
HAL Id: tel-01102639
https://theses.hal.science/tel-01102639v1

Submitted on 13 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Profiling and debugging by efficient tracing of hybrid
multi-threaded HPC applications.

Jean-Baptiste Besnard

To cite this version:
Jean-Baptiste Besnard. Profiling and debugging by efficient tracing of hybrid multi-threaded HPC
applications.. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Versailles Saint
Quentin en Yvelines, 2014. English. �NNT : �. �tel-01102639�

https://theses.hal.science/tel-01102639v1
https://hal.archives-ouvertes.fr

THESIS SUBMITTED TO THE UNIVERSITY VERSAILLES
SAINT-QUENTIN EN YVELINES

Specialised in

Computer Science

at the École doctorale des Sciences et Technologies de Versailles (STV)

in total fulfillment of the requirements for the award of

DOCTOR OF PHILOSOPHY
entitled

Profiling and debugging by efficient tracing of hybrid
multi-threaded HPC applications.

by Jean-Baptiste Besnard

hosted by

CEA, DAM, DIF
F-91297 ARPAJON FRANCE

Département des Sciences de la Simulation et de l’Information (DSSI)

Publicly defended the 16th of July 2014
in front of the following doctoral Committee:

Pr. Alfredo GOLDMAN Professor at the University of São Paulo Jury President
Pr. Allen MALONY Professor at the University of Oregon Referee
Pr. Michael KRAJECKY Professor at the University of Reims Referee
Pr. William JALBY Director of research, University of Versailles Examiner
Dr. Marc PÉRACHE Tutor, Research Engineer at CEA,DAM Examiner

THÈSE DE DOCTORAT DE
L’UNIVERSITÉ DE VERSAILLES SAINT-QUENTIN EN YVELINES

Spécialité

Informatique

à l’École doctorale des Sciences et Technologies de Versailles (STV)

présentée pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ DE VERSAILLES
et intitulée

Profilage et débogage par prise de traces efficaces
d’applications hybrides multi-threadées HPC.

par Jean-Baptiste Besnard

Organisme d’accueil :

CEA, DAM, DIF
F-91297 ARPAJON FRANCE

Département des Sciences de la Simulation et de l’Information (DSSI)

Soutenue publiquement le 16 Juillet 2014
devant le jury composé de :

Pr. Alfredo GOLDMAN Professeur à l’université de São Paulo Président du jury
Pr. Allen MALONY Professeur à l’université d’Oregon Rapporteur
Pr. Michael KRAJECKY Professeur à l’université de Reims Rapporteur
Pr. William JALBY Directeur de Recherche, université de Versailles Examinateur
Dr. Marc PÉRACHE Tuteur, Ingénieur de recherche au CEA,DAM Examinateur

3

Abstract
Supercomputers’ evolution is at the source of both hardware and software chal-
lenges. In the quest for the highest computing power, the interdependence in-
between simulation components is becoming more and more impacting, requir-
ing new approaches. This thesis is focused on the software development aspect
and particularly on the observation of parallel software when being run on several
thousand cores. This observation aims at providing developers with the necessary
feedback when running a program on an execution substrate which has not been
modeled yet because of its complexity. In this purpose, we firstly introduce the
development process from a global point of view, before describing developer tools
and related work. In a second time, we present our contribution which consists
in a trace based profiling and debugging tool and its evolution towards an on-line
coupling method which as we will show is more scalable as it overcomes IOs lim-
itations. Our contribution also covers our time-stamp synchronisation algorithm
for tracing purposes which relies on a probabilistic approach with quantified error.
We also present a tool allowing machine characterisation from the MPI aspect and
demonstrate the presence of machine noise for both point to point and collectives,
justifying the use of an empirical approach. In summary, this work proposes and
motivates an alternative approach to trace based event collection while preserving
event granularity and a reduced overhead.

4

Résumé
L’évolution des supercalculateurs est à la source de défis logiciels et architecturaux.
Dans la quête de puissance de calcul, l’interdépendance des éléments du proces-
sus de simulation devient de plus en plus impactante et requiert de nouvelles ap-
proches. Cette thèse se concentre sur le développement logiciel et particulièrement
sur l’observation des programmes parallèles s’exécutant sur des milliers de cœurs.
Dans ce but, nous décrivons d’abord le processus de développement de manière
globale avant de présenter les outils existants et les travaux associés. Dans un sec-
ond temps, nous détaillons notre contribution qui consiste d’une part en des outils
de débogage et profilage par prise de traces, et d’autre part en leur évolution vers
un couplage en ligne qui pallie les limitations d’entrées–sorties. Notre contribu-
tion couvre également la synchronisation des horloges pour la prise de traces avec
la présentation d’un algorithme de synchronisation probabiliste dont nous avons
quantifié l’erreur. En outre, nous décrivons un outil de caractérisation machine qui
couvre l’aspect MPI. Un tel outil met en évidence la présence de bruit aussi bien sur
les communications de type point-à-point que de type collective. Enfin, nous pro-
posons et motivons une alternative à la collecte d’événements par prise de traces
tout en préservant la granularité des événements et un impact réduit sur les per-
formances, tant sur le volet utilisation CPU que sur les entrées–sorties.

5

Acknowledgement
These words end a three years adventure during which I met fascinating person-
alities and learned more than ever. First of all I want to thank Marc Pérache my
industrial tutor who made everything possible, I hope this work matches the trust
he has placed in me. By his careful and constant guidance he helped me to learn
from my mistakes without ever constraining my work or ideas in any manner. This
remarkable freedom is at the core of this work as it allowed the springing of new
ideas which became my contributions to the the performance tool field. This is this
inspiring boldness which is required in the HPC context where legacy is mixed with
novelty. I want to thank the CEA/DAM and my hierarchy who allowed me to work
at largest scales on world class supercomputers without any form of limitation –
allowing me to validate my work on representative cases. I also want to thank
William Jalby who directed my work from an academic point of view. Thanks to
both his original point of view and long experience in computer hardware architec-
ture he opened new ways of thinking of my problematics through shrewd remarks.
I am also grateful that he allowed me to join his team in order to pursue my work
on parallel tools. During these years I met several colleagues and friends from
CEA and university. I met trainees, doctoral candidates and post-doc from vari-
ous horizons involved in every stage of the simulation chain: Marc W., Emmanuel,
Emmanuel O., Bertrand, Alexandra, Alexandre, Xavier, Thomas, Nicolas, Jordan,
Asma and so many more. This was an inciting interdisciplinary environment where
we sharpened our point of views, shared good moments and supported each other.
I want to thank particularly all the members of the MPC Team, Marc of course,
Patrick, Julien J., Jean-Yves, Sébastien, Jérôme, Camille, Augustin, Aurèle, Syl-
vain, Julien A., Antoine, Emmanuelle and François for everything we shared dur-
ing this adventure. I also want to thank my reviewers, Professor Krajecky and
Malony who took the time to assess my work with interesting remarks in the light
of their long experience. I’am also honored that Professor Goldman has accepted
to preside my Jury. I want to express my gratitude to my family for its patience,
particularly my wife Anaïs for her continous support. Eventually, as I believe that
the transitioning to Exascale has just started, I am happy to be able to pursue my
work in the HPC field at Paratools, for this I want to thank Mr Shende and Malony.

6

Contents

1 Introduction 13
1.1 The MultiProcessor Computing Runtime . 14
1.2 Requirements . 15
1.3 Manuscript Outline . 15

I Context 17

2 Thesis Context 19
2.1 Supercomputer Evolution Overview . 19
2.2 Supercomputer Architecture and Performance . 21
2.3 Programming Models . 22

2.3.1 Shared Memory . 23
2.3.2 Distributed Memory . 23
2.3.3 Accelerators . 23
2.3.4 Summary . 24

2.4 Thesis Computing Environment . 24
2.4.1 Description . 25
2.4.2 Node Description . 25
2.4.3 Network Topology . 26

2.5 Summary . 27

3 Development Cycle 29
3.1 Classical Development Methodologies . 29

3.1.1 Constants in the Development Cycle . 29
3.1.2 Waterfall Model . 31
3.1.3 V-Model . 32
3.1.4 Agile Methods . 33

3.2 Developing Against Complexity . 34
3.2.1 Structural Loops . 35
3.2.2 Catalysing Loops . 36

3.3 Tools as Heuristics . 37
3.3.1 Specifications . 38
3.3.2 Software Development . 38
3.3.3 Integration . 39
3.3.4 Reporting . 39
3.3.5 Software Management . 39
3.3.6 Overview . 39

7

8 CONTENTS

3.4 Summary . 40

4 Role of Performance and Debugging Tools 41
4.1 Performance Metrics . 41

4.1.1 Strong and Weak Scaling . 41
4.1.2 Canonical Speedup . 42
4.1.3 Scaling Bounds . 43
4.1.4 Acceleration versus Scaling . 44
4.1.5 Summary . 46

4.2 Programs Correctness . 47
4.2.1 Overview . 47
4.2.2 Quality Process . 48

4.3 Summary . 50

II Key Concepts and Related Work 51

5 Architecture of Developer Tools 53
5.1 Canonical Architecture . 53
5.2 Instrumentation Approaches . 54

5.2.1 External Instrumentation . 54
5.2.2 Embedded Instrumentation . 55

5.3 Coupling Methods . 56
5.3.1 In-Place . 56
5.3.2 Post-Mortem . 57
5.3.3 On-line . 57

5.4 Performance Event Analysis . 58
5.5 Summary . 59

6 Related Work 61
6.1 Developer Tools . 61

6.1.1 Debuggers . 61
6.1.2 Performance Tools . 62
6.1.3 Validation Tools . 67

6.2 Time-stamp Synchronisation . 68
6.2.1 Time Source . 70
6.2.2 Synchronisation . 70
6.2.3 Logical Clocks . 71
6.2.4 Time-stamps for Instrumentation . 71

6.3 Blackboard Systems . 71
6.3.1 BlackBoard Architecture . 72

6.4 Data Management . 73
6.4.1 File-Based Approach . 73
6.4.2 Key-Value Data-stores . 74
6.4.3 Distributed Data-Reduction . 75
6.4.4 Tree-Based Overlay Networks (TBONS) . 75

CONTENTS 9

III Contribution 77

7 MPI Runtime Characterisation 79
7.1 Tool Architecture . 79
7.2 Measurement Process . 80

7.2.1 Point to Points . 80
7.2.2 Collectives Operations . 80

7.3 Report Analysis . 81
7.3.1 Point to Points . 81
7.3.2 Collective Operations . 83

7.4 Summary . 84

8 Timestamp Synchronisation 85
8.1 Synchronisation Principle . 85
8.2 Distributed Synchronisation . 86

8.2.1 Notations and Methodology . 86
8.2.2 Centralised Topology . 87
8.2.3 k-tree Topology . 87
8.2.4 Ring Topology . 88
8.2.5 Binomial Tree Topology . 89
8.2.6 Summary . 90

8.3 Depth Distribution in 2-trees and Binomial Trees 91
8.3.1 Notations and Methodology . 91
8.3.2 2-tree . 91
8.3.3 Binomial Tree . 92
8.3.4 Summary . 93

8.4 Study of Synchronisation Error Propagation . 93
8.4.1 Round-trip Error Distribution . 93
8.4.2 Error Propagation . 96

8.5 Summary . 98

9 Trace Based Approach 101
9.1 Limitations of Existing Trace Formats . 101
9.2 Proposed Architecture . 102
9.3 Instrumentation . 102

9.3.1 MPI Profiling Interface . 103
9.3.2 Compiler Level Instrumentation . 103
9.3.3 Direct Instrumentation . 104
9.3.4 Library Interposition . 104
9.3.5 Instrumentation Summary . 105

9.4 Trace Library . 105
9.4.1 Topology Management . 106
9.4.2 Event Description . 106
9.4.3 File Descriptor Handling . 106
9.4.4 Debug Buffers . 108
9.4.5 Symbol Extraction . 108
9.4.6 Compression . 112

9.5 Trace Reader . 118

10 CONTENTS

9.5.1 Trace Reader Architecture . 119
9.5.2 Trace Reader Interface . 119
9.5.3 Sample Tool . 120
9.5.4 Performance . 120

9.6 Limitation . 121
9.7 Summary . 121

10 Online Trace Analysis 123
10.1 Shifting to On-line Trace Analysis . 123
10.2 Coupling Multiple Applications . 125

10.2.1 Transparent Cohabitation (Virtualization) 125
10.2.2 Mappings (VMPI_Maps) . 128
10.2.3 Communications (VMPI_Streams) . 129
10.2.4 1 to N Coupling . 131
10.2.5 Runtime-Coupling Performance . 132
10.2.6 Summary . 133

10.3 Blackboard . 133
10.3.1 Blackboard Implementation . 134
10.3.2 Limitations . 135
10.3.3 Summary . 136

11 Distributed Analysis and Reduction Tree (DART) 137
11.1 Motivations . 137
11.2 Architecture . 138

11.2.1 Fixed Topology . 138
11.2.2 Network Engine . 144

11.3 Interface and Programming Principle . 145
11.4 Analysis Projects . 149

11.4.1 Continuous Sampling Engine . 149
11.4.2 Phase Based Sorting Filter . 151

11.5 Limitations . 151
11.6 Summary . 152

12 Analysis 153
12.1 Tested Programs . 153
12.2 Trace-Based Debugger . 154

12.2.1 Architecture . 154
12.2.2 Interactive Debugging . 155
12.2.3 Hybrid Deadlock Detection . 155
12.2.4 Trace-Based Crash-Dumps Performance . 158
12.2.5 Trace-Based Crash-Dumps and Profiling 158

12.3 Reporting . 159
12.3.1 Measure Collectors . 160
12.3.2 Module Example . 161

12.4 Profiling . 162
12.4.1 Profiles . 162
12.4.2 MPI Communication Mapping . 163
12.4.3 Wait State Analysis . 164

CONTENTS 11

12.4.4 Time Matrix . 165
12.4.5 MPI Quadrant . 170
12.4.6 Spatial Analysis . 170

12.5 Online Trace Analysis Overhead . 171
12.6 Summary . 173

IV Conclusion and Perspectives 175

13 Conclusion 177

14 Perspectives 179
14.1 Analysis . 179
14.2 Features . 180

Appendices 197

A Instrumentation Filtering at Compiler-Level 199
A.1 Existing Filtering . 199
A.2 Proposed Extension . 200

B Instrumenting the MPC Framework 201
B.1 MPC Extended TLS . 201
B.2 Launch Hooks . 201
B.3 Instrumentation Points . 202

B.3.1 MPI Profiling Interface . 202
B.3.2 Thread Spawning . 202
B.3.3 Lock Instrumentation . 202

B.4 Topology Getters . 203

12 CONTENTS

CHAPTER 1

Introduction

As numerical simulation is becoming an important tool for scientific competitiveness with
various applications ranging from fundamental science (Quantum Physics) to industry (Aero-
nautic and automotive design), simulation codes have to be seen from the modelling process
macroscopic point of view. When dealing with high-end supercomputers, simulation programs
cannot be viewed as a tool which punctually validates an hypothesis. On the contrary, the
program becomes a constituting part of the simulation process which is aimed at providing
measurements matching an experiment. Therefore, although we often picture physicists in
their laboratory, performing precise measurements with bounded error rates, nowadays, sci-
ence is often seen through the lens of a computer program. Moreover, as we will further de-
velop in this thesis, computer programs have few in common with high level equations which
describe an objectified reality, instead, they describe an operational reality with iterative and
alternative behaviours. This, while coping with evolving execution substrates.

This thesis acknowledges this context and aims at providing developers with the neces-
sary feedback when using supercomputers. Because of their complexity, supercomputers are
somehow unpredictable as parallel interactions and contention on shared resources creates
a combinatory number of states, sometimes reached randomly because of freedom degrees in
the scheduling. Therefore, despite being formally defined at sequential level, parallel execu-
tion is sometimes not predictable from the code alone. In the absence of model, a common
approach is then to process empirical measurements in order to observe how a code behaves
on the execution substrate, approach that we adopted in this thesis by setting up a measure-
ment and analysis framework. The object of this work is then to explore the possibilities of
profiling and debugging for production grade applications (million lines of codes) at supercom-
puter scale (thousands of cores) in an hybrid context. Where, profiling is the examination of a
program’s performance on a given execution substrate whereas debugging is more concerned
by the correctness of the solution or faulty program state (crashes) investigation. The hybrid
aspects comes from one of the parallel execution runtime which is targeted by our analysis:
the Multi-Processor Computing runtime (MPC). It is a runtime which combines several paral-
lel programming models over an unified scheduler in order to allow their efficient mixing in
purpose of taking advantage of upcoming supercomputer architectures. We will pursue this
introduction with a brief presentation of the MPC framework insisting on how it constrained
our tool implementation. Then, we define our requirements more formally and provide an
outline of the organisation of this document.

13

14 INTRODUCTION

1.1 The MultiProcessor Computing Runtime

MPC [Pér06, PJN08] aims at providing an unified framework to run massively parallel ap-
plications on clusters of (very) large multi-core numa nodes. It supports MPI 1.3, OpenMP
2.5 and POSIX threads interfaces over an unified runtime which is designed to mix those
standards in an efficient way [CPJ10]. One particularity of MPC is that MPI processes are
running within user-level threads, allowing fine grained scheduling and optimisations such
as busy-waiting removal. MPC supports Infiniband and TCP networks with a fully MPI
thread multiple support. It is built to allow communication overlapping [DCPJ12] and reduces
the overall memory consumption [PCJ09] by factorising process level resources thanks to ex-
tended thread local storage [CPJ11] and efficient memory management directives [TCP12]. It
is shipped with a patched GCC compiler, allowing both compilation of OpenMP programs and
automatic privatisation of global variables in purpose of eventually running program within
user-level threads. It also features a patched GDB, allowing transparent debugging of user-
level threads [PCJ10] and has been supported in commercial debuggers such as DDT. MPC has
evolved drastically since 2006 and is under constant evolution to alleviate the upcoming chal-
lenges of many-core architectures. Being used in production on the Tera 100 supercomputer,
it reached the petaflopic scale with a competitive memory footprint and a reduced launch
time [PCDJ12]. These gains come from the thread based nature of MPC which allows both
resource factorisation and reduces the number of MPI processes to launch by a factor which is
equal to the number of cores per node (32 on tera 100). Consequently, MPC requires only 4370
processes instead of 140 000 for the whole Tera 100 computer, therefore, drastically reducing
launch time1. Figure 1.1 presents the Multi-Processor Computing Runtime architecture. As
it is a thread based MPI, ranks which are commonly located in distinct processes, are now in
user-level threads. This configuration, reduces memory requirements and restores fairness in-
between threads which can run on the same scheduler. This avoids for example busy waiting
and opens opportunities when mixing programming models.

Figure 1.1: Overview of the MPC runtime.

1 5000 MPI processes is a classical payload on Tera 100 whereas 140 000 is not.

REQUIREMENTS 15

From an instrumentation point of view, supporting MPC has some challenging aspects as
it requires a careful handling of parallelism (at task level) and extend the classical process
hierarchy (Cluster 7→ Node 7→ Process(Ranks) 7→ Thread) to include the task level (Cluster
7→ Node 7→ Process 7→ Tasks(Ranks) 7→ Thread), requiring a particular attention when han-
dling program state. Those, parallelism and topology requirements led to the development of
our own trace format (chapter 9), allowing, in complement of MPI programs, MPC programs
instrumentation which as we will further develop was not practical with existing formats.
Consequently, our support of the MPC framework yielded a certain number of requirements
which led to the design of our first implementation of a trace analysis framework called the
MPC Trace Library (chapter 9). In a second time, these requirements were relaxed when
our tool moved to an on-line approach to become MALP (chapter 10), work which has been
published in an article [BPJ13].

1.2 Requirements

As described in Chapter 3, managing simulation programs is a challenging task as it adds
the classical difficulties of programming with the complexity of modelling. Moreover, the tran-
sition toward Exascale which is expected around 2015–2020 [MSDS93] (see figure 2.1) will be
more than an hardware problem. Indeed, the increasing number of core per processor (since
≈ 2002) already impacted programs as they now have to rely on hybrid approaches. But, cur-
rent trends, paving the way to Exascale by favouring many-cores and accelerators pose new
problematics as they require a dramatic shift in programs architecture — causing close to a
complete rewriting of simulation codes. For example the Tianhe-II supercomputer which is at
the moment the largest supercomputer includes Intel Xeon Phi for a total of 3,120,000 cores
only achieves an efficiency of 62.3 %2 on the Linpack Benchmark [DLP03], emphasising the ar-
duousness associated with the programming of such demanding architectures. Consequently,
porting simulations programs to next generation machines will be a challenging task which
requires (1) the capacity of instilling transition by questioning local maximums (or stratifi-
cation) and (2) the availability of means of measure and control to guide developer teams in
the maze of Exascale simulation. This thesis is focused on a small subset of this problem:
measure. Our purpose is to provide developers with metrics of their programs in purpose of
guiding their choice in-between design alternatives (trial & error). In complement, our tools
shall be able to continuously qualify programs fitting relatively to performance criteria to build
a management metric — more likely to positively influence developer teams. Dealing with re-
liability, we also have to explore solutions to describe faulty program states in the context of
production jobs (particularly long running batch job) and unpredictable crashes which can be
hard to diagnose. Requirements which conducted this thesis to explore both profiling and de-
bugging aspects over a common tracing framework while developing corollary notions such as
time-stamp synchronisation and performance modelling.

1.3 Manuscript Outline

In Part I, we first present in more detail the context of this thesis in terms of supercomputer
evolution, architecture and their associated programming models. Then, Chapter 3 contextu-
alises the development task in terms of classical management processes (development cycle),

2 Tera 100 has an efficiency of 83.6 %.

16 INTRODUCTION

outlining the recursive roles and duties of each of its actors. Followingly, Chapter 4 introduces
the role of performance and debugging tools in the light of this development cycle. In Part
II, we begin by a brief description of developer tools’ architecture before detailing in Chapter
6 work related to our subject. In part III, our contribution starts by presenting our machine
characterisation tool, called “MPI Bench” (Chapter 7). It describes which performance can
be expected from a given machine from the MPI point of view, measures which can be used
by developers to privilege most scalable MPI calls. Then, Chapter 8 introduces the principle
of our clock synchronisation algorithm which is needed to restore time coherence within dis-
tributed measurement, opening opportunities for time-based analysis. Then, we present the
two main parts of our contribution which are associated with two different data management
methods: trace-based (chapter 9) and on-line coupling (chapter 10). The trace-based approach
is described and contrasted with existing trace formats while introducing its support for de-
bugging. Then, the on-line approach is described as a more efficient coupling method which by-
passes the IO bottleneck while providing analysis with enhanced parallelism. Analysis which
are covered in Chapter 12 through several modules which were, for most of them, ported from
the original trace-based approach to the new on-line trace analysis, demonstrating both de-
bugging (back-traces, deadlock detection, ...) and profiling facilities. Eventually, Part IV, sums
up our contribution and conclude this manuscript before outlining our future work.

PART I

Context

17

CHAPTER 2

Thesis Context

This chapter provides some context on High Performance Computing, focusing on supercom-
puters’ architecture and their evolution. We will start by a brief reminder on supercomputers
evolution trends with a description of current hardware followed by an introduction of exist-
ing programming models. Our purpose is to insist on the complexity arising from parallel
computers as it is at the root of usability problems programmers now encounter.

2.1 Supercomputer Evolution Overview

Supercomputers are known for their rapid evolution, such trend can be witnessed thanks
to the well known top500.org website [MSDS93] which ranks the world largest supercomput-
ers relatively to the top performance obtained over the Linpack [Don87] benchmark. This
benchmark, performing linear algebra operations characterises the ability of a given super-
computer to solve numerical problems. Supercomputers are then ranked according to two
measurements in FLoating-point OPerations per Second or Flops: RPeak and RMax. Where
RPeak is the cumulative peak performance of processing units as stated by manufacturers and
RMax the operation throughput achieved on the Linpack benchmark. Although the Linpack
benchmark gives some insight on “real-world” problems, it does not describe applications in
general [DLP03] as for example they might stress the interconnection network by performing
massive IOs or communications. To address Linpack’s limitations, a complementary bench-
mark graph500.org [BBK+10] has been proposed, more focused on data management as it
solves graph related problems [FGMM06] and yields results in Traversed Edges Per Second
(TEPS). Schematically, real HPC applications are somewhere in-between those two extremes
as they perform floating point operations (top500) while managing large data-sets (graph500).
Despite aforementioned limitations, top500 is still at the moment the reference source for su-
percomputer ranking. Figure 2.1 is from the top500 website, it depicts the computing power
evolution since 1993 and projects its evolution until 2020. Exponential evolution of computing
power is clearly visible with approximately a tenfold increase every tree years. Moreover, look-
ing at projections, Exaflop shall be reached around year 2020 but not without efforts [BBC+08].
Although an exponential computing power growth has been maintained over the years, super-
computers’ taxonomy has evolved drastically, starting in the 1960s with the first supercom-
puter designed by Saymour Cray where architectures relied mainly on specifically tailored
vectorial computing units and a small number of processors, until the 1990s where machines
with thousands of processors appeared. At this point programming models migrated from in-
tensive vectorisation (mainly in Fortran) to distributed memory paradigm over MPI or PVM in
purpose of taking advantage of the computing power provided by interconnected nodes. From

19

20 THESIS CONTEXT

Figure 2.1: Evolution and projected performance development of supercomputers as
displayed on the top500.org website. (Source : top500.org [MSDS93].)

then until today, most supercomputers started to rely on more standard components (mostly
high-end x86 processors) to reduce production costs, MPI took the advantage over PVM and
the number of cores started its quick increase until reaching the million with the IBM Sequoia
supercomputer and later on several millions with Tianhe-II.

This spectacular increase in the number of cores finds its root in hardware limitations.
Until recently, Moore’s Law [Moo65] stating the the number of transistors in a given sur-
face doubles every two years has been the main source of computing power improvement as
microprocessors were becoming more efficient. Thus, thanks to the increase of processors’ fre-
quencies, the ’same work’ could be done faster with virtually no application modification. But
this trend came to and end around year 2002 when physical limitations (mainly power dissi-
pation) started to slowdown frequency increase, thus, limiting sequential performance gains.
Nonetheless, processors manufacturers managed to overcome this limitation, sustaining the
exponential performance increase, not in frequency but by multiplying the number of cores.
Creating a singularity in code development trends where parallelism became compulsory to
get performance improvements — situation which was summed up by the well known “Free
Lunch Is Over” [Sut05] quotation.

Figure 2.2: Sample communication scheme for ghost cells synchronisation.

SUPERCOMPUTER ARCHITECTURE AND PERFORMANCE 21

Because of the rapid increase in the number of cores per node, memory per core decreased
and programs were forced to combine both shared and distributed memory parallelism. In-
deed, on a given node, using distributed memory parallelism leads to data duplication not only
by multiplying processes and their associated file descriptors but also at program level. Figure
2.2 exemplifies this situation with a simple simulation code . It relies on a 2D-mesh and dupli-
cates the same cell up to four times for synchronisation in-between ghost cells (in red) and real
cells in blue. This imposed shift to mixed programming requires important program evolution,
forcing programs to work at multiple parallelism granularities. In this challenging context,
performance tools can provide important feedback to users, helping them to understand and
project design choices.

2.2 Supercomputer Architecture and Performance

Since the 1990s, supercomputers gather several computing nodes interconnected by a high
performance network. A consequence of cores multiplication, is the hierarchical aspect of
processing capabilities. Figure 2.3 presents a simplified assembler code corresponding with a
single multiplication (blue box). It can be seen that the operands (A and B) have to be loaded in
registers before being processed by the Arithmetic and Logical Unit (ALU, red box) which pro-
duces a result which can be stored in the main memory by the “store” instruction. Naturally
current processors are much more complex (addressing types, prefetching, branch prediction,
...) and won’t be covered in this introduction. But this simple load and store model is sufficient
to show that computation is done by combining data (operands/data-set) with data (program).
Consequently, it is the memory bandwidth and scattering which “shapes” calculation by defin-
ing how programs operate on data-sets within machines memory constraints. Therefore, we
start by exposing how data can move in current supercomputers (massive clusters) before
exposing some of the programming models being used to exploit them.

Figure 2.3: Simple representation of an ALU (Arithmetic and Logical Unit) perform-
ing a multiplication on two scalar operands. The left part presents a sim-
plified assembler code performing the multiplication of two scalar values
A and B and their storage in R.

In current supercomputers, multiple data states can be identified both at a given distance
in time (or latency) from processing units and with a fixed symbol throughput (or bandwidth).
We define a cluster of machines as a group of computing nodes interconnected by a high perfor-
mance network with a fixed topology. Each node at its turn groups several processing units (or
cores each with an ALU) following a topology shaped by their local memory (as known as Non
Uniform Memory Access (NUMA) architectures). Context in which some accesses are done to

22 THESIS CONTEXT

local memory banks and others to distant ones with variable costs. Figure 2.4 illustrate this
trade-off between available memory and bandwidth. It can be seen that when moving closer
to processing units, data containers become faster but smaller. Whereas, when moving away
from processing units data-stores become larger but slower until reaching file system level.

File System

Cluster

Figure 2.4: Schematic and effective memory hierarchy.

