Danilo Dohmatob 
  
Vincent " Bzdok 
  
" Comme Ta Soeur 
  
Aina " Michel 
  
" Sobrasada 
  
Fernando Frau 
  
Mehdi Yepes 
  
Alexandre Rahim 
  
Virgile Abraham 
  
Jean Fritsch 
  
Andres Kossai 
  
Loic Hoyos 
  
Yannick Esteve 
  
" Schwarz 
  
Olivier Grisel 
  
Salma Bougacha 
  
Benoit "peta Philippe Gervais 
  
Da Mota 
  
Bernard Ng 
  
Vi- Viana "reghishtrashion " Siless 
  
Solveig Badillo 
  
Nicolas Chau 
  
Matthieu Kowalski 
  
Valentina Borghesani 
  
Manuela Piazza 
  
Christophe Pallier 
  
Elodie Cauvet 
  
Evelyn Eger 
  
Lucie Charles 
  
Pedro Pinhero 
  
Andreas Mueller 
  
Vlad Niculae 
  
Lars Buitinck 
  
Mathieu Blondel 
  
Jake Vanderplas 
  
Peter Prettenhofer 
  
Ludovic Denoyer 
  
Marcel Van Gerven 
  
Keywords: fMRI, BOLD, HRF, feature extraction, supervised learning, ranking, ordinal regression, decoding, encoding

Until the advent of non-invasive neuroimaging modalities the knowledge of the human brain came from the study of its lesions, post-mortem analyses and invasive experimentations. Nowadays, modern imaging techniques such as fMRI are revealing several aspects of the human brain with progressively high spatio-temporal resolution. However, in order to answer increasingly complex neuroscienti c questions the technical improvements in acquisition must be matched with novel data analysis methods. In this thesis we examine di erent applications of machine learning to the processing of fMRI data. We propose novel extensions and investigate the theoretical properties of di erent models.

Often the data acquired through the fMRI scanner follows a feature extraction step in which time-independent activation coe cients are extracted from the fMRI signal. The rst contribution of this thesis is the introduction a model named Rank-1 GLM (R1-GLM) for the joint estimation of timeindependent activation coe cients and the hemodynamic response function (HRF). We quantify the improvement of this approach with respect to existing procedures on di erent fMRI datasets.

The second part of this thesis is devoted to the problem of fMRI-based decoding, i.e., the task of predicting some information about the stimuli from brain activation maps. From a statistical standpoint, this problem is challenging due to the high dimensionality of the data, often thousands of variables, while the number of images available for training is small, typically a few hundreds. We examine the case in which the target variable consist of discretely ordered values. The second contribution of this thesis is to propose the following two metrics to assess the performance of a decoding model: the absolute error and pairwise disagreement. We describe several models that optimize a convex surrogate of these loss functions and examine their performance on di erent fMRI datasets.

Motivated by the success of some ordinal regression models for the task of fMRI-based decoding, we turn to study some theoretical properties of these methods. The property that we investigate is known as consistency or Fisher consistency and relates the minimization of a loss to the minimization of its surrogate. The third, and most theoretical, contribution of this thesis is to examine the consistency properties of a rich family of surrogate loss functions that are used in the context of ordinal regression. We give su cient conditions for the consistency of the surrogate loss functions considered. This allows us to give theoretical reasons for some empirically observed di erences in performance between surrogates.

Notation

Notation

Name De nition

Γ(x ) Gamma function Γ(x ) = ∞ 0 x t -1 e -x dx N (µ, σ 2 )
Normal distribution with mean µ and variance σ

x or x 2 Euclidean norm for vectors i x 2 i

x F Frobenius norm of a matrix The rst two chapters of this thesis introduce and de ne concepts that will be developed later on. The other chapters can be read independently of each other. Original contributions and their relative published material are referenced at the beginning of each chapter.

Chapter 2 -Introduction to Functional MRI

In this chapter we introduce functional magnetic resonance imaging (fMRI) as a non-invasive functional imaging modality with good spatial resolution and whole brain coverage. We start by presenting brie y the main human brain structures and then reviewing the principal brain imaging techniques in use nowadays, with special emphasis on fMRI.

The primary form of fMRI measures the oxygen change in blood ow. This is known as the the Blood-oxygen-level dependent (BOLD) contrast. We present a feature extraction model known as the general linear model (GLM) [Friston et al., 1995] that allows to extract time-independent activation coe cient given the BOLD signal and an experimental paradigm. The di culty of this process stems from the fact that the BOLD signal does not increase instantaneously after the stimuli onset nor does it return to baseline immediately after the stimulus o set. Instead, the BOLD signal peaks approximately 5 seconds after stimulation, and is followed by an undershoot that lasts as long as 30 seconds. The idealized, noiseless response to an in nitesimally brief stimulus is known as the Hemodynamic Response Function (HRF).

Figure 1.1: The general linear model (GLM) predicts that the expected BOLD response to two overlapping stimuli is the sum of the two independent stimuli. In green, the response to the rst stimulus that is located at 1 second. In orange, the response to the second stimulus that appears at 6 seconds. In blue, the predicted BOLD response.

In order to estimate the activation coe cients, the GLM assumes a linear time invariant (LTI) relationship between the BOLD signal and the neural response. This relationship has been reported in a number of studies and can be summarized as i) Multiplicative scaling. If a neural response is scaled by a factor of α, then the BOLD response is also scaled by a factor of α. ii) Additivity. If the response of two separate events is known, the signal for those same events is the sum of the independent signals (Fig. 1.1). iii) Time invariant. If the stimulus is shifted by t seconds, the BOLD response will also be shifted by this same amount.

The GLM in its classical formulation assumes a known form for the hemodynamic response function (HRF). In Chapter 4 we will present an extension of the GLM model that estimates jointly the activation coe cients and the hemodynamic response function.

Chapter 3 -Statistical Inference in fMRI

In this chapter we present the statistical methods that will be used for drawing conclusions from fMRI experiments in further chapters. The chapter is divided into two sections. The rst section summarizes the basics of statistical hypothesis testing while the second section describes the basics of supervised machine learning.

Statistical tests can be broadly divided into parametric and nonparametric tests. Parametric test assume a known probability distribution under the null hypothesis for the distribution parameter that is under consideration. Nonparametric tests do not assume a known form of this probability distribution although they might require some regularity conditions on the distribution such as symmetry. In this chapter we describe two parametric statistical tests: the t-test and the F -test. We will also present a nonparametric test: the Wilcoxon signed-rank test. These tests will be used at di erent parts of the manuscript. The t and F -test will be used to perform voxel-wise inference in section 3.1.3 and the Wilcoxon test will be used to compare the performance of di erent supervised learning models in Chapter 4, 5 and 6. Figure 1.2: Statistical Parametric Maps (SPMs) are images with values that are, under the null hypothesis, distributed according to a known probability density function. In the gure, a t-map (i.e. the values are distributed according to a Student t distribution) for a contrast of a Visual vs an Auditory task. Thresholded at p-value < 10 -3 . It can be seen how the voxels that exhibit a higher signicance of this contrast belong to visual areas (red) and auditory areas (blue)

A notable application of parametric statistical tests to fMRI is the creation of Statistical Parametric Maps (SPMs) (Fig. 1.2). These are images with values that are, under the null hypothesis, distributed according to a known probability density function, usually Student t or the F distribution. To create such maps, one proceeds by performing a parametric test at each voxel. The resulting statistics are assembled into an image -the SPM.

In the second part of this chapter we introduce di erent supervised learning models that will be used in subsequent chapters. We will consider models that can be estimated as the solution to a minimization problem of the form arg min

f ∈F R ψ n ( f ) + λΩ( f ) ,
where R ψ n ( f ) is a data-tting term that minimizes a surrogate of the loss function term and Ω( f ) is a regularization term that biases the estimated model towards a set of desired solutions. This way, the model is a trade-o between a data delity term and a regularization term.

We describe di erent surrogate loss functions and penalties that have found applications in the context of fMRI analysis. The surrogate loss functions that we describe here are Support Vector Machines, Logistic Regression, Support Vector Regression and Least Squares. The penalties that we consider here are squared 2 , 1 , elastic-net ( 2 2 + 1 ) and total-variation (TV). Finally, we present two applications of supervised learning to reveal cognitive mechanisms in fMRI studies. The rst application is commonly known as decoding or mind reading and consist in predicting the cognitive state of a subject from the activation coe cients. The neuroscienti c questions that decoding is able to address are commonly shaped within the statistical hypothesis testing framework. The inference that we want to establish is whether the classi er trained on data from a given brain area of one subject is accurate enough to claim that the area encodes some information about the stimuli. In this setting, the null hypothesis is that a given brain area does not contain stimuli-related information. The ability of the classi er to correctly predict some information about the stimuli is considered a positive evidence in support of the alternate hypothesis of presence of stimuli-related information within the brain activity. As an application of decoding, we present the dataset [Borghesani et al., 2014], in which we used decoding techniques to establish in which regions of the brain it is possible to decode di erent aspects of words representing real-world objects.

A di erent application is known as encoding. Here, the activation coecients are predicted from some information about the stimuli. The success of an encoding model depends in great measure on our ability to construct an appropriate representation of the stimuli, a transformation that is often nonlinear. For example, Naselaris et al. [2009] constructed two di erent models for each voxel: a model based on phase-invariant Gabor wavelets, and a semantic model that was based on a scene category label for each natural scene. The authors showed that the Gabor wavelet model provided good predictions of activity in early visual areas, while the semantic model predicted activity at higher stages of visual processing.

Encoding and decoding can be seen as complementary operations: while encoding uses stimuli to predict activity, decoding uses activity to predict information about the stimuli. Furthermore, encoding o ers the advantage over decoding models that they can naturally cope with unseen stimuli. For example, [Kay et al., 2008] used an encoding model to identify natural images that the subject had not seen before. In this case, the predicted activation coe cients were used to select the image that matched most closely the measured activation coe cients.

Chapter 4 -Data-driven HRF estimation for encoding and decoding models As pointed in Chapter 2, prior to its use statistical inference procedures, the fMRI data usually goes through feature extraction process that converts the BOLD time course into time-independent activation coe cient. This is commonly achieved using a model known as Linear General Model (GLM). While this approach has been successfully used in a wide range of studies, it does su er from limitations. For instance, the GLM commonly relies on a data-independent reference form of the hemodynamic response function (HRF) to estimate the activation coe cient (also known as canonical or reference HRF). However it is known that the shape of this response function can vary substantially across subjects, age and brain regions. This suggests that an adaptive modeling of this response function can improve the accuracy of subsequent analysis.

In this work we propose a model in which a common HRF is shared across the di erent stimuli that we denote Rank-1 GLM (R1-GLM). The novelty of our method stems from the observation that the formulation of the GLM with a common HRF across conditions translates to a rank constraint on the vector of estimates. This assumption amounts to enforcing the vector of estimates to be of the form β B = [hβ 1 , hβ 2 , • • • , hβ k ] for some HRF h ∈ R d and a vector of coe cients β ∈ R k . More compactly, this can be written as β B = vec(hβ T ). This can be seen as a constraint on the vector of coe cients to be the vectorization of a rank-one matrix, hence the name Rank-1 GLM (R1-GLM). Image identi cation score (higher is better) on two di erent subjects from the rst dataset and average decoding score on the second dataset. In the rst dataset the metric counts the number of correctly identi ed images over the total number of images (chance level is 1/120 ≈ 0.008). This metric is less sensitive to the shape of the HRF than the voxel-wise encoding score. The bene ts range from 0.9% points to 8.2% points across R1-constrained methods and subjects. The highest score is achieved by a R1-GLM method with a FIR basis set for subject 1 and by a R1-GLMS with FIR basis for subject 2.

The metric in the second dataset (decoding task) is Kendall tau.

Methods that perform constrained HRF estimation signi cantly outperform methods that use a xed (reference) HRF. In particular, the best performing method is the R1-GLM with 3HRF basis, followed by the R1-GLMS with 3HRF basis.

In this model, the coe cients have no longer a closed form expression, but can be estimated by minimizing the following loss function. Given X B and y as before, Z ∈ R n×q a matrix of nuisance parameters such as drift regressors, the optimization problem reads: ĥ, β, ω = arg min

h,β ,ω 1 2 y -X B vec(hβ T ) -Zω 2
subject to Bh ∞ = 1 and Bh, h ref > 0 ,

(1.1)

The norm constraint is added to avoid the scale ambiguity between h and β and the sign is chosen so that the estimated HRF correlates positively with a given reference HRF h ref . This ensures the identi ability of the parameters. The optimization problem (Eq. (1.1)) is smooth and is convex with respect to h, β and ω, however it is not jointly convex in variables h, β and ω.

We compare di erent methods for the joint estimation of HRF and activation coe cients in terms of their score for an encoding and an encoding task. The methods we considered are standard GLM (denoted GLM), a variant of the GLM that improves estimation in highly correlated settings known as GLM with separate designs (GLMS), Rank-1 GLM (R1-GLM) and Rank-1 GLM with separate designs (R1-GLMS). For all these models we consider di erent basis sets for estimating the HRF: a set of three elements formed by the reference HRF and its time and dispersion derivative, a FIR basis set (of size 20 in the rst dataset and of size 10 in the second dataset) formed by the canonical vectors and the single basis set formed by the reference HRF (denoted " xed HRF"), which in this case is the HRF used by the SPM 8 software.

We consider two di erent datasets. The rst dataset is presented in [Kay et al., 2008] where it is investigated using an encoding paradigm. The second dataset has been presented in [START_REF] Jimura | Analyses of regional-average activation and multivoxel pattern information tell complementary stories[END_REF] and is naturally investigated using a decoding paradigm. The scores obtained in both datasets can be seen in Figure 1.3. In both cases, the proposed method (R1-GLM or its variant R1-GLMS) achieve the highest scores. The results presented in this chapter have been published in [START_REF] Pedregosa | Data-driven HRF estimation for encoding and decoding models[END_REF].

Chapter 5 -Decoding with Ordinal Labels

We have presented in Chapter 3 the decoding problem in fMRI. In this setting it is often the case that the target variable consist of discretely ordered values. This occurs for example when target values consists of human generated ratings, such as values on a Likert scale, size of objects (Fig. 1.4), the symptoms of a physical disease or a rating scale for clinical pain measurement.

Figure 1.4: In [Borghesani et al., 2014], the authors investigated the possibility to predict di erent aspects of the words subjects were reading while undergoing an fMRI acquisition. One of the problems we investigated is to predict the size of the objects that the words refer to. In this case, the di erent stimuli are ordered according to their relative size, i.e. hammer is smaller than cow which is smaller than a whale, etc. In this case, the target variable is of ordinal nature.

In this chapter we propose the usage of two loss functions to assess the performance of a decoding model when the target consist of discretely ordered values: the absolute error and pairwise disagreement. These two loss functions emphasize di erent aspects of the problem: while the absolute error gives a measure of the distance between the predicted label and the true label, the pairwise disagreement gives a measure of correct ordering of the predicted labels. These loss functions lead to two di erent supervised learning problems. The problem in which we seek to predict a label as close as possible to the correct label is known as ordinal regression while the problem of predicting ordering as close as possible to the true ordering of a sequence of labels is traditionally known as ranking.

The rst models speci cally tailored for the problem of ordinal regression date back to the proportional odds and proportional hazards models of [McCullagh, 1980]. We present three di erent surrogate loss functions of the absolute error: least absolute error, ordinal logistic regression and cost-sensitive multiclass classi cation.

Ranking models were introduced chronologically later than ordinal regression but its popularity has grown in recent years thanks to its applica- Average Correlation Score, subject 1

Figure 1.5: Generalization errors (lower is better) for three fMRI decoding problems. Two di erent metrics are used corresponding to the rows in the gure: mean absolute error and mean pairwise disagreement. The * symbol represents the p-value associated with a Wilcoxon signed-rank test. This test is used to determine whether a given method outperforms significantly the next best-performing method.

bility to information retrieval (and search engines in particular) [START_REF] Liu | Learning to rank for information retrieval[END_REF].

To the best of my knowledge, the rst attempt to minimize a convex surrogate of the pairwise disagreement appears is due to Herbrich et al. [1999].

We consider a model that minimizes a surrogate of the pairwise disagreement: the RankLogistic model. This model can be viewed as a modi cation of the popular RankSVM model [Herbrich et al., 1999, Joachims, 2002]. The choice of either metric (absolute error or pairwise disagreement) will depend on the problem at hand. For example, in clinical applications it is often desirable to predict a label as close as possible to the true label, in which case the absolute error is the appropriate metric. If however, the purpose of the decoding study is to perform a statistical hypothesis test to claim that the area encodes some information about the stimuli, then the pairwise disagreement can be an appropriate measure [Pedregosa et al., 2012, Borghesani et al., 2014, Bekhti et al., 2014].

We examine their generalization error on both synthetic and two real world fMRI datasets and identify the best methods for each evaluation metric (Fig. 1.5). Our results show that when considering the absolute error as evaluation metric, the least absolute error and the logistic ordinal model are the best performing methods. On the other hand, when considering the mean pairwise disagreement the RankLogistic was the best performing method. For neuroimaging studies, this contribution outlines what in our opinion are the best models to choose when faced with a decoding problem in which the target variables are naturally ordered.

Chapter 6 -Fisher Consistency of Ordinal Regression Methods

Ordinal regression is the supervised learning problem of learning a rule to predict labels from an ordinal scale. Some ordinal regression models have been used in Chapter 5 to model the decoding problem when the target variable consist of ordered values.

Motivated by its applicability to decoding studies we turn to study some theoretical properties of these methods. The aim is that a theoretical approach can provide a better understanding the methods at hand. For example, Chu and Keerthi [2005] proposed two di erent models for the task of ordinal regression: SVOR with explicit constraints and SVOR with implicit constraints. In that work, the second approach obtained better generalization error in terms of the absolute error loss function. Similar results were obtained by Lin and Li [2006] replacing the hinge loss by an exponential loss. Yet again, [START_REF] Rennie | Loss Functions for Preference Levels : Regression with Discrete Ordered Labels[END_REF] arrived to similar conclusions considering the logistic loss instead. Given these results, it seems natural to ask: is this coincidence or are there theoretical reasons for this behavior? We will use the result of this chapter to provide an a rmative answer to this last question.

Many of the ordinal regression models that have been proposed in the literature can be viewed as methods that minimize a convex surrogate of the zero-one, absolute (as outlined in Chapter 5), or squared errors. In this chapter we investigate some theoretical properties of ordinal regression methods. The property that we will investigate is known as Fisher consistency and relates the minimization of a given loss to the minimization of its surrogate.

We consider a rich family of loss functions for ordinal regression. We follow [Li and Lin, 2007] and determine as admissible loss functions of ordinal regression those that verify the V-shape property, a condition that includes to the best of my knowledge all popular loss functions that have been used in the context of ordinal regression: absolute error, squared error and 0-1 loss.

In order to introduce the notion of consistency we must x some notation. In the supervised learning setting, we are given a set of n observations {(X 1 , Y 1 ), . . . , (X n , Y n )} drawn i.i.d. from X × Y and a loss function

: Y × Y → [0, ∞).
The goal is to learn from the training examples a measurable mapping called a classi er h : X → Y so that the risk given below is as small as possible:

R (h) = E X ×Y ( (Y , h(X ))) .
(1.2)

Attempting to directly minimize the risk is not feasible in practice. First, the probability distribution P is unknown and the risk must be minimized approximately based on the observations. Second, due to the non-convexity and discontinuity of , the risk is di cult to optimize and can lead to an NP-hard problem. It is therefore common to approximate by a function ψ : Y × R d → R, called a surrogate loss function, which has better computational properties. The goal becomes to nd the decision function f that minimizes instead the ψ -risk, de ned as

R ψ n ( f ) = E X ×Y (ψ (Y , f (X ))) . (1.3)
Fisher consistency is a desirable property for surrogate loss functions. It implies that in the population setting, i.e., if the probability distribution P were available, then optimization of the ψ -risk would yield a function (not necessarily unique) with smallest possible risk, known as Bayes predictor and denoted by h * . This implies that within the population setting, the minimization of the ψ -risk and the minimization of the risk both yield solutions with same risk.
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h * (x) = 1 h * (x) = 2 h * (x) = 3 0-1 Error
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(1, 0, 0) (0, 0, 1) (0, 1, 0) (.75, 0, .25) (.25, 0, .75) (.5, .5, 0) (0, .5, .5)

h * (x) = 1 h * (x) = 2 h * (x) = 3 Squared Error Figure 1
.6: Bayes predictor can be visualized on the probability simplex. Bayes predictor is a function of the conditional probability η i (x ) = P ( = i |X = x ). The vector (η 1 , . . . , η k ) belongs to the probability simplex of R n , which is contained within an hyperplane of dimension k -1. In the gure, probability simplex in R 3 is colored according to the output of Bayes predictor.

In this chapter we provide a theoretical analysis of the Fisher consistency properties of a rich family of ordinal regression surrogate loss functions, including proportional odds and support vector ordinal regression. The loss functions that we considered can be divided into three categories: regression-based, threshold-based and classi cation-based.

Regression-based loss function. The regression-based approach treats the labels as real values. It uses a standard regression algorithm to learn a real-valued function, and then predicts by rounding to the closest label. In this setting we will examine consistency of two di erent surrogate loss functions, the absolute error (that we will denote ψ A ) and the squared error (denotedψ S ), which are convex surrogates of A and S , respectively. Given α ∈ R, ∈ [k], these are de ned as

ψ A ( , α ) = | -α |, ψ S ( , α ) = ( -α ) 2 .
We prove that the ψ A surrogate is consistent with respect to the absolute error and that the ψ S surrogate is consistent with respect to the squared error. Consistency ofψ A was already proven by [Ramaswamy and Agarwal, 2012] for the case of 3 classes. Here we give an alternate simple proof that extends beyond k > 3.

Threshold-based loss function. While the regression-based loss functions may lead to optimal predictors when no constraint is placed on the regressor function space as we will see, in practice only simple function spaces are explored such as linear or polynomial functions. In these situations, the regression-based approach might lack exibility. Threshold-based loss functions provide greater exibility by seeking for both a mapping f : X → R and a non-decreasing vector θ ∈ R k -1 , often referred to as thresholds, that map the class labels into ordered real values. In this context of we consider two di erent families of surrogate loss functions: the cumulative link surrogates and the margin-based surrogates. The rst family of surrogate loss function that we will consider is the cumulative link surrogates. In such models the posterior probability is modeled as

P (Y ≤ i |X = x ) = σ ( i (x )),
where σ is an appropriate link function. We will prove consistency for the case where σ is the sigmoid function, i.e., σ (t ) = 1/(1 + exp(-t )). This model is known as the proportional odds model or cumulative logit model [McCullagh, 1980]. For x ∈ X, ∈ [k] and α i = i (x ), the proportional odds surrogate (denoted ψ C ) is de ned as

ψ C ( , α ) =              -log(σ (α 1 )) if = 1 -log(σ (α ) -σ (α -1 )) if 1 < < k -log(1 -σ (α k-1 )) if = k.
(1.4)

The other family of surrogates, the margin-based surrogates (denoted ψ M ) depends on a V-shaped loss function and is given by

ψ M ( , α ) = -1 i=1 ∆ ( , i)ϕ(α i ) - k -1 i= ∆ ( , i)ϕ(-α i ) .
where ∆ ( , i) is the forward di erence with respect to the second parameter, de ned as ∆ ( , i) = ( , i + 1) -( , i). This formulation parametrizes several popular approaches to ordinal regression. For example, let ϕ be the hinge loss and the zero-one loss, then ψ T coincides with the Support Vector Ordinal Regression ("explicit constraints" variant) of [Shashua andLevin, 2003, Chu andKeerthi, 2007]. If instead the mean absolute loss is considered, this approach coincides with the "implicit constraints" formulation of the same reference. For other values of ϕ and this loss includes the approaches proposed in [Shashua and Levin, 2003, Chu and Keerthi, 2005, Rennie and Srebro, 2005, Lin and Li, 2006].

Classi cation-based loss function Since we aim at predicting a nite number of labels with a speci c loss functions, it is also possible to use generic multiclass formulations such as the one proposed in [Lee et al., 2004] which can take into account generic losses. Given ϕ a real-valued function, this formulations considers the following surrogate

ψ L ( , α ) = k i=1 ( , i)ϕ(-α i ) (1.5)
for α ∈ R k such that k i=1 α i = 0. The prediction function in this case is given by pred(α ) = arg max i ∈[k ] α i . Note however that this method requires the estimation of k -1 decision functions. For this reason, in practical settings threshold-based are often preferred as these only require the estimation of one decision function and k -1 thresholds.Consistency results of this surrogate was proven by Zhang [2004], so we will limit ourselves to compare their results to our ndings of consistency for threshold-based surrogates in Section 6.3.6.

For all the surrogates considered, we either prove consistency or provide su cient conditions under which these approaches are consistent. Finally, we illustrate our ndings by comparing the performance of two methods on 8 di erent datasets. Although the conditions for consistency that are required by the underlying probability distribution are not necessarily met, we observed that methods that are consistent w.r.t a given loss often outperform other methods that are not consistent with respect to that loss.

Chapter 7 -Conclusion and Perspectives

We summarize the contributions of this thesis and point out possible extensions that can be considered in the future. These are:

1. For the R1-GLM model introduced in Chapter 4 we outline a possible direction to improve its computational properties by means of tensor factorizations.

2. For the R1-GLM we outline an approach to consider a common HRF at the parcel level. This would allow the model to take advantage of the spatially dependent nature of fMRI.

3. The R1-GLM model, being non-convex, comes with no guarantees of convergence to a global optimum for the algorithms considered. We propose to study conditions under which the model is guaranteed to have a unique global optimum.

4. Some of the results presented in Chapter 6 are valid under restrictive conditions on the probability distribution that generates the data. We propose to extend these results to a more general setting by relaxing some of the conditions imposed to achieve consistency of some models.

5. We report the possibility to apply ordinal regression methods to 0-1 multiclass classi cation. Although ordinal regression methods have been initially developed for loss functions that minimize a distance between the labels (typically the absolute error loss), our theoretical results show that some popular models are instead consistent with the 0-1 loss. This suggest that these methods might be competitive within a multiclass classi cation setting. A potential advantage of these methods compared to other multiclass classi cation methods is the lower amount of parameters to estimate.

2 Introduction to Functional MRI I we introduce functional magnetic resonance imaging (fMRI). We will start by providing some insight into human brain structure and function. Then, we will introduce the principal brain imaging techniques in use nowadays. Di erent imaging techniques can be used to answer di erent neuroscienti c questions. Functional MRI, due to its good spatial resolution and whole brain coverage is specially well suited to answer questions relating the localization of brain activity for a given task.

Before the data acquired through fMRI can be used in statistical analysis it has to go through a preprocessing pipeline. In the last part of this chapter we detail the di erent steps of this pipeline, with special emphasis on the general linear model (GLM), a model that allows to extract timeindependent activation coe cients from the fMRI time series in event-related designs. These activation coe cients will form the basis of statistical studies presented in later chapters. 

