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Résumé

La thèse est consacrée à la modélisation discrète et continue des écoulements sanguins
et des phénomènes connexes tels que la coagulation du sang et l’athérosclérose. Ce travail
comprend l’élaboration des modèles mathématiques et numériques de la coagulation du sang,
des simulations numériques et l’analyse mathématique d’un modèle d’inflammation chronique
au cours d’athérosclérose. Une partie importante de la thèse est liée a la programmation, la
mise en oeuvre et l’optimisation des codes numériques.

La partie principale de la thèse concerne la modélisation de la coagulation du sang in
vivo tenant compte des écoulements sanguins, les réactions biochimiques dans le plasma
et l’agrégation de plaquettes. La nouveauté principale de ce travail est l’élaboration d’un
modèle hybride (discret-continu) de la coagulation du sang et de la formation de caillot
sanguin dans le flux. La partie discrète du modèle est basée sur la méthode particulaire
appelée la Dynamique des Particules Dissipatives (DPD). En raison de sa nature discrète, la
méthode DPD nous permet de décrire des cellules sanguines individuelles. Cette méthode
est utilisée pour la modélisation de l’écoulement du plasma sanguin, des plaquettes et de
leur agrégation. La partie continue du modèle utilise les équations aux dérivées partielles
pour décrire les concentrations de substances biochimiques dans le plasma et leurs réactions
lors de la coagulation. Plusieurs aspects de la coagulation ont été étudiés: l’agrégation
de plaquettes et son interaction avec les réactions biochimiques de coagulation, l’influence
de la vitesse d’écoulement sur le développement d’un caillot sanguin ainsi que comment
la croissance du caillot s’arrête. Le modèle a montré l’importance de l’interaction entre
l’agrégation de plaquettes et les réactions de coagulation. La vitesse d’écoulement est faible
à l’intérieur des caillots, ce qui permet de déclencher la cascade de coagulation et de renforcer
l’agrégat accroissant par la formation du polymère de fibrine. La pression exercée par le flux
sanguin enlève les parties extérieures du caillot et arrête finalement la croissance.

La partie théorique de la thèse est consacrée à l’analyse mathématique d’un modèle
d’inflam-mation chronique liée à l’athérosclérose. Auparavant, il a été montré que l’inflammation
se propage comme une onde de réaction-diffusion dont les caractéristiques dépendent du
niveau du mauvais cholestérol dans le sang. Dans cette thèse, nous étudions un modèle
décrivant la propagation d’une onde de réaction-diffusion dans le cas 2D avec des conditions
aux limites non-linéaires. Nous utilisons la méthode de Leray-Schauder et des estimations à
priori des solutions afin de prouver l’existence d’ondes dans le cas bistable.

Les simulations numériques réalisées dans le cadre de cette thèse impliquent l’élaboration
des algorithmes numériques pour les modèles mathématiques et le développement des logi-
ciels. Vu le fait que les simulations numériques ont été coûteuse en temps de calcul, des efforts
considérables ont été consacrés à la parallélisation des logiciels et à leur optimisation.

Mots-clés : modèles hybrides, Dissipative Particle Dynamics, équations aux dérivées par-
tielles, coagulation du sang, développement de caillot sanguin, athérosclérose.



Abstract

The thesis is devoted to discrete and continuous modelling of blood flows and related
phenomena such as blood coagulation and atherosclerosis. It includes the development of
mathematical and numerical models of blood coagulation, numerical simulations and the
mathematical analysis of a model problem of chronic inflammation during atherosclerosis.
An important part of the thesis is related to programming, implementation and optimization
of numerical codes.

The main part of the thesis concerns modelling of blood coagulation in vivo which takes
into account blood flows, biochemical reactions in plasma and platelet aggregation. The
main novelty of this work is the development of a hybrid (discrete-continuous) model of
blood coagulation and clot formation in flow. The discrete part of the model is based on a
particle method called Dissipative Particle Dynamics (DPD). Due to the discrete nature of
the DPD method, it allows the description of individual blood cells. This method is used
to model blood plasma flow, platelets suspended in it and platelet aggregation. The con-
tinuous part of the model is based on partial differential equations for the concentrations of
biochemical substances in the blood plasma and their reactions during blood coagulation.
Several aspects of blood coagulation in flow were studied: platelet aggregation and its in-
teraction with coagulation pathways, influence of the flow speed on the clot development, a
possible mechanism by which clot stops growing. The model showed the importance of the
interaction between platelet aggregation and coagulation pathways. Since the flow velocity
is small inside of the platelet clot, it is possible for the coagulation cascade to begin and to
reinforce the growing aggregate by the formation of a fibrin network. The pressure from the
blood flow removes the outer parts of the platelet clot and eventually stops it growth.

The theoretical part of the thesis is devoted to the mathematical analysis of a model of
chronic inflammation related to atherosclerosis. Previously it was shown that inflammation
propagates as a reaction-diffusion wave whose properties depend on the level of bad choles-
terol in blood. In this thesis we study a model problem which describes the propagation of
a reaction-diffusion wave in the 2D case with non-linear boundary conditions. We use the
Leray-Schauder method and a priori estimates of solutions in order to prove the existence of
waves in the bistable case.

Numerical simulations carried out in the framework of this thesis were based on the
numerical implementation of the corresponding models and on the software development.
Since the numerical simulations were computationally expensive, a substantial effort was
directed to software parallelization and optimization.

Key words: hybrid models, Dissipative Particle Dynamics, partial differential equations,
blood coagulation, clot growth, atherosclerosis.
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Chapter 1

Introduction

The thesis is devoted to blood flow modelling with applications to blood coagulation and
atherosclerosis. In this introduction these physiological processes and the state of the art in
their mathematical modelling will be described. The introduction finishes with the presen-
tation of the main results of the thesis.

1.1 Blood flow

1.1.1 Biological background

The blood is one of the largest organs in the body, which performs the essential function
of delivering oxygen and nutrients to all tissues and cells, as well as of taking away the
metabolic waste products. As the cardiovascular system spans through the whole body,
blood has the role of supporting the function of all other body tissues. By transporting
antibodies the blood also makes it possible for the organism to react to and fight infections.
Other functions include coagulation, which is a body’s self-repair mechanism, messenger
functions, by transporting hormones and signalling tissue damage, and regulation of body
pH and temperature. Because of its functions and presence in all tissues of the body, blood
and cardiovascular system are involved with the most pathological events and the related
healing approaches, either as a cause of a disease, as a tissue that can be involved in various
ways with the effects of the disease, as a way to administer the medicine and to counteract or
cure the disease. Due to its important role and involvement in body functions and diseases,
but also due to the easy sampling of blood, it has been in a focus of numerous medical,
biological, chemical, physical, mathematical and pharmaceutical studies, and is probably one
of the most intensively studied organs. Histologically, blood is considered to be a connecting
tissue. However, being a fluid it differs largely from other connecting tissues.
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Figure 1.1: Image of blood cells taken by Scanning Electron Microscope (SEM). From left
to right: erythrocyte, thrombocyte and leukocyte. Electron Microscopy Facility at The
National Cancer Institute at Frederick, 2011.

The blood consists of its fluid component, called plasma, and blood cells that are sus-
pended in the plasma. Blood plasma, which is an aqueous solution of electrolytes, proteins
and small organic molecule like glucose, occupies about 50-60% of the blood volume. The
blood cells (Figure 1.1) which occupy the remaining 40-50% of the blood volume are divided
into erythrocytes (or red blood cells - RBC), thrombocytes (or platelets), and leukocytes (or
white cells). Erythrocytes are the most numerous of blood cells, with concentration of about
5× 1012 per litre of blood, taking about 45% of the blood volume. The value of erythrocyte
volume in total blood is usually referred to as the hematocrit. They are produced in the
red bone marrow of large bones in a process called erythropoiesis, which takes about 7 days.
Their lifespan is about 120 days in a healthy individual, at the end of which erythrocytes
undergo a change in its plasma membrane, making it susceptible to selective recognition by
macrophages and subsequent phagocytosis in the mononuclear phagocyte system. The main
role of erythrocytes is to transport oxygen from the lungs to other tissues. Their cytoplasm
is rich in molecules called haemoglobin, which contain iron allowing them to bind oxygen.
Iron is also responsible for the blood’s red color. Mature erythrocytes do not have nuclei,
and thus have more space for haemoglobin. By not having nucleus they do not contain any
mitochondria. As a result erythrocytes spend no oxygen they carry, making the process of
oxygen transportation more efficient. The normal erythrocyte in a relaxed state has a bicon-
cave discoid shape with a diameter of about 7.65 μm, and a thickness of about 2.84 and 1.44
μm at its thickest part and its centre respectively. The volume of an erythrocyte is about
98 μm3, while its surface area is about 130 μm2. Due to the relatively large surface area
to volume ratio and the visco-elastic properties of their membrane, erythrocytes can greatly
deform without significant strain. The change in shape of erythrocytes can be a result of
mechanical, chemical or thermal effects. Their ability to change shape under external factors
makes erythrocytes suitable for their task of transferring oxygen to tissues, where they flow
through capillaries of much smaller diameter than their own (down to 3 μm).
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Figure 1.2: Morphological changes of washed platelets during ADP induced aggregation. An
aggregation response was obtained by stimulating platelets with 5 μM ADP (arrow). The
platelets were fixed at different time points and their surface features were visualized by
scanning electron microscopy (SEM). (A) Discoid cells in the resting state. (B) Formation
of early pseudopods (7 s). (C) Full shape change and first platelet-platelet interactions (20
s). (D) Large platelet aggregates (45 s). (E) Isolated platelets after disaggregation (3 min).
Bars = 1 μm. Reprinted with permission from [22] – J.-P. Cazenave et al., Methods in
Molecular Biology, Springer, 2004.

The second most numerous type of blood cells is the thrombocyte or platelet. Platelet
concentration is of about 150-440 × 109 per litre of blood. They are discoid anucleate cells
(Figure 1.1), that are much smaller than erythrocytes, having a diameter of about 3 μm,
thickness of about 1 μm and volume of about 7 μm3. The platelets are derived from cells in
the marrow called megakaryocytes and their lifespan in circulation is between 10 and 12 days.
The main role of platelets is the prevention of blood loss, by aggregation at the injury site.
Although their membranes resemble the membrane of an erythrocyte, its detailed structure
and function is much more complex. The external side of the membrane is exceptionally rich
in receptors - GPIb, a primary receptor for von Willebrand factor (vWF) which serves to
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mediate the initial adhesion between the platelets, GPIIb/IIIa which acts as a receptor for
fibrinogen and vWF and others like receptors for ADP and thrombin which also play a role
in the platelet aggregation. Except receptors that are present on the surface of a platelet, a
second mechanism exists to facilitate the platelet aggregation (Figure 1.2). In this process,
known as platelet activation, platelets undergo a shape change from the initial discoid shape
to a more spherical shape with pseudopodia (stellate shape). The drastic change in shape
increases the surface of platelets and thus facilitates surface adhesion interactions. In the
early stages of activation the shape change is still reversible, while after they have undergone
the full transformation, the change becomes irreversible.

The least numerous type of blood cells is the leukocyte, with a concentration of about
5 × 109 per litre of blood. Together with platelets, leukocytes account for 1% of the total
blood volume. They are roughly spherical in shape with a diameter ranging from 7 to 22
μm. Their function is to fight infection in the body through both the destruction of bacteria
and viruses, and the formation of antibodies and sensitized lymphocytes. Leukocytes are
produced in the bone marrow and partially in the lymph tissue. While they are constantly
present in a healthy blood stream, about three times more leukocytes are stored in the bone
marrow, from where they can be rapidly deployed to different parts of the organism in a
case of infection or inflammation. Morphologically, there are five different types of leuko-
cytes, specialized for specific and non-specific reactions on foreign materials in the organism.
The five types of leukocytes are: neutrophils, eosinophils, basophils, monocytes and lym-
phocytes. The first three groups, collectively known as “granulocytes” make 50-75% of the
total number of circulating leukocytes. Granulocytes are responsible for a rapid defensive
response upon detection of foreign materials in the organism. Monocytes and lymphocytes
are responsible for a slower but more powerful defensive reaction. While lymphocytes are
responsible for antigen-specific immune responses, the monocytes have a non-specific phago-
cytic function.

1.1.2 Modelling

Because of its importance, blood was extensively studied on both the macro and the micro
level. A significant part of these studies included modelling of blood flows, in order to investi-
gate blood flow mechanical and bio-chemical properties, as well as blood related phenomena
like blood coagulation or atherosclerosis.

The blood flow characteristics come from three involved parts. The first part are blood
vessels that influence the blood flow by their type, size and elastic properties. There are three
main types of blood vessels: arteries, veins and capillaries. Arteries and veins are larger blood
vessels, which carry the blood away and towards the heart respectively, while capillaries are
smaller blood vessels which enable the exchange of water and chemicals between the blood
and tissues. Arteries and veins contain a muscle layer which allows them to regulate their
inner diameter by its contraction. The second part that influences the blood flow is the
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heartbeat, i.e. the heart produces a pulsatile flow by its periodic contractions. This results
in oscillations in the flow speed and pressure between heartbeats. The third part is blood,
which composition is described in the previous section. All of the three parts - blood vessels,
heartbeat, blood - are very complex systems and are thus in most models described with
different level of details, usually having only one system in the focus of a study.

As a fluid blood is incompressible and has non-Newtonian properties, i.e. its viscosity
depends on the shear rate. Although this property of blood comes from the properties of
erythrocytes and other blood cells, which account for about 45% of blood volume, on the
macro scale blood is usually modelled as a homogeneous fluid. In the classical approaches
blood flow is usually described by partial differential equations, commonly Navier-Stokes
equations [20, 31, 50, 52, 115], which, based on the properties of the fluid (density, viscos-
ity), pressure or body force, and the given domain, give the corresponding velocity field.
Furthermore, continuous approaches use differential equations also to describe phenomena
related to blood flows. Concentrations of various substances are modelled with partial dif-
ferential equations able to describe their diffusion and advection in the blood. Similarly,
the blood cells are considered in terms of concentrations, and their motion is described also
via diffusion and advection [113, 136]. The main disadvantage of continuous approaches is
that they do not describe the interaction between individual blood cells in the flow. These
interactions have an important impact on properties of the blood (blood flow), but they also
play an essential role in many blood flow related phenomena and diseases. Nevertheless, the
significance of continuous models is tremendous, as they give a mathematically well based
and physically precise description of fluid behaviour related to its physical properties and
provide a precise description of behaviour of other substances in the fluid.

Discrete models enable a description of individual cells and their interactions. However,
the hydrodynamic properties in such models either have to be proven by a strict mathe-
matical derivation from conservation laws and continuous hydrodynamic equations, or they
have to be verified by comparison with accurate continuous models. A classical example of
a discrete method is Molecular Dynamics (MD) [2, 60, 103], where the simulated medium is
decomposed on particles represented by their centre of mass. The motion of the system is
then determined by a pair-wise force acting between particles. In MD a single particle usually
describes an atom or molecule. Hence, this method is not very efficient for studying problems
on a larger scale (ex. blood flow). However, many other discrete methods were developed
or adapted in order to describe complex fluids in larger domains [2, 24, 34, 55, 105, 137].
Usually such methods are referred to as meso-scale methods, because they model the com-
plex structure of a fluid on a micro-scale, while they are still efficient for studying its effects
on a macro-scale. This approach is called “coarse-graining” - the process of representing a
system with fewer degrees of freedom than those actually present in the system [39, 105].
Many of such methods are not strictly mathematically derived but are rather constructed in
order to satisfy certain conservation laws and symmetries that are considered to be essential
for the observed phenomena. Since the interest in this area began thirty years ago, a lot of
meso-scale methods and their specialised variants have been developed and a lot of effort
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has been made in order to succumb their potential flaws, as well as to justify their definition
by deriving them from continuous methods and conservation lows. One of the most suc-
cessful and generally used methods is Dissipative Particle Dynamics (DPD) which was first
described by Hoogerbrugge and Koelman in 1992 [61, 105]. By its definition DPD is a mass
and momentum conservative method, and it produces a correct hydrodynamic behaviour,
which was verified both analytically and by simulations. In its original description DPD
method does not conserve the energy of the system, due to its definition of dissipative and
random forces. However, a rigorous theoretical justification was later given by Español and
Warren. In 1995 they derived the correct fluctuation dissipation relation for the friction and
noise terms, while the same year Español has derived the hydrodynamic equations for the
mass and momentum density fields. Since then the interest in DPD continued leading to
further justifications of the method, establishing relations to other methods, like Smoothed
Particle Hydrodynamics [39, 40, 105], the introduction of new integration methods for equa-
tions of motion, such as the modified Velocity-Verlet algorithm [56], and a vast number of
applications. The behaviour of DPD method, as well as its suitability for the problem of fluid
simulation is well described in literature [44, 45, 56, 72, 105]. In [44, 45] DPD simulation
results are compared with the results obtained by using continuous methods (Navier-Stokes
and Stokes equations) for Couette, Poiseuille, square-cavity and triangular-cavity flows.

Because erythrocytes constitute 95% of all cells in the blood, and occupy about 45%
of the blood volume, as well as because of their complex structure and deformability, they
are the most interesting blood cells to model. Therefore, most of the models of blood
flow which are able to describe individual blood cells and their interactions were aimed to
describe the motion of erythrocytes. Among these studies, erythrocyte membrane models
are presented and the results are compared to known erythrocyte behaviour in different
conditions. One of the behaviours is observed in Poiseuille flow in a micro-channel where
erythrocytes take the characteristic parachute shape. This aspect was captured by both 2D
and 3D RBC membrane models [62, 46, 47, 85, 87, 100, 119]. Other experimentally observed
behaviours are RBC tumbling and tank-threading motion, as well as the erythrocyte response
to stretching. These properties were successfully captured by 3D erythrocyte membrane
models [21, 33, 46, 47, 48, 63, 100]. All these behaviours are mainly related to a single
erythrocyte in the flow. The number of studies concerning blood flow in larger vessels,
where blood is modelled as a suspension of blood cells in plasma, is much lower. Except the
increased complexity of the problem, due to the cell collisions in flow, the reason is also the
high computational demand that such models impose in larger domains (vessels) because
of a large number of simulated cells. However, these studies are important to explain the
behaviour of blood in the flow and its non-Newtonian properties. One of the most interesting
topics is definitely the distribution of blood cells in the flow, and the mechanism which
determines the distribution. As a result, erythrocytes occupy the bulk of the flow and are
transferred faster due to higher velocity near the flow axis, while the platelets and leukocytes
flow closer to the vessel wall. The proximity of platelets and leukocytes to the vessel wall
plays an important role in many processes that occur in the vascular system, like blood
coagulation and atherosclerosis.
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Figure 1.3: Left: a biconcave shape of RBC (Centers for Disease Control and Prevention,
Public Health Image Library, Janice Carr). Right: Erythrocyte dimensions. Reprinted with
permission from [104] – A.M. Robertson et al., Oberwolfach Seminars, Birkhäuser Verlag
Basel, 2008.

Computational studies have been done in order to simulate this feature of blood flow
which corresponds to the experimental observation of concentration of RBCs at the flow axis.
Tsubota et al. [119] presented a two-dimensional particle model for blood flows between two
parallel rigid plates. The moving particle semi-explicit (MPS) method was used to analyse
the blood plasma flow. RBC was modelled as a deformable elastic membrane consisting of
particles with the elastic energy depending on the distance between them, the angle between
the neighbouring elements and the conservation of the membrane area. The simulation re-
sults demonstrated that RBCs concentrate near the flow axis forming the cell free layer near
the boundaries. In a more recent work of Zhang et al. [140] another approach is used.
Two-dimensional blood flow is simulated using the immersed-boundary lattice Boltzmann
algorithm. Following Bagchi [12], RBCs are modelled as two-dimensional deformable bicon-
cave membranes, while inter-cellular interactions are modelled using the Morse potential. In
addition to the presence of the cell free layer it is shown that this layer thickness increases
with cell deformability. In their work a known effect of erythrocytes migration toward the
flow axis was observed, while platelets and their behaviour were not considered. AlMomani
et al. [3] used the computational fluid dynamics (CFD) model to perform micro-scale simu-
lations of platelet-RBC interactions in a shear flow. RBCs are assumed to be incompressible
elliptical particles that retain elliptical shape during deformation by imposed shear stresses
and platelets are assumed to be rigid particles of circular shape. The interaction between
neighbouring particles is due to repulsive forces from a “soft” potential. It is shown that
the concentration of platelets increases near the boundary, while erythrocytes are located
near the flow axis. It was also found that the platelets behaviour is affected by the relative
differences in the size of platelets and RBCs, but not by the differences in shape. Values
of hematocrit were set to be 5%, 10% and 15%, which are lower than the normal hema-
tocrit level in blood. Furthermore, it was observed that the migratory effect is absent at
low hematocrit values (e.g., Ht = 5%), but occurs at higher values (e.g., Ht = 10%) and
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becomes more evident as the hematocrit value increases. Another study [29] was devoted to
a two-dimensional numerical investigation of the lateral platelet motion induced by RBCs.
In that study a combination of the lattice Boltzmann method for fluid motion and Immersed
Boundary method was used for the implementation of interaction between fluid and elastic
objects suspended in or in contact with the fluid. A deformable elastic RBCs membrane was
modelled following the Skalak [109] approach, while platelets were modelled as approximately
rigid circular objects. Simulations were carried out for the following values of hametocrit:
0%, 20% and 40%. In the case of the RBC absence there was a negligible amount of lateral
motion, however it was clearly shown that a near-wall increase in the platelet concentration
occurs rapidly (within the first 400 ms) at both 20% and 40% hematocrits. In [15, 16] a
three-dimensional discrete model that includes the simulation of blood as a suspension of ery-
throcytes and platelets in the blood plasma was used. Dissipative Particle Dynamics (DPD)
method was used to carry out simulations of blood flow in a cylindrical vessel. RBCs were
modelled as elastic highly deformable membranes. In contrast with [44], where a platelet is
modelled as a rigid or almost rigid body, platelets were considered as elastic, although near
spherical, membranes. The work investigates interaction between RBCs and platelets in flow
and their distribution in the cross section of the vessel.

Figure 1.4: Left: Erythrocytes (larger cells) and platelets (smaller cells), suspended in blood
plasma (not shown), in a flow through a 3D cylindrical channel, simulated by DPD method.
Middle: Erythrocytes and a leukocyte (white cell) in a flow. Right: The distribution of
erythrocytes and platelets as the function of distance from the flow axis. Reprinted with
permission from [16] – N. Bessonov et al., Mathematical Modelling of Natural Phenomena,
Cambridge University Press, 2014.

The distribution of platelets in flow, as shown in Figure 1.4, makes platelets naturally
available at the site where they are most needed in the case of a vessel injury. Hence, the
positioning of platelets makes the response of the organism to stop the bleeding, through
the processes of platelet aggregation and blood coagulation, much more effective. Similarly,
the distribution of leukocytes, which roll next to the vessel wall, makes it possible for them
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to exit the vessel, by the process of extravasation, and to go to the site of tissue damage
or infection. This mechanism is also relevant for atherosclerosis, as monocytes are recruited
from the blood flow and integrated in the vessel wall intima in a response to the vessel wall
inflammation.

1.2 Blood coagulation

1.2.1 Biological background

Hemostasis is a protective physiological mechanism that functions to stop bleeding upon vas-
cular injury by sealing the wound with aggregates of specialized blood cells, platelets, and
with gelatinous fibrin clots. Disorders of this system are the leading immediate cause of mor-
tality and morbidity in the modern society. The most prominent of them is thrombosis, the
intravascular formation of clots that obstruct the blood flow in vessels. The life-threatening
clot formation is an ubiquitous complication or even a cause of numerous diseases and condi-
tions such as atherosclerosis, trauma, stroke, infarction, cancer, sepsis and others. To provide
only one example, 70% of sudden cardiac deaths are due to thrombosis [32] and they annu-
ally kill approximately 400 000 people in the United States only [88]. The development of
thrombosis diagnostics and antithrombotic therapy is hampered by the incredible complexity
of the hemostatic system comprising thousands of biochemical reactions of coagulation and
platelet signalling that occur in the presence of the spatial heterogeneity, cell reorganization
and blood flow. The most promising pathway to resolving this problem is systems biology, a
novel multidisciplinary science aimed at quantitative analysis and understanding of complex
biological systems with the help of high-throughput experimental methods and computa-
tional modelling approaches. During the last 20 years, the hemostasis system was a subject
of intense interest in this field; reviews are available that describe these theoretical studies of
blood coagulation [9, 93] and platelet-dependent hemostasis and thrombosis [93, 130, 135]. In
recent years, computational modelling of coagulation has become a very widely used tool for
investigating the mechanisms of drug action, optimization of therapy, analysis of drug-drug
interaction at early stages (e.g. see recent examples for direct factor Xa inhibitors, novel
anti-TFPI aptamer and recombinant activated factor VIII [90, 96, 108]). However, numerous
problems remain. There is currently no mathematical model that could adequately account
for all innumerable aspects of thrombosis and hemostasis; even the best ones usually use
very unreliable assumptions about platelets, biochemistry and hydrodynamics. Finding a
solution to these problems requires close cooperation between specialists in the hemostasis
field and those in computational mathematics.

The two principal components of hemostasis are: i) platelets, specialized cells that
adhere to the damaged tissue and form a primary plug reducing blood loss; ii) blood coagu-
lation, a complex reaction network that turns fluid plasma into a solid fibrin gel to completely
seal the wound. Maintaining the delicate balance between the fluid and the solid states of
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blood is not simple, and a lion’s share among the causes of mortality and morbidity in the
modern society belongs to hemostatic disorders. The leading one is thrombosis, intravascular
formation of platelet-fibrin clots that obstruct the blood flow in vessels. The major obstacle
for the prevention and treatment of thrombosis is the insufficient knowledge of its regulation
mechanisms. Platelet aggregation and blood coagulation are extremely complex processes.
Attachment of platelets and their accumulation into a clot is regulated by mechanical inter-
actions with erythrocytes and the vessel wall, by numerous chemical agents such as thrombin,
or ADP, or prostaglandins, or collagen, as well as by an enormous network of intracellular
signalling. Blood coagulation is only marginally simpler, including some fifty proteins that
interact with each other and with the blood or vascular cells in approximately two hundred
reactions in the presence of flow and diffusion.

Figure 1.5: A simplified scheme showing the main stages of the process of injured vessel
healing.