As presented in figure 2.5, data can reside in various containers which expose different char-
acteristics, one of the biggest challenge of parallel programming is to actually distribute data
according to this topology in order to fully exploit the hardware. Consequently, data have to
be distributed evenly among the processing units in chunks which fit into the lowest caches.
In this context, two different level of parallelism have to be identified, (1) distributed paral-
lelism in-between the nodes which are connected through the network; (2) Shared memory
parallelism which takes place within nodes, where multiple threads access the same memory
area. To express parallel computations in these two contexts, several programming models
are available each with its own semantic and syntax. Moreover, as aforementioned, memory
limitations are forcing programmers to adopt a mixed approach, combining coarse and fine
grained parallelism for respectively distributed and shared memory contexts.

2.3 Programming Models

As we developed in previous section, supercomputers parallelism tends to rank memory,
complicating memory management and stressing parallel programming models adaptability.
Leading to the development of several programming models, each directed towards a particu-
lar level of parallelism. This section introduces main approaches, starting by shared memory
parallelism approaches, before describing distributed memory parallelism and accelerators.

Data State Volume Throughput Resilient User Managed
Long Term Storage Very Large (PB) Low (less than a GB/s) yes no (Storage policy)

File-System Large (TB) Low (less than a GB/s) yes yes (IO calls)
Remote Memory Medium (GB) Medium (network bandwidth) no yes (Network calls)

Memory Medium (GB) High (GB/s) no yes (Allocator calls)
Caches Low (MB and KB) Very High (GB/s) no no (processor level)

Figure 2.5: List of common data states in HPC clusters (relatively to a single node).

PROGRAMMING MODELS 23

2.3.1 Shared Memory

Shared memory is the most common parallelism approach where multiple processing share
the same address space, allowing ’direct’ data exchanges. Pthread is the most widespread
parallel programming interface as it has been standardised in the POSIX standard, becoming
basic a block of higher level programming models. Threads are execution streams which can
overload the available number of computing units, in other words, operating systems feature
a scheduler which role is to switch in-between threads, evenly allocating computing power
to each stream. Thanks to this functionality, multitasking is possible even on a single core,
using a time-sharing approach. However, as the scheduler is located in the kernel, switching
between threads requires a context switch. Therefore, alternatives were developed in order to
build user-level threads, able to run multiple threads on top of a single execution stream. Such
threads are called user-level threads and can be scheduled very efficiently. Several libraries
feature user threads, for example, Marcel [DMN99,Nam01], MPC [PJN08] and GNU portable
threads [Eng03]. Relying on threads, several higher level approaches have been developed
in order to simplify parallelism expression, featuring various run-times and programming
interfaces, ranging from compiler pragmas to dedicated programming languages. A common
way of parallelising existing programs is OpenMP [DM98] which relies on compiler pragmas,
extracting the parallelism from for loops while providing a task model. Numerous other
parallel run-times have also been developed including StarSS [PBAL09], Kaapi [GBP07] in
conjunction with a wide range of programming approaches such as Charm++ [KK93] or Cilk
[BJK+95] recursive functions.

2.3.2 Distributed Memory

Dealing with distributed-memory parallelism, the reference programming model is the Mes-
sage Passing Interface (MPI) [MF08] which relies on messages in-between distributed pro-
cesses. Several MPI implementations are available including: OpenMPI [GFB+04], MPICH
[GLDS96], MVAPICH [KJP08]... MPI generally relies on a combination of both high perfor-
mance networks and shared memory segments, respectively providing parallelism inside and
outside nodes boundaries. One advantage of MPI is its immediate support for NUMA plat-
forms as data replication is enforced by programming model. However, these replications
and message buffers overhead, inevitably lead to an increased memory usage. As a conse-
quence, in order to face the rapid increase in terms of number of cores, MPI is often used in
conjunction with OpenMP in a mixed programming approach. Limiting the number of pro-
cesses per node, but, hardening program development. An alternative to message passing is
the Partitioned Global Address Space (PGAS) method which consists in splitting memory over
threads or distributed processes while providing a transparent access to remote data. Sev-
eral PGAS implementations are available with for example UPC [EGS06], Chapel [CCZ07],
X10 [CGS+05]...

2.3.3 Accelerators

A recent evolution in parallel computing is the advent of accelerators which are complemen-
tary devices speeding up computation thanks to a data-flow approach. Such devices generally
use the Single Instruction Multiple Data (SIMD) paradigm which applies the same operation
to a large data vector. Accelerators were firstly derived from graphic card and programmed
through low level graphic calls (shaders), however, the growing popularity of these devices led
to the development of dedicated languages, greatly simplifying development: CUDA [Nvi11]

24 THESIS CONTEXT

for Nvidia cards and OpenCL [M+09] for both ATI and Nvidia cards. Such devices rely on
a large number of simple ’cores’, decreasing energy consumption per floating point operation
when compared to classical processors. This allowed supercomputers powered with Graph-
ical Processing Units(GPUs) to dominate the Green 500 [SF12] which lists the most power
efficient machines. One difficulty of GPUs is that they rely on vendor specific languages, and
thus, create an adherence between codes and devices. To face this limitation, several run-times
were developed among which are StarPU [ATNW11,Aug11], StarSS [Lab10], HMPP [DBB07]
or the recently standardised OpenACC [Ope11] which aims at providing accelerators with a
pragma based programming model. More recently, Intel released its Xeon Phi, finding a trade
off between GPUs and classical processors by relying on several simple x86 processors (atom
like) with extended vectorial operations (AVX) — simplifying code porting but requiring an
important optimisation effort.

2.3.4 Summary

This section briefly introduced the variety of approaches which were developed to take ad-
vantage of supercomputers and parallel computing units. We have seen that several hardware
and software approaches were developed. Some of them being vendor specific and requiring a
partial code rewrite associated with a constant optimisation effort. Consequently, parallel pro-
grams have to cope with the rapid evolution of both hardware and programming models which
necessarily impact simulation codes while requiring a questioning of development habits.

2.4 Thesis Computing Environment

All this thesis measurements were done on two petaflopic range supercomputers. The first
one is Tera 100 [TOP10, Vet13](p. 45) (figure 2.6(a)) which belongs to the CEA (Commisariat
à l’Énergie Atomique et aux énergies alternatives) which use it for defence applications. The
second one is Curie [TOP12] (figure 2.6(b)) which is funded by GENCI and aims at providing
the french industrial tissue and research with efficient simulation tools. These two machines
are manufactured by Bull SA, featuring a similar designs (see figure 2.7) although Curie uses
more recent processors (Sandy Bridge) than Tera 100 (Nehalem), thus, achieving higher per-
formances.

(a) Tera 100 Supercomputer (b) Curie Supercomputer

Figure 2.6: Views of Tera 100 and Curie supercomputers.

THESIS COMPUTING ENVIRONMENT 25

Characteristic Tera 100 Curie
Rpeak 1254.5 TFlop/s 1667.2 TFlop/s
Rmax 1050.0 TFlop/s 1359.0 TFlop/s

Processor type Intel Xeon 7500 Intel Xeon E5-2680
Total Number of cores 138368 77184

Total Memory 276736 GB 308736 GB
Memory per core 2 GB 4 GB

Operating System Linux (Redhat) Linux (Redhat)
Interconnect Infiniband QDR Infiniband QDR

Network Topology Fat-tree Fat-tree

Figure 2.7: Characteristics of both Tera 100 and Curie supercomputers.

2.4.1 Description

These two supercomputers can be qualified as generalist ones as they provide powerful com-
puting units and relatively high volumes of memory per core. They also feature very effi-
cient Inputs and Outputs1(IOs) and legacy operating systems (Redhat Linux). Other TOP 500
machines adopted different approaches, for example, the IBM BlueGene line, favours a high
number of cores with less memory per core (between 512 MB and 1 GB per core) and until
recently (BlueGenes moved to linux) specifically tailored operating systems. Therefore, these
two generalist machines are able to run moderately parallel payload with acceptable perfor-
mance, approach not possible with architecture requiring more parallelism because of lower
sequential performance. In complement of supporting a wider application spectrum, general-
ist supercomputers have many advantages, for example relatively to legacy codes as they are
easier to port. They also have negative consequences as they do not enforce strict parallelism
in the development process as such ideal machines somehow maintain the “free lunch” illu-
sion. Moreover, this adaptability requires consequent engineering and administration efforts
to hide complexity from the end user, efforts which might not suffice with next generation ma-
chines which will feature millions of cores — eventually requiring efforts from end-users. It
is already the case at Petascale with supercomputers being less used as tool in a feed-forward
fashion but be included in the simulation process as an evolving tool which requires trade-
offs and feedback. Evolution testified by the development of several optimisation tools. Our
thesis work acknowledges this context and proposes to develop an optimisation tools which is
integrated in the development process, providing constant feedback on program’s performance
and positively influencing their adaptation to evolving execution substrates.

2.4.2 Node Description

As presented in figure 2.8(a), a Tera 100 node consists in four NUMA sockets with 16 GB
of local memory for a total of 64 GB per node. Each socket hosts an eight core Intel Xeon
7500 processor cadenced at 2.27 GHz, yielding a total of 32 cores with 2 GB of memory per
core. Nodes have a single Infiniband [Pfi01, A+01] Quad Data Rate(QDR, 3.2 GB/s) card 2

located nearby a single socket. This configuration creates Non-Uniform Input/Outputs Access
(NUIOA) effects [MGN10,Mor11] where one socket has a privileged network access compared

1 Tera 100 had upon its release a record IO throughput of 500 GB/s.
2 Each node also feature a Gigabit ethernet interface for administration puposes.

26 THESIS CONTEXT

(a) Intra-node topology for Tera 100. (b) Node layout for a Bullx S6010 node in 1.5U (from
S6010 support page [Bul10]).

Figure 2.8: Overview of Tera 100 node (Bullx Super-Node 6010) topology.

to the three others. All these components fit in a Bullx Super-Node 6010 of 1.5 Rack Unit(U).
Allowing when L-shaped blade are stacked top-to-tail at a high density of 64 cores in 3U.

2.4.3 Network Topology

(a) Example of fat-tree topology. (b) Tera 100 compute island network bandwidth.

Figure 2.9: Overview of Tera 100 node (Bullx Super-Node 6010) topology.

Tera 100 topology [Vet13](p. 53) is derived from a fat tree [Lei85, Gra03]. As presented in
figure 2.9(a), in a fat-tree routers are connected with an increasing number of links which role
is to compensate the loss of locality in terms of bandwidth (not in latency as the number of
hops increases). Fat-tree topologies also have the propriety of being able to efficiently convey
any communication topology with a satisfying efficiency [Lei85]. Propriety which can be un-
derstood by looking at bandwidth scattering: thanks to the increasing number of links when
climbing the tree, any partition of nodes is guaranteed to reach the full bisection bandwidth.
Therefore, different topologies can run over a fat tree with limited performance impact on
bandwidth, whereas latency is only impacted logarithmically when the number of nodes in-
creases (tree-based topology). Fat-trees are then interesting topologies for generalist machines

SUMMARY 27

which want to be able to run a wide range of codes.

However, if we look more closely at Tera 100 network, it uses a pruned version of the fat
tree, in order to reduce both network costs and complexity while preserving performances.
As presented in figure 2.9(b), computing nodes are regrouped in thirteen island of 324 nodes
around the same Infiniband router. Therefore, each island gathers 324 × 4 × 8 = 10368
cores in a star topology. Moreover, island are interconnected with smaller routers (36 ports)
to form the whole 140 000 core machine. As depicted in figure 2.9(b), total leaf bandwidth
(324 × 3 = 972 GB/s)3 is six times greater than the up-link bandwidth (162 GB/s)4 because of
pruning. This 1

6 pruning ratio reduced costs and network complexity while preserving correct
performance for regular jobs and full machine runs. More importantly, as most jobs are in the
1000-10000 range, they can take advantage of a regular star topology, while relying on the
up-link solely for Inputs and Outputs.

2.5 Summary

This section presented the rapidly evolving supercomputing context in which simulation
codes which generally evolve at a slower pace have to constantly adapt themselves to new
hardware constraints and programming models. We insisted on the topology of supercomputer
which has a direct impact over computation scattering and therefore has to be taken into
account by developers. We ended this chapter with a presentation of the two machines which
are used in the rest of this document. They both feature several cores per node with a non-
uniform memory architecture and a high performance Infiniband network relying on a fat-tree
network. In the light of this brief introduction, we have seen that these rapidly evolving and
complex architectures are very challenging and therefore require a constant effort to be used
productively. Effort which we aim at supporting with the tools developed during this thesis.

3 ’3’ is approximately the Infiniband QDR (4X) data-rate in GB.
4 Note that the “service island” has a higher up-link bandwidth of 648 GB/s (216 × 4X).

28 THESIS CONTEXT

CHAPTER 3

Development Cycle

“Don’t gather requirements — Dig for them
Requirements rarely lie on the surface.
They’re buried deep beneath layers of assumptions, misconceptions and politics.”

Hunt and Thomas in the Pragmatic Programmer [HT99]
(Quick Reference Guide)

After we introduced supercomputers and current and upcoming challenges they are asso-
ciated with, this section briefly introduces software development methodologies which give
context to the use of the tools we developed during this thesis. After introducing the pur-
pose of adopting a development methodology, we present classical approaches followed by an
outline of several requirements associated with development in complex environment. Even-
tually, we finish up by exposing advantages which can be provided by tools when being used
as heuristics.

3.1 Classical Development Methodologies

A development methodology can be seen as a management approach which aims at coordi-
nating software developers, their managers and clients in a facilitating environment focused
on optimising the production of better software. Several organisation models were developed
in order to facilitate complex objects conception. Interestingly, all those models feature the
same basic blocks, differing more in their usage than in their strict organisation. This section
first describes the basic blocks being used in each process from an operative point of view.
Then, we present in order of appearance the three classical development cycle.

3.1.1 Constants in the Development Cycle

Development cycle purpose is to formalise the relationship between three entities (1) the
client, (2) a development team and (3) the code itself. This first section describes those entities
in an empirical context in order to introduce the development process and its goals. To do so,
we describe in a methodology agnostic manner some expectations and duties for each of those
actors as follows:

• The client is at requirements source as he originally formulated them according to his
needs. He generally expresses them to potential developers (often through a documen-

29

30 DEVELOPMENT CYCLE

tary process) and selects a solution rationally (quality of the solution, maintainabil-
ity, overall costs, ...) suiting his demand after reviewing preliminary design proposals
(Client ↔ Developer iteration). Omitting, intermediate Developer ↔ Client iteration
we are going to analyse from a developer point of view, the client is eventually in charge
of judging product quality, attesting that it effectively satisfies his requirements. This
last phase, involves, for example, demonstrations, integration tests (...) and eventually
leads to the effective deployment at client’s site (Progam↔ Client iteration).

• The development team is central to the development process as it is in charge of
(1) understanding the client’s need, formulating them as a potential design (Client ↔
Developer iteration) and (2) expressing this design as a program which fits client’s re-
quirements (Developer ↔ Program iteration). Programmers are therefore an interface
between codes and clients, understanding needs and transposing them in a program
which exactly1 fulfils their requirements (generally with design constraints: architec-
tural, costs and design trade-offs, ...). This, while remaining in client’s acceptance range.

• The program is the development effort final product, supposed to fulfil every require-
ments while guaranteeing several qualities such as reliability, maintainability, code
readability (...). In other words, client’s requirements have to be transposed in the pro-
gram in terms of features (Progam ↔ Client iteration). However, this process com-
plexity must remain manageable by developers, supposing a known and suitable design
(Progam↔ Developer iteration).

Development cycle aims at defining interactions between this trinity in purpose of maximis-
ing their efficiency. It supposes an ability for each of those entities to maintain a constant
coupling in purpose of maintaining mutual understanding. For example, the solution space
satisfying a given need is generally very wide (choice of languages, definition of the interface,
usage patterns, autonomy level,). Possibly requiring several client intervention in the de-
sign process. Similarly, programmers have to maintain their program in control for example
by setting a suitable environment for monitoring its features and reliability. Moreover, the de-
velopment team itself has to be structured (from a management point of view) to face common
conception risks (individual cognitive limitations, knowledge dilution, responsibility dilution,
...) and requirements (manageability, planning, productivity, ...). Consequently, it can be seen
that the development process involves multiple intricate level of representation with varying
constraints. Those levels are connected by several interactions (documentary, oral, formal
or not, ...) which can be equally bounded by either communications hazards or phenomenon
complexity. From this point of view the development cycle can be seen as an heuristic which
codifies interactions in the process leading from a need to a solution. In this purpose, it de-
fines communication templates, efficiency metrics and methods, helping developers to face the
complexity of their work.

After this high level development process contextualisation, we will now focus on the main
existing models. It shall be noted that such model can be very normative, detailing each
document, scheduling interactions, (...). Comparatively, our descriptions will remain brief, as
it solely aims at providing a sufficient context to the description of our work in the rest of this
1 Here exactly shall be understood as minimising development costs relatively to classical management metrics

(costs, time, workload, risks,...). The development team is supposed to furnish a rational solution focused on
satisfying the requirements, not an ideal solution (see H.A. Simon who develops these notions in [Sim97]).

CLASSICAL DEVELOPMENT METHODOLOGIES 31

document. We will try to reference complementary documents providing a wider view on the
subject for readers interested in details.

3.1.2 Waterfall Model

The waterfall project management model introduced by Royce [Roy70] is the most “natural”
development model anyone would adopt when required to fulfil a requirement. It sequentially
goes from gathering requirements to the integration and maintenance of the new product.

Figure 3.1: Original waterfall model as introduced by Royce in [Roy70], including
feedback loops.

This process is generally described as a sequential process where phases succeed to each
other after a careful validation. In this context, as presented in Figure 3.1, needs and design
are both carefully expressed long before the coding phase. This model requires important docu-
mentary efforts at each phase, so that clients remain informed of project evolution. Such cycle
is also often cited to have the drawback of freezing the design too early in the development
process [Mar99, Rot11], neglecting unplanned requirement shifts or unplanned constraints.
This effect is called the tunnel effect, after specification phase, clients have “no news” from
the developer team until seeing the effective product. This augments the risk of not fulfilling
needs because of a communication lack and late risk factor identification as sometimes they
can only be identified when implementation begun.

Waterfall was very common in the 80’s as it happened to be advocated by large indus-
tries [Dep85, Dep88] as the reference model. However, its limitations led to new develop-
ment approaches which favour a more iterative approach. Nonetheless, it shall be noted that
Royce in its original paper [Roy70] already promoted an iterative approach (see Figure 3.1
with feedback loops in red), he even required the waterfall approach to be done twice (p. 7)
recognising that some requirement can be sensed only when actually implementing a prod-
uct. Therefore, even if misapplied as a sequential process, the waterfall model clearly sets the
canonical process of a project management model in terms of control and reporting but lacks of

32 DEVELOPMENT CYCLE

adaptability when dealing with the development process itself. Nonetheless, it is still widely
used (in modified forms as detailed in the next section), mainly for large industrial or building
projects which can reasonably express requirement early in the development cycle. However,
software design which is subject to evolving constraints had to rely on iterative methods which
eventually led to agile methods.

3.1.3 V-Model

Figure 3.2: Example of V-Model development cycle.

The V-Model can be seen as a derivation of the waterfall model where testing phases are
designed symmetrically with conception phases. Despite its V shape, this process is still lin-
ear and therefore falls in the pitfalls of the linear waterfall model (tunnel effect). Moreover,
there are a wide range of interpretation of the V-model featuring different verbosity2 levels
while preserving original waterfall steps. Another ambiguity is in the links between testing
and design phases, are they bidirectional or unidirectional ? Again, varying answers can be
found. However, V-models are widely adopted for large project management being featured
in several methodologies (naturally with variations): the German V-Model [IAB95], United
States Department of Transportation guidelines [Uni07], Great Britain Office of Government
Commerce PRINCE2 methodology [oGC02]...

As a consequence, the V-Model can be described as an advantaging method in terms of
outsourcing as from a management point of view, specification and integration phases are cov-
ered. However, dealing with implementation phase itself, it is generally depicted as a single
step, the bottom of the V, as far as possible from clients. On implementation side, methods
are always iterative as developers progressively fulfil requirements. They might have new
interrogations as they get a better understanding of the project, but how does the client an-
swer them in a V process ? Implementing a software project is being able to both understand
and fulfil clients’ needs. This supposes that the client is able to express (specifications) and
judge (acceptance) the product while developers understand (design) and satisfy (integration)
requirements. In the V-Model this coupling happens only once (and leads to the V shape),
whereas, developers and clients might need a stronger coupling to face evolving needs or con-
straints, observation which led to an iterative development process which aims at preventing
tunnel effects by enforcing communication.

2 An image search of ’V-Model’ on any search engine can illustrate this variety.

CLASSICAL DEVELOPMENT METHODOLOGIES 33

3.1.4 Agile Methods

Figure 3.3: Example of agile development cycle.

In opposition with classical project methodologies we developed in previous paragraphs, ag-
ile methods are profoundly iterative. Their purpose is to prevent tunnel effect by involving
clients in development phases in order to confirm requirements and diagnose possible risks
early in the development. As presented in Figure 3.3, this process can be seen as an iterative
V-process which purpose is to couple client and developers through control (requirements) and
measure (tests) (similar to the Wiener feedback loop of Figure 3.6). Agile methods as intro-
duced in the agile manifesto [BBvB+01] feature a lightweight project methodology, reducing
documentary process to a minimum while privileging communication. In that sense, they are
more focused on the actual development process than on managing the outsourcing process.
For example, developers are able to iterate on technical aspects (for example through inter-
mediate versions) before delivering the final product — guaranteeing client needs are actually
understood and satisfied [Rot11].

“Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.”

Figure 3.4: Four main values quoted from the agile manifesto as found on [BBvB+01].

The agile manifesto [BBvB+01], which is quoted in Figure 3.4 insists on four main val-
ues which gave origin to a wide range of agile programming models with varying meth-
ods: Adaptive Software Development (ASD) [Hig00], Crystal Clear [Coc04], Dynamic Soft-
ware Development Method (DSDM) [Con08], Rapid Application Development (RAD) [Mar91],

34 DEVELOPMENT CYCLE

Lean [PP03, WJR07], Scrum [TN86, SB08], (Rational) Unified Process ((R)UP) [JBR12], eX-
treme Programming (XP) [Bec00]. All these methods apply the agile precepts to various indus-
trial processes while remaining focused around the development process and therefore devel-
opers. In this purpose several agile methods promote development specific processes such as
continuous integration, unit testing, pair programming..., going beyond classical management
process by clearly taking developers and by extension programs into account. Consequently,
those methods which are becoming the reference in terms of software development take ad-
vantage of both an holistic and iterative approach which is more suitable to manage complex
and evolving projects, even from an industrial point of view [Dep94,Def05].

3.2 Developing Against Complexity

This section proposes to analyse the development process from a systemic point of view
in order to emphasise the interactions between each entities. Instead of describing punctual
processes or documents (as in previous methods descriptions), we propose to start from a global
system layout which will be analysed in terms of interactions.

Figure 3.5: Systemic view of the development process in terms of operative systems.

Figure 3.5 depicts a development process systemic model, as mentioned in previous sec-
tion it is a tripartite process involving a client, developers and a program. Boxes with plain
lines are linked to observable/communicable events, for example client’s requirements can be
expressed as a document detailing its needs. On the contrary, boxes with dashed lines are
abstract models which are not directly communicable, thus, requiring a transposition to an
observable state (shared representation). Figure 3.5 is designed from a client point of view as
it focuses on the shift from a need to a satisfying program. More importantly, from a macro-
scopic point of view, this description is neither exhaustive nor unique. For example, a program
is an observable of a computer system, a design an observable of a program model and a need

DEVELOPING AGAINST COMPLEXITY 35

Figure 3.6: Feedback loop described in [Wie61].

can be an observable of an organisation. Moreover, roles are not fixed as an observable can
become a model (features can be observed from the program, a design possibly describes an
abstract program, ...). Starting from Figure 3.5 (right) we can see a compact representation of
the development cycle which is a substrate allowing the shift from client’s need to a computer
program with developers (green loop) in charge of guaranteeing this transposition. Looking
at the left part of the figure, the process appears in more details with its interactions and
abstractions. More particularly, if we analyse interactions, two types of loops can be identified
and will be referred to as structural and catalysing ones with three occurrences of each.

Such loops have to be observed as feedback loops (from cybernetic theory [Wie61]). A cy-
bernetic loop (see Figure 3.6) can be defined as an action which observes its effect in order
to guide further actions. Notably, such loops are comparable to operative models which as-
sociate an empirical measurement with its abstract representation, for example in this case
the {decision, purpose} couple, models and is modelled by environmental effects. Recursive
relationship which applied symmetrically (by separate entities), and considering bounded ra-
tionality [Sim97] are studied by convention theory [Lew69, BT87, Amb03] which states that
cooperative behaviour requires and creates shared representations which cross individual
boundaries.

3.2.1 Structural Loops

Structural loops are in charge of coupling entities and are subject to communications re-
lated loss as they go through the environment. They generally rely on a shared symbol system
(most of the time oral or written language) to convey metrics associated with abstract repre-
sentations. They have no explicit substrate and therefore have to be maintained as inputs and
outputs of entities, being the consequence of a symmetrical effort from those entities. This bi-
partite aspect makes them relatively fragile as feedback can only be achieved bidirectionally.
These three loops can be described as follows: Client ↔ Developer, Developer ↔ Program,
Program ↔ Client, each of them associated with a development cycle requirement and pos-
sibly modelled as a cybernetic loop (Figure 3.6) which expresses a certain form of trade-
off/adaptability.

Figure 3.7 illustrates those structural loops by expressing the exchanges of expectations
and internalised duties from the point of view of each entity. Ideally, such loops shall lead
to a symmetry between inputs and outputs of entities involved in the development process

36 DEVELOPMENT CYCLE

Interaction Example of process

Client→ Developer

Did I express my needs ? Did they evolve? Are they well understood by
developers ? Are developers within schedule ? Can I attest of their efficiency
(cost, quality, ...) ?

Developer→ Client
Are Client’s needs/requirements realistic, contextualised, detailed enough ?
What are our constraints ? What is our proposal and at at which cost ?

Developer→ Program

How to express the design in a program which matches requirements ? What
is the most efficient scattering of work amongst developers ? Are there known
problems, how does this program section work, who is responsible for it ? How
to guarantee and attest for reliability and functionality ?

Program→ Developer

Is the code easy to develop (dependencies, compilation process, organisation,
coding conventions, ...) ? Does it matches the preliminary design, if not why
? It its complexity manageable ? Is every section tested for reliability, perfor-
mance and functionality (unit, performance and integration testing) ?

Client→ Program

Does it satisfies my requirements ? Is it easy to deploy (target machine, un-
planned constraints, ...) and maintain (requires external maintenance, li-
cences, extensible to future needs, ...) ? Is it integrated in our processes ?

Program→ Client

Does it provides functionality in an actionable fashion (Human Machine In-
terface, organisation specific processes or constraints, ...) ? Is it transferable
to client’s computing environment (dependencies, licences, reliability ...) ? Is
it possible to guarantee features over time, if not why ?

Figure 3.7: List of structural loop with examples of expectations/internalised duties.

(in order to fit in the feedback loop paradigm [Wie61]). Such loops are therefore correlated
with the ability to control and measure external processes. Points which are often defined by
development models as a documentary process, testing, meetings, team building...

3.2.2 Catalysing Loops

Catalysing loops can be described as an internalisation process which converts an observa-
tion to a decision which satisfies an individual purpose according to relative heuristics. These
loops are associated with a substrate (client, developer, program), allowing them to operate
separately. Their decision process is optimised to resolve a given set of problems (specialisa-
tion) which purpose is to satisfy the needs of their respective organisations as rationally as
possible [Sim97]. Three loops can be extracted from Figure 3.5: Needs ↔ Requirements,
Program↔ Functionalities, Design↔ Development cycle.

It can be seen from Figure 3.8 that catalysing loops have a contextualisation role. Indeed
they match the actual development process with abstract models of surrounding organisa-
tions in order to ensure a sufficient coupling without having to expose their complexity to
every other entities. For example, a program evolves within a computational hardware which
imposes its constraint, client’s needs are part of its own organisation which requested their
expression as a computer program, software design obeys to rules which aim at optimising the
development process (UML modelling, component reuse, building process, complexity man-
agement, ...). More importantly, the development process finds its roots in the specialisation
of models to a particular purpose by discrete agents who by nature have diverging point of
view on a given problem (because of their specialisation, sort of “language gap”).

TOOLS AS HEURISTICS 37

Interaction Example of process

Needs→ Requirements

How to express and systematise the needs of my organisation
? Will they evolve ? Does this need fits in the processes of my
organisation ?

Requirements→ Needs

Are there unplanned constraints, are they acceptable ? Is
this expression of requirements actually satisfying my needs
? Were they well understood ?

Program→ Functionalities
Does the program efficiently solve its problem ? Are features
constrained by the hardware ?

Functionalities→ Program
Does it satisfies the requirements ? Does it reflects the design
? Is it possible to guarantee features ?

Design→ Development cycle

What are the most efficient processes to design a program ?
Are features identified and explicitly separated ? What are
the software components needed to satisfy client’s need ?

Development cycle→ Design

Does design describe a program which satisfies client’s re-
quirements within machine constraints ? Are programmers
in possessions of a sufficient knowledge to execute their work
?