Contents

General brain structures

General brain structures

The human brain has a volume of around 1200 cm 3 and an average weight of 1.5 kg. It is composed of neurons, glia cells and blood vessels. Glia cells are responsible for the structural and metabolic support of neurons. About 86 billion neurons [START_REF] Frederico | Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain[END_REF] process and transmit information through electrical and chemical signals. The information is transmitted along the neuron by action potentials (also called spikes), that are shortlasting electrical events in which the electrical membrane potential of a cell rapidly rises and falls. A neuron (Fig. 2.1) has a cell body (called the soma), many regions for receiving information from other neural cells (called dendrites), and often an axon (nerve ber) for transmitting information to other cells. Neurons communicate with one another via chemical synapses, where the axon terminal of one cell impinges upon another neuron's dendrite, soma or, less commonly, axon. Neurons can have over 1000 dentritic branches, making connections with tens of thousands of other cells. Synapses can be excitatory or inhibitory and either increase or decrease activity in the target neuron. Some neurons also communicate via electrical synapses, which are direct, electrically conductive junctions between cells. The human brain can be decomposed in two parts: the white matter, constituted by the nerve bers, and the gray matter constituted by the neural cell bodies. The surface of the human brain is a highly circonvoluted 6-layered structure called neocortex (or more simply cerebral cortex). This layer is folded in a way that increases the amount of surface that can t into the volume available. A cortical fold is called sulcus, and the area between two sulci is called a gyrus.

The human cortex is often divided into four "lobes", called the frontal lobe, parietal lobe, temporal lobe and occipital lobe (see Figure 2.3). The left and right side hemispheres of the cortex are broadly similar in shape, and most cortical areas are replicated on both sides. Some areas, however, show strong lateralization, such as areas that are involved in language, located in the vast majority of subject in the left hemisphere.

How the di erent anatomical structures of the brain correspond to the neural substrate of cognitive functions is one of the oldest debates in neuroscience, de ning an entire eld: cognitive neuroscience. The idea of linking a given cognitive function to a speci c brain region can be traced back to the work of nineteen century phrenologists, who based their localizationist attempts on the shape of the skull. In the 20th century, a group of neuropsychologists, in absence of direct means to investigate brain activity, studied patients with cortical damages observing that some focal lesions were associated with relatively global e ects on behavior. This lead them to argue against a strictly localizationist view of brain organization. Nowadays it is widely recognized that the activity of speci c brain regions underlie many cognitive functions (e.g.vision, in occipital areas). At the same time, the relevance of brain networks encompassing di erent anatomical regions for the multimodal integration of features necessary for higher level cognitive functions (e.g.attention in the fronto-parietal network) [START_REF] Michael | The cognitive neurosciences[END_REF] has been acknowledged. . Figure 2.3: Lobes and some functional regions of the human brain (left hemisphere). Within each lobe are numerous cortical areas, each associated with a particular function such as sensory areas (e.g. visual cortex, auditory cortex) that receive and process information from sensory organs, motors areas (e.g. primary motor cortex, premotor cortex) that control the movements of the subject, and associative areas (e.g. Broca's area, Lateral Occipital Complex -LOCor Intra Parietal Sulcus -IPS -) that process the high-level information related to cognition. The experiments detailed in this thesis are related to object recognition (visual cortex and LOC) and number processing (parietal cortex and IPS). Source: adapted from [START_REF] Michel | Understanding the visual cortex by using classi cation techniques[END_REF].

Functional neuroimaging modalities

Until the advent in the 1920s of non-invasive neuroimaging modalities, most of the accumulated knowledge of the brain came from the study of lesions, post-mortem analysis and invasive experimentations. With the advent of modern, non-invasive imaging techniques, several aspects of the human brain are revealed in vivo with high degree of precision.

Several brain imaging techniques are available today. These can be divided into structural or anatomical and functional imaging techniques. While structural imaging provides details on morphology and structure of tissues, functional imaging reveals physiological activities such as changes in metabolism, blood ow, regional chemical composition, and absorption. In this section we will discuss brie y the main functional neuroimaging modalities available today.

• Electroencephalography -EEG is a widely used modality for functional brain imaging. EEG measures electrical activity along the scalp. EEG activity re ects the synchronous activity of a population of neurons that have similar spatial orientation. If the cells do not have similar spatial orientation, their ions do not line up and thus do not create detectable waves. Pyramidal neurons of the cortex are thought to produce most of the EEG signals because they are well-aligned and re together. Because voltage elds fall o with the square of distance, activity from deep sources is more di cult to detect than currents near the skull. Due to the ill-posed problem of volumetric data reconstruction from surface measurements, EEG has a poor spatial resolution compared to other modalities such as fMRI.

• Stereotactic electroencephalography -sEEG is an invasive version of EEG, based on intra-cranial recording. It measures the electrical currents within some regions of the brain using deeply implanted electrodes, localized with a stereotactic technique. This approach has the good temporal resolution of EEG and enjoys an excellent spatial resolution. However, sEEG is very invasive and is only performed for medical purpose (e.g localization of epilepsy foci) and has a limited coverage (only the regions with electrodes). A close approach is Electrocorticography -ECogthat uses electrodes placed directly on the exposed surface of the brain. Even in this case its usage is restricted to medical purposes.
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Figure 2.4: Magnetic eld measured with MEG on a somatosensory experiment. It is a 2D topography 20 ms after stimulation. Source: [START_REF] Gramfort | Mapping, timing and tracking cortical activations with MEG and EEG: Methods and application to human vision[END_REF] • Magnetoencephalography -MEG measures the magnetic eld induced by neural electrical activity. The synchronized currents in neurons create magnetic elds of a few hundreds of femto Tesla (f T ) that can be detected using speci c devices. Although EEG and MEG signals originate from the same neurophysiological processes, there are important di erences. Magnetic elds are less distorted than electric elds by the skull and scalp, which results in a better spatial resolution of the MEG. Whereas EEG is sensitive to both tangential and radial components of a current source in a spherical volume conductor, MEG detects only its tangential components. Because of this EEG can detect activity both in the sulci and at the top of the cortical gyri, whereas MEG is most sensitive to activity originating in sulci. EEG is, therefore, sensitive to activity in more brain areas, but activity that is visible in MEG can be localized with more accuracy. Note that EEG and MEG can be measured simultaneously.

• Positron emission tomography -PET is an imaging modality based on the detection of a radioactive tracers introduced in the body of the subject. The tracers (or radionuclide decay) emit a positron which can in turn emit, after recombination with an electron, a pair of photons that are detected simultaneously. PET therefore provides a quantitative measurement of the physiological activity. It can also be used for functional imaging, by choosing a speci c tracer. In particular, the uorodeoxyglucose (or FDG), is used for imaging the metabolic activity of a tissue. This is based on the assumption that areas of high radioactivity are associated with brain activity. PET has two major limitations: the tracers required for PET are produced by cyclotrons (a type of particle accelerator), which implies an heavy logistic. Furthermore, the use of radio-tracers is not harmless for the health of the subjects so PET is now used for medical purpose only.

Figure 2.5: PET scan of a human brain. PET measures indirectly the ow of blood to di erent parts of the brain, which is, in general, believed to be correlated with neural activity. Souce: wikipedia.org • Single photon emission computed tomography -SPECT is an imaging modality based on the detection of a radioactive tracer. SPECT is similar to PET in its use of radioactive tracer material. However, the measure in SPECT is the direct consequence of the tracer (the tracer emits gamma radiation), where PET is based on an indirect consequence of the tracer (positron then gamma radiation). The spatial resolution is slightly worse than PET. SPECT can be used for functional brain imaging, by using a speci c tracer which will be assimilated by the tissue in an amount proportional to the cerebral blood ow.

• Near-infrared spectroscopy -nIRS is a recent modality for medical imaging. nIRS is based on the fact that the absorption of the light in the near-infrared domain contains information on the blood ow and blood oxygenation level. It is non-ionizing (harmless), and the instruments are not too expensive. However, the spectra obtained by nIRS can be di cult to interpret, and this technique, which requires a complex calibration, measures signals only close to the outer layer of the cortex.

• Functional MRI -fMRI is a widely used method for functional brain imaging, because it is non-invasive, has a good spatial resolution (1mm 3 ), and provides access, albeit indirectly, to the neural activity. Moreover, in standard acquisitions, fMRI yields a full-brain coverage, as it does not restrict the study to super cial layers or prede ned regions of the cortex.

Di erent modalities have di erent trade o s in terms of spatial and temporal resolution. For example, EEG and MEG enjoy temporal resolutions of the order of few miliseconds and are thus well suited for studies of temporal dynamics of information processing but have limited spatial resolution. On the other hand, fMRI enjoys a better spatial resolution but the temporal resolution is around 1 second. Furthermore, as we will see in the next section, temporal resolution in fMRI is further limited by the slow spread of hemodynamic response, which lasts around 20 seconds after the stimuli presentation. Certain imaging techniques are more adapted than other to answer certain neuroscienti c questions. Due to its good spatial resolution and whole brain coverage, fMRI is particularly well adapted to localize the e ect of a certain experimental condition. This task is not reduced to the construction of brain maps, but also involves the understanding of the underlying brain connectivity [START_REF] Johansen-Berg | Functional-anatomical validation and individual variation of di usion tractography-based segmentation of the human thalamus[END_REF][START_REF] Timothy | A consistent relationship between local white matter architecture and functional specialisation in medial frontal cortex[END_REF] and the e ects regions exert on each other in a certain experimental context [START_REF] Pessiglione | How the brain translates money into force: a neuroimaging study of subliminal motivation[END_REF][START_REF] Timothy | Learning the value of information in an uncertain world[END_REF]. One of the main hopes in functional imagining is that it might be used as an objective diagnosis tool for several diseases. In particular, the aim is to nd some biomarkers for psychiatric diseases by comparing di erent population of patients: this is the case for autism, schizophrenia or Alzheimer's disease.

Functional MRI and BOLD signal

The primary form of fMRI measures the oxygen change in blood ow. This is known as the Blood-oxygen-level dependent (BOLD) contrast. Other increasingly popular functional MRI method is arterial spin labeling (ASL) [START_REF] Detre | Tissue speci c perfusion imaging using arterial spin labeling[END_REF][START_REF] Alsop | Multisection cerebral blood ow mr imaging with continuous arterial spin labeling[END_REF][START_REF] Donald S Williams | Magnetic resonance imaging of perfusion using spin inversion of arterial water[END_REF], which uses arterial water as tracer to measure cerebral blood ow. Compared to fMRI, ASL has a lower signal to noise ratio [START_REF] Detre | Technical aspects and utility of fMRI using BOLD and ASL[END_REF]. However, ASL provides reliable absolute quanti cation of cerebral blood ow with higher spatial and temporal resolution than other techniques [START_REF] Borogovac | Arterial spin labeling (ASL) fMRI: Advantages, theoretical constrains and experimental challenges in neurosciences[END_REF]. This thesis speci cally considers BOLD functional MRI and through the manuscript we use the name functional MRI (fMRI) to denote functional MRI based on the BOLD signal.

The BOLD contrast can be explained by considering a protein present in the blood cells, called hemoglobin. Hemoglobin can bind with oxygen in order to bring it into the di erent cells of the organism, this link being reversible and unstable. Thus, it can be found in two di erent forms: oxyhemoglobin (Hb -O 2 -giving a bright red color to the blood), its oxygenated form, and deoxyhemoglobin (Hb -giving a blue-purple color to the blood), its deoxygenated form. When the oxyhemoglobin loses its oxygen atoms and becomes the deoxyhemoglobin, it becomes more a ected by an externally applied magnetic eld (due to the iron oxides). The presence of deoxyhemoglobin in the blood modi es the magnetic resonance signal of the protons of the water molecules surrounding the blood vessels. Right -Coronal slice of the same rat, showing the BOLD contrast after respiration of a mixture of 90% of O 2 and 10% of CO 2 (this mixture increases the oxygenation of the venous blood). The arrow shows the sagittal sinus, which is one of the major veins of the brain. This picture shows a strong increase of intensity in this vein, that illustrates that the variation of blood oxygenation is visible in BOLD contrast. Adapted from [Ogawa et al., 1990a].

The di erence of magnetic susceptibility between the blood vessel and the surrounding tissues creates inhomogeneities in the magnetic eld [START_REF] Thulborn | Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high eld[END_REF], Ogawa et al., 1990b] that are quanti ed by the magnetic resonance scanner. In the seminal paper [Ogawa et al., 1990a] studied the variations of BOLD contrast in the brain of an anesthetized rat during the inhalation of a gas that increases the cerebral blood ow (CBF), and thus blood oxygenation (see Figure 2.7).

The spatial resolution is given by the size of a voxel, a three-dimensional rectangular cuboid given by a single measure of the scanner. Voxel sizes range from 4mm to 1mm. Smaller voxels contain fewer neurons on average, incorporate less blood ow and hence have less signal to noise ratio than larger voxels. Smaller voxel size also makes up for longer acquisition time since this is proportional to the number of voxels per slice and the number of slices to scan.

The time resolution of an fMRI scanner is given by the repetition time (TR) of successive image acquisitions. A slice of the volume acquisition has an acquisition window that is about 20-30ms in duration. For example, in the study [Borghesani et al., 2014] we used voxel sizes of 1.5 × 1.5 × 1.5mm, 82 slices and a repetition time (TR) of 2.3 seconds for a full-brain coverage. These number are for routine fMRI, however it is possible to change the tradeo between spatial and temporal resolution. With the advent of compressed sensing techniques for faster acquisition times [START_REF] Lustig | Sparse mri: The application of compressed sensing for rapid mr imaging[END_REF][START_REF] Zong | Compressed sensing fmri using gradient-recalled echo and EPI sequences[END_REF][START_REF] Chau Ert | Variable density sampling with continuous trajectories. application to MRI[END_REF] and the deployment of scanners with elds of 7-Tesla and beyond [START_REF] Hanke | A high-resolution 7-tesla fmri dataset from complex natural stimulation with an audio movie[END_REF] these numbers are likely to change in the near future.

Estimation of activation coe icients

In this section we present a model that allows to extract time-independent activation coe cients relative to a given task given the BOLD time course and an experimental design. This model is known as the general linear model [Friston et al., 1995]. We start by describing the hemodynamic response function (Section 2.4.1) and then describe an assumption behind the general linear model, the linear-time-invariant property (Section 2.4.2) between the BOLD signal and the neural response. The general linear model is then presented in Section 2.4.3.

The concepts presented in this section will form the basis of the contribution presented in Chapter 4, where we present an extension of the general linear model that performs the joint estimation of HRF and activation coefcients. Because it will not be referenced in later chapters we do not mention several preprocessing steps that can be applied to the BOLD signal in order to remove artifacts that might have occurred during acquisition or to enhance the signal to noise ratio. These include slice-timing correction, motion correction, spatial normalization and spatial smoothing.

Hemodynamic response function (HRF)

One of the di culties associated with fMRI studies is that BOLD signal does not increase instantaneously after the stimulus presentation nor does it return to baseline immediately after the stimulus ends. Instead, the BOLD signal peaks approximately 5 seconds after stimulation, and is followed by an undershoot that lasts as long as 30 seconds.

The Hemodynamic Response Function (HRF) represents an ideal, noiseless response to an in nitesimally brief stimulus. Most software packages represent the HRF as a sum of two gamma probability density functions, where the rst gamma probability density function models the shape of the initial stimulus response and the second gamma probability density functions models the undershoot. Its analytical form is

h(t ) = t α 1 -1 β α 1 1 e -β 1 t Γ(α 1 ) -c t α 2 -1 β α 2 2 e -β 2 t Γ(α 2 ) (2.1)
where Γ is the gamma function and α 1 , α 2 , β 1 , β 2 control the shape and scale, respectively, and c determines the ratio of the response to undershoot. All the packages that we have considered model the HRF as the di erent of two gamma probability density functions but other models are equally Figure 2.8: Hemodynamic Response Function (HRF) as implemented in di erent software packages. AFNI provides an HRF with no undershoot, i.e. modeled as a single gamma probability density function and where the peak is situated at 4.6 seconds. The software SPM provides an HRF that peaks at 5 seconds. Glover [1999] proposes two models of the HRF, one based on a motor task and another based on an auditory task. Here we show the HRF corresponding to the auditory task since this is the one that is used in the software NiPy. possible. For instance, [START_REF] Lindquist | Modeling the hemodynamic response function in fmri: e ciency, bias and mis-modeling[END_REF] proposes the use of a model based on the superposition of three inverse logit functions.

Glover [1999] proposed two di erent sets of parameters based on the shape of the HRF on two di erent experiments. The parameters that are commonly used in statistical software such as FMRISTAT 1 and NIPY 2 cor-1 http://www.math.mcgill.ca/keith/fmristat/ 2 http://nipy.org respond to the HRF estimated in the auditory task. Its rst gamma function peaks at 5.2 seconds, while the second gamma function (the undershoot) peaks at 12.2 seconds and has an amplitude of 35% of the rst gamma function.

In the SPM 3 software, the reference HRF has its peak at 6 seconds and 3 http://www. l.ion.ucl.ac.uk/spm/ the delay of undershoot has its minima at 16 seconds. AFNI 4 on the other 4 http://afni.nimh.nih.gov/afni/ hands uses c = 0, that is, uses a model with a single gamma distribution. A comparison of these di erent HRF models can be seen in Figure 2.8. Because of its widespread use, we will use the HRF present in SPM 8 unless otherwise speci ed.

The linear-time-invariant assumption

In this section we present the main assumption behind the general linear model, the linear time invariance assumption.

A number of studies have reported that in certain regimes the relationship between the neural response and the BOLD signal exhibits linear time invariant (LTI) properties [START_REF] Rey | Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1[END_REF][START_REF] Cohen | Parametric analysis of fMRI data using linear systems methods[END_REF], Dale and Buckner, 1997]. These property can be summarized as • Multiplicative scaling. If a neural response is scaled by a factor of α, then the BOLD response is also scaled by a factor of α.

• Additivity. If the response to two separate events is known, the signal for those events if they were to occur close in time is the sum of the independent signals.

• Time invariant. If the stimulus is shifted by t seconds, the BOLD response will also be shifted by this same amount.

While the LTI assumption is commonplace in practice, there is evidence for non-linearity in the amplitude of the BOLD response. For example, it is known that there is a saturation e ect for stimuli that occur less than 2 seconds apart [START_REF] Tor | Accounting for nonlinear BOLD e ects in fMRI: parameter estimates and a model for prediction in rapid event-related studies[END_REF]. It has also been reported that very brief stimuli exhibit a larger BOLD response than would be expected based on longer stimuli [START_REF] Yeşilyurt | Dynamics and nonlinearities of the BOLD response at very short stimulus durations[END_REF]. However, while these nonlinearities are important, there is a general consensus that for the range in which most cognitive fMRI studies occur, they will have relatively small impact.

Figure 2.9: The linear time invariant (LTI) assumption implies that if the response to two separate events is known, the signal for those events if they were to occur close in time is the sum of the independent signals. In green, the response to the rst stimulus that is located at 1 second. In orange, the response to the second stimulus that appears at 6 seconds. In blue, the predicted BOLD response.

Let x (t ) represent the predicted BOLD arising from neuronal activity as a function of time t and h(τ ) be some reference HRF. The LTI assumption allows to easily construct the predicted BOLD response for a given stimulus function u (t ) which encodes the presence or absence of a stimulus (de ned as one whenever the stimulus is present and zero otherwise). Then we can express the predicted BOLD (up to a constant factor) as the convolution of the stimulus function u (t ) with the HRF:

x (t ) = T 0 u (t -τ )h(τ )dτ (2.2)

The general linear model (GLM)

The General Linear Model (GLM) makes use of the knowledge of the hemodynamic response function and linear-time-invariant assumption to model the observed BOLD signal. This model states that the BOLD signal can be expressed in terms of a linear combination of the predicted fMRI responses for di erent stimuli (also denoted conditions) plus a noise term.

Let {x 1 (t ), x 2 (t ), . . . , x k (t )} be the predicted response for k di erent stimulus functions computed from Equation (2.2). We de ne the design matrix X as the columnwise stacking of di erent regressors, each one de ned as the discretization of x i (t ) to match the acquisition time of a given BOLD signal.

The GLM in its basic form can be expressed as: where y ∈ R n is the observed time course at a single voxel, β ∈ R k is the activation coe cients that represent the amplitude of the response for a given condition and ε is a noise term that we assume Gaussian for now (we will see in Section 2.4.4 how to take into account temporal autocorrelation). Assuming Gaussian i.i.d noise, the maximum likelihood estimation of the activation coe cients is then given by β = arg min β y -Xβ 2 = X † y.

y = Xβ + ε ε ∼ N (0, σ 2 I) (2.3)
To estimate the activation coe cients in a full brain volume this procedure is repeated independently for each voxel. Since the design matrix is the same across voxels, a matrix decomposition of X such as SVD or QR can be computed once and then used to compute the least squares solution at every voxel.

In this setting we have considered the HRF to be known and xed across the di erent conditions. We can easily generalize this setting to accommodate the case in which the HRF is generated by a given basis set. We will call this method basis-constrained GLM.

High-pass filtering and prewhitening

The BOLD signal contains low frequency trends that are usually removed before or during the estimation of activation coe cients. One popular approach of high-pass ltering is to add a discrete cosine transform (DCT) basis set to the design matrix. When using this basis set, the highest frequency that is desired to be removed from the data has to be chosen to avoid removing the frequency of the experimental task that is also being modeled. Another approach that is becoming increasingly popular, is to t a local regression model to the time series and remove the estimated trend from the data. The software FSL uses LOWESS (locally weighted scatterplot smoothing) [START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF] while recent studies have successfully used a Savizky-Golay lter 5 [START_REF] Barry | Enhanced phase regression with savitzky-golay ltering for high-resolution bold fmri[END_REF]Gore, 2014, Çukur et al., 2013]. In the stud- 5 Savitzky-Golay lter are available in Matlab under the name sgolayfilt and in Python's Scipy module under the name scipy.signal.savgol_filter ies presented in Chapter 3 we will use this last lter. In [Çukur et al., 2013], the authors used a Savizky-Golay lter to estimate the low-frequency drifts with window length of 240 seconds and polynomial of degree 3. We have found that parameters close to these work well in practice.

The GLM speci ed in (2.3) assumes the noise ε follows a Gaussian random variable with covariance σ 2 I. However, it is known that the BOLD signal is temporally autocorrelated. Several authors [START_REF] Bullmore | Statistical methods of estimation and inference for functional mr image analysis[END_REF][START_REF] Kruggel | Nonlinear regression of functional mri data: an item recognition task study[END_REF] consider the BOLD noise as an autoregressive model AR(1). This assumes each time point is correlated with the previous time point. The distribution of the error in this case is given by ε ∼ N (0, σ 2 V), where V is the symmetric correlation matrix and σ 2 is the variance. The correlation matrix and variance are commonly estimated from the residuals after tting the GLM.

The most common solution to take this special structure into account is to prewhiten the data, that is, to remove the temporal correlation. Since the correlation matrix V is symmetric and positive de nite, the Cholesky decomposition can be used to nd a matrix K such that V -1 = K T K. To prewhiten the data, K is premultiplied on both sides of the GLM (Eq. (2.3)) to give Ky = KXβ + Kε. This makes the errors be independent, i.e., Kε ∼ N (0, σ 2 I).

Conclusion

In this rst chapter we have presented the principal structures of the human brain. We have then presented the principal functional imaging modalities in use today, with special emphasis on functional MRI. We have seen that functional MRI is an attractive modality for functional imaging with good spatial resolution for a whole brain coverage modality. The signal measured in fMRI studies is the BOLD signal, given in the form of a succession of scans in intervals of 1-4 seconds. The extraction of time-independent activation maps from the BOLD signal relies on the linear-time-invariant property between neural response and the BOLD signal. These can be estimated by solving a least-squares problem, a setting commonly referred to in neuroimaging as the general linear model (GLM). The GLM is usually formulated using a known form of the Hemodynamic Response Function.

I 2, we have presented fMRI as functional imaging modality that is non-invasive and enjoys good spatial resolution and full brain coverage. In this chapter we present the statistical methods that will be used for drawing conclusions from fMRI experiments in further chapters.

The chapter is divided into two sections. The rst section summarizes the basics of statistical hypothesis testing. We present two parametric test: the t-test and the F -test and one non-parametric test: the signed-rank Wilcoxon test. We discuss the voxel-wise parametric testing of the activation coecients computed by the GLM. The result can be assembled into an image or map, a setting known as statistical parametric maps (SPMs).

The second section describes the basics of supervised machine learning. We introduce the supervised learning problem in the context of empirical risk minimization. We describe di erent surrogate loss functions and penalties that have found applications in the context of fMRI analysis. Finally, we present two applications of supervised learning to reveal cognitive mechanisms in fMRI studies. The rst application is commonly known as decoding or mind reading and consist in predicting some information about the stimuli from the activation coe cients. The second application is known as encoding and can be seen as the complementary operation of decoding: here, the activation coe cients are predicted from some information about the stimuli. Section 3.2.5 uses material from the following publication: 

• V.

Hypothesis testing

A statistical hypothesis is a statement about the parameter of a given distribution. The two complementary hypotheses in a hypothesis testing problem are called the null hypothesis and the alternative hypothesis. They will be denoted by H 0 and H 1 , respectively.

Given a random samples {x 1 , . . . , x n } drawn from a probability space (X, A, P θ ), the goal of statistical hypothesis testing is to decide, based on the random sample, whether it is possible to reject the presumed null hypothesis H 0 for pre-speci ed level of signi cance. Let θ denote a distribution parameter, the general format of the null and alternative hypothesis is

H 0 : θ ∈ Θ 0 and H 1 : θ ∈ Θ c 0 ,
where Θ 0 is some subset of the parameter space and Θ c 0 is its complement. For example, if θ denotes the average activation of a voxel for a given condition, we might be interested in testing H 0 : θ 0 = 0 versus H 1 : θ 0 0 (or H 1 : θ 0 > 0). ) made important contributions to the eld of statistics. Among many notions in statistic, he coined the terms "test of signi cance", "Fisher consistency" (which we will develop in Chapter 5) and "null hypothesis" [START_REF] Ronald | Statistical methods for research workers[END_REF].

The p-value is a numerical quantity that serves to quantify the strength of the evidence against the null hypothesis and in favor of the alternative. Formally, the p-value is the probability of observing samples at least as favorable to the alternative hypothesis as the current samples, if the null hypothesis is true. Given a subset of the population, the p-value associated with a statistical test is usually computed by means of a function of these samples known as test statistic.

Statistical tests can be broadly divided into parametric and nonparametric tests. Parametric test assume a known probability distribution for the distribution parameter that is under consideration. Nonparametric tests do not assume a known form of this probability distribution although they might require some regularity conditions on the distribution such as symmetry. In the following subsection we will describe two parametric statistical tests: the t-test and the F -test. In this thesis, the t and F -test will be used to perform voxel-wise inference in section 3.1.3. We will also present the Wilcoxon signed-rank test, a nonparametric test that will be used to compare the performance of machine learning models in Chapter 4 and Chapter 5. The derivation of these tests is omitted but can be found in statistical textbooks such as [START_REF] Casella | Statistical inference[END_REF]Berger, 2002, Rice, 2006].

Parametric tests: t-test and F -test.

Student was the pseudonym of Willian Sealy Gosset (England 1876-England 1937). As a worker of the brewery Arthur Guiness & Son he was forbidden to publish under his real name to protect the rm from its competitors. Gosset made important contributions to the eld of small sample statistics. In the seminal paper The probable error of a mean [START_REF] Student | The probable error of a mean[END_REF], he introduced small sample estimation by means of the (Student) t-distribution family.

The t-test is any statistical hypothesis test in which the test statistic follows a Student t distribution under the null hypothesis. Most t-test statistics are of the form t = Z /s, where Z and s are functions of the samples, in which case the assumptions are: Z follows a standard normal distribution, s 2 follows a χ 2 distribution with p degrees of freedom, and Z , s are mutually independent. Once the t statistic is determined, a p-value can be found from the values of a Student t distribution with p degrees of freedom.