Although extensive research during the last decades has identified many key players in
the hemostatic system, the regulation of hemostasis and thrombosis remains poorly under-
stood. It is extremely difficult to relate a protein or a reaction in such a complex system to
the functioning of the system as a whole. The most crucial unresolved problem is the very
difference between hemostasis and thrombosis. All existing anticoagulants cannot tell them
apart and target indiscriminately (that is why it is impossible to prevent coronary artery
thrombosis simply by putting all persons in high risk groups on anticoagulation therapy:
the possibility of death from external bleeding or a cerebral hemorrhage would become too
high). If we knew these mechanisms, it would be possible to target them specifically in
order to inhibit intravascular thrombi and prevent the blood vessel occlusion while leaving
the hemostatic functions relatively intact. The most advanced and powerful pathway to de-
composing complex systems in systems biology is developing a comprehensive mathematical
model and then subjecting it to a sensitivity analysis in a sort of ”middle-out” approach;
an example of the modular decomposition for the blood coagulation cascade can be found
in [94]. The most important problem hampering the application of this solution lies in the
facet that thrombosis and hemostasis cannot be completely understood without combining
all three essential elements: platelets, coagulation, and flow. Blood platelets form hemo-
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static plugs and thrombi by aggregation. This process cannot proceed without flow, and
is strongly dependent on the platelet-erythrocyte interaction in the presence of flow [112].
Blood coagulation is important for the platelet plug formation, because thrombin is one of
the main activators of platelets ensuring clot/plug stability, and because the fibrin network
solidifies the cell aggregate. In contrast, blood coagulation is strongly inhibited by flow.
Active coagulation factors are removed from the site of injury to such a degree that no fibrin
clot can be formed at a physiological arterial shear rate [107]. Therefore, the clot formation
in the presence of a rapid flow requires platelets that mechanically protect coagulation from
the flow, provide binding sites for coagulation factors and secrete substances that participate
in coagulation such as fibrinogen, factor V, Xi, etc.

One of the most intriguing problems in the field of thrombosis is the problem of reg-
ulating the clot size. While the mechanisms of clot growth became well established during
the last decade [64], it is not clear how and when a clot stops growing in order to avoid a
complete vessel occlusion. One thing that is firmly established is that an occlusion does not
always occur: while the popular experimental model of ferric-chloride induced damage of the
carotid artery usually ends with occlusion [82], there is no occlusion in the laser-induced in-
jury model of thrombosis in small arterioles [43]. Numerous hypotheses have been proposed
to explain the mechanism by which the clot stops growing (e.g. the role of thrombomodulin
[95]). One of the most intriguing ones is the role of fibrin clot - platelet clot interaction: it
suggests the formation of a fibrin cap on the surface of the clot that prevents further the
platelet accumulation [71]. However, the formation of fibrin on the surface of the clot is
unlikely because of high shear rates that remove active coagulation factors [107]. In other
words, the fibrin formation can occur only under the protection of platelets and this prevents
the formation of the fibrin cap on the surface of the platelet clot.

Pathways. Blood coagulation is a complex process involving plasma proteins, called “co-
agulation factors”, with the purpose to completely seal the wound. In the case of injury,
the blood factors interact in a highly predetermined order, and it is because of this that the
blood coagulation regulatory network is sometimes referred to as “the coagulation cascade”.
This series of interactions enables the transformation of a blood factor fibrinogen to its poly-
merized state called “fibrin polymer”. The purpose of fibrin polymer is to reinforce a platelet
aggregate at the injury site, making it more resistant and stronger, thus giving the injured
tissue time to heal. Because of its function and structure the polymerized fibrin reinforcing
the clot is often referred to as “the fibrin net”. The coagulation factors are generally di-
vided into two groups – zymogens and cofactors. The zymogens are inactive plasma proteins
which are, in the presence of other enzymes, transformed to active enzymes. The cofactors
are proteins which act as accelerators or catalysts for other enzymatic reactions. However,
some blood factors cannot be classified neither as zymogens nor cofactors. One of these
exceptions is fibrinogen which is transformed to fibrin, which has no enzymatic properties.
Coagulation factors are referred to by a system of Roman numerals and when activated are
denoted by the suffix a.
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Figure 1.6: Coagulation pathways in vitro - extrinstic, intristic and common. Reprinted with
permission from [92] – C.J. Pallister and M.S. Watson, Scion Publishing Ltd, 2011.

With a view to detecting abnormalities in blood clotting two different in vitro screening
test were developed: in 1935 A.J. Quick et al described a method based on the prothrom-
bin time (PT) [102], while in 1953 R.D. Langdell et al described another screening method
based on the activated partial thromboplastin time (APTT) [79]. The two methods how-
ever yielded different observations about the process of blood coagulation. This led to the
development of two distinct blood coagulation pathways – the extrinsic pathway for PT and
the intrinsic pathway for APTT. Both pathways converge to a so called common pathway
as shown in Figure 1.6. The main difference between the two pathways is in the way the
blood coagulation is initiated. The intrinsic pathway is triggered by a contact of flowing
blood with a negatively charged surface, such as glass, in which factor XII gets activated
and the intrinsic reaction cascade is started. In the extrinsic pathway the process is initiated
by tissue damage and with the release of tissue factor which forms a complex with both
factor VII and factor VIIa. These complexes accelerate the activation of factor VII and with
it the activation of factor X. In the common pathway, once the factor X gets activated it
induces the production of trombin enzyme from prothrombin. Thrombin then acts as the
enzyme in the transformation of fibrinogen to fibrin. As thrombin has multiple enzymatic
activities, including direct activation of factors which are responsible for factor X activa-
tion, it also accelerates its own production resulting in an explosive increase in the rate of
coagulation.

Although the classical model of coagulation pathway, consisting of intrinsic, extrinsic
and common pathways, has been very important for understanding the results of laboratory
screenings, it does not exist as such in vivo. Hence a new model was developed in order to
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describe blood coagulation in vivo. The model consists of two phases – the initiation phase,
followed by the amplification phase. The scheme of each phase is given in Figure 1.7. The
main physiological activator of blood coagulation in vivo is tissue factor. It is expressed on
sub-endothelial fibroblasts, injured vascular endothelium and activated monocytes. Hence,
in the initiation phase the exposed tissue factor binds with activated factor VIIa to form
a complex called “the extrinsic tenase complex”. The complex activates factors IX and X
in a low amount, substantial only for the initiation of a low rate of thrombin production.
At this point the level of thrombin is still insufficient to sustain the generation of fibrin at
a high rate, and instead it mediates in the activation of factors V and VIII. The formed
extrinsic tenase complex is rapidly inactivated by the formation of a complex with factor Xa

and by tissue factor pathway inhibitor (TFPI). In the amplification phase factors IXa and
VIIIa bind to form the intrinsic tenase complex. The complex prompts the rapid generation
of factor Xa, which is followed by the generation of another complex consisting of factors
Xa, Va, calcium ions and platelet phospholipid, called the prothrombinase complex. The
prothrombinase complex induces prothrombin activation to form thrombin. As thrombin
acts as the enzyme in the activation of factors V, VIII, XI, it also implicitly accelerates its
own production. The generated thrombin enables the formation of fibrin from fibrinogen.
Fibrin monomers are then polymerized in the presence of factor XIIIa, whose production is
also induced by thrombin.

Figure 1.7: Coagulation pathways in vivo - initiation and amplification phase. Reprinted
with permission from [92] – C.J. Pallister and M.S. Watson, Scion Publishing Ltd, 2011.

1.2.2 Modelling

From the modelling point of view, various approaches have been used so far in an attempt to
model blood coagulation. They can be divided in three main groups - continuous models, dis-
crete models and hybrid models. Continuous models rely on a vast mathematical knowledge
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of partial differential equations and numerical schemes used to solve them [1, 4, 5, 17, 58, 115].
Using PDEs, the hydrodynamic flows can be precisely described, as well as the propagation
of blood factors in the blood flow. On the other hand, clot growth depends highly on the
blood cells – first of them being platelets as the primary building material of the clot, but also
on erythrocytes which also strongly influence the blood flow, blood viscosity and the distri-
bution of platelets in flow. Due to the more discrete nature of the clot formation, continuous
models were unable to capture cell interactions and processes like the rupture of a clot. In
discrete approaches the most of the used methods consider the simulated medium to consist
of particles, usually representing atoms, molecules, small lumps of the medium or cells. This
allows the description of a heterogeneous medium while keeping the ability to approximate
its hydrodynamic properties in the flow [99, 119]. The difficulty arises with the modelling
of the complex regulatory network of proteins involved in coagulation and their transport in
the flow. Here comes the idea of developing hybrid models which would use both continuous
and discrete methods with the intention of coupling their strengths and avoiding as much
as possible their downfalls. Among the hybrid models various approaches have been used,
each of them taking their own ratio of continuous and discrete parts. A number of hybrid
methods use the continuous concept to model blood flow and propagation of blood factors in
it, while the discrete concept is used to model blood cells and interactions between them. In
[51, 98, 111, 131, 132, 133, 134] the blood flow is described by Navier-Stokes equations. The
motion of blood cells in the blood flow then follows from the calculated velocity field. As the
flow simulation domain changes because of the clot development, the Immersed Boundary
(IB) method is often used. The protein cascade is described with a system of differential
equations, each equation describing a concentration of a single blood factor. Blood cells and
their interactions are modelled with a discrete method like Cellular Potts Method (CPM)
[131, 132, 133, 134] or with the method of Subcellular Elements (SCE) [111]. Another hybrid
approach is to model the blood flow (blood plasma and blood cells) with a discrete method
and to model the regulatory network of blood factors by a system of PDEs. One of the early
works applying this method is [49].

Another important aspect of modelling blood coagulation concerns the biological as-
sumptions of the model. In the past, one of the main assumptions was that platelets are
first activated and then they begin to aggregate [49, 50, 64, 65, 99, 98, 131, 132, 133, 134].
Platelet activation can occur either because of their interaction with other activated platelets
[98, 99] or with biochemical substances in blood plasma [49, 50, 131, 132, 133, 134]. However,
recent results show that activation may not precede aggregation [65, 66, 67, 68, 69, 77, 138].
Platelet activation is not instantaneous and it can take some time (from several seconds up
to one minute according to various estimates [53]), while platelet aggregation begins right
after the injury. Moreover, if activation happens before aggregation, then it should occur at
some distance from the injury site in the direction against the flow. This assumption implies
that the biochemical compounds, which activate platelets, diffuse in the direction opposite
to the flow. If the flow speed is sufficiently high, this assumption becomes unrealistic. Thus
we come to the conclusion that platelets can aggregate in the clot without activation. This
is confirmed by biological observations [65, 66, 67, 68, 69, 77, 138]. First, platelets are con-
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nected by weak reversible bonds due to GPIb receptors. A new platelet coming from the flow
can roll at the surface of the clot, slowing down because of these weak reversible connections.
When it stops, other receptors (integrin) create more stable connections due to platelet ac-
tivation. Finally, platelets can be covered by fibrin net, which fixes them completely in the
clot. Thus we consider another concept of clot growth where platelet activation does not pre-
cede platelet aggregation but, on the contrary, follows the first stage of clot formation. One
of the main objectives of this work is to test this hypothesis in numerical simulations.

The previously mentioned mechanism of the clot growth arrest (see above) is described
and tested in this work. At the first stage of the clot growth, platelets aggregate without
activation, providing a possibility for chemical reactions to start. Indeed, platelet aggregation
in the growing clot essentially decreases the flow velocity inside it, and chemical compounds
are not removed by the flow, or at least, removed to the lesser extent [115]. Coagulation
reactions result in the development of the fibrin net which covers platelets inside the growing
clot. On one hand, it reinforces platelet attachment in the clot, on the other hand, platelets
covered by fibrin cannot attach other platelets, and fibrin itself is a poor substrate that does
not support further formation of thrombi [71]. Since coagulation reactions occur inside the
clot but not close to its outer surface because of the flow, the growing clot consists of two
parts: the inner part covered with fibrin and the outer part without fibrin. Platelets are
aggregated due to reversible connections in the outer part. If the clot becomes sufficiently
large, flow pressure can break it and remove the outer part. Only the inner part covered by
fibrin remains. It does not attach new platelets, and the clot stops growing.

1.3 Atherosclerosis

1.3.1 Biological background

Atherosclerosis is a syndrome in which an artery wall thickens as a result of the accumulation
of cholesterol and triglyceride. It is a slowly developing cardiovascular disease with often
fatal consequences. This is mainly because atherosclerosis remains asymptomatic, often for
decades, before reaching the chronic stage. Chronic atherosclerosis is the most common cause
of cardiovascular diseases, namely: heart attacks, strokes and peripheral vascular diseases.
This group of diseases is the leading cause of deaths worldwide. In atherosclerosis the reasons
for such a high mortality are numerous. First of them being the lack of understanding of the
processes related to its development. An additional reason lays in the long period during
which disease develops without showing any characteristic and easily noticeable symptoms.
In many cases the first clear symptom is either a heart attack, a stroke, or a sudden cardiac
death (death within one hour of the onset of acute symptoms). Also, due to the limited
understanding of the atherosclerosis syndrome and its asymptomatic nature, it is rather
difficult to detect the disease in its early stages, assess the stage of the disease and to stop
or cure it. Therefore, further investigation of the disease is of a high importance.
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Figure 1.8: Left: Blood vessel and atherosclerotic plaque in the cross section. Reprinted with
permission from [83] – Z. Mallat and A. Tedgui, Medecine/Sciences, Editions EDK/Groupe
EDP Sciences, 2004. Right: Schematic of the regulatory network of atherosclerosis.
Reprinted with permission from [91] – B. Østerud and E. Bjørklid, Physiological Reviews,
American Physiological Society , 2003.

The schematic of the regulatory network of atherosclerosis is shown in Figure 1.8 (right),
while the process of development of atherosclerotic plaque is depicted in 1.9. Low-density
lipoproteins (LDL) enable the transport of different fat molecules, including cholesterol,
phospholipids and triglycerides, from the liver to the tissues of the body. When a cell re-
quires additional cholesterol it synthesizes the necessary LDL receptors, and inserts them
into the plasma membrane. LDL particles in the bloodstream bind to these extracellu-
lar LDL receptors. However, LDL can enter the intima of the vessel wall from the blood
flow. Once in the vessel wall, LDL particles and their content become more susceptible
to oxidation by free radicals. The damage caused by the oxidized LDL molecules triggers
a signal that attracts monocytes from the blood stream. Monocytes then enter the blood
vessel intima by a process of extravasation (movement of leukocytes or monocytes from the
circulatory system towards the site of tissue damage or infection). There they differenti-
ate to macrophages, cells whose function is to engulf cellular debris and pathogens in a
process called phagocytosis, and to brake them down using enzymes. After differentiation,
macrophages absorb the oxidized LDL. However, as they are unable to process the oxidized
LDL, they eventually transform into so-called foam cells (lipid-laden cells), which slowly ac-
cumulate in the vessel wall. A large amount of foam cells at the same place in the vessel wall
has a twofold effect on the vessel: first, it thickens the vessel wall and causes the narrowing
of the lumen of the vessel, and second, it starts a chronic inflammatory reaction. The chronic
inflammatory reaction is an auto-amplification process which begins when foam cells start
to secrete pro-inflammatory cytokines (e.g., TNF-α, IL-1). Pro-inflammatory cytokines in-
crease endothelial cells activation, promote the recruitment of new monocytes and support
the production of new pro-inflammatory cytokines. This auto-amplification phenomenon is
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compensated by an anti-inflammatory phenomenon mediated by the anti-inflammatory cy-
tokines (e.g., IL-10). The anti-inflammation process is twofold: biochemical and mechanical.
In the biochemical anti-inflammation part of the process the anti-inflammatory cytokines
inhibit the production of pro-inflammatory cytokines. The mechanical anti-inflammation
consists of the proliferation and the migration of smooth muscle cells to create a fibrous
cap over the lipid deposit, and of the formation of atherosclerotic plaque. The fibrin cap
isolates the lipid deposit from the blood flow. Potential necrotic death of foam cells in the
lipid deposit results in the formation of a necrotic center of atherosclerosis and significantly
stimulates the inflammatory reaction. The thickening of the vessel wall and the formation
of the hard fibrous cap change significantly the geometry of the vessel. As plaque grows it
narrows the vessel lumen, which increases the flow pressure on the plaque and its fibrous
cap. Because of the increased pressure in cases of a large plaque, the fibrin cap can break
and release tissue factor and the contents of the plaque in the blood flow. In the case of
the plaque rupture, its solid parts can go to the blood stream and cause a stroke or a heart
attack. The rupture also induces coagulation at the site where the vessel lumen is already
narrowed by the plaque, further increasing the stenosis. Additionally, as it occurs on the
less elastic fibrous cap, there is an increased probability of clot rupture and the formation of
embolus with fatal consequences.

Figure 1.9: Schematic of the process of atherosclerotic plaque development. Reprinted with
permission from [10] – M.V. Autieri, ISRN Vascular Medicine, Hindawi, 2012.

1.3.2 Modelling

The development of atherosclerosis is closely related to the characteristics of the blood flow,
the composition of blood, the distribution of blood cells (especially monocytes), as well as to
the process of blood coagulation. More precisely, the vessel wall thickens as monocytes, which
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roll on the inner surface of the vessel, enter the vessel wall intima in a response to the bad
cholesterol accumulation. Furthermore, at a chronic stage of atherosclerosis the thickening
of the vessel wall can be severe and result in a remodelling of the vessel and significant
changes in the flow configuration at the inflammation site. Due to the vessel remodelling
the stress from the flow on the vessel wall at the inflammation site can significantly increase,
leading to a rupture of the thrombotic plaque. The parts of the ruptured plaque can lead
to a stroke or a heart attack. Additionally, the blood coagulation process will begin and a
clot will form at the inflammation site, increasing further the stenosis of the vessel. In this
case, the otherwise normal coagulation process can be compromised by the altered vessel
wall properties (plaque) and stenosis, possibly leading to further complications such as clot
rupture or vascular occlusion. Because of this the modelling of atherosclerosis is closely
related to modelling of the blood flow, blood cells, and blood coagulation.

Another aspect of studying the development of atherosclerosis is related to chronic in-
flammation. The theory of atherosclerosis as an inflammatory disease is well accepted [35],
although the process is not yet completely understood and other theories have also been de-
veloped in the last decades. The inflammatory aspect of atherosclerosis makes it suitable for
modelling and studying with partial differential equations. This approach allows to describe
the inflammation propagation as a wave solution of a parabolic partial differential equation.
Depending on the initial conditions, the system can stay in the disease free equilibrium,
or a travelling wave propagation can occur, which corresponds to a chronic inflammatory
response.

In the simplest, one-dimensional model atherosclerosis can be represented by a system
of two ordinary differential equations [35, 121]:

dM

dt
= f1(A)− λ1M,

dA

dt
= f2(A)M − λ2A,

(1.1)

where M denotes the concentration of monocytes and macrophages, and A the concen-
tration of cytokines secreted by immune cells, x ∈ [0, L]. The functions f1(A) and f2(A)
describe the qualitative properties of the system described above:

f1(A) =
α1 + β1A

1 + A/τ1
,

f2(A) =
α2A

1 + A/τ2
.

(1.2)

The function f1(A) describes the rate at which monocytes are attracted to the vessel
wall by pro-inflammatory cytokines. α1 = f1(0) corresponds to the amount of monocytes at-
tracted due to the presence of oxidized LDL. β1 represents the auto-amplification effect that



1.3. ATHEROSCLEROSIS 19

occurs as monocytes secrete more pro-inflammatory cytokines that attract even more mono-
cytes to the inflammation site. The factor 1+A/τ1 represents the mechanical obstruction of
the recruitment of new monocytes due to the formation of a fibrous cap, where τ1 denotes
the characteristic time of the fibrous cap formation. Term f2(A)M modells the cytokine
production rate, where α2A describes the auto-promoted secretion of pro-inflammatory cy-
tokines, and 1+A/τ2 describes the inhibition of the pro-inflammatory cytokine secretion by
anti-inflammatory cytokines. Here τ2 represents the time that is necessary for the inhibition
to commence. λ1 and λ2 denote the degradation rates of immune cells and cytokines respec-
tively, while d1 and d2 describe the corresponding diffusion (or cell displacement) rates in
the vessel intima.

Figure 1.10: Three possible situations depending on the level of ox-LDL: one stable stationary
point (left), three stationary points, two of them are stable (middle), two stationary points,
stable and unstable (right). Reprinted with permission from [35] – N. El Khatib et al.,
Mathematical Modelling of Natural Phenomena, Cambridge University Press, 2007.

The system (1.1)-(1.2) can have one to three stationary points, depending on the level
of oxidized LDL. The three possible situations are shown in Figure 1.10. The first situation
(Figure 1.10 (left)) corresponds to the case when α1 is small, i.e. there is a low initial
concentration of oxidized LDL. It this case E0 is the only stationary point, and it is stable,
which means that chronic inflammatory reaction does not occur. In the second situation
(Figure 1.10 (middle)) the value of α1 is intermediate, and there are three stationary points:
E0 and Er are stable, while El is unstable. In this bistable case the system will reach E0 for
low, and Er for high initial values. Therefore, the chronic inflammation can occur only if the
initial values are larger than a certain threshold. The third situation (Figure 1.10 (right))
corresponds to the case when the value of α1 is large. In this case E0 is an unstable and
Er is a stable point. This is a monostable case in which even a small perturbation from the
non-inflammatory state E0 leads to the chronic inflammation state Er.

If the diffusion of cytokines and the random displacement of monocytes and macrophages
in the intima are taken into account, from model equations (1.1) the following equations are
obtained:
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∂M

∂t
= d1

∂2M

∂x2
+ f1(A)− λ1M,

∂A

∂t
= d2

∂2A

∂x2
+ f2(A)M − λ2A,

(1.3)

where d1 is the cell displacement coefficient, d2 is the cytokine diffusion coefficient, and
the definition of functions f1(A) remains unchanged f2(A) (equations (1.2)). The existence of
the travelling wave solution for the reaction diffusion system (1.2)-(1.3) is proven in [35].

Although, the inflammatory reaction in atherosclerosis occurs in the vessel intima, the
one-dimensional model (equations (1.2) and (1.3)) does not take into account the process
of extravasation, by which monocytes from the blood flow enter the vessel intima. Hence,
a two-dimensional model was proposed in [36, 37, 38], where the recruitment of monocytes
is described in terms of a boundary condition. The domain of the model is an infinite strip
Ω = {(x, y) : −∞ < x < ∞, 0 ≤ y ≤ h} which represents again the vessel intima, where h
denotes its thickness. The model is then described by the following system of equations:

∂M

∂t
= dMΔM + βM,

∂A

∂t
= dAΔA+ f(A)M − γA+ bs.

(1.4)

with the corresponding boundary conditions:

y = 0 :
∂M

∂y
= 0,

∂A

∂y
= 0,

y = h :
∂M

∂y
= g(A),

∂A

∂y
= 0.

(1.5)

The boundary conditions at y = 0 are homogeneous Neumann as they describe the
condition with no flux of monocytes and cytokines through the boundary. At y = h the
flux of monocytes is non-zero and depends on the level of cytokines, while there is again
no flux of cytokines. The system (1.4)-(1.5) is a reaction-diffusion system in an unbounded
domain with non-linear boundary conditions. As such the classical results for semi-linear
parabolic problems (Volpert et al. 2000) [122] are not applicable to this problem. Therefore,
in [37, 38] the existence of a travelling wave is proven in the monostable case. Additionally, it
is numerically shown [37, 38] that as h goes to zero, the solution of the 2D problem converges
to the solution of the above mentioned 1D problem [35].
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1.4 Main results of the thesis

The main subject of this thesis is the modelling of blood flow related phenomena by using
hybrid models. More precisely, a mathematical hybrid model is developed to study the
biological process of blood coagulation. The second chapter contains the description of a
discrete method, called Dissipative Particle Dynamics (DPD), which is a particle method
used to model the flow of blood plasma. The description of the method is followed by a
description of integration schemes for equations of motions, containing a novel integration
scheme for DPD, which allows a significant increase of the time step for DPD. In Section 2.2
methods of measuring physical properties in simulations are explained. As in DPD method
modelling of boundaries can pose a problem, Section 2.3 contains descriptions of multiple
ways to implement no-slip boundary conditions in DPD. The final section of the first chapter
(Section 2.4) discusses the modelling of the erythrocyte membrane in DPD for both 2D and
3D case.

The third and fourth chapter concern the modelling of blood coagulation in flow. In the
Chapter 3 a discrete model of clot growth in flow is described. In the model, blood plasma
and platelets are modelled by the DPD method, while the platelet aggregation is modelled
by Hooke’s law. The model is used to study several approaches to modelling different inter-
platelet bonds. Furthermore, it is used for a preliminary study of a possible mechanism of
growth arrest of the platelet clot, which will be further studied in hybrid models. Chapter
4 describes two hybrid (discrete-continuous) models. Section 4.1 describes the first hybrid
model. The discrete part of the model uses DPD to describe platelets suspended in the
plasma flow, while the continuous part consists of a single reaction-diffusion-advection equa-
tion which describes the concentration of fibrin. The model is used to calibrate parameters
and methods used to combine the discrete and the continuous parts of the model, as well
as to study the interaction between the platelet aggregate and a blood factor concentration
in flow. In Section 4.2 the second hybrid model is described. Instead of the single reaction-
diffusion-advection equation, the blood coagulation pathways are modelled by a system of
three equations. The system simulates the main characteristics of the coagulation cascade:
the self-accelerated thrombin production from prothrombin, the influence of thrombin con-
centration on the transformation of fibrinogen to fibrin, and the influence of the flow on
concentrations of blood factors. The model is used to study the influence of the platelet clot
formation on the blood factor concentrations in flow. It showed the importance of the inter-
action between the platelet aggregation and coagulation pathways. Since the flow velocity
is small inside the platelet clot, it is possible for the coagulation cascade to begin and to
reinforce the growing aggregate by the formation of a fibrin network. The pressure from the
blood flow removes the outer parts of the platelet clot and eventually stops it growth since
the platelets covered by fibrin cannot attach new platelets [71]. Thus we suggest a possible
mechanism how platelet clot stops growing. It is different from the mechanism which stops
the coagulation cascade in blood plasma, though they interact with each other. The end of
Section 4.2 contains simulation results of clot growth in vessels of different diameters and in
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flows of different wall shear rates, obtained by use of the second hybrid model.

The fifth chapter is devoted to the mathematical analysis of a model of chronic inflam-
mation related to atherosclerosis. Previously it was shown that the inflammation propagates
as a reaction-diffusion wave whose properties depend on the level of the bad cholesterol in
blood [38]. In this thesis we study a model problem which describes the propagation of
a reaction-diffusion wave in the 2D case with nonlinear boundary conditions. The Leray-
Schauder method and a priori estimates of solutions are used in order to prove the existence
of waves in the bistable case.