Figure 3.8: List of catalysing loop with examples of constraints/trade-offs arising
from interaction and respective contexts.

From a global point of view, all the entities involved in the development cycle are looking
for a point of agreement which satisfies a multidimensional problem going beyond individual
rationality. Their purpose is to efficiently express constraint arising from their surrounding or-
ganisation (computer hardware, client organisation, software design) as a satisfycing [Sim97]
computer program. In this purpose, they have to organise themselves in a process favouring
communication while making critical development cycle aspects observable through synthetic
metrics. Encouraging the constructive search for a satisfying trade-off. Development cycles
are in charge of impulsing this process by setting up a convention between all the partici-
pants, they codify interactions in order to achieve such trade-off. From this point of view, any
development process starts from specifications and finishes with a test phase — measuring the
achievement of the process. Main differences being in methodologies temporal aspects which
evolved concurrently with programs complexity and volatility from a linear process (waterfall)
to a fully iterative one (agile methods). Besides, as we detail in next section, in conjunction
with this holistic process, development methodologies are more and more relying on tools to
improve productivity for both structural and catalysing aspect, naturally integrating them in
the development cycle.

3.3 Tools as Heuristics

Tools are now compulsory to develop efficient codes for various purposes ranging from code
development to software documentation. This section proposes to list tools which are com-
monly integrated in the development cycle in terms of functionality. These tools could be
viewed as heuristics as they either create, convoy, preserve or inspect information alongside
the development cycle — helping actors in their development task.

38 DEVELOPMENT CYCLE

Figure 3.9: Classes of tools involved in the development cycle.

As presented in Figure 3.9, six interactions types can be derived from the client, developer,
program trinity. Each of them taking advantage of tools or normalised processes to gain in
efficiency. We propose to derive five classes of tools from these relationships: reporting, in-
tegration, specification, software development and management. This section details each of
these classes with sample tools and usage patterns in purpose of contextualising common uses
of tools within the development cycle.

3.3.1 Specifications

Specifications are the starting point of any project, they define its purpose and constraints
(costs, hardware, ...). In general, their expression is done through a documentary process
which allows their formal transmission to the development team. However, supplementary
communication channels are also used to complete the specification process, for example an
initial meeting allows to initiate an interaction process between the participants in order to
contextualise the initial document. Moreover, less formal communications has to be taken
into account (e-mail, phone-calls, ...) as an efficient information vector which can possibly
outcome conventional organisations, allowing clearer requirements definition.

3.3.2 Software Development

Dealing with software development, a lot of tools are commonly used by developers. At
first the compilation chain is used to validate the program from a static point of view. As far
as the code is concerned, Integrated Development Environments (IDEs) can help developer in
the management of their code by providing useful features such a syntax highlighting, code
completion, templates... Version control tools such as git or SVN can be used to handle various
versions of the same code, tag specific versions, sharing them between developers. Moreover,
on software design side, several modelling tools can be used to create UML diagrams depicting
program layout.

TOOLS AS HEURISTICS 39

3.3.3 Integration

Integration can be described as the phases which precede the actual deployment at client’s
site. It starts by a macroscopic validation through integration testing which purpose is to
validate global features. Some products also rely on a phased release3 in order to progres-
sively stabilise the product with clients (or in open-sourced development, users) feedback, this
has the advantage of providing a realistic test coverage but requires interlocutors who can
temporarily put up with unstable software. During this phase, for example with continuous
integration, developers and clients can report defects or iterate on features and how their are
brought to the user (interface for example) to enhance the product through successive adjust-
ments.

3.3.4 Reporting

Reporting couples clients with programmers, relatively to specifications, project progres-
sion, unplanned difficulties, documentation... As far as the client is concerned, he can re-
port his observations, request features or describe defects he encountered on a given program
version. This process can take place through various communication channels (see Specifica-
tions), although, current trend is to gather all those aspect as a wiki based portal which can
be accessed by both developers to enrich the knowledge base and clients to report defects or
make feature requests (as tickets). Such platforms(github, source-forge, bitbucket, ...) were
developed mainly to fulfil open-source requirements for decentralised use and development
and start to be used (declined as a commercial products) within the industry in support of the
development process.

3.3.5 Software Management

Software management covers all the methodologies which allow programmers to monitor
and understand their code in terms of reliability and efficiency. Unit testing which provides
feedback to developers, particularly during refactoring4 phases as they guarantee individual
component features. Software documentation focused on technical aspect is also important to
face turnover while avoiding knowledge dilution amongst developers. It can be done coopera-
tively using for example a dedicated wiki which is easy to access and update. The particular
case of performance tools and debuggers will be discussed in more details in section 4 as it
embeds the work of this thesis.

3.3.6 Overview

As we have seen with the list of tools we enumerated, developers are evolving in an envi-
ronment which is indistinguishable from its tools. Successively providing valuable features
(debugger, profiler, editor, ...), giving rhythm to the development cycle (unit-testing, integra-
tion tests, planning,...) and conveying communication (source versionning, bug tracking, on-
line documentation, ...). Tools are therefore facilitators in the development cycle as they opti-
mise and carry repetitive tasks, helping and inciting developers to follow development process,
transitively finding a trade-off.

3 Debian for example has three levels: Stable, Unstable, Testing.
4 Action of changing code design while keeping similar software components.

40 DEVELOPMENT CYCLE

3.4 Summary

This Chapter started by introducing common development methodologies, insisting on their
overall similarity. Then, we proposed a systemic analysis of such process by focusing on in-
teractions. Analysis which highlighted two types of coupling that we ranked in structural and
operative loops. Operative loops have a contextualising role, taking advantage of both individ-
ual skills and local constraints. Whereas, structural loop have to convey both requirements
(control) and metrics (measure) in order to establish feedback in search for a satisfying trade-
off. In a second time, we analysed how tools match this tripartite process by mapping classes
of tools over structural loop, emphasising their heuristic aspect. However, as the purpose of
this work is to provide some building blocks among many others, the importance of the devel-
opment process as a whole has to be pointed out as a requirement for quality and productivity.
Dealing with this thesis, we focus on the coupling between developers and their program.
The increasing complexity of the computing substrate tends to emphasise the empirical as-
pect of the programming task, forcing developers to rely more and more on trial and error
approaches. Consequently, developers need compact performance metrics to asses the quality
or badness of their choice on a daily basis, making the uses of tools to both qualify reliability
and performance of programs compulsory — tools which are the object of next chapter.

CHAPTER 4

Role of Performance and Debugging
Tools

L’intelligibilité du compliqué se fait par simplification [...].
L’intelligibilité du complexe se fait par modélisation [...].

Jean-Louis le Moigne in La Modélisation des systèmes complexes [Moi99](p. 10).

Classes of software management tool which are particularly interesting are are performance
and debugging tools. Such tools aim at ensuring that programs efficiently use supercomputers’
resources. This supposes that a supercomputer can be misused, subject that we will firstly
develop from both performance and functional aspects.

4.1 Performance Metrics

As parallel programs can be inefficient, we first introduce common metrics which objectively
define program performance. We start with common metrics as speedup and efficiency and de-
rive the Amdahl law which sets an upper bound to the speedup (assuming strong scalability).
Then, we conclude over challenges associated with the need for scaling simulations in the
context of current and upcoming supercomputers.

4.1.1 Strong and Weak Scaling

As presented in Figure 4.1, there are two approaches when scaling a given problem on a
supercomputer. To begin with, as presented in figure 4.1(a), it can be used to provide the same
result in a reduced time frame, allowing a more productive use for example when doing para-
metric searches. In such case, problem size is kept constant while the number of processing
unit grows — approach referred to as strong scaling. However, as depicted by Figure 4.1(b), a
larger processing power could also be used to process a larger problems, such as the problem
size remains constant on each processing unit — approach called weak scaling.

41

42 ROLE OF PERFORMANCE AND DEBUGGING TOOLS

(a) Strong scaling.

(b) Weak scaling.

Figure 4.1: Graphical comparison between strong and weak scaling.

4.1.2 Canonical Speedup

S(n, p) =
Sequential Time

Parallel Time

S(n, p) =
seq(n) + par(n)

seq(n) + par(n)
p + comm(n, p)

(4.1)

The speedup is commonly defined as the sequential time over the parallel time, yielding the
acceleration achieved by the parallel program when compared to its sequential counterpart.
As presented in equation 4.1, this quotient can be expressed through three components with
p the number of cores and n the problem size:

• A sequential part seq(n) which describes time spent in serial sections which cannot
be made parallel. Commonly program initialisation, finalisation and input/outputs con-
tribute to this sequential term.

• A parallel part par(n) which depicts computation which are distributed among pro-
cessing units, therefore, divided by p when running in parallel.

• Parallelism overhead comm(n, p) which accounts for the supplementary processes re-
quired by parallelism such as communication, memory duplication, contention, ... This
factor is generally an increasing function of both problem size n and processes count p.

By looking at equation 4.1, which presents the canonical speedup definition. Speedup can
be bounded in two ways either by sequential part or because of parallelism overhead. Con-
sequently, performance tools are aimed at identifying and help limiting these two factors in
order to achiever higher scalability. Speedup can be expressed in a more compact fashion as

PERFORMANCE METRICS 43

an efficiency which describes how a program achieved to be accelerated by p processing units
when compared to an ideal acceleration p, leading to:

εacc(n, p) =
S(n, p)

p
(4.2)

Efficiency as shown in equation 4.2 is a measurement of the achieved acceleration. This
metric does not take into account problem growth which would also be qualified of “more
efficient”. Therefore, such efficiency is only correlated with computation acceleration (strong
scaling) when larger problems (weak scaling) are expected to remain at constant speedup
(close to constant execution time) yielding a decreasing efficiency (at least in 1

p , plus parallel
overhead) although processing larger problems.

4.1.3 Scaling Bounds

Starting from previous scaling definitions in terms of weak and strong approaches, different
kind of bounds can be derived from the execution substrate. This section proposes to observe
bounds derived from speedup equation from a more practical point of view.

(a) Strong scaling. (b) Weak scaling.

Figure 4.2: Execution time for strong and weak scaling scattered among speedup fac-
tors.

As it can be seen in Figure 4.2, weak and strong scaling lead to very different behaviours at
scale. As we mentioned before, strong scaling aims at accelerating the computation by scatter-
ing it on an increasing number of processing units. However, as presented in Figure 4.2(a) this
process has to face two main limitations: (1) the parallel computing time divided infinitely con-
verges to the sequential time, yielding the classical speedup boundary described by Amdahl’s
law: s(n, p) ≤ 1

seq(n) . Moreover, (2) parallel overhead which is an increasing function of the

44 ROLE OF PERFORMANCE AND DEBUGGING TOOLS

number of cores tends to limit the speedup (in our case at ten processes). Therefore, limiting
the sequential part and communications’ complexity are two conditions needed to accelerate a
program. Moreover, if parallel computation complexity is higher (in function of p the number
of processes) than the one of both sequential part and overhead, larger problem sizes are asso-
ciated with higher speedups (more computation less communications) — observation which is
called the Amdahl effect. We can conclude that in presence of a sequential computation time
and/or communication costs, acceleration is always bounded, preventing strong scaling on cur-
rent and upcoming machines. In other words, a single node cannot hold problems addressed
by the whole machine and even if it could, time required to process this problem would be
impractical. Besides, when looking at the tendency which promotes a larger number of sim-
pler cores and less memory per core, we can only emphasise the increasing constraints on the
strong scaling approach: (1) lower sequential problem size and performance, (2) lower prob-
lem size increase per core (linked to memory per core) and (3) higher overhead (more distinct
computing units). This makes the acceleration of a fixed problem on a whole machine illusory,
except if embarrassingly parallel with a data-set which is sufficiently large and does not has
to fit in memory (i.e. generated) such as for example in crypt-analysis applications.

Dealing with weak scaling, as presented in Figure 4.2(b), it aims at linearly increasing
parallel computation time core count in order to keep it constant relatively to a single com-
putation unit. In such case, parallel time remains constant by construction, leveraging Am-
dahl’s speedup limit. Despite, sequential time and overhead are still bounding the speedup.
Such context is described by Gustafson-Barsis law [Gus88] which is S(p) = p − α(p − 1) with
p the number of core and α the sequential fraction parallel processes (including overhead).
This equation models an unbounded linear speedup under with a growing problem size. This
speedup is referred to as a scaled speedup as it compares the execution time to a sequential
problem which cannot be measured experimentally because of time and memory limitations.
Looking at the α factor, it depicts the sequential time relatively to a single process, factor
which might increase with p for example because of a growing communication cost. Therefore,
in order to achieve, “infinite” scaling as described by Gustafson-Barsis law, communication cost
(and more generally overhead) shall have a cost of lesser complexity than the computation of a
problem of size O(n), bound to grow linearly with the number of cores. More practically, com-
munication cost is generally bounding weak scaling, yielding the behaviour of Figure 4.2(b).
Where computation time increases with the number of core because of a growing overhead,
eventually preventing programs to solve a linearly growing problem in a fixed time. There-
fore, the main limitation to weak scaling are the sequential fraction and the overhead which
have to grow at most linearly in function of p, remaining therefore constant per processing
unit — allowing scaling in a fixed time frame.

4.1.4 Acceleration versus Scaling

This section analyses how scaling is related to acceleration. As common measurements
such as weak and strong scaling are somehow meta-concepts which as we mentioned before are
linked to a wide range of variables such as problem size, communication complexity, sequential
part ... We propose to sum up all those factors in a graphical fashion, making those concepts
more actionable while emphasising programs behaviour relatively to speedup.

As presented in Figure 4.3(a), we propose to analyse the relationship between speedup and
problem size per core in order to outline and sum up the concepts we developed. In this fig-

PERFORMANCE METRICS 45

(a) Speedup in function of problem size per
core. Vectors represent possible evolutions for
a growing number of computing units.

(b) Computation time when scaling in pres-
ence of increasing communication cost requir-
ing problem size compensation.

Figure 4.3: Illustration of speedup and scaling factors in terms of problem size per
core.

ure, we consider that computation over a linearly growing data-set has an higher complexity
than the overhead, which mainly accounts for communication costs. Besides, we also suppose
that computation cannot be scattered symbolically (for example as in key space exploration)
but instead relies on a distributed data structure both growing with the number of cores and
requiring communications for spatial coupling1. Weak scaling keeps problem size per core con-
stant but faces an increasing overhead when increasing core count, making of “weak-scaling
speedup” (red vector) a decreasing function of the number of cores. This, because of an in-
creasing overhead when compared to the work per core (see figure 4.2(b)). Consequently, in
order to scale problem (cyan vector) in constant time as in Figure 4.3(b), problem size might
have to be decreased in order to compensate overhead (orange vector). However, consider-
ing that overhead has a lower complexity than computation, its ratio can be diminished by
increasing problem size — effect commonly called the Amdahl effect (magenta vector). Ef-
fect bounded by memory per core, naturally limiting problem size (represented as brackets
on the Problem Size

Core Count axis). Dealing with strong scaling (green vectors), its gains also depend
on both overhead/computation complexity and maximum sequential problem size. When in-
finitely dividing a problem over a growing number of cores, the program fist accelerates but
fatally comes a moment where the potential computational gain is lower than the associated
overhead cost — the program being sequentially bound. In summary, Figure 4.3(a) proposes
four regions describing the speedup-scaling vector:

• Accelerating region: in this region code runs faster on a larger number of cores. This
corresponds to a decreasing computational cost per cores and therefore a lower problem
size per cores. Cost which has to decrease sufficiently to compensate parallel overhead.
Outlined by a decreasing speedup when doing weak scaling (see figure 4.2(b)).

• Under-scaling region: if problem size grows less than linearly with the number of
1 This is the case of most simulation codes which rely on a spatial decomposition and communications at each

time-step.

46 ROLE OF PERFORMANCE AND DEBUGGING TOOLS

cores p, problem size per core decreases with p, leading to an increasing speedup if the
computational gain compensates overhead.

• Over-scaling region: if problem size increases at least linearly with the number of
cores p, problem size per core either remains constant or augment with p. Necessarily
leading to a decreasing speedup respectively because of parallel overhead (weak scaling)
and increasing problem size.

• Sequentially-bound region: when problem size per core is too small compared to par-
allel overhead or sequential computation, a larger number of cores and therefore further
dividing the problem leads to a decreasing speedup, degrading program performances.

Dealing with scaling a problem on a larger number of cores, we already mentioned that
strong scaling is illusory for domain decomposition problems because of both the limited se-
quential problem size and parallel overhead which bounds speedup. However, when coming
to weak scaling, we shown that it is also impacted by parallel overhead, yielding a decreasing
speedup in function of core count. In every cases, this overhead has to be compensated when
scaling either by growing problems (Amdahl effect) but more generally – as they already fill
computing units’ memory – by reducing problem size. Thus, when scaling, the linear problem
size growth Ps on p cores could be denoted Ps(p) = s.p with s the size per core. However, to
run in constant time, this problem size must compensate parallel overhead, being reduced by
a size matching the overhead (in time) in terms of computation. If we denote C(n) the sequen-
tial computation time for a problem size of n, we need to find, ncomp a compensation size such
as C(ncomp) = Parallel Overhead. This yields, Ps(p) = s.p − ncomp and makes higher com-
putation costs preferable than lower ones as they reduce ncomp. Moreover, in order to allow
increasing problem sizes, compensation size ncomp shall be of lesser complexity than the prob-
lem size itself which is in Θ(s.p). In other words, compensation size have to be at most linear,
yielding Ps(p) = (s − scomp).p with scomp the compensation size per core, being as a result a
constant which compensates a constant overhead C(scomp) linked to computational complexity.
Consequently, in order to scale without limitation on a large number of cores, programs have
to keep their overhead independent from p and more practically as far as communications are
concerned to communicate with a constant number of neighbours. For example, collective com-
munications with a growing number of cores have to be avoided as much as possible as their
cost per core for the less expensive ones grows in O(ln(p)). Cost which even if logarithmic will
eventually limit problem size at larger scales.

4.1.5 Summary

We have seen that several factors prevent programs from scaling on supercomputers. Rel-
atively to maximum acceleration we outlined that it is bounded by the sequential part as
expressed by Amdahl’s law. We also emphasised that strong scaling is not feasible at super-
computer scale except for a limited range of problems featuring symbolic data-sets or expen-
sive computation 2. On the contrary, in order to scale a program supercomputer-wide, problem
also has to be scaled. For example by simulating more deeply the phenomenon by adding
more physics, switching to 3D, lowering the time step, augmenting mesh precision... Larger
machines are therefore great opportunities as they open the way to greater simulations. How-

2 NP-complete for example

PROGRAMS CORRECTNESS 47

ever, we shown that unbounded scaling requires a particular effort over parallel overhead: it
must remain constant per core in order to allow increasing problem sizes (with p).

For example, from a communication point of view, a given process has to communicate with
a constant number of neighbours — forbidding collective communications. More interestingly,
collectives are not strictly forbidden as far as they involve a constant number of processes.
From a general point of view there are very few programs satisfying these conditions, mainly
because of collective communications (generally MPI_Allreduce) at each time-steps, commonly
used to compute the next time-step while satisfying the CFL condition3. Consequently, finding
numerical schemes completely avoiding collectives might certainly be an important milestone
on the road to Exascale.

In this context it is then crucial to capitalise development processes — preparing for change.
This work is by nature interdisciplinary and crosses individuals boundaries, requiring a strong
coupling between scientists which recursively have to produce the best results in order to
produce the best results. More particularly, performance-tools and the work of this thesis
are part of this process as they locally guarantee efficiency on a link of the simulation chain.
They provide feedback to experimenters, positively influencing programs and by extension
the modelling process. Next section will focus on program correctness which is of primary
importance as there is no need to scale while producing the wrong result.

4.2 Programs Correctness

Computer programs are well known to be subject to bugs which cause them to fail or pro-
duce erroneous results. More generally, bugs can denote everything which causes a computer
not to do what the end-user or programmer wants, for example: program interruption (com-
monly called a crash), producing the wrong results (algorithmic defect), incompatibility with
user inputs (interfacing problem) or inconsistent behaviour such as lack of reproducibility or
deadlocks 4.

4.2.1 Overview

The term bug is relatively vague and seems to describe something latent and almost un-
avoidable, just like small bugs lying deep in the code-base, randomly impacting programs
execution. In other words, programmers, particularly in parallel, have to implement both the
feature and its computing substrate. Process which is similar than linking a set of compo-
nents altogether in order to promote desirable behaviours while preventing undesirable ones.
In other words, programmers are supposed to express both what they want and what they
do not want. This second aspect being the most demanding as it supposes that programmers
are able to understand and predict any program state. Guaranteeing that they don’t lead to
a faulty state. In this context, debugging is observing a faulty state in purpose of preventing
it by fixing a defect. In the rest of this section we will rely on the terminology proposed by
Zeller [Zel09]:

3 Courant-Friedrichs-Lewy condition which guarantees numerical problem convergence.
4 A program deadlocks when it stays blocked in a circular waiting state which cause an infinite waiting prevent-

ing the program to terminate.

48 ROLE OF PERFORMANCE AND DEBUGGING TOOLS

• Defect: involuntary or unforeseen code statement, combined with a given context causes
an error in program state.

• Infection: the faulty-state is propagated through function calls and parallel interac-
tions, leading to an undefined behaviour. Note that sometimes, the infection phase can
hide bugs (for example by rewriting the erroneous value), not necessarily leading to a
failure.

• Failure: eventually, the defect becomes visible to the user as a failure, associated with
an erroneous outputs or crash — finding their root in a defect.

Consequently, a failure can find its origin in a defect, apparently not semantically linked,
because of complicated infection mechanisms as, for example, stack or memory corruption.
This propagation is potentially both temporal and spatial. In such case, different code sections
are being successively called and messages (with erroneous data for example) are sent to
remote processes. Therefore, back-tracing the causality chain which led to an erroneous state
can be costly and complicated — requiring specifically tailored tools.

One difficulty is that the programmer does not know what he is looking for, consequently,
debugging generally starts from the faulty state either reported by users or encountered by
the programmer. Requiring to be able to reproduce and isolate the failure in a compact test
case. Then, once the error is reproducible, the developer lists possible infection vectors which
could have led to such a state for example by examining function stack or variable values. He
proceeds by successively testing propagation hypothesis from the most probable (according to
his experience) to the less probable using various approaches such as breakpointing, watching
variables or producing debug outputs. Eventually, once the infection chain has been identified,
the developer isolates and fixes the defect which led to the failure. This process is described
in a more compact fashion by Zeller [Zel09] as seven steps which initial letters mnemonically
form the word TRAFFIC:

Figure 4.4: TRAFFIC bug-tracking technique as described in [Zel09].

The process presented in Figure 4.4, and particularly the search loop is very time consuming
for developers, Hailpern and Santhanam reported that debugging, verification and testing
took from 50% to 75% of the time in typical commercial development organisations [HS02].
Optimising these costs can therefore increase developers’ productivity, making compulsory for
programmers to be able to efficiency use debuggers in order to speed-up the debugging process.

4.2.2 Quality Process

More importantly, debugging has to be relocated in the development quality process which
role is to collect, find, fix and prevent program defects at both component and functionality
level. Program quality has to be a management-metric in order to incite programmers to

PROGRAMS CORRECTNESS 49

enhance their testing and bug-tracking infrastructure. By systematically relying on report-
ing front-ends to enforce communication and failure reporting through a bugtracker5. And
making sure software components are not solely tested by their developers but also by users,
providing actual test coverage in accordance with the expected functionality. Relying on a
modular design with a team for each component can be a possibility to enforce such cross
validation. However, it shall be done in a systematic fashion until the integration layers in
order to prevent responsibility dilution from “integrators” to “implementors”. In other words,
the integrated product itself has to be tested by a distinct team. In a simulation context, for
example, numericians are in charge of producing results for physicist who can judge their
quality and cannot be judged only in the light of incomplete (but necessary) metrics such as
convergence. Information management in the quality process shall therefore aim at creating
an interdependence between components. Allowing their cross validation and clearly identify-
ing each developer role, globally at component level, and locally at source code level (through
versioning and sub-components), making developers responsible for their code and therefore
caring for its quality. However, this process has to avoid the stratification danger when a
subset of developers is considered as furnishing the core functions and feel free to impose its
requirement to the whole project which inevitably looses in orthogonality. Preventing this pit-
fall requires an ability to preserve individual values in respect to distinct competences while
promoting their cohabitation in projects which have to take advantage of individual knowledge
and values as rationally as possible, statement which is close to the definition of management.
Therefore and ideally, code structure shall be mixed with the effective organisation in order to
allow component adaptability and preservation of individual values through a management
trade-off.

Once collected by programmers thanks to reporting tools and an inciting organisation, de-
fects have to be fixed using classical approaches that we previously summed up in Figure
4.4. This requires, efficient tools to explore program states such as parallel debuggers. Once
identified, the defect is naturally fixed and measures are taken to prevent its recurrence by
both informing developers (documentation, informal discussion, ...) and adding the issue to
the test-base. Then users are informed of issue’s resolution. This process aims at preventing
software entropy by not putting with a single issue, even if apparently small as it creates a
“sense of abandonment” and opens the way for larger issues6. This punctual code support
is combined with continuous testing where developers rely on several techniques to guaran-
tee programs reliability (see Hunt and Thomas [HT99] which introduces good programming
habits) such as:

• Component-based design: identify and design in separated components which are
connected with compact and clear interfaces.

• Unit testing: systematically test individual components in order to make sure they
provide and keep providing the expected function alongside the development cycle.

• Design by contract: as introduced in the Eiffel language [Mey97](p. 331), document
and test every preconditions, post-conditions and invariants in order to make code more
reliable by crashing early [HT99](p. 114) with a clear error which prevents state infec-
tions.

5 Ticket based web front-end where users report a program failure they encountered with as much detail as
possible in the expectation of having developers’ feedback on the issue (explanation, bugfix, advice, ...).

6 This effect is commonly called the broken window theory [WK82,HT99].

50 ROLE OF PERFORMANCE AND DEBUGGING TOOLS

• Regression tests: making sure programs evolution does not impact features or (re)creates
bugs. Therefore, it can be interesting to run a complete regression base against each
revision in order to point-out possibly harmful modifications or side-effect which could
otherwise make their way to the end-user.

• Integration tests: rely on representative use cases to test software modules before
releasing them to the end-user.

Far from being exhaustive, this list emphasises that there are methods to guarantee reliabil-
ity and that developers can always strengthen their quality concerns in purpose of producing
better software which is more likely to alleviate larger supercomputers requirements.

We have seen that the debugging process takes an important place in the development
process as it transforms a faulty program into a working one which satisfies the requirements.
However, and particularly with software products, working is not being reliable. Being subject
to parallel execution noise, data-set and user input variations, reliability has to be enforced
through careful testing at every component level, in fact just as what is done industrially when
building a plane or a car.

4.3 Summary

After introducing the developer tools role in terms of software performance and reliability.
This section, developed the notion of quality process which is classically linked to guarantee-
ing means of control and measure relatively to programs. This process allows developers to
constantly question important metrics about their program. Allowing an iterative develop-
ment process which compensates uncertainties by information (for example unit and integra-
tion testing, bug tracking, documentation, ...). In this complex process, this thesis proposes
means of measure in terms of performance and reliability. Once motivated by control, a tran-
sition necessarily need measurement to face uncertainties linked to the complex combination
of several values. Therefore, in complement of careful testing of every aspects and constant
reporting (both part of the classical development process and not covered in this thesis), it is
important to question reliability and performance of simulation programs to face supercom-
puters evolution.

PART II

Key Concepts and Related Work

51

CHAPTER 5

Architecture of Developer Tools

After the global introduction of part I, this chapter sets up the specific context of this thesis:
developer tools development, with a particular interest for performance and debugging tools.
After presenting the canonical developer tools architecture, we detail various instrumenta-
tion and data coupling methods commonly used in existing tools before introducing analysis
methods.

5.1 Canonical Architecture

Figure 5.1: Canonical architecture of developer tools.

Developer tools can be described in a very synthetic way as a mean which allows an user to
observe or interact with a computer program. As presented in Figure 5.1, and highlighted in
chapter 4, an effective program behaviour cannot be derived from its code. A tool is therefore
in charge of observing this behaviour (measurement), managing both instrumentation data
(coupling) and processing those data (reduction, projection) in order to make them intelligible.
This process can be seen as a cycle allowing observation and correction of defects through
iterative code enhancements. Three classical processes can be derived from Figure 5.1:

• Instrumentation captures program’s behaviour in order to make it analysable. This
process either associates each program step with a dedicated event or makes the program
state visible from an external point of view. Process which verbosity defines the overall
instrumentation chain requirements (for example in terms of coupling).

53

54 ARCHITECTURE OF DEVELOPER TOOLS

• Coupling allows the transfer of measurements to a third party tool in purpose of be-
ing analysed. This process can take several forms in function of both data volume and
interaction/integration levels. Moreover, every tool require a communication channel in
purpose of carrying measurements, component which as we will develop, has an impor-
tant impact over scalability.

• Analysis is the corner-stone of any tool. It aims at projecting observed behaviours on
known metrics generally code-related. This process often involves several spatial (over
cores or processes) and temporal reduction in purpose of eventually presenting informa-
tion in an intelligible manner. Consequently, the volume of data presented to users is
negligible when compared to the total amount of collected data.

