John belongs”, “in which graph Paris is the capital of

France”).

S → PP S { pp s }
VP → PP VP { λx.(pp (vp x)) }
OP → PP OP { λd.(pp (op d)) }
CP → PP CP? { λs.(pp (cp s)) }
PP : ms

→ Prep NP { λs.(np λz.(prep z s)) }
→ PrepNoun{Det} App? Rel? { λs.(det λz.(and (app z) (rel z)) λz.(prep z s)) }

Rel → Prep which S { λx.(prep x s) }
→ PrepNoun{which} S { λx.(prep x s) }

17

4.4.7. Updates and queries

Updates (U) are either a sentence ended by a full-stop (e.g., “John knows Mary.”),
or an imperative verb followed by an object phrase and a full-stop (e.g., “Clear all named

graphs.”), or a sequence of updates. Queries (Q) can be closed or open. Closed queries can
be formed by ending a declarative sentence by a question mark (e.g., “John knows Mary?”),
possibly prefixing it with the keyword whether. The semantic primitive ask modifies the
statement into an interrogative one. Open queries are expressed either with imperative
locutions (e.g., return, give me) followed by an object phrase that describes what has to be
returned (e.g., “Give me all film-s whose director is Tim Burton.”), or with the interrogative
words which/what/who/whom. The semantic primitive return specifies the variable
to be projected in results. The semantic primitives select and select where quantify
over a variable to be projected (the SELECT clause in SPARQL). A multi-dimensional
query is a sentence with several occurences of wh-words (e.g., “Which person is the director

of which film?”).

U : s
→ S . { s }
→ VerbImp OP . { op λx.(verbimp x) }
→ U U { and u1 u2 }

Q : s
→ S ? { ask s }
→ whether S ? { ask s }
→ QueryImp OP . { op λx.(return x) }

NP → what/who/whom { λd.(select d) }
Det → which { λd1.λd2.(select where d1 d2) }

To allow for a more natural verbalization of closed questions, the grammar has been
extended to support subject-auxiliary inversion (e.g., “Does John know Mary?”, “Is John

the father of a doctor?”). Those grammar rules can be derived from previous rules, and we
do not detail them here.

4.4.8. Solution modifiers as superlatives

SPARQL solution modifiers include ordering results w.r.t. a variable or expression
(ORDER BY), and selecting a sub-range of solutions (LIMIT and OFFSET). In SQUALL,
they are expressed as superlative adjectives (e.g., highest like in “Which mountain has the

highest elevation?”), and they modify a statement in function of the entity the adjective
applies to. Those adjectives are special in that they must occur first and only once in
noun groups. See Section 4.6 for a deeper explanation of their semantics.

NG1 → AdjSuper NG1 { λx.(adj x (ng1 x)) }
NG2 → AdjSuper NG2 { λx.λy.(adj y (ng2 x y)) }

4.4.9. Relational algebra as coordinations

There is a one-to-one mapping between operations from the relational algebra of
SPARQL (join, union, optional, negation), coordinations (resp., and, or, not, maybe), and

18

Boolean operators that we use in our intermediate representation. We define Boolean ex-
pressions (Bool(X)) in a generic way by parametrizing them with atomic expressions X.
In this way, they can be defined once, and applied to many syntagms. For example,
the grammar rule S → Bool(S) means that sentences can be coordinated (e.g., “John

own-s a book X and Mary own-s X.”). In SQUALL, all the following syntagms can be fully
coordinated: S, NP , NP2 , Rel , VP , OP , CP , PP , Prep, Noun1 , Noun2 , Adj1 , Adj2 ,
Verb1 , and Verb2 . This helps to make sentences more concise by factorizing common
phrases (e.g., “Do John and Mary own or rent every book whose topic is ”CNL”?”). Paren-
theses can be used to override the usual priorities between Boolean operators, but they
are hardly ever necessary in practice. Because Boolean expressions are applied to syn-
tagms having different types α, the Boolean semantic primitives must be extended from
statements to those types. For example, (andp1 d1 d2) = λx.(and (d1 x) (d2 x)), and
(andp2 r1 r2) = λx.λy.(and (r1 x y) (r2 x y)). More generally, every additional argument
is passed down to sub-expressions.

Bool(X : α) : α
→ Bool(X) or Bool(X) { orα bool1 bool2 }
→ Bool(X) and Bool(X) { andα bool1 bool2 }
→maybe Bool(X) { optionα bool }
→ not Bool(X) { notα bool }
→ (Bool(X)) { bool }
→ X { x }

4.4.10. Conditionals

Conditionals are introduced by the keywords if-then, and are semantically defined
with implications (e.g., “If John has a spouse X then X is a woman.”). The coordina-
tion where is interpreted as a reverse implication in updates, and as a conjunction
in queries (e.g., “Which film F has a director D where D is an actor of F?”).

S → if S then S { implies s1 s2 }
→ S where S { where s1 s2 }

4.4.11. Expressions

In SPARQL, expressions are found in filters, in the SELECT clause, and in solution
modifiers (ORDER BY, HAVING). They combine operators, functions, literals, and variables.
In SQUALL, expressions (Expr(X)) are defined in a generic way by parametrizing them
with a syntagm for atomic expressions X, like for Boolean expressions. This allows
to use expressions in all kinds of noun phrases (see below). Syntactically, expressions
are classically made of atomic expressions (X), terms (include literals and references),
additive and multiplicative infix operators, prefix unary operators, nullary operators (e.g.,
the SPARQL function NOW), functions, and parentheses. Semantically, an expression has
type kα = (e → α) → α, i.e., is defined in Continuation Passing Style (CPS). In short,
each expression takes a continuation as an argument, i.e., a function that says what to do
with the result of the evaluation of the expression. The definition of kα makes expressions
analogue to unary quantifiers, and hence to noun phrases. Indeed, the SQUALL sentence

19

“The height * the width of some rectangle R is 100” is equivalent to “For the height H of some

rectangle R, for the width W of R, H * W is 100”. The definition of the semantics of expressions
rely on a combinator apply that applies a continuation k to the result of an operation or
function.

apply : (e→ α)→ p1→ α = λk.λd.λz∗.(the λy.(d y) λy.(k y z∗))

The number of extra arguments z∗ is equal to the arity of type α. The quantifier the
ensures that expressions will be put in the WHERE-clause of updates.

Expr(X : kα) : kα
→ Expr(X) Addop Expr(X)

{ λk.(expr1 λx1.(expr2 λx2.(apply k (addop x1 x2)))) }
→ Expr(X) Mulop Expr(X)

{ λk.(expr1 λx1.(expr2 λx2.(apply k (mulop x1 x2)))) }
→ Unop Expr(X) { λk.(expr λx.(apply k (unop x))) }
→ Nulop { λk.(apply k nulop) }
→ Func(Expr(X),...,Expr(X))

{ λk.(expr1 λx1.(... exprn λxn.(apply k (func [x1; . . . ;xn])) ...)) }
→ (Expr(X)) { expr }
→ Term { λk.(k term) }
→ X { x }

Expressions apply to all kinds of noun phrases: NP , NP2 , NPC , and NPC2 . Because
expressions and the different noun phrases have different types, noun phrases need to be
wrapped as atomic expressions, and whole expressions need to be unwrapped back as
noun phrases.

NP → Expr(NP { λk.λd.(np λx.(k x d)) })
{ expr λv.λd.(d v) }

NP2 → Expr(NP2 { λk.λx.λd.(np2 x λy.(k y x d)) })
{ expr λv.λx.λd.(d v) }

NPC (Det)→ Expr(NPC (Det) { λk.λx.(exists λy.(and (npc y) (k y))) })
{ λx.(expr λv.(eq x v)) }

NPC2 (Det)→ Expr(NPC2 (Det) { λk.λx.(exists λy.(and (npc2 x y) (k y))) })
{ λx.λy.(expr λv.(eq y v) x) }

4.4.12. Aggregations and grouping

Aggregations are another way to compute values, beside expressions. However, they
behave differently w.r.t. syntax and semantics because an aggregator applies to a de-
scription (i.e., a set of values). Moreover, one or several dimensions can be specified
(GROUP BY clauses in SPARQL) so that an aggregation may return a set of aggregated
values (type p1 instead of e). For instance, “the average size of the person-s per age” returns
an average size for each instanciated age. Hence the type g = ([e] → p1) → p1 of ag-
gregators, where [e] represents the list of dimension variables, the first p1 represents the

20

set of values to be aggregated, and the second p1 represents the set of aggregated values.
Aggregators can be seen as quantifiers, which quantify existentially over each dimension.
In fact, an adjective aggregator can be used as a determiner, where the aggregated values
are constrained by an optional relative clause (e.g., “John has a number greater than 3 of

paper-s”). Alternately, aggregators can be the head of noun groups so that aggregated
values can be used as subjects and objects of verbs (e.g., “Is every number of publication-s

per author lesser than 100?”), and so that aggregations can be nested (e.g., “What is the

average number of publication-s per author?”). Each dimension is defined as a relation from
the facts (e.g., “publications” in previous examples) to the dimension variable z. A list
of dimensions is a relation from the facts to a list lz of dimension variables.