The thesis concludes with a section containing all the relevant references used in this
work, and the Appendix section containing a description of the numerical implementation
of the models developed in this work. These details are gathered to the independent section
in order to separate them from model descriptions and results, and to make the structure
of the thesis easier to follow. However, the models of blood flows that describe blood as a
plasma suspension of blood cells, as well as the blood coagulation models developed in this
work, are computationally very expensive. Hence, in the scope of the work described in the
thesis a substantial effort was directed to optimization and parallelization of the numerical
implementation.
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Chapter 2

Dissipative Particle Dynamics

2.1 Description

In order to simulate a complex fluid, a numerical method has to describe the structure of the
fluid, usually on the microscopic level, for which classical continuous and discrete methods
are not suitable. Continuous approaches, like Navier-Stokes equations, although useful for
modelling simple fluids, lack the ability to model the composite structure of complex fluids.
On the other hand, Molecular Dynamics (MD) as a classical discrete approach, although
able to capture the complex structure of the fluid, is inappropriate because it becomes too
expensive to study macroscopic phenomena on a larger scale. Hence, so-called meso-scale
methods were developed. In order to describe a certain complex structure on a micro-scale
and to still be able to study its effects on a macro-scale the meso-scale methods use “coarse-
graining” - the process of representing a system with fewer degrees of freedom than those
actually present in the system [41, 105]. Many of such methods are not strictly mathemat-
ically derived but are rather constructed in order to satisfy certain conservation laws and
symmetries that are considered to be essential for the observed phenomena. Since the in-
terest in this area began thirty years ago, a lot of meso-scale methods and their specialised
variants were developed and a lot of effort was done in order to succumb their potential
flaws, as well as to justify their definition by deriving them from continuous methods and
conservation laws. One of the most successful and generally used methods is Dissipative
Particle Dynamics (DPD) which was first described by Hoogerbrugge and Koelman in 1992
[61, 105]. By its definition DPD is a mass and momentum conservative method, and it
produces a correct hydrodynamic behaviour, which was verified both analytically and by
simulations. In its original description the DPD method does not conserve the energy of the
system, due to its definition of dissipative and random forces. However, a rigorous theoreti-
cal justification was later given by Español and Warren who derived the correct fluctuation
dissipation relation for the friction and noise terms in 1995. In the same year, Español de-
rived the hydrodynamic equations for the mass and momentum density fields. Since then
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the interest in DPD continued to increase, leading to further justifications of the method,
establishing relations to other methods like Smoothed Particle Hydrodynamics [39, 40, 105],
to the introduction of new integration methods for equations of motion, such as the modified
Velocity-Verlet algorithm [56], and resulting in a vast number of applications. The behaviour
of DPD method, as well as its suitability for the problem of fluid simulation is well described
in literature [44, 45, 56, 72, 105]. In [44, 45] DPD simulation results are compared with
the results obtained by using continuous methods (Navier-Stokes and Stokes equations) for
Couette, Poiseuille, square-cavity and triangular-cavity flows.

In this work we use the DPD in the form described in literature [44, 56, 72]. As in other
meso-scale methods, each particle of the system describes some small volume of a simulated
medium rather than an individual molecule. The method implies the conservative, dissipative
and random forces acting between each two particles (pair-wise):

FC
ij = FC

ij (rij)r̂ij, (2.1)

FD
ij = −γωD(rij)(vij · r̂ij)r̂ij, (2.2)

FR
ij = σωR(rij)

ξij√
dt
r̂ij, (2.3)

where ri is the vector of position of the particle i, rij = ri − rj, rij = |rij|, r̂ij = rij/rij, and
vij = vi − vj is the difference between velocities of two particles, γ and σ are coefficients
which determine the strength of the dissipative and the random force respectively, while ωD

and ωR are weight functions; ξij is a normally distributed random variable with zero mean,
unit variance such that ξij = ξji, and dt is the time step. The conservative force is given by
the equality

FC
ij (rij) =

⎧⎨⎩aij (1− rij/rc) for rij ≤ rc,

0 for rij > rc,
(2.4)

where aij is the conservative force coefficient between particles i and j, and rc is the cut-off
radius.

The random and dissipative forces form a thermostat. If the following two relations
are satisfied, the system will preserve its energy and maintain the equilibrium temperature
[42]

ωD(rij) =
[
ωR(rij)

]2
, σ2 = 2γkBT, (2.5)

where kB is the Boltzmann constant and T is the temperature. The weight functions are
determined by:
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ωR(rij) =

⎧⎨⎩(1− rij/rc)
k for rij ≤ rc,

0 for rij > rc,
(2.6)

where k = 1 for the original DPD method, but it can be also varied in order to change the
dynamic viscosity of the simulated fluid [44]. The reason for scaling the random force (equa-
tion (2.3)) by factor 1/

√
dt is to eliminate the displacement due to Brownian motion [57].

This preserves the momentum and leads to a correct description of hydrodynamics.

The motion of particles is determined by Newton’s second law of motion:

dri = vidt, dvi =
dt

mi

∑
j �=i

(
FC
ij + FD

ij + FR
ij

)
, (2.7)

where mi is the mass of the particle i.

The simplest way to integrate the equations of motion (2.7) is by use of Euler method:

vn+1
i = vni +

1

mi

Fi (r
n
i ,v

n
i ) dt, (2.8)

rn+1
i = rni + vn+1

i dt, (2.9)

where indices n and n+ 1 denote time steps, and

Fi =
∑
j �=i

(
FC
ij + FD

ij + FR
ij

)
. (2.10)

Instead of the conventional Euler method, a more refined method, called “modified
velocity-Verlet method”, can be used [2, 56]. First described by Groot and Warren in 1997
[56], it is more accurate and it allows a certain increase in time step dt, thus reducing the
computational cost of the simulation. The discretization of the equations (2.7) by modified
velocity-Verlet scheme is given by:

rn+1
i = rni + vni dt+

1

2
ani dt

2, (2.11)

v
n+ 1

2
i = vni +

1

2
ani dt, (2.12)

an+1
i =

1

mi

Fi

(
rn+1
i ,v

n+ 1
2

i

)
, (2.13)

vn+1
i = v

n+ 1
2

i +
1

2
an+1
i dt, (2.14)

where ani denotes the acceleration of the particle i at the nth time step.



26 2.2. 2D POISEUILLE FLOW

2.2 2D Poiseuille flow

2.2.1 Measurements

Figure 2.1: An example of density (left) and velocity (right) profiles obtained by a simulation
of Poiseuille flow with DPD method.

As DPD is used in this work to model blood plasma flow for purposes of studying blood
coagulation in vivo, the spatial domain represents a section of a blood vessel. Hence, in the
three-dimensional (3D) case the spatial domain is a cylinder, while in two dimensions (2D)
the spatial domain represents a cross-section of the vessel along its axis. The dimensions
of the spatial domain are defined accordingly to the diameter D and the length L of the
simulated vessel. The blood plasma, due to its composition (92% of water), is considered in
this model to have properties similar to those of water, i.e. it is viscous and incompressible.
The flow is induced by a constant external force or a pressure gradient in the direction along
the vessel axis. The effect of pressure waves generated by the heart in systole moves is not
considered within this study. Following the Poiseuile law for laminar flows (a solution of
Navier-Stokes equations), the described system should yield a parabolic velocity profile. In
the 2D case the velocity profile is given by:

ux(y) =
fx − ∂p

∂x

2μ

(
yD − y2

)
, (2.15)

where x and y are coordinates of the Cartesian coordinate system with the x-axis along the
vessel wall and being parallel to the vessel axis, ux is the x component of a velocity vector �u,
fx is the x component of a the volume force vector �f , p is the pressure, and μ is the dynamic
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viscosity of blood plasma. In 3D case the velocity profile is given by:

ux(r) =
fx − ∂p

∂x

4μ

(
R2 − r2

)
, (2.16)

where x and r are the coordinates of the cylindrical coordinate system in which x-axis is
along the vessel axis.

Figure 2.2: Convergence of density profile towards the uniform density as the numbers of
measured steps nt increases. The horizontal axis denotes the number of measured steps,
while the vertical axis denotes the average difference between the measured and analytical
density.

In order to obtain density and velocity profiles of a medium simulated by DPD particles
one has to apply spatial and/or temporal averaging. For that purpose a spatial subdivision
of the domain with some uniform step dx in directions of all coordinates is defined. During
some number of time steps nt, the presence of particles and their velocities is summarized
for each spatial element of the subdivision, i.e. Sij = [xi, xi +Δx〉 × [yj, yj +Δx〉 in the
2D case, or Sij = [xi, xi +Δx〉 × [rj, rj +Δx〉 in the 3D case. In order to obtain the
velocity profile, for each spatial element the mean velocity is calculated by dividing its
total velocity by the number of particles observed in that element. To obtain the density
profile, for each spatial element the number of observed particles is divided by the number
of time steps n and multiplied by the factor m/VSij

, where m is the mass of a single particle
and VSij

is the volume of the spatial element Sij. The level of noise in this measurements
can be reduced by increasing the step of the spatial subdivision dx and/or the number of
time steps in which the profiles are being measured nt. However, at the same time the
larger spatial and temporal steps decrease the sensibility of the measurement for detecting
flow changes in space and time correspondingly. Therefore, for non-steady flows, such as
the flow during a clot development studied in this thesis, there is usually a fine balance
between noise reduction and measurement sensitivity (Chapter 4). Additionally, a filtering
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or smoothing methods can be used to reduce the noise. Due to the suitability of the DPD
method for modelling hydrodynamics, with properly defined boundary conditions the density
and velocity profiles will converge to the corresponding analytical solution of Navier-Stokes
equations as nt increases. An example of the smooth density and velocity profiles obtained
by DPD method for the case of Poiseuille flow is shown in the Figure 2.1.

2.2.2 Physical parameters in 2D

In a 2D DPD simulation some physical values, like the particle volume and mass, have to
be reinterpreted. Let us consider the simulation of a homogeneous fluid (like water or blood
plasma), where all DPD particles in the system can be considered to have the same properties
(mass, volume, inter-particle DPD forces). Then the 2D problem can be interpreted as a
layer of DPD particles whose movement is restricted to a single plane. This enables the 3D
interpretation of all parameters and the calculation of corresponding physical properties. As
a result, in the 2D method physical parameters can be directly defined and used. Thus, in
a 2D DPD simulation, next to the DPD parameters, the following physical parameters are
necessary and sufficient to determine flow properties in the vessel: vessel diameter D and
length L, density ρ, viscosity μ, mean flow velocity ūx and only one discretization parameter
Ny, representing the number of particles in the y cross-section in their initial positions (on
the regular grid with a uniform step). From the values of these parameters the values of the
remaining parameters can be deduced - the mass and the volume of a single particle, as well
as the body force necessary to induce the flow. Because of the uniform step of the grid for
the initial positions of particles we can write:

L

Nx

=
D

Ny

=
H

Nz

, (2.17)

where H is the thickness (3rd dimension) of the volume defined by the layer of particles in
the simulated plane, while Nx and Nz are defined analogously to Ny. Note that Nz is equal
to 1, as the particles are contained in a plane. Then the values of Nx and H can be directly
obtained from the equation (2.17). The volume V of the particle layer can be on the one
hand expressed as the product of its dimensions, and on the other as the sum of volumes of
all particles. Thus we have:

LDH = V = NxNyNzVp, (2.18)

where Vp is the volume of a single particle. It follows that the particle volume is equal to
H3. Finally, the mass of a single particle is given by m = ρVp. The value of volume force fx
can be obtained from the equation (2.15), and the corresponding acceleration G is given by
dividing the volume force by density, G = fx/ρ.
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2.2.3 Calculating viscosity

Although the values of the physical parameters of a simulated fluid can be set a priori,
the values of DPD parameters have to be determined experimentally in order to obtain the
wanted value of viscosity. The calibration of DPD parameters, σ, γ, aij, rc and k, can
be done by simulating a Poiseuille flow and comparing it to the corresponding solution of
Navier-Stokes equations [11]. By integrating the equation (2.15) and dividing it by the vessel
diameter, one obtains the expression for the average flow velocity in the 2D case as a function
of the dynamic viscosity, the channel diameter and the external force (or pressure):

ūx =

(
fx − ∂p

∂x

)
D2

12μ
. (2.19)

where ūx is the average flow velocity in the direction tangential to the vessel axis. By analogy
the average flow velocity in the 3D case is given by:

ūx =

(
fx − ∂p

∂x

)
R2

8μ
, (2.20)

Therefore, for the given DPD parameters, physical parameters and the volume force, the
average flow velocity can be measured in a simulation and the viscosity of the simulated fluid
can be calculated. The influence of the DPD parameters on the viscosity of the simulated
fluid is shown in the Figure 2.4. The cut-off radius has a great impact on the viscosity of
the fluid, however, it has an even greater impact on the computational cost. Hence, it is
better to keep it as low as possible, and, if necessary, to increase the viscosity via other
DPD parameters. Among the strength coefficients of the three DPD forces, σ, γ and aij,
the dissipative force coefficient σ has the largest influence on the viscosity of the simulated
fluid. The conservative force coefficient aij regulates the compressibility of the simulated
fluid. While it also has a mild influence on the viscosity, by increasing it too much the
velocity profile ceases to be parabolic (Figure 2.3). This effect can be counteracted by the
simultaneous increase of the value of the random force coefficient γ, as it brings more energy
to the system and enables particles to move more easily. Increasing values of any of the
three force coefficients can result in a decrease of the upper limit of the time step, thus
increasing the computational cost. Another way to regulate viscosity is to vary the value of
the exponent k from the equation (2.6). However, it also brings an additional computational
cost of calculating the power of k. Values of parameters used for the initial simulation in
the results shown in Figure 2.4 are given in the Table 2.1. The values of initial parameters
correspond to the following physical values: density of 1000 kg/m3, vessel diameter of 0.1
mm, viscosity of 1.354 mPa·s, and mean flow velocity of 11 mm/s. In Figure 2.4 the empty
dot on the graphs denotes the viscosity value obtained in the initial simulation. Data related
to each of the graphs in the figure is given in Table 2.2.
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Figure 2.3: Non-parabolic velocity profile (blue) measured in simulation of Poiseuille flow
with too large coefficient aij of DPD conservative force. The red curve denotes the corre-
sponding parabolic profile obtained as a solution of Navier-Stokes equations. The horizontal
axis represents the y-coordinate of the system, i.e. the cross-section of the vessel normalized
by the vessel diameter. The vertical axis represents non-dimensional values of velocity in the
direction tangential to the flow axis, vx.

In DPD, the ratio of the applied body force and the measured mean velocity in Poiseuille
flow is not constant for different magnitudes of body force. Thus the viscosity of the simulated
fluid will change depending on the amount of the applied body force. In Figure 2.5 two graphs
show the dependence of the viscosity on the body force in DPD on a larger and a smaller
scale respectively. On a larger scale DPD shows a non-linear dependence and the tendency
for a high increase in the viscosity as the body force becomes lower, while for a high body
force the viscosity is near constant. On a smaller scale the change can be considered almost
linear. Additionally, on a smaller scale a series of ten subsequent velocity measurements
were taken for each value of body force. The results show the increase of oscillations as
the amount of the body force decreases and as it becomes a less dominant force over the
local DPD forces. For the values of parameters used in scope of this work, especially for
purposes of studying blood coagulation in flows of different velocities (Section 4.2.7), changes
of viscosity due to different flow velocities were under 2%.
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[L] [M ] [T ] D L n m rc σ γ aij k G

10−6 m 10−11 g 10−2 s 100 100 0.36 0.462963 5 3550 20000 6·105 1 1800

Table 2.1: Initial values of parameters used in simulations for viscosity dependence of DPD
parameters. [L], [M ], [T ] denote the length, mass and time scales, respectively. n is the
number density of particles, m is the mass of a single particle, and G is the acceleration
constant of the volume force fx in the direction along the vessel axis.

Figure 2.4: Detailed results of simulations related to viscosity dependence on DPD param-
eters. “err” denotes the difference between the value 1.5 and the ratio of the maximal and
the mean measured flow velocity.
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Table 2.2: Data corresponding to results shown in Figure 2.4 and Figure 2.5. The spatial step
Δx and the number of time steps Δt used in data measuring was 2 and 2·105 respectively.
For the last data set related to the viscosity dependence on the volume force acceleration
(Figure 2.5), where volume force is varied from 300 to 2700, the number of time steps Δt
was increased to 1·106, to obtain more precise values of viscosity.

Figure 2.5: Detailed results of simulations related to viscosity dependence on external force
fx. “err” denotes the difference between the value 1.5 and the ratio of the maximal and the
mean measured flow velocity.
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2.2.4 Calculating wall shear rate

The experimental data related to blood flows, blood coagulation and atherosclerosis are often
expressed in terms of the wall shear rate. For the simulated Poiseuille flow the value of the
wall shear rate can be obtained by derivation of equation (2.15), obtaining:

u′
x(y) =

fx − ∂p
∂x

2μ
(D − 2y) , (2.21)

followed by the elimination of the terms of pressure, volume force and viscosity by use of
equation (2.19). Therefore

u′(y) =
6ū

D2
(D − 2y) . (2.22)

Then the wall shear rate in the 2D case can be expressed in terms of just the average flow
velocity and the tube diameter as:

u′(0) =
6ū

D
. (2.23)

By analogy, in the 3D case from equation (2.23) we obtain:

u′(−R) =
4ū

R
. (2.24)

2.3 Boundary conditions

Based on the forces acting between particles the DPD method correctly simulates hydro-
dynamic behaviour. However, it is not straightforward how to implement solid boundary
conditions in order to obtain the correct characteristics of the system near its boundaries.
In this study, for purposes of studying flow in blood vessel, the focus was on two types of
boundary conditions - periodic and no-slip. The first one was used to simulate an infinite
flow in a short section of a blood vessel, while the second one was used to simulate the friction
blood plasma and vessel wall. The problems that appear near the no-slip solid boundaries
can be separated into two types - errors in density and errors in velocity. Errors in density
usually come from an imbalance of DPD forces in the boundary layer, which is present due
to the lack of DPD particles on the outer side of the boundary, while the errors in velocity
usually occur because of a combination of the previous reason and the implementation of
the no-slip condition between particles and the boundary. In this section several methods
for simulating boundary conditions in DPD are described and discussed. Even though the
described methods are discussed in the context of DPD, they can be also applied directly
or with some modifications to other particle methods. The methods are tested for a 2D
Poiseuille flow.

In order to simulate the flow at the outflow boundary, particles which exit the simulation
domain need to be deleted and accordingly, to preserve density, new particles need to be
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created on the inflow boundary. This can be avoided by use of periodic boundary conditions,
where the opposite boundaries (inflow and outflow) are joined to create a spatial loop - a
particle which crosses the outflow boundary, instead of being removed from the system,
re-enters the simulation domain at the inflow boundary. To preserve the balance of DPD
forces near the boundaries, the particles near the outflow boundary exert DPD forces on the
particles near the inflow boundary, and vice versa. Periodic boundary conditions are useful
for studying flows where the inflow and outflow boundaries are of the same size and shape,
and where the inflow and outflow velocity profiles are expected to be identical.

No-slip boundary describes the condition present in viscous fluid flows where at a solid
boundary the fluid will have the zero velocity relative to the boundary. As it is the case in
many particle methods, in DPD it is a priori unclear how to define a correct no-slip condition.
For DPD a lot of different methods were suggested in order to achieve the correct results at
low computational cost. Only some of them are listed here [44, 45, 73, 97]. In the following
part of this section, methods that were investigated, developed and used in scope of this
work are described and discussed.

2.3.1 Hard boundary conditions

Solid boundary implies that there is no transfer of mass (fluid medium) across the boundary.
As the DPD method is discrete in time, it is possible that in a single time step some particles
move across the boundary. Hence, the movement of particles which come in contact with the
boundary has to be corrected. This is done by calculating the trajectory of a particle and
the moment in which the particle comes in contact with the boundary. Then the particle’s
trajectory can be adjusted to correspond to an elastic collision. If at some step of the
DPD algorithm a particle with a position p and a velocity v would cross the boundary in
a single time step dt and have the incorrect position p + vdt, then the time of collision
is given by tc = h/vo, where h is the particle’s distance from the boundary and vo is the
component of velocity v orthogonal to the boundary. Once the time of contact is obtained
the correct position of the particle after the elastic collision is obtained, by p′ = p + vtc +
(v − 2vo) (dt− tc), where the second and third right-hand terms describe the particle’s path
before and after the collision respectively. The expression can be also written in the following
form p′ = p + vdt − 2vo (dt− tc) where the p + vdt is already known and calculated as the
incorrect position of the particle.
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Figure 2.6: Hard boundary condition: cross-section velocity (left) and density (right) profiles
obtained in Poiseuille flow by DPD method with use of hard boundary condition to simulate
no-slip solid boundary. Blue markers represent data measured in the simulation, while red
curves represent the corresponding solution of Navier-Stokes equations. Values on axes are
non-dimensional.

In attempt to model the no-slip condition, instead of the elastic collision, an inelastic
collision can be simulated where the colliding particle, at the time of contact, looses a part
of its velocity which is tangential to the boundary. Its new velocity in that direction is set
to the velocity of the boundary. This method is useful in Molecular Dynamics (MD) which
is a micro-scale method where the movement of the particles is based on the potential forces
acting between them in a case of physical contact (collision). In DPD, which is a meso-scale
method, cut-off radius rc is usually larger than the physical radius of the mass that a single
particle represents, meaning that at each moment of time each particle is in contact with
multiple, if not many, other particles. As there are no particles on the outer side of the
boundary, there will exist an imbalance of the forces in the boundary layer, i.e. the layer
of particles in the rc proximity to the boundary. This imbalance will cause a significant
deformation of the system’s density profile, as it is shown in Figure 2.6. Because of the
increased density of particles in the boundary layer the velocity profile cannot be correct
either, resulting in a too steep increase of velocity in the boundary layer. This effect can be
somewhat decreased by increasing the value of the random force coefficient σ.

2.3.2 Semi-periodic boundary conditions

Semi-periodic boundary conditions are the combination of the periodic and the hard bound-
ary conditions. The method is suitable for flows between two parallel plates that are either
stationary or move in the same direction with the same velocity. A modified periodic bound-
ary condition acts between two opposing boundaries in a way that two particles in the
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opposing boundary layers exert on each other only the component of DPD forces which is
orthogonal to the boundary, while the tangential component is omitted. Additionally, the
crossing of particles over the boundaries is prevented by use of hard boundary conditions.
The method produces a correct density profile due to restored balance of DPD forces in
boundary layers. However, the corresponding velocity profile again suffers from a too steep
increase in the velocity in the boundary layers. This happens because particles do not collide
with the boundary often enough to produce the effect of the no-slip condition. The effects
of half periodic boundary condition shows the necessity of using boundary conditions which
define the areal influence on the particles, rather than just defining the behaviour for the
case of collision of particles with the boundary.

2.3.3 Estimated boundary conditions

As the problem of obtaining the correct density and velocity profiles is a result of not having
particles on the outer side of the boundary, one way to try to resolve this problem is to
estimate the effect such particles would have on a single particle in the boundary layer.
The influence of the outer particles on a particle p inside of the domain will depend on the
distance of the particle p from the boundary. In other words, the closer the particle p is to
the boundary, the larger the part of the sphere around it, defined by the force cut-off radius
rc, will be outside of the domain. Let us consider a 2D case and a lower half of the circle
defined by rc around some particle p. For some step dx let us fill this lower half circle with
particles pij positioned on the rectangular mesh with step dx in the following way - if rp is the
position of the particle p, then the position of particle pij is given with rij = rp + (i,−j) dx,
where n = rc/dx, −n ≤ i ≤ n and 0 ≤ j ≤ n. By this definition it follows that p ≡ p00, thus
the particle p00 is not considered as a part of the mesh. The conservative and dissipative
forces that a particle pij exerts on the particle p are then given by:

FC (i, j) =a

(
1− r

rc

)
r̂

=

(
a

(
1− r

rc

)
r̂x, a

(
1− r

rc

)
r̂y

)
(2.25)

FD (i, j) =− γωD (r) (v · r̂) r̂

=
(−γωD (r) (vxr̂x + vyr̂y) r̂x,−γωD (r) (vxr̂x + vyr̂y) r̂y

)
=
(−γωD (r)

(
vxr̂

2
x + vyr̂xr̂y

)
,−γωD (r)

(
vxr̂xr̂y + vyr̂

2
y

))
, (2.26)

where r = rp − rij, r = |r|, r̂ = r/r, vp and vij are velocities of the particles p and pij
respectively, and v = vp − vij. As all the particles pij are particles of the boundary we can
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assume that are all moving with the same velocity v. Now let us denote the components of
the vectors in equations (2.25), (2.26) as:

XC (i, j) = a

(
1− r

rc

)
r̂x,

XD
x (i, j) = −γωD(r)r̂2x,

XD
y (i, j) = −γωD(r)r̂xr̂y, (2.27)

Y C (i, j) = a

(
1− h

rc

)
r̂y,

Y D
x (i, j) = −γωDr̂xr̂y,

Y D
y (i, j) = −γωDr̂2y.

Then it follows that:

XC(−i, j) = −XC(i, j),

XD
y (−i, j) = −XD

y (i, j), (2.28)

Y D
x (−i, j) = −Y D

x (i, j),

XC(0, j) = XD
y (0, j) = Y D

x (0, j) = 0.

Let us now write the influence of all particles of the mesh for which ry is greater than
some non-negative value h on the particle p:

XC(h) =
∑

−n≤i≤−n

∑
jdx>h

XC(i, j)

XD
x (h) =

∑
−n≤i≤−n

∑
jdx>h

XD
x (i, j),

XD
y (h) =

∑
−n≤i≤−n

∑
jdx>h

XD
y (i, j), (2.29)

Y C(h) =
∑

−n≤i≤−n

∑
jdx>h

Y C(i, j),

Y D
x (h) =

∑
−n≤i≤−n

∑
jdx>h

Y D
x (i, j),

Y D
y (h) =

∑
−n≤i≤−n

∑
jdx>h

Y D
y (i, j).
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From the identities (2.28) it follows that XC(h), XD
y (h) and Y D

x (h) are equal to zero for
each h. This means that we can write a boundary force on a particle that is on h distance
from the boundary as:

F (h) =
nsim
ncalc

(
vxX

D
x (h) , Y C(h) + vyY

D
y (h)

)
. (2.30)

Figure 2.7: Estimated boundary conditions: cross-section velocity (left) and density (right)
profiles obtained in Poiseuille flow by DPD method with use of estimated boundary con-
ditions to simulate no-slip solid boundary. Blue markers represent data measured in the
simulation, while red curves represent the corresponding solution of Navier-Stokes equations.
Values on axes are non-dimensional.

In cases when the flow is tangential to the boundary, as it is in the case of Poiseuille flow,
and the conservative force is large, usually the vyY

D
y (h) can be omitted as the orthogonal

part of particle velocities vy is very small and the conservative force is much more dominant.
In other words, in Poiseuille flow, the velocity profile is influenced mainly by the part of the
dissipative force depending on the tangential velocity of particles, while the density profile
is influenced mostly by the conservative force. Figure 2.8 shows all functions in (2.29) for
h ∈ [0, rc]. Results of the estimated boundary conditions, presented in Figure 2.7, show a
more correct velocity profile, while the density profile has a small deformation in the near
boundary layer.
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Figure 2.8: Estimated boundary conditions: dependence of forces described in equations
(2.29) on the particle distance from the boundary, h. The horizontal axis represents the
particle distance from the boundary normalized by the force cut-off radius rc, while the
vertical axis represents the value of force. Graphs in the top row correspond to forces XC ,
XD
x and XD

y acting in the direction tangential to the boundary. Graphs in the bottom row
correspond to forces Y C , Y D

x and Y D
y acting in the direction perpendicular to the boundary.

