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Abstract

The use of regenerative braking is a key factor to reduce the energy consumption of a
metro line. In the case where no device can store the energy produced during braking, only
the metros that are accelerating at the same time can benefit from it. Maximizing the power
transfers between accelerating and braking metros thus provides a simple strategy to benefit
from regenerative energy without any other hardware device. In this thesis, we use a mathe-
matical timetable model to classify various metro energy optimization rescheduling problems
studied in the literature and prove their NP-hardness by polynomial reductions of SAT. We
then focus on the problem of minimizing the global energy consumption of a metro timetable
by modifying the dwell times in stations. We present a greedy heuristic algorithm which aims
at locally synchronizing braking metros along the timetable with accelerating metros in their
time neighbourhood, using a non-linear approximation of energy transfers. On a benchmark
of six small size timetables, we show that our greedy heuristics performs better than CPLEX
using a MILP formulation of the problem, even when it is able to prove the optimality of a
linear approximation of the objective function. We also show that it runs ten times faster than
a state-of-the-art evolutionary algorithm, called the covariance matrix adaptation evolution
strategy (CMA-ES), using the same non-linear objective function on these small size instances.
On real data leading to 10000 decision variables on which both MILP and CMA-ES do not
provide solutions, the dedicated algorithm of our thesis computes solutions with a reduction of
energy consumption ranging from 5% to 9%.

Keywords : Regenerative braking, MILP, Timetable optimization, Energy optimization, Mass
rapid transit, Operations research, Heuristics.



Optimisation de l’Énergie de Récupération au Freinage des Métros par

Modification de la Table Horaire : Modèle Mathématique et

Heuristique Gloutonne Comparée à la PLNE et à CMA-ES

Résumé

La réutilisation de l’énergie de freinage est un facteur clé pour réduire la consommation
énergétique d’une ligne de métro. Si cette énergie ne peut pas être stockée, la seule manière
de l’utiliser est d’en faire bénéficier les métros qui accélèrent au même moment. Maximiser
les transferts de puissance entre les métros qui accélèrent et ceux qui freinent est donc une
stratégie simple pour profiter de l’énergie de freinage. Dans cette thèse, nous utilisons un mo-
dèle mathématique de table horaire qui permet de classer des problèmes variés d’optimisation
énergétique dans les métros, étudiés dans la littérature, et de prouver leur NP-difficulté par
des réductions polynomiales de SAT. Nous nous concentrons particulièrement sur le problème
de la minimisation de la consommation énergétique globale d’une table horaire de métro en ne
modifiant que les temps d’arrêt en stations. Nous présentons un algorithme glouton qui vise
à synchroniser localement, tout au long de la table horaire, les métros qui freinent avec les
métros qui accélèrent dans leur voisinage temporel, en utilisant une approximation non linéaire
des transferts d’énergie. Une évaluation sur six tables horaires de petite taille montre que notre
heuristique gloutonne donne de meilleurs résultats qu’un modèle PLNE résolu par CPLEX. Ce
même quand ce dernier est capable de prouver l’optimalité de solutions dont la fonction ob-
jectif est une approximation linéaire de la consommation énergétique. Notre heuristique donne
aussi des résultats dix fois plus rapidement qu’un algorithme évolutionnaire de l’état de l’art
nommé covariance matrix adaptation evolution strategy (CMA-ES), en utilisant la même fonc-
tion objectif non linéaire. Sur des données réelles contenant 10000 variables de décisions et sur
lesquelles ni CPLEX ni CMA-ES ne sont pas capables de calculer une solution, l’algorithme
dédié présenté dans notre thèse donne des solutions réduisant de 5% à 9% la consommation
d’énergie.

Mots-clefs : Energie de récupération au freinage, PLNE, Optimisation de table horaire, Op-
timisation énergétique, Transport collectif urbain, Recherche opérationnelle, Heuristique.
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Introduction

Reducing energy consumptions is a major issue for the future and has been the sub-
ject of increasing research activities over the last years. Transportation systems are the
main energy consumers, estimated to represent 27% of the world energy production [1].
Among these systems, mass rapid transit, in particular metro systems, is a great con-
sumer of electrical energy. As an example in 2006, the London Underground consumed
1173 GW.h [2], representing 2.8% of the Great London total electricity consumption [3].

Nowadays, almost all metros have regenerative energy braking systems.
These systems are able to turn the electric motors into generators during braking phases,
and thus to produce electricity. It has been shown that the raw energy discount pro-
vided by this technology is about 16.5% [4]. Some metros can directly use their own
regenerative energy. Super capacitors allow much faster loads and unloads compared
to classical batteries, and a metro equipped with super capacitors is able to collect the
energy during braking, and give it back to the engine for its own accelerations [5]. The
metros that cannot store their own regenerative energy can return it to the DC electrical
network, but with important losses on long distances. The electrical substations (ESS)
are the devices that convert AC to DC to feed the metro line. Some ESS are revertible
and can convert the regenerative power of trains to AC power. In this case, the energy
regenerated by metros can be used in other parts of the metro line without important
loss, or be sold back to the electricity provider. Cornic showed that revertible ESS are
able to convert over 99% of the regenerative braking energy, leading to a 18% saving of
the annual energy consumption [6].

However, super capacitors, as well as revertible ESSs, are expensive equipment to
buy and maintain, and may not be economically justified. González-Gil et al. [7] made
an extensive review on energy efficient solutions for metros and classified them in terms
of energy savings potential and in investment cost, as pictured in Figure 1. It is clear
that the two methods with the best ratio energy savings potential/investment cost are
the eco-driving techniques, in particular the optimization of the speed profiles, and the
timetable optimization.

These two techniques do not require any extra equipment. The speed profiles opti-
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Figure 1: Comparison of energy efficient solutions in terms of investment costs and
energy savings potential [7].

mization consist in finding the pattern of acceleration, coasting, cruise and braking that
minimizes the energy consumption of a metro at a given interstation run. Chevrier et
al. [8] or Bocharnikov et al. [9] used genetic algorithms to find energy efficient speed
profiles, given the train characteristics, the gradient of the line, speed restrictions and
some timetable constraints such as the minimum and maximum interstation time. Also,
Su et al. showed that the speed profiles can not only be optimized to minimize the en-
ergy consumption the metro itself, but also to maximize the production of regenerative
energy per run [10]. This regenerative energy surplus can then be used by other metros
accelerating in the same time.

The metro energy optimization timetabling problem addresses the problem of syn-
chronizing the braking of a metro with the acceleration of another metro in its close
neighbourhood on the DC line, assuming that the speed profiles are fixed and have
already been optimized beforehand. This synchronization can be done, for instance,
by modifying the departure and arrival times of the metros in the stations, in order to
shift the acceleration phases to the deceleration phases of some other metros in their
neighbourhood.
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Thesis Contributions

This thesis first proposes a mathematical model to describe several metro energy opti-
mization rescheduling problems under the same formalism. This mathematical model
enables us to classify various problems of the literature, given their decision variables,
their objective function and their energy consumption evaluation. We give a formal
proof of NP-hardness of the energy optimization timetabling problem by polynomial
reductions of SAT.

In our model, the energy consumption of the timetable is evaluated by a non-linear
approximation of the real electrical behaviour of the metro line. This approximation is
based on a power flow model – a particular lossy generalized flow problem – which models
the energy transfers between braking and accelerating metros. The energy transfer losses
between two points on the metro line are computed by the electrical simulator and are
passed as parameters in the power flow approximation, giving a fast and accurate energy
consumption evaluation.

This thesis then presents a greedy heuristic algorithm that addresses the problem
of minimizing the global energy consumption of a timetable by solely rescheduling the
dwell times. This heuristics not only increases the overlapping times between braking
and accelerating metros but privileges those synchronizations that globally decrease the
energy consumption. Extensive tests show that our approach gives robust solutions
faster and of higher quality than MILP and a state-of-the-art evolutionary algorithm
called the covariance matrix adaptation evolution strategy (CMA-ES) [11], and that it
is suitable for real size timetables.

A set of benchmark instances, containing typical peak and off-peak hours
timetables for a typical metro lines, is proposed to compare different optimiza-
tion techniques on different problems. The set of these instances is available at
http://lifeware.inria.fr/wiki/COR14/Bench.

Our greedy heuristic algorithms is fully implemented in the General Electric Trans-
portation Tempo CBTC Solution 1 as part of the Automatic Train Supervision (ATS)
system and has been subject to a patent granted by the United States [12] and by
Europe [13].

1http://media.getransportation.com/sites/default/files/Brochure%20CBTC_040814.pdf
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Literature Review

Metro energy efficient techniques may address two main objectives: the minimization
of power peaks, and the minimization of the global energy consumption over the day.
A power peak occurs when too many metros are accelerating at the same time, which
may cause in the worst case a momentary shut down of a part of the network as the
metro network is sized with some maximum power capacity. Furthermore, when the
energy consumed exceeds a certain limit during a given time period, typically around
15 minutes [14], the metro company will pay a fine to the electricity provider. On the
other hand, the minimization of the global energy consumption simply allows the metro
provider to use less electricity to run its metro line.

Maximum Power Peak

Albrecht has shown in [15] that it is possible to reduce power peaks by utilizing the
reserve time of metros, i.e. the remaining time that a metro has to finish its journey
without disturbing the network. It is however tricky to use the reserve time for energy
optimization reasons since it is primarily used for traffic regulation. Moreover, this
optimization is done by modifying metro interstation times, which may be difficult to
implement in a real-time application. Nevertheless, the implementation of this method
using a genetic algorithm showed good results. Kim et al. have proposed in [16] to
optimize the metro departure times in terminals instead of reserve times. They have
partially solved a simplified model of this problem using Mixed Integer Linear Program-
ming (MILP) [17, 18, 19, 20]. However, their approximation is not precise enough for
real applications since regular timetables are typically second-accurate, whereas their
model has a precision of 15 seconds. They improved their model in [21], refining the
computation of the power peaks at each electric substation rather than for the whole
metro line. Both Chen et al. [22] and Sansó and Girard [23] have described a precise
electrical network simulator, which leads to an accurate evaluation of the metro power
demands. They have managed to reduce the maximum power peak using a genetic
algorithm.

Global Energy Consumption

Miyatake and Ko proposed an ODE-based electrical simulator to model the energy trans-
fers on the metro line [24]. They showed that a fine control of the speed profiles and
the synchronization of departure times of two metros reduces the energy consumption of
the line between 4% and 18%, depending on the relative positions of these two metros
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on the line. Similarly, Bocharnikov et al. showed in [25] that an optimal control of
the speed profiles not only includes eco-driving techniques, but also a better reuse of
the regenerative braking. Xun et al. increased the synchronization between braking
and acceleration phases of two following metros by modifying the speed profile coasting
times [26]. Their approach is done such that the passenger waiting time is not worsened.
Nasri et al. have shown in [27] that it is possible to decrease the energy consumption by
modifying the dwell times, i.e. the stopping times in the stations. Their model uses an
exact energy function and an accurate discretization of time at the scale of one second.
This work provides an interesting proof of concept but has only be tested on a pilot sys-
tem, consisting of 4 trains and 4 stations. Chang et al. used a notion of line receptivity
in [28] to evaluate finely the potential transfers between braking and accelerating metros
along the line. They were able to model an event-driven approach for an online control
of railway operations, including an objective of energy consumption minimization, by
a dynamic modifications of timetable dwell times. On a more realistic size problem,
Ramos et al. [29] and Peña et al. [30] have proposed a MILP model to optimize a night
shift timetable for the metro of Madrid by maximizing the overlapping times between
braking and acceleration phases of different metros. Peña et al. have added to the
model described in [29] a notion of distribution matrix, weighing the energy transfers in
function of the line receptivity between metros. To limit the number of binary variables,
their model considers only one-to-one pairing between braking and accelerating metros.
Their measurements on field have shown that the optimized timetable could reduce
the global energy consumption by 3%. Recently, Yang et al. proposed an bi-objective
timetable model minimizing both the passenger waiting time and the overlapping times.
Complying with physical constraints (speed profiles) safety constraints (headways) and
quality of service constraints (bounds on dwell times and trip times), they were able to
generate a Beijing metro timetable reducing by 8% compared to the real timetable.

Thesis Plan

Chapter 1 The first chapter presents the mathematical model of the metro energy
optimization rescheduling problems. This is a general timetable model, including
domain bound constraints on all decision variables – the dwell times, interstation
times and so on – and an energy-based objective function. This model enables us
to classify various related problems of the literature, based on the variants of the
problem. We prove the NP-hardness of some of the metro energy optimization
rescheduling problems by polynomial reductions of SAT.

Chapter 2 To evaluate the objective function of a metro energy optimization reschedul-
ing problem, one must be able to evaluate the power demand of the metro line at
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a given time. This chapter presents the model of the electrical simulator that has
been used to compute this instant power demand. Then we propose a non-linear
approximation of the instant power demand using a power flow model. We pro-
pose an algorithm to compute this power flow and use it as an objective function
for CMA-ES [11] and in our heuristics. For MILP, a linear approximation of the
objective function based on the overlapping times is also presented.

Chapter 3 In this chapter we present a MILP model intended to unify both the creation
of a timetable satisfying customer needs, safety and physical constraints, and the
global energy consumption of this timetable. We first describe a model to check the
feasibility of a fully parametrized timetable, given physical constraints to ensure
that virtual trips can be effectively performed by metros. Then we describe a
MILP model that unifies a timetabling model complying with a headway pattern
and a global energy consumption optimization of this same timetable. To link
created trips with physical metros, a trip allocation algorithm is also proposed.
Finally, we show how an original handmade timetable can be greatly improved by
the metro energy optimization timetabling model.

Chapter 4 This chapter describes our greedy heuristic algorithm to solve the particular
problem of minimizing the global energy consumption of a metro line by modifying
solely the dwell times in stations (G, dwe, nonlin). We formalize the notion of
braking phase neighbourhoods and acceleration phase shifts that will be used in the
algorithm. Our heuristics is given with two optimizations that increase the overall
performance of it. The incremental computation of the objective function, made
possible by the local modifications of the algorithm, allow a dynamic evaluation
of the energy consumption over the process. Also, an iterative optimization is
proposed to take benefit from the output solutions of an algorithm run to increase
the efficiency of next runs.