Det1 → a number App? Rel? of
{ λd.(the λx.(count d x) λx.(and (app x) (rel x))) }

→ a/an AdjAggreg App? Rel?
{ λd.(the λx.(aggreg λlz.λy.(d y) x) λx.(and (app x) (rel x))) }

NG1 → NounAggreg App? of NPC (the) Dims?
{ λv.(and (app v) (aggreg λlz.λy.(and (npc y) (dims y lz)) v)) }

→ AdjAggreg App? NG1 Dims?
{ λv.(and (app v) (aggreg λlz.λy.(and (ng1 y) (dims y lz)) v)) }

→ AdjAggreg App? NG2 of NPC (the) Dims?
{ λv.(and (app v) (aggreg λlz.λy.(exists λx.(

and (npc x) (ng2 x y) (dims x lz))) v)) }
Dims : e→ [e]→ s (default : λy.λ[].true)
→ Dim { λy.λ[z].(dim y z) }
→ Dim and Dims { λy.λ(z :: lz).(and (dim y z) (dims y lz)) }

Dim : p2
→ per NG2 { λy.λz.(ng2 y z) }
→ per NPC (the) { λy.λz.(npc z) }

4.4.13. Comparisons

Although comparators have type p2 and can therefore be verbalized as transitive
verbs (e.g., is greater than), or as transitive adjectives (e.g., greater than), they deserve a
special treatment because of the rich combinations offered by natural languages. We
define below a number of constructs that do not increase SQUALL’s expressivity, but
that improves a lot SQUALL’s naturalness and concision when expressing comparisons.
We only detail here the “greater than” comparator (constant gt), but other comparators
are straightforward to add.

Relatives are extended by using comparators as transitive adjectives, and by adding
“between” as a ditransitive adjective. Their semantics is the same as for transitive
adjectives.

Rel → greater than OP { λx.(op λy.(gt x y)) }
→ between OP and OP { λx.(op1 λy1.(op2 λy2.(between x y1 y2))) }

21

Comparators are also used as determiners after the auxiliary verb “to have” to com-
pare two properties of an entity (e.g., “Which rectangle has a greater height than width?”),
or to compare a same property between two entities (e.g., “Which woman has a greater size

than every man?”).

DetComp{X,Y } : s2
→ a greater X than Y

{ λd1.λd2.(exists λy1.(exists λy2.(and (d1 y1) (d2 y2) (gt y1 y2)))) }
VPhave

→ DetComp{Noun2 ,Noun2}
{ λx.(detcomp λy1.(noun2 1 x y1) λy2.(noun2 2 x y2)) }

→ DetComp{Noun2 ,NP}
{ λx1.(np λx2.(detcomp λy1.(noun2 x1 y1) λy2.(noun2 x2 y2))) }

There are also determiners to compare numbers of things, where the values to be
compared are the result of a COUNT-aggregation. The semantic statement (count d n) tells
that n is the number of entities satisfying description d. It is used to define generalized
determiners such as “more than 2” or “between 3 and 5”, the interrogative determiner “how

many”, and superlative determiners such as “the most”. From these, it becomes possible
to express queries such: “How many person-s are the author of at least 10 publication-s?” or
“Which person is the author of the most publication-s?”.

Det1 → Number { λd.(count d number) }
→more than Number { λd.(exists λn.(and (count d n) (gt n number))) }
→ between Number and Number
{ λd.(exists λn.(and (count d n) (between n number1 number2))) }

→ how many { λd.(select λn.(count d n)) }
→ DetModif { λd.(exists λn.(modif n (count d n))) }

We also define binary determiners to compare two numbers of things, which lead to
new forms of noun phrases:

• “Do more woman than man own a cat?”

• “Who has more daughter-s than son-s whose age is lesser than 18?”

• “Which woman X has more daughter-s than the mother of X?”

DetCompCount{X,Y } : s2
→more X than Y { λd1.λd2.(exists λn1.(exists λn2.(

and (count d1 n1) (count d2 n2) (gt n1 n2)))) }
NP → DetCompCount{NG1 ,NG1} { λd.(detcomp

λx1.(and (ng1 1 x1) (d x1)) λx2.(and (ng1 2 x2) (d x2))) }
NP2 → DetCompCount{NG2 ,NG2} { λx.λd.(detcomp
λy1.(and (ng2 1 x y1) (d y1)) λy2.(and (ng2 2 x y2) (d y2))) }
→ DetCompCount{NG2 ,NP} { λx1.λd.(np λx2.(detcomp

λy1.(and (ng2 x1 y1) (d y1)) λy2.(and (ng2 x2 y2) (d y2)))) }

22

4.4.14. Graph literals

In SPARQL, CONSTRUCT-queries return graphs, i.e., sets of triples. In order to support
this kind of query in SQUALL, we allow the reification of statements as entities using the
primitive graphliteral in the semantics, and the word that followed by a sentence in
the syntax to introduce a subordinate clause. The reification is invalid if the statement
is anything else than a conjunction of triples, and if any variable remains unbound. Like
in notation N3, graph literals (called formulae in N3) can be used everywhere an entity
can be used. However, when translating to SPARQL, they can only be returned as the
query result (e.g., “For every person X whose age is greater or equal to 18, return that X is an

adult.”).

Term → that S { graphliteral s }

4.4.15. Collections

RDF collections are single-chained lists based on properties rdf:first and rdf:rest,
plus the empty list rdf:nil. They are useful to represent closed and ordered sets of
entities, such as the authors of a document. Turtle and SPARQL provide syntactic sugar
for fixed-length collections, but the representation of other graph patterns is extremely
tedious. For example, the SPARQL pattern to access the last element of a collection is:
[rdf:rest* [rdf:first ?last ; rdf:rest rdf:nil]]. We extend SQUALL’s
noun phrases so as to completely avoid the use of the RDF vocabulary about collections.
We reuse the rich Prolog’s syntax for list patterns [28], and extend it with the ellipsis ...

to allow jumping over an arbitrary number of elements. List patterns are delimited by
square brackets, list elements are separated by commas, and sublists are raised after a bar.
An underscore stands for an arbitrary element (joker), and an ellipsis ... stands for an
arbitrary sequence of elements. For example, “Which book has authorList [..., John Smith]?”
returns the books whose last author is John Smith, and “Whether [, every member of

Team1, ...] is the authorList of a book whose topic is AI?” returns whether every member of
Team1 is the second author of a book whose topic is AI.

List noun phrases (NPL) are noun phrases that quantify over lists. To simplify the
definition of their semantics, we rely on two combinators cons and sublist which build
unary quantifiers (type s1), respectively, from a first and a rest, and from a sublist:

cons = λe.λl.λd.(exists λx.(and (triple x rdf:first e) (triple x rdf:rest l) (d x)))
sublist = λl.λd.(exists λx.(and (triple x rdf:rest∗ l) (d x)))

Term → [] { rdf:nil }
NP → { λd.(exists d) }
→ [NPL] { npl }

NPL : s1
→ NP , NPL { λd.(np λe.(npl λl.(cons e l d))) }
→ NP | NP { λd.(np1 λe.(np2 λl.(cons e l d))) }
→ NP { λd.(np λe.(cons e rdf:nil d)) }
→ ..., NPL { λd.(npl λl.(sublist l d)) }
→ ... | NP { λd.(np λl.(sublist l d)) }
→ ... { λd.(sublist rdf:nil d) }

23

4.5. Handling of syntactic ambiguities

The price for the natural and flexible syntax of SQUALL is ambiguity, i.e., the fact
that some sentences can be parsed in different ways possibly leading to different seman-
tics. In SQUALL, ambiguities are resolved by the following rules:

1. when forming a construct X from one or two constructs of same syntagm X (e.g.,
coordinating 2 NPs, modifying a sentence with a PP), algebraic operators have
priority (in decreasing priority order: not, maybe, and, or, where) over sentence
modifiers (PP as a prefix, and global quantifiers for NP), and right-associativity
applies for binary coordinations;

2. “smaller” syntagms have priority over “larger” syntagms, i.e., in decreasing priority
order: Det∗, Rel , NG∗, NP∗, PP , CP , OP , VP , S;

3. in case of remaining ambiguity between two phrases of the same syntagm, the
shorter phrase is chosen.

