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Introduction

Motion is a very instinctive task for human beings. They can move around with accuracy
and simplicity, almost without having to do anything consciously. This localization and
navigation tasks are made possible by the perception we have of our surrounding environ-
ment, mostly thanks to our vision capabilities. In an age when more and more actions are
made through automated systems, the understanding of that process, natural to human
beings, is essential to provide any automated systems with autonomy. Autonomy is the
key component that can allow systems to adapt to more complex tasks. For example,
assembly robots have been used for years in fields such as car assembly, but they can never
adapt to any situations, or react without the assistance of a human operator to guide
them. They can only repeat what they have been taught to do. Autonomy is then what
differentiates a simple automate from an intelligent system. Autonomous vision systems
are more and more present in today’s society and cover a wide range of applications from
the entertainment area with video game cameras that can detect and track body parts
to emerging driverless car that can travel hundreds of miles without human intervention
passing by household vacuum cleaners that map the rooms they need to clean and design
optimal paths.

But autonomy is not easy to achieve when confronted to localizing or moving an auto-
mated system. Human autonomy is obtained thanks to a huge amount of a priori data.
That knowledge is gathered throughout life and used by the brain to interpret the informa-
tion gathered by the different senses. Human brain is the key element of human autonomy,
analyzing all data perceived and known beforehand in order to control the body while re-
specting its limitations. But since human brain activity is not yet understood completely,
the whole process then needs to be modeled from perception to action if it is to be adapted
to create intelligent systems. This is why the amount of research in the domain of com-
puter vision is so vast. And the puzzle is far from being completed, judging by the number
of new problems and solutions discovered everyday and explained in the huge computer
vision literature.

Strategies can be designed in order to create autonomy in intelligent systems. Among
those is the use of computer vision that offers a lot of new possibilities across a lot of
domains from TV broadcasting to health, surveillance, robot control, spatial applications
and many other application fields. Its modeling is also very tied to human behaviour,
since vision is a very important part of localization and motion for human beings. Re-
alizing computer vision applications is also made ever easier by the conjunction of the
constant lowering costs of video equipment and augmentation of computing capabilities.
Even though other approaches that often mimic human or animal senses are very inter-
esting, such as for example the use of ultrasonic or acceleration data, the works presented
in this document are only based on vision. The objective of this thesis is then to propose
algorithms that use vision in order to provide more autonomy to automated systems. In
this context, two areas of study are tackled: visual tracking, which is the process of es-
timating the displacement of an object in an image sequence, and visual servoing which
aims at controlling a robot based on information gathered from one or several cameras.

In order to perform visual tracking and visual servoing tasks, several approaches have
been proposed throughout the years. Most of them use features extracted from the im-
ages such as keypoints, lines, contours or more complex models and use the geometrical
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information they provide in order to estimate the displacement present in the image se-
quence. Those approaches, referred to as geometrical approaches, do not take into account
the whole amount of information provided by the camera and need to rely on algorithmic
layers that extract and match those local features. The scope of this thesis is to follow
a different road, one that has been growing over the past years which propose to use the
whole image information in order to estimate displacement, designing what are referred
to as dense or direct approaches. The use of a set of pixel luminance as visual feature
then allows to take into account all the information provided by the images. Comparing
those global features between reference and current images thanks to similarity or dissimi-
larity functions then allows to estimate the displacement. But contrary to the geometrical
data of the scene, that luminance data is much more subject to perturbations. Taking for
example the common case of light variations during the visual tracking or servoing task,
the perceived luminance of the scene will change whereas its geometry will not. This is
why a crucial step in the elaboration of dense visual tracking and servoing tasks is the
choice of the (dis)similarity measure used to compare the global visual feature. Since that
measure will determine whether or not the task is being successful, any shortcomings it
might have in any given situation can result in failures of the process. This is why it is the
key element of any dense visual tracking or servoing approach. Another important factor
to consider is the motion model used to estimate the displacement present in the scene.
Depending on the degrees of freedom allowed by the chosen model, some motions could be
tracked successfully or not. On the other hand, taking into account complex models when
dealing with much more basic motions can result in sub-efficient or over-parameterized
optimization processes.

In order to avoid those pitfalls, this document details several motion models and
(dis)similarity functions that have been used in the literature to perform visual tracking or
servoing applications. After analyzing the pros and cons of several similarity functions, we
propose to consider the sum of conditional variance and the mutual information in order to
design new visual tracking and visual servoing approaches. The sum of conditional variance
is chosen for its natural robustness to global variations of the scene and allows to create
very simple and efficient solutions that add robustness to the sum of squared differences
approaches commonly used. The mutual information is also considered in this document
in order to create more complex but more robust applications in cases where large local
perturbations occur. Taking advantage of the properties of the homography warp, a ro-
bust dense model-based tracking application is proposed and declined in two versions: one
based on the sum of conditional variance and the other based on the mutual information.
Extending the considered motion models to non-rigid solutions that take into account de-
formations of the tracked template, a non-rigid approach is also designed using a thin-plate
spline warp function. We then take advantage of the duality that exists between visual
tracking and visual servoing to propose new visual servoing approaches. Indeed, where
visual tracking estimates the parameters of an image projection method, visual servoing
follows the same road but actually moves a robot in order to get the desired projection
of the image. The use of the sum of conditional variance is later extended to the design
of a new dense visual servoing algorithm that is naturally robust to light variations. The
mutual information is also considered through a normalized approach in order to define a
new normalized mutual information-based visual servoing approach which is then adapted
to omnidirectional cameras. Throughout this thesis, our common objective is to design
systems that use the whole information they are provided with and to test their capabil-
ities without having to add any algorithmic layers in order to enhance their robustness.
Since a lot of strategies already exist that can be added to potentially any system (such as
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robust estimation), we aim at showing how the choices that are made when designing the
core principle of any visual tracking or servoing can influence its possibilities before adding
any robustification step that might not be needed anymore.

Organization of this document

This document is organized as follows. In the first chapter, the basic notions of computer
vision necessary to define visual tracking and visual servoing tasks are detailed. The rest
of the manuscript is then composed of two principal components.

A first part is dedicated to visual tracking. Chapter two then recalls the current state
of the art of visual tracking. Our contributions in the field are then detailed in chapters
three and four. Chapter three details a dense robust model-based tracking algorithm and
declines it into two versions, the first one based on the sum of conditional variance and the
second one on the mutual information. Several experimental validations are then exposed
that validate the proposed algorithm in numerous perturbed conditions. Chapter four
focuses on non-rigid tracking, where our second contribution in the field of visual tracking,
a non-rigid dense visual tracking approach based on the sum of conditional variance or the
mutual information, is detailed and tested, again in numerous conditions.

The second part of this thesis is devoted to visual servoing. Once classical methods
presented in the literature have been detailed in chapter five, a dense robust visual servoing
process based on the sum of conditional variance is detailed and tested on a real six degrees
of freedom robot in several different conditions in chapter six. Finally, chapter seven
details how to use a normalized version of the mutual information in order to perform
visual servoing. The technique is then extended to omnidirectional cameras and several
experiments are detailed that validate the approach.

Contributions and publications

This work has led to several publications in both the computer vision and robotic commu-
nities. Following the order they appear in throughout this paper, here are the contributions
with the corresponding publications:

• Our first contribution is an algorithm that considers the 3D model of an object in
order to determine which face of the object is visible and uses that information to
track the model. A dense model-based tracking algorithm that optimizes the sum of
conditional variance in order to track objects with face appearance and disappear-
ance is then designed [C1]. The method is then extended to the use of the mutual
information in order to add robustness to local perturbations [C3]. Both approaches
are validated through experimentations in several different perturbed conditions.

• We propose to extend non-rigid dense visual tracking to the use of the sum of condi-
tional variance [C5]. The method is then extended to the mutual information. The
resulting algorithms are validated in different perturbed conditions.

Since a strong duality exists between the visual tracking and visual servoing processes, the
robust (dis)similarity functions used to propose new visual tracking algorithms are then
used to design new visual servoing approaches.

• A new visual servoing approach using the sum of conditional variance is therefore
introduced [C2]. Considering this new cost function for visual servoing allows to be
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naturally robust to global scene variations, which is exposed through several experi-
mental validations on a real robot with good accuracy results.

• We propose a new visual servoing approach and extend it to the use of an omni-
directional camera [C1]. Based on a normalized version of the mutual information,
the application is demonstrated to be robust to global and local perturbations while
keeping good accuracy results through several experimental validations on a real
robot.

In parallel to these contributions, a UAV absolute localization framework was realized and
published in [C4]. The proposed approach performs a visual tracking step to align the
images gathered by a UAV with respect to a georeferenced mosaic. Taking advantage of
the robustness offered by the mutual information, the process is able to align views taken
in different seasons or featuring moving vehicles or pedestrians. As the position of the UAV
is known with relation to a georeferenced mosaic, its position in the world frame is known
for each new image, which allows to localize it at every new frame. The process has been
validated on a real drone and GPS data was compared successfully to the results obtained
thanks to a Google Maps mosaic. Since this application is not related in a major way to
the rest of the contributions detailed previously, it has not been detailed in this document.
Interested reader is refered to [C4].
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1
Notations and elementary
background in computer vision

This chapter introduces different mathematical notations and geometrical tools that are
required by computer vision algorithms. begin by explaining how Euclidean geometry
allows to represent the world as seen by a camera. Starting from 3D point transformations
the whole perspective projection pipeline is detailed in order to see how images are gathered
by cameras. Methods that allow to project 3D points in the image plane are then defined
for perspective cameras. Finally, different 2D transformations used to model the motion
undergone by objects in the image are detailed.

1.1 Geometrical modeling of image formation

To grasp the information that is perceived by a camera, one needs to connect the gathered
data to the real world. To that end, a modeling of the projection process is needed. This
is done thanks to Euclidean geometry and the transformations that represent the position
and displacement of objects in the scene and its projection on the image plane. In this
section we therefore recall the basics of Euclidean geometry before describing how the world
is perceived through a camera.

1.1.1 Modeling the world

In order to be able to describe the position of an object in the 3D world, the first element
needed is a frame. Indeed, the concept of position can only be relevant in our situation with
respect to a fixed point in space. This fixed point and the directions in which the coordi-
nates of any point will be parameterized are respectively the origin and the orthogonal axes
of a frame. In our works, three frames are commonly referred to: the world frame Fw, the
object frame Fo and the camera frame Fc. Fw is an arbitrary frame representing the world,
Fo is the object frame and Fc is the camera frame. 3D transformations allow to express
points in one frame or the other. Let us for example take the case of an object present in
the field of view of the camera. A point of the object oX expressed in Fo is defined as a
vector of its coordinates along the axes of the frame Fo, giving oX = [oX,o Y,o Z]>. This
point can also be seen in Fc, giving cX. To express its coordinates, the transformation
linking Fo and Fc is required.

This transformation can be modeled with a translation part cto and a rotation part
cRo. The first term cto ∈ R3 represents the position of Oo in Fc and the last term cRo is
a rotation matrix that expresses the orientation of axes of Fo in Fc. SO(3) is the Special
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1.1. Geometrical modeling of image formation

Orthogonal group, also called 3D rotation group. It is defined as:

cRo ∈ SO(3) where SO(3) =
{
cRo ∈ R3×3 | cRo

>cRo = I3, det(
cRo) = 1

}
. (1.1)

From those terms a point X expressed in Fo, Xo, can be translated in Fc, giving Xc given
by:

cX = cRo
oX +c to. (1.2)

1.1.2 Homogeneous coordinate system

Transposing this relation in a projective space allows to go from an affine equation as
in equation (1.2) to a linear expression. To that end, a 3D point in the Euclidean space
X ∈ E3 represented by its coordinates X ∈ R3 can be described by a point X̄ in a projective
space P3 represented by its homogeneous coordinates X̄> = [wX,wY,wZ,w], where w is
a scalar. In that case P3 can be seen as an extension of E3 in which every point wX ∈ R3

corresponds to a unique point X̄ .
Then, normalizing and using the homogeneous coordinate system, equation (1.2) becomes:

cX̄ = cMo
oX̄ where cMo =

[
cRo

cto
0 1

]
. (1.3)

cMo is then defined as the homogeneous transfer matrix expressing the 3D rigid transfor-
mation from Fo to Fc in P3. It is part of the Special Euclidean group SE(3) defined by:

cMo ∈ SE(3) where SE(3) =

{
cMo =

[
cRo

cto
0 1

]
|c Ro ∈ SO(3), t ∈ R3

}
. (1.4)

1.1.3 Homogeneous matrix parameterization

Other parameterizations of that transformation exist and can be composed of fewer pa-
rameters. The set of three parameters forming the translation part of the transformation
are needed as they represent the displacement between Fo in Fc but not all rotation values
are necessary. Indeed, as expressed in equation (1.1), the rotation matrix follows very spe-
cific rules. The induced constraints translate the fact that the displacement of an object
must not affect its size or orientation. A rotation matrix must then be composed of three
orthogonal unit vectors. In order to respect those constraints, several parameterization
exist.

1.1.3.1 Euler angles

The simplest and most popular way to represent a 3D rotation is to use Euler angles. It
consists in decomposing the rotation matrix as a combination of three simple one directional
rotations along three orthogonal axes, typically rx, ry and rz. Only three parameters are
therefore required and the technique works very well as long as the convention on the
order of the rotation axes used is known beforehand (a rotation on rx then ry and finally
rz will not give the same result as the same rotations but on ry, rx and then rz). This
simplicity, the fact that the representation is very intuitive and the facility to retrieve
inverse parameters are the reasons it has been very widely used but the technique presents
one major drawback: the gimbal-lock. If two rotation axes become aligned then a degree
of freedom is lost.
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1.1. Geometrical modeling of image formation

1.1.3.2 Quaternions

To avoid the possibility of gimbal lock, quaternions have also been used to express 3D
rotations. Quaternions are an extension of complex numbers, resulting in hypercomplex
numbers constituted of four parameters representing a scalar and a vector. In a frame
F with axes i, j,k, a quaternion q = (a, b, c, d) would represent the point satisfying the
equation q = a + bi + cj + dk. A rotation of angle θ around an axis e would then be
represented by the quaternion:

q =

[
cos
(
θ

2

)
e>sin

(
θ

2

)]>
. (1.5)

This representation allows a more complete representation of rotations to the cost of in-
creased complexity since additional constraints apply such as having a norm equal to one.
Because of this added complexity this technique is less used despite lifting the possibility
of gimbal lock.

1.1.3.3 Axe and angle of the rotation

This representation models a rotation matrix as rotation of a certain angle around a 3D
axis. It is very well suited to represent rotations as it is not subject to gimbal lock and
can represent a rotation with only three parameters without any added constraints. This
is why it will be used in our works. Considering a rotation of angle θ around a unitary axis
u = [ux, uy, uz]

> can be described by a vector θu = [θux, θuy, θuz]
> of norm ‖ θu ‖= θ.

That representation is referred to as the exponential canonical representation and can be
mapped to a rotation matrix. There are two methods to get R from θu: through the
exponential map or thanks to Rodrigues’ formula.

Exponential map Using the Lie algebra, the rotation matrix can be expressed from θu
through the exponential map:

R = exp([θu]×)

=
∞∑
n=0

[θu]n×
n!

= I + [θu]× +
1

2!
[θu]2× +

1

3!
[θu]3× + ...

(1.6)

where [θu]× is the skew-symmetric matrix associated to θu which is defined as a square
matrix whose transpose is also its negative, giving [v]>× = − [v]×. For a vector v =

[vx vy vz]
>, its skew matrix is defined by:

[v]× =

 0 −vz vy
vz 0 −vx
−vy vx 0

 . (1.7)

Rodrigues’ formula Another way to find the rotation matrix from θu is to use Ro-
drigues’ formula:

R = I +
sinθ
θ

[u]× +
(1− cosθ)

θ2
[u]× . (1.8)

From equation (1.8), the parameters of θu can also be found as:

cosθ =
trace(R)− 1

2

sinθ [u]× =
R−R>

2

(1.9)
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1.1. Geometrical modeling of image formation

where trace(R) is the sum of the diagonal elements of the matrix R. This is the model
that is used in this document when performing 3D localization (see chapter 3).

1.1.4 Image formation

As shown in the previous sections, the 3D world and the different 3 transformations can
be modeled thanks to several parameterization. But the case of study of this document
does not occur in the 3D world. The available information come directly in the form of
images provided by a digital camera. This is why it is necessary to define how the 3D
world is perceived by a digital camera. As different cameras will also yield different results
this section will first give details about perspective (pin-hole) cameras before extending the
matter to omnidirectional cameras.

Figure 1.1: Representation of the camera obscura. The world is seen upside down as the
light passes through a small opening in the dark chamber.

1.1.4.1 Pin-hole camera model

This section deals with the formation of digital images by cameras. Since it is crucial to
understand displacement within the images, a focus will be made around how the 3D world
is projected to result in digital images produced by digital cameras. Light emission and
photometric information will not be discussed as the interest here is purely geometrical.
The perspective projection model that is commonly used in computer vision [Faugeras,
1993, Hartley and Zisserman, 2001] will be the one considered in this document. Its role is
to take into account the physical properties of a projection onto a plane in order to give a
simple link between 3D world and 2D image data. Current cameras are similar to the first
camera obsucra (fig. 1.1). Indeed, it was composed of a box in which a hole allowed to
receive the light reflected or emitted by the environment, and a plane where the light was
projected in the dark chamber. Nowadays, this is done by the camera but the projection
center and the projection plane act as the hole and the plane of the camera obscura.To
simplify understanding and representation however, we will consider the projection plane
as being in front of the projection point. This also has this advantage of allowing the image
of the world not to be upside down on the projection plane (also called image plane) Pπ.
From that model, we can compute the 2D coordinates on the image plane x = [x y]> ∈ R2

of a 3D point X expressed in the camera frame cX = [cX, cY, cZ]> as:[
x

y

]
=

f
cZ

[
cX
cY

]
(1.10)
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1.1. Geometrical modeling of image formation

where f is the focal distance of the camera which represents the position of the projection
plane along the cz axis of Fc. Expressing the relation thanks to homogeneous coordinates

Figure 1.2: Representation of the world in the Euclidean space. The orthogonal basis
associated to the object is called object frame and the one attached to the camera is called
camera frame.

allows us to get a linear equation from R3 to P2:

cx̄ = AcX̄ where A =

f 0 0 0
0 f 0 0
0 0 1 0

 and
cx̄ = [x, y, 1]>

cX̄ = [cX, cY, cZ, 1]> .
(1.11)

cx̄ is the projection of X on the image plane in homogeneous coordinates. These coordinates
are expressed in the metric space. A supplementary step is therefore needed in order to
easily manipulate digital images.

1.1.4.2 From world projection to digital images

A digital image is the result of the discretization of the image plane onto a regular grid.
The elements of the grid are pixels (picture elements). This grid can be expressed through a
w×h array where w is the width of the image and h its height. Each pixel is then an element
of the matrix of coordinates (u, v) (see Figure 1.3).The values of each pixel represent the
light perceived by the camera. This value can be a grey level value, therefore expressed
through one value usually coded between 0 and 255, or can express color information.
Considering a point x = [x, y]> in meters, its position on the grid represented by its
pixel coordinates p = [u, v]> is parameterized by four degrees of freedom. They represent
the dimensions of a pixel in meter lx and ly and the coordinates of the principal point
p0 = [u0, v0]>. The principal point is the point where the z axis of Fc intersects the
image plane, which means its metric normalized coordinates on the projection plane are
cp0 = [0, 0]> and its 3D normalized coordinates are cP0 = [0, 0, f ]>. The relation between
p and x is given by: [

u

v

]
=

[
u0

v0

]
+

[
1
lx

0

0 1
ly

][
x

y

]
. (1.12)

Using homogeneous coordinates in order to get a linear expression then means performing
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1.1. Geometrical modeling of image formation

Figure 1.3: The 3D world is captured by the camera sensors on the image plane. the
coordinates of every point in the image can be computed from its 3D coordinates and the
intrinsic camera parameters.

a projective transformation K′ from P2 to P2:

p̄ = K′x where K′ =

 1
lx

0 u0

0 1
ly

v0

0 0 1

 . (1.13)

Combining previous equations allows to express the transformation from the 3D point cX̄
in Fc to the projected point in the image p̄:

p̄ = K′AcX̄ = KΠcX̄

where K =

px 0 u0

0 py v0

0 0 1


and Π =

1 0 0 0
0 1 0 0
0 0 1 0

 (1.14)

where px = f
lx

and py = f
ly
. K is called the intrinsic parameter matrix as it contains all the

intrinsic parameters of the camera while Π is the projection matrix. To express p̄ from
the 3D point in the object frame we need the whole transformation pipe which is:

p̄ = KΠcMo
oX̄. (1.15)

In this case cMo is called the pose of the camera. Pose is only tied to the camera position
in the world whereas intrinsic parameters are highly dependent on the camera and its lens.
This is because they are closely tied to physical parameters that can vary between cameras
built following the same fabrication process. Even though an estimation of intrinsic param-
eters is usually given by the constructor, it is crucial to compute them accurately, which

18



1.2. Linear warping functions: parameterizing the image motion

is done by calibration [Brown, 1971, Tsai, 1986]. A calibration pattern is used to match
the 3D positions to image coordinates of the point giving a system of equations. Solving
this system allows to compute the parameters of K and can also be used to estimate cMo

at the same time. Let us note that this description is only valid considering a perfect
optical system presenting no deformation of the world. As it is obviously not necessarily
the case in real life applications several works have added distortions to the projection
model. The added parameters controlling radial distortions in the projection can be esti-
mated [Faugeras, 1993, Hartley and Zisserman, 2001] and added to the projection model.
However in these works those deformations are considered negligible and therefore only the
perspective projection model detailed before is used.

1.2 Linear warping functions: parameterizing the image mo-
tion

Being able to determine the displacement of an object in a sequence of images means
being able to model the aforementioned displacement. In this section we present several
transformation functions that allow to model different types of displacement in the images.
These functions are called warping functions, noted w(.), and are parameterized by several
factors. They allow to map a point pk = [x y] in an image Ik to a point pk+1 = w(pk,u)
in an image Ik+1 with u the parameters of the warp.

1.2.1 Translation model

The simplest movement model there is. It was the first warp function to be used in order
to perform visual tracking [Lucas and Kanade, 1981] (see Chapter one for details on visual
tracking). Considering only two parameters which represent a translation along the x and
y axes of the image, it offers a poor freedom of displacement for the object in the camera
frame. Indeed, it can only depict a planar translational motion parallel to the image plane.
It is however very efficient in these conditions as only two parameters need to be estimated.
The transformation function is then:

pk+1 = w(pk,u) = pk + t (1.16)

where u = t = [tx ty]
>.

1.2.2 sRt transformation

The sRt warp, often called similitude transformation or "shape-preserving model", adds
freedom to the translation warp [Goodall, 1991]. It considers, in addition to the translation,
a scale factor (represented by a scalar s) and a rotation R (of angle φ around the z axis).
It can then be expressed through four parameters:

pk+1 = w(pk,u) = (s)R(φ)px + t (1.17)

with:

R =

(
cos(φ) −sin(φ)
sin(φ) cos(φ)

)
. (1.18)

The parameter vector is then u = (s, φ, tx, ty). It depicts the displacement of an object
moving, rotating and changing size in the image plane, but can also be used to estimate
the movement of the camera with relation to a fixed object. In this case the translated
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1.2. Linear warping functions: parameterizing the image motion

displacement is a combination of a 3D translation and a rotation along the z axis of the
image plane. The object then has to move in a plane parallel to the image plane in order
for the model to be accurate. This is why it is widely used for example in the domain of
UAV navigation where perspective effects are negligible [Yol et al., 2014].

1.2.3 Affine model

Not restraining the transformation matrix in the sRt model to translate a 2D rotation
leads to the affine model. It is then a generalization of the sRt warp which adds freedom
to modify the shape of the considered object. In doing so it is not a strict representation
of a particular motion in the 3D space anymore but it constitutes a good compromise to
cope with minor perspective effects while adding only two parameters:

pk+1 = w(pk,u) = Apk + t where A =

(
a0 a1

a2 a3

)
. (1.19)

In that case, the parameter vector becomes u = (a0, a1, a2, a3, tx, ty).