Chapter 5 The last chapter compares our heuristic algorithm with MILP and CMA-
ES [11], on a benchmark of six small size timetables. We show that it gives better
results than MILP and CMA-ES in both computation time and quality of the
solutions. Furthermore, in order to prove that our heuristics can be utilized in an
industrial context, we show that the output solutions are robust to small pertur-
bations that naturally occur in a real time context. On real data, we show that the
heuristics is able to reschedule two full timetables containing respectively 9585 and
7679 variables in 20 minutes. On these two examples, the two other methods fail
at giving a solution within 30 minutes, CPLEX running out of memory and CMA-
ES failing at computing its first iteration, while the heuristics computes solutions
which decrease the total amount of energy consumed by respectively 5.15% and
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7.54%. We also show that it is possible to save up to 8.91% energy by increasing
the tolerance on trip times and headways.
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Chapter 1

Metro Energy Optimization
Rescheduling Problems

Contents
1.1 Metro Energy Optimization Rescheduling Model . . . . . . 21

1.1.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.1.3 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 Problems Classification . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.1 Membership to NP . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.2 Global Energy Consumption Problems . . . . . . . . . . . . . 27

1.3.3 Maximum Power Peak Problems . . . . . . . . . . . . . . . . 34

1.1 Metro Energy Optimization Rescheduling Model

In this section, we define a generic mathematical model of metro energy optimization
rescheduling which will be used to:

1. define and classify different metro energy optimization rescheduling problems from
the literature (Section 1.2),

2. define the related MILP models,

3. define the instant power demand function (Chapter 2),

21



22 Metro Energy Optimization Rescheduling Model

4. and define our greedy heuristic algorithm (Chapter 4).

The term rescheduling lies in the fact that we assume that physical trains and crew
have been allocated to trips beforehand, so that the model of timetable described here
does not consider metros depot movements, crew rostering, nor turnaround manoeu-
vres. A timetabling model, considering the metro allocations and the feasibility of the
timetable regarding the metro line is presented in Chapter 3.

We assume that the metro line is composed of N stations, S = {S1, ..., SN} and the
metro timetable is represented as a sequence of M trips T = (T1, ..., TM

2
, TM

2
+1, ..., TM),

where M is even. For the sake of simplicity, we assume that the trips T1, ..., TM
2
cross

all stations in the upstream sequence, (S1, ..., SN), and the trips TM
2
+1, ..., TM cross all

stations in the downstream sequence, (SN , ..., S1). We note St(s) the sth station crossed
by the trip Tt, i.e. station Ss if 1 ≤ t ≤ M

2
or station SN−s+1 if M

2
+ 1 ≤ t ≤M .

1.1.1 Variables

The variables are the dates of the departure and arrival times in stations for each trip,
the dates of the starting of the braking phase and of the ending of the acceleration phase
at each station for each trip. We consider that the time domain I = {0, 1, ..., IEND} is
discrete, with a precision of 1 second.

• dt,s ∈ I is the departure time of the trip Tt, with 1 ≤ t ≤ M , at station St(s),
with 1 ≤ s ≤ N − 1,

• at,s ∈ I is the arrival time of the trip Tt, with 1 ≤ t ≤ M , at station St(s), with
2 ≤ s ≤ N ,

• dacct,s ∈ I is the ending time of the acceleration phase of the trip Tt, with 1 ≤ t ≤M ,
leaving station St(s), with 1 ≤ s ≤ N − 1,

• abrkt,s ∈ I is the beginning time of the braking phase of the trip Tt, with 1 ≤ t ≤M ,
arriving at station St(s), with 2 ≤ s ≤ N .

1.1.2 Constraints

Each trip t must leave its departure terminal (dep) within some bounds set by the metro
company according to the scheduled timetable,

dept ≤ dt,1 ≤ dept 1 ≤ t ≤M. (1.1)
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Every trip t is given with an interstation time (int), equal to the time required to travel
two consecutive stations. The interstation times are bound according to the different
speeds – e.g. economical, nominal or full throttle – a metro can take,

intt,s ≤ at,s+1 − dt,s ≤ intt,s 1 ≤ t ≤M, 1 ≤ s ≤ N − 1, (1.2)

The dwell time (dwe) of a given trip at a station is the time it is required to stop in
order to let passengers go in and out the metro. The dwell times are bound according
to a minimum quality of service for the passengers,

dwet,s ≤ dt,s − at,s ≤ dwet,s 1 ≤ t ≤M, 2 ≤ s ≤ N − 1, (1.3)

The acceleration and braking phases (acc and brk). They represent the duration of the
main acceleration and braking of each metro for every interstation. They are also bound
:

acct,s ≤ dacct,s − dt,s ≤ acct,s 1 ≤ t ≤M, 1 ≤ s ≤ N − 1, (1.4)

brkt,s ≤ at,s − abrkt,s ≤ brkt,s 1 ≤ t ≤M, 2 ≤ s ≤ N, (1.5)

It is worth noticing that every acceleration phase occurs right after a dwell time. Shifting
the starting time of an acceleration phase dt,s without modifying its length acct,s is thus
equivalent to modify the length of the adjacent dwell time dwet,s.

The global trip time (trt) is equal to the time a trip takes to run between its departure
terminal and its arrival terminal. It is bound to ensure the feasibility of the timetable
and the quality of service to the passengers,

trtt ≤ at,N − dt,1 ≤ trtt 1 ≤ t ≤M, (1.6)

Finally the time intervals, called headways (hdw), between two successive trips running
in the same direction in a given station, are bound according to security requirements
and quality of service,

hdwt,s ≤ dt,s − dt−1,s ≤ hdwt,s t ∈ [2,
M

2
] ∪ [

M

2
+ 2,M ], 1 ≤ s ≤ N. (1.7)

The headways are thus checked here at each station. The tolerances on headways differ
according to the hour of the day. During peak hours, the headways are small and the
tolerance for stretching them is tight. During off peak hours, the tolerances are higher
and more important modifications of the timetable are possible, leading to potentially
greater energy savings.
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1.1.3 Objective Function

All the constraints of the timetable model shown up to now are pretty trivial bound
linear constraints. The difficulty of energy optimization problems lies in the objective
function, and more precisely of the instant power demand Pi at each time.

Given an appropriate definition of Pi, the objective can then be to minimize either
the global energy consumption GT T of all trips,

GT T =

IEND∑
i=0

Pi, (1.8)

or the maximum power peak
PPT T = max

i∈I
Pi. (1.9)

It is worth noticing that the objective function PPT T is widely used in the literature
[15, 16, 22, 23, 21], but that a more realistic function would be the number of times that
the power exceeds a certain threshold PMAX ,

CPT T ,PMAX
= card(i | Pi > PMAX). (1.10)

Indeed, this function is more in accordance with the system of fines paid to the electricity
provider when the quota is exceeded.

The most accurate evaluations of Pi are obtained by electrical simulators. In Chapter
2 we describe an instant power model, from which we derive two approximations: a
non-linear approximation based on a power flow used in our algorithm and the linear
approximation used in [29, 30]. Before that, the timetable model can already be used
to classify several variants of the problem studied in the literature.

1.2 Problems Classification

As mentioned in the introduction, research is active for optimizing energy in the field
of railways and some attempts to classify the studied problems have been made. Xun
et al. [26] proposed a classification of the methods used to solve the problems when Li
and Lo [31] listed without apparent classification some papers in the literature, detailing
the decision variables or the algorithms used. We propose a classification based on the
previous timetable model by a triple

(G/PP/CP, dep/dwe/int, sim/nonlin/lin)
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denoting the choice of the objective function (G, PP or CP ), the decision variables
(departure times, dwell times, interstation times or any combination of them) and the
instant power demand evaluation (by an electrical simulator, a non-linear approximation
or a linear approximation).

Problem Equations References
(PP, dwe, sim) 1.3, 1.4, 1.5, 1.6, 1.7, 1.9, Chen et al. [22]

Sansó and Girard [23]
(PP, dwe− int, sim) 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.9 Albrecht et al. [15]
(PP, dep, lin) 1.1, 1.6, 1.7, 1.9 Kim et al. [16, 21]
(G, dwe, nonlin) 1.3, 1.6, 1.7, 1.8 Fournier et al. [12, 13, 32, 33]

Chang et al. [28]
(G, dwe, sim) 1.3, 1.6, 1.7, 1.8 Nasri et al. [27]
(G, dep− dwe, lin) 1.1, 1.3, 1.6, 1.7, 1.8 Ramos et al. [29]

Peña et al. [30]
Yang et al. [34, 35]

(G, int, sim) 1.2, 1.4, 1.5, 1.6, 1.7, 1.8 Bocharnikov et al. [25]
(G, int, nonlin) 1.2, 1.6, 1.7, 1.8 Xun et al. [26]
(G, dep− int, sim) 1.1, 1.2, 1.4, 1.5, 1.6, 1.7, 1.8 Miyatake and Ko [24]

Table 1.1: Some metro timetabling energy optimization problems from the literature,
classified by the problem triple they solve and the corresponding timetable equations.

Table 1.1 classifies different problems studied in the literature using these triples. In
this paper, we shall focus on the problems (G, dwe, lin) and (G, dwe, nonlin), that is,
we focus on the problems of modifying solely the dwell times in order to minimize the
global energy consumption of a metro line, evaluated using either a linear or a non-
linear approximation. In this class of problems, the departure times, the interstation
times, and the braking and acceleration phases are given. The modification of the dwell
times modifies the arrivals at,s and departures dt,s in stations, and hence the auxiliary
variables.

1.3 Complexity

First of all, one can remark that without any objective function, the timetable feasibility
problem is polynomial since all the equations of the timetable model are linear. Caprara
et al. showed in [36] that minimizing the deviation of a solution timetable comparing
to an initial one to satisfy capacity or overtaking constraints is NP-hard. Serafini et
al. showed in [37] that the Periodic Event Scheduling Problem (PESP), the problem
of periodically scheduling trains with precedence constraints, is NP-complete. Liebchen
[38] finally showed that two natural variants of PESP are in MaxSNP, that is to say
that they are optimization problems whose related decision problem is in Strict NP.
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Based on an original idea by Thierry Martinez, we show the NP-hardness of the
metro energy optimization rescheduling problems by polynomial reductions of SAT.

1.3.1 Membership to NP

Let us first define the decision problem associated with any problem of class (G, dep−
dwe− int, lin), (G, dep− dwe− int, nonlin), (PP, dep− dwe− int, lin) and (PP, dep−
dwe − int, nonlin) as the problem of checking if a solution timetable does not violate
the timetable constraints and if its objective function is equal to a given value. In the
following we adopt the convention that the value that must be checked for the objective
function is given relatively to the value of the input timetable.

Theorem 1. The decision problems associated with (G, dep− dwe− int, lin), (G, dep−
dwe− int, nonlin), (PP, dep− dwe− int, lin) and (PP, dep− dwe− int, nonlin) belong
to NP.

Proof. Given an entirely instantiated solution of any of the (G, dep − dwe − int, lin),
(G, dep−dwe− int, nonlin), (PP, dep−dwe− int, lin) or (PP, dep−dwe− int, nonlin)

problems and an objective function value, the number of timetable inequalities to check
is the sum of:

• 2M terminal departures inequalities (1.1),

• 2M.(N − 1) interstation times inequalities (1.2),

• 2M.(N − 2) dwell times inequalities (1.3),

• 4M.(N − 1) acceleration and braking phases inequalities (1.4, 1.5),

• 2M trip times inequalities (1.6) and

• 2N.(M − 2) headways inequalities (1.7),

that is to say, 10M.N −6M −4N timetable inequalities, which is polynomial in the size
of the input.

Furthermore, the evaluation of both the G or PP objective functions can be done
in polynomial time, computing the IEND energy subproblems either using a linear or a
quadratic approximation as shown in Chapter 2. For the objective function G (respec-
tively PP ), the sum (respectively maximum) of the IEND subproblems values must be
equal to the objective function value to check.
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Since deciding if a solution timetable verifies the timetable constraints and the ob-
jective function value is done in polynomial time, the problems (G, dep−dwe− int, lin),
(G, dep−dwe− int, nonlin), (PP, dep−dwe− int, lin) or (PP, dep−dwe− int, nonlin)

belong to NP.

1.3.2 Global Energy Consumption Problems

Theorem 2. The decision problem associated with (G, dep, lin) is NP-complete.

The idea of the proof is to construct a polynomial reduction of SAT to the decision
problem associated with the (G, dep, lin) problem. A particular timetable is constructed
such that all the acceleration phases can be synchronized with only the periodic braking
phases of a special metro T0. It is possible to delay the departure time of each metro
different from T0 by one time unit.

Each Boolean variable of the SAT problem is represented by one of the metros. The
variable is true if the metro is delayed by one time unit and false if it is not. Each clause
is encoded by a synchronization problem at each time i where T0 is braking. The clause
is satisfied if at least one of the accelerating trains is synchronized with the braking of
T0. This ensures that one unit of energy is saved at this time. A Boolean formula in
conjunctive normal form (CNF) is then satisfiable if and only if c units of energy can be
saved in the timetable, where c is equal to the number of clauses in the SAT formula.

Proof. We show that there is a polynomial reduction of SAT to the decision problem
of saving a certain amount of energy on a particular (G, dep, lin) problem. Let T =

{T1, ..., TM} be a set of M variables and ¬T = {¬T1, ...,¬TM} be the set of their
negations. Let φ be a Boolean formula in conjunctive normal form:

φ =
N∧
i=1

ci

where ci are clauses of the form
∨Mi

j=1 li,j with li,j ∈ T ∪ ¬T .

Let us consider the discrete time domain I = {0, ..., 6N − 1}. Let T T be the metro
timetable composed of a sequence of M + 1 trips T = (T0, T1, ..., TM) running in the
same direction, such that each trip Tt ∈ T crosses a sequence of unique stations of length
N + 1, and that the trips are:

• The trip T0 that cannot be shifted and that is crossing stations every 6 time units,
departing from its first station at time i = 0:
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– d0,1 = 0

– int0,s = int0,s = int0,s = 1 1 ≤ s ≤ N

– dwe0,s = dwe0,s = dwe0,s = 5 2 ≤ s ≤ N

Reminding the metro energy optimization rescheduling constraints:

– the interstation time for a given trip,

int0,s = int0,s = intt,s = at,s+1 − dt,s 0 ≤ t ≤M, 1 ≤ s ≤ N, (1.11)

– the dwell time, or stopping time, in a station for a given trip,

dwe0,s = dwe0,s = dwet,s = dt,s − at,s 0 ≤ t ≤M, 2 ≤ s ≤ N, (1.12)

let us prove by induction that d0,s = 6(s− 1), 1 ≤ s ≤ N :

Basis : the statement holds for s = 1,

d0,1 = 0 = 6(1− 1)

Inductive step: if d0,s = 6(s− 1), then d0,s+1 = 6s.

We can write
d0,s+1 = d0,s + a0,s+1 − d0,s + d0,s+1 − a0,s+1

According to (1.11) and (1.12) we have:

d0,s+1 = d0,s + intt,s + dwet,s+1

⇔ d0,s+1 = 6(s− 1) + 1 + 5

⇔ d0,s+1 = 6s

We thus have:

d0,s = 6(s− 1), 1 ≤ s ≤ N (1.13)

a0,s = d0,s−1 + int0,s−1 = 6(s− 2) + 1, 2 ≤ s ≤ N + 1 (1.14)

• The trips Tt with 1 ≤ t ≤M that are constructed according to the clauses ci of φ.
The only possible shift applicable on trips Tt in this timetable is a delay of their
departure time by 1 time unit, denoted δt ∈ {0, 1}:

– dt,1 = δt +


0 if Tt ∈ c1
1 if ¬Tt ∈ c1
2 otherwise

1 ≤ t ≤M
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– intt,s =


4 if Tt ∈ cs
3 if ¬Tt ∈ cs
2 otherwise

1 ≤ t ≤M, 1 ≤ s ≤ N

– dwet,s =


2 if Tt ∈ cs
3 if ¬Tt ∈ cs
4 otherwise

1 ≤ t ≤M, 2 ≤ s ≤ N

Like for T0, we prove by induction that

dt,s = 6(s− 1) + δt +


0 if Tt ∈ cs
1 if ¬Tt ∈ cs
2 otherwise

, 1 ≤ t ≤M, 1 ≤ s ≤ N :

Basis : the statement holds for s = 1,

dt,1 = δt +


0 if Tt ∈ c1
1 if ¬Tt ∈ c1
2 otherwise

= 6(1− 1) + δt +


0 if Tt ∈ c1
1 if ¬Tt ∈ c1
2 otherwise

Inductive step: if dt,s = 6(s− 1) + δt +


0 if Tt ∈ cs
1 if ¬Tt ∈ cs
2 otherwise

,

then dt,s+1 = 6s+ δt +


0 if Tt ∈ cs+1

1 if ¬Tt ∈ cs+1

2 otherwise

.

We can write
dt,s+1 = dt,s + at,s+1 − dt,s + dt,s+1 − at,s+1
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According to (1.11) and (1.12) we have:

dt,s+1 = dt,s + intt,s + dwet,s+1

⇔ dt,s+1 = 6(s− 1) + δt +


0 + 4 if Tt ∈ cs
1 + 3 if ¬Tt ∈ cs
2 + 2 otherwise

+


2 if Tt ∈ cs+1

3 if ¬Tt ∈ cs+1

4 otherwise

⇔ dt,s+1 = 6(s− 1) + δt + 4 + 2


0 if Tt ∈ cs+1

1 if ¬Tt ∈ cs+1

2 otherwise

⇔ dt,s+1 = 6s+ δt +


0 if Tt ∈ cs+1

1 if ¬Tt ∈ cs+1

2 otherwise

We thus have:

dt,s = 6(s− 1) + δt +


0 if Tt ∈ cs
1 if ¬Tt ∈ cs
2 otherwise

1 ≤ t ≤M, 1 ≤ s ≤ N (1.15)

at,s = dt,s−1 + intt,s−1 = 6(s− 2) + δt +


0 + 4 if Tt ∈ cs−1
1 + 3 if ¬Tt ∈ cs−1
2 + 2 otherwise

⇔ at,s = 6(s− 2) + δt + 4, 1 ≤ t ≤M, 2 ≤ s ≤ N + 1 (1.16)

Let the instant power demand function be

Pi = max(0,
M∑
t=0

Pt,i) i ∈ I, (1.17)

where Pt,i ∈ R is the power demand or production of the trip Tt at time i. The objective
function is GT T . Let the trip acceleration and braking phases last one time unit only,

d+t,s − dt,s = 1, 0 ≤ t ≤M, 0 ≤ s ≤ N,

at,s − a−t,s = 1, 0 ≤ t ≤M, 1 ≤ s ≤ N + 1.

Each trip will demand one unit of power when departing from a station, and will produce
one unit of power when arriving to a station. The rest of the time, each trip will not
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demand or produce any power. For all trips Tt, the instant power demand or production
Pt,i at time i can be written as follows:

Pt,i =


1 if there exists 1 ≤ s ≤ N s.t. dt,s = i

−1 if there exists 2 ≤ s ≤ N + 1 s.t. at,s = i

0 otherwise

(1.18)

Now let us prove that the global energy consumption is not modified by the powers
produced by trips {T1, ..., Tm} since they brake it when no trip is accelerating. According
to equations (1.16) and (1.18) we have:

Pt,i = −1 if i = 6(s− 2) + (4 or 5), 1 ≤ t ≤M, 2 ≤ s ≤ N + 1

Conversely and according to equations (1.13), (1.15) and (1.18), we have for all trips
Tt ∈ T :

Pt,i = 1 if i = 6(s− 1) + (0 or 1 or 2 or 3), 0 ≤ t ≤M, 1 ≤ s ≤ N (1.19)

Thus, there is no time where the braking of any trip in {T1, ..., TM} can be synchronized
with the acceleration of any trip in T :

@(i ∈ I, 1 ≤ t ≤M, 0 ≤ t′ ≤M) | Pt,i = −1 ∧ Pt′,i = 1

On the other hand, the braking phases of the trip x0 can be absorbed by the ac-
celeration phases of the other trips, optimizing the objective function. According to
equations (1.14) and (1.18) we have:

P0,i = −1 if i = a0,s = 6(s− 2) + 1 2 ≤ s ≤ N + 1

Also according to equation (1.19), Pt,s = 1 if i = dt,s. To synchronize the acceleration
of the trip Tt at station St(s) with one braking of the trip T0 we need:

a0,s+1 = dt,s

⇔ 6(s+ 1− 2) + 1 = 6(s− 1) + δt +


0 if Tt ∈ cs
1 if ¬Tt ∈ cs
2 otherwise

⇔ (δt = 0 ∧ ¬Tt ∈ cs) ∨ (δt = 1 ∧ Tt ∈ cs)

In other terms, the timetable is constructed such that for each trip Tt and for each
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station St(s) we have:

• If the variable Tt is in the clause cs, then the acceleration phase of Tt at station
St(s) is synchronized with the braking phase of T0 at station S0(s+ 1) if and only
if δt = 1. Thus setting δt = 1 is equivalent to say that the variable Tt is true,
satisfying all clauses cs containing it.

• If the variable ¬Tt is in the clause cs, then the acceleration phase of Tt at station
St(s) is synchronized with the braking phase of T0 at station S0(s+ 1) if and only
if δt = 0. Thus setting δt = 0 is equivalent to say that the variable ¬Tt is true,
satisfying all clauses cs containing it.

• If neither the variable Tt nor the variable ¬Tt are in the clause cs, then the acceler-
ation phase of Tt at station St(s) cannot be synchronized with any of the braking
phases of T0.

Every time one braking phase of T0 is synchronized with the acceleration phase of
one trip Tt, one unit of power is saved. Therefore, there is a timetable and a set of δt
with 1 ≤ t ≤ M that save N power units if and only if the set of δ gives a valuation
that satisfies φ. Consequently, any SAT problem can be polynomially encoded into an
instance of the decision problem associated with (G, dep, lin).

Since the SAT problem is NP-complete, the decision problem associated with
(G, dep, lin) is NP-hard, and since the latter belongs to NP (proof 1), the decision
problem associated with (G, dep, lin) is NP-complete.

Example 1. Let us consider the SAT formula (T2 ∨ T3)∧ (T1 ∨¬T2 ∨ T3)∧ (¬T1 ∨ T2).
The constructed timetable contains four trips T0, T1, T2 and T3, and is divided in three
periods during which metro T0 has the same behaviour. For each braking phase of T0
occurring at times 1, 7 and 13, either T1, T2 or T3 can be synchronized to save one energy
unit. At each time unit, a metro is either accelerating, consuming 1 energy unit, braking,
producing 1 energy unit, or coasting or dwelling, producing or consuming nothing. The
formula is satisfiable if and only if for each braking phase of T0, one of the other metros
can synchronize their acceleration phase. To synchronize their acceleration phases with
the braking phases of T0, each trip departure time can be delayed by one time unit. The
following timetable T T , represented by the energy consumed or produced by each metro
at each time, encodes the formula (T2 ∨ T3) ∧ (T1 ∨ ¬T2 ∨ T3) ∧ (¬T1 ∨ T2):

In this example, to save the 3 energy units produced by T0, one solution can be to
delay the trip T3 by one time unit. A feasible solution for this timetable would be then
δ1 = 0, δ2 = 0, δ3 = 1.
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T T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
T0 1 −1 0 0 0 0 1 −1 0 0 0 0 1 −1 0 0 0 0
T1 0 0 1 0 −1 0 1 0 0 0 −1 0 0 1 0 0 −1 0
T2 1 0 0 0 −1 0 0 1 0 0 −1 0 1 0 0 0 −1 0
T3 1 0 0 0 −1 0 1 0 0 0 −1 0 0 0 1 0 −1 0

Table 1.2: Decision problem associated with (G, dep, lin): example timetable encoding
a SAT formula of N clauses. Each cell represents the energy produced or consumed by
the trip Tt at time i.

Corollary 1. The decision problem associated with (G, dep, nonlin) is NP-complete.

Proof. The objective function is of class nonlin if it involves at least one equation which
is non-linear. Modifying the equation (1.17) of the previous timetable into the non-linear
equationPi = max(0,

∑M
t=0 Pt,i) if 6l ≤ i ≤ 6l + 3

Pi = max(0,
∑M

t=0 P
(2+1)k
t,i ) if 6l + 4 ≤ i ≤ 6l + 5

∀ 0 ≤ l ≤ N − 1

with k ∈ N, does not change the result of the objective function. Indeed, the timetable is
constructed in such a way that

∑M
t=0 Pt,i ≤ 0, for all 6l+4 ≤ i ≤ 6l+5 and 0 ≤ l ≤ N−1.

Thus, like for the previous timetable, Pi = 0, for all 6l+4 ≤ i ≤ 6l+5 and 0 ≤ l ≤ N−1.
Finally the problem becomes (G, dep, nonlin) without changing its solutions, thus the
problem associated with (G, dep, nonlin) is NP-complete.

Corollary 2. The decision problem associated with (G, dep − dwe − int, lin) is NP-
complete.

Proof. A problem is of class dwe if at least one dwell time can be modified. Likewise, a
problem is of class int at least one interstation time can be modified. To get a problem
(G, dep − dwe − int, lin), it suffices to add at the end of the timetable constructed in
the proof of Theorem 2, one period of time where only T0 is running, and where its last
dwell time and interstation time can be modified.

Let us thus consider the metro timetable T T crossed by a sequence of M + 1 trips
T = (T0, T1, ..., TM) crossing N + 1 stations each which encodes a Boolean formula in
CNF containing n clauses. To correctly encode the formula, the timetable should have
a length of 6N − 1 time units. Let us add at the end of the timetable 4 additional time
units where only T0 is crossing a new station S0(N + 2) such that:

d0,N+1 = 6N

a0,N+2 = 6N + 1
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Now, the last dwell time of T0 can be extended by one time unit, encoded in δdwe = {0, 1},

dwe0,N+1 = 5 + δdwe,

and the last interstation time of T0 can be extended by one time unit, encoded in
δint = {0, 1},

int0,N+1 = 1 + δint

By adding these two tolerances, the particular decision problem associated with
(G, dep, lin) encoding the SAT formula has become a problem (G, dep− dwe− int, lin).
As we have proved that the decision problem associated with (G, dep, lin) is NP-
complete, then the (G, dep− dwe− int, lin) problem is also NP-complete.

Example 2. The following timetable encodes a SAT formula with M variables and N
clauses. The 4 last time units are dedicated to a last interstation trip for T0 whose dwell
time and interstation can be extended by one time unit. The timetable still encodes the
SAT formula but is now of class dep − dwe − int as at least one dwell time and one
interstation time can be modified.

T T i0 − i6N−1 i6N i6N+1 i6N+2 i6N+3

T0 1 0 1 −1 0 0
. . SAT 0 0 0 0 0
. . formula 0 0 0 0 0
. . encoded 0 0 0 0 0
TM 0 0 0 0 0 0

Table 1.3: (G, dep−dwe−int, lin) problem : example timetable encoding a SAT formula
of N clauses between time 0 and 6N−1. Between time 6N and 6N+3, the dwell time of
trip T0 can be lengthened by 1 time unit, as well as the last interstation duration.

1.3.3 Maximum Power Peak Problems

Theorem 3. The decision problem associated with (PP, dep, lin) is NP-complete.

The idea of the proof is similar to the proof 2, that is to construct a polynomial
reduction of SAT to the decision problem associated with the (PP, dep, lin) problem.
Here we construct a timetable such that the maximum power peak, whose value is 1, is
the power demand of the special metro T0 during its acceleration phase. This special
metro has N relevant acceleration phases that need to be synchronized with the braking
phase of another metro. If all synchronizations are done, the maximum power peak is
reduced by one power unit, from 1 to 0.
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Proof. As for the Theorem 2 proof, we show that there is a polynomial reduction of SAT
to the decision problem of reducing the power peak by one power unit on a particular
(PP, dep, lin) problem. Let us consider the discrete time domain I = {0, ..., 6N + 3}.
Each trip Tt ∈ T crosses a sequence of unique stations of length N + 2. We construct a
timetable and prove, using the same inductive proofs as (G, dep, lin), that

d0,0 = 0

d0,s = 6(s− 1) + 3, 1 ≤ s ≤ N

a0,s = 6(s− 1) + 2, 1 ≤ s ≤ N + 1

dt,s = 6s+ δt 1 ≤ t ≤M, 0 ≤ s ≤ N

at,s = 6(s− 1) + δt +


3 if Tt ∈ cs
2 if ¬Tt ∈ cs
4 otherwise

1 ≤ t ≤M, 1 ≤ s ≤ N

at,N+1 = 6N + 2 1 ≤ t ≤M

Let the instant power demand function be

Pi =
M∑
t=0

Pt,i ∀i ∈ I (1.20)

and the objective function be PPT T . Once again, the trip acceleration and braking
phases last one time unit only,

d+t,s − dt,s = 1, 0 ≤ t ≤M, 0 ≤ s ≤ N,

at,s − a−t,s = 1, 0 ≤ t ≤M, 1 ≤ s ≤ N + 1.

The trip power demands and productions are as follows

P0,i =



ε if d0,0 = i

1 if there exists 0 ≤ s ≤ N s.t. d0,s = i

−1 if there exists 1 ≤ s ≤ N + 1 s.t. a0,s = i

0 otherwise

(1.21)

Pt,i =


ε if there exists 0 ≤ s ≤ N s.t. dt,s = i

−1 if there exists 1 ≤ s ≤ N + 1 s.t. at,s = i

0 otherwise

1 ≤ t ≤M (1.22)
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where ε is a negligible amount of power compared to 1 energy unit.

The maximum power peak PPT T is not modified by the powers demanded by trips
{T1, ..., TM} as the power they demand is negligible compared to T0. PPT T thus becomes:

PPT T = max
0≤i≤6N+3

P0,i = {0, 1}

Every time one acceleration phase of T0 is synchronized with the braking phase of
one trip Tt, the power peak at this instant is equal to 0. Given the period of time I and
the structure of the timetable, the maximum power peak can be reduced by one power
unit by synchronizing the N acceleration phases of T0 with the braking phase of another
trip. Consequently, there is a timetable and a set of δt, 1 ≤ t ≤ M that shave the N
acceleration phases of T0 if and only if the set of δ gives a valuation that satisfies φ.

Since the SAT problem is NP-complete, the decision problem associated with
(PP, dep, lin) is NP-hard, and since the latter belongs to NP (proof 1), the decision
problem associated with (PP, dep, lin) is NP-complete.

Example 3. Let us consider the SAT formula (T1∨T2∨¬T3)∧(T1∨¬T2∨T3)∧(¬T1∨T2).
The constructed timetable contains four trips T0, T1, T2 and T3, and is divided in three
main periods during which metro T0 has the same behaviour. For each acceleration phase
of T0 occurring at times 3, 9 and 15, either T1, T2 or T3 can be synchronized to save
one energy unit. At each time unit, a metro is either accelerating, consuming 1 energy
unit, braking, producing 1 energy unit, or coasting or dwelling, producing or consuming
nothing. The formula is satisfiable if and only if for each acceleration phase of T0, one
of the other metros can synchronize their braking phase. To synchronize their braking
phases with the acceleration phases of T0, each trip departure time can be delayed by one
time unit. The following timetable T T , represented by the energy consumed or produced
by each metro at each time, encodes the formula (T1∨T2∨¬T3)∧(T1∨¬T2∨T3)∧(¬T1∨T2):

T T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
T0 ε 0 −1 1 0 0 0 0 −1 1 0 0 0 0 −1 1 0 0 0 0 −1 0
T1 ε 0 −1 0 0 0 ε 0 −1 0 0 0 ε 0 0 −1 0 0 ε 0 −1 0
T2 ε 0 −1 0 0 0 ε 0 0 −1 0 0 ε 0 −1 0 0 0 ε 0 −1 0
T3 ε 0 0 −1 0 0 ε 0 −1 0 0 0 ε 0 0 0 −1 0 ε 0 −1 0

Table 1.4: Decision problem associated with (PP, dep, lin): example timetable encoding
a SAT formula of N clauses. Each cell represents the energy produced or consumed by
the trip Tt at time i.

In this example, to shave the three energy peaks of T0, one solution can be not to delay
any trip. A feasible solution for this timetable would be then δ1 = 0, δ2 = 0, δ3 = 0.
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Corollary 3. The decision problem associated with (PP, dep, nonlin) is NP-complete.

Proof. The objective function is of class nonlin if it exists at least one equation which is
non-linear. Modifying the equation (1.20) of the previous timetable into the non-linear
equation

Pi =
M∑
t=0

P
(2+1)k
t,i 0 ≤ i ≤ 6N + 3,

with k ∈ N, does not change the result of the objective function. Indeed, for all i 6=
6(s − 1) + 3, 1 ≤ s ≤ N ,

∑M
t=0 Pt,i ≤ 0, involving that

∑M
t=0 P

(2+1)k
t,i ≤ 0. For all

i = 6(s−1)+3, 1 ≤ s ≤ N ,
∑M

t=0 Pt,i = {0, 1} and thus
∑M

t=0 P
(2+1)k
t,i does not modify the

result. Finally the problem becomes (PP, dep, nonlin) without changing its resolution,
thus the decision problem associated with (PP, dep, nonlin) is NP-complete.

Corollary 4. The decision problem associated with (PP, dep − dwe − int, lin) is NP-
complete.

Proof. As in proof 2, it suffices to add an interstation trip to T0 where the dwell time and
the interstation time are both modifiable to create a decision problem associated with
(PP, dep − dwe − int, lin), from (PP, dep, lin), that encodes a SAT formula and prove
that the decision problem associated with (PP, dep− dwe− int, lin) is NP-complete.

Theorem 4. The problems (G, dep − dwe − int, lin), (G, dep − dwe − int, nonlin),
(PP, dep− dwe− int, lin) and (PP, dep− dwe− int, nonlin) are NP-hard.

Proof. Since the decision problems associated with (G, dep− dwe− int, lin), (G, dep−
dwe − int, nonlin), (PP, dep − dwe − int, lin) and (PP, dep − dwe − int, nonlin) are
NP-complete, thus the problems (G, dep− dwe− int, lin), (G, dep− dwe− int, nonlin),
(PP, dep− dwe− int, lin) and (PP, dep− dwe− int, nonlin) are NP-hard.
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Introduction

The complexity of the metro line electrical network, the non-linearity of the electrical
equations and the dynamic interactions between the network and the running metros
make impossible to solve analytically the electrical behaviour of the line [39]. Usually,
the energy consumption of a metro line is computed with an electrical simulator. To be
realistic, the simulator must take into account both the energy consumed by accelerating
metros and the energy produced by regenerative braking, and how they affect the energy
supplied by electric substations [40]. We propose in this chapter a simplified electrical
simulator to compute the instant power demands Pi. We then present an approximation
based on a power flow model.

39
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2.1 Electrical Simulator

The electrical circuit is composed of the N stations, the electrical substations (ESS) and
the accelerating and braking trains at a given time.

The ESSs are electrical devices that convert the AC power provided by the electricity
provider to DC power, directly usable by metros. We assume that they are not revertible,
i.e. the regenerative braking can only be used by accelerating metros, and that they are
directly connected to the stations. Part of the power provided by the ESSs is lost by
Joule effects on the DC network.

Each station is connected to the next one by a resistive cable. The braking metros
are connected to the station to which they arrive and are modelled as an ideal power
source. The accelerating metros are connected to the station from which they depart
and are modelled as an ideal power sink. Figure 2.1 depicts the circuit associated to a
small network with five stations, three ESSs, one braking metro and one accelerating
metro.

ESS1

+
−

V ESS

RESS

ESS3

+
−

V ESS

RESS

ESS5

+
−

V ESS

RESS

R1 R2 R3 R4

P2,i < 0 P5,i > 0

S1

S2

S3 S4

S5

Figure 2.1: Electrical circuit associated to a metro line with five stations at time i. It
is composed of three electric substations represented as ideal voltage sources in S1, S3

and S5, a braking metro arriving in S2 and producing P2,i, and an accelerating metro
departing from S5 and consuming P5,i. The points in the network are linked by resistive
cables.

2.1.1 Network Parameters

The electrical properties of the metro line are fixed and given by the following set of
parameters valid at any time:

• V ESS ∈ R+ is the fixed voltage supplied by the ESSs to the line. Typical values
are 750V [22] or 1500V [30].
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• RESS ∈ R+ is the value of the internal resistance of the ESSs.

• Rs ∈ R+ is the resistance of the electric cable of the metro network between the
stations Ss and Ss+1, for 1 ≤ s ≤ N − 1. This is computed using the linear
resistance equation R = ρ.l

a
, ρ being the resistivity of the third rail, a its section

and l its length.

2.1.2 Timetable Parameters

Ps,i ∈ R is the net power demand or production, generated by a metro, at time i
and at station Ss. This value is different from 0 only if there is effectively a metro
either braking or accelerating near the station at this particular time. These values are
modified according to the acceleration and braking phases of the metros at each time
point. We have

Ps,i


> 0 if metro accelerating near Ss

< 0 if metro braking near Ss

= 0 otherwise

1 ≤ s ≤ N, i ∈ I

The precise power values are supposed to be known beforehand by direct measurement
on the metro motors. Figure 2.2 illustrates the net power demand and production of
a metro during an interstation run. In a typical example depicted in Figure 2.2, the
parameters Ps,i are given by the power curve for each time point i. The curve is then
sampled and compiled in an energy profile table (Table 2.1.

2.1.3 Electric Variables

The energy transfers are modelled by the following variables. By convention, all voltages
are positive and the currents can be negative.

• vs,i ∈ R+ is the electric potential at station Ss, for 1 ≤ s ≤ N , at time i ∈ I.

• is,i ∈ R is the current flowing through the cable between stations Ss and Ss+1, for
1 ≤ s ≤ N − 1, at time i ∈ I.

• iESSs,i ∈ R is the current flowing from the electrical substation connected to the
station Ss, for 1 ≤ s ≤ N , at time i ∈ I.

• iMET
s,i ∈ R is the current flowing between the network and the metro located in Ss,
for 1 ≤ s ≤ N , at time i ∈ I.
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Figure 2.2: Net power demand and production curve as a function of real time for a
metro accelerating and braking between two stations. The points on the curve represent
the sampling over discrete time.

Timeslot Net Power Demand Comments
0 0 dwell
1 0.25 traction
2 0.75
3 1
4 1
... ...
15 1
16 0 coasting
17 0
... ...
59 0
60 -0.4 braking
61 -0,35
62 -0.3
... ...
70 0 dwell

Table 2.1: Energy profile data for an interstation run. The net power demand is given
in an arbitrary unit equal to 1 when the metro is at full throttle, for each timeslot of
the interstation.

2.1.4 Constraints and Instant Power Demand Value

The following equations constrain the current and voltage at each metro station. Ohm’s
law gives

vs,i − vs+1,i = Rs.is,i 1 ≤ s ≤ N − 1, i ∈ I (2.1)

VESS − vs,i = RESS.i
ESS
s,i 1 ≤ s ≤ N, i ∈ I (2.2)
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Kirchhoff’s current law gives

is,i + is+1,i + iESSs,i + iMET
s,i = 0 1 ≤ s ≤ N, i ∈ I (2.3)

The satisfaction of the instant power gives rise to a non-linear equation:

Ps,i = vs,i.i
MET
s,i 1 ≤ s ≤ N, i ∈ I (2.4)

It is worth remarking that the instant power demand of a metro line Pi is not equal
to the sum of the net instant power demands of the metros

∑N
s=1 Ps,i, but to the power

supplied by the electrical substations over the line to fulfil the metro power demands:

Pi =
N∑
s=1

V ESS.max(0, iESSs,i ) i ∈ I

This value represents the net power consumption of the metro line. The currents iESSs

flowing through each ESS can be negative, i.e. can flow backwards from the line to the
grid, but this negative power is not counted in the instant power consumption. Indeed,
ESSs possess a rectifier that works as a diode and forces the current to flow only in one
direction. In reality, if an electrical substation receives energy, typically when too many
metros are braking and none is accelerating, the energy is absorbed by resistors that are
placed on the line or on the metros brakes.

2.2 Instant Power Demand Approximations

To simplify the evaluation of the power demand, some contributions in the literature
have made the choice of directly computing the power transfers between braking and
accelerating metros instead of calculating voltages and intensities, and deducing the
power demand from it [32, 16, 30, 21, 12]. We introduce in this section the notion of
power flow network, which is a particular case of a generalized flow network, to model
these power transfers. The idea is that setting the flow along the paths of the power flow
network is an approximation of the power transfers between braking and accelerating
metros, the flow arriving in the sink of the graph representing the power saved by
regenerative braking reuse.

Both the electrical simulator and the power flow, model the fact that one accelerating
metro can benefit from the regenerative energy of several braking metros and that one
braking metro can feed several accelerating metros. The power flow approximation does
not intend to reproduce exactly the electrical behaviour of the metro line but rather to
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give a fast evaluation of it for the optimization algorithm.

The distribution matrix ∆ is the matrix of distribution ratios ∆s,s′ = (P−Ps′)/(Ps) ∈
[0, 1] between each stations Ss and Ss′ , with 1 ≤ s′ < s ≤ N , where Ps′ is the positive
net power demand of a metro accelerating in station Ss′ , Ps the negative net power
production of a metro braking in station Ss, and P the resulting power demand of
the electrical network as computed by the electrical simulator. The distribution ratio
represents the ratio of power a metro braking in station Ss effectively transfers to a
metro accelerating in station Ss′ . As Ps′ ≥ P , a value of 1 means that the energy is
fully transferred and a value of 0 means that the energy is completely lost in resistors
as a consequence of Joule effects.

2.2.1 Power Flow and Non-Linear Approximation

A generalized flow network is a finite directed graph G(V,E) given with capacities c(u, v)

on edges in E and a flow f(u, v) ≤ c(u, v). The graph is given in addition with positive
gains γ(u, v) such that, if a a flow f(u, v) is entering at vertex v, then γ(u, v).f(u, v) is
going out from v: ∑

v∈V |(u,v)∈E

γ(u, v)f(u, v) =
∑

v∈V |(v,u)∈E

f(v, u), (2.5)

Two vertices in V are distinguished, the source t which can produce flow and the sink
t′ which can absorb flow.

For each time i ∈ I, the power flow network is the generalized flow network defined
by

V = {t, t′} ∪ V brk
i ∪ V acc

i ,

V brk
i = {s, 1 ≤ s ≤ N |Ps,i < 0}, i ∈ I,

V acc
i = {s′, 1 ≤ s′ ≤ N |Ps′,i > 0}, i ∈ I,

E = {(t, s)} ∪ {(s, s′)} ∪ {(s′, t′)} s ∈ V brk
i , s′ ∈ V acc

i

and

c(t, s)i = Ps,i γ(t, s)i = 1

c(s, s′)i = +∞ γ(s, s′)i = ∆s,s′

c(s′, t′)i = Ps′,i γ(s′, t′)i = 1
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Figure 2.3: Example of a generalized flow network. Flows are created by the source
t and absorbed by the sink t′. The left hand side of the graph contains the vertices
corresponding to the braking metros, which are connected to the vertices corresponding
to the accelerating metros on the right hand side. Each edge of the graph is characterized
by a (capacity,gain) couple.

The instant power demand approximation Pi can then be defined as:

Pi =
∑

s′∈V acc
i

[c(s′, t′)i − f(s′, t′)i] (2.6)

Figure 2.3 shows an example of a power flow network modelling power transfers
between 3 metros braking in stations S1, S3 and S5, and 3 metros accelerating in stations
S2, S6 and S7. The flows are attenuated between braking and accelerating metros
according to their distribution ratio ∆s,s′ . The flows are not bound and can be set freely
between braking and accelerating metros. However, they are bound by the powers
produced or demanded at the source or to the sink. The flows effectively arriving
to the sink represent the regenerative power that has been saved, while the sum of
the capacities’ edges arriving to the sink represent the total power demanded by the
accelerating metros. Subtracting these two values gives an approximation of the instant
power demand.

2.2.2 Power Flow Algorithm

According to the equation (2.6), the power demand equation of the power flow is equal
to the capacities minus the flows directed to the sink. We have:

c(s′, t′)i = Ps′,i, s′ ∈ V acc
i
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and, according to the flow conservation equation (2.5)

f(s′, t′)i =
∑
s∈V brk

i

γ(s, s′)i.f(s, s′)i with γ(s, s′)i = ∆s,s′ , s ∈ V brk
i , s′ ∈ V acc

i

We can also reformulate the flow f(s, s′)i as the ratio of power transferred by the metro
braking at station Ss multiplied by the power Ps,i:

f(s, s′)i = −xs,s′,i.Ps,i, s ∈ V brk
i , s′ ∈ V acc

i

The power transfer ratio xs,s′,i ∈ [0, 1] is the ratio of the power Ps,i, with s ∈ V brk
i ,

transferred from the metro braking at station Ss to the metro accelerating at station
Ss′ such that xs,s′,i = −f(s, s′)i/Ps,i.

The following power flow algorithm computes the power transfer ratios by transfer-
ring the produced power of each braking metro in priority to the accelerating metro
whose distribution ratio is maximum, until all the produced power is transferred. The
algorithm returns the power transfer ratios xs,s′,i, either when all braking metros have
transferred their power or when all accelerating metros have their demand fulfilled:

Algorithm 1 Power transfer ratios computation at time i
Require: V acc

i , V brk
i , ∆s,s′ , Ps,i

1: Initialize vector xs,s′,i ← 0
2: while V brk

i 6= ∅ do
3: Choose randomly s ∈ V brk

i

4: P INIT ← Ps,i
5: while Ps,i < 0 do
6: if V acc

i 6= ∅ then
7: Choose s′ ∈ V acc

i s.t. s′ = arg maxs′∈V acc
i

(∆s,s′)
8: if −Ps,i.∆s,s′ > Ps′,i then
9: xs,s′,i ← (Ps′,i/∆s,s′)/P

INIT

10: Ps,i ← Ps,i + Ps′,i/∆s,s′

11: V acc
i ← V acc

i \{s′}
12: else
13: xs,s′,i ← Ps,i/P

INIT

14: Ps′,i ← Ps′,i + Ps,i.∆s,s′

15: Ps,i ← 0
16: end if
17: else
18: Ps,i ← 0
19: end if
20: end while
21: V brk

i ← V brk
i \{s}

22: end while
23: return vector xs,s′,i
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The instant power demand Pi can now be reformulated with the non-linear equation:

Pi =
∑

s′∈V acc
i

Ps′,i +
∑

s′∈V acc
i

∑
s∈V brk

i

(Ps,i.xs,s′,i.∆s,s′), (2.7)

2.2.3 Linear Approximation for MILP

Linear Programming (LP) is a branch of mathematical programming which addresses the
problem of optimizing a linear objective function, subject to linear equality and linear
inequality constraints. Linear programs can be applied to various fields of study and
are easily solvable thanks to different resolution algorithms like the simplex algorithm
developed by George Dantzig in 1947.

Mixed integer linear programming (MILP) involves linear programs in which some
of the variables are restricted to be integers, while other variables are allowed to be non-
integers. Unlike LP, MILP is usually NP-hard and one of the most efficient software to
solve MILP problems is CPLEX, developed by ILOG [17]. For a complete study on LP
and MILP, the reader can refer to [41] and [18], or [19] to put into perspective linear
programming with other operations research techniques. For a short tutorial on MILP
techniques, please refer to [20].

To avoid introducing too many variables in MILP, Ramos and Peña proposed in
[29] and [30] a linear approximation of the power flow, which tends to maximize the
overlapping times between acceleration and braking phases. The formulation of the
power flow is simplified by authorizing only one single transfer between one braking
metro and one accelerating metro. The objective function is then the sum, weighted by
the distribution matrix, of the overlapping times of these transfers.

The MILP model introduces two new variables to describe the overlaps between
metros :

• γt,s,t′,s′ ∈ {0, 1} is a boolean variable equal to one if the trip Tt, 1 ≤ t ≤M braking
in station St(s), 2 ≤ s ≤ N , transfers its power to the trip Tt′ , 1 ≤ t′ ≤ M

accelerating in St′(s′), 1 ≤ s′ ≤ N − 1. Otherwise it is equal to 0.

• Ot,s,t′,s′ ∈ R is the overlapping time between the braking phase of the trip Tt, 1 ≤
t ≤ M at station St(s), 2 ≤ s ≤ N , and the acceleration phase of the trip
Tt′ , 1 ≤ t′ ≤M at station St′(s′), 1 ≤ s′ ≤ N − 1.

Constraint
M∑
t=1

N∑
s=1

γt,s,t′,s′ ≤ 1 1 ≤ t′ ≤M, 1 ≤ s′ ≤ N (2.8)
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ensures that each accelerating metro receives the totality of the power of at most one
braking metro, and constraint

M∑
t′=1

N∑
s′=1

γt,s,t′,s′ ≤ 1 1 ≤ t ≤M, 1 ≤ s ≤ N (2.9)

ensures that each braking metro transfers the totality of its power to at most one accel-
erating metro, effectively modelling the fact that metros are only authorized to do one
single pairing to transfer their power.

Constraint

Ot,s,t′,s′ ≤ brkt,s.γt,s,t′,s′ 1 ≤ t < t′ ≤M, 2 ≤ s ≤ N, 1 ≤ s′ ≤ N − 1 (2.10)

ensures that the overlapping time of a braking phase with an acceleration phase cannot
be bigger than the braking phase time brkt,s.

Constraints

Ot,s,t′,s′ ≤ dacct′,s′ − abrkt,s +m(1− γt,s,t′,s′) (2.11)

Ot,s,t′,s′ ≤ at,s − dt′,s′ +m(1− γt,s,t′,s′) (2.12)

1 ≤ t < t′ ≤M, 2 ≤ s ≤ N, 1 ≤ s′ ≤ N − 1

ensure that the overlapping time is the minimum value of daccv,u−abrkt,s and at,s−dv,u when
γt,s,v,u = 1. The member m(1− γt,s,v,u), with m a big enough number, ensures that O is
never negative.

The MILP objective function used in [29, 30]

maximize
M∑
t=1

N∑
s=1

M∑
t′=1

N∑
s′=1

(Ot,s,t′,s′ .∆t,s,t′,s′) (2.13)

where ∆t,s,t′,s′ is equal to ∆s′′,s′′′ such that Ss′′ = St(s) and Ss′′′ = St(s
′), is the sum of all

overlapping times of the timetables, weighted by the distribution matrix. The weights
tend to synchronize braking and accelerations that are close to each other.

Concerning the size of the generated MILP instances, the model contains:

• M2.N2 boolean variables γ, M2.N2 overlapping times variables O and M.N dwell
times variables dwe,

• 3M2.N2 + 2M.N MILP constraints (Equations 2.8, 2.9, 2.10, 2.11, 2.12) and
5M.N − 3M − 2N timetable constraints (Equations 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
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1.7).

The MILP model thus introduces a quadratic number of variables and constraints in
the number of trips and stations. A pre-processing have been proposed in [29, 30] to
remove irrelevant constraints and variables:

The no possible overlap cut

∃ Ot,s,t′,s′ , γt,s,t′,s′ ⇔ (dt,1 < at′,N) ∧ (dt′,1 < at,N)

prevents considering the variables and constraints that imply the synchronizations be-
tween trips that do not share a common time window in the timetable.

And the no possible transfer cut

∃ Ot,s,t′,s′ , γt,s,t′,s′ ⇔ ∆t,s,t′,s′ > 0

prevents considering the variables and constraints that imply a power transfer between
two trips that are too remote from each other. As their distribution ratio is equal to 0,
removing these variables and constraints does not modify the output solution. Anyway,
even this pre-processing is not sufficient to handle real data timetables, as we will show
in Section 5.3.
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Introduction

Since the first attempt to solve the train timetabling problem with optimization tech-
niques in 1971 by Amit et al. [42], research has been very active on this subject and
many timetable models and optimization techniques to solve them have been proposed.
The introduction of the Periodic Event Scheduling Problem (PESP) by Serafini et al.
[37] created a mathematical basis in 1989 of the metro timetabling problem, considering
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it as a cyclic timetabling problem. Later on, further refinements by Liebchen [38] on
the same problem allowed him to put in service in 2005 on the Berlin subway the first
timetable resulting from a mathematical programming technique [43].

Many variants of the problem have been studied, including sophistications and dif-
ferent objective functions. Bampas et al. [44] proposed the Periodic Metro Scheduling
problem (PMS), minimizing the maximum headway of the timetable. Nachtigall [45]
or Cury et al. [46] proposed timetable models optimizing the passenger waiting times
in stations and the rolling stock usage. Higgins et al. [47] proposed a single-track
timetabling model minimizing the train waiting times by optimizing the overtaking ma-
noeuvres along the line.

However, very few studies have included in their objective function an evaluation
of the global energy consumption of the metro line. Bodhibrata et al. [48] added an
energy model, aiming to minimize the metros’ speed profiles, but did not take into
account energy transfers between braking and accelerating metros. Recently, the works
of Yang et al. [34, 35] or Li and Lo [31] represent a first attempt to tackle this problem,
minimizing the global energy consumption and the passenger waiting time.

Based on the master’s thesis work of Jing Yang [49], we propose in this chapter a
extension of the metro energy optimization rescheduling model presented in Chapter 1,
by creating from scratch a timetable, allocating trips to physical metros and creating
trips in a way they comply with the metro line requirements. This timetabling model
minimizes the global energy consumption, while following a specific headway pattern.

3.1 Timetable Physical Feasibility

In this section, we propose a purely linear model to check the physical feasibility of a
given timetable, i.e. its capacity to satisfy the topological constraints of the physical
metro line. In particular, the timetable should respect a minimal safety headway, trips
should not overtake each other, and there should be enough time for the metros to
perform their turn back manoeuvres in terminals.
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3.1.1 Initial Timetable Parameters

The trips constituting the timetable are entirely defined in the initial timetable. Thus,
all the general timetable bounds are shrunk to the single values:

dept = dept 1 ≤ t ≤M

intt,s = intt,s 1 ≤ t ≤M, 1 ≤ s ≤ N − 1

dwet,s = dwet,s 1 ≤ t ≤M, 2 ≤ s ≤ N − 1

acct,s = acct,s 1 ≤ t ≤M, 1 ≤ s ≤ N − 1

brkt,s = brkt,s 1 ≤ t ≤M, 2 ≤ s ≤ N

The trip times and headways are also directly computed with the above constraints.

3.1.2 Metro Parameters

As mentioned in Section 1.1, we assumed in our timetable model that a physical
metro has been allocated to each trip beforehand. The initial timetable is thus given
with a set of parameters that permits to link the virtual trips with physical metros:
rstt ∈ N∗ specific metro number, or rolling stock, performing the trip Tt.
nxtt ∈ [1,M ] trip Tt′ performed right after the trip Tt by the same rolling stock,

nxtt = t′ s.t. (rstt = rstt′ ∧ dt,1 < dt′,1)

∧ (@t′′ s.t. rstt = rstt′′ ∧ dt,1 < dt′′,1 < dt′,1)

mhw ∈ I minimal headway to respect all over the line to ensure safety.
tbm ∈ I time for a metro to make a U-turn in its arrival terminal to

perform its next trip in the other direction, also called
turn back manoeuvre duration.

cap ∈ N∗ maximum number of metros that can wait for departure in
each terminal at the same moment, or terminal capacity.

3.1.3 Metro Constraints

The four following constraints ensure that a given initial timetable is physically feasible
given a metro line topology:

• No-crash constraint

at,s − dt−1,s > 0, t ∈ [2,
M

2
] ∪ [

M

2
+ 2,M ], 1 ≤ s ≤ N (3.1)

ensures that two consecutive trips are not dwelling at the same station at the same
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moment.

• Minimal headway constraint

dt,s − dt−1,s ≥ mhw, t ∈ [2,
M

2
] ∪ [

M

2
+ 2,M ], 1 ≤ s ≤ N (3.2)

ensures that two consecutive trips are separated by a minimal safety headway all
along the line.

• Turn back constraint

dnxtt,1 − at,N ≥ tbm, t ∈ [2,
M

2
] ∪ [

M

2
+ 2,M ], nxtt defined (3.3)

ensures that a rolling stock has the necessary minimal time to turn back in terminal
to perform its next trip.

• Terminal capacity constraint

at,N − dt−cap−1,1 ≥ 0, t ∈ [2 + cap,
M

2
] ∪ [

M

2
+ 2 + cap,M ] (3.4)

ensures that there is never more than cap metros waiting in each terminal.

Proving the satisfiability of the pure LP model consisting of the general timetable
model and of the physical constraints described in this section will prove the physical
feasibility of a given timetable. The timetable can be then displayed as a time/space
graph. By convention, the vertical axis represents the time and the horizontal axis the
metro line space. The leftmost and rightmost points represent the two terminals and
each coloured line is a specific train travelling back and forth along the line.

Figure 3.1 highlights a specific train and shows its trip time and its turn back ma-
noeuvres duration. Figure 3.2 highlights the rightmost terminal capacity, showing that
no more than 2 trains can wait inside the terminal at the same moment. Also, due to
the turn back constraints and because there was no other metro waiting in the terminal,
the timetable shows that it had to add a new metro – the brown line on the graph – to
comply with the schedule. In practice, the metro is taken from the depot and added to
the metro line.

3.2 Metro Energy Optimization Timetabling Model

We propose in this section some additional constraints for the metro energy optimization
rescheduling model to formalize timetabling model. A timetabling model is a model
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Figure 3.1: Highlighted specific metro running back and forth and stopping in terminals
: metro line graph with the time on the vertical axis and the line space on the horizontal
axis. The leftmost and rightmost points represent both terminals. Each coloured line
represents a physical train running between both terminals.

Figure 3.2: Terminal capacity focus : metro line graph with the time on the vertical axis
and the line space on the horizontal axis. The leftmost and rightmost points represent
both terminals. Each coloured line represents a physical train running between both
terminals.

capable to generate an entire timetable from scratch, using input parameters given by
the customer, namely the speed and dwell profiles, the first departure times of the day,
and a headway pattern. Adding the instant power demand linear approximation to this
timetabling model of Section 2.2.3 enables us to produce a unified MILP model for the
creation of an energy optimized timetable from scratch.

3.2.1 Input Timetable Parameters

To compute the timetable from scratch, we assume that the metro running profiles have
been set beforehand, so the way metro run, accelerate, brake or dwell is optimized and
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is known in advance:

intt,s = intt,s 1 ≤ t ≤M, 1 ≤ s ≤ N − 1

dwet,s = dwet,s 1 ≤ t ≤M, 2 ≤ s ≤ N − 1

acct,s = acct,s 1 ≤ t ≤M, 1 ≤ s ≤ N − 1

brkt,s = brkt,s 1 ≤ t ≤M, 2 ≤ s ≤ N

Finally, what will be computed by the timetabling model are the departure times of
each metro from their terminal. Only the departure times of the first metros of the day
are given:

depUP departure time of the first metro running upstream.
depDOWN departure time of the first metro running downstream.

3.2.2 Headway Pattern Parameters

As metros follow each other at a relatively high frequency – often more than every 6
minutes –, passengers are more aware of the headways, i.e. the frequency of metros at
a station, than the schedule itself. Thus, the metro line provider is likely to give as
an input parameter for its quality of service a headway pattern. The headway pattern
is the headway that should follow the metros in function of the hour of the day. For
example, a typical weekday will have two peak hours – one in the morning and one
in the evening – when the headways are shorter than the rest of the timetable. The
following additional parameters set the headway pattern, in function of the number of
intervals of this pattern:

nit ∈ N∗ number of headway intervals.
trah ∈ I starting time of interval h, with 1 ≤ h ≤ nit,

or ending time of interval N for h = nit+ 1.
lowh ∈ I headway lower bound for the headway interval h, with 1 ≤ h ≤ nit.
upph ∈ I headway upper bound for the headway interval h, with 1 ≤ h ≤ nit,

verifying upph ≥ lowh.

3.2.3 Headway Pattern Constraints

The two first trips are constrained by the given departure times

d1,1 = depUP

dM
2
+1,1 = depDOWN
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The timetabling model must set for each trip in which interval of the headway pattern
it belongs: bt,h ∈ {0, 1} is a boolean variable equal to one if the trip Tt, with 1 ≤ t ≤M ,
starts after trah, with 1 ≤ h ≤ nit + 1. Unlike pure LP models, MILP models support
if-then-else conditions on variables. Adding a boolean variable for the condition, it is
possible to re write it using inequalities:

b = (x > y)?⇔

x ≤ y +m.b

y < x+m.(1− b)

with b ∈ {0, 1} a boolean variable, x and y two free variables and m a big enough
number, greater than the maximum values x and y can get.

• If x > y, then x � y+m× 0, but x ≤ y+m× 1 ; the first inequality forces b = 1.

• If y ≥ x, then y � x+m× (1− 1), but y < x+m× (1− 0) ; the second inequality
forces b = 0

Now, the if-then-else condition on bt,h is linearized as

bt,h = (dt,1 > trah)?⇔

dt,1 ≤ trah +m1.bt,h

trah ≤ dt,1 +m1.(1− bt,h)
1 ≤ t ≤M, 1 ≤ h ≤ nit+ 1

(3.5)
where m1 > IEND is a big enough number.

Given bt,h, the lower and upper bounds on headways for each trip are constrained as
follows:

• Lower bound constraint

hdwt,s ≥ lowh.bt,h−m2.bt,h+1, t ∈ [2,
M

2
]∪ [

M

2
+ 2,M ], 1 ≤ s ≤ N, 1 ≤ h ≤ nit

(3.6)
where m2 > max1≤h≤nit lowh is a big enough number, ensures that hdwt,s = lowh,
where h is the interval the trip starts in. Indeed, the following table shows that
the maximum value the expression lowh.bt,h −m2.bt,h+1 can get is the case where
bt,h = 1 and bt,h+1 = 0. This case represent the interval when the trip has started
after trah and before trah+1, meaning that the trip has started in the interval
[trah, trah+1]. Constraint 3.6 enforces that all other possible cases give looser
constraints, i.e. 0 or < 0.

hdwt,s bt,h = 0 bt,h = 1

bt,h+1 = 0 0 lowh

bt,h+1 = 1 − < 0
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• Upper bound constraint

hdwt,s ≤ upph.(bt,h − bt,h+1) +m3.(1 + bt,h+1 − bt,h), (3.7)

t ∈ [2,
M

2
] ∪ [

M

2
+ 2,M ], 1 ≤ s ≤ N, 1 ≤ h ≤ nit

where m3 > max1≤h≤nit] upph is a big enough number, ensures that hdwt,s = upph,
where h is the interval the trip starts in. Like for the lower bound constraint, the
following table shows that the minimum value the expression upph.(bt,h− bt,h+1) +

m3.(1 + bt,h+1 − bt,h) can get is upph when bt,h = 1 and bt,h+1 = 0.

hdwt,s bt,h = 0 bt,h = 1

bt,h+1 = 0 m3 upph

bt,h+1 = 1 − m3

3.2.4 Trip Allocation Algorithm

The above MILP model compiles all trips’ terminal departure times times but does
not link physical metros to
these trips. Given the list of the departure times from the departure terminal dt,1
and the arrival times to the arrival terminal at,N , we can create a list of tasks as follows:

task=



trip = t,

type =

departure if dt,1

arrival if at,N
,

terminal =

1 if (dt,1 ∧ 1 ≤ t ≤ M
2

) ∨ (at,N ∧ M
2

+ 1 ≤ t ≤M)

N if (dt,1 ∧ M
2

+ 1 ≤ t ≤M) ∨ (at,N ∧ 1 ≤ t ≤ M
2

)
,

time = dt,1 ∨ at,N ,
metro = set by the trip allocation algorithm


The trip allocation algorithm sets for all tasks – and thus all trips – a specific metro

to perform them. The algorithm sorts the list of tasks chronologically and assigns to
each of them a metro_id, starting from 1.

For each task, if the task represents a departure, the algorithm checks if a metro
is waiting at the terminal. It is worth noticing that, to be available for an assignation
to the task, a metro needs to be effectively in the terminal but also to have performed
already its turn back manoeuvre. If it is the case, then this metro is assigned to the
task. If not, a new metro is added by incrementing metro_id and is assigned to the
task. Incrementing metro_id represents in reality adding a metro on the line from the
yard.
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If the task represents an arrival and that the queue in the terminal has not reached
the terminal capacity cap, then the task is added to the queue. If the queue is full, the
oldest task is removed from the queue to let enter the new one. Removing the oldest
task represents in reality putting back a metro in the yard. The algorithm pseudo-code
is summarized by Algorithm 2, returning the list of tasks with their metro assignation.

Algorithm 2 Trip allocation algorithm
Require: list of tasks
1: Sort tasks by tasks.time in ascending order
2: Q1, QN empty queues of task for each terminal
3: metro_id = 1
4: for i = 0 : i < size(tasks) do
5: if tasks[i].terminal == 1 then
6: Q = Q1

7: else
8: Q = QN

9: end if
10: if tasks[i].terminal == departure then
11: if Q = 0 || Q[0].time > tasks[i].time− turn_back then
12: tasks[i].train = metro_id
13: metro_id+ +
14: else
15: tasks[i].metro = Q[0].metro
16: Q = Q−Q[0]
17: end if
18: else
19: if size(Q) >= cap then
20: Q = Q−Q[0]
21: end if
22: Q = [Q, tasks[i]]
23: end if
24: end for
25: return tasks

3.3 Computational Results

This section demonstrates the capabilities of the metro energy optimization timetabling
model on a real weekday handmade timetable. First, we check that the original timetable
is feasible according to the physical feasibility model. Figure 3.3 shows the headways
of metros along the timetable. The two weekday peak hours – with a headway of 300
seconds – are clearly visible.

The problem of the handmade timetable is how the transitions between different
headway targets have been handled. Whereas the mid-day off peak hour headways are
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clearly stable, the rest of the timetable presents many vibrations, due to the problem of
adding or removing metros without affecting the headways.

Figure 3.3: Initial handmade timetable : graph representing the headways in seconds
in function of the metro departure times. The red line represents the metros running
upstream and the blue line the metros running downstream.

3.3.1 Headway Pattern Timetabling

Following the original handmade timetable headways – 300 seconds on peak hours and
600 seconds on off peak hours – we propose a headway pattern summarized in table 3.1.

[trah, trah+1[ [lowh, upph] Period Hour
[0, 25200[ [600, 600] service starting < 07 : 00

[25200, 27000[ [300, 600] transition time 07 : 00− 07 : 30
[27000, 36000[ [300, 300] morning peak hour 07 : 30− 10 : 00
[36000, 37800[ [300, 450] transition time 10 : 00− 10 : 30
[37800, 59400[ [450, 450] mid-day off-peak hours 10 : 30− 16 : 30
[59400, 61200[ [300, 450] transition time 16 : 30− 17 : 00
[61200, 66600[ [300, 300] evening peak hour 17 : 00− 18 : 30
[66600, 68400[ [300, 600] transition time 18 : 30− 19 : 00
[68400, 90000[ [600, 600] service ending > 19 : 00

Table 3.1: Lower and upper bounds on headways for every interval of the headway
pattern, specifying the hours for each interval and the signification of the bounds.

Between a peak hour and an off peak hour, a transition time of 2000 seconds is let to
adjust the number of metros on the line smoothly. Figure 3.4 presents the headways of
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the compiled timetable, given only the headway pattern and the starting times depDOWN

and depUP .

Figure 3.4: Compiled timetable following the given headway pattern : graph represent-
ing the headways in seconds in function of the metro departure times. The red line
represents the metros running upstream and the blue line the metros running down-
stream.

Each trip has been allocated with a metro by the trip allocation algorithm and it is
clear that the periodicity and the stability of the headways have been highly increased.
This proves the utility of such a model, which given a relatively small amount of in-
formation as input, is able to produce a much more stable timetable than a handmade
one.

3.3.2 Energy Optimized Headway Pattern Timetabling

Tolerances are added on the first departure times, allowing them to start in a time
window of 20 seconds, and on each dwell time, allowing a shift of 1 second earlier or
later:

depUP − 10 ≤ d1,1 ≤ depUP + 10

depDOWN − 10 ≤ dM
2
+1,1 ≤ depDOWN + 10

dwet,s + 2 = dwet,s, 1 ≤ t ≤M, 2 ≤ s ≤ N − 1

The computation of the energy optimized headway pattern timetable is intractable and
runs out of memory on CPLEX. The following results are a proof of concept using a
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relaxed objective function, where most transfers between braking and acclerating metros
are not authorized. Figure 3.5 shows how the tolerances on dwell times modifies the
headway pattern compiled timetable to improve the overlapping time between braking
and acceleration phases.

Figure 3.5: Compiled energy optimized timetable following the given headway pattern
: graph representing the headways in seconds in function of the metro departure times.
The red line represents the metros running upstream and the blue line the metros
running downstream.

It is worth noticing that the energy optimized timetable is still more stable in terms of
headways than the original handmade timetable. Figure 3.6 shows that, on the relaxed
objective function, the cumulated overlapping times can be increased using the energy
optimized headway timetabling model.
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Figure 3.6: Overlapping time in seconds by intervals of 1 hour compared between the
initial the timetable, in blue, and the energy optimized headway pattern timetable in
red.
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Since metro providers are unlikely to abandon the timetable in service for a brand
new one, the literature has focused on metro rescheduling problems to optimize the en-
ergy consumption. This reluctance can be explained by the habits acquired by the metro
drivers and passengers, as well as the validated robustness of the utilized timetable, that
prevent a likeliness for change. Thus, for energy optimization, it is crucial to be able
to reschedule the timetable in service. This rescheduling is done by modifying slightly
the timetable inputs, so the output solution does not modify the crew rostering, the
trip/metro allocations and the quality of service.

Chapter 3 was presenting a proof of concept of how should be a timetabling model
taking into account the energy optimization. We present in this chapter the rescheduling
solution now implemented in the General Electric Transportation Tempo ATS CBTC
Solution, based on a heuristic algorithm modifying the dwell times.

Our heuristic algorithm allies the idea of maximizing the overlapping times between
braking and acceleration phases and the idea of checking the global energy consumption
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every time a modification is made. The algorithm thus shifts the acceleration phases
to synchronize them with the braking phases of other metros, and recomputes the non-
linear objective function to check for improvement. These local moves increase the power
transfers between braking and accelerating metros, and possibly decrease the solution
timetable global energy consumption.

The braking phase of at,s is the period of time delimited by abrkt,s and at,s, corre-
sponding to the period where the trip Tt is braking and regenerating energy, arriving
to the station St(s). Likewise, the acceleration phase of dt,s is the period of time delim-
ited by dt,s and dacct,s , corresponding to the period where the trip Tt is accelerating and
demanding energy, departing from the station St(s).

4.1 Acceleration Phase Shift Function

The acceleration phase shift function Shift(dt,s, abrkt′,s′) consists in modifying the depar-
ture time dt,s of a trip Tt at a station St(s) to make it correspond to the beginning of
the neighbour braking phase abrkt′,s′ of a trip Tt′ at station St′(s

′), and by fixing acct,s.
Modifying dt,s consists thus in modifying the duration of dwet,s, which will shift the
future arrivals and departures times of the trip.

4.1.1 Braking Phase Neighbourhood

The time neighbourhood of a braking phase N (at,s) is defined as the set of acceleration
phases that can overlap this braking phase within the given timetable tolerances. This
means that every acceleration phase that may start before the end and finish after the
beginning of a given braking phase, belongs to the neighbourhood of the latter:

N (at,s) = {dt′,s′ |(t 6= t′) ∧ (dacct′,s′ + dwet′,s′ > abrkt,s ) ∧ (dt′,s′ + dwet′,s′ < at,s)}

4.1.2 Shift and Propagation Algorithm

The function considers the timetable constraints given by the bounds on dwell times, trip
times and headways. If the function cannot shift the departure time of the acceleration
to the beginning of the braking phase due to tolerance constraints, it will shift it to the
closest time which respects these constraints.

The function Shift(dt,s, a
brk
t′,s′) first checks whether dt,s occurs before or after abrkt′,s′ .

The algorithm then computes the possible shifts authorized by the three timetable bound
constraints for dwell times, trip times and headways. If dt,s occurs after (resp. before)
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abrkt′,s′ , these shifts are set according to the constraints’ lower (resp. upper) bounds. Then,
the maximum (resp. minimum) of these shifts and of the abrkt′,s′ date is added to dt,s.

As only the adjacent dwell time of dt,s is modified, the rest of the trip is shifted
accordingly to the shift applied to dt,s. Thus, the shift is also added to the departure
times dt,s′ and the arrival times at,s′ , such that s′ > s. The shifting and propagation
process is clearly visible on Figures 4.1 and 4.2 on trip 5 ; the shift applied on the first
acceleration phase – the leftmost red rectangle – is propagated to the future braking
and acceleration phases. Algorithm 3 summarizes the shift and propagation process.

Algorithm 3 Acceleration phase shift and propagation
Require: T T
1: Acceleration phase shift
2: if dt,s > abrkt′,s′ then
3: shiftdwe = dwet,s − (dt,s − at,s)
4: shifttrt = trtt − (at,N − dt,1)
5: shifthdw = hdwt,s − (dt,s − dt−1,s)
6: shift = max(shiftdwe, shifttrt, shifthdw, a

brk
t′,s′ − dt,s)

7: dt,s ← dt,s + shift
8: else
9: shiftdwe = dwet,s − (dt,s − at,s)

10: shifttrt = trtt − (at,N − dt,1)
11: shifthdw = hdwt,s − (dt,s − dt−1,s)
12: shift = min(shiftdwe, shifttrt, shifthdw, a

brk
t′,s′ − dt,s)

13: dt,s ← dt,s + shift
14: end if
15: Shift propagation
16: for all dt,s′ s.t. dt,s′ > dt,s do
17: dt,s′ ← dt,s′ + shift
18: end for
19: for all at,s′ s.t. dt,s′ > dt,s do
20: at,s′ ← at,s′ + shift
21: end for
22: return T T

4.2 Greedy Heuristics Optimization Algorithm

The algorithm comprehensively searches the acceleration phase shift that minimizes the
objective function in the time neighbourhood of each braking phase,. All the braking
phases are first sorted in chronological order and the acceleration phases are shifted for
the earliest braking phases.

For each braking phase, the algorithm computes its time neighbourhood N (at,s),
modifies each acceleration phase dt′,s′ by applying the shift function Shift(dt′,s′ , abrkt,s )
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and checks whether this shift is decreasing the objective function. If it does, the best
current objective function and the best shift are updated.

When all the acceleration phases have been shifted and evaluated, the algorithm
shifts the acceleration phase that minimizes the most the objective function, or does
nothing if none of them decreases the objective function. This monotonic behaviour
ensures that the algorithm will converge after some iterations and does not worsen the
initial timetable. Once an acceleration phase is shifted, it is removed from the pool of
neighbour phases and cannot be shifted any more for another braking phase. Algorithm
4 summarizes the greedy heuristics optimization algorithm:

Algorithm 4 Greedy heuristics optimization algorithm
Require: T T
1: Sort at,s, 1 ≤ t ≤M, 2 ≤ s ≤ N in chronological order
2: for all at,s do
3: Compute initial objective function GINIT

T T
4: Initialize best objective function GBEST

T T = GINIT
T T

5: Initialize best shift dBEST = 0
6: Compute N (at,s)
7: for all dt′,s′ ∈ N (at,s) do
8: dINIT ← dt′,s′
9: Shift(dt′,s′ , at,s)

10: Compute GT T
11: if GT T < GBEST

T T then
12: GBEST

T T ← GT T
13: dBEST ← dt′,s′
14: end if
15: dt′,s′ ← dINIT

16: end for
17: if dBEST 6= 0 then
18: Shift(dBEST , at,s)
19: end if
20: end for
21: return T T , GBEST

T T

Figures 4.1 and 4.2 illustrate the behaviour of our heuristics on a sample timetable
lasting 400 seconds. In this sample, 15 metros are running on the line and their braking
and acceleration phases along the timetable are represented respectively with red and
green rectangles on the figures. It is clear that the optimized timetable still looks like
the initial one and that the modifications are not changing dramatically the shape of
the trips. However, one can remark that these changes allow better overlapping times
between braking and acceleration phases, as seen at time 36720.
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4.3 Algorithm Optimizations

4.3.1 Incremental Computation of the Objective Function

Equation (2.7) shows that the instant power demand Pi is a function of the net power
demands and productions Ps,i, the power transfer ratios xs,s′,i and the distribution ma-
trix ∆s,s′ . Since the distribution matrix is precomputed, only the power transfers are
modified by the optimization process.

In our dedicated heuristics, the objective function is re-evaluated every time an ac-
celeration phase is shifted. Since a shift consists in modifying the dwell time of a specific
trip at a specific station, many time instants remain with the exact same net power de-
mand and production along the timetable. Let P INIT

i be the instant power demand at
time i before a dwell time shift and P INIT

s,i be the net power demands and productions
at each station Ss at time i. After the dwell time shift, only the instant power demands
where the power demands and productions have changed need recomputing, as follows:

Pi =

P INIT
i if Ps,i = P INIT

s,i ∀1 ≤ s ≤ N,

needs recomputation otherwise

The incremental computation avoids recomputing known values, which increases the
computation time of the algorithm by an order of magnitude as shown in Table 4.1 on
six benchmark instances detailed in the following section.

Instance Length #dt,s
Computation Time (s)
Regular Incremental

op1 15 min 127 34.9 7.31
op2 15 min 129 31.0 7.51
op3 60 min 449 530 52.5
p1 15 min 173 102 18.3
p2 15 min 186 134 25.7
p3 60 min 670 1495 168

Table 4.1: Computation time in seconds of one run of the greedy heuristics without and
with incremental computation of the objective function. The two implementations are
compared on the six benchmark instances described in Section 5.1 representing typical
off-peak (op) or peak (p) hours timetables. The lengths of the timetable instances are
either 15 or 60 minutes and the number of decision variables #dt,s are given.

4.3.2 Iterative Optimization

After one run of the algorithm, the optimized timetable can be utilized as input for
a second run starting from the new solution. The optimization algorithm can thus
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be executed either once or iteratively until the iterative algorithm stops improving the
objective function.

Figure 4.3 shows the minimization of the objective function using iterative optimiza-
tion. It shows that the first run largely improves the timetable and that the following
iterations lead to further improvements.

Figure 4.3: Evolution of the global energy consumption over computation time in sec-
onds on a sample timetable during the iterative optimization process. The first cross
represents the global energy consumption of the original timetable and the following
ones the global energy consumption by iterating the greedy heuristics.
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In this section, the greedy heuristics algorithm is compared to MILP and CMA-ES
on six small size benchmark instances on which the three methods give solutions. Both
the greedy heuristics and CMA-ES [11] are implemented in C++, and the MILP model
is solved using CPLEX 12. The machine used for the experiments is a PC with an Intel
Core i5 with 3GB of RAM.

For all the following results, a timeout of 1500 seconds was set. If not specified
otherwise, the objective function is computed using the electrical simulator described
in section 2. The greedy heuristics used the incremental computation of the objective
function and iterative optimization.

5.1 Benchmark Instances

The six timetables have been drawn from real data and represent relevant portions of the
timetable, i.e. peak (p) and off-peak (op) parts of size of 15 minutes and one hour. These
instances contain the initial parameters of the timetable (dINITt,1 , dweINIT , intINIT and so
on) as well as the tolerances, given by the customer, on which variables can be modified
and by how much. The tolerances on dwell times, trip times and headways are equal
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for all six instances. For the sake of simplicity, the tolerance values are given relatively
to the initial timetable instance and dwet,s = −3 shall be read dwet,s − dweINITt,s = −3.
The departure times, the interstation times, the braking and acceleration phases lengths
are fixed :

dwet,s = −3 1 ≤ t ≤M, 1 ≤ s ≤ N

dwet,s = 9 1 ≤ t ≤M, 1 ≤ s ≤ N

trtt = −30 1 ≤ t ≤M

trtt = 30 1 ≤ t ≤M

hdwt,s = −30 t ∈ [2,
M

2
] ∪ [

M

2
+ 2,M ], 1 ≤ s ≤ N

hdwt,s = 30 t ∈ [2,
M

2
] ∪ [

M

2
+ 2,M ], 1 ≤ s ≤ N

5.2 Performance Comparison with MILP and CMA-

ES

5.2.1 Comparison with CMA-ES

Evolution strategies are stochastic search algorithms that try to minimize an arbitrary
objective function called fitness function. The covariance matrix adaptation evolution
strategy (CMA-ES) [11] applies to vectors of real-valued variables and arbitrary real-
valued fitness functions. This algorithm is a multi-point method which at each iteration,
samples the search space according to multivariate normal distributions, estimates its co-
variance matrix, determines a move to make in the most promising direction and updates
the multivariate normal distributions for the variables. One important characteristic of
CMA-ES compared to other meta-heuristics, is the limited number of parameters that
need to be set, namely the initial standard deviation and the termination criteria. The
other parameters are automatically adapted during the execution.

In our experiments, we use the default value for the population size 4 + 3 log(#dt,s).
The optimization is stopped after 10 iterations without improvement of the objective
function. The initial distribution has a default variance of (dwet,s − dwet,s)/7 for each
trip at each station.

The CMA-ES algorithm does not handle internally bound domains on variables. To
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avoid infeasible solutions, a penalty function p(T T ) is added to the objective function,

GT T =

IEND∑
i=0

Pi + p(T T ). (5.1)

This function adds the difference, to the power of 4, of each variable out of its domain
minus the bound it violates. This enforces the algorithm to search solutions within the
given tolerances. Algorithm 5 summarizes the penalty function computation.

Algorithm 5 CMA-ES penalty function
Require: T T
1: p(T T ) = 0
2: for all dwet,s do
3: if dwet,s < dwet,s then p(T T )← p(T T ) + (dwet,s − dwet,s)4
4: else
5: if dwet,s > dwet,s then p(T T )← p(T T ) + (dwet,s − dwet,s)4
6: end if
7: end if
8: end for
9: for all trtt do

10: if trtt < trtt then p(T T )← p(T T ) + (trtt − trtt)4
11: else
12: if trtt > trtt then p(T T )← p(T T ) + (trtt − trtt)4
13: end if
14: end if
15: end for
16: for all hdwt,s do
17: if hdwt,s < hdwt,s then p(T T )← p(T T ) + (hdwt,s − hdwt,s)4
18: else
19: if hdwt,s > hdwt,s then p(T T )← p(T T ) + (hdwt,s − hdwt,s)4
20: end if
21: end if
22: end for
23: return p(T T )

Table 5.1 shows the results of CMA-ES against our heuristics. Due to its stochastic
behaviour, CMA-ES has been run 100 times for each instance. The table compiles the
average computation time, and both the average and best value found for the objective
function over the 100 runs. The results show that the greedy heuristics performs better
than the best run of CMA-ES on four of the six benchmark instances. On op1, our
heuristics is better than the average result of CMA-ES but not than its best result.
Finally, CMA-ES is slightly better than the greedy heuristics in average only for p3.
The better performance of the heuristic algorithm is partly due to the incremental
computation of the objective function, which cannot be implemented in CMA-ES since
all solutions are sampled randomly.
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Inst. Length #dt,s

Initial CMA-ES Greedy Heuristics
Value Value Time Value TimeAverage Best

op1 15 min 127 2514 2401 2381 256 2394 45.6
op2 15 min 129 2516 2402 2388 223 2381 38.0
op3 60 min 449 9956 9724 9716 761 9579 648
p1 15 min 173 3433 3300 3285 503 3261 178
p2 15 min 186 3651 3516 3483 669 3450 291
p3 60 min 670 13067 12696 12675 1030 12717 1500

Table 5.1: Compared performance in computation time (Time in seconds) and energy
consumption (Value in kW.h) between the average and best values found over 100 runs
of CMA-ES and the greedy heuristics on six benchmark instances. The instances op
represent an off-peak hour timetable and the instances p represent a peak hour timetable,
both of either 15 minutes or 60 minutes long.

Figure 5.1: Global energy consumption (in kW.h) evolution over time (in seconds) of
100 CMA-ES runs (blue lines) against a greedy heuristics iterative optimization run (red
line) on benchmark instance op1

5.2.2 Comparison with MILP

As shown in Table 5.2, CPLEX is able to prove the optimality on the four smallest in-
stances and outperforms the greedy heuristics on the linear objective function (Equation
2.13). However, when comparing both optimization methods on the objective function
computed with the electrical simulator (Table 5.3), our greedy heuristics performs better
on five of the six instances.

This is due to the fact that the linear objective function is less accurate that the
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Instance Length #dt,s
Initial Greedy Heuristics MILP
Value Value Value Integrality gap

op1 15 min 127 12.48 s 101.8 s 318.1 s optimal
op2 15 min 129 11.48 s 159.1 s 351.6 s optimal
op3 60 min 449 45.97 s 817.9 s 1637 s 10.62%
p1 15 min 173 250.5 s 414.8 s 772.5 s optimal
p2 15 min 186 279.1 s 533.8 s 835.8 s optimal
p3 60 min 670 1019 s 1576 s 3003 s 20.44%

Table 5.2: Compared performances over the MILP objective function (Value in s) be-
tween CPLEX and the greedy heuristics on six benchmark instances. The MILP solu-
tions are given with their integrality gap, optimal standing for 0%. The instances op
represent an off-peak hour timetable and the instances p represent a peak hour timetable,
both of either 15 minutes or 60 minutes long.