Round brackets can be used in coordinations and expressions to escape those rules. Rule 2
implies that “a man or woman” is interpreted as “a (man or woman)” rather than “(a man)

or woman”, as NG1 has priority over NP . Rule 3 implies that in “A know-s a researcher

that X cite-s in graph G”, the PP “in graph G” binds to the shorter VP “cite-s ...” rather
than to the longer VP “know-s ...”.

4.6. Semantic transformations of statements

Semantic transformations need to be applied to the intermediate representation pro-
duced through Montague grammars, because some primitives are contextual in nature,
i.e., have non-local effects. This concerns the interrogative quantifiers (primitives select
and select where), prepositions (primitive arg), and modifiers (primitive modif). For
example, the SQUALL sentence “Every member of Group1 belongs to which nationality?”
(equivalent to “To which nationality does every member of Group1 belong?”), gets the fol-
lowing intermediate representation (some lexical units have not been expanded by their
definition for clarity):

forall λx.(member x :Group1)
λx.(select where λz.(nationality z) λz.(arg to z (belong x)))

Two problems appear in this example. First, the primitive select where should be out
of the scope of the quantifier forall. Second, the sub-expression (belong x) should reduce
to (triple x rdf:type z), but z is not an argument of belong .

The solution we have found to retain a compositional style (i.e., to avoid global
variables), while maintaining a local treatment of each feature, is to define statements
as state monads [29], i.e. as functions that take a state as a parameter, and that return
a modified state in addition to the statement itself. The additional state enables to
pass information downward, and upward in the semantic expression tree. The state is
here made of extra-arguments added by prepositions, selectors added by interrogative
quantifiers, and modifiers. Selectors are passed upward up to the root of the syntax
tree. Modifiers are also passed upward, but are catched by the determiner of noun
phrases (NP), to account for sentences such as “Does the person with the lowest age has a

greater size than the person with the highest age?”. Prepositions are passed downward with
primitive arg and catched by verbs with primitive forarg (e.g., the preposition “to” is

24

catched by the verbs “belongs” and “relates”). Applying those principles to the above
example, we get the fully reduced intermediate representation.

select λz.(and (triple z rdf:type :nationality)
(forall λx.(triple x :member :Group1) λx.(triple x rdf:type z)))

Note that select where has been transformed into select, and has now the out-
ermost scope. Note also that primitives arg and forarg have been eliminated in the
transformed intermediate representation. Similarly, primitive the (resp. where) is re-
placed by primitive exists (resp. and) in a query context (in the scope of ask, select,
and the left argument of forall and implies); and is replaced by forall (resp. the inverse
of implies) otherwise.

4.7. Semantic validation

Like in programming languages, SQUALL sentences may be syntactically correct,
but semantically invalid. Examples of semantic errors in programming languages are
undeclared variables, or type errors. In SQUALL, semantic errors can be:

• out-of-scope references: e.g. the reference X in “John has no child X and X is a doctor.”;

• unbound variables: e.g. “Return 1 + some thing.”, where there is no way to bind the
second operand of the addition.

In order to detect semantic errors, and return them to users, statements are validated
w.r.t. accessibility and boundedness. References are first resolved in function of defined
labels, and accessible variables, which eliminates primitives label and ref from the inter-
mediate representation. Accessibility validation consists in checking that every variable
is used in the scope of its quantifier. Discourse Representation Theory (DRT) [30], and
its combination with Montague grammars [31], is used to define those scopes, and plays
an important role in the naturalness of SQUALL sentences. For example, this validation
phase accepts the sentence “Some man X loves a woman and X is a doctor.”, and rejects “Every

man X loves a woman and X is a doctor.”. Boundedness validation consists in checking that
dataflow constraints are satisfied. For example, all arguments of predicates and functions
must be bound before evaluating them, while triple patterns have no such constraints.
This validation phase ensures that queries and updates can effectively be evaluated, i.e.,
are semantically well-defined. For example, the boundedness validation accepts “Which

person has every child that is a doctor?”, and rejects “Who has every child that is a doctor?”
because the latter does not provide any means to bind the variable quantified by Who8.
Boundedness validation is also used to replace equalities (pred = [x; y]) with the identity
function when only one argument is bound (e.g., func ID [x] y, if only x is bound).

5. Translation to SPARQL

The generation of a SPARQL query or update from the intermediate representation
of semantics is much simpler than syntactic and semantic analysis because it mostly
consists in mapping logical constructs to SPARQL constructs, which are at the same

8Unless a default class for people is specified, and used in the semantics of who.

25

level of abstraction. Note that the intermediate representation would make it easy to
support another target RDF query language. As an illustration, the SPARQL translation
of the SQUALL sentence “For which researcher-s X, in graph DBLP every publication whose
author is X and whose :publication year is greater than 2000 has at least 2 author-s?”, from
the introduction of Section 4, is as follows:

SELECT DISTINCT ?x1 WHERE {

?x1 a :researcher .

FILTER NOT EXISTS {

GRAPH :DBLP {

?x2 a :publication .

?x2 :author ?x1 .

?x2 :year ?x3 .

FILTER (?x3 > 2000) . }

FILTER NOT EXISTS {

GRAPH :DBLP {

{ SELECT DISTINCT ?x2 (COUNT(?x5) AS ?x4)

WHERE { ?x2 :author ?x5 . }

GROUP BY ?x2 }

FILTER (?x4 >= 2) . } } } }

The two nested FILTER NOT EXISTS encode the universal quantifier “every”, and the
subquery with aggregation encodes the numeric quantifier “at least 2”.

The fully-reduced intermediate representation, after semantic transformations and
validation (Sections 4.6 and 4.7), is only made of the following semantic primitives:
triple, pred, func, aggreg, modif , command, context, true, not, and, or, option,
implies, exists, forall, ask, select, return, graphliteral (see Table 2). We define in
the following a mapping of those primitives to SPARQL 1.1 constructs. The notation JsK
denotes the SPARQL translation of the statement s. Such a mapping provides at the
same time a concrete semantics for SQUALL, and a practical way to evaluate SQUALL
sentences by leveraging existing SPARQL engines and endpoints. We first consider the
translation of interrogative sentences, and then the translation of imperative and declar-
ative sentences. While the former always generate SPARQL queries, the latter generate
both queries and updates. In all cases, the translation is not designed to produce optimal
SPARQL code, but to be simple. This should not be a high concern given that SPARQL
engines perform optimizations before evaluating queries and updates.

5.1. Interrogative sentences

Interrogative sentences have intermediate representations that start with primi-
tives ask or select, which respectively generate ASK-queries and SELECT-queries in
SPARQL. The notation JX | sKQ denotes an auxiliary translation for multidimensional
queries (nested select) where X is a row of variables, and the notation JsKG denotes the
translation of a statement into a graph pattern. Every occurence of a SPARQL vari-
able ?x assumes the generation of a fresh variable name. Those variables are used to
instantiate the description parameters of quantifiers and aggregations.

Jask sK = ASK { JsKG } JX | select dKQ = JX ?x | d ?xKQ
Jselect dK = J?x | d ?xKQ JX | sKQ = SELECT X WHERE { JsKG }

26

Most statements can be mapped to graph patterns. Predicates and functions trans-
late to SPARQL filters, and aggregations translate to SPARQL aggregative sub-queries.
Modifiers translate to solution modifiers using sub-queries. Contexts translate to named
graph patterns, and service patterns. Algebraic constructors translate to their SPARQL
counterpart, and quantifiers all translate to the implicit SPARQL existential quantifier
and negation.

Jtriple s p oKG = s p o .

Jpred p lxKG = FILTER p(lx)
Jfunc ID [x] yKG = BIND (x AS y)
Jfunc f lx yKG = BIND (f(lx) AS y)
Jaggreg g d xKG =
{ SELECT ?z∗ (g(?y) AS x)
WHERE { Jd ?z∗ ?yKG }
GROUP BY ?z∗ }

Jmodif m sK = { SELECT * WHERE { JsKG } m }
Jcontext GRAPH x sKG = GRAPH x { JsKG }
Jcontext SERVICE x sKG = SERVICE x { JsKG }
JtrueKG = ε
Jand s1 s2KG = Js1KG Js2KG
Jor s1 s2KG = { Js1KG } UNION { Js2KG }
Joption sKG = OPTIONAL { JsKG }
Jnot sKG = FILTER NOT EXISTS { JsKG }
Jexists dKG = Jd ?xKG
Jforall d1 d2KG = Jnot (exists λx.(and (d1 x) (not (d2 x))))KG

5.2. Imperative and declarative sentences

In imperative and declarative sentences, universal quantifiers (forall) and implica-
tions (implies) introduce a WHERE-clause, and existential quantifiers introduce new blank
nodes (using SPARQL function BNODE()). In order to simplify the following mappings,
we first define a few simplification rules that reduce all quantifiers to implications, and
that collapse nested implications.

exists d = forall λx.(func BNODE [] x) d
forall d1 d2 = implies (d1 ?x) (d2 ?x)
implies s1 (implies s2 s3) = implies (and s1 s2) s3

Declarative sentences translate to updates that add and/or delete triples. The
SPARQL form depends on the presence of a WHERE-clause.