1.2.4 Homography

The homography warp is widely used in the domain of computer vision [Faugeras and
Lustman, 1988, Baker and Matthews, 2004, Benhimane and Malis, 2006b]. It allows to
fully describe the 3D motion of a planar object through a 2D transformation. As it takes
into account the perspective it is very useful. It is also very closely related to 3D information
of the scene which can be really helpful when performing visual tracking. This is why it
will be used in this document when performing visual tracking tasks dealing with rigid
piece-wise planar objects. Considering a point X belonging to a plane P1. Every point 1X
in a frame F1 belonging to P1 then satisfies the following expression:

1Xn = d (1.20)

which can also be written as:
n> 1X

d
= 1 (1.21)

where n is a unit vector normal to P1 expressed in F1 and d is the distance from P1 to the
origin of F1. As shown in equation (1.2), X can be expressed in another frame F2 as:

2X =2 R1
1X +2 t1. (1.22)

Factorizing this expression thanks to equation (1.21) leads to:

2X = H 1X where H =2 R1 +
2t1 n>

d
(1.23)

where H is a (3×3) matrix called the homography matrix. Thanks to the relation expressed
in equation (1.14), that definition is true on both homogeneous 2D coordinates and 3D
coordinates. To express that relation in homogeneous 2D coordinates, let us consider the
projections of both 1X̄ and another point 2X̄, belonging to a plane P2:

p̄1 = KΠ 1X̄

p̄2 = KΠ 2X̄
meaning

1X̄ = Π>K−1 p̄1

2X̄ = Π>K−1 p̄2.
(1.24)
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1.2. Linear warping functions: parameterizing the image motion

Reference

Translation warp u ∈ R2

sRt warp u ∈ SL(2)× R2

Affine warp u ∈ R6

Homography warp
u ∈ SL(3) (2D)

or
u ∈ SE(3) (3D)

Figure 1.4: Overview of commonly used rigid transformation functions. The more param-
eters, the more freedom is given.
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1.3. Conclusion

Inputting equation (1.24) into equation (1.23) finally allows us to express a relation between
the two image points:

p̄2 = KΠ 2X̄

p̄2 = KΠ H 1X̄

p̄2 = KΠ H Π>K−1 p̄1

p̄2 = G p̄1 where G = KΠ H Π>K−1.

(1.25)

From this equation it is the possible to get a 3D homography and even to get back to the
rotation and translation parts of the transformation. However this is only the case when
G belong to the special Lie group (G ∈ SL(3)) which is not assured by equation (1.25).
A possible solution for this is to proceed as proposed by the authors of [Benhimane and
Malis, 2004] who showed that when the determinant of G is fixed to 1 and the matrix is
computed thanks to some properties of the Lie Algebra, the resulting matrix belongs to
SL(3). As this transformation function will be used in this document let us describe how
its parameters will be considered. Rewriting equation (1.25) leads to:

p̄b =

g0 g1 g2

g3 g4 g5

g6 g7 1

 p̄a. (1.26)

Thanks to the homogeneous coordinate system, only 8 parameters are needed and can
therefore be stocked in a vector u ∈ SL(3).

1.3 Conclusion

In this chapter, the necessary tools to model a 3D environment are defined. The projection
pipeline from this 3D environment in the 2D image plane and onto digital images is then
detailed. Classical image motion models that are commonly used in computer vision are
then defined. Using the tools exposed in this chapter, the next part will recall the state of
the art of visual tracking before two contributions are proposed.
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1

PART 1
Visual Tracking

Visual tracking has been one of the main research areas of the computer vision domain
for years, leading to a very rich literature. The objective of a visual tracking task is
to estimate the motion of an object and to localize it in an image sequence. It is used
within a very wide range of applications. For example, automatic surveillance has used
visual trackers for a long time in order to follow pedestrians in image sequences. Robot
manipulation is also tied very closely to this topic, as more and more robotic tasks are
automatized through the use of cameras relying visual tracking algorithms. Augmented
reality is another application domain which uses such algorithms in order to add a virtual
layer to real-world data. Other application domains also include network broadcasting,
professional sports or movie production that track targets or include augmented reality in
their programs. Camera firmwares also use visual tracking in order to create panoramas or
perform mosaicing. In order to be considered successful, a visual tracking algorithm needs
to be able to estimate accurately the displacement featured in an image sequence but must
also be robust and time-efficient. The robustness of a visual tracking task is therefore key to
its success. This is due to the fact that image sequences where no perturbations appear are
very rare in everyday-world applications and most of the time the featured scenes undergo
perturbations ranging from small global light variations to more complicated things like
specular spots, occlusions or change in modality.
In the following chapters, robust (dis)similarity functions are then considered in order to
propose dense visual tracking processes that do not rely on any robustification steps to be
able to cope with perturbations in image sequences. Taking advantage of several motion
models, these functions are used to propose algorithms that track multiple planes of a
3D model in the same optimization and that are able to perform registration of non-rigid
surfaces.
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2
Visual tracking overview

This chapter presents a summary of common visual tracking approaches. The main strate-
gies used to perform visual tracking tasks are defined and their advantages and drawbacks
are discussed. In order to use image information as data for visual tracking, it is crucial
to be able to model it. This has been done extensively over the years and in this chapter
a distinction is made between two classes of modeled visual information, also called visual
features. On one hand are geometrical features, which extract information from the image
to perform visual tracking and on the other hand are dense methods, which use directly
light intensity information.

2.1 Using geometrical features to estimate displacement

Geometrical features rely on the extraction of geometrical data from the images. Those
features can represent different types of information (points, lines, ...) but they all have in
common the fact that they need to be extracted for each new image of the sequence. In
this section, several types of geometrical features are shown and strategies designed to use
geometrical features are then discussed.

2.1.1 Local geometrical features

A large set of geometrical features have been used over the years to define objects to be
localized using visual tracking. The first approaches used points of interest [Harris and
Stephens, 1988], which can be extended to dots [Marchand, 1999]. Combining points led
to using straight lines [Deriche and Faugeras, 1990], segments [Hager and Belhumeur, 1998,
Marchand, 1999, Boukir et al., 1998], ellipses [Vincze, 2001] or contours [Berger, 1994, Blake
and Isard, 1998]. The main drawback of these geometrical features is that they are heavily
specific to image sequences. Not all sequences can for example be tracked using lines or
ellipses. It is for this reason that those simple models are also used to create enhanced
models, combining several types of visual information into a more complete descriptor.
A good example of local descriptors combined to get more global descriptors are SIFT
descriptors [Lowe, 2004] or another speeded up robust feature (SURF descriptors) [Bay
et al., 2006]. Starting from a point feature, an extension is made by adding gradient
information in the surrounding area and looking at that data on several levels of a pyramid.
Geometrical descriptors have been combined in a lot of different ways over the years in
order to get better tracking results in more complex situations where simple features are
not always successful. Considering several lines constrained by a 3D model can for example
lead to model-based tracking [Brooks et al., 1979, Lowe, 1991, Drummond and Cipolla,
2002, Comport et al., 2006, Petit et al., 2014]. Adding points on the visible faces of the
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model then create a hybrid visual tracking task than increases robustness [Pressigout and
Marchand, 2007]. The main advantage of geometrical descriptors is computational cost.
Because few features are considered, the tracking process is simple and therefore efficient.
It is also naturally quite robust, as the geometry of an object is not subject to variations
due to changes in lighting conditions. But some drawbacks can also be accounted for. The
presence of visible geometrical features is obviously necessary which can be problematic
in some scenes if some features become occluded for example, since the features need to
be extracted or re-localized in every image. Finally, considering only a small number of
features is very efficient computationally speaking but it means that perturbations that
impact only a few number of features can have a significant impact on the results of the
visual tracking task.

Figure 2.1: Example of points, contours and line segments used to track an object thanks to the
ViSP library [Marchand et al., 2005].

2.1.2 From local features to motion estimation

Chapter 1 has shown how motion can be modeled several ways. Depending on the con-
sidered displacement model, the tracking can be done in the image plane, creating a 2D
registration and leading to a motion estimation problem, or in the 3D world, leading to
the estimation of the relative pose between the camera and the object. The registration
problem can be seen as the optimization of the similarity between features currently seen
and other information known beforehand. 2D registration using geometrical features often

Figure 2.2: Example of point matching using the ViSP library [Marchand et al., 2005].

starts by an extraction and matching step of a set of geometrical features. Using keypoints
for example, if the chosen model is only represented by a set of points then at each new
frame the corresponding keypoints need to be extracted from the new current image and
matched with points in the previous image. Several techniques exist to perform this first
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2.1. Using geometrical features to estimate displacement

phase in the tracking process, the most common technique being RANSAC [Fischler and
Bolles, 1981]. Short for "RANdom SAmple Consensus", the RANSAC method starts from
an arbitrary result and iteratively verifies it. Whether the result is good or not, a new itera-
tion is launched until the correct estimation is reached. The method is very easy to use but
can be very inefficient as it is non-deterministic. This is why information are often added
and to use point features, descriptors like SIFT or SURF are used. Thanks to the added
data, the points can be matched more efficiently. More complex features can also require
other algorithmic layers before the tracking process can be started. For example when
using lines, curves, ellipses or more complex models their position needs to be estimated
in the image, which is often done by performing a visual tracking phase on lower level
features. It is for example what is done to use lines thanks to the moving edges algorithm
proposed by [Bouthemy, 1989] which was later used and extended to track more complex
shapes by adding 3D constraints [Petit et al., 2014] which use points displacements in order
to estimate lines or curves motion. Once the features have been located in the image plane
the registration phase consists in minimizing the difference between the projection of the
features in the current image s and their corresponding counterparts in the reference image
s∗. Using a warp function w in order to represent their motion parameterized by a vector
u, the goal is to find the optimal parameters û that best map the displaced features w(s, û)
to s∗:

û = arg min
u

Ns∑
k=0

‖ s∗k − w(sk,u) ‖ (2.1)

where Ns is the number of features considered in the model. For example, let us consider s
to represent point features x used in order to estimate the parameters of an affine warp [Shi
and Tomasi, 1994]. Equation (2.1) then becomes:

(Â, t̂) = arg min
A,t

Ns∑
k=0

‖ x∗k − (Axk + t) ‖ . (2.2)

Since most feature models cannot be linearly linked with their motion, the use of non-linear
optimization schemes are often needed in order to estimate optimal motion parameters.
Different examples of non-linear optimizations are recalled on Frame 1. Let us also add that
in most cases aberrant data is present either due to bad detection or scene perturbations.
In those situations robustness layers can be added in order to filter out that data and
not take it into account for the optimization. For example RANSAC [Fischler and Bolles,
1981], least median of square regression [Rousseeuw, 1984] or M-estimators [Huber, 1981]
have been considered [Hager and Belhumeur, 1998, Lepetit and Fua, 2005, Fitzgibbon,
2003] (M-estimator techniques are recalled in Frame 2).

2.1.3 3D registration: Pose estimation

Another way to see the registration problem is to estimate the position of the object in
the 3D camera frame Fc or the object 3D frame Fo instead of estimating the displacement
in the image plane. In that case, a priori knowledge is often required such as for example
the intrinsic camera parameters γ (often known in the form of the matrix K) or the 3D
model of the chosen object. Various approaches have used a known model before tracking
it as [Drummond and Cipolla, 2002, Vacchetti et al., 2004, Comport et al., 2006]. Other
strategies have also been considered such as learning the model from images [Lim and
Binford, 1988] or while the tracking phase is being performed [Davison et al., 2007], a
process often called SLAM, short for "Simultaneous Location And Tracking". Let us
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consider here the most common approach, where the 3D model of the object and the
camera parameters are known. In this case, the registration problem can be seen as the
optimization of the similarity between the known and projected models M and prγ(M)
over the parameters of the relative position between the camera and the model represented
by the pose vector r:

r̂ = arg min
r
f(I∗, prγ(M, r)). (2.3)

Comparing the model to geometrical features extracted in I∗ is very interesting since the
geometrical properties of the object are known and it is easy to project them in the image
plane thanks to a homogeneous transformation between the object and camera frames. As
seen in the previous chapter, a homogeneous transformation can be modeled by a vector of 6
parameters r ∈ SE(3). These pose parameters can be obtained through the minimization
of the error between the observed and desired features. Considering a model made of
points for example, from four points oXn (with homogeneous coordinates x̂n in the image)
representing the model,a current pose estimation can be defined as:

r̂ = arg min
r

N∑
n=0

‖ x∗n −KcMo(r)oXn ‖ . (2.4)

From that formulation, the optimization can be performed.The problem being highly non-
linear which means that optimization schemes are still needed, iteratively refining a current
estimation of an update of the parameters r:

∆̂rk = arg min
∆rk

N∑
n=0

‖ x∗n −KcMo(rk + ∆rk)
oXn) ‖ . (2.5)

Another way to look at this optimization problem is to use the duality between visual
tracking and visual servoing and consider the tracking task as a virtual visual servoing
(VVS) task. A virtual camera is then moved thanks to a velocity vector v computed by
the VVS step. Since the velocity depicts the variation of the pose with respect to time, the
lapse of time between two updates of the pose can be considered as a gain, leading to an
update rule of the pose parameters [Marchand and Chaumette, 2002, Sundareswaran and
Behringer, 1998]:

cMk+1
o = e[v]cMk

o (2.6)

where e[v] is the exponential map of v. This method is very successful as its simplicity
over the previous technique makes its less complex to use.
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Frame 1 - Non-linear optimization schemes
Considering an objective function f that is to be optimized (here we will consider f a
dissimilarity function and therefore minimize it). If f is parameterized by a parameter
vector u, then the problem can be written as:

û = arg min
u
f(u). (2.7)

as f is not linear in most cases involving visual features, it needs to be iteratively minimized
thanks to a non-linear optimization process. This means that, at each new iteration k the
warp parameters u are updated thanks to an increment ∆u that has been estimated by
the last minimization step. This is done until convergence. For example, considering a
parameter update performed as an addition (as would be the case with a translation warp)
and point features x, equation (2.7) can be rewritten as:

∆̂u = arg min
∆u

f(x∗, w(x,u + ∆u)). (2.8)

Taking the classical case of using a difference function, this can be rewritten as:

∆̂uk = arg min
∆uk

Ns∑
n=0

‖ x∗n − w(xn,uk+1) ‖

= arg min
∆uk

Ns∑
n=0

‖ x∗n − w(xn,uk + ∆uk) ‖ .
(2.9)

Several approaches exist in order to perform that optimization. In this frame we will detail
three of the most encountered which are the ones that will be used in this document.

Steepest gradient method
This is the simplest approach. Approaching the curve of the function with a plane and
going in the steepest possible direction allows to navigate towards a global minimum. In
order to find that direction, the increment is computed thanks to the estimated plane
parameters. Those parameters can be derived from the measure’s definition:

∆̂uk = −α ∂f(u)

∂∆u

∣∣∣∣
u=uk

(2.10)

where α is a scale factor that is applied in order to avoid large steps that would cause the
optimization to diverge towards a local minimum.

Gauss-Newton method
To perform a more accurate local approximation, the Gauss-Newton method approaches
the function with a parabola. This is done by considering the Taylor expansion of the
displacement function:
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w(xn,uk + ∆uk) ≈ w(xn,uk) +
∂w(uk)

∂∆u
∆u (2.11)

which leads to:

∆̂uk = −J+ ‖ x∗n − w(xn,uk) ‖ where J =
∂w(u)

∂∆u
. (2.12)

Let us note that the Gauss-Newton approach is a particular case of the Newton-Raphson
method. In the latter the Hessian would not be approached whereas here it is considered
to be equal to J+J.

Levenberg-Marquardt method
In between the two strategies detailed before lies the Levenberg-Marquardt method. The
update rule is computed as:

∆̂uk = −(J>J + λI)−1J> ‖ x∗n − w(xn,u
k) ‖ . (2.13)

The λ parameter in this case can be seen as a tuning parameter. The bigger λ is, the closer
the chosen direction is to a steepest gradient and a smaller λ leads to a method close to a
Gauss-Newton approach which allows for a finer-tuned optimization.

Frame 2 - M-estimators
Outlying data is present in most cases when performing visual servoing. This can be due to
several factors, amongst which are erroneous data resulting of occlusions, matching errors
or illumination variations. Those data can be problematic and this is why the optimization
must adapt to limit the impact of the outliers. This is why a M-estimator ρ is often added
to the similarity function f :

∆̂uk = arg min
∆uk

Ns∑
n=0

ρ(x∗n − w(xn,u
k + ∆uk)). (2.14)

Several M-estimators have been proposed in the literature. Instead of using a simple
quadratic function ρ(x) = x2 when optimizing the SSD for example, a Lorentzien kernel
can be used [Fitzgibbon, 2003]:

ρ(x) = log

(
1 +

t2

σ

)
(2.15)

where σ is a tuning parameter of the estimator. This function is defined the same way for
every value of x, but other functions can be conditionals as the Huber function [Hager and
Belhumeur, 1998]:

ρ(x) =

{
1
2x

2 if ‖ x ‖≤ σ
σ ‖ x ‖ −1

2σ
2 elsewhere (2.16)

Finally, another M-estimator commonly used is the Tuckey function [Lepetit and Fua,
2005]:

ρ(x) =

 σ2

6

[
1−

(
1−

(
x
σ

)2)3
]

if ‖ x ‖≤ σ
σ2

6 elsewhere
(2.17)
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This section has shown how feature-based approaches use geometrical properties of the
scene to perform 2D and 3D visual tracking. But these methods require a step of extraction
and matching before performing the motion estimation. In order to avoid that algorithmic
layer that can be erroneous or computationally expensive, other approaches propose to use
the whole image data as visual feature, resulting in what are called dense approaches.

2.2 Dense visual tracking

Instead of using features extracted from the images that represent the geometrical prop-
erties of an object, its appearance can be considered to perform visual tracking. Modeling
the way the object is seen, with colors, luminances or textures is then an alternative to
the use of geometrical features. Several works have been proposed that use this idea. In
order to perform visual tracking, histograms have been used [Comaniciu et al., 2000], but
approaches closer to the texture of the object have also been successfully introduced [Lu-
cas and Kanade, 1981, Irani and Anandan, 1998, Jurie and Dhome, 2001, Benhimane and
Malis, 2004, Dame and Marchand, 2011]. These approaches are referred to as dense tech-
niques and consider more features, using image templates, in order to get a more global
representation of the scene. But considering more data leads to more computationally ex-
pensive algorithms. The appearance of an object may also be subject to lighting variations
in the scene. Indeed, light can create shifts in the luminance of a texture or specularities
can appear. This is why dense visual tracking algorithms have to find ways to achieve ro-
bustness. Contrary to geometrical approaches, dense methods cannot end up in situations
where no feature can be found, due to the quantity of considered data. That redundancy of
information also allows for a very accurate estimations of the displacement which are often
robust to partial occlusions of the object. Moreover, the information is directly present in
the images. It does not need to be extracted or pre-processed which eliminates potential
issues such as erroneous detections or feature matching failures.

2.2.1 Using luminance data: Similarity measures

Using texture to perform visual tracking means being able to estimate a similarity or
dissimilarity between image patterns. Indeed, a visual tracking task as defined in [Shi
and Tomasi, 1994] aims at optimizing a cost function in order to find a displacement in
the image. Hereafter are several similarity or dissimilarity functions that can be used to
perform visual tracking.

2.2.1.1 Sum of Squared Differences (SSD)

The sum of squared differences (SSD) compares directly the light intensities of each pixel
between a seen image I and a reference I∗:

SSD(I, I∗) =

Nx∑
k=1

[I(xk )− I∗(xk )]2 (2.18)

where Nx is the number of pixels considered in I∗. Its simplicity and the fact that it is
very computationally efficient have made it the most used registration function for dense
visual tracking approaches [Shi and Tomasi, 1994, Hager and Toyama, 1998]. The main
drawback of this approach is the fact that it is very poorly robust to scene variations.
Light perturbations, occlusions or specularities are problematic when using the SSD as a
registration function. To circumvent this fact, several layers have been added to the SSD in
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order to add robustness, such as adding parameters modeling the structure of light [Silveira
and Malis, 2007]. But those approaches introduce complexity and the simplicity of using
the SSD instead of a more complex but more robust function then vanishes.

2.2.1.2 Sum of Conditional Variance (SCV)

Recently, it has been proposed a tracking algorithm based on the sum of conditional vari-
ance [Richa et al., 2011]. The SCV is a template-based dissimilarity function but rather
than using the raw image I, as it is the case for the SSD, it is adapted, at each new frame,
to match the illumination conditions of the template image I∗, creating an adapted patch
Î thanks to an expectation operator E :

Î(x) = E(I∗(x) | I(x)). (2.19)

This operator computes, for each grey level in I, an adapted one which reflects the changes
the current template needs to undergo to match the illumination conditions of I∗:

Î(j) =
∑
i

i
pII∗(i , j )

pI(j )
(2.20)

where pI and pII∗ are respectively the probability density function and joint probability
density function of I and I∗:

pII∗(i, j) = P (I∗(x) = i , I(x) = j ) (2.21)

=
1

Nx

Nx∑
k=1

α(I∗(xk)− i)α(I(xk)− j )

where α(u) = 1 if and only if u = 0. From this, the probability density function of I is
given by:

pI(i) =
∑
j

pII∗(i, j). (2.22)

Finally, the dissimilarity function is given by:

SCV (I, I∗) =

Nx∑
k=1

[
I∗(xk )− Î(xk)

]2
. (2.23)

The SCV is then able to adapt to the modality of the scene, allowing to register when global
light perturbation occur, but is still subject to failure when confronted to local variations
such as occlusions or specularities. The simplicity stemming from the similarity with SSD
and increased robustness with relation to the SSD make it a good compromise with relation
to other measures when looking for robustness without much increased complexity.

2.2.1.3 Zero-mean Normalized Cross Correlation (ZNCC)

The normalized cross correlation (used for tracking purposes in [Irani et al., 1992]), later
extended to the zero-mean normalized cross correlation (ZNCC) [Scandaroli et al., 2012]
is, like the SCV, invariant to global illumination variations. Considering Ī as the average
intensity value of I, the ZNCC of two images I and I∗ is defined as:

ZNCC(I, I∗) =

Nx∑
k=1

(I(xk )− Ī)(I∗(xk )− Ī∗)
σI σI∗

. (2.24)
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In equation (2.24), σI and σI∗ are the standard deviations of I and I∗, which are obtained
thanks to the following expression:

σI =

√√√√NI
x∑

k=1

(I(xk )− Ī)2. (2.25)

The ZNCC was not considered in the reminder of this document since it adds complexity
compared to the SCV but the results of both methods are very comparable, with good
robustness to global variations and a convergence area very close to the SSD one.

2.2.1.4 Mutual Information (MI)

The mutual information, as defined by Shannon [Shannon, 2001], represents the quantity
of information shared by two signals. It is not a difference based on intensities like the
SSD, SCV or ZNCC but a similarity criterion based on the entropies of the considered
sources. It is defined by:

MI(I, I∗) = H(I) + H(I∗)−H(I, I∗). (2.26)

The entropy H(I) is a measure of the randomness of a random variable. Given a discrete
variable I with a dynamic d, its entropy is given by the following equation:

H(I) = −
d∑
r=0

pI(r) log (pI(r)) (2.27)

where pI(r) represents the probability distribution function of I (the probability for a given
pixel of I to have an intensity r). Following the same principle, the joint entropy H(I, I∗)
of two sources I and I∗ is defined by:

H(I, I∗) = −
d∑

r,t=0

pII∗(r, t) log (pII∗(r, t)) (2.28)

where pII∗(r, t) is the joint probability distribution function of I and I∗.