Instance Length #dt,s
Initial MILP Greedy Heuristics
Value Value Time Value Time

op1 15 min 127 2514 2427 0.72 2394 45.6
op2 15 min 129 2516 2419 1.00 2381 38.0
op3 60 min 449 9956 9579 1500 9579 648
p1 15 min 173 3433 3281 460 3261 178
p2 15 min 186 3651 3494 82.5 3450 291
p3 60 min 670 13067 12711 1500 12717 1500

Table 5.3: Compared performances in computation time (Time in seconds) and energy
consumption (Value in kW.h) between MILP and the greedy heuristics on six benchmark
instances. The instances op represent an off-peak hour timetable and the instances p
represent a peak hour timetable, both of either 15 minutes or 60 minutes long.

one used in the greedy heuristics (Equation 2.7). The main differences between these
two objective functions are that the MILP model is only able to pair one braking with
one acceleration (Equations 2.8, 2.9), when the power flow objective function is able
to dispatch dynamically to different braking and accelerations over time as described
in Section 2.2.2. Thus eventhough our algorithm does not prove optimality, it better
approximates the real behaviour of the electricity flows and leads to better solutions.

5.2.3 Robustness

The output solutions of the greedy heuristics must be robust to be effectively used in an
industrial context [50]. Indeed, even if the timetable optimizer is more likely to be used
in a fully automated metro context, small perturbations can still occur [51]. Thus, the
output solutions should still save a significant amount of energy compared to the initial
timetable, even when they are lightly disrupted. To test the robustness of solutions, a
noise θ = {1, 2, 3} seconds is randomly applied to each decision variable dt,s that has
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been adjusted by the greedy heuristics, such that

dt,s ← dt,s + rand{−θ, ..., θ}

For each benchmark instance, 100 random solutions have been generated for three
different noise amplitude. Tables 5.4, 5.5 and 5.6 summarize the statistical analysis of
the robustness for respectively 1, 2 and 3 seconds of noise amplitude. The 100 randomly
generated solutions are compared to the initial timetable and the optimized timetable
in terms of average value and statistical dispersion of the global energy consumption.

The tables show that the average value of the global energy consumption is degraded
proportionally to the noise amplitude but that even the worst randomly generated so-
lution is still saving more energy than the initial timetable on every instance. Also,
the degradation of the objective function is predictable in function of the noise as the
standard deviation is small and the distribution of the solutions is condensed around the
average value. This means that our greedy heuristics leads to solutions that are inside
attraction basins of local optima, which are robust to small perturbations. However, it
seems better to re-optimize the current solution as soon as the noise becomes greater
than 3 seconds, Table 5.6 showing that a 3 seconds noise on p3 greatly decreases the
optimized solution.

Inst. Init. Opt. Robustness Analysis – 1 second noise
Average Std.Dev. Min. Max. 1st Quart. 3rd Quart.

op1 2514 2394 2404 3.20 2396 2416 2402 2406
op2 2516 2381 2389 2.94 2383 2400 2387 2390
op3 9956 9579 9649 12.90 9623 9679 9640 9658
p1 3433 3261 3273 3.30 3266 3285 3271 3273
p2 3651 3450 3468 4.13 3459 3478 3466 3471
p3 13067 12717 12792 13.35 12758 12820 12782 12801

Table 5.4: One second noise : statistical analysis of the greedy heuristics solutions
robustness on six benchmark instances. Given the optimized solutions, 100 random
solutions with noise on decision variables values are generated and evaluated regarding
their global energy consumption in kW.h.

Figure 5.2 is a box plot of the statistical dispersion of the randomly generated solu-
tions for the instance op1, both on the initial timetable and on the optimized timetable.
The box plots of the initial timetable show that the more the noise, the bigger the
amplitude of the statistical distribution, but always centred around the initial global
energy consumption. On the other hand ,the box plots of the optimized solution show
that the increasing noise constantly decreases the average global energy consumption,
which tends to come back to its initial value.

This means that the initial solution has not been set in order to optimize the global
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Inst. Init. Opt. Robustness Analysis – 2 seconds noise
Average Std.Dev. Min. Max. 1st Quart. 3rd Quart.

op1 2514 2394 2414 5.42 2400 2431 2411 2417
op2 2516 2381 2400 6.32 2385 2421 2396 2403
op3 9956 9579 9716 20.05 9664 9778 9703 9730
p1 3433 3261 3289 6.99 3273 3313 3283 3294
p2 3651 3450 3489 7.32 3470 3505 3483 3494
p3 13067 12717 12876 18.68 12838 12914 12862 12890

Table 5.5: Two seconds noise : statistical analysis of the greedy heuristics solutions
robustness on six benchmark instances. Given the optimized solutions, 100 random
solutions with noise on decision variables values are generated and evaluated regarding
their global energy consumption in kW.h.

Inst. Init. Opt. Robustness Analysis – 3 seconds noise
Average Std.Dev. Min. Max. 1st Quart. 3rd Quart.

op1 2514 2394 2424 5.83 2410 2438 2420 2428
op2 2516 2381 2410 6.60 2393 2430 2407 2414
op3 9956 9579 9762 19.48 9709 9807 9748 9778
p1 3433 3261 3305 8.48 3290 3334 3300 3312
p2 3651 3450 3511 10.07 3486 3534 3504 3517
p3 13067 12717 12931 23.73 12864 12994 12914 12944

Table 5.6: Three seconds noise : statistical analysis of the greedy heuristics solutions
robustness on six benchmark instances. Given the optimized solutions, 100 random
solutions with noise on decision variables values are generated and evaluated regarding
their global energy consumption in kW.h.

energy consumption and that the initial energy value represents a fair approximation
of the consumption of a not energy-aware metro line. Finally, adding noise to the
optimized solutions adds randomness that makes it eventually resemble any not energy-
aware timetable.

5.3 Performance Results on Real Data

Our greedy heuristics has also been applied on a major city metro line comprising 16
stations for optimizing one full day timetable in two typical situations:

• a weekday timetable comprising 694 trips and 9585 dwell times,

• a Sunday timetable comprising 556 trips and 7679 dwell times.

Both the C++ implementation of CMA-ES and the MILP resolution by CPLEX have
failed to tame problems of this size. The MILP model contains, after its pre-processing,
230908 constraints and 165760 variables, whose 52872 are binary, and runs out of mem-
ory on CPLEX on a PC with an Intel Core i5 with 3GB of RAM.. The size of this
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Figure 5.2: Box plot of the statistical distribution of 100 randomized solutions generated
with a noise (in seconds) on decision variables. Compared global energy consumption (in
kW.h) between the initial timetable and the timetable optimized by the greedy heuristics
for the benchmark instance op1.

instance is to relate with the size of the problem handled in [30] which was containing
only 17850 constraints and 13860 variables, whose 4780 were binary, or in [29] which was
containing 7700 constraints and 4200 variables, whose 600 were binary. For CMA-ES,
it fails at computing the global energy consumption of the initial population within 30
minutes. On the other hand, our greedy heuristics is able to compute a solution in 20
minutes. The tolerances on the dwell times, trip times and headways have been first set
such that there is no visible change in the quality of service for the passengers. Their
relatively small values are as follows:

dwet,s = −3 1 ≤ t ≤M, 1 ≤ s ≤ N

dwet,s = 3 1 ≤ t ≤M, 1 ≤ s ≤ N

trtt = −15 1 ≤ t ≤M

trtt = 15 1 ≤ t ≤M

hdwt,s = −15 t ∈ [2,
M

2
] ∪ [

M

2
+ 2,M ], 1 ≤ s ≤ N

hdwt,s = 15 t ∈ [2,
M

2
] ∪ [

M

2
+ 2,M ], 1 ≤ s ≤ N
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For the Sunday timetable, the trip times and headways tolerances have been enlarged
to 20 seconds as follows:

trtt = −20 1 ≤ t ≤M

trtt = 20 1 ≤ t ≤M

hdwt,s = −20 t ∈ [2,
M

2
] ∪ [

M

2
+ 2,M ], 1 ≤ s ≤ N

hdwt,s = 20 t ∈ [2,
M

2
] ∪ [

M

2
+ 2,M ], 1 ≤ s ≤ N

While the optimized timetable with regular tolerances is saving energy by 7.54%, the
solution with increased tolerances can save up to 8.91%, increasing possibilities to syn-
chronize phases better. Table 5.7 summarizes these results.

Instance Length #dt,s Initial CMA-ES MILP Greedy heuristics
weekday 1 day 9585 218294 - - 207052 (-5.15%)
sunday15 1 day 7679 189953 - - 175638 (-7.54%)
sunday20 1 day 7679 189953 - - 173036 (-8.91%)

Table 5.7: Compared performances in terms of energy consumption, given in kW.h, of
CMA-ES, CPLEX and the greedy heuristics on three full size timetables. CMA-ES and
CPLEX did not manage to output a solution. The ratios represent the energy savings
compared to the initial timetable energy consumption.

Figures 5.3, 5.4 and 5.5 compare the initial and optimized timetable energy con-
sumptions on three real data instances. For the weekday timetable, the two peak hour
periods are clearly visible, from 8am to 11am and from 5pm to 9pm. It appears that
more energy is saved during these hours. This is due to the fact that, according to
the computed distribution matrix ∆s,s′ , the energy transfers can be done only between
metros that are very close from each other. Since the density of metros on the line is
higher during peak hours, it is thus possible to save more energy during these times.
The extrapolation of these savings shows that the metro company could save 3.65 GW.h
of electrical energy per year.
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Figure 5.3: Weekday timetable between 6am and 1am: energy consumption by inter-
vals of 30 minutes compared between the initial the timetable, in red, and timetable
computed by the greedy heuristics in green.
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Figure 5.4: 15 seconds tolerance on trips and headways Sunday timetable between 6am
and 1am : energy consumption by intervals of 30 minutes compared between the initial
timetable, in red, and the timetable computed by the greedy heuristics in green.
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Figure 5.5: 20 seconds tolerance on trips and headways Sunday timetable between 6am
and 1am : energy consumption by intervals of 30 minutes compared between the initial
timetable, in red, and the timetable computed by the greedy heuristics in green.



Chapter 6

Conclusion

In this thesis, We have proposed mathematical rescheduling model capable to represent
the diversity of the metro energy optimization problems. This model has been used to
classify by triples (objective function, decision variables, instant power demand evalu-
ation) several problems in the literature. By polynomial reductions of SAT, we have
shown that both the problems minimizing the global energy consumption or the max-
imum power peak are NP-hard, no matter the decision variables they use or whether
they approximate the instant power demand by linear or non-linear equations.

We have presented a greedy heuristic algorithm that addresses the particular prob-
lem of minimizing the global energy consumption by solely modifying the dwell times
(G, dwe, nonlin). It locally synchronizes the braking phases with acceleration phases
while globally checking that the timetable energy consumption is reduced. Shifting ac-
celeration phases by modifying the dwell times lengths thus increases the energy transfers
and the regenerative braking usage.

We have shown that our heuristic algorithm performs better than the classical op-
timization methods used in the literature. On six small size benchmark instances on
which MILP and CMA-ES could be run, we have shown that our heuristic algorithm
computes solutions faster and of higher quality. In particular for the MILP formula-
tion, the results computed by CPLEX are of lesser quality due to the inaccuracy of
the linear approximation of the objective function. It also performs better than the
state-of-the-art metaheuristic CMA-ES on these instances mainly for implementation
reasons, in particular the possibility of incrementally computing the objective function
over iterations. By adding a random noise on the output solutions, we have shown that
our heuristics is computing robust timetables, justifying its use in an industrial context
where small perturbations occur frequently.

Moreover, our dedicated heuristics is the only method able to solve a full day
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timetable of 7679 variables for the Sunday configuration and 9585 variables for the
weekday configuration, decreasing the global energy consumption respectively by 5.15%
and 7.54%, and up to 8.91% by increasing the tolerances on dwell times, trip times
and headways. These results show the applicability of this algorithm in an industrial
context.

In this thesis, we have pointed out that a key factor to efficiently solve metro energy
optimization rescheduling problems is how the instant power demand of the metro line
is defined or approximated. While an analytical computation of the energy consumption
is out of reach because of the complexity of the electricity equations, there is a trade-off
on instant power demand approximations between accuracy and rapidity to deal with.

On one hand, electrical simulators are very accurate but are only suited to compute
the global energy consumption of a static timetable. During optimization processes,
the computation time make them costly to use. On the other hand and in order to
be computed by MILP solvers, linear approximations based on the computation of the
braking and acceleration phase overlapping times are not accurate enough ; the use of
an auxiliary objective function instead of an energy consumption evaluation preventing
some high quality solutions to be considered during the optimization.

We have proposed a non-linear approximation of the instant power demand, which
provides an evaluation of the global energy consumption, fast enough to be used it-
eratively in an optimization algorithm. This approximation is based on a power flow
– a particular generalized flow with lossy edges – that simulates the power transfers
between braking and accelerating metros. To better model the line receptivity and the
Joule effect losses, these transfers are attenuated by a distribution matrix which has been
computed beforehand by an electrical simulator. Eventhough this model is not suitable
for MILP due to non-linear equations, the algorithm computing this power flow gives a
fast approximation of the instant power demand. The power flow model does not claim
to be an accurate instant power demand evaluation, but rather a fast approximation
leading the optimization process towards high quality solutions.

We have proposed to the community a set of benchmark timetables, available at
http://lifeware.inria.fr/wiki/COR14/Bench, to get a standard framework that can
be used to compare different methods and approaches to solve any metro energy op-
timization rescheduling problem. Our greedy heuristic algorithm is now implemented
as part of the ATS of the General Electric Transportation signalling system, Figure 6.1
illustrating the look of the optimization module. It needs now to be validated with its
future deployments on real cases. Our model unifying the timetable creation and its en-
ergy optimization presented in Chapter 3 is now under study to improve the regenerative
braking usage.
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Figure 6.1: Screenshot of the ATS optimization module of the General Electric Trans-
portation signalling system.
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