Jimplies s1 s2K = DELETE { D } INSERT { I } WHERE { Js1KG }
given JDEFAULT : s2KU = (I,D)

JsK = INSERT DATA { I }; DELETE DATA { D }
given JDEFAULT : sKU = (I,D)

This translation relies on the auxiliary translation Jg : sKU that generates two graph
patterns (I,D), where I contains the triples to be inserted, and D contains the triples to

27

be deleted. The parameter g specifies in which graph triples should be inserted/removed.

JDEFAULT : triple s p oKU = (s p o ., ε)
Jg : triple s p oKU = (GRAPH g { s p o .}, ε)
Jg : and s1 s2KU = (I1 I2, D1 D2) given Jg : s1KU = (I1, D1), Jg : s2KU = (I2, D2)
Jg : not sKU = (D, I) given Jg : sKU = (I,D)
Jg : context GRAPH x sKU = Jx : sKU

Imperative sentences can generate many forms of SPARQL queries and updates,
depending on the imperative verb. Only some of those forms accept a WHERE-clause, and
the mapping is therefore a partial function. For example, the command CLEAR cannot be
used with a WHERE-clause, even though it would make sense: e.g., “Clear all named graphs

in which graph John owns a unicorn.”.

Jcommand LOAD [x; y]K = LOAD x INTO GRAPH y
Jcommand CLEAR [x]K = CLEAR x
Jcommand DESCRIBE [x]K = DESCRIBE x
Jimplies s1 (command DESCRIBE [x])K = DESCRIBE x WHERE { Js1KG }
Jimplies s1 (return (graphliteral s2))K = CONSTRUCT { I } WHERE { JsKG }

given JDEFAULT : s2KU = (I, ε)
Jimplies s1 (return x)K = SELECT x WHERE { Js1KG }
Jand s1 s2K = Js1K ; Js2K

6. Evaluation of expressiveness by backward translation

We have defined in previous sections the translation from SQUALL to SPARQL,
which demonstrate the adequacy of SQUALL for querying and updating RDF stores.
However, it remains to evaluate the coverage of SPARQL expressiveness by SQUALL.
We do so by sketching the backward translation from SPARQL to SQUALL. This demon-
strates that SQUALL is as expressive as SPARQL 1.1 apart from arbitrary length paths
and a few minor things (discussed at the end of this section). Note that the purpose of
this backward translation is not to produce natural verbalizations of SPARQL queries,
which is another issue [32], even though it could be used as a starting point.

SPARQL has a very rich syntax, but it can be simplified by transforming non-essential
constructs to essential constructs. Turtle syntactic sugar is equivalent to basic graph pat-
terns, and blank nodes can be replaced by variables. Property paths can also be expanded
into graph patterns, except arbitrary length paths. In filters, usage of the function IN can
be replaced by disjunction (||). A VALUES-clause can be moved into a graph pattern, and
complex VALUES-patterns can be split into unions of joins of atomic VALUES-pattern (e.g.,
VALUES ?x { :John }). Expressions out of a graph pattern (e.g., SELECT, ORDER BY)
can be moved into the graph pattern using BIND and a fresh variable. A HAVING-clause
can be moved into the graph pattern as a filter, after reifying the aggregation as a sub-
query. References to graphs (e.g., FROM, WITH, USING) can be replaced by GRAPH-patterns
to specify where triples should be queried or updated. Finally, in a SELECT * clause, the
joker * can be replaced by all free variables in the graph pattern.

We present backward translation in a format similar to forward translation, but from
SPARQL constructs to SQUALL phrases. SPARQL syntagms are typed with SQUALL

28

syntagms. The four forms of queries are translated to either interrogative or imperative
sentences. Variables in the SELECT-clause are marked so that the determiner which is used
upon their first occurence in the translation of the graph pattern. The solution modifier
clause (e.g., ORDER BY DESC(?x) LIMIT 1) is translated into a adjective modifier to be
used upon the first occurence of its variable (e.g., the highest thing ?x). The different
forms of updates are translated to either declarative sentences, using a conditional for
WHERE-clauses, or imperative sentences for graph-level updates.

Query : Q
→ ASK Graph { whether graph ? }
→ DESCRIBE URI { describe uri . }
→ DESCRIBE Var WHERE Graph { describe var where graph . }
→ CONSTRUCT Graph WHERE Graph { return that graph1 where graph2 . }
→ SELECT Var . . .Var WHERE Graph SolModif { graph ? }

Update : U
→ INSERT DATA Graph { graph . }
→ DELETE DATA Graph { not graph . }
→ DELETE WHERE Graph { if graph then not graph . }
→ DELETE Graph INSERT Graph WHERE Graph { if graph3 then not graph1 and graph2 . }
→ LOAD URI INTO GRAPH URI { load uri1 into uri2 . }
→ CLEAR GRAPH URI { clear uri . }
→ Update ; Update { update1 update2 }

Graph patterns are translated to sentences. Triple patterns translate to simple sen-
tences, depending on whether a class or a property is used, and whether a variable or a
URI is used. Classes are translated to nouns, properties to transitive verbs, and aggre-
gations to aggregation adjectives. A variable ?x is translated as an apposition in a noun
phrase (e.g., a thing ?x), on its first occurence, and then to a reference (e.g., ?x).

Graph : S
→ Term a Var . { term belongs to var }
→ Term a URI . { term is a uri }
→ Term Var Term . { var relates term1 to term2 }
→ Term URI Term . { term1 uri term2 }
→ BIND(Expr AS Var) { var is expr }
→ VALUES Var { Term } { var is term }
→ Graph Graph { (graph1 and graph2) }
→ Graph UNION Graph { (graph1 or graph2) }
→ Graph MINUS Graph { (graph1 and not graph2) }
→ OPTIONAL Graph { maybe graph }
→ FILTER Constr { constr }
→ GRAPH Term Graph { at graph term graph }
→ SERVICE Term Graph { from service term graph }
→ { SELECT Var1 ... Varn (Aggreg(Vary) AS Varx) WHERE Graph }
{ varx is the aggreg things vary such that graph per var1 and ... and per varn }

Constraints are also translated to sentences, using the same SQUALL coordinations
for Boolean operators as for relational algebra operators. Constraints simply produce

29

sentences based on predicates, where graph patterns produce sentences based on classes
and properties. Therefore, unary predicates translate to nouns (like classes), and binary
predicates translate to transitive verbs (like properties). Expressions translate to noun
phrases, as they play the same role as variables and RDF terms.

Constr : S
→ Expr > Expr { expr1 is greater than expr2 }
→ Pred1(Expr) { expr is a pred1 }
→ Pred2(Expr,Expr) { expr1 pred2 expr2 }
→ Constr || Constr { (constr1 or constr2) }
→ Constr && Constr { (constr1 and constr2) }
→ !Constr { not constr }
→ EXISTS Graph { graph }
→ NOT EXISTS Graph { not graph }

Expr : NP
→ Expr + Expr { (expr1 + expr2) }
→ Func(Expr, . . ., Expr) { func(expr1,. . .,exprn) }
→Literal { literal }
→Var { var }

We have looked in detail at SPARQL’s grammar9 in order to identify all restrictions
of SQUALL compared to SPARQL. The main restriction is arbitrary length property
paths (e.g., (ˆauthor/author)+), which involves a form a recursivity that is difficult to
express in natural language. Moreover, if recursivity could be expressed in SQUALL,
it would probably exceed SPARQL’s expressivity because recursivity only applies to
property paths, and not to arbitrary graph patterns. The other restrictions of SQUALL
are of lesser importance:

• n-ary DESCRIBE: e.g., DESCRIBE ?x ?y WHERE {?x a :man. ?x :spouse ?y.};

• n-ary ORDER BY: e.g., ORDER BY ASC(?age) DESC(?size);

• missing functions: &&, ||, !, UUID, STRUUID, COALESCE, IF, sameTerm;

• the third argument of REGEX is fixed to ’i’;

• DISTINCT is always used with SELECT;

• SILENT is never used in updates and with SERVICE.