2.3.4 Measured boundary conditions

Instead of estimating the average force on a particle and how it depends on the distance h
from the boundary, this influence can be measured in the bulk flow. The orthogonal part
of the force acting from the boundary on a particle at h distance from the boundary can be
expressed in the following form:

Fy(h) =
1

N

N−1∑
i=1

N∑
j=i+1

|Fy(i, j)|
[
hij > h

]
, (2.31)

where N is the number of particles in the bulk flow,

Fy(i, j) =
(
FC
ij + FD

ij + FR
ij

) · ŷ (2.32)
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is the sum of DPD forces for the pair of particles i and j, hi,j = |rij · ŷ|, rij = ri − rj, ri
and rj are vectors of positions of particles i and j respectively, ŷ is the unit vector in y
direction,

[
hij > h

]
is equal to 1 if the condition (hij > h) is true and 0 if it is false, for

0 ≤ h < rc. The expression (2.31) is given in a simple form to be easier to understand,
but is not optimized for computation. Not all pairs of particles are in rc proximity, hence
forces between the most of the pairs are zero. The measurement can be taken at the same
time when the forces between particles are calculated in a step of DPD algorithm. In this
way the measurement can be done at a very low cost, and, for some given step dx, values of
Fy(h) can be calculated for h = k · dx, k = 0, . . . , rc/dx, and memorized in a lookup table.
For more precise results, an average of Fy(h) can be measured through several time steps of
DPD algorithm.

Figure 2.9: Comparison between the orthogonal components of force in estimated and mea-
sured boundary conditions.

An example of comparison of the measured and estimated forces on a particle can be
seen in Figure 2.9. The difference between the force profiles can be explained by a rather
high value of the conservative force coefficient used in the simulation, with the result that the
particles were never closer then 0.33rc. For a lower value of the conservative force coefficient,
the measured and calculated functions become similar. Figure 2.10 shows velocity and
density profile obtained by a combined boundary condition - the estimated force function
was used for the boundary influence in the direction tangential to the boundary, while the
measured force function was used in the orthogonal direction. While the velocity profile
remained similar to the one in Figure 2.7, the density profile was correct due to the use of
the measured force function.
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Figure 2.10: Measured boundary condition: cross-section velocity (left) and density (right)
profiles obtained in Poiseuille flow by DPD method with use of a combination of measured
and estimated boundary conditions to simulate no-slip solid boundary. Measured boundary
condition was used for the part of force orthogonal to the boundary, while estimated bound-
ary condition was used for the tangential part. Blue markers represent data measured in the
simulation and red curves represent the corresponding solution of Navier-Stokes equations.
Values on axes are non-dimensional.

2.3.5 Mirror boundary conditions

The no-slip solid boundary is modelled in the following way: if a particle p is on a distance
r < rc from the solid boundary, there exists a mirror image p′ of the particle p on the other
side of the boundary, with the velocity opposite to the velocity of particle p (vp′ ≡ −vp). This
can seem like adding a fair number of new particles, which can increase the simulation cost.
Although the increase of computational cost cannot be completely avoided, the boundary
conditions can be efficiently implemented without any real addition of new particles. All the
mirrored particles are mirror images of particles which are in boundary layers of the solid
boundaries. Therefore, when we calculate forces between two particles in the simulation
domain, p1 and p2, if they are both in the same boundary layer, we can calculate the force
of the imaginary particle p′1 on the particle p2 and p′2 on p1. Additionally, if particle p is
on r < 1

2
rc distance from the boundary, the force from p′ on p is calculated. As it is shown

in Figure 2.11, the described boundary condition produces correct profiles for both, density
and velocity.
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Figure 2.11: Mirror boundary condition: cross-section velocity (left) and density (right)
profiles obtained in Poiseuille flow by DPD method with use of mirror boundary condition
to simulate no-slip solid boundary. Blue markers represent data measured in the simulation,
while red curves represent the corresponding solution of Navier-Stokes equations. Values on
axes are non-dimensional.

2.3.6 Enforced boundary conditions

The velocity profile in Poiseuille flow can be also corrected by applying a correction in the
boundary layer. The velocity profile is being measured during the simulation and on each
particle in a boundary layer an additional force is applied in the direction tangential to the
boundary. A precise expression of the additional force is given by the equation:

Fx = m
(v′ − v)

dt
, (2.33)

where v is the tangential part of the current velocity of the particle, v′ is the velocity
given by the corresponding solution of Navier-Stokes equations for an incompressible fluid in
a Poiseuille flow, dt is the time step and m is the mass of the particle. The method produces
correct velocity profile for Poiseuille flow, however it is not suitable for studying clot growth
in flow.

2.3.7 Particle generation area

In the simulation of clot growth in flow the numbers of platelets which enter the domain at
the inflow boundary and those which exit the domain at the outflow boundary are not equal
as some platelets will become part of the clot and be contained in the domain. Hence, the
constant inflow of platelets cannot be simulated by periodic boundary conditions, and more
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complex methods have to be used. One approach is to define a particle generation area (GA)
at the inflow part of the domain, as shown in Figure 2.12. The generation area (GA) works
independently from the remaining part of the simulation domain - simulation area (SA). The
solid boundaries in GA are modelled in the same way as in SA, but the inflow and outflow
boundaries are modelled as periodic boundaries, meaning that the particle that exits GA on
the outflow boundary reappears on the GA inflow boundary, creating an infinite flow loop.
In addition, particles from SA do not influence the particles from GA, but the particles from
GA can influence the particles from SA. For each particle which crosses the GA outflow
boundary an exact copy is made at the SA inflow boundary, and this new particle is being
joined to SA. Once the particle has been joined to SA, it can return for a short time in GA,
but it remains assigned to SA and does not influence particles from GA. Furthermore, when
it crosses back from GA to SA, it does not generate a new particle. All this insures the
integrity and correctness of GA and also the non-biased creation of particles for SA.

Figure 2.12: Particle Generation Area (GA) and Simulation Area (SA). Reprinted with
permission from [117] – A. Tosenberger et al., Russian Journal of Numerical Analysis and
Mathematical Modelling, De Gruyter, 2012.

On the SA outflow boundary, particles which exit the simulation domain are being
deleted. In order to keep the balance of DPD forces near the outflow boundary, one way
periodic boundary conditions are used. The GA inflow and SA outflow boundaries are paired,
as it is normally done when using the periodic boundary conditions. However, only the
particles from the inflow boundary layer can influence the particles in the outflow boundary
layer, while in the opposite direction particles do not influence each other. This way, at the
outflow boundary a correct velocity and density profiles are enforced, while the generation
area remains a closed system. Figure 2.12 shows a scheme of the simulation and generation
areas. The method is similar to a method used in [99].

In models of blood coagulation, described in chapters 3 and 4, the particle generation
area was used in order to have a constant inflow of platelets, undisturbed by the ongoing
clot growth and the related changes in flow. Vessel walls were modelled as solid no-slip
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boundaries with use of mirror boundary conditions (Section 2.3.5), as they produce more
correct results than other boundary conditions discussed in Section 2.3.

2.4 Erythrocyte model

In previous sections the DPD method was discussed in the aspect of homogeneous fluid
simulation. Once we have good results for simulating blood plasma as a Newtonian fluid
with particle dynamics, the next step in blood flow modelling is to introduce blood cells
which are significant for the properties of blood. Erythrocytes are the most interesting
blood cells for modelling from the point of view of membrane deformability and behaviour
under different external conditions (in flow). An erythrocyte membrane includes a lipid
bilayer and spectrin network connected by transmembrane proteins [86]. Such membrane
exhibits incompressible properties, resistance to areal changes and planar shear deformation.
In the resting state the erythrocyte membrane takes a biconcave shape (Section 1.1.2, Figure
1.3). This shape is the result of the minimization of surface energy. In 2D, we can take a
membrane with constant perimeter 2rπ, encapsulating an area of 3

5
r2π, and as a solution of

the problem of minimization of surface energy we will obtain the biconcave shape. To model
this behaviour with a method suitable for DPD, we take a n-sided regular polygon with
particles on its vertices, and define three equations which govern the forces acting between
vertices of the polygon. All three equations are based on the Hook’s law (Figure 2.13). The
first one defines forces between each two neighbouring vertices and describes the membrane
elongation:

FL
i = kL

(
1− li

l0

)
, (2.34)

where kL is the force strength coefficient, l0 is the equilibrium distance between two
neighbouring vertices, and li is the distance between vertices i and i + 1. The second
equation describes the forces originating from a local bending of the membrane:

FB
i = kB

(
1− αi

α0

)
, (2.35)

where kB is the force strength coefficient, α0 is the equilibrium angle between two
neighbouring sides of the polygon, and αi is the angle between vertices i− 1, i and i+1. To
describe the tendency of the membrane to be locally smooth the equilibrium angle α0 is set
to π. The third equation describes the pressure and it is responsible for the preservation of
the area enclosed by the membrane:

F P
i = kP

(
1− A

A0

)
, (2.36)
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where kP is the force strength coefficient, A0 is the equilibrium and A the current area
of the polygon. As a result, on a particle i, representing one polygon vertex, the following
forces are exerted:

FL
i =

1

2

(
FL
i−1r̂i−1,i − FL

i r̂i,i+1

)
, (2.37)

FB
i =

FB
i−1 − FB

i

li−1

n̂i−1,i +
FB
i+1 − FB

i

li
n̂i,i+1, (2.38)

FP
i = F P

i−1n̂i−1,i + F P
i n̂i,i+1, (2.39)

where ri−1,i = ri − ri−1, ri−1,i = |ri−1,i|, r̂i−1,i = ri−1,i/ri−1,i, and n̂i−1,i is the unit
vector normal to r̂i−1,i in direction outside of the polygon. Then the movement of each
particle is simply determined by the sum of these forces according to Newton’s second law
of motion. As the volume and surface of RBC membrane does not change significantly in
natural conditions, in simulations we used large coefficients kL and kP to preserve polygon
perimeter and area, while kB was significantly lower, allowing the membrane to deform. The
equilibrium area A0 of the polygon was set to 0.6Ainit, where Ainit is the area enclosed by the
corresponding regular polygon. With this model we obtained the characteristic biconcave
shape of the RBC membrane, as shown in Figure 2.13 (right). As the model is basically a
system of springs, the energy of the system will increase in time. One way to correct the
error is to introduce dampening to the springs of the system. However, the use of dampened
springs is unnecessary, as this model is intended to be used in DPD, where the vertices
of the membrane will be DPD particles and the membrane itself will be surrounded by
DPD particles (simulating fluid). The membrane, as a system of springs, will therefore be
stabilized by dissipative forces acting between DPD particles.

Figure 2.13: Erythrocyte model: scheme of membrane elongation and bending forces (left),
pressure forces (middle), and the stable biconcave shape obtained by the model in DPD
(right). Reprinted with permission from [116] – A. Tosenberger et al.,Mathematical Modelling
of Natural Phenomena, Cambridge University Press, 2011.
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2.4.1 Capillary flow

In order to test the behaviour of the erythrocyte model coupled with DPD we simulated the
flow in a capillary of diameter 10μm with one erythrocyte starting in the resting biconcave
shape turned orthogonally to the flow axis. It is observed that in such situations the erythro-
cyte undergoes a change from its natural biconcave shape to the so-called parachute shape
following the parabolic velocity profile. The described behaviour obtained in DPD simula-
tion is shown in Figure 2.14. For some time the erythrocyte remained in the parachute shape
and in the position orthogonal to the flow axis. However, this was not the stable state of the
erythrocyte, and the erythrocyte eventually turned in the direction of the flow and regained
the biconcave shape. Similar behaviours were studied in [89, 101, 104].

Figure 2.14: Erythrocyte model: development of the parachute shape in a narrow Poiseuille
flow. Reprinted with permission from [116] – A. Tosenberger et al.,Mathematical Modelling
of Natural Phenomena, Cambridge University Press, 2011.

2.4.2 3D model

In 3D the membrane is represented as a two-dimensional network of particles as described
in [15, 16]. Similar to the 2D case, membrane particles are connected by springs (modelled
by Hooke’s law) to form an irregular polyhedron with triangular sides. Forces acting to the
membrane particles are chosen analogically to [63]. The first force acts between any two
neighbouring vertices and describes the ability of the corresponding joint to elongate:

Fs = ks

(
1− l

l0

)
τ, (2.40)

where l is the length of joint between two vertices, l0 is the equilibrium length, and ks is
the stiffness coefficient, τ is the unit vector which is co-directional with the vector connecting
two neighbouring particles.

To express areal incompressibility the force resisting to every triangular element area
change is introduced:
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Fa = ka

(
1− s

s0

)
lcn̂, (2.41)

where s is the area of the triangular element, s0 is the equilibrium area, ka is the area
expansion modulus, lc is the length of a side of a control area for a particle which is shown
in Figure 2.15 (left), n̂ is the unit normal vector to this side. Such force appears in a particle
from all triangle elements sharing this particle.

Figure 2.15: Left: the control area of a particle. Right: Two neighbouring triangular ele-
ments of the erythrocyte membrane. Reprinted with permission from [15] – N. Bessonov et
al., Russian Journal of Numerical Analysis and Mathematical Modelling, De Gruyter, 2013.

Since an erythrocyte shows the capacity of out-of-plane bending deformation, bending
springs were introduced between two neighbouring triangular elements:

Fbi =kb tan

(
θ

2

)
n̂ijk, (2.42)

Fbl =kb tan

(
θ

2

)
n̂jki, (2.43)

Fbj =Fbk = −Fbi + Fbl

2
, (2.44)

where θ is an angle between neighbouring triangular elements, kb is the stiffness coefficient,
n̂ijk and n̂jkl are the unit normal vectors to the corresponding triangles, see Figure 2.15
(right). A tangential function is chosen to avoid the folding of the spring at large bending
deformation [120].

So far, only the membrane characteristics have been described, which alone do not
ensure the erythrocyte shape. In order to obtain its shape, an additional type of force is
needed to describe the volume surrounded by the shell, i.e. the volume of erythrocyte.
Hence, a fourth force which acts to a triangular element is introduced:
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Fv = kv

(
1− v

v0

)
sn̂, (2.45)

where v is the polyhedron volume, v0 is the relaxation volume, and kv is the coefficient
which is equivalent to the bulk modulus, s is the area of triangular element and n̂ is its unit
normal vector.

Figure 2.16: First six steps of sphere triangulation used at the initial step of erythrocyte
simulation.

The erythrocyte is known to be deformable, easily changing shape under the influence of
external forces. However, the area of their membrane, as well as its volume remains almost
constant in a healthy erythrocyte. Therefore, values of stiffness coefficients in the model
are chosen correspondingly. The values kv and ka are larger, making the membrane more
resistant to changes in its area, while ks is lower to allow the shape changes. The typical
values of parameters used in [15, 16] are as follows: ks = 0.410−11 N, ka = 510−4 N/m, kv = 2
N/m2, kb = 2.410−11 N.

Figure 2.16 shows the initial step of the 3D erythrocyte method - sphere triangulation.
Depending on the values of parameters it is possible to obtain both biconcave and parachute
membrane shape without external forces acting on the membrane (Figure 2.17).

Figure 2.17: Biconcave (left) and parachute (right) erythrocyte shapes obtained by the model
(2.40)-(2.45) in DPD. The two shapes are obtained with different values of parameters,
without any external forces acting on the membrane.
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Chapter 3

Discrete model of platelet aggregation
in flow

3.1 Description

In this section a discrete model of platelet aggregation in blood plasma flow is described.
It serves as the first step towards the development of a blood coagulation model. In this
model we do not consider the blood coagulation pathways. DPD method is used to describe
blood plasma flow inside a 2D longitudinal cross-section of a blood vessel. Platelets are also
modelled as soft DPD particles, similar to the plasma particles. The radius and mass of all
particles (plasma and platelets) are chosen to correspond to the physical size and the mass of
platelets. In our simulation the physical radius is set to 1μm and the mass is chosen in such a
way that the particle density corresponds to the density of the blood plasma (≈ 103kg/m3).
The interactions between all particles are then governed by DPD as described in Section
2.1 with additional adhesion force acting between aggregated platelets. By virtue of clot
mechanical properties [19, 54, 106, 126], the adhesion force is modelled as a pairwise force
between two platelets expressed in the form of Hooke’s law:

FA
ij = kA

(
1− rij

dC

)
r̂ij, (3.1)

where kA is the force strength constant and dC is the force relaxation distance which is
equal to two times the physical radius of a platelet. As binding of platelets occurs due to
their surface adhesion receptors, two platelets in a flow connect when they come in physical
contact, i.e. rij ≤ dC (connection criterium). Platelets remain connected until their distance
does not exceed some critical value dD (disconnection criterium) which is greater then dC .
In discrete model simulations dD was set to 1.5 times of the platelet diameter.



50 3.2. TIME DEPENDENT PLATELET ADHESION FORCE

Figure 3.1: Velocity profile in a simulation of flow in a blood vessel with a large clot: velocity
near the clot increases due to narrowing in the blood vessel. Reprinted with permission from
[118] – A. Tosenberger et al., Journal of Theoretical Biology, Elsevier, 2013.

3.2 Time dependent platelet adhesion force

Platelet adhesion is a complex multi-step process which involves adhesion receptors of at
least two different types and the process of platelet activation [77, 112, 113]. First, a platelet
from the flow binds with platelets at the injury site through weak GPIba bonding, then it
activates and forms a stable adhesion through firm integrin bonding. The latter step cannot
take place without the first one due to kinetic restrictions, and the first step is reversible
and cannot result in stable adhesion. Since the kinetics of receptor binding is not explicitly
introduced in the model, time evolution of the adhesion force needs to be taken into account.
As adhesion becomes stronger with time, a constant coefficient kA in the equation (3.1) is
substituted with a time dependent function fA:

FA
ij = fA(tij)

(
1− rij

dC

)
r̂ij, (3.2)

where fA is a function depending on time and tij is the duration of the connection
between platelets i and j. Two cases were studied: the first, in which the function fA is
linear, and the second, in which fA is a step function.

In the linear case the function fA is defined in the following way:

fA(tij) = aAtij + bA, (3.3)

where bA is the initial adhesion force strength, and aA is the increase rate of the adhesion
force. In the step function case, fA is defined as follows:
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Figure 3.2: Snapshots of clot growth in a simulation with a constant platelet adhesion force
coefficient. When the clot becomes sufficiently large, the force exerted by blood plasma
breaks the clot and it is taken downstream by the flow. Reprinted with permission from
[117] – A. Tosenberger et al., Russian J. Numer. Anal. Math. Modelling, De Gruyter, 2012.

fA(tij) =

⎧⎨⎩ fAw , if tij < tc,

fAs , if tij ≥ tc,
(3.4)

where fAw is the strength coefficient of the weaker connection, fAs is the strength co-
efficient of the stronger connection and tc is the time needed for the weak connection to
transform into the stronger one. In the model tc can be considered as the mean activation
time upon the initial binding of platelets.

3.3 Results

The values of parameters are chosen in such a way that they correspond to the vessel of 50μm
in diameter and 150μm long (of which, the first 50μm is Particle Generation Area, followed
by 100μm of Simulation Area, as shown in Figure 2.12). The density and the viscosity of
the simulated medium are chosen to correspond to the density and viscosity of blood plasma
[128]. The average velocity of the flow is chosen to be 24mm/s. To initiate clotting, at
the beginning of the simulation, several stationary platelets are positioned next to the lower
vessel wall in the Simulation Area.
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In order to verify the DPD parameters and the method’s applicability for non-symmetric
flows, density and velocity analysis were done in all simulations. This analysis was done by
averaging the data through a short period of time as described in Section 2.2.1. As it is
shown in Figure 2.1 (Section 2.2.1), in the simulation without a clot the density profile was
uniform and the velocity profile was parabolic. With the clot growth, the velocity profile
would change with the increase of velocity in the clot region due to the narrowing of the
vessel (Figure 3.1).

Figure 3.3: Snapshots of clot growth for a linear time dependent adhesion force (older
connections are depicted with darker red colour): a) initial clot, b) small group of platelets
connected with still weak adhesion forces, c), d) and e) clot rupture, f) continuation of clot
growth. Reprinted with permission from [117] – A. Tosenberger et al., Russian Journal of
Numerical Analysis and Mathematical Modelling, De Gruyter, 2012.

3.3.1 Constant coefficient of adhesion force strength

The discrete model was used to study platelet aggregation in flow and its dependence on the
platelet adhesion force. Due to clot growth and increased flow pressure on the clot, a clot
rupture can occur.

In the case of a constant coefficient of adhesion force (equation (3.1)), three basic types
of clot growth were observed. For too small values of kA platelets would not attach to the
initial clot, while for too big values the clot would constantly grow without breaking. The
most interesting behaviour was observed with medium values - the clot would grow to a
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certain size, and when the stress on the clot from the flow would overcome the strength
of adhesion forces, established between the aggregated platelets, the clot would break and
would be taken by the flow. The snapshots of this process and its stages are shown in Figure
3.2, while the clot growth in this case can be seen in Figure 3.5. In simulations with a
constant adhesion force clot breaking mostly occurred near the initial clot.

Figure 3.4: Snapshots of clot growth for step time dependent adhesion force with the adhesion
resistance condition (older connections are depicted with darker red colour): a) initial clot,
b) and c) elongated clot with mainly weak connections, d) clot core with mainly strong
connections after rupture, e) continued clot growth, f) fully formed clot core after rupture.
Reprinted with permission from [117] – A. Tosenberger et al., Russian Journal of Numerical
Analysis and Mathematical Modelling, De Gruyter, 2012.

3.3.2 Time dependent platelet adhesion force

The use of time dependent platelet adhesion force allowed the creation of a more stable part
of the clot, in which the forces between platelets are stronger than the ones between the newly
connected platelets in the outer part of the clot. We will refer to this more stable part of
the clot as the clot core. In the first case the time dependent platelet adhesion was modelled
with a linear function (equation (3.3)). The most important stages of simulation obtained
by this model are presented in Figure 3.3. Based on several platelets initially placed near
the boundary the clot begins to grow. As the clot grows, the connections between platelets
become stronger depending on time of their attachment to the clot. When the clot becomes
large enough, and the stress on it from the flow becomes too high, the part with weaker
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connections breaks off, leaving the more stable part of the clot still connected to the blood
vessel wall. However, as it can be seen in Figure 3.3, the shape of the remaining part of the
clot does not correspond exactly to biological observations.

In the second case, the force ageing was introduced by a step function (equation (3.4)),
which can be easier to justify from the biological point of view - the transformation from
weak connections between platelets to strong ones is rapid compared to the total time needed
to complete the coagulation process. The key moments of the simulation done with a step
function model can be seen in Figure 3.4. The clot grows and at the same time the core of
the clot forms. After removing the exterior part of the clot by the flow, the clot core stays
attached to the blood vessel wall.

The three graphs presented in Figure 3.5 show the clot growth in time for the three
models studied above. The first graph corresponds to the model with the constant adhesion
force coefficient. It shows how with each clot rupture, the whole clot is taken by the flow,
leaving behind only the initial clot. The second graph in Figure 3.5 shows how the linear
model after rupture leaves a clot core attached to the blood vessel wall. However, it also
shows that the clot has a tendency to continue to grow after a rupture occurs. Finally on
the last graph we can see the cloth growth for the step-function model. It shows how after
some time the clot core forms, and that after several following ruptures, the core remains
the same.

Figure 3.5: Clot growth and breakage for three different platelet adhesion force models (from
left to right): constant force coefficient, force coefficient as a linear function, force coefficient
as a step function. Reprinted with permission from [117] – A. Tosenberger et al., Russian
Journal of Numerical Analysis and Mathematical Modelling, De Gruyter, 2012.

3.3.3 Arrest of clot growth

At the next step of this modelling, the biological effect of the fibrin net covering the clot
core is taken into account, i.e. platelets covered by fibrin polymers become resistant to
new bindings of platelets that are circulating in the flow [71]. In this model the blood
coagulation pathways are not explicitly described. Thus, in the terms of the step function
model, aggregated platelets which are bound by the stronger force can be considered as
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being part of the clot core. Therefore, the resistance effect is modelled as the inability
of the aggregated platelets to form new connections once they have established a stronger
connection with any other platelet.

Figure 3.6: Clot growth and breakage for the step-function model with the added resistance
of the clot core to adhesion of new platelets. Clot mass as a function of time (left) and final
form of the clot for two sets of parameters (middle and right). Reprinted with permission
from [117] – A. Tosenberger et al., Russian Journal of Numerical Analysis and Mathematical
Modelling, De Gruyter, 2012.

In this case, it is necessary to introduce an additional repulsing force between the
platelets of the core and the new platelets coming from the flow. Indeed, now there exists
a possibility of two platelets being in physical contact without being connected. To prevent
such pairs of platelets from occupying the same space, an additional force is added between
them. This force exists only if two non-connected platelets are in physical contact, i.e., the
distance between their centres is less than the platelet diameter.

Figure 3.6 shows the platelet clot growth for this modified step-function model. At the
first stage of clot growth, its mass increases linearly in time. Then the clot ruptures and
does not change any more because new platelets cannot connect to the platelets of the clot
core (Figure 3.6, left). The stages of clot growth simulated by the enhanced step model are
shown on Figure 3.4, while two other final forms of the clot for different values of parameters
are shown in Figure 3.6 (middle and right).

Biologically, the processes of platelet aggregation and fibrin net formation are related
but are not the same. The first process involves biochemical reactions between platelets,
while the second process is based on reactions between proteins that occur in blood plasma.
Therefore, in the next stage of modelling the discrete model of platelet aggregation in flow,
described in this chapter, will be enhanced to account for concentrations of blood factors
in flow and the related reactions of blood coagulation. This has required a development of
hybrid models, which are described in the following chapter.
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Chapter 4

Hybrid model of blood coagulation in
flow

4.1 One equation model

In this section two hybrid models of clot growth in flow are described. They couple dis-
crete and continuous approaches. The discrete part describes blood plasma flow in a vessel
and platelet aggregation by use of DPD method similar to the discrete model described in
Chapter 3. The continuous part models blood coagulation pathways in flow, describing the
concentrations of blood factors with a system of partial differential equations. The discrete
and continuous parts are coupled via the flow velocity profile v, measured in the discrete
(DPD) part of the model, and concentration profiles obtained by the continuous (PDE) part
of the model. The scheme of coupling of discrete and continuous parts of the model is shown
in Figure 4.1.

Figure 4.1: The scheme of coupling of discrete (DPD) and continuous (PDE) parts of the
model.