The statistical test that has as null hypothesis that the population mean is equal to a speci ed value µ 0 can be evaluated with a t-test known as the one-sample t-test. Given a sample {x 1 , . . . , x n } of size n, the hypothesis

H 0 : µ = µ 0 versus H 1 : µ µ 0 .
can be tested by performing a test that uses the test statistic

t = x -µ 0 s/ √ n ,
where x is the sample mean, s is the sample standard deviation of the sample and n is the sample size. Once the test statistic t has been computed, the test speci es to reject H 0 with signi cance level

α if t ≥ t d (1 -α ), where t d (1 -α ) is the 100(1 -α ) percentile of the t distribution with d = n -1 degrees of freedom.
A di erent test based on the t distribution can be used to test the coecients of a linear regression model. Given the equation

y = Xβ + b + ε ,
where X ∈ R n×p is a given design matrix, β ∈ R p and b ∈ R are terms to be estimated and ε ∈ R n is the error which follows a Gaussian N (0, σ 2 I) distribution. It is desired to test that some linear combination of coe cients,

c T β with c ∈ R p , is signi cantly di erent from zero, i.e., H 0 : c T β = 0 H 1 : c T β 0. In this case, the statistic t = c T β σ c T (X T X) -1 c (3.1)
follows a Student's distribution with n -(p + 1) degrees of freedom, where (n, p) are the dimensions of the design matrix and σ 2 is the estimate of the variance.

The F -test can be seen as a generalization of the one-sample t-test to several groups. It can be used to asses whether the means of several pre-de ned groups di er from each other. Given a total of n observations, divided into k groups of samples x 1 , . . . , x k with respective sizes n 1 , . . . n k , a null hypothesis is of the form

H 0 : µ 1 = µ 2 = • • • = µ k versus H 1 : at least one µ i µ j ,
then the test statistic to test this hypothesis is calculated as the ratio between the between-group variability and the within-group variability:

F = i n i (x i -x) 2 /(k -1) i j (x i j -xi ) 2 /(n -k ) . (3.2)
This statistic follows the F -distribution (also known as Snedecor's F distribution or the Fisher-Snedecor distribution) with (k -1, nk ) degrees of freedom under the null hypothesis, i.e. the null hypothesis can be rejected according to this test with signi cance level α if the F statistic is greater than

F (k -1,n-k ) (1 -α ), where F (k -1,n-k ) denotes the F -distribution with (k -1, n -k ) degrees of freedom.
As done previously for the t-test, a variant of the F -test can be used to test the coe cients of a linear regression model. In this case, instead of testing that a given contrast is signi cantly di erent from zero, we will test that a set of contrasts are all simultaneously di erent from zero. In this case the contrast C is a matrix with k columns describing the possible linear combinations to be tested. For example, using a model with four parameters, to test whether all of them are equal to 0, H 0 :

β 1 = β 2 = β 3 = β 4 = 0, one
would specify a contrast of the form C = I, where I is the identity matrix of size 4 × 4.

For an arbitrary contrast C, the F -statistic for this test is given by

F = Tr(Cββ T C T ) σ 2 Tr(C T (X T X) -1 C) ,
where the square root is taken element-wise. This expression follows an F distribution with r numerator and n -(p + 1) denominator degrees of freedom (F r ,n-(p+1) ), where r is the rank of C.

Nonparametric tests: Wilcoxon signed-rank test.

The Wilcoxon signed-rank test can be used to asses whether two population means di er. That is, given the samples {x 1 , . . . , x n } and { 1 , . . . , n }, we would like to test the following hypothesis

H 0 : x = ȳ, H 1 : x ȳ, where x is the sample mean, x = 1 n n i=1 x i .
Because of this, it can be seen as a nonparametric alternative to the twosample t-test. We will use the Wilcoxon signed-rank test to replace the two-sample t-test when the normality assumptions of the last are not met. The assumptions behind Wilcoxon signed-rank are that (a) the two samples are paired (paired samples imply that each individual observation of one sample has a unique corresponding member in the other sample), and (b) the distribution of the di erence between the values within each pair must be symmetrical, i.e., the median di erence must be identical to the mean di erence. Beginning with a set of paired values x 1 and x 2 , each of size n, the test statistic W can be computed following the steps:

• calculate |x 1,i -x 2,i | and sign(x 1,i -x 2,i ) for every 1 ≥ i ≥ n. Exclude
pairs which have zero di erence.

• order the remaining n r pairs from smallest absolute di erence to largest absolute di erence |x 1,i -x 2,i |.

• rank the pairs, starting with the smallest as 1. Ties receive a rank equal to the average of the ranks they span. Let r i denote the rank.

• calculate the test statistic

W = | n r i=1 sgn(x 1,i -x 2,i )r i |
As n r increases, the distribution of W converges to a normal distribution. For small samples (n r < 10), W is compared to a critical value from a reference table. Given the activation coe cients for a single voxel β ∈ R k (cf. Section 2.4.3), with k being the number of conditions, it is possible to use a t-test to test whether a given linear combination of the conditions is signi cantly di erent from zero. As we did in section 3.1.1 we introduce the contrast c ∈ R k so that c T β is a linear combination of the conditions. The hypothesis can then be written as H 0 : c T β = 0, H 1 : c T β 0. In this case, under the assumptions of the t-test for the coe cients of a linear regression model (Gaussian and i.i.d noise in the GLM), equation 3.2 gives the expression of the statistic for this test. Assigning the statistic to every voxel creates an image with the same dimensions as the input brain images, in this case a the image is called a t-map because of the t-test used to generate it. It can be seen how the voxels that exhibit a higher signi cance of this contrast belong to visual areas (red) and auditory areas (blue).

Voxel-wise hypothesis testing: Statistical Parametric Maps

Figure 3.2 plots the t-map resulted from a functional localizer [START_REF] Pinel | Fast reproducible identi cation and large-scale databasing of individual functional cognitive networks[END_REF] performed as part of the acquisition in Borghesani et al. [2014] dataset. For this, the conditions 'Visual' and 'Auditory' were compared. Since only two conditions were compared, the contrast is of the form c = [+1, -1, 0, . . . , 0] where the entry +1 is for the Visual condition and -1 for the auditory condition. The image is thresholded so that only voxels with a p-value smaller than 10 -3 are displayed. It can be seen how the voxels that exhibit a higher signi cance of this contrast belong to visual areas (red) and auditory areas (blue) [see Figure 2.3 for a localization of some brain regions]. This example involves the testing of a single contrasts using a t-statistic. In similar fashion, the test in which we consider d contrasts, i.e.

H 0 : c T 1 β = c T 2 β = • • • = c T d β = 0
and H 1 : at least one c T i β 0 can be performed using an F -test as described in section 3.1.1.

Multiple comparisons issues

One major drawback of statistical parametric maps is the multiple comparisons issue. This occurs when multiple hypothesis tests are performed simultaneously and one must account for the possibility of errors occurring on each of these tests [START_REF] Toothaker | Multiple comparison procedures[END_REF][START_REF] Rupert | Simultaneous statistical inference[END_REF], Westfall, 1993]. In fMRI, due to the huge amount of voxels (on the order of 4 × 10 4 at 3mm 3 resolution), some tests can lead to a large amount of false positive results, i.e., some voxels are found to be signi cant while in reality they were not. As a result, it is necessary to consider other types of error rates which account for the multiple comparisons issue.

A simple procedure to control the rate of false positives is through the Bonferroni correction method. This approach consists in dividing the threshold α by the number of tests p, which yields the new threshold α b = α /p. The maps of voxels selected by thresholding the p-values for the object recognition task (subject 1), are given in Fig. 3.3, for di erent threshold values (0.05, 0.01 and 0.05 corrected by Bonferroni). We notice that Bonferroni correction is very severe, and that it keeps very few signi cant voxels. One of the main limitations behind Bonferroni corrections is that it does not take into account the spatial structure of the SPM. As such the number of independent test can smaller than the number of voxels. Other approaches besides Bonferroni correction include random eld theory [START_REF] Friston | Assessing the signi cance of focal activations using their spatial extent[END_REF][START_REF] Keith | A three-dimensional statistical analysis for rCBF activation studies in human brain[END_REF] and resampling techniques [START_REF] Friman | Resampling fmri time series[END_REF]Westin, 2005, Holmes, 2003]. The review papers [START_REF] Logan | An evaluation of thresholding techniques in fmri analysis[END_REF]Rowe, 2004, Nichols, 2012] provide an overview of the di erent methods that have been proposed to overcome this problem.

Machine learning in fMRI

While classical statistical modeling emphasizes statistical inference (condence intervals, hypothesis test, optimal estimators), the eld of machine learning, also known as statistical learning and pattern recognition, emphasizes model validation as measured by its performance on unseen samples. That is, in machine learning the validity of an estimated model will be judged based on its generalization performance.

The rst applications of machine learning to neuroimaging focused on distinguishing patterns of neural activity associated with di erent stimuli or cognitive states, a problem commonly known as decoding, reverse inference or brain reading [START_REF] Dehaene | Inferring behavior from functional brain images[END_REF], Cox and Savoy, 2003, LaConte et al., 2005, Thirion et al., 2006, Song et al., 2011] uses a machine learning model to discriminate patterns of neural activity associated with di erent stimuli or cognitive states. In this thesis we will also describe the encoding problem [Thirion et al., 2006, Kay et al., 2008[START_REF] Mitchell | Predicting human brain activity associated with the meanings of nouns[END_REF], in which the patterns of brain activity are predicted based on the stimuli features. Encoding and decoding can be seen as complementary operations: encoding uses stimuli to predict activity while decoding uses activity to predict information about the stimuli. We will further describe these settings in Section 3.2.5 and 3.2.6, respectively.

Supervised Learning

Supervised learning is the task of learning a function from labeled training data. We will now give a formal de nition of the task.

We consider two spaces X and Y. We will refer to X as the sample space and to Y as the target space. We assume that the pair (X , Y ) is a random variable taking values in X × Y and distributed according to an unknown probability distribution P. We observe a sequence of n i.i.d. pairs {(x 1 , 1 ), . . . , (x n , n )} ∈ (X × Y) n sampled according to P and the goal is to construct a function h : X → Y which predicts Y from X .

We need a criterion to choose this function h. For this we are given a loss function : Y × Y → R that measures the disagreement between a pair of elements in the target space. This way ( i , f (x i )) quanti es the penalty of predicting the target f (x i ) when the true label is i . The objective is to construct a function h such that its risk is as small as possible. The risk of a function h is de ned as:

R (h) = E X ×Y ( (Y , h(X )))
A function that achieves the minimum risk over all possible measurable functions is called the Bayes predictor and is denoted h * :

h * ∈ arg min h R (h)
However, in general the risk cannot be computed because the distribution P is unknown. As an alternative we can use an approximation of the risk, called the empirical risk, by averaging the loss function over the pairs {(x 1 , 1 ), . . . , (x m , m )} ∈ (X × Y) m drawn from P. The empirical risk is de ned as: The task is then to nd the function f that minimizes the empirical risk, a setting known as empirical risk minimization [START_REF] Vapnik | Teoriya raspoznavaniya obrazov. statisticheskie problemy obucheniya (theory of pattern recognition[END_REF]. Although the methods studied in this thesis can be seen within the framework of empirical risk minimization, several alternatives exist to this framework. A di erent setting for the estimation of learning models is maximum likelihood estimation, in which the model parameters are chosen as the maximizers of the likelihood function. When the loss function can be written as the negative log likelihood: ( , f (x )) = -log P ( f (x )|x ), then empirical risk minimization is equivalent to maximum likelihood estimation.

R n ( f ) = 1 n n i=1 ( i , f (x i )) . ( 3 
Classification. If the target space Y is a nite set then the learning problem is known as classi cation. In the special case that this target space contains only two di erent values, then this problem is known as binary classi cation. The common loss in this setting is the zer-one loss, de ned as ( , ˆ ) = 0 if = ˆ and 0 otherwise.

Regression. If on the other hand the target space is identi ed with an interval of R we speak about a regression problem. For example, the task of predicting the gender of a person would be a (binary) classi cation task since only two outcomes are possible. On the other hand, the task of predicting the height of a person is considered a regression task since the target space is an interval from the real line. The encoding and decoding problems in fMRI that we will consider in this chapter can be framed either using classi cation or regression models. The pairwise ranking and ordinal regression models that we will consider in Chapter 5 and 6 can be seen as a special case of classi cation problems in which the loss function depends on the distance between the respective labels. As we will see in Chapter 5, one of the contributions of this thesis is to show that certain decoding problems can be formulated using ranking and ordinal regression models rather than multiclass or regression.

For most practical applications, the sample space X is identi ed with R p , where p is referred to as the dimensionality or number of features of the learning problem and the target space Y is identi ed with R.

Surrogate loss functions.

Figure 3.5: The direct minimization of the empirical risk for the 0-1 loss is a di cult computational problem due to the discontinuity of and non-convexity of the loss function. In the gure: plot of the surface (w 1 , w 2 ) = R ( f ), where f is the linear classi cation function f (x) = sign(x T w) with X ∈ R 10×2 a random normally distributed matrix. This surface is discontinuous with large, at regions and is thus not amenable for optimization using gradient-based methods.

The direct minimization of the empirical risk is often not a tractable optimization problem. For example, consider the binary classi cation 0-1 loss, de ned as

0-1 ( , ˆ ) = H (-• ˆ ) ,
where H is the Heaviside step function, de ned as H (x ) = 1 if x ≥ 0 and 0 otherwise. Minimization of the empirical risk associated with this loss is known to be NP-hard even for the class of functions as linear classi ers. See Figure 3.5 for an informal justi cation and [Feldman et al., 2012] and reference therein for a formal discussion of these properties.

For this reason it is common to consider instead a functionψ : Y × R d → R which is an approximation to the true loss known as surrogate loss function. d is an integer that will be determined by the surrogate loss function. For binary classi cation, d is usually 1, while for multiclass classi cation d is usually equal to the number of classes. The goal in this setting is to minimize the empirical ψ -risk, de ned as

R ψ n ( ) = 1 n n i=1 ψ ( i , (x i )) .
For computational reasons, ψ is often a convex function in its second variable (the variable with respect to which we will minimize). Note that in this case the function has as output space R and not Y as was the case before, thus the function is not a prediction function. In binary-class classi cation, the prediction of two classes is given by the sign of this function. In this case, we will call a decision function and sign( (X )) will be the prediction function while in multiclass classi cation the prediction function is usually given by arg max c ∈{1,...,k } i (x ) [Zhang, 2004].

Compared to the empirical risk minimization setting, we have replaced the original problem by one with better computational properties. It is natural to ask whether what have we lost in the process. In Chapter 6 we will present results on the consistency of surrogate loss functions, that is, under which conditions minimizing the ψ -risk leads to the same solution as minimizing the risk. There, we will review existing results for binary classi cation and prove novel results for the case of ordinal regression.

The following is a list of surrogate loss function that are commonly used in the context of encoding and decoding models. As classi cation models we will consider Support Vector Machines (SVM) and Logistic Regression. For simplicity we will only describe binary classi cation models and assume the target space consists only of the labels Y = {-1, 1}. Several techniques exist to convert a binary classi cation model into a multiclass classi cation model, such as one-vs-all and one-vs-rest [START_REF] Bishop | Pattern recognition and machine learning[END_REF]. As regression models we will mention Support Vector Regression and Least Squares. Pairwise ranking and ordinal regression models will be described in Chapter 5 and 6.

Let ∈ Y and α ∈ R, then the surrogate loss functions are de ned as: • Support Vector Machines (SVM). Since its rst use in decoding models by Cox and Savoy [2003], Support Vector Machines [Boser et al., 1992, Cortes and[START_REF] Cortes | Support-vector networks[END_REF] have become the reference approach for classication decoding studies. Its success comes from its availability in popular software packages, its overall good performance under a wide array of circumstances [START_REF] Bottou | Comparison of classi er methods: a case study in handwritten digit recognition[END_REF][START_REF] King | Statlog: comparison of classi cation algorithms on large real-world problems[END_REF][START_REF] Caruana | An empirical comparison of supervised learning algorithms[END_REF]] and its ability to cope with high-dimensional data. The following surrogate is known as the hinge loss,

-3 -2 -1 0 1 2 3 4 0 1 2 3 4 5 0-1 hinge square logistic
ψ ( , α ) = max(1 -α, 0) . (3.4)
Support Vector Machines can be extended to non-linear decision functions through the use of kernels [START_REF] Shawe | Kernel methods for pattern analysis[END_REF]. "In the terminology of statistics, this model is known as logistic regression, although it should be emphasized that this is a model for classi cation rather than regression. ", Christopher M. [START_REF] Bishop | Pattern recognition and machine learning[END_REF]. Pattern Recognition and Machine Learning.p. 205.

• Logistic Regression. Logistic Regression is a classi cation model that models the posterior probability as a sigmoid, that is,

P ( |X ) = (1 + e -f (X ) ) -1 .
This allows to provide the probability estimates for class membership.

The surrogate loss function in this case is given by the negative loglikelihood, that is, also known as the logistic loss

ψ ( , α ) = log(1 + exp( α )) . (3.5)
• Support Vector Regression. This is a variant of Support Vector Classi cation for the regression setting proposed by [START_REF] Drucker | Support vector regression machines[END_REF]. The surrogate loss function in this case is known as the ε-insensitive loss and is given by

ψ ( , α ) = max(| -α | -ε, 0) , (3.6)
where ε > 0.

• Least Squares is a regression model that minimizes the square of the distance to the prediction. The loss function is given by

ψ ( , α ) = ( -α ) 2 . (3.7)
The most popular choice for prediction functions in encoding and decoding models are linear decision functions [Cox and Savoy, 2003, LaConte et al., 2005, Song et al., 2011, Thirion et al., 2006, Naselaris et al., 2011], that is, functions of the form f (x) = sgn(x T w + c) for a binary classi cation problem and f (x) = x T w + c for a regression problem, where w ∈ R p and c ∈ R are unknown parameters to be estimated.

Regularization

Regularization has long played a fundamental role in statistics and related mathematical elds. First introduced by Tikhonov and Arsenin [1977] in the context of solving ill-posed integral equations, it has since become a standard part of the statistical toolkit. The purpose of regularization is to use prior knowledge of the problem to bias the estimated model. This can be desirable to solve an ill-posed problem or to avoid over tting. In this setting, the model is estimated as a solution to an optimization problem of the form arg min

f ∈ F R ψ n ( f ) + λΩ( f ) ,
where Ω( f ) is the regularization, which biases solutions toward a desired kind of solutions and F is a family of functions (e.g. the family of linear or polynomial functions). In this setting the parameter λ controls the trade-o between data-delity and the regularization term.

We will present the following penalties due to their widespread use in fMRI analysis. These assume a linear decision function f , i.e., f (x) = w T x + c or f (x) = sign(w T x + c) and the penalty will be expressed in terms of the parameters w.

• squared 2 Ω(w) = w 2 2 . Equivalent to Gaussian normal prior with zero mean [Bishop, 2006, Chapter 3]. When loss is linear least squares, it is referred to as Ridge regression and the estimated model ( ŵ, ĉ) has the closed form solution for λ > 0:

[ ŵ, ĉ] = ( XT X + λn Ĩ) -1 XT y ,
where X is the matrix formed by stacking a column of ones to the original design matrix X and Ĩ is the diagonal matrix with all ones except a zero in the last diagonal element, i.e. Ĩ = Ie n e T n . This penalty is sometimes also used for computational reasons since it makes the optimization problem better conditioned.

• 1 regularization (Ω(w) = w 1 ). Promotes sparse solutions, i.e. solutions with a large fraction of zero coe cients. When combined with a least squares loss function, the model is known as lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF] and basis pursuit denoising [START_REF] Shaobing | Atomic decomposition by basis pursuit[END_REF].

• elastic-net regularization Ω(w) = α w 1 + (1 -α ) w 2 2 . Linearly combines 1 and squared 2 regularization. In the case of severely correlated variables, the 1 penalty tends to select one variable from the group of highly correlated variables and ignore the rest. To mitigate this problem, elastic-net penalty adds a quadratic 2 norm to the penalty [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF].

• total variation (TV) [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF][START_REF] Chan | A nonlinear primal-dual method for total variation-based image restoration[END_REF][START_REF] Michel | Total variation regularization for fmri-based prediction of behavior[END_REF]. Total-variation, de ned as the 1 norm of the gradient promotes piecewise constant solutions. It can be combined with 1 [START_REF] Baldassarre | Structured sparsity models for brain decoding from fmri data[END_REF][START_REF] Gramfort | Identifying predictive regions from fMRI with TV-L1 prior[END_REF][START_REF] Dohmatob | Benchmarking solvers for tv-l1 leastsquares and logistic regression in brain imaging[END_REF] and with elasticnet [START_REF] Dubois | Predictive support recovery with tv-elastic net penalty and logistic regression: an application to structural mri[END_REF] penalties. Figure 3.8 compares the estimated coe cients by the use of elastic-net and TV+ 1 regularization. 

Model evaluation and cross-validation.

Since it is possible to construct a classi er that predicts perfectly on the train set but with very poor generalization performance (e.g. the classi er that returns the right label for a sample it has already seen and random otherwise), computing the empirical error on the training set yields a very poor estimator of the true risk of a model. Cross-validation is a technique to iteratively partition the input dataset in order to obtain a more reliable estimator of the risk [START_REF] Mosteller | Data analysis, including statistics[END_REF], Stone, 1977[START_REF] Geisser | The predictive sample reuse method with applications[END_REF][START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF]. In this setting a subset of the data is used for training (the training set) and the rest of the data is used to compute the accuracy of the trained model (the test set or validation set). Repeating the process several times and averaging the accuracy of the predictions across the validation sets yields an estimator of the risk. One form of cross-validation leaves out a single observation at a time; this is known as leave-one-out. Another form, known as K-fold cross-validation, splits the data into K subsets; each is held out in turn as the validation set.

The cross-validation score is the average of the empirical risk across all the folds, which is itself an estimator of the risk. This can then be used to perform hypothesis relative to the risk of two predictors f and . For example, consider the test in which we compare the risk of two estimators, that is, H 0 : R ( f ) = R ( ) and H 1 : R ( f ) R ( ). This statistical test can be performed using the Wilcoxon signed-rank test presented in Section 3.1.2. This test takes as input two sequences in which the samples are the empirical risk at the di erent cross-validation folds. Figure 3.9: The technique of K-Fold cross-validation, illustrated here for the case K = 4, involves taking the available data and partitioning it into K groups. Then K -1 groups are used (in green) to train a set of models that are then evaluated on the remaining group (in blue).

Cross-validation is an attractive estimator of the risk since it makes no assumptions on the model or the loss function. Alternatives exist for speci c loss functions such as Stein's unbiased risk estimate [Stein, 1981, Donoho and[START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF] which is an unbiased estimator of the mean-squared error.

Cross-validation can be used to select the regularization parameter in a setting known as nested cross-validation. In this setting, the train set is again split into the di erent cross-validation folds and the risk associated with the di erent parameters is computed using this inner cross-validation loop. The procedure can be repeated for the di erent training sets in the uppermost cross-validation loop. Through this thesis we will use this procedure to estimate the regularization parameter of the di erent models that we will consider, although it is not the only approach for this purpose. Other methods include Bayesian inference [Bishop, 2006, Chapter 8 & 10] and marginal likelihood maximization [START_REF] Bock | Marginal maximum likelihood estimation of item parameters: Application of an em algorithm[END_REF].

fMRI-based brain activity decoding

The paradigm of predicting the stimuli provided to the subject from the concurrent brain activity is known as brain decoding and accurate predictions support the hypothesis that the brain activity encodes those stimuli.

Early studies [START_REF] Dehaene | Inferring behavior from functional brain images[END_REF] were able to predict right hand versus left hand movement based on fMRI images. In [Haxby et al., 2001, Cox andSavoy, 2003], the authors showed that di erent high-level visual stimulus categories (faces, animals and objects) were associated with distinct patterns of brain activity in visual areas. Subsequent work has shown that decoding can also distinguish many other brain states, for example low-level visual features in the early visual cortex [Haynes andRees, 2005, Kamitani and[START_REF] Kamitani | Decoding the visual and subjective contents of the human brain[END_REF] and auditory stimuli in the auditory cortex [START_REF] Formisano | who" is saying" what"? brain-based decoding of human voice and speech[END_REF][START_REF] Staeren | Sound categories are represented as distributed patterns in the human auditory cortex[END_REF], as well as more abstract brain states such as intentions [START_REF] Haynes | Reading hidden intentions in the human brain[END_REF][START_REF] Siong | Unconscious determinants of free decisions in the human brain[END_REF] and the contents of working memory [START_REF] Stephenie | Decoding reveals the contents of visual working memory in early visual areas[END_REF].

The neuroscienti c questions that brain decoding is able to address are commonly shaped within the statistical hypothesis testing framework. The inference that we want to establish is whether the classi er designed on data from a given brain area of one subject is accurate enough to claim that the area encodes some information about the stimuli. In this setting, the null hypothesis is that a given brain area does not contain stimuli-related information. The ability of the classi er to correctly predict some information about the stimulus is considered a positive evidence in support of the alternate hypothesis of presence of stimuli-related information within the brain activity.

In [Borghesani et al., 2014], we have used decoding models to establish in which regions of the brain it is possible to decode di erent aspects of words representing real-world objects. One of the tasks was to decode the size of items from the words representing those objects. In this case, the di erent stimuli are ordered according to their relative size, so the target variable is of ordinal nature. We predict the target variable from the brain activation on 6 anatomically de ned regions of interest (ROI, which correspond to di erent Brodman areas). The metric is Kendall tau, which is a measure of the association between two measured quantities. This metric lies between -1 and 1. This metric and the used model will be presented in full detail in Chapter 5). Cross-validation scores for the prediction of the length of words from [Borghesani et al., 2014]. The metric is Kendall tau (higher is better). In the left, the same scores are depicted for the di erent regions (Brodman areas).

As can be seen in Figure 3.11, this decoding model results in a higher decoding score in primary and secondary visual areas. In this case, a Wilcoxon signed-rank test was used to asses the statistical signi cance (p-value < 0.05) of the scores. This is denoted by the * symbol that re ects the significance of a Wilcoxon test that the mean is signi cantly di erent than zero, * = p-val < 0.05, * * = p-val < 10 -3 , * * * = p-val < 10 -6 . This is achieved in Brodman areas BA17, BA18 and BA19. This experiments allows us to establish that the aforementioned areas encode some information related to the size of the stimuli.

fMRI-based brain activity encoding

fMRI-based encoding models (also known as voxel-wise modelling) [Thirion et al., 2006, Kay et al., 2008[START_REF] Mitchell | Predicting human brain activity associated with the meanings of nouns[END_REF], seek to predict the patterns of brain activity from the the stimuli features. A machine learning model is learned from the stimuli features to the activation coe cients of a single voxel. The sample space in this case is the space of features derived from the stimuli, e.g. spatial Dirac functions in [Thirion et al., 2006] or Gabor lters in the case of natural images [Kay et al., 2008[START_REF] Naselaris | A voxel-wise encoding model for early visual areas decodes mental images of remembered scenes[END_REF]. The predicted activation coe cient can then be compared to the true activation coe cient measured on left out data by using some distance metric such as Pearson or Spearman correlation coe cient. The sample space in this case is the space of features derived from the stimuli, e.g. a set of Gabor lters in [Kay et al., 2008]. The predicted activation coe cient can then be compared to the true activation coe cient measured on left out data by using some distance metric such as Pearson's correlation coe cient.

Adapted from [START_REF] Smith | Brain decoding: Reading minds[END_REF].