7. Evaluation on the QALD challenge

This section reports on the evaluation of SQUALL on the QALD-3 challenge, in which
we took part. The QALD10 challenge (Query Answering over Linked Data) provides
“a benchmark for comparing different approaches and systems that mediate between a

9http://www.w3.org/TR/sparql11-query/#sparqlGrammar
10http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/

30

user, expressing his or her information need in natural language, and semantic data”.
The last campaign, QALD-3, provides hundreds of questions in natural language over
two large and real linked datasets: DBpedia [33] and MusicBrainz [34]. The principle
of the challenge is that a training set of 100 questions is provided, along with SPARQL
translations and answers, and systems are evaluated on a test set that is made of 100 new
questions. Systems are compared in terms of precision and recall for the test questions.

The QALD questions do not cover all features of SPARQL 1.1, and hence, do not
permit to evaluate all features of SQUALL. However, we find that the DBpedia questions
provide a rich set of questions in natural language on many topics, and cover a wide range
of SPARQL features including aggregations and solution modifiers. The missing features
are updates, named graphs, built-ins and expressions, graph literals (CONSTRUCT and
DESCRIBE queries), and collections.

The objective of our participation in the QALD-3 question answering task was to
evaluate the capability of SQUALL to express English questions in a natural and precise
way, and the precision and recall of its SPARQL translations. Because our approach relies
on a reformulation of the original questions, which is allowed by the QALD challenge,
the QALD measures of precision and recall are not enough to evaluate it. Therefore,
before presenting the performance of SQUALL in the QALD-3 challenge (Section 7.3),
we first assess the grammaticality of QALD questions in SQUALL (Section 7.1), and
the naturalness of their reformulation in SQUALL (Section 7.2). We do not evaluate the
efficiency of our system in detail as this is not an issue: the 100 questions of the challenge
are translated in 6s. We do not present either a usability study on the formulation of
SQUALL queries because we consider that guided input is necessary to overcome the
habitability problem [12], which is not the object of this paper and is already addressed
in existing work [13].

In our evaluation, we focus on the 99 English test questions (question 18 does not
exists in QALD-3) for the DBpedia dataset. Questions in other languages are out of the
scope of this paper. Training questions are very similar to test questions, and the same
conclusions can be drawn from them. For the MusicBrainz dataset, the definition of a
custom lexicon would be necessary to keep SQUALL questions natural because many
relations are reified as events.

7.1. Grammaticality of QALD questions

In this subsection, we assess the grammaticality of QALD questions in SQUALL. In
other words, we answer for each question whether it can be parsed as a SQUALL sentence
assuming the right lexicon and the right schema have been defined. For example, the first
question “Which German cities have more than 250000 inhabitants?” is a correct SQUALL
sentence, if we assume that “German” is an adjective, “cities” is a noun, and “inhabitants”
is a relational noun. It also assumes that there is a relation from each city to each
known inhabitant. This is unlikely in a dataset like DBpedia, but quite possible in other
contexts (e.g., in a civil registry). Therefore, grammaticality evaluates the coverage of
natural language by SQUALL, but not its adequation to a particular RDF dataset. It is
all about syntax, and none about lexicon.

Among the 99 test questions, we found that 57 of them are grammatical. Most
of the other 42 questions have only one ungrammatical element, and have therefore
a small edit distance to a grammatical question. We list below the different cases of
ungrammaticality, by decreasing frequency. In each case, we show an example where the

31

ungrammatical element is underlined, and add between brackets a possible replacement
to make it grammatical.

• prepositions attached to nouns: “List all games by GMT.” (relational adjective: made

by);

• temporal and spatial phrases: “When did Michael jackson die?” (prepositional
phrase: In which year);

• pronouns: “Which films starring Clint Eastwood did he direct himself?” (repeated
proper noun: Clint Eastwood);

• proper noun as apposition: “Who created the comic Captain America?” (proper
noun: Captain America);

• measure adjectives: “How tall is Michael Jordan?” (use relational noun: What is the

height of);

• comparative adjectives: “Was the Cuban Missile Crisis earlier than the Bay of Pigs

Invasion?” (use a relational noun: Did ... have an earlier date).

• composite nouns: “Give me the Apollo 14 astronauts.” (noun group: astronauts with

mission Appolo 14);

• void undefinite article: “Give me a list of all trumpet players that were bandleaders.”
(singular noun: a bandleader);

• perfect tenses: “How many space missions have there been?” (use past: were there);

The difficulty of those cases is less a syntactic problem than a semantic problem. For
most cases, it would be relatively easy to extend SQUALL’s grammar, but some of them
involve implicit relations that can only be guessed from expertise on the domain and
context. For example, “games by GMT” can mean “games produced by GMT” or “games

developed by GMT”.

7.2. Naturalness of SQUALL questions

The cost of using a CNL instead of spontaneous language is the need for reformula-
tion, and the benefits is more precision and less ambiguity. We have reformulated the
QALD questions into SQUALL sentences with the double objective to keep them as nat-
ural as possible, and to match the RDF schema of DBpedia. From the training phase, we
had already learned some of the DBpedia vocabulary, and other URIs were found man-
ually with Google searches and DBpedia browsing. We spent on average a few minutes
per question for the reformulation phase. The SQUALL reformulations of the 99 test
questions, as well as the reformulations of the 100 training questions, are available on
SQUALL’s homepage11. For illustration purposes, Table 4 lists a few original questions
along with their SQUALL reformulation. From a detailed analysis of all reformulations,
we derive the following conclusions.

11http://http://lisfs2008.irisa.fr/ocsigen/squall/examples: for each question, the SPARQL
translation and answers from DBpedia can be obtained in two clicks.

32

1 “Which German cities have more than 250000 inhabitants?”
“Which Town that has country res:Germany has a populationTotal greater than 250000?”

2 “Who was the successor of John F. Kennedy?”
“Who was the successor of res:John F. Kennedy?”

3 “Who is the mayor of Berlin?”
“Who is the leader of res:Berlin?”

4 “How many students does the Free University in Amsterdam have?”
“What is the numberOfStudents of res:Vrije Universiteit?”

5 “What is the second highest mountain on Earth?”
“Which Mountain has the 2nd highest elevation?”

7 “When was Alberta admitted as province?”
“What is the dbp:admittancedate of res:Alberta?”

9 “Give me a list of all trumpet players that were bandleaders.”
“Give me all Person-s whose instrument is res:Trumpet and whose occupation is

res:Bandleader.”

12 “Give me all world heritage sites designated within the past five years.”
“Give me all WorldHeritageSite whose dbp:year is between 2008 and 2013.”

15 “What is the longest river?”
“Which River has the highest dbp:length?”

21 “What is the capital of Canada?”
“What is the capital of res:Canada?”

26 “How many official languages are spoken on the Seychelles?”
“How many officialLanguage-s of res:Seychelles are there?”

28 “Give me all movies directed by Francis Ford Coppola.”
“Give me all Film-s whose director is res:Francis Ford Coppola.”

32 “How often did Nicole Kidman marry?”
“How many spouse-s of res:Nicole Kidman are there?”

74 “When did Michael Jackson die?”
“What is the deathDate of res:Michael Jackson?”

Table 4: A sample of original QALD-3 questions, followed by their SQUALL reformulation.

The concision of SQUALL is comparable to natural language. Table 5 compares the aver-
age length of questions in three languages: English (original QALD question), SQUALL
(our reformulation of the questions), SPARQL (the golden standard provided by QALD
organizers). Whereas SPARQL queries (excluding prologues) are two and a half times
longer than natural language questions, SQUALL queries are only about 33% longer.

33

language English SQUALL SPARQL
average question length 45 60 111

Table 5: Comparison of the average length of questions in the three languages.

The difference between natural language and SQUALL is in a large part explained by
the namespaces in qualified names (e.g., res:Berlin instead of Berlin).

SQUALL queries look natural. The use of variables is hardly ever necessary in SQUALL
(none was necessary in both training and test questions), while SPARQL queries are
cluttered with many variables. No special notations were used, except for namespaces.
Only grammatical words are used to provide syntax, and they are used like in natural
language. There are 10 out of 99 questions where SQUALL is identical to natural lan-
guage, up to proper names replaced by readable URIs, namespace prefixes, and plural
marks (numbers are question ids): (2) “Who was the successor of res:John F. Kennedy?”,
(14) “Give me all bandMember-s of res:Prodigy.”, (21) “What is the capital of res:Canada?”, (22)
“Who is the dbp:governor of res:Wyoming?”, (24) “Who was the dbp:father of res:Elizabeth II?”,
(30) “What is the dbp:birthName of res:Angela Merkel?”, (54) “What are the dbp:nickname-s of

res:San Francisco?”, (58) “What is the dbp:timezone of res:Salt Lake City?”, (73) “How many

child-s did res:Benjamin Franklin have?”, (76) “List the child-s of res:Margaret Thatcher.”.