DPD is a spatially continuous method, while the PDE system is solved numerically on
a mesh. Thus a bilinear interpolation is used to calculate the fibrin concentration for the
place which a particle occupies. The same interpolation method is used to calculate flow
velocity in the points of the PDE numerical mesh.
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4.1.1 Fibrin concentration

Following results described in Chapter 3 the step function was chosen to represent inter-
platelet bonds in the hybrid model. The discrete model presented in Section 3.3.2 describes
blood plasma flow, platelet aggregation, the strengthening of inter-platelet bonds due to
platelet activation, possible breakage of the platelet clot and the eventual arrest of the
platelet clot growth due to two effects - increase of shear flow rate near the growing platelet
clot and resistance of clot core to binding of free platelets from the flow. As the discrete
model does not contain a description of blood coagulation factors, the clot core was defined as
the collection of activated platelets. However, the formation of the fibrin mesh is responsible
for the creation of the clot core and the clot growth arrest. Hence, the next step in modelling
is to describe more precisely the biological mechanisms which regulate the process of blood
coagulation. Therefore, proteins which control the process of coagulation are modelled by
partial differential equations. This enables the description of their production, diffusion in
the flow, and interaction with the blood flow velocity field via the advection term. Because
of the complexity of the coagulation process, the modelling began by introducing just one
reaction-diffusion-advection equation as the continuous part of the model, where the PDE
describes the concentration of fibrin in the flow:

∂u

∂t
= αΔu−∇ · (vu) + βu (1− u) . (4.1)

Here u is the protein concentration, v is the flow velocity, α is the diffusion coefficient, β
is the reaction term coefficient. Use of one equation to describe the concentration of fibrin as
the final blood factor in the coagulation regulatory network is a major simplification of the
coagulation pathways. However, as a step towards a more complete model it allows studying
of the interaction of the platelet aggregation and the protein concentration in the flow.

To simulate the resistance of an already formed clot to the binding of free platelets from
the flow, the critical concentration of fibrin uc is introduced. If the concentration is less then
uc, a platelet can bind with another platelet, if not, it will be resistant to adhesion [71].
Accordingly, the platelet is considered to be a part of the clot core if it is in the clot and the
fibrin concentration has been larger than uc at the position of that platelet.

The equation (4.1) describes fibrin concentration in flow and the fibrin polymer concen-
tration is not modelled directly. As an effect, when a part of the clot ruptures, the fibrin
concentration at that place can be taken by flow. After the rupture occurs, the concentration
of fibrin at the place of the rupture is no longer protected by the clot, and it is therefore
taken away by the flow. In the case when the previous concentration is higher than the
critical level uc, after the clot rupture and decrease in fibrin concentration the platelets that
were before considered to be covered by fibrin polymer, and therefore part of the clot core
adhesion resistant, would change their state to platelets not covered by fibrin polymer. As
fibrin net should not degrade in the middle of the clot growth, in this model the previously
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Figure 4.2: Clot structure. Connections between platelets are shown as intervals between
their centers - red lines correspond to weak connections, yellow to strong ones. Dark green
platelets are covered by fibrin. Reprinted with permission from [118] – A. Tosenberger et
al., Journal of Theoretical Biology, Elsevier, 2013.

described situation is avoided by use of platelet memory - once the platelet has been covered
by fibrin polymer (concentration higher that uc) it will remain in this state independently
of the future level of fibrin.

4.1.2 Clot growth

In simulations with the first hybrid model the values of parameters were chosen in such a
way that they correspond to a vessel of 50μm in diameter and 150μm long. The density
and the viscosity of the simulated medium were chosen to correspond to the density and
viscosity of blood plasma [128] (≈ 1.24mPa·s). The average velocity of the flow is chosen to
be 24mm/s. As in the discrete model, at the beginning of the simulation several stationary
platelets are positioned next to the lower vessel wall in order to initiate platelet aggregation.
As it was the case in the discrete model the size of all DPD particles was set to correspond to
the size of platelets (≈ 1μm in diameter). Figure 4.2 shows a typical clot structure obtained
in simulations. There are two types of platelet connections: weak (red lines between their
centers) and strong (yellow lines). Strong connections appear if a platelet has already weak
connections during some time. Hence platelet activation and emergence of strong connections
is modelled as a time delay. The disconnection distance dD for inter-platelet connections was
set to 1.3 times of the platelet diameter. Platelets covered by fibrin are shown with dark
green color, while platelets not covered by fibrin with light green.

Several stages of the clot growth and the evolution of the fibrin concentration profile
protected by the clot are shown in Figure 4.3 and Figure 4.4. In the beginning of clot growth,
platelets aggregate at the injury site due to weak connections (Figure 4.3, a). The injury site
is modelled as several platelets attached to the vessel wall. They initiate clot growth. Since
the flow velocity is sufficiently high, the concentration u of fibrin remains low (Figure 4.4,
a). The platelet clot continues to grow due to weak connections and the flow speed inside it
decreases. It makes it possible for the coagulation reaction to start, and fibrin concentration
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Figure 4.3: Snapshots of the clot growth for the hybrid model: a) the clot begins to form, b)
fibrin begins to cover the growing clot, c) clot core is covered by fibrin but the clot continues
to grow, d) the clot reaches its critical size, e) the clot ruptures and its outer part is taken
by the flow, f) the core of the clot remains captured in the fibrin mesh, which prevents the
clot from growing further. Reprinted with permission from [118] – A. Tosenberger et al.,
Journal of Theoretical Biology, Elsevier, 2013.

Figure 4.4: The evolution of the concentration profile in the hybrid model (from a) to d))
with non-dimensional concentration scale on the right. As the clot grows, it protects fibrin
from being taken away by the flow. Reprinted with permission from [118] – A. Tosenberger
et al., Journal of Theoretical Biology, Elsevier, 2013.
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Figure 4.5: Two cases of clot growth arrest in hybrid model: the fibrin mesh covers the whole
clot and stops its growth (left), the clot cap breaks and a part of it is removed by the flow
leaving the clot core captured in the fibrin mesh (middle). On the right, an example of the
clot growth (blue) is shown together with the clot core (red). In order to reduce simulation
time the number of platelets per unit volume is greatly increased and the time delay tc in
the equation (4.22) is decreased for the same rate. As a consequence, the clot growth in
simulation is accelerated (see time scales on the graphs). This does not influence the results
from the qualitative point of view. Reprinted with permission from [118] – A. Tosenberger
et al., Journal of Theoretical Biology, Elsevier, 2013.

gradually increases (Figures 4.3, b and 4.4, b). This process continues while the clot becomes
sufficiently large (Figures 4.3, c, d and 4.4, c, d). Fibrin covers a part of the clot and strong
platelet connections appear inside it. Flow pressure exerts mechanical stresses on the clot
and weak connections can rupture. In this case the clot breaks and its outer part is removed
by the flow (Figures 4.3, e). Its remaining part is covered by fibrin and it cannot attach new
platelets. The final clot form is shown in (Figures 4.3, f).

The described process of clot growth shows several important sub-processes of blood
coagulation. Inside the early platelet aggregate the flow velocity is significantly decreased,
hence the blood factor concentration is being protected from the flow. This allows for the
coagulation cascade to commence inside the clot, resulting in the creation of the clot core. As
the clot core evolves, it also supports further clot growth, as without it the platelet aggregate
would reach a certain size and then rupture prematurely, leaving the wound unhealed. Figure
4.4 shows an example of the evolution of the fibrin concentration profile which is protected
by a growing clot. Furthermore, the model shows a possible way of clot growth arrest. As
the clot grows, the vessel becomes narrower and the pressure induced on the clot by the
flow increases. Once the pressure becomes too high the outer weakly bound part of clot
can rupture, leaving only the clot core which is adhesion-resistant, thus stopping the clot
growth.

In simulations a wide range of model parameters was studied to account for possible
behaviours of the model, including the parameters of the reaction-diffusion equation (equa-
tion (4.1)) and parameters related to platelet aggregation (equation (4.22)). The following
ranges of values were tested: fAw ∈ [0.8, 10] nN (= 10−9N), fAs ∈ [5, 50] nN, tc ∈ [100, 300]
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Figure 4.6: Experimental results from Falati et al. (2002) [43]: on the left, platelets (red)
and fibrin (green) and their co-localization (yellow) in a forming clot (flow direction is from
top to bottom); on the right, the time course of incorporation of platelets (A) and fibrin (B)
into arterial thrombi for three separate cases (denoted by 1,2,3). Reprinted and adapted by
permission from Macmillan Publishers Ltd: Nature Medicine (Falati et al., Nature Medicine
8: 1175 - 1180, 2002), c© (2002).

ms, α ∈ [0.006, 0.06] mm2/min, β ∈ [0.0006, 0.042] mm2/min, uc ∈ [0.1, 0.9]. The values
of the parameters related to inter-platelet bonds (fAw , f

A
s , tc) are close to the values ob-

served in a study by Pivkin et al. [98]. As protein regulatory network is approximated
by a single reaction-diffusion-advection equation, its parameters are not directly related to
experimentally observed values.

However, taking into account the time scaling explained in Section 3.1.2 (increased
platelet density and reduced tc), the values of diffusion coefficient α used in simulations are
close to the data in [75, 84].

Depending on the choice of parameters, several clot growth patterns can be obtained.
In the first case, when the diffusion coefficient is too large and the reaction coefficient is
too small, the concentration can be removed by the flow before the clot starts growing and
protects the concentration. The second regime is when the concentration production and
diffusion rates are such that fibrin gradually covers the clot, but it is slower than the clot
growth. In that case, when the clot becomes too large to sustain the pressure from the
flow, the cap of the clot breaks, leaving the core of the clot covered with fibrin, which stops
further clot growth (Figure 4.5 middle). In the third case, when the rates of concentration
production and propagation in the flow are high, the clot grows without rupture until it is
completely covered by fibrin (Figure 4.5 left). The graph on the right side of Figure 4.5
shows the growth of the clot and the clot core in time. The clot growth (excluding the clot
growth initiation and stop stages) is almost linear, while the clot core grows approximatively
at the same rate as the clot itself. This is also observed in the experimental results obtained
by Falati et al. [43] shown in Figure 4.6 (right). Figure 4.6 (left) shows that, while the clot
grows, the formation of fibrin happens inside the clot, and it is protected by the aggregated
platelets.
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The second of the three described model behaviours corresponds well to the hypothesis
that the clot growth is stopped by the rupture of its covering layer. Figure 4.3 shows an
example in which the clot core is covered by fibrin, and the clot growth is stopped after the
rupture of its cap.

4.2 Three equations model

4.2.1 Coagulation pathway model

At the next stage of modelling a simplified phenomenological model, shown in Figure 4.7,
was used to describe the protein blood coagulation regulatory network. The model consists
of self-accelerated production of thrombin from prothrombin, and the fibrin cascade which
is influenced by the thrombin concentration. Instead of one reaction-diffusion-advection
equation from the previously described model, a system of differential equations is developed
in order to account for the main characteristics of blood coagulation pathway.

Figure 4.7: The simplified pathway of blood coagulation, as it is described in the model. The
full pathway of blood coagulation in vivo is presented in Figure 1.7 in Section 1.2. Reprinted
with permission from [118] – A. Tosenberger et al., Journal of Theoretical Biology, Elsevier,
2013.

Thrombin reaction. The thrombin reaction can be described in a simple form as fol-
lows:

T + II → 2T, (4.2)

where T is the concentration of thrombin and II the concentration of prothrombin.
It takes into account the self-accelerating properties of thrombin production. Then kinetic
equations
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dT

dt
= k1T · (II), d(II)

dt
= −k1T · (II) (4.3)

give the balance of mass T + (II) = C0, where C0 is the initial concentration of factor
II. Therefore the thrombin reaction can be written as:

dT

dt
= k1T (C0 − T ). (4.4)

If diffusion of thrombin and prothrombin occurs with the same diffusion coefficient, then
the balance of mass is preserved. The same is valid for advection.

Instead of the reaction (4.2), the following reaction can be considered:

II → T, (4.5)

with the reaction constant k1 = k1(T ) which depends on the concentration of thrombin.
This leads to an equation similar to (4.4), where the product k1T is replaced by the function
k1(T ):

dT

dt
= k1(T )(C0 − T ). (4.6)

In order to describe thrombin degradation, which is not taken into account in the
equation (4.6), an approximate equation can be considered

dT

dt
= k1(T )(C0 − T )− σT, (4.7)

which describes thrombin degradation but does not follow precisely from kinetic equa-
tions. Such approximation is used in combustion theory and it allows one to consider a
bistable case with two stable stationary points. In order to study blood coagulation in flow
(in vivo), diffusion and advection terms are added to the equation (4.7):

dT

dt
+∇ · (�v · T ) = DTΔT + k1(T )(C0 − T )− σT, (4.8)

where DT is the thrombin diffusion coefficient, �v is the velocity field. As blood plasma
is considered to be incompressible, i.e. with zero divergence, the advection can be simplified,
thus obtaining the following equation for thrombin concentration:

dT

dt
+ �v · ∇T = DTΔT + k1(T )(C0 − T )− σT, (4.9)
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Fibrin reactions. Consider, next, the reactions

Fg → Fn → Fp, (4.10)

where Fp is fibrin polymer. Unlike thrombin which is produced locally at the injury
site and inside the the clot, fibrinogen is synthesized in the liver and constantly circulates in
the blood stream. The availability of thrombin, as an enzyme, is necessary to produce fibrin
from fibrinogen. Therefore, it is important to take into account the flow influence on both
concentrations - thrombin and fibrinogen. We omit fibrin in the reaction scheme (4.10) and
consider instead a simplified reaction Fg → Fp. Then, the reaction can be represented by
the following model:

∂Fg
∂t

+ �v · ∇Fg = DFgΔFg − k3(T )Fg, (4.11)

∂Fp
∂t

= k3(T )Fg, (4.12)

whereDFg is the fibrinogen diffusion coefficient, and k3(T ) is the reaction constant which
depends on the concentration of thrombin. The equation (4.11) describes fibrinogen diffusion
in flow, and the equation (4.12) describes the concentration of fibrin polymers which form
an insoluble network and thus do not diffuse or flow.

Coagulation pathway model. By combining the equation(4.9) for thrombin concen-
tration, and equations (4.11) and (4.12) for fibrinogen and fibrin polymer concentrations
respectively, one obtains the following model:

dT

dt
+ �v · ∇T = DTΔT + k1(T )(C0 − T )− σT,

∂Fg
∂t

+ �v · ∇Fg = DFgΔFg − k3(T )Fg, (4.13)

∂Fp
∂t

= k3(T )Fg.

In order to model the self-amplifying thrombin reaction, the reaction function k1(T ) is
defined as follows:

k1(T ) = k0
1

T 2

T0 + T
, (4.14)
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where k0
1 and T0 are constants. The function (4.14) is based on the Michaelis–Menten

equation, but at low thrombin concentration it has a lower gradient, as shown in Figure 4.8.
While the thrombin equation (equations (4.13) would form a monostable problem with the
Michaelis-Menten term, with the term from equation (4.14) it is forms bistable problem.
Thus, if the thrombin concentration is too low, with time it will converge to zero.

Figure 4.8: Comparison of reaction terms in Michaelis–Menten equation (red) and equation
(4.13) (blue) for the same values of coefficients.

The fibrin reaction rate coefficient k3(T ) is for simplicity taken to be linear:

k3(T ) = k0
3T. (4.15)

In both the initiation and the amplification phase of blood coagulation in vivo a complex
pathway precedes the prothrombin-thrombin reaction. In the initiation phase this part
of the pathway is initiated by tissue factor which is normally present in sub-endothelial
fibroblasts, injured vascular endothelium and activated monocytes. Once the vessel wall is
injured tissue factor enters the blood flow nearby and starts the coagulation cascade. In
the amplification phase thrombin concentration acts as enzyme in the activation of cofactors
which accelerate the prothrombin-thrombin reaction, thus causing an explosive increase in
thrombin concentration. The self-amplification effect of the thrombin reaction is modelled
by equation (4.14). In order to model the localized generation of thrombin near the vessel
injury site, in the model the initial value of the thrombin concentration is set to zero in the
whole domain except on the part of boundary where the injury site is located and where the
concentration is set to a non zero value (equation (4.17)). As the thrombin concentration
equation (equation (4.9)) is bistable, the initial non-zero concentration at the boundary
has to be high enough to start the thrombin accumulation, otherwise the concentration
will quickly decrease to zero. At all domain boundaries Neumann boundary conditions are
used:
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∂T

∂x

∣∣
x=0,L

=
∂T

∂y

∣∣
y=0,D

= 0 (4.16)

T (x, y, t)
∣∣
t=0

=

⎧⎨⎩1, if x ∈ [wB, wE] and y = 0,

0, if x /∈ [wB, wE] or y = 0,
(4.17)

where [0, L] × [0, D] is the simulation domain, i.e. a part of blood vessel of the length
L and diameter D, and where [wB, wE] × {0} is the part of domain representing the vessel
injury site.

The primary function of thrombin is the conversion of fibrinogen to fibrin. Fibrinogen,
being synthesised in the liver by hepatocytes, is constantly present in a healthy bloodstream.
Therefore, in the model, the initial concentration of fibrinogen is set to some value F 0

g in the
whole domain and at the inflow boundary Dirichlet boundary conditions are used, while the
remaining boundaries are described with zero Neumann boundary conditions:

∂Fg
∂x

∣∣
x=L

=
∂Fg
∂y

∣∣
y=0,D

= 0, (4.18)

Fg
∣∣
x=0

= F 0
g , (4.19)

Fg(x, y, t)
∣∣
t=0

= F 0
g . (4.20)

4.2.2 Platelet aggregation

The first hybrid model described only two levels of inter-platelet bonding strengths – the
weaker adhesion bond and the stronger bond between activated platelets. In the second
hybrid model the fibrin polymer concentration is introduced. To describe the effects of the
fibrin net on the aggregated platelets two new conditions are added. The first one is the
adhesion resistance effect present in platelets that are coated in fibrin polymers. Instead of
the critical concentration constant uc used in the first hybrid model, a similar constant cFg

is introduced. cFg denotes the critical fibrin polymer (Fp) concentration, above which it is
considered that the fibrin net has been formed. Hence, platelets that are considered to be
covered by the fibrin net become adhesion resistant. The second effect of the fibrin net is
that it reinforces the platelet aggregate. Therefore, a third level of strength of inter-platelet
bonds is introduced in the model describing the aggregated platelets covered by the fibrin
net. Following the description, the adhesion force is modelled as a pairwise force between
two platelets expressed in the form of Hooke’s law:
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FA
ij = fA(tij)

(
1− rij

dC

)
r̂ij, (4.21)

where fA is the force strength coefficient and dC is the force relaxation distance which is
equal to two times the physical radius of the platelets. As platelet binding occurs due to
their surface adhesion receptors, two platelets in a flow connect when they come in physical
contact, i.e. rij ≤ dC (connection criterium). Platelets remain connected until their distance
does not exceed a critical value dD (disconnection criterium) which is greater than dC . We
set dD equal to 1.3 times of the platelet diameter. The force strength coefficient fA in
equation (4.21) is modelled in the following way to describe three strengths of inter-platelet
bonds:

fA(tij) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
fA1 if Fp(i) or Fp(j) < cFp , and tij < tc,

fA2 if Fp(i) or Fp(j) < cFp , and tij ≥ tc,

fA3 if Fp(i) and Fp(j) ≥ cFp ,

(4.22)

where fA1 < fA2 < fA3 are the three strengths of inter-platelet connections, representing
respectively a weak bond due to GPIb receptors, a medium bond due to platelet activation
and a strong bond due to the reinforcement by the fibrin polymer net. tc is the time needed
for platelet activation measured from the moment when the connection is established. As
the platelet activation process is not at the focus of this study at the moment, the activation
period serves as a basic approximation of the platelet activation process due to the contact
and proximity of other activated platelets. Fp(i) and Fp(j) are levels of fibrin polymer Fp at
positions of particles i and j respectively. cFp is the critical level of fibrin polymer. A platelet
is considered to be a part of the clot core if it is in the clot and the fibrin concentration has
been larger than cFp at the position of that platelet. Therefore, the clot core is a part of the
clot covered by a concentration of Fp larger than cFp . As the platelets that are coated with
fibrin are adhesion resistant, the same condition is applied in the model on the platelets in the
core which cannot establish new bonds. In the case of physical contact between two platelets
that are not connected, one of which is non-adhesive, an additional repulsing force has to be
introduced between them in order to prevent them from occupying the same space.

4.2.3 Parameters

A typical clot structure is shown in Figure 4.9. There are three types of platelet connections,
weak (light red lines between their centres), medium (dark red lines) and strong (black
lines). Medium connections appear if platelets are weakly connected during the time period
tc. Hence we model the platelet activation and emergence of medium connections as a time



4.2. THREE EQUATIONS MODEL 69

delay. Platelets covered by fibrin are shown with dark green color, platelets not covered by
fibrin with light green.

Figure 4.9: Clot structure. Connections between platelets are shown as red intervals between
their centres. Light red lines correspond to weak GPIb connections, dark red to medium
connections between activated platelets, and black to strong connections between platelets
covered by the fibrin net. Dark green platelets are covered by the fibrin net, which is marked
by blue color.

In the basic simulation the values of parameters were chosen in such a way that they
correspond to the vessel of 50μm in diameter and 200 to 300 μm long. The density and the
viscosity of the simulated medium were chosen to correspond to the density and viscosity of
blood plasma [128] (≈ 1.24mPa·s). The average velocity of the flow is chosen to be 18.75
mm/s, which in a vessel of 50μm in diameter produces a wall shear rate of 1500 s−1. To
initiate clotting, at the beginning of the simulation, several stationary platelets are positioned
next to the lower vessel wall. Table 4.1 lists all the values of parameters chosen for the basic
simulation. The values are considered in the following system of physical units: μm=10−6m,
pg=10−14kg, and 10−2s. As the pathways model is phenomenological, the concentration scale
is left in the undimensional form. In the table the values of all parameters are expressed in
both forms - as used in the simulations and interpreted in the standard SI units system.

Figure 4.10: Fibrin net generated outside of the platelet aggregate due to high production
of thrombin and its significant propagation outside of the growing clot.

For any given flow properties, depending on the values of parameters of concentration
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DOMAIN Value Physical Description

L 200 200 μm length of the simulated blood vessel

LGA 50 50 μm length of the Particle Generation Area (GA)

D 50 50 μm diameter of the simulated blood vessel

Gx 7200 72 m/s2 external force in x direction used to induce flow

v̄x 187.5 18.75 mm/s average flow velocity

wx 1500 s−1 wall shear rate

DPD Value Physical Description

aij 600000 conservative force coefficient

γ 3550 dissipative force coefficient

σ 20000 random force coefficient

rc 5 force cut-off radius

k 1 exponent in the equation (2.6)

kBT 1 the Boltzmann constant times temperature

n 0.36 particle number density

m 0.463 particle mass

dtDPD 0.001 DPD time step

PDE Value Physical Description

dx 0.5 0.5 μm spatial step

dtPDE 0.01 0.1 ms PDE time step

DT 0.5 0.003 mm/min thrombin diffusion coefficient

k01 5.5 3.3 · 104 min−1 thrombin reaction term coefficient

T0 0.1 thrombin reaction term coefficient

C0 1 thrombin reaction term coefficient

σ 2 1.2 · 104 min−1 thrombin degradation coefficient

DFg 0.5 0.003 mm/min fibrinogen diffusion coefficient

k03 0.001 6 min−1 fibrinogen reaction term coefficient

cFp 0.8 critical fibrin polymer level

OTHER Value Physical Description

fA1 3 · 106 0.3 nN weak inter-platelet bond coefficient

fA2 8 · 106 0.8 nN activated inter-platelet bond coefficient

fA3 1 · 108 10 nN fibrin net reinforced bond coefficient

tc 10 0.1 s platelet activation period

τ 10 0.1 s DPD-PDE data exchange period

p 0.017 3.672 · 1012 L−1 platelet frequency

Table 4.1: Values of all parameters in the basic simulation.
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equations, there exist two limiting concentration propagation scenarios. In the first scenario
the thrombin concentration decreases due to diffusion, degradation and outflow until it rests
at zero value in the whole domain. As the final result, the fibrin net does not form. In the
second scenario the thrombin generation is to high, resulting in the thrombin propagation
outside of the platelet aggregate and finally in a rapid formation of a fibrin net outside of the
platelet clot (Figure 4.10). In order to study the interaction of clot growth and fibrin polymer
formation, in the basic simulation the values of parameters of concentration equations are
chosen so that the limiting scenarios do not occur. Some of the parameters, like the diffusion
coefficients, were taken from the continuous coagulation pathways model by Krasotkina et
al. [75].

4.2.4 Model behaviour

Several stages of the clot growth and the evolution of thrombin, fibrinogen and fibrin polymer
concentration profiles protected by the clot are shown in Figure 4.11 and Figure 4.12. In
the beginning of clot growth, platelets aggregate at the injury site due to weak connections.
The injury site is modelled as several platelets attached to the vessel wall. They initiate
platelet clot growth. The platelets gradually become activated enabling the aggregate to
grow. The flow velocity inside the newly formed platelet aggregate decreases, and becomes
insignificant compared to the bulk flow velocity. This makes it possible for the coagulation
reactions to commence, and the thrombin concentration gradually increases due to the self-
accelerated reaction (equations (4.13) and (4.14)). With thrombin present, the production of
fibrin polymer from fibrinogen (and implicitly fibrin) begins, and fibrin polymer accumulates
inside the platelet clot. When Fp concentration exceeds the critical level cFp , it is considered
that the fibrin net and with it the clot core have been formed at that place. By this
mechanism, a fibrin net forms inside the platelet clot and reinforces the inter-platelet bonds,
creating the clot core and allowing the further growth of the clot. The growing clot narrows
the blood vessel. As a result, the pressure from the flow on the clot (or rather its top) is
being increased. The platelet aggregates, which are on the outer part of the clot and are not
yet covered by the fibrin net, come under a much higher pressure and are taken by the flow
one by one. This leaves the part of the clot covered by fibrin net revealed to the flow. As the
platelets covered by fibrin polymer are non-adhesive [71], the platelet clot growth is stopped.
The clot core can also remain covered by a thin layer of activated platelets. Nonetheless, the
growth of the clot is stopped as new platelets cannot attach due to the increased flow speed.
The arrest of the platelet clot growth, and the flow around it stop the growth of the fibrin
net (clot core).
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Figure 4.11: Example of a clot growth with indicated fibrin polymer level. Snapshots of the
clot growth for the hybrid model: a) the clot begins to grow by the formation of a platelet
aggregate, b) some of the platelets activate allowing the clot to grow larger, c) fibrin begins
to cover the growing clot allowing the clot to grow further, d) the clot reaches its critical
size, e,f,g) parts of clot not covered by the fibrin net rupture and are taken by the flow, h)
the last rupture leaves only the adhesion resistant clot core, which prevents the clot from
growing further.

In simulations the platelet concentration is set to 3.672 · 1012 L−1 which is 9.17 to 24.48
times higher than the experimentally observed concentration [92]. This is done to obtain
a full clot evolution in less simulation time. However, in the model platelets are uniformly
distributed in the vessel cross-section, while in vivo they are concentrated closer to the vessel
wall because they are pushed there by erythrocytes [15, 16]. Hence, the acceleration of clot
growth in simulations is lower then the nominal increase in the platelet concentration. All
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this does not change the qualitative clot evolution, but affects all measurements expressed in
time that are related to platelets. The most important values that are affected are the core
growth rate (expressed in platelets per second) and the platelet activation time tc.

Figure 4.12: Velocity and concentration profiles for two stages of clot growth: clot in growth
(left) and after the growth arrest (right). From top to bottom: the component of veloc-
ity tangential to the vessel wall, the component of velocity orthogonal to the vessel wall,
thrombin concentration, fibrinogen concentration, fibrin polymer concentration.