To the best of my knowledge, all of the encoding models that have been published in the literature make assume a use of linear relationship features to the activation coe cients. That is, they assume that there is a mapping from the stimulus space to the feature space that, and a linear mapping between the feature space and the activity space. However, the success of an encoding model depends in great measure on deriving the right features from the stimuli, a transformation that might be nonlinear. For example, Naselaris et al. [2009] constructed two di erent models for each voxel: a model based on phase-invariant Gabor wavelets, and a semantic model that was based on a scene category label for each natural scene. The authors showed that the Gabor wavelet model provided good predictions of activity in early visual areas, while the semantic model predicted activity at higher stages of visual processing.

Encoding and decoding can be seen as complementary operations: while encoding uses stimuli to predict activity, decoding uses activity to predict information about the stimuli. Furthermore, encoding o ers the advantage over decoding models that they can be used to predict information about an unseen stimuli. In this setting encoding models have been used to reconstruct stimuli from brain activity patterns in [START_REF] Miyawaki | Visual image reconstruction from human brain activity using a combination of multiscale local image decoders[END_REF], Naselaris et al., 2009, Nishimoto et al., 2011]. A similar setting was used in [Kay et al., 2008] to identify natural images. Here, the predicted activation coe -cients were used to select the image that matched most closely the measured activation coe cients.

Conclusion

In this chapter we have presented the statistical methods that will be used for drawing conclusions from fMRI experiments in further chapters. The chapter is divided into two sections. In the rst section we have introduced the framework of statistical hypothesis testing and presented several parametric and non-parametric tests. We have presented an application of voxel-wise hypothesis testing known as Statistical Parametric Maps (SPMs).

In the second part of this chapter we have presented the setting of supervised learning. We described di erent surrogate loss functions and penalties that have found applications in the context of fMRI analysis. The surrogate loss functions that we described are as Support Vector Machines, Logistic Regression, Support Vector Regression and Least Squares. The penalties that we have present are: squared 2 , 1 , elastic-net ( 22 + 1 ) and totalvariation (TV). Finally, we present two neuroscienti c problems that can be model as a supervised learning problem: encoding and decoding.

4 Data-driven HRF estimation for encoding and decoding models W in Chapter 3 that encoding and decoding models take as input brain activation coe cients (also known as activation patterns or betamaps). These are usually computed by means of the general linear model (GLM), which relies on a data-independent canonical form of the hemodynamic response function (HRF).

In this chapter we describe a novel method for the simultaneous estimation of HRF and activation coe cients based on low-rank modeling, forcing the estimated HRF to be equal across events or experimental conditions, yet permitting it to di er across voxels. The estimation of this model leads to an optimization problem that we propose to solve with using a quasi-Newton method, exploiting fast gradient computations. We compare 10 di erent HRF modeling methods in terms of encoding and decoding score on two di erent datasets. These results show that the R1-GLM model outperforms competing methods in both encoding and decoding settings, positioning it as an attractive method both from the points of view of accuracy and computational e ciency.

The contributions developed in this chapter have been published in:

• F. Pedregosa, M. Eickenberg, P. Ciuciu, and B. growing amplitude and decreasing time to peak. In the gure, estimated HRF for three groups of rats (with age P13-15 < P20-30< Adult).

Increased sensitivity via HRF estimation

Source: [START_REF] Colonnese | Development of hemodynamic responses and functional connectivity in rat somatosensory cortex[END_REF]. A comparison of the HRF in human subjects was performed in [START_REF] Badillo | Multi-subject bayesian joint detection and estimation in fmri[END_REF].

fMRI acquisitions consist of successive brain scans, given in intervals ranging from 1 to 4 seconds. The extraction of time-independent activation coe cient from the BOLD time course is commonly done with a model known as Linear General Model (GLM) [Friston et al., 1995]. While this approach has been successfully used in a wide range of studies, it does su er from limitations [START_REF] Poline | The general linear model and fMRI: does love last forever?[END_REF]. For instance, the GLM commonly relies on a data-independent reference form of the hemodynamic response function (HRF) to estimate the activation coe cient (also known as canonical HRF).

However it is known [START_REF] Daniel | Variation of BOLD hemodynamic responses across subjects and brain regions and their e ects on statistical analyses[END_REF][START_REF] Badillo | Group-level impacts of within-and between-subject hemodynamic variability in fMRI[END_REF] that the shape of this response function can vary substantially across subjects, age and brain regions. This suggests that an adaptive modeling of this response function should improve the accuracy of subsequent analysis.

To overcome the aforementioned limitation, Finite Impulse Response (FIR) models have been proposed within the GLM framework [START_REF] Dale | Optimal experimental design for event-related fMRI[END_REF], Glover, 1999]. These models do not assume any particular shape for the HRF and amount to estimating a large number of parameters in order to identify it. While the FIR-based modeling makes it possible to estimate the activation coe cient and the HRF simultaneously, the increased exibility has a cost. The estimator is less robust and prone to over tting, i.e. to generalize poorly to unseen data. In general, FIR models are most appropriate for studies focused on the characterization of the shape of the hemodynamic response, and not for studies that are primarily focused on detecting activation [Poldrack et al., 2011, Chapter 5].

Several strategies aiming at reducing the number of degrees of freedom of the FIR model -and thus at limiting the risk of over tting -have been proposed. One possibility is to constrain the shape of the HRF to be a linear combination of a small number of basis functions. A common choice of basis is formed by three elements consisting of a reference HRF as well as its time and dispersion derivatives [START_REF] Friston | Nonlinear event-related responses in fMRI[END_REF]], although it is also possible to compute a basis set that spans a desired function space [START_REF] Mark W Woolrich | Constrained linear basis sets for HRF modelling using variational bayes[END_REF]. More generally, one can also de ne a parametric model of the HRF and estimate the parameters that best t this function [START_REF] Lindquist | Validity and power in hemodynamic response modeling: A comparison study and a new approach[END_REF]. However, in this case the estimated HRF may no longer be a linear function of the input parameters.

Sensitivity to noise and over tting can also be reduced through regularization. For example, temporal regularization has been used in the smooth FIR [START_REF] Goutte | Modeling the haemodynamic response in fMRI using smooth FIR lters[END_REF], Ciuciu et al., 2003[START_REF] Casanova | The impact of temporal regularization on estimates of the BOLD hemodynamic response function: a comparative analysis[END_REF] to favor solutions with small second order time derivative. These approaches require the setting of one or several hyperparameters, at the voxel or potentially at the parcel level (if several voxels in a pre-de ned parcel are assumed to share some aspects of the HRF time course). Even if e cient techniques such as generalized cross-validation [START_REF] Golub | Generalized cross-validation as a method for choosing a good ridge parameter[END_REF] can be used to choose the regularization parameters, these methods are inherently more costly than basis-constrained methods. Basis-constrained methods also require setting the number of basis elements; however, this parameter is not continuous (as in the case of regularized methods), and in practice only few values are explored: for example the 3-element basis set formed by a reference HRF plus derivatives and the FIR model. This paper focuses on basis-constrained regularization of the HRF to avoid dealing with hyperparameter selection with the goal of remaining computationally attractive. A di erent approach to increase robustness of the estimates consists in linking the estimated HRFs across a prede ned brain parcel, taking advantage of the spatially dependent nature of fMRI [Wang et al., 2013]. However, hemodynamically-informed parcellations [Chaari et al., 2012[START_REF] Badillo | Hemodynamic Estimation Based on Consensus Clustering[END_REF] rely on the computation of a large number of estimations at the voxel or sub-parcel level. In this setting, the development of voxel-wise estimation procedures is complementary to the development of parcellation methods in that more robust estimation methods at the voxel level would naturally translate into more robust parcellation methods. In this thesis we focus on voxel-wise estimation methods.

Contribution In this chapter we have described a method for the simultaneous estimation of HRF and activation coe cients based on low-rank modeling. While the assumptions of this model are not novel (cf. [Makni et al., 2008, Vincent et al., 2010, Degras and Lindquist, 2014]), the formulation of this model as a least squares problem with a rank-one constraint is a novel contribution. This formulation allows to e ciently solve the problem using gradient-based methods. Finally, we evaluate the proposed model on three publicly available datasets.

Methods

In this section we describe di erent methods for extracting the HRF and activation coe cients from BOLD signals. We will refer to each di erent stimulus as condition and we will call trial a unique presentation of a given stimulus. We will denote by k the total number of stimuli, y ∈ R n the BOLD signal at a single voxel and n the total number of images acquired.

Basis-constrained GLM

The reference HRF models a general response function that has been proven successful under a wide range of circumstances. However, a number of studies have shown that the shape of the hemodynamic response di er substantially among subjects [START_REF] Aguirre | The variability of human, BOLD hemodynamic responses[END_REF]] and brain regions [START_REF] Daniel | Late onset of anterior prefrontal activity during true and false recognition: An event-related fMRI study[END_REF]. One popular approach to model small o sets in the time to peak and dispersion is to consider that the HRF is modeled from a basis set consisting of the reference HRF plus its derivative with respect to time and dispersion (see Figure 4.2). The rationale for considering this basis set comes from the fact that it corresponds to the rst-order approximation to the Taylor expansion of the reference HRF. Given the reference HRF, h(t ), a time-shifted version of the hemodynamic response can be described as h(t + δ ). A Taylor series expansion of h(t + δ ) with respect to δ gives the approximation h(t ) + δh (t ) + . . . , implying that small o sets can be modeled by considering a linear combination of the reference HRF plus its time derivative. In similar fashion we can model small perturbations in dispersion (the width of the response) by considering the reference HRF plus its dispersion derivative.

Figure 4.2: A popular basis set to generate a family of HRF functions is the "reference HRF plus derivatives". In the left plot, we show a reference HRF together with its time and dispersion derivatives. This basis set can model small variations in temporal shifts and dispersion with respect to the reference HRF. In the right plot we show a sample set of HRFs generated by this basis. The weights of these response functions are Gaussian random vectors centered around the reference HRF.

A popular example of basis set is presented in Figure 4.2 and consists of the reference HRF plus its time and dispersion (width) derivatives. While in the GLM with xed HRF each regressor of the design matrix consisted of the convolution of the reference HRF with the stimulus function, in this case each regressor consist in the convolution of a basis element with the stimulus function. This results in a design matrix of size n × dk instead of n × k, where d is the number of basis elements. If d = 1 and the basis element is the reference HRF, then this setting coincides with the standard GLM. A least squares estimate of the activation coe cients β = arg min β y -Xβ 2 will result in a vector of d elements for each condition.

The design matrix of a GLM using the basis set of the "refence HRF plus derivatives" is shown in Figure 2.10. The columns in this design matrix are each one of the basis elements convolved with the stimulus function for the di erent conditions.

Basis and rank-constrained GLM

In the basis-constrained GLM, the HRF estimation is performed independently for each condition. This method works reliably whenever the number of conditions is small, but in experimental designs with a large number of conditions it performs poorly due to the increased variance of the estimates.

In this work we consider a model in which a common HRF is shared across the di erent stimuli. Besides the estimation of the HRF, a unique coe cient is obtained per column of our event matrix. This amounts to the estimation of k + d free parameters instead of k × d as in the standard basis-constrained GLM setting.

The novelty of our method stems from the observation that the formulation of the GLM with a common HRF across conditions translates to a rank constraint on the vector of estimates. This assumption amounts to enforcing the vector of estimates to be of the form

β B = [hβ 1 , hβ 2 , • • • , hβ k ]
for some HRF h ∈ R d and a vector of coe cients β ∈ R k . More compactly, this can be written as β B = vec(hβ T ). This can be seen as a constraint on the vector of coe cients to be the vectorization of a rank-one matrix, hence In this model, the coe cients have no longer a closed form expression, but can be estimated by minimizing the following loss function. Given X B and y as before, Z ∈ R n×q a matrix of nuisance parameters such as drift regressors, we de ne F R1 (h, β, ω, X B , y, Z) = 1 2 y -X B vec(hβ T ) -Zω 2 to be the objective function to be minimized. The optimization problem reads: ĥ, β, ω = arg min

h,β ,ω F R1 (h, β, ω, X B , y, Z) subject to Bh ∞ = 1 and Bh, h ref > 0 , (4.1)
The norm constraint is added to avoid the scale ambiguity between h and β and the sign is chosen so that the estimated HRF correlates positively with a given reference HRF h ref .

Otherwise the signs of the HRF and β can be simultaneously ipped without changing the value of the cost function. Within its feasible set, the optimization problem is smooth and is convex with respect to h, β and ω, however it is not jointly convex in variables h, β and ω.

From a practical point of view this formulation has a number of advantages. First, in contrast with the GLM without rank-1 constraint the estimated coe cients are already factored into the estimated HRF and the activation coe cients. That is, once the estimation of the model parameters from Eq. (4.1) is obtained, β is a vector of size k and ĥ is a vector of size d that can be both used in subsequent analysis, while in models without rank-1 constraint only the vector of coe cients (equivalent to vec(hβ T ) in rank-1 constrained models) of size k × d is estimated. In the latter case, the estimated HRF and the beta-maps still have to be extracted from this vector by methods such as normalization by the peak of the HRF, averaging or projecting to the set of Rank-1 matrices.

Second, it is readily adapted to prediction on unseen trials. While for classical (non rank-1 models) the HRF estimation is performed per condition with no HRF associated with unseen conditions, in this setting, because the estimated HRF is linked and equal across conditions it is natural to use this estimate on unseen conditions. This setting occurs often in encoding models where prediction on unseen trials is part of the cross-validation procedure.

This model can also be extended to a parametric HRF model. That is, given the hemodynamic response de ned as a function h : R d 1 → R d of some parameters α, we can formulate the analogous model of Eq. (4.1) as an optimization over the parameters α and β with the design matrix X FIR given by the convolution of the event matrix with the FIR basis:

α, β, ω = arg min α,β ,ω F R1 (h(α), β, ω, X FIR , y, Z) subject to h(α) ∞ = 1 and h(α), h ref > 0 (4.2)
In section 4.2.4 we will discuss optimization strategies for both models. et al. [2012], the design matrix contains two regressors. The rst one is the regressor associated with a given condition and the second one is the sum of all other regressors. Source: [Turner et al., 2012] An extension to the classical GLM that improves the estimation with correlated designs was proposed in [START_REF] Mumford | Deconvolving BOLD activation in event-related designs for multivoxel pattern classi cation analyses[END_REF]. In this setting, each voxel is modeled as a linear combination of two regressors in a design matrix X GLM . The rst one is the regressor associated with a given condition and the second one is the sum of all other regressors. This results in k design matrices, one for each condition. The estimate for a given condition is given by the rst element in the two-dimensional array X Si † y, where X Si is the design matrix for condition i. We will denote this model GLM with separate designs (GLMS). It has been reported to nd a better estimate in rapid event designs leading to a boost in accuracy for decoding tasks [START_REF] Mumford | Deconvolving BOLD activation in event-related designs for multivoxel pattern classi cation analyses[END_REF][START_REF] Schoenmakers | Linear reconstruction of perceived images from human brain activity[END_REF][START_REF] Lei | A mixed L2 norm regularized HRF estimation method for rapid event-related fMRI experiments[END_REF]. This approach was further extended in [Turner et al., 2012] to include FIR basis instead of the prede ned canonical function. Here we employ it in the more general setting of a prede ned basis set. Given a set of basis functions we construct the design matrix for condition i as the columnwise concatenation of two matrices X 0 BSi and X 1 BSi . X 0 BSi is given by the columns associated with the current condition in the GLM matrix and X 1 BSi is the sum of all other columns. In this case, the vector of estimates is given by the rst d vectors of X † BSi y. See [Turner et al., 2012] for a more complete description of the matrices X 0 BSi and X 1 BSi . It is possible to use the same rank-1 constraint as before in the setting of separate designs, linking the HRF across conditions. We will refer to this model as Rank-1 GLM with separate designs (R1-GLMS). In this case the objective function has the form

Extension to separate designs

F R1-S (h, β, ω, r, X B , y, Z) = 1 2 k i y - β i X 0 BSi h -r i X 1 BSi h -Zω 2
, where r ∈ R d is a vector representing the activation of all events except the event of interest and will not be used in subsequent analyses. We can compute the vector of estimates β as the solution to the optimization problem β, ω, ĥ, r = arg min h,β ,ω,r

F R1-S (h, β, ω, r, X B , y, Z) subject to Bh ∞ = 1 and Bh, h ref > 0 (4.3)

Optimization

For the estimation of rank-1 models on a full brain volume, a model is estimated at each voxel separately. Since a typical brain volume contains more than 40,000 voxels, the e ciency of the estimation at a single voxel is of great importance. In this section we will detail an e cient procedure based on quasi-Newton methods for the estimation of R1-GLM and R1-GLMS models on a given voxel.

One approach to minimize (4.1) is to alternate the minimization with respect to the variables β, h and ω. By recalling the Kronecker product identities [Horn and Johnson, 1991, Chapter 4.3], and using the identity vec(hβ T ) = β ⊗ h we can rewrite the objective function (4.1) to be minimized as:

1 2 y -X B (β ⊗ h) -Zω 2 = (4.4) 1 2 y -X B (I ⊗ h)β -Zω 2 = (4.5) 1 2 y -X B (β ⊗ I)h -Zω 2 . (4.6)
Updating h, β or ω sequentially thus amounts to solving a (constrained) least squares problem at each iteration. A similar procedure is detailed in [Degras and Lindquist, 2014]. However, this approach requires computing the matrices X B (β ⊗ I) and X B (I ⊗ h) at each iteration, which are typically dense, resulting in a high computational cost per iteration. Note also that the optimization problem is not jointly convex in variables h, β, ω, therefore we cannot apply convergence guarantees from convex analysis.

We rather propose a more e cient approach by optimizing both variables jointly. We de ne a global variable z as the concatenation of (h, β, ω) into a single vector, z = vec([h, β, ω]), and cast the problem as an optimization with respect to this new variable. Generic solvers for numerical optimization [START_REF] Nocedal | Numerical optimization, series in operations research and nancial engineering[END_REF] can then be used. The solvers that we will consider take as input an objective function and its gradient. In this case, the partial derivatives with respect to variable z can be written as ∂F R1 /∂z = vec([∂F R1 /∂h, ∂F R1 /∂β, ∂F R1 /∂ω]), whose expression can be easily derived using the aforementioned Kronecker product identities:

                     ∂F R1 ∂h = -(β T ⊗ I)X T (y -X vec(hβ T ) -Zω) ∂F R1 ∂β = -(I ⊗ h T )X T (y -X vec(hβ T ) -Zω) ∂F R1 ∂ω = -Z T (y -X vec(hβ T ) -Zω)
If instead a parametric model of the HRF is used as in Eq. (4.2), the equivalent partial derivatives can be easily computed by the chain rule.

For the sake of e ciency, it is essential to avoid evaluating the Kronecker products naively, but rather reformulate them using the above mentioned Kronecker identities. For example, the matrix M = X(I ⊗ h) should not be computed explicitly but should rather be stored as a linear operator such that when applied to a vector a ∈ R k it computes M (a) = X(a ⊗ h), avoiding thus the explicit computation of I ⊗ β.

Similar equations can be derived for the rank-1 model with separate designs of Eq. (4.3) (R1-GLMS), in which case the variable z is de ned as the concatenation of (h, β, ω, r), i.e. z = vec ([h, β, ω, r]). The gradient of F R1-S with respect to z can be computed as ∂F R1-S /∂z = vec([∂F R1-S /∂h, ∂F R1-S /∂β, ∂F R1-S /∂ω, F R1-S /∂r]). The partial derivatives read:

                 ∂F ∂h = k i -(X 0 BS i β i -X 1 BS i r i ) T (y -β i X 0 BS i h -w i X 1 BS i h) ∂F ∂β i = -(X 0 BS i h) T (y -β i X 0 BS i h -w i X 1 BS i h) ∂F ∂ω i = -Z T (y -β i X 0 BS i h -w i X 1 BS i h) ∂F ∂r i = -(X 1 BS i h) T (y -β i X 0 BS i h -w i X 1 BS i h) Figure 4
.5: Convergence of di erent rst-order and quasi-newton optimization algorithms for the R1-GLM model on a single voxel. "TNC" and "Newton-CG" are two di erent implementations of the truncated Newton [START_REF] Stephen | Newton-type minimization via the lanczos method[END_REF] method (the rst one in C and the second one in Python), "L-BFGS-B" is the Limited-memory BFGS algorithm with box constraints as implemented in [START_REF] Zhu | Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization[END_REF], "trust-ncg" is the Newton conjugate gradient trust-region algorithm and "CG" is the conjugate gradient algorithm, both of them described in [START_REF] Nocedal | Numerical optimization, series in operations research and nancial engineering[END_REF]. We found that in general the L-BFGS-B gives the best performance among these methods.

A good initialization plays a crucial role in the convergence of any iterative algorithm. We have used as initialization for the R1-GLM and R1-GLMS models the solution given by the GLM with separate designs (GLMS). Since the GLM with separate designs scales linearly in the number of voxels, this signi cantly reduces computation time whenever an important number of voxels is considered.

Whenever the design matrix X B has more rows than columns (as is the case in both datasets we consider with B the 3HRF basis), it is possible to nd an orthogonal transformation that signi cantly speeds up the computation of the Rank-1 model. Let Q, R be the "thin" QR decomposition of X B ∈ R n×dk , that is, QR = X B with Q ∈ R n×dk an orthogonal matrix and R ∈ R dk×dk a triangular matrix. Because of the invariance of the Euclidean norm to orthogonal transformations, the change of variable X B ← Q T X B , y ← Q T y yields a Rank-1 model in Eq. (4.1) with equivalent solutions. This reduces the size of the design matrix to a square triangular matrix of size dk × dk (instead of n × dk) and reduces the explained variable y to a vector of size kd (instead of n). After this change of variable, the convergence of the Rank-1 model is signi cantly faster due to the faster computation of the objective function and its partial derivatives. We have observed that the total running time of the algorithm can be reduced by 30% using this transformation.

Some numerical solvers such as L-BFGS-B [START_REF] Liu | On the limited memory BFGS method for large scale optimization[END_REF]] require the constraints to be given as box constraints. While our original problem includes an equality constraint we can easily adapt it to use convex box constraints instead. We replace the equality constraint Bh ∞ = 1 by the convex inequality constraint Bh ∞ ≤ 1, which is equivalent to the box constraint -1 ≤ (Bh) i ≤ 1 supported by the above solver. However, this change of constraint allows solutions in which h can be arbitrarily close to zero. To avoid such degenerate cases we add the smooth term -B(:, 1)h 1 2 2 to the cost function. Since there is a free scale parameter between h and β, this does not bias the problem, but forces Bh to lie as far as possible from the origin (thus saturating the box constraints). Once a descent direction has been found by the L-BFGS-B method we perform a line search procedure to determine the step length. The line-search procedure was implemented to satisfy the strong Wolfe conditions [START_REF] Nocedal | Numerical optimization, series in operations research and nancial engineering[END_REF]. Finally, when the optimization algorithm has converged to a stationary point, we rescale the solution setting to ensure that the equality constraint. This still leaves a sign ambiguity between the estimated HRF and the associated betamaps. To make these parameters identi able, the sign of the estimated HRF will be chosen so that these correlate positively with the reference HRF.

We have compared several rst-order (Conjugate Gradient), quasi-Newton (L-BFGS) and Newton methods on this problems and found that in general quasi-Newton methods performed best in terms of computation time. In our implementation, we adopt the L-BFGS-B as the default solver.

In Algorithm 1 we describe an algorithm based on L-BFGS that can be used to optimize R1-GLM and R1-GLMS models (a reference implementation for the Python language is described in subsection Software). Variable r is only used for the R1-GLMS method and its use is denoted within parenthesis, i.e. (, r), so that for the R1-GLM it can simply be ignored.

Algorithm 1: Optimization of R1-GLM and R1-GLMS models Require: Given initial points

β 0 ∈ R k , h 0 ∈ R d , ω 0 ∈ R q (, r 0 ∈ R k ),
convergence tolerance ϵ > 0, inverse Hessian approximation H 0 .

Ensure: β m , h m 1: (Optional): Compute the QR decomposition of X B , QR = X B , and replace

X B ← Q T X B , y ← Q T y 2: Initialization. Set m ← 0, z ← vec([h 0 , β 0 , ω 0 (, r 0 )]) 3: while ∇f > ϵ do 4: Compute search direction. Set p m ← -H m ∇f (h m , β m , ω m (, r m )
) by means of the L-BFGS algorithm.

5:

Set z m+1 = z m + γ m p m , where γ m is computed from a line search procedure subject to the box constraints h m ∞ ≤ 1.

6:

m ← m + 1 7: end while 8: Extract R1-GLM(S) parameters from z m . Set h m ← z m (1 : d ), β m ← z m (d + 1 : m + d ) 9:
Normalize and set sign so that the estimated HRF is positively correlated with a reference HRF:

q m ← h m ∞ sign(h T m h ref ), h m ← h m /q m , β m ← β m q m
The full estimation of the R1-GLM with 3HRF basis for one subject of the dataset described in section Dataset 2: decoding of potential gain levels (16 × 3 conditions, 720 time points, 41, 622 voxels) took 14 minutes in a 8-cores Intel Xeon 2.67GHz machine. The total running time for the 17 subjects was less than four hours.

So ware

We provide a software implementation of all the models discussed in this section in the freely available (BSD licensed) pure-Python package hrf_estimation available at https://pypi.python.org/pypi/hrf_estimation . This software is further described in Section 7.4.1.

Data description

With the aim of making the results easily reproducible, we have chosen two freely available datasets to validate our approach and to compare di erent HRF modeling techniques.

Dataset 1: encoding of visual information

The rst dataset we will consider is described in [Kay et al., 2008, Naselaris et al., 2009, Kay et al., 2011]. It contains BOLD fMRI responses in human subjects viewing natural images. As in [Kay et al., 2008], we performed prediction of BOLD signal following the visual presentation of natural images and compared it against the measured fMRI BOLD signal. As the procedure consists of predicting the fMRI data from stimuli descriptors, it is an encoding model. This dataset is publicly available from http://crcns.org

Two subjects viewed 1750 training images, each presented twice, and 120 validation images, each presented 10 times, while xating a central cross. Images were ashed 3 times per second (200 ms on-o -on-o -on) for one second every 4 seconds, leading to a rapid event-related design. The data were acquired in 5 scanner sessions on 5 di erent days, each comprising 5 runs of 70 training images -each image being presented twice within the run-and 2 runs of validation images showing 12 images, 10 times each. The images were recorded from the occipital cortex at a spatial resolution of 2mm×2mm×2.5mm and a temporal resolution of 1 second. Every brain volume for each subject has been aligned to the rst volume of the rst run of the rst session for that subject. Across-session alignment was performed manually. Additionally, data were temporally interpolated to account for slice-timing di erences. See [Kay et al., 2008] for further preprocessing details.

We performed local detrending using a Savitzky-Golay lter [START_REF] Savitzky | Smoothing and di erentiation of data by simpli ed least squares procedures[END_REF] with a polynomial of degree 4 and a window length of 91 TR. The activation coe cients (beta-map) and HRF were extracted from the training set by means of the di erent methods we would like to compare. The training set consisted of 80% of the original session (4 out of 5 runs). This resulted in estimated coe cients (beta-map) for each of the 70 × 4 images in the training set.

We proceed to train the encoding model. The stimuli are handled as local image contrasts, that are represented by spatially smoothed Gabor pyramid transform modulus with 2 orientations and 4 scales. Ridge regression (regularization parameter chosen by Generalized Cross-Validation [START_REF] Golub | Generalized cross-validation as a method for choosing a good ridge parameter[END_REF]) was then used to learn a predictor of voxel activity on the training set. By using this encoding model and the estimated HRF it is possible to predict the BOLD signal for the 70 images in the test set (20 % of the original session). We emphasize that learning the HRF on the training set instead of on the full dataset is necessary to avoid over tting while assessing the quality of the estimated HRF by any HRF-learning method: otherwise, the estimation of the HRF may incorporate speci cities of the test set leading to arti cially higher scores.

In a rst step, we perform the image identi cation task from [Kay et al., 2008] (Fig. 4.6). From the training set we estimate the activation coe cients that will be used to compute the activation maps. We use an encoding model using Gabor lters that predicts the activation coe cient from the training stimuli. From the stimuli in the validation set we predict the activation coefcients that we then use to identify the correct image. The predicted image is the one yielding the highest correlation with the measured activity. This Figure 4.6: The original analysis performed in [Kay et al., 2008] allowed to identify natural images from human brain activity. The analysis consisted of two stages. In the rst stage, model estimation, fMRI data were recorded while each subject viewed a large collection of natural images. These data were used to estimate an encoding model for each voxel. In the second stage, image identi cation, fMRI data were recorded while each subject viewed a collection of novel natural images. For each measurement of brain activity, they attempted to identify which speci c image had been seen. This was accomplished by using the estimated encoding models to predict brain activity for a set of potential images and then selecting the image whose predicted activity correlates best with the measured activity. Source: Adapted from [Kay et al., 2008].

procedure mimics the one presented in [Kay et al., 2008, Supplementary material].

In a second step, we report score as the Pearson correlation between the measurements and the predicted BOLD signal on left out data. The prediction of BOLD signal on the test set is performed from conditions that were not present in the train set. In order to do this, an HRF for these conditions is necessary. As highlighted in the methods section, the construction of an HRF for these conditions is ambiguous for non Rank-1 methods that perform HRF estimation on the di erent stimuli. In these cases we chose to use the mean HRF across conditions as the HRF for unseen conditions. Finally, linear predictions on the left out fold were compared to the measured BOLD signals.

Dataset 2: decoding of potential gain levels

The second dataset described in [START_REF] Sabrina | The neural basis of loss aversion in decisionmaking under risk[END_REF] is a gambling task where each of the 17 subjects was asked to accept or reject gambles that o ered a 50/50 chance of gaining or losing money. The magnitude of the potential gain and loss was independently varied across 16 levels between trials. Each gamble has an amount of potential gains and potential losses that can be used as class label. In this experiment, we only considered gain levels. This leads to the challenge of predicting or decoding the gain level from brain images. The dataset is publicly available from http://openfmri.org under the name mixed-gambles task dataset.

The data preprocessing included slice timing, motion correction, coregistration to the anatomical images, tissue segmentation, normalization to MNI space and was performed using the SPM 8 software through the Pypreprocess 1 interface.

1 https://github.com/ neurospin/pypreprocess For all subjects three runs were recorded, each consisting of 240 images with a repetition time (TR) of 2 seconds and a stimulus presentation at ev-ery 4 seconds. In order to perform HRF estimation on more data than what is available on a single run, we performed the estimation on the three runs simultaneously. This assumes HRF consistency across runs, which was obtained by concatenating the data from the three runs and creating a blockdiagonal design matrix correspondingly (each block is the design of one run).

After training a regression model on 90% of the data, we predict the gain level on the remaining 10%. As a performance measure we use Kendall tau rank correlation coe cient [START_REF] Kendall | A new measure of rank correlation[END_REF] between the true gain levels and the predicted levels, which is a measure for the orderings of the data. We argue that this evaluation metric is better suited than a regression loss for this task because of the discrete and ordered nature of the labels. Also, this loss is less sensible to shrinkage of the prediction that might occur when penalizing a regression model [Bekhti et al., 2014]. The Kendall tau coecient always lies within the interval [-1, 1], with 1 being perfect agreement between the two rankings and -1 perfect disagreement. Chance level lies at zero. This metric is equivalent to minimizing the number of the pairwise inversions, which was was previously proposed for fMRI decoding with ordered labels in [Pedregosa et al., 2012].

Results

In order to compare the di erent methods discussed previously, we ran the same encoding and decoding studies while varying the estimation method for the activation coe cients (beta-maps). The methods we considered are standard GLM (denoted GLM), GLM with separate designs (GLMS), Rank-1 GLM (R1-GLM) and Rank-1 GLM with separate designs (R1-GLMS). For all these models we consider di erent basis sets for estimating the HRF: a set of three elements formed by the reference HRF and its time and dispersion derivative, a FIR basis set (of size 20 in the rst dataset and of size 10 in the second dataset) formed by the canonical vectors and the single basis set formed by the reference HRF (denoted " xed HRF"), which in this case is the HRF used by the SPM 8 software.

It should be reminded that the focus of this study is not the study of the HRF in itself (such as variability across subjects, tasks or regions) but instead its possible impact on the accuracy of encoding and decoding paradigms. For this reason we report encoding and decoding scores but we do not investigate any of the possible HRF variability factors.

Dataset 1: encoding of visual information

In the original study, 500 voxels were used to perform image identi cation. These voxels were selected as the voxels with the highest correlation with the true BOLD signal on left-out data using a (classical) GLM with the reference HRF. These voxels are therefore not the ones naturally bene ting the most from HRF estimation.

We rst present the scores obtained in the image identi cation task for di erent variants of the GLM. This can be seen in Figure 4.7. The displayed score is the count of correctly identi ed images over the total number of im-ages (chance level is therefore at 1/120). The identi cation algorithm here only uses the beta-maps obtained from the train and validation set. This makes the estimation of the HRF an intermediate result in this model. However, we expect that a correct estimation of the HRF directly translates into a better estimation of the activation coe cients in the sense of being able to acheive higher predictive accuracy. Our results are consistent with this hypothesis and in this task the rank-one (R1) and glm-separate (GLMS) models outperform the classical GLM model. The bene ts range from 0.9% for R1-GLM in subject 2 to 8.2% for the same method and subject 1. It is worth noticing that methods with FIR basis obtain a higher score than methods using the 3HRF basis.

In order to test whether this increase is statistically signi cant we performed the following statistical test. The success of recovering the correct image can be modeled as a binomial distribution, with p A being be the probability of recovering the correct image with method A and p B being be the probability of recovering the correct image with method B. We de ne the null hypothesis H 0 as the statement that both probabilities are equal, H 0 : p A = p B , and the alternate hypothesis that both probabilities and not equal, H 1 : p 1 p 2 (this test is sometimes known as the binomial proportion test [START_REF] Röhmel | Unconditional non-asymptotic one-sided tests for independent binomial proportions when the interest lies in showing non-inferiority and/or superiority[END_REF]). The score test statistic for the one-tailed test is

T = (p A -p B )/ p(1 -p) 2
n , where p = (p A + p B )/2 and n is the number of repetitions, in this case n = 120. This statistic is normally distributed for large n. The p-value associated with this statistical test when comparing every model (by order of performance) with the model "GLM with with xed HRF" is (0.10, 0.10, 0.15, 0.19, 0.21, 0.26, 0.5, 0.5, 0.82, 0.81) for the rst subject and (0.18, 0.18, 0.25, 0.34, 0.34, 0.44, 0.5, 0.5, 0.86, 0.93) for the second. Image identi cation score (higher is better) on two di erent subjects from the rst dataset. The metric counts the number of correctly identi ed images over the total number of images (chance level is 1/120 ≈ 0.008). This metric is less sensitive to the shape of the HRF than the voxelwise encoding score. The bene ts range from 0.9% points to 8.2% points across R1-constrained methods and subjects. The highest score is achieved by a R1-GLM method with a FIR basis set for subject 1 and by a R1-GLMS with FIR basis for subject 2.

We will now use a di erent metric for evaluating the performance of the encoding model. This metric is the Pearson correlation between the Average correlation score (higher is better) on two di erent subjects from the rst dataset. The average correlation score is the Pearson correlation between the predicted BOLD and the true BOLD signal on leftout session, averaged across voxels and sessions. Methods that perform constrained HRF estimation signi cantly outperform methods that use a xed reference HRF. As for the image identi cation performance, the best performing method for subject 1 is the R1-GLM, while for subject 2 it is the R1-GLMS model, both with FIR basis. In underlined typography is the GLM with a xed HRF which is the method used by default in most software distributions. A Wilcoxon signed-rank test is performed between each method and the next one in the ordered result list by considering the leave-onesession out cross-validation scores for each method. We report pvalues to assess whether the score di erences are statistically signicant.

BOLD predicted by the encoding model and the true BOLD signal, averaged across voxels. We will compute this metric on a left-out session, which results in ve scores for each method, corresponding to each of the crossvalidation folds. Given two methods, a Wilcoxon signed-rank test can be used on these cross-validation scores to assess whether the score obtained by the two methods are signi cantly di erent. This way, irrespective of the variance across voxels, which is inherent to the study, we can reliably assess the relative ranking of the di erent models. In Figure 4.8 we show the scores for each method (averaged across sessions) and the p-value corresponding the Wilcoxon test between a given method and the previous one by order of performance.

We observed in Figure 4.8 that methods that learn the HRF together with some sort of regularization (be it Rank-1 constraint or induced by separate designs) perform noticeably better than methods that perform unconstrained HRF estimation, highlighting the importance of a robust estimation of the HRF as opposed to a free estimation as performed by the standard GLM with FIR basis. This suggests that R1 and GLMS methods permit including FIR basis sets while minimizing the risk of over tting inherent to the classical GLM.

We also observed that models using the GLM with separate designs from [START_REF] Mumford | Deconvolving BOLD activation in event-related designs for multivoxel pattern classi cation analyses[END_REF] perform signi cantly better on this dataset than the standard design, which is consistent with the purpose of these models. It improves estimation in highly correlated designs. The best performing model for both subjects in this task is the R1-GLMS with FIR basis, followed by the R1-GLM with FIR basis model for subject 1 and GLMS with FIR basis for subject 2. The di erence between both models (Wilcoxon signed-rank test) was signi cant with a p-value < 10 -6 . Since the results for both subjects are similar, we will only use subject 1 for the rest of the gures.

To further inspect the results, we investigated the estimation and encoding scores at the voxel level. This provides some valuable information. For Figure 4.9: Top: HRF estimated by the R1-GLMS method on voxels for which the encoding score was above the mean encoding score ( rst dataset), color coded according to the time to peak of the estimated HRFs. The di erence in the estimated HRFs suggests a substantial variability at the voxel level within a single subject and a single task. Bottom: voxel-wise encoding score for the best performing method (R1-GLMS with FIR basis) versus a standard GLM (GLM with xed HRF) across voxels. The metric is Pearson correlation. Points above the black diagonal correspond to voxels that exhibit a higher score with the R1-GLMS method than with a standard GLM. example, parameters such as time-to-peak, width and undershoot of the estimated HRF can be used to characterize the mis-modeling of a reference HRF for the current study. Also, a voxel-wise comparison of the di erent methods can be used to identify which voxels exhibit a greater improvement for a given method. In the upper part of Figure 4.9 we show the HRF estimated on the rst subject by our best performing method (the Rank-1 with separate designs and FIR basis). For comparison we also present two commonly used reference HRFs: one used in the software SPM and one de ned in [Glover, 1999, auditory study] and used by software such as NiPy 2 and 2 http://nipy.org fmristat ( 3 ). Because the HRF estimation will fail on voxels for which there 3 http://www.math.mcgill.ca/keith/fmristat/ is not enough signal, we only show the estimated HRF for voxels for which the encoding score is above the mean encoding score. In this plot the timeto-peak of the estimated HRF is color coded. One can observe a substantial variability in the time to peak, con rming the existence of a non-negligeable variability of the estimated HRFs, even within a single subject and a single task. In particular, we found that only 50% of the estimated HRFs on the full brain volume peaked between 4.5 and 5.5 seconds.

In the lower part of Figure 4.9 we can see a scatter plot in which the coordinates of each point are the encoding scores with two di erent methods. The rst coordinate (X-axis) is given by the score using a canonical GLM whilst the second coordinate (Y-axis) corresponds to the Rank-1 separate with FIR basis. Points above the black diagonal exhibit a higher score with our method than with a canonical GLM. As previously, the color represents the time to peak of the estimated HRF. From this plot we can see that voxels that have a low correlation score using a canonical GLM do not gain signi cant improvement by using a Rank-1 Separate FIR model instead. However, voxels that already exhibit a su ciently high correlation score using a canonical GLM (> 0.05) see a signi cant increase in performance when estimated using our method.

These results suggest as a strategy to limit the computational cost of learning the HRF on an encoding study to perform rst a standard GLM (or GLMS) on the full volume and then perform HRF estimation only on the best performing voxels.

The methods that we have considered for HRF estimation can be subdivided according to the design matrices they use (standard or separate) and the basis they use to generate the estimated HRF (3HRF and FIR). We now focus on the performance gains of each of these individual components. In the upper part of Figure 4.10 we consider the top-performing model, the Rank-1 GLMS, and compare the performance of two di erent basis sets: FIR with 20 elements in the Y-axis and the reference HRF plus its time and dispersion derivatives (3HRF) in the X-axis. The abundance of points above the diagonal demonstrates the superiority of the FIR basis on this dataset. The color trend in this plot suggests that the score improvement of the FIR basis with respect to the 3HRF basis becomes more pronounced as the timeto-peak of the estimated HRF deviates from the reference HRF (peak at 5s), which can be explained by observing that the 3HRF basis corresponds to a local model around the time-to-peak. In the bottom part of this gure we compare the di erent design matrices (standard or separate). Here we can see the voxel-wise encoding score for two Rank-1 models with FIR basis Voxel-wise encoding score for di erent models that perform HRF estimation ( rst dataset). As in gure 4.9, color codes for the time to peak of the estimated HRF at the given voxel. Top: two Rank-1 separate design models with di erent basis functions: FIR with 20 elements in the Y-axis and the reference HRF with its time and dispersion derivatives (3HRF) in the X-axis. The color trend in this plot suggests that the score improvement of the FIR basis with respect to the 3HRF becomes more pronounced as the time-topeak of the estimated HRF deviates from the reference HRF (peak at 5s). This can be explained by taking into account that the 3HRF basis is a local model of the HRF around the peak time of the canonical HRF. Bottom: voxel-wise encoding score for two Rank-1 models with FIR basis and di erent design matrices: separate design on the Y-axis and classical design on the X-axis. Although both models give similar results, a Wilcoxon signed-rank test on the leave-onesession-out cross-validation score (averaged across voxels) con rmed the superiority of the separate designs model in this dataset with pvalue < 10 -3 . and di erent design matrices: separate design on the Y-axis and classical design on the X-axis. Although both models give similar results, a Wilcoxon signed-rank test on the leave-one-session-out cross-validation score conrmed the superiority of the separate designs model in this dataset with p-value < 10 -3 .

In Figure 4.11 we can see the voxel-wise encoding score on a single acquisition slice. In the upper column, the score is plotted on each voxel and thresholded at a value of 0.045, which would correspond to a p-value < 0.05 for testing non-correlation assuming each signal is normally distributed, while in the bottom row the 0.055 contour (p-value < 0.001) for the same data is shown as a green line. Here it can be seen how the top performing voxels follow the gray matter. A possible hypothesis to explain the increase of the encoding score between the method R1-GLMS with FIR basis and the Figure 4.11: Voxel-wise encoding scores on a single acquisition slice for di erent estimation methods ( rst dataset). The metric is Pearson correlation. In the upper column, the voxel-wise score is thresholded at a value of 0.045 (p-value < 0.05), while in the bottom row the 0.055 contour (p-value < 0.001) for the same data is shown as a green line. Despite lacking proper segmentations of visual areas, the estimation methods produce results that highlight meaningful regions of interest around the calcarine ssure. This is particularly visible in the third column where our method R1-GLMS produces results with higher sensitivity than the standard GLM method.

In the bottom row it can be seen how the top performing voxels follow well the folding of the gray matter.

same method with 3HRF basis could be related either to the shape of the HRF deviating more from a canonical shape in lateral visual areas or to the higher signal-to-noise ratio often found in the visual cortex when compared to lateral visual areas.

Dataset 2: decoding of potential gain levels

The mean decoding score was computed over 50 random splittings of the data, with a test set of size 10%. The decoding regression model consisted of univariate feature selection (ANOVA) followed by a Ridge regression classi er as implemented in scikit-learn. Both parameters, number of voxels and amount of 2 regularization in Ridge regression, were chosen by crossvalidation.

The mean score for the 10 models considered can be seen in Figure 4.12. Similarly to how we assessed superiority of a given method in encoding, we will say that a given method outperforms another if the paired di erence of both scores (this time across folds) is signi cantly greater than zero. This is computed by performing a Wilcoxon signed rank test across voxels. For this reason we report p-values together with the mean score in Figure 4.12.

As was the case in encoding, Rank-1 constrained methods obtain the highest scores. In this case however, methods with 3HRF basis outperform methods using FIR basis. This can be explained by factors such as smaller sample size of each of the runs, smaller number of trials in the dataset and experimental design.

Discussion

We have compared di erent HRF modeling techniques and examined their generalization score on two di erent datasets: one in which the main task was an encoding task and one in which it was a decoding task. We compared 10 di erent methods that share a common formulation within the context of the General Linear Model. This includes models with canonical and separate designs, with and without HRF estimation constrained by a basis set, and with and without rank-1 constraint. We have focused .12: Averaged decoding score across subjects for the different method considered (higher is better) on the second dataset. The metric is Kendall tau. Methods that perform constrained HRF estimation signi cantly outperform methods that use a xed (reference) HRF. In particular, the best performing method is the R1-GLM with 3HRF basis, followed by the R1-GLMS with 3HRF basis. In underlined typography is the GLM with a xed HRF which is the method used by default in most software distributions. As in Fig- ure 4.8, a Wilcoxon signed-rank test is performed and the p-value reported between a given method and the next method in the ordered result list to assess whether the difference in score is signi cant. on voxel-independent models of the HRF, possibly constrained by a basis set, and have omitted for e ciency reasons other possible models such as Bayesian models [START_REF] Marrelec | Robust bayesian estimation of the hemodynamic response function in event-related BOLD fMRI using basic physiological information[END_REF], Ciuciu et al., 2003[START_REF] Makni | Joint detection-estimation of brain activity in functional MRI: a Multichannel Deconvolution solution[END_REF] and regularized methods [START_REF] Goutte | Modeling the haemodynamic response in fMRI using smooth FIR lters[END_REF][START_REF] Casanova | The impact of temporal regularization on estimates of the BOLD hemodynamic response function: a comparative analysis[END_REF].

Other models such as spatial models [START_REF] Michel | Understanding the visual cortex by using classi cation techniques[END_REF], and multi-subject methods [START_REF] Zhang | Nonparametric inference of the hemodynamic response using multi-subject fMRI data[END_REF][START_REF] Zhang | A semi-parametric model of the hemodynamic response for multi-subject fMRI data[END_REF] that adaptively learn the HRF across several subjects are outside the scope of this work. The latter models are more relevant in the case of standard group studies and second level analysis.

Our rst dataset was investigated using an encoding model and revealed that it is possible to boost the encoding score by appropriately modeling the HRF. We used two di erent metrics to assess the quality of our estimates. The rst metric is the fraction of correctly identi ed images by an encoding model. For this we computed the activation coe cients on both the training and validation dataset. We then learned a predictive model of the activation coe cients from the stimuli. This was used to identify a novel image from a set of 120 potential images from which the activation coe cients were previously computed. The bene ts range from 0.9% points to 8.2% points across R1-constrained methods and subjects. The best-performing model in this task is the R1-GLM with FIR basis. The second metric is the Pearson correlation. By considering the voxel-wise score on a full brain volume we observed that the increase in performance obtained by estimating the HRF was not homogeneous across voxels and more important for voxels that already exhibited a good score with a classical design (GLM) and a xed HRF. The results were obtained for both subjects within the dataset, but since the results were similar for both subjects, we only show the results for the rst subject. The best-performing method is the Rank-1 with separate designs (R1-GLMS) and FIR basis model, providing a signi cant improvement over the second best-performing model. We also found substantial variability of the shape in the estimated HRF within a single subject and a single task.

The second dataset is investigated using a decoding task and the results con rmed that constrained (rank-1) estimation of the HRF also increased the decoding score of a classi er. The metric here is Kendall tau. However, in this case the best performing basis was no longer FIR basis consisting of ten elements but the three elements 3HRF basis (HRF and derivatives) instead, which can be explained by factors such as di erences in acquisition parameters, signal-to-noise ratio or by the regions involved in the task. A higher performance increase was observed when considering the correlation score within the encoding model. This higher sensitivity to a correct (or incorrect) estimation of the HRF can be explained by the fact that the estimation of the HRF is used to generate the BOLD signal on the test set. The metric is the correlation between the generated signal and the BOLD signal. It is thus natural to expect that a correct estimation of the HRF has a higher impact on the results.

In the decoding setup, activation coe cients (beta-map) are computed but the evaluation metric is the accuracy at predicting the stimulus type. The validation metric used for decoding is less sensitive to the HRF estimation procedure than the correlation metric from the encoding study, although it allowed us to observe a statistically signi cant improvement.

Conclusion

We have presented a method for the joint estimation of HRF and activation coe cients within the GLM framework. Based on ideas from previous literature [Makni et al., 2008, Vincent et al., 2010] we assume the HRF to be equal across conditions but variable across voxels. Unlike previous work, we cast our model as an optimization problem and use a quasi-Newton method for its optimization. We also extend this approach to the setting of GLM with separate designs.

We quantify the improvement in terms of generalization score in both encoding and decoding settings. Our results show that the rank-1 constrained method (R1-GLM and R1-GLMS) outperforms competing methods in both encoding and decoding settings.
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in Chapter 2 the decoding problem in fMRI. In this setting it is often the case that the target variable consists of discretely ordered values. This occurs for example when target values consists of human generated ratings, such as values on a Likert scale, the symptoms of a physical disease or a rating scale for clinical pain measurement.

In this chapter we propose the usage of two metrics to assess the performance of a decoding model when the target consists of discretely ordered values: the absolute error and pairwise disagreement. These two loss functions emphasize di erent aspects of the problem: while the absolute error gives a measure of the closeness of a predicted label to the true label, the pairwise disagreement gives a measure of correct ordering of the predicted labels. The choice of either metric will depend on the particular application at hand. For example, in clinical applications it is often desirable to predict a label as close as possible to the true label, in which case the absolute error is the appropriate metric. If however, the purpose of the decoding study is to perform a statistical hypothesis test to claim that the area encodes some information about the stimuli, then the pairwise disagreement can be considered.

We present three models based on di erent convex surrogates of the absolute error: least absolute error, ordinal logistic regression and costsensitive multiclass classi cation. We also consider a model that minimizes a surrogate of the pairwise disagreement: the RankLogistic model. We examine the generalization performance of the presented models on both synthetic data and three fMRI decoding problems from two datasets. We conclude that the best performing models is the last absolute error and ordinal logistic when considering the absolute error as metric and the RankLogistic model when considering the pairwise disagreement as metric.

The contributions relative to the use of the pairwise disagreement loss function have been published in:

• F. Pedregosa, E. Cauvet, G. Varoquaux, C. Pallier, B. Thirion, and A. Gramfort, "Learning to rank from medical imaging data", in Proceedings of the 3rd International Workshop on Machine Learning in Medical Imaging, 2012.

Learning from ordinal labels

Let us motivate the problem of learning from ordinal labels by a decoding example. In the context of an fMRI acquisition, a subject is presented a set of words that represent real world objects: hammer, cow, sheep and whale. We are then interested to know whether it is possible to predict (i.e. decode) the implied real world size of the associated objects (i.e. the size of a goat rather than the size of the word "goat") based on the brain activation maps. How can we do this ? In order to frame this problem as a decoding problem, we must choose a metric to evaluate the quality of our prediction (i.e. a loss function). Furthermore, as we have seen in Section 3.2.2, many models can be seen as the minimization of a convex surrogate of a given loss function. Thus, the chosen metric will determine which are the appropriate models to choose.

We have seen in previous chapters how the 0-1 loss can be applied to situations in which the target values consists of several categories. In this case, however, the 0-1 loss might give an overly pessimistic estimate of the performance of a classi er since it treats all misclassi cation errors alike. Suppose that a classi er predicts always the correct size ± 1, that is, never predicts the correct label but always predicts one of the adjacent elements in terms of size. This classi er will have the worst performance possible in terms of the 0-1 error, although we might still consider that this classi er is able predict with acceptable accuracy the size of an object.

It thus seems reasonable to choose a loss function that takes into account the distance among the labels. In this Chapter we present two metrics that ful ll this request and are adapted to the problem of supervised learning with ordinal labels. These loss functions are the absolute error and the pairwise disagreement. The use of the of the pairwise disagreement loss in the context of brain imaging is an original contribution rst proposed in [Pedregosa et al., 2012].

We will describe in Section 5.4 three di erent surrogate loss functions of the absolute error and one surrogate of the pairwise disagreement. In section 5.5, we present the performance accuracy of these models in one synthetic dataset and three fMRI datasets. It is our intention for these results to provide guidelines on what methods are overall best suited in the context of decoding with ordered labels.

We have motivated the decoding problem with ordinal labels from a simple fMRI experiment in which the target variable is ordered according to the size of real world objects. However, the framework presented here can be applied to any situation in which the target variable consists of discrete measures with some embedded order. For example, this includes situations in which the target variable consists of the symptoms of a physical disease such as Alzheimer's [START_REF] Mueller | Ways toward an early diagnosis in alzheimer's disease: The alzheimer's disease neuroimaging initiative (adni)[END_REF], pain levels [Hartrick et al., 2003] or the syntactic complexity of a phrase [START_REF] Pallier | Cortical representation of the constituent structure of sentences[END_REF] to name a few.

Loss functions

A metric that arises naturally to evaluate the quality of an ordinal prediction the distance between the predicted label ˆ and the true label , which will promote classi ers that predict a label that is close to the correct label. This is known as the absolute error loss function, and is de ned as:

A ( , ˆ ) = | -ˆ |
This metric is very common when evaluating models with ordinal labels [START_REF] Cardoso | Measuring the Performance of Ordinal Classi cation[END_REF]. A related loss worth mentioning is the squared error, often used in the regression setting. Compared to the squared error, the absolute error provides the advantage of being more robust to outliers [START_REF] Bloom | Least absolute deviations: Theory, applications and algorithms[END_REF].

The second loss function that we will present takes a di erent approach to measure the closeness of an ordinal response that does not take into account the value of the labels but rather only its relative ordering. Unlike the absolute error loss, this loss function acts on pairs of elements. Given two elements 1 , 2 ∈ Y and the predicted values ˆ 1 , ˆ 2 ∈ R, this loss is de ned as [Schapire andSinger, 1998, Herbrich et al., 2000]:

P ( 1 , 2 , ˆ 1 , ˆ 1 ) = H (-( 1 -2 )( ˆ 1 -ˆ 2 ))
, where we recall that H is the Heaviside function, de ned as H (x ) = 1 if x ≥ 0 and 0 otherwise. That is, the loss P ( will be equal to one if ˆ 1 -ˆ 2 has not the same sign than 1 -2 and zero otherwise. Since this loss is based on pairs of samples, the empirical risk will be evaluated on all possible pairwise combinations of elements in the training set (excluding those with same label). Given the training pairs {(x 1 , 1 ), . . . , (x n , n )}, the evaluation metric is de ned as:

R P ( f ) = 1 m n i=1 n j=1 i j P ( i , j , f (x i ), f (x j )) ,
where m is the amount of pairwise combinations of samples with di erent labels. This expression can be further simpli ed if we consider the symmetry of the loss function. Since all pairs of labels appear twice (once for i > j and once for i < j ), we can restrict ourselves to the set of elements which verify i > j , in which case we can write the empirical risk as

R P ( f ) = 2 m n i=1 n j=1 i > j H ( f (x j ) -f (x i )) (5.1)

Ranking and ordinal regression

The di erent loss functions considered here lead to two di erent supervised learning problems. The problem in which we seek to predict an ordering as close as possible to the true ordering of a sequence of labels is traditionally known as ranking while the problem of predicting a label as close as possible to the correct label is known as ordinal regression.

The ordinal regression setting was rst studied by [McCullagh, 1980] and further developed in [START_REF] Frank | A Simple Approach to Ordinal Classi cation[END_REF], Rennie and Srebro, 2005, Chu and Keerthi, 2007, 2005[START_REF] Chu | Gaussian Processes for Ordinal Regression[END_REF] to name a few. The minimization of the absolute error can be seen as a special case of ordinal regression. In Chapter 5 we will study ordinal regression in a general setting that includes the minimization of other loss functions such as the squared loss.

Ranking models appear chronologically later than ordinal regression. The minimization of the pairwise disagreement was proposed in [START_REF] Cohen Robert | Learning to order things[END_REF]] although the rst attempt to minimize a convex surrogate of this loss is in [START_REF] Herbrich | Large margin rank boundaries for ordinal regression[END_REF] 1 . There has been great interest in 1 Although in that paper the authors refers to the proposed model (now known as RankSVM) as still as an regression models, later those same methods would be re-discovered as ranking models [Joachims, 2002].

theory of ranking models in recent years with the application of these models to the eld of information retrieval [Joachims, 2002[START_REF] Christopher | Learning to Rank with Nonsmooth Cost Functions[END_REF], Sculley, 2009]. Analog theoretical results to the ones developed in Chapter 5 have been studied for the case of pairwise disagreement in [START_REF] Duchi | On the Consistency of Ranking Algorithms[END_REF][START_REF] Calauzènes | On the ( Non-) existence of Convex , Calibrated Surrogate Losses for Ranking[END_REF] 

Models

The models that we present here minimize a convex surrogate of the absolute error or the pairwise disagreement loss function. We present three di erent surrogate loss functions for the absolute error (least absolute error, ordinal logistic regression and cost-sensitive multiclass classi cation) and one for the pairwise disagreement (RankLogistic).

Because of the high dimensionality of the decoding problem and the associated risk of over tting, the most popular choice for prediction functions in encoding and decoding models are linear decision functions [Cox and Savoy, 2003, LaConte et al., 2005, Song et al., 2011, Thirion et al., 2006, Naselaris et al., 2011], i.e., models in which the decision function is a linear mapping f from the sample space X onto R d . d is an integer that depends on the model: d = 1 in the case of least absolute error and RankLogistic, d = k -1 in the case of ordinal logistic regression and d = k in the case of multiclass support vector machines, where k is the number of classes. All models are estimated as a trade-o between a data-tting term (the surrogate loss function) and a squared 2 penalty that controls for over tting. The amount of penalty is chosen by nestted cross-validation.

The training set consists of n pairs {(x 1 , 1 ), . . . , (x n , n )}, where x i is a p-dimensional vector and i ∈ [k] = {1, 2, ld.

Least absolute error

The rst possibility that we will explore it is known as least absolute deviations [Bloom eld andSteiger, 1980, Narula and[START_REF] Subhash | The minimum sum of absolute errors regression: A state of the art survey[END_REF]. We consider the following surrogate loss function ψ A : Y × R → R:

ψ A ( , α ) = | -α | .
Note that this surrogate has the same expression as the absolute error A . The di erence strives in that the surrogates are continuous functions in their second arguments while the loss functions take values in the discrete set [k]. The prediction function for these surrogates is given by rounding to the closest integer in [k], i.e., pred(α

) = min i ∈[k ] |i -α |.
Although this prediction rule might seem somewhat ad-hoc for the moment, we will see in the next chapter (Section 6.3.2) that it is indeed the "optimal" prediction function for this surrogate (in some yet to be de ned notion of optimality).

The model parameters are estimated by nding the minimizer of a tradeo between a data delity term (the ψ A -risk) and the penalty term:

w * , b * ∈ arg min w,b 1 n n i=1 | i -b -x i , w | + λ w 2 ,
where w ∈ R p and b ∈ R is referred to as the bias or intercept term. This model can be seen as a particular instance of support vector regression with linear kernel and parameter ε in the ε-insensitive loss set to zero. This is a well studied model for which e cient implementations have been developed [START_REF] Ho | Large-scale linear support vector regression[END_REF]Lin, 2012, Fan et al., 2008]. In the experiments section we will use the implementation provided in the LIBLINEAR library [START_REF] Fan | Liblinear: A library for large linear classi cation[END_REF].

Ordinal logistic regression

The second approach that we consider is known as ordinal logistic regression [START_REF] Rennie | Loss Functions for Preference Levels : Regression with Discrete Ordered Labels[END_REF] and can be seen in the larger family of thresholdbased ordinal regression models [McCullagh, 1980, Rennie and Srebro, 2005, Chu and Keerthi, 2005, Lin and Li, 2006]. Let α ∈ R k-1 be the image of a decision function, that is, α = f (x ) for some x ∈ X and consider the following prediction function:

pred(α ) = 1 + k -1 i=1 H (-α i ) .
(5.2)

In this case, we can express the absolute error loss function in the following form:

A ( , ˆ ) = | -1 + k -1 i=1 H (-α i ) | = -1 - -1 i=1 H (-α i ) + k-1 i= H (-α i ) = -1 i=1 H (α i ) + k -1 i= H (-α i ) ,
where we have used the following property of the Heaviside function:

H (x ) = 1 -H (-x ).
This last formula makes it clear that the absolute error can be seen as an addition of zero-one loss functions 2 . If we replace the Heaviside function by 2 the zero-one loss can be de ned in terms of the Heaviside step function as 0-1

( , ˆ ) = H (-• ˆ ).
one of its convex surrogates such as the logistic loss, we obtain the following surrogate loss function:

ψ M ( , α ) = -1 i=1 φ (-α i ) + k -1 i= φ (α i ) , (5.3) 
where φ : R → R is the logistic loss, de ned as φ (t ) = log(1 + e -t ). Note that for k = 2, this coincides with the logistic regression model for binary 0-1 classi cation (Section 3.2.2).

When φ is the hinge loss, this approach has been proposed under the name of Support Vector Ordinal Regression (the implicit constraints variant) [Shashua andLevin, 2003, Chu andKeerthi, 2007]. For φ the exponential loss, this approach was proposed by [Lin and Li, 2006] as Ordinal Regression Boosting (ORBoost). [START_REF] Rennie | Loss Functions for Preference Levels : Regression with Discrete Ordered Labels[END_REF] formulated this model for an arbitrary surrogate loss function (as it is presented here) and considered a number of surrogates, including the hinge loss and logistic loss. We have chosen the logistic regression as a surrogate of the 0-1 loss for ease of implementation (the surrogate is a smooth function in this case, which allows us to use gradient-based methods) rather than the more popular Support Vector Ordinal Regression that arises when considering the hinge loss instead. However, due to the similarity between the hinge and logistic surrogates we expect both methods to yield similar results.

In this setting we consider α to be of the form α i = θ ix T w, where w ∈ R p and θ ∈ R k is a non-decreasing vector known as the vector of thresholds. Let us introduce the variable s i j = sign(ji + 1 2 ) for notational convenience. Then we can write the surrogate loss function from Eq. ( 5.3) as k -1 i=1 φ (s i α i ). The coe cients w ∈ R p and the vector of thresholds θ = (θ 1 , . . . , θ k -1 ) will be estimated as the minimizers of the regularized empirical ψ M -risk, de ned as

w * , θ * ∈ arg min w,θ 1 n n i=1 k-1 j=1 φ (s i j (θ j -x i w )) + λ w 2 (5.4)
Unlike the other models presented in this section, the optimization of this model has not been extensively studied in the literature nor does it have a freely available implementation 3 . We will thus brie y discuss the 3 The similar model Support Vector Ordinal Regression (the function φ is the hinge loss instead of the logistic loss) does have a freely available implementation. However, its optimization uses the dual form of the SVM while our optimization is based on the optimization of the primal formulation optimization strategy that was employed to learn this model.

For the problem sizes considered in this thesis, it is known that Newton and quasi-Newton methods yield excellent performance for 2 -regularized logistic regression [START_REF] Lin | Trust region newton method for logistic regression[END_REF][START_REF] Fan | Liblinear: A library for large linear classi cation[END_REF][START_REF] Pedregosa | Numerical optimizers for logistic regression[END_REF]. Given the similarities with ordinal regression we decided to use the quasi-Newton L-BFGS-B algorithm for this problem. This algorithm requires to compute the objective function and its gradient.

The gradient of the objective function from (5.4) with respect to w and its partial derivatives with respect to θ j can be computed as

∇ w = 1 n n i=1 x i k -1 j=1 σ (-s i j α i j ) + 2λ 1 w ∂ ∂θ j = 1 n n i=1
s i j (σ (s i α i j ) -1) .

( 5.5) where σ is the sigmoid function, i.e. σ (t ) = 1/(1 + exp(-t )).

Multiclass classification

Since we aim at predicting a nite number of labels with a speci c loss functions, it is also possible to use generic multiclass formulations such as the one proposed in [Lee et al., 2004] which can take into account generic losses.

As before, given ϕ the logistic loss function, this formulations considers the following surrogate

ψ L ( , α ) = k i=1 ( , i)ϕ(-α i ) (5.6) for α ∈ R k such that k i=1 α i = 0.
The prediction function in this case is given by pred(α ) = arg max i ∈[k ] α i . Note however that this method requires the estimation of k decision functions. For this reason, in practical settings threshold-based are often preferred as these only require the estimation of one decision function and k -1 thresholds.

In practice the matrix of coe cients W ∈ R k ×p is estimated as the minimizer of the following optimization problem

W * , b * ∈ arg min W,b n i=1 k j=1 |j -i |ϕ(b j -x i , W j ) + λ W F subject to the constraint W T 1 k = 0, b T 1 k = 0.
Implementation details for this model can be found in [START_REF] Hao | Variable selection for the multicategory svm via adaptive sup-norm regularization[END_REF][START_REF] Zhang | Bayesian multicategory support vector machines[END_REF][START_REF] Statnikov | A comprehensive evaluation of multicategory classi cation methods for microarray gene expression cancer diagnosis[END_REF] 

RankLogistic

This loss described in Eq. ( 5.1) function suggests as a natural choice for a surrogate loss is one of the form [START_REF] Herbrich | Large margin rank boundaries for ordinal regression[END_REF][START_REF] Freund | An e cient boosting algorithm for combining preferences[END_REF][START_REF] Dekel | Log-linear models for label ranking[END_REF] 

ψ P ( 1 , 2 , α 1 , α 2 ) = φ (( 1 -2 )( ˆ 1 -ˆ 2 )
). This yields the following expression for the empirical ψ P -risk:

Rψ P ( f ) = n i=1 n j=1 i > j φ ( f (x i ) -f (x j )) (5.7) 
where as before φ : R → R is a surrogate of the zero-one loss such as the hinge or logistic loss. Here we will consider the case in which φ is the logistic loss. For the case in which φ is the hinge loss this model is sometimes referred to as RankSVM [START_REF] Herbrich | Large margin rank boundaries for ordinal regression[END_REF], Joachims, 2002].

In case the prediction function f is given by a linear function, this expression can be further simpli ed. In this case, we have that f

(x i ) -f (x j ) = f (x i -x j ).
That is, given two samples (x i , x j ) and their associated labels

( i , j ) ( i j )
we form a new sample x i -x j with label sign( ij ). Due to the linearity of f , predicting the correct ordering of these two images, is equivalent to predicting the sign of f [START_REF] Herbrich | Large margin rank boundaries for ordinal regression[END_REF]. We can now write the model as the solution to the optimization problem

(x i ) -f (x j ) = f (x i -x j )
w * , b * ∈ arg min w,b 2 m n i=1 n j=1 i > j φ ((x i -x j ) T w + b)
This optimization problem can be viewed as a binary class classi cation problem on all pairwise combinations of (x ix j , sign( ij )) and thus can be solved using standard supervised classi cation algorithms. For consistency with previous sections, we will use the logistic loss instead and denote this model RankLogistic. One of the possible drawbacks of this method with respect previous methods is that it requires to consider all possible pairs of images. This scales quadratically with the number of training samples, and the problem soon becomes intractable as the number of samples increases. However, specialized algorithms exist with better asymptotic properties [START_REF] Joachims | Training linear SVMs in linear time[END_REF], Sculley, 2009]. For our study, we used the Support Vector Machine algorithms implemented in the LIBLINEAR library [START_REF] Fan | Liblinear: A library for large linear classi cation[END_REF]. Relationship with Kendall's τ . Some authors (e.g. [Joachims, 2002[START_REF] Wei Chen | A uni ed view on loss functions in learning to rank[END_REF][START_REF] Wauthier | E cient ranking from pairwise comparisons[END_REF]) present the RankSVM model as the model that maximizes a surrogate of the Kendall τ correlation coe cient. We will show that maximizing Kedall's τ and minimizing the pairwise disagreement yield equivalent optimization problems.

Kendall's τ can be de ned as

τ = P -Q P + Q
where P is the number of concordant pairs, that is, the number of elements i > j such that α i ≥ α j and Q is the number of of discordant pairs, that is, the number of elements i > j such that α i < α j . An equivalent formulation of Kendall's τ is [Joachims, 2002] 

τ = 1 - 2Q n 2
From here it is clear that maximizing the Kendall τ coe cient is equivalent to minimizing the number of discordant pairs. Since the pairwise disagreement counts the number of discordant pairs, both approaches are equivalent.

Experiments

Ordinal regression and dimensionality

The models that we have presented vary greatly in terms of parameters to estimate. Given that k is the number of classes and p is the dimensionality (number of features) of the dataset, the least absolute error and RankLogistic models estimate p + 1 parameters, the ordinal logistic model estimates p + k parameters and the multiclass classi cation model estimates k × (p + 1) parameters. While methods with more parameters can express a richer set of decision functions, the increase in the number of parameters to estimate also induces a higher variance of the estimates which can result in poor generalization performance in settings such as decoding in which the number of samples is very limited and the dimensionality of the dataset is high.

To illustrate this problem we computed the generalization error of the di erent methods as we increase the dimensionality of a synthetic dataset. The setting is the following: the data is generated by applying a random linear regression model with 10% of informative nonzero regressors and Gaussian centered noise such that the signal-to-noise ratio is 10:1. The target variable is the discretized in 5 bins such that the number of samples is equal for each class. All models have a squared 2 penalization term that has been set chosen among a grid of 10 log-spaced values between 10 -3 and 10 6 by nested 5-fold cross-validation. The generalization score is computed by 10-fold cross-validation on an equally spaced grid of features between 100 and 600 features.

Figure 5.3: Generalization error as the number of dimensions increase on a synthetic dataset (lower is better). In the low sample regime, ordinal logistic regression outperforms the other methods, but as the number of dimension increases the gap between the methods vanishes. The poor performance of multiclass classi cation even in the low sample regime can be explained by the model we used to generate the data, which corresponds to the assumptions of ordinal logistic regression.

The generalization errors (lower is better) are displayed in Figure 5.3. It can be observed that in the regime with low number of features, ordinal logistic regression signi cantly outperforms the other methods, but as the number of dimension increases the gap between the methods vanishes. The data was generated as a discretized linear regression model, which corresponds very closely to the models assumed by the ordinal logistic model 4 .

4 in which the prediction function is of the form i H (θ ix T w) This might give an advantage to this model and explain the poor behavior of multiclass classi cation even in the regime with low number of features.

Results on two fMRI datasets

To assess the performance of the di erent methods presented on the decoding problem, we investigate two fMRI datasets.

The rst dataset that we will considered served as motivation for this chapter. It was presented in [Borghesani et al., 2014] and has already been mentioned in Section 3.2.5. The goal of this experiment is to predict different aspects of the words that subjects were seeing while undergoing an fMRI acquisition. We can consider two di erent decoding problems based this dataset. As a rst step, we investigate the e ect of the low level perceptual features characterizing the stimuli: the number of letters composing each word. We will call this decoding problem length of word. A second decoding problem that can be investigated on this dataset is to test the relationship between activation images and the real size of items. In this case, the di erent stimuli are ordered according to their relative size, i.e. hammer is smaller than cow which is smaller than a whale, etc., so the target variable is of ordinal nature. We will call this decoding problem size of object. In both cases we extracted the activation coe cients (beta-maps) using the R1-GLM model with 3hrf basis described in Chapter 4. Since we are interested in predicting the target from low level visual features we restrict the decoding problem on an anatomically de ned ROI for the primary visual cortex (V1) using the SPM toolbox PickAtlas (13940 voxels). 6 sessions were available for each subject. We trained the model on 5 sessions and evaluated the model on the left out session. We report the average generalization score across subjects. Manually labeled ROIs in the language complexity dataset [START_REF] Cauvet | Traitement des Structures Syntaxiques dans le langage et dans la musique[END_REF].

The second dataset, described in [START_REF] Cauvet | Traitement des Structures Syntaxiques dans le langage et dans la musique[END_REF], consists of 34 healthy volunteers scanned while listening to 16 words sentences with ve di erent levels of complexity. These were 1 word constituent phrases (the simplest), 2 words, 4 words, 8 words and 16 words respectively, corresponding to 5 levels of complexity which was used as class label in our experiments. To clarify, a sentence with 16 words using 2 words constituents is formed by a series of 8 pairs of words. Words in each pair have a common meaning but there is meaning between each pair. A sentence has therefore the highest complexity when all the 16 words form a meaningful sentence. This dataset contains four manually labeled regions of interest that can be seen in Figure 5.4: Anterior Superior Temporal Sulcus, Temporal Pole, Inferior Frontal Gyrus Orbitalis and Inferior Frontal Gyrus triangularis. Further analysis will be limited to these regions of interest. In this dataset each subject only has two sessions, which is insu cient to compute the leave-one session out score. Because of this we instead train the model on 33 subjects and report the cross-validation score on a left-out subject.

The generalization errors (lower is better) for these three decoding problems (spanning two datasets) are displayed in Figure 5.5. We considered two di erent metrics, represented as rows in the gure: mean absolute error and mean pairwise disagreement. We ordered the models by performance and performed a Wilcoxon signed-rank test between each method and the next best performing method to assess whether the di erence between both methods is statistically signi cant. This test is performed by considering the sequence of cross-validation scores obtained for each model. The p-value associated with this statistical test is denoted by one or two asterisks, with the convention that * < 0.05, * * < 10 -3 .

When considering the mean absolute error, ordinal logistic regression and least absolute error are the best performing method. The di erence between both methods is not signi cant in any of the three experiments. Multiclass classi cation is the worst performing method due to the high dimensionality of the problem and the high number of parameters to estimate (p × (k -1) versus p + k -1 for ordinal logistic).

When considering the pairwise disagreement error, the best performing method is the RankLogistic model. RankLogistic is also the only model that minimizes a surrogate of the evaluation metric.

Discussion

From the experiments we have examined the relative performance of several classi ers and concluded that ordinal logistic and least absolute error are the best performing methods when evaluated using mean absolute error and RankLogistic is best model when evaluated using mean pairwise Average Correlation Score, subject 1

Figure 5.5: Generalization errors (lower is better) for three fMRI decoding problems. Two di erent metrics are used corresponding to the rows in the gure: mean absolute error and mean pairwise disagreement. The * symbol represents the p-value associated with a Wilcoxon signed-rank test. This test is used to determine whether a given method outperforms significantly the next best-performing method.

disagreement. The superiority of RankLogistic highlights the importance of choosing a model that minimizes a surrogate of the evaluation metric.

A question that arises in practice is: when should the absolute error metric be used and when should the pairwise disagreement metric be used?. The use of one or the other will depend on the particular application in mind. For example, for clinical applications it is often necessary to predict the exact label. If the target variable consists of the di erent degrees of Alzheimer's disease it is natural to consider an evaluation metric that re ects how close to the true label the prediction is. In this case we would favor the mean absolute error. If however, we are only interested in performing a statistical hypothesis test to claim that the area encodes some information about the stimuli, then the pairwise disagreement can be considered.

In this study we have considered the absolute error, but we could have as well considered the squared error loss instead. The linear least squares model, which minimizes a surrogate of this loss, has advantageous computational properties when compared to its absolute error counterpart, the least absolute deviation model: strong convexity, smoothness and analyticity of solutions. However, the use of absolute error resulted in a higher signi cance when performing hypothesis testing, which is often the end goal of a decoding study. For example, when performing the omnibus test on the "lenght of word" decoding problem, we could reject the null hypothesis that the explained variance is not signi cantly greater than the unexplained variance with a p-value < 0.001 when considering the mean absolute error metric and the least absolute error. The p-value when considering the mean squared error metric with a linear least squares model (both models have the same number of parameters) was only < 0.005. Similar e ects were observed on the other decoding problems.

Conclusion

In this chapter, we have proposed the usage of two evaluation metrics in the context of brain decoding when the target variable consists of ordered values: the absolute error loss and the pairwise disagreement loss function. We have presented models that optimize a convex surrogate of these loss functions and discussed estimation strategies for these models based on convex optimization.

We examined the performance of these models on both synthetic and two real world fMRI datasets and identi ed the best methods for each evaluation metric. Our results show that when considering the absolute error as evaluation metric, the least absolute error and the logistic ordinal model are the best performing methods while when considering the mean pairwise disagreement the RankLogistic was the best performing methods. For neuroimaging studies, this contribution outlines the best strategies to choose when faced with a decoding problem in which the target variable has a meaningful order.

Fisher Consistency of Ordinal Regression Methods

Ordinal regression is the supervised learning problem of learning a rule to predict labels from an ordinal scale. Ordinal regression models enjoy a wide applicability and some ordinal regression models have already been used in Chapter 4 to model the decoding problem when the target variable consists of ordered values.

Many of the ordinal regression models that have been proposed in the literature can be viewed as methods that minimize a convex surrogate of the zero-one, absolute (as the methods presented in Chapter 4), or squared errors. In this chapter we investigate some theoretical properties of ordinal regression methods. The property that we will investigate is known as Fisher consistency and relates the minimization of a given loss to the minimization of its surrogate.

We provide a theoretical analysis of the Fisher consistency properties of a rich family of surrogate loss functions, including proportional odds and support vector ordinal regression. For all the surrogates considered, we either prove consistency or provide su cient conditions under which these approaches are consistent. Finally, we illustrate our ndings on real-world datasets.

The contributions developed in this chapter are available in the submitted paper • F. Pedregosa-Izquierdo, F. Bach, and A. Gramfort, "On the Consistency of Ordinal Regression Methods".

Introduction

In ordinal regression the goal is to learn a rule to predict labels from an ordinal scale, i.e., labels from a discrete but ordered set. This arises often when the target variable consists of human generated ratings. Besides the examples of ordinal labels in the context fMRI-based brain decoding presented in Chapter 4, examples of ordinal scales include ("do-not-bother" ≺ "only-ifyou-must" ≺ "good" ≺ "very-good" ≺ "run-to-see") in movie ratings [START_REF] Crammer | Pranking with ranking[END_REF], ("absent" ≺ "mild" ≺ "severe") for the symptoms of a physical disease [START_REF] Armstrong | Ordinal regression models for epidemiologic data[END_REF]] and the NRS-11 numeric rating scale for clinical pain measurement [Hartrick et al., 2003]. Ordinal regression models have been successfully applied to elds as diverse as econometrics [START_REF] William | Econometric analysis[END_REF], epidemiology [START_REF] Cande | Regression models for ordinal responses: a review of methods and applications[END_REF], fMRIbased brain decoding [START_REF] Orla | Multivariate decoding of brain images using ordinal regression[END_REF] and collaborative ltering [START_REF] Rennie | Loss Functions for Preference Levels : Regression with Discrete Ordered Labels[END_REF].

In this chapter we turn to study some theoretical properties of these methods. The aim is that a theoretical approach allows a better understanding the methods at hand. For example, Chu and Keerthi [2005] proposed two di erent models for the task of ordinal regression: SVOR with explicit constraints and SVOR with implicit constraints. In that work, the second approach obtained better generalization error in terms of the absolute error loss function. Similar results were obtained by [Lin and Li, 2006] replacing the hinge loss by an exponential loss. Yet again, [START_REF] Rennie | Loss Functions for Preference Levels : Regression with Discrete Ordered Labels[END_REF] arrived to similar conclusions by considering the logistic loss instead. One of the motivations behind this chapter is to answer the question: is there a theoretical reason that can explain this behavior? By the end of the chapter we will give arguments to answer this and other relation questions.

Before introducing the general formulation of ordinal regression, we brie y recall the supervised learning setting described in Section 3.2.1. Let (X, A) be a measurable space. Let (X , Y ) be two random variables with joint probability distribution P, where X takes its values in X and Y is a random label taking values in a set of ordered categories that we will denote Y = {1, 2, . . . , k}. In the ordinal regression problem, we are given a set of n observations {(X 1 , Y 1 ), . . . , (X n , Y n )} drawn i.i.d. from X × Y and a loss function : Y × Y → [0, ∞). The goal is to learn from the training examples a measurable mapping called a classi er h : X → Y so that the risk given below is as small as possible:

R (h) = E X ×Y ( (Y , h(X ))) .
(6.1)

The setting above looks similar to that of a multiclass classi cation problem. However, a loss function used for multiclass classi cation such as the 0-1 loss is not sensitive to the distance among target values. On the other hand, in the ordinal regression setting, because of the order between labels, the loss function becomes lower as the distance among classes decreases. This has been formalized as the V-shape property [Li and Lin, 2007]. We will say that a loss function is V-shaped if its forward di erence, ∆ (i, j) = (i, j + 1) -(i, j), veri es ∆ (i, j) ≤ 0 for j ≤ i and ∆ (i, j) ≥ 0 for j > i.

The absolute error loss function ( A ( , k ) = | -k |) is an example of V-shaped loss function, although this property includes other loss functions, such as the squared error, S ( , k ) = ( -k ) 2 and the 0 -1 loss.

Figure 6.1: The absolute error, dened as (i, j) = |i -j |, is a loss function that veri es the V-shape property. In the gure, a plot of the absolute error loss (i, j) = |i -j | with j = 3.

Attempting to directly minimize Eq. (6.1) is not feasible in practice for two reasons. First, the probability distribution P is unknown and the risk must be minimized approximately based on the observations. Second, due to the non-convexity and discontinuity of , the risk is di cult to optimize and can lead to an NP-hard problem [Feldman et al., 2012[START_REF] Ben-David | On the di culty of approximately maximizing agreements[END_REF] (note that binary classi cation can be seen as a particular case of ordinal regression). It is therefore common to approximate by a function ψ : Y × R d → R, called a surrogate loss function, which has better computational properties. Here d is an integer that depends on the surrogate. For the methods that we consider d will be equal to 1, k -1 or k. The goal becomes to nd the decision function f that minimizes instead the ψ -risk, de ned as

R ψ n ( f ) = E X ×Y (ψ (Y , f (X ))) . (6.2)
Fisher consistency is a desirable property for surrogate loss functions [START_REF] Lin | A note on margin-based loss functions in classi cation[END_REF]. It implies that in the population setting, i.e., if the probability distribution P were available, then optimization of the ψ -risk would yield a function (not necessarily unique) with smallest possible risk, known as Bayes predictor and denoted by h * . This implies that within the population setting, the minimization of the ψ -risk and the minimization of the risk both yield solutions with same risk. From a computational point of view, this implies that the minimization of the ψ -risk, which is usually a convex optimization problem and hence easier to solve than the minimization of the -risk, does not penalize the quality of the obtained solution.

The chapter is organized as follows. In Section 6.2 we present the ordinal regression models that we will consider for study. These can be broadly separated into regression-based and threshold-based. Section 6.3 is divided into several parts. In the rst part, we extend results from Ramaswamy and Agarwal [2012] and prove consistency of regression-based surrogates. Because of its practical interest, the rest of this section is devoted to investigate the consistency of threshold-based surrogates. Here we present our main results, which gives su cient conditions under which these surrogates are consistent. We nish with experiments and conclusions.

Related work

Fisher consistency of binary and multiclass classi cation for the zero-one loss has been studied for a variety of surrogate loss functions (see [START_REF] Peter | Convexity, classi cation, and risk bounds[END_REF], [START_REF] Tewari | On the Consistency of Multiclass Classi cation Methods[END_REF] and references therein). Ramaswamy and Agarwal [2012] investigated the more general setting of multiclass classi cation with an arbitrary loss function, a setting that includes ordinal regression. The authors proved Fisher consistency of a surrogate loss function of the absolute error for the case of k = 3. However, this work did not prove consistency of this surrogate for k > 3, nor did it prove consistency for any squared error surrogate or for any of the threshold-based surrogates that represent the majority of traditional approaches for ordinal regression.

A related, yet di erent, notion of consistency is asymptotic consistency. A surrogate loss is said to be asymptotically consistent if the minimization of the ψ -risk converges to the optimal risk as the number of samples tends to in nity. It has also been studied in the setting of supervised learning [Stone, 1977[START_REF] Steinwart | Support Vector Machines are Universally Consistent[END_REF]. This chapter focuses solely on Fisher consistency, and for simplicity we will now use the term consistency to denote Fisher consistency.

Notation. As in the previous chapter we will denote the sequence of numbers from one to k as [k] = {1, 2, . . . , k}. Throughout this chapter we will use letter k to denote the number of classes in the target space.

Ordinal regression models

Di erent methods have been proposed to learn an ordinal regression model. The regression-based approach treats the labels as real values. It uses a standard regression algorithm to learn a real-valued function, and then predicts by rounding to the closest label (see, e.g., [START_REF] Kramer | Prediction of ordinal classes using regression trees[END_REF] for a discussion of this method using regression trees). In this setting we will examine consistency of two di erent surrogate loss functions, the absolute error (that we will denote ψ A ) and the squared error (denoted ψ S ), which are convex surrogates of A and S , respectively. Given α ∈ R, ∈ [k], these are de ned as

ψ A ( , α ) = | -α |, ψ S ( , α ) = ( -α ) 2 .
(6.3)

Note that the loss functions A and S have the same expression as their surrogates, however the di erence strives in that the surrogates are continuous functions in their second arguments while the loss functions take values in the discrete set [k]. The prediction function for these surrogates is given by rounding to the closest integer in [k], i.e., pred(α ) = min i ∈[k ] |i -α |. For half-integers, i.e., for number of the form integer + 1 2 , the rule is to round to the left, that is, pred(1.5) = 1, pred(2.5) = 2, etc.

While these approaches may lead to optimal predictors when no constraint is placed on the regressor function space as we will see in Section 6.3.2, in practice only simple function spaces are explored such as linear or polynomial functions. In these situations, the regression-based approach might lack exibility. The threshold-based approaches [McCullagh, 1980, Rennie and Srebro, 2005, Chu and Keerthi, 2005, Lin and Li, 2006] provides greater exibility by seeking for both a mapping f : X → R and a non-decreasing vector θ ∈ R k -1 , often referred to as thresholds, that map the class labels into ordered real values. Figure 6.2: In the ordinal logistic model, the thresholds partition the real line into k segments and the prediction is given by the segment into which the decision function lies (assuming the segments are ordered by their relative order within the real line). Here, example for a 4-class problem. The prediction f (X ) for a given sample is denoted by a colored circle and θ 1 , θ 2 , θ 3 are the estimated thresholds for that sample. Prediction in this example would be 1, 2, 4 respectively.

The thresholds α partition the real line into k segments, and the prediction is given by the segment into which the prediction f (x ) lies in (Fig 6 .2). If we introduce the auxiliary variable α i = θ i -f (x ), an equivalent formulation of this prediction function is (6.4) where we recall that H is the Heaviside function, de ned as H (x ) = 1 if x ≥ 0 and 0 otherwise. In the context of threshold-based functions we will consider two different families of surrogate loss functions. The rst family of surrogate loss function that we will consider is the cumulative link surrogates of Mc-Cullagh [1980]. In such models the posterior probability is modeled as

pred(α ) = 1 + k -1 i=1 H (-α i ) ,
P (Y ≤ i |X = x ) = σ ( i (x ))
, where σ is an appropriate link function. We will prove consistency for the case where σ is the sigmoid function, i.e., σ (t ) = 1/(1 + exp(-t )). In this case it is known as the proportional odds model or cumulative logit model. For x ∈ X, ∈ [k] and α i = i (x ), the proportional odds surrogate (denoted ψ C ) is de ned as

ψ C ( , α ) =              -log(σ (α 1 )) if = 1 -log(σ (α ) -σ (α -1 )) if 1 < < k -log(1 -σ (α k -1 )) if = k.
(6.5)

The second family of surrogate loss functions that we will consider are the margin-based surrogate loss functions of which the ordinal logistic model introduced in Chapter 4 is a particular example. For appropriate real-valued functions ϕ : R → R such as the hinge loss or exponential loss, this surrogate separate target values by the largest margins centered around the thresholds [Lin and Li, 2006]. Given x ∈ X, ∈ [k] and α ∈ R k -1 , the margin-based surrogate (denoted ψ M ) is given by

ψ M ( , α ) = -1 i=1 ∆ ( , i)ϕ(α i ) - k -1 i= ∆ ( , i)ϕ(-α i ) .
We recall that ∆ ( , i) = ( , i + 1) -( , i). Note that the V-shape property implies ∆ ( , i) ≥ 0 for the elements in the rst term and ∆ ( , i) ≤ 0 for elements in the second term, thus this surrogate is convex in its second argument if ϕ is a convex function.

This formulation parametrizes several popular approaches to ordinal regression. For example, let ϕ be the hinge loss and the zero-one loss, then ψ T coincides with the Support Vector Ordinal Regression ("explicit constraints" variant) of [Shashua andLevin, 2003, Chu andKeerthi, 2007]. If instead the mean absolute loss is considered, this approach coincides with the "implicit constraints" formulation of the same reference. For other values of ϕ and this loss includes the approaches proposed in [Shashua and Levin, 2003, Chu and Keerthi, 2005, Rennie and Srebro, 2005, Lin and Li, 2006]. In section 6.3.5 we will prove consistency results for arbitrary Vshaped loss function.

Since we aim at predicting a nite number of labels with a speci c loss functions, it is also possible to use generic multiclass formulations such as the one proposed in [Lee et al., 2004] which can take into account generic losses. Given ϕ a real-valued function, this formulations considers the following surrogate

ψ L ( , α ) = k i=1 ( , i)ϕ(-α i ) (6.6) for α ∈ R k such that k i=1 α i = 0.
The prediction function in this case is given by pred(α ) = arg max i ∈[k ] α i . Note however that this method requires the estimation of k -1 decision functions. For this reason, in practical settings threshold-based are often preferred as these only require the estimation of one decision function and k -1 thresholds.

Consistency results of this surrogate was proven by Zhang [2004]. We will compare their results to our ndings of consistency for threshold-based surrogates in Section 6.3.6. Table 6.1 contains a list of the aforementioned surrogate loss functions, the (non-surrogate) loss function they target and their prediction function.

Loss

Surrogate Prediction 

Absolute error | -α | min i ∈[k ] |i -α | Squared error ( -α ) 2 min i ∈[k ] |i -α | Absolute error ψ C ( , α ) 1 + k -1 i=1 H (-α i ) Any V-shaped ψ M ( , α ) 1 + k -1 i=1 H (-α i ) Any ψ L ( , α ) arg max i ∈[k ] α i

Consistency of Surrogate Loss Functions

We will now give a precise de nition for the (Fisher) consistency of a surrogate loss function. This notion originates from a classical parameter estimation setting. Suppose that an estimator T of some parameter θ is de ned as a functional of the empirical distribution F n , T (F n ). The estimator is said to be Fisher consistent if its population analog, T (F ), coincides with the parameter θ . Adapting this notion to the context of risk minimization (in which the optimal risk is the parameter to estimate) yields the following de nition, adapted from [START_REF] Lin | A note on margin-based loss functions in classi cation[END_REF] to an arbitrary loss .

De nition 1. (Consistency) Given a surrogate loss function ψ : Y × R d → R, a function space F and prediction rule pred : R d → [k], we will say that the pair (ψ , pred) is consistent with respect to the loss if for every probability distribution over X × Y it is veri ed that every minimizer of the ψ -risk reaches Bayes optimal risk, that is,

f * ∈ arg min f ∈ F R ψ n ( f ) =⇒ R (pred • f * ) = R (h * ) .
By an abuse of notation we will refer to the consistency of a surrogate function ψ to designate the consistency of the pair (ψ , pred).

When the ψ -risk minimization is performed over all measurable functions, it is veri ed that

inf f R ψ n ( f ) = inf f E X ×Y (ψ (Y , f (X ))) = E X inf f E Y (ψ (Y , f (X )))
.

(6.7)

Hence in this case in order to compute the decision function with optimal risk it is su cient to compute the decision function with minimal expected value (over Y) for every x ∈ X. Note that if the minimization is not performed over all measurable functions this identity need not to be veri ed.

While most studies in consistency simply assume that minimization is performed over all measurable functions, we will see that in order to study ordinal regression models in a more realistic setting this assumption is not always veri ed.

Bayes predictor

In order to prove consistency of a surrogate loss we will nd useful to have an explicit form for Bayes predictor. For example, in the case of binary classi cation with the zero-one loss, Bayes predictor is known and is given by sign(P ( = 1|X =x ) -1/2). In this section we will derive similar results for arbitrary V-shaped loss functions. We rst introduce the following notation. Let η i (x ) = P (Y = i |X =x ) denote the conditional probability at X =x. For 1 ≤ i < k we also de ne the functions u i , i : X → R as

u i (x ) = i j=1 η j (x )∆ (j, i) i (x ) = - k j=i+1 η j (x )∆ (j, i) . (6.8)
If is V-shape, then ∆ (j, i) is positive for j ≥ i and (u 1 (x ), u 2 (x ), . . . , u k (x )) is a non-decreasing positive sequence. Similarly, ∆ (j, i) ≤ 0 for i < j and

( 1 (x ), 2 (x ), . . . , k (x )) is a non-increasing positive sequence.

We now derive a formula for Bayes predictor of an arbitrary V-shaped loss function.

Theorem 1 (Bayes predictor for an ordinal regression loss). Let (i, j) be a V-shaped loss function. Then Bayes predictor is given by

h * (x ) = 1 + k-1 i=1 H ( i (x ) -u i (x )) .
(6.9)

Proof. Let x ∈ X and r = h * (x ). By the V-shape property we have that

( 1 (x ) -u 1 (x ), 2 (x ) -u 2 (x ), . . . , k (x ) -u k (x )) is a non-increasing sequence of i. Hence, 1 + k -1 i=1 H ( i (x ) -u i (x )) = r implies that ( i -u i ) ≥ 0 for 1 ≤ i < r and ( i -u i ) < 0 for i ≥ r . We will rst prove E Y ( (Y , r )) -E Y ( (Y , s)) ≤ 0 for any s ∈ [k]. Suppose s > r , then we have E Y ( (Y , r )) -E Y ( (Y , s)) = s-1 i=r E Y ( (Y , i) -(Y , i + 1)) = s-1 i=r - k j=1 η j (x )∆ (j, i) = s-1 i=r ( i (x ) -u i (x )) ≤ 0 Similarly, for s < r E Y ( (Y , r )) -E Y ( (Y , s)) = r -1 i=s E Y ( (Y , i + 1)) -(Y , i) = s-1 i=s k j=1 η j (x )∆ (j, i) = - r -1 i=s ( i (x ) -u i (x )) < 0
We have proven that for any classi er h

E Y ( (Y , h * (x ))|X =x ) -E Y ( (Y , h(x ))|X =x ) ≤ 0 Integrating both sides with respect to X yields R (h * ) ≤ R (h) , that is, h * is Bayes predictor.
An immediate consequence of this theorem is that Bayes predictor for the mean absolute error and the mean squared error admit the following simple form: Corollary 1. . Bayes predictor for the absolute error loss is given by

h * (x ) = min r ∈[k ] {r : r i=1 η i (x ) > 1 2 } . (6.10) Proof. By the V-shape property ( i (x ) -u i (x )) is a non-increasing sequence of i. Hence if h * (x ) = 1 + k -1 i=1 H ( i (x ) -u i (x ))
= r then it must be veri ed that i (x ) -u i (x ) < 0 for i ≥ r and i -u i ≥ 0 for i < r . Because of this an alternative formulation of Bayes predictor (Eq. 6.9) is h

* (x ) = min r ∈[k ] {r : u r (x ) > r (x )}.
For the absolute error loss, ∆ (i, j) = 1 ∀i, j. Thus, i (x ) = (1 -u i (x ) and from this u r (x ) > r (x ) ⇐⇒ u r > 1 2 . Hence we can write h

* (x ) = min r ∈[k ] {r : u i (x ) > 1 2 } = min r ∈[k ] {r : r i=1 η i (x ) > 1 2 }.
Corollary 2. . Bayes predictor for the squared error loss is given by

h * (x ) = min r ∈[k ] {r : k i=1 iη i (x ) > r - 1 2 } . (6.11)
Proof. For the squared error loss, ∆ (i, j) = 1 -2(ij) and thus, r (x ) -u r

(x ) = -k j=1 η j (x )(1 -2(r -j)) = -1 + 2r -2 k j=1 jη j (x ). Hence u r (x ) > r (x ) ⇐⇒ k j=1 jη j (x ) > r -1 2 .
Using the alternate formulation of Bayes predictor given in Corollary 1 we can then write h * (x ) = min r ∈[k ] {r : η j (x ) > r -1 2 }.

0-1 Error

(1, 0, 0) (0, 0, 1) (0, 1, 0) (.5, 0, .5) (.5, .5, 0) (0, .5, .5)

h * (x) = 1 h * (x) = 2 h * (x) = 3 0-1 Error

Absolute Error

(1, 0, 0) (0, 0, 1) (0, 1, 0) (.5, 0, .5) (.5, .5, 0) (0, .5, .5)

h * (x) = 1 h * (x) = 2 h * (x) = 3
Absolute Error

Squared Error

(1, 0, 0) (0, 0, 1) (0, 1, 0) (.75, 0, .25) (.25, 0, .75) (.5, .5, 0) (0, .5, .5)

h * (x) = 1 h * (x) = 2 h * (x) = 3
Squared Error Figure 6.3: Bayes predictor on the probability simplex. Bayes predictor is a function of the conditional probability η i (x ) = P ( = i |X = x ). The vector (η 1 , . . . , η k ) belongs to the probability simplex of R n , which is contained within an hyperplane of dimension k -1. In the gure, probability simplex in R 3 is colored according to the output of Bayes predictor.

Bayes predictor predicts a label from the conditional probability (η 1 (x ), η 2 (x ), . . . , η k (x )) and as such induces a partitioning of the probability simplex k regions. The probability simplex is the set {x ∈ R k : n i=1 x i = 1, x i ≥ 0} and is contained within an hyperplane of dimension n -1. In Figure 6.3, the probability simplex in R 3 is colored according to the output of Bayes predictor. These sets have been previously studied for the 0-1 loss in [START_REF] O'brien | Cost-sensitive multi-class classi cation from probability estimates[END_REF] and for the absolute error in [Ramaswamy and Agarwal, 2012].

Consistency of regression-based models

We will now examine the consistency of regression-based models. Consistency of the absolute error surrogate was proven by [Ramaswamy and Agarwal, 2012] for the case of 3 classes. Here we give an alternate simple proof that extends beyond k > 3.

Lemma 1. The function with minimal ψ

A -risk is f * (x ) = median(Y |X =x ),
where median represents the median of a random variable (i.e. the value α such that P

( ≤ α |X = x ) ≥ 1/2 and P ( ≥ α |X = x ) ≤ 1/2). The function with minimal ψ S -risk is f * (x ) = E Y (Y |X =x ).
Proof. By the application of optimality properties of the median and mean, the median and the mean are the scalar values that minimize E

Y (ψ A (Y , α )|X = x ) = E Y (|Y -α ||X = x ) and E Y (ψ S (Y , α )|X = x ) = E Y ((Y -α ) 2 |X = x ),
respectively. In light of Eq. (6.7) this is su cient to obtain the minimal risk.

Theorem 2. The absolute error surrogate ψ A is consistent with respect to A .

Proof. Let x ∈ X, and α * = median(Y |X = x ). By de nition of median,

P ( ≤ α * |X =x ) = α * i=1 η i (x ) ≥ 1/2 and k α * η i (x ) ≤ 1/2. If α * i=1 η i (x ) > 1/2 and k α * η i (x ) ≤ 1/2 then α * = min r ∈[k ] {r : r i=1 η i (x ) > 1 2
} and in light of Corollary 1 we predict the same label as Bayes predictor.

We have left out the case in which α * i=1 η i (x ) = 1/2. In this case the median would predict α * but Bayes predictor would predict α * + 1. If we compute the conditional risk for these values we have

E Y ( (Y , α * )) -E Y ( (Y , α * )) = k i=1 η i (x )|i -α * + 1| - k i=1 η i (x )|i -α * | = α * i=r η i (x ) - k i=α * +1 η i (x ) = 0
Hence in this case the risk associated with predicting α * or α * + 1 is the same. We have shown thus that the risk associated with Bayes predictor is the same than the risk associated with the minimizer of ψ A (the median), hence we have consistency of this surrogate.

Theorem 3. The squared error surrogate ψ S is consistent with respect to S .

Proof. Let α

* = E Y (Y |X =x ) = k i=1 iη i (x ). Then pred(α * ) = round k i=1 iη i (x ) = min r ∈[k ] k i=1 iη i (x ) > r -1
2 , which coincides with Bayes predictor from Eq. (6.11).

Di iculty of consistency in the threshold-based se ing

Although the threshold-based setting is of great practical importance, no consistency results exist for these surrogates to the best of our knowledge.

The di culty of proving such results stems from the fact that within the space of allowed decision functions Eq. (6.7) is no longer valid. This implies that it is no longer possible to obtain the optimal decision function from the minimization at a xed x ∈ X, as we have done in the proof of Theorem 2 and 3.

In section 6.2, we have de ned the decision function g(x ) = ( 1 (x ), . . . , k -1 (x )) to be of the form i (x ) = θ i -f (x ), or equivalently to verify the condition that i+1 (x )i (x ) is a positive constant (i.e. does not depend on x) for all 1 ≤ i < k -1. If g veri es this constraint, we will say that g is a thresholdbased decision function.

In order to obtain su cient conditions for the consistency of thresholdbased methods, we will rst consider the case in which the decision function g belongs to the space of all measurable functions. In this case we can construct the optimal decision function by considering each x ∈ X separately.

Having an explicit form of the minimizer for the ψ -risk in this setting makes it possible to inspect under which conditions does this minimizer belong to the space of threshold-based decision functions.

An interesting relaxation of the threshold-based setting is given in [START_REF] Peterson | Partial proportional odds models for ordinal response variables[END_REF] under the name of partial thresholds. In this setting, g(x ) = ( 1 (x ), . . . , k (x )) is a non-decreasing vector for all x ∈ X which does not necessarily verify the constraints of a threshold-based decision function. In this setting, the decision function can represent any realvalued mapping that veri es the order constraints. We will call these decision functions partial-threshold decision functions. This setting is rarely used in practice because of the need to estimate k -1 functions.

Consistency of proportional odds

We begin by proving the strong convexity of proportional odds, whose proof can be found in the appendix. Through this section we will use ψ C to denote the proportional odds surrogate as de ned in Eq. (6.5).

Lemma 2. The proportional odds surrogate ψ C is a convex function of its arguments in the domain of de nition.

Proof. ψ C (1, α ) and ψ C (k, α ) (de ned in Eq. (6.5)) are logistic loss functions, which are convex because they are log-sum-exp functions. We will prove that ψ i is convex for 1 < i < K. For convenience we will write this function as f (a, b) = -log 

= ∇f (a, b)∇f (a, b) T -f (a, b)∇ 2 f (a, b)
for all (a, b) in the domain {b > a} [START_REF] Boyd | Convex optimization[END_REF]. In our case,

Q = exp(a + b) -exp(a + b) -exp(a + b) exp(a + b) = exp(a + b) 1 -1 -1 1
Which is a positive semide nite matrix with eigenvalues 2 exp(a +b) and 0. This proves that Q is positive semide nite and thus the loss function ψ i is convex.

For the proportional odds surrogate ψ C it is possible to nd the explicit form of a function that minimizes the ψ C -risk. We will use notation g to denote the vector-valued function ( 1 (x ), . . . , k-1 (x )).

Theorem 4. The function g : X → R k -1 given by *

i (x ) = log u i (x ) 1 -u i (x )
, minimizes the ψ C -risk.

Proof. Let x ∈ X and consider the optimization problem

α * ∈ arg min α ∈R k -1 E Y (ψ C (Y , α )|X =x )
The KKT conditions associated with this optimization problem are

-η 1 (x ) 1 σ (α 1 ) + η 2 (x ) 1 σ (α 2 ) -σ (α 1 ) = 0 -η i (x ) 1 σ (α i ) -σ (α i-1 ) + η i+1 (x ) 1 σ (α i+1 ) -σ (α i ) = 0 -η k -1 (x ) 1 σ (α k -1 ) -σ (α k -2 ) + η k (x ) 1 1 -σ (α k -1 ) = 0 with 1 < i < k -1. It is easy to verify that σ (α * i ) = i j=1 η j (x ) = u i (x ) satisfy the optimality conditions. Solving for α * i results in σ (α * i ) = i j=1 η j (x ) =⇒ α * i = log (u i (x )/(1 -u i (x ))
). By Eq. (6.7), the function that for all x ∈ X returns log (u i (x )/(1 -u i (x ))) is the function that minimizes the ψ -risk.

Note that for x ∈ X xed, the sequence ( * 1 (x ), . . . , * k -1 (x )), with * as de ned in the previous theorem is non-decreasing since u i is non-decreasing and due to the monotonicity of the logit function. This implies that g

(x ) = ( * 1 (x ), . . . , * k -1 (x )) is a partial-threshold decision function. Consistency for this class of functions is now immediate since pred(g * (x )) = 1 + k -1 i=1 H log u i (x ) 1 -u i (x ) = = 1 + k -1 i=1 H (u i (x ) -1/2) = min r ∈[k ] {r : r i=1 η i (x ) ≥ 1 2 } (6.12)
which coincides with Bayes predictor from Eq. (6.10). Thus, if the decision function belongs to the space of partial-threshold decision functions, the proportional odds is consistent. For threshold-based decision functions we have the following result:

Corollary 3. Let P verify the property that the odds-ratio is constant, that is,

η i (x )/(1 -η i (x )) η i+1 (x )/(1 -η i+1 (x )) (6.13) is independent of x ∈ X for all i ∈ [k -1]. Then the proportional odds surro- gate is consistent. Proof. Let i (x ) = log (u i (x )/(1 -u i (x ))) and i+1 (x ) = log (u i+1 (x )/(1 -u i+1 (x ))). Proving is that i (x ) -i+1 (x ) is constant is equivalent to proving that is of the form i (x ) = θ i -f (x ) Then i (x ) -i+1 (x ) = log (u i (x )/(1 -u i (x ))) - log (u i+1 (x )/(1 -u i+1 (x ))) = log η i (x )/(1 -η i (x )) η i+1 (x )/(1 -η i+1 (x ))
which is the log of a constant by assumption, hence constant. By Theorem 4 it follows that this function is the minimizer of the ψ C -risk. Consistency is now a consequence of (6.12).

Consistency of margin-based models

As done in the previous section, we will provide an explicit form of functions that minimize the ψ M -risk. This will allow to derive conditions under which threshold-based decision functions are consistent.

Theorem 5. Let be V-shaped. Then the function g : X → R k -1 minimizes the ψ M -risk for di erent values of ϕ:

• If ϕ is the hinge loss, i.e., ϕ(t ) = max(1 -t, 0), * i (x ) = sign(u i (x ) -i (x )) • If ϕ is the logistic loss, i.e., ϕ(t ) = 1/(1 + exp(-t )), * i (x ) = log(u i (x )/ i (x )) • If ϕ is the exponential loss, i.e., ϕ(t ) = exp(-t ) * i (x ) = 1 2 log(u i (x )/ i (x )) • If ϕ is the squared loss, i.e., ϕ(t ) = (1 -t ) 2 * i (x ) = u i (x ) + i (x ) u i (x ) -i (x )
Proof. Let u i , i be as de ned in Eq. (6.8), x ∈ X and α = ( 1 (x ), . . . , k-1 (x )).

Then for any surrogate ψ we can write

E Y (ψ (Y , α )|X =x ) = k j=1 η j (x ) j-1 i=1 ∆ ( , i)ϕ(α i ) - k -1 i=j ∆ ( , i)ϕ(-α i ) = k -1 i=1 ϕ(α i ) i (x ) + ϕ(-α i )u i (x ) . (6.14)
If ϕ is the hinge loss, the values of α i that minimize this expression verify -1 ≤ α i ≤ 1 for all i ∈ [k -1], as otherwise truncation of these values at -1 or 1 gives a lower value of the surrogate loss. In this case we have

E Y (ψ (Y , α )|X =x ) = k -1 i=1 (1 -α i ) i (x ) + (1 + α i )u i (x ) = k -1 i=1 α (u i (x ) -i (x )) + C
where C are terms that do not depend on α. Therefore, this expression minimized for α * i = sign( i (x ) -u i (x )).

If ϕ is the logistic loss, the expression from Eq. (6.8) is di erentiable. The derivative with respect to α

i is (1 -σ (α i )) i -σ (α i )u i , where σ (α i ) = 1/(1 + exp(-α i ))
is the sigmoid function. Equaling this expression to zero and solving for α i yields the result.

The proof for ψ the rest of surrogates can be found in the appendix.

In light of this result, it is possible to derive su cient conditions under which margin-based decision functions are consistent.

Corollary 4. Under the conditions of Theorem 5, if P is a probability distribution such that α * i (x ) -α * i+1 (x ) does not depend on x for all 1 ≤ i < k, then the surrogate ψ M is consistent.

Proof. The optimal decision functions α * 1 , . . . , α * k -1 are threshold-based decision functions by assumption. Furthermore, it is easy to verify that all the α * i (x ) obtained in Theorem 5 verify H (α * i (x )) = H (u i (x )i (x )), and thus prediction coincides with Bayes predictor of Eq. (6.9).

As mentioned in Section 2, the surrogate ψ M parametrizes several approaches that have appeared in the literature.

Corollary 5. Under the assumptions of Corollary 4, the following surrogate loss functions are consistent with respect to the zero-one loss:

• Support Vector Ordinal Regression (SVOR), "explicit constraints" variant, from [Shashua andLevin, 2003, Chu andKeerthi, 2007] (ϕ = hinge loss),

• "Immediate threshold" from [START_REF] Rennie | Loss Functions for Preference Levels : Regression with Discrete Ordered Labels[END_REF] (ϕ = logistic loss),

• "ORBoost with Left-Right margins" from [Lin and Li, 2006] (ϕ = exponential loss), Corollary 6. Under the assumptions of Corollary 4, the following surrogate loss functions are consistent with respect to the mean absolute error:

• Support Vector Ordinal Regression (SVOR), "implicit constraints" variant, from [Shashua andLevin, 2003, Chu andKeerthi, 2007] (ϕ = hinge loss),

• "All threshold" from [START_REF] Rennie | Loss Functions for Preference Levels : Regression with Discrete Ordered Labels[END_REF] (ϕ = logistic loss), used in Chapter 4 in the context of fMRI decoding models.

• "ORBoost with All margins" from [Lin and Li, 2006] (ϕ = exponential loss).

We now have the necessary elements to answer the question that motivated our study at the beginning of this chapter: why does the SVOR with implicit thresholds often outperform the SVOR with explicit thresholds with respect to the mean absolute error metric? As the corollaries above outline, the SVOR with implicit constraints surrogate is consistent with respect to the absolute error loss while the SVOR with explicit constraints is not. Even more, SVOR with explicit constraints surrogate is instead consistent with respect to a di erent loss (the 0-1 loss). It is thus not surprising that the rst approach performs better with respect to the absolute error. In the experimental section we discuss this issue further by comparing both methods with respect to di erent metrics.

The su cient conditions of Corollary 4 translate into well-known conditions on the probability distribution for some values of ϕ. For example, let ϕ be the logistic loss and be the absolute error, the optimal decision function is given by α * i (x ) = log(u i (x )/ i (x )) = log(u i (x )/(1 -u i (x ))). Thus we obtain the function that the optimal decision function for the proportional odds from Theorem 4. This implies (see Corollary 3) that if P veri es that the odds-ratio are constant as de ned in (6.13), then the surrogate is consistent.

In light of these results, it is immediate to show that within the space of partial threshold decision functions, the aforementioned methods are consistent. Furthermore, in this case we can prove a slightly more general result. The following result states consistency while assuming only convexity and a condition of the di erential at zero of the function ϕ. Theorem 6. Let be a V-shaped loss function. Given a convex function ϕ : R → R + such that ϕ is di erentiable at zero and ϕ (0) < 0, then the surrogate loss function ψ M is consistent with respect to if the decision functions are contains the space of partial-threshold decision functions .

Proof. Let x ∈ X and r = h * (x ) be the label predicted by Bayes predictor. As we did in the proof of Theorem 5, we can write E Y (ψ ( , α )|X = x ) = k -1 i=1 ϕ(α i ) i (x ) + ϕ(-α i )u i (x ). The KKT conditions for this optimization problem with respect to α are 0 ∈ ∂F i (α i ) = ∂ϕ(α i )u i (x ) -∂ϕ(-α i ) i (x ) ∀i = 1, . . . , k -1 (6.15)

where ∂ denotes the subgradient operator. By the V-shape property we have that ( 1 (x ) -u 1 (x ), 2 (x ) -u 2 (x ), . . . , k (x )u k (x )) is a non-increasing sequence of i. Hence, 1 + k -1 i=1 H ( i (x ) -u i (x )) = r implies that ( i -u i ) ≥ 0 for 1 ≤ i < r and ( i -u i ) < 0 for i ≥ r .

Let α * denote the vector that satis es the KKT conditions and let p ≥ r . Then have u pp > 0. Hence, ∂F p (0) = ϕ (0)(u pp ) ≤ 0. The expression ∂F p (α p ) is the subdi erential of a convex function and is thus a monotone operator [START_REF] Rockafellar | On the maximal monotonicity of subdi erential mappings[END_REF]. Hence ∂F p (0) < 0 implies that the optimal value α * p will be located in the region {x : x > 0}. We have proved that α * p > 0 for all p ≥ r . Suppose now s < r and consider ∂F s (0) = ϕ (0)(u ss ). Because of the V-shape property we have u ss ≤ 0 and hence ∂F s (0) ≥ 0. The expression ∂F s (α s ) is again a monotone operator and veri es ∂F s (0) ≥ 0 from where we can conclude that any zero of this expression will be located in the region {x : x ≤ 0}. We have proved that α * s ≤ 0 for all s < r . We have proved that α * p > 0 for all p ≥ r and α * s ≤ 0 for all s < r . Hence, 1 + k -1 i=1 H (-α i ) = 1 + (r -1) = r and the prediction coincides with Bayes predictor, hence the surrogate is consistent.

Relationship with multiclass formulations

Let ψ L the surrogate loss function de ned in Eq. (6.6). For a given x ∈ X, let f * 1 (x ), . . . , f * k (x ) be minimizers of E Y (ψ L (Y , f (x ))). Then it is veri ed

k i=1 k j=1 η j (x ) (j, i) ψ (-f i (x )) = k i=1 (u i (x ) -i (x ))ψ (-f i (x ))
For the hinge loss, it is shown in Lee et al. [2004] that given x ∈ X, the optimal decision function is of the form f * i (x ) = 1 for i = arg min i u i (x )i (x ), and -1/(k -1) otherwise. Thus, a su cient condition for consistency is that the k functions above are in the class of functions we are considering for the decision function. This is to be contrasted with the margin-based formulations, where, for the hinge surrogate, we need the k -1 functions sign(u i (x )i (x ))) to be in the class of functions of the decision function.

No requirement is stronger than the other. However, for the marginbased formulations, we have developed su cient conditions under which we may use a single function and xed thresholds.

Experiments

Although the focus of this chapter is a theoretical investigation of consistency, we have also conducted experiments that study empirical performance of some the methods outlined in this paper.

In this section we compare two approaches described earlier in terms of generalization accuracy. The di erent datasets used are described in [START_REF] Chu | Gaussian processes for ordinal regression[END_REF]. Following [Chu and Keerthi, 2005], we will consider two variants of the margin-based loss function ψ C for = 0-1 and = A with ϕ = hinge loss. Speci cally, we compare the "explicit constraints on thresholds" formulation (denoted here ET) versus the "implicit constraints on thresholds" formulation (denoted IT). Corollary 4 states that under appropriate assumptions on the probability distribution P, ET is consistent with respect to the zero-one loss while AT is consistent with respect to the absolute error loss.

We show in Figure 6.4 the generalization scores of these two methods using as metric the zero-one loss and the absolute error on 8 di erent datasets. The generalization accuracy of both models has been computed using 5-fold cross validation. Although consistency results only apply under certain assumptions on the underlying probability distribution, we observe a correlation between consistent surrogates and the best performing model. Our ndings provide a theoretical explanation of the poor performance of the ET surrogate compared with the IT surrogate when evaluated using the absolute error loss (since the IT surrogate is consistent w.r.t the absolute error). Similar results have been observed in the literature for di erent values of ϕ [Chu and Keerthi, 2005, Lin and Li, 2006, Shashua and Levin, 2003]. Figure 6.4: Performance of the "Explicit Threshold" (ET) and "Implicit Threshold" (IT) methods of Chu and Keerthi [2005] on 8 di erent datasets and for two di erent evaluation metrics. Top: the metric used is the mean absolute error. The IT method is consistent with respect to this loss and performs better on 7 out of 8 datasets. Bottom: the metric used is the mean zero-one loss. The ET method is consistent with respect to this metric and performs better on 6 out of 8 datasets. Datasets for which the di erence of performance is significant (Wilcoxon signed-rank test with p < 0.01) are denoted with an asterisk ( * ).

Conclusion

In this chapter we have characterized the consistency for a rich family of surrogate loss functions used for ordinal regression. In the regression-based setting we have extended work from Ramaswamy and Agarwal [2012] to prove consistency for the absolute error surrogate as well as the squared error surrogate.

In the threshold-based setting, we studied consistency of the proportional odds model and given su cient conditions on the underlying probability distribution under which this surrogate is consistent. We also considered formulations such as the Support Vector Ordinal Regression [Chu and Keerthi, 2005], the Ordinal Regression Boosting methods [Lin and Li, 2006] and the Logistic Regression formulation of [START_REF] Rennie | Loss Functions for Preference Levels : Regression with Discrete Ordered Labels[END_REF]. We framed these methods under a common formulation that we call marginbased surrogate, and derived an explicit form of functions that minimize the ψ -risk. We gave su cient conditions for the consistency of the aforementioned approaches. Thanks to these results, we could answer the question outlined in the introduction: the SVOR with implicit constraints surrogate is consistent with respect to the absolute error loss while the SVOR with explicit constraints is not. Even more, SVOR with explicit constraints surrogate is instead consistent with respect to a di erent loss (the 0-1 loss). This would explain why it has been repeatedly reported the superiority of the rst approach when compared with the absolute error metric [Chu and Keerthi, 2005, Lin and Li, 2006, Rennie and Srebro, 2005]. In this respect, the importance of this work, more than to prove consistency, it to identify the loss for which a given surrogate is consistent.

Since consistency of the threshold-based approach is only proven subject to certain conditions on the underlying probability distribution P, we investigated under which conditions these surrogates are always consistent.

Here we show that this is possible by considering an enlarged space for the decision functions that we called partial-threshold decision functions.

Finally, we illustrated our ndings on by comparing the performance of two methods on 8 di erent datasets. Although the conditions for consis-tency that are required by the underlying probability distribution are not necessarily met, we observed that methods that are consistent w.r.t a given loss often outperform other methods that are not consistent with respect to that loss.

In this last chapter we detail the di erent contributions contained within this thesis and we point out possible extension that can be considered in the future. The proposed methods span all the di erent contributions of this thesis. We also enumerate the software packages that have been developed. 

Contributions

In this thesis we have examined several aspects of the pipeline through which an fMRI datasets can be analyzed. We have made contributions at di erent stages of this pipeline.

In Chapter 4 we have studied a problem of feature extraction. The goal of this feature extraction step is to output time-independent activation maps from the BOLD time series. In this context we have introduced a new model for the joint estimation of hemodynamic response function (HRF) and brain activation coe cient. The novelty of our method stems from the observation that the formulation of the GLM model with a common (but unknown) HRF across conditions translates into a rank constraint on the vector of estimates. This allows to specify the model as a smooth optimization problem and to use gradient-based methods for its estimation.

A popular application of supervised learning to reveal cognitive mechanisms in fMRI studies is the problem of brain decoding, in which the goal is to predict some information about the stimuli given the activation coe cients. In Chapter 5 we examine the setting of practical importance in which the target variable consist of discretely ordered values. We identi ed two loss functions that are appropriate for the task: the absolute error and the pairwise disagreement. We presented several models based on the minimization of a convex surrogate of these loss functions. We examined their performance on both synthetic and two real world fMRI datasets.

Motivated by its applicability to decoding studies we turned in Chapter 6 to study some theoretical properties of ordinal regression models. We provided an analysis of the Fisher consistency properties of a rich family of surrogate loss functions, including proportional odds and support vector ordinal regression. For all the surrogates considered, we either proved consistency or provided su cient conditions under which these approaches are consistent.

Research Perspectives

A tensor formulation of R1-GLM

Although the R1-GLM model presented in Chapter 4 has faster execution times than methods that implement similar assumptions [Makni et al., 2008, Vincent et al., 2010, Degras and Lindquist, 2014]), the algorithm still does not use all the structure within the problem.

For example, the algorithm ts independently a R1-GLM on every voxel (for around 5 × 10 4 voxels in a fMRI volume) without taking into account that the design matrix is the same for all voxels. In this context, a possible line of research is to use a tensor-based formulation of the R1-GLM model to incorporate this structure within the solver.

Let X ∈ R n×kd be the design matrix of the GLM. This matrix can be naturally represented as the tensor X ∈ R n×k ×d that veri es that its matrizialization along the last axis corresponds to the design matrix X. In this case, using the n-mode tensor product [START_REF] Kolda | Tensor Decompositions and Applications[END_REF] we have the identity Xvec(hβ T ) = X × 2 h × 3 β, hence the R1-GLM can be seen as the subject to the usual constraints on h, β. Due to its analogies with a linear least squares problem, it seems reasonable to think that a tensor factorization of X (such as CP/PARAFAC or Tucker) might be able to solve or accelerate the optimization of this model.

Uniqueness of solution for R1-GLM

The R1-GLM model, being non-convex, comes with no guarantees of convergence to a global optimum for the algorithms considered. However, some scarce theoretical results exist. For the case of in nite data (which would correspond in our model to an in nite number of fMRI scans), the uniqueness of solution of a similar model was proved by [START_REF] Bai | Least squares solutions of bilinear equations[END_REF]. A possible area of research is to extend these results to the more practical setting of a limited number of samples.

Parcel R1-GLM model

This is a di erent extension of the R1-GLM model presented in Chapter 4 that aims at reducing the amount of HRFs estimated within the model.

Within the context of HRF estimation, some studies have proposed to perform the estimation of an HRF in a set of neighboring voxels called a parcel, thus taking advantage of the spatially dependent nature of fMRI [Wang et al., 2013, Chaari et al., 2012, Badillo et al., 2013].

The notion of parcel, i.e., a brain region which shares the same HRF, can be trivially incorporated into the R1-GLM model, and results in a modi ed R1-GLM model. Given m voxels in the parcel, let y = [y 1 , y 2 , . . . , y m ] the concatenation of the BOLD signal for the voxels within the parcel and let X be the matrix formed by a block-diagonal matrix with m blocks in which every block is the design matrix for the current experiment. Then the R1-GLM model that assumes the HRF constant across the parcel can be written as ĥ, β, ω = arg min h,β ,ω 1 2 y -X vec(hβ ) -Zω 2 subject to Bh ∞ = 1 and Bh, h ref > 0 , (7.1) where β = [β 1 , . . . , β m ] contains the activation coe cients for the di erent voxels within the region. Phrased di erently, the estimation of a R1-GLM model within a parcel is itself a R1-GLM model with a modi ed design matrix. However, these approaches must face the problem of choosing the right brain parcellation. An interesting approach, named hemodynamically-informed parcellations [Chaari et al., 2012, Badillo et al., 2013] relies on the computation of a large number of estimations at the voxel or sub-parcel level.

Weaker conditions for the consistency of threshold-based ordinal regression methods

In Chapter 6 we have presented consistency results for some ordinal regression methods. For threshold-based methods, in the practical setting in which the thresholds are constant across samples (a setting that we called model with threshold-based decision function), we have only been able to prove consistency under very restrictive conditions on the underlying probability distribution. It is possible that similar consistency results can be obtained with weaker conditions on the probability distribution, which would result in conditions that are widely applicable. For example, in [Herbrich et al., 1999, Section 2], the authors present the cumulative models of [McCullagh, 1980] (described in Section 6.2) as a consequence of a stochastic ordering in the sample space.

The stochastic ordering assumption can be described as follows. Given the sample space X and a target space Y, then for all di erent x 1 , x 2 ∈ X either P ( ≤ r |X = x 1 ) ≥ P ( ≤ r |X = x 2 ) for all r ∈ Y or P ( ≤ r |X = x 1 ) ≤ P ( ≤ r |X = x 2 ) for all r ∈ Y

The authors then conclude that stochastic ordering is satis ed by a model of the form -1 (P ( ≤ r |X = x )) = θ r -f (x )

hence it seems reasonable to think that a stochastic ordering could be a sufcient condition in order to obtain consistency -at least for the cumulative logit model.

Application of ordinal regression methods to multiclass classification

Although ordinal regression methods have been initially developed for loss functions that minimize a distance between the labels, our theoretical results show that some ordinal regression methods are instead consistent to the 0-1 loss 1 , i.e., with the usual loss used in multiclass classi cation. This 1 We recall that (although in a degenerate sense), the 0-1 loss does verify the V-shape property.

suggests that some ordinal regression methods might be competitive in the context of multiclass classi cation. One of the advantages of ordinal regression models is that for linear decision functions, the learning only requires the estimation of p + k -1 parameters versus e.g. p × (k -1) in the case of one-vs-all multiclass classi cation, where p is the dimensionality of the dataset and k is the number of classes. It is possible that these methods have

So ware

A number of software distributions have been developed within the context of this thesis.

hrf_estimation

This package implements method for the joint estimation of hemodynamic response function (HRF) and activation coe cients (aka beta-maps) from fMRI data presented in Chapter 4. Full documentation for this package, including an example IPython notebook can be found at http://pythonhosted.org/hrf_estimation/

mord

Ordinal Regression algorithms. Module that implements the ordinal regression models used in Chapter 5. The code can be found at the URL https://github.com/fabianp/mord

pysofia

PySo a is a python wrapper around the methods present in the C++ so a-ml library. These include Stochastic Gradient Descent implementations of some ranking algorithms, notably RankSVM [Sculley, 2009]. 
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  Figure 1.3:Image identi cation score (higher is better) on two di erent subjects from the rst dataset and average decoding score on the second dataset. In the rst dataset the metric counts the number of correctly identi ed images over the total number of images (chance level is 1/120 ≈ 0.008). This metric is less sensitive to the shape of the HRF than the voxel-wise encoding score. The bene ts range from 0.9% points to 8.2% points across R1-constrained methods and subjects. The highest score is achieved by a R1-GLM method with a FIR basis set for subject 1 and by a R1-GLMS with FIR basis for subject 2.The metric in the second dataset (decoding task) is Kendall tau.Methods that perform constrained HRF estimation signi cantly outperform methods that use a xed (reference) HRF. In particular, the best performing method is the R1-GLM with 3HRF basis, followed by the R1-GLMS with 3HRF basis.
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Figure 2

 2 Figure 2.1: Schematic view of a neuron, in scale 10 5 : 1. A neuron has a cell body (soma), many regions for receiving information from other neural cells (dentrites) and often a nerve ber called axon. Adapted from http://commons.wikimedia.org/.

Figure 2

 2 Figure 2.2: Santiago Ramón y Cajal (Navarre, Spain 1852 -Madrid, Spain 1934) is widely regarded as the father of modern neuroscience. Cajal and italian anatomist Camillo Golgi impersonated the dispute between neuron and reticular theory at the turn of the 20th century. They received a joint Nobel Prize in Physiology and Medicine in 1906.

  Figure 2.6: Spatial and temporal resolutions of di erent modalities commonly used for functional imaging. A typical fMRI acquisition (as of 2014) enjoys spatial resolution of the order of 1 -3mm 3 and temporal resolution of the order of 1-3 seconds.

Figure 2 . 7 :

 27 Figure 2.7: Illustration of the e ect of the CO 2 on the BOLD contrast. Left -Coronal slice showing the BOLD contrast of an anesthetized rat which has breathed pure O 2 .Right -Coronal slice of the same rat, showing the BOLD contrast after respiration of a mixture of 90% of O 2 and 10% of CO 2 (this mixture increases the oxygenation of the venous blood). The arrow shows the sagittal sinus, which is one of the major veins of the brain. This picture shows a strong increase of intensity in this vein, that illustrates that the variation of blood oxygenation is visible in BOLD contrast. Adapted from[Ogawa et al., 1990a].

Figure 2

 2 Figure 2.10: The GLM expresses the observed BOLD signal as a linear combination of regressors plus an error term. Each regressor of the design matrix is the convolution of a reference HRF and the stimulus function, a function that is 1 when the stimulus is present and zero otherwise. Each element of the (unknown) activation coecients represent the relative amplitude of a given condition.
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Figure 3

 3 Figure 3.1: Sir R. A. Fisher (London, England 1908 -Adelaide, Australia 1962) made important contributions to the eld of statistics. Among many notions in statistic, he coined the terms "test of signi cance", "Fisher consistency" (which we will develop in Chapter 5) and "null hypothesis"[START_REF] Ronald | Statistical methods for research workers[END_REF].

Figure 3

 3 Figure 3.2: t-map for a contrast of a Visual vs an Auditory task. Thresholded at p-value < 10 -3 .It can be seen how the voxels that exhibit a higher signi cance of this contrast belong to visual areas (red) and auditory areas (blue).

Figure 3 . 3 :

 33 Figure 3.3: Visual vs Auditory contrast. Visualization of the voxels selected by thresholding the p-values for the Visual vs Auditory contrast at di erent thresholds (0.05, 0.01 and 0.05 corrected by Bonferroni). The Bonferroni correction is very severe and keeps very few voxels.

  Figure 3.4: Vapnik-Chervonenkis theory (also known as VC theory) was developed during 1960-1990 by Vladimir Vapnik (right) and Alexey Chervonenkis (left). The theory attempts to explain the learning process from a statistical point of view.

Figure 3

 3 Figure 3.6: Di erent surrogate loss functions presented in the text (for y=1): hinge loss, logistic loss and squared loss

Figure 3 . 7 :

 37 Figure 3.7: The machine learning models that we will consider are estimated as the minimization of a trade-o between data delity and a regularization term. Regularization is used to bias the estimated model towards a set of desired solutions.

Figure 3

 3 Figure3.10: Decoding models use patterns of activity to discriminate between cognitive states. Di erent activation coe cients re ect different mental states; for example, those associated with di erent images viewed by the subject. In a training phase, the classi er will learn to discriminate between activity patterns measured under different cognitive states. In the testing phase the generalization performance of the trained model is quanti ed by evaluating the classi er on the testing set and comparing the output of the classi er with the true labels associated with the stimuli. Adapted from[START_REF] Smith | Brain decoding: Reading minds[END_REF].

  Figure 3.11:Cross-validation scores for the prediction of the length of words from[Borghesani et al., 2014]. The metric is Kendall tau (higher is better). In the left, the same scores are depicted for the di erent regions (Brodman areas).

Figure 3

 3 Figure3.12: In an encoding model the patterns of brain activity are predicted by a machine learning model based on the stimuli features. The sample space in this case is the space of features derived from the stimuli, e.g. a set of Gabor lters in[Kay et al., 2008]. The predicted activation coe cient can then be compared to the true activation coe cient measured on left out data by using some distance metric such as Pearson's correlation coe cient. Adapted from[START_REF] Smith | Brain decoding: Reading minds[END_REF].
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Figure 4

 4 Figure 4.1:The HRF can vary substantially between subjects, brain regions and age. In[START_REF] Colonnese | Development of hemodynamic responses and functional connectivity in rat somatosensory cortex[END_REF], the authors studied the evolution of the HRF across age in rats. By comparing fMRI measurements with electrophysiological recordings, they observed two signi cant trends as age increased: growing amplitude and decreasing time to peak. In the gure, estimated HRF for three groups of rats (with age P13-15 < P20-30< Adult). Source:[START_REF] Colonnese | Development of hemodynamic responses and functional connectivity in rat somatosensory cortex[END_REF]. A comparison of the HRF in human subjects was performed in[START_REF] Badillo | Multi-subject bayesian joint detection and estimation in fmri[END_REF].

Figure 4

 4 Figure 4.3: A basis-constrained GLM design matrix. The basis set consists of the reference HRF plus its time and dispersion derivative. As in the GLM introduced in Chapter 2 (Fig. 2.10), each column is the convolution of one basis function with the stimulus function. Here, the usage of 3 basis functions (instead of one) results in a design matrix with 3k regressors

Figure 4 . 4 :

 44 Figure 4.4: In the GLM with separate designs model of Mumfordet al. [2012], the design matrix contains two regressors. The rst one is the regressor associated with a given condition and the second one is the sum of all other regressors. Source:[Turner et al., 2012] 

  Figure 4.7: Image identi cation score (higher is better) on two di erent subjects from the rst dataset. The metric counts the number of correctly identi ed images over the total number of images (chance level is 1/120 ≈ 0.008). This metric is less sensitive to the shape of the HRF than the voxelwise encoding score. The bene ts range from 0.9% points to 8.2% points across R1-constrained methods and subjects. The highest score is achieved by a R1-GLM method with a FIR basis set for subject 1 and by a R1-GLMS with FIR basis for subject 2.

AverageAverage

  Figure 4.8:Average correlation score (higher is better) on two di erent subjects from the rst dataset. The average correlation score is the Pearson correlation between the predicted BOLD and the true BOLD signal on leftout session, averaged across voxels and sessions. Methods that perform constrained HRF estimation signi cantly outperform methods that use a xed reference HRF. As for the image identi cation performance, the best performing method for subject 1 is the R1-GLM, while for subject 2 it is the R1-GLMS model, both with FIR basis. In underlined typography is the GLM with a xed HRF which is the method used by default in most software distributions. A Wilcoxon signed-rank test is performed between each method and the next one in the ordered result list by considering the leave-onesession out cross-validation scores for each method. We report pvalues to assess whether the score di erences are statistically signicant.

Figure

  Figure 4.10:Voxel-wise encoding score for di erent models that perform HRF estimation ( rst dataset). As in gure 4.9, color codes for the time to peak of the estimated HRF at the given voxel. Top: two Rank-1 separate design models with di erent basis functions: FIR with 20 elements in the Y-axis and the reference HRF with its time and dispersion derivatives (3HRF) in the X-axis. The color trend in this plot suggests that the score improvement of the FIR basis with respect to the 3HRF becomes more pronounced as the time-topeak of the estimated HRF deviates from the reference HRF (peak at 5s). This can be explained by taking into account that the 3HRF basis is a local model of the HRF around the peak time of the canonical HRF. Bottom: voxel-wise encoding score for two Rank-1 models with FIR basis and di erent design matrices: separate design on the Y-axis and classical design on the X-axis. Although both models give similar results, a Wilcoxon signed-rank test on the leave-onesession-out cross-validation score (averaged across voxels) con rmed the superiority of the separate designs model in this dataset with pvalue < 10 -3 .

  Figure4.12: Averaged decoding score across subjects for the different method considered (higher is better) on the second dataset. The metric is Kendall tau. Methods that perform constrained HRF estimation signi cantly outperform methods that use a xed (reference) HRF. In particular, the best performing method is the R1-GLM with 3HRF basis, followed by the R1-GLMS with 3HRF basis. In underlined typography is the GLM with a xed HRF which is the method used by default in most software distributions. As in Fig-ure 4.8, a Wilcoxon signed-rank test is performed and the p-value reported between a given method and the next method in the ordered result list to assess whether the difference in score is signi cant.
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 51 Figure 5.1: In this experiment, the stimuli are words that represent real world objects. As in the Figure, these can be ordered according the the size of the associated concepts. The decoding problem will be then to predict the size of the associated concepts based on the brain activation maps.

Figure 5 .

 5 Figure 5.2: Maurice G. Kendall (6 September 1907 -29 March 1983) was a British statistician, widely known for his contribution to statistics. The Kendall tau rank correlation is named after him.

Figure 5

 5 Figure 5.4:Manually labeled ROIs in the language complexity dataset[START_REF] Cauvet | Traitement des Structures Syntaxiques dans le langage et dans la musique[END_REF].
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  ) , where a > b is the domain of de nition. By factorizing the fraction inside f to a common denominator, f can equivalently be written aslog(exp(a) -exp(b)) + log(1 + exp(a)) + log(1 + exp(b)). The last two terms are convex because they can be written as a logsum-exp. The convexity of the rst term, or equivalently the log-concavity of the function f (a, b) = exp(a) -exp(b) can be settled by proving the positive-de niteness of the matrix Q
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 7 Figure 7.1: The memory_pro ler module allows to quickly analyze the memory consumption of a program by using the line-by-line proling (in the picture) or the timebased memory pro ling.
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  Glossary activation coe cient amplitude for a single voxel associated with a stimuli in an fMRI study. 13, 15, 31, 52, 53, 63 BOLD fMRI contrast that measures oxygen change in blood ow. 30 conditions di erent stimuli in an fMRI study. 33 decoding distinguish patterns of neural activity associated with di erent stimuli or cognitive states. 45, 87 fMRI Functional Magnetic Resonance Imaging. 29 GLM General Linear Model. 17, 33, 44, 73, 74 Heaviside The real function that is zero for negative values and one otherwise. 47 hinge loss Loss function used by Support Vector Machines. 48 HRF Hemodynamic Response Function. 13, 31 Kendall τ Distance measure between two measurements. It is a measure of rank correlation, i.e., the similarity of the orderings of the data when ranked by each of the quantities. 93 LTI Linear Time Invariant assumption. 32 TR repetition time, sampling time in an fMRI scanner. 30 voxel unity of measure in a volumetric space. 30
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