Most discrepancies between natural language and SQUALL are a matter of vocabulary.
Most discrepancies come from the fact that for each concept, a single word has been
chosen in the DBpedia ontology, and related words are not available as URIs. Because
our default lexicon uses URIs as nouns and verbs, some reformulation is necessary. In
the simplest case, it is enough to replace a word by another: e.g., “wife” vs “dbp:spouse”.
In other cases, a verb has to be replaced by a noun, which requires changes in the syntac-
tic structure: e.g., “Who developed Minecraft?” vs “Who is the developer of res:Minecraft?”.
An interesting example is “Who is the daughter of Bill Clinton married to?” vs “Who is

the dbp:spouse of the child of res:Bill Clinton?”. The former question could be expressed in
SQUALL if “marriedTo” was made an equivalent property to “dbp:spouse”, and if “daugh-

ter” was made a subproperty of “child”. In fact, this kind of discrepancy could be resolved,
either by enriching the ontology with related words, or by preprocessing user sentences
to replace spontaneous words by URIs. Alternately, the replacement could be done on
the intermediate representation of even SPARQL query, with the benefit that the se-
mantic role of words (e.g., class, property) would be explicit. The latter approach is
analogue to and could reuse the techniques of ontology-based query answering systems
(see Section 8).

Some discrepancies are deeper in that they exhibit conceptual differences between natural
language and the ontology. We shortly discuss three cases:

• “List all episodes of the first season of the HBO television series The Sopranos!” vs “List

all TelevisionEpisode-s whose series is res:The Sopranos and whose seasonNumber is 1.”. In
natural language, an episode is linked to a season, which in turn is linked to a
series. In DBpedia, an episode is linked to a series, on one hand, and to a season
number, on the other hand. In DBpedia, a season is not an entity, but only an
attribute of episodes.

34

• “Which caves have more than 3 entrances?” vs “Which Cave-s have an dbp:entranceCount

greater than 3?”. The natural question is a grammatical sentence in SQUALL, but
it assumes that each cave is linked to each of its entrances. However, DBpedia only
has a property “dbp:entranceCount” from a cave to its number of entrances.

• “Which classis does the Millepede belong to?” vs “What is the dbp:classis of

res:Millipede?”. The natural question is again a valid SQUALL sentence (after mov-
ing ’to’ at the beginning), but it assumes that res:Millipede is an instance of a
class that is itself an instance of dbp:classis. DBpedia does not define classes of
classes, and therefore uses dbp:classis as a property from a species to its classis.

Those discrepancies are more difficult to solve. A first solution is to make the ontology
better fit usage in natural language. A second solution is to apply transformations on the
intermediate representation of natural SQUALL sentences so that it matches the ontology
(e.g., transforming a count of entrances into the value of property dbp:entranceCount).

7.3. Performance in QALD-3 challenge

We here report on the results of our system squall2sparql in QALD-3 challenge.
They are published on the official website of the challenge. Other QALD-3 participants
and their results are discussed in Section 8 (they are much lower but not directly com-
parable). We submitted the SPARQL translations produced by our system from our
reformulations of the test questions to the QALD evaluation tool. Out of the 99 ques-
tions, we got the right answers for 80 questions (including the three OUT OF SCOPE
questions), and partial answers for 13. Recall was 0.88, precision was 0.93, and the
F-measure was 0.90. The errors come from:

• data heterogeneity (12 errors, questions 1, 6, 17, 19, 29, 33, 39, 60, 63, 72, 93, 96),

• the reformulation in SQUALL (2 errors, questions 14, 43),

• squall2sparql (2 errors, questions 49, 59),

• the gold standard (2 errors, question 16, 75),

• the QALD endpoint (1 error, question 92).

Looking at heterogeneity errors in detail, it appears that most of them could be solved
simply by: either adding generic super-properties in the DBpedia ontology, or by expand-
ing common words (e.g., location, date) into UNION graph patterns. For example, in
question 39 “Give me all companies in Munich.”, the implicit relation “has location” can
be translated in any of the three RDF properties: dbo:location, dbo:headquarter,
dbo:locationCity. This explains why our reformulation in SQUALL “Give me all

Company-es whose location is res:Munich.” has recall 0.6 only (the default prefix was used for
DBpedia ontology, so that location stands for dbo:location). If location, or another
property, was defined as a super-property of the other properties, the same SQUALL
question would have recall 1. Alternatively, assuming linguistic knowledge, the word
“location” could be mapped to the graph pattern

{ ?x dbo:location ?y }

UNION { ?x dbo:headquarter ?y }

UNION { ?x dbo:locationCity ?y }

35

where ?x and ?y respectively stand for the subject and object of the relation. Such graph
patterns could easily be exploited in the translation from the intermediate representation
to SPARQL without the need to change the SQUALL language and its parsing.

Another problem related to heterogeneity is that some expected domain and range
axioms are not verified in some cases. For example, in question 19 “Give me all people that

were born in Vienna and died in Berlin.”, 2 out of the 6 expected answers are not instances
of the class Person. This is why our reformulation “Give me all Person-s whose birthPlace is

res:Vienna and whose deathPlace is res:Berlin.” missed 2 answers, even though it is arguably
equivalent to the original formulation.

The errors coming from the reformulation of questions are due to the misspelling or
misunderstanding of URIs. In question 14, res:Prodigy was used instead of res:The Prodigy.
In question 43, the property dbp:breed was used in the wrong direction.

The errors coming from squall2sparql are due to an incorrect translation of the
special verb “share”. For example, Question 49 “Which other weapons did the designer of

the Uzi develop?” was reformulated as “Which Weapon shares the dbp:designer with res:Uzi?”,
which returns Uzi itself as an answer. Another possible reformulation is “Which Weapon

has the same dbp:designer as res:Uzi?”, but it exhibits the same error.
The error from the endpoint is because the BIND construct of SPARQL is not (yet)

supported by the QALD-3 endpoint. It is possible to write the SPARQL query to avoid
it, but squall2sparql relies on it to simplify the translation from SQUALL. Note that
the correct answers are returned when using the official DBpedia endpoint.

8. Related work

In their evaluation of Natural Language Interfaces (NLI) and interfaces for the Seman-
tic Web, Kaufmann and Bernstein [12] compare the usability of different approaches on
a natural-formal scale (the Formality Continuum). This scale ranges from spontaneous
natural language to formal query language, with Controlled Natural Language (CNL)
in between. For formal languages (e.g., SPARQL) or CNLs, the lack of naturalness
is compensated by assisting users in the formulation of queries (e.g., auto-completion).
Interestingly, the participants of the QALD-3 challenge [14] cover a wide range of the for-
mality continuum, even if most of them (4/6) fall in the “spontaneous natural language”
category. We discuss each category in turn, starting with QALD-3 participants.

Spontaneous natural language. QALD-3 participants in this category are: CASIA [35]
(F-measure = 0.36), RTV [36] (F-measure = 0.33), Intui2 [37] (F-measure = 0.32), and
SWIP [38, 39] (F-measure = 0.17). Many other systems have been developed: e.g., Pow-
erAqua [11], QAKiS [40], FREyA [10]. While they differ a lot in the details, they all share
a similar architecture. First, a syntactic analysis is performed, usually based on standard
NLP tools (e.g., Stanford NLP tools), in order to identify entities and relationships, and
to generate a few triples. Second, a mapping from lexical forms to semantic forms is
searched with the help of external resources, which are both linguistic (e.g., WordNet,
Wikipedia, relational patterns), and ontologic (e.g., fixed ontology, Watson). Finally,
one or several SPARQL queries are generated and ranked. In some cases, answers are
directly produced and ranked without using a SPARQL query explicitly. Most of the
effort is generally spent on the semantic mapping, and only a shallow syntactic parsing
is performed. From QALD-3 results, CASIA and SWIP generate only 2-triples queries

36

(which cover 74 test questions), and RDF and Intui2 only 1-triple queries (60 questions).
Only RTV supports counting (4 questions), and none of them supports comparatives (6
questions) or superlatives (6 questions). Among their wrong or missing results, roughly
half can be accounted on syntax, and half on semantic mapping.