Figure 4.13: Platelet clot (blue) and clot core (red) growth in time. Oscillations in the
platelet clot size occur because a part of the clot or individual platelets can be detached by
the flow.
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4.2.5 PDE parameters

As mentioned before (in Section 4.2.3), for the basic simulation the values of parameters
of the concentration equations were chosen following several criteria. Firstly, the diffusion
coefficients were set to correspond to the values used in the continuous coagulation pathways
model by Krasotkina et al. [75]. Secondly, the model takes into account only the effect the
fibrin polymer concentration has on platelets, while its influence on blood plasma is not
modelled. Because of that the model cannot describe correctly the evolution of fibrin net
without the platelet aggregate. Therefore, the remaining parameters were set in such a
way that the thrombin concentration does not propagate counterflow, as the counterflow
propagation would result in the formation of a fibrin net outside of the platelet clot. This
effect occurred in simulations in which the flow velocity was varied, which are described later
in Section 4.2.7. Thirdly, the values were adjusted so that the fibrin net generation and the
formation of the clot core occur in a time frame which is close to the experimentally observed
clot growth times [43]. The values are listed in the Table 4.1.

Taking the chosen values as a starting point, a study was carried out to see the influence
of each parameter on clot growth and fibrin net formation. Figure 4.14 and Figure 4.15 show
the final clot core size and the clot core height for different values of each of the parameters of
the concentration equations. The clot core height is measured at the place where the clot core
is the widest, and the value is normalized by the vessel diameter. The diffusion coefficient
study (Figure 4.14 a)), where both the thrombin and the fibrinogen coefficient were varied
together, shows that as the rate of diffusion increases the clot core size decreases. For a higher
diffusion rate more thrombin is taken away by the flow, while the thrombin concentration
protected by the platelet aggregate rises more slowly due to loss of the diffused part. As a
result the fibrin polymer production is slower, and finally the final core size is lower at the
moment when the weakly aggregated part of the clot ruptures leaving only the non-adhesive
part. On the other hand, too small diffusion coefficients enable the more rapid generation of
thrombin and, eventually, its counterflow propagation, leading to the formation of a fibrin
net in the flow.

The variation of the thrombin reaction term coefficient k0
1 (Figure 4.14 b)) shows that

for the low values the core is unable to develop as the thrombin concentration quickly goes
to zero due to the degradation factor γ. For the two highest values of k0

1 shown on the graph
the core size is similar to the basic case, but the thrombin propagates counterflow, again
resulting in the formation of a fibrin net outside of the clot.

The graph for the fibrin production coefficient k0
3 (Figure 4.14 c)) shows that in the

case of too low production rate the size of the core decreases. This is due to slow fibrin net
formation which results in a smaller core size at the moment when the weakly bound part
of the clot is detached by the flow. The higher values of k0

3 result in approximately constant
core size since the reaction is rapid enough to consume all the available fibrinogen quickly
at places where thrombin level is high.
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Figure 4.14: Variation of values of PDE parameters: a) diffusion coefficients of thrombin DT

and fibrinogen DFg (varied together), b) thrombin reaction rate coefficient k0
1 and c) fibrin

polymer reaction rate coefficient k0
3. Graphs on the left side show final clot size expressed in

number of platelets, while the graphs on the right side show the maximal height of the final
clot, normalized by the vessel diameter. Empty points denote the result of the single basic
simulation with values of parameters given in Table 4.1 (see Appendix).

The study of the influence of the thrombin degradation coefficient σ (Figure 4.15 a))
shows that a too high rate of degradation results in a rapid reduction of thrombin concen-
tration to the zero value, thus disabling the core development. On the other hand, the lower
values result in the counterflow thrombin propagation. The rapid thrombin degradation
effect is also present in the case of higher T0 values.

Figure 4.15 b) shows the effect of the variation of initial fibrinogen concentration, which
is also the normal fibrinogen concentration in the undisturbed flow. The graph shows that
the core size increases with the increase of the value of F 0

g . This is the effect of a more rapid
core development, which is still slower than the growth of the platelet aggregate. For a too
low value of F 0

g the fibrin clot is unable to develop as the whole platelet aggregate breaks
off before the fibrin net is able to form. It is notable that in all of the parameter variations
the core height graph is similar to the corresponding core size graph. This indicates that the
clot core height and length ratio remains similar in all cases and is not strongly affected by
the underlying coagulation pathways model.
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Figure 4.15: Variation of values of PDE parameters (continuation): a) thrombin degradation
coefficient σ , b) initial fibrinogen concentration F 0

g . Graphs on the left side show final clot
size expressed in number of platelets, while the graphs on the right side show the maximal
height of the final clot, normalized by the vessel diameter. Empty points denote the result
of the single basic simulation with values of parameters given in Table 4.1 (see Appendix).

4.2.6 Platelet bond strength

A series of simulations was done to investigate the influence of inter-platelet bond strengths
on the clot growth. As fA3 represents a bond between platelets situated in the clot core,
covered by the fibrin net, it is considered almost unbreakable. Therefore, it was kept at a
large constant value of 10nN(= 1 · 10−8N) in all simulations. Strength coefficients of the
other two types of bonds, fA1 and fA2 , were varied in ranges of 0.3 to 0.6, and 0.8 to 1
nN respectively. For each combination of values of fA1 and fA2 the activation period tc was
varied in order to find the minimal and the maximal activation time for which a clot core
successfully develops. Taking into account the experimental studies [8, 81], the ratio of a
single GPIb bond and a single bond between activated platelets was set to 3 : 8. This ratio
can serve as a point of reference, but it is subject to change because the strength of GPIb
bonds depends on the shear rate at the moment of contact [8, 81]. Another reason is that
the number of bonds established between two platelets is not known. Some attempts have
been made to establish an estimate of the number of bonds [25, 125, 127], however they have
not been experimentally confirmed.
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Table 4.2: Detailed results of simulations for variation of values of parameters for inter-
platelet bonds fA1 , f

A
2 and activation time tc parameters.

Figure 4.16: Variation of strength of platelet forces. The graph on the left side shows clot
core sizes for fA2 = 0.8 nN, while the right one shows results for fA2 = 1 nN. In each case fA1
was varied for values of 0.3, 0.4, 0.5 and 0.6 nN and the activation time was varied between
0.1 and 1 s.

Two graphs in Figure 4.16 show the clot core sizes for fA2 of 0.8 and 1 nN respectively.
On each of them four curves present the results for fA1 of 0.3, 0.4, 0.5 and 0.6 nN for different
activation times tc. For each combination of values of parameters fA1 and fA2 three types
of behaviour were observed. The first type corresponds to the case when the activation
period tc is too low. In this case newly aggregated platelets are activated too quickly and
the “activated” part of the clot grows too fast. This results in the breakage of the platelet
aggregate before the development of the fibrin net, i.e. clot core. The results show that the
minimal activation time for which the clot core forms increases significantly as the value of
fA1 increases. Additionally, the higher value of fA2 decreases the minimal activation time as
it allows the “activated” platelet aggregate to grow larger before breaking.

The second type of behaviour corresponds to the case where the activation time is in
the range of values for which a clot core is able to normally develop. The results show that
the higher value of fA2 allows a higher core size maximum for the same fA1 value. However,
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maxima for the different values of fA2 are not achieved for the same activation times.

Figure 4.17: Clot core growth in first 40 s for values of fA1 and fA2 of 0.5 and 1 nN respectively.
Each graph corresponds to a different value of activation time tc - from 0.01 to 0.7 seconds.

The third type of behaviour occurs when the activation time is too long, which prevents
the formation of the clot core. As the activation time is too long, the weakly bound platelet
aggregates grow to quickly and they break off before any consisting platelets can activate.
Hence no activation occurs, and the clot cannot sustain flow pressure.

Figure 4.17 shows clot core growth in first 40 seconds for fA1 = 0.4 nN, fA2 = 1 nN,
and activation times from 0.01 to 0.7 seconds. For values of the activation time 0.01 and 0.7
seconds the clot was unable to develop. In the case of a too rapid activation, as the adhering
platelets activate immediately after the adhesion, the platelet aggregate rapidly grows and
breaks off while clot core is still too small. In the case of the long activation time, aggregated
platelets cannot sustain the increase of the flow shear rate at the surface of the growing clot,
and thus do not get activated, leaving again an underdeveloped core. Generally speaking, a
shorter activation time will have for an effect a faster growth of the platelet aggregate. The
growth rate of the fibrin net is bounded by the growth rate of the platelet aggregate, but
also by the values of parameters of the system (4.13). Thus, when the platelet aggregate
growth is too rapid the fibrin net growth rate becomes bounded by the underlying regulatory
network, and the weaker parts of the clot break-off sooner, leaving the smaller core. This
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effect is visible in Figure 4.17 for activation times of 0.1 and 0.2 seconds, while tc of 0.01
represents a critical case. At the activation time of 0.3 seconds the clot core reaches its
maximal value. At longer activation times the clot core growth rate follows more closely the
growth rate of the platelet aggregate. As the role of the fibrin clot is also to reinforce the
inter-platelet bonds, and thus to support the clot growth, the clot and the core are able to
grow to a larger size. However, if the activation time is longer the weakly bound aggregates
at the surface need more time to activate and are thus less prone to the increase of the flow
shear rate in the narrowing vessel. Hence, the core growth rate decreases as the activation
time increases from the value of 0.3 seconds, where the maximum is achieved.

4.2.7 Flow velocity influence

The behaviour of the model was tested in flows of different speeds and in three vessels of
different diameters - 25, 50 and 75 μm. In order to have comparable conditions in the near
wall region, for all three vessels flow velocities were set to correspond to wall shear rates of
250, 500, 1000, 1500, 2000 and 2500 s−1. In order to avoid that in faster flows the initial
level of thrombin concentration at the injury site is immediately taken away by the flow,
the level of thrombin at the injury site was kept at value of 1 for the first 5 seconds of the
simulation. The Figure 4.18 shows the clot core size and the clot core height for each vessel
diameter and each wall shear rate.

Figure 4.18: Variation of flow shear rate (i.e. flow mean velocity) from 250 to 2500 s−1 for
vessel diameters of 25 (blue), 50 (red), and 75 μm (green). The graph on the left shows
the final clot size expressed in number of platelets, while the graph on the right shows the
maximal height of the final clot, normalized by the vessel diameter.

Results of the clot core size show that a larger vessel enables the development of a larger
core. For wall shear rates of 1000, 1500 and 2000 s−1 the clot and its core were able to fully
develop and grow to a larger size. For the chosen values of parameters the shear rate of
2500 s−1 was too high for the clot to form – platelet aggregates would break-off too soon and
the concentration of thrombin was completely washed away. At the wall shear rate of 500
s−1 the clot core was able to develop, however its size was smaller in all three vessels with
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different diameters. Finally, for the wall shear rate of 250 s−1, the low flow velocity allowed
the counterflow propagation of thrombin, and thus the formation of a fibrin net in the bulk
flow, outside of the clot. The results for the clot core height show that in cases when the
clot core was able to grow to a larger size, at wall shear rates of 1000, 1500 and 2000 s−1,
the core height decreased with the increase of the flow speed. Figure 4.19 shows the final
clot stages for different wall shear rates in a vessel of 50 μm in diameter. In Figure 4.20 the
final clot stages are shown for the different vessel diameters at the wall shear rate of 1500
s−1.

Figure 4.19: Final stages of clot growth in the vessel of 50 μm in diameter for different wall
shear rates: a) 250 s−1, b) 500 s−1, c) 1000 s−1, d) 1500 s−1, e) 2000 s−1 and f) 2500 s−1.

Figure 4.20: Final stages of clot growth for a wall shear rate of 1500 s−1 in a vessel of: a)
25, b) 50 and c) 75μm in diameter.

Table 4.3: Detailed results of simulations for variation of wall shear rate in vessels of diameter
of 25, 50 and 75 μm.
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Chapter 5

Mathematical analysis of a model
problem for atherosclerosis

5.1 Introduction

Atherosclerosis is a condition which can take several decades to develop and show first
noticeable symptoms. For a long period of time monocytes slowly accumulate in the vessel
wall intima, as a response to oxidized Low-Density Lipoprotein (LDL) molecules. This
process has a twofold effect. First, the vessel wall slowly thickens as monocytes accumulate
in the wall intima, which gradually narrows the lumen of the vessel. This can lead to
an immune response and can start a chronic inflammation with auto-amplifying effects.
Second, in a case of inflammation, the large amount of accumulated monocytes (i.e. foam
cells) results in structural changes of vessel wall, so called remodelling, and development
of the atherosclerotic plaque. Therefore, we can consider two aspects of atherosclerosis
development: inflammation and vessel remodelling.

The vessel remodelling aspect of atherosclerosis is biologically closely related to blood
coagulation. In the process of vessel wall remodelling, muscle cells proliferate and migrate
towards the inner surface of the vessel wall. This results in formation of a fibrous cap
over the lipid deposit, so called atherosclerotic plaque. The mechanical properties of the
plaque significantly differ from the properties of a healthy vessel wall. The surface of the
plaque is more rigid and prone to rupture due to flow pressure and reduced surface elasticity.
Structural changes together with the narrowed lumen and increased flow pressure, make the
vessel wall highly susceptible to rupture, which would initiate blood coagulation on top of
the plaque. Formation of blood clot on the already narrowed part of the vessel can lead
either to complete occlusion of the vessel or to rupture of the blood clot, both of which
usually have tragic consequences. From modelling point of view, hybrid models similar to
ones described in Chapter 4 can be used to model the remodelling aspect of atherosclerosis.
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Such models would be able to describe the structure of the atherosclerotic plaque and its
interaction with blood flow, and would allow the study of plaque rupture.

As it was mentioned in Introduction chapter (Section 1.3.2) previous efforts were made to
model the inflammatory aspect of atherosclerosis. The next step in this modelling approach is
to develop a 2D model of inflammation, which takes into account the vessel intima thickness
and the recruitment of monocytes from blood flow to vessel wall. In the previous model
[37, 38], described in Section 1.3.2, equations (1.4)-(1.5), the existence of travelling wave
is proven for the monostable case. In this chapter we study the bistable case. In order to
prove travelling wave existence, we develop mathematical tools which will, in future works,
applied to develop the bistable model of inflammation in atherosclerosis. Thus, we consider
a simplified problem, which will have the same mathematical properties as the future model,
and for it prove the travelling wave existence in a bistable case. To do so we use Leray-
Schauder method, with topological degree and a priori estimates.

5.2 Formulation of the problem

In this work we consider the reaction-diffusion equation

∂v

∂t
= Δv + f(v), (5.1)

with nonlinear boundary conditions:

y = 0 :
∂v

∂y
= 0, y = 1 :

∂v

∂y
= g(v) (5.2)

in the infinite strip Ω = {−∞ < x < ∞, 0 < y < 1}. Such models arise in various
applications including mathematical models of atherosclerosis [38] and other inflammatory
diseases. In this case, the variable v corresponds to the concentration of white blood cells in
the tissue. The nonlinear boundary condition describes the cell influx through the boundary.
This influx depends on cell concentration in the tissue. This self-amplifying mechanism can
result in the development of chronic inflammation and spreading of the inflammation in
space. In the context of atherosclerosis, domain Ω corresponds to the blood vessel wall
(intima) where the disease develops.

We will study the existence of a travelling wave solution of this problem. This is a
solution of the form v(x, y, t) = u(x− ct, y). It satisfies the equation

Δu+ c
∂u

∂x
+ f(u) = 0 (5.3)

with the boundary conditions
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y = 0 :
∂u

∂y
= 0, y = 1 :

∂u

∂y
= g(u). (5.4)

Here c is an unknown constant, the wave speed. Everywhere below we will assume that the
functions f and g are continuous together with their third derivatives. In some cases, these
conditions can be weakened.

The case where g(u) ≡ 0 is well studied in the literature. In particular, it can have a
one-dimensional solution, which depends only on the variable x along the axis of the strip.
In this case, we obtain the reaction-diffusion equation

u′′ + cu′ + f(u) = 0, (5.5)

where prime denotes the derivative with respect to x. Suppose that f(u±) = 0 for some u+

and u−. Let us recall that the case where f ′(u±) < 0 is called bistable. If one of these two
derivatives is negative and another one is positive, then it is a monostable case. If there exists
a solution of equation (5.5) with the limits u(±∞) = u±, then it is unique in the bistable
case; in the monstable case, there is a continuous family of solutions. The existence of such
solutions is determined by the function f(u) (see [122] and the references therein).

In this work we study problem (5.3), (5.4) with a function g different from zero. We
will look for solutions with the limits

lim
x→±∞

u(x, y) = u±(y), 0 < y < 1, (5.6)

where u±(y) are some functions which satisfy the problem in the cross section:

u′′ + f(u) = 0, 0 < y < 1, u′(0) = 0, u′(1) = g(u(1)). (5.7)

As above, we introduce the bistable and the monostable cases. Consider problem (5.7)
linearized about solutions u±(y) and the corresponding eigenvalue problems:

v′′ + f ′(u±(y))v = λv, 0 < y < 1, v′(0) = 0, v′(1) = g′(u±(1))v(1). (5.8)

If both of them have all eigenvalues in the left-half plane, then we call it the bistable case.
If one of these problems has all eigenvalues in the left-half plane and another one has some
eigenvalues in the right-half plane, then it is the monostable case.

Investigation of problem (5.3), (5.4) relies on the properties of the corresponding op-
erators. It will be shown that in the bistable case where the essential spectrum of the
corresponding linearized operator lies in the left-half plane, the operator satisfies the Fred-
holm property. Moreover we can introduce a topological degree. These tools allow us to use
various methods to prove the existence of solutions. We will use the Leray-Schauder method
based on the topological degree and a priori estimates of solutions. It is a continuation of the
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previous work [6] where more restrictive conditions on the functions f and g were imposed.
It was assumed that they had the same zeros.

Let us note that a reaction-diffusion system of equations with nonlinear boundary con-
ditions suggested as a model of atherosclerosis was studied in [38] in the monostable case.
The method of proof is different in this case and it cannot be applied in the bistable case.
However we can expect that it is applicable for the scalar equation in the monostable case.
The scalar equation with nonlinear boundary condition and with f(u) ≡ 0 was considered
in [78]. However, behavior of solutions at infinity in [78] was not specified. In this work we
study problem (5.3), (5.4) in the bistable case.

5.3 Solutions in the cross-section

5.3.1 General case

In this section we will study the problem

d2w

dy2
+ f(w) = 0, w′(0) = 0, w′(L) = g(w(L)) (5.9)

in the interval 0 < y < L. We will suppose here that the functions f and g are continuous
together with their first derivatives. We can reduce the second-order equation to the system
of two first-order equations

w′ = p, p′ = −f(w),

and then to the equation

dp

dw
= −f(w)

p
.

We can solve this equation analytically. We will consider for simplicity only monotone
solutions and denote w+ = maxw(y), w− = minw(y). In the case of decreasing solutions
w+ = w(0), w− = w(L), and the boundary conditions become

p(w+) = 0, p(w−) = g(w−)

(Figure 5.1). Under the assumption that

∫ w+

w

f(u)du ≥ 0, w− ≤ w ≤ w+,
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we obtain

p(w) = −
√

2

∫ w+

w

f(u)du. (5.10)

From the second boundary condition

g(w−) = −
√

2

∫ w+

w−
f(u)du. (5.11)

Thus, for any given w+ such that f(w+) > 0, we find w− as a solution of equation (5.11).
Further, we solve the differential equation (5.10), where p(w) = w′, and obtain

L =

∫ w+

w−

dv√
2
∫ w+

v
f(u)du

.

Hence we found the length of the interval as a function of the maximal value of solution.
Depending on the functions f and g, solution can exist, it can be unique or non-unique,
or it may not exist. The case of increasing solutions can be studied in a similar way. The
spectrum of the problem linearized about the solutions can be completely in the left-half
plane or it can be partially in the right-half plane.

Figure 5.1: Graphical solution of problem (5.7). The function p(w) = w′(y) satisfies the
boundary conditions, p(w+) = 0, p(w−) = g(w−). Two examples presented here, with an
increasing and a decreasing function g are discussed in the text. Reprinted with permission
from [7] – N. Bessonov et al., Mathematical Modelling of Natural Phenomena, Cambridge
University Press, 2013.
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5.3.2 Constant solutions

Existence

In the next section, when we study the wave existence, we will consider problems which
depend on parameters. So we will discuss here problem (5.9) where g = δg0 and δ is a
positive parameter. Suppose that functions f(y) and g(y) are continuous together with their
first derivatives and such that

f(u±) = g(u±) = 0, f ′(u±) < 0, g′(u±) < 0 (5.12)

for some u+ and u−, and that these functions have a single zero u0 in the interval u+ < u <
u−,

f(u0) = g(u0) = 0, f ′(u0) > 0, g′(u0) > 0. (5.13)

Lemma 5.1. Let functions f and g satisfy conditions (5.12), (5.13). Then there exists L0

such that problem (5.9) with u+ < w(0) < u− has only constant solutions for any L ≤ L0

and any positive δ.

Proof. The trajectory p(w) corresponding to the solution of this problem is shown schemat-
ically in Figure 5.1 (left). If we take w(0) = w+, then w− < u0, and the value of L is limited
from below. It is similar for the symmetric case where p(w) > 0.

Let us note that it is different if g′(u0) < 0 (Figure 5.1 (right)). The points w− converges
to w+ as δ → 0, and L also converges to 0.

Stability

Let us discuss stability of constant solutions. We begin with the case where f(u) ≡ 0.
Then from the first boundary condition in (5.7) we obtain u = const, from the second one,
g(u) = 0. Denote a zero of the function g by u∗. Let us analyze the eigenvalue problem

v′′ = λv, v′(0) = 0, v′(1) = g′(u∗)v(1). (5.14)

Since the principal eigenvalue of this problem is real [123] (in fact, they are all real because
the problem is self-adjoint), it is sufficient for what follows to consider real λ. It can be easily
verified that λ = 0 is not an eigenvalue of this problem if g′(u∗) = 0. Let us find conditions
when the eigenvalue λ is positive. Set μ =

√
λ for a positive λ. Then from the equation and

the first boundary condition we obtain

v(y) = k(eμy + e−μy).
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From the second boundary condition it follows that

μ = g′(u∗)
eμ + e−μ

eμ − e−μ
.

This equation has a positive solution for g′(u∗) > 0, that is for u∗ = u0. In this case there
is a positive eigenvalue of problem (5.14). All eigenvalues are negative for u∗ = u± since
g′(u±) < 0.

If f(u) is different from zero, then the corresponding eigenvalue problem, instead of
(5.14), writes

v′′ + f ′(u∗)v = λv, v′(0) = 0, v′(1) = g′(u∗)v(1). (5.15)

If f ′(u∗) > 0, then the principal eigenvalue of this problem is greater than the principal
eigenvalue of problem (5.14), and it remains positive. This is the case for u∗ = u0. If
u∗ = u±, then the eigenvalues are negative.

5.4 Property of the operators

5.4.1 Fredholm property

Consider the operator corresponding to problem (5.3), (5.4) and linearized about a solution
u(x, y):

Av = Δv + c
∂v

∂x
+ a(x, y)v, (x, y) ∈ Ω, (5.16)

Bv =

⎧⎨⎩ ∂v
∂y

, y = 0

∂v
∂y

− b(x)v , y = 1
, (5.17)

where Ω = {−∞ < x < ∞, 0 < y < 1}, and

a(x, y) = f ′(u(x, y)), b(x) = g′(u(x, 1)).

The operator L = (A,B) acts from the space E = C2+α(Ω̄) into the space F = Cα(Ω̄) ×
C1+α(∂Ω). Consider the limiting operators

A±v = Δv + c
∂v

∂x
+ a±(y)v, (x, y) ∈ Ω, (5.18)
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B±v =

⎧⎨⎩ ∂v
∂y

, y = 0

∂v
∂y

− b±v , y = 1
(5.19)

and the corresponding equations

A±v = 0, B±v = 0. (5.20)

Here

a±(y) = lim
x→±∞

a(x, y), b± = lim
x→±∞

b(x).

Denote by ṽ(ξ, y) the partial Fourier transform of v(x, y) with respect to x. Then from (5.20)
we obtain

ṽ′′ + (−ξ2 + ciξ + a±(y))ṽ = 0, 0 < y < 1, (5.21)

ṽ′(ξ, 0) = 0, ṽ′(ξ, 1) = b±ṽ(ξ, 1). (5.22)

Since we consider the bistable case, then the eigenvalue problem

v′′ + a±(y)v = λv, 0 < y < 1, v′(0) = 0, v′(1) = b±v(1) (5.23)

has all eigenvalues in the left-half plane. Therefore for each ξ ∈ R, problem (5.21), (5.22)
has only zero solution. Hence v(x, y) ≡ 0, and thus we have proved that limiting problems
do not have nonzero bounded solutions. This is also true for the formally adjoint operator.
Therefore the operator L satisfies the Fredholm property. It remains also true if the operator
acts from W 2,2

∞ (Ω) into L2
∞(Ω)×W

1/2,2
∞ (∂Ω) ([124], page 163) where the ∞-spaces are defined

as follows. Let E be a Banach space with the norm ‖ · ‖ and φi be a partition of unity. Then
E∞ is the space of functions for which the expression

‖u‖∞ = sup
i

‖uφi‖

is bounded. This is the norm in this space.
Theorem 5.2. If both problems (5.23) have all eigenvalues in the left-half plane, then the
operator L = (A,B) acting from C2+α(Ω̄) into F = Cα(Ω̄)×C1+α(∂Ω) or from W 2,2

∞ (Ω) into

L2
∞(Ω)×W

1/2,2
∞ (∂Ω) satisfies the Fredholm property.
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5.4.2 Properness and topological degree

Consider the nonlinear operator in the domain Ω

T0(w) = Δw + c
∂w

∂x
+ f(w), (x, y) ∈ Ω, (5.24)

and the boundary operator

Q0(w) =

⎧⎨⎩ ∂w
∂y

, y = 0

∂w
∂y

− g(w) , y = 1
. (5.25)

Let w = u+ψ, where ψ(x, y) is an infinitely differentiable function such that ψ(x, y) = u+(y)
for x ≥ 1 and ψ(x, y) = u−(y) for x ≤ −1. Set

T (u) = T0(u+ ψ) = Δu+ c
∂u

∂x
+ f(u+ ψ) + Δψ + c

∂ψ

∂x
, (x, y) ∈ Ω, (5.26)

Q(u) = Q0(u+ ψ) =

⎧⎨⎩ ∂u
∂y

, y = 0

∂u
∂y

− g(u+ ψ) + ∂ψ
∂y

, y = 1
. (5.27)

We consider the operator P = (T,Q) acting in weighted spaces,

P = (T,Q) : W 2,2
∞,μ(Ω) → L2

∞,μ(Ω)×W 1/2,2
∞,μ (∂Ω).

with the weight function μ(x) =
√
1 + x2. The norm in the weighted space is defined as

follows:

‖u‖∞,μ = ‖uμ‖∞.