2.2.2 2D Registration

Dense 2D registration differs from 2D registration using geometrical features in the fact
that it does not need any low-level matching or tracking layers. Those appearance-based
methods aim at optimizing the (dis)similarity between the textures of a reference template
I∗ composed of Nx pixels and a patch extracted from the current image and transformed
thanks to a warp function w:

û = arg min
u

Nx∑
n=0

f(I∗(xn), I(w(xn,u))) (2.29)

where w(x,u) represents the point in the image plane resulting of the warping of x param-
eterized by the vector u and f a dissimilarity function.
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2.2.2.1 Optimizing the sum of squared differences: KLT

The Kanade Lucas Tomasi visual tracking approach, often referred to as KLT [Lucas
et al., 1981, Shi and Tomasi, 1994, Baker and Matthews, 2004], is the most commonly
used algorithm in order to estimate the displacement of a template between two images
by minimizing the sum of squared differences between a current and reference template.
It is based on the fact that if the brightness constancy constraint is respected, meaning if
I0(x) = Ik(w(x,0)), then we can estimate the transformation w(x,u) that best maps a
pixel x in the first image of a sequence I0 to a pixel xk in the kth image Ik of the sequence:

Ik(xk) = I0(x) = Ik(w(x,uk)). (2.30)

Writing the problem as equation (2.29) leads to:

ûk = arg min
uk

Nx∑
n=0

[Ik(w(xn,uk))− I∗(xn)]2 (2.31)

Again, this is a non-linear optimization task since the pixel values of I∗(x) evolve with
no linear relation to their coordinates x. To perform this task, non-linear optimization
schemes must be used as detailed in Frame 1. Starting from an estimation uk = ûk−1, an
iterative process is performed in order to find the increment ∆uk that will update uk into
uk+1 and allow the process to move on to the next frame:

∆̂uk = arg min
∆uk

Nx∑
n=0

[Ik(w(pn,uk + ∆uk)− I∗(pn)]2 . (2.32)

Performing a first order Taylor expansion on w(pn,uk + ∆uk) gives the SSD function:

SSD(∆uk) =

Nx∑
n=0

[
Ik(w(pn,uk)) +∇Ik

∂w

∂∆u
∆u− I∗(pn)

]2

. (2.33)

where ∇Ik is the gradient of the image at the pixel w(pn,uk). As the goal is to minimize
this value, its derivative needs to be equal to zero, which leads to:

∂SSD

∂∆uk
= 2

Nx∑
n=0

[
∇Ik

∂w

∂∆u

]> [
Ik(w(pn,uk)) +∇Ik

∂w

∂∆u
∆u− I∗(pn)

]
= 0. (2.34)

Defining H as a Gauss-Newton approximation of the Hessian matrix of the SSD:

H =

Nx∑
n=0

[
∇Ik

∂w

∂∆u

]> [
∇Ik

∂w

∂∆u

]
(2.35)

Figure 2.3: Example of visual tracking using the SSD as registration method [Baker and
Matthews, 2004] using the ViSP library [Marchand et al., 2005].
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Frame 3 - Classical warp update rules
As we explained before, non-linear optimization methods rely on a first guess of the good
parameters that is iteratively updated until convergence. That warp update is the linchpin
of the process and several strategies can be used.

Forward additional approach
The most simple and intuitive method is the forward additional approach [Lucas et al.,
1981] which was presented with the KLT approach in section 2.2.2.1. The increment of
warp parameter is then computed as:

∆̂uk = arg min
∆uk

f (Ik(w(p,uk + ∆uk)), I
∗(p)) leading to uk+1 ← uk+∆uk. (2.36)

The problem of this method is that it is not efficient to compute since the Jacobian matrix
has to be updated at each iteration.

Forward compositional approach
Another way to perform the optimization is to use a forward compositional update rule:

∆̂uk = arg min
∆uk

f (Ik(w(w(p,∆uk)),uk), I
∗(p)) (2.37)

leading to an update rule which is expressed as:

w(p,uk+1)← w(w(p,∆uk),uk). (2.38)

This forward compositional method [Shum and Szeliski, 2000] is more intuitive and pos-
sesses a complexity that does not increase significantly over the additional approach, which
makes it a common technique in visual tracking.

Inverse compositional approach
Inverse schemes [Baker and Matthews, 2001] allow an increased efficiency over forward
schemes. This is due to the fact that instead of aiming at aligning a current image on a
reference image, they align the template on a projection of the current image:

∆̂uk = arg min
∆uk

f (I∗(w(w(p,∆uk),uk)), Ik(p)) (2.39)

leading to an update rule which is expressed as:

w(p,uk+1)← w(w−1(p,∆uk),uk). (2.40)

This formulation allows an increase in efficiency, as computation of the Jacobian of the
visual tracking can be done beforehand and not repeated at each new iteration.

the parameter update computation rule can be expressed as:

∆uk = H−1
Nx∑
n=0

[
∇Ik

∂w

∂∆u

]>
[ Ik(w(pn,uk))− I∗(pn)] . (2.41)

The warp parameters uk are then updated thanks to ∆uk and the process is iterated until
convergence. The process is here considered to have converged when the norm of ∆uk is
lower than a defined threshold. Let us notice that this optimization is formulated following
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a forward additional warp update rule. Several other strategies can be used instead. Their
details are exposed in Frame 3.

2.2.2.2 Optimizing the sum of conditional variance

Optimizing the SCV in order to perform visual tracking is close to the SSD approach. As
proposed by the authors of [Richa et al., 2011], let us expose the SCV-based visual tracking
algorithm. In order to explain the algorithm, details will be given using an efficient second-
order minimization. Proposed by the authors of [Benhimane and Malis, 2007], this method
allows a very efficient computation of an approximation of the Hessian matrix. This will
allow to give an overview of this optimization technique. Let us add that a Gauss-Newton
approach such as the one performed in the KLT is also possible, such as the second order
approximation of the Hessian is also possible for a SSD approach. Let us start by defining
the SCV-based visual tracking task. As stated in section 2.2.1.2, the measure can be defined
as:

SCV (I, I∗) =

Nx∑
n=1

[
I(xn)− Î∗(xn)

]2
. (2.42)

Here, the formulation is reversed, and it is the template that is adapted to the current
image, resulting in:

SCV (Ik, I
∗) =

Nx∑
n=1

[
Ik(w(xn,uk + ∆uk))− Î∗(xn)

]2
. (2.43)

Performing a second order Taylor expansion of I about the warp parameters leads to:

Î∗(pn) = Ik(w(pn,uk)) +∇Ik
∂w(pn,uk)

∂∆u
∆u +

1

2

∂2Ik(w(pn,uk))

∂∆u2 ∆u. (2.44)

Performing another Taylor expansion, this time on the Jacobian matrix evaluated at u = 0
gives:

∂Î∗(x)

∂∆u
≈ ∇Ik

∂w(pn,uk)

∂∆u
. (2.45)

Inputting equation (2.45) into equation (2.44) yields:

Î∗(pn) = Ik(w(pn,uk)) +
1

2

[
∇Ik

∂w(pn,uk)

∂∆u
+
∂Î∗(x)

∂∆u

]
∆u. (2.46)

Figure 2.4: Example of visual tracking using the SCV as registration method. More details
available in [Richa et al., 2011].
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From this, the update parameters can be estimated thanks to:

∆uk = −2

[
∇Ik

∂w(pn,uk)

∂∆u
+
∂Î∗(x)

∂∆u

]+ (
Ik(w(pn,uk))− Î∗(pn)

)
. (2.47)

As for the SSD-based technique, the iterative process is stopped when the increment pa-
rameters of the warp become small enough that the optimization can be considered as
having converged.

2.2.2.3 Optimizing the mutual information

Optimizing the mutual information between a template and a current image is more com-
plex than the two optimization processes described earlier. This is mainly due to the fact
that is does not rely on minimizing to zero a dissimilarity anymore but instead it consists in
optimizing to an unknown value a similarity function. It also relies on being able to derive
the probability density functions with relation to the warp parameters. As defined in [Viola
and Wells, 1997] and latter extended in [Dame and Marchand, 2012], the registration task
using the mutual information can be defined:

∆̂uk = arg max
∆uk

∑
i,j

pII∗(i, j)log
(
pII∗(i, j)

pI(i)pI∗(j)

)
(2.48)

where pI(i) and pI∗(j) are respectively the marginal probability density functions of I and
I∗ and pII∗(i, j) is the joint probability density function of I and I∗. The Jacobian of the
mutual information G:

G =
∂MI(Ik(w(x,uk ◦∆uk)), I

∗)

∂∆u

∣∣∣∣
∆u=0

(2.49)

can be obtained from the derivation of equation (2.48) [Dowson and Bowden, 2006]:

G =
∑
i,j

∂pII∗(i, j)

∂∆u

(
1 + log

(
pII∗(i, j)

pI∗(j)

))
. (2.50)

Let us point out that the formulation w(x,u ◦∆u) is used instead of w(w(x,∆u),u)) to
represent the forward compositional warp update rule for clarity purposes. From equa-
tion (2.50), it is clear that the derivative of the joint probability density function with

Figure 2.5: Visual tracking results using the MI approach. On the left is the reference
image which is of a different modality with relation to the tracked template, which shows
that the measure is naturally robust to variations of the modality of the images.
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relation to the warp parameters is needed for the optimization. In order to be able to get
those derivatives, histogram binning is performed when computing the probability density
functions. The details of the process are detailed in Frames 4 and 5. Considering B-spline
histogram binning, the joint probability becomes:

pII∗(i, j) =
1

Nx

∑
x

β(i− I(w(x,uk ◦∆uk))) β(j − I∗(x)) (2.51)

where β(i) represents a B-spline function (see Frame 4 for details). The value of β(j−I∗(x))
being the same no matter ∆u, the derivative needed in equation (2.50) can be expressed
as:

∂pII∗(i, j)

∂∆u
=

1

Nx

∑
x

∂β(i− I(w(x,uk ◦∆uk)))

∂∆u
β(j − I∗(x)). (2.52)

The use of B-spline functions means that this derivative is easy to compute as it is given
by:

∂β(i− I(w(x,u ◦∆u)))

∂∆u
= −∂β

∂i

∂I(w(x,u ◦∆u))

∂∆u

= −∂β
∂i
∇I ∂w(x,u ◦∆u)

∂∆u

∣∣∣∣
∆u=0

= −∂β
∂i
∇I ∂w(x,u)

∂x

∂w(x,∆u)

∂x

∣∣∣∣
∆u=0

= −∂β
∂i
∇I(w(x,u))

∂w(x,∆u)

∂x

∣∣∣∣
∆u=0

(2.53)

The difference between ∇I and ∇I(w(x,u)) is important here. The first is the gradient
of the image I evaluated at the position w(x,u) whereas ∇I(w(x,u)) is the gradient of
the warped image I(w(x,u)). ∂w(x,∆u)

∂x is the derivative of a warped point with relation to
the warp parameters used to transform its coordinates. As it needs only to be computed
considering ∆u = 0 thanks to the compositional scheme, it is only dependent on the
coordinates of the point in the reference image. Let us take for example the case of a
homography warp presented in section 1.2.4. The transformation of a point x = [x y]> is
given by: xwyw

1

 =

1 + ∆u0 ∆u1 ∆u2

∆u3 1 + ∆u4 ∆u5

∆u6 ∆u7 1

xy
1

 (2.54)

which yields:

xw =
(1 + ∆u0) x+ ∆u1 y + 1

∆u6 x+ ∆u7 y + 1
and yw =

∆u3 x+ (1 + ∆u4) y + 1

∆u6 x+ ∆u7 y + 1
(2.55)

The coordinates of the warped point can therefore be written as:

w(x,∆u) =
1

∆u6 x+ ∆u7 y + 1

[
(1 + ∆u0) x+ ∆u1 y + ∆u2

∆u3 x+ (1 + ∆u4) y + ∆u5

]
(2.56)

Setting x′ = ((1 + ∆u0) x+ ∆u1 y + ∆u2), y′ = (∆u3 x+ (1 + ∆u4) y + ∆u5) and deriv-
ing for every parameters allows us to write:

∂w(x,∆u)

∂x
=

1

∆u6 x+ ∆u7 y + 1

[
x y 1 0 0 0 −x x′ −y x′
0 0 0 x y 1 −x y′ −y y′

]
. (2.57)
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2.2. Dense visual tracking

Frame 4 - Histogram binning
Histogram binning is very important when manipulating image histograms in computer
vision. The most natural way to compute empirical image probability density functions is
to use a Kronecker function to test the value of each pixel over every possible value:

pI(i) =
1

Nx

∑
x

δ(i− I(x)) (2.58)

where δ(x) = 1 when x = 0, 0 elsewhere. A problem arises from this formulation. A non-
negligible number of bins of the histogram will likely be empty if we consider the whole
dynamic of the image for the histogram. To overcome the possibility of empty bins in the
histogram, a simple solution is to perform a dynamic scaling of the image. Let us consider
the dynamic dI of an image I, which will usually be 256 for a grey level image. In order
to reduce the number of bins in the histogram, a scaling can be done:

I(x) = I(x)
dI − 1

dI − 1
(2.59)

where the scaled image I has a dynamic of dI . Let us add that the formulation of equa-
tion (2.58) is no longer adequate to the computation of probability density functions on
I. This is due to the fact that the scaled image is now essentially composed of real values
instead of integers as grey levels. Using a Kronecker function here would therefore result in
the loss of an important amount of data. This is why an interpolation method is required.
Several approaches have been proposed as using Gaussian functions [Viola and Wells, 1997]
or approaching Gaussian functions with B-splines [Maes et al., 1997]. The simplicity of
the latter method makes it the one we will use, resulting in a probability density function
estimation given by:

pI(i) =
1

Nx

∑
x

β(i− I(x)) (2.60)

Further details on how to compute and differentiate B-spline functions are reminded in
Frame 5. Histogram binning is very useful when computing the mutual information. It
allows a smoothing of the cost function, depicted by the following mutual information
representation:
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MI computed using 256 bins MI computed using 12 bins

For more details on the computation of the shape of the mutual information, please refer
to section 2.3.
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2.2. Dense visual tracking

Frame 5 - B-spline interpolation
B-splines are very useful for interpolation purposes. Defining Bn as the centered cardinal
B-spline function of order n, Bn can be expressed through a recursive formulation. Let us
first expose the first order B-spline function B1:

B1(x) =

{
1 if ‖ x ‖< 0.5
0 elsewhere (2.61)

Every other order B-spline function is then defined as:

Bn(x) = (Bn−1 ∗B1)(x) (2.62)

where ∗ represents a convolution. The results are, for the example of the lower orders B2

and B3:

B2(x) =


1 + x if x ∈ [−1, 0[
1− x if x ∈ [0,−1[
0 elsewhere

(2.63)

B3(x) =



1
2(1.5 + x)2 if x ∈ [−1.5,−0.5[
1 + x− (0.5 + x)2 if x ∈ [−0.5, 0]
1− x− (0.5− x)2 if x ∈ [0, 0.5]
1
2(1.5− x)2 if x ∈ [0.5, 1.5[
0 elsewhere

(2.64)

The derivatives of the B-splines can also be expressed with relation to lower order B-spline
functions:

∂Bn(x)

∂x
= Bn−1

(
x− 1

2

)
−Bn−1

(
x+

1

2

)
. (2.65)

When ∆u = 0, meaning the warp is an identity warp, x′ = x, y′ = y and the denominator
is equal to 1, leading to:

∂w(x,∆u)

∂x

∣∣∣∣
∆u=0

=

[
x y 1 0 0 0 −x2 −yx
0 0 0 x y 1 −xy −y2

]
. (2.66)

To optimize the mutual information, Newton’s method of optimization is used in [Dame
and Marchand, 2012]. The process maximizes the MI by minimizing its gradient to zero.
Using a Taylor expansion, the gradient of the MI can be expressed as:

∂MI(u ◦∆u)

∂∆u
' ∂MI(u ◦∆u)

∂∆u

∣∣∣∣
∆u=0

+
∂2MI(u ◦∆u)

∂∆u2

∣∣∣∣
∆u=0

∆u. (2.67)

Denoting the Hessian matrix ∂2MI(u◦∆u)

∂∆u2

∣∣∣∣
∆u=0

as H, the parameter increment can therefore

be expressed as:
∆u = −H−1G. (2.68)

The Hessian matrix of the mutual information can, similarly its gradient, be expressed
thanks to the partial derivatives of the probability density functions:

∂2MI(u ◦∆u)

∂∆u2

∣∣∣∣
∆u=0

=
∑
i,j

∂pII∗

∂∆u

>∂pII∗

∂∆u

(
1

pII∗
− 1

pI∗

)
+
∂2pII∗

∂∆u2

(
1 + log

(
pII∗

pI∗

))
.

(2.69)
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2.3. Robustness of the similarity functions

where pII∗(i, j) is noted pII∗ for clarity purposes. The B-spline functions being twice
differentiable, the second order derivative of the joint probability density function is given
by:

∂2pII∗

∂∆u2 =
1

Nx

∑
x

∂2β(i− I(w(x,u ◦∆u)))

∂∆u2 β(j − I∗(x)). (2.70)

As for the first order derivative, chain derivation gives the expression of the second order
derivative:

∂2β(i− I(w(x,u ◦∆u)))

∂∆u2 =
∂

∂∆u

[
−∂β
∂i

∂I(w(x,u ◦∆u))

∂∆u

]
=
∂2β

∂i2
∂I

∂∆u

>
∂I

∂∆u
− ∂β

∂i

∂2I

∂∆u2 .

(2.71)

where:

∂2I

∂∆u2 =
∂

∂∆u

(
∇I(w(x,u))

∂I(w(x,∆u))

∂∆u

)

=
∂w

∂∆u

>
∇2I(w(x,u))

∂w

∂∆u
+

[
∇xI(w(x,u)) 0

0 ∇yI(w(x,u))

] ∂2wx

∂∆u2

∂2wy

∂∆u2

 (2.72)

with ∇2I(w(x,u)) the Hessian of the warped image I(w(x,u)) with respect to the warp
parameters ∆u and ∂2w

∂∆u2 the Hessian of the warp function with relation to the parameters
∆u.

2.3 Robustness of the similarity functions

To assess the robustness of the different similarity functions detailed previously, a compari-
son was made on the results they gave on a chosen picture. Starting from a set position, we
first extract a patch of 400×400 pixels (see Fig. 2.6). We then proceed to move a window
around that position thanks to a 2D translation vector t = (tx, ty)>, starting at a relative
position of (-10,-10) pixels from the start. At each position the four (dis)similarity func-
tions are computed and the results are plotted to create a 3D shape in order to evaluate
the optimization possibilities given by each function.

2.3.1 Nominal case

The first experiment was done in order to have a basis for comparison. In order to do that,
we evaluated the four detailed functions (SSD, SCV, ZNCC, MI) in nominal conditions.
The template and considered patch are therefore extracted from the same images in order
to show the shape of the measures with relation to the translation parameters in nominal
conditions. The results are detailed on figure 2.7. They show that the optimum for each
measure is located at t = 0 which was to be expected in nominal conditions. The four
shapes of the cost functions present smooth surface with no local minima or maxima which
confirms the fact that these functions are well fitted for optimization procedures and can
therefore be used for visual tracking without any supplementary robustness layer in these
conditions.
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2.3. Robustness of the similarity functions

t=0

t = (−10,−10)>

Figure 2.6: Setup of the comparative study. At each position correspond a new patch to
evaluate the functions.
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Figure 2.7: Evaluation of the four detailed registration functions in nominal conditions.

2.3.2 Noisy images

The next experiment was realized in order to assess the robustness of every measure with
respect to image noise. Image noise is often present in real-life visual tracking applications,
as cameras often struggle to present perfect image quality either due to physical (sensor
quality) or software (image coding) reasons. This is why this time white Gaussian noise
was added to the template image before extracting the patches. Figure 2.8 shows the
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2.3. Robustness of the similarity functions

corresponding results for each function. We can see that all four functions are robust to
white Gaussian noise. Even if they are indeed impacted as their optima are less pronounced,
the four smooth shapes show global minima/maxima located on t = 0 with no local
minima/maxima.
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Figure 2.8: Evaluation of the four detailed registration functions when confronted to white
gaussian noise.

2.3.3 Global light variations

Another perturbation that can occur in real-life visual tracking is light variation. Global
variations need to be dealt with as they are a common phenomenon and can occur from one
frame to another as the atmospheric conditions change. To simulate that perturbation, the
template image was recovered of a grey filter in order to simulate a shift in luminosity. The
experiment was launched again and the results can be seen on figure 2.9. The shape of the
SSD becomes problematic in these conditions. It shows no minimum and the variations are
very weak. Moreover the curve of the shape clearly goes toward a lighter zone positioned
upper than the window position, which means that any optimization for visual tracking
would diverge towards that part of the image. It is then obviously not fit for optimization
in these conditions without added robustness layers. The other three functions however, as
they represent measures invariant to global variations are still perfectly fit for optimization
(no local optimum, global optimum located for t = 0) even though their values are impacted
by the perturbation.

2.3.4 Local light variations: specularities

Another problem often caused by the lighting of the scene is called specularities. They
occur when a beam of light touches a non-lambertian surfaces. Those surfaces, which
encompass most surfaces, display a white spot when the light touches them according to a
certain angle. The spot is often called specularity as displayed on figure 2.10. This is what
we simulated in this experiment in order to evaluate the natural robustness of the four
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Figure 2.9: Evaluation of the four detailed registration functions when confronted to global
light variations.

considered functions in these conditions. The results show that SSD is not able to cope
with such perturbations. It also shows that both SCV and ZNCC are at their limit with
a very little slope in those conditions which means that most specularities would prove to
be problematic. Finally, MI is here again the most robust function since the specularity
did not significantly alter the shape of the measure.
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Figure 2.10: Evaluation of the four detailed registration functions when confronted to local
light variations.
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2.3. Robustness of the similarity functions

2.3.5 Occlusions

When tracking an object, occlusions can also happen. They are often due to other objects
moving along a different trajectory than the followed template. According to their size,
occlusions can be problematic for most (dis)similarity functions.To assess the behaviour of
the functions with relative to occlusions images have been added over the current view in
order to mask parts of the reference with different textures. Results shown on figure 2.11.
We can see that with the exception of the mutual information, and even though a moderate
part of the template is still visible, the three other similarity functions are thrown of by
the perturbation. The SSD still has a global minimum due to the fact that the grey levels
present in the occlusions are close to the background but a plateau is appearing and the
scale of variation is minimal, which means that in that situation there are very few chances
for the optimization to reach a good position. Both the SCV and ZNCC are lost and
unusable as such in these conditions, as they try to globally adapt to a local perturbation,
which cannot work well.
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Figure 2.11: Evaluation of the four detailed registration functions when confronted to
occlusions.

2.3.6 Different modalities

The final experiment was realized in order to assess the possibilities of the registration
functions when confronted to images presenting different modalities. Being robust to multi
modalities is very interesting as it means for example being able to continue tracking
a target on infrared pictures or being able to compare for example maps and satellite
images. This is why in the experiment we simulated a IR image of the template thanks to
an image manipulation software dedicated to such manipulations, see figure 2.12 for more
details, and evaluated our functions in those conditions. Results show clearly that both
SCV, ZNCC and MI are able to cope with that perturbation as they are able to adapt
to such situations contrary to the SSD which is completely thrown off by the variation of
histogram.
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Figure 2.12: Evaluation of the four detailed registration functions on images with different
modalities.

2.4 Conclusion

In this chapter, several methods proposed in the literature to perform image registration
have been discussed. Starting from the classical techniques based on sparse geometrical
features and extending to dense methods that use directly the whole image information,
several visual tracking algorithms have been detailed. Then, (dis)similarity functions have
been discussed, and four of them have been compared in different conditions. From the
results it appears that the SCV is a good compromise between robustness and simplicity,
whereas the MI appears to be very robust in numerous conditions, albeit more complex.
Building on these results, the next chapters will detail new visual tracking approaches
based on these (dis)similarity functions.
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3
Model-based dense visual tracking

The objective of this chapter is to propose a new dense model-based approach to 3D visual
tracking (or 3D localization) that is robust to global variations. To that end, an algorithm
proposed in the literature that allows to track several planes linked by euclidean constraints
is first detailed. Then, it is extended to optimize robust (dis)similarity functions and to
take into account several faces of the object in the same optimization loop in order to
estimate the parameters of a pose vector r ∈ SE(3). First, the SCV is used to propose an
approach that is simple, since it is close to the SSD case, and robust to global variations
of the scene. Then, the method is extended to optimize the mutual information. Though
more complex and more computationally challenging, this approach is very robust as the
MI is robust to numerous perturbations. We then explain how to take into account a 3D
model by detecting which faces are visible by the camera. Only the visible face are then
used in the optimization process. The two proposed algorithms are then validated and
compared in several conditions before an analysis of their convergence domain is realized.

3.1 3D Registration: Pose estimation

In [Benhimane and Malis, 2006b], a method that includes euclidean constraints between
several planes into the tracking task has been proposed. In order to do that, the optimiza-
tion is done on 6 parameters representing a 3D transformation in SE(3) using the sum of
squared differences (SSD) as the registration function. Considering a template I∗ of size
Nx pixels representing the projection of a plane in the 3D frame. The tracking process
then consists in finding the parameters of the transformation T(r)k ∈ SE(3) translating
the displacement of the considered scene at the iteration k. Considering an inverse compo-
sitional approach [Baker and Matthews, 2001], the goal of the optimization is to find the
optimal increment of parameters ∆r which verifies ∀xi ∈ I:

I(w(xi, r
k−1)) = I∗(w−1(xi,∆r))

= I∗(G(∆r)−1x).
(3.1)

The 3D transformation T(r) being the same for every plane in the scene the process can
therefore track several planes in a unique optimization loop, the difference between planes
coming from the different matrices G induced by ∆r. The homography warps not being
the same for every plane, the warp associated to a plane l will be noted wl for the reminder
of this document. The optimal increment of parameters ∆̂r is obtained by minimizing the
SSD between the current image warped with the displacement parameters computed at
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3.1. 3D Registration: Pose estimation

the last frame r and the template warped with current parameters ∆̂r:

∆̂r = arg min
∆r

∑
l

Nxl∑
i=1

[
I∗(wl(xi,∆r))− I(wl(xi, r

k−1))
]2
. (3.2)

The displacement is subsequently updated as follows:

T(r)k ← T(r)k−1T(∆̂r)−1. (3.3)

To perform this minimization as was proposed in [Baker and Matthews, 2001] in SL(3)
and [Benhimane and Malis, 2006b] in SE(3), let us start by expressing the first order
Taylor expansion associated to the chosen registration function:

SSD(∆r) =
∑
l

Nxl∑
i=1

[
I∗(wl(xi,∆r))− I(wl(xi, r

k−1))
]2

(3.4)

which is defined as:

SSD(∆r) '
∑
l

Nxl∑
i=1

[
I∗(xi)− I(wl(xi, r

k−1))
]2

+ J(∆r)∆r (3.5)

where J(∆r) is the Jacobian matrix of SSD(∆r).
Decomposing the Jacobian matrix thanks to the different transformations applied to

each pixel gives:

J(∆r) =
∂I∗

∂wl

∂wl
∂K

∂K

∂T

∂T

∂x

∂x

∂∆r
= JI∗Jwl

JKJTJx(∆r)
(3.6)

leading to [Benhimane and Malis, 2006b]:

∆̂r = − (JI∗Jwl
JKJTJx(0))+ SSD(0). (3.7)

Let us note that an ESM approach can also be chosen to perform the optimization as
it was chosen in [Benhimane and Malis, 2006b]. In this eventuality, the update of the
displacement is given by:

∆̂r = −
((

JI + JI∗

2

)
Jwl

JKJTJx(0)

)+

SSD(0). (3.8)

The problem when using the SSD as the registration function of a registration process
as performed in [Benhimane and Malis, 2006a] is the fact that it is not adapted to the
perturbations that are usually undergone by real life scenes such as illumination variations
or occlusions. This is why we will present here two 3D dense registration methods. The first
one is based on the Sum of conditional variance and the second on is based on the mutual
information. The first approach, using the SCV, should therefore be robust to global light
variations as possibly undergone by most real-life scenes but still quite easily performed
while the MI version should add robustness at the expense of being more complex and
possible more time consuming.
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3.2 Optimization over several planes: visibility issue

3D models are usually made of sets of triangles or planes linked to one another by 3D
transformations. Therefore, when dealing with dense registration of a 3D model, the
algorithm needs to know at every frame which faces are visible by the camera. To illustrate
the process, let us take for example a 3D model composed of two textured squares linked
by a side segment at a 90◦ angle. In order to determine the visibility of a face, a simple test
is done. It is necessary to compute the angle between the plane’s normal vector (expressed
in the camera plane) and a vector between the camera position and the center of the plane.
Depending on this angle, the visibility can then be assessed. Let us note that visibility test
does not take into account concave shapes, where occlusions are possible between frames.
Figure 3.1 and 3.2 show the different possible cases. In the first case (Fig 3.2), only one

Figure 3.1: Example of two faces considered visible at the same time. The registration is
then realized considering both of them.

Figure 3.2: Two examples where only one plane is considered for the tracking process. On
the left, one of the faces is not enough visible to be taken into account whereas on the right
it is not seen at all by the camera.
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3.3. Using the SCV for dense model-based 3D registration

plane is considered visible. On the right part of the figure, one face is totally occluded
by the other and the angle between the camera line of view and the normal is then too
important. On the left part of the figure, the face is seen in the image but our algorithm
will not consider it visible as the computed angle is too narrow. This is done in order
to insure a better registration quality. Indeed, an initialization of the reference template
associated to the face needs to be determined when a new face appears in order to be
included in the tracking process. But if the visibility of the texture is not sufficient, the
reference taken into account for the registration will be of bad quality which will result in
a bad registration process. This is why faces are considered visible only once the computed
angle criterion has reached a minimal desired value. On the other hand, figure 3.1 shows a
case where the two faces are seen and included in the registration process simultaneously.
They are both considered visible since the value of the computed angle is in a determined
window of visibility.

3.3 Using the SCV for dense model-based 3D registration

To perform dense 3D registration using the SCV, we chose to adapt the previous works
proposed by the authors of [Benhimane and Malis, 2006a]. The basic principle therefore
remains and the approach is reorganized and adapted to the use of the SCV as the cost
function. The approach is still a minimization to zero of a cost function, the SCV, that
needs to be performed over the parameters of the 3D pose of the camera r. Considering a
3D model composed of several planes, a homography can be determined in the image plane
for each of them. To do that, let us start from the definition of the 3D homography:

bX = H aX where H =b Ra +
btan>

d
(3.9)

A point expressed in the object frame xol belonging to a plane l can therefore be expressed
in the camera frame thanks to the homography given by:

Hl =c Ro +
ctonl

>

dl
. (3.10)

Let us refer to this homography as Hl(r) where r is the pose vector translating the frame
transformation allowing to know the homogeneous transformation cMo between Fo and
Fc from which cRo and cto can be extracted. Considering the camera parameters K
known (we recover them through a well-known process of calibration [Tsai, 1986]), the
homographies associated to each face of the model can be translated in the image plane as
seen in chapter 1:

Gl(r) = K Hl(r) K−1. (3.11)

The pose vector r is the same for every plane l of the object, as it translates the position
of the camera with relation to the object, but the homography Gl(r) is different for every
plane, as it depends on its normal and distance to the origin. Each plane is therefore
warped in the image plane according to a different warp wl although all warps depend on
the same pose vector r:

wl(x̄, r) = Gl(r) x̄. (3.12)

Now that the transformation function has been determined, let us detail the algorithm.
Since the objective is to estimate the parameters of the relative pose between the camera
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and the object r, the task to optimize is given by:

∆̂r = arg min
∆r

Nl∑
l=1

SCV (wl(I
∗,∆r), wl(I, r)) (3.13)

where w(I, r) is a generalization made to translate the result of the warp of every point in
the image I according to parameters r:

∑
Nx

I(w(x, r)). Considering Î(x) = E(I∗(x) | I(x)),

the cost function of the proposed approach expressed in equation (3.13) can be rewritten
as:

∆̂r = arg min
∆r

Nl∑
l=1

Nx∑
k=1

[
I∗(wl(xk ,∆r))− Î(wl(xk, r))

]2
. (3.14)

To perform this optimization task, let us first express the Taylor expansion of the registra-
tion function in r = 0. The registration function being the SCV:

SCV (∆r) =

Nl∑
l=1

Nx∑
k=1

[
I∗(wl(xk ,∆r))− Î(wl(xk, r))

]2
(3.15)

the Taylor expansion gives:

SCV (∆r) '
Nl∑
l=1

Nx∑
k=1

[
I∗(wl(xk ,0))− Î(wl(xk, r))

]2
+ J(0)∆r +

1

2
H(0,∆r)∆r (3.16)

where J and H are respectively the Jacobian and Hessian matrix of the SCV given by:

J(∆r) =
∂SCV (∆r)

∂∆r
and H(∆r,∆r) =

∂2SCV (∆r)

∂∆r2 . (3.17)

From the Taylor expansion of the Jacobian matrix evaluated around ∆r:

J(∆r) = J(0) +
1

2
H(0,∆r) (3.18)

we can express, combining equations (3.16) and (3.18) :

SCV (∆r) '
Nl∑
l=1

Nx∑
k=1

[
I∗(wl(xk ,0))− Î(wl(xk, r))

]2
+

1

2
[J(0) + J(∆r)] ∆r. (3.19)

From this, the warp increment computation can be defined as:

∆̂r =

[
1

2
(J(0) + J(∆r))

]+

SCV (0) (3.20)

using an Efficient Second order Minimization (ESM) strategy [Benhimane and Malis, 2007].
The Jacobian matrix of the SCV can be separated in several matrices, leading to:

J(∆r) = JI∗Jwl
JKJ

T̂
Jx(∆r)

J(0) = JI∗Jwl
JKJTJx(0)

(3.21)

which yields:

∆̂r =

[
1

2

(
JI∗ + JÎ)Jwl

JKJ
T̂

Jx(0)
)]+

SCV (0). (3.22)

Let us detail further the expressions of these matrices:
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3.3. Using the SCV for dense model-based 3D registration

• The Jacobian JI∗ represents the gradient of the image I with relation to the spatial
coordinates x, y and z. It is the given by:

JI∗ = [∇Ix ∇Iy 0]> . (3.23)

JI∗ needs therefore only to be computed once whereas JÎ needs to be computed at
each new frame.

• The Jacobian Jwl
is associated to the warp and is a (3 × 9) matrix given, for any

point x = [x y 1]>:

Jwl
=

x> 0 −xx>

0 x> −yx>
0 0 0

 . (3.24)

JK is a (9 × 9) matrix that only relies on the intrinsic parameters of the camera:

JK =

pxK> 0 u0K
>

0 pyK
> v0K

>

0 0 K>

 . (3.25)

Let us remark that both Jwl
and JK being constant throughout the registration pro-

cess, they can be computed beforehand.

• For the last two matrices are related to the 3D transformation and the the 3D point.
They are computed as a whole, giving a (9 × 6) matrix composed of:

J
T̂

Jx(0) =

n∗(τxn
∗ + bx)> [τxn

∗ + bx]×
n∗(τyn

∗ + by)
> [τyn

∗ + by]×
n∗(τzn

∗ + bz)
> [τzn

∗ + bz]×

 . (3.26)

In this case, the vectors bx,by,bz represent the unitary vectors composing the ref-
erence frame, n∗ = [nx, ny, nz]

> is a normal vector to the considered plane and
τ = [τx, τy, τz] is the vector resulting of the current transformation rearranged as:

τ =
−R>t

1 + n∗>R>t
. (3.27)

Since the values in this matrix depends on the current transformation between the
object and the camera, it needs to be computed at each iteration of the process.
Let us note that as J

T̂
Jx is already linked to the current transformation J

T̂
Jx(0) =

J
T̂

Jx(∆r).
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SCV-based 3D registration

Initialization

• Gather each face from the model.

• Compute JK thanks to the camera parameters.

• Compute Jwl
for each plane.

Re-initialization on face (dis)appearance

• Compute the gradient of the reference image JI∗ for each visible face.

Tracking phase (iterate until ∆r is small enough)

• Warp every points of I thanks to the pose parameters r.

• Compute the probability density functions pII∗ and pI .

• Compute the cost function SCV (∆r)

∣∣∣∣
∆r=0

.

• Compute the Jacobians JI and J
T̂

Jx(0).

• Compute the warp increment ∆r.

• Get the inverse parameters ∆u−1 and update r.

3.4 Using the MI for dense model-based 3D registration

The use of the SCV is a good middle ground between simplicity and robustness. However,
when dealing with important local perturbations, it has been shown that it was not robust
enough on its own. This is why we developed an approach that allows to perform model-
based 3D registration using the mutual information. As it was shown in section 2.2.1.4,
the mutual information is a difference of entropy between two images:

MI(I, I∗) = H(I) + H(I∗)−H(I, I∗). (3.28)

But since the optimization will not be done on one template but a set of templates, each
one representing a face of the model. This leads to a modified cost function that is linked
to the position of the camera with relation to the considered object:

MI(∆r) = MI(∪
l
wl(I, r),∪

l
wl(I∗,∆r))

= H(∪
l
wl(I, r)) + H(∪

l
wl(I∗,∆r))−H(∪

l
wl(I, r),∪

l
wl(I∗,∆r))

(3.29)

where MI(∪
l
wl(I, r),∪

l
wl(I∗,∆r)) is the the mutual information computed on the union of

all currently visible faces on the object projected in the image. Considering a set of visible
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faces, the probability density functions need to be redefined as:

pII∗(i, j, r,∆r) =
1

N l
x

∑
l

∑
x

β(i− I(wl(x, r))) β(j − I∗(wl(x,∆r))

pI(i, j, r) =
1

N l
x

∑
l

∑
x

β(i− I(wl(x, r)))

pI∗(i, j,∆r) =
1

N l
x

∑
l

∑
x

β(j − I∗(wl(x,∆r))

(3.30)

where N l
x is the total number of points used for template registration considering all the

visible faces of the model. From that expression of the probabilities, the value of the MI is
determined by:

MI(∆r) =

Nd∑
r,t=0

pII∗(r, t, r,∆r) log

(
pII∗(r, t, r,∆r)

pI(r, r)pI∗(t,∆r)

)
(3.31)

where Nd is the chosen dynamic for the histogram binning of the image (see Frame 4 for
more details). At each new iteration a new warp update is computed as:

∆u = −H−1G (3.32)

where G and H are respectively the Gradient and Hessian matrices of the MI. The gra-
dient represents the first order derivatives of the cost function with relation to the warp
increment. It is therefore given by:

G =
∂MI(∆r)

∂∆r
' ∂MI(∆r)

∂∆r

∣∣∣∣
∆r=0

+
∂2MI(∆r)

∂∆r2

∣∣∣∣
∆r=0

∆r. (3.33)

As for the Hessian matrix, it represents the second order derivatives with relation to the
warp update parameters:

H =
∂2MI(∆r)

∂∆r2

∣∣∣∣
∆r=0

=
∑
i,j

∂pII∗

∂∆r

>∂pII∗

∂∆r

(
1

pII∗
− 1

pI∗

)
+
∂2pII∗

∂∆r2

(
1 + log

(
pII∗

pI∗

))
.

(3.34)
Given that the B-splines chosen to perform the histogram binning are twice differentiable,
the second order derivatives of the probability density function can be expressed as:

∂2pII∗

∂∆r2 =
1

N l
x

∑
Nl

∑
x

∂2β(j − I∗(wl(x,∆r)))

∂∆r2 β(i− I(wl(x, r))). (3.35)

As for the first order derivatives of the B-splines, chain derivation gives the expression of
their second order derivative:

∂2β(j − I∗(wl(x,∆r)))

∂∆r2 =
∂

∂∆r

[
−∂β
∂j

∂I∗(wl(x,∆r))

∂∆r

]
' ∂2β

∂j2

∂I∗

∂∆r

>
∂I∗

∂∆r

(3.36)

where:

∂I∗

∂∆r
= JI∗Jwl

JKJ
T̂

Jx(∆r) (3.37)
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MI-based 3D registration

Initialization

• Gather each face from the model.

• Compute JK thanks to the camera parameters.

• Compute Jwl
for each plane.

Re-initialization on face (dis)appearence

• Compute the approached Hessian of the visible model H and its inverse H−1.

Tracking phase (iterate until ∆r is small enough)

• Warp every points of I thanks to the pose parameters r.

• Compute the probability density functions pII∗ and pI∗ thanks to histogram binning.

• Compute G the Gradient of the MI.

• Compute the warp increment ∆r.

• Get the inverse parameters ∆u−1 and update r.

3.5 Experimental results

In this section, a focus will be put on experiments evaluating the proposed model-based
3D registration techniques. The methodology is the same for both approaches. First, an
original pose is computed from the first image of the considered sequence by matching
four points in the image with their 3D correspondences. From that initial pose and the
knowledge of the 3D model that is to be tracked in the sequence, the tracking process is
initialized.

3.5.1 Comparison between simple plane and multiplane approaches

This experiment was realized in order to evaluate the advantages of taking several planes
into account at the same time. The setup is the following. A sequence figuring an angle
building was taken. Two model-based tracking approaches were then launched on the
sequence. The first approach used two trackers, one for each considered plane. The two
trackers then performed independently. The other method was to use the multiplane
strategy proposed earlier. Results are shown on figure 3.3. The two monoplane trackers
approach fails to track the building when a part disappears and then appears again. This
is due to one tracker failing because of a registration on a small number of points. On
the other hand the multiplane approach uses the relation between the planes to keep a
space-time coherency and prevents the failure encountered with the other strategy. This
experience then shows that the proposed approach performs well in nominal conditions
and that the use of a model to link several faces in the same optimization allows for a good
robustness to (dis)appearances of faces in the scene.
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Frame 0 Frame 22 Frame 35

Frame 50 Frame 72 Frame 81

Frame 0 Frame 22 Frame 35

Frame 50 Frame 72 Frame 81

Figure 3.3: Difference between two monoplane trackers on the top and one multiplane
tracker on the bottom.

3.5.2 Tracking in nominal conditions

The goal of this experiment is to validate both the SCV and MI approaches in a nom-
inal cases. In order to do that, the performances of the trackers were evaluated on two
sequences featuring a model seen in conditions where no perturbation arose. The two cho-
sen sequences showed a parallelepiped to be followed. The first sequence then depicts a
cube and fast camera displacements that allow to assess the robustness of the methods in
these conditions. The second sequence features a box that is rotating on a plate, therefore
creating appearances and disappearances of faces.
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3.5.2.1 Cube sequence

The first sequences shows a moving cube. The cube is placed on a table and the camera is
moved around its location. The sequence features appearances and disappearances of cube
faces. It also contains blur on a consequent number of frames as the camera is moving
quite fast at times. Results show that both algorithms give the same good results, with a
precise localization throughout the sequence. Figure 3.4 shows pictures taken when faces
appear or disappear in the sequence. They also show a similarity of localization results as
the displayed object frame allows to confirm. Finally, the resulting camera trajectory in
3D for both algorithms can be found on figure 3.5. The trajectories are very close from
one approach to the other and they are not oscillating, even though the motion of the
camera is important. The figures show however that the SCV algorithm gives a slightly
more shaky trajectory when the motion is brutal. This is due to the appearance of blur in
the corresponding frames, which is not taken into account by any added robustness layer
here.

3.5.2.2 Box sequence

The box sequence shows a teabox rotating on itself. The rotation angle is greater than
180◦ which allows to consider the robustness of the approach to drift effects that can be
caused by reinitializations of the faces at inappropriate frames. Figure 3.6 shows frames
from that sequence. It is clear from frame 120 on that perspective effects combined with
reinitializations have cause a minor drift. However, the displayed object frame is also seen
to be stable at a very good position which means that those drift effects did not perturb
the localization process. Let us also note that results are only shown here for the MI-based
approach as the results of the SCV version of the algorithm were the same, as it was the
case for the previous experiment. Here again, the trajectory of the camera is shown on
figure 3.7. The curves show clearly the rotation of the box and the several motions of the
camera that is moved during the sequence, along with the fact that the pose computed by
the algorithm is not shaky here either.

Once the viability of the proposed approaches has been demonstrated, several exper-
iments have been realized in order to evaluate their robustness in perturbed conditions.
Indeed, the main objective when designing these approaches has been set to create ro-
bust solutions. The following experiments then aim at demonstrating that the proposed
approach are robust in different conditions without any added robustness layers.

3.5.3 Robustness towards illumination variations

Both the SCV and MI have been shown in section 2.3 to be robust to global perturbations.
The most commonly found perturbation is light variation. This is why in this experiment
a model is tracked along a sequence featuring several light changes. These perturbations
were realized by switching on and off the lights of a room while the camera is moving
and creating blur. The results of both localization strategies can be found on Figure 3.9.
The first clear conclusions that can be drawn is that in the same conditions as the two
proposed approaches, the SSD alone fails tracking the target as soon as the light changes
in the images. Finally, another interesting observation can be made. When using only
8 bins to perform the MI optimization as it is the case here, there are frames where the
MI gives a slightly less accurate result than the SCV method which uses 64 bins. On the
other hand, once the blur is too important, the SCV fails to give good results. But since
using much more bins for the MI (as can be done for the SCV) would result in a less well
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Frame 0 Frame 6 Frame 42

Frame 96 Frame 116 Frame 225

Frame 0 Frame 6 Frame 42

Frame 96 Frame 116 Frame 225

Figure 3.4: Results of both the SCV (on the top) and MI (on the bottom) model-based
algorithms on the cube sequence.

conditioned cost function and a higher computational cost, a trade-off can be seen between
the SCV and MI approaches. The MI is more robust, as it is able to cope with a wider
range of perturbations but the SCV can give better results in conditions where only global
variations appear. Figure 3.8 shows the tracking results of the MI more precisely. It shows
how the MI is able to cope with situations where even the human eye can begin to have
difficulty registering the current and reference templates.
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−1.5

−1.0
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0.0

Trajectory

−1.5

−1.0

−0.5

0.0

Trajectory

Figure 3.5: Camera trajectories for the SCV (on the left) and MI (on the right) model-based
algorithms on the cube sequence.

Frame 0 Frame 41 Frame 69

Frame 99 Frame 113 Frame 120

Frame 145 Frame 155 Frame 170

Figure 3.6: Results of the MI model-based algorithm on the box sequence.

3.5.4 Robustness towards local perturbations

Previous experiments have validated the proposed approaches in sequences featuring global
variations such as illumination changes. In this section, the objective is to assess the robust-
ness of the approaches in situation where local perturbations appear such as occluded parts
of the object or specular spots. As shown in section 2.3, the MI is still able to give good
results whereas the SCV fails as its expression cannot model that kind of perturbations.
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0.0

0.1

0.2

0.3

0.4

Trajectory

Figure 3.7: Camera trajectory for the MI model-based algorithm on the teabox sequence.

Figure 3.8: On the left of each pair is the tracking result of our MI algorithm and on the
right what is actually seen in the image at the place of the left face. Let us add that the
patch is very blurred on several occasions but the tracking is still successful.

3.5.4.1 Case of specularities

The experiment described in this section aims at evaluating the robustness of the ap-
proaches when confronted to specular spots on the templates. Specular spots are the
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SSD SCV MI

Figure 3.9: Results of the SSD (on the left), SCV (in the middle) and MI (on the right)
model-based algorithms in light varying conditions. The SSD is lost at the first light
variation, whereas light variations do no impact the SCV but it is still lost when too much
blur appears in the image.
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results of light hitting a non-lambertian surface at an angle. The nature of the material
then creates a white spot on the image. This is a very challenging problem for visual
tracking techniques as the visual data change and a part of the texture is often lost. In
this experiment, 3D registration using SSD, SCV and MI were launched on a sequence
featuring a large specular spot on a face of the model. Even though one of the faces is
still in nominal conditions, both the SSD and SCV failed to localize the model as soon as
the specular task comes into play. The MI-based version on the other hand can cope with
that kind of perturbations and is able to complete the localization. Results of this tracking
process are shown on Figure 3.10.

3.5.4.2 Case of occlusions

Another challenging local perturbation is the presence of occluded areas of the template.
Depending on the area that undergoes an occlusion, several techniques such as M-estimators
have been shown to be successful but the goal is here to assess the basic robustness of the
approaches, before any additional layer is put into place. A video sequence is then shown
here where a large area of a face is occluded. As is the case with specularities, neither the
SSD nor SCV are able to cope with that situation. The MI on the other hand still gives
good results. Although challenged at some points of the sequence where the accuracy of
the localization is impacted when the occlusion appears or disappears, the process is still
a success, and a good localization is obtained as shown on Figure 3.11

3.5.5 Convergence domain analysis

Final experiments were also realized to analyze the convergence domain of each approach
in different conditions. Once the tracker has been initialized with the first frame of the
sequence, the localization process is started from an image in the sequence and the pose
parameters are set to the corresponding ground truth. The parameters are then perturbed
with white Gaussian noise on the pose of chosen σ and the tracking is launched. After the
tracking is over, the resulting pose parameters and the ground truth are compared and if
the error is small enough, the tracking is considered successful. The process is repeated
500 times for each method in each situation. The results are shown on figure 3.13. When
adding noise to the pose parameters, a σR of 0.01 rad is chosen for the rotations since their
impact is very important on the pose and σt is chosen in a range from 0.002 to 0.05 m to
see the impact of the starting position (see figure 4.11 for examples of starting positions).
The curves show that mutual information is the only possible solution when confronted
to important scene variations such as large occlusions or specularities which validates the
results of the previous experiments which showed similar results. The convergence graphs
also show that in nominal conditions the convergence domain of both SCV and MI, whilst
not being as important as the SSD, is very wide which validates the fact that, as stated in
section 2.3, both SCV and MI are viable solutions to replace the SSD as cost function for
localization processes.
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Frame 0 Frame 80

Frame 35 Frame 125

Frame 59 Frame 175

Figure 3.10: Results of the MI model-based algorithm when confronted to specularities.
Let us add that the left face is willingly omitted from the optimization process in order to
give more weight to the perturbation caused by the specular spot.
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Frame 0 Frame 133

Frame 53 Frame 199

Frame 67 Frame 232

Figure 3.11: Results of the MI model-based algorithm when confronted to occlusions.
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Reference image

Ground Truth

σt = 0.002

σt = 0.02

σt = 0.05

Figure 3.12: Examples of starting positions with different σt. For all experiments σR =
0.01.
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Figure 3.13: From top to bottom : convergence frequency in nominal conditions (column
1 of fig. 4.11), in light varying conditions (column 2 of fig. 4.11) and when confronted to
specularities (column 3 of fig. 4.11).
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3.6 Conclusion

In this chapter, two new algorithms have been proposed to perform dense model-based
visual tracking. The first method is based on the SCV and is shown to be very close to
the SSD in terms of implementation but more robust to global light variations. The other
one is based on the mutual information and is validated through experimentations in very
perturbed condition, for example when confronted to specular spots or occlusions. Finally,
an estimation of the convergence domains of both approaches shows the algorithms to be
efficient in a variety of situations. Building on these results, the next chapter aims at
adding more degrees of freedom to the observable motion by considering a non-rigid warp
function.

67



3.6. Conclusion

68



4
Dense non-rigid 2D image registration

The work presented in chapter 3 considered rigid surfaces. It relies on transformation warps
such as the affine warp or homographies in order to model the displacement of planar sur-
faces. Other works have proposed approaches that rely on less constrained transformation
functions. Depending on the considered non-rigid warping function, the algorithms vary.
In this chapter, two approaches will be proposed that perform dense non-rigid robust 2D
registration. First, an algorithm based on the SCV is described that allows to track non-
rigid surfaces in sequences where global variations appear while staying computationally
close to a SSD approach. The second proposition is to consider the MI as cost function.
The resulting algorithm is therefore more robust to local perturbations, at the expense
of complexity. Before detailing and validating the proposed approaches, non-rigid warp
functions will be defined and an overview of the literature on the subject will be made in
order to understand the context of the proposed works.

4.1 Non-rigid warping functions: adding freedom to the mo-
tion

The limit of the transformation functions defined before is that they only model the dis-
placement of specific rigid bodies. If the model is not adapted to the object (e.g. non planar
surfaces) or if deformations appear, they are not relevant anymore and cannot cope with
the perturbations. In order to prevent these drawbacks, several works have proposed to use
deformable motion warps [Zhu, 2007]. Several warping functions can be considered, in this
section we will detail Free Form Deformations [Gay-Bellile et al., 2010] and a Radial Basis
Function [Arad and Reisfeld, 1995, Ruprecht and Müller, 1993] called Thin-plate Spline
warp [Bookstein, 1989].

4.1.1 Free form deformation (FFD)

Free form deformations [Sederberg and Parry, 1986] are often used to model 3D solid
deformations for image registration [Rueckert et al., 1999]. FFDs allow to warp a chosen
region of interest by deforming a regular grid of control points. The set of control points
s =

[
s0, . . . , sNp

]
is deformed thanks to the parameters of the warp u that represent the

displacement of the control points.

w(x,u) =
3∑
l=0

3∑
m=0

βl(v)βm(w) (si+l,j+m + ui+l,j+m) (4.1)

where v and w are normalized coordinates and βl and βm are cubic B-spline interpolation
coefficients. This transformation function allows a great freedom of deformation. It has,
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4.2. An overview of dense non-rigid surface registration

however, no built-in smoothing factor to help keep a consistency of the deformation. This is
why optimizations computing a FFD displacement are often associated with supplementary
smooth terms [Gay-Bellile et al., 2010].

4.1.2 Thin-plate spline (TPS)

Thin-plate spline(TPS) warps belong to the radial basis functions warps. They minimize
the bending energy of the parameterized surface based on a set of control points inducing
space coherency constraints. The considered warping function is a combination of an affine
warp and an added deformation term:

w(p,u) =

(
a0 a1

a3 a4

)(
x
y

)
+

(
a2

a5

)
+ X(p, c) (4.2)

with X(p, c) a deformation kernel that depend on both the current point p and a set
of control points c =

[
c0, . . . , cNp

]
. The deformation kernel used in the TPS warp is a

thin-plate kernel:

φ(x) =
x(4−p) log(x)

σ
for 4− p ∈ 2N

φ(x) =
x(4−p)

σ
elsewise

(4.3)

where σ and p are parameters that control the freedom given to the deformation, p con-
trolling the smoothness of the surface and σ the spatial influence of the kernel. In the
remainder of this work, we set σ = 2 and p = 2, leading to:

φ(x) =
1

2
x2 log(x). (4.4)

This leads to the full equation of the warping function:

w(p,u) =

(
a0 a1

a3 a4

)(
x
y

)
+

(
a2

a5

)
︸ ︷︷ ︸

Affine warp

+

Np∑
k=1

(
wkx
wky

)
φ(d2(p, ck))︸ ︷︷ ︸

TPS kernel

. (4.5)

where Np is the number of considered control points c, wkx is the weight of the kth control
point along the x axis and d(x,y) is the euclidean distance between two points x and y.
From equation (4.5), we can deduce a warp parameter vector of dimension 2Np + 6:

u> = (a0 a1 a2 a3 a4 a5 w>x w>y ). (4.6)

where w>x and w>y are vectors composed of the weighting criterion for each control point:

w>x =
(
w0
x ... w

Np−1
x

)
(4.7)

w>y =
(
w0
y ... w

Np−1
y

)
. (4.8)

4.2 An overview of dense non-rigid surface registration

Several works have been proposed that use non-rigid warp functions in order to perform
non-rigid image registration. This section then aims at providing with an understanding
of interesting approaches that have been proposed in this field.
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Figure 4.1: Influence of the different parameters on the shape of the TPS kernel. We can
see that the choice of σ=p=2 in black is interesting as the shape of the function is well
defined but not too much in order to avoid local inconsistencies.

Reference

Free Form Deformation warp u ∝ Np

Thin-plate Spline warp u ∝ Np

Figure 4.2: Overview of commonly used non-rigid transformation functions.

4.2.1 Using FFDs for non-rigid 2D registration

In [Gay-Bellile et al., 2010], a non-rigid direct 2D registration that relies on the use of FFD
warps has been proposed. They propose to minimize the SSD between set of points from
a reference template and another set from a current image warped thanks to a FFD warp.
This warp can in this case be written as:

w(s,u) =

3∑
l=0

3∑
m=0

βl(v)βm(w) (si+l,j+m + ui+l,j+m) (4.9)

71



4.2. An overview of dense non-rigid surface registration

where v and w are normalized coordinates and βl and βm are cubic B-spline interpolation
coefficients. s is then a set of control points and u includes the displacement of the control
points. From that warp, a minimization of the SSD can be performed:

SSD(u) = I∗(x)− I(w(x,u)). (4.10)

As the FFD do not have a built-in layer of smoothness, the optimization needs to add one.
The optimization is then composed of the SSD part called data term Ed(u) = SSD(u) and
the smoothing term Es(u):

E(u) = Ed(u) + λsEs(u) (4.11)

with λs and weight parameter. The chosen smooth term, called bending energy, is related to
the TPS. It was shown to be well suited for registering smooth surfaces as shown in [Bartoli
et al., 2004]. Considering C = C>xxCxx + 2C>xyCxy + C>yyCyy where Cab = ∂2w

∂a∂b , Es(u) can be
expressed as:

Es(u) = u>diag(C, C) u = ux
>Cux + uy

>Cuy. (4.12)

The registration can then be done by performing either non-linear optimization scheme.
Let us add that in [Gay-Bellile et al., 2010], another term is added in order to deal with oc-
clusions and extend the algorithm to detect and handle self-occlusions due to deformations
of the template.

4.2.2 Using TPS for non-rigid 2D registration

Another way to perform non-rigid registration is to use the TPS warp as transformation
function of the process. In [Brunet et al., 2011], that strategy has been chosen, resulting
in a direct non-rigid image registration technique. When performing such registration,
the first problem is to be able to parameterize the transformation with relation to warp
parameters. The second problem is that in order to be able to use an inverse compositional
optimization scheme, the warp needs to be invertible. In this paragraph we will show how
the works of [Brunet et al., 2011] have proposed to solve those problematics. Considering
a point x, the result of the transformation can be parameterized as:

w(x,u) = o>x

(
Ω

A>

)
(4.13)

where A is the matrix composed of the affine transformation parameters:

A =

(
a0 a1 a2

a3 a4 a5

)
(4.14)

Ω is a (Np × 2) matrix composed of the weights associated to the control points:

Ω> =

(
w1
x ... wpx

w1
y ... wpy

)
(4.15)

and o>x =
(
φ(d2(x, c0)) ... φ(d2(x, ck)) x y 1

)
(see figure 4.3). Regrouping the equation (4.13)

for all control points allows the parameters of the warp A and Ω to be computed thanks
to the following linear system [Bookstein, 1989]:(

K + λI P
P> 03×3

)(
Ω

A>

)
=

(
P′

03×2

)
(4.16)
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4.2. An overview of dense non-rigid surface registration

where K is a (Np × Np) matrix given by Ki,j = φ(d2(ci, cj)), P =
(
cxj cyj 1

)
and

P′ =
(
c′xj c′yj 1

)
where c′k is the kth control point once displaced. Let us add that λI is

a regularization term. The TPS warp tends to an affine transformation when λ increases.
The (3× 2) null matrix 03×2 is added in order to enforce side conditions:

P> Ω = 0. (4.17)

Those conditions allow the considered equations to be twice differentiable. The goal is to
regularize the function on the borders of the template. In order to compute the inverse
parameters, the inverse equation of (4.16) must be computed. The matrix on the left side
of the relation being invertible by blocs, inverting equation (4.16) leads to:(

Ω
A>

)
= EλP

′ (4.18)

where Eλ is a (Np + 3×Np) matrix resulting of the invert of the transfer matrix expressed
in equation (4.16) which is given by:

Eλ =

(
K−1

(
Id−P

(
P>K−1P

)−1
P>K−1

)
(
P>K−1P

)−1
P>K−1

)
. (4.19)

We can therefore revert the warp from the current control points set P0 to P as in [Gay-
Bellile et al., 2007] giving a new set P′ thanks to the following system:

P′ = (OpEλ)−1P0. (4.20)

In this case Op is a (Np ×Np + 3) transfer matrix which ith line is composed of the vector
o>ci associated to the ith control point. This relation is also true for warp composition (see
figure 4.4). Considering two sets of warped control points P and P′, the composition of
the two warps resulting in a set of control points P′′ is given by:

P′′ = O>PEλP
′. (4.21)

Let us note that in [Brunet et al., 2011], it has been shown possible to perform the regis-
tration process using Jacobian matrices learned beforehand.

w−1

←
→
w

w
→
←
w−1

Figure 4.3: TPS warp inverting. Equation (4.20) allows to find the parameters of the
inverse warp w−1.

4.2.3 Dense non-rigid 2D image registration

The problem when using the SSD in order to perform dense non-rigid registration is the
same as with 3D registration: robustness. If perturbations occur, they need to be taken into
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4.3. Using the SCV for dense non-rigid 2D registration

Figure 4.4: TPS warp composition. Composing the warp with its inverse allows to get
back to the starting image.

account in a specific added algorithmic layer. In this chapter we show two new approaches
to the problem that optimize the SCV and MI over the parameters of a thin-plate spline
warp function. The SCV method is then naturally robust to global light variations and
still easy to introduce at the same time. On the other hand, the MI version is more robust
to local perturbations but this added robustness comes at the expense of simplicity.

4.3 Using the SCV for dense non-rigid 2D registration

In this section we will show a method to perform dense non-rigid 2D registration using
the SCV. In order to elaborate our algorithm we chose to look at what had been done
in [Brunet et al., 2011]. But contrary to what was done in those works, we do not want to
use any learning of the Jacobian matrices. Indeed, in order to be able to judge the natural
robustness ensuing the use of the SCV, we chose not to add any robustification step. In
order to perform that minimization, let us first recall the expression of the cost function
of the algorithm parameterized by the vector u containing the parameters of a TPS warp
(see section 4.1.2):

SCV (∆u) =

Nx∑
n=1

[
I∗(w(xn ,∆u))− Î(w(xn,u))

]2
. (4.22)

where Î is the current image after the grey level adaptation has been done with relation
to the histogram of the reference image I∗:

Î(x) = E(I(x) | I∗(x)) (4.23)

that is given by the following relation, for each grey level i in I:

Î(i) =
∑
j

j
pII∗(i , j )

pI∗(i)
. (4.24)

The registration process minimizing to zero the SCV is then expressed through the following
equation:

∆̂u = arg min
∆u

Nx∑
n=1

[
I∗(w(xn ,∆u))− Î(w(xn,u))

]2
(4.25)

where u is the vector containing the parameters of a TPS warp. Transforming a point
x = [x y] into w(x,u) thanks to this warp is done thanks to the following relation:

w(x,u) =

(
a0 a1

a3 a4

)(
x
y

)
+

(
a2

a5

)
+

Np∑
k=1

(
wkx
wky

)
φ(d2(x, ck)). (4.26)
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4.3. Using the SCV for dense non-rigid 2D registration

The vector u then contains both the affine parameters and the weights associated to each
control point:

u> = (a0 a1 a2 a3 a4 a5 w>x w>y ). (4.27)

where w>x and w>y are vectors composed of the weighting criterion for each control point:

w>x =
(
w0
x . . . w

Np−1
x

)
(4.28)

w>y =
(
w0
y . . . w

Np−1
y

)
. (4.29)

A first order Taylor derivation of the cost function yields:

SCV (∆u) =

Nx∑
n=0

[
I∗(w(xn,∆u)) +∇I∗ ∂w

∂∆u
∆u− Î(w(xn,u))

]2

. (4.30)

where ∇I∗ is the gradient of the image at the pixel w(xn,∆u). In order to minimize
this value, we compute its derivative vector and nullify it as it will be equal to zero upon
reaching the desired minimum:

∂SCV

∂∆u
= 2

Nx∑
n=0

[
∇I∗ ∂w

∂∆u

]> [
I∗(w(xn,∆u)) +∇I∗ ∂w

∂∆u
∆u− Î(w(xn,u))

]
= 0.

(4.31)
For clarity purposes, let us define H as the Gauss-Newton approximation of the Hessian
matrix of the SCV:

H =

Nx∑
n=0

[
∇I∗ ∂w

∂∆u

]> [
∇I∗ ∂w

∂∆u

]
(4.32)

Finally, we can express the warp parameter increment computation thanks to this matrix
and the cost function:

∆u = H−1
Nx∑
n=0

[
∇I∗ ∂w

∂∆u

]> [
I∗(w(xn,∆u))− Î(w(xn,u))

]
. (4.33)

To be able to perform this optimization, we then need to know the derivative the warp
function with relation to its parameters ∂w

∂∆u . Let us then show how to compute that matrix.
In order to derive the expression of the warped point with relation to its parameters, let
us first develop equation (4.26). The warped point w(x,∆u) = [xw yw]> can be expressed
as:

xw = a0 x+ a1 y + a2 +

Np∑
k=1

wx [k]φ(d2(x, ck))

yw = a3 x+ a5 y + a5 +

Np∑
k=1

wy [k]φ(d2(x, ck)).

(4.34)

The derivative of the warped point w(x,∆u) with relation to its warp parameters is then
given by:

∂w(x,∆u)

∂∆u
=
(
JA JΩ

)
. (4.35)

where:

JA =

(
x y 1 0 0 0
0 0 0 x y 1

)
(4.36)
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JΩ =

(
φ(d2(x, c0)) . . . φ(d2(x, ck)) 0 . . . 0

0 . . . 0 φ(d2(x, c0)) . . . φ(d2(x, ck))

)
. (4.37)

SCV-based non-rigid 2D registration

Initialization

• Initialize a grid a control points on the reference image.

• Compute the derivative of I∗ with relation to the warp parameters ∇I∗ ∂w∂∆u .

Tracking phase (iterate until ∆u is small enough)

• Warp every points of I thanks to the pose parameters r.

• Compute the probability density functions pII∗ and pI .

• Compute the cost function SCV (∆u)

∣∣∣∣
∆r=u

.

• Compute the warp increment ∆u.

• Get the inverse parameters ∆u−1 and update u.

4.4 Using the MI for dense non-rigid 2D registration

Finally, let us show how we propose to use the MI as the cost function for a dense non-rigid
2D registration technique. The main idea behind the approach is close to the one used to
define our 3D registration technique exposed in section 3.4. For this algorithm we do not
want to use any learning either, as with the previous SCV-based algorithm. Let us then
define the cost function that will be used in the proposed approach.

∆̂u = arg max
∆u

MI(∆u) = arg max
∆u

∑
i,j

pII∗(i, j)log
(
pII∗(i, j)

pI(i)pI∗(j)

)
(4.38)

where pI(i) and pI∗(j) are respectively the marginal probability density functions of I and
I∗ and pII∗(i, j) is the joint probability density function of I and I∗. Let us recall that I
and I∗ are the result of histogram binning of the current and reference images I and I∗. In
order to maximize this value to an unknown value, we will minimize its gradient to zero.
The gradient of the mutual information G is the derivative of MI(∆u) with respect to the
warp parameters ∆u. It is given by the following expression:

G =
∂MI(I(w(x,u)), I∗(w(x,∆u)))

∂∆u

∣∣∣∣
∆u=0

. (4.39)

The detailed expression of G can be obtained from the derivation of equation (4.38) [Dow-
son and Bowden, 2006]:

G =
∑
i,j

∂pII∗(i, j)

∂∆u

(
1 + log

(
pII∗(i, j)

pI(i)

))
. (4.40)
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The values of the probability density functions can be obtained by taking into account the
B-spline binning:

pII∗(i, j) =
1

Nx

∑
x

β(i− I(w(x,u))) β(j − I∗(w(x,∆u)))

pI(i) =
d∑
j=0

pII∗(i, j).

(4.41)

The value of β(i − I(w(x,u))) being the same no matter ∆u, the derivative needed in
equation (4.40) can be expressed as:

∂pII∗(i, j)

∂∆u
=

1

Nx

∑
x

∂β(j − I∗(w(x,∆u)))

∂∆u
β(i− I(w(x,u))). (4.42)

The use of a B-spline function means that this derivative is easy to compute as it is given
by:

∂β(j − I∗(w(x,∆u)))

∂∆u
= −∂β

∂j

∂I∗(w(x,∆u))

∂∆u

= −∂β
∂j
∇I∗ ∂w(x,∆u)

∂∆u

(4.43)

The derivative of the warped point with relation to the warp parameters is presented given
in equation (4.35). Now that the computation of G has been detailed, let us define the
warp increment computation:

∆u = −H−1G. (4.44)

The Hessian matrix of the mutual information H can, similarly to its gradient, be expressed
thanks to the partial derivatives of the probability density functions:

∂2MI(∆u)

∂∆u2

∣∣∣∣
∆u=0

=
∑
i,j

∂pII∗

∂∆u

>∂pII∗

∂∆u

(
1

pII∗
− 1

pI

)
+
∂2pII∗

∂∆u2

(
1 + log

(
pII∗

pI

))
. (4.45)

where pII∗(i, j) is noted pII∗ for clarity purposes. The B-spline functions being twice
differentiable, the second order derivative of the joint probability density function is given
by:

∂2pII∗

∂∆u2 =
1

Nx

∑
x

∂2β(j − I∗(w(x,∆u)))

∂∆u2 β(i− I(w(x,u))). (4.46)

As for the first order derivative, chain derivation gives the expression of the second order
derivative:

∂2β(j − I∗(w(x,∆u)))

∂∆u2 =
∂

∂∆u

[
−∂β
∂j

∂I∗(w(x,∆u))

∂∆u

]
' ∂2β

∂j2

[
∇I∗ ∂w(x,∆u)

∂∆u

]> [
∇I∗ ∂w(x,∆u)

∂∆u

]
.

(4.47)
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MI-based non-rigid 2D registration

Initialization

• Initialize a grid a control points on the reference image.

• Compute the derivative of I∗ with relation to the warp parameters ∇I∗ ∂w∂∆u .

• Compute the approached Hessian of the visible model H and its inverse H−1.

Tracking phase (iterate until ∆u is small enough)

• Warp every points of I thanks to the pose parameters r.

• Compute the probability density functions pII∗ and pI∗ thanks to histogram binning.

• Compute G the Jacobian of the MI.

• Compute the warp increment ∆u.

• Get the inverse parameters ∆u−1 and update u.

4.5 Non-rigid 2D registration experimental validations

In order to evaluate the non-rigid 2D registration approaches proposed in this document,
several experiments have been realized. The algorithm is initialized by defining the four
corners of the tracked template on the first image of the sequence. A regular grid of
control points is then initialized on the template. This grid is warped at each new frame
and overlaid on the template in order to visualize the results of each experiment. After the
results of the proposed algorithms have been detailed in several situations, the convergence
domains of both methods are evaluated through the same principle as proposed in chapter 3.

4.5.1 Tracking in nominal conditions

The goal of this experiment is to validate the proposed approaches in nominal conditions.
The two proposed algorithms are then launched on sequences on which a t-shirt is moved
and deformed. From a starting position extracted on the first image of the sequence, the
tracking is launched and results are recorded. Results show that even when the deforma-
tions are important the proposed algorithms can cope with them and keep a good tracking
quality (see figure 4.5 for examples). Several other experiments have been carried out and
their results are shown on figure 4.6. The first one is realized in order to assess the ro-
bustness to "out of the plane" motion. To do that, a piece of paper is folded, creating a
deformation that alters the perspective of the object. Even though the precision of the re-
sults is lowered at several frames along the sequence due to the bending energy constraints,
the tracking is still successful in those conditions. Another experiment is then performed
in order to assess the robustness of the approaches to template compression. Even though
no additional layer is used here to prevent the template to fold on itself (or to detect it as
was proposed in [Gay-Bellile et al., 2010]), the registration is still able to cope with that
situation by considering the lost zone as a small occlusion.
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4.5. Non-rigid 2D registration experimental validations

Figure 4.5: Results of the tracking algorithms in nominal conditions. Images show that the SCV (on the
left) and MI (on the right) approaches give similar results in nominal conditions.
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Figure 4.6: Results of the tracking algorithms when confronted to perspective effects (on the left) and
compression/extension (on the right).
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4.5.2 Tracking in perturbed conditions

The next experiments aim at validating our approaches in perturbed conditions. Several
types of perturbations were considered. First, a global variation was taken into account in
the form of a light variation. Then, the results of the MI version are shown on non planar
objects and when confronted to local light variations.

4.5.3 Tracking in light changing conditions

In order to test the approaches when confronted to global light variations, the algorithms
were launched on a video sequence similar to the one used for nominal conditions testing.
It features a t-shirt being deformed but this time, the light of the room is switched off and
on in order to affect the global illumination setting. Results displayed on figure 4.7 show
that even in these conditions, the two approaches are able to register the template even
though the light changes drastically. Let us note that a SSD approach was tested on this
sequence and failed when the light is turned off for the first time.

4.5.4 Tracking when confronted to occlusions

In order to test the registration techniques proposed in this document when confronted
to occlusions, the algorithms were launched on a t-shirt sequence in which an important
occlusion appeared. The use of mutual information allows the approach to be robust in
those conditions as the results show on figure 4.8. The SCV, as expected, is not able to cope
with this and fails to register correctly when the occlusion becomes really noticeable. Let
us note that the same experiment was realized using the SSD as our registration criterion
which also led to a failure of the registration when the occlusion appeared in the template.

4.5.5 Tracking non planar objects

The next experiments were realized in order to evaluate our approaches on non-planar
scenes. The first sequence represents a deflating balloon, a similar experiment as what was
proposed in [Malis, 2007]. This creates a change in scale and a deformation as the volume of
the balloon decreases. But thanks to the TPS warp the tracking is still successful since the
deformation is taken into account in the algorithm (see figure 4.9). Let us note that results
are shown only for the MI approach as the SCV fails to register the template properly
in these conditions. Then, an experiment was realized involving important perspective
effects. Although the displacement creates an important self occlusion the use of mutual
information in coordination with the non-rigid warp allows the tracking to be successful
both when the object is moved and when it is put back into its original position as shown
on figure 4.10. As was the case for the last experiment SCV and SSD-based approaches
failed to register the template properly, diverging when the self occlusion appears.

4.5.6 Empirical convergence domain analysis

Finally, an experiment was realized in order to analyze the convergence domain of the
proposed approaches in different conditions. After the trackers have been initialized on the
first frame of a sequence, the algorithms are launched and the resulting warp parameters
estimated are recorded on chosen frames. A gaussian noise is then applied to those recorded
parameters and the tracking phase is performed. It is considered as successful if in a given
number of iterations (here 50) the mean distance by pixel between the warped control
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Figure 4.7: Results of the SCV (on the left) and MI (on the right) non-rigid tracking algorithms when
confronted to light variations.
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Figure 4.8: Results of the tracking algorithm on an occluded object. Results are shown for the MI
approach which is the only successful one in this situation.

points and the recorded points is inferior to a defined value as was done in [Dame and
Marchand, 2010, Dame and Marchand, 2012, Lieberknecht et al., 2009]. In this case that
value is set to 1 pixel. This is done 500 times per frame using different noise kernels.
Results are shown on figures 4.12 and 4.13. When applying the gaussian noise, a gaussian
kernel σr of 0.01 is used for the rotation parameters of the affine transformation and several
kernels σt ranging from 2 to 16 are used for the translation parameters giving a difference
in starting positions up to 48 pixels on each axis. Figure 4.11 shows examples of considered
starting positions. Results show several interesting observations. First, the SCV curves
show that the method is not impacted by deformations or global light variations. This is
exposed by the fact that the corresponding curves are very similar in these conditions. It
comes to validate the fact that the SCV is not affected at all by global histogram variations.
It is, however, greatly impacted by local variations as the occlusion curve shows. On the
other hand, the MI approach is impacted by changes in the histogram, whether local or
global, but shows a wider convergence domain in the conditions in which the tests are
performed. This can be observed on the graphics, as the MI curves show a higher rate
of perfect convergence whatever the noise setting is. Let us also note that using more
control points have shown to produce more accurate results and expand the convergence
domain, but since using more points increases the computation time of the algorithm, a
middle ground between efficiency and accuracy can be found by tuning the registration
parameters.
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4.6. Conclusion

Figure 4.9: Results of the tracking algorithm on a non planar object. There again the MI
registration approach is successful thanks to the non-rigid warp function.

4.6 Conclusion

In this chapter, two new approaches have been proposed that optimize the parameters
of a non rigid warp functions in order to perform 2D registration robust to template
deformations. Taking advantage of the possibilities given by the thin-plate spline warp
function, a first approach is presented that optimizes the SCV in order to get a simple
process that is robust to global perturbations of the scene. This is validated through
several experimentations which show the method to be robust to these conditions. Then,
the approach has been extended to the use of the MI in order to add more robustness.
Again, several experiments validate the method on sequences featuring scene perturbations.
An empirical estimation of the convergence domain of both approaches is finally provided.

Taking advantage of the strong duality between visual tracking and visual servoing, the
next part will aim at defining dense visual servoing techniques robust to scene variations
thanks to the robust (dis)similarity functions used in this part.
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4.6. Conclusion

Figure 4.10: Results of the tracking algorithm on a three dimensional object. There again
the tracking is successful even when a part of the object is occluding another one.

Reference image Ground truth σt = 2 σt = 8 σt = 16

Figure 4.11: Examples of starting positions for convergence domain analysis purposes with
different σt. For all experiments σr = 0.01.
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Figure 4.12: Convergence frequency of the SCV approach in nominal conditions without
deformation (row 1 of fig. 4.11), with deformations (row 2 of fig. 4.11), when confronted to
light variations (row 3 of fig. 4.11) and when confronted to occlusions (row 4 of fig. 4.11).
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Figure 4.13: Convergence frequency of the MI approach in nominal conditions without
deformation (row 1 of fig. 4.11), with deformations (row 2 of fig. 4.11), when confronted to
light variations (row 3 of fig. 4.11) and when confronted to occlusions (row 4 of fig. 4.11).
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2

PART 2
Visual Servoing

Visual servoing is the process allowing the control of a dynamic system, say a robot, thanks
to visual data gathered by one or several cameras. The possibilities created by the use of
vision sensors for robot control exceed what can be obtained with other types of sensors
such as ultrasonic, acceleration or force sensors. Cameras can either be located on the
end effector of the robot, thus creating an aye-in-hand system as will be the case of study
in this document, or can only observe the machine, creating an eye-to-hand system. The
possibilities created by visual servoing are numerous, ranging from positioning tasks to
more complex navigation processes.
Previous chapters have shown how the choice of the cost function for visual tracking al-
gorithms allows to achieve robustness of the process with no need for added robustness
steps. Since visual tracking and visual servoing are based on the same objective (aligning
a current view to a reference), a strong duality exists between both domains. This is why
in this part several approaches to visual servoing are designed based on the same robust
cost functions as considered for the previously proposed tracking algorithms.
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5
Visual servoing overview

This chapter consists in a quick survey of common visual servoing approaches. The main
strategies used to perform visual servoing tasks are defined and their advantages and draw-
backs are then discussed.

Visual servoing was introduced in the late 80’s early 90’s in order to control robots
thanks to cameras [Weiss, 1984, Feddema and Mitchell, 1989, Rives et al., 1989, Corke and
Paul, 1990, Hashimoto, 1993]. Considering visual servoing, the goal is to control the robot
thanks to visual data gathered by a camera. In order to be successful, the servoing task
must therefore link the motion of the robot with the visual data. Figure 5.1 represents the
classical visual servoing loop:

Figure 5.1: Classical visual servoing loop. The perception allows to evaluate a task e in
order to compute a camera velocity v. The robot is controlled according to a comparison
between the desired and perceives visual data.

At each new iteration, the pose r of the robot is updated so as to regulate an error e(r)
computed from visual data. The visual servoing task compares the current visual features
s(r) extracted at the current pose r and the same features extracted at the desired position
s∗ in order to compute the velocity vector v that will be applied to the robot. The process
is iterated until the error e(r) between s(r) and s∗ is null, at what point the robot has
reached the optimal pose r̂ which is equal to r∗ if the task is successful. The servoing task
can then be expressed as:

r̂ = arg min
r
‖e(r)‖ where e = s(r)− s∗ (5.1)

with r̂ the optimal pose reached after the optimization which is successful if r̂ is equal to
r∗.

As for the tracking processes presented in the previous chapters, visual servoing ap-
proaches can be divided into two types of methods. On one hand the approaches that
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5.1. Positioning task using geometrical visual servoing

define e(r) as a dissimilarity between two sets of geometrical features, therefore needing an
algorithmic layer to extract and match primitives before performing the control, and on the
other hand strategies that chose to optimize a (dis)similarity function between templates
of pixel intensities in the images.

5.1 Positioning task using geometrical visual servoing

Most approaches in the literature use 2D or 3D geometrical features computed from ex-
tracted and already matched data from the images seen by the camera.Those features are
then used to optimize a cost function, moving the robot to the desired position. To that
end, the visual features seen at the current position are stored in a vector s(r) that will be
compared with the features seen at the desired position s∗. By specifying that the error
e(r) decreases exponentially, therefore imposing ˙e(r) = −λe(r), the motion of the robot
can be controlled. This induces that when the robot is far from the goal the norm of its
velocity will be greater than when it is almost to the desired position. The desired features
are fixed and therefore constant all along the process. The derivative of the error function
e(r), referred to as ˙e(r), is then equal to the variation of the features seen by the camera
ṡ with relation to the camera position. The motion of the visual features in the image is
also directly related to the camera velocity such as:

ṡ = Lsv (5.2)

where Ls is the interaction matrix associated to the visual servoing task [Chaumette and
Hutchinson, 2006] that links the variation of the observed visual features in the image plane
to the velocity vector v applied to the camera. This yields:

Lsv = −λ(s(r)− s∗). (5.3)

And finally, the velocity used to regulate e(r) to zero is given by:

v = −λL+
s e(r) (5.4)

with L+
s the pseudo-inverse matrix of Ls.As this formulation is only correct when Ls is

a matrix of full-rank, the visual servoing process requires at least as much visual features

Figure 5.2: Classical visual servoing loop using 2D points. The points s are extracted from the
current image I and compared to their desired counterpart s∗ in order to compute the velocity
vector v.
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5.1. Positioning task using geometrical visual servoing

at degrees of freedom it is to control on the robot. A wide variety of geometrical visual
features have been used over the years. Basic 2D points (see section 5.1.1 for more details)
have been used first [Rives et al., 1989]. The process was later extended to more complex
features such as lines, spheres or cylinders [Chaumette and Rives, 1990, Espiau et al.,
1992a].

Figure 5.3: Visual servoing examples using, from left to right, points, lines and ellipses. See full
videos: https://www.youtube.com/user/VispTeam/videos

5.1.1 2D geometrical visual servoing: using point features

In this section, the basis of geometrical visual servoing will be exposed. The example of
a simple visual servoing task using only four points extracted from the image seen by the
camera attached to the robot can be found in [Chaumette and Hutchinson, 2006]. The
objective of the task is then to minimize the distance in the image between the position of
each of the four points extracted from the current image xi = (x, y),i = 1 . . . 4 and their
desired position x∗i . The current and desired features s(r) and s∗ are then defined as:

s(r) = (x0(r), x1(r), x2(r), x3(r))

s∗ = (x∗0, x∗1, x∗2, x∗3) .
(5.5)

Since the objective is to minimize the distance between s and s∗, the error e to be regulated
is given by:

e(r) = s(r)− s∗. (5.6)

In order to compute the control law expressed in equation (5.4), the interaction matrix Ls

related to s(r) needs to be defined. The interaction matrix links the variation of the visual
feature to the camera velocity v. Since s∗ is constant through the process, the interaction
matrix Ls is given by:

Ls =


Lx0

Lx1

Lx2

Lx3

 (5.7)

where Lx is the interaction matrix associated to a 2D point x. This matrix then translates
the motion of the point x in the current image when the camera moves with the robot. In
order to get its expression, let us recall how a point in metric space x = [x, y] is expressed
thanks to its 3D coordinates cX = [X, Y, Z]: x = [X/Z, Y/Z]. The evolution of the x
and y coordinates of x, referred to respectively as ẋ and ẏ can then be expressed as:

ẋ =
Ẋ

Z
− XŻ

Z2
=
Ẋ − xŻ

Z

ẏ =
Ẏ

Z
− Y Ż

Z2
=
Ẏ − yŻ
Z

.

(5.8)
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5.2. Using template tracking to perform visual servoing

In order to compute ẋ, the derivatives of the 3D point cX are needed. Assuming that the
object does not move during the servoing task, the evolution Ẋ of cX depends only on the
camera velocity v. It is defined as v = (ν, ω), where ν is the translational velocity and ω
is the angular velocity of the camera. The expression of Ẋ is then given by the following
relation:

Ẋ = −ν − ω ×X⇐⇒

ẊẎ
Ż

 =

−νx − ωyZ − ωzY−νy − ωzX − ωxZ
−νz − ωxY − ωyX

 (5.9)

where × denotes a cross product. Expressing equation (5.8) with the details given by
equation (5.9) then allows to express the evolution of the point in the image with relation
to the camera velocity:

ẋ =

[
ẋ
ẏ

]
=

[−νx
Z + xνz

Z + xyωx − (1 + x2)ωy + yωz
−νy
Z + yνz

Z + (1 + y2)ωx − xyωy − xωz

]
. (5.10)

This equation can finally be written to satisfy the relation:

ẋ = Lxv (5.11)

where:

Lx =

[−1
Z 0 x

Z xy −(1 + x2) y
0 −1

Z
y
Z −(1 + x2) −xy −x

]
. (5.12)

With Lx now defined, the servoing task can be computed as:

v = −λL+
s (s(r)− s∗) . (5.13)

Geometrical features-driven visual servoing needs an efficient and robust tracking layer
that will detect, extract and match visual features over frames. That algorithmic layer
can be problematic as it can be time consuming. It can also be faulty which can cause
the servoing task to fail. Moreover, extracting data means not taking into account a large
part of the available visual data. Other problems can arise as for example the visibility of
the features that need to be insured and can then require to complexify the control law by
switching between several optimization schemes in order to keep them into the image as
was proposed in [Kermorgant and Chaumette, 2011].

Figure 5.4: Classical visual servoing loop using four points. From left to right:
Setup of the experiment - initial current image - final current image. See full video:
https://www.youtube.com/watch?v=RJRma6xZ9G4

5.2 Using template tracking to perform visual servoing

Another way to perform visual servoing is to use the results given by a template tracking
algorithm in order to localize the robot. In that case, the goal becomes to align the current
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5.3. Positioning task by direct visual servoing

Figure 5.5: Classical visual servoing loop using a tracking process. The current warp parameters
are computed on the current image I and compared to their desired value in order to compute the
velocity vector v.

image with the desired one by controlling the robot in order to obtain a desired registration
result. Several approaches have been proposed that perform visual servoing following
that strategy. For example, homographies have been used in [Vargas and Malis, 2005]
and [Benhimane and Malis, 2007] to design a visual servoing framework, although they
both chose to use the homography parameters are different. In [Vargas and Malis, 2005], it
has been proposed to decompose the homography parameters in order to evaluate the 3D
transformation between the current and desired position. In [Benhimane and Malis, 2007]
on the other hand, the authors propose to use a tracking algorithm ([Benhimane and Malis,
2004]) to estimate the current homography which is then used directly to compute the
control law of the task. Other methods have also been proposed [Crétual and Chaumette,
1998] that use camera motion parameters estimated using [Odobez and Bouthemy, 1995]
in order to minimize the error between the motion of the camera and a desired motion.

5.3 Positioning task by direct visual servoing

In order to avoid any extraction or tracking process and to use the data given by the entire
image, another visual servoing strategy has been proposed that uses the whole image as
a feature. Using the pixel intensities as visual features, several approaches have been
proposed, using different (dis)similarity functions in order to perform visual servoing. Let
us note that there is a clear link between the methods presented in the first part of this
document and their visual servoing counterparts.

5.3.1 Photometric visual servoing

A new approach has been proposed by the works of [Collewet et al., 2008, Collewet and
Marchand, 2011] that uses directly the pixel luminance as visual feature which aims at
minimizing to zero the sum of squared differences between the current image and the image
recorded at the desired position. The image itself is then the visual feature considered by
the control law, which yields:

s(r) = I(r) = [I(x00, r) . . . I(xmn, r)] (5.14)

where m × n is the size of the image I. This leads to a visual servoing task which is
performed by minimizing to zero the SSD between the current and desired images:

e(r) = (I(r)− I∗)> (I(r)− I∗) (5.15)
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5.3. Positioning task by direct visual servoing

Figure 5.6: Classical dense visual servoing loop. The current image is directly compared to the
image recorded at the desired position in order to compute the velocity vector v.

leading to a classical visual servoing task velocity update given by:

v = −λL+
I (I(r)− I∗) (5.16)

with LI the interaction matrix of the dense feature I(r). The approach being based on the
SSD, this means that it relies, as the KLT (see section 2.2.2.1), on the constant luminosity
hypothesis. The luminance resulting from the projection of the 3D scene onto the image
is therefore considered invariant during the whole positioning task for any point x in the
image:

I(x + dx, t+ dt) = I(x, t) (5.17)

where dx represents the motion featured in the image after the lapse of time dt. A Taylor
expansion of order one allows to express the derivative of I(r) with relation to time, referred
to as İ:

İ = −LIv where LI = ∇I>Lx. (5.18)

LI(x) corresponds to the variation in luminance of a point x with relation to the motion
of the camera. It is given by the following relation:

LI = ∇I>Lx = (∇IxLx +∇IyLy) (5.19)

where ∇Ix and ∇Iy are the two components of the gradient of I evaluated around the point
x and Lx and Ly are the interaction matrices associated to the x and y coordinates of x.
As these equations are only true for each pixel on its own, considering the whole feature
I(r) means aggregating the relations of all pixels into the same equation. The interaction
matrix of the task is then given by:

LI =

LI(x00)
...

LI(xmn)

 . (5.20)

This approach validates the use of the luminance of the whole image luminance values in
order to perform visual servoing. It was shown to possess some robustness towards small
occlusions or specular spots caused by non-lambertian surfaces [Collewet et al., 2008]. But
the main idea behind the method remains the conservation of luminance hypothesis leading
to the use of the SSD as cost function (equation (5.17)). This limits the approach to scenes
that do not undergo significant perturbations. Changes in light conditions or occluded
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5.3. Positioning task by direct visual servoing

Figure 5.7: From left to right: Current image at starting and finishing positions, associated error
images at starting and finishing positions.

parts of the reference are not taken into account when modeling the positioning task and
performing visual servoing in outdoor scenes for example becomes very complicated with
this approach. This is why the approach as been extended in [?] to take into account a
more complete lighting representation. By better modeling the way light is reflected onto
the camera by the object, the considered approach is then more robust, to the expense of
complexity of the method.

5.3.2 Using the mutual information as a similarity criterion

Several works have built on the foundations layed in [Collewet et al., 2008] in order to
extend the scope of dense visual servoing. In order not to have to assume the conservation
of luminance expressed in equation (5.17), the works of [Dame and Marchand, 2009] have
defined a visual servoing task that uses a more robust cost function. They propose to use
the whole information present in the image, in the entropical sense [Shannon, 1948]. The
chosen cost function is the mutual information that translates the quantity of information
shared by two signals, in that case image signals. As was previously shown in section 2.3,
this measure of similarity between two images is very robust to both local and global per-
turbations of the scene. The resulting task is then able to cope with global light variations,
occlusions, specular spots or even different image modalities. This is very interesting as
it opens up dense visual servoing to scenes where moving objects are present and could
occlude the reference. It is also possible to imagine tasks where a reference can is taken
at a time of the day and the servoing is launched at another time or tasks where a map
reference and a current satellite image are used. Let us then expose how that approach
can be performed. As it was shown in chapter 2, the mutual information is a difference of
entropy between two images:

MI(I, I∗) = H(I) + H(I∗)−H(I, I∗). (5.21)

For visual servoing purposes, the MI cost function is very similar to the 3D registration
problem. The value of the MI with relation to the camera position is given by:

MI(r) =

Nd∑
r,t=0

pII∗(r, t, r) log

(
pII∗(r, t, r)

pI(r, r)pI∗(t)

)
(5.22)

This cost function is not directly usable for visual servoing by nullifying it as is the case
for the SSD. This is due to the fact that when the robot is at the desired position, the MI
is at its maximum between I(r) and I∗. In order to create a visual servoing task, the MI
must first be derived. That way the cost function will have its minimal value equal to zero
when the positioning task is complete. The true measure that the servoing task will have
to nullify is then the gradient of the MI. In order to express that control law, let us first
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recall how a visual servoing task is defined. Using a proportional control law to model the
problem, a velocity vector given to each degree of freedom of the robot is computed thanks
to the following equation:

v = −λL̂+
e e (5.23)

where L̂+
e is the pseudo-inverse matrix of the interaction matrix associated to the task e.

Here, the task is the minimization of the interaction matrix of MI(r) noted L>MI which is
to be nullified at convergence, yielding:

v = −λH−1
MIL

>
MI . (5.24)

where HMI is the interaction matrix associated to LMI , also called Hessian matrix of the
MI. In [Dame and Marchand, 2011], the method has been shown to be very robust to
numerous situations, validating the use of the MI for visual servoing purposes. Several
cases have been studied. The method was then shown to be able to handle positioning
tasks in nominal conditions but also in situations involving global or local perturbations
such as global or local light variations and occlusions. The proposed algorithm was also
tested on scenes presenting different modalities. They have also presented the possibility
to extend the method to simple navigation tasks using a visual path as reference and
shown an example task where a trajectory is learned on a topological map (provided by
the french "Institut Géographique National") and the navigation is realized by the robot
using a satellite view of the same area.

Figure 5.8: Visual navigation using the MI. From left to right: Servoing robot setup, current
desired image along the visual path and current image perceived by the camera mounted on the
robot.

5.4 Conclusion

In this chapter, the basis of visual servoing for positioning tasks are recalled. Ranging from
geometrical features-based techniques to recent dense techniques, several approaches have
been detailed. The objective of a visual tracking task is to estimate the parameters of a
2D transformation in order to align current and desired image features. Visual servoing
also aims at aligning two sets of features by physically moving a camera. This results
in a strong duality between both processes [Marchand and Chaumette, 2002]. The main
difference is that the projection is modified through the motion of a robot. This is why
in the next chapters the robust similarity functions that have been shown successful when
performing visual tracking tasks in chapters 3 and 4 are adapted and extended in order to
propose new visual servoing processes.
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6
Visual servoing using the SCV

Our first contribution in the domain of visual servoing is the use of the SCV to perform
direct visual servoing. As shown in chapters 3 and 4, this dissimilarity measure allows
a natural robustness to global illumination variations all the while keeping a low compu-
tational cost. Adapting an image to the appearance of the second one, the measure has
been shown to be successful when confronted to strong light variations. That robustness
to global variations is very interesting in the scope of dense visual servoing, as it allows
to perform servoing tasks outdoor for example where the ambient light is subject to fast
changes while keeping a simple and computationally efficient algorithm. This is why in
this chapter we propose to adapt the classical direct visual servoing approach presented
in section 5.3 to this new criterion. The measure is then redefined to be used for servoing
purposes and a simple control law is designed that allows to perform a positioning task ro-
bust to light variations. After being defined, the proposed approach is validated in nominal
and perturbed conditions through several experimentations on a real six degree of freedom
robot and the results are compared to the SSD-based photometric visual servoing.

6.1 Redesigning the SCV for use in visual servoing

6.1.1 Redefining the dissimilarity measure

As explained in chapter 1, the SCV is a dissimilarity measure, with a lot of similarity
with the SSD. The main difference between those two measures is the fact that the SCV
uses an estimator in order to predict what one of the two images should look like if it
was perceived in the same conditions as the other, thanks to histogram manipulations. In
order to be used within a visual servoing task, the SCV must be redefined with relation
to the current camera pose. Two choices arise when defining the SCV measure that will
be used. The first one is to use the strategy shown in [Richa et al., 2011] for tracking
purposes and compare the current image to an adaptation of the reference image. The
ensuing dissimilarity function is then:

SCV (r) =
∑
x

(I(x, r)− Î(x)). (6.1)

In order to compute the expected image Î, the marginal and joint probability density
function of I(r) and I∗ are needed. Probability density functions are computed from the
empirical analysis of I and I∗. As they both have the same dynamic d, which usually is
256 for usual grey level images, for each couple of grey levels i in I(r) and j in I∗ it is
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6.1. Redesigning the SCV for use in visual servoing

possible to compute:

pII∗(i, j) = P (I(x, r) = i , I∗(x) = j ) (6.2)

=
1

N

∑
x

ψ(I(x, r)− i)ψ(I∗(x)− j ) (6.3)

where ψ(a) equals 1 if a=0, 0 otherwise and pII∗ represents the probability that a pixel x
takes the value i in I(r) and j in I∗. From this joint probability distribution, the probability
distributions of I∗ can easily be found. For example the probability distribution for the
apparition of a grey level j in I∗ is given by:

pI∗(j) =
∑
i

pII∗(i, j). (6.4)

From these relations, the computation of the expected grey levels in Î becomes, for each
grey level j in I∗:

Î(j ) =
∑
i

i
pII∗(i , j )

pI∗(j )
. (6.5)

The drawback of that first possible strategy lies in the computation of the interaction
matrix associated to the servoing task SCV (r). Indeed, the classical interaction matrix
computation as expressed in equation (5.19) is made efficient by the fact that the desired
image I∗ is constant throughout the servoing process. But with this formulation of the SCV,
it is not true anymore. The reference image is adapted at each frame, which means that
the interaction matrix of the task should in theory integrate that factor in its computation.
In [Delabarre and Marchand, 2012], we proposed to approach the interaction matrix by
taking into account only the reference image in the interaction matrix expression. In
this document another strategy will be used. Inspired by the contributions proposed in
chapters 3 and 4, a new SCV servoing task can be proposed:

SCV (r) =
∑
x

(Î(x, r)− I∗(x)). (6.6)

In that case, the expected image Î is computed from the joint probability distribution
between I(r) and I∗ and now represents what the current image should look like if it was
perceived in the same conditions as the reference image. The histogram adaptation is then
realized on every grey level of the current image I:

Î(i) =
∑
j

j
pII∗(i , j )

pI(i)
. (6.7)

That formulation then allows to keep a desired image I∗ constant through the process,
while the new expected image Î(r) is now completely linked to the position of the camera.

6.1.2 SCV-based control law

The advantage of this new formulation is that the interaction matrix does not need to be
approached in this case. As the adaptation is made on the current image, the reference
is constant during the servoing process and its derivative is then actually null. The SCV
error vector is therefore given by:

e(r) = (̂I(r)− I∗)>(̂I(r)− I∗). (6.8)
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A control law can then be defined to perform the SCV visual servoing task:

∂Î(r)

∂t
= LÎ v where LÎ = −∇Î>Lx. (6.9)

LÎ(x) is the interaction matrix of the adapted image, which is given by the following
relation:

LÎ = −(∇ÎxLx +∇ÎyLy) (6.10)

where ∇Îx and ∇Îy are the two components of the gradient of Î evaluated around the
point x and Lx and Ly are the interaction matrices associated to the x and y coordinates
of x. Here again, the equations are only true for each pixel on its own. Considering the
whole image Î(r) of size m × n then means regrouping the equation of every pixel in the
image:

LÎ =

LÎ(x00)
...

LÎ(xmn)

 . (6.11)

The robot is finally controlled thanks to the velocity vector v computed as:

v = −λLÎ

(
Î(r)− I∗

)
. (6.12)

This equation can also be written considering a Levenberg-Marquardt optimization:

v = −λ(HÎ + µ diag(HÎ))
−1LÎ(̂I− I∗) (6.13)

where HÎ = L>
Î

LÎ is an approximation of the Hessian of the SCV and µ is a tuning factor.

6.1.3 Histogram Binning

In order to smooth the similarity function to make the SCV more fit for optimization,
histogram binning is used when performing direct visual servoing with the SCV. More
details on how histogram binning is realized are available of Frame 4. The histograms
are then computed on a scaled image which new dynamic is Nc, ensuring that they are
composed of only Nc bins. The main issue when using approached probabilities is that if
the two images are not similar enough, noise appears in the predicted image when using
an important number of bins (see figure 6.1 for more details). On the other hand, if the
chosen number of bins is too low, the resulting image loses a lot of high frequency details
which results in a loss of accuracy for the positioning task. This is why we propose to
adapt dynamically the number of bins during the servoing task. At first, the binning is
done using 64 bins, which is a good trade-off as it allows to smooth the SCV shape while
retaining sufficient level of detail in the image. Once the value of SCV is considered to
have decreased significantly, indicating that the positioning task is close from completion,
the number of bins increases to 256 to be more accurate upon convergence.

6.2 Experimental validations

In order to validate the proposed SCV-based visual servoing approach, several positioning
tasks have been realized on a six degrees of freedom robot on which a camera is mounted
in order to have a Eye-in-Hand servoing system. For all experiments, the six degrees
of freedom of the robot are controlled by the servoing process. The control law used
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I

I∗

8 bins 32 bins

64 bins 256 bins

Figure 6.1: Influence of the number of bins on the predicted image. On the left, with 8
bins the image is flattened and has lost a lot of high frequencies. 256 bins introduces more
noise when the difference between I and I∗ increases than 64. The frame on the borders
represent the area in the image which is not included in the computation.

is the Levenberg-Marquardt approach proposed in equation (6.13). The image gathered
from the camera is a 320 × 240 image which allows the task to consider the whole image
(exception made of the outer borders of the image to avoid out of bounds evaluations) while
keeping a good computational efficiency. The different experiments realized showed that the
computation time is lower than the 60ms necessary to acquire a new frame, thus resulting
in a real-time application running on a single thread of a core i7 2.8 GHz processor. The
servoing task results will be analyzed by looking at several factors. The most important
results are the translational and rotational positioning errors. As the goal is to get the
robot to a precise position in space, those errors will allow us to assess the accuracy of
the task. Other factors will include the evolution of the considered cost function along the
task and the 3D trajectory of the robot. In order to understand the conditions of each
experiment, several current pictures I(r) perceived by the camera during the process will
be shown along with corresponding expected images Î(r). Finally, an interpretation of the
image error I(r)−I∗ will also be provided in order to see the effects of both camera motion
and scene perturbations.

6.2.1 Visual servoing in nominal conditions

6.2.1.1 Positioning task

The objective of this first experiment is to validate the proposed SCV-based visual servoing
approach in nominal conditions, featuring no scene perturbations. At the beginning of the
experiment, the desired image I∗ is recorded from the desired position r∗ and the robot is
moved to a starting position. The difference in position between desired and current along
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Figure 6.2: Six degree of freedom robot used for the experiments. We can see on the left
the desired position and on the right the starting position for our experiments.

Figure 6.3: From left to right: image seen at desired and start position and corresponding
image error. Pixel values on the image error are shifted by an offset of 128 grey levels in
order to increase readability.

the x, y and z axes of the world frame are, respectively, tx = 0.134 m, ty = −0.174 m and
tz = 0.073 m. The corresponding rotational errors are rx = −0.28 rad, ry = −0.18 rad
and rz = −0.02 rad. Information relative to this experiment is shown on figure 6.4. Several
observations can be made concerning this first experiment. First, the task is successful,
leading the robot to the good position with a negligible residual distance to the goal of
∆r∗ = {0.05mm, 0.01mm, 0.01mm, 1.2e−4rad, 4.4e−7rad, 1.9e−3rad}. The second obser-
vation is that the evolution of the camera location is very smooth, not presenting any
violent changes in direction. The SCV also vanishes without any oscillations, validating
the use of the SCV for visual servoing in nominal conditions.

6.2.1.2 Comparison with photometric visual servoing

As the proposed SCV-based approach aims at enhancing the possibilities of the SSD-based
method without adding the complexity of the MI-based servoing, a comparison was made
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Initial current image Initial image error
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Figure 6.4: Results of SCV-based visual servoing in nominal conditions.
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between our algorithm and the SSD visual servoing approach. The same task was then
realized with that second algorithm. Results are shown on figure 6.5. It is clear from the
translation and rotation error graphs that the convergence of the two methods give similar
results in these conditions, as the evolution in both cases follow the same path which is
confirmed by the trajectories displayed on the same figure. Let us add that the graphs
shows a change of behaviour (around iteration 210). That can be explained by the fact
that the observed texture presents big uniform grey level areas. The error then decreases
very fast as it aims to align those before the final alignment over the higher frequencies,
which is slower as the error created by them is lower.

6.2.2 Visual servoing confronted to light variations

6.2.2.1 Positioning task

The objective of this second experiment is to validate the proposed SCV-based visual
servoing approach in perturbed conditions. This is why during the servoing process the
light of the room is switched on and off several times during the experiment. The ex-
periment is then initialized and launched in nominal conditions and global perturbations
of the scene happen during the positioning task. Information relative to this experi-
ment is shown on figures 6.6 and 6.7. This experiment is very interesting due to
the fact that it clearly shows the possibilities of light adaptation of the expected im-
age computation. Even though the light is turned on and off several times, as shown
on the SCV evolution graph, the cost function adapts very quickly and is able to per-
form the servoing with a very good accuracy. The final residual positioning error is
∆r∗ = {0.06mm, 0.02mm, 0.04mm, 2.8e−4rad, 2.7e−4rad, 9.3e−5rad}. Let us note that
the at the end of the task, the lights are in the same conditions as the start conditions.
It can be noted that due to the low lighting, grain appear in the image causing a final
position stabilizes at a mean distance of 2mm to 4mm from reach when the lights are
totally out which is still a very good results given the perturbed conditions. It is also
interesting to notice that the trajectory of the camera in perturbed conditions is very close
to its trajectory in nominal conditions, validating the fact that the proposed algorithm is
not impacted by these conditions.

6.2.2.2 Comparison with photometric visual servoing

In order to assess the differences between our algorithm and a classical SSD-based direct
visual servoing approach, the same experiment was realized using that method. The visual
servoing process was launched again and lights were turned off as before for the SCV.
Results are exposed on figure 6.8. They show that in these conditions the SSD was not
able to perform the task and drifted up to the point that it reached joint limits of the
robot and had to be aborted. This comes to validate the proposed algorithm as it is still
successful in conditions where the classical SSD-based approach failed.

6.2.3 Visual servoing confronted to occlusions

6.2.3.1 Positioning task

The objective of this final experiment is to validate the proposed SCV-based visual servoing
when confronted to another type of perturbations. When moving a robot with relation to
an object, one of the major problems that can be encountered is the loss of sight of a
part of the object which can result from a loss of accuracy to a complete divergence of the
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Figure 6.5: Comparison of SCV and SSD-based visual servoing methods in nominal con-
ditions.
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optimization process. This is why in this experiment an occlusion was added to the scene
by adding and moving an object on the texture that is used to control the robot. We then
added this type of perturbations to light variations, as section 6.2.2 demonstrated that
light did not affect the SCV-based visual servoing. Information relative to this experiment
is shown on figures 6.9 and 6.10. The results of this experiment allow to see the
possibilities of the SCV visual servoing when confronted to local variations. Just as the
SSD, the SCV is not designed to be robust to that type of perturbations, but still manages
to give very good results in these conditions. The final residual positioning error is ∆r∗ =
{0.02mm, 0.08mm, 0.005mm, 1.6e−5rad, 4.8e−4rad, 2.2e−4rad}. Let us note that at the
end of the task, the perturbation is gone. Before the removal of the occlusion, the camera
stabilizes with an accuracy of 3mm which is still a good result, since the occlusion really
impacts the image due to its color and shadow. As soon as it is removed however, the task
converges with a very good accuracy. Here again, the trajectory of the camera in these
conditions is very close to the trajectory of the camera in nominal conditions, validating
the fact that the proposed algorithm is robust to these conditions.

6.2.3.2 Comparison with photometric visual servoing

Again, a comparison was done in order to evaluate the differences between the proposed
SCV approach and the classical SSD-based visual servoing. A similar experiment was
therefore launched using the SSD-based algorithm and an object was moved upon the
texture of the scene. This time however no light variations were added as the previous
experiments showed the method was not able to cope with that situation. Results are
exposed on figure 6.11. They show that in these conditions the SSD was able to perform
the task but two observations can be made that show the proposed SCV-based approach to
be more adapted to these situations. First, the residual error shown on the graph is greater
with the SSD than with the SCV before the occlusion is removed, which means that our
approach is more accurate. The other important factor is the trajectory of the camera,
which is much more impacted for the SSD. All these observations then allow to validate
the proposed SCV-based visual servoing algorithm as more efficient than its SSD-based
counterpart in similar conditions.

6.3 Conclusion

In this chapter, a new way to perform dense photometric visual servoing has been proposed.
Taking advantage of the adaptation properties of the SCV, the approach is robust to global
light variations of the scene while being as simple to introduce and optimize as the classical
SSD technique. Adapting the current view instead of the reference image also allowed the
method to be computationally efficient. Several validations were realized on a real six
degree of freedom robot that demonstrated the accuracy and robustness of the proposed
approach.

105



6.3. Conclusion

I(r) at iteration 0 I(r)− I∗ at iteration 0 Î(r) iteration 0

I(r) at iteration 93 I(r)− I∗ at iteration 93 Î(r) iteration 93

I(r) at iteration 233 I(r)− I∗ at iteration 233 Î(r) iteration 233

I(r) at iteration 242 I(r)− I∗ at iteration 242 Î(r) iteration 242

I(r) at iteration 456 I(r)− I∗ at iteration 456 Î(r) iteration 456

I(r) at iteration 549 I(r)− I∗ at iteration 549 Î(r) iteration 549

Figure 6.6: Results of SCV-based visual servoing in light varying conditions.

106



6.3. Conclusion

Translational errors Rotational errors

-25

-20

-15

-10

-5

 0

 5

 10

 15

 0  100  200  300  400  500  600

T
ra

n
sl

a
ti

o
n
 E

rr
o
r 

(c
m

)

Iterations

Camera translation Error

tx
ty
tz

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  100  200  300  400  500  600

R
o
ta

ti
o
n
 E

rr
o
r 

(r
a
d
)

Iterations

Camera rotation Error

rx
ry
rz

Evolution of the SCV Camera trajectory

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 0  100  200  300  400  500  600

S
C

V

Iterations

Sum of Conditional Variance

SCV

−0.20

−0.15

−0.10

−0.05

0.00

Trajectory

Figure 6.7: Results of SCV-based visual servoing in light varying conditions.
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Figure 6.8: Comparison of SCV and SSD-based visual servoing methods in light varying
conditions.
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I(r) at iteration 0 I(r)− I∗ at iteration 0 Î(r) iteration 0

I(r) at iteration 88 I(r)− I∗ at iteration 88 Î(r) iteration 88

I(r) at iteration 278 I(r)− I∗ at iteration 278 Î(r) iteration 278

I(r) at iteration 288 I(r)− I∗ at iteration 288 Î(r) iteration 288

I(r) at iteration 320 I(r)− I∗ at iteration 320 Î(r) iteration 320

I(r) at iteration 767 I(r)− I∗ at iteration 767 Î(r) iteration 767

Figure 6.9: Results of SCV-based visual servoing when confronted to occlusions.
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Figure 6.10: Results of SCV-based visual servoing when confronted to occlusions.
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Figure 6.11: Comparison of SCV and SSD-based visual servoing methods in the presence
of occlusions.
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7
Visual servoing using a normalized
mutual information

Our second contribution in the domain of direct visual servoing is a new way of using the
entropy of the images in order to perform visual servoing. The MI is a similarity function,
but its evaluation is flawed because of the fact that is has no concrete bound. Indeed, since
it based on a difference of entropies its maximum value is directly linked to the entropy
value of the considered images. Since that measure is different from one case to another, no
comparison is possible between the results of several tasks. Moreover, it is not possible to
know whether two images are visually close or not since the upper bound of the measure is
different for each case and very rarely known. This is why in this chapter we first propose
a visual servoing task based on a new formulation of the mutual information proposed
in [Studholme and Hawkes, 1999]. This new similarity measure is a normalized version of
the mutual information (NMI). After being detailed and validated through experimental
tests, the proposed approach is compared with the state of the art MI approach of [Dame
and Marchand, 2011]. Finally, the NMI is also adapted to fish-eye cameras through the
use of the central projection model in order to create a robust omnidirectional dense visual
servoing task.

7.1 Normalized mutual information-based visual servoing

7.1.1 Normalized mutual information

In order to achieve an even greater robustness without any added robustness step, we
propose to use a formulation of the mutual information that is different from the one
proposed by Shannon [Shannon, 1948] and introduced for visual servoing by [Dame and
Marchand, 2011]. The considered similarity measure, called normalized mutual information
(NMI), was proposed in [Studholme and Hawkes, 1999]. Instead of a difference of entropies,
it is defined by a ratio of entropies, as shown by the expression of the measure:

NMI(I, I∗) =
H(I) +H(I∗)

H(I, I∗)
. (7.1)

This formulation of the mutual information has also been shown in [Studholme and Hawkes,
1999] to be more robust to overlapping situations than the MI, in addition of having a
maximum value equal to two for any pair of images. That upper bound is important,
which is why details on its value are given here. By definition:

H(I, I∗) > 0

≥ max (H(I), H(I∗))
(7.2)
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yielding:
1

H(I, I∗)
≤ 1

max (H(I), H(I∗))
. (7.3)

When I = I∗, they have the very same probability density function. Integrating the NMI
formulation in the equation above by multiplying by H(I) +H(I∗) then leads to:

H(I) +H(I∗)

H(I, I∗)
≤ H(I) +H(I∗)

max (H(I), H(I∗))
. (7.4)

The probability density functions of I and I∗ being the same, their entropy is also the same
leading to: max (H(I), H(I∗)) = H(I) = H(I∗). Dividing both sides of the equation by
that value of entropy then allows to express the upper bound of the NMI:

H(I) +H(I∗)

H(I, I∗)
≤ 2. (7.5)

7.1.2 NMI-based control law

This new formulation of the mutual information leads to a new definition of the Gradient
and Hessian matrices GNMI and HNMI of the NMI. Starting from the definition given in
equation (7.1), the numerator and denominator of the NMI, that will be referred to as u
and v for readability purposes can be written as:

u(r) = H(I(r)) +H(I∗) (7.6)

= −
∑
i

pI(i) log (pI(i))−
∑
j

pI∗(j) log (pI∗(j)) (7.7)

=
∑
i,j

−pII∗(i, j) log (pI(i))− pII∗(i, j) log (pI∗(j)) (7.8)

= −
∑
i,j

pII∗(i, j) log (pI(i)pI∗(j)) (7.9)

v(r) = H(I(r), I∗) (7.10)

=
∑
i,j

−pII∗(i, j) log (pII∗(i, j)) (7.11)

In order to get the expression of GNMI and HNMI , the first and second order derivatives
of u and v are needed. The reference image I∗ being constant throughout the servoing
process, its probability density function is constant, leading to:

∂u(r)

∂r
= −

∑
i,j

∂pII∗(i, j)

∂r
log(pI(i)pI∗(j)) (7.12)

∂v(r)

∂r
= −

∑
i,j

∂pII∗(i, j)

∂r
(1 + log(pII∗(i, j))) (7.13)

∂2u(r)

∂r2
= −

∑
i,j

∂2pII∗(i, j)

∂r2
log(pI(i)pI∗(j)) +

1

pII∗(i, j)

∂pII∗(i, j)

∂r

2

(7.14)

∂2v(r)

∂r2
= −

∑
i,j

∂2pII∗(i, j)

∂r2
(1 + log(pII∗(i, j))) +

1

pII∗(i, j)

∂pII∗(i, j)

∂r

2

. (7.15)

GNMI is then given by the following equation:

GMI(r) =
∂u(r)
∂r .v(r)− ∂v(r)

∂r .u(r)

v(r)2
. (7.16)
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Finally, in order to simplify the readability of the expression of HNMI , the nominator and
denominator of GNMI are respectfully referred to as α(r) and κ(r):

α(r) =
∂u(r)

∂r
v(r)− u(r)

∂v(r)

∂r
(7.17)

∂α(r)

∂r
=

∂2u(r)

∂r2
.v(r)− u(r)

∂2v(r)

∂r2
(7.18)

κ(r) = v(r)2 (7.19)
∂κ(r)

∂r
= 2

∂v(r)

∂r
v(r) (7.20)

leading to the computation of HNMI :

HMI(r) =
∂α(r)
∂r .κ(r)− α(r).∂κ(r)

∂r

κ(r)2
. (7.21)

Once that those two matrices have been defined, the servoing task follows the same principle
as what was done by [Dame and Marchand, 2011]. At each new frame, a velocity vector is
computed as:

v = −λH−1
NMIG

>
NMI . (7.22)

7.2 Experimental validations

In order to validate the proposed NMI-based visual servoing approach, several positioning
tasks have been realized using the visual servoing setup exposed in section 6.2. The NMI-
based control law designed in the previous section is then used to control the six degrees of
freedom of the robot and results are recorded. Here again, the whole image is considered to
build the control law and the process runs at video-rate on the same single thread of a core
i7 2.8 GHz processor, since the task is computed faster than the 60ms necessary to acquire
a new frame. The visual servoing task results will be analyzed by looking at the same
factors as in the previous chapter in order to keep a coherency between the results. The
most important factors considered will then be the translational and rotational positioning
errors. Since the goal is to get the robot to a precise position in space, those errors will
allow us to assess the accuracy of the proposed method. Other factors include the evolution
of the considered cost function along the task and the 3D trajectory of the robot. In order
to understand the conditions of each experiment, several current pictures I(r) perceived
by the camera during the process will be shown and an interpretation of the image error
I(r)− I∗ will also be provided in order to see the effects of both camera motion and scene
perturbations (although this error is never considered in the control law).

7.2.1 Visual servoing in nominal conditions

The objective of this first experiment is to validate the proposed NMI-based visual servoing
approach in nominal conditions, featuring no scene perturbations. At the beginning of the
experiment, the desired image I∗ is recorded from the desired position r∗ and the robot is
moved to a starting position. The difference in position between desired and current along
the x, y and z axes of the world frame are, respectively, tx = 0.134 m, ty = −0.174 m and
tz = 0.073 m. The corresponding rotational errors are rx = −0.28 rad, ry = −0.18 rad and
rz = −0.02 rad. Information relative to this experiment is shown on figure 7.1. The first
observation that can be made related to this first experiment is that the positioning task
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is successful, leading the robot to the good position with a negligible residual distance to
the goal of ∆r∗ = {0.09mm, 0.01mm, 0.01mm, 2.8e−4rad, 1.2e−6rad, 2.1e−3rad}. Another
interesting point is the fact that the trajectory of the camera is good, not deviating of
shaking along the task. It is important to note that an adaptive gain is used here in order
to keep a good velocity upon convergence, which explains the shape of the NMI evolution.
Finally, the value of the NMI upon convergence can be seen not to be equal to its maximum
value of 2. Although this could be problematic in order to have a good understanding of the
similarity between the two images, it is important to notice the facts that this is caused by
the use of B-spline binning and that the criteria is still very useful even in these conditions,
since it is possible to define similarity thresholds which is not possible with the classical
formulation of the MI. All those results then come to validate the use of the NMI for visual
servoing in nominal conditions.

7.2.1.1 Comparison with classical MI-based visual servoing

As the proposed NMI-based approach aims at enhancing the possibilities given by the clas-
sical MI-based servoing algorithm, a comparison was made between our proposed algorithm
and the MI-based visual servoing approach proposed by [Dame and Marchand, 2011]. The
same task was then realized with that second algorithm. Results are shown on figure 7.2.
It is clear from the translation and rotation error graphs that the convergence accuracy
of the two methods give similar results in these conditions, as the evolution in both cases
follow the same path which is confirmed by the trajectories displayed on the same figure.
The proposed NMI-based visual servoing approach then allows to obtain the same results
as the MI-based method, albeit the fact that the proposed algorithm can provide with
an understanding of the similarity between the current and desired images since even if
the theoretical maximum value is altered by the histogram binning, it is still possible to
evaluate a similarity based on the NMI value.