Controlled natural language. SQUALL is the only QALD-3 participant in this category (a
former version of SWIP took part in QALD-1 as a CNL). It focuses on syntactic analysis,
and SPARQL generation, and completely ignores (so far) semantic mapping. Therefore, it
relies on a reformulation of original questions in the vocabulary of the target RDF dataset,
and its score in the challenge (F-measure = 0.90) is hence not directly comparable to
other participants’ score. However, it demonstrates that complex natural questions can
be reliably translated to SPARQL. SQUALL better handles complex syntactic constructs
such as nested relative clauses, and coordinations. It can generate arbitrarily many
triples, it supports all features of QALD questions (comparatives, superlatives, counting),
and more (disjunction, negation, other aggregations, updates, etc.). Many CNLs have
been defined in the past decades [17], but SQUALL is the only one that targets SPARQL
queries and updates. Other CNLs for the Semantic Web rather target ontological axioms
(facts and rules). ACE [19] is a general purpose CNL that can target various formalisms,
and there are a number of more specialized CNLs targeting OWL axioms (e.g., SOS,
Rabbit) [20]. In Kuhn’s survey [17], SQUALL is evaluated as having: a high precision
(P 5), a medium expressiveness compared to NL (E3), natural sentences (N4), and a
short description (S4). In comparison, a natural language is evaluated as P 1E5N5S1,
i.e., maximally expressive and natural, but minimally precise and short-defined; and
SPARQL is evaluated as P 5E3N1S5.

Guided navigation. Scalewelis [41] (F-measure = 0.33) is the only QALD-3 participant
based on guided navigation. Like SQUALL, it is based on a reformulation of original
queries, but users are guided step by step, and do not have to actually write the query.
Guidance is based on actual data in the RDF store, and follows the principles of Query-
based Faceted Search (QFS) [8], which allows for more expressiveness than other seman-
tic faceted search systems (e.g., SlashFacet [6], BrowseRDF [7]). At each step, users are
given a choice of relevant classes, properties, and entities to be inserted in the query
under construction. Scalewelis’ query language is a subset of SQUALL that supports
nested relative clauses and conjunctive coordinations, but none of comparisons, superla-
tives, and aggregations. Errors in the QALD-3 challenge are explained by the lack of
expressivity, and by the high heterogeneity of DBpedia’s vocabulary. Ginseng [13], resp.
GINO [42], guides users in the input of queries, resp. resource descriptions, through auto-
completion of CNL sentences. However, their expressiveness is lower than SQUALL, and
their guidance is based on an ontology rather than on actual data, which is less precise
and requires a well-defined ontology.

9. Conclusion and perspectives

In the spectrum that goes from full natural language to formal languages like
SPARQL, SQUALL (Semantic Query and Update High-Level Language) occupies a
unique position. It offers the same expressiveness as SPARQL for querying and up-
dating RDF data, and still qualifies as a controlled natural language (CNL). This means

37

that among the natural language interfaces, SQUALL is the one that is by far the most
expressive; and that among the formal languages, SQUALL is the one that is the most
natural. The current limit of SQUALL is that end-users have to comply with its con-
trolled syntax, and have to know the RDF vocabulary (i.e., Which are the classes and
properties?). However, the important result is that SQUALL can be used as a substitute
for SPARQL because this entails no loss, neither in expressiveness, nor in precision.

Most existing systems try and solve the query answering challenge by addressing
all aspects at once: syntactic analysis, mapping from lexical forms to semantic forms,
contextual disambiguation, and SPARQL generation. We think that it may be more
efficient, and that it would facilitate collaboration, to address those aspects separately.
We have shown in this paper that syntactic analysis and SPARQL generation can reach
the expressivity of SPARQL, while retaining a high level of naturalness (at the syntactic
level). Future work will consist in integrating SQUALL with existing results about other
aspects:

• using domain-specific lexicons instead of the default one. Such lexicons may be con-
structed manually, or generated automatically [43]. There is an RDF vocabulary,
Lemon [44], to represent and share such lexicons.

• applying mapping techniques on the intermediate representation. SQUALL’s inter-
mediate representation is compatible with those of OQA systems, only being more
complex combinations of triple patterns. In simple cases, mapping simply replaces
words by URIs (e.g., “mayor” by dbo:leader). In more complex cases, mapping
may replace combinations of triples by other combinations of triples (e.g., a count
of “entrances” by the property dbp:entranceCount).

• using SQUALL as an intermediate representation. If full natural language is to be
accepted as input, a solution is to use mature NLP tools (e.g., Stanford NLP parser)
to parse a spontaneous sentence, and then translate the resulting dependency graph
to SQUALL, which is arguably much closer to NL than SPARQL is.

• using guided input and dialog. Grammar-based guided input (auto-completion)
ensures that only syntactically correct sentences are entered by users [13]. Another
possible approach is to use query-based faceted search, which combines the guided
exploration of faceted search and the expressivity of query languages [8]. If a lexicon
is available, it can also ensures that only known words, and hence known concepts,
are used. Finally, if data is available during guided input, it can be queried to
rule out invalid interpretations, and the user can be asked to choose among the
remaining interpretations. The combination of those mechanisms open the door
for a rich dialog between the user and the system, but remains challenging in terms
of complexity and scalability.

Acknowledgement. I would like to thank Christina Unger for fruitful interaction during
the QALD-3 challenge, which helped to improve the system, and the SQUALL language
itself. I also thank Benjamin Sigonneau for his help in the development and deployment
of Web forms, and Jean-Marc Vanel for integrating SQUALL in his tool, EulerGUI, and
for suggesting useful features.

38

References

[1] S. Ferré, SQUALL: a controlled natural language as expressive as SPARQL 1.1, in: E. Métais (Ed.),
Int. Conf. Application of Natural Language to Information Systems (NLDB), LNCS 7934, Springer,
2013, pp. 114–125.

[2] S. Ferré, SQUALL: a controlled natural language for querying and updating RDF graphs, in:
T. Kuhn, N. Fuchs (Eds.), Controlled Natural Languages, LNCS 7427, Springer, 2012, pp. 11–25.

[3] P. Hitzler, M. Krötzsch, S. Rudolph, Foundations of Semantic Web Technologies, Chapman &
Hall/CRC, 2009.

[4] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of SPARQL, in: I. F. C. et al (Ed.),
Int. Semantic Web Conf., LNCS 4273, Springer, 2006, pp. 30–43.

[5] SPARQL 1.1 query language, http://www.w3.org/TR/sparql11-query/, W3C Proposed Recom-
mendation (2012).
URL http://www.w3.org/TR/sparql11-query/

[6] M. Hildebrand, J. van Ossenbruggen, L. Hardman, /facet: A browser for heterogeneous semantic
web repositories, in: I. C. et al (Ed.), Int. Semantic Web Conf., LNCS 4273, Springer, 2006, pp.
272–285.

[7] E. Oren, R. Delbru, S. Decker, Extending faceted navigation to RDF data, in: I. C. et al (Ed.), Int.
Semantic Web Conf., LNCS 4273, Springer, 2006, pp. 559–572.

[8] S. Ferré, A. Hermann, Reconciling faceted search and query languages for the Semantic Web, Int.
J. Metadata, Semantics and Ontologies 7 (1) (2012) 37–54.

[9] V. Lopez, V. S. Uren, M. Sabou, E. Motta, Is question answering fit for the semantic web?: A
survey, Semantic Web 2 (2) (2011) 125–155.

[10] D. Damljanovic, M. Agatonovic, H. Cunningham, Identification of the question focus: Combining
syntactic analysis and ontology-based lookup through the user interaction, in: Language Resources
and Evaluation Conference (LREC), ELRA, 2010.

[11] V. Lopez, M. Fernández, E. Motta, N. Stieler, PowerAqua: Supporting users in querying and
exploring the semantic web, Semantic Web 3 (3) (2012) 249–265.

[12] E. Kaufmann, A. Bernstein, Evaluating the usability of natural language query languages and
interfaces to semantic web knowledge bases, J. Web Semantics 8 (4) (2010) 377–393.

[13] A. Bernstein, E. Kaufmann, C. Kaiser, Querying the semantic web with Ginseng: A guided input
natural language search engine, in: Work. Information Technology and Systems (WITS), 2005.

[14] P. Cimiano, V. Lopez, C. Unger, E. Cabrio, A.-C. N. Ngomo, S. Walter, Multilingual question
answering over linked data (QALD-3): Lab overview, in: P. Forner, H. Müller, R. Paredes, P. Rosso,
B. Stein (Eds.), Information Access Evaluation. Multilinguality, Multimodality, and Visualization
- Int. Conf. CLEF Initiative, LNCS 8138, Springer, 2013, pp. 321–332.

[15] A. Hermann, S. Ferré, M. Ducassé, An interactive guidance process supporting consistent updates
of RDFS graphs, in: A. ten Teije et al. (Ed.), Int. Conf. Knowledge Engineering and Knowledge
Management (EKAW), LNAI 7603, Springer, 2012, pp. 185–199.

[16] N. E. Fuchs, R. Schwitter, Web-annotations for humans and machines, in: E. Franconi, M. Kifer,
W. May (Eds.), European Semantic Web Conference, LNCS 4519, Springer, 2007, pp. 458–472.