In the bistable case where all eigenvalues of problems (5.8) lie in the left-half plane, the oper-
ator P is proper in the weighted spaces and the topological degree can be defined [124].

5.5 A priori estimates

5.5.1 Auxiliary results

We begin with some auxiliary results. Consider the problem
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Δu+ c
∂u

∂x
+ f(u) = 0, (5.28)

y = 0 :
∂u

∂y
= 0, y = 1 :

∂u

∂y
= g(u). (5.29)

We look for the solutions with the limits

lim
x→±∞

u(x, y) = u±(y), 0 < y < 1 (5.30)

at infinity, u−(y) > u+(y). The proofs of the following lemmas are similar to those in [6].

Lemma 5.3. Let U0(x, y) be a solution of problem (5.28), (5.29) such that ∂U0

∂x
≤ 0 for all

(x, y) ∈ Ω̄. Then the last inequality is strict.

Lemma 5.4. Let un(x, y) be a sequence of solutions of problem (5.28), (5.29) such that
un → U0 in C1(Ω̄), where U0(x, y) is a solution monotonically decreasing with respect to x.
Then for all n sufficiently large ∂un

∂x
< 0, (x, y) ∈ Ω̄.

We will now determine the sign of the speed of the wave connecting a stable and an
unstable solutions. This result will be used below for estimates of solutions.

Lemma 5.5. Suppose u0(y) is a solution of problem (5.7) in the cross section of the domain,
and u+(y) < u0(y) < u−(y). Assume, next, that the corresponding eigenvalue problem

v′′ + f ′(u0)v = λv, v′(0) = 0, v′(1) = g′(u0(1))v(1) (5.31)

has some eigenvalues in the right-half plane. If a monotone with respect to x function w(x, y)
satisfies the problem

Δw + c
∂w

∂x
+ f(w) = 0, (5.32)

y = 0 :
∂w

∂y
= 0, y = 1 :

∂w

∂y
= g(w), (5.33)

lim
x→−∞

w(x, y) = u−(y), lim
x→∞

w(x, y) = u0(y), (5.34)

then c > 0. If

lim
x→−∞

w(x, y) = u0(y), lim
x→∞

w(x, y) = u+(y),
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instead of (5.34), then c < 0.

Lemma 5.6. If problem (5.28)-(5.30) has a solution w, then the value of the speed admits
the estimate |c| ≤ M , where the constant M depends only on maxu∈[u+,u−] |f ′(u)|, |g′(u)|.

5.5.2 Functionalization of the parameter

Let w0(x, y) be a solution of problem (5.28)-(5.30). Then the functions

wh(x, y) = w0(x+ h, y), h ∈ R

are also solutions of this problem. The existence of the family of solutions does not allow
one to use directly the topological degree because there is a zero eigenvalue of the linearized
problem and a uniform a priori estimate of solutions in the weighted spaces does not oc-
cur.

In order to overcome this difficulty, we replace the unknown parameter c, the wave
speed, by a functional c(wh). This approach was suggested in [76] for periodic solutions of
ordinary differential systems of equations, and then used for travelling waves in [122]. This
functional determines a function of h, s(h) = c(wh). We will construct this functional in
such a way that s′(h) < 0 and s(h) → ±∞ as h → ∓∞. Then instead of the family of
solutions we obtain a single solution for the value of h for which c = s(h).

Let

ρ(wh) =

∫
Ω

(w0(x+ h, y)− u+(y))r(x)dxdy,

where r(x) is an increasing function satisfying the conditions:

r(−∞) = 0, r(+∞) = 1,

∫ 0

−∞
r(x)dx < ∞.

Since w0(x, y) is a decreasing function of x, then ρ(wh) is a decreasing function of h, and

ρ(wh) →
⎧⎨⎩ 0 , h → +∞

+∞ , h → −∞
.

Hence the function s(h) = c(wh) = ln ρ(wh) possesses the required properties.



92 5.5. A PRIORI ESTIMATES

5.5.3 Estimates of solutions

We consider next the problem

Δw + c
∂w

∂x
+ fτ (w) = 0, (5.35)

y = 0 :
∂w

∂y
= 0, y = 1 :

∂w

∂y
= gτ (w), (5.36)

w(±∞, y) = u±(y), (5.37)

where the functions f and g depend on the parameter τ ∈ [0, 1]. Everywhere below we
will assume that the functions fτ (w), gτ (w) are bounded and continuous together with their
derivatives of the third order with respect to w and of the second order with respect to τ .
These conditions allow the construction of the topological degree [124].

The proof of the following lemma is given in the appendix.

Lemma 5.7. Suppose that solution w(x, y) of problem (5.35)-(5.37) satisfies the estimate
|w| ≤ M with some positive constant M , and

|f (i)
τ (w)|, |g(i)τ (w)| ≤ K for |w| ≤ M, i = 0, 1, 2, 3,

where K is a positive constant. Then the Hölder norm C2+α(Ω̄), 0 < α < 1 of the solution
is bounded by a constant which depends only on K, M and c.

Denote by wτ a solution of problem (5.35)-(5.37). We need to obtain a uniform estimate
of the solution uτ = wτ − ψ in the norm of the space W 2,2

∞,μ(Ω). Here ψ(x, y) is an infinitely
differentiable function such that ψ(x, y) = u+(y) for x ≥ 1 and ψ(x, y) = u−(y) for x ≤ −1.
Since u ∈ C2+α(Ω̄), then the norm W 2,2

∞ (Ω) of the solution is also uniformly bounded.
However, the boundedness of the norm in the weighted space does not follow from this and
should be proved. In order to obtain the estimate, it is sufficient to prove that the solution
is bounded in the weighted space, that is

sup
(x,y)∈Ω

|(wτ (x, y)− ψ(x, y))μ(x)| ≤ M (5.38)

with some constant M independent of τ . If this estimate is satisfied, then the derivatives of
the solution up to the order two are also bounded. Indeed, the function uτ = wτ −ψ satisfies
the problem

Δu+ c
∂u

∂x
+ f(u+ ψ) + γ(x, y) = 0,
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y = 0 :
∂u

∂y
= 0, y = 1 :

∂u

∂y
= g(u+ ψ),

where γ(x, y) = Δψ + c∂ψ
∂x
. Then the function vτ = uτμ satisfies the problem

Δv + (c− 2μ1)
∂v

∂x
+ (−cμ1 + 2μ2

1 − μ2)v + (f(u+ ψ)− f(ψ))μ+ (γ + f(ψ))μ = 0, (5.39)

y = 0 :
∂v

∂y
= 0, y = 1 :

∂v

∂y
= (g(u+ ψ)− g(ψ))μ+ g(ψ)μ, (5.40)

where

μ1 =
μ′

μ
, μ2 =

μ′′

μ

are bounded infinitely differentiable functions converging to zero at infinity. Since

|(f(u+ ψ)− f(ψ))μ| ≤ sup
s

|f ′(s)||uμ|, |(g(u+ ψ)− g(ψ))μ| ≤ sup
s

|g′(s)||uμ|,

then, by virtue of (5.38), the functions

Φ(u, x) = (f(u+ ψ)− f(ψ))μ+ (γ + f(ψ))μ, Ψ(u, x) = (g(u+ ψ)− g(ψ))μ+ g(ψ)μ

are bounded together with their second derivatives. Therefore solutions of problem (5.39),
(5.40) are uniformly bounded in the space C2+α(Ω). Then the normW 2,2

∞ (Ω) is also bounded.

It remains to prove estimate (5.38). Consider first of all the behavior of solutions at the
vicinity of infinity. By virtue of the Fredholm property, |wτ (x, y)−u±(y)| decay exponentially
as x → ±∞. The decay rate is determined by the principal eigenvalue of the corresponding
operators in the cross-section of the cylinder. They can be estimated independently of
τ .

Let ε > 0 be small enough, N−(τ) and N+(τ) be such that |wτ (x, y) − u+(y)| ≤ ε for
x ≥ N+(τ) and |wτ (x, y)−u−(y)| ≤ ε for x ≤ N−(τ). For a polynomial weight function μ(x)
there exists a constant K independent of τ ∈ [0, 1] such that

|wτ (x, y)− u±(y)|μ(x) ≤ K, x ≷ N±(τ), τ ∈ [0, 1].

Since the functions wτ (x, y) are uniformly bounded, then (5.38) will follow from the uniform
boundedness of the values N±(τ).
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First, let us note that the difference between them is uniformly bounded. Indeed, if this
is not the case and N+(τ)−N−(τ) → ∞ as τ → τ0 for some τ0, then there are two solutions
of problem (5.35), (5.36) for τ = τ0, w1 and w2 with the limits

w1(x, y) →
⎧⎨⎩ u−(y) , x → −∞

u0(y) , x → +∞
, w2(x, y) →

⎧⎨⎩ u0(y) , x → −∞
u+(y) , x → +∞

.

These solutions are obtained as limits of the solution wτ as τ → τ0. In order to obtain them,
consider a sequence of functions wτk(x, y), τk → τ0 and two sequences of shifted functions:
wτk(x + N−(τk), y) and wτk(x + N+(τk), y). The first sequence gives in the limit the first
solution, the second limit gives the second solution.

The existence of such solutions contradicts Lemma 5.5 since the first one affirms that
the speed is positive while the second one that it is negative.

Next, if one of the values |N±(τ)| tends to infinity as τ → τ0, then the modulus |c(wh)|
of the functional introduced in Section 4.1 also tends to infinity as τ → τ0. This contradicts
a priori estimates of the wave speed. Thus, we have proved the following theorem.

Theorem 5.8. Let the functions fτ (w), gτ (w) be bounded and continuous together with their
derivatives of the third order with respect to w and of the second order with respect to τ . If
there exists a solution wτ of problem (5.35)-(5.37) such that uτ = wτ − ψ ∈ W 2,2

∞,μ(Ω), then
the norm ‖uτ‖W 2,2∞,μ(Ω) is bounded independently of τ and of the solution wτ .

5.6 Leray-Schauder method

5.6.1 Model problem

Consider the problem

Δw + c
∂w

∂x
+ f(w) = 0, (5.1)

y = 0 :
∂w

∂y
= 0, y = 1 :

∂w

∂y
= 0, (5.2)

w(±∞, y) = u±, (5.3)

where we put 0 instead of g(w) in the boundary condition, u+ and u− are some numbers
such that f(u±) = 0, f ′(u±) < 0. Suppose that there exists a single zero u0 of the function
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f in the interval (u+, u−), f ′(u0) > 0. Less restrictive conditions on the function f can also
be considered. In this case the problem

w′′ + cw′ + f(w) = 0, w(±∞) = u±

has a solution w0(x) for a unique value of c (see, e.g., [122]). This function is also a solution
of problem (5.1)-(5.3). The uniqueness of this solution as a solution of the two-dimensional
problem is proved in the following lemma.

Lemma 5.9. There exists a unique monotone in x solution of problem (5.1)-(5.3) up to
translation in space.

Proof. Suppose that there exist two different monotone solutions of problem (5.1)-(5.3),
(w1, c1) and (w2, c2). We recall that the corresponding values of the speed c can be different.
Consider the equation

∂v

∂t
= Δv + c1

∂v

∂x
+ f(v) (5.4)

with the boundary condition (5.2). The function w1(x, y) is a stationary solution of this
problem. It is proved in [123] that it is globally stable with respect to all initial condi-
tions v(x, y, 0), which are monotone with respect to x and such that the norm ‖v(x, y, 0)−
w1(x, y)‖L2(Ω) is bounded.

Consider the initial condition v(x, y, 0) = w2(x, y). It is monotone and the L2 norm of
the difference w2 − w1 is bounded since these functions approach exponentially their limits
at infinity. According to the stability result, the solution converges to w1(x+h, y) with some
h. On the other hand, the solution writes u(x, y, t) = w2(x − (c2 − c1)t, y), and it cannot
converge to w1. This contradiction proves the lemma.

We consider next the problem (5.35)-(5.37) and the corresponding operators

Tτ (u) = Δ(u+ ψ) + c(u+ ψ)
∂(u+ ψ)

∂x
+ fτ (u+ ψ), (x, y) ∈ Ω, (5.5)

Qτ (u) =

⎧⎨⎩ ∂u
∂y

, y = 0

∂u
∂y

− gτ (u+ ψ) , y = 1
, (5.6)

Pτ = (Tτ , Qτ ) : W
2,2
∞,μ(Ω) → L2

∞,μ(Ω)×W 1/2,2
∞,μ (∂Ω).

Suppose that gτ (u) ≡ 0 for τ = 0. Then the equation
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Pτ (u) = 0 (5.7)

has a unique solution u0 = w0 − ψ for τ = 0. The index of this solution, that is the
topological degree of this operator with respect to a small neighborhood of the solution,
equal 1. Indeed, the index equals (−1)ν , where the ν is the number of positive eigenvalues of
the linearized operator [122], [124]. In the case under consideration, the linearized operator
has all eigenvalues in the left-half plane [123].

5.6.2 Wave existence

As above, we assume that the functions fτ (w), gτ (w) are bounded and continuous together
with their derivatives of the third order with respect to w and of the second order with
respect to τ . We begin with a general result on wave existence.

Theorem 5.10. Let the problem

d2w

dy2
+ fτ (w) = 0, w′(0) = 0, w′(L) = gτ (w(L)) (5.8)

have solutions uτ±(y) such that

uτ+(y) < uτ−(y), 0 ≤ y ≤ L

and the eigenvalue problems

d2v

dy2
+ f ′

τ (u
τ
±)v = λv, v′(0) = 0, v′(L) = g′τ (u

τ
±)v(L) (5.9)

have all eigenvalues in the left-half plane for any τ ∈ [0, 1]. Suppose that for any other
solution uτ0(y) of problem (5.8), the eigenvalue problem

d2v

dy2
+ f ′

τ (u
τ
0)v = λv, v′(0) = 0, v′(L) = g′τ (u

τ
0)v(L) (5.10)

has some eigenvalues in the right-half plane. If the problem

Δw + c
∂w

∂x
+ fτ (w) = 0, (5.11)

y = 0 :
∂w

∂y
= 0, y = L :

∂w

∂y
= gτ (w), (5.12)
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lim
x→±∞

w(x, y) = uτ±(y), 0 < y < L, (5.13)

considered in the domain Ω = {−∞ < x < ∞, 0 < y < L}, has a unique solution monotone
with respect to x for τ = 0, then it also has a unique monotone solution for any τ ∈ [0, 1].

Proof. The proof of the theorem is based on the Leray-Schauder method. We consider
equation (5.7). The topological degree for the operator Pτ (u) is defined (Section 3).

Denote by Γm the ensemble of solutions of equation (5.7) for all τ ∈ [0, 1] such that
for any u ∈ Γm the function w = u + ψ is monotone with respect to x. Let Γn be the
set of all solutions for which the function w = u + ψ is not monotone with respect to x.
Then the distance d between these two sets in the space E = W 2,2

∞,μ(Ω) is positive. Indeed,
suppose that this is not true. Then there exist two sequences uk ∈ Γm and vk ∈ Γn such
that ‖uk − vk‖E → 0 as k → ∞. From Lemma 5.4 it follows that the functions wk = vk + ψ
are monotone with respect to x for k sufficiently large. This contradiction shows that the
convergence cannot occur.

From Theorem 5.8, applicable for solutions from Γm, it follows that the set Γm is
bounded in E. Moreover, by virtue of properness of the operator Pτ it is compact. Hence
there exists a bounded domain G ⊂ E such that Γm ⊂ G and Γn ∩ Ḡ = �.

Consider the topological degree γ(Pτ , G). Since

Pτ (u) = 0, u ∈ ∂G,

then it is well defined. Since γ(P0, G) = 1 (Section 6.1), then γ(Pτ , G) = 1 for any τ ∈ [0, 1].
Hence problem (5.11)-(5.13) has a monotone solution for any τ ∈ [0, 1].

It remains to verify its uniqueness. We recall that

γ(Pτ , G) =
∑
i

ind ui,

where ind ui is the index of a solution ui and the sum is taken with respect to all solutions
ui ∈ G. Since γ(Pτ , G) = 1 and ind ui = 1 (cf. Section 5.1), then the solution is necessarily
unique.

The previous theorem uses some assumptions about the solutions uτ± and uτ0 of problem
(5.8) in the cross-section. We will now consider some particular cases where these conditions
can be verified.

Theorem 5.11. Let u+ and u− be some constants and the following conditions be satisfied:

1. f(u±) = 0, f ′(u±) < 0 , g(u±) = 0, g′(u±) < 0 ,
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2. f(u0) = 0, f ′(u0) > 0 , g(u0) = 0, g′(u0) > 0 for some u0 ∈ (u+, u−), and there are no
other zeros of these functions in this interval.

Then for all positive L sufficiently small, the problem

Δw + c
∂w

∂x
+ f(w) = 0, (5.14)

y = 0 :
∂w

∂y
= 0, y = L :

∂w

∂y
= g(w), (5.15)

lim
x→±∞

w(x, y) = u± (5.16)

considered in the domain Ω = {−∞ < x < ∞, 0 < y < L} has a unique solution monotone
with respect to x.

This theorem follows from the previous one, where we set gτ = τg, and from Lemmas
5.4 and 5.9

Theorem 5.12. Let the function g(w) satisfy conditions of the previous theorem. Then for
all positive L, the problem

Δw + c
∂w

∂x
= 0, (5.17)

y = 0 :
∂w

∂y
= 0, y = L :

∂w

∂y
= g(w), (5.18)

lim
x→±∞

w(x, y) = u± (5.19)

considered in the domain Ω = {−∞ < x < ∞, 0 < y < L} has a unique solution monotone
with respect to x.

Proof. The proof consists of two steps. First, we consider sufficiently small L and use the
result of the previous theorem as a starting point for the deformation fτ = (1 − τ)f . For
τ = 1 we obtain fτ (w) ≡ 0. At the next step, we increase the width L of the domain. It is
equivalent to the change of variables y = ση in the equation and in the boundary condition.
The problem in the cross-section has only constant solutions. We can use the results of
Section 2.2 about their stability and Theorem 5.10.

In the last theorem we consider the case of small boundary conditions where the solution
is close to a one-dimensional solution.
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Theorem 5.13. Suppose that f(u±) = 0, f ′(u±) < 0 and for some c0 there exists a mono-
tone solution w(x) of the problem

w′′ + c0w
′ + f(w) = 0, w(±∞) = u±.

Then for all ε sufficiently small, the problem

Δw + c
∂w

∂x
+ f(w) = 0, (5.20)

y = 0 :
∂w

∂y
= 0, y = L :

∂w

∂y
= εg(w), (5.21)

lim
x→±∞

w(x, y) = uε±(y) (5.22)

considered in the domain Ω = {−∞ < x < ∞, 0 < y < L} has a unique solution monotone
with respect to x. Here uε±(y) are solutions of the problem

∂w

∂y
+ f(w) = 0, w′(0) = 0, w′(L) = εg(w(L)),

uε±(y) → u± as ε → 0 uniformly in y.

The proof of this theorem follows from the property of topological degree: a solution with
nonzero index persists under small deformation of the operator.
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Conclusion and Perspectives

Conclusions. This thesis is devoted to discrete and continuous modelling of blood flows
and related phenomena such as blood coagulation and atherosclerosis. The main results of
the dissertation are as follows:

1. Modelling of blood flow with a discrete particle method was carried out. Blood plasma
flow was modelled by Dissipative Particle Dynamics (DPD) in 2D. Various implemen-
tations of blood flow model and boundary conditions in DPD were introduced and
investigated in order to obtain a correct description of the fluid flow appropriate for
the investigation of blood coagulation. A complex combination of simulation domain
partition and boundary conditions was developed that is suitable for modelling of blood
coagulation. Furthermore, a model of the erythrocyte membrane suitable for use in
the DPD method was proposed and investigated.

2. A discrete model of platelet aggregation in flow was proposed. The DPD method was
used to model blood plasma flow and platelets suspended in it. Platelet clot growth
in flow was studied, depending on inter-platelet adhesion forces. Finally, a possible
mechanism of platelet clot growth arrest in flow was suggested.

3. Two hybrid models of platelet and fibrin clot were proposed and investigated. They
combine discrete (DPD) and continuous (PDE) methods, describing platelets sus-
pended in plasma and concentrations of blood factors in flow respectfully. The first
hybrid model was used to study the interaction between a platelet clot and a fibrin
concentration in flow. The second hybrid model introduced a more realistic sub-model
of coagulation pathways, accounting for its main characteristics. The model was used
to study the interaction of platelet and fibrin clot, showing a possible mechanism by
which the platelet clot stops growing and limits the further growth of the fibrin net.
Furthermore, the influence of the flow speed on the clot formation was investigated in
the scope of this model.

4. A mathematical analysis of a model of chronic inflammation related to atherosclerosis
was carried out. A problem describing the propagation of a reaction-diffusion wave in
the 2D case with nonlinear boundary conditions was studied. The existence of waves in
the bistable case was proven using the Leray-Schauder method and a priori estimates
of solutions.
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5. Numerical implementations of the discrete and hybrid models describing blood flow and
blood coagulation were done in the framework of this thesis. Due to the significant
computational cost of such models, different optimisation techniques were used. The
numerical code was parallelized on both Central Processing Unit (CPU) and Graphical
Processing Unit (GPU), and the performances were compared.

Perspectives. The models developed in the thesis concern blood flows and cell interactions
with the focus on blood coagulation. They offer many possibilities for future research and
development:

– Studies of the properties of blood cells and their interactions in flow, such as the blood
cell distribution in flow [15, 16].

– Further advances in the modelling of blood coagulation with a more complete model
suitable for medical applications:

- modelling of blood coagulation in 3D and quantitative comparison with experi-
mental results,

- investigation of the influence of erythrocyte distribution on clot growth in flow,

- introduction of a more complete model of blood coagulation pathways and a
consequent study of the sensitivity of the model and its impact on clot formation
in flow,

- modelling of the initiation of the coagulation process in flow, as an important first
step in the blood coagulation process,

- modelling of primary fibrinolysis, the process of blood clot decomposition in nor-
mal conditions, and secondary fibrinolysis due to a medical disorder, medical
treatment, or other cause,

- modelling of pathological clot growth related to many diseases and disorders, such
as atherosclerosis or arthritis.

- investigation of pulsatile flow influence on clot growth in flow.

– Modelling of atherosclerosis and atherosclerotic plaque development by the same ap-
proach (DPD-PDE hybrid method).

We intend to study these questions in the future works.
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8. V. Volpert, N. Bessonov, N. Eymard, A. Tosenberger, Modélisation multi-échelle en dy-
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Chapter 6

Appendix A - Hybrid model
implementation

In order to develop a software for the models described in Chapters 3 and 4, C++ pro-
gramming language was used. It is a standard choice for writing a computation expensive
scientific software because it is an intermediate-level language which enables rapid and more
robust software development while, at the same time, allows a possibility of “low-level” op-
timization. As an object-oriented language it enables an easier development of a modular
software. However, in this work the modularity of the developed software was sacrificed to a
certain level in order to increase performance. Alongside the standard capabilities of C++,
additional libraries have been used. The integrated development environment (IDE) of choice
was MS Visual Studio 2008, accompanied with Microsoft Foundation Classes (MFC) for the
development of the graphical user interface, OpenGL for 3D graphic rendering, OpenMP for
parallelization, and MathGL for the plotting of graphs. For purposes of GPGPU (General-
purpose computing on graphics processing units), C++ Accelerated Massive Parallelism
(C++ AMP) library was used.

6.1 Code structure

This section contains a short description of the algorithm implementing the three equation
hybrid model described in Section 4.2. Additionally, the main data structures used in the
implementation are listed and briefly discussed.

• ParticleData. Object of ParticleData class encapsulates data relevant to a single
particle. It contains information on the particle’s current position, current velocity,
forces acting on the particle, and platelet label. Data on the force is temporary and
is being reset after each step of the DPD part of the algorithm. The platelet label
denotes if a particle is a plasma particle or a platelet.
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Figure 6.1: UML activity diagram of the algorithm for the three equation hybrid model.
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• CellData. Object of CellData class contains data on a single cell (erythrocyte) mem-
brane. The data includes a list of ids of particles that are part of the cell membrane,
and supplementary data like the current cell volume. The ids of a particles is defined
in the list of all particles. This structure is used in the simulation of an erythrocyte
membrane. As no complex model of cells was used in the hybrid models described in
Chapters 3 and 4, this structure will not be discussed further in this section.

• BoxData. Object of BoxData class encapsulates data related to a single box (see
boxing scheme in Section 6.2.1). It contains an array of particle ids.

• BoxPairData. Object of BoxPairData class contains ids of two neighbouring boxes
(see boxing scheme in Section 6.2.1).

• BondData. Object of BondData class contains ids of two connected platelet particles
and a time counter which memorizes the age of the connection.

• StatData. Object of StatData class contains summary data on the number of particles
and their velocities in some small part (or volume) of the simulation domain. The data
on particles in a such volume is summarized through several steps of the DPD part of
the algorithm, and is afterwards used to calculate density and velocity profiles. After,
obtaining the density and velocity profiles, the data is reset.

VelocityData. Object of VelocityData class contains an array of vectors with in-
formation on a velocity profile. The velocity profile is obtained by averaging data
contained in a collection of StatData objects.

DensityData. Object of VelocityData class contains an array with information on
a density profile. Similarly to the velocity profile, the density profile is obtained by
averaging data contained in a collection of StatData objects.

ProteinData. Object of ProteinData class contains an array with information on a
protein concentration profile.

The objects of classes described above were organized in the following collections:

• Particle list. A collection of ParticleData objects. If possible, it is preferable to
store the ParticleData objects in an array, in order to achieve better simulation per-
formance. In that case the id of the particle can be defined as the particle position in
the array. If an array cannot be used because of memory limitations, a list or other,
more complex collections, can be used instead. In that case each member of the list
contains ParticleData object and its id. As particles are removed and created in each
step of the algorithm, the performance when using the array structure can be signifi-
cantly reduced. This problem can be solved by using more complex structures which
have the array structure in its base, but also by using a smarter management of object
insertions and removals.

• List of boxes. A collection of BoxData objects and their ids. The objects in the list
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Figure 6.2: User interface for parameter input for the three equations hybrid model.

cover the whole simulation domain.

• List of pairs of boxes. A collection of BoxPairData objects. The list contains all
pairs of neighbouring boxes (see boxing scheme in Section 6.2.1).

• Inter-platelet connection list. A collection of BondData objects. It contains infor-
mation on all adhesive bonds that are acting between platelets.

• List for velocity and density analysis. A collection of StatData objects, covering
the whole simulation domain. This collection serves for gathering data on particles
during several steps of the DPD part of the algorithm. This data is then used to
calculate density and velocity profiles.