7.2.2 Visual servoing in perturbed conditions: light variations

The objective of this second experiment is to validate the proposed NMI-based visual
servoing approach when confronted to perturbations. This is why during the servoing
process the light of the room is switched on and off. The visual servoing process is then
initialized and launched in nominal conditions and global perturbations of the scene happen
during the positioning task. Information relative to this experiment is shown on figures 7.3
and 7.4. The results of this experiment clearly show the robustness of the proposed
approach in globally perturbed conditions. Here, the stabilization of the algorithm with no
lights in the room shows a residual positioning error of 1mm, which is very interesting at is
shows that the algorithm is still able to remain accurate while perturbed. The experiment
also allow to show the robustness of the method with relation to noise as noticeable grain
appear in the image because of the lack of light. Turning the lights back on finally allow to
reach a final error of ∆r∗ = {0.03mm, 0.02mm, 0.01mm, 8.4e−4rad, 4.1e−5rad, 1.3e−3rad}.
That accuracy and the fact that the trajectory is not impacted by the conditions then come
to validate the use of the proposed approach in globally perturbed conditions.

7.2.2.1 Comparison with classical MI-based visual servoing

In order to assess the differences between our algorithm and a classical MI-based direct
visual servoing approach, the same experiment was realized using that method. The ser-
voing was launched again and the lights were turned off as before for the SCV. Results

116



7.2. Experimental validations

are exposed on figure 6.8. They show that in these conditions the SSD was not able to
perform the task and drifted up to the point that it reached joint limits of the robot and
had to be aborted. This comes to validate the proposed algorithm as when put in the same
perturbed conditions, it succeeded where the classical SSD-based approach failed.

7.2.3 Visual servoing in perturbed conditions: occlusions

This final experiment aims to validate the proposed NMI-based visual servoing when con-
fronted to occlusions of the scene. As it was exposed before, this type of perturbations lead
to a loss of relevant information in the current image and a good visual tracking process
needs to be robust in these conditions. This is why in this experiment an occlusion was
added to he scene by adding and moving an object on the texture that is used to control
the robot. Results of the proposed visual servoing approach when confronted to occlusions
are shown on figures 7.6 and 7.7. This experiment is very interesting as it clearly shows the
robustness of the proposed servoing approach when confronted to scene occlusions. Even
though the occlusion is still present at the end of the process, the task converges with a very
good accuracy of ∆r∗ = {0.01mm, 0.04mm, 0.01mm, 1.3e−3rad, 2.5e−5rad, 1.1e−3rad}.
The proposed NMI-based visual servoing task is then not impacted whatsoever by this
perturbation which is a very interesting result. Here again, the trajectory of the servoing
task in these conditions is very close to the trajectory of the servoing in nominal conditions
even though some noise is added to the trajectory, validating the fact that the proposed
algorithm is very robust to occluded parts of the scene.

7.2.3.1 Comparison with classical MI-based visual servoing

A final comparison was then done in order to evaluate the proposed NMI approach when
compared to the state of the art MI-based visual servoing. The similar experiment was
therefore launched using the MI-based algorithm and the same object was introduced and
moved upon the texture of the scene. Results are exposed on figure 7.8. Let us remark that
the occlusion was removed at the end of the process, therefore creating the spike in the MI
value. Just as the proposed NMI approach, the MI is able to cope with the situation and
converge, but its trajectory is much more impacted by the conditions of the experiment,
which tend to show that our approach is better suited to perform visual servoing in these
conditions than the classical MI-based algorithm.
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Figure 7.1: Results of NMI-based visual servoing in nominal conditions.
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Figure 7.2: Comparison of NMI and MI-based visual servoing methods in nominal condi-
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I(r) at iteration 0 I(r) at iteration 103 I(r) at iteration 698
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I(r) at iteration 1506 I(r) at iteration 1516 I(r) at iteration 1687

Figure 7.3: Results of NMI-based visual servoing in light varying conditions.
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Figure 7.4: Results of NMI-based visual servoing in light varying conditions.
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Figure 7.5: Comparison of NMI and MI-based visual servoing methods in light varying
conditions.
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Figure 7.6: Results of NMI-based visual servoing when confronted to occlusions.
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Figure 7.7: Results of NMI-based visual servoing when confronted to occlusions.
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Figure 7.8: Comparison of NMI and MI-based visual servoing methods when confronted
to occlusions.
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7.3 Extending the NMI visual servoing to omnidirectional
cameras

The previous visual servoing approaches have been designed to be used on perspective
cameras. The problem of such cameras is that they have access to a limited amount
of visual information, since their field of view is limited. This is why we propose to
extend the NMI approach, which has shown to give the best results in our experiments,
to omnidirectional cameras. The proposed method is then generic, as it does not depend
on any particular projection model. Having access to more information of the scene, the
resulting visual servoing processes are then very robust and accurate. The problem when
using such sensors is the fact that the projection pipeline which allows to get an image
point from a 3D point is very different with relation to the perspective case. This is why
in the reminder of this chapter, the central projection model commonly used to handle
omnidirectional cameras is recalled, before it is used to adapt the previously proposed
approach to fish-eye cameras.

7.3.1 Using a central projection model

Using a central projection model is adapted to most omnidirectional cameras. The most
commonly used model is the unified model proposed in [Barreto, 2001] for catadioptric
cameras. It has also been shown to be adaptable to fish-eye lenses in [Ying and Hu,
2004]. Following the illustration shown in figure 7.9, a 3D point cX is first projected on a
normalized sphere, giving cXn which is then projected onto the projection plane. A meter-
to-pixel conversion such as the one detailed in equation (1.15) is finally used to compute
the point coordinates in the image. Following this model, for a 3D point cX = [X, Y, Z]>,
its projection in the image plane is given by:

x̄ = prγ(cX) with

{
x = X

Z+ξρ

y = Y
Z+ξρ

(7.23)

where ρ =
√
X2 + Y 2 + Z2 and ξ is an intrinsic parameter of the camera which can be

estimated through a calibration process. The coordinates of Xn, the point on the unit
sphere can also be computed such that:

Xn = prS(cX) with


XS = X

ρ

YS = Y
ρ

ZS = Z
ρ

(7.24)

cXn can also be estimated by an inverse projection of the point on the image plane:

cXn = pr−1
γ (x̄) =


ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
x

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
y

ξ+
√

1+(1−ξ2)(x2+y2)

x2+y2+1
− ξ

 (7.25)

which is of interest when handling image data from omnidirectional cameras. Since the
resolution is not the same everywhere in the image, working directly on the normalized
sphere can be very useful to get more accurate results.
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Figure 7.9: Illustration of the unified projection model (proposed with the authorization
of [Markovic et al., 2014]). Full pipeline of projection from a 3D point cX to a point x in
the image.

7.3.2 Considering fish-eye images for visual servoing

When designing the proposed visual servoing task, two main issues had to be taken into
account. First, the images gathered by the camera do not only represent the scene. An
important part of the image is composed of black pixels where no information appears and
of a circular zone containing the image data (see figure 7.11 for visualization of the setup.
A first step then needs to be taken in order to only work on that part of the image and
not take into account the black pixels which will not move while performing the visual
servoing task. The second and most important problem is the fact that an object will not
have the same projection in the image depending on its position. Its size and shape will
differ according to its position in the scene as it will not be located on the same part of
the equivalence sphere, a better resolution being given to points above the poles of the
sphere. This creates two possibilities when computing the control law. Image gradients
are needed in order to compute the derivatives of the probability density functions, but
theneighbourhood of each point can either be considered directly on the image plane or
can be sampled around the point on the equivalence sphere and then projected back onto
the image. The difference between the two strategies can be seen on figure 7.11. [Caron
et al., 2010, Demonceaux et al., 2011] have demonstrated that working on the equivalence
sphere is more adapted to the use of omnidirectional sensors.
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Figure 7.10: From left to right: Gradient image computed on the image plane and gradient
image computed from the equivalence sphere. [Caron et al., 2010]

7.3.3 Redefinition of the NMI-based control law

Just as the computation of the gradient of the image, the computation of the interaction
matrix of a point Lx, involved in the computation of the derivatives of the probability
density functions of the images, can be done considering either the 3D point on the image
plane or the point on the equivalence sphere. Depending whether the considered point
belongs to the image plane (resulting in an image plane visual servoing task) or to the
equivalence sphere (resulting in a Cartesian spherical visual servoing task), two control
laws can be defined. The differences between the two approaches are exposed in this
section. Let us remark that only the part of the algorithm that differ from the perspective
case is exposed hereafter.

7.3.3.1 Image Plane Visual Servoing (IPVS)

Considering image plane visual servoing (i.e considering the point x on the image plane),
gradients computation are the same as with perspective cameras, as the neighbourhood of
every point is considered directly in the image. The interaction matrix however changes.
It was shown in [Espiau et al., 1992b] that the interaction matrix can be expressed as the
product of two Jacobians:

Lx =
∂x

∂X

∂X

∂r
(7.26)

where ∂x
∂X represents the motion of a point in the image with relation to the corresponding

point in 3D and ∂X
∂r the motion of the 3D point with relation to the camera pose. The

advantage of this formulation is that the second term of the product does not depend on the
type of projection and therefore only the first part needs to be redefined. The interaction
matrix can then be computed following the same steps as in the case of perspective images
shown in section 5.1.1, replacing the perspective projection by the unified model given in
equation (7.23):

Lx =

(
−1+x2(1−ξ(γ+ξ))+y2

ρ(γ+ξ)
ξxy
ρ

γx
ρ xy − (1+x2)γ−ξy2

γ+ξ y
ξxy
ρ −1+y2(1−ξ(γ+ξ))+x2

ρ(γ+ξ)
γy
ρ

(1+y2)γ−ξx2
γ+ξ −xy −x

)
(7.27)
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with γ =
√

1 + (1− ξ2)(x2 + y2). Details on how to get this expression of the interaction
matrix can be found in [Barreto et al., 2003].

7.3.4 Cartesian Spherical Visual Servoing (CSVS)

Another way to perform visual servoing when considering a unified projection model is to
compute image gradients and interaction matrices considering the equivalence sphere rather
than the image plane. In order to compute image gradients starting from the equivalence
sphere, a 3D neighbourhood is sampled around the point cXn and every point is then
projected onto the image plane in order to compute the gradient. Let us notice that, as
the resulting positions in the image are real values, bilinear interpolation is used in order
to evaluate luminance values. Following this strategy, the interaction matrix of a point can
be considered about cXn. In this case, it is defined as shown in [Hamel, 2002]:

LcXn =
∂cXn

∂X

∂X

∂r
=
(

1
ρ(cXn

cX>n − I3) [cXn]×

)
(7.28)

where [cXn]× is the skew matrix of the vector cXn.

7.4 Experimental results

Several experiments are performed here to validate the proposed method using the NMI
visual servoing approach detailed before. The experimental setup is very similar to what
was done in the case of perspective images. This time however, the camera mounted
on the robot is a fish-eye lens 7.11, allowing a 180◦ field of view. Following the same
experimentation process, the servoing task was realized in different conditions and the
results were saved for analysis. For the first experiment, in nominal conditions, both the
IPVS and CSVS algorithms are considered in order to validate the proposed approach in
both cases, but for the latter experiments, only the CSVS method is used as it was shown to
be more adapted to omnidirectional cameras [Caron et al., 2010]. For readability purposes,
graphics of NMI were created depicting the evolution of (NMI-1) instead of NMI, giving a
measure between 0 and 1.

Figure 7.11: From left to right: Fish-eye camera used for our experiments, image gathered
by the camera and zone initialization by Delaunay triangulation.

7.4.1 Visual servoing in nominal conditions

The aim of this experiment is both to validate the proposed approach in nominal conditions
and to compare the two strategies exposed in section 7.3.3. Thus, both tasks were launched
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from the same sets of positions and the results of the servoing tasks were monitored (see
figures 7.13 to 7.12). Results show that both positioning tasks are successful, with a
good accuracy since the residual position error upon convergence is below 0.1mm for both
tasks. Analyzing the behaviour of both methods shows that the IPVS algorithm presents
some oscillations before stabilizing, which does not appear with the CSVS technique. This
comes to validate the fact that working on the equivalence sphere is a better solution, as it
takes more into account the properties of the unified projection model used here for visual
servoing and results in a lesser amount of approximations needed to compute the gradients
and interaction matrices.
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−0.05
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Figure 7.12: Trajectory of the camera in the 3D world. The IPVS method shows oscillations upon
convergence.

7.4.2 Experiment 2: light variations

The objective of this second experiment is to assess the robustness of the method towards
illumination changes. This was done using the CSVS approach alone, since the results in
our nominal experiments show a better behaviour compared to the IPVS method, validating
the same claim made in [Caron et al., 2010] in our situation. Light variations were achieved
during the task by using spot lights present in the field of view of the camera in order to
change the illumination of the room. Even though the final positioning accuracy is impacted
by the perturbations, with a final residual error of 2mm, the task is still successful and the
robot stabilizes at the desired position even from distant starting points. The trajectory is
moderately impacted, as the overall course of the camera stays the same even though small
variations appear. Figure 7.14 also shows the evolution of the cost function and positioning
errors which are very similar to the nominal case, which shows that the proposed visual
servoing process is robust to illumination variations.

7.4.3 Experiment 3: impact of occlusions

Finally, an experiment was also designed in order to evaluate the robustness of the method
with respect to occlusions. In order to do that, several objects are moved and people enter
the camera field of view during the servoing task. Results are shown on figure 7.15. The
proposed visual servoing algorithm was not affected by those perturbations of the scene
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Figure 7.13: Results of the IPVS and CSVS algorithms in nominal conditions.
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Figure 7.14: Omnidirectional visual servoing using normalized mutual information: impact
of illumination changes.
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Figure 7.15: Omnidirectional visual servoing using normalized mutual information: impact of
occlusions.

133



7.5. Conclusion

as both the error and NMI graphs show no significant oscillations or important variations.
The servoing task then succeeds with a very good accuracy, the final residual positioning
error being below 2mm. Here again the camera stabilizes with an very low final positioning
error and the trajectory is very similar to the nominal case, which shows that the proposed
visual servoing process is robust to occlusions in the scene.

7.5 Conclusion

In this chapter, a new approach to dense visual servoing has been proposed. Using a nor-
malized formulation of the mutual information, the technique has been shown to be robust
to a wide variety of scene perturbations, while allowing an assessment of the similarity
between the goal and current images, which is something that is impossible to do with the
classical formulation of the MI, as its upper bound is not a constant value. The approach,
after being validated on a real six degree of freedom robot, has been extended to omni-
directional cameras. Two ways of performing servoing on omnidirectional cameras have
then been detailed, working either in the image plane or on the equivalence sphere. The
two techniques are finally validated in several perturbed conditions on a real six degree of
freedom robot on which a fish-eye lens is mounted.
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Conclusion

Advances in technology made possible thanks to research in the domain of computer vision
are now more and more present in our society. Visual tracking and visual servoing are
often key elements of those technologies. They have allowed autonomous applications in
the fields of robot manipulation of complex object, vehicle navigation, augmented reality
or special effects for example. Most of the approaches used are based on the extraction
of geometrical features in the image sequences in order to estimate motion parameters.
While these approaches have shown, since the early 90’s, great results in many situations,
they show two non negligible negative points that can affect the efficiency of the task: they
need to rely on the extraction of features in the images and they only use a small amount
of the available information. In order to circumvent those drawbacks, recent approaches
have proposed to directly consider the luminance values given by a set of pixels covering
the whole image. The process then becomes the alignment of two image templates using
similarity or dissimilarity functions. But since most approaches use a simple luminance
difference in order to perform the alignment, other layers are often needed in order for the
task to be robust. Indeed, considering a difference between two sets of luminance is only
possible if the luminance of a point in the sequence is considered constant throughout the
whole process, which is not the case in most outdoor scenarios for example. This is why
in this document we proposed solutions that are based on image histograms and entropies,
as even if the representation of the information present in the scene might change the
information in itself does not. Our main focus has then been on designing dense visual
tracking and visual servoing tasks whose robustness is a direct result of the choice of the
(dis)similarity function used and do not require any additional steps to cope with scene
variations.

Several research works on this subject have then been proposed in this document.
In the domain of model-based tracking, two algorithms have been proposed to localize a
camera with respect to a moving object whose faces appear and disappear during an image
sequence. The first uses the sum of conditional variance in a simple tracking approach
that is robust to global variations of the scene. The second one extends the same principle
to the use of the mutual information in order to get a more robust, albeit more complex,
tracking process. The two robust cost functions have then been used in the context of non-
rigid registration, resulting in two robust non-rigid tracking processes. The four proposed
tracking approaches have been validated through several experiments, including tests on
sequences undergoing perturbations and convergence domain analysis.

Since there is a strong duality between the visual tracking and visual servoing problems,
the (dis)similarity functions considered in the proposed tracking approaches have lead
to new visual servoing processes. A first approach is designed considering the sum of
conditional variance instead of the sum of squared differences to perform a simple robust
visual servoing task. Although the common use of the sum of conditional variance is to
adapt the reference template to the current camera view, we show that redefining the
measure in order to adapt the current view to the reference image allows to define a
more computationally efficient servoing task. Then, another formulation of the mutual
information is introduced. Contrary to the classical mutual information, the proposed
formulation has a constant upper bound, which allows to assess the similarity of any
couple of images. That similarity measure is then designed to elaborate a robust visual
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servoing process. Finally, this approach is extended to omnidirectional cameras. Here
again, experimental validations are shown performing visual servoing tasks on a six degree
of freedom robot in conditions where perturbations heavily impact the perception of the
scene by the camera.

Perspectives

Several works could still be realized in order to extend our research. First, the proposed
visual servoing tasks could be used in order to realize more complex robotic tasks such
as a navigation application. Using the concept of visual path, where the trajectory of the
navigation is represented by images taken along the path, a succession of visual servoing
tasks using the sum of conditional variance or the normalized mutual information could
be realized. Since those two (dis)similarity measures possess fixed optimum values, a
switching criteria could easily be derived from their evolution to navigate along a path.
Several paths could also be recorded, with intersection points. A graph-like representation
of all the paths could then allow a robot to travel to an array of locations autonomously.
Finally, studies on the 3D trajectory of the robot while performing the servoing task would
be very interesting in order to assess if different ways of optimizing the cost functions could
result in straighter trajectories in the 3D space.

Other visual tracking applications could also be designed by extending the proposed
visual tracking algorithms. For the model-based approach, the use of the resulting pose
of the camera should allow a servoing loop to optimize the difference between desired and
current poses of the camera. This visual tracking algorithm could also be enhanced. An
automatic initialization by detecting the model autonomously should be considered. This
would allow to keep a bank of known objects that would then be used to automatically
initialize tracking tasks on several objects.

The non-rigid visual tracking algorithms proposed could also be used for visual tracking
purposes. To that end, we could imagine a visual servoing task based on the affine param-
eters of the thin-plate spline warping function. That way, a robot could be positioned with
respect to a deforming object by only taking into account its motion in space and not be
impacted by its deformations. But since affine parameters should not allow to control six
degrees of freedom of the robot, two options could be considered: the former would be to
design a visual servoing task controlling only a part of the degrees of freedom of the robot.
The latter would be to extend the thin-plate spline warp. Redefining the motion model
so as not to be based on an affine warp basis anymore but instead on a homography or a
quadratic motion model for example. Our visual tracking works could also be extended to
other robust similarity functions that have proven to be useful in such scenarios like the
zero-mean normalized cross correlation or other divergences commonly used in theory of
information applications.

Finally, it would be very interesting to improve the implementations of our applications
in order to get even more efficient algorithms that could be used on-board dedicated robotic
hardware. Considering tools such as Cuda or OpenCL to take advantage of the possibilities
of GPU parallelization should result in very fast tasks that could even be used directly to
control UAVs.
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Appendix A: General tools

In this document, vectors are referred to using normal-sized bold letters. Matrices are
noted with bold capital letters. The inverse of a matrix of size r × c A and its transpose
matrix are then respectively A−1 and A>. The identity matrix is referred to as I. The
Moore-Penrose pseudo-inverse [Moore, 1920, Penrose, 1955] of a matrix A is noted A+.
The pseudo-inverse matrix is a generalization of the inverse matrix and is widely used to
solve problems where matrices are not invertible. It is defined as:

A+ =
(
A>A

)−1
A> when c ≤ r

A+ = A>
(
AA>

)−1
when c > r

(7.29)

Other methods can be used to compute the pseudo inverse matrix, such as the Singular
Value Decomposition (which will be referred to as SVD). The SVD is a factorization of a
matrix. It is very useful for several applications such as obtaining the solution of an exact
linear system or finding a least-squares solution in the case of an over-constrained system.
If A is a r× c matrix composed of real components, there exists a factorization such that:

A = UΣV> (7.30)

where U and V> are respectively r×r and c×c unitary matrices and Σ is a r×c diagonal
matrix. When using the SVD to compute a pseudo-inverse, one must compute:

A+ = VΣ+U> (7.31)

where Σ+ is the pseudo-inverse of Σ. It is formed by replacing every non-zero diagonal
entry of Σ by its reciprocal and transposing the resulting matrix.
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Abstract
In this document, we address the visual tracking and visual servoing problems. They are
crucial thematics in the domain of computer and robot vision. Most of these techniques
use geometrical primitives extracted from the images in order to estimate a motion from an
image sequences. But using geometrical features means having to extract and match them
at each new image before performing the tracking or servoing process. In order to get rid
of this algorithmic step, recent approaches have proposed to use directly the information
provided by the whole image instead of extracting geometrical primitives. Most of these
algorithms, referred to as direct techniques, are based on the luminance values of every
pixel in the image. But this strategy limits their use, since the criteria is very sensitive to
scene perturbations such as luminosity shifts or occlusions.

To overcome this problem, we propose in this document to use robust similarity mea-
sures, the sum of conditional variance and the mutual information, in order to perform
robust direct visual tracking and visual servoing processes. Several algorithms are then
proposed that are based on these criteria in order to be robust to scene perturbations.
These different methods are tested and analyzed in several setups where perturbations
occur which allows to demonstrate their efficiency.

Keywords: Visual tracking, visual servoing, mutual information, sum of conditional vari-
ance, computer vision.

Résumé
Dans cette thèse, nous traitons les problèmes de suivi visuel et d’asservissement visuel, qui
sont des thèmes essentiels dans le domaine de la vision par ordinateur. La plupart des
techniques de suivi et d’asservissement visuel présentes dans la littérature se basent sur
des primitives géométriques extraites dans les images pour estimer le mouvement présent
dans la séquence. Un problème inhérent à ce type de méthode est le fait de devoir extraire
et mettre en correspondance des primitives à chaque nouvelle image avant de pouvoir
estimer un déplacement. Afin d’éviter cette couche algorithmique et de considérer plus
d’information visuelle, de récentes approches ont proposé d’utiliser directement la totalité
des informations fournies par l’image. Ces algorithmes, alors qualifiés de directs, se basent
pour la plupart sur l’observation des intensités lumineuses de chaque pixel de l’image.
Mais ceci a pour effet de limiter le domaine d’utilisation de ces approches, car ce critère
de comparaison est très sensibles aux perturbations de la scène (telles que les variations de
luminosité ou les occultations).

Pour régler ces problèmes nous proposons de nous baser sur des travaux récents qui
ont montré que des mesures de similarité comme la somme des variances conditionnelles
ou l’information mutuelle permettaient d’accroître la robustesse des approches directes
dans des conditions perturbées. Nous proposons alors plusieurs algorithmes de suivi et
d’asservissement visuels directs qui utilisent ces fonctions de similarité afin d’estimer le
mouvement présents dans des séquences d’images et de contrôler un robot grâce aux infor-
mations fournies par une caméra. Ces différentes méthodes sont alors validées et analysées
dans différentes conditions qui viennent démontrer leur efficacité.

Mots-clefs: Suivi visuel, asservissement visuel, information mutuelle, somme des variances
conditionnelles, vision par ordinateur.
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