[17] T. Kuhn, A survey and classification of controlled natural languages, Computational Linguistics.
[18] P. Smart, Controlled natural languages and the semantic web, Tech. rep., School of Electronics and

Computer Science University of Southampton (2008).
URL http://eprints.ecs.soton.ac.uk/15735/

[19] N. E. Fuchs, K. Kaljurand, G. Schneider, Attempto Controlled English meets the challenges of
knowledge representation, reasoning, interoperability and user interfaces, in: G. Sutcliffe, R. Goebel
(Eds.), FLAIRS Conference, AAAI Press, 2006, pp. 664–669.

[20] R. Schwitter, K. Kaljurand, A. Cregan, C. Dolbear, G. Hart, A comparison of three controlled
natural languages for OWL 1.1, in: K. Clark, P. F. Patel-Schneider (Eds.), Workshop on OWL:
Experiences and Directions (OWLED), Vol. 258, CEUR-WS, 2008.

[21] P. Haase, J. Broekstra, A. Eberhart, R. Volz, A comparison of RDF query languages, in: S. M.
et al. (Ed.), Int. Semantic Web Conf., LNCS 3298, Springer, 2004, pp. 502–517.

[22] D. R. Dowty, R. E. Wall, S. Peters, Introduction to Montague Semantics, D. Reidel Publishing
Company, 1981.

[23] R. Montague, Universal grammar, Theoria 36 (1970) 373–398.
[24] H. Barendregt, The Lambda Calculus, Its Syntax and Semantics, Vol. 103 of Studies in Logic and

the Foundations of Mathematics, Elsevier, 1985.

39

[25] L. Damas, R. Milner, Principal type-schemes for functional programs, in: ACM SIGPLAN-SIGACT
Symp. Principles of Programming Languages, ACM, 1982, pp. 207–212.

[26] D. Biber, S. Johansson, G. Leech, S. Conrad, E. Finegan, Longman grammar of spoken and written
English, Pearson Education Limited, 1999.

[27] P.-Y. Hsu, D. S. P. Jr., Improving SQL with generalized quantifiers, in: P. S. Yu, A. L. P. Chen
(Eds.), Int. Conf. Data Engineering, IEEE Computer Society, 1995, pp. 298–305.

[28] L. Sterling, E. Shapiro, The Art of Prolog, MIT Press, Cambridge (MA), 1986.
[29] P. Wadler, Monads for functional programming, in: Advanced Functional Programming, Springer,

1995, pp. 24–52.
[30] H. Kamp, U. Reyle, From discourse to logic: Introduction to model theoretic semantics of natural

language, formal logic and discourse representation theory, Kluwer, 1993.
[31] R. Muskens, Combining Montague semantics and discourse representation, Linguistics and philos-

ophy 19 (1996) 143–186.
[32] A.-C. N. Ngomo, L. Bühmann, C. Unger, J. Lehmann, D. Gerber, Sorry, I don’t speak SPARQL:

translating SPARQL queries into natural language, in: WWW, 2013, pp. 977–988.
[33] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, S. Hellmann, DBpedia -

a crystallization point for the web of data, Web Semantics: Science, Services and Agents on the
World Wide Web 7 (3) (2009) 154–165.

[34] A. Swartz, Musicbrainz: A semantic web service, Intelligent Systems, IEEE 17 (1) (2002) 76–77.
[35] S. He, S. Liu, Y. Chen, G. Zhou, K. Liu, J. Zhao, CASIA@QALD-3: A question answering system

over linked data, in: C. U. et al. (Ed.), Work. Multilingual Question Answering over Linked Data
(QALD-3), 2013.
URL http://www.clef2013.org

[36] C. Giannone, V. Bellomaria, R. Basili, A HMM-based approach to question answering against linked
data, in: C. U. et al. (Ed.), Work. Multilingual Question Answering over Linked Data (QALD-3),
2013.
URL http://www.clef2013.org

[37] C. Dima, Intui2: A prototype system for question answering over linked data, in: C. U. et al. (Ed.),
Work. Multilingual Question Answering over Linked Data (QALD-3), 2013.
URL http://www.clef2013.org

[38] C. Pradel, G. Peyet, O. Haemmerlé, N. Hernandez, SWIP at QALD-3: Results, criticisms and
lesson learned, in: C. U. et al. (Ed.), Work. Multilingual Question Answering over Linked Data
(QALD-3), 2013.
URL http://www.clef2013.org

[39] F. Amarger, O. Haemmerlé, N. Hernandez, C. Pradel, Taking SPARQL 1.1 extensions into account
in the SWIP system, in: H. D. Pfeiffer, D. I. Ignatov, J. Poelmans, N. Gadiraju (Eds.), Int. Conf.
Conceptual Structures, LNCS 7735, Springer, 2013, pp. 75–89.

[40] E. Cabrio, J. Cojan, A. P. Aprosio, B. Magnini, A. Lavelli, F. Gandon, QAKiS: an open domain
QA system based on relational patterns, in: B. Glimm, D. Huynh (Eds.), Int. Semantic Web Conf.
(Posters & Demos), Vol. 914 of CEUR Workshop Proceedings, 2012.

[41] J. Guyonvarch, S. Ferre, M. Ducassé, Scalable Query-based Faceted Search on top of SPARQL
Endpoints for Guided and Expressive Semantic Search, Research report PI-2009, IRISA (2013).
URL http://hal.inria.fr/hal-00868460

[42] A. Bernstein, E. Kaufmann, GINO - a guided input natural language ontology editor, in: I. F. C.
et al. (Ed.), Int. Semantic Web Conf., LNCS 4273, Springer, 2006, pp. 144–157.

[43] S. Walter, C. Unger, P. Cimiano, A corpus-based approach for the induction of ontology lexica,
in: Int. Conf. Applications of Natural Languages to Information Systems (NLDB), LNCS 7934,
Springer, 2013, pp. 102–113.

[44] J. McCrae, D. Spohr, P. Cimiano, Linking lexical resources and ontologies on the semantic web with
lemon, in: Extended Semantic Web Conference (ESWC), LNCS 6643, Springer, 2011, pp. 245–259.

40

Abstract. In many domains where information access plays a cen-
tral role, there is a gap between expert users who can ask complex
questions through formal query languages (e.g., SQL), and lay users
who either are dependent on expert users, or must restrict themselves
to ask simpler questions (e.g., keyword search). Because of the formal
nature of those languages, there seems to be an unescapable trade-off
between expressivity and usability in information systems. The ob-
jective of this thesis is to present a number of results and perspectives
that show that the expressivity of formal languages can be reconciled
with the usability of widespread information systems (e.g., browsing,
Faceted Search (FS)). The final aim of this work is to empower people
with the capability to produce, explore, and analyze their data in a
powerful way.

We have proposed a number of theories and implementations to
better reconcile expressivity and usability, and applied them to a
number of contexts going from file systems to the Semantic Web. In
this thesis, we introduce an unifying framework inspired by Formal
Concept Analysis (FCA) to factor out the main ideas of all those
results: Abstract Conceptual Navigation (ACN). The principle of
ACN is to guide users by letting them navigate in a conceptual space
where places are concepts connected by navigation links. Concepts
are characterized by a formal query, and are made of two parts: an
extension and an intension. The extension is made of query results
while the intension is made of the query itself and an index of query
increments over results. Finally, navigation links are formally defined
as query transformations. The conceptual space is not static but is
induced by concrete data, and evolves with it. ACN therefore com-
bines the expressivity of formal query languages with the guidance
of conceptual navigation. The readability of queries is improved by
verbalizing them to (or parsing them from) a Controlled Natural Lan-
guage (CNL). Readability and guidance together support usability by
speaking user’s language, and by providing a systematic assistance.

	Foreword
	Synthesis
	Introduction
	State of the Art
	Query Languages
	Navigation Structures
	Interactive Views
	Summary and Comparison

	Main Contributions
	Abstract Conceptual Navigation (ACN)
	Logical Concept Analysis (Camelis)
	Cubes of Concepts (Abilis)
	Query-based Faceted Search (Sewelis)
	Updating Through Interaction (Utilis)
	Possible World Exploration (PEW)
	An Expressive CNL for the Semantic Web (Squall)

	Conclusion and Perspectives
	Theoretical Perspectives
	Applicative Perspectives

	References
	Index
	Acronyms
	Introduction to Logical Information Systems (2004)
	Camelis: a Logical Information System to Organize and Browse a Collection of Documents (2009)
	Reconciling Faceted Search and Query Languages for the Semantic Web (2012)
	SQUALL: a Controlled Natural Language as Expressive as SPARQL 1.1 (2014)