Figure 6.1 shows the UML activity diagram of the three equation hybrid model imple-
mentation. The complexity of the problem and the extensive optimization that was done in
the implementation, would make the corresponding activity diagram rather complex. There-
fore, the UML diagram shown in Figure 6.1 corresponds to a more simple and less optimized
version of the algorithm, where not all optimization details were considered:

1. Initialization of particles and concentrations. In the initialization step the sim-
ulation domain is uniformly populated with particles and their velocities that have a
parabolic velocity profile corresponding to the solution of Navier-Stokes equations for
the steady Poiseuille flow. The list of particles and the list of inter-platelet connections
are created. A part of the particles is labelled as platelets. They are uniformly dis-
tributed and their concentration is equal to some predetermined value. Furthermore,
concentration profiles for thrombin, fibrinogen and fibrin polymer are created and set
to corresponding initial values. Finally, the list of boxes, corresponding to the boxing
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scheme described in Section 6.2.1 is created.

2. Update boxes. Boxes are first emptied, then particles are separated and placed in
boxes depending on their positions.

3. Calculate inter-platelet adhesion forces. Adhesion forces are calculated for each
pair of connected platelets. If for any pair of connected platelets, their relative distance
is greater than the critical distance dD (see Section 3.1), the corresponding connection
is removed from the list.

4. Calculate DPD forces. Following the boxing scheme described in Section 6.2.1,
for each meaningful pair of boxes (Figure 6.3) DPD forces are calculated between all
particles related to those boxes. If two platelets that are not connected come in physical
contact, and their relative distance is smaller than the critical distance dC (see Section
3.1), a connection between them is created and added to the list of connections.

5. Move particles. Each particle is moved for the corresponding total force acting on it
and for the time step dt1. If a particle interacts with the boundaries of the simulation
domain, its position and velocity are adjusted following the rules for a corresponding
boundary (see Section 2.3). If the Particle Generation Area is used, the particle can
be removed or added to the particle list. It is removed if it crosses the SA outflow
boundary. If it crosses the GA outflow boundary, its copy is added to the particle list
instead. After calculating the particle’s new velocity and position, the force acting on
the particle resets to zero.

6. Update density and velocity statistics. Data for density and velocity profiles are
updated with positions and velocities of particles.

7. Increase time t1 for dt1. A step of the DPD part of the algorithm ends by adding
time step dt1 to the total DPD simulation time t1.

8. Calculate velocity profile. After the DPD part of the algorithm is simulated for
some τ period of time, density and velocity profiles are calculated from data gathered
in the same period of time.

9. Evolve thrombin concentration (T ) for dt2. Thrombin concentration is evolved
for time step dt2, taking into account the calculated velocity profile.

10. Evolve fibrinogen concentration (Fg) for dt2. Fibrinogen concentration is evolved
for time step dt2, taking into account the calculated velocity profile and the latest
thrombin concentration.

11. Evolve fibrin polymer concentration (Fp) for dt2. Fibrin polymer concentration
is evolved for time step dt2, taking into account the latest fibrinogen concentration.

12. Increase time t2 for dt2. A step of the PDE part of the algorithm ends by adding
time step dt2 to the total DPD simulation time t2.
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13. Update platelets. Once the concentrations have been evolved for τ period of time,
the status of platelets is updated. If at the platelet’s position the concentration of fibrin
polymer is larger than the critical concentration cFp the platelet changes its state to
“non-adhesive”.

6.2 Optimization

6.2.1 Boxing scheme

Figure 6.3: Boxing scheme: Simulation domain is divided into boxes depending on the
maximal radius of inter-particle influence (rc in DPD). Then particles from box Bij are in
contact with themselves and with particles from surrounding boxes. The scheme ensures
that all the other particles are to far away to exert forces on particles in box Bij. Reprinted
with permission from [117] – A. Tosenberger et al., Russian Journal of Numerical Analysis
and Mathematical Modelling, De Gruyter, 2012.

In DPD simulations most of the total computational time is spent on the calculations of inter-
particle forces, therefore this is the part of the code where optimisation would have the largest
impact. Usually, the cut-off radius of inter-particle force in DPD (rc) is much smaller than
the sizes of the simulation domain, thus the calculation of forces between all possible pairs of
particles is very inefficient because most of such pairs have an inter-particle distance larger
than the cut-off radius. In order to avoid as much of such pairs of particles as possible, the
simulation domain, a rectangle in our 2D case, can be divided into smaller rectangles (called
boxes) [18] with lengths of sides equal to min {xεR+|x ≥ rc ∧ ∃nεN such that L = nx} and
min {yεR+|y ≥ rc ∧ ∃nεN such that D = ny}, where L is the length of the domain, and D is
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its height. Construction of a such rectangular subdivision ensures that for each particle p we
can find its corresponding box Bi,j and that all particles which have non-zero inter-particle
force with particle p are contained in the box Bi,j and 8 surrounding boxes. This eliminates
most of the pairs of particles which have a zero inter-particle force, and therefore drastically
reduces the computation time. Furthermore, the described domain subdivision enables one
to easily paralellize the process of calculation of inter-particle forces by dividing the set of
all pairs of “connected” boxes into multiple disjunct subsets.

Another possibility to decrease the simulation time it to increase the time step. DPD,
due to its definition of the conservative force as a finite function and due to the existence
of dissipating forces, enables a certain increase in the time step compared to other particle
methods like Molecular Dynamics.

6.2.2 Velocity profile smoothing

In hybrid models, described in Chapter 4, the sensitivity of the model on changes in the
flow is regulated by the period of data exchange between the discrete and the continuous
part of the model. Reducing this period will increase the frequency of data exchange, thus
making the model more precise. However, this will also reduce the measurement time for
the velocity profile, and thus cause the increase of noise in the measured profile. This effect
of the noise increase can be eliminated to some level by applying methods for noise filtering
or smoothing. One of such methods which proved to be efficient for this problem is the
Gaussian filter. In one dimension the Gaussian filter method consists of convolution of the
measured data f with a normalized Gaussian function g:

(f ∗ g) (x) =
∞∫

−∞

f (t) g (x− t) dt, (6.1)

where g is given by

g (x) =
1

σ
√
2π

e−
x2

2σ2 . (6.2)

and σ is the standard deviation. In two-dimensions the velocity field can be separated on
components of velocity (x- and y-direction velocity profile). Then the Gaussian filter can be
applied on each of the velocity profiles separately. The two dimensional Gaussian function
has the following form:

g (x, y) =
1

2πσ2
e−

x2+y2

2σ2 . (6.3)

6.2.3 Dual time steps

In DPD models of platelet aggregation in flow, described in Chapters 3 and 4, the inter-
platelet adhesion forces are usually much stronger than DPD inter-particle forces. Because
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of the stronger forces the time step needs to be significantly lower than it would be the case
in a simulation without platelet aggregation. As aggregated platelets occupy only a small
part of the simulation domain, in each step of the algorithm DPD forces between particles in
the rest of the domain are calculated with the unnecessary small time step. A possible way
to avoid this problem and to increase the computational efficiency of the algorithm is to use
two time steps, instead of only one. The first time step, dtdpd, serves for DPD interactions,
while the second one, dtplt, is used for platelet interactions. It is expected that the DPD
time step is significantly larger than the inter-platelet time step (dtdpd � dtplt). In the one
DPD step dtdpd of the algorithm the DPD forces are first calculated between all particles,
including platelets. Then, before plasma particles are moved for dtdpd time step, the inter-
platelet forces are calculated and only platelets are moved for time step dtplt. Afterwards,
the inter-platelet forces are recalculated and platelets are moved for the time step dtplt. This
process is repeated until the sum of dtplt steps is not equal to the dtdpd step. Then the plasma
particles are moved for dtdpd time step. This approach offers a significant increase in the
computational performance for simulations of clot growth.

6.2.4 Additional integration scheme for the equations of motion
in DPD

In scope of this work a new method was also used. The method can be considered as semi-
implicit in the context of the dissipative force, as it takes implicitly a part of the velocity
term into the calculation of the dissipative force. Let us write a sum of DPD forces on some
particle i:

Fi =
∑
j

(
FC
ij(ri, rj) + FD

ij (ri, rj,vi,vj) + FR
ij(ri, rj)

)
. (6.4)

where the conservative and the random force depend only of the positions of the particles
i and j, while the dissipative force depends additionally of particles’ velocities. Let us take
the velocity of the particle i in the implicit form and the remaining variables in the explicit
form:

Fi =
∑
j

(
FC
ij(r

n
i , r

n
j ) + FD

ij (r
n
i , r

n
j ,v

n+1
i ,vnj ) + FR

ij(r
n
i , r

n
j )
)
. (6.5)

By including it in the first step of Euler integration method (equation (2.8)) the following
equation is obtained :

vn+1
i = vni +

dt

mi

∑
j

(
FC
ij(r

n
i , r

n
j ) + FD

ij (r
n
i , r

n
j ,v

n+1
i ,vnj ) + FR

ij(r
n
i , r

n
j )
)
. (6.6)
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After expanding the dissipative force to its full form given by the equation (2.2) and
placing all the expressions multiplying vn+1

i on the left side one obtains:

vn+1
i +

dt

m

∑
j

γωD(rnij)(v
n+1
i · r̂nij)r̂nij = (6.7)

= vni +
dt

mi

∑
j

(
FC
ij(r

n
i , r

n
j ) + γωD(rnij)(v

n
j · r̂nij)r̂nij + FR

ij(r
n
i , r

n
j )
)
,

where rij = ri − rj, rij = |rij| and r̂ij = rij/rij. Now the left side of the equation (6.7) can
be written as:

vn+1
i

(
I +

dt

m

∑
j

γωD(rnij)(r̂
n
ij ⊗ r̂nij)

)
= (6.8)

= vni +
dt

mi

∑
j

(
FC
ij(r

n
i , r

n
j ) + γωD(rnij)(v

n
j · r̂nij)r̂nij + FR

ij(r
n
i , r

n
j )
)
.

Set

A = I +
dt

m

∑
j

γωD(rnij)(r̂
n
ij ⊗ r̂nij). (6.9)

Lemma 6.1. If vi ∈ R
n for i = 1, . . . , k and αi ∈ R , i = 1, . . . , k, such that αi ≥ 0, ∀i,

then the matrix A = I +
k∑
j=1

αj (vj ⊗ vj) is invertible.

Proof. Let us first define matrices Ai as

Ai = αi (vi ⊗ vi) , for i = 1, . . . k. (6.10)

Let us first note that matrices Ai, i = 1, . . . , k, are symmetric and positive semi-definite
as for any vector x ∈ R

n we have:

xτAix = αi (x1 ... xn)

⎛⎜⎜⎜⎝
v21 ... v1vn
...

. . .
...

vnv1 ... v2n

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

x1

...

xn

⎞⎟⎟⎟⎠ (6.11)

= αi

(
v1

n∑
i=1

xivi ... vn

n∑
i=1

xivi

)⎛⎜⎜⎜⎝
x1

...

xn

⎞⎟⎟⎟⎠ (6.12)

= αi

n∑
j=1

(
xjvj

n∑
i=1

xivi

)
= αi (x1v1 + . . . xnvn)

2 ≥ 0. (6.13)
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As the identity matrix is positive definite and as the sum A + B of a positive definite
matrix A and a positive semi-definite matrix B is positive definite:

xτAx > 0, ∀x ∈ R
n, x = 0, (6.14)

xτBx ≥ 0, ∀x ∈ R
n, (6.15)

xτ (A+B)x = (xτA+ xτB)x = xτAx+ xτBx > 0 ∀x ∈ R
n, x = 0, (6.16)

it follows that I +
n∑
i=1

Ai is a positive definite matrix, and as such is invertible.

From Lemma 6.1 it follows that the matrix A is invertible, so from the equation (6.8)
we can write:

vn+1
i =

[
vni +

dt

mi

∑
j

(
FC
ij(r

n
i , r

n
j ) + γωD(rnij)(v

n
j · r̂nij)r̂nij + FR

ij(r
n
i , r

n
j )
)]

A−1. (6.17)

Once the new velocity of particle i is obtained, its new position can be calculated by
the second step of Euler integration method (the equation (2.9)).

On the one hand the previously described method is not symmetrical as one part of
the velocity difference vi − vj is taken implicitly and the other part explicitly. As a result
the particle system does not preserve its total momentum. On the other hand, for a small
time step the error does not significantly influence the behaviour of the whole system, and it
allows an increase of time step for the DPD method for several orders of magnitude. Because
of the loss of symmetry, the method should be used cautiously and results should be verified
by comparison to a more precise integration scheme.

6.2.5 Parallelism - OpenMP, GPGPU

Dissipative Particle Dynamics, as a discrete particle method allows a certain level of paral-
lelism. Different technical solutions can be used in order to use this ability. One of them
is multicore computing. A multicore processors consists of multiple execution units, called
“cores”, that are placed on the same chip. Each of the cores is capable of executing its own
thread of instructions independently of the other cores, i.e. they can work asynchronously.
Multicore processors are today present in most of the personal computers in form of central
processing units (CPU). As the software for modelling blood coagulation was developed in
C++, one of the most prominent application programming interfaces (API) for paralleliza-
tion, called Open Multi-Processing (OMP), was used to run the code in parallel on a CPU.
In a single step of the algorithm, especially if using the boxing scheme, the data (particle
position, velocity, state, etc.) is being reused to some extent. However, the reuse of the data
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is low compared to the number of instructions executed over the same part of data - one
particle is in contact with a small number of other particles compared to the total number
of particles in the system. Because of that the reuse of data in the processor cache (very fast
low capacity memory) is low and RAM (fast high capacity memory) is often accessed. With
this limitation on reuse of data stored in the CPU cache, and with the overhead of instruc-
tions needed to parallelize a loop that comes from OMP, it is more efficient to parallelize
top loops than the nested ones. Therefore, in the algorithm (Figure 6.1) the top loops are
parallelized. With this approach the performance of the simulations is significantly increased
compared to a serial approach. Performance on Intel Core i7-3770 with 4 cores was around
350 percent higher in parallel (OMP) than in serial mode.

Figure 6.4: Comparison of CPU and GPU performance for 2D DPD simulations. Number
of particles was varied from 900 to 230400. The test on GPU includes a single transfer of
necessary data from and to GPU.

Another approach to parallel code execution, that has become very popular in scientific
computing in the last decade, is general-purpose computing on graphics processing units
(GPGPU). This approach makes use of graphic processing units (GPU), which are typically
utilised for computer graphics, to perform computation in applications traditionally handled
by CPU. Because of the parallel nature of graphic rendering problems, during the years
the GPU development led to the construction of GPUs with a large number of processors
that are optimized to simultaneously execute the same instruction over different pieces of
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Table 6.1: Comparison of CPU and GPU performance for 2D DPD simulations. Number
of particles was varied from 900 to 230400. The test on GPU includes a single transfer of
necessary data from and to GPU. The values in the table correspond to average duration of
a single step of the DPD algorithm, expressed in seconds.

data. However, in order to exploit the significant parallel computation power of GPUs, the
data from RAM memory has to be transferred to the GPU’s local memory. This process
is extremely costly compared to the cost of sole data processing, and hence it should not
be used frequently in order to achieve better performance. Once the data is on the GPU it
is stored in the GPU’s global memory and is transferred to the shared memory in order to
execute the instructions over that data. The transfer of data from global to shared memory
is considerably slower than the execution of instructions over that data. As the size of
the shared memory is extremely limited, this data transfer presents a common performance
bottleneck in GPGPU. Hence, the GPGPU approach is well suited for some mathematical
problems, like matrix operations in linear algebra, or n-body problem. In our model however,
as a DPD particle is in contact with a rather small amount of other particles, the reuse of the
data is quite low. Therefore, the transfers between the global and shared GPU memory are
rather frequent, which counteracts the performance gain from large number of cores.

A 2D Poiseuille flow in a square domain was chosen to test performance of DPD method
in parallel on CPU and GPU. Tests were done for the numbers of particles from 900 to
230400. The test for GPUs also included a single data transfer from RAM to GPU memory
and a single transfer from GPU memory to RAM. Between the transfers 100 to 100000 steps
were simulated (depending on the number of particles of the system), and the duration of
a single step was calculated by dividing the total simulation time (including the two data
transfers) by the number of steps. The CPU performance was tested on a machine with
Intel i7-2760QM processor with 4 cores and 4GB of RAM memory. The GPU performance
was tested on Nvidia NVS 42000M with 48 pipelines and Nvidia Quadro 4000 with 256
pipelines. Test results in Figure 6.4 and in Table 6.1 show a better performance on the CPU
than on the two tested GPUs. However, the difference in performance on Intel i7-2760QM
and Nvidia Quadro 4000 was not so large, and future advancements in GPGPU technology
should lead to improvements in data transfer speeds on GPUs and to easier development of
applications utilizing computing capabilities of GPUs.
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6.3 Numerical method for solving reaction-diffusion-

advection equation

The alternating direction implicit (ADI) method was used to solve the problem consisting of
reaction-diffusion-advection equations (4.13) with conditions (4.16)–(4.20). The method is
based on finite differences and is unconditionally stable. However, because of the advection
term, a significant error is possible at sudden changes in velocity field. In the coagulation
model this situation can occur when a part of the clot breaks off and is taken by the flow,
as velocity will suddenly increase in the region of the domain previously occupied by the
clot part. In order to avoid such errors in the evolution of a concentration profile, a good
estimate of sufficiently small time and space steps is given by the Courant-Friedrichs-Lewy
(CFL) condition:

C =
vxΔt

Δx
+

vyΔt

Δy
≤ Cmax, (6.18)

where C is the Courant number, vx and vy are x and y components of maximal velocity
respectively, Δx and Δy spatial steps used in the numerical approximation (usually a finite
difference method), and Cmax is the upper boundary which depends on the numerical method
being used and is equal to 1 for explicit schemes.

Below is given a detailed description of ADI method applied to a general reaction-
diffusion-advection equation with a degradation term:

∂T

∂t
= αΔT −∇ · (�vT ) + β(T ) (C0 − T )− γT, (6.19)

or

∂T

∂t
= α

(
∂2T

∂x2
+

∂2T

∂y2

)
− ∂vxT

∂x
− ∂xyT

∂y
+ β(T ) (C0 − T )− γT, (6.20)

where

β(T ) = k
T 2

T0 + T
, 0 ≤ x ≤ L, 0 ≤ y ≤ D, 0 ≤ t, (6.21)

and with boundary conditions:

∂T

∂x

∣∣∣∣
x=0,L

= 0,
∂T

∂y

∣∣∣∣
y=0,D

= 0. (6.22)
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The two-dimensional version of the ADI method solves the problem in two half-steps.
In the first half-step the part of stencil along the x axis is implicit while the part along the
y axis is explicit. Once solved, in the second half-step the y part is implicit, while the x one
is explicit. The spatial steps in x and y direction and the time step are denoted by Δx, Δy
and Δt respectively. The numbers of spatial nodes in x and y direction are denoted with Nx

and Ny respectively.

Implicit in x, explicit in y direction. Written in terms of finite differences the equation
(6.22) looks like:

T
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2
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+
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(6.23)
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i,j− 1
2

vy
i,j− 1

2

T n
i,j−

−ky+
i,j+ 1

2

vy
i,j+ 1

2

T n
i,j − ky−

i,j+ 1
2

vy
i,j+ 1

2

T n
i,j+1

)
+ β

(
T n
i,j

) (
C0 − T

n+ 1
2

i,j

)
− γT

n+ 1
2

i,j ,

where

kx+
i− 1

2
,j
=
1

2

(∣∣∣vxi− 1
2
,j

∣∣∣− vx
i− 1

2
,j

)
, kx−

i− 1
2
,j
=
1

2

(∣∣∣vxi− 1
2
,j

∣∣∣+ vx
i− 1

2
,j

)
, (6.24)
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vx
i− 1

2
,j
=
vxi−1,j + vxi,j

2
, vy

i,j− 1
2

=
vyi,j−1 + vyi,j

2
, (6.26)

and i, j, and n denote indices of nodes on the numerical mesh in x direction, y di-
rection, and in time respectively. The term expressing the concentration change in time is
approximated by the first order forward difference, the diffusion term is approximated by
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the second order central difference, while the advection terms are approximated with first
order upwind scheme. The scheme generates Ny linear systems, i.e. for each j = 1, ..., Ny a
linear system

AjXj = Bj (6.27)

is solved. Matrix Aj is a tridiagonal matrix with elements ai, bi, ci of lower, main and upper
diagonal respectively, where i = 1, ..., Nx:
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+
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)
. (6.30)

Then the elements of the vector Bj have the following form:
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and the elements of the vector Xj are the unknowns Xj
i = T

n+ 1
2

i,j , for i = 1, ..., Nx. As
the matrix Aj is tridiagonal, the corresponding system AjXj = Bj can be efficiently solved
by the use of Thomas algorithm.

Explicit in x, implicit in y direction. In the second half-step the process is similar to
the first half-step. The equation (6.22) is written in a form that is explicit in x direction and
implicit in y direction:
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A set of linear systems
AiX i = Bi (6.33)

is obtained, where i = 1, ..., Nx. The matrix Ai is a tridiagonal matrix with the ele-
ments:
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where j = 1, ..., Ny. The elements of vector Bi are given with:
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while the elements of the vector X i are unknowns X i
j = T n+1

i,j , j = 1, ..., Ny.

Boundary conditions. The ADI method reduces the problem of solving (6.20)-(6.22) to
the problem of separately a series of linear systems (6.27) and (6.33) in each time step.
As the linear systems (6.27) and (6.33) are characterised by a tridiagonal square matrix
Ai in the first half-step or matrix Aj in the second half-step, each of the systems can be
efficiently solved by use of Thomas algorithm. The implementation of Dirichlet boundary
condition is simple and straight-forward, i.e. the elements b1 and bN are set to 1, c1 and
aN−1 to 0 and B1 and BN to the corresponding values of Dirichlet boundary conditions. Zero
Neumann boundary conditions can be implemented by use of the similar method that is used
in solving 1-D problems. The method follows directly from the interpretation of the boundary
conditions as finite difference, which in terms of the coefficients of matrix A results in setting
the elements b1 and bN again to 1, while the elements c1 and aN−1 are set to −1. However
in 2-D and higher dimensions this method can result in instability near the boundary, hence
use of another method which uses so-called “ghost nodes” is preferable. In this method
additional nodes are added outside the boundaries, with indices 0 and N +1, and the values
in these nodes are considered to be equal to the values in the adjacent boundary nodes.
Therefore, in the equations (6.24) and (6.33) for i = 1 all the variables of concentration and
velocity in the “ghost node” with the index i− 1 = 0, can be substituted by variables in the
corresponding nodes with the index i = 0. The same is applied by analogy to all equations
involving “ghost nodes” with indices i = 0, Nx + 1 or j = 0, Ny + 1.

6.4 Proof of lemma 5.7

In order to simplify the presentation, we will suppose throughout this proof that the solution
w of problem (5.35)-(5.37) exponentially converges to 0 at infinity together with its first
derivatives, and

∫
Ω

|w(x, y)|dxdy ≤ M.

In general, if it is not the case, we subtract some given sufficiently smooth function with the
limits u±(y) as x → ±∞. Exponential convergence of solution to its limits at infinity follows
from the Fredholm property of the corresponding operator.

We multiply equation (5.35) by w and integrate over Ω. Taking into account the bound-
ary conditions, we obtain the estimate

∫
Ω

|∇w|2dxdy ≤ C.



134 6.4. PROOF OF LEMMA 5.7

Here and below we denote by C any constant which depends only on K, M and c. Hence
∂w/∂y ∈ L2(Ω).

Set v = ∂w/∂y. Then this function satisfies the problem

Δv + c
∂v

∂x
+ f ′

τ (w)v = 0, (6.38)

y = 0 : v = 0, y = 1 : v = gτ (w). (6.39)

Here and below f ′
τ and g′τ denotes the derivatives of these functions with respect to w. Put

φ = f ′
τ (w)v and consider the auxiliary problems

Δv± + c
∂v±
∂x

+ φ = 0, (6.40)

y = 0 : v± = 0, y = 1 : v± = ±K. (6.41)

Then from the maximum principle

v−(x, y) ≤ v(x, y) ≤ v+(x, y), (x, y) ∈ Ω.

Since the function f ′
τ (w) is bounded, then φ ∈ L2(Ω). Therefore problems (6.40), (6.41)

are solvable in H2(Ω), and their norms depend only on K, M and c. By virtue of embed-
ding theorems (on bounded subsets), the functions v±(x, y) are bounded and, consequently,
solution v of problem (6.38), (6.39) admits the estimate:

sup
(x,y)∈Ω

|v(x, y)| ≤ C. (6.42)

Next, we multiply equation (6.38) by v and integrate over Ω. Taking into account that v = 0
at y = 0 and

∂v

∂y
= g′τ (w)gτ (w), y = 1,

we obtain the estimate

∫
Ω

|∇v(x, y)|2dxdy ≤ C. (6.43)

Hence ∂v/∂y ∈ L2(Ω).

Set z = ∂v/∂y. Then this function satisfies the equation
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Δz + c
∂z

∂x
+ f ′

τ (w)z + f ′′
τ (w)v

2 = 0. (6.44)

Since the boundary condition for z at y = 0 is not defined, we extend this problem by
symmetry and consider it in the domain

Ω̂ = {−∞ < x < ∞, −1 < y < 1}
with the boundary conditions

|y| = 1 : z = g′τ (w)gτ (w). (6.45)

Put

ζ = f ′
τ (u)z + f ′′

τ (u)v
2

and consider the auxiliary problems

Δz + c
∂z

∂x
+ ζ = 0. (6.46)

|y| = 1 : z = ±K2. (6.47)

As before, z− ≤ z ≤ z+, where z is a solution of problem (6.44), (6.45) and z± are solutions
of problems (6.46), (6.47).

Since v, z ∈ L2(Ω) and v is bounded, then ζ ∈ L2(Ω). As above, we prove that the
functions z± are bounded. Hence

sup
(x,y)∈Ω

∣∣∂2w

∂y2
∣∣ ≤ C. (6.48)

Having proved this estimate, we return to equation (5.35) which we consider as a second-
order ordinary differential equation (y is a fixed parameter):

U ′′ + cU ′ +H = 0,

where U(x) = w(x, y), prime denotes the derivative with respect to x,

H(x) =
∂2u

∂y2
+ fτ (w(x, y)).

By virtue of (6.48) and boundedness of the function fτ , H(x) is also bounded. Multiplying
the last equation by U and integrating from −∞ to ∞, we estimate the first derivative U ′ in
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the L2-norm. Next, we multiply the same equation by U ′ and integrate from −∞ to x. This
gives an estimate of U ′ in the supremum norm. From the estimate of the first derivative and
the equation it follows the estimate of the second derivative U ′′. Hence

sup
(x,y)∈Ω

∣∣∂w
∂x

∣∣, ∣∣∂2w

∂x2

∣∣ ≤ C. (6.49)

Thus we have proved that w ∈ C2(Ω̄). Finally, we write problem (5.35)-(5.37) in the
form

Δw + c
∂w

∂x
+ β(x, y) = 0, (6.50)

y = 0 :
∂w

∂y
= 0, y = 1 :

∂w

∂y
= γ(x, y), (6.51)

where β(= fτ ) ∈ Cα(Ω̄) and γ(= gτ ) ∈ C1+α(Ω̄), 0 < α < 1. From a priori estimates of
solutions it follows that u ∈ C2+α(Ω̄), and the norm of the solution depends on K, M and
c.

�


