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Abstract
Until the advent of non-invasive neuroimaging modalities the knowl-

edge of the human brain came from the study of its lesions, post-mortem
analyses and invasive experimentations. Nowadays, modern imaging tech-
niques such as fMRI are revealing several aspects of the human brain with
progressively high spatio-temporal resolution. However, in order to answer
increasingly complex neuroscienti�c questions the technical improvements
in acquisition must be matched with novel data analysis methods. In this
thesis we examine di�erent applications of machine learning to the process-
ing of fMRI data. We propose novel extensions and investigate the theoret-
ical properties of di�erent models.

Often the data acquired through the fMRI scanner follows a feature ex-
traction step in which time-independent activation coe�cients are extracted
from the fMRI signal. The �rst contribution of this thesis is the introduction
a model named Rank-1 GLM (R1-GLM) for the joint estimation of time-
independent activation coe�cients and the hemodynamic response func-
tion (HRF). We quantify the improvement of this approach with respect to
existing procedures on di�erent fMRI datasets.

The second part of this thesis is devoted to the problem of fMRI-based de-
coding, i.e., the task of predicting some information about the stimuli from
brain activation maps. From a statistical standpoint, this problem is chal-
lenging due to the high dimensionality of the data, often thousands of vari-
ables, while the number of images available for training is small, typically
a few hundreds. We examine the case in which the target variable consist
of discretely ordered values. The second contribution of this thesis is to
propose the following two metrics to assess the performance of a decoding
model: the absolute error and pairwise disagreement. We describe several
models that optimize a convex surrogate of these loss functions and exam-
ine their performance on di�erent fMRI datasets.

Motivated by the success of some ordinal regression models for the task
of fMRI-based decoding, we turn to study some theoretical properties of
these methods. The property that we investigate is known as consistency
or Fisher consistency and relates the minimization of a loss to the minimiza-
tion of its surrogate. The third, and most theoretical, contribution of this
thesis is to examine the consistency properties of a rich family of surro-
gate loss functions that are used in the context of ordinal regression. We
give su�cient conditions for the consistency of the surrogate loss functions
considered. This allows us to give theoretical reasons for some empirically
observed di�erences in performance between surrogates.

Keywords: fMRI, BOLD, HRF, feature extraction, supervised learning,
ranking, ordinal regression, decoding, encoding.
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Notation

Notation Name De�nition

Γ(x ) Gamma function Γ(x ) =
∫ ∞

0 x t−1e−xdx

N (µ,σ 2) Normal distribution with mean µ

and variance σ

‖x‖ or ‖x‖2 Euclidean norm for vectors
√∑

i x
2
i

‖x‖F Frobenius norm of a matrix
√∑

i
∑

j X2
i j

In Identity matrix of size n Ii j = δi j , ∀1 ≤ i , j ≤ n

1n Vector of ones of size n 1i = 1, ∀1 ≥ i ≥ n

tr(A) Trace of a matrix ∑
i Aii

X† Moore-Penrose pseudoinverse Generalized inverse matrix

A ⊗ B Kronecker product of matrices A
and B

vec(A) Vectorization of a matrix Concatenation of the columns of a
matrix into a single column vector

E(X ) Expectation of the random variable
X

∫
XdP

R` (h) Risk of the estimator h EX×Y (`(Y ,h(X )))

H (x ) Heaviside function H (x ) = 1 if x ≥ 0 and 0 otherwise

[k ] Integers from 1 to k [k ] = {1, 2, . . . , k }
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1 Organization and contributions of this thesis

The �rst two chapters of this thesis introduce and de�ne concepts that
will be developed later on. The other chapters can be read independently of
each other. Original contributions and their relative published material are
referenced at the beginning of each chapter.

Chapter 2 - Introduction to Functional MRI

In this chapter we introduce functional magnetic resonance imaging (fMRI)
as a non-invasive functional imaging modality with good spatial resolution
and whole brain coverage. We start by presenting brie�y the main human
brain structures and then reviewing the principal brain imaging techniques
in use nowadays, with special emphasis on fMRI.

The primary form of fMRI measures the oxygen change in blood �ow.
This is known as the the Blood-oxygen-level dependent (BOLD) contrast.
We present a feature extraction model known as the general linear model
(GLM) [Friston et al., 1995] that allows to extract time-independent activa-
tion coe�cient given the BOLD signal and an experimental paradigm. The
di�culty of this process stems from the fact that the BOLD signal does not
increase instantaneously after the stimuli onset nor does it return to base-
line immediately after the stimulus o�set. Instead, the BOLD signal peaks
approximately 5 seconds after stimulation, and is followed by an under-
shoot that lasts as long as 30 seconds. The idealized, noiseless response
to an in�nitesimally brief stimulus is known as the Hemodynamic Response
Function (HRF).

Figure 1.1: The general linear
model (GLM) predicts that the
expected BOLD response to two
overlapping stimuli is the sum of
the two independent stimuli. In
green, the response to the �rst
stimulus that is located at 1 second.
In orange, the response to the sec-
ond stimulus that appears at 6 sec-
onds. In blue, the predicted BOLD
response.

In order to estimate the activation coe�cients, the GLM assumes a linear
time invariant (LTI) relationship between the BOLD signal and the neural
response. This relationship has been reported in a number of studies and
can be summarized as i ) Multiplicative scaling. If a neural response is scaled
by a factor of α , then the BOLD response is also scaled by a factor of α .
ii ) Additivity. If the response of two separate events is known, the signal
for those same events is the sum of the independent signals (Fig. 1.1). iii )
Time invariant. If the stimulus is shifted by t seconds, the BOLD response
will also be shifted by this same amount.

The GLM in its classical formulation assumes a known form for the
hemodynamic response function (HRF). In Chapter 4 we will present an ex-
tension of the GLM model that estimates jointly the activation coe�cients
and the hemodynamic response function.
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Chapter 3 - Statistical Inference in fMRI

In this chapter we present the statistical methods that will be used for draw-
ing conclusions from fMRI experiments in further chapters. The chapter is
divided into two sections. The �rst section summarizes the basics of sta-
tistical hypothesis testing while the second section describes the basics of
supervised machine learning.

Statistical tests can be broadly divided into parametric and nonparamet-
ric tests. Parametric test assume a known probability distribution under
the null hypothesis for the distribution parameter that is under considera-
tion. Nonparametric tests do not assume a known form of this probability
distribution although they might require some regularity conditions on the
distribution such as symmetry. In this chapter we describe two parametric
statistical tests: the t-test and the F -test. We will also present a nonparamet-
ric test: the Wilcoxon signed-rank test. These tests will be used at di�erent
parts of the manuscript. The t and F -test will be used to perform voxel-wise
inference in section 3.1.3 and the Wilcoxon test will be used to compare the
performance of di�erent supervised learning models in Chapter 4, 5 and 6.

Figure 1.2: Statistical Parametric
Maps (SPMs) are images with val-
ues that are, under the null hy-
pothesis, distributed according to
a known probability density func-
tion. In the �gure, a t-map (i.e.
the values are distributed accord-
ing to a Student t distribution) for
a contrast of a Visual vs an Audi-
tory task. Thresholded at p-value
< 10−3. It can be seen how the
voxels that exhibit a higher signi�-
cance of this contrast belong to vi-
sual areas (red) and auditory areas
(blue)

A notable application of parametric statistical tests to fMRI is the creation
of Statistical Parametric Maps (SPMs) (Fig. 1.2). These are images with val-
ues that are, under the null hypothesis, distributed according to a known
probability density function, usually Student t or the F distribution. To cre-
ate such maps, one proceeds by performing a parametric test at each voxel.
The resulting statistics are assembled into an image - the SPM.

In the second part of this chapter we introduce di�erent supervised learn-
ing models that will be used in subsequent chapters. We will consider mod-
els that can be estimated as the solution to a minimization problem of the
form

arg min
f ∈F

Rψn ( f ) + λΩ( f ) ,

where Rψn ( f ) is a data-�tting term that minimizes a surrogate of the loss
function term and Ω( f ) is a regularization term that biases the estimated
model towards a set of desired solutions. This way, the model is a trade-o�
between a data �delity term and a regularization term.

We describe di�erent surrogate loss functions and penalties that have
found applications in the context of fMRI analysis. The surrogate loss func-
tions that we describe here are Support Vector Machines, Logistic Regres-
sion, Support Vector Regression and Least Squares. The penalties that we
consider here are squared �2, �1, elastic-net (�22 + �1) and total-variation (TV).

Finally, we present two applications of supervised learning to reveal
cognitive mechanisms in fMRI studies. The �rst application is commonly
known as decoding or mind reading and consist in predicting the cogni-
tive state of a subject from the activation coe�cients. The neuroscienti�c
questions that decoding is able to address are commonly shaped within the
statistical hypothesis testing framework. The inference that we want to es-
tablish is whether the classi�er trained on data from a given brain area of
one subject is accurate enough to claim that the area encodes some infor-
mation about the stimuli. In this setting, the null hypothesis is that a given
brain area does not contain stimuli-related information. The ability of the
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classi�er to correctly predict some information about the stimuli is consid-
ered a positive evidence in support of the alternate hypothesis of presence
of stimuli-related information within the brain activity. As an application of
decoding, we present the dataset [Borghesani et al., 2014], in which we used
decoding techniques to establish in which regions of the brain it is possible
to decode di�erent aspects of words representing real-world objects.

A di�erent application is known as encoding. Here, the activation coe�-
cients are predicted from some information about the stimuli. The success
of an encoding model depends in great measure on our ability to construct
an appropriate representation of the stimuli, a transformation that is often
nonlinear. For example, Naselaris et al. [2009] constructed two di�erent
models for each voxel: a model based on phase-invariant Gabor wavelets,
and a semantic model that was based on a scene category label for each
natural scene. The authors showed that the Gabor wavelet model provided
good predictions of activity in early visual areas, while the semantic model
predicted activity at higher stages of visual processing.

Encoding and decoding can be seen as complementary operations: while
encoding uses stimuli to predict activity, decoding uses activity to predict
information about the stimuli. Furthermore, encoding o�ers the advantage
over decoding models that they can naturally cope with unseen stimuli.
For example, [Kay et al., 2008] used an encoding model to identify natural
images that the subject had not seen before. In this case, the predicted acti-
vation coe�cients were used to select the image that matched most closely
the measured activation coe�cients.

Chapter 4 - Data-driven HRF estimation for encoding and decoding models

As pointed in Chapter 2, prior to its use statistical inference procedures,
the fMRI data usually goes through feature extraction process that converts
the BOLD time course into time-independent activation coe�cient. This is
commonly achieved using a model known as Linear General Model (GLM).
While this approach has been successfully used in a wide range of studies,
it does su�er from limitations. For instance, the GLM commonly relies on
a data-independent reference form of the hemodynamic response function
(HRF) to estimate the activation coe�cient (also known as canonical or ref-
erence HRF). However it is known that the shape of this response function
can vary substantially across subjects, age and brain regions. This suggests
that an adaptive modeling of this response function can improve the accu-
racy of subsequent analysis.

In this work we propose a model in which a common HRF is shared
across the di�erent stimuli that we denote Rank-1 GLM (R1-GLM). The nov-
elty of our method stems from the observation that the formulation of the
GLM with a common HRF across conditions translates to a rank constraint
on the vector of estimates. This assumption amounts to enforcing the vec-
tor of estimates to be of the form βB = [hβ1, hβ2, · · · , hβk ] for some HRF
h ∈ Rd and a vector of coe�cients β ∈ Rk . More compactly, this can be
written as βB = vec(hβT ). This can be seen as a constraint on the vector
of coe�cients to be the vectorization of a rank-one matrix, hence the name
Rank-1 GLM (R1-GLM).
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Figure 1.3: Image identi�ca-
tion score (higher is better) on
two di�erent subjects from the
�rst dataset and average decoding
score on the second dataset. In
the �rst dataset the metric counts
the number of correctly identi�ed
images over the total number of
images (chance level is 1/120 ≈
0.008). This metric is less sensitive
to the shape of the HRF than the
voxel-wise encoding score. The
bene�ts range from 0.9% points to
8.2% points across R1-constrained
methods and subjects. The high-
est score is achieved by a R1-GLM
method with a FIR basis set for
subject 1 and by a R1-GLMS with
FIR basis for subject 2.

The metric in the second
dataset (decoding task) is Kendall
tau. Methods that perform
constrained HRF estimation sig-
ni�cantly outperform methods
that use a �xed (reference) HRF.
In particular, the best performing
method is the R1-GLM with 3HRF
basis, followed by the R1-GLMS
with 3HRF basis.

In this model, the coe�cients have no longer a closed form expression,
but can be estimated by minimizing the following loss function. Given XB

and y as before, Z ∈ Rn×q a matrix of nuisance parameters such as drift
regressors, the optimization problem reads:

ĥ, β̂ , ω̂ = arg min
h,β ,ω

1
2 ‖y −XB vec(hβT ) − Zω‖2

subject to ‖Bh‖∞ = 1 and 〈Bh, href〉 > 0 ,
(1.1)

The norm constraint is added to avoid the scale ambiguity between h
and β and the sign is chosen so that the estimated HRF correlates positively
with a given reference HRF href. This ensures the identi�ability of the pa-
rameters. The optimization problem (Eq. (1.1)) is smooth and is convex with
respect to h, β and ω, however it is not jointly convex in variables h, β and
ω.

We compare di�erent methods for the joint estimation of HRF and ac-
tivation coe�cients in terms of their score for an encoding and an encod-
ing task. The methods we considered are standard GLM (denoted GLM), a
variant of the GLM that improves estimation in highly correlated settings
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known as GLM with separate designs (GLMS), Rank-1 GLM (R1-GLM) and
Rank-1 GLM with separate designs (R1-GLMS). For all these models we con-
sider di�erent basis sets for estimating the HRF: a set of three elements
formed by the reference HRF and its time and dispersion derivative, a FIR
basis set (of size 20 in the �rst dataset and of size 10 in the second dataset)
formed by the canonical vectors and the single basis set formed by the ref-
erence HRF (denoted “�xed HRF”), which in this case is the HRF used by
the SPM 8 software.

We consider two di�erent datasets. The �rst dataset is presented in [Kay
et al., 2008] where it is investigated using an encoding paradigm. The sec-
ond dataset has been presented in [Jimura and Poldrack, 2011] and is natu-
rally investigated using a decoding paradigm. The scores obtained in both
datasets can be seen in Figure 1.3. In both cases, the proposed method (R1-
GLM or its variant R1-GLMS) achieve the highest scores. The results pre-
sented in this chapter have been published in [Pedregosa et al., 2014].

Chapter 5 - Decoding with Ordinal Labels

We have presented in Chapter 3 the decoding problem in fMRI. In this set-
ting it is often the case that the target variable consist of discretely ordered
values. This occurs for example when target values consists of human gen-
erated ratings, such as values on a Likert scale, size of objects (Fig. 1.4), the
symptoms of a physical disease or a rating scale for clinical pain measure-
ment.

Figure 1.4: In [Borghesani et al.,
2014], the authors investigated the
possibility to predict di�erent as-
pects of the words subjects were
reading while undergoing an fMRI
acquisition. One of the problems
we investigated is to predict the
size of the objects that the words
refer to. In this case, the di�er-
ent stimuli are ordered according
to their relative size, i.e. hammer is
smaller than cow which is smaller
than a whale, etc. In this case, the
target variable is of ordinal nature.

In this chapter we propose the usage of two loss functions to assess the
performance of a decoding model when the target consist of discretely or-
dered values: the absolute error and pairwise disagreement. These two loss
functions emphasize di�erent aspects of the problem: while the absolute
error gives a measure of the distance between the predicted label and the
true label, the pairwise disagreement gives a measure of correct ordering
of the predicted labels. These loss functions lead to two di�erent super-
vised learning problems. The problem in which we seek to predict a label
as close as possible to the correct label is known as ordinal regression while
the problem of predicting ordering as close as possible to the true ordering
of a sequence of labels is traditionally known as ranking.

The �rst models speci�cally tailored for the problem of ordinal regres-
sion date back to the proportional odds and proportional hazards models
of [McCullagh, 1980]. We present three di�erent surrogate loss functions
of the absolute error: least absolute error, ordinal logistic regression and
cost-sensitive multiclass classi�cation.

Ranking models were introduced chronologically later than ordinal re-
gression but its popularity has grown in recent years thanks to its applica-
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Figure 1.5: Generalization errors
(lower is better) for three fMRI de-
coding problems. Two di�erent
metrics are used corresponding to
the rows in the �gure: mean abso-
lute error and mean pairwise dis-
agreement. The ∗ symbol repre-
sents the p-value associated with
a Wilcoxon signed-rank test. This
test is used to determine whether a
given method outperforms signif-
icantly the next best-performing
method.

bility to information retrieval (and search engines in particular) [Liu, 2009].
To the best of my knowledge, the �rst attempt to minimize a convex surro-
gate of the pairwise disagreement appears is due to Herbrich et al. [1999].
We consider a model that minimizes a surrogate of the pairwise disagree-
ment: the RankLogistic model. This model can be viewed as a modi�cation
of the popular RankSVM model [Herbrich et al., 1999, Joachims, 2002].

The choice of either metric (absolute error or pairwise disagreement)
will depend on the problem at hand. For example, in clinical applications
it is often desirable to predict a label as close as possible to the true label,
in which case the absolute error is the appropriate metric. If however, the
purpose of the decoding study is to perform a statistical hypothesis test
to claim that the area encodes some information about the stimuli, then
the pairwise disagreement can be an appropriate measure [Pedregosa et al.,
2012, Borghesani et al., 2014, Bekhti et al., 2014].

We examine their generalization error on both synthetic and two real
world fMRI datasets and identify the best methods for each evaluation met-
ric (Fig. 1.5). Our results show that when considering the absolute error
as evaluation metric, the least absolute error and the logistic ordinal model
are the best performing methods. On the other hand, when considering
the mean pairwise disagreement the RankLogistic was the best performing
method. For neuroimaging studies, this contribution outlines what in our
opinion are the best models to choose when faced with a decoding problem
in which the target variables are naturally ordered.
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Chapter 6 - Fisher Consistency of Ordinal Regression Methods

Ordinal regression is the supervised learning problem of learning a rule to
predict labels from an ordinal scale. Some ordinal regression models have
been used in Chapter 5 to model the decoding problem when the target
variable consist of ordered values.

Motivated by its applicability to decoding studies we turn to study some
theoretical properties of these methods. The aim is that a theoretical ap-
proach can provide a better understanding the methods at hand. For exam-
ple, Chu and Keerthi [2005] proposed two di�erent models for the task of
ordinal regression: SVOR with explicit constraints and SVOR with implicit
constraints. In that work, the second approach obtained better generaliza-
tion error in terms of the absolute error loss function. Similar results were
obtained by Lin and Li [2006] replacing the hinge loss by an exponential
loss. Yet again, Rennie and Srebro [2005] arrived to similar conclusions
considering the logistic loss instead. Given these results, it seems natural to
ask: is this coincidence or are there theoretical reasons for this behavior?
We will use the result of this chapter to provide an a�rmative answer to
this last question.

Many of the ordinal regression models that have been proposed in the
literature can be viewed as methods that minimize a convex surrogate of the
zero-one, absolute (as outlined in Chapter 5), or squared errors. In this chap-
ter we investigate some theoretical properties of ordinal regression meth-
ods. The property that we will investigate is known as Fisher consistency
and relates the minimization of a given loss to the minimization of its sur-
rogate.

We consider a rich family of loss functions for ordinal regression. We fol-
low [Li and Lin, 2007] and determine as admissible loss functions of ordinal
regression those that verify the V-shape property, a condition that includes
to the best of my knowledge all popular loss functions that have been used
in the context of ordinal regression: absolute error, squared error and 0-1
loss.

In order to introduce the notion of consistency we must �x some no-
tation. In the supervised learning setting, we are given a set of n obser-
vations {(X1,Y1), . . . , (Xn ,Yn )} drawn i.i.d. from X × Y and a loss function
` : Y ×Y → [0,∞). The goal is to learn from the training examples a mea-
surable mapping called a classi�er h : X → Y so that the risk given below
is as small as possible:

R` (h) = EX×Y (`(Y ,h(X ))) . (1.2)

Attempting to directly minimize the risk is not feasible in practice. First,
the probability distribution P is unknown and the risk must be minimized
approximately based on the observations. Second, due to the non-convexity
and discontinuity of `, the risk is di�cult to optimize and can lead to an
NP-hard problem. It is therefore common to approximate ` by a function
ψ : Y ×Rd → R, called a surrogate loss function, which has better com-
putational properties. The goal becomes to �nd the decision function f that
minimizes instead theψ -risk, de�ned as

R
ψ
n ( f ) = EX×Y (ψ (Y , f (X ))) . (1.3)
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Fisher consistency is a desirable property for surrogate loss functions.
It implies that in the population setting, i.e., if the probability distribution
P were available, then optimization of the ψ -risk would yield a function
(not necessarily unique) with smallest possible risk, known as Bayes pre-
dictor and denoted by h∗. This implies that within the population setting,
the minimization of the ψ -risk and the minimization of the risk both yield
solutions with same risk.

0-1 Error

(1, 0, 0) (0, 0, 1)

(0, 1, 0)

(.5, 0, .5)

(.5, .5, 0) (0, .5, .5)

h∗(x)=1

h∗(x)=2

h∗(x)=3

0-1 Error

Absolute Error

(1, 0, 0) (0, 0, 1)

(0, 1, 0)

(.5, 0, .5)

(.5, .5, 0) (0, .5, .5)

h∗(x)=1

h∗(x)=2

h∗(x)=3

Absolute Error

Squared Error

(1, 0, 0) (0, 0, 1)

(0, 1, 0)

(.75, 0, .25) (.25, 0, .75)

(.5, .5, 0) (0, .5, .5)

h∗(x)=1 h∗(x)=2 h∗(x)=3

Squared Error

Figure 1.6: Bayes predictor can be
visualized on the probability sim-
plex. Bayes predictor is a func-
tion of the conditional probability
ηi (x ) = P (y = i |X =x ). The vector
(η1, . . . ,ηk ) belongs to the proba-
bility simplex of Rn , which is con-
tained within an hyperplane of di-
mension k − 1. In the �gure, prob-
ability simplex in R3 is colored ac-
cording to the output of Bayes pre-
dictor.

In this chapter we provide a theoretical analysis of the Fisher consis-
tency properties of a rich family of ordinal regression surrogate loss func-
tions, including proportional odds and support vector ordinal regression.
The loss functions that we considered can be divided into three categories:
regression-based, threshold-based and classi�cation-based.

Regression-based loss function. The regression-based approach treats
the labels as real values. It uses a standard regression algorithm to learn
a real-valued function, and then predicts by rounding to the closest label.
In this setting we will examine consistency of two di�erent surrogate loss
functions, the absolute error (that we will denoteψA ) and the squared error
(denotedψS), which are convex surrogates of `A and `S , respectively. Given
α ∈ R, y ∈ [k ], these are de�ned as

ψA (y,α ) = |y − α |, ψS (y,α ) = (y − α )2 .

We prove that theψA surrogate is consistent with respect to the absolute
error and that the ψS surrogate is consistent with respect to the squared
error. Consistency ofψA was already proven by [Ramaswamy and Agarwal,
2012] for the case of 3 classes. Here we give an alternate simple proof that
extends beyond k > 3.

Threshold-based loss function. While the regression-based loss func-
tions may lead to optimal predictors when no constraint is placed on the re-
gressor function space as we will see, in practice only simple function spaces
are explored such as linear or polynomial functions. In these situations, the
regression-based approach might lack �exibility. Threshold-based loss func-
tions provide greater �exibility by seeking for both a mapping f : X → R

and a non-decreasing vector θ ∈ Rk−1, often referred to as thresholds, that
map the class labels into ordered real values. In this context of we consider
two di�erent families of surrogate loss functions: the cumulative link sur-
rogates and the margin-based surrogates. The �rst family of surrogate loss
function that we will consider is the cumulative link surrogates. In such
models the posterior probability is modeled as P (Y ≤ i |X = x ) = σ (дi (x )),
where σ is an appropriate link function. We will prove consistency for
the case where σ is the sigmoid function, i.e., σ (t ) = 1/(1 + exp(−t )).
This model is known as the proportional odds model or cumulative logit
model [McCullagh, 1980]. For x ∈ X,y ∈ [k ] and αi = дi (x ), the pro-
portional odds surrogate (denotedψC) is de�ned as

ψC (y,α ) =




− log(σ (α1)) if y = 1
− log(σ (αy ) − σ (αy−1)) if 1 < y < k

− log(1 − σ (αk−1)) if y = k .

(1.4)
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The other family of surrogates, the margin-based surrogates (denoted ψ `
M

)
depends on a V-shaped loss function ` and is given by

ψ `
M
(y,α ) =

y−1∑
i=1

∆`(y, i )ϕ (αi ) −
k−1∑
i=y

∆`(y, i )ϕ (−αi ) .

where ∆`(y, i ) is the forward di�erence with respect to the second parame-
ter, de�ned as ∆`(y, i ) = `(y, i + 1) − `(y, i ). This formulation parametrizes
several popular approaches to ordinal regression. For example, let ϕ be
the hinge loss and ` the zero-one loss, then ψT

`
coincides with the Sup-

port Vector Ordinal Regression (“explicit constraints” variant) of [Shashua
and Levin, 2003, Chu and Keerthi, 2007]. If instead the mean absolute loss is
considered, this approach coincides with the “implicit constraints” formula-
tion of the same reference. For other values of ϕ and ` this loss includes the
approaches proposed in [Shashua and Levin, 2003, Chu and Keerthi, 2005,
Rennie and Srebro, 2005, Lin and Li, 2006].

Classi�cation-based loss function Since we aim at predicting a �nite
number of labels with a speci�c loss functions, it is also possible to use
generic multiclass formulations such as the one proposed in [Lee et al., 2004]
which can take into account generic losses. Given ϕ a real-valued function,
this formulations considers the following surrogate

ψ `
L
(y,α ) =

k∑
i=1
`(y, i )ϕ (−αi ) (1.5)

for α ∈ Rk such that ∑k
i=1 αi = 0. The prediction function in this case

is given by pred(α ) = arg maxi ∈[k ] αi . Note however that this method re-
quires the estimation ofk − 1 decision functions. For this reason, in practical
settings threshold-based are often preferred as these only require the esti-
mation of one decision function and k − 1 thresholds.Consistency results
of this surrogate was proven by Zhang [2004], so we will limit ourselves
to compare their results to our �ndings of consistency for threshold-based
surrogates in Section 6.3.6.

For all the surrogates considered, we either prove consistency or provide
su�cient conditions under which these approaches are consistent. Finally,
we illustrate our �ndings by comparing the performance of two methods
on 8 di�erent datasets. Although the conditions for consistency that are
required by the underlying probability distribution are not necessarily met,
we observed that methods that are consistent w.r.t a given loss often out-
perform other methods that are not consistent with respect to that loss.

Chapter 7 - Conclusion and Perspectives

We summarize the contributions of this thesis and point out possible exten-
sions that can be considered in the future. These are:

1. For the R1-GLM model introduced in Chapter 4 we outline a possible
direction to improve its computational properties by means of tensor
factorizations.
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2. For the R1-GLM we outline an approach to consider a common HRF at
the parcel level. This would allow the model to take advantage of the
spatially dependent nature of fMRI.

3. The R1-GLM model, being non-convex, comes with no guarantees of
convergence to a global optimum for the algorithms considered. We pro-
pose to study conditions under which the model is guaranteed to have a
unique global optimum.

4. Some of the results presented in Chapter 6 are valid under restrictive
conditions on the probability distribution that generates the data. We
propose to extend these results to a more general setting by relaxing
some of the conditions imposed to achieve consistency of some models.

5. We report the possibility to apply ordinal regression methods to 0-1 mul-
ticlass classi�cation. Although ordinal regression methods have been
initially developed for loss functions that minimize a distance between
the labels (typically the absolute error loss), our theoretical results show
that some popular models are instead consistent with the 0-1 loss. This
suggest that these methods might be competitive within a multiclass
classi�cation setting. A potential advantage of these methods compared
to other multiclass classi�cation methods is the lower amount of param-
eters to estimate.
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2 Introduction to Functional MRI

In this chapter we introduce functional magnetic resonance imaging
(fMRI). We will start by providing some insight into human brain structure
and function. Then, we will introduce the principal brain imaging tech-
niques in use nowadays. Di�erent imaging techniques can be used to an-
swer di�erent neuroscienti�c questions. Functional MRI, due to its good
spatial resolution and whole brain coverage is specially well suited to an-
swer questions relating the localization of brain activity for a given task.

Before the data acquired through fMRI can be used in statistical anal-
ysis it has to go through a preprocessing pipeline. In the last part of this
chapter we detail the di�erent steps of this pipeline, with special empha-
sis on the general linear model (GLM), a model that allows to extract time-
independent activation coe�cients from the fMRI time series in event-related
designs. These activation coe�cients will form the basis of statistical stud-
ies presented in later chapters.
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2.1 General brain structures

The human brain has a volume of around 1200 cm3 and an average weight
of 1.5 kg. It is composed of neurons, glia cells and blood vessels. Glia cells
are responsible for the structural and metabolic support of neurons. About
86 billion neurons [Azevedo et al., 2009] process and transmit information
through electrical and chemical signals. The information is transmitted
along the neuron by action potentials (also called spikes), that are short-
lasting electrical events in which the electrical membrane potential of a cell
rapidly rises and falls.

Figure 2.1: Schematic view of
a neuron, in scale 105 : 1. A
neuron has a cell body (soma),
many regions for receiving in-
formation from other neural
cells (dentrites) and often a nerve
�ber called axon. Adapted from
http://commons.wikimedia.org/.

A neuron (Fig. 2.1) has a cell body (called the soma), many regions for
receiving information from other neural cells (called dendrites), and often
an axon (nerve �ber) for transmitting information to other cells. Neurons
communicate with one another via chemical synapses, where the axon ter-
minal of one cell impinges upon another neuron’s dendrite, soma or, less
commonly, axon. Neurons can have over 1000 dentritic branches, making
connections with tens of thousands of other cells. Synapses can be exci-
tatory or inhibitory and either increase or decrease activity in the target
neuron. Some neurons also communicate via electrical synapses, which are
direct, electrically conductive junctions between cells.

Figure 2.2: Santiago Ramón y
Cajal (Navarre, Spain 1852 –
Madrid, Spain 1934) is widely
regarded as the father of modern
neuroscience. Cajal and italian
anatomist Camillo Golgi imper-
sonated the dispute between
neuron and reticular theory at the
turn of the 20th century. They
received a joint Nobel Prize in
Physiology and Medicine in 1906.

The human brain can be decomposed in two parts: the white matter,
constituted by the nerve �bers, and the gray matter constituted by the neu-
ral cell bodies. The surface of the human brain is a highly circonvoluted
6-layered structure called neocortex (or more simply cerebral cortex). This
layer is folded in a way that increases the amount of surface that can �t into
the volume available. A cortical fold is called sulcus, and the area between
two sulci is called a gyrus.

The human cortex is often divided into four “lobes”, called the frontal
lobe, parietal lobe, temporal lobe and occipital lobe (see Figure 2.3). The left
and right side hemispheres of the cortex are broadly similar in shape, and
most cortical areas are replicated on both sides. Some areas, however, show
strong lateralization, such as areas that are involved in language, located in
the vast majority of subject in the left hemisphere.

How the di�erent anatomical structures of the brain correspond to the
neural substrate of cognitive functions is one of the oldest debates in neuro-
science, de�ning an entire �eld: cognitive neuroscience. The idea of linking
a given cognitive function to a speci�c brain region can be traced back to
the work of nineteen century phrenologists, who based their localizationist
attempts on the shape of the skull. In the 20th century, a group of neuropsy-
chologists, in absence of direct means to investigate brain activity, studied
patients with cortical damages observing that some focal lesions were as-
sociated with relatively global e�ects on behavior. This lead them to argue
against a strictly localizationist view of brain organization. Nowadays it is
widely recognized that the activity of speci�c brain regions underlie many
cognitive functions (e.g.vision, in occipital areas). At the same time, the
relevance of brain networks encompassing di�erent anatomical regions for
the multimodal integration of features necessary for higher level cognitive
functions (e.g.attention in the fronto-parietal network) [Gazzaniga, 2004]
has been acknowledged.
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Figure 2.3: Lobes and some func-
tional regions of the human brain
(left hemisphere). Within each
lobe are numerous cortical areas,
each associated with a particular
function such as sensory areas (e.g.
visual cortex, auditory cortex) that
receive and process information
from sensory organs, motors areas
(e.g. primary motor cortex, premo-
tor cortex) that control the move-
ments of the subject, and associa-
tive areas (e.g. Broca’s area, Lat-
eral Occipital Complex – LOC –
or Intra Parietal Sulcus – IPS –)
that process the high-level infor-
mation related to cognition. The
experiments detailed in this the-
sis are related to object recogni-
tion (visual cortex and LOC) and
number processing (parietal cor-
tex and IPS). Source: adapted from
[Michel, 2010].

2.2 Functional neuroimaging modalities

Until the advent in the 1920s of non-invasive neuroimaging modalities, most
of the accumulated knowledge of the brain came from the study of lesions,
post-mortem analysis and invasive experimentations. With the advent of
modern, non-invasive imaging techniques, several aspects of the human
brain are revealed in vivo with high degree of precision.

Several brain imaging techniques are available today. These can be di-
vided into structural or anatomical and functional imaging techniques. While
structural imaging provides details on morphology and structure of tis-
sues, functional imaging reveals physiological activities such as changes
in metabolism, blood �ow, regional chemical composition, and absorption.
In this section we will discuss brie�y the main functional neuroimaging
modalities available today.

• Electroencephalography - EEG is a widely used modality for func-
tional brain imaging. EEG measures electrical activity along the scalp.
EEG activity re�ects the synchronous activity of a population of neu-
rons that have similar spatial orientation. If the cells do not have simi-
lar spatial orientation, their ions do not line up and thus do not create
detectable waves. Pyramidal neurons of the cortex are thought to pro-
duce most of the EEG signals because they are well-aligned and �re to-
gether. Because voltage �elds fall o� with the square of distance, activity
from deep sources is more di�cult to detect than currents near the skull.
Due to the ill-posed problem of volumetric data reconstruction from sur-
face measurements, EEG has a poor spatial resolution compared to other
modalities such as fMRI.

• Stereotactic electroencephalography - sEEG is an invasive version
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of EEG, based on intra-cranial recording. It measures the electrical cur-
rents within some regions of the brain using deeply implanted electrodes,
localized with a stereotactic technique. This approach has the good tem-
poral resolution of EEG and enjoys an excellent spatial resolution. How-
ever, sEEG is very invasive and is only performed for medical purpose
(e.g localization of epilepsy foci) and has a limited coverage (only the re-
gions with electrodes). A close approach is Electrocorticography – ECog –
that uses electrodes placed directly on the exposed surface of the brain.
Even in this case its usage is restricted to medical purposes.
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Figure 2.4: Magnetic �eld mea-
sured with MEG on a somato-
sensory experiment. It is a 2D to-
pography 20 ms after stimulation.
Source: [Gramfort, 2009]

• Magnetoencephalography -MEGmeasures the magnetic �eld induced
by neural electrical activity. The synchronized currents in neurons cre-
ate magnetic �elds of a few hundreds of femto Tesla (f T ) that can be
detected using speci�c devices. Although EEG and MEG signals orig-
inate from the same neurophysiological processes, there are important
di�erences. Magnetic �elds are less distorted than electric �elds by the
skull and scalp, which results in a better spatial resolution of the MEG.
Whereas EEG is sensitive to both tangential and radial components of
a current source in a spherical volume conductor, MEG detects only its
tangential components. Because of this EEG can detect activity both in
the sulci and at the top of the cortical gyri, whereas MEG is most sensi-
tive to activity originating in sulci. EEG is, therefore, sensitive to activity
in more brain areas, but activity that is visible in MEG can be localized
with more accuracy. Note that EEG and MEG can be measured simulta-
neously.

• Positron emission tomography - PET is an imaging modality based
on the detection of a radioactive tracers introduced in the body of the
subject. The tracers (or radionuclide decay) emit a positron which can in
turn emit, after recombination with an electron, a pair of photons that
are detected simultaneously. PET therefore provides a quantitative mea-
surement of the physiological activity. It can also be used for functional
imaging, by choosing a speci�c tracer. In particular, the �uorodeoxyglu-
cose (or FDG), is used for imaging the metabolic activity of a tissue. This
is based on the assumption that areas of high radioactivity are associated
with brain activity. PET has two major limitations: the tracers required
for PET are produced by cyclotrons (a type of particle accelerator), which
implies an heavy logistic. Furthermore, the use of radio-tracers is not
harmless for the health of the subjects so PET is now used for medical
purpose only.

Figure 2.5: PET scan of a human
brain. PET measures indirectly the
�ow of blood to di�erent parts of
the brain, which is, in general, be-
lieved to be correlated with neural
activity. Souce: wikipedia.org

• Single photon emission computed tomography - SPECT is an imag-
ing modality based on the detection of a radioactive tracer. SPECT is sim-
ilar to PET in its use of radioactive tracer material. However, the mea-
sure in SPECT is the direct consequence of the tracer (the tracer emits
gamma radiation), where PET is based on an indirect consequence of the
tracer (positron then gamma radiation). The spatial resolution is slightly
worse than PET. SPECT can be used for functional brain imaging, by us-
ing a speci�c tracer which will be assimilated by the tissue in an amount
proportional to the cerebral blood �ow.
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• Near-infrared spectroscopy - nIRS is a recent modality for medical
imaging. nIRS is based on the fact that the absorption of the light in the
near-infrared domain contains information on the blood �ow and blood
oxygenation level. It is non-ionizing (harmless), and the instruments are
not too expensive. However, the spectra obtained by nIRS can be di�cult
to interpret, and this technique, which requires a complex calibration,
measures signals only close to the outer layer of the cortex.

• Functional MRI – fMRI is a widely used method for functional brain
imaging, because it is non-invasive, has a good spatial resolution (1mm3),
and provides access, albeit indirectly, to the neural activity. Moreover,
in standard acquisitions, fMRI yields a full-brain coverage, as it does not
restrict the study to super�cial layers or prede�ned regions of the cortex.

Di�erent modalities have di�erent trade o�s in terms of spatial and tem-
poral resolution. For example, EEG and MEG enjoy temporal resolutions of
the order of few miliseconds and are thus well suited for studies of tempo-
ral dynamics of information processing but have limited spatial resolution.
On the other hand, fMRI enjoys a better spatial resolution but the tempo-
ral resolution is around 1 second. Furthermore, as we will see in the next
section, temporal resolution in fMRI is further limited by the slow spread
of hemodynamic response, which lasts around 20 seconds after the stimuli
presentation.
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Figure 2.6: Spatial and tempo-
ral resolutions of di�erent modali-
ties commonly used for functional
imaging. A typical fMRI acquisi-
tion (as of 2014) enjoys spatial res-
olution of the order of 1 − 3mm3

and temporal resolution of the or-
der of 1-3 seconds.

Certain imaging techniques are more adapted than other to answer cer-
tain neuroscienti�c questions. Due to its good spatial resolution and whole
brain coverage, fMRI is particularly well adapted to localize the e�ect of a
certain experimental condition. This task is not reduced to the construc-
tion of brain maps, but also involves the understanding of the underlying
brain connectivity [Johansen-Berg et al., 2005, Behrens et al., 2006] and the
e�ects regions exert on each other in a certain experimental context [Pes-
siglione et al., 2007, Behrens et al., 2007]. One of the main hopes in func-
tional imagining is that it might be used as an objective diagnosis tool for
several diseases. In particular, the aim is to �nd some biomarkers for psy-
chiatric diseases by comparing di�erent population of patients: this is the
case for autism, schizophrenia or Alzheimer’s disease.



30

2.3 Functional MRI and BOLD signal

The primary form of fMRI measures the oxygen change in blood �ow. This
is known as the Blood-oxygen-level dependent (BOLD) contrast. Other in-
creasingly popular functional MRI method is arterial spin labeling (ASL) [De-
tre et al., 1994, Alsop and Detre, 1998, Williams et al., 1992], which uses ar-
terial water as tracer to measure cerebral blood �ow. Compared to fMRI,
ASL has a lower signal to noise ratio [Detre and Wang, 2002]. However,
ASL provides reliable absolute quanti�cation of cerebral blood �ow with
higher spatial and temporal resolution than other techniques [Borogovac
and Asllani, 2012]. This thesis speci�cally considers BOLD functional MRI
and through the manuscript we use the name functional MRI (fMRI) to de-
note functional MRI based on the BOLD signal.

The BOLD contrast can be explained by considering a protein present
in the blood cells, called hemoglobin. Hemoglobin can bind with oxygen
in order to bring it into the di�erent cells of the organism, this link be-
ing reversible and unstable. Thus, it can be found in two di�erent forms:
oxyhemoglobin (Hb −O2 - giving a bright red color to the blood), its oxy-
genated form, and deoxyhemoglobin (Hb - giving a blue-purple color to the
blood), its deoxygenated form. When the oxyhemoglobin loses its oxygen
atoms and becomes the deoxyhemoglobin, it becomes more a�ected by an
externally applied magnetic �eld (due to the iron oxides). The presence of
deoxyhemoglobin in the blood modi�es the magnetic resonance signal of the
protons of the water molecules surrounding the blood vessels.

Figure 2.7: Illustration of the e�ect
of the CO2 on the BOLD contrast.
Left - Coronal slice showing the
BOLD contrast of an anesthetized
rat which has breathed pure O2.
Right - Coronal slice of the same
rat, showing the BOLD contrast af-
ter respiration of a mixture of 90%
ofO2 and 10% ofCO2 (this mixture
increases the oxygenation of the
venous blood). The arrow shows
the sagittal sinus, which is one of
the major veins of the brain. This
picture shows a strong increase of
intensity in this vein, that illus-
trates that the variation of blood
oxygenation is visible in BOLD
contrast. Adapted from [Ogawa
et al., 1990a].

The di�erence of magnetic susceptibility between the blood vessel and
the surrounding tissues creates inhomogeneities in the magnetic �eld [Thul-
born et al., 1982, Ogawa et al., 1990b] that are quanti�ed by the magnetic
resonance scanner. In the seminal paper [Ogawa et al., 1990a] studied the
variations of BOLD contrast in the brain of an anesthetized rat during the
inhalation of a gas that increases the cerebral blood �ow (CBF ), and thus
blood oxygenation (see Figure 2.7).

The spatial resolution is given by the size of a voxel, a three-dimensional
rectangular cuboid given by a single measure of the scanner. Voxel sizes
range from 4mm to 1mm. Smaller voxels contain fewer neurons on average,
incorporate less blood �ow and hence have less signal to noise ratio than
larger voxels. Smaller voxel size also makes up for longer acquisition time
since this is proportional to the number of voxels per slice and the number
of slices to scan.

The time resolution of an fMRI scanner is given by the repetition time
(TR) of successive image acquisitions. A slice of the volume acquisition has
an acquisition window that is about 20-30ms in duration. For example, in
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the study [Borghesani et al., 2014] we used voxel sizes of 1.5× 1.5× 1.5mm,
82 slices and a repetition time (TR) of 2.3 seconds for a full-brain coverage.
These number are for routine fMRI, however it is possible to change the
tradeo� between spatial and temporal resolution. With the advent of com-
pressed sensing techniques for faster acquisition times [Lustig et al., 2007,
Zong et al., 2014, Chau�ert et al., 2014] and the deployment of scanners with
�elds of 7-Tesla and beyond [Hanke et al., 2014] these numbers are likely to
change in the near future.

2.4 Estimation of activation coe�icients

In this section we present a model that allows to extract time-independent
activation coe�cients relative to a given task given the BOLD time course
and an experimental design. This model is known as the general linear
model [Friston et al., 1995]. We start by describing the hemodynamic re-
sponse function (Section 2.4.1) and then describe an assumption behind the
general linear model, the linear-time-invariant property (Section 2.4.2) be-
tween the BOLD signal and the neural response. The general linear model
is then presented in Section 2.4.3.

The concepts presented in this section will form the basis of the contri-
bution presented in Chapter 4, where we present an extension of the general
linear model that performs the joint estimation of HRF and activation coef-
�cients.

Because it will not be referenced in later chapters we do not mention sev-
eral preprocessing steps that can be applied to the BOLD signal in order to
remove artifacts that might have occurred during acquisition or to enhance
the signal to noise ratio. These include slice-timing correction, motion cor-
rection, spatial normalization and spatial smoothing.

2.4.1 Hemodynamic response function (HRF)

One of the di�culties associated with fMRI studies is that BOLD signal does
not increase instantaneously after the stimulus presentation nor does it re-
turn to baseline immediately after the stimulus ends. Instead, the BOLD
signal peaks approximately 5 seconds after stimulation, and is followed by
an undershoot that lasts as long as 30 seconds.

The Hemodynamic Response Function (HRF) represents an ideal, noiseless
response to an in�nitesimally brief stimulus. Most software packages repre-
sent the HRF as a sum of two gamma probability density functions, where
the �rst gamma probability density function models the shape of the ini-
tial stimulus response and the second gamma probability density functions
models the undershoot. Its analytical form is

h(t ) =
tα1−1βα1

1 e−β1t

Γ(α1)
− c

tα2−1βα2
2 e−β2t

Γ(α2)
(2.1)

where Γ is the gamma function and α1,α2, β1, β2 control the shape and scale,
respectively, and c determines the ratio of the response to undershoot.

All the packages that we have considered model the HRF as the di�erent
of two gamma probability density functions but other models are equally
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Figure 2.8: Hemodynamic Re-
sponse Function (HRF) as imple-
mented in di�erent software pack-
ages. AFNI provides an HRF with
no undershoot, i.e. modeled as a
single gamma probability density
function and where the peak is sit-
uated at 4.6 seconds. The software
SPM provides an HRF that peaks at
5 seconds. Glover [1999] proposes
two models of the HRF, one based
on a motor task and another based
on an auditory task. Here we show
the HRF corresponding to the au-
ditory task since this is the one that
is used in the software NiPy.

possible. For instance, [Lindquist et al., 2009] proposes the use of a model
based on the superposition of three inverse logit functions.

Glover [1999] proposed two di�erent sets of parameters based on the
shape of the HRF on two di�erent experiments. The parameters that are
commonly used in statistical software such as FMRISTAT1 and NIPY2 cor- 1 http://www.math.mcgill.ca/keith/fmristat/

2 http://nipy.orgrespond to the HRF estimated in the auditory task. Its �rst gamma function
peaks at 5.2 seconds, while the second gamma function (the undershoot)
peaks at 12.2 seconds and has an amplitude of 35% of the �rst gamma func-
tion.

In the SPM3 software, the reference HRF has its peak at 6 seconds and 3 http://www.�l.ion.ucl.ac.uk/spm/
the delay of undershoot has its minima at 16 seconds. AFNI4 on the other

4 http://afni.nimh.nih.gov/afni/
hands uses c = 0, that is, uses a model with a single gamma distribution. A
comparison of these di�erent HRF models can be seen in Figure 2.8. Because
of its widespread use, we will use the HRF present in SPM 8 unless otherwise
speci�ed.

2.4.2 The linear-time-invariant assumption

In this section we present the main assumption behind the general linear
model, the linear time invariance assumption.

A number of studies have reported that in certain regimes the relation-
ship between the neural response and the BOLD signal exhibits linear time
invariant (LTI) properties [Boynton et al., 1996, Cohen, 1997, Dale and Buck-
ner, 1997]. These property can be summarized as

• Multiplicative scaling. If a neural response is scaled by a factor of α ,
then the BOLD response is also scaled by a factor of α .

• Additivity. If the response to two separate events is known, the signal
for those events if they were to occur close in time is the sum of the
independent signals.

http://www.math.mcgill.ca/keith/fmristat/
http://nipy.org
http://www.math.mcgill.ca/keith/fmristat/
http://nipy.org
http://www.fil.ion.ucl.ac.uk/spm/
http://afni.nimh.nih.gov/afni/
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• Time invariant. If the stimulus is shifted by t seconds, the BOLD re-
sponse will also be shifted by this same amount.

While the LTI assumption is commonplace in practice, there is evidence
for non-linearity in the amplitude of the BOLD response. For example, it
is known that there is a saturation e�ect for stimuli that occur less than 2
seconds apart [Wager et al., 2005]. It has also been reported that very brief
stimuli exhibit a larger BOLD response than would be expected based on
longer stimuli [Yeşilyurt et al., 2008]. However, while these nonlinearities
are important, there is a general consensus that for the range in which most
cognitive fMRI studies occur, they will have relatively small impact.

Figure 2.9: The linear time in-
variant (LTI) assumption implies
that if the response to two sepa-
rate events is known, the signal for
those events if they were to occur
close in time is the sum of the inde-
pendent signals. In green, the re-
sponse to the �rst stimulus that is
located at 1 second. In orange, the
response to the second stimulus
that appears at 6 seconds. In blue,
the predicted BOLD response.

Let x (t ) represent the predicted BOLD arising from neuronal activity as
a function of time t and h(τ ) be some reference HRF. The LTI assumption
allows to easily construct the predicted BOLD response for a given stimulus
function u (t ) which encodes the presence or absence of a stimulus (de�ned
as one whenever the stimulus is present and zero otherwise). Then we can
express the predicted BOLD (up to a constant factor) as the convolution of
the stimulus function u (t ) with the HRF:

x (t ) =

∫ T

0
u (t − τ )h(τ )dτ (2.2)

2.4.3 The general linear model (GLM)

The General Linear Model (GLM) makes use of the knowledge of the hemo-
dynamic response function and linear-time-invariant assumption to model
the observed BOLD signal. This model states that the BOLD signal can
be expressed in terms of a linear combination of the predicted fMRI re-
sponses for di�erent stimuli (also denoted conditions) plus a noise term.
Let {x1 (t ),x2 (t ), . . . ,xk (t )} be the predicted response for k di�erent stimu-
lus functions computed from Equation (2.2). We de�ne the design matrix X
as the columnwise stacking of di�erent regressors, each one de�ned as the
discretization of xi (t ) to match the acquisition time of a given BOLD signal.
The GLM in its basic form can be expressed as:

y = Xβ + ε

ε ∼ N (0,σ 2I)
(2.3)
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=

Observed
BOLD

Design Matrix

+

Activation
coe�cients

Noise

Figure 2.10: The GLM expresses
the observed BOLD signal as a lin-
ear combination of regressors plus
an error term. Each regressor of
the design matrix is the convolu-
tion of a reference HRF and the
stimulus function, a function that
is 1 when the stimulus is present
and zero otherwise. Each element
of the (unknown) activation coe�-
cients represent the relative ampli-
tude of a given condition.

where y ∈ Rn is the observed time course at a single voxel, β ∈ Rk is the
activation coe�cients that represent the amplitude of the response for a
given condition and ε is a noise term that we assume Gaussian for now (we
will see in Section 2.4.4 how to take into account temporal autocorrelation).

Assuming Gaussian i.i.d noise, the maximum likelihood estimation of
the activation coe�cients is then given by β̂ = arg minβ ‖y−Xβ ‖2 = X†y.
To estimate the activation coe�cients in a full brain volume this procedure
is repeated independently for each voxel. Since the design matrix is the
same across voxels, a matrix decomposition of X such as SVD or QR can
be computed once and then used to compute the least squares solution at
every voxel.

In this setting we have considered the HRF to be known and �xed across
the di�erent conditions. We can easily generalize this setting to accommo-
date the case in which the HRF is generated by a given basis set. We will
call this method basis-constrained GLM.

2.4.4 High-pass filtering and prewhitening

The BOLD signal contains low frequency trends that are usually removed
before or during the estimation of activation coe�cients. One popular ap-
proach of high-pass �ltering is to add a discrete cosine transform (DCT)
basis set to the design matrix. When using this basis set, the highest fre-
quency that is desired to be removed from the data has to be chosen to
avoid removing the frequency of the experimental task that is also being
modeled. Another approach that is becoming increasingly popular, is to �t
a local regression model to the time series and remove the estimated trend
from the data. The software FSL uses LOWESS (locally weighted scatterplot
smoothing) [Cleveland, 1979] while recent studies have successfully used a
Savizky-Golay �lter 5 [Barry and Gore, 2014, Çukur et al., 2013]. In the stud- 5 Savitzky-Golay �lter are avail-

able in Matlab under the name
sgolayfilt and in Python’s
Scipy module under the name
scipy.signal.savgol_filter



2. Introduction to fMRI 35

ies presented in Chapter 3 we will use this last �lter. In [Çukur et al., 2013],
the authors used a Savizky-Golay �lter to estimate the low-frequency drifts
with window length of 240 seconds and polynomial of degree 3. We have
found that parameters close to these work well in practice.

The GLM speci�ed in (2.3) assumes the noise ε follows a Gaussian ran-
dom variable with covariance σ 2I. However, it is known that the BOLD
signal is temporally autocorrelated. Several authors [Bullmore et al., 1996,
Kruggel et al., 2000] consider the BOLD noise as an autoregressive model
AR(1). This assumes each time point is correlated with the previous time
point. The distribution of the error in this case is given by ε ∼ N (0,σ 2V),
where V is the symmetric correlation matrix and σ 2 is the variance. The
correlation matrix and variance are commonly estimated from the residu-
als after �tting the GLM.

The most common solution to take this special structure into account
is to prewhiten the data, that is, to remove the temporal correlation. Since
the correlation matrix V is symmetric and positive de�nite, the Cholesky
decomposition can be used to �nd a matrix K such that V−1 = KTK. To
prewhiten the data, K is premultiplied on both sides of the GLM (Eq. (2.3))
to give Ky = KXβ + Kε . This makes the errors be independent, i.e., Kε ∼
N (0,σ 2I).

2.5 Conclusion

In this �rst chapter we have presented the principal structures of the human
brain. We have then presented the principal functional imaging modalities
in use today, with special emphasis on functional MRI. We have seen that
functional MRI is an attractive modality for functional imaging with good
spatial resolution for a whole brain coverage modality. The signal mea-
sured in fMRI studies is the BOLD signal, given in the form of a succession
of scans in intervals of 1-4 seconds. The extraction of time-independent
activation maps from the BOLD signal relies on the linear-time-invariant
property between neural response and the BOLD signal. These can be es-
timated by solving a least-squares problem, a setting commonly referred
to in neuroimaging as the general linear model (GLM). The GLM is usually
formulated using a known form of the Hemodynamic Response Function.
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3 Statistical Inference in fMRI

In chapter 2, we have presented fMRI as functional imaging modality
that is non-invasive and enjoys good spatial resolution and full brain cov-
erage. In this chapter we present the statistical methods that will be used
for drawing conclusions from fMRI experiments in further chapters.

The chapter is divided into two sections. The �rst section summarizes
the basics of statistical hypothesis testing. We present two parametric test:
the t-test and the F -test and one non-parametric test: the signed-rank Wilcoxon
test. We discuss the voxel-wise parametric testing of the activation coe�-
cients computed by the GLM. The result can be assembled into an image or
map, a setting known as statistical parametric maps (SPMs).

The second section describes the basics of supervised machine learning.
We introduce the supervised learning problem in the context of empirical
risk minimization. We describe di�erent surrogate loss functions and penal-
ties that have found applications in the context of fMRI analysis. Finally, we
present two applications of supervised learning to reveal cognitive mecha-
nisms in fMRI studies. The �rst application is commonly known as decod-
ing or mind reading and consist in predicting some information about the
stimuli from the activation coe�cients. The second application is known
as encoding and can be seen as the complementary operation of decoding:
here, the activation coe�cients are predicted from some information about
the stimuli.

Section 3.2.5 uses material from the following publication:

• V. Borghesani, F. Pedregosa, E. Eger, M. Buiatti, and M. Piazza, “A
perceptual-to-conceptual gradient of word coding along the ventral path”
Proceedings of the 4th International Workshop on Pattern Recognition
in Neuroimaging, 2014.
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3.1 Hypothesis testing

A statistical hypothesis is a statement about the parameter of a given distri-
bution. The two complementary hypotheses in a hypothesis testing prob-
lem are called the null hypothesis and the alternative hypothesis. They will
be denoted by H0 and H1, respectively.

Given a random samples {x1, . . . ,xn } drawn from a probability space
(X,A, Pθ ), the goal of statistical hypothesis testing is to decide, based on the
random sample, whether it is possible to reject the presumed null hypothesis
H0 for pre-speci�ed level of signi�cance. Let θ denote a distribution param-
eter, the general format of the null and alternative hypothesis isH0 : θ ∈ Θ0
and H1 : θ ∈ Θc

0, where Θ0 is some subset of the parameter space and Θc
0 is

its complement. For example, if θ denotes the average activation of a voxel
for a given condition, we might be interested in testing H0 : θ0 = 0 versus
H1 : θ0 � 0 (or H1 : θ0 > 0).

Figure 3.1: Sir R. A. Fisher (Lon-
don, England 1908 - Adelaide, Aus-
tralia 1962) made important con-
tributions to the �eld of statistics.
Among many notions in statis-
tic, he coined the terms “test of
signi�cance”, “Fisher consistency”
(which we will develop in Chapter
5) and “null hypothesis” [Fisher,
1925].

The p-value is a numerical quantity that serves to quantify the strength
of the evidence against the null hypothesis and in favor of the alternative.
Formally, the p-value is the probability of observing samples at least as fa-
vorable to the alternative hypothesis as the current samples, if the null hy-
pothesis is true. Given a subset of the population, the p-value associated
with a statistical test is usually computed by means of a function of these
samples known as test statistic.

Statistical tests can be broadly divided into parametric and nonparamet-
ric tests. Parametric test assume a known probability distribution for the
distribution parameter that is under consideration. Nonparametric tests
do not assume a known form of this probability distribution although they
might require some regularity conditions on the distribution such as sym-
metry. In the following subsection we will describe two parametric statisti-
cal tests: the t-test and the F -test. In this thesis, the t and F -test will be used
to perform voxel-wise inference in section 3.1.3. We will also present the
Wilcoxon signed-rank test, a nonparametric test that will be used to com-
pare the performance of machine learning models in Chapter 4 and Chap-
ter 5. The derivation of these tests is omitted but can be found in statistical
textbooks such as [Casella and Berger, 2002, Rice, 2006].

3.1.1 Parametric tests: t-test and F -test.

Student was the pseudonym of
Willian Sealy Gosset (England
1876 - England 1937). As a worker
of the brewery Arthur Guiness &
Son he was forbidden to publish
under his real name to protect the
�rm from its competitors. Gosset
made important contributions to
the �eld of small sample statistics.
In the seminal paper The probable
error of a mean [Student, 1908],
he introduced small sample esti-
mation by means of the (Student)
t-distribution family.

The t-test is any statistical hypothesis test in which the test statistic follows
a Student t distribution under the null hypothesis. Most t-test statistics
are of the form t = Z/s , where Z and s are functions of the samples, in
which case the assumptions are: Z follows a standard normal distribution,
s2 follows a χ 2 distribution with p degrees of freedom, and Z , s are mutually
independent. Once the t statistic is determined, ap-value can be found from
the values of a Student t distribution with p degrees of freedom.

The statistical test that has as null hypothesis that the population mean
is equal to a speci�ed value µ0 can be evaluated with a t-test known as the
one-sample t-test. Given a sample {x1, . . . ,xn } of size n, the hypothesis

H0 : µ = µ0 versus H1 : µ � µ0 .
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can be tested by performing a test that uses the test statistic

t =
x̄ − µ0

s/
√
n

,

where x̄ is the sample mean, s is the sample standard deviation of the sample
and n is the sample size. Once the test statistic t has been computed, the
test speci�es to reject H0 with signi�cance level α if t ≥ td (1 − α ), where
td (1 − α ) is the 100(1 − α ) percentile of the t distribution with d = n − 1
degrees of freedom.

A di�erent test based on the t distribution can be used to test the coe�-
cients of a linear regression model. Given the equation

y = Xβ +b + ε ,

where X ∈ Rn×p is a given design matrix, β ∈ Rp and b ∈ R are terms to
be estimated and ε ∈ Rn is the error which follows a Gaussian N (0,σ 2I)
distribution. It is desired to test that some linear combination of coe�cients,
cT β with c ∈ Rp , is signi�cantly di�erent from zero, i.e., H0 : cT β = 0 H1 :
cT β , 0. In this case, the statistic

t =
cT β̂

σ̂
√
cT (XTX)−1c

(3.1)

follows a Student’s distribution with n − (p + 1) degrees of freedom, where
(n,p) are the dimensions of the design matrix and σ̂ 2 is the estimate of the
variance.

The F -test can be seen as a generalization of the one-sample t-test to sev-
eral groups. It can be used to asses whether the means of several pre-de�ned
groups di�er from each other. Given a total ofn observations, divided into k
groups of samples x1, . . . , xk with respective sizes n1, . . .nk , a null hypoth-
esis is of the form

H0 : µ1 = µ2 = · · · = µk versus H1 : at least one µi , µ j ,

then the test statistic to test this hypothesis is calculated as the ratio be-
tween the between-group variability and the within-group variability:

F =

∑
i ni (x̄i − x̄)2/(k − 1)∑
i j (xi j − x̄i )2/(n − k )

. (3.2)

This statistic follows the F -distribution (also known as Snedecor’s F dis-
tribution or the Fisher–Snedecor distribution) with (k − 1,n − k ) degrees
of freedom under the null hypothesis, i.e. the null hypothesis can be re-
jected according to this test with signi�cance level α if the F statistic is
greater than F (k−1,n−k ) (1 − α ), where F (k−1,n−k ) denotes the F -distribution
with (k − 1,n − k ) degrees of freedom.

As done previously for the t-test, a variant of the F -test can be used
to test the coe�cients of a linear regression model. In this case, instead
of testing that a given contrast is signi�cantly di�erent from zero, we will
test that a set of contrasts are all simultaneously di�erent from zero. In this
case the contrast C is a matrix with k columns describing the possible linear
combinations to be tested. For example, using a model with four parameters,
to test whether all of them are equal to 0, H0 : β1 = β2 = β3 = β4 = 0, one
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would specify a contrast of the form C = I, where I is the identity matrix of
size 4 × 4.

For an arbitrary contrast C, the F -statistic for this test is given by

F =
Tr(CββTCT )

σ̂ 2Tr(CT (XTX)−1C) ,

where the square root is taken element-wise. This expression follows an F

distribution with r numerator and n − (p + 1) denominator degrees of free-
dom (Fr ,n−(p+1)), where r is the rank of C.

3.1.2 Nonparametric tests: Wilcoxon signed-rank test.

The Wilcoxon signed-rank test can be used to asses whether two population
means di�er. That is, given the samples {x1, . . . ,xn } and {y1, . . . ,yn }, we
would like to test the following hypothesis H0 : x̄ = ȳ, H1 : x̄ , ȳ, where
x̄ is the sample mean, x̄ = 1

n
∑n

i=1 xi .
Because of this, it can be seen as a nonparametric alternative to the two-

sample t-test. We will use the Wilcoxon signed-rank test to replace the
two-sample t-test when the normality assumptions of the last are not met.
The assumptions behind Wilcoxon signed-rank are that (a) the two samples
are paired (paired samples imply that each individual observation of one
sample has a unique corresponding member in the other sample), and (b)
the distribution of the di�erence between the values within each pair must
be symmetrical, i.e., the median di�erence must be identical to the mean
di�erence. Beginning with a set of paired values x1 and x2, each of size n,
the test statisticW can be computed following the steps:

• calculate |x1,i − x2,i | and sign(x1,i − x2,i ) for every 1 ≥ i ≥ n. Exclude
pairs which have zero di�erence.

• order the remaining nr pairs from smallest absolute di�erence to largest
absolute di�erence |x1,i − x2,i |.

• rank the pairs, starting with the smallest as 1. Ties receive a rank equal
to the average of the ranks they span. Let ri denote the rank.

• calculate the test statisticW = |∑nr
i=1 sgn(x1,i − x2,i )ri |

As nr increases, the distribution of W converges to a normal distribu-
tion. For small samples (nr < 10),W is compared to a critical value from a
reference table.

3.1.3 Voxel-wise hypothesis testing: Statistical Parametric Maps

Statistical Parametric Maps (SPMs)1 are images with values that are, under 1 Statistical Parametric Mapping
(SPM) can refer both to the set
of techniques detailed in this sec-
tion and to the SPM software dis-
tributed by the Wellcome Depart-
ment of Imaging NeuroScience at
University College London.

the null hypothesis, distributed according to a known probability density
function, usually Student t or the F distribution. To create such maps, one
proceeds by performing a parametric test at each voxel. The resulting statis-
tics are assembled into an image - the SPM.

Given the activation coe�cients for a single voxel β ∈ Rk (cf. Sec-
tion 2.4.3), with k being the number of conditions, it is possible to use a
t-test to test whether a given linear combination of the conditions is sig-
ni�cantly di�erent from zero. As we did in section 3.1.1 we introduce the
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contrast c ∈ Rk so that cT β is a linear combination of the conditions. The
hypothesis can then be written as H0 : cT β = 0, H1 : cT β � 0. In this
case, under the assumptions of the t-test for the coe�cients of a linear re-
gression model (Gaussian and i.i.d noise in the GLM), equation 3.2 gives the
expression of the statistic for this test. Assigning the statistic to every voxel
creates an image with the same dimensions as the input brain images, in
this case a the image is called a t-map because of the t-test used to generate
it.

Figure 3.2: t-map for a contrast
of a Visual vs an Auditory task.
Thresholded at p-value < 10−3.
It can be seen how the voxels
that exhibit a higher signi�cance of
this contrast belong to visual areas
(red) and auditory areas (blue).

Figure 3.2 plots the t-map resulted from a functional localizer [Pinel
et al., 2007] performed as part of the acquisition in Borghesani et al. [2014]
dataset. For this, the conditions ‘Visual’ and ‘Auditory’ were compared.
Since only two conditions were compared, the contrast is of the form c =
[+1,−1, 0, . . . , 0] where the entry +1 is for the Visual condition and −1 for
the auditory condition. The image is thresholded so that only voxels with a
p-value smaller than 10−3 are displayed. It can be seen how the voxels that
exhibit a higher signi�cance of this contrast belong to visual areas (red) and
auditory areas (blue) [see Figure 2.3 for a localization of some brain regions].
This example involves the testing of a single contrasts using a t-statistic. In
similar fashion, the test in which we consider d contrasts, i.e. H0 : cT1 β =
cT2 β = · · · = cTd β = 0 and H1 : at least one cTi β � 0 can be performed using
an F -test as described in section 3.1.1.

3.1.4 Multiple comparisons issues

One major drawback of statistical parametric maps is the multiple com-
parisons issue. This occurs when multiple hypothesis tests are performed
simultaneously and one must account for the possibility of errors occur-
ring on each of these tests [Toothaker, 1993, Miller, 1966, Westfall, 1993]. In
fMRI, due to the huge amount of voxels (on the order of 4× 104 at 3mm3 res-
olution), some tests can lead to a large amount of false positive results, i.e.,
some voxels are found to be signi�cant while in reality they were not. As a
result, it is necessary to consider other types of error rates which account
for the multiple comparisons issue.

A simple procedure to control the rate of false positives is through the
Bonferroni correction method. This approach consists in dividing the thresh-
old α by the number of tests p, which yields the new threshold αb = α/p.
The maps of voxels selected by thresholding the p-values for the object
recognition task (subject 1), are given in Fig.3.3, for di�erent threshold val-
ues (0.05, 0.01 and 0.05 corrected by Bonferroni). We notice that Bonferroni
correction is very severe, and that it keeps very few signi�cant voxels.
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Figure 3.3: Visual vs Auditory con-
trast. Visualization of the vox-
els selected by thresholding the
p-values for the Visual vs Audi-
tory contrast at di�erent thresh-
olds (0.05, 0.01 and 0.05 corrected
by Bonferroni). The Bonferroni cor-
rection is very severe and keeps
very few voxels.

One of the main limitations behind Bonferroni corrections is that it does
not take into account the spatial structure of the SPM. As such the number of
independent test can smaller than the number of voxels. Other approaches
besides Bonferroni correction include random �eld theory [Friston et al.,
1994, Worsley et al., 1992] and resampling techniques [Friman and Westin,
2005, Holmes, 2003]. The review papers [Logan and Rowe, 2004, Nichols,
2012] provide an overview of the di�erent methods that have been proposed
to overcome this problem.

3.2 Machine learning in fMRI

While classical statistical modeling emphasizes statistical inference (con�-
dence intervals, hypothesis test, optimal estimators), the �eld of machine
learning, also known as statistical learning and pattern recognition, em-
phasizes model validation as measured by its performance on unseen sam-
ples. That is, in machine learning the validity of an estimated model will be
judged based on its generalization performance.

The �rst applications of machine learning to neuroimaging focused on
distinguishing patterns of neural activity associated with di�erent stimuli
or cognitive states, a problem commonly known as decoding, reverse infer-
ence or brain reading [Dehaene et al., 1998, Cox and Savoy, 2003, LaConte
et al., 2005, Thirion et al., 2006, Song et al., 2011] uses a machine learning
model to discriminate patterns of neural activity associated with di�erent
stimuli or cognitive states. In this thesis we will also describe the encoding
problem [Thirion et al., 2006, Kay et al., 2008, Mitchell et al., 2008], in which
the patterns of brain activity are predicted based on the stimuli features.
Encoding and decoding can be seen as complementary operations: encod-
ing uses stimuli to predict activity while decoding uses activity to predict
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information about the stimuli. We will further describe these settings in
Section 3.2.5 and 3.2.6, respectively.

3.2.1 Supervised Learning

Supervised learning is the task of learning a function from labeled training
data. We will now give a formal de�nition of the task.

We consider two spaces X and Y . We will refer to X as the sample
space and to Y as the target space. We assume that the pair (X ,Y ) is a
random variable taking values in X × Y and distributed according to an
unknown probability distribution P . We observe a sequence of n i.i.d. pairs
{(x1,y1), . . . , (xn ,yn )} ∈ (X ×Y )n sampled according to P and the goal is
to construct a function h : X → Y which predicts Y from X .

We need a criterion to choose this function h. For this we are given a loss
function � : Y ×Y → R that measures the disagreement between a pair
of elements in the target space. This way �(yi , f (xi )) quanti�es the penalty
of predicting the target f (xi ) when the true label is yi . The objective is to
construct a function h such that its risk is as small as possible. The risk of a
function h is de�ned as:

R (h) = EX×Y (�(Y ,h(X )))

A function that achieves the minimum risk over all possible measurable
functions is called the Bayes predictor and is denoted h∗:

h∗ ∈ arg min
h
R (h)

However, in general the risk cannot be computed because the distribu-
tion P is unknown. As an alternative we can use an approximation of the
risk, called the empirical risk, by averaging the loss function over the pairs
{(x1,y1), . . . , (xm ,ym )} ∈ (X × Y )m drawn from P . The empirical risk is
de�ned as:

Rn ( f ) =
1
n

n∑
i=1
�(yi , f (xi )) . (3.3)

Figure 3.4: Vapnik–Chervonenkis
theory (also known as VC theory)
was developed during 1960–1990
by Vladimir Vapnik (right) and
Alexey Chervonenkis (left). The
theory attempts to explain the
learning process from a statistical
point of view.

The task is then to �nd the function f that minimizes the empirical risk,
a setting known as empirical risk minimization [Vapnik and Chervonenkis,
1974]. Although the methods studied in this thesis can be seen within the
framework of empirical risk minimization, several alternatives exist to this
framework. A di�erent setting for the estimation of learning models ismax-
imum likelihood estimation, in which the model parameters are chosen as
the maximizers of the likelihood function. When the loss function � can be
written as the negative log likelihood: �(y, f (x )) = − log P ( f (x ) |x ), then
empirical risk minimization is equivalent to maximum likelihood estima-
tion.

Classification. If the target spaceY is a �nite set then the learning prob-
lem is known as classi�cation. In the special case that this target space
contains only two di�erent values, then this problem is known as binary
classi�cation. The common loss � in this setting is the zer-one loss, de�ned
as �(y, ŷ) = 0 if y = ŷ and 0 otherwise.
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Regression. If on the other hand the target space is identi�ed with an
interval of R we speak about a regression problem. For example, the task
of predicting the gender of a person would be a (binary) classi�cation task
since only two outcomes are possible. On the other hand, the task of pre-
dicting the height of a person is considered a regression task since the target
space is an interval from the real line. The encoding and decoding problems
in fMRI that we will consider in this chapter can be framed either using clas-
si�cation or regression models. The pairwise ranking and ordinal regression
models that we will consider in Chapter 5 and 6 can be seen as a special
case of classi�cation problems in which the loss function depends on the
distance between the respective labels. As we will see in Chapter 5, one of
the contributions of this thesis is to show that certain decoding problems
can be formulated using ranking and ordinal regression models rather than
multiclass or regression.

For most practical applications, the sample space X is identi�ed with
Rp , where p is referred to as the dimensionality or number of features of the
learning problem and the target space Y is identi�ed with R.

3.2.2 Surrogate loss functions.
Figure 3.5: The direct minimiza-
tion of the empirical risk for the 0-
1 loss is a di�cult computational
problem due to the discontinuity
of and non-convexity of the loss
function. In the �gure: plot of the
surface д(w1,w2) = R ( f ), where f

is the linear classi�cation function
f (x) = sign(xTw) with X ∈ R10×2

a random normally distributed ma-
trix. This surface is discontinuous
with large, �at regions and is thus
not amenable for optimization us-
ing gradient-based methods.

The direct minimization of the empirical risk is often not a tractable opti-
mization problem. For example, consider the binary classi�cation 0-1 loss,
de�ned as

�0−1 (y, ŷ) = H (−y · ŷ) ,

where H is the Heaviside step function, de�ned as H (x ) = 1 if x ≥ 0 and
0 otherwise. Minimization of the empirical risk associated with this loss is
known to be NP-hard even for the class of functions as linear classi�ers.
See Figure 3.5 for an informal justi�cation and [Feldman et al., 2012] and
reference therein for a formal discussion of these properties.

For this reason it is common to consider instead a functionψ : Y ×Rd → R

which is an approximation to the true loss known as surrogate loss function.
d is an integer that will be determined by the surrogate loss function. For
binary classi�cation, d is usually 1, while for multiclass classi�cation d is
usually equal to the number of classes. The goal in this setting is to mini-
mize the empiricalψ -risk, de�ned as

Rψn (д) =
1
n

n∑
i=1

ψ (yi ,д(xi )) .

For computational reasons, ψ is often a convex function in its second vari-
able (the variable with respect to which we will minimize). Note that in this
case the function д has as output space R and notY as was the case before,
thus the function д is not a prediction function. In binary-class classi�ca-
tion, the prediction of two classes is given by the sign of this function. In
this case, we will call д a decision function and sign(д(X )) will be the pre-
diction function while in multiclass classi�cation the prediction function is
usually given by arg maxc ∈{1,...,k } дi (x ) [Zhang, 2004].

Compared to the empirical risk minimization setting, we have replaced
the original problem by one with better computational properties. It is nat-
ural to ask whether what have we lost in the process. In Chapter 6 we will
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present results on the consistency of surrogate loss functions, that is, un-
der which conditions minimizing the ψ -risk leads to the same solution as
minimizing the risk. There, we will review existing results for binary clas-
si�cation and prove novel results for the case of ordinal regression.

The following is a list of surrogate loss function that are commonly used
in the context of encoding and decoding models. As classi�cation models
we will consider Support Vector Machines (SVM) and Logistic Regression.
For simplicity we will only describe binary classi�cation models and assume
the target space consists only of the labels Y = {−1, 1}. Several techniques
exist to convert a binary classi�cation model into a multiclass classi�ca-
tion model, such as one-vs-all and one-vs-rest [Bishop, 2006]. As regression
models we will mention Support Vector Regression and Least Squares. Pair-
wise ranking and ordinal regression models will be described in Chapter 5
and 6.

Let y ∈ Y and α ∈ R, then the surrogate loss functions are de�ned as:
−3 −2 −1 0 1 2 3 4
0

1

2

3

4

5
0−1
hinge
square
logistic

Figure 3.6: Di�erent surrogate loss
functions presented in the text (for
y=1): hinge loss, logistic loss and
squared loss

• Support Vector Machines (SVM). Since its �rst use in decoding models
by Cox and Savoy [2003], Support Vector Machines [Boser et al., 1992,
Cortes and Vapnik, 1995] have become the reference approach for classi-
�cation decoding studies. Its success comes from its availability in pop-
ular software packages, its overall good performance under a wide ar-
ray of circumstances [Bottou et al., 1994, King et al., 1995, Caruana and
Niculescu-Mizil, 2006] and its ability to cope with high-dimensional data.
The following surrogate is known as the hinge loss,

ψ (y,α ) = max(1 −yα , 0) . (3.4)

Support Vector Machines can be extended to non-linear decision func-
tions through the use of kernels [Shawe-Taylor and Cristianini, 2004]. “In the terminology of statistics,

this model is known as logistic
regression, although it should be
emphasized that this is a model
for classi�cation rather than re-
gression.”, Christopher M. Bishop
(2006). Pattern Recognition andMa-
chine Learning.p. 205.

• Logistic Regression. Logistic Regression is a classi�cation model that mod-
els the posterior probability as a sigmoid, that is, P (y |X ) = (1+e−yf (X ) )−1.
This allows to provide the probability estimates for class membership.
The surrogate loss function in this case is given by the negative log-
likelihood, that is, also known as the logistic loss

ψ (y,α ) = log(1 + exp(yα )) . (3.5)

• Support Vector Regression. This is a variant of Support Vector Classi�ca-
tion for the regression setting proposed by [Drucker et al., 1997]. The
surrogate loss function in this case is known as the ε-insensitive loss and
is given by

ψ (y,α ) = max( |y − α | − ε , 0) , (3.6)

where ε > 0.

• Least Squares is a regression model that minimizes the square of the dis-
tance to the prediction. The loss function is given by

ψ (y,α ) = (y − α )2 . (3.7)

The most popular choice for prediction functions in encoding and de-
coding models are linear decision functions [Cox and Savoy, 2003, LaConte



3. Statistical Inference in fMRI 49

et al., 2005, Song et al., 2011, Thirion et al., 2006, Naselaris et al., 2011], that
is, functions of the form f (x) = sgn(xTw + c ) for a binary classi�cation
problem and f (x) = xTw + c for a regression problem, where w ∈ Rp and
c ∈ R are unknown parameters to be estimated.

3.2.3 Regularization

Regularization has long played a fundamental role in statistics and related
mathematical �elds. First introduced by Tikhonov and Arsenin [1977] in
the context of solving ill-posed integral equations, it has since become a
standard part of the statistical toolkit.

Figure 3.7: The machine learning
models that we will consider are
estimated as the minimization of
a trade-o� between data �delity
and a regularization term. Regu-
larization is used to bias the esti-
mated model towards a set of de-
sired solutions.

The purpose of regularization is to use prior knowledge of the problem to
bias the estimated model. This can be desirable to solve an ill-posed problem
or to avoid over�tting. In this setting, the model is estimated as a solution
to an optimization problem of the form

arg min
f ∈F

R
ψ
n ( f ) + λΩ( f ) ,

where Ω( f ) is the regularization, which biases solutions toward a desired
kind of solutions and F is a family of functions (e.g. the family of linear or
polynomial functions). In this setting the parameter λ controls the trade-o�
between data-�delity and the regularization term.

We will present the following penalties due to their widespread use in
fMRI analysis. These assume a linear decision function f , i.e., f (x) = wT x+
c or f (x) = sign(wT x+ c ) and the penalty will be expressed in terms of the
parameters w.

• squared `2
(
Ω(w) = ‖w‖22

)
. Equivalent to Gaussian normal prior with

zero mean [Bishop, 2006, Chapter 3]. When loss is linear least squares,
it is referred to as Ridge regression and the estimated model (ŵ, ĉ ) has
the closed form solution for λ > 0:

[ŵ, ĉ] = (X̃T X̃ + λnĨ)−1X̃T y ,

where X̃ is the matrix formed by stacking a column of ones to the original
design matrixX and Ĩ is the diagonal matrix with all ones except a zero in
the last diagonal element, i.e. Ĩ = I− eneTn . This penalty is sometimes also
used for computational reasons since it makes the optimization problem
better conditioned.

• `1 regularization (Ω(w) = ‖w‖1). Promotes sparse solutions, i.e. solu-
tions with a large fraction of zero coe�cients. When combined with a
least squares loss function, the model is known as lasso [Tibshirani, 1996]
and basis pursuit denoising [Chen et al., 2001].

• elastic-net regularization
(
Ω(w) = α ‖w‖1 + (1 − α )‖w‖22

)
. Linearly com-

bines `1 and squared `2 regularization. In the case of severely correlated
variables, the `1 penalty tends to select one variable from the group of
highly correlated variables and ignore the rest. To mitigate this prob-
lem, elastic-net penalty adds a quadratic `2 norm to the penalty [Zou
and Hastie, 2005].
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• total variation (TV) [Rudin et al., 1992, Chan et al., 1999, Michel et al.,
2011]. Total-variation, de�ned as the `1 norm of the gradient promotes
piecewise constant solutions. It can be combined with `1 [Baldassarre
et al., 2012, Gramfort et al., 2013, Dohmatob et al., 2014] and with elastic-
net [Dubois et al., 2014] penalties. Figure 3.8 compares the estimated
coe�cients by the use of elastic-net and TV+`1 regularization.

Percentile 99 Percentile 99.5 Percentile 99 Percentile 99.5

Elastic-net regularization TV +       regularization Figure 3.8: Regularization biases
the estimated model towards a de-
sired set of solution. In this �gure
we show the estimated coe�cients
of a linear model with di�erent
regularizations. In this model the
estimated coe�cients correspond
to voxels in a brain volume and
are displayed over an anatomical
image. In the left, elastic-net reg-
ularization yields sparse although
very scattered coe�cients. More-
over, this regularizer does not take
into account the spatial structure
of the image. The TV+`1 regu-
larization in contrasts yields blobs
of nonzero coe�cients surrounded
zero elements. This latter model
has been proved to yield predic-
tive regions which are meaning-
ful from a cognitive point of view.
Source: adapted from [Gramfort
et al., 2013].

3.2.4 Model evaluation and cross-validation.

Since it is possible to construct a classi�er that predicts perfectly on the
train set but with very poor generalization performance (e.g. the classi�er
that returns the right label for a sample it has already seen and random
otherwise), computing the empirical error on the training set yields a very
poor estimator of the true risk of a model.

Cross-validation is a technique to iteratively partition the input dataset
in order to obtain a more reliable estimator of the risk [Mosteller and Tukey,
1968, Stone, 1977, Geisser, 1975, Arlot and Celisse, 2010]. In this setting
a subset of the data is used for training (the training set) and the rest of
the data is used to compute the accuracy of the trained model (the test set
or validation set). Repeating the process several times and averaging the
accuracy of the predictions across the validation sets yields an estimator
of the risk. One form of cross-validation leaves out a single observation
at a time; this is known as leave-one-out. Another form, known as K-fold
cross-validation, splits the data into K subsets; each is held out in turn as
the validation set.

The cross-validation score is the average of the empirical risk across all
the folds, which is itself an estimator of the risk. This can then be used to
perform hypothesis relative to the risk of two predictors f and д. For ex-
ample, consider the test in which we compare the risk of two estimators,
that is, H0 : R ( f ) = R (д) and H1 : R ( f ) , R (д). This statistical test can be
performed using the Wilcoxon signed-rank test presented in Section 3.1.2.
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This test takes as input two sequences in which the samples are the empir-
ical risk at the di�erent cross-validation folds. Run 1

Run 2

Run 3

Run 4

training set test set

Fold 1 Fold 2 Fold 3 Fold 4

Figure 3.9: The technique of K-
Fold cross-validation, illustrated
here for the case K = 4, involves
taking the available data and par-
titioning it into K groups. Then
K − 1 groups are used (in green) to
train a set of models that are then
evaluated on the remaining group
(in blue).

Cross-validation is an attractive estimator of the risk since it makes no
assumptions on the model or the loss function. Alternatives exist for speci�c
loss functions such as Stein’s unbiased risk estimate [Stein, 1981, Donoho
and Johnstone, 1995] which is an unbiased estimator of the mean-squared
error.

Cross-validation can be used to select the regularization parameter in a
setting known as nested cross-validation. In this setting, the train set is again
split into the di�erent cross-validation folds and the risk associated with
the di�erent parameters is computed using this inner cross-validation loop.
The procedure can be repeated for the di�erent training sets in the upper-
most cross-validation loop. Through this thesis we will use this procedure
to estimate the regularization parameter of the di�erent models that we
will consider, although it is not the only approach for this purpose. Other
methods include Bayesian inference [Bishop, 2006, Chapter 8 & 10] and
marginal likelihood maximization [Bock and Aitkin, 1981].

3.2.5 fMRI-based brain activity decoding

The paradigm of predicting the stimuli provided to the subject from the
concurrent brain activity is known as brain decoding and accurate predic-
tions support the hypothesis that the brain activity encodes those stimuli.
Early studies [Dehaene et al., 1998] were able to predict right hand versus
left hand movement based on fMRI images. In [Haxby et al., 2001, Cox and
Savoy, 2003], the authors showed that di�erent high-level visual stimulus
categories (faces, animals and objects) were associated with distinct pat-
terns of brain activity in visual areas. Subsequent work has shown that de-
coding can also distinguish many other brain states, for example low-level
visual features in the early visual cortex [Haynes and Rees, 2005, Kami-
tani and Tong, 2005] and auditory stimuli in the auditory cortex [Formisano
et al., 2008, Staeren et al., 2009], as well as more abstract brain states such
as intentions [Haynes et al., 2007, Soon et al., 2008] and the contents of
working memory [Harrison and Tong, 2009].

The neuroscienti�c questions that brain decoding is able to address are
commonly shaped within the statistical hypothesis testing framework. The
inference that we want to establish is whether the classi�er designed on
data from a given brain area of one subject is accurate enough to claim that
the area encodes some information about the stimuli. In this setting, the
null hypothesis is that a given brain area does not contain stimuli-related
information. The ability of the classi�er to correctly predict some informa-
tion about the stimulus is considered a positive evidence in support of the
alternate hypothesis of presence of stimuli-related information within the
brain activity.

In [Borghesani et al., 2014], we have used decoding models to establish in
which regions of the brain it is possible to decode di�erent aspects of words
representing real-world objects. One of the tasks was to decode the size of
items from the words representing those objects. In this case, the di�erent
stimuli are ordered according to their relative size, so the target variable is
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DECODING MODEL Figure 3.10: Decoding models use
patterns of activity to discriminate
between cognitive states. Di�erent
activation coe�cients re�ect dif-
ferent mental states; for example,
those associated with di�erent im-
ages viewed by the subject. In a
training phase, the classi�er will
learn to discriminate between ac-
tivity patterns measured under dif-
ferent cognitive states. In the test-
ing phase the generalization per-
formance of the trained model is
quanti�ed by evaluating the clas-
si�er on the testing set and com-
paring the output of the classi�er
with the true labels associated with
the stimuli. Adapted from [Smith,
2013].

of ordinal nature. We predict the target variable from the brain activation
on 6 anatomically de�ned regions of interest (ROI, which correspond to
di�erent Brodman areas). The metric is Kendall tau, which is a measure of
the association between two measured quantities. This metric lies between
-1 and 1. This metric and the used model will be presented in full detail in
Chapter 5).

0.0 0.1

                 Kendall tau 

Figure 3.11: Cross-validation
scores for the prediction of the
length of words from [Borghesani
et al., 2014]. The metric is Kendall
tau (higher is better). In the left,
the same scores are depicted for
the di�erent regions (Brodman
areas).

As can be seen in Figure 3.11, this decoding model results in a higher de-
coding score in primary and secondary visual areas. In this case, a Wilcoxon
signed-rank test was used to asses the statistical signi�cance (p-value <
0.05) of the scores. This is denoted by the ∗ symbol that re�ects the signif-
icance of a Wilcoxon test that the mean is signi�cantly di�erent than zero,
∗ = p-val < 0.05, ∗∗ = p-val < 10−3, ∗ ∗ ∗ = p-val < 10−6. This is achieved
in Brodman areas BA17, BA18 and BA19. This experiments allows us to es-
tablish that the aforementioned areas encode some information related to
the size of the stimuli.
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3.2.6 fMRI-based brain activity encoding

fMRI-based encoding models (also known as voxel-wise modelling) [Thirion
et al., 2006, Kay et al., 2008, Mitchell et al., 2008], seek to predict the patterns
of brain activity from the the stimuli features. A machine learning model
is learned from the stimuli features to the activation coe�cients of a single
voxel. The sample space in this case is the space of features derived from the
stimuli, e.g. spatial Dirac functions in [Thirion et al., 2006] or Gabor �lters
in the case of natural images [Kay et al., 2008, Naselaris et al., 2014]. The
predicted activation coe�cient can then be compared to the true activation
coe�cient measured on left out data by using some distance metric such as
Pearson or Spearman correlation coe�cient.
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ENCODING MODEL
Feature extraction
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= ?

Figure 3.12: In an encoding model
the patterns of brain activity are
predicted by a machine learning
model based on the stimuli fea-
tures. The sample space in this
case is the space of features de-
rived from the stimuli, e.g. a
set of Gabor �lters in [Kay et al.,
2008]. The predicted activation
coe�cient can then be compared
to the true activation coe�cient
measured on left out data by us-
ing some distance metric such as
Pearson’s correlation coe�cient.
Adapted from [Smith, 2013].

To the best of my knowledge, all of the encoding models that have been
published in the literature make assume a use of linear relationship features
to the activation coe�cients. That is, they assume that there is a mapping
from the stimulus space to the feature space that, and a linear mapping
between the feature space and the activity space. However, the success of
an encoding model depends in great measure on deriving the right features
from the stimuli, a transformation that might be nonlinear. For example,
Naselaris et al. [2009] constructed two di�erent models for each voxel: a
model based on phase-invariant Gabor wavelets, and a semantic model that
was based on a scene category label for each natural scene. The authors
showed that the Gabor wavelet model provided good predictions of activity
in early visual areas, while the semantic model predicted activity at higher
stages of visual processing.

Encoding and decoding can be seen as complementary operations: while
encoding uses stimuli to predict activity, decoding uses activity to predict
information about the stimuli. Furthermore, encoding o�ers the advantage
over decoding models that they can be used to predict information about an
unseen stimuli. In this setting encoding models have been used to recon-
struct stimuli from brain activity patterns in [Miyawaki et al., 2008, Nase-
laris et al., 2009, Nishimoto et al., 2011]. A similar setting was used in [Kay
et al., 2008] to identify natural images. Here, the predicted activation coe�-
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cients were used to select the image that matched most closely the measured
activation coe�cients.

3.3 Conclusion

In this chapter we have presented the statistical methods that will be used
for drawing conclusions from fMRI experiments in further chapters. The
chapter is divided into two sections. In the �rst section we have intro-
duced the framework of statistical hypothesis testing and presented several
parametric and non-parametric tests. We have presented an application of
voxel-wise hypothesis testing known as Statistical Parametric Maps (SPMs).

In the second part of this chapter we have presented the setting of super-
vised learning. We described di�erent surrogate loss functions and penalties
that have found applications in the context of fMRI analysis. The surrogate
loss functions that we described are as Support Vector Machines, Logis-
tic Regression, Support Vector Regression and Least Squares. The penal-
ties that we have present are: squared `2, `1, elastic-net (`22 + `1) and total-
variation (TV). Finally, we present two neuroscienti�c problems that can be
model as a supervised learning problem: encoding and decoding.
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4 Data-driven HRF estimation for encoding and

decoding models

We have seen in Chapter 3 that encoding and decoding models take as in-
put brain activation coe�cients (also known as activation patterns or beta-
maps). These are usually computed by means of the general linear model
(GLM), which relies on a data-independent canonical form of the hemody-
namic response function (HRF).

In this chapter we describe a novel method for the simultaneous estima-
tion of HRF and activation coe�cients based on low-rank modeling, forcing
the estimated HRF to be equal across events or experimental conditions, yet
permitting it to di�er across voxels. The estimation of this model leads to an
optimization problem that we propose to solve with using a quasi-Newton
method, exploiting fast gradient computations. We compare 10 di�erent
HRF modeling methods in terms of encoding and decoding score on two
di�erent datasets. These results show that the R1-GLM model outperforms
competing methods in both encoding and decoding settings, positioning it
as an attractive method both from the points of view of accuracy and com-
putational e�ciency.

The contributions developed in this chapter have been published in:

• F. Pedregosa, M. Eickenberg, P. Ciuciu, and B. Thirion, “Data-driven HRF
estimation for encoding and decoding models” NeuroImage, Volume 104,
1 January 2015, Pages 209-220.

• F. Pedregosa, M. Eickenberg, B. Thirion, and A. Gramfort, “HRF estima-
tion improves sensitivity of fMRI encoding and decoding models” Proc. 3nd
Int. Work. Pattern Recognit. NeuroImaging, 2013.
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4.1 Increased sensitivity via HRF estimation

Figure 4.1: The HRF can vary sub-
stantially between subjects, brain
regions and age. In Colonnese
et al. [2007], the authors studied
the evolution of the HRF across age
in rats. By comparing fMRI mea-
surements with electrophysiologi-
cal recordings, they observed two
signi�cant trends as age increased:
growing amplitude and decreasing
time to peak. In the �gure, esti-
mated HRF for three groups of rats
(with age P13-15 < P20-30< Adult).
Source: [Colonnese et al., 2007]. A
comparison of the HRF in human
subjects was performed in [Badillo
et al., 2014].

fMRI acquisitions consist of successive brain scans, given in intervals rang-
ing from 1 to 4 seconds. The extraction of time-independent activation co-
e�cient from the BOLD time course is commonly done with a model known
as Linear General Model (GLM) [Friston et al., 1995]. While this approach
has been successfully used in a wide range of studies, it does su�er from lim-
itations [Poline and Brett, 2012]. For instance, the GLM commonly relies on
a data-independent reference form of the hemodynamic response function
(HRF) to estimate the activation coe�cient (also known as canonical HRF ).
However it is known [Handwerker et al., 2004, Badillo et al., 2013b] that the
shape of this response function can vary substantially across subjects, age
and brain regions. This suggests that an adaptive modeling of this response
function should improve the accuracy of subsequent analysis.

To overcome the aforementioned limitation, Finite Impulse Response
(FIR) models have been proposed within the GLM framework [Dale, 1999,
Glover, 1999]. These models do not assume any particular shape for the
HRF and amount to estimating a large number of parameters in order to
identify it. While the FIR-based modeling makes it possible to estimate the
activation coe�cient and the HRF simultaneously, the increased �exibility
has a cost. The estimator is less robust and prone to over�tting, i.e. to gener-
alize poorly to unseen data. In general, FIR models are most appropriate for
studies focused on the characterization of the shape of the hemodynamic
response, and not for studies that are primarily focused on detecting acti-
vation [Poldrack et al., 2011, Chapter 5].

Several strategies aiming at reducing the number of degrees of freedom
of the FIR model - and thus at limiting the risk of over�tting - have been
proposed. One possibility is to constrain the shape of the HRF to be a linear
combination of a small number of basis functions. A common choice of
basis is formed by three elements consisting of a reference HRF as well as
its time and dispersion derivatives [Friston et al., 1998], although it is also
possible to compute a basis set that spans a desired function space [Woolrich
et al., 2004]. More generally, one can also de�ne a parametric model of the
HRF and estimate the parameters that best �t this function [Lindquist and
Wager, 2007]. However, in this case the estimated HRF may no longer be a
linear function of the input parameters.

Sensitivity to noise and over�tting can also be reduced through regular-
ization. For example, temporal regularization has been used in the smooth
FIR [Goutte et al., 2000, Ciuciu et al., 2003, Casanova et al., 2008] to fa-
vor solutions with small second order time derivative. These approaches
require the setting of one or several hyperparameters, at the voxel or po-
tentially at the parcel level (if several voxels in a pre-de�ned parcel are as-
sumed to share some aspects of the HRF time course). Even if e�cient tech-
niques such as generalized cross-validation [Golub et al., 1979] can be used
to choose the regularization parameters, these methods are inherently more
costly than basis-constrained methods. Basis-constrained methods also re-
quire setting the number of basis elements; however, this parameter is not
continuous (as in the case of regularized methods), and in practice only
few values are explored: for example the 3-element basis set formed by a
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reference HRF plus derivatives and the FIR model. This paper focuses on
basis-constrained regularization of the HRF to avoid dealing with hyperpa-
rameter selection with the goal of remaining computationally attractive. A
di�erent approach to increase robustness of the estimates consists in link-
ing the estimated HRFs across a prede�ned brain parcel, taking advantage
of the spatially dependent nature of fMRI [Wang et al., 2013]. However,
hemodynamically-informed parcellations [Chaari et al., 2012, Badillo et al.,
2013a] rely on the computation of a large number of estimations at the voxel
or sub-parcel level. In this setting, the development of voxel-wise estimation
procedures is complementary to the development of parcellation methods
in that more robust estimation methods at the voxel level would naturally
translate into more robust parcellation methods. In this thesis we focus on
voxel-wise estimation methods.

Contribution In this chapter we have described a method for the simul-
taneous estimation of HRF and activation coe�cients based on low-rank
modeling. While the assumptions of this model are not novel (cf. [Makni
et al., 2008, Vincent et al., 2010, Degras and Lindquist, 2014]), the formula-
tion of this model as a least squares problem with a rank-one constraint is a
novel contribution. This formulation allows to e�ciently solve the problem
using gradient-based methods. Finally, we evaluate the proposed model on
three publicly available datasets.

4.2 Methods

In this section we describe di�erent methods for extracting the HRF and
activation coe�cients from BOLD signals. We will refer to each di�erent
stimulus as condition and we will call trial a unique presentation of a given
stimulus. We will denote by k the total number of stimuli, y ∈ Rn the BOLD
signal at a single voxel and n the total number of images acquired.

4.2.1 Basis-constrained GLM

The reference HRF models a general response function that has been proven
successful under a wide range of circumstances. However, a number of
studies have shown that the shape of the hemodynamic response di�er sub-
stantially among subjects [Aguirre et al., 1998] and brain regions [Schacter
et al., 1997]. One popular approach to model small o�sets in the time to
peak and dispersion is to consider that the HRF is modeled from a basis
set consisting of the reference HRF plus its derivative with respect to time
and dispersion (see Figure 4.2). The rationale for considering this basis set
comes from the fact that it corresponds to the �rst-order approximation to
the Taylor expansion of the reference HRF. Given the reference HRF, h(t ),
a time-shifted version of the hemodynamic response can be described as
h(t + δ ). A Taylor series expansion of h(t + δ ) with respect to δ gives the
approximation h(t ) + δh′(t ) + . . . , implying that small o�sets can be mod-
eled by considering a linear combination of the reference HRF plus its time
derivative. In similar fashion we can model small perturbations in disper-
sion (the width of the response) by considering the reference HRF plus its
dispersion derivative.
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Figure 4.2: A popular basis set to
generate a family of HRF functions
is the “reference HRF plus deriva-
tives”. In the left plot, we show
a reference HRF together with its
time and dispersion derivatives.
This basis set can model small vari-
ations in temporal shifts and dis-
persion with respect to the ref-
erence HRF. In the right plot we
show a sample set of HRFs gen-
erated by this basis. The weights
of these response functions are
Gaussian random vectors centered
around the reference HRF.

A popular example of basis set is presented in Figure 4.2 and consists of
the reference HRF plus its time and dispersion (width) derivatives. While
in the GLM with �xed HRF each regressor of the design matrix consisted
of the convolution of the reference HRF with the stimulus function, in this
case each regressor consist in the convolution of a basis element with the
stimulus function. This results in a design matrix of size n × dk instead of
n×k , whered is the number of basis elements. Ifd = 1 and the basis element
is the reference HRF, then this setting coincides with the standard GLM. A
least squares estimate of the activation coe�cients β̂ = arg minβ ‖y−Xβ ‖2
will result in a vector of d elements for each condition.

The design matrix of a GLM using the basis set of the “refence HRF plus
derivatives” is shown in Figure 2.10. The columns in this design matrix are
each one of the basis elements convolved with the stimulus function for the
di�erent conditions.

4.2.2 Basis and rank-constrained GLM

In the basis-constrained GLM, the HRF estimation is performed indepen-
dently for each condition. This method works reliably whenever the num-
ber of conditions is small, but in experimental designs with a large number
of conditions it performs poorly due to the increased variance of the esti-
mates.

In this work we consider a model in which a common HRF is shared
across the di�erent stimuli. Besides the estimation of the HRF, a unique
coe�cient is obtained per column of our event matrix. This amounts to
the estimation of k + d free parameters instead of k × d as in the standard
basis-constrained GLM setting.

The novelty of our method stems from the observation that the formula-
tion of the GLM with a common HRF across conditions translates to a rank
constraint on the vector of estimates. This assumption amounts to enforc-
ing the vector of estimates to be of the form βB = [hβ1, hβ2, · · · , hβk ] for
some HRF h ∈ Rd and a vector of coe�cients β ∈ Rk . More compactly,
this can be written as βB = vec(hβT ). This can be seen as a constraint on
the vector of coe�cients to be the vectorization of a rank-one matrix, hence
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Figure 4.3: A basis-constrained
GLM design matrix. The basis set
consists of the reference HRF plus
its time and dispersion derivative.
As in the GLM introduced in Chap-
ter 2 (Fig. 2.10), each column is the
convolution of one basis function
with the stimulus function. Here,
the usage of 3 basis functions (in-
stead of one) results in a design
matrix with 3k regressors

the name Rank-1 GLM (R1-GLM).
In this model, the coe�cients have no longer a closed form expression,

but can be estimated by minimizing the following loss function. Given XB

and y as before, Z ∈ Rn×q a matrix of nuisance parameters such as drift
regressors, we de�ne FR1 (h, β ,ω,XB, y,Z) = 1

2 ‖y−XB vec(hβT ) − Zω‖2 to
be the objective function to be minimized. The optimization problem reads:

ĥ, β̂ , ω̂ = arg min
h,β ,ω

FR1 (h, β ,ω,XB, y,Z)

subject to ‖Bh‖∞ = 1 and 〈Bh, href〉 > 0 ,
(4.1)

The norm constraint is added to avoid the scale ambiguity between h and
β and the sign is chosen so that the estimated HRF correlates positively
with a given reference HRF href. Otherwise the signs of the HRF and β can
be simultaneously �ipped without changing the value of the cost function.
Within its feasible set, the optimization problem is smooth and is convex
with respect to h, β and ω, however it is not jointly convex in variables h, β
and ω.

From a practical point of view this formulation has a number of advan-
tages. First, in contrast with the GLM without rank-1 constraint the esti-
mated coe�cients are already factored into the estimated HRF and the ac-
tivation coe�cients. That is, once the estimation of the model parameters
from Eq. (4.1) is obtained, β̂ is a vector of size k and ĥ is a vector of size
d that can be both used in subsequent analysis, while in models without
rank-1 constraint only the vector of coe�cients (equivalent to vec(hβT ) in
rank-1 constrained models) of size k ×d is estimated. In the latter case, the
estimated HRF and the beta-maps still have to be extracted from this vec-
tor by methods such as normalization by the peak of the HRF, averaging or
projecting to the set of Rank-1 matrices.

Second, it is readily adapted to prediction on unseen trials. While for
classical (non rank-1 models) the HRF estimation is performed per condi-
tion with no HRF associated with unseen conditions, in this setting, because
the estimated HRF is linked and equal across conditions it is natural to use
this estimate on unseen conditions. This setting occurs often in encoding
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models where prediction on unseen trials is part of the cross-validation pro-
cedure.

This model can also be extended to a parametric HRF model. That is,
given the hemodynamic response de�ned as a function h : Rd1 → Rd of
some parameters α, we can formulate the analogous model of Eq. (4.1) as
an optimization over the parameters α and β with the design matrix XFIR
given by the convolution of the event matrix with the FIR basis:

α̂, β̂ , ω̂ = arg min
α,β ,ω

FR1 (h(α), β ,ω,XFIR, y,Z)

subject to ‖h(α)‖∞ = 1 and 〈h(α), href〉 > 0
(4.2)

In section 4.2.4 we will discuss optimization strategies for both models.

4.2.3 Extension to separate designs

Figure 4.4: In the GLM with sep-
arate designs model of Mumford
et al. [2012], the design matrix con-
tains two regressors. The �rst one
is the regressor associated with
a given condition and the second
one is the sum of all other regres-
sors. Source: [Turner et al., 2012]

An extension to the classical GLM that improves the estimation with corre-
lated designs was proposed in [Mumford et al., 2012]. In this setting, each
voxel is modeled as a linear combination of two regressors in a design ma-
trix XGLM. The �rst one is the regressor associated with a given condition
and the second one is the sum of all other regressors. This results in k de-
sign matrices, one for each condition. The estimate for a given condition is
given by the �rst element in the two-dimensional array XSi

†y, where XSi is
the design matrix for condition i . We will denote this model GLM with sep-
arate designs (GLMS). It has been reported to �nd a better estimate in rapid
event designs leading to a boost in accuracy for decoding tasks [Mumford
et al., 2012, Schoenmakers et al., 2013, Lei et al., 2013].

This approach was further extended in [Turner et al., 2012] to include
FIR basis instead of the prede�ned canonical function. Here we employ it
in the more general setting of a prede�ned basis set. Given a set of basis
functions we construct the design matrix for condition i as the columnwise
concatenation of two matrices X0

BSi and X1
BSi . X

0
BSi is given by the columns

associated with the current condition in the GLM matrix and X1
BSi is the

sum of all other columns. In this case, the vector of estimates is given by
the �rst d vectors of X†BSiy. See [Turner et al., 2012] for a more complete
description of the matrices X0

BSi and X1
BSi .

It is possible to use the same rank-1 constraint as before in the setting
of separate designs, linking the HRF across conditions. We will refer to
this model as Rank-1 GLM with separate designs (R1-GLMS). In this case
the objective function has the form FR1-S (h, β ,ω, r,XB, y,Z) = 1

2
∑k

i ‖y −
βiX0

BSih − riX
1
BSih − Zω‖

2, where r ∈ Rd is a vector representing the ac-
tivation of all events except the event of interest and will not be used in
subsequent analyses. We can compute the vector of estimates β̂ as the so-
lution to the optimization problem

β̂ , ω̂, ĥ, r̂ = arg min
h,β ,ω,r

FR1-S (h, β ,ω, r,XB, y,Z)

subject to ‖Bh‖∞ = 1 and 〈Bh, href〉 > 0
(4.3)
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4.2.4 Optimization

For the estimation of rank-1 models on a full brain volume, a model is
estimated at each voxel separately. Since a typical brain volume contains
more than 40,000 voxels, the e�ciency of the estimation at a single voxel
is of great importance. In this section we will detail an e�cient proce-
dure based on quasi-Newton methods for the estimation of R1-GLM and
R1-GLMS models on a given voxel.

One approach to minimize (4.1) is to alternate the minimization with
respect to the variables β , h and ω. By recalling the Kronecker product
identities [Horn and Johnson, 1991, Chapter 4.3], and using the identity
vec(hβT ) = β ⊗ h we can rewrite the objective function (4.1) to be mini-
mized as:

1
2 ‖y −XB (β ⊗ h) − Zω‖2 = (4.4)
1
2 ‖y −XB (I ⊗ h)β − Zω‖2 = (4.5)
1
2 ‖y −XB (β ⊗ I)h − Zω‖2 . (4.6)

Updating h, β or ω sequentially thus amounts to solving a (constrained)
least squares problem at each iteration. A similar procedure is detailed
in [Degras and Lindquist, 2014]. However, this approach requires com-
puting the matrices XB (β ⊗ I) and XB (I ⊗ h) at each iteration, which are
typically dense, resulting in a high computational cost per iteration. Note
also that the optimization problem is not jointly convex in variables h, β ,ω,
therefore we cannot apply convergence guarantees from convex analysis.

We rather propose a more e�cient approach by optimizing both vari-
ables jointly. We de�ne a global variable z as the concatenation of (h, β ,ω)
into a single vector, z = vec([h, β ,ω]), and cast the problem as an opti-
mization with respect to this new variable. Generic solvers for numerical
optimization [Nocedal and Wright, 2006] can then be used. The solvers
that we will consider take as input an objective function and its gradient. In
this case, the partial derivatives with respect to variable z can be written as
∂FR1/∂z = vec([∂FR1/∂h, ∂FR1/∂β , ∂FR1/∂ω]), whose expression can be
easily derived using the aforementioned Kronecker product identities:




∂FR1
∂h
= − (βT ⊗ I)XT (y −X vec(hβT ) − Zω)

∂FR1
∂β
= − (I ⊗ hT )XT (y −X vec(hβT ) − Zω)

∂FR1
∂ω
= − ZT (y −X vec(hβT ) − Zω)

If instead a parametric model of the HRF is used as in Eq. (4.2), the equiv-
alent partial derivatives can be easily computed by the chain rule.

For the sake of e�ciency, it is essential to avoid evaluating the Kronecker
products naively, but rather reformulate them using the above mentioned
Kronecker identities. For example, the matrix M = X(I ⊗ h) should not
be computed explicitly but should rather be stored as a linear operator such
that when applied to a vector a ∈ Rk it computesM (a) = X(a⊗ h), avoiding
thus the explicit computation of I ⊗ β .
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Similar equations can be derived for the rank-1 model with separate
designs of Eq. (4.3) (R1-GLMS), in which case the variable z is de�ned as
the concatenation of (h, β ,ω, r), i.e. z = vec([h, β ,ω, r]). The gradient of
FR1-S with respect to z can be computed as ∂FR1-S/∂z = vec([∂FR1-S/∂h,
∂FR1-S/∂β , ∂FR1-S/∂ω, FR1-S/∂r]). The partial derivatives read:




∂F
∂h =

∑k
i −(X0

BSi β i −X
1
BSi ri )

T (y − β iX0
BSih −wiX1

BSih)
∂F
∂βi

= −(X0
BSih)

T (y − β iX0
BSih −wiX1

BSih)
∂F
∂ωi

= −ZT (y − β iX0
BSih −wiX1

BSih)
∂F
∂ri

= −(X1
BSih)

T (y − β iX0
BSih −wiX1

BSih) Figure 4.5: Convergence of di�er-
ent �rst-order and quasi-newton
optimization algorithms for the
R1-GLM model on a single voxel.
“TNC” and “Newton-CG” are two
di�erent implementations of the
truncated Newton [Nash, 1984]
method (the �rst one in C and the
second one in Python), “L-BFGS-
B” is the Limited-memory BFGS
algorithm with box constraints as
implemented in [Zhu et al., 1997],
“trust-ncg” is the Newton con-
jugate gradient trust-region algo-
rithm and “CG” is the conjugate
gradient algorithm, both of them
described in [Nocedal and Wright,
2006]. We found that in general
the L-BFGS-B gives the best per-
formance among these methods.

A good initialization plays a crucial role in the convergence of any itera-
tive algorithm. We have used as initialization for the R1-GLM and R1-GLMS
models the solution given by the GLM with separate designs (GLMS). Since
the GLM with separate designs scales linearly in the number of voxels, this
signi�cantly reduces computation time whenever an important number of
voxels is considered.

Whenever the design matrix XB has more rows than columns (as is the
case in both datasets we consider with B the 3HRF basis), it is possible to
�nd an orthogonal transformation that signi�cantly speeds up the compu-
tation of the Rank-1 model. Let Q,R be the “thin” QR decomposition of
XB ∈ Rn×dk , that is, QR = XB with Q ∈ Rn×dk an orthogonal matrix and
R ∈ Rdk×dk a triangular matrix. Because of the invariance of the Euclidean
norm to orthogonal transformations, the change of variable XB ← QTXB,
y← QT y yields a Rank-1 model in Eq. (4.1) with equivalent solutions. This
reduces the size of the design matrix to a square triangular matrix of size
dk × dk (instead of n × dk) and reduces the explained variable y to a vec-
tor of size kd (instead of n). After this change of variable, the convergence
of the Rank-1 model is signi�cantly faster due to the faster computation of
the objective function and its partial derivatives. We have observed that
the total running time of the algorithm can be reduced by 30% using this
transformation.

Some numerical solvers such as L-BFGS-B [Liu and Nocedal, 1989] re-
quire the constraints to be given as box constraints. While our original
problem includes an equality constraint we can easily adapt it to use con-
vex box constraints instead. We replace the equality constraint ‖Bh‖∞ = 1
by the convex inequality constraint ‖Bh‖∞ ≤ 1, which is equivalent to the
box constraint−1 ≤ (Bh)i ≤ 1 supported by the above solver. However, this
change of constraint allows solutions in which h can be arbitrarily close to
zero. To avoid such degenerate cases we add the smooth term −‖B(:, 1)h1‖22
to the cost function. Since there is a free scale parameter between h and β ,
this does not bias the problem, but forces Bh to lie as far as possible from the
origin (thus saturating the box constraints). Once a descent direction has
been found by the L-BFGS-B method we perform a line search procedure
to determine the step length. The line-search procedure was implemented
to satisfy the strong Wolfe conditions [Nocedal and Wright, 2006]. Finally,
when the optimization algorithm has converged to a stationary point, we
rescale the solution setting to ensure that the equality constraint. This still
leaves a sign ambiguity between the estimated HRF and the associated beta-
maps. To make these parameters identi�able, the sign of the estimated HRF
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will be chosen so that these correlate positively with the reference HRF.
We have compared several �rst-order (Conjugate Gradient), quasi-Newton

(L-BFGS) and Newton methods on this problems and found that in general
quasi-Newton methods performed best in terms of computation time. In
our implementation, we adopt the L-BFGS-B as the default solver.

In Algorithm 1 we describe an algorithm based on L-BFGS that can be
used to optimize R1-GLM and R1-GLMS models (a reference implementa-
tion for the Python language is described in subsection Software). Variable
r is only used for the R1-GLMS method and its use is denoted within paren-
thesis, i.e. (, r), so that for the R1-GLM it can simply be ignored.

Algorithm 1: Optimization of R1-
GLM and R1-GLMS modelsRequire: Given initial points β0 ∈ Rk , h0 ∈ Rd ,ω0 ∈ Rq (, r0 ∈ Rk ),

convergence tolerance ϵ > 0, inverse Hessian approximation H0.
Ensure: βm , hm

1: (Optional): Compute the QR decomposition of XB, QR = XB, and re-
place XB ← QTXB, y← QT y

2: Initialization. Setm ← 0, z← vec([h0, β0,ω0 (, r0)])

3: while ‖∇f ‖ > ϵ do

4: Compute search direction. Set pm ← −Hm∇f (hm , βm ,ωm (, rm )) by
means of the L-BFGS algorithm.

5: Set zm+1 = zm + γmpm , where γm is computed from a line search
procedure subject to the box constraints ‖hm ‖∞ ≤ 1.

6: m ←m + 1
7: end while

8: Extract R1-GLM(S) parameters from zm . Set hm ← zm (1 : d ), βm ←
zm (d + 1 : m +d )

9: Normalize and set sign so that the estimated HRF is positively cor-
related with a reference HRF: qm ← ‖hm ‖∞sign(hTmhref), hm ←

hm/qm , βm ← βmqm

The full estimation of the R1-GLM with 3HRF basis for one subject of the
dataset described in sectionDataset 2: decoding of potential gain levels (16× 3
conditions, 720 time points, 41, 622 voxels) took 14 minutes in a 8-cores Intel
Xeon 2.67GHz machine. The total running time for the 17 subjects was less
than four hours.

4.2.5 So�ware

We provide a software implementation of all the models discussed in this
section in the freely available (BSD licensed) pure-Python package hrf_estimation
available at https://pypi.python.org/pypi/hrf_estimation . This software is
further described in Section 7.4.1.

4.3 Data description

With the aim of making the results easily reproducible, we have chosen two
freely available datasets to validate our approach and to compare di�erent
HRF modeling techniques.

https://pypi.python.org/pypi/hrf_estimation
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4.3.1 Dataset 1: encoding of visual information

The �rst dataset we will consider is described in [Kay et al., 2008, Naselaris
et al., 2009, Kay et al., 2011]. It contains BOLD fMRI responses in human
subjects viewing natural images. As in [Kay et al., 2008], we performed pre-
diction of BOLD signal following the visual presentation of natural images
and compared it against the measured fMRI BOLD signal. As the procedure
consists of predicting the fMRI data from stimuli descriptors, it is an encod-
ing model. This dataset is publicly available from http://crcns.org

Two subjects viewed 1750 training images, each presented twice, and 120
validation images, each presented 10 times, while �xating a central cross.
Images were �ashed 3 times per second (200 ms on-o�-on-o�-on) for one
second every 4 seconds, leading to a rapid event-related design. The data
were acquired in 5 scanner sessions on 5 di�erent days, each comprising 5
runs of 70 training images –each image being presented twice within the
run– and 2 runs of validation images showing 12 images, 10 times each.
The images were recorded from the occipital cortex at a spatial resolution of
2mm×2mm×2.5mm and a temporal resolution of 1 second. Every brain vol-
ume for each subject has been aligned to the �rst volume of the �rst run of
the �rst session for that subject. Across-session alignment was performed
manually. Additionally, data were temporally interpolated to account for
slice-timing di�erences. See [Kay et al., 2008] for further preprocessing de-
tails.

We performed local detrending using a Savitzky-Golay �lter [Savitzky
and Golay, 1964] with a polynomial of degree 4 and a window length of 91
TR. The activation coe�cients (beta-map) and HRF were extracted from the
training set by means of the di�erent methods we would like to compare.
The training set consisted of 80% of the original session (4 out of 5 runs).
This resulted in estimated coe�cients (beta-map) for each of the 70× 4 im-
ages in the training set.

We proceed to train the encoding model. The stimuli are handled as local
image contrasts, that are represented by spatially smoothed Gabor pyramid
transform modulus with 2 orientations and 4 scales. Ridge regression (reg-
ularization parameter chosen by Generalized Cross-Validation [Golub et al.,
1979]) was then used to learn a predictor of voxel activity on the training
set. By using this encoding model and the estimated HRF it is possible to
predict the BOLD signal for the 70 images in the test set (20 % of the original
session). We emphasize that learning the HRF on the training set instead
of on the full dataset is necessary to avoid over�tting while assessing the
quality of the estimated HRF by any HRF-learning method: otherwise, the
estimation of the HRF may incorporate speci�cities of the test set leading
to arti�cially higher scores.

In a �rst step, we perform the image identi�cation task from [Kay et al.,
2008] (Fig. 4.6). From the training set we estimate the activation coe�cients
that will be used to compute the activation maps. We use an encoding model
using Gabor �lters that predicts the activation coe�cient from the training
stimuli. From the stimuli in the validation set we predict the activation coef-
�cients that we then use to identify the correct image. The predicted image
is the one yielding the highest correlation with the measured activity. This

http://crcns.org
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Figure 4.6: The original analysis
performed in [Kay et al., 2008] al-
lowed to identify natural images
from human brain activity. The
analysis consisted of two stages. In
the �rst stage, model estimation,
fMRI data were recorded while
each subject viewed a large collec-
tion of natural images. These data
were used to estimate an encoding
model for each voxel. In the second
stage, image identi�cation, fMRI
data were recorded while each sub-
ject viewed a collection of novel
natural images. For each mea-
surement of brain activity, they at-
tempted to identify which speci�c
image had been seen. This was ac-
complished by using the estimated
encoding models to predict brain
activity for a set of potential im-
ages and then selecting the image
whose predicted activity correlates
best with the measured activity.
Source: Adapted from [Kay et al.,
2008].

procedure mimics the one presented in [Kay et al., 2008, Supplementary
material].

In a second step, we report score as the Pearson correlation between the
measurements and the predicted BOLD signal on left out data. The predic-
tion of BOLD signal on the test set is performed from conditions that were
not present in the train set. In order to do this, an HRF for these conditions
is necessary. As highlighted in the methods section, the construction of an
HRF for these conditions is ambiguous for non Rank-1 methods that per-
form HRF estimation on the di�erent stimuli. In these cases we chose to use
the mean HRF across conditions as the HRF for unseen conditions. Finally,
linear predictions on the left out fold were compared to the measured BOLD
signals.

4.3.2 Dataset 2: decoding of potential gain levels

The second dataset described in [Tom et al., 2007] is a gambling task where
each of the 17 subjects was asked to accept or reject gambles that o�ered
a 50/50 chance of gaining or losing money. The magnitude of the potential
gain and loss was independently varied across 16 levels between trials. Each
gamble has an amount of potential gains and potential losses that can be
used as class label. In this experiment, we only considered gain levels. This
leads to the challenge of predicting or decoding the gain level from brain
images. The dataset is publicly available from http://openfmri.org

under the name mixed-gambles task dataset.
The data preprocessing included slice timing, motion correction, coreg-

istration to the anatomical images, tissue segmentation, normalization to
MNI space and was performed using the SPM 8 software through the Pypre-
process1 interface. 1 https://github.com/

neurospin/pypreprocessFor all subjects three runs were recorded, each consisting of 240 images
with a repetition time (TR) of 2 seconds and a stimulus presentation at ev-

http://openfmri.org
https://github.com/neurospin/pypreprocess
https://github.com/neurospin/pypreprocess
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ery 4 seconds. In order to perform HRF estimation on more data than what
is available on a single run, we performed the estimation on the three runs
simultaneously. This assumes HRF consistency across runs, which was ob-
tained by concatenating the data from the three runs and creating a block-
diagonal design matrix correspondingly (each block is the design of one
run).

After training a regression model on 90% of the data, we predict the gain
level on the remaining 10%. As a performance measure we use Kendall tau
rank correlation coe�cient [Kendall, 1938] between the true gain levels and
the predicted levels, which is a measure for the orderings of the data. We
argue that this evaluation metric is better suited than a regression loss for
this task because of the discrete and ordered nature of the labels. Also, this
loss is less sensible to shrinkage of the prediction that might occur when
penalizing a regression model [Bekhti et al., 2014]. The Kendall tau coe�-
cient always lies within the interval [−1, 1], with 1 being perfect agreement
between the two rankings and −1 perfect disagreement. Chance level lies
at zero. This metric is equivalent to minimizing the number of the pairwise
inversions, which was was previously proposed for fMRI decoding with or-
dered labels in [Pedregosa et al., 2012].

4.4 Results

In order to compare the di�erent methods discussed previously, we ran the
same encoding and decoding studies while varying the estimation method
for the activation coe�cients (beta-maps). The methods we considered are
standard GLM (denoted GLM), GLM with separate designs (GLMS), Rank-1
GLM (R1-GLM) and Rank-1 GLM with separate designs (R1-GLMS). For all
these models we consider di�erent basis sets for estimating the HRF: a set
of three elements formed by the reference HRF and its time and dispersion
derivative, a FIR basis set (of size 20 in the �rst dataset and of size 10 in
the second dataset) formed by the canonical vectors and the single basis set
formed by the reference HRF (denoted “�xed HRF”), which in this case is
the HRF used by the SPM 8 software.

It should be reminded that the focus of this study is not the study of the
HRF in itself (such as variability across subjects, tasks or regions) but instead
its possible impact on the accuracy of encoding and decoding paradigms.
For this reason we report encoding and decoding scores but we do not in-
vestigate any of the possible HRF variability factors.

4.4.1 Dataset 1: encoding of visual information

In the original study, 500 voxels were used to perform image identi�cation.
These voxels were selected as the voxels with the highest correlation with
the true BOLD signal on left-out data using a (classical) GLM with the refer-
ence HRF. These voxels are therefore not the ones naturally bene�ting the
most from HRF estimation.

We �rst present the scores obtained in the image identi�cation task for
di�erent variants of the GLM. This can be seen in Figure 4.7. The displayed
score is the count of correctly identi�ed images over the total number of im-
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ages (chance level is therefore at 1/120). The identi�cation algorithm here
only uses the beta-maps obtained from the train and validation set. This
makes the estimation of the HRF an intermediate result in this model. How-
ever, we expect that a correct estimation of the HRF directly translates into
a better estimation of the activation coe�cients in the sense of being able to
acheive higher predictive accuracy. Our results are consistent with this hy-
pothesis and in this task the rank-one (R1) and glm-separate (GLMS) models
outperform the classical GLM model. The bene�ts range from 0.9% for R1-
GLM in subject 2 to 8.2% for the same method and subject 1. It is worth
noticing that methods with FIR basis obtain a higher score than methods
using the 3HRF basis.

In order to test whether this increase is statistically signi�cant we per-
formed the following statistical test. The success of recovering the cor-
rect image can be modeled as a binomial distribution, with pA being be the
probability of recovering the correct image with method A and pB being be
the probability of recovering the correct image with method B. We de�ne
the null hypothesis H0 as the statement that both probabilities are equal,
H0 : pA = pB , and the alternate hypothesis that both probabilities and not
equal, H1 : p1 � p2 (this test is sometimes known as the binomial propor-
tion test [Röhmel and Mansmann, 1999]). The score test statistic for the
one-tailed test isT = (pA −pB )/

√
p (1 −p) 2

n , where p = (pA +pB )/2 and n

is the number of repetitions, in this case n = 120. This statistic is normally
distributed for large n. The p-value associated with this statistical test when
comparing every model (by order of performance) with the model “GLM
with with �xed HRF” is (0.10, 0.10, 0.15, 0.19, 0.21, 0.26, 0.5, 0.5, 0.82, 0.81) for
the �rst subject and (0.18, 0.18, 0.25, 0.34, 0.34, 0.44, 0.5, 0.5, 0.86, 0.93) for the
second.

GLM with FIR basis
GLM with 3HRF basis

GLM with fixed HRF
GLMS with fixed HRF

R1-GLMS with 3HRF basis
R1-GLM with 3HRF basis
R1-GLMS with FIR basis

GLMS with 3HRF basis
GLMS with FIR basis

R1-GLM with FIR basis

0.460
0.467
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0.518

0.558
0.568
0.575
0.583
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0.600

Image Identification Performance, subject 1

R1-GLMS
R1-GLM

GLMS
GLM

GLM with FIR basis
GLM with 3HRF basis

GLM with fixed HRF
GLMS with fixed HRF

R1-GLM with 3HRF basis
GLMS with FIR basis

R1-GLM with FIR basis
R1-GLMS with 3HRF basis

GLMS with 3HRF basis
R1-GLMS with FIR basis
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0.516
0.516
0.525

0.541
0.541

0.558
0.575
0.575

Image Identification Performance, subject 2

R1-GLMS
R1-GLM

GLMS
GLM

Figure 4.7: Image identi�cation
score (higher is better) on two
di�erent subjects from the �rst
dataset. The metric counts the
number of correctly identi�ed im-
ages over the total number of im-
ages (chance level is 1/120≈ 0.008).
This metric is less sensitive to the
shape of the HRF than the voxel-
wise encoding score. The ben-
e�ts range from 0.9% points to
8.2% points across R1-constrained
methods and subjects. The high-
est score is achieved by a R1-GLM
method with a FIR basis set for
subject 1 and by a R1-GLMS with
FIR basis for subject 2.

We will now use a di�erent metric for evaluating the performance of
the encoding model. This metric is the Pearson correlation between the
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Figure 4.8: Average correla-
tion score (higher is better) on
two di�erent subjects from the
�rst dataset. The average correla-
tion score is the Pearson correla-
tion between the predicted BOLD
and the true BOLD signal on left-
out session, averaged across vox-
els and sessions. Methods that per-
form constrained HRF estimation
signi�cantly outperform methods
that use a �xed reference HRF.
As for the image identi�cation
performance, the best performing
method for subject 1 is the R1-
GLM, while for subject 2 it is the
R1-GLMS model, both with FIR ba-
sis. In underlined typography is
the GLM with a �xed HRF which
is the method used by default in
most software distributions. A
Wilcoxon signed-rank test is per-
formed between each method and
the next one in the ordered result
list by considering the leave-one-
session out cross-validation scores
for each method. We report p-
values to assess whether the score
di�erences are statistically signi�-
cant.

BOLD predicted by the encoding model and the true BOLD signal, averaged
across voxels. We will compute this metric on a left-out session, which
results in �ve scores for each method, corresponding to each of the cross-
validation folds. Given two methods, a Wilcoxon signed-rank test can be
used on these cross-validation scores to assess whether the score obtained
by the two methods are signi�cantly di�erent. This way, irrespective of the
variance across voxels, which is inherent to the study, we can reliably assess
the relative ranking of the di�erent models. In Figure 4.8 we show the scores
for each method (averaged across sessions) and the p-value corresponding
the Wilcoxon test between a given method and the previous one by order
of performance.

We observed in Figure 4.8 that methods that learn the HRF together with
some sort of regularization (be it Rank-1 constraint or induced by sepa-
rate designs) perform noticeably better than methods that perform uncon-
strained HRF estimation, highlighting the importance of a robust estimation
of the HRF as opposed to a free estimation as performed by the standard
GLM with FIR basis. This suggests that R1 and GLMS methods permit in-
cluding FIR basis sets while minimizing the risk of over�tting inherent to
the classical GLM.

We also observed that models using the GLM with separate designs from [Mum-
ford et al., 2012] perform signi�cantly better on this dataset than the stan-
dard design, which is consistent with the purpose of these models. It im-
proves estimation in highly correlated designs. The best performing model
for both subjects in this task is the R1-GLMS with FIR basis, followed by
the R1-GLM with FIR basis model for subject 1 and GLMS with FIR basis for
subject 2. The di�erence between both models (Wilcoxon signed-rank test)
was signi�cant with a p-value < 10−6. Since the results for both subjects
are similar, we will only use subject 1 for the rest of the �gures.

To further inspect the results, we investigated the estimation and encod-
ing scores at the voxel level. This provides some valuable information. For
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Figure 4.9: Top: HRF estimated
by the R1-GLMS method on voxels
for which the encoding score was
above the mean encoding score
(�rst dataset), color coded accord-
ing to the time to peak of the
estimated HRFs. The di�erence
in the estimated HRFs suggests a
substantial variability at the voxel
level within a single subject and
a single task. Bottom: voxel-wise
encoding score for the best per-
forming method (R1-GLMS with
FIR basis) versus a standard GLM
(GLM with �xed HRF) across vox-
els. The metric is Pearson correla-
tion. Points above the black diag-
onal correspond to voxels that ex-
hibit a higher score with the R1-
GLMS method than with a stan-
dard GLM.
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example, parameters such as time-to-peak, width and undershoot of the es-
timated HRF can be used to characterize the mis-modeling of a reference
HRF for the current study. Also, a voxel-wise comparison of the di�erent
methods can be used to identify which voxels exhibit a greater improvement
for a given method. In the upper part of Figure 4.9 we show the HRF esti-
mated on the �rst subject by our best performing method (the Rank-1 with
separate designs and FIR basis). For comparison we also present two com-
monly used reference HRFs: one used in the software SPM and one de�ned
in [Glover, 1999, auditory study] and used by software such as NiPy2 and 2 http://nipy.org
fmristat (3). Because the HRF estimation will fail on voxels for which there

3 http://www.math.mcgill.ca/keith/fmristat/
is not enough signal, we only show the estimated HRF for voxels for which
the encoding score is above the mean encoding score. In this plot the time-
to-peak of the estimated HRF is color coded. One can observe a substantial
variability in the time to peak, con�rming the existence of a non-negligeable
variability of the estimated HRFs, even within a single subject and a single
task. In particular, we found that only 50% of the estimated HRFs on the full
brain volume peaked between 4.5 and 5.5 seconds.

In the lower part of Figure 4.9 we can see a scatter plot in which the co-
ordinates of each point are the encoding scores with two di�erent methods.
The �rst coordinate (X-axis) is given by the score using a canonical GLM
whilst the second coordinate (Y-axis) corresponds to the Rank-1 separate
with FIR basis. Points above the black diagonal exhibit a higher score with
our method than with a canonical GLM. As previously, the color represents
the time to peak of the estimated HRF. From this plot we can see that voxels
that have a low correlation score using a canonical GLM do not gain sig-
ni�cant improvement by using a Rank-1 Separate FIR model instead. How-
ever, voxels that already exhibit a su�ciently high correlation score using
a canonical GLM (> 0.05) see a signi�cant increase in performance when
estimated using our method.

These results suggest as a strategy to limit the computational cost of
learning the HRF on an encoding study to perform �rst a standard GLM (or
GLMS) on the full volume and then perform HRF estimation only on the
best performing voxels.

The methods that we have considered for HRF estimation can be subdi-
vided according to the design matrices they use (standard or separate) and
the basis they use to generate the estimated HRF (3HRF and FIR). We now
focus on the performance gains of each of these individual components. In
the upper part of Figure 4.10 we consider the top-performing model, the
Rank-1 GLMS, and compare the performance of two di�erent basis sets:
FIR with 20 elements in the Y-axis and the reference HRF plus its time and
dispersion derivatives (3HRF) in the X-axis. The abundance of points above
the diagonal demonstrates the superiority of the FIR basis on this dataset.
The color trend in this plot suggests that the score improvement of the FIR
basis with respect to the 3HRF basis becomes more pronounced as the time-
to-peak of the estimated HRF deviates from the reference HRF (peak at 5s),
which can be explained by observing that the 3HRF basis corresponds to
a local model around the time-to-peak. In the bottom part of this �gure
we compare the di�erent design matrices (standard or separate). Here we
can see the voxel-wise encoding score for two Rank-1 models with FIR basis

http://nipy.org
http://www.math.mcgill.ca/keith/fmristat/
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Figure 4.10: Voxel-wise en-
coding score for di�erent models
that perform HRF estimation (�rst
dataset). As in �gure 4.9, color
codes for the time to peak of the
estimated HRF at the given voxel.
Top: two Rank-1 separate design
models with di�erent basis func-
tions: FIR with 20 elements in the
Y-axis and the reference HRF with
its time and dispersion derivatives
(3HRF) in the X-axis. The color
trend in this plot suggests that the
score improvement of the FIR basis
with respect to the 3HRF becomes
more pronounced as the time-to-
peak of the estimated HRF devi-
ates from the reference HRF (peak
at 5s). This can be explained by
taking into account that the 3HRF
basis is a local model of the HRF
around the peak time of the canon-
ical HRF. Bottom: voxel-wise en-
coding score for two Rank-1 mod-
els with FIR basis and di�erent de-
sign matrices: separate design on
the Y-axis and classical design on
the X-axis. Although both mod-
els give similar results, a Wilcoxon
signed-rank test on the leave-one-
session-out cross-validation score
(averaged across voxels) con�rmed
the superiority of the separate de-
signs model in this dataset with p-
value < 10−3.

and di�erent design matrices: separate design on the Y-axis and classical de-
sign on the X-axis. Although both models give similar results, a Wilcoxon
signed-rank test on the leave-one-session-out cross-validation score con-
�rmed the superiority of the separate designs model in this dataset with
p-value < 10−3.

In Figure 4.11 we can see the voxel-wise encoding score on a single ac-
quisition slice. In the upper column, the score is plotted on each voxel and
thresholded at a value of 0.045, which would correspond to a p-value < 0.05
for testing non-correlation assuming each signal is normally distributed,
while in the bottom row the 0.055 contour (p-value < 0.001) for the same
data is shown as a green line. Here it can be seen how the top performing
voxels follow the gray matter. A possible hypothesis to explain the increase
of the encoding score between the method R1-GLMS with FIR basis and the
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Figure 4.11: Voxel-wise encod-
ing scores on a single acquisition
slice for di�erent estimation meth-
ods (�rst dataset). The metric is
Pearson correlation. In the up-
per column, the voxel-wise score
is thresholded at a value of 0.045
(p-value < 0.05), while in the bot-
tom row the 0.055 contour (p-value
< 0.001) for the same data is shown
as a green line. Despite lacking
proper segmentations of visual ar-
eas, the estimation methods pro-
duce results that highlight mean-
ingful regions of interest around
the calcarine �ssure. This is partic-
ularly visible in the third column
where our method R1-GLMS pro-
duces results with higher sensitiv-
ity than the standard GLM method.
In the bottom row it can be seen
how the top performing voxels fol-
low well the folding of the gray
matter.

same method with 3HRF basis could be related either to the shape of the
HRF deviating more from a canonical shape in lateral visual areas or to the
higher signal-to-noise ratio often found in the visual cortex when compared
to lateral visual areas.

4.4.2 Dataset 2: decoding of potential gain levels

The mean decoding score was computed over 50 random splittings of the
data, with a test set of size 10%. The decoding regression model consisted of
univariate feature selection (ANOVA) followed by a Ridge regression clas-
si�er as implemented in scikit-learn. Both parameters, number of voxels
and amount of �2 regularization in Ridge regression, were chosen by cross-
validation.

The mean score for the 10 models considered can be seen in Figure 4.12.
Similarly to how we assessed superiority of a given method in encoding, we
will say that a given method outperforms another if the paired di�erence of
both scores (this time across folds) is signi�cantly greater than zero. This
is computed by performing a Wilcoxon signed rank test across voxels. For
this reason we report p-values together with the mean score in Figure 4.12.

As was the case in encoding, Rank-1 constrained methods obtain the
highest scores. In this case however, methods with 3HRF basis outperform
methods using FIR basis. This can be explained by factors such as smaller
sample size of each of the runs, smaller number of trials in the dataset and
experimental design.

4.5 Discussion

We have compared di�erent HRF modeling techniques and examined their
generalization score on two di�erent datasets: one in which the main task
was an encoding task and one in which it was a decoding task. We com-
pared 10 di�erent methods that share a common formulation within the
context of the General Linear Model. This includes models with canon-
ical and separate designs, with and without HRF estimation constrained
by a basis set, and with and without rank-1 constraint. We have focused
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Figure 4.12: Averaged decoding
score across subjects for the dif-
ferent method considered (higher
is better) on the second dataset.
The metric is Kendall tau. Methods
that perform constrained HRF es-
timation signi�cantly outperform
methods that use a �xed (refer-
ence) HRF. In particular, the best
performing method is the R1-GLM
with 3HRF basis, followed by the
R1-GLMS with 3HRF basis. In un-
derlined typography is the GLM
with a �xed HRF which is the
method used by default in most
software distributions. As in Fig-
ure 4.8, a Wilcoxon signed-rank
test is performed and the p-value
reported between a given method
and the next method in the ordered
result list to assess whether the dif-
ference in score is signi�cant.

on voxel-independent models of the HRF, possibly constrained by a basis
set, and have omitted for e�ciency reasons other possible models such as
Bayesian models [Marrelec et al., 2003, Ciuciu et al., 2003, Makni et al., 2005]
and regularized methods [Goutte et al., 2000, Casanova et al., 2008].

Other models such as spatial models [Vincent et al., 2010], and multi-subject
methods [Zhang et al., 2012, 2013] that adaptively learn the HRF across sev-
eral subjects are outside the scope of this work. The latter models are more
relevant in the case of standard group studies and second level analysis.

Our �rst dataset was investigated using an encoding model and revealed
that it is possible to boost the encoding score by appropriately modeling the
HRF. We used two di�erent metrics to assess the quality of our estimates.
The �rst metric is the fraction of correctly identi�ed images by an encoding
model. For this we computed the activation coe�cients on both the training
and validation dataset. We then learned a predictive model of the activation
coe�cients from the stimuli. This was used to identify a novel image from
a set of 120 potential images from which the activation coe�cients were
previously computed. The bene�ts range from 0.9% points to 8.2% points
across R1-constrained methods and subjects. The best-performing model
in this task is the R1-GLM with FIR basis. The second metric is the Pearson
correlation. By considering the voxel-wise score on a full brain volume we
observed that the increase in performance obtained by estimating the HRF
was not homogeneous across voxels and more important for voxels that al-
ready exhibited a good score with a classical design (GLM) and a �xed HRF.
The results were obtained for both subjects within the dataset, but since the
results were similar for both subjects, we only show the results for the �rst
subject. The best-performing method is the Rank-1 with separate designs
(R1-GLMS) and FIR basis model, providing a signi�cant improvement over
the second best-performing model. We also found substantial variability of
the shape in the estimated HRF within a single subject and a single task.

The second dataset is investigated using a decoding task and the results
con�rmed that constrained (rank-1) estimation of the HRF also increased
the decoding score of a classi�er. The metric here is Kendall tau. However,
in this case the best performing basis was no longer FIR basis consisting
of ten elements but the three elements 3HRF basis (HRF and derivatives)
instead, which can be explained by factors such as di�erences in acquisition
parameters, signal-to-noise ratio or by the regions involved in the task.
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A higher performance increase was observed when considering the cor-
relation score within the encoding model. This higher sensitivity to a cor-
rect (or incorrect) estimation of the HRF can be explained by the fact that the
estimation of the HRF is used to generate the BOLD signal on the test set.
The metric is the correlation between the generated signal and the BOLD
signal. It is thus natural to expect that a correct estimation of the HRF has
a higher impact on the results.

In the decoding setup, activation coe�cients (beta-map) are computed
but the evaluation metric is the accuracy at predicting the stimulus type.
The validation metric used for decoding is less sensitive to the HRF es-
timation procedure than the correlation metric from the encoding study,
although it allowed us to observe a statistically signi�cant improvement.

4.6 Conclusion

We have presented a method for the joint estimation of HRF and activation
coe�cients within the GLM framework. Based on ideas from previous liter-
ature [Makni et al., 2008, Vincent et al., 2010] we assume the HRF to be equal
across conditions but variable across voxels. Unlike previous work, we cast
our model as an optimization problem and use a quasi-Newton method for
its optimization. We also extend this approach to the setting of GLM with
separate designs.

We quantify the improvement in terms of generalization score in both
encoding and decoding settings. Our results show that the rank-1 con-
strained method (R1-GLM and R1-GLMS) outperforms competing methods
in both encoding and decoding settings.
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5 Decoding with Ordinal Labels

We have presented in Chapter 2 the decoding problem in fMRI. In this
setting it is often the case that the target variable consists of discretely or-
dered values. This occurs for example when target values consists of human
generated ratings, such as values on a Likert scale, the symptoms of a phys-
ical disease or a rating scale for clinical pain measurement.

In this chapter we propose the usage of two metrics to assess the perfor-
mance of a decoding model when the target consists of discretely ordered
values: the absolute error and pairwise disagreement. These two loss func-
tions emphasize di�erent aspects of the problem: while the absolute error
gives a measure of the closeness of a predicted label to the true label, the
pairwise disagreement gives a measure of correct ordering of the predicted
labels. The choice of either metric will depend on the particular application
at hand. For example, in clinical applications it is often desirable to predict
a label as close as possible to the true label, in which case the absolute error
is the appropriate metric. If however, the purpose of the decoding study is
to perform a statistical hypothesis test to claim that the area encodes some
information about the stimuli, then the pairwise disagreement can be con-
sidered.

We present three models based on di�erent convex surrogates of the
absolute error: least absolute error, ordinal logistic regression and cost-
sensitive multiclass classi�cation. We also consider a model that minimizes
a surrogate of the pairwise disagreement: the RankLogistic model. We ex-
amine the generalization performance of the presented models on both syn-
thetic data and three fMRI decoding problems from two datasets. We con-
clude that the best performing models is the last absolute error and ordinal
logistic when considering the absolute error as metric and the RankLogistic
model when considering the pairwise disagreement as metric.

The contributions relative to the use of the pairwise disagreement loss
function have been published in:

• F. Pedregosa, E. Cauvet, G. Varoquaux, C. Pallier, B. Thirion, and A.
Gramfort, “Learning to rank from medical imaging data”, in Proceed-
ings of the 3rd International Workshop on Machine Learning in Medical
Imaging, 2012.
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5.1 Learning from ordinal labels

Let us motivate the problem of learning from ordinal labels by a decoding
example. In the context of an fMRI acquisition, a subject is presented a set
of words that represent real world objects: hammer, cow, sheep and whale.
We are then interested to know whether it is possible to predict (i.e. decode)
the implied real world size of the associated objects (i.e. the size of a goat
rather than the size of the word “goat”) based on the brain activation maps.
How can we do this ?

Figure 5.1: In this experiment, the
stimuli are words that represent
real world objects. As in the Fig-
ure, these can be ordered accord-
ing the the size of the associated
concepts. The decoding problem
will be then to predict the size of
the associated concepts based on
the brain activation maps.

In order to frame this problem as a decoding problem, we must choose
a metric to evaluate the quality of our prediction (i.e. a loss function). Fur-
thermore, as we have seen in Section 3.2.2, many models can be seen as
the minimization of a convex surrogate of a given loss function. Thus, the
chosen metric will determine which are the appropriate models to choose.

We have seen in previous chapters how the 0-1 loss can be applied to
situations in which the target values consists of several categories. In this
case, however, the 0-1 loss might give an overly pessimistic estimate of the
performance of a classi�er since it treats all misclassi�cation errors alike.
Suppose that a classi�er predicts always the correct size ± 1, that is, never
predicts the correct label but always predicts one of the adjacent elements
in terms of size. This classi�er will have the worst performance possible in
terms of the 0-1 error, although we might still consider that this classi�er is
able predict with acceptable accuracy the size of an object.

It thus seems reasonable to choose a loss function that takes into account
the distance among the labels. In this Chapter we present two metrics that
ful�ll this request and are adapted to the problem of supervised learning
with ordinal labels. These loss functions are the absolute error and the pair-
wise disagreement. The use of the of the pairwise disagreement loss in the
context of brain imaging is an original contribution �rst proposed in [Pe-
dregosa et al., 2012].

We will describe in Section 5.4 three di�erent surrogate loss functions
of the absolute error and one surrogate of the pairwise disagreement. In
section 5.5, we present the performance accuracy of these models in one
synthetic dataset and three fMRI datasets. It is our intention for these results
to provide guidelines on what methods are overall best suited in the context
of decoding with ordered labels.

We have motivated the decoding problem with ordinal labels from a sim-
ple fMRI experiment in which the target variable is ordered according to
the size of real world objects. However, the framework presented here can
be applied to any situation in which the target variable consists of discrete
measures with some embedded order. For example, this includes situations
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in which the target variable consists of the symptoms of a physical disease
such as Alzheimer’s [Mueller et al., 2005], pain levels [Hartrick et al., 2003]
or the syntactic complexity of a phrase [Pallier et al., 2011] to name a few.

5.2 Loss functions

A metric that arises naturally to evaluate the quality of an ordinal prediction
the distance between the predicted label ŷ and the true label y, which will
promote classi�ers that predict a label that is close to the correct label. This
is known as the absolute error loss function, and is de�ned as:

`A (y, ŷ) = |y − ŷ |

This metric is very common when evaluating models with ordinal la-
bels [Cardoso and Sousa, 2011]. A related loss worth mentioning is the
squared error, often used in the regression setting. Compared to the squared
error, the absolute error provides the advantage of being more robust to out-
liers [Bloom�eld and Steiger, 1983].

The second loss function that we will present takes a di�erent approach
to measure the closeness of an ordinal response that does not take into ac-
count the value of the labels but rather only its relative ordering. Unlike the
absolute error loss, this loss function acts on pairs of elements. Given two
elements y1,y2 ∈ Y and the predicted values ŷ1, ŷ2 ∈ R, this loss is de�ned
as [Schapire and Singer, 1998, Herbrich et al., 2000]:

`P (y1,y2, ŷ1, ŷ1) = H (−(y1 −y2) (ŷ1 − ŷ2)) ,

where we recall that H is the Heaviside function, de�ned as H (x ) = 1 if
x ≥ 0 and 0 otherwise. That is, the loss `P ( will be equal to one if ŷ1 − ŷ2
has not the same sign than y1 − y2 and zero otherwise. Since this loss is
based on pairs of samples, the empirical risk will be evaluated on all possible
pairwise combinations of elements in the training set (excluding those with
same label). Given the training pairs {(x1,y1), . . . , (xn ,yn )}, the evaluation
metric is de�ned as:

R̂`P ( f ) =
1
m

n∑
i=1

n∑
j=1
yi,yj

`P (yi ,yj , f (xi ), f (x j )) ,

where m is the amount of pairwise combinations of samples with di�erent
labels.

This expression can be further simpli�ed if we consider the symmetry
of the loss function. Since all pairs of labels appear twice (once for yi > yj
and once for yi < yj ), we can restrict ourselves to the set of elements which
verify yi > yj , in which case we can write the empirical risk as

R̂`P ( f ) =
2
m

n∑
i=1

n∑
j=1

yi>yj

H ( f (x j ) − f (xi )) (5.1)

5.3 Ranking and ordinal regression

The di�erent loss functions considered here lead to two di�erent supervised
learning problems. The problem in which we seek to predict an ordering as
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close as possible to the true ordering of a sequence of labels is traditionally
known as ranking while the problem of predicting a label as close as possible
to the correct label is known as ordinal regression.

The ordinal regression setting was �rst studied by [McCullagh, 1980] and
further developed in [Frank and Hall, 2001, Rennie and Srebro, 2005, Chu
and Keerthi, 2007, 2005, Chu and Ghahramani, 2005] to name a few. The
minimization of the absolute error can be seen as a special case of ordinal
regression. In Chapter 5 we will study ordinal regression in a general setting
that includes the minimization of other loss functions such as the squared
loss.

Ranking models appear chronologically later than ordinal regression.
The minimization of the pairwise disagreement was proposed in [Schapire
and Singer, 1998] although the �rst attempt to minimize a convex surro-
gate of this loss is in [Herbrich et al., 2000]1. There has been great interest in 1 Although in that paper the au-

thors refers to the proposed model
(now known as RankSVM) as still
as an regression models, later
those same methods would be
re-discovered as ranking mod-
els [Joachims, 2002].

theory of ranking models in recent years with the application of these mod-
els to the �eld of information retrieval [Joachims, 2002, Burges et al., 2007,
Sculley, 2009]. Analog theoretical results to the ones developed in Chapter
5 have been studied for the case of pairwise disagreement in [Duchi et al.,
2010, Calauzènes et al., 2012]

5.4 Models

The models that we present here minimize a convex surrogate of the ab-
solute error or the pairwise disagreement loss function. We present three
di�erent surrogate loss functions for the absolute error (least absolute error,
ordinal logistic regression and cost-sensitive multiclass classi�cation) and
one for the pairwise disagreement (RankLogistic).

Because of the high dimensionality of the decoding problem and the as-
sociated risk of over�tting, the most popular choice for prediction func-
tions in encoding and decoding models are linear decision functions [Cox
and Savoy, 2003, LaConte et al., 2005, Song et al., 2011, Thirion et al., 2006,
Naselaris et al., 2011], i.e., models in which the decision function is a linear
mapping f from the sample space X onto Rd . d is an integer that depends
on the model: d = 1 in the case of least absolute error and RankLogistic,
d = k − 1 in the case of ordinal logistic regression and d = k in the case of
multiclass support vector machines, where k is the number of classes. All
models are estimated as a trade-o� between a data-�tting term (the surro-
gate loss function) and a squared `2 penalty that controls for over�tting.
The amount of penalty is chosen by nestted cross-validation.

The training set consists of n pairs {(x1,y1), . . . , (xn ,yn )}, where xi is a
p-dimensional vector and yi ∈ [k ] = {1, 2,′ ld .

5.4.1 Least absolute error

The �rst possibility that we will explore it is known as least absolute de-
viations [Bloom�eld and Steiger, 1980, Narula and Wellington, 1982]. We
consider the following surrogate loss functionψA : Y ×R→ R:

ψA (y,α ) = |y − α | .

Note that this surrogate has the same expression as the absolute error
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`A . The di�erence strives in that the surrogates are continuous functions in
their second arguments while the loss functions take values in the discrete
set [k ]. The prediction function for these surrogates is given by rounding
to the closest integer in [k ], i.e., pred(α ) = mini ∈[k ] |i − α |. Although this
prediction rule might seem somewhat ad-hoc for the moment, we will see
in the next chapter (Section 6.3.2) that it is indeed the “optimal” prediction
function for this surrogate (in some yet to be de�ned notion of optimality).

The model parameters are estimated by �nding the minimizer of a trade-
o� between a data �delity term (theψA-risk) and the penalty term:

w∗,b∗ ∈ arg min
w,b

1
n

n∑
i=1
|yi −b − 〈xi ,w〉| + λ‖w‖2 ,

where w ∈ Rp and b ∈ R is referred to as the bias or intercept term.
This model can be seen as a particular instance of support vector regression
with linear kernel and parameter ε in the ε-insensitive loss set to zero. This
is a well studied model for which e�cient implementations have been de-
veloped [Ho and Lin, 2012, Fan et al., 2008]. In the experiments section we
will use the implementation provided in the LIBLINEAR library [Fan et al.,
2008].

5.4.2 Ordinal logistic regression

The second approach that we consider is known as ordinal logistic regres-
sion [Rennie and Srebro, 2005] and can be seen in the larger family of threshold-
based ordinal regression models [McCullagh, 1980, Rennie and Srebro, 2005,
Chu and Keerthi, 2005, Lin and Li, 2006]. Let α ∈ Rk−1 be the image of
a decision function, that is, α = f (x ) for some x ∈ X and consider the
following prediction function:

pred(α ) = 1 +
k−1∑
i=1
H (−αi ) . (5.2)

In this case, we can express the absolute error loss function in the fol-
lowing form:

`A (y, ŷ) = |y − *
,
1 +

k−1∑
i=1
H (−αi )+

-
|

= y − 1 −
y−1∑
i=1
H (−αi ) +

k−1∑
i=y

H (−αi )

=

y−1∑
i=1
H (αi ) +

k−1∑
i=y

H (−αi ) ,

where we have used the following property of the Heaviside function:
H (x ) = 1 −H (−x ).

This last formula makes it clear that the absolute error can be seen as an
addition of zero-one loss functions 2. If we replace the Heaviside function by 2 the zero-one loss can be de�ned in

terms of the Heaviside step func-
tion as `0−1 (y, ŷ) = H (−y · ŷ).

one of its convex surrogates such as the logistic loss, we obtain the following
surrogate loss function:

ψM (y,α ) =
y−1∑
i=1

φ (−αi ) +
k−1∑
i=y

φ (αi ) , (5.3)
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where φ : R→ R is the logistic loss, de�ned as φ (t ) = log(1+ e−t ). Note
that for k = 2, this coincides with the logistic regression model for binary
0-1 classi�cation (Section 3.2.2).

When φ is the hinge loss, this approach has been proposed under the
name of Support Vector Ordinal Regression (the implicit constraints vari-
ant) [Shashua and Levin, 2003, Chu and Keerthi, 2007]. For φ the expo-
nential loss, this approach was proposed by [Lin and Li, 2006] as Ordinal
Regression Boosting (ORBoost). Rennie and Srebro [2005] formulated this
model for an arbitrary surrogate loss function (as it is presented here) and
considered a number of surrogates, including the hinge loss and logistic
loss. We have chosen the logistic regression as a surrogate of the 0-1 loss
for ease of implementation (the surrogate is a smooth function in this case,
which allows us to use gradient-based methods) rather than the more popu-
lar Support Vector Ordinal Regression that arises when considering the hinge
loss instead. However, due to the similarity between the hinge and logistic
surrogates we expect both methods to yield similar results.

In this setting we consider α to be of the form αi = θi − xTw, where
w ∈ Rp and θ ∈ Rk is a non-decreasing vector known as the vector of
thresholds. Let us introduce the variable si j = sign(j −yi + 1

2 ) for notational
convenience. Then we can write the surrogate loss function from Eq. (5.3)
as ∑k−1

i=1 φ (syiαi ). The coe�cients w ∈ Rp and the vector of thresholds
θ = (θ1, . . . ,θk−1) will be estimated as the minimizers of the regularized
empiricalψM-risk, de�ned as

w∗,θ ∗ ∈ arg min
w,θ

1
n

n∑
i=1

*.
,

k−1∑
j=1

φ (si j (θ j − 〈xiw〉))
+/
-
+ λ‖w‖2 (5.4)

Unlike the other models presented in this section, the optimization of
this model has not been extensively studied in the literature nor does it
have a freely available implementation3. We will thus brie�y discuss the 3 The similar model Support Vector

Ordinal Regression (the function φ
is the hinge loss instead of the lo-
gistic loss) does have a freely avail-
able implementation. However, its
optimization uses the dual form of
the SVM while our optimization is
based on the optimization of the
primal formulation

optimization strategy that was employed to learn this model.
For the problem sizes considered in this thesis, it is known that Newton

and quasi-Newton methods yield excellent performance for `2-regularized
logistic regression [Lin et al., 2008, Fan et al., 2008, Pedregosa, 2013]. Given
the similarities with ordinal regression we decided to use the quasi-Newton
L-BFGS-B algorithm for this problem. This algorithm requires to compute
the objective function and its gradient.

The gradient of the objective function from (5.4) with respect to w and
its partial derivatives with respect to θ j can be computed as

∇w =
1
n

n∑
i=1

xi
*.
,

k−1∑
j=1

σ (−si jαi j )
+/
-
+ 2λ1w

∂

∂θ j
=

1
n

n∑
i=1

si j (σ (siαi j ) − 1) .

(5.5)

where σ is the sigmoid function, i.e. σ (t ) = 1/(1 + exp(−t )).

5.4.3 Multiclass classification

Since we aim at predicting a �nite number of labels with a speci�c loss func-
tions, it is also possible to use generic multiclass formulations such as the
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one proposed in [Lee et al., 2004] which can take into account generic losses.
As before, given ϕ the logistic loss function, this formulations considers the
following surrogate

ψ `
L
(y,α ) =

k∑
i=1
`(y, i )ϕ (−αi ) (5.6)

for α ∈ Rk such that ∑k
i=1 αi = 0. The prediction function in this case

is given by pred(α ) = arg maxi ∈[k ] αi . Note however that this method re-
quires the estimation of k decision functions. For this reason, in practical
settings threshold-based are often preferred as these only require the esti-
mation of one decision function and k − 1 thresholds.

In practice the matrix of coe�cients W ∈ Rk×p is estimated as the min-
imizer of the following optimization problem

W∗, b∗ ∈ arg min
W,b

n∑
i=1

k∑
j=1
|j −yi |ϕ (bj − 〈xi ,Wj 〉) + λ‖W‖F

subject to the constraint WT 1k = 0, bT 1k = 0. Implementation details
for this model can be found in [Zhang et al., 2008, Zhang and Jordan, 2006,
Statnikov et al., 2005]

5.4.4 RankLogistic

This loss described in Eq. (5.1) function suggests as a natural choice for a
surrogate loss is one of the form [Herbrich et al., 2000, Freund et al., 2003,
Dekel et al., 2004] ψP (y1,y2,α1,α2) = φ ((y1 −y2) (ŷ1 − ŷ2)). This yields the
following expression for the empiricalψP-risk:

R̂ψP ( f ) =
n∑
i=1

n∑
j=1

yi>yj

φ ( f (xi ) − f (x j )) (5.7)

where as before φ : R → R is a surrogate of the zero-one loss such as
the hinge or logistic loss. Here we will consider the case in which φ is the
logistic loss. For the case in whichφ is the hinge loss this model is sometimes
referred to as RankSVM [Herbrich et al., 2000, Joachims, 2002].

In case the prediction function f is given by a linear function, this ex-
pression can be further simpli�ed. In this case, we have that f (xi ) − f (x j ) =

f (xi − x j ). That is, given two samples (xi ,x j ) and their associated labels
(yi ,yj ) (yi , yj ) we form a new sample xi − x j with label sign(yi −yj ). Due
to the linearity of f , predicting the correct ordering of these two images,
is equivalent to predicting the sign of f (xi ) − f (x j ) = f (xi − x j ) [Herbrich
et al., 2000]. We can now write the model as the solution to the optimization
problem

w∗,b∗ ∈ arg min
w,b

2
m

n∑
i=1

n∑
j=1

yi>yj

φ ((xi − xj )Tw +b)

This optimization problem can be viewed as a binary class classi�cation
problem on all pairwise combinations of (xi −xj , sign(yi −yj )) and thus can
be solved using standard supervised classi�cation algorithms. For consis-
tency with previous sections, we will use the logistic loss instead and denote
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this model RankLogistic. One of the possible drawbacks of this method with
respect previous methods is that it requires to consider all possible pairs
of images. This scales quadratically with the number of training samples,
and the problem soon becomes intractable as the number of samples in-
creases. However, specialized algorithms exist with better asymptotic prop-
erties [Joachims, 2006, Sculley, 2009]. For our study, we used the Support
Vector Machine algorithms implemented in the LIBLINEAR library [Fan
et al., 2008].

Figure 5.2: Maurice G. Kendall
(6 September 1907 – 29 March
1983) was a British statistician,
widely known for his contribution
to statistics. The Kendall tau rank
correlation is named after him.

Relationship with Kendall’sτ . Some authors (e.g. [Joachims, 2002, Chen
et al., 2009, Wauthier et al., 2013]) present the RankSVM model as the model
that maximizes a surrogate of the Kendall τ correlation coe�cient. We will
show that maximizing Kedall’s τ and minimizing the pairwise disagreement
yield equivalent optimization problems.

Kendall’s τ can be de�ned as

τ =
P −Q
P +Q

where P is the number of concordant pairs, that is, the number of elements
i > j such that αi ≥ α j and Q is the number of of discordant pairs, that is,
the number of elements i > j such that αi < α j . An equivalent formulation
of Kendall’s τ is [Joachims, 2002]

τ = 1 − 2Q(
n
2

)

From here it is clear that maximizing the Kendall τ coe�cient is equiv-
alent to minimizing the number of discordant pairs. Since the pairwise
disagreement counts the number of discordant pairs, both approaches are
equivalent.

5.5 Experiments

5.5.1 Ordinal regression and dimensionality

The models that we have presented vary greatly in terms of parameters to
estimate. Given that k is the number of classes and p is the dimensionality
(number of features) of the dataset, the least absolute error and RankLogis-
tic models estimate p + 1 parameters, the ordinal logistic model estimates
p +k parameters and the multiclass classi�cation model estimatesk × (p + 1)
parameters. While methods with more parameters can express a richer set
of decision functions, the increase in the number of parameters to estimate
also induces a higher variance of the estimates which can result in poor gen-
eralization performance in settings such as decoding in which the number
of samples is very limited and the dimensionality of the dataset is high.

To illustrate this problem we computed the generalization error of the
di�erent methods as we increase the dimensionality of a synthetic dataset.
The setting is the following: the data is generated by applying a random
linear regression model with 10% of informative nonzero regressors and
Gaussian centered noise such that the signal-to-noise ratio is 10:1. The tar-
get variable is the discretized in 5 bins such that the number of samples is
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equal for each class. All models have a squared �2 penalization term that
has been set chosen among a grid of 10 log-spaced values between 10−3 and
106 by nested 5-fold cross-validation. The generalization score is computed
by 10-fold cross-validation on an equally spaced grid of features between
100 and 600 features.

Figure 5.3: Generalization error as
the number of dimensions increase
on a synthetic dataset (lower is bet-
ter). In the low sample regime,
ordinal logistic regression outper-
forms the other methods, but as
the number of dimension increases
the gap between the methods van-
ishes. The poor performance of
multiclass classi�cation even in
the low sample regime can be ex-
plained by the model we used to
generate the data, which corre-
sponds to the assumptions of ordi-
nal logistic regression.

The generalization errors (lower is better) are displayed in Figure 5.3. It
can be observed that in the regime with low number of features, ordinal
logistic regression signi�cantly outperforms the other methods, but as the
number of dimension increases the gap between the methods vanishes. The
data was generated as a discretized linear regression model, which corre-
sponds very closely to the models assumed by the ordinal logistic model4. 4 in which the prediction function

is of the form ∑i H (θi − xTw)This might give an advantage to this model and explain the poor behavior
of multiclass classi�cation even in the regime with low number of features.

5.5.2 Results on two fMRI datasets

To assess the performance of the di�erent methods presented on the decod-
ing problem, we investigate two fMRI datasets.

The �rst dataset that we will considered served as motivation for this
chapter. It was presented in [Borghesani et al., 2014] and has already been
mentioned in Section 3.2.5. The goal of this experiment is to predict dif-
ferent aspects of the words that subjects were seeing while undergoing an
fMRI acquisition. We can consider two di�erent decoding problems based
this dataset. As a �rst step, we investigate the e�ect of the low level percep-
tual features characterizing the stimuli: the number of letters composing
each word. We will call this decoding problem length of word. A second
decoding problem that can be investigated on this dataset is to test the rela-
tionship between activation images and the real size of items. In this case,
the di�erent stimuli are ordered according to their relative size, i.e. hammer
is smaller than cow which is smaller than a whale, etc., so the target vari-
able is of ordinal nature. We will call this decoding problem size of object. In
both cases we extracted the activation coe�cients (beta-maps) using the R1-
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GLM model with 3hrf basis described in Chapter 4. Since we are interested
in predicting the target from low level visual features we restrict the decod-
ing problem on an anatomically de�ned ROI for the primary visual cortex
(V1) using the SPM toolbox PickAtlas (13940 voxels). 6 sessions were avail-
able for each subject. We trained the model on 5 sessions and evaluated the
model on the left out session. We report the average generalization score
across subjects.

Figure 5.4: Manually labeled
ROIs in the language complexity
dataset [Cauvet, 2012].

The second dataset, described in [Cauvet, 2012], consists of 34 healthy
volunteers scanned while listening to 16 words sentences with �ve di�erent
levels of complexity. These were 1 word constituent phrases (the simplest),
2 words, 4 words, 8 words and 16 words respectively, corresponding to 5
levels of complexity which was used as class label in our experiments. To
clarify, a sentence with 16 words using 2 words constituents is formed by a
series of 8 pairs of words. Words in each pair have a common meaning but
there is meaning between each pair. A sentence has therefore the highest
complexity when all the 16 words form a meaningful sentence. This dataset
contains four manually labeled regions of interest that can be seen in Fig-
ure 5.4: Anterior Superior Temporal Sulcus, Temporal Pole, Inferior Frontal
Gyrus Orbitalis and Inferior Frontal Gyrus triangularis. Further analysis
will be limited to these regions of interest. In this dataset each subject only
has two sessions, which is insu�cient to compute the leave-one session out
score. Because of this we instead train the model on 33 subjects and report
the cross-validation score on a left-out subject.

The generalization errors (lower is better) for these three decoding prob-
lems (spanning two datasets) are displayed in Figure 5.5. We considered two
di�erent metrics, represented as rows in the �gure: mean absolute error
and mean pairwise disagreement. We ordered the models by performance
and performed a Wilcoxon signed-rank test between each method and the
next best performing method to assess whether the di�erence between both
methods is statistically signi�cant. This test is performed by considering the
sequence of cross-validation scores obtained for each model. The p-value
associated with this statistical test is denoted by one or two asterisks, with
the convention that ∗ < 0.05, ∗∗ < 10−3.

When considering the mean absolute error, ordinal logistic regression
and least absolute error are the best performing method. The di�erence
between both methods is not signi�cant in any of the three experiments.
Multiclass classi�cation is the worst performing method due to the high di-
mensionality of the problem and the high number of parameters to estimate
(p × (k − 1) versus p + k − 1 for ordinal logistic).

When considering the pairwise disagreement error, the best performing
method is the RankLogistic model. RankLogistic is also the only model that
minimizes a surrogate of the evaluation metric.

5.6 Discussion

From the experiments we have examined the relative performance of sev-
eral classi�ers and concluded that ordinal logistic and least absolute error
are the best performing methods when evaluated using mean absolute er-
ror and RankLogistic is best model when evaluated using mean pairwise
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Figure 5.5: Generalization errors
(lower is better) for three fMRI de-
coding problems. Two di�erent
metrics are used corresponding to
the rows in the �gure: mean abso-
lute error and mean pairwise dis-
agreement. The ∗ symbol repre-
sents the p-value associated with
a Wilcoxon signed-rank test. This
test is used to determine whether a
given method outperforms signif-
icantly the next best-performing
method.

disagreement. The superiority of RankLogistic highlights the importance
of choosing a model that minimizes a surrogate of the evaluation metric.

A question that arises in practice is: when should the absolute error met-
ric be used and when should the pairwise disagreement metric be used?. The
use of one or the other will depend on the particular application in mind. For
example, for clinical applications it is often necessary to predict the exact
label. If the target variable consists of the di�erent degrees of Alzheimer’s
disease it is natural to consider an evaluation metric that re�ects how close
to the true label the prediction is. In this case we would favor the mean
absolute error. If however, we are only interested in performing a statistical
hypothesis test to claim that the area encodes some information about the
stimuli, then the pairwise disagreement can be considered.

In this study we have considered the absolute error, but we could have
as well considered the squared error loss instead. The linear least squares
model, which minimizes a surrogate of this loss, has advantageous com-
putational properties when compared to its absolute error counterpart, the
least absolute deviation model: strong convexity, smoothness and analytic-
ity of solutions. However, the use of absolute error resulted in a higher sig-
ni�cance when performing hypothesis testing, which is often the end goal
of a decoding study. For example, when performing the omnibus test on
the “lenght of word” decoding problem, we could reject the null hypothesis
that the explained variance is not signi�cantly greater than the unexplained
variance with a p-value < 0.001 when considering the mean absolute error
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metric and the least absolute error. The p-value when considering the mean
squared error metric with a linear least squares model (both models have
the same number of parameters) was only < 0.005. Similar e�ects were ob-
served on the other decoding problems.

5.7 Conclusion

In this chapter, we have proposed the usage of two evaluation metrics in the
context of brain decoding when the target variable consists of ordered val-
ues: the absolute error loss and the pairwise disagreement loss function. We
have presented models that optimize a convex surrogate of these loss func-
tions and discussed estimation strategies for these models based on convex
optimization.

We examined the performance of these models on both synthetic and
two real world fMRI datasets and identi�ed the best methods for each eval-
uation metric. Our results show that when considering the absolute error
as evaluation metric, the least absolute error and the logistic ordinal model
are the best performing methods while when considering the mean pairwise
disagreement the RankLogistic was the best performing methods. For neu-
roimaging studies, this contribution outlines the best strategies to choose
when faced with a decoding problem in which the target variable has a
meaningful order.
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6 Fisher Consistency of Ordinal Regression Methods

Ordinal regression is the supervised learning problem of learning a rule
to predict labels from an ordinal scale. Ordinal regression models enjoy a
wide applicability and some ordinal regression models have already been
used in Chapter 4 to model the decoding problem when the target variable
consists of ordered values.

Many of the ordinal regression models that have been proposed in the
literature can be viewed as methods that minimize a convex surrogate of
the zero-one, absolute (as the methods presented in Chapter 4), or squared
errors. In this chapter we investigate some theoretical properties of ordi-
nal regression methods. The property that we will investigate is known as
Fisher consistency and relates the minimization of a given loss to the mini-
mization of its surrogate.

We provide a theoretical analysis of the Fisher consistency properties of
a rich family of surrogate loss functions, including proportional odds and
support vector ordinal regression. For all the surrogates considered, we
either prove consistency or provide su�cient conditions under which these
approaches are consistent. Finally, we illustrate our �ndings on real-world
datasets.

The contributions developed in this chapter are available in the submit-
ted paper

• F. Pedregosa-Izquierdo, F. Bach, and A. Gramfort, “On the Consistency of
Ordinal Regression Methods”.
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6.1 Introduction

In ordinal regression the goal is to learn a rule to predict labels from an ordi-
nal scale, i.e., labels from a discrete but ordered set. This arises often when
the target variable consists of human generated ratings. Besides the exam-
ples of ordinal labels in the context fMRI-based brain decoding presented in
Chapter 4, examples of ordinal scales include (“do-not-bother” ≺ “only-if-
you-must” ≺ “good” ≺ “very-good” ≺ “run-to-see”) in movie ratings [Cram-
mer and Singer, 2001], (“absent” ≺ “mild” ≺ “severe”) for the symptoms of a
physical disease [Armstrong and Sloan, 1989] and the NRS-11 numeric rat-
ing scale for clinical pain measurement [Hartrick et al., 2003]. Ordinal re-
gression models have been successfully applied to �elds as diverse as econo-
metrics [Greene, 1997], epidemiology [Ananth and Kleinbaum, 1997], fMRI-
based brain decoding [Doyle et al., 2013] and collaborative �ltering [Rennie
and Srebro, 2005].

In this chapter we turn to study some theoretical properties of these
methods. The aim is that a theoretical approach allows a better understand-
ing the methods at hand. For example, Chu and Keerthi [2005] proposed
two di�erent models for the task of ordinal regression: SVOR with explicit
constraints and SVOR with implicit constraints. In that work, the second
approach obtained better generalization error in terms of the absolute error
loss function. Similar results were obtained by [Lin and Li, 2006] replacing
the hinge loss by an exponential loss. Yet again, [Rennie and Srebro, 2005]
arrived to similar conclusions by considering the logistic loss instead. One
of the motivations behind this chapter is to answer the question: is there a
theoretical reason that can explain this behavior? By the end of the chapter
we will give arguments to answer this and other relation questions.

Before introducing the general formulation of ordinal regression, we
brie�y recall the supervised learning setting described in Section 3.2.1. Let
(X,A) be a measurable space. Let (X ,Y ) be two random variables with
joint probability distribution P , where X takes its values in X and Y is a
random label taking values in a set of ordered categories that we will denote
Y = {1, 2, . . . ,k }. In the ordinal regression problem, we are given a set of n
observations {(X1,Y1), . . . , (Xn ,Yn )} drawn i.i.d. fromX ×Y and a loss func-
tion ` : Y ×Y → [0,∞). The goal is to learn from the training examples
a measurable mapping called a classi�er h : X → Y so that the risk given
below is as small as possible:

R` (h) = EX×Y (`(Y ,h(X ))) . (6.1)

The setting above looks similar to that of a multiclass classi�cation prob-
lem. However, a loss function used for multiclass classi�cation such as the
0-1 loss is not sensitive to the distance among target values. On the other
hand, in the ordinal regression setting, because of the order between la-
bels, the loss function becomes lower as the distance among classes de-
creases. This has been formalized as the V-shape property [Li and Lin,
2007]. We will say that a loss function is V-shaped if its forward di�erence,
∆`(i , j ) = `(i , j + 1) − `(i , j ), veri�es ∆`(i , j ) ≤ 0 for j ≤ i and ∆`(i , j ) ≥ 0
for j > i .

The absolute error loss function (`A (y,k ) = |y − k |) is an example of V-
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shaped loss function, although this property includes other loss functions,
such as the squared error, �S (y,k ) = (y − k )2 and the 0 − 1 loss.

Figure 6.1: The absolute error, de-
�ned as �(i , j ) = |i − j |, is a loss
function that veri�es the V-shape
property. In the �gure, a plot of the
absolute error loss �(i , j ) = |i − j |
with j = 3.

Attempting to directly minimize Eq. (6.1) is not feasible in practice for
two reasons. First, the probability distribution P is unknown and the risk
must be minimized approximately based on the observations. Second, due
to the non-convexity and discontinuity of �, the risk is di�cult to optimize
and can lead to an NP-hard problem [Feldman et al., 2012, Ben-David et al.,
2003] (note that binary classi�cation can be seen as a particular case of or-
dinal regression). It is therefore common to approximate � by a function
ψ : Y ×Rd → R, called a surrogate loss function, which has better com-
putational properties. Here d is an integer that depends on the surrogate.
For the methods that we consider d will be equal to 1,k − 1 or k . The goal
becomes to �nd the decision function f that minimizes instead the ψ -risk,
de�ned as

Rψn ( f ) = EX×Y (ψ (Y , f (X ))) . (6.2)

Fisher consistency is a desirable property for surrogate loss functions [Lin,
2004]. It implies that in the population setting, i.e., if the probability distri-
bution P were available, then optimization of theψ -risk would yield a func-
tion (not necessarily unique) with smallest possible risk, known as Bayes
predictor and denoted by h∗. This implies that within the population set-
ting, the minimization of the ψ -risk and the minimization of the risk both
yield solutions with same risk. From a computational point of view, this
implies that the minimization of the ψ -risk, which is usually a convex op-
timization problem and hence easier to solve than the minimization of the
�-risk, does not penalize the quality of the obtained solution.

The chapter is organized as follows. In Section 6.2 we present the ordi-
nal regression models that we will consider for study. These can be broadly
separated into regression-based and threshold-based. Section 6.3 is divided
into several parts. In the �rst part, we extend results from Ramaswamy and
Agarwal [2012] and prove consistency of regression-based surrogates. Be-
cause of its practical interest, the rest of this section is devoted to investigate
the consistency of threshold-based surrogates. Here we present our main
results, which gives su�cient conditions under which these surrogates are
consistent. We �nish with experiments and conclusions.

6.1.1 Related work

Fisher consistency of binary and multiclass classi�cation for the zero-one
loss has been studied for a variety of surrogate loss functions (see Bartlett
et al. [2003], Tewari and Bartlett [2007] and references therein). Ramaswamy
and Agarwal [2012] investigated the more general setting of multiclass clas-
si�cation with an arbitrary loss function, a setting that includes ordinal re-
gression. The authors proved Fisher consistency of a surrogate loss function
of the absolute error for the case of k = 3. However, this work did not prove
consistency of this surrogate for k > 3, nor did it prove consistency for any
squared error surrogate or for any of the threshold-based surrogates that
represent the majority of traditional approaches for ordinal regression.

A related, yet di�erent, notion of consistency is asymptotic consistency. A
surrogate loss is said to be asymptotically consistent if the minimization of
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theψ -risk converges to the optimal risk as the number of samples tends to
in�nity. It has also been studied in the setting of supervised learning [Stone,
1977, Steinwart, 2002]. This chapter focuses solely on Fisher consistency,
and for simplicity we will now use the term consistency to denote Fisher
consistency.

Notation. As in the previous chapter we will denote the sequence of
numbers from one to k as [k ] = {1, 2, . . . , k }. Throughout this chapter we
will use letter k to denote the number of classes in the target space.

6.2 Ordinal regression models

Di�erent methods have been proposed to learn an ordinal regression model.
The regression-based approach treats the labels as real values. It uses a stan-
dard regression algorithm to learn a real-valued function, and then predicts
by rounding to the closest label (see, e.g., Kramer et al. [2001] for a discus-
sion of this method using regression trees). In this setting we will exam-
ine consistency of two di�erent surrogate loss functions, the absolute error
(that we will denoteψA ) and the squared error (denotedψS), which are con-
vex surrogates of `A and `S , respectively. Given α ∈ R, y ∈ [k ], these are
de�ned as

ψA (y,α ) = |y − α |, ψS (y,α ) = (y − α )2 . (6.3)

Note that the loss functions `A and `S have the same expression as their sur-
rogates, however the di�erence strives in that the surrogates are continuous
functions in their second arguments while the loss functions take values in
the discrete set [k ]. The prediction function for these surrogates is given by
rounding to the closest integer in [k ], i.e., pred(α ) = mini ∈[k ] |i − α |. For
half-integers, i.e., for number of the form integer + 1

2 , the rule is to round
to the left, that is, pred(1.5) = 1, pred(2.5) = 2, etc.

While these approaches may lead to optimal predictors when no con-
straint is placed on the regressor function space as we will see in Sec-
tion 6.3.2, in practice only simple function spaces are explored such as lin-
ear or polynomial functions. In these situations, the regression-based ap-
proach might lack �exibility. The threshold-based approaches [McCullagh,
1980, Rennie and Srebro, 2005, Chu and Keerthi, 2005, Lin and Li, 2006] pro-
vides greater �exibility by seeking for both a mapping f : X → R and a
non-decreasing vector θ ∈ Rk−1, often referred to as thresholds, that map
the class labels into ordered real values.

Figure 6.2: In the ordinal logistic
model, the thresholds partition the
real line into k segments and the
prediction is given by the segment
into which the decision function
lies (assuming the segments are or-
dered by their relative order within
the real line). Here, example for
a 4-class problem. The prediction
f (X ) for a given sample is denoted
by a colored circle and θ1,θ2,θ3 are
the estimated thresholds for that
sample. Prediction in this example
would be 1, 2, 4 respectively.

The thresholds α partition the real line into k segments, and the predic-
tion is given by the segment into which the prediction f (x ) lies in (Fig 6.2).
If we introduce the auxiliary variable αi = θi − f (x ), an equivalent formu-
lation of this prediction function is

pred(α ) = 1 +
k−1∑
i=1
H (−αi ) , (6.4)

where we recall that H is the Heaviside function, de�ned as H (x ) = 1 if
x ≥ 0 and 0 otherwise.

In the context of threshold-based functions we will consider two dif-
ferent families of surrogate loss functions. The �rst family of surrogate



108

loss function that we will consider is the cumulative link surrogates of Mc-
Cullagh [1980]. In such models the posterior probability is modeled as
P (Y ≤ i |X = x ) = σ (дi (x )), where σ is an appropriate link function. We
will prove consistency for the case where σ is the sigmoid function, i.e.,
σ (t ) = 1/(1 + exp(−t )). In this case it is known as the proportional odds
model or cumulative logit model. For x ∈ X,y ∈ [k ] and αi = дi (x ), the
proportional odds surrogate (denotedψC) is de�ned as

ψC (y,α ) =




− log(σ (α1)) if y = 1
− log(σ (αy ) − σ (αy−1)) if 1 < y < k

− log(1 − σ (αk−1)) if y = k .

(6.5)

The second family of surrogate loss functions that we will consider are
themargin-based surrogate loss functions of which the ordinal logistic model
introduced in Chapter 4 is a particular example. For appropriate real-valued
functions ϕ : R → R such as the hinge loss or exponential loss, this sur-
rogate separate target values by the largest margins centered around the
thresholds [Lin and Li, 2006]. Given x ∈ X,y ∈ [k ] and α ∈ Rk−1, the
margin-based surrogate (denotedψ `

M
) is given by

ψ `
M
(y,α ) =

y−1∑
i=1

∆`(y, i )ϕ (αi ) −
k−1∑
i=y

∆`(y, i )ϕ (−αi ) .

We recall that ∆`(y, i ) = `(y, i + 1) − `(y, i ). Note that the V-shape property
implies ∆`(y, i ) ≥ 0 for the elements in the �rst term and ∆`(y, i ) ≤ 0 for
elements in the second term, thus this surrogate is convex in its second
argument if ϕ is a convex function.

This formulation parametrizes several popular approaches to ordinal re-
gression. For example, let ϕ be the hinge loss and ` the zero-one loss, then
ψT
`

coincides with the Support Vector Ordinal Regression (“explicit con-
straints” variant) of [Shashua and Levin, 2003, Chu and Keerthi, 2007]. If
instead the mean absolute loss is considered, this approach coincides with
the “implicit constraints” formulation of the same reference. For other val-
ues of ϕ and ` this loss includes the approaches proposed in [Shashua and
Levin, 2003, Chu and Keerthi, 2005, Rennie and Srebro, 2005, Lin and Li,
2006]. In section 6.3.5 we will prove consistency results for arbitrary V-
shaped loss function.

Since we aim at predicting a �nite number of labels with a speci�c loss
functions, it is also possible to use generic multiclass formulations such as
the one proposed in [Lee et al., 2004] which can take into account generic
losses. Given ϕ a real-valued function, this formulations considers the fol-
lowing surrogate

ψ `
L
(y,α ) =

k∑
i=1
`(y, i )ϕ (−αi ) (6.6)

for α ∈ Rk such that ∑k
i=1 αi = 0. The prediction function in this case

is given by pred(α ) = arg maxi ∈[k ] αi . Note however that this method re-
quires the estimation of k − 1 decision functions. For this reason, in prac-
tical settings threshold-based are often preferred as these only require the
estimation of one decision function and k − 1 thresholds.
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Consistency results of this surrogate was proven by Zhang [2004]. We
will compare their results to our �ndings of consistency for threshold-based
surrogates in Section 6.3.6.

Table 6.1 contains a list of the aforementioned surrogate loss functions,
the (non-surrogate) loss function they target and their prediction function.

Loss Surrogate Prediction

Absolute error |y − α | mini ∈[k ] |i − α |
Squared error (y − α )2 mini ∈[k ] |i − α |
Absolute error ψC (y,α ) 1 +∑k−1

i=1 H (−αi )

Any V-shaped ψ `
M
(y,α ) 1 +∑k−1

i=1 H (−αi )

Any ψ `
L
(y,α ) arg maxi ∈[k ] αi

Table 6.1: Surrogate loss functions
that we will examine in this pa-
per. These include a number of
popular approaches for ordinal re-
gression, such as the support vec-
tor ordinal regression of Shashua
and Levin [2003], Chu and Keerthi
[2007] and the proportional odds
model of McCullagh [1980].

6.3 Consistency of Surrogate Loss Functions

We will now give a precise de�nition for the (Fisher) consistency of a sur-
rogate loss function. This notion originates from a classical parameter esti-
mation setting. Suppose that an estimatorT of some parameter θ is de�ned
as a functional of the empirical distribution Fn ,T (Fn ). The estimator is said
to be Fisher consistent if its population analog, T (F ), coincides with the
parameter θ . Adapting this notion to the context of risk minimization (in
which the optimal risk is the parameter to estimate) yields the following
de�nition, adapted from [Lin, 2004] to an arbitrary loss `.

De�nition 1. (Consistency) Given a surrogate loss functionψ : Y ×Rd →

R, a function space F and prediction rule pred : Rd → [k ], we will say that
the pair (ψ , pred) is consistent with respect to the loss ` if for every probability
distribution overX ×Y it is veri�ed that every minimizer of theψ -risk reaches
Bayes optimal risk, that is,

f ∗ ∈ arg min
f ∈F

R
ψ
n ( f ) =⇒ R` (pred ◦ f ∗) = R` (h

∗) .

By an abuse of notation we will refer to the consistency of a surrogate
functionψ to designate the consistency of the pair (ψ , pred).

When the ψ -risk minimization is performed over all measurable func-
tions, it is veri�ed that

inf
f
R
ψ
n ( f ) = inf

f
EX×Y (ψ (Y , f (X ))) =

EX

[
inf
f

EY (ψ (Y , f (X )))

]
.

(6.7)

Hence in this case in order to compute the decision function with optimal
risk it is su�cient to compute the decision function with minimal expected
value (over Y) for every x ∈ X. Note that if the minimization is not per-
formed over all measurable functions this identity need not to be veri�ed.
While most studies in consistency simply assume that minimization is per-
formed over all measurable functions, we will see that in order to study
ordinal regression models in a more realistic setting this assumption is not
always veri�ed.
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6.3.1 Bayes predictor

In order to prove consistency of a surrogate loss we will �nd useful to have
an explicit form for Bayes predictor. For example, in the case of binary
classi�cation with the zero-one loss, Bayes predictor is known and is given
by sign(P (y=1|X =x ) − 1/2). In this section we will derive similar results
for arbitrary V-shaped loss functions.

We �rst introduce the following notation. Let ηi (x ) = P (Y = i |X =x )

denote the conditional probability at X =x . For 1 ≤ i < k we also de�ne the
functions ui ,vi : X → R as

ui (x ) =
i∑
j=1

ηj (x )∆`(j, i )

vi (x ) = −
k∑

j=i+1
ηj (x )∆`(j, i ) .

(6.8)

If ` is V-shape, then∆`(j, i ) is positive for j ≥ i and (u1 (x ),u2 (x ), . . . ,uk (x ))
is a non-decreasing positive sequence. Similarly, ∆`(j, i ) ≤ 0 for i < j and
(v1 (x ),v2 (x ), . . . ,vk (x )) is a non-increasing positive sequence.

We now derive a formula for Bayes predictor of an arbitrary V-shaped
loss function.

Theorem 1 (Bayes predictor for an ordinal regression loss). Let `(i , j ) be a
V-shaped loss function. Then Bayes predictor is given by

h∗ (x ) = 1 +
k−1∑
i=1
H (vi (x ) −ui (x )) . (6.9)

Proof. Let x ∈ X and r = h∗ (x ). By the V-shape property we have that
(v1 (x )−u1 (x ),v2 (x )−u2 (x ), . . . ,vk (x )−uk (x )) is a non-increasing sequence
of i . Hence, 1 +∑k−1

i=1 H (vi (x ) − ui (x )) = r implies that (vi − ui ) ≥ 0 for
1 ≤ i < r and (vi −ui ) < 0 for i ≥ r .

We will �rst prove EY (`(Y , r ))−EY (`(Y , s )) ≤ 0 for any s ∈ [k ]. Suppose
s > r , then we have

EY (`(Y , r )) −EY (`(Y , s )) =
s−1∑
i=r

EY (`(Y , i ) − `(Y , i + 1)) =

s−1∑
i=r

*.
,
−

k∑
j=1

ηj (x )∆`(j, i )+/
-
=

s−1∑
i=r

(vi (x ) −ui (x )) ≤ 0

Similarly, for s < r

EY (`(Y , r )) −EY (`(Y , s )) =
r−1∑
i=s

EY (`(Y , i + 1)) − `(Y , i ) =

s−1∑
i=s

*.
,

k∑
j=1

ηj (x )∆`(j, i )+/
-
= −

r−1∑
i=s

(vi (x ) −ui (x )) < 0

We have proven that for any classi�er h

EY (`(Y ,h∗ (x )) |X =x ) −EY (`(Y ,h(x )) |X =x ) ≤ 0
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Integrating both sides with respect to X yields

R (h∗) ≤ R (h) ,

that is, h∗ is Bayes predictor. �

An immediate consequence of this theorem is that Bayes predictor for
the mean absolute error and the mean squared error admit the following
simple form:

Corollary 1. . Bayes predictor for the absolute error loss is given by

h∗ (x ) = min
r ∈[k ]
{r :

r∑
i=1

ηi (x ) >
1
2 } . (6.10)

Proof. By the V-shape property (vi (x ) −ui (x )) is a non-increasing sequence
of i . Hence ifh∗ (x ) = 1+∑k−1

i=1 H (vi (x ) −ui (x )) = r then it must be veri�ed
that vi (x ) −ui (x ) < 0 for i ≥ r and vi −ui ≥ 0 for i < r . Because of this an
alternative formulation of Bayes predictor (Eq. 6.9) is h∗ (x ) = minr ∈[k ]{r :
ur (x ) > vr (x )}.

For the absolute error loss, ∆`(i , j ) = 1 ∀i , j. Thus, vi (x ) = (1 − ui (x )
and from this ur (x ) > vr (x ) ⇐⇒ ur >

1
2 . Hence we can write h∗ (x ) =

minr ∈[k ]{r : ui (x ) > 1
2 } = minr ∈[k ]{r :

∑r
i=1 ηi (x ) >

1
2 }. �

Corollary 2. . Bayes predictor for the squared error loss is given by

h∗ (x ) = min
r ∈[k ]
{r :

k∑
i=1

iηi (x ) > r −
1
2 } . (6.11)

Proof. For the squared error loss, ∆`(i , j ) = 1−2(i − j ) and thus,vr (x ) −ur (x )
= - ∑k

j=1 ηj (x ) (1 − 2(r − j )) = −1 + 2r − 2 ∑k
j=1 jηj (x ). Hence ur (x ) > vr (x )

⇐⇒
∑k

j=1 jηj (x ) > r − 1
2 . Using the alternate formulation of Bayes pre-

dictor given in Corollary 1 we can then write h∗ (x ) = minr ∈[k ]{r : ηj (x ) >
r − 1

2 }. �

0-1 Error

(1, 0, 0) (0, 0, 1)

(0, 1, 0)

(.5, 0, .5)
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h∗(x)=2

h∗(x)=3

0-1 Error
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(1, 0, 0) (0, 0, 1)
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(.5, 0, .5)
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Figure 6.3: Bayes predictor on the
probability simplex. Bayes predic-
tor is a function of the conditional
probability ηi (x ) = P (y = i |X =

x ). The vector (η1, . . . ,ηk ) belongs
to the probability simplex of Rn ,
which is contained within an hy-
perplane of dimension k − 1. In the
�gure, probability simplex in R3 is
colored according to the output of
Bayes predictor.

Bayes predictor predicts a label from the conditional probability (η1 (x ),η2 (x ), . . . ,ηk (x ))
and as such induces a partitioning of the probability simplex k regions. The
probability simplex is the set {x ∈ Rk :

∑n
i=1 xi = 1,xi ≥ 0} and is contained

within an hyperplane of dimension n − 1. In Figure 6.3, the probability sim-
plex in R3 is colored according to the output of Bayes predictor. These sets
have been previously studied for the 0-1 loss in [O’Brien et al., 2008] and
for the absolute error in [Ramaswamy and Agarwal, 2012].

6.3.2 Consistency of regression-based models

We will now examine the consistency of regression-based models. Con-
sistency of the absolute error surrogate was proven by [Ramaswamy and
Agarwal, 2012] for the case of 3 classes. Here we give an alternate simple
proof that extends beyond k > 3.

Lemma 1. The function with minimalψA-risk is f ∗ (x ) = median(Y |X =x ),
where median represents the median of a random variable (i.e. the value α
such that P (y ≤ α |X = x ) ≥ 1/2 and P (y ≥ α |X = x ) ≤ 1/2). The function
with minimalψS-risk is f ∗ (x ) = EY (Y |X =x ).
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Proof. By the application of optimality properties of the median and mean,
the median and the mean are the scalar values that minimize EY (ψA (Y ,α ) |X =
x ) = EY ( |Y − α | |X = x ) and EY (ψS (Y ,α ) |X = x ) = EY ((Y − α )

2 |X = x ),
respectively. In light of Eq. (6.7) this is su�cient to obtain the minimal
risk. �

Theorem 2. The absolute error surrogateψA is consistent with respect to `A .

Proof. Let x ∈ X, and α∗ = median(Y |X = x ). By de�nition of median,
P (y ≤ α∗ |X =x ) =

∑α ∗
i=1 ηi (x ) ≥ 1/2 and ∑k

α ∗ ηi (x ) ≤ 1/2.
If ∑α ∗

i=1 ηi (x ) > 1/2 and ∑k
α ∗ ηi (x ) ≤ 1/2 thenα∗ = minr ∈[k ]{r :

∑r
i=1 ηi (x ) >

1
2 } and in light of Corollary 1 we predict the same label as Bayes predictor.

We have left out the case in which ∑α ∗
i=1 ηi (x ) = 1/2. In this case the

median would predict α∗ but Bayes predictor would predict α∗ + 1. If we
compute the conditional risk for these values we have

EY (`(Y ,α∗)) −EY (`(Y ,α∗)) =
k∑
i=1

ηi (x ) |i − α
∗ + 1| −

k∑
i=1

ηi (x ) |i − α
∗ | =

α ∗∑
i=r

ηi (x ) −
k∑

i=α ∗+1
ηi (x ) = 0

Hence in this case the risk associated with predicting α∗ or α∗ + 1 is the
same. We have shown thus that the risk associated with Bayes predictor is
the same than the risk associated with the minimizer of ψA (the median),
hence we have consistency of this surrogate.

�

Theorem 3. The squared error surrogateψS is consistent with respect to `S .

Proof. Letα∗ = EY (Y |X =x ) =
∑k

i=1 iηi (x ). Then pred(α∗) = round
(∑k

i=1 iηi (x )
)

= minr ∈[k ]
∑k

i=1 iηi (x ) > r − 1
2 , which coincides with Bayes predictor from

Eq. (6.11). �

6.3.3 Di�iculty of consistency in the threshold-based se�ing

Although the threshold-based setting is of great practical importance, no
consistency results exist for these surrogates to the best of our knowledge.

The di�culty of proving such results stems from the fact that within the
space of allowed decision functions Eq. (6.7) is no longer valid. This implies
that it is no longer possible to obtain the optimal decision function from the
minimization at a �xed x ∈ X, as we have done in the proof of Theorem 2
and 3.

In section 6.2, we have de�ned the decision function g(x ) = (д1 (x ), . . . ,дk−1 (x ))

to be of the form дi (x ) = θi − f (x ), or equivalently to verify the condition
that дi+1 (x ) −дi (x ) is a positive constant (i.e. does not depend on x ) for all
1 ≤ i < k − 1. If g veri�es this constraint, we will say that g is a threshold-
based decision function.

In order to obtain su�cient conditions for the consistency of threshold-
based methods, we will �rst consider the case in which the decision function
g belongs to the space of all measurable functions. In this case we can con-
struct the optimal decision function by considering each x ∈ X separately.
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Having an explicit form of the minimizer for theψ -risk in this setting makes
it possible to inspect under which conditions does this minimizer belong to
the space of threshold-based decision functions.

An interesting relaxation of the threshold-based setting is given in [Pe-
terson and Harrell, 1990] under the name of partial thresholds. In this set-
ting, g(x ) = (д1 (x ), . . . ,дk (x )) is a non-decreasing vector for all x ∈ X
which does not necessarily verify the constraints of a threshold-based deci-
sion function. In this setting, the decision function can represent any real-
valued mapping that veri�es the order constraints. We will call these de-
cision functions partial-threshold decision functions. This setting is rarely
used in practice because of the need to estimate k − 1 functions.

6.3.4 Consistency of proportional odds

We begin by proving the strong convexity of proportional odds, whose
proof can be found in the appendix. Through this section we will useψC to
denote the proportional odds surrogate as de�ned in Eq. (6.5).

Lemma 2. The proportional odds surrogate ψC is a convex function of its
arguments in the domain of de�nition.

Proof. ψC (1,α ) andψC (k ,α ) (de�ned in Eq. (6.5)) are logistic loss functions,
which are convex because they are log-sum-exp functions. We will prove
that ψi is convex for 1 < i < K . For convenience we will write this func-
tion as f (a,b) = − log

(
1

1+exp (a) −
1

1+exp (b )

)
, where a > b is the domain of

de�nition.
By factorizing the fraction inside f to a common denominator, f can

equivalently be written as− log(exp(a)− exp(b))+ log(1+ exp(a))+ log(1+
exp(b)). The last two terms are convex because they can be written as a log-
sum-exp. The convexity of the �rst term, or equivalently the log-concavity
of the function f (a,b) = exp(a) − exp(b) can be settled by proving the
positive-de�niteness of the matrixQ = ∇f (a,b)∇f (a,b)T − f (a,b)∇2 f (a,b)
for all (a,b) in the domain {b > a} [Boyd and Vandenberghe, 2004]. In our
case,

Q = *
,

exp(a +b) − exp(a +b)
− exp(a +b) exp(a +b)

+
-
= exp(a +b) *

,

1 −1
−1 1

+
-

Which is a positive semide�nite matrix with eigenvalues 2 exp(a+b) and
0. This proves that Q is positive semide�nite and thus the loss function ψi
is convex. �

For the proportional odds surrogate ψC it is possible to �nd the explicit
form of a function that minimizes the ψC-risk. We will use notation g to
denote the vector-valued function (д1 (x ), . . . ,дk−1 (x )).

Theorem 4. The function g : X → Rk−1 given by

д∗i (x ) = log
(

ui (x )

1 −ui (x )

)
,

minimizes theψC-risk.
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Proof. Let x ∈ X and consider the optimization problem

α ∗ ∈ arg min
α ∈Rk−1

EY (ψC (Y ,α ) |X =x )

The KKT conditions associated with this optimization problem are

− η1 (x )
1

σ (α1)
+ η2 (x )

1
σ (α2) − σ (α1)

= 0

− ηi (x )
1

σ (αi ) − σ (αi−1)
+ ηi+1 (x )

1
σ (αi+1) − σ (αi )

= 0

− ηk−1 (x )
1

σ (αk−1) − σ (αk−2)
+ ηk (x )

1
1 − σ (αk−1)

= 0

with 1 < i < k − 1. It is easy to verify that σ (α∗i ) =
∑i

j=1 ηj (x ) = ui (x )

satisfy the optimality conditions.
Solving forα∗i results inσ (α∗i ) =

∑i
j=1 ηj (x ) =⇒ α∗i = log (ui (x )/(1 −ui (x ))).

By Eq. (6.7), the function that for all x ∈ X returns log (ui (x )/(1 −ui (x )))
is the function that minimizes theψ -risk. �

Note that for x ∈ X �xed, the sequence (д∗1 (x ), . . . ,д∗k−1 (x )), with д∗ as
de�ned in the previous theorem is non-decreasing sinceui is non-decreasing
and due to the monotonicity of the logit function. This implies that g(x ) =
(д∗1 (x ), . . . ,д∗k−1 (x )) is a partial-threshold decision function. Consistency
for this class of functions is now immediate since

pred(g∗ (x )) = 1 +
k−1∑
i=1
H

(
log

(
ui (x )

1 −ui (x )

))
=

= 1 +
k−1∑
i=1
H (ui (x ) − 1/2)

= min
r ∈[k ]
{r :

r∑
i=1

ηi (x ) ≥
1
2 }

(6.12)

which coincides with Bayes predictor from Eq. (6.10). Thus, if the decision
function belongs to the space of partial-threshold decision functions, the
proportional odds is consistent. For threshold-based decision functions we
have the following result:

Corollary 3. Let P verify the property that the odds-ratio is constant, that
is,

ηi (x )/(1 − ηi (x ))
ηi+1 (x )/(1 − ηi+1 (x ))

(6.13)

is independent of x ∈ X for all i ∈ [k − 1]. Then the proportional odds surro-
gate is consistent.

Proof. Letдi (x ) = log (ui (x )/(1 −ui (x ))) andдi+1 (x ) = log (ui+1 (x )/(1 −ui+1 (x ))).
Proving is that дi (x ) − дi+1 (x ) is constant is equivalent to proving that д is
of the form дi (x ) = θi − f (x )

Then
дi (x ) −дi+1 (x ) = log (ui (x )/(1 −ui (x ))) −

log (ui+1 (x )/(1 −ui+1 (x ))) =

log
(

ηi (x )/(1 − ηi (x ))
ηi+1 (x )/(1 − ηi+1 (x ))

)
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which is the log of a constant by assumption, hence constant. By Theorem 4
it follows that this function is the minimizer of the ψC-risk. Consistency is
now a consequence of (6.12). �

6.3.5 Consistency of margin-based models

As done in the previous section, we will provide an explicit form of func-
tions that minimize theψ `

M
-risk. This will allow to derive conditions under

which threshold-based decision functions are consistent.

Theorem 5. Let ` be V-shaped. Then the function g : X → Rk−1 minimizes
theψ `

M
-risk for di�erent values of ϕ:

• If ϕ is the hinge loss, i.e., ϕ (t ) = max(1 − t , 0),

д∗i (x ) = sign(ui (x ) −vi (x ))

• If ϕ is the logistic loss, i.e., ϕ (t ) = 1/(1 + exp(−t )),

д∗i (x ) = log(ui (x )/vi (x ))

• If ϕ is the exponential loss, i.e., ϕ (t ) = exp(−t )

д∗i (x ) =
1
2 log(ui (x )/vi (x ))

• If ϕ is the squared loss, i.e., ϕ (t ) = (1 − t )2

д∗i (x ) =
ui (x ) +vi (x )

ui (x ) −vi (x )

Proof. Letui ,vi be as de�ned in Eq. (6.8), x ∈ X andα = (д1 (x ), . . . ,дk−1 (x )).
Then for any surrogateψ we can write

EY (ψ (Y ,α ) |X =x ) =
k∑
j=1

ηj (x )
*.
,

j−1∑
i=1

∆`(y, i )ϕ (αi ) −
k−1∑
i=j

∆`(y, i )ϕ (−αi )+/
-
=

k−1∑
i=1

ϕ (αi )vi (x ) +ϕ (−αi )ui (x ) .

(6.14)

Ifϕ is the hinge loss, the values of αi that minimize this expression verify
−1 ≤ αi ≤ 1 for all i ∈ [k − 1], as otherwise truncation of these values at −1
or 1 gives a lower value of the surrogate loss. In this case we have

EY (ψ (Y ,α ) |X =x ) =
k−1∑
i=1

(1 − αi )vi (x ) + (1 + αi )ui (x ) =

k−1∑
i=1

α (ui (x ) −vi (x )) +C

where C are terms that do not depend on α . Therefore, this expression
minimized for α∗i = sign(vi (x ) −ui (x )).
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If ϕ is the logistic loss, the expression from Eq. (6.8) is di�erentiable.
The derivative with respect to αi is (1 − σ (αi ))vi − σ (αi )ui , where σ (αi ) =
1/(1 + exp(−αi )) is the sigmoid function. Equaling this expression to zero
and solving for αi yields the result.

The proof forψ the rest of surrogates can be found in the appendix. �

In light of this result, it is possible to derive su�cient conditions under
which margin-based decision functions are consistent.

Corollary 4. Under the conditions of Theorem 5, if P is a probability distri-
bution such that

α∗i (x ) − α
∗
i+1 (x )

does not depend on x for all 1 ≤ i < k , then the surrogateψ `
M

is consistent.

Proof. The optimal decision functions α∗1 , . . . ,α∗k−1 are threshold-based de-
cision functions by assumption. Furthermore, it is easy to verify that all the
α∗i (x ) obtained in Theorem 5 verifyH (α∗i (x )) =H (ui (x ) −vi (x )), and thus
prediction coincides with Bayes predictor of Eq. (6.9). �

As mentioned in Section 2, the surrogate ψ `
M

parametrizes several ap-
proaches that have appeared in the literature.

Corollary 5. Under the assumptions of Corollary 4, the following surrogate
loss functions are consistent with respect to the zero-one loss:

• Support Vector Ordinal Regression (SVOR), “explicit constraints” variant,
from [Shashua and Levin, 2003, Chu and Keerthi, 2007] (ϕ = hinge loss),

• “Immediate threshold” from [Rennie and Srebro, 2005] (ϕ = logistic loss),

• “ORBoost with Left-Right margins” from [Lin and Li, 2006] (ϕ = exponential
loss),

Corollary 6. Under the assumptions of Corollary 4, the following surrogate
loss functions are consistent with respect to the mean absolute error:

• Support Vector Ordinal Regression (SVOR), “implicit constraints” variant,
from [Shashua and Levin, 2003, Chu and Keerthi, 2007] (ϕ = hinge loss),

• “All threshold” from [Rennie and Srebro, 2005] (ϕ = logistic loss), used in
Chapter 4 in the context of fMRI decoding models.

• “ORBoost with All margins” from [Lin and Li, 2006] (ϕ = exponential loss).

We now have the necessary elements to answer the question that moti-
vated our study at the beginning of this chapter: why does the SVOR with
implicit thresholds often outperform the SVOR with explicit thresholds with
respect to the mean absolute error metric? As the corollaries above outline,
the SVOR with implicit constraints surrogate is consistent with respect to
the absolute error loss while the SVOR with explicit constraints is not. Even
more, SVOR with explicit constraints surrogate is instead consistent with re-
spect to a di�erent loss (the 0-1 loss). It is thus not surprising that the �rst
approach performs better with respect to the absolute error. In the exper-
imental section we discuss this issue further by comparing both methods
with respect to di�erent metrics.
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The su�cient conditions of Corollary 4 translate into well-known con-
ditions on the probability distribution for some values of ϕ. For example, let
ϕ be the logistic loss and ` be the absolute error, the optimal decision func-
tion is given by α∗i (x ) = log(ui (x )/vi (x )) = log(ui (x )/(1 −ui (x ))). Thus
we obtain the function that the optimal decision function for the propor-
tional odds from Theorem 4. This implies (see Corollary 3) that if P veri�es
that the odds-ratio are constant as de�ned in (6.13), then the surrogate is
consistent.

In light of these results, it is immediate to show that within the space of
partial threshold decision functions, the aforementioned methods are con-
sistent. Furthermore, in this case we can prove a slightly more general re-
sult. The following result states consistency while assuming only convexity
and a condition of the di�erential at zero of the function ϕ.

Theorem 6. Let ` be a V-shaped loss function. Given a convex function
ϕ : R→ R+ such that ϕ is di�erentiable at zero and ϕ ′(0) < 0, then the sur-
rogate loss functionψ `

M
is consistent with respect to ` if the decision functions

are contains the space of partial-threshold decision functions .

Proof. Let x ∈ X and r = h∗ (x ) be the label predicted by Bayes predictor.
As we did in the proof of Theorem 5, we can write EY (ψ (y,α ) |X = x ) =∑k−1

i=1 ϕ (αi )vi (x ) + ϕ (−αi )ui (x ). The KKT conditions for this optimization
problem with respect to α are

0 ∈ ∂Fi (αi ) = ∂ϕ (αi )ui (x ) − ∂ϕ (−αi )vi (x ) ∀i = 1, . . . , k − 1 (6.15)

where ∂ denotes the subgradient operator.
By the V-shape property we have that (v1 (x )−u1 (x ),v2 (x )−u2 (x ), . . . ,vk (x )−

uk (x )) is a non-increasing sequence of i . Hence, 1+∑k−1
i=1 H (vi (x )−ui (x )) =

r implies that (vi −ui ) ≥ 0 for 1 ≤ i < r and (vi −ui ) < 0 for i ≥ r .
Let α ∗ denote the vector that satis�es the KKT conditions and let p ≥ r .

Then haveup −vp > 0. Hence, ∂Fp (0) = ϕ ′(0) (up −vp ) ≤ 0. The expression
∂Fp (αp ) is the subdi�erential of a convex function and is thus a monotone
operator [Rockafellar, 1970]. Hence ∂Fp (0) < 0 implies that the optimal
value α∗p will be located in the region {x : x > 0}. We have proved that
α∗p > 0 for all p ≥ r .

Suppose now s < r and consider ∂Fs (0) = ϕ ′(0) (us − vs ). Because of
the V-shape property we have us − vs ≤ 0 and hence ∂Fs (0) ≥ 0. The
expression ∂Fs (αs ) is again a monotone operator and veri�es ∂Fs (0) ≥ 0
from where we can conclude that any zero of this expression will be located
in the region {x : x ≤ 0}. We have proved that α∗s ≤ 0 for all s < r .

We have proved that α∗p > 0 for all p ≥ r and α∗s ≤ 0 for all s < r . Hence,
1+∑k−1

i=1 H (−αi ) = 1+ (r − 1) = r and the prediction coincides with Bayes
predictor, hence the surrogate is consistent. �
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6.3.6 Relationship with multiclass formulations

Let ψ `
L

the surrogate loss function de�ned in Eq. (6.6). For a given x ∈ X,
let f ∗1 (x ), . . . , f ∗k (x ) be minimizers of EY (ψ

`
L
(Y , f (x ))). Then it is veri�ed

k∑
i=1

( k∑
j=1

ηj (x )`(j, i )
)
ψ (−fi (x )) =

k∑
i=1

(ui (x ) −vi (x ))ψ (−fi (x ))

For the hinge loss, it is shown in Lee et al. [2004] that given x ∈ X, the
optimal decision function is of the form f ∗i (x ) = 1 for i = arg mini ui (x ) −
vi (x ), and−1/(k − 1) otherwise. Thus, a su�cient condition for consistency
is that the k functions above are in the class of functions we are considering
for the decision function.

This is to be contrasted with the margin-based formulations, where, for
the hinge surrogate, we need the k − 1 functions sign(ui (x ) −vi (x ))) to be
in the class of functions of the decision function.

No requirement is stronger than the other. However, for the margin-
based formulations, we have developed su�cient conditions under which
we may use a single function and �xed thresholds.

6.4 Experiments

Although the focus of this chapter is a theoretical investigation of consis-
tency, we have also conducted experiments that study empirical perfor-
mance of some the methods outlined in this paper.

In this section we compare two approaches described earlier in terms of
generalization accuracy. The di�erent datasets used are described in [Chu
and Ghahramani, 2004]. Following [Chu and Keerthi, 2005], we will con-
sider two variants of the margin-based loss function ψC for ` = `0−1 and
` = `A with ϕ = hinge loss. Speci�cally, we compare the “explicit con-
straints on thresholds” formulation (denoted here ET) versus the “implicit
constraints on thresholds” formulation (denoted IT). Corollary 4 states that
under appropriate assumptions on the probability distribution P , ET is con-
sistent with respect to the zero-one loss while AT is consistent with respect
to the absolute error loss.

We show in Figure 6.4 the generalization scores of these two methods us-
ing as metric the zero-one loss and the absolute error on 8 di�erent datasets.
The generalization accuracy of both models has been computed using 5-fold
cross validation. Although consistency results only apply under certain as-
sumptions on the underlying probability distribution, we observe a corre-
lation between consistent surrogates and the best performing model. Our
�ndings provide a theoretical explanation of the poor performance of the ET
surrogate compared with the IT surrogate when evaluated using the abso-
lute error loss (since the IT surrogate is consistent w.r.t the absolute error).
Similar results have been observed in the literature for di�erent values of
ϕ [Chu and Keerthi, 2005, Lin and Li, 2006, Shashua and Levin, 2003].
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Figure 6.4: Performance of the “Ex-
plicit Threshold” (ET) and “Implicit
Threshold” (IT) methods of Chu
and Keerthi [2005] on 8 di�erent
datasets and for two di�erent eval-
uation metrics. Top: the metric
used is the mean absolute error.
The IT method is consistent with
respect to this loss and performs
better on 7 out of 8 datasets. Bot-
tom: the metric used is the mean
zero-one loss. The ET method is
consistent with respect to this met-
ric and performs better on 6 out of
8 datasets. Datasets for which the
di�erence of performance is signif-
icant (Wilcoxon signed-rank test
with p < 0.01) are denoted with an
asterisk (∗).

6.5 Conclusion

In this chapter we have characterized the consistency for a rich family of
surrogate loss functions used for ordinal regression. In the regression-based
setting we have extended work from Ramaswamy and Agarwal [2012] to
prove consistency for the absolute error surrogate as well as the squared
error surrogate.

In the threshold-based setting, we studied consistency of the propor-
tional odds model and given su�cient conditions on the underlying proba-
bility distribution under which this surrogate is consistent. We also consid-
ered formulations such as the Support Vector Ordinal Regression [Chu and
Keerthi, 2005], the Ordinal Regression Boosting methods [Lin and Li, 2006]
and the Logistic Regression formulation of [Rennie and Srebro, 2005]. We
framed these methods under a common formulation that we call margin-
based surrogate, and derived an explicit form of functions that minimize the
ψ -risk. We gave su�cient conditions for the consistency of the aforemen-
tioned approaches. Thanks to these results, we could answer the question
outlined in the introduction: the SVOR with implicit constraints surrogate
is consistent with respect to the absolute error loss while the SVOR with
explicit constraints is not. Even more, SVOR with explicit constraints sur-
rogate is instead consistent with respect to a di�erent loss (the 0-1 loss).
This would explain why it has been repeatedly reported the superiority of
the �rst approach when compared with the absolute error metric [Chu and
Keerthi, 2005, Lin and Li, 2006, Rennie and Srebro, 2005]. In this respect, the
importance of this work, more than to prove consistency, it to identify the
loss for which a given surrogate is consistent.

Since consistency of the threshold-based approach is only proven sub-
ject to certain conditions on the underlying probability distribution P , we
investigated under which conditions these surrogates are always consistent.
Here we show that this is possible by considering an enlarged space for the
decision functions that we called partial-threshold decision functions.

Finally, we illustrated our �ndings on by comparing the performance of
two methods on 8 di�erent datasets. Although the conditions for consis-
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tency that are required by the underlying probability distribution are not
necessarily met, we observed that methods that are consistent w.r.t a given
loss often outperform other methods that are not consistent with respect to
that loss.
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7 Conclusion and Perspectives

In this last chapter we detail the di�erent contributions contained within
this thesis and we point out possible extension that can be considered in
the future. The proposed methods span all the di�erent contributions of this
thesis. We also enumerate the software packages that have been developed.
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7.1 Contributions

In this thesis we have examined several aspects of the pipeline through
which an fMRI datasets can be analyzed. We have made contributions at
di�erent stages of this pipeline.

In Chapter 4 we have studied a problem of feature extraction. The goal of
this feature extraction step is to output time-independent activation maps
from the BOLD time series. In this context we have introduced a new model
for the joint estimation of hemodynamic response function (HRF) and brain
activation coe�cient. The novelty of our method stems from the observa-
tion that the formulation of the GLM model with a common (but unknown)
HRF across conditions translates into a rank constraint on the vector of es-
timates. This allows to specify the model as a smooth optimization problem
and to use gradient-based methods for its estimation.

A popular application of supervised learning to reveal cognitive mech-
anisms in fMRI studies is the problem of brain decoding, in which the goal
is to predict some information about the stimuli given the activation co-
e�cients. In Chapter 5 we examine the setting of practical importance in
which the target variable consist of discretely ordered values. We identi�ed
two loss functions that are appropriate for the task: the absolute error and
the pairwise disagreement. We presented several models based on the min-
imization of a convex surrogate of these loss functions. We examined their
performance on both synthetic and two real world fMRI datasets.

Motivated by its applicability to decoding studies we turned in Chap-
ter 6 to study some theoretical properties of ordinal regression models. We
provided an analysis of the Fisher consistency properties of a rich family
of surrogate loss functions, including proportional odds and support vector
ordinal regression. For all the surrogates considered, we either proved con-
sistency or provided su�cient conditions under which these approaches are
consistent.

7.2 Research Perspectives

7.2.1 A tensor formulation of R1-GLM

Although the R1-GLM model presented in Chapter 4 has faster execution
times than methods that implement similar assumptions [Makni et al., 2008,
Vincent et al., 2010, Degras and Lindquist, 2014]), the algorithm still does
not use all the structure within the problem.

For example, the algorithm �ts independently a R1-GLM on every voxel
(for around 5 × 104 voxels in a fMRI volume) without taking into account
that the design matrix is the same for all voxels. In this context, a possible
line of research is to use a tensor-based formulation of the R1-GLM model to
incorporate this structure within the solver.

Let X ∈ Rn×kd be the design matrix of the GLM. This matrix can be
naturally represented as the tensor X ∈ Rn×k×d that veri�es that its ma-
trizialization along the last axis corresponds to the design matrix X. In this
case, using the n-mode tensor product [Kolda and Bader, 2009] we have the
identity Xvec(hβT ) = X ×2 h ×3 β , hence the R1-GLM can be seen as the
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minimization of the objective function

‖y −X ×2 h ×3 β ‖2

subject to the usual constraints on h, β . Due to its analogies with a linear
least squares problem, it seems reasonable to think that a tensor factor-
ization of X (such as CP/PARAFAC or Tucker) might be able to solve or
accelerate the optimization of this model.

7.2.2 Uniqueness of solution for R1-GLM

The R1-GLM model, being non-convex, comes with no guarantees of con-
vergence to a global optimum for the algorithms considered.

However, some scarce theoretical results exist. For the case of in�nite
data (which would correspond in our model to an in�nite number of fMRI
scans), the uniqueness of solution of a similar model was proved by [Bai
and Liu, 2006]. A possible area of research is to extend these results to the
more practical setting of a limited number of samples.

7.2.3 Parcel R1-GLM model

This is a di�erent extension of the R1-GLM model presented in Chapter 4
that aims at reducing the amount of HRFs estimated within the model.

Within the context of HRF estimation, some studies have proposed to
perform the estimation of an HRF in a set of neighboring voxels called a par-
cel, thus taking advantage of the spatially dependent nature of fMRI [Wang
et al., 2013, Chaari et al., 2012, Badillo et al., 2013].

The notion of parcel, i.e., a brain region which shares the same HRF, can
be trivially incorporated into the R1-GLM model, and results in a modi�ed
R1-GLM model. Given m voxels in the parcel, let y = [y1, y2, . . . , ym ] the
concatenation of the BOLD signal for the voxels within the parcel and let
X be the matrix formed by a block-diagonal matrix withm blocks in which
every block is the design matrix for the current experiment. Then the R1-
GLM model that assumes the HRF constant across the parcel can be written
as

ĥ, β̂ , ω̂ = arg min
h,β ,ω

1
2 ‖y −X vec(hβ ) − Zω‖2

subject to ‖Bh‖∞ = 1 and 〈Bh, href〉 > 0 ,
(7.1)
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where β = [β1, . . . , βm ] contains the activation coe�cients for the di�erent
voxels within the region. Phrased di�erently, the estimation of a R1-GLM
model within a parcel is itself a R1-GLM model with a modi�ed design ma-
trix.

However, these approaches must face the problem of choosing the right
brain parcellation. An interesting approach, named hemodynamically-informed
parcellations [Chaari et al., 2012, Badillo et al., 2013] relies on the computa-
tion of a large number of estimations at the voxel or sub-parcel level.

7.2.4 Weaker conditions for the consistency of threshold-based
ordinal regression methods

In Chapter 6 we have presented consistency results for some ordinal re-
gression methods. For threshold-based methods, in the practical setting in
which the thresholds are constant across samples (a setting that we called
model with threshold-based decision function), we have only been able to
prove consistency under very restrictive conditions on the underlying prob-
ability distribution.

It is possible that similar consistency results can be obtained with weaker
conditions on the probability distribution, which would result in conditions
that are widely applicable. For example, in [Herbrich et al., 1999, Section 2],
the authors present the cumulative models of [McCullagh, 1980] (described
in Section 6.2) as a consequence of a stochastic ordering in the sample space.

The stochastic ordering assumption can be described as follows. Given
the sample space X and a target space Y , then for all di�erent x1,x2 ∈ X

either
P (y ≤ r |X = x1) ≥ P (y ≤ r |X = x2) for all r ∈ Y

or
P (y ≤ r |X = x1) ≤ P (y ≤ r |X = x2) for all r ∈ Y

The authors then conclude that stochastic ordering is satis�ed by a model
of the form

д−1 (P (y ≤ r |X = x )) = θr − f (x )

hence it seems reasonable to think that a stochastic ordering could be a suf-
�cient condition in order to obtain consistency – at least for the cumulative
logit model.

7.2.5 Application of ordinal regression methods to multiclass
classification

Although ordinal regression methods have been initially developed for loss
functions that minimize a distance between the labels, our theoretical re-
sults show that some ordinal regression methods are instead consistent to
the 0-1 loss1, i.e., with the usual loss used in multiclass classi�cation. This 1 We recall that (although in a de-

generate sense), the 0-1 loss does
verify the V-shape property.

suggests that some ordinal regression methods might be competitive in the
context of multiclass classi�cation. One of the advantages of ordinal regres-
sion models is that for linear decision functions, the learning only requires
the estimation of p + k − 1 parameters versus e.g. p × (k − 1) in the case
of one-vs-all multiclass classi�cation, where p is the dimensionality of the
dataset and k is the number of classes. It is possible that these methods have
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applications for the estimation of multiclass classi�cation rules in very high-
dimensional settings, although its usefulness still needs to be determined.
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7.4 So�ware

A number of software distributions have been developed within the context
of this thesis.

7.4.1 hrf_estimation

This package implements method for the joint estimation of hemodynamic
response function (HRF) and activation coe�cients (aka beta-maps) from
fMRI data presented in Chapter 4. Full documentation for this package,
including an example IPython notebook can be found at

http://pythonhosted.org/hrf_estimation/

7.4.2 mord

Ordinal Regression algorithms. Module that implements the ordinal regres-
sion models used in Chapter 5. The code can be found at the URL

https://github.com/fabianp/mord

7.4.3 pysofia

PySo�a is a python wrapper around the methods present in the C++
so�a-ml library. These include Stochastic Gradient Descent implementa-
tions of some ranking algorithms, notably RankSVM [Sculley, 2009].

https://pypi.python.org/pypi/pysofia/

7.4.4 memory_profiler

Figure 7.1: The memory_pro�ler
module allows to quickly analyze
the memory consumption of a pro-
gram by using the line-by-line pro-
�ling (in the picture) or the time-
based memory pro�ling.

This is a python module for monitoring memory consumption of a process
as well as line-by-line analysis of memory consumption for python pro-
grams. It is a pure python module.

https://pypi.python.org/pypi/memory_profiler

The presentation of this module won the Best Poster Award at the con-
ference EuroScipy 2012 (European Scienti�c Computing in Python)

http://pythonhosted.org/hrf_estimation/
https://github.com/fabianp/mord
https://pypi.python.org/pypi/pysofia/
https://pypi.python.org/pypi/memory_profiler
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Glossary

activation coe�cient amplitude for a single voxel associated with a stimuli
in an fMRI study. 13, 15, 31, 52, 53, 63

BOLD fMRI contrast that measures oxygen change in blood �ow. 30

conditions di�erent stimuli in an fMRI study. 33

decoding distinguish patterns of neural activity associated with di�erent
stimuli or cognitive states. 45, 87

fMRI Functional Magnetic Resonance Imaging. 29

GLM General Linear Model. 17, 33, 44, 73, 74

Heaviside The real function that is zero for negative values and one other-
wise. 47

hinge loss Loss function used by Support Vector Machines. 48

HRF Hemodynamic Response Function. 13, 31

Kendall τ Distance measure between two measurements. It is a measure
of rank correlation, i.e., the similarity of the orderings of the data when
ranked by each of the quantities. 93

LTI Linear Time Invariant assumption. 32

TR repetition time, sampling time in an fMRI scanner. 30

voxel unity of measure in a volumetric space. 30


	Organization and contributions of this thesis
	Introduction to Functional MRI
	General brain structures
	Functional neuroimaging modalities
	Estimation of activation coefficients
	Conclusion

	Statistical Inference in fMRI
	Conclusion

	Data-driven HRF estimation for encoding and  decoding models
	Increased sensitivity via HRF estimation
	Methods
	Data description
	Results
	Conclusion

	Decoding with Ordinal Labels
	Loss functions
	Ranking and ordinal regression
	Models
	Conclusion

	Fisher Consistency of Ordinal Regression Methods
	Introduction
	Ordinal regression models
	Consistency of Surrogate Loss Functions
	Experiments
	Conclusion

	Conclusion and Perspectives
	Contributions
	Research Perspectives
	Publications by the author

	Glossary