In the rest of this chapter we present developer tools in the light of those three aspects, in
purpose of comparing the design choices they incur. We will begin with various instrumenta-
tion approaches and then focus on data management methods. Eventually, we detail various
analysis principles.

5.2 Instrumentation Approaches

This section presents the wide variety of instrumentation approaches and the spectrum of
measurement they provide. In this purpose we outline two classes of methods qualified of
external and embedded. (1) Externals methods suppose a control over the execution substrate
in order to isolate programs in terms of state and resource usage. Such approach provides
detailed measurements but requires a cooperating execution substrate which in some cases
differs drastically from the nominal one. (2) Embedded methods rely on an internal program
view during its execution, it has the advantage of describing the real substrate but poses the
question of measurement perturbation.

5.2.1 External Instrumentation

(a) Software Instrumentation. (b) Hardware Instrumentation.

Figure 5.2: Overview of external instrumentation.

INSTRUMENTATION APPROACHES 55

As presented in Figure 5.2, external instrumentation supposes that the tool runs in an envi-
ronment surrounding the target application, allowing its separate operation without interfer-
ing with the application. This method provides a lot of advantages, among which are both the
ability to stop program execution while allowing its inspection and the full cooperation of the
executing substrate with the observer. Most of the time, as in Figure 5.2(a), external instru-
mentation is achieved through execution virtualisation where a software component (instead
of directly the operating system) executes a program. Another external instrumentation ap-
proach is when the operating system instruments the applications it hosts, combining virtual-
isation advantages with sometimes close to native execution performance. On hardware side,
as presented in Figure 5.2(b), instrumentation can be seen as surrounding the hardware, for
example, when using the Joint Test Action Group (JTAG) port of an electronic programmable
device for control and inspection purposes. More closely to current processors, hardware coun-
ters are also a form of external instrumentation as they provide hardware level metrics which
can be retrieved by running applications.

5.2.2 Embedded Instrumentation

(a) Embedded Instrumentation. (b) Embedded Self-Instrumentation.

Figure 5.3: Overview of embedded instrumentation.

Figure 5.3 presents the setup used when an application instruments itself. In this case the
application is in charge of redirecting its control flow into instrumentation components in or-
der to generate an observable (usually as events). Those events can be either directed in a
trace for post-mortem processing (Figure 5.3(a)) or accumulated locally for profiling purposes
(Figure 5.3(b)). When using this method measurement-related perturbation might become
problematic as there is no way of guaranteeing that the observed behaviour is accurate. In-
deed, for example, when storing performance events in a trace, buffer flushes costs are im-
peded to the instrumented application, delaying local event execution. Difference which as
in the butterfly effects can be propagated to every processes through interactions (locks, mes-
sages, collectives). Nonetheless, one of the main advantage of embedded instrumentation is
that it depicts (even if slightly modified) an actual behaviour as observed on the execution
substrate, allowing observations which might not be practical by virtualisation.

The approach consisting in storing measurements (as a trace) for latter processing is re-
ferred to as a post-mortem approach. It has the advantage of allowing analysis of arbitrary
complexity as they are decoupled from instrumentation. Moreover, post-mortem analysis also

56 ARCHITECTURE OF DEVELOPER TOOLS

opens post-processing opportunities (for example for time-stamp synchronisation) and itera-
tive or comparative exploration. More generally, post-mortem instrumentation stores “unre-
duced” or slightly reduced events, thus, decoupling instrumentation from analysis and leav-
ing freedom degrees around a common denominator: the trace format. Consequently, trace-
based methods can be considered in some aspects as one of the most versatile instrumentation
method. However, as we will see in following sections, this approach has drawbacks as, for ex-
ample, it supposes the ability to manage verbose data in very large traces — causing several
data management problems. In particular, post-mortem approaches are subject to the per-
turbation versus event verbosity trade-off which eventually constrains the set of affordable
analysis. Creating a strong need for either online filtering (spatial (per process), per event,
temporal (usually trace buffers or sampling), ...) or reductions maintaining a cumulative (pro-
file) state at runtime.

Dealing with local event processing, as presented in Figure 5.3(b), it has the advantage of
immediately reducing events by performing analysis “in place”, thus, relaxing data manage-
ment problems. However, such tools cannot perform complex analysis a they directly have to
process events with, in general, a limited intermediate storage space. As such tool target run-
time instrumentation the retrieval of a global state can be problematic as is goes against the
scalability requirement — requiring particular efforts such as suitable topologies (for example
tree based overlay networks (TBONS)). Because of those limitations, online approach is privi-
leged by tools which perform lightweight analysis and which are not strongly dependent from
a global state such as profilers and validation tools. Nonetheless, some validations such as
deadlock detection, requiring a global state, have been successfully developed either centrally
or through a TBON (see section 6.4.4).

5.3 Coupling Methods

As aforementioned, the instrumentation process generates a large amount of information
which has to be processed in purpose of generating valuable metrics. This section analyses
mediums and processes which allow instrumentation–analysis coupling. We detail the three
main approaches adopted by tools: (1) analysing data in place, (2) storage of event traces for
latter processing or (3) online processing of data (with dedicated resources). Methods which
are not mutually exclusive.

5.3.1 In-Place

Figure 5.4: Schematic representation of instrumentation data processed locally.

Figure 5.4 schematically represents the data-flow and control flow associated with local in-
strumentation data processing. As described in previous section, analysis overhead is directly

COUPLING METHODS 57

impeded to the instrumentation wrapper as the control flow is rerouted to analysis routines.
Dealing with the data management aspect, instrumentation events are immediately projected
to compact metrics (for example, a profile, arguments validation,). They are stored on the
stack and directly passed to analysis routines which immediately perform their projection on
compact metrics (either spatially, temporally or functionally, see section 5.4). In summary,
in-place analysis is the most space efficient approach as data are not stored at all, however,
projection costs have to be limited, restraining analysis verbosity. Moreover, by nature such
approach only allow the generation of either punctual events (issuing warnings, aborting, ...)
or reduced events (cumulative state must fit in programs memory) — preventing for example
exploratory analysis.

5.3.2 Post-Mortem

Figure 5.5: Schematic representation of instrumentation data post-mortem process-
ing.

As presented in Figure 5.5, trace based approach consists in storing events outside of the
parallel programs (generally in a file based trace) in order to process them separately. This
process, allows complex analysis as they wont disrupt the execution. It also open possibil-
ities for successive analysis on the same data-set. However, managing large traces can be
quite challenging as they grow rapidly with both event verbosity and the number of core1.
This poses the question of management and post-processing of those large data-set which are
challenging payloads for peta-scale file-systems. Consequently, trace-based analysis requires
a specific handling of file-system resources (for example through parallel I/O2 libraries, see
Section 6.4.1) to scale up to a full machines. Moreover, trace processing must be parallel in
order to process measurements in a time frame compatible with iterative use.

5.3.3 On-line

The on-line approach presented in Figure 5.6 can be seen as a combination of in-place and post-
mortem approaches. Instead of being processed locally, data are sent (for example, through
the network or a shared memory segment) to an on-line analyser which is able to reduce
data without impacting the application. As the analyser has a limited amount of memory,
data have to be either reduced quickly or limited in size in order not to block the application.
Moreover, as events are reduced/filtered before being stored, this approach does not allow

1 Traces of hundreds of GigaBytes are common.
2 I/O: Inputs/Outputs

58 ARCHITECTURE OF DEVELOPER TOOLS

Figure 5.6: Schematic representation of instrumentation data on-line processing.

iterative analysis over fine-grained events — preventing exploratory analysis which is always
possible with traces. However, due to its on-line nature, this methods does not stress the
file-system as in the trace based approach and allows the scaling of analysis resources in
accordance with both analysis costs and data verbosity. Indeed, the IO budget is determined
by the number of servers providing this service, value which is generally a limited portion of
the machine. Whereas, the on-line approach takes its resources (including bandwidth) from
the computing partition with the possibility of reaching higher performance.

5.4 Performance Event Analysis

Performance analysis consists in reducing events to synthetic metrics which can be eas-
ily matched with possible program improvements. It projects a large volume of individual
events over various models which capture important execution aspects while remaining un-
derstandable by users. If we consider the parallel execution as a whole it can be seen as a
multidimensional experiment which can be projected on a wide range of metrics:

• Space: distributed programs are running on a discrete set of machines. Moreover, as
we previously described, supercomputers have both intra-node (NUMA, NUOIOA) and
inter-node (network) topologies, definitively “shaping” the execution space. Therefore,
spatial reduction can provide some insight on computation and data scattering, empha-
sising phenomenons such as imbalances or dependency propagation.

• Time: by nature, a program is designed to perform a set of operation in a defined order,
in the purpose of fulfilling its purpose. Consequently, it is interesting to observe compu-
tation progress over time as it depicts the ability of the program to actually perform its
task in terms of both parallelism and synchronisation.

• Code: a parallel program execution is always preceded by its expression as an human
readable code. Therefore, projecting the execution on program sources can be an efficient
way of providing feedback to programmers. Expressing measurements in an actionable
language (iterative code modifications, coupling with version control to identify regres-
sions, hotspots identification, ...).

• Programming models: parallel execution is strongly coupled with the way parallelism
is expressed at source code level. As there are several parallel programming models
and that their mixing becomes the norm (see Section 2.3) it can be useful to correlate
programs behaviour with individual models. Not only for validation purpose but also
at performance level, for example by identifying missuses of MPI, OpenMP fork-joins,
locking schemes...

SUMMARY 59

An important aspect of performance event analysis is that it aims at providing the user
with intelligible metrics, summarising the parallel execution. Consequently, analysis is gen-
erally a destructive operation (except in some rare cases of trace visualisation with tools such
as Vampir) which operates a reduction of individual events over the aforementioned met-
rics. In this context, when comparing profiling and tracing, analysing performance data is
a way of reducing their volume through what can be described as a computation–performance
trade-off. Consequently, where the analysis takes place is crucial to budget important factors
such as overhead, analysis complexity and performance data verbosity. For example, reducing
data early is a way of avoiding unneeded data transport while producing valuable measure-
ments. However, as this reduction is a destructive process, it prevents further analysis and
exploratory approach. Eventually, another consequence of early reduction is that every analy-
sis 3 must have its associated storage description in order to be transferable to the user either
as a report or through a graphical interface. This makes tools performing early reduction 4

quite dependent from their underling performance description scheme, possibly complicating
analysis extension as it can impact the whole measurement chain.

5.5 Summary

This chapter presented the context of developer tools, and particularly performance and
debugging tools from a global point of view. We introduced the two main instrumentation
approaches which either consist in instrumenting either internally or externally. Then we
detailed the three different coupling methods, processing data locally, through post-mortem
traces or remotely via an on-line coupling method. Eventually, we described the analysis pro-
cess as a reduction which projects performance data over intelligible metrics in order to be
fully understandable by the user — process which can also be an opportunity for performance
gains. Consequently, this chapter underlined the fact that there are several design alterna-
tives to implement performance tools, offering tools developers a wide range of alternatives.

3 Apart the trivial case where a profile is displayed on STDOUT.
4 Mentioned later as hybrid Instrumentation Chains in section 6.1.2.

60 ARCHITECTURE OF DEVELOPER TOOLS

CHAPTER 6

Related Work

This section presents both existing and related work for different parts of our contribution.
We start by introducing existing developer tools with debuggers, and then pursue with pro-
filing and validation tools. Then, we detail complementary subjects which are time-stamps
synchronisation, blackboard systems and data-management approaches. This chapter gath-
ers most of the references when dealing with the state of the art itself, several references of
corollary subjects can be found in other parts of this manuscript. Note that back-links are
available in the bibliography in order to explore citation sites.

6.1 Developer Tools

This section presents the main classes of developer tools, insisting on their functions and
common implementations in terms of instrumentation, coupling and analysis. We successively
introduce debuggers, performance tools and validations tools. In each case we recall some
context, expectations and advantages associated with existing approaches.

6.1.1 Debuggers

Debugger are the most commonly used developer-tool as they are an efficient way of diagnos-
ing a faulty program in order to reestablish a feature which is the reason to be of a computer
program. Therefore, programmers generally start from a faulty state and re-launch their
program using a debugger in purpose of exploring its state. Consequently, debuggers must be
able to describe faulty program state, to do so, they generally rely on the ptrace [HC99] system
call which allows a parent process to observe and control one of its child. This single system
call provides enough fuctionalities to build a full featured debugger such as GDB [Pro13b],
IDB [Int12a], LLDB [Pro13c] or DBX [Lin90] for example: acessing child’s memory or regis-
ters, retrieving signal informations and controling child’s execution (trough signals). Other
approaches can also rely either on sampling to continuously collect call-stacks as in the STAT
debugger [AdSL+09] or, more commonly, use crash-dumps to collect programs final state.
More particularly, some debuggers can take advantage of the JTAG [LG98, Gra01] or serial
port [Axe07] of electronic devices to perform debugging from an external point of view. Debug-
gers cover a wide range of the instrumentation spectrum, with on-line approach generally via
ptrace [Pro13b, Int12a] or sampling [AADS+07, AdSL+09] followed by a reduction through a
TBON [RAM03], post-mortem approach with crash dumps or traces [Rei93, Tea06, HM01] or
even in-place debugging using back-trace libraries such as libunwind [lt11] or libc’s backtrace
function [KP07] from a signal handler.

61

62 RELATED WORK

Dealing with the interfacing, debuggers generally provide a command line interface [Pro13b,
Int12a,Pro13c,Lin90] for common use at single node scale. However, when dealing with paral-
lel payloads, displaying programs states becomes a challenging task which requires a scalable
design not only to collect data but also to display them. Tools such as net-DBX [NE01], p2d2
[Hoo96] or Panorama [MB93] debugger relied on a client server approach where a graphical
user interface could be attached to several processes. However, the increasing number of cores
made the use of scalable communication topologies compulsory. Therefore, Tree Based Over-
lay Networks (TBONs) such as Paradyn MrNEt [APM06, RAM03, Rot05] became a common
intermediate in scalable debuggers for both control and reduction purposes. Such approach
proven its scalability with the STAT debugger [AdSL+09] which relies on MrNet [RAM03] as
it has reached the petaflopic scale on the Sequoia supercomputer. Dealing with commercial
MPI-aware debugger such as Allinea DDT [All13a] or Totalview [Sof13] which are commonly
used on petaflopic range supercomputers, they also rely on a tree based topologies, reducing
data before displaying them in a graphical interface.

6.1.2 Performance Tools

Performance tools can be sorted in two main categories, on one hand those which rely on
fine-grained events through tracing and on the other hand those which process data locally.
However we will see that some tools, combine these two approaches in a third category, in
purpose of getting the best of both world, for example, by reducing an event subset and tracing
another.

Trace-Based Approach

The trace-based approach which consists in storing events in a file-based trace for post-
mortem processing requires a trace format which is in charge of defining an efficient storage
layout in term of storage and scalability. Consequently, a trace format shall not only contain
time-stamped events but also meta-data describing the execution context (topology, symbols,
...). From a more general point of view a trace format have to satisfy the following aspects:

• Consistency: a trace have to be readable out of its original context. It shall be processes
later after the execution without information loss. This supposes that the trace format
embeds specific contextual informations (symbols, topology, timing, ...).

• Scalability: as tracing targets are highly parallel programs. Analysis has to be scal-
able at both writing and reading time. Supposing particular efforts on IO management,
preserving an end to end parallelism.

• Compact data: important data size generated by tracing tools is of the main limitation
for trace-based approaches (data management and its associated overhead). This makes
efforts to restrain instrumentation data size compulsory.

• Topology handling: tracing tools generally define execution stream topology as an
acyclic graph relying on (parent, child) relationships stored within the trace.

• Events: the core of a trace format is the set of events it supports. Formats generally
define event semantic by providing common events with a fixed definition (for example,
MPI interface). It shall be noted that this specialisation of trace formats poses questions
of format adaptability.

DEVELOPER TOOLS 63

• File Handling: as a trace format aims at storing data in a parallel file system, particular
efforts are required to guarantee a minimum of scalability, for example, by limiting the
total number of open file descriptors.

In addition to those common concerns, the way analysis are processing instrumentation data
necessarily constraints their layout. Indeed displaying a temporal trace with the ability to
scroll or zoom in and out makes temporal look-up crucial (as in the SLOG2 [CGL08]). Whereas,
such format used for debugging might suffer from limitations, for example, when processing
a single type of event which being mixed with others might require a complete trace walk.
There are several trace format (one for each tools ?), however, some formats became more
widespread than others, setting a common ground for performance analysis and as we will see
opening interesting interfacing opportunities between tools.

Trace-Based Tools

An extensible trace format which relies on a meta-description approach in the purpose of
instrumenting multi-threaded programs is the Pajé [dOSdKM10] trace format which is asso-
ciated with a trace-visualisation tool [DKdOS00] for interactive exploration of event traces.
Despite its versatility, the main default of the Pajé trace format is its text based (ASCII based)
storage approach which privileged modularity over space efficiency. Consequently, Pajé is
with no doubt one of the most extensible trace format but it lacks of a proper compression and
parallel IO infrastructure to be suitable for massively parallel application tracing. Moreover,
parsing a text-based trace format costs generally more than reading a binary format which
can be immediately matched with a C structure.

Another trace format which has been used to trace parallel applications is the Open Trace
Format (OTF) [KBB+06, KBMS06]. This format relies on an ASCII-based storage method
which stores values without leading zeroes (for compression purposes). Writing and reading
are performed using a state machine which describes event layout. At the beginning of this
thesis, OTF was the state of the art trace format, as it was used by production grade tools
such as Vampir Trace [KBD+08] to store massively parallel event traces. OTF provides both
reading and writing primitives to handle individual events stream and supports compression
using zlib [DG96]. It provides predefined events for common MPI calls, efficiently instru-
menting parallel applications while supporting fast event look-up in terms of both time and
space (between processes). However, OTF does not handle parallel IO libraries, preventing its
use at larger scale as the large number of files (one per process thus one per core) can satu-
rate file-system meta-data servers. Another limitation is the identifier handling which upon
trace collection are all local to their stream, requiring a full trace rewrite to unify collected
data. OTF2 [EWG+11] which succeeded 1 to OTF brought several improvements. It added
the support for the SIONlib [FWP09] which provides parallel IOs and therefore leverages the
problems of scalability associated with the number of files. Moreover, OTF2 storage format
moved to binary, evolution which drastically reduced traces storage size (see section 9.4.6).
Dealing with the identifier unification “problem”, OTF2 features a direct conversion approach
through a local to global mapping table which avoids file copies.

1 OTF2 was not available at the beginning of this work. Otherwise, as discussed in the limitation section of our
trace based approach we would probably have used it to propel our tracing tool.

64 RELATED WORK

SLOG(Scalable LOG file) [CGL08] is a trace format specifically designed to handle temporal
traces visualisation. Events are stored in the form of a binary tree which defines temporal
intervals in the visualisation window. Therefore, zooming in and out is choosing a node in this
tree, node defining a bounding box matching current viewpoint. Approach used in complement
of SLOG in the Jumpshot [ZLG+99,WBS+00] trace visualisation tool.

The EPILOG (Event Processing, Investigating, and Logging) [WM04] trace format has been
developed for the KOJAK [MW03] measurement infrastructure, it relies on a binary data for-
mat and supports both MPI and OpenMP hybrid codes including performance counters,thanks
to the PAPI [MBDH99] library. The KOJAK performance tool set (which is the precursor
of Scalasca) allows OpenMP instrumentation programs using the Opari [MMSW02] source
translation tool-chain in order to insert instrumentation calls. It stores events within traces
which are processed using EARL [WB04] which is the high-level interface for accessing EPI-
LOG traces. It defines event abstractions (a hierarchy of event types) and provides pro-
gram state handling (stacks, messages) with random access capabilities. Thanks to this
high level interface, the EXPERT [WM03] analysis tool is able to process the trace in or-
der to generate a compact representation of performance information which can be visualised
using CUBE(CUBE Uniform Behavioral Encoding) [SW04] visualisation tool. CUBE relies
on three panes to present performance data in a compact manner (1) metrics, (2) call-tree
and (2) location, allowing the exploration of measurement data in the CUBE performance
space [WM03,Wol03].

Trace visualisation tools such as Vampir [KBD+08] trace are able to visualise OTF traces,
collected either with the libVT (included in OpenMPI), producing OTF1 traces or more recently
with the ScoreP measurement system (see next section) which produces OTF2 traces. Vampir
allows interactive exploration of large event traces which can be augmented with several per-
formance metrics (hardware counters, communication matrices, ...). To face the challenge of
displaying very large traces, the Vampir GUI can be used as a client to the VampirNG [BM08]
trace analysis engine which performs a parallel trace processing of OTF traces. Vampir also
has its own trace format called VTF3 [SKMP04]. A non-commercial alternative to Vampir is
Vite [CDFT12] which also allows interactive visualisation of OTF traces.

Paraver [PLCG95] is a performance visualisation tool which relies on both its own trace for-
mat and instrumentation layer called EXTRAE [BDMQO12] which brings support for Pthread,
OmpSs, OpenMP and MPI. Paraver has the particularity of allowing the user to build its own
performance metrics in purpose of exploring program states using a powerful filter function-
ality. Paraver is also able to process multiple-traces in parallel, feature which can be useful
for example to compare two versions of the same code.

Valgrind [NS07b] tool, callgrind [Wei08] can perform profiling of programs thanks to the
valgrind infrastructure. Despite a relatively important overhead and a limited support for
parallelism (due to virtualisation), callgrind and its associated visualiser Kcachegrind are one
of the most comprehensive profiling tool, providing in the same tool, callgraph visualisation,
visual profiles and performance metrics projection at source code level.

The paradyn [MHC94] tools are a set of tools which rely on binary instrumentation thanks
to the dyninst [RBR+07] tool in order to instrument unmodified executables. Paradyn pro-

DEVELOPER TOOLS 65

vides performance analysis though a parallel “Performance Consultant” engine [MCC+95].
The paradyn team is also at the origin of the MrNET [RAM03,JBM12] TBON framework with
propelled the STAT debugger [AdSL+09] at petaflopic scale. If we compare Paradyn which
our on-line approach, we can see that it also performs a runtime coupling thanks to the Mr-
Net [RAM03] framework which itself relies on TCP sockets (MrNET 4.0.0). Consequently,
as we will further develop in Chapter 10, our method provides support for high performance
networks (thanks to the underlying MPI) and is build around a distributed data-flow engine
which simplifies analysis specification.

Hybrid Instrumentation Chains

In order to reduce the volume of data stored in performance traces, some tools adopted
an hybrid approach by combining both profiling and tracing. Therefore, most performance
event are reduced in place, for example by being projected on a call-path profile, whereas, a
manageable subset of events is actually stored for latter processing (for example MPI commu-
nications). If balanced correctly in terms of embedded analysis cost, this method can provide
valuable measurements while remaining scalable and non-invasive.

OTF2 has been included in the ScoreP [aMBB+12] measurement system which gathers sev-
eral profiling tools (Vampir, Scalasca, Tau, Paraver) around the same measurement infras-
tructure and trace format, allowing users to use several tools on the same trace file. Opening
opportunities for complementary use and interaction between tools. ScoreP features state of
the art instrumentation capabilities, including OpenMP tasks [LPSW12] and is able to gener-
ate OTF2 traces, Cube profiles (see Scalasca subsection) and Tau profiles (see Tau subsection)
— both making of ScoreP the most versatile instrumentation library and filling the gap be-
tween tools which were isolated because of their different trace formats2.

Scalasca [GWW+10] is the successor of KOJAK, it relies on an hybrid approach which com-
bines both profiling and tracing in order to produce valuable performance metrics with a re-
duced overhead. Functions calls which are among the most verbose events are reduced in
place using a profiling approach which can be made even more lightweight thanks to sam-
pling [SGS+11, SWW11]. Dealing with MPI events stored for post-mortem processing are
processed in an original fashion as they are replayed upon application end, in purpose of
generating performance metrics such as wait-state analysis [GWWM09]. As Scalasca also
subject to the problematic of identifiers unification (see OTF trace format), a scalable hierar-
chical approach [GSS+12] had to be developed in order to scale to larger systems [WGM+10].
Dealing with analysis, Scalasca relies on the CUBE [SW04] visualiser, enriched with sev-
eral performance metrics such as Wait-states [BGWA10] analysis, load-imbalance [BWG12],
one-sided communications support (thanks to the replay approach) [HKW11], performance
dynamics [Sze12] (to our knowledge not included yet in current release 1.4.3).

Dealing with the TAU [MMSH10] performance tool-set, it is probably one of the most ver-
satile one. It supports a wide range of instrumentation methods among which are directive
rewriting [MMSW01], function and loop instrumentation [JDA+09], GPU support [MBS+11]
and sampling [SMH98]. On the analysis side TAU relies on the PerfDMF [HMBM05] per-
formance data management framework which provide TAU analysis with a common storage
2 Trace format converters are available, but who would convert a 100GB+ trace ?

66 RELATED WORK

and data access infrastructure. TAU supports snapshots [MSMS08] which can be viewed as
sampled profiles, it also supports phase based profiling [MSM05]. The Paraprof tool can be
used to explore performance measurements by displaying profiles, time matrices, call-graphs
and also features an interactive 3D visualisation tool [SML+12]. TAU also relies on Perf-
Explorer [HM05] for original performance analysis capabilities [HMSM07], including data-
mining in-between application runs. TAU provides support for run-time monitoring [SMS99],
for example with the MrNET [RAM03] TBON framework [NMM+08,LMM11].

Static Analysis

Static analysis consists in deriving information from the binary without requiring program
execution. This approach has the obvious advantage of relaxing hardware dependencies, al-
lowing program projection in any context as far as it has been modelled. Moreover, this method
forces the setup of a symbolic execution model which is an important field of research as ma-
chines are becoming more and more complex. We cannot solely rely on empirical metrics
(profiling) and it is important to define what can be expected from a given platform to initi-
ate a proactive approach toward the computing substrate — encouraging the advent of new
programming models while helping during the machine/hardware design process. However,
static analysis can be very challenging, not only because it relies on low level representations
(mostly source code or sometimes the binary itself) but also because it faces execution com-
binatorial aspect which arises from both parallelisms and architectures complexity (caches,
prefetching, branch prediction, ...).

MAQAO [DBC+05] is a tool aimed at optimising binary code. It relies on a powerful static
analyser to disassemble the binary in order to rebuild the control flow graph (CFG). Dissas-
embler which provides an instrumentation interface and has OpenMP support [BRJ+10]. On
top of this infrastructure, MAQAO provides a plugin framework in order to support different
types of analysis [SCOJ13]: a static architecture performance model, STAN for performance
tuning hints, DECAN [KZO+10] which allows decremental analysis and memory based value
profiling. More generally, compilers such as GCC or ICC are also relying on performance pre-
diction, for example to choose between optimisations alternatives (such as unrolling factors),
choices made from heuristics which are derived from static analysis.

On-line and In-place Tools

As detailed in previous chapter, on-line approach handles performance data using comput-
ing resources distinct from those on which the program runs, thanks to a coupling mechanism
which forwards data to the analyser (generally through the network or via shared memory
segments). This approach avoids file-system bottleneck while preserving fine grained events.
It also opens opportunities for “real-time” profiling (introspection). Dealing with the profiling
approach, it consists in reducing events locally by directly projecting on performance metrics
(profile, counters, call-path, ...), thus, completely avoiding performance data manipulation.
However, as profiling cost directly impact instrumented application, analysis have to remain
simple (in terms of computational complexity) and independent from a global state.

Periscope [BPG10] is a tool which performs online automatic analysis of parallel programs.
It relies on a tree of agents performing a reduction on performance metrics, displaying them
in an interface fully integrated in the Eclipse integrated development environment. It can

DEVELOPER TOOLS 67

perform (among others) memory accesses analysis [GK07] or finds inefficiencies in the use
of OpenMP [HSC+08]. Analysis modules can rely on a powerful performance specification
language ASL (APART Specification Language) [GF07] which allows automated performance
analysis [GFK05,FG07].

mpiP [VM01] is an MPI profiling tool which relies on a statistical aggregate of communi-
cation operations. Profiling data are collected locally to each task and reduced at the end of
the execution. Thanks to its lightweight approach mpiP has less overhead while providing
resuls close to the effective execution. HPCtoolkit [ABF+10] relies on sampling combined with
stack unwiding and performance counter collection to generate scalable MPI program pro-
files, with support for node level parallelism [TMC09]. For example, it can generate call-path
profiles [AMCT10], analyse lock contention [TMCP10] and load imbalances [TAMC10].

6.1.3 Validation Tools

Validation tools aim at projecting programs behaviours on their underlying model, therefore,
producing highly valuable errors which can be immediately matched with actionable concepts.
At the difference of profiling which only displays the consequences of a defect, validation’s pur-
pose is to find the cause of this defect — directly yielding valuable information. Consequently,
there could be as many validation tools than programming model or concepts, here we present
those we are directly concerned with: parallel programming models (MPI, OpenMP, Pthread)
and memory management.

Message Passing Interface

Marmot [KMR04a] is an MPI checking tool which validates the use of the MPI interface us-
ing the PMPI interface. It allocates an extra process which takes care of analysis such as dead-
lock detection which require a global state. It support hybrid OpenMP programs [HMK09] and
provides feedback on several types of events such as MPI IO [KMR04b] or one sided communi-
cations [KR06]. Marmot is able to generate comprehensive HTML reports and have been in-
cluded in both the DDT debugger [KHL+07] and the CUBE visualisation tool. Umpire [VdS00]
is quite similar to Marmot as it provides MPI checking capabilities, however, unlike Marmot,
it is limited to shared memory platforms as tasks communicate through a shared-memory seg-
ment, the manager being a thread in task 0. Umpire is able to perform several MPI related
checks, including deadlock and mismatched collectives detection. Similarly MPI-CHECK can
be used to validate the MPI Fortran 90 interface by building a "knowledge base" of MPI calls
which is used to instruments individual MPI call at source code level. Other tools such as the
Intel Message Checker [DKDS+05](IMC) can provide such analysis at MPI layer level. IMC
has also been included in the DDT parallel debugger. Eventually, Some MPI implementations
also feature checking methods such as MPICH for MPI program correctness [PGK+07].

Another tool which succeeded to Marmot and Umpire is MUST which provides features sim-
ilar to those of marmot but with an extended scalability thanks to a tree based overlay net-
work (or TBON) architecture. The Generic Tool Infrastructure (GTI) [HMdS+12] which relies
on PNMPI and provides a generic infrastructure for instrumentation and event reduction pur-
poses allows efficient generation of event instrumentation, transport and reduction through
XML specifications, allowing the offload and parallelization of MUST validations. The GTI is
build over PNMPI [SdS07] which is a framework allowing the stacking of several tools at the

68 RELATED WORK

PMPI interface level. Moreover, PNMPI introduced an MPI virtualisation approach which con-
sisted in wrapping the whole MPI interface while replacing references to MPI_COMM_WORLD.
Idea which motivated our on-line tracing approach, eventually leading to our stream imple-
mentation for on-line profiling purpose (see section 10.2.3).

Thread Level

Some tools also target thread level parallelism to detect programming model misuses or
involuntary error such as race conditions. For example the Valgrind [NS07b] tool Helgrind
[MW07], is able to detect race conditions using a lockset algorithm. Other tools such as Thread
Sanitizer [SI09] or Helgrind+ [JT08] extend Helgrind’s lockset approach with an happened
before relationship to reduce the number of false positives. Sun Thread Analyzer [Ora07]
or the Intel Thread Checker [BBMP06, PS03] can perform either race condition or deadlock
detection on either Pthread and OpenMP programs, both featuring a graphical user interface
allowing faulty code exploration.

Memory

As memory errors are very common in computers programs (leaks, double free, unauthorised
access leading to a segmentation fault...), several validation tools were developed in order to
help programmers to diagnose and fix those errors. For example, the Memcheck [NS07a] tool
which is part of the Valgrind [NS07b] framework is able to track most memory related errors
at the cost of a relatively important overhead and limited parallelism support due to Valgrind’s
virtualisation approach — drawback which is also a strength when coming to measurement
accuracy as it allows the instrumentation of every load and stores. Another approach used
by AddressSanitizer [SBPV12] (ASan) relies on the LLVM compiler to instrument memory
accesses in purpose of producing errors similar to those of Memcheck, minus the consequences
of virtualisation. Debug allocators such as Electric Fence [Per03] add restricted guard pages
before and after each allocated segment in order to catch the exceptions associated with out-of-
bounds errors. These tools provide less features than memory validation tools which are able
to instrument load and stores. Moreover, they increase program memory consumption (guard
pages) and slow down allocation because of the systems calls required to set guard pages
permissions (mprotect). Eventually, other debug allocators such as DieHard [BZ06] can rely
on canary (or ’magic’) values around allocated segments to detect out-of-bounds modifications.

6.2 Time-stamp Synchronisation

Synchronising clocks is critical to allow temporal analyses or rendering which require an
accurate global distributed event view. This section describes common clock synchronisation
techniques. We first outlines the importance of time-stamp synchronisation for performance
analysis. Then we present common time sources before describing time-stamp handling in
instrumentation context.

When running a program on a supercomputer and therefore on several computing nodes,
synchronising clocks is compulsory to acquire a global temporal view. Although some super-
computer architectures such as the Blue Gene/P have a centralised time source, providing
user with an accurate global time [CBC+05], most platform does not offer such facilities. In
general, the most precise time source is available at processor level (see next section). It is

TIME-STAMP SYNCHRONISATION 69

synchronised between the cores of a given node but not in-between nodes. In this context,
events within the same node can be observed at clock resolution (close to nanosecond), allow-
ing a fine-grained event study. Whereas, there is solely the “happened before” relationship for
guaranteeing time-stamps outside of nodes boundaries, for example, through a Logical Clock
(LC) [Lam78].

Figure 6.1: Example of Lamport Logical Clock [Lam78] for tree communicating pro-
cesses.

As presented in Figure 6.1, a logical clock ensures causality between two interacting pro-
cesses but does not ensure causality between processes which do not communicate. This log-
ical clock has been extended to a vector clock [Mat88, Fid88], not only propagating a single
clock but the whole “synchronisation vector”, allowing a stronger ordering propagation. When
targeting profiling applications, this method cannot be satisfactory as it does not provide du-
ration information for inter-nodes events. For example, in two communicating nodes, a logical
clock is not sufficient to qualify messages latency or collectives duration, which by nature are
distributed events. In such context, a coherent time source with an error lower than observed
event duration (messages latency is in the µsec range) is required to provide a coherent view
outside of nodes boundaries.

Figure 6.2: Parametrisation of clock error assuming a linear representation.

Assuming a linear representation of clock time T(t) = at+b with a the drift factor and t the
time offset, the error can be described by these two parameters. As presentedÂăin Figure 6.2,
the offset is the absolute difference between clocks and the drift is their frequency difference.
Naturally, this approach is only a model as in practice clocks are not linear, depending on
several factors. For example the temperature which influences oscillator frequency, creating
non linear errors. However, in a first approximation, clock frequencies can be assumed to be

70 RELATED WORK

uniform on a given interval of time. But, provide time references which are bound to diverge
after a sufficiently long time. Correcting drift variations errors requires much more computing
efforts and complex algorithms such as Scalasca’s amortisation [BRW07, BLRW08, Bec10].
The Intel trace analyzer and collector [Int12b](section 5.1) relies on a linear interpolation
in-between timestamps taken at the beginning and upon program completion, method also
used by Vampir trace which can also extends the process by resynchronising at every global
collective [fISZ13].

6.2.1 Time Source

Our instrumentation relies on the most precise time source available in current supercom-
puters: the TimeStamp Counter (TSC). This counter, available on most processors, runs at a
frequency close to the processor one, making it by far the most precise time source available
(fs = 2.8 × 109 → Ts = 0.35ns) with resolutions in the nanosecond range. It is generally a 64
bits counter, incremented at a constant frequency fs since the machine has been started. Its
value can be retrieved through an assembler call similar to the one of Figure 6.3 or using the
cycle.h header from the FFTW project which provides a portable implementation. On recent
architectures, this source is synchronised in-between cores, providing a reliable time source at
node level [INT10].� �
s t a t i c in l ine uint64_t get_TSC (void) {

unsigned a , d ;
asm(" mfence ") ; / / Memory Barrier
asm(" l fence ") ; / / Load barrier
asm v o l a t i l e (" rdtsc " : "=a" (a) , "=d" (d)) ; / / TSC r e t r i e v a l
return (a) | (((d)<<32) ;

}� �
Figure 6.3: TSC Retrieval on the x86-64 architecture.

6.2.2 Synchronisation

Dealing with the synchronisation process itself, feedback loops based on round-trip esti-
mation, derived from Cristian’s synchronisation algorithm [Cri89] are the most widespread
approach. Such method is for example used by the Network Time Protocol (NTP) [Mil91] and
has been used by previous versions of the Linux kernel [Kle05] (before being removed because
of hardware synchronisation [Mol07]). A study, of global time round-trip based synchroni-
sation over given topologies (fully-connected, ring, star and hypercubes) has been done by
Jezequel [Jéz89]. Similarly, Dunigan analyses such synchronisation for hypercubes [Dun92].
Several alternative methods are proposed, including the one sided synchronisation approach
proposed by Drummond et al. [DB93]. It relies on point to point communications at the con-
dition of being able to derive a communication pattern involving every processes. Method
limited by latency variations (no feedback), messages heterogeneity and one-sided commu-
nication patterns diameter which, by nature, are decentralised. Dealing with hardware re-
lated methods, Liao et Al. [LMC99] achieved a 1µs accuracy relying on a specific Myrinet
network support (MyriTime packets) and Cristian’s algorithm [Cri89]. Sensors network of-
ten rely on network layer broadcasts to perform distributed synchronisation either in single
hop [VCR93, VRC97, HC02] or multi-hop manner [EGE02]. More generally, one of the most
widespread use of distributed time synchronisation is with no doubt the Global Positioning

BLACKBOARD SYSTEMS 71

System (GPS) [KH06] which relies on tight synchronisation thanks to atomic clocks in order
to provide its positioning service.

6.2.3 Logical Clocks

As far as logical clocks are concerned they were introduced by Lamport [Lam78] as simple
counters guaranteeing causality in-between interacting processes. By nature, such counter
do not offer time measurement capabilities as events are numbered in order of occurrence as
monotonous sequences. This first logical clock only propagated interacting process status, ne-
glecting its previous temporal context. This limitation has been addressed by vector clocks
simultaneously designed by Mattern [Mat88] and Fidge [Fid88] by propagating the whole set
of temporal constraints, yielding tighter causality bounds. Vector clocks are strongly consis-
tent as they accurately capture causality. However, Charron-Bost shown that their size in
purpose of capturing causality cannot be less than n [CB91], with n the number of processes,
posing the question of their scalability. Logical clocks have the propriety of clearly describ-
ing the dependency links in-between events and therefore freedom degrees, propriety which
cannot be compactly captured by classical time-stamping, even if arbitrarily precise. Conse-
quently, this approach might be a good candidate for parallel instrumentation, maybe not only
as a corrective component but also as the actual timing substrate.

6.2.4 Time-stamps for Instrumentation

Getting back to trace related time-stamp synchronisation, various approach were adopted.
A common method consists in synchronising clocks at both program start-up and ending
in purpose of performing a linear time approximation, approach used by both VampirTrace
[fISZ13] and the Intel Trace Analyzer [Int12b]. Approximation method which statistical ef-
fects have benn studied by Maillet et Al. [MT95]. On the opposite, the Scalasca tool-set relies
on a replay based strategy which purpose is to reestablish the clock condition for messages
through forward and backward amortisation [BRW07,BLRW08,Bec10]. The VampirTrace in-
strumentation library can also rely on an internal timer synchronisation [DKMN08] which
takes advantage of collective operation in order to regularly synchronise time-stamps thanks
to a multi-hop algorithm based on a k-regular topology, with the possible drawback of impact-
ing collectives performance. More generally, synchronisation quality is subject to a trade-off
relatively to its performance impact. Indeed, when trying to model the impact of a measure-
ment or time-stamp correction, as outlined by Malony et Al. [MR91, MRW92, SM93], several
combinatorial aspects have to be taken into account as such correction are not only linked to
local parameters. For example when correcting a local clock offset, a special care has to be
taken not to violate the clock condition: “a message cannot be received before being sent” —
simple predicate which is far from being obvious in presence of non-linear clock effects, for
example, because of cascade effects, randomly propagating corrections.

6.3 Blackboard Systems

Blackboard systems are a class of expert system which has been deeply influenced by ar-
tificial intelligence (AI) related concepts. Expert systems purpose is to find a way of mod-
elling knowledge in order to help decision in either complex or uncertain environment. Sev-
eral approaches were developed among which the forward inference model (if–then) used by

72 RELATED WORK

both MYCIN [Sho76] which identified bacterias in order to recommend antibiotics and DEN-
DRAL [LBFL80] which made hypothesis on chemical structures. A more recent approach
relies on inference engines, formulating hypothesis using either logic or fuzzy logic thanks to
specifically tailored symbolic languages such as LISP [Ste90] or PROLOG [Rou75,SSE90]. Ex-
pert systems became very popular in the 80’s [RN10], a lot of ’shell’ were developed in order to
build meta-expert systems from higher level values [FG87]. Blackboard systems which found
their origins in this context [EL80,EM88], are a kind of problem solving framework where sev-
eral agents [Cor03] or Knowledge Sources (KS) are gathered around a common data-structure
or Blackboard (BB). Those agents can read and write on this data-structure in order to pro-
duce new data which will be at their turn globally available for opportunistic processing by
other Knowledge Sources. This work-flow, derived from the analogy of several experts, gath-
ered around a blackboard and iteratively solving a problem has several advantages [EM88]
among which are:

• Natural Parallelism: data can be processed by KSs as soon as they are available. More-
over, the data-flow model associated with this approach is easy to parallelise.

• Multiple levels of representation: as we will detail later, Blackboard systems were
originally developed to solve signal processing problems [EL80, NFAR88] with several
levels of representation. In this architecture, several data formats can cohabit on the BB
while being processed by different KSs, simplifying chained analysis.

• Constant visibility: as data are constantly pushed to a common data-structure, allow-
ing KSs to interfere with non-finalised, deriving possible solutions.

• Knowledge sand-boxing: KSs can be of arbitrary complexity as their internal process-
ing is not visible. They can contribute to the analysis at the only requirement of sharing
a representation (data-type) with another KSs.

6.3.1 BlackBoard Architecture

Figure 6.4: Canonical BlackBoard architecture.

As presented in Figure 6.4, a canonical BB framework consists in several components en-
abling opportunistic reasoning. The blackboard model being at first conceptual, it has to be

DATA MANAGEMENT 73

adapted to a computing substrate by adding a control system in charge of triggering data com-
putation [EM88]. Consequently, a Blackboard framework gathers the following components:

• The BlackBoard (BB) is a data-structure used as common denominator between KSs.
Data are organised hierarchically in different levels and objects are namely identified3.
Blackboards allowing multiple levels [ET79] with distinct data representations.

• Knowledge Sources (KSs) are either procedures or rules, defining how data present
on the BB are processed and represented in a domain specific fashion. A KS generally
inform the control module about how it can contribute to a given solution, deciding which
KS to trigger on a given data. KSs which are only allowed to communicate through the
BB.

• The Control Module provides a control flow to a blackboard model implementation,
reacting to changes on the BB. It is also in charge of ranking KSs contribution to decide
which data will be processed next (also reffered to as focus of attention).

Consequently, a classical Blackboard work-flow could be described as follows: (1) several
KSs are gathered around a BB, as (2) new data become available, the control system decides
which KS(s) to trigger (focus of attention) in function of an heuristic of their contribution.
Then, (3) this analysis can at its turn produce new data and so on. The (4) stop condition is
also at the discretion of the control system either through a special condition or simply be-
cause the solution has been found. Dealing with parallelism, blackboard systems are good
candidates for concurrency [Cor88] as their data-flow nature is inherently parallel. Two types
of parallelism can be identified [EM88, DQZ90]: (1) executing several blackboards in paral-
lel [LC83, Wil88] with communications in between systems, approach which can be called a
distributed blackboard. Or (2) running several knowledge sources in parallel [NAR90] in or-
der to take advantage of the data-flow parallelism. Approaches which can be combined to build
a blackboard which is both parallel and distributed [Sch86] with the drawback of preventing
global visibility of data (due to memory scattering).

6.4 Data Management

The exponential computing power growth led to a large increase in the amount of data that
is being manipulated. This section presents some data management approaches in terms
of storage, representation and processing. We start with the file-based approach which is
the norm in the HPC context before shifting toward key-value data-stores which are now
propelling Internet largest websites. In a second time, we present data analysis methods
associated with key value data-stores before finishing with TBONS which are used by some
HPC tools for both reduction and control purposes.

6.4.1 File-Based Approach

A common way of managing simulation output is to store them in a parallel file system such
as lustre [BS02], GPFS [SH02] or PVFS [RT00] which are specifically tailored to manage sev-
eral clients, for example, through the replication of meta-data servers which are the main point
3 This data representation described in [EM88](p.13) has to be compared with current approaches such as No-IO,

No-SQL and Map-Reduce which favour key-value data-stores.

74 RELATED WORK

of contention in a coherent file-system. However, directly using the POSIX interface to address
such parallel file-system is often not recommended as it can lead to poor performance (because
of meta-data contention). Possibly leading to file-system instability, possibly impacting the
whole machine, despite the availability of meta-data caches in specifically tailored production
grade NFS servers [DLL07]. Consequently, in order to run at higher scale the use of parallel
I/O libraries is compulsory to reduce the number of files from one per core to one per node
(or less). Therefore, such library are in charge of multiplexing data streams through network
calls before handing them to the file-system. For example, MPI I/O [MF08,TLG97] embeds this
support in the MPI standard and other libraries such as HDF5 [The13] or NetCDF [NET13]
define standard ways of managing scientific data in parallel (including internal layout). An-
other parallel I/O library, which brings less constraints over data-layout is SionLIB [FWP09]
which is used by the ScoreP [aMBB+12] framework for parallel traces writing. Consequently,
the management of scientific data-set have seen the development of several approaches which
for most of them defined both IO abstractions and data-formats, contributing to their complex-
ity. Handling simulation outputs over a file-system abstraction is therefore a challenging task
requiring specifically tailored libraries such as, for example, Hercule [BCF+12, Vet13] which
defines a meta-model for parallel code coupling purposes.

6.4.2 Key-Value Data-stores

Big-data4 is a concept which fast-developed in the context of the WEB 2.0 challenges. In-
deed, web services such as Facebook, Google, Amazon... now manipulate unprecedented
amount of data which are both at the core of their services and economical model. Conse-
quently, most widespread Big-data evolutions came from web actors as means to face their
data manipulation challenges, addressing, collection, storage, manipulation, analysis and vi-
sualisation problems associated with large data-sets. Firstly, data storage evolved from a
transactional one (satisfying the ACID5 proprieties) to a much simpler one: NoSQL data-
stores. They rely on a key-value representation and can be viewed as large associative arrays.
The first NoSQL database was Memcached [Fit04] which allowed temporary data storage
in memory with a key/value interface. Approach which has been generalised to persistent
databases which were stripped of their SQL6 interface, greatly decreasing their complexity
and therefore, yielding higher performance. Key/value database can also be distributed on
several nodes, approach referred to as sharding in order to horizontally scale the database
(more node) instead of relying on vertical scaling (upgrading nodes) — allowing scaling over
commodity machines instead of expensive mainframes. Sharding can be performed on natural
data segmentation, indexing, replication, key space splitting with the pitfall of unbalanced
data-sets or through consistent hashing which maps a hashing space over distributed nodes.
This shift led to the development of several database such as MongoDB [CD10], Facebook’s
Cassandra [LM09], Google’s Bigtable [CDG+08] (cloned in open-source as HBase [Geo11]),
Voldemort [Tea13b] (used for example by LinkedIn, an open-source clone of Amazon Dy-
namo [DHJ+07]), Redis [Tea13a]... Each of them come with its subtleties and advantages
while relying on the key-value approach and a sharding method. Several distributed file-
systems were designed to scale on commodity hardware for big data usage, including Amazon
Simple Storage Service [ws13] (S3), Hadoop Distributed File System [Bor07] (HDFS) (which
aims at powering the Hadoop MapReduce framework) or Google File System (GFS) [GGL03].
4 Sometimes used as a buzzword, but with no doubt highlighting critical problems.
5 Atomicity Consistency Isolation Durability [Gra81].
6 Structured Query Language [CB74] see [HM10,Hai12] for underlying concepts.

DATA MANAGEMENT 75

6.4.3 Distributed Data-Reduction

Derived from the key-value paradigm and inspired from functional programming, the MapRe-
duce [DG08] approach is an algorithm design pattern which as stated by its name consists of
mapping a data set to several nodes in order to perform a computation before reducing the
result. MapReduce can be used to scatter a problem on a large cluster of commodity machines
which for example parse the data contained in chunks (mapping) in order to perform a com-
putation over parsed chunks (reduction), eventually generating a result stored as a file. This
simple process is coordinated by a master which is in charge of dispatching jobs while provid-
ing fault-tolerance support either through job replication or by restarting failing jobs. MapRe-
duce is a powerful technique describing parallel processing work-flows for large data volumes.
One interesting aspect of this approach is that computation is made space independent in the
sense that the programmer is prompted to specify primitive with both spatial and temporal
aspects, giving parallelism opportunities to the underlying run-time. Indeed, one of parallel
programming challenge is scattering data over computing units while following architecture’s
hierarchy (particularly with a steadily increasing number of cores). Therefore, expressing
computation in term of data dependency and spatial operations (thanks to an explicit data
scattering scheme or as in MapReduce a shuffle operation) can be an opportunity for simplify-
ing parallel programming models. There are numerous implementations of MapReduce with,
for example, Hadoop [Whi12] (which uses Java) and even over MPI [PD11].

6.4.4 Tree-Based Overlay Networks (TBONS)

Tree-Based Overlay Networks or TBONS [APM06] are a scalable structure for control and
measure over large cluster of nodes. They take advantage of trees logarithmic complexity
in order to connect several processes in a space efficient manner. They can be used to im-
plement high throughput reductions and broadcasts with custom filters. The reduction case
opens opportunities for streamed data reduction, processing data through filters at each tree
level. In this case, instrumented processes are part of leaf nodes (called back-end) and data
are streamed to the front-end (root node) while being processed by several reduction filters.
This method is used in the DDT debugger [All13a] for control and program state reduc-
tion purposes. Frameworks such as MrNET [RAM03, JBM12] which is part of the Paradyn
project [MCC+95] can be used to build efficient TBONS with arbitrary reduction filters, frame-
work which proved its scalability in the STAT debugger [AdSL+09]. TBONs are also used
in the Generic Tool Infrastructure (GTI) [HMdS+12] which relies on PNMPI and provides a
generic infrastructure to instrument and reduce events. The GTI allows instrumentation,
transport and reduction through XML specifications and has been successively used to offload
and parallelise MUST’s validations. Examples of profiling tools using the TBON paradigm are
Periscope [BPG10] and MAP [All13b] (derived from DDT) which operate a tree-based reduc-
tion on performance metrics.

76 RELATED WORK

PART III

Contribution

77

CHAPTER 7

MPI Runtime Characterisation

This chapter introduces a tool which aims at characterising the execution substrate from the
MPI programming model viewpoint. This tool has been firstly developed to acquire a better
understanding of machine constrains and capabilities in prevision of application profiling. Its
purpose is to empirically explore MPI based program performance by characterising individual
MPI calls in function of various parameters. This process could be described as fingerprinting
a given supercomputer in the purpose of generating a reference document allowing developers
to objectively assess their programs costs in terms of MPI calls. This chapter firstly describes
our characterisation tool followed by excerpt from reports studied through an empirical cost
analysis of the MPI interface.

7.1 Tool Architecture

Figure 7.1: Overview of the architecture of our MPI Benchmarking tool.

As presented in figure 7.1, our MPI benchmarking tool MPI_Bench is based on a bash script
which provides a convenient interface for both measurements and report generation. The
bench-marking process relies on a simple MPI program which stores several realisation dura-
tions for each MPI call using varying processes counts and message sizes. Measurements are
collected in an iterative fashion, samples being appended at the end of existing measures. It
allows a better test coverage as samples are not necessarily correlated in time as many factors
can influence machine load: hour of the day, holidays, automated runs... Once collected mea-
surements are post-processed by R scripts in order to extract for each case common metrics
(such as average, minimum, maximum, deviation) while producing associated graphs. These
data once processed form a Report Data bundle which can also be used to produce compara-
tive reports. Then, this Report Data bundle is converted into a latex report which regroups

79

80 MPI RUNTIME CHARACTERISATION

all measurement with hyperlinks redirecting to associated realisation graphs and probability
density functions, for each {size, process count} combination. Eventually, this report can be
compiled as an autonomous PDF file for further reference.

7.2 Measurement Process

The measurement process is carried over by a simple MPI c program which times several re-
alisations for most MPI calls using different {size, process count} parameters, thus, exploring
the possible performance space of the MPI interface. This section details our measurement
method for different types of MPI calls.

7.2.1 Point to Points

Figure 7.2: Process sweeping used by our point to point measurement method.

Send, Ssend, Isend and Issend point to point communications are measured for different
message sizes and process counts. As presented in figure 7.2, we rely on a simple sweeping
measurement by proceeding with N measurement of size S on several processes. We use this
approach to cover most topological cases at both intra-node (see figure 2.8(a)) and inter-node
level (see figure 2.9(a)) as latency and bandwidth vary with process layout. Measurement is
performed from sender point of view by measuring the send duration. Using this simple ap-
proach, we are able to derive minimum, maximum and average time for each message size on
a representative sampling of the topology (thanks to sweeping). Moreover, when dealing with
asynchronous messages, we also measure the asynchronous window or time for the request to
be returned by MPI_Wait during the sending process.

7.2.2 Collectives Operations

As depicted in figure 7.3, nothing prevents some processes to leave the collective operation
once they have made their contribution, making timing of such operation less obvious. There-
fore, in our approach, we decided to consider each individual collective call viewed from a given
process as a realisation of this collective call. Consequently, calling a collective, for example, on
512 processes yields 512 measurements of collectives, thus, leveraging measurements ambigu-
ities. As before, this measurement is performed for various message sizes and number of pro-
cesses to provide an outlook over the performance space. Measured collectives are: MPI_Bcast,
MPI_Reduce, MPI_Allreduce, MPI_Alltoall, MPI_Scatter, MPI_Gather, MPI_Barrier.

REPORT ANALYSIS 81

Figure 7.3: Collective operation measurement method which collects per-process dura-
tions.

7.3 Report Analysis

This sections presents report excerpts and some remarks linked to the measurements we
performed on the Tera 100 supercomputer under different conditions. We first cover point to
points measurements, emphasising how they reveal the underlying topology. Then, we analyse
the influence of machine load over collective operations and conclude that there is an impor-
tant performance noise which might question performance reproducibility. All measurement
were done over MPI Bull which is a derivative of Open MPI provided by machine vendor.

7.3.1 Point to Points

Size (B) Average Min Max Deviation
4 101 µs 0.146 µs 0.284 s 3.4 ms
8 0.59 µs 0.16 µs 80.7 µs 1.2 µs
16 1.22 µs 0.162 µs 0.266 s 338 µs
32 0.614 µs 0.185 µs 158 µs 1.18 µs
64 0.645 µs 0.199 µs 60.3 µs 1.1 µs
128 0.796 µs 0.201 µs 192 µs 1.12 µs
256 0.981 µs 0.213 µs 0.133 s 141 µs
512 0.832 µs 0.227 µs 180 µs 1.18 µs
Size (KB) Average Min Max Deviation
1 1.25 µs 0.265 µs 0.131 s 180 µs
2 1.68 µs 0.381 µs 0.125 s 133 µs
4 3.88 µs 1.1 µs 0.13 s 365 µs
8 5.05 µs 1.77 µs 285 µs 10.7 µs
16 28.3 µs 4.7 µs 9.96 ms 89.1 µs
32 40.6 µs 8.11 µs 16.3 ms 25.6 µs
64 64.8 µs 12.7 µs 1.49 ms 17.8 µs
128 107 µs 20.8 µs 10.9 ms 35.7 µs
256 189 µs 39.3 µs 20 ms 72.8 µs
512 347 µs 79.1 µs 18.6 ms 104 µs
Size (MB) Average Min Max Deviation
1 666 µs 157 µs 14.4 ms 169 µs
2 1.28 ms 312 µs 17.2 ms 334 µs
4 2.45 ms 626 µs 17.7 ms 560 µs
8 4.94 ms 1.25 ms 19.6 ms 1.14 ms
16 9.94 ms 2.5 ms 28 ms 2.25 ms
32 20.3 ms 7.84 ms 0.118 s 3.8 ms
64 39.9 ms 17.7 ms 0.115 s 8.1 ms
128 87.8 ms 35.4 ms 0.146 s 22.7 ms

Figure 7.4: MPI_Send in function of message size.

82 MPI RUNTIME CHARACTERISATION

Size (B) Average Min Max Deviation Average Window Min Window Max Window Window deviation

4 0.617 µs 0.127 µs 5.19ms 18.3 µs 100 µs 0.0229 µs 0.133 s 3.39ms
8 0.47 µs 0.143 µs 45.6 µs 0.397 µs 0.503 µs 0.0247 µs 0.211 s 223 µs
16 0.478 µs 0.145 µs 45.8 µs 0.434 µs 0.269 µs 0.0247 µs 57.9 µs 1.13 µs
32 0.5 µs 0.161 µs 46.1 µs 0.405 µs 0.264 µs 0.0247 µs 151 µs 1.05 µs
64 0.539 µs 0.166 µs 74.2 µs 0.451 µs 0.369 µs 0.0247 µs 88.6ms 93.8 µs
128 0.626 µs 0.191 µs 141 µs 0.552 µs 0.312 µs 0.0247 µs 55.4 µs 0.819 µs
256 0.635 µs 0.196 µs 191 µs 0.482 µs 0.312 µs 0.0247 µs 51.3 µs 0.827 µs
512 0.637 µs 0.201 µs 59.9 µs 0.453 µs 0.314 µs 0.0247 µs 58.8 µs 0.881 µs

Size (KB) Average Min Max Deviation Average Window Min Window Max Window Window deviation

1 0.741 µs 0.244 µs 80.4 µs 0.461 µs 0.341 µs 0.0247 µs 84.3 µs 0.993 µs
2 1.24 µs 0.341 µs 287 µs 0.926 µs 0.367 µs 0.0247 µs 54 µs 1.17 µs
4 1.75 µs 0.515 µs 90.3 µs 0.527 µs 1.01 µs 0.0247 µs 96.4ms 102 µs
8 2.58 µs 0.519 µs 127 µs 0.822 µs 2.29 µs 0.0247 µs 0.124 s 132 µs
16 3.09 µs 0.559 µs 69 µs 0.982 µs 23.5 µs 4.14 µs 9.43ms 87.9 µs
32 3.14 µs 0.559 µs 82.4 µs 1.01 µs 36.2 µs 7.62 µs 11.7ms 22.7 µs
64 3.17 µs 0.584 µs 60.2 µs 0.975 µs 60.4 µs 12.2 µs 8.7ms 19.3 µs
128 3.26 µs 0.558 µs 305 µs 1.17 µs 103 µs 20.2 µs 17.5ms 35.4 µs
256 3.28 µs 0.575 µs 119 µs 0.957 µs 182 µs 38.7 µs 5.05ms 45.7 µs
512 3.4 µs 0.565 µs 63.7 µs 1.06 µs 341 µs 78.6 µs 17.7ms 86.6 µs

Size (MB) Average Min Max Deviation Average Window Min Window Max Window Window deviation

1 3.5 µs 0.595 µs 43.2 µs 1.16 µs 658 µs 156 µs 5.23ms 153 µs
2 4.47 µs 0.625 µs 45.2 µs 1.52 µs 1.27ms 311 µs 17ms 308 µs
4 4.2 µs 0.635 µs 63.9 µs 1.71 µs 2.29ms 625 µs 13.6ms 668 µs
8 4.5 µs 0.649 µs 895 µs 4.93 µs 4.59ms 1.25ms 21.5ms 1.36ms
16 4.67 µs 0.709 µs 44 µs 1.85 µs 9.24ms 2.5ms 27.9ms 2.76ms
32 5.07 µs 1.67 µs 297 µs 2.17 µs 19.1ms 8.07ms 57.8ms 4.64ms
64 5.13 µs 1.82 µs 56.2 µs 1.68 µs 38.7ms 17.6ms 0.114 s 8.83ms
128 8.08 µs 1.87 µs 1.76ms 33.5 µs 87.3ms 35.3ms 0.215 s 22.6ms

Figure 7.5: MPI_Isend in function of message size.

(a) Realisation graph. (b) Time distribution.

Figure 7.6: Sample graph outputs for MPI_Send at 128 MB (for three successive runs).

Figures 7.4 and 7.5 present sample measurement outputs as generated by MPI Bench. It can
be seen in both cases that first communications are more expensive (see 4 Bytes measures) as
they also account for queue pair constructions which requires several extra control messages.
It can be seen in figure 7.4 that the send time of blocking messages matches the asynchronous
window of non-blocking ones in figure 7.5. Dealing with graphs, figure 7.6(a) presents 40
000 realisations of 128 MB MPI_Sends, whereas, figure 7.6(b) shows the associated duration
distribution. Figure 7.6(a) consists in three successive measurements at different moments
of the day. Machine’s topology is clearly visible as the batch manager places processes with
contiguous ranks close to each other on the actual topology. Thus, they are first gathered on
a socket, then on remote sockets and eventually on another node with the same pattern. This
measurement was done over 128 processes, or 4 nodes which are clearly visible on each of
the three measures. As shown in figure 7.6(b), this measure reveals three duration classes

REPORT ANALYSIS 83

which match (1) intra-socket, (2) inter-socket and (3) inter-node communications. Moreover,
the NUOIOA [Mor11] effect is visible in measurements 1 and 3 where the socket which is
closer to the network interface has better performances than remote ones, yielding this saw-
toothed shape for remote node communications. If we look at the second measurement of
figure 7.6(a), it can be seen that it is much more noisy than the two other ones, at the point
of hiding NUOIA effects, showing that machine load has an impact on performance, and thus,
that at some point the performances of a given program might not be always reproducible.

7.3.2 Collective Operations

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

MPI Processes

MPI Barrier Duration

(a) MPI_Barrier.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e
 i
n
 m

ic
ro

s
e
c
o
n
d
s

MPI Processes

MPI Broadcast Duration

(b) MPI_Bcast 8 KB.

Figure 7.7: Sample graph outputs for MPI collectives.

Our benchmark tool also measures MPI collective operations performance. In complement
of tables similar to the one we presented for points to points, several graphs are generated
in purpose of visualising those measurements for each parameter combination — leading to
a relatively large 319 page report. As presented in figure 7.7, if we look at those graphs for
collective operations, it is possible to get some insight on machine performance. As Tera 100
is constantly used at ≈90%, larger scale, collective related measurements had to be performed
during a maintenance, over an empty machine. Figure 7.7(b) which presents the evolution of
MPI_Bcast duration for a 8 KB size in function of the number of processes is an illustration of
machine load impact over performance. Indeed, if we look a the first measurements until 2048
processes, we find the expected logarithmic shape, but passed this value, when running on the
empty supercomputer, there is a significant decrease of collective time, emphasising perfor-
mance machine load impact. However, if we look a figure 7.7(a) which presents MPI_Barrier
performance and has been done in the same conditions, we can see that there is no perfor-
mance improvement between empty and full machine. This behaviour can be explained by
looking at the collective implementation itself, as the two collectives of figure 7.7 does not in-
cur the same network traffic. Indeed, MPI_Barriers are commonly implemented over small
messages or RDMAS [KLW+03], whereas, an MPI_Bcast usually relies on a tree which repli-
cates data in order to accelerate data dissemination. Consequently, the difference of behaviour
observed in figure 7.7 can be explained by the higher bandwidth budget when the machine is
empty, bandwidth which is not required to perform an MPI_Barrier.

84 MPI RUNTIME CHARACTERISATION

7.4 Summary

We have presented a simple MPI bench-marking tool which can be used to measure com-
mon MPI calls in standard conditions for various process count and message sizes. This tool
generates latex reports including performance tables (as those of Figure 7.4 and 7.5), real-
isation graphs (Figure 7.6(a)) and their associated distribution (Figure 7.6(b)). Those mea-
surement shown that messages are subject to network noise and that performance is clearly
topology dependent by highlighting tree topological levels (see distribution peaks in Figure
7.6(b)). Dealing with collective operations, our measurement process which for practical rea-
sons was partially done on an empty machine revealed the critical impact of network load over
collective performance (Figure 7.7(b)). This poses the question of performance reproducibility
as machine load is constantly fluctuating [Vet13](p. 70, figure 4.19). Moreover, as processes
layout differs at each run, topology related costs are also responsible from unpredictable per-
formance variations. Consequently, those measurements emphasised the non-deterministic
aspect of performance on large clusters, stressing the need for a better understanding of those
effects. Nonetheless, despite those topology and load effects, Infiniband QDR does furnish high
performances, for example, sending small messages microsecond range and larger ones (128
MB) in one tenth of a second, providing application with efficient networking capabilities.

CHAPTER 8

Timestamp Synchronisation

This section presents, justifies and analyses the clock synchronisation algorithm which is
used by the successive versions of our distributed tracing library. Related work in terms of
clock synchronisation are described in section 6.2. This chapter develops a synchronisation
algorithm which relies on a self-testing feedback loop assuming that if correctly synchronised,
two successive synchronisations shall have comparable offsets (because of samples’ normal
distribution). In this purpose, we first detail the synchronisation process between two clocks
before extending it to n clocks. Then, we analyse the error induced by our synchronisation
approach before concluding on its usefulness for tracing purposes.

8.1 Synchronisation Principle

Figure 8.1: Synchronisation process using a feedback loop.

Our approach relies a feedback loop which is a common way of synchronising distributed
clocks (see section 6.2). Figure 8.1 presents the synchronisation process. The remote process
or Pr sends to the source process or Ps its local time corrected by the ∆ computed by Ps (initially
∆ = 0). This synchronisation relies on the fact that the communication time is relatively
constant in both directions between Pr and Ps, it can therefore be assumed that upon reception,
the time in Pr is equal to Tref = T1+T2

2 with T1 and T2 times respectively when sending and
receiving to and from Pr. The network being a shared resource, it is naturally subject to noise,
therefore, each ∆ is computed as an averaged value from 400 round-trips around the feedback
loop. Moreover, the synchronisation operation can be resumed up to ten times, if Ps fails to

85

86 TIMESTAMP SYNCHRONISATION

predict on a second round-trip average Tremote, or tlim <= ∆ with tlim an empirical threshold
(computed as 4σ in section 8.4.1) determining an expected synchronisation range, this process
validates that the synchronisation is possible despite network noise. If it fails, a wider tlim
has to be manually set in order to relax the expected accuracy.

8.2 Distributed Synchronisation

Naturally, when dealing with several thousand clocks, the method described in previous sec-
tion has to be taken further in order to synchronise more than two processes. As we will show
this process involves a trade off between synchronisation accuracy and its parallelism. This
section describes the effects of using common topologies in order to synchronise N processes.
These topologies will be analysed in terms of synchronisation cost and accuracy, result which
justify the synchronisation algorithm retained in our implementation.

8.2.1 Notations and Methodology

In the rest of this section we will analyse topology impact on the synchronisation process in
order to observe two parameters which as we will show are mutually exclusive:

• Accuracy: measures the largest absolute difference between two clocks.

• Parallelism: how many processes can synchronise themselves concurrently.

Dealing with the accuracy, we consider that the error induced by the synchronisation loop
(described in 8.1) noted Esync is in the worst case bounded by round-trip time as feedback
process guarantees that Tremote ⊂ [T1; T2]. Indeed, Tremote causally resides between T1 and T2
from the source point of view. Similarly, Tremote is explicitly corrected by ∆ to match Tref in in
a process taking the round-trip time. We could have expressed the error in terms of latency
arguing that this loop involves two temporally uncertain steps which are communications
going back and forth, therefore costing two times the latency. But this value is not measurable
with a satisfying accuracy on two distinct clocks, having therefore to be approximated as half
the round-trip in order to be measured by a single clock. More formally, as the communication
latencies involved in the process, are symmetric Tref can be accurately computed as Tref =
T1+T2
2 = (Tr−l)+(Tr+l)

2 with l the network latency and Tr the reception time as Tr = T1 + l = T2 − l.
Therefore, we have Tref = Tr + Esync accounting for two time the latency error which can be
assumed to be the round-trip error (Ert) such as Esync = 2Elatency = Ert. Synchronisation error
is consequently measurable as the round-trip error, value which as we will see can be described
statistically.

As far as parallelism is concerned, we focus on how fast N clocks can be synchronised. In
order to limit the noise during the measurement process, the synchronisation process is an
exclusive operation between two processes (each with their own clock). Therefore, maximum
parallelism is P = N

2 with N the number of distinct clocks (we assume that N is also the
number of distributed processes). Doing parallel clock synchronisation also supposes that we
transitively synchronise clocks such as if we have T1 = T2 + Esync12 and T2 = T3 + Esync23 we get
T1 = T3 + Esync13 with Esync23 = Esync12 + Esync23 = 2Esync. Errors are therefore additive and
directly linked the the number of hops between two clocks in the synchronising topology. We
can immediately deduce from this observation that the maximum error Emax is linked to the

DISTRIBUTED SYNCHRONISATION 87

maximum distance Dmax in this topology, feature that we will observe for different topologies
in the rest of this section.

The transitive propagation of time-stamps is done across the topology by sending to each
node the cumulative offset from the root (process 0). In this case if the topology is for example
the tree of figure 8.3, we get T1 = T0 + ∆01 and T2 = T1 + ∆12, we get T2 = T0 + ∆02 with
∆02 = ∆01 + ∆12. For a given topology the cost of this transitive dispatch is analogous to a
broadcast which cost is linked to Dmax.

8.2.2 Centralised Topology

1
0

2

3

4

5

6

7

Figure 8.2: Example of a star connected topology with eight processes.

From Figure 8.2, it can be immediately seen that Dmax = 1 and therefore, Emax = Esync
which is the lowest error possible (single hop). However, if we look at the parallelism level,
0 has to successively synchronise itself with every processes, yielding a parallelism of P = 1

which is the worst case. Using this topology synchronising N clocks two by two has a cost
csync(N) = Θ(Ns) with s the cost of a synchronisation. Moreover, as Dmax = 1, the overall
synchronisation cost is also c(N) = Θ(Ns) as every process is connected to the root.

8.2.3 k-tree Topology

1

2 3

4 5 6 7

Figure 8.3: Example of a 2-tree topology with eight processes.

If we first consider the classical 2-tree of Figure 8.3, maximum distance is equal to tree depth
such as Dmax(N) = blog2(N)c, leading to Emax(N) = blog2(N)cEsync. Moreover, by looking at
figure 8.4, it can be seen that the level of parallelism depends on the degree of individual
nodes. As presented graphically, in Figure 8.4, synchronising every nodes two by two requires
two steps independently from the oddness of tree depth. Indeed, as levels are grouped in
pairs we form groups of tree processes (for 2-tree boxes with red dashed lines) which have to

88 TIMESTAMP SYNCHRONISATION

perform synchronisation in parallel. However, in order to fully synchronise processes, a second
step is required (blue boxes with dashed lines) in order to assign an offset to every edges of the
graph. As for a binary tree two synchronisations have to be performed by every group of tree
processes and that this process has to be done two times, we get a pairwise synchronisation
cost csync(N) = Θ(4s) with s the cost of a synchronisation. Therefore in function of Dmax(N)
we get an overall synchronisation cost of c(N) = Θ(4s+ blog2(N)c).

1

2 3

4 5 6 7

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 8.4: Visual explanation of synchronisation parallelism for a k-tree (k=2) in
function of depth’s oddness.

It is also possible to derive from the 2-tree case the generalisation for k-trees. In this case we
can defineDmax(N) = blogk(N)c and thus, Emax(N, k) = blogk(N)cEsync. We can also compute P
considering that for a k-tree each process group gathers k+ 1 processes which have to perform
k synchronisations, again in two successive steps, yielding a pairwise synchronisation cost
csync(N, k) = Θ(2ks) with s the cost of a synchronisation. Consequently, we get in function of
Dmax(N, k) the overall synchronisation cost which is c(N, k) = Θ(blogk(N)c+ 2ks).

8.2.4 Ring Topology

1

2

3

4

5

6

7

8

Figure 8.5: Example of a ring topology with eight processes.

The ring based topology of Figure 8.5 has a diameter of Dmax = bN−1
2 c and therefore leads to

a maximal error Emax(N) = bN−1
2 cEsync. Dealing with parallelism, as presented in Figure 8.6,

each node has to synchronise with two neighbours. Note the particular case of an odd number
of processes where one edge (in bold red) is voluntarily ignored in order to gain one synchroni-
sation step, this omission does not prevent broadcasting as there is still a fully synchronised
path for both 5 and 4 even without the 5 ↔ 4 edge. We can therefore compute the pairwise
synchronisation cost as csync(N) = Θ(2s) with s the cost of a synchronisation and deduce from
Dmax the overall cost c(N) = Θ(2s+ bN−1

2 c).

DISTRIBUTED SYNCHRONISATION 89

1

2

3

4

5

6

7

8 1 2

3

4

5

6

7

Figure 8.6: Visual explanation of synchronisation parallelism on a ring in function of
N’s oddness.

8.2.5 Binomial Tree Topology

A binomial tree of 2k nodes has a depth of k and is such as the degree of its root is k. A
binomial tree of order k noted Bk can be built recursively from two binomial tree of order
k − 1 (which by construction have roots with a degree of k − 1). It leads to Dmax = log2(N)
and therefore to Emax(N) = log2(N).Esync. Dealing with the synchronisation cost, we have
as in Figure 8.8, a first step where every node is synchronised with its parent. Then each
binomial tree root has to be synchronised with its sub-trees, leaving for every sub-tree roots
and particularly for the tree root which has the largest degree k − 1 synchronisation. This
yields a pairwise synchronisation cost of csync(N) = Θ((1 + k − 1)s) = Θ(log2(N)s) with s the
cost of a synchronisation. Similarly, we can deduce from Dmax the overall synchronisation cost
c(N) = Θ(blog2(N)c(1+ s))

1

2

3

4

5

6

7

8

Figure 8.7: Example of a binomial topology with eight processes.

1

2

3

4

5

6

7

8

Figure 8.8: Visual explanation of synchronisation parallelism with a binomial tree
(k=3).

90 TIMESTAMP SYNCHRONISATION

8.2.6 Summary

Name Depth Max Error Pairwise Sync. Cost Transitive Sync. Cost Global Sync. cost
Centralised 1 Esync Θ(Ns) 0 Θ(Ns)

Ring bN−1
2
c bN−1

2
cEsync Θ(2s) Θ(bN−1

2
c) Θ(2s + bN−1

2
c)

Binomial Tree blog2(N)c blog2(N)cEsync Θ(blog2(N)cs) Θ(blog2(N)c) Θ(blog2(N)c(1 + s))
k-tree blogk(N)c blogk(N)cEsync Θ(2ks) Θ(blogk(N)c) Θ(2ks + blog2(N)c)

Figure 8.9: Synchronisation costs in increasing order and assuming N → +∞ for
studied topologies (compared in Figure 8.10).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

S
y
n

c
h

ro
n

is
a

ti
o

n
 C

o
s
t

(a
s
s
u

m
in

g
 s

=
1

)

Number of Nodes

Centralised Sync.
Ring Sync.

Binomial Sync.

2-tree Sync.
8-tree Sync

Figure 8.10: Comparison for studied topologies of synchronisation cost in function
node count.

It is possible to derive from previous section Figure 8.9’s table which summarises features
associated with each topology. Tree based topologies have the lowest synchronisation cost
while having a maximum error bounded in blog2(N)cEsync. Particularly, k-tree topologies have
the advantage of synchronising themselves in a cost independent of N, being therefore a very
scalable topology for pairwise synchronisation. Whereas, the binomial tree has a pairwise
synchronisation cost which grows in function of N as blog2(N)c while providing the same Emax
boundary than a k-tree: blog2(N)c. Dealing with the ring based topology, it is the most parallel
one as it synchronises itself in Θ(2s) however, it has the highest Emax which evolves linearly
in function of N. Eventually, the star based topology has the lowest error achievable Esync
with the highest synchronisation cost which is linear in N. From these observations, a k-tree
seems to be the most profitable choice as it has the best scalability while bounding the error
in a logarithmic fashion. However, as we will show in next section, the final choice between
a k-tree and a binomial tree still depends on another criterion that we propose to analyse in
next section.

DEPTH DISTRIBUTION IN 2-TREES AND BINOMIAL TREES 91

8.3 Depth Distribution in 2-trees and Binomial Trees

Before choosing between a k-tree and a binomial tree, another aspect has to be analysed.
Although they both share the same error bound and that the k-tree is more scalable, making
it from this basis the best choice, a special care has to be taken dealing with their node depth
distribution which are drastically different. This section proposes to compute the distributions
of nodes among the possible depth for both topologies in purpose of motivating our final choice
for the binomial tree.

8.3.1 Notations and Methodology

The node distribution over levels can be described by a function P(l|ω) which gives the prob-
ability of randomly picking a node at level l according to the probability distribution function
(PDF) ω. This function can be computed as P(l|ω) = Num(l)

N with Num(l) the number of nodes
at level l with l ⊆ [0;Dmax] and D the depth. From this function it is possible to derive the
cumulative distribution function (CDF) of processes which is defined as φ(l,ω) =

∑
i<l

P(i|ω),

function which gives the cumulative proportion of processes at a depth lower than l according
to PDF ω. Ideally, in order to minimise the average error, most processes shall have a low
depth, highest depth remaining marginal. However, the gain in parallelism is directly linked
to synchronisation processes spatial scattering and therefore to higher errors. In this section
we will show that the binomial tree allows a more favourable distribution than the binary
tree, justifying its use. In this purpose, we will computes the PDF ans CDF for both cases.

8.3.2 2-tree

By definition the number of node at a given level l in a 2-tree is Num(l) = 2l. And the total
number of nodes is N = 2D+1 − 1 with D the tree depth such as Dmax = blog2(N)c. We can
therefore derive P(l|ω2tree) = 2l

N with l ⊆ [0; blog2(N)c]. The propriety of having probabilities
which sum to 1 can be derived from the identity

∑
x<n

2x = 2n+1 − 1 or 1
2n+1−1

∑
x<n

2x = 1 which

immediately yields
∑
<

P(l|ω2tree) = 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

P
ro

b
a

b
ili

ti
e

s

Level Depth

Figure 8.11: Probability density function ω2tree and cumulative density function
φ(ω2tree) for node depth in a 2-tree of 212 − 1 = 4095 nodes.

92 TIMESTAMP SYNCHRONISATION

Figure 8.11 presents both P(l|ω2tree) and φ(l,ω2tree). It can be seen that 50% of nodes are
on the last layer, 75% on the two last and 87.5% on the three last layers. This distribution is
invariant relatively to N as it originates from the way the tree is built in successive powers of
two (the following layer is always two time larger than the current). From this observation,
we can conclude that in a 2-tree nodes are generally far from the root and that 50% of nodes
have an error matching the upper bound in blog2(N)cEsync.

8.3.3 Binomial Tree

By definition, the number of node at level l in a binomial tree Bk is the binomial coefficient
Num(l, k) =

(
k
l

)
with k the order of the tree and l the depth of the node. Moreover, the

number of nodes in a binomial tree of order k is N(k) = 2k we can therefore deduce from the
factorial notation of the binomial coefficient: P(l|ωbinom) = 1

N

(
k
l

)
= k!

l!2k(k−l)!
. Moreover, we

can guarantee that the sum of all probabilities gives 1 with the identity
k∑
l=0

(
k
l

)
= 2k which

immediately gives
∑
<

P(l|ωbinom) =
1
N

k∑
l=0

(
k
l

)
= 1.

Level Depth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12

P
ro

b
a
b
ili

ty

Figure 8.12: Probability density function ωbinom and cumulative density function
φ(ωbinom) for node depth in a binomial tree B12 of 212 = 4096 nodes.

As presented in Figure 8.12 the depth distribution in a binomial tree is very different from
the one of a 2-tree (Figure 8.11). In the binomial case, the distribution is symmetric (as the
binomial coefficient are in the Pascal triangle) with the propriety of being evenly distributed
around Dmax

2 with Dmax the binomial tree depth. Consequently, half clocks have an error
lower than k

2Esync, the other half having an higher error which is nonetheless bounded by
log2(N)Esync = kEsync. Therefore, the binomial tree provides in average a more accurate syn-
chronisation than the 2-tree, moreover, this error balancing can be described as more “natural”
as it is somehow equivalent to having every node synchronised with a “virtual” clock located
at the level k2 with a random error following a binomial distribution and bounded by k

2Esync.

STUDY OF SYNCHRONISATION ERROR PROPAGATION 93

8.3.4 Summary

The more regular depth distribution, and in extension error distribution induced by the
binomial topology makes it preferable than a k-tree based topology (exemplified here with a
2-tree) which by construction has more nodes on its deeper levels which have the largest error
bound. Moreover, as presented in Figure 8.10, the cost difference between the two approaches
is logarithmic s(blog2(N)c − 2k) and remains acceptable at higher scale in comparison with
the accuracy gains it provides. For these reasons our synchronisation relies on a binomial tree
to provide our tracing library with a scalable and accurate global clock with an error bounded
in blog2(N)cEsync. The following section will study Esync in order to derive a probabilistic
definition of Emax which fully characterises our synchronisation method accuracy.

8.4 Study of Synchronisation Error Propagation

This sections aims at statistically describing Esync which is the round-trip error and in ex-
tension describing Emax which is the synchronisation error which can be modelled asDmaxEsync
with Dmax the depth of the tree and therefore as a sum of Dmax independent probabilities. In
this purpose, this section first derives the PDF of Esync from an empirical measurement. Then,
we derive the probabilistic distribution of Emax, the overall synchronisation error.

8.4.1 Round-trip Error Distribution

Figure 8.13 presents round-trip latency probability densities for 1.109 events, right column
shows the unaltered densities for various averaging factors, whereas in left column proba-
bilities have been cut off at a 5.10−3 probability. This “long tail” of low probabilities events
going to higher latencies has been observed by Cristian in [Cri89], it depicts unpredictable
network jitters which can delay the round trip latency of several orders of magnitude. In left
column, we empirically thresholded latencies at a 5.10−3 probability, removing the “long tail”
and simplifying the error distribution. Several heuristics have been proposed to perform this
thresholding such as keeping only the lowest time [Cri89, GZ83] or filtering samples as in
NTP minimum filter algorithm [Mil91]. As mentioned in section 8.1, our approach also uses a
filtering method as once synchronised (400 averaged round-trips), the operation is performed
a second time with a new offset expected to be in the 4σ range (99.99 % confidence interval
for a normal law), if not, the first measurement was erroneous, then the process starts again,
up to ten times. This method relies on the fact that on high performance networks, abnor-
mal times are less probable and more variable than normal ones (long tail versus bell shaped
distribution, see Figure 8.13 right column), therefore, the probability of having two erroneous
measurements falling in the same 4σ interval is very low, compared to the one of falling in the
4σ of the bell shaped distribution (left column) which accounts for most probable issues.

Dealing with the normality assessment, looking at Figure 8.14 and assuming each round-
trip mean as independent experiment, (1) all those distribution seems to be empirically Gaus-
sian and (2) the standard deviation decreases with the number of averaging passes. Moreover,
as presented in Figure 8.15, (3) the quantile to quantile plot (dots) match the one of a normal
distribution (line) with only a small mismatch on boundaries (tail effect). Therefore, this mea-
surement can reasonably be seen as obeying the central limit theorem (CLT) which states that
under certain condition the mean of of a large number of random variables will converge to a
normal distribution.

94 TIMESTAMP SYNCHRONISATION

7750 7800 7850 7900 7950

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

Thresholded density (no average)

Roud−trip Time (in nanoseconds)

D
e
n
s
it
y

0e+00 1e+06 2e+06 3e+06

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6
0
.0

7

Density (no average)

Roud−trip Time (in nanoseconds)

D
e
n
s
it
y

8000 8050 8100

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Thresholded density (averaged 400 times)

Roud−trip Time (in nanoseconds)

D
e
n
s
it
y

10000 15000 20000 25000 30000 35000

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

Density (averaged 400 times)

Roud−trip Time (in nanoseconds)

D
e
n
s
it
y

8000 8020 8040 8060 8080 8100 8120

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Thresholded density (averaged 1000 times)

Roud−trip Time (in nanoseconds)

D
e
n
s
it
y

8000 10000 12000 14000 16000 18000 20000

0
.0

0
0
.0

2
0
.0

4
0
.0

6

Density (averaged 1000 times)

Roud−trip Time (in nanoseconds)

D
e
n
s
it
y

Figure 8.13: Empirical probability density functions (PDF) for varying averaging fac-
tors derived from a set of 1.109 round-trips on the Tera100 supercomputer
either thesholded or not at a 5.10−3 probability.

STUDY OF SYNCHRONISATION ERROR PROPAGATION 95

7750 7800 7850 7900 7950

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

NOT Averaged
 mu= 7849.76538545333 sigma= 46.295045883579

Roud−trip Time (in nanoseconds)

D
e
n
s
it
y

Experimental Density

Fitted Normal Law

8000 8050 8100

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

Averaged 200 times
 mu= 8054.24908307751 sigma= 29.3669712301696

Roud−trip Time (in nanoseconds)

D
e
n
s
it
y

Experimental Density

Fitted Normal Law

8000 8050 8100

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Averaged 400 times
 mu= 8054.43973948938 sigma= 26.8771510705858

Roud−trip Time (in nanoseconds)

D
e
n
s
it
y

Experimental Density

Fitted Normal Law

7980 8000 8020 8040 8060 8080 8100 8120

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Averaged 600 times
 mu= 8054.7769668726 sigma= 25.2398684533447

Roud−trip Time (in nanoseconds)

D
e
n
s
it
y

Experimental Density

Fitted Normal Law

8000 8020 8040 8060 8080 8100 8120

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Averaged 800 times
 mu= 8055.0839918272 sigma= 24.5575780484416

Roud−trip Time (in nanoseconds)

D
e
n
s
it
y

Experimental Density

Fitted Normal Law

8000 8020 8040 8060 8080 8100 8120

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Averaged 1000 times
 mu= 8055.73984146568 sigma= 22.6158069460635

Roud−trip Time (in nanoseconds)

D
e
n
s
it
y

Experimental Density

Fitted Normal Law

Figure 8.14: Empirical thresholded (at 5.10−3) PDF for various averaging factors
which can be fairly approximated by a normal law.

96 TIMESTAMP SYNCHRONISATION

Figure 8.15: Quantile to Quantile plot (Q-Q plot) normality test for the thresholded
PDF associated with measurements averaged 400 times.

As aforementioned and presented in Figure 8.15, we retained the 400 average value which
is a trade off between the synchronisation cost (we noted s) and the attainable precision. As
shown in Figure 8.14, following averaging does not provides as much gain relatively to the
standard deviation. Moreover, as depicted by the right column of Figure 8.13, the “tail” natu-
rally decreases with the number of averaging passes, “tail” which is required to be long com-
pared to 4σ in order to make the offset prediction test reliable. Consequently, we empirically
retained the 400 average measurement for our synchronisation process to match network per-
formances. Although, this setup is specific to high performance networks, fixing the tlim to
an higher value is sufficient to adapt this process to other network with lower performance.
As the error is depicted by the jitter around the average value, we will now use the following
approximation Esync ∼ N (0, σ2sync) with Esync the synchronisation error and σ2sync the variance
for a 400 averaging factor such as σsync = 26.877 on a nanosecond scale.

8.4.2 Error Propagation

Each pairwise synchronisation on a path used to propagate synchronisation offsets can
be viewed as an independent experiment, allowing the probability density functions to be
summed to describe ωE(n), the error probability density function after n hops. The sum of two
random variable is their convolution, we note ωi+j = ωi ~ ωj the convolution to two densi-

STUDY OF SYNCHRONISATION ERROR PROPAGATION 97

ties and ωin = ~nωi the repetitive self-convolution of a density. In our particular case each
pairwise synchronisation obeys the same law, yielding after n steps the following probability
density function ωEn :

ωEn = ωEsync +ωEsync + ...+ωEsync︸ ︷︷ ︸
n

ωEn = ~nωEsync

We can therefore derive ωEmax the density at maximum depth Dmax which is equal to EDmax :

ωEmax = ωEDmax = ~DmaxωEsync

Moreover, we shown that ωEsync can be approximated by a normal distribution thus
Esync ∼ N (µsync, σ

2
sync) with µsync the average round-trip error which is equal to 0 and σ2sync

the round-trip error variance. Moreover, we have by definition:

N (µ1, σ
2
1)~N (µ2, σ

2
2) = N (µ1 + µ2, σ

2
1 + σ

2
2)

Allowing a simple formulation of ωEn :

ωEn = ~nN (µsync, σ
2
sync)

ωEn = N (

n∑
µsync,

n∑
σ2sync)

ωEn = N (nµsync, nσ
2
sync) (8.1)

Consequently, we have ωEmax such as:

ωEmax = ωEDmax = N (Dmaxµsync, Dmaxσ
2
sync)

One propriety of the normal distribution being that 99.99% of samples are less than 4σ away
from the mean, we will consider that the maximum error is |Emax| = 4σ. It is moreover possible
to express σ in function of the number of hops n from equation 8.1:{

σ2(n = 0) = 0

σ2(n+ 1) = σ2(n) + σ2sync

σ2(n) = nσ2sync

σ(n) = σsync
√
n (8.2)

98 TIMESTAMP SYNCHRONISATION

It is therefore possible to compute the error |E(n)| at level n and the maximum error
|Emax| = |E(Dmax)| with Dmax the maximum number of hops (in our case Dmax is the tree
depth) using the aforementioned 4σ approximation:

|E(n)| = 4σ(n)

|E(n)| = 4[σsync
√
n] (8.3)

|Emax| = 4[σsync
√
Dmax] (8.4)

Equation 8.2 and 8.3 respectively show a squared-root increase of standard deviation and
the maximum error at 4σ. Also note that the total error once expressed in densities is lower
than the trivial bound DmaxEsync as it is evenly distributed between positive and negative
offsets, avoiding its doubling at each step. As presented in Figure 8.16, it is therefore possible
to plot the error in function of both the number of steps and the number of clocks, assuming a
binomial tree topology. As it can be seen in Figure 8.16(d), the maximum error derived from
our empirical measurement of Esync assuming a binomial tree topology and a 400 average
factor is lower than 0.5µs with less than 1.106 clocks. Note that this result has to be tempered
as it does not account for drift related corrections and has only been derived statistically.

8.5 Summary

This chapter described the time-synchronisation algorithm used in our instrumentation li-
braries (Chapter 9 and 10) to provide a coherent source of time. Our synchronisation oper-
ates only on offset related error with a statistically derived precision of 0.5µs. However, the
method we presented only minimises the offset error and we acknowledge the existence of an
unpredictable drift error which fatally influences clock accuracy. Therefore, despite it provides
our analysis with a sufficient precision, special care will have to be taken when considering
new analysis dependent on time-stamp resolution. Nonetheless, this approximation has been
retained because common correction algorithm either have an important computing cost, re-
quiring a full trace replay or can impact the tracing by either causing temporal discontinuities
while possibly impacting the execution through repeated synchronisations.

We introduced a synchronisation method relying on a classical Cristian algorithm [Cri89]
used in a self-testing fashion as it testes its own synchronisation reliability by redoing the
synchronisation process a second time with a 4σ expectation, thus, confirming with a high
probability the presence of both samples in the bell shaped part of density (see figure 8.13).
We justified the use of a binomial tree topology as a trade-off relatively to average diameter,
synchronisation and transitive offset propagation costs, emphasising that it yields a more
regular error distribution (Binomial ≈ Normal versus Exponential), evenly distributing error
among processes (see Figure 8.12). Then, we observed the empirical round-trip distribution
on the Tera 100 supercomputer and approximated it by a normal law which allowed us to
statistically derive our synchronisation method maximum error, showing for less than 1.106

processes an expected upper boundary of 0.5µs using a binomial topology (see Figure 8.16(d)).

SUMMARY 99

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 1 10 100 1000 10000 100000 1e+06

E
rr

o
r

in
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
 u

n
it
s

Number of Steps

(a) Total error evolution in sigma units (at 4σ) in
function of number of steps (tree depth).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 10 100 1000 10000 100000 1e+06

E
rr

o
r

in
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
 u

n
it
s

Number of Clocks

(b) Total error evolution in sigma units (at 4σ) in
function of number of clocks (binomial tree topology).

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

 1 10 100 1000 10000 100000 1e+06

E
rr

o
r

in
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
 u

n
it
s

Number of Clocks

(c) Total error evolution in nanoseconds in function
of number of steps (tree depth).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 10 100 1000 10000 100000 1e+06

E
rr

o
r

in
 n

a
n
o
s
e
c
o
n
d
s

Number of Clocks

(d) Total error evolution in nanoseconds in function
of number of clocks (binomial tree topology).

Figure 8.16: Summary of cumulative error in function of both σ (a and b) and time (c
and d).

Main limitations of our method are (1) we do not take the drift into account assuming that
clocks are homogeneous on the supercomputer, (2) we only synchronise at application start-
up, avoiding to perform a costly trace rewrite to perform a linear (or more complex) inter-
polation between end and begin (which could have solved the drift problematic). Moreover,
trace rewriting is not feasible using our on-line approach (see chapter 10) which does not store
events anymore. Our time-stamps are also subject to (3) drift variation which can possibly
cause clocks to diverge during long runs. However, these limitations have to be mitigated as
for the moment no analysis require a distributed resolution approaching the error rate (we
generally expect at most milliseconds), accuracy which is in a first approximation guaranteed
by our offset based synchronisation.

Because of the aforementioned limitations, our solution, despite satisfactory for the moment
can only be a transitive one in the expectancy of a more reliable one. From the arguments we
developed in this chapter, we can derive that perfect time-stamp synchronisation is impossible
in distributed systems. However, it is possible to capture events causality using logical clocks.
A better solution we plan to implement in the future would be to combine the best of both

100 TIMESTAMP SYNCHRONISATION

worlds, using an accurate clock to capture intra-node behaviour, a distributed clock (for ex-
ample using our current synchronisation algorithm) to provide “coarse-grained” event locality
and a runtime logical clock to store effective causality. This would tag every events with two
time-stamps (local clock can be synchronised globally while keeping its precision) addressing,
timing, locality and causality aspects and therefore, taken altogether would provide close to
accurate clock capabilities (and slightly more). Capturing causality is important not only to
characterise what a program did but also what a program could do by quantifying freedom
degrees, analysis which could be useful to derive asynchronism proprieties or parallelism loss.
If we quote Fidge [Fid88] in his paper describing the vector clock algorithm: “communication
events form "boundaries" that limit the possible interleavings of concurrent events”(p. 57)
we have the essence of this approach which aims at considering communications only as a
skeleton which constraints the ordering of node local and therefore temporally defined event
blocks — approach adopted by Becker et Al. for their extended Controlled Logical Clock (CLC)
in grid environments [BGRW13]. Performance optimisation is therefore the identification of
programs’ critical path or parallelism inefficiencies and not solely the precise representation
of actual event layout which is by nature illusory because of a certain form of uncertainty
principle, somehow making modelling more affordable than measure.

CHAPTER 9

Trace Based Approach

This chapter presents the first implementation of our tool which was named after the MPC
runtime: the MPC Trace Library. As detailed in section 1.2, it aims at being scalable on
current supercomputers in order to be able to characterise simulation codes at their nominal
scale. Moreover, it has been designed to comply with MPC which requires an extended topol-
ogy support and enforces thread-safety. After explaining reasons which motivated the shift to
our own trace format, we present the architecture adopted by the MPC Trace Library. Our
components presentation will follow the canonical architecture of developer tools (see section
5.1) by first presenting the instrumentation interface, then the coupling mechanism with our
trace format and eventually, the analysis side with our dedicated trace reader.

9.1 Limitations of Existing Trace Formats

The first MPC trace library implementation relied on the Open Trace Format (first version,
OTF1) 1 [KBB+06] in order to store trace events. However, we faced several limitations which
motivated the transition to our own trace format:

• Thread safety: one of our requirement was to run over MPC which is a thread-based
MPI implementation. Consequently, OTF was loaded once per process and solicited in
parallel by several threads. But, as OTF has been designed for process based imple-
mentation, we faced problems of thread safety at the file management level, even when
creating several “Writers”. Limitation which led to the design of our thread-safe file
handler (see section 9.4.3).

• Identifiers: in OTF1, identifiers are local to each streams, requiring efforts to unify
event representation at the end of measurement phase, process which led for some tools
to a complete trace rewriting. As presented in Section 9.4.1, we decided to rely on a
hierarchical which allows on the fly identifier computation.

• Debug support: one of our requirement being to support faulty programs, we could not
rely on a trace format which could not put up with a crashing program as for example,
it would loose writing buffers data. Requirement which led to the development of our
debug buffers (Section 9.4.4). Moreover, OTF has been designed for temporal traversals,
multiplexing events in large time-ordered traces, however, debugging might require the
analysis of a single event type, favouring the creation of multiple trace files in purpose
of speeding up the traversal during partial readings.

1 OTF2 [EWG+11] was not available at this time.

101

102 TRACE BASED APPROACH

• Storage size: in OTF1 events are stored in hexadecimal ASCII, approach which as we
will show in Section 9.4.6 is not space efficient — motivating the shift to our binary trace
format which is more space efficient.

• Trace processing framework: upon trace reading, OTF1 does not provide meta-data
and job dispatching facilities, requiring a redundant development in each analysis tool,
opening and unifying meta-data in a distributed environment. In our approach, we de-
veloped the MPC Trace reader which greatly simplifies the processing of large traces by
providing a compact interface for meta-data information and distributed processing of
MPC traces (see Section 9.5).

All those aspects motivated the development of the MPC trace format instead of relying
on the standardised approach provided by the OTF format. If this thesis started today, we
would probably have relied on OTF2 which solves most of these limitation and defines an
unified framework for several tools, allowing users to take advantage of several tools. An
OTF2 back-end is currently under development (next to our online tool which succeeded to
this trace-based approach, see Chapter 10) in order to remain in the standards of the profiling
community, avoiding redundant developments when standard solutions already exist.

9.2 Proposed Architecture

Figure 9.1: Global architecture of the MPC Trace Library.

Figure 9.1 presents the global architecture of the MPC Trace Library, it features three main
components: the MPC Instrumentation, the MPC Tracelib and the MPC Trace Reader. Two
particularities of our approach can already be noticed from this figure: (1) the blue circle
represents debug buffers which allow the collection of traces even in case of bad termination
and (2) analyses are decoupled from the MPC Trace Library which transparently handles
parallelism and topology related information.

9.3 Instrumentation

The MPC Trace Library combines several instrumentation approaches to collect trace events
relying on Linux’s loader capabilities, the compiler, direct instrumentation and the MPI run-

INSTRUMENTATION 103

time. This section details those approach, illustrating each of them with a simple example.

9.3.1 MPI Profiling Interface

A common way of instrumenting an MPI program is to rely on the MPI profiling interface
or PMPI. This interface, part of the standard [MF08], provides a weak symbol for every MPI
functions, allowing their interception.� �
int MPI_Comm_rank(MPI_Comm comm, int ∗rank) {

hook_before () ;
int ret = PMPI_Comm_rank(comm, rank) ;
hook_after () ;
return ret ;

}� �
Figure 9.2: Instrumentation of the MPI_Comm_rank function using the MPI profiling

interface.

As presented in figure 9.2, every MPI call (here MPI_Comm_rank) can be instrumented
through a redefinition which calls the original function, defined with the same name preceded
by ’P’. The MPC Trace Library uses this method for the whole MPI interface. The same process
is used for MPC which provides an “MPC_*” interface which also supports profiling (note that
MPC also provides the MPI interface, allowing direct compilation of existing MPI programs).

9.3.2 Compiler Level Instrumentation

It is possible to instrument every functions from a program by recompiling it with the -
finstrument-functions compiler flag which adds a function call before and after every functions
(even inlined ones).� �
void __cyg_pro f i l e_ func_ex i t (void ∗ this_fn , void ∗ c a l l _ s i t e)
__attr ibute__ ((__no_instrument_function__)) ;
void __cyg_prof i le_func_enter (void ∗ this_fn , void ∗ c a l l _ s i t e)
__attr ibute__ ((__no_instrument_function__)) ;
void __cyg_prof i le_func_enter (void ∗ this_fn , void ∗ c a l l _ s i t e) {

/∗ Entering function ∗ /
}
void __cyg_pro f i l e_ func_ex i t (void ∗ this_fn , void ∗ c a l l _ s i t e) {

/∗ Leaving function ∗ /
}� �

Figure 9.3: Handlers called by compiler level instrumentation.

Figure 9.3 defines the functions which are inserted by the compiler before and after ev-
ery function calls. Both handlers share the same footprint with the first argument being the
function pointer (as defined in symbol table) and the second one the call site. Note that we
included their forward declaration with the GCC specific attribute “no_instrument_function”
which prevents them from being instrumented if they are part of the target program as it
would lead to a recursive call which would inevitably lead to a stack overflow. In order to

104 TRACE BASED APPROACH

be instrumented, each program has to be recompiled (including shared libraries), such in-
strumentation is therefore limited to user developed programs. Moreover, this process incurs
a performance penalty particularly for C++ programs which favour small functions (getters,
setters, operators) which are both heavily called and dilated by the instrumentation, leading
to non negligible overheads. It would therefore be interesting to filter out small functions in
order to limit the overhead, subject which is developed further in appendix A.

9.3.3 Direct Instrumentation

In some particular cases it has been possible to directly instrument target programs. For
example, we have been able to add weak symbols (which default to an empty handler) in
the MPC runtime in order to capture events of interest. These symbols, when redefined by
instrumentation libraries override weak ones.� �
#pragma weak hook_function ()
void hook_function ()
{

/∗ Dummy version ∗ /
}

[. . .]
/∗ Context o f in teres t ∗ /
hook_function () ;
[. . .]� �

Figure 9.4: Definition of a hook in source library.

Symbol Name Description

void MPC_Process_hook()

This function is called at process launch, MPI
calls are not possible from this state. MPC
aware Thread Local Storage (TLS) are not
available.

void MPC_Task_hook(int rank)

This function is called for each MPI task, MPI
calls are possible from this state. The argu-
ment is the rank of current task. MPC aware
Thread Local Storage (TLS) are available.

Figure 9.5: List of initialisation hooks defined in the MPC runtime.

Figure 9.4 presents the way such hooks are defined in the MPC runtime and figure 9.5
shows the list of functions which are called upon MPC initialisation with their associated
constraints. These functions are used to setup the context at process level and for each task
(which are running in lightweight threads in MPC). Further details on how to instrument
MPC are given in appendix B.

9.3.4 Library Interposition

Linux based systems propose another instrumentation approach which relies on preloading
a shared library. This mechanism, allowing the interception of functions defined in shared

TRACE LIBRARY 105

libraries is mainly used to instrument calls from the C standard library.� �
#define _GNU_SOURCE
#include <dl fcn . h>
#include <std io . h>
#include <s t d l i b . h>

int c lose (int fd) {
void ∗ rea l_c l ose=dlsym (RTLD_NEXT, " c lose ") ;
i f (! r ea l_c l ose) {

perror (" Fai l led to retr ieve open symbol ") ;
abort () ;

}
/∗ Pre hook ∗ /
int ret = ((int (∗) (int)) rea l_c l ose) (fd) ;
/∗ Post hook ∗ /
return ret ;

}� �
Figure 9.6: Use of dynamic library preloading for library interposition.

As presented in figure 9.6, by using the dynamic linking loader it is possible to (1) preload a
library which overloads a symbol. (2) Look-up the original symbol through the dlsym function
with the linux specific RTLD_NEXT flag. Naturally, an optimised version should not search
for the symbol at each call through dlsym. Our implementation in the MPC Trace Library
relies on a cache of symbols initialised to NULL and looked up only upon first call.

9.3.5 Instrumentation Summary

Instrumented Component Method Description
C Standard library Library Interposition Partial instrumentation focused on stdio.h and string.h

Pthread library Library Interposition Partial instrumentation including thread creation, destruction
and basic locks

MPI and MPC Interfaces PMPI and PMPC Complete instrumentation of MPI 1.3 norm

Function calls Compiler Compiler based instrumentation with filtering (as described in
appendix A)

Manual instrumentation Manual Support for manual instrumentation of functions, timestamped
“printf” and value tracking

Figure 9.7: Summary of instrumented functions in the MPC Trace Library.

As presented in figure 9.7, the MPC Trace Library supports most common events ranging
from PThread to MPI. Each instrumentation source is configurable via a configuration file
which defines which events are instrumented for a given execution.

9.4 Trace Library

This section presents the trace management interface which is the main component of the
MPC Trace Library. After detailing and motivating our trace architecture, we present the
event pipeline and its context management followed by a description of file and buffer han-
dling. In a second time we introduce the low level format used to encode events within the
trace.

106 TRACE BASED APPROACH

9.4.1 Topology Management

In order to simplify topology management while allowing the storage of events in separated
files, the MPC Trace library relies on a hierarchical trace format which follows the effective
topology. This approach simplifies identifier management as they are all local during instru-
mentation and unified on-the-fly upon trace reading by the MPC Trace reader.

Figure 9.8: Example of hierarchical trace with identifiers.

As depicted in figure 9.8, unique identifiers are computed through a Depth First Search
(DFS) in the topology tree, numbering streams by adding parent prefix to local identifier.
When dealing with threads, events can be multiplexed in the same file in order to limit
the number of files, such files are handled by adding the number of multiplexed threads to
the identifier counter. This process avoids complete trace rewriting while providing support
for several topologies (including MPC). It also allows partial trace processing while preserv-
ing unique identifiers. At instrumentation time this hierarchy is maintained in a tree of
Trace_Modules which are stored as Thread Local Storage (TLS) values.

9.4.2 Event Description

In order to simplify the data-path, trace events are represented in memory as a single hier-
archical data-structure called the Generic_Event. Each event is located in both space and
time and features a type, a sub-type and a payload which consists in several uint64_t values.
As presented in figure 9.1, this simplifies event handling as they follow a single path until be-
ing stored in the trace. Similarly, upon reading, events can be submitted to a single handler.
Moreover, on debug buffers side, this generic representation allows the storage of debug events
in simple arrays. Figure 9.9 illustrate our event representation for common events with a set
of common attributes and event specific fields.

9.4.3 File Descriptor Handling

As file-descriptors count is limited (generally at 1024 file-handlers), it is crucial to limit
the number of opened files when manipulating large traces. Besides, as we design our trace
format to run in a highly multi-threaded environment, we have to make sure files are managed
in a thread-safe fashion, without impacting performances. This led to the development of our
File_Handler which relies on a file abstraction called the TL_File in purpose of hiding file
management complexity from readers and writers.

TRACE LIBRARY 107

Figure 9.9: Illustration of our hierarchical event representation.

Figure 9.10: Architecture of our thread-safe File_Handler.

Figure 9.10 presents our File_Handler, it is build around FH_Slots, embedding IO_Buffers
which have an opened file handler either in reading or writing mode. Theses slots are gath-
ered in a ring, located at processor level (when running over MPC). Rings which are gath-
ered in the main File Handler structure. In order to balance the load among threads, a
File_Handler_view structure is stored as a thread local storage (TLS) value upon thread
creation in order to point towards a ring. Thus, TL_Files rely on the thread-local view to query
an FH_Slot within the ring, slots which can be in three states:

• IN_USE: a TL_File is currently reading or writing through this slot.

• RELAXED: this slot is held by a TL_File but not in use.

• UNINITIALISED: This slot is not used.

108 TRACE BASED APPROACH

Consequently, when a TL_File is about to read or write data it has to acquire a slot (through
the view) by querying the ring in search of either an (1)UNINITIALISED slot or a (2)RELAXED
one. In the first case the file is simply opened and the call returns. In the second case, current
file offset is stored in the TL_File and the slot is stolen, flushing the buffer if needed then
closing previous file before opening a new one. If no slots are available at a given moment,
the waiting threads sweeps the ring until finding an empty slot, process which aims at lim-
iting contention. This approach has the advantage of allowing thread-safe file management
while limiting the total buffer size as buffers are stored in slots and limited in total number
independently from the number of threads.

9.4.4 Debug Buffers

In order to use a trace for debugging purpose, a program must be able to dump its n last
events even if signaled. Classical trace writing through output buffers does not guaranty that
all events were flushed to disk. Therefore, in case of crash, traces can be truncated, failing
at describing the final program state. As hierarchical events have a fixed width, they can
be stored for each process in a ring buffer located in a shared memory segment setup by the
launcher (see figure 9.1 and 9.11). In this configuration, if a process crashes, shared buffers’
content and either the return value or killing signal of the instrumented program can be stored
by the launcher in a valid trace.

Figure 9.11: Instrumentation coupling through shared memory segments.

Besides, as presented in figure 9.11, each lock final state can be retrieved using a mecha-
nism similar to debug buffers. A mutex state is a tuple (Address,Holder, State) with Address
being the mutex address, Holder currently or previously holding stream identifier and State,
resource status. The launcher creates a shared memory segment of mutex states with a foot-
print of one megabyte for 32768 mutexes. At runtime, mutex states are updated by hooks on
mutex related calls. A hash table associates each mutex address with a state residing in the
shared memory segment. If there is no state associated with the requested address, a new
segment is booked, within the limit of available states. As these modifications are done either
after taking the lock or before its release, it is the instrumented mutex which ensures its own
state update atomicity. Thanks to these mechanisms, the n last operation and mutexes’ final
status can be stored in a valid trace, even in case of crash or interruption.

9.4.5 Symbol Extraction

In order to associate functions calls (particularly compiler instrumented function) with code
locus, symbol information have to be extracted from libraries linked to the instrumented exe-

TRACE LIBRARY 109

cutable. To do so our approach relies on an analysis of the ELF2 binary format [C+95] (which is
common to most UNIX systems), combined with the DWARF [C+10] debug information which
are appended to the executable by the compiler (flag -g) when compiled in debug mode.

Library Extraction

In order to extract libraries which are linked to a given program, our instrumentation li-
brary relies on a linux facility provided by /proc/self/maps. Using this file a program can
perform an introspection to list its own dependencies in order to extract their symbols.� �

$cat / proc / s e l f / maps
00400000−0040b000 r−xp 00000000 08:05 2097188 / bin / cat
0060a000−0060b000 r−−p 0000a000 08:05 2097188 / bin / cat
0060b000−0060c000 rw−p 0000b000 08:05 2097188 / bin / cat
01649000−0166a000 rw−p 00000000 00:00 0 [heap]
7fcc051c6000−7fcc058b2000 r−−p 00000000 08:05 2759235 / usr / l i b / l o ca l e / locale−archive
7fcc058b2000−7fcc05a67000 r−xp 00000000 08:05 4329379 / l i b / x86_64−linux−gnu / l ibc −2.15. so
[. .]
7fff1a406000−7fff1a427000 rw−p 00000000 00:00 0 [stack]
7fff1a517000−7fff1a518000 r−xp 00000000 00:00 0 [vdso]
f f f f f f f f f f 6 0 0 0 0 0 −f f f f f f f f f f 6 0 1 0 0 0 r−xp 00000000 00:00 0 [vsysca l l]� �

Figure 9.12: Output (truncated) of /proc/self/map for the cat command

Moreover, this command also provides the base mapping address of each library (leftmost
value in figure 9.12), loaded by the loader at various offsets for security reasons. This value is
important as when stored in a shared library symbols are position independent this means that
calls to these functions are done through the Procedure Linkage Table (PLT) which ’redirects’
them to the actual function address as resolved by the linker. Therefore, when extracting
symbols, as detailed in next section, this base address is required to derive the actual address.

Symbol Table Reading

The symbol table is processed using the libelf [Kos10] library which provides useful primi-
tives to explore the ELF executable layout. As presented in figure 9.13, an ELF executable is
organised in different sections with different names, types, attributes, size, member data and
file offset.

Among the main sections are:

• .text: which gathers program instructions. As this section has the load attribute at ’1’,
it is loaded in memory upon program execution.

• .debug: this section is present if the program has been compiled with the ’-g’ option. It
contains DWARF informations which will be presented in the following section.

• .symtab: it is the section we are interested in this section, it lists all the symbols con-
tained in the executable.

2 Executable and Linkable Format

110 TRACE BASED APPROACH

Figure 9.13: ELF executable layout.

It is the type of section which determines the semantic of the data it contains. Thus, the
symbol table can be locate by looking up its identifier (SHT_SYMTAB) among the various
sections headers. As shown in figure 9.13, the file starts with a fixed header which regroups
global information such as the target architecture. Then, the program header describes how to
execute the code (entry point). Eventually, several sections headers describe various sections
which are located at a given offset in the executable. As mentioned before, informations we are
interested in are located in the symbol table (.symtab) section, the debug information section
(.debug) and the program (.text) section for the assembler code itself. Program header also
contains important values such as the p_vaddr address which gives the offset of the first byte
where the .text section will be loaded in virtual memory and also the p_offset which gives this
offset in the executable file itself.

Symbol table contains the matching between symbol names and their address (either rela-
tive or absolute). In order to calculate their effective address, when mapped dynamically, we
read the /proc/self/maps file and process executable segments (r-xp in figure 9.12) in order
to extract their mapping addresses. Thanks to the ELF format, it is then possible to compute
the effective address of any symbol either in the memory or in the executable:

• Absolute address: this is the address where the function is actually loaded in memory.
It is computed using the relative address in the executable (or .so file) from which we
subtract the p_vaddr address which is located in the program header in order to have a
zero based address space. Then, we simply add the base address of the memory segment
where this library is loaded to retrieve the actual address. This process is summed up in
equation 9.1.

Addrabsolute = Addrrelative − p_vaddr+Addrlibrary−base (9.1)

• Executable offset: the executable image loaded in memory is the exact copy of a section
of the executable. It is then possible to compute the offset of a function in the executable
in order to compare the absolute address computation by checking whether they contain
the same instructions. As before we get back to a zero based addressing but instead of
adding the library base address, we now add the p_offset value which is the base address
of the .text section. Computation depicted in equation 9.2.

TRACE LIBRARY 111

Offsetexecutable = Addrrelative − p_vaddr+ p_offset (9.2)

Thanks to these calculations symbol resolution, including dynamic ones is performed when
instrumenting programs. This process is presented more practically in section 9.4.5 where we
also introduce our approach for function identifier homogenisation.

Debug Information Processing

Once symbols are resolved to their address, they still have to be projected on the source
code. To do so, we rely on the DWARF debugging information [C+10] which names comes from
the analogy with ELF. These information are appended by the compiler when the binary is
compiled in debug mode. In order to parse the DWARF format, we rely on the libdwarf library
for code locus information extraction.

DWARF relies on a basic structure to store debugging information: the Debugging In-
formation Entry (DIE). These DIEs are grouped in Compilation Units (CU) which match
a given program portion (division is done at source-file level). An ELF executable embeds
DWARF information which are gathered in a tree fashion where multiple CUs contain several
DIEs. There are several types of DIEs, but for what we are interested in, we only retain the
DW_TAG_subprogram which describes functions. During instrumentation, CUs are walked
through recursively in search for DIEs which describe functions (DW_TAG_subprogram). Then
for each of those entries, we retrieve the declaration source file (DW_AT_decl_file) and the
source declaration line (DW_AT_decl_line). Consequently, if programs were compiled with
debug enabled, we can display the symbol location in the “source.c:line” form.

Distributed Symbol Resolution

One problematic when resolving symbols is to associate compact identifier which each func-
tion calls in order not to write (generally large) addresses to describe function calls. More-
over, when running on several processes (and possibly several nodes), absolute addresses of
dynamically loaded functions can vary as libraries are not loaded at a predefined address.
Consequently, this unique identifier is also a way of unifying function descriptions. In order to
retrieve global identifiers, we sort libraries using a sum of control of their executable, assum-
ing they are identical on every nodes thanks to the shared file-system. Then we process each
library in order, loading symbols which order is identical at executable level, allowing the use
of a simple counter for identifier generation. Apart from the Multiple Program Multiple Data
(MPMD) mode where different programs are running, it is then possible to generate a list of
tuples which provide instrumentation with the following context:

(Function Name,Address, Identifier)

These informations are gathered in a hash table to allow dynamic symbol resolution (ad-
dress→ identifier), therefore, storing only global identifiers in the trace. Moreover, thanks to
the DWARF debug data, each of these function can be located in terms of source code. Even-
tually, all those information are stored in the trace in order to be retrieved at reading time in
order to build a look-up table (as identifiers are contiguous), allowing identifier matching in a
constant time during the distributed analysis.

112 TRACE BASED APPROACH

9.4.6 Compression

This section develops the trace compression method used by the MPC Trace format. After
detailing methods, used by most common performance trace formats which are OTF1 and
OTF2, we introduce our method and its implementation relying on a binary truncation method
(similar to OTF2) but which yields slightly smaller trace thanks to a sub-byte value width
storage.

(a) OTF1 356.9 MB (libVT) (b) OTF2 165.0 MB (ScoreP) (c) MPC Trace 145.0 MB

(d) Colour code.

Figure 9.14: Bit-density when tracing a simple program (MPI only, instrumenting the
same events) with OTF1, OTF2 and MPC Trace.

In order to reduce traces volume, trace formats often involve compression or try to reduce
events verbosity by relying on compact event representations. For example OTF1 [KBB+06]
uses an ASCII-based hexadecimal representation which ignores leading zeroes, ensuring trace
portability and slightly reducing trace size when compared to raw data. Other formats adopted
a simple textual representation [dOSdKM10], when others [WM04, CGL08] among which
OTF1’s successor’s OTF2 [EWG+11, aMBB+12] rely on a binary representation with the ex-
tended possibility of being compressed with state of the art algorithms such as zlib. Figure
9.14 illustrates this storage layout difference between state of the art trace formats OTF1 and
OTF2. OTF1 relies on an ASCII-based representation which ignores leading zeroes, thus, for
example if the value 65535 has to be stored, it will be converted to hexadecimal over 64 bits,
yielding 0000’0000’0000’FFFF but the leading zeroes can be clearly ignored in order to save
space to get FFFF, value which is then stored in ASCII with a cost of eight bits per symbol
0100’0110’0100’0110’0100’0110’0100’0110 (in ASCII, ’F’=0100’0110 in one Byte). Moreover, as
it can be seen in figure 9.14(a), symbol dynamic is very reduced as it is bounded to the ASCII
0-9 (encoded 48-57) and A-F (encoded 65-70), yielding this very regular bit distribution as
those values are very close. If we try to compare the two compression approaches of OTF1
and OTF2, we can derive the entry size in function of the stored value and determine if this
approach is efficient compared to directly storing the raw value. As truncation compression
depends on value width when written in binary, we first need to derive analytically the offset
of the most significant bit in a binary value:

Consider X ∈]2n−1, 2n], 1 < n, 1 < X

TRACE LIBRARY 113

2n−1 < X ≤ 2n (9.3)

eln(2)(n−1) < X ≤ eln(2)(n)

ln(2)(n− 1) < ln(X) ≤ ln(2)n

n− 1 <
ln(X)

ln(2)
≤ n

n− 1 < ln2(X) ≤ n (9.4)

If we consider a value X such as X ∈]2n−1, 2n], it has by definition a width of n. It is then
possible to write this condition (see equation 9.3) in order to derive a way of bounding X in
terms of its width in equation 9.4. Yielding l2(X) the width when stored in base 2 of a value X:

l2(X) = dln2(X)e (9.5)

Process which can be repeated in base 16 to derive a similar equation:

l16(X) = dln16(X)e (9.6)

Base 10 l10 Base 2 l2 Base 16 l16

1293 4 101’0000’1101 11 50D 3
32496 5 111’1110’1111’0000 15 7EF0 4

344216597562 12 101’0000’0010’0100’1110’1000’0111’0100’0011’1010 39 5024E8743A 10

Figure 9.15: Illustration of width calculation for some values in base 10, 16 and 2.

Figure 9.15 illustrates width calculation for various values, depicting the variation in sym-
bol count depending on the base. Hexadecimal seems to rely on less symbols than decimal
which itself has less symbols than binary, assuming a constant symbol size. However, sym-
bol size is not constant and if ’0’ and ’1’ have a size of one by definition of the architecture,
numbers and hexadecimal symbols have a width of eight binary symbols as they are stored in
ASCII. Moreover, the word size on our architecture is 8 bits or one byte, this means than raw
values can only be truncated in blocks of eight bits. Therefore we have to adjust formulas 9.5
and 9.6 to take those underlying storage requirement into account:

l2−Bytes(X) = 8d
ln2(X)

8
e (9.7)

l16−ASCII(X) = 8dln16(X)e (9.8)

114 TRACE BASED APPROACH

 8
 16
 24
 32
 40
 48
 56
 64
 72
 80
 88
 96

 104
 112
 120
 128
 136
 144
 152
 160

2
4

2
8

2
12

2
16

2
20

2
24

2
28

2
32

2
36

2
40

2
44

2
48

2
52

2
56

2
60

2
64

S
to

ra
g
e
 w

id
th

 i
n
 b

it
s

Value

ASCII Decimal
Truncated Binary

Truncated ASCII Hexadecimal
RAW Value Width

Exact Binary Width

Figure 9.16: Comparison of various storage methods for 64 bits unsigned integers,
neglecting context information such as width storage or separators.

As outlined in figure 9.16, if we consider gains obtained from the truncation itself it can
already become inefficient. If we consider the ASCII-Hexadecimal truncation it becomes sub-
optimal at 232, value which despite relatively large is common in performance traces as it
can be reached in a time T = 232

2×109 = 2.15 seconds with the TSC (see section 6.2.1) on a 2
GHz machine. Similar observations can be made for the ASCII-decimal approach which is
also inefficient passed a certain value. Dealing with the binary approach, it remains optimal
on the whole dynamic and can compress with ratios up to 8 (8 bits over 64 for values lower
than 256). However, this compression ratio does not take into account control values which
are required to decode values with variable width. This leads to the comparison of these two
approaches:

• Separator approach (or byte-sized width): which consist in separating entries with
a special character (for example newline in OTF1, see Figure 9.17(a)). Note that this ap-
proach has the same cost than storing each width in a byte sized integer as the separator
is also byte-sized (Figure 9.17(b)).

• Sub-byte storage width: as the width of a byte is in the w ∈ [0, 8] interval, three bits
are sufficient to store width. Consequently, a single byte can store two width with an
extra 2 bits which can be used for other purposes (Figure 9.17(c)).

(a) Separator. (b) Byte-sized width (c) Sub-byte width

Figure 9.17: Comparison of width storage/retrieval methods.

From figure 9.17, we can now derive the effective truncated binary storage size for a list of
N values vi with i ∈ [1,N]. If we consider the separator (or byte-sized width) approach, we can

TRACE LIBRARY 115

derive an overall storage with Wsep(N) such as:

Wsep(N) =

N∑
i=1

l2(vi) +N (9.9)

Similarly we can derive the overall truncated binary size Wsub for a sub-byte with storage:

Wsub(N) =

N∑
i=1

l2(vi) + d
N

2
e (9.10)

From equations 9.9 and 9.10, it is then possible to derive the size difference between the two
methods in function of the number of values stored, as the truncation uses the same width.
This yield ∆(N) = N− dN2 e (in bytes):

1 B

1KB

1MB

1 GB

2
0

2
2

2
4

2
8

2
12

2
16

2
20

2
24

2
28

2
32

W
id

th
 s

to
ra

g
e
 o

v
e
rh

e
a
d

Number of values

Figure 9.18: Overall size difference for N values using either separator or sub-byte
with approach for 232 values (equivalent to 32 GB of trace assuming RAW
64 bit unsigned int).

Difference which as shown in figure 9.18 tends to grow with the number of values until be-
coming non-negligible as sub-byte approach halves the width storage size. It is this difference
which contributes to the slightly higher compression of the MPC trace format (Figure 9.14(c))
when compare to OTF2 (Figure 9.14(b)), despite using the same compression approach.

It is also possible to compare separator and sub-byte width methods by observing the overall
compression ratios. If we consider the separator (or byte-sized width approach), compression
ratio Rsep(v) can be computed from the width of the truncated values v1 in bytes as:

Rsep(v) =
8

1+ l2(v)
(9.11)

And the ratio Rsub for a sub-byte from the storage size of two truncated values v1 and v2 is:

116 TRACE BASED APPROACH

5
4
3
2
1

1 2 3 4 5 6 7 8

Width of A in bytes

1

2

3

4

5

6

7

8
W

id
th

o
f

B
in

b
y
te

s

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(a) Sub-byte width (Equation 9.12).

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8

C
o
m
p
re
ss
io
n
ra
tio

Value Width (Bytes)

Separator approach

(b) Separator (Equation 9.11).

Figure 9.19: Comparison of separator and sub-byte width storage in terms of compres-
sion ratio.

Rsub(v) =
16

1+ l2(v1) + l2(v2)
(9.12)

As presented in figure 9.19, these two approaches have different compression ratios. The
separator approach has a maximum compression rate of Rsep(v) = 8

1+1 = 4 when two bytes
are used to describe a 64 bits values, dealing with the worst case, if the compressed values
occupies 8 bytes, the ratio is sub-optimal with a value of 0.88. If we look at our approach in
the MPC Trace format, encoding two width in the same byte leads to better ratios and lowers
the worst case: highest compression is Rsub(v) = 16

1+1+1 = 5, 33 when encoding two integer
lower than 256. As far as the worst case is concerned, encoding two 64 bit integers yields a
compression ratio of: Rsub(v) = 16

1+8+8 = 0, 94, more efficient than the delimiter case.

Consequently, we have seen that when storing values which dynamic cover a wide range of
the 64 bit space, it could be interesting to truncate those values. As it is the case for perfor-
mance traces which gather, for example, both time-stamps (large values) and identifiers (small
values), we proposed to examine various alternative to quantify their storage requirements. If
we look at figure 9.20, we can see the compression of a “ramp” of values in the [0, 1.108] range.
It can be seen in figure 9.20(a) that when stored in raw, there are a lot of zeroes (coded black)
which are redundant. However, as we mentioned before, using an hexadecimal-ASCII coding
with a one byte separator (Figure 9.20(b)) can be inefficient for larger values. Dealing with
truncated binary 9.20(c), it is still advantaging for large values but compresses more efficiently
smaller values. Nonetheless, those trivial compression approaches are not comparable with
state of the art compression algorithms such a zlib [DG96] (Figure 9.20(d)) which provides
higher compression ratios with the drawback of an higher computational costs. Consequently,
trace compression approaches does not aim at fully compressing the trace, but at finding a

TRACE LIBRARY 117

(a) Binary storage (b) Hexadecimal (c) Truncated binary (d) zlib (from RAW)

(e) Colour code.

Figure 9.20: Storage methods comparison (bit-density) for the first 1.108 uint64_t.

trade-off between space requirements and compression costs. Balance which in our case is
provided by binary truncation.

Writing Implementation

� �
unsigned char buff [1 7] ;
int o f f s e t = 1 ;
buff [0] = 0 ;
buff [0] |= (type)<< 6) ;
buff [0] |= (write_uint64t (buff + o f f se t , value1 , &o f f s e t) << 3) ;
buff [0] |= write_uint64t (buff + o f f se t , value2 , &o f f s e t) ;
IO_Buffer_write (IO_buffer , o f f se t , (char ∗) buff) ;� �

Figure 9.21: Writing data using our truncation function.

� �
uint8_t write_uint64t (unsigned char ∗dest , uint64_t ∗ source , int ∗ o f f s e t) {

uint64_t width = 0;

i f (∗ source) { / / i f source i s zero bsr i s undefined
asm v o l a t i l e (" bsr %1, %0" : "=r " (width) : " r " (∗ source)) ;
width = (width >> 3) ;

} e l se {
width = 0;

}

∗ ((uint64_t ∗) dest) = ∗source ;
∗ o f f s e t += width + 1;
return width ;

}� �
Figure 9.22: 64 bit integer binary truncation implementation in the MPC Trace li-

brary.

118 TRACE BASED APPROACH

As presented in figure 9.22, our implementation relies on the Bit Scan Reverse (bsr) instruc-
tion which return most significant bit offset for a 64 bit integer. This values is used divided
by 8 (through a 3 bit right shift) in order to retrieve the actual width in bytes. Once computed
the whole value is computed and the offset is incremented by the with to indicate where to
write next value. Dealing with the use of this primitive, as presented in figure 9.21 data are
written in a static buffer before being written in the IO Buffer through successive calls which
are ’ored’ to the header. Note that the two bits left in the header are used to store a four states
type which is generally sufficient to encode all sub-types of a given event as event multiplexing
is limited by the trace format which separates events in multiple files.

Reading Implementation

� �
s t a t i c const uint64_t width_mask [] = {

0x0llu , / / 0
0xFFllu , / / 1
0xFFFFllu / / 2
0xFFFFFFllu , / / 3
0xFFFFFFFFllu , / / 4
0xFFFFFFFFFFllu , / / 5
0xFFFFFFFFFFFFllu , / / 6
0xFFFFFFFFFFFFFFllu , / / 7
0xFFFFFFFFFFFFFFFFllu / / 8

} ;

void read_uint64_t (char ∗source , uint64_t ∗ value , uint8_t width , int ∗ read_of fset) {
∗value = ∗ ((uint64_t ∗) source) & width_mask [width + 1] ;
∗ read_of fset += width + 1;

}

void read_header (char ∗source , uint8_t ∗ v1_width , uint8_t ∗ v2_width ,
uint64_t ∗ type , int ∗ read_of fset) {

∗v1_width = (((uint8_t) ∗ source) >> 3) & 0x7 ;
∗v2_width = ∗source & 0x7 ;
∗type = ((uint8_t) ∗source) >> 6;
(∗ read_of fset)++;

}� �
Figure 9.23: 64 bit integer binary truncation at read time.

On reading side, as presented in figure 9.23 the header is decoded then successive values
are simply masked to retrieve actual values. Figure 9.24 presents the reading of data written
in previous section. It first guarantees a sufficient size from the IO buffers assuming values
are all 64 bits. Then, it decodes the header an proceeds with the reading of the two values.
Eventually, if the actual width was lower than the width which has been guaranteed, the
buffer is sought back of the difference in size in order to be aligned with next header.

9.5 Trace Reader

This section presents the MPC Trace reader which is a parallel trace reader which unlike
most tools extends the trace format with a fully distributed analysis engine. We first intro-
duce MPC Trace reader architecture followed by both an outline of its interface and a sample
analysis tool. Then, we present some performance results, demonstrating the scalability of

TRACE READER 119

� �
char ∗buff = NULL;
int count = IO_Buffer_read (IO_buffer , (char ∗∗) &buff , 17) ;
uint8_t v1_width = 0;
uint8_t v2_width = 0;
uint8_t type = 0;
int read_of fset = 0;
uint64_t v1 = 0;
uint64_t v2 = 0;

read_header (buff , &v1_width , &v2_width , &type , &read_of fset) ;
read_uint64_t (buff + read_of fset , &v1 , v1_width , &read_of fset) ;
read_uint64_t (buff + read_of fset , &v2 , v2_width , &read_of fset) ;
buffer_seek_back (IO_buffer , count − read_of fset) ;� �

Figure 9.24: Reading data using our truncation function.

this approach on thousands of cores. Eventually, we list the limitations of this approach which
led to the on-line method, we develop in chapter 10.

9.5.1 Trace Reader Architecture

The trace reader abstracts the analysis by handling transparently: (1) distributed event
reading, (2) context information management and dispatch and (3) analysis parallelism. There-
fore, this trace reader allows the simple design of scalable tool associated with our trace for-
mat while limiting implementation complexity as most common operations are managed by
the trace reader.

Distributed event reading is performed using a simple producer consumer-model. Indeed,
when processing the trace in depth-first-search, files are identified as separated tasks which
can be sent to different processes which are in charge of reading them. There are options to
regroup files from the same process in the same analysis process in order to allow local analy-
sis (particularly deadlock detection). But, more generally files can be dispatched indifferently.
Context information are gathered by the root process which scans the trace in order to list
trace files while generating unique identifiers. Identifier look-up tables regroups individual
stream description including: Stream type (Node, Process, Thread), start and end-times, host-
name and parent identifiers (-1 if trace root). Dealing with function descriptions they are
stored as code locus including source library and source code level location (file:line). As far as
parallelism is concerned, the analysis engine relies on a mixed pthread plus MPI task engine
which processes a set of tasks which are statically assigned when opening the trace. If the
number of files to process is larger than the number of processing units, it can cause tempo-
ral scattering as event order cannot be guaranteed, files being read successively. Behaviour
which prevents analysis depending on multiple files which processing has to be temporally
correlated. However, we have no such analysis as we managed to keep a global state when
operating the reductions even temporal ones by using state matrices which can put up with
unordered file reading (at file level, not event level which are ordered by construction in the
trace file).

9.5.2 Trace Reader Interface

Figure 9.25 presents the MPC trace reader interface, as aforementioned it handles both
parallel trace reading and meta-data through a compact interface which as illustrated in next
section can be used to build distributed trace processing tools in only a few lines.

120 TRACE BASED APPROACH

Function Description
MPC_Trace_reader_init Initialise distributed trace reading on a given trace.
MPC_Trace_reader_release Release the trace reading interface.
MPC_Trace_handler_attach Attach an handler to a given event type.
MPC_Trace_read_definitions Process trace hierarchy in order to load meta-data.
MPC_Trace_reader_wait Wait until the trace has been fully processed.
MPC_Trace_id_infos Retrieves the description of a given identifier.
MPC_Trace_id2rank Get the MPI rank of a given identifier.
MPC_Trace_func_infos Retrieves a function description from its identifier.
MPC_Trace_get_begin Returns the time-stamp upon application start (in ticks).
MPC_Trace_get_end Returns the time-stamp upon application end (in ticks).
MPC_Trace_get_duration Returns application duration (in ticks).
MPC_trace_type Returns trace type (MPI, Pthread, MPC).

Figure 9.25: MPC Trace reader interface.

9.5.3 Sample Tool

� �
void comm_handler (s truct Gen_Event_t ∗event , void ∗dummy) { /∗ Process Events ∗ / }

int main (int argc , char ∗∗argv) {
int pr ;
MPI_Init_thread (&argc , &argv , MPI_THREAD_MULTIPLE, &pr) ;
MPC_Trace_reader_init (" . / trace / " , 100 , 1024∗1024∗10, 1 , NULL) ;
MPC_Trace_handler_attach (EVENT_MPI, comm_handler , NULL) ;
MPC_Trace_read_events () ;
MPC_Trace_reader_wait () ;
MPC_Trace_reader_release () ;
MPI_Finalize () ;

}� �
Figure 9.26: Example of tool relying on the trace reader interface.

Figure 9.26 presents a minimal analysis tool which relies on the MPC Trace reader inter-
face. We first initialise the MPI environment before opening the trace located in ./trace/
with a maximum of 100 file descriptors and IO Buffers of 10 MB with one thread per MPI
process and no handler (NULL) associated with trace reading completion. Then, we regis-
ter the comm_handler event to MPI events with no extra arguments. Eventually, we enter
distributed event reading loop and wait for its termination before releasing the environment.

9.5.4 Performance

Figure 9.27 presents MPC Trace reader performance when processing a trace of lbm (see
section 12.1) on the Curie supercomputer in terms of both total trace size processed (Figure
9.27(a)) and processing throughput (Figure 9.27(b)). Measurement were done over applica-
tions wall-times, including initialisation and trace processing costs. It can be seen that this 30
GB trace is processed in 43 seconds, including report rendering. Dealing with the throughput,
we can observe three main phases: (1) (0-8 seconds) trace processing by the root process in or-
der to list files while accumulating and broadcasting topological information, (2) (8-30 seconds)
distributed trace processing with a slow start until all files are opened, delivering the maxi-
mum processing throughput (≈8 GB/second) and eventually, (3) (30-43 seconds) performance
data reduction and trace report rendering by the root process.

LIMITATION 121

(a) Total trace size processed. (b) Trace Procession throughput.

Figure 9.27: MPC Trace reader performance for a 128 core run of lbm (see section 12.1)
processed on 128 cores on the Curie supercomputer.

9.6 Limitation

One of the main limitation of the trace analysis framework we introduced in this chapter
is the large number of files its relies on. Indeed, by avoiding event multiplexing in the same
file, we can possibly create up to three files per core, approach which is definitively not scal-
able on more than a machine fraction, because of IO limitations. Despite preserving analysis
parallelism, avoiding multiplexing, this approach is therefore not sustainable to fulfil our per-
formance requirements which aim at building a scalable tool. Another aspect is trace format
complexity as new events have to be defined into the trace format, despite being represented
by generic events during the whole instrumentation chain. This was done this way in order
to write the minimum amount of data instead of always compressing the whole structure, but
with the passing of time, this approach was error prone and discouraged trace format updates.
As a consequence, latter implementation have to rely on a simple event representation scheme
with an agnostic transport layer. Moreover, extension has to be part of the design as there are
always new events to add. Consequently, although providing useful features, our trace-based
approach suffers from major limitations which prevent it to be used a machine scale because
of IOs, motivating the transition towards our on-line tool presented in Chapter 10.

9.7 Summary

This chapter introduced the first version of our tool called the MPC Trace library. It aimed
at instrumenting both MPC and MPI programs in a scalable manner while providing tools
with a generic interface. We firstly presented a new trace format which aimed at overcom-
ing some limitations of OTF13 while supporting MPC’s extended topology. We also described
a method allowing trace-based debugging of faulty programs thanks to a shared memory
segment flushed upon program interruption. Subsequently, we presented a compact dis-
tributed trace processing interface which can be used to provide analysis with mixed par-
allelism through handlers’ control flow (MPI + Pthread). Eventually, we discussed of the lim-
itation of this approach, outlining the unacceptable number of files it creates and a lack of
3 Limitations which were mostly resolved in OTF2.

122 TRACE BASED APPROACH

adaptability because of trace format adherence. Observations which motivated a full rewrite
of our tool in the light of this first experiment, leading to the development of Chapter 10 which
deals with the Multi-Application on-Line Profiling (MALP) tool.

CHAPTER 10

Online Trace Analysis

This chapter presents the second version of our profiling tool. This tool called MALP for
Multi-Application Online Profiling has been designed to avoid the IO bottleneck by relying
on an alternative coupling method. We start by justifying the shift from a trace based to an
on-line coupling method. Then, after introducing our multi-application coupling mechanism
based on MPI in MPMD, we present a data-flow engine inspired from blackboard systems
which purpose is to perform a parallel event reduction. This work has been published in an
article [BPJ13] which content is partially reproduced in this chapter.

10.1 Shifting to On-line Trace Analysis

Figure 10.1: Overview of the trace-based instrumentation coupling.

As developed in chapter 9, our previous approach was subject to IO contention and therefore
unable to reach larger scales without suffering from unacceptable overhead. A common way
of solving this issue is to rely on parallel IO libraries, approach adopted for example by the
ScoreP [aMBB+12] framework which relies on SionLIB [FWP09]. This method takes advan-
tage of data multiplexing in order to reduce file-system contention by limiting the number of
files. In this purpose, as presented in Figure 10.1, trace data are firstly spatially reduced (gen-
erally through the MPI layer) before being written in a limited number of files. Upon reading,
the same process in done in reverse, files are opened by a subset of processes which are in
charge of redistributing data to every processes. This multiplexing supposes that the trace
is auto-coherent, allowing its reading in a space independent way — necessarily leading to a
trace format definition. Moreover, traces can be very large and generally grow linearly with

123

124 ONLINE TRACE ANALYSIS

the number of processes — posing the question of disk usage for long runs1 at larger scales.
From a more general point of view, file-system is becoming a critical service at petaflopic-scale:
file system providing a global view, there is necessarily a bottleneck at meta-data servers level
when processing requests from thousands of processes. Observation which motivated the shift
to another type of coupling which would not rely on file-system.

Figure 10.2: Overview of the network-based instrumentation coupling.

Figure 10.2 presents our on-line coupling approach where instead of transiting through file-
system, trace data are directly sent to the analyser through the high-speed network. By not
using file-system, temporary trace data are not stored at all and do not have to go to a slower
medium. Moreover, as performance measurements are directly sent to the analyser, they
avoid going back and forth between file-system’s servers, halving the overall network traffic.
Streaming performance data also opens new parallelism opportunities by allowing pipe-lined
and concurrent analyses which were not practical with traces. However, in contrast with
trace-based approach, this method does not allow iterative measurements processing as their
storage is limited to the amount of memory available in processing nodes. As this process (just
as profiling) relies on an immediate valuing of instrumentation data, information which are
not explicitly analysed (reduced) during the measurement phase are lost. Nonetheless, analy-
sis close to post-mortem ones are still possible, analysing processes being able to communicate
during the reduction process — opening opportunities for distributed analysis. 11.

On-line coupling has been retained for instrumentation–analysis in the MALP tools as it
alleviates file-system limitations by not using it at all. Moreover, as we will show, it provides
opportunities to simplify the trace format if the coupling exposes a surjective propriety. This
avoids temporary storage of redundant trace data by processing them on-the-fly. It also allows
the analysis of long running applications which would exhaust storage capabilities if instru-
mented with traces. Besides, as presented in next section, on-line coupling permits multi-
instrumentation which is a particularity of MALP. This approach is therefore more suitable to
prototype a machine wide server which would provide profiling as a service — matching more
closely our continuous profiling requirements.

1 Some programs can run for several day and sometimes even weeks.

COUPLING MULTIPLE APPLICATIONS 125

10.2 Coupling Multiple Applications

This section introduces the coupling method which is used by MALP in order to efficiently
achieve runtime coupling. This mechanism is used to realise the coupling of our instrumenta-
tion chain, with the originality of being able to couple multiple applications. After introducing
the architecture of our coupling mechanism, we detail its programming interface and provide
an example of N to one coupling, similar to what is done when instrumenting multiple pro-
grams. Eventually, we present some performance results related to this coupling mechanism.

As detailed in the rest of this section, in order to implement an on-line coupling method,
three conditions must be satisfied :

• Transparent cohabitation: two programs have to be able to run concurrently, in ac-
cordance with machine’s scheduler.

• Mapping: groups of processes must map to each other.

• Communication: each process has to efficiently communicate using a persistent asyn-
chronous data stream.

Figure 10.3: Overview of the runtime coupling mechanism.

As presented in Figure 10.3, these three requirements are satisfied in our implementation
using MPI in MPMD mode. In this purpose, we provide transparent cohabitation with MPI
virtualization, mapping with the VMPI_Map primitive and asynchronous communication with
VMPI_Streams.

10.2.1 Transparent Cohabitation (Virtualization)

Virtualization is achieved using a simple mechanism similar to the one implemented in
PNMPI’s virtual module [SdS07]. It consists of replacing every references to MPI_COMM_WORLD
by a reference to a sub-communicator. This is done by intercepting every MPI calls through
the PMPI interface. Originally implemented over PNMPI, we had to rewrite our own virtu-
alization outside of PNMPI to provide an integrated library which can be preloaded on MPI
programs without code modification, recompilation or binary patch. Moreover, providing mod-
ule’s interface to the host application was not convenient as our library was divided in two,
separating streams and virtualization. Therefore, we decided to implement our library in a
single package which can be easily linked or preloaded in order to virtualize a program. To
do so, we wrote in C a MPI wrapper generator, very similar features as PNMPI’s python one,

126 ONLINE TRACE ANALYSIS

with some extra options such as conditionals. Using this wrapper, we are able to generate
a complete virtualization interface directly compiled into the VMPI library. Thanks to its
extended interface, this wrapper was also used to generate the PMPI interface used by our
instrumentation library. When running virtualized, each program runs transparently, in its
own MPI_COMM_WORLD whereas the real MPI_COMM_WORLD is still available to perform inter-
application communications as MPI_COMM_UNIVERSE (see Figure 10.3).

Wrapper Generator

The wrapper generator is used to manipulate the whole MPI interface at once, simplifying
tool development. Our approach is close to PNMPI’s python wrapper [SdS07], although we
extended its interface to match our requirements. We developed our wrapper in C and used it
to generate several MPI related files at both MPI virtualization and instrumentation level.

Figure 10.4: Presentation of wrapper work-flow.

As depicted in Figure 10.4, our wrapper relies on a pre-processed version of the MPI header
as retrieve from the compilation of an empty main (with mpicc -E ./main.c). Data-stream
from which all MPI related calls are extracted. Then, we proceed by loading the wrapper
script which represents generated file skeleton. It contains arbitrary segments of code mixed
with generated regions delimited by two html like tags: “<MALPW>” and “< �MALPW>”.
Each of these section is repeated for each MPI calls with specific command which can be
used to retrieve call related information to generate the target code. Moreover, each generated
segment can be preceded with either a white-list or a blacklist in purpose of targeting or ignor-
ing specific functions, with for example, the following syntax in the opening tag: “<MALPW
!MPI_Init,!MPI_Init_thread,!MPI_Finalize>” to blacklist MPI_init, MPI_init_thread and
MPI_finalize calls.

Command Effect
MALPW_WRAP(T, N, M) Apply macro M to argument of type T and name N.
MALPW_PROTOTYPE() Print function prototype
MALPW_PRINT(T) Add text T to output file

MALPW_CALL(P) Generate a call to MPI function prefixed with P (usually P=’P’),
return value is stored in ’ret’ which is defined with the right type.

MALPW_WNAMECASE_UP(M) Print current function name in upper case, processed by macro
M

MALPW_WNAME(M) Print current function name, processed by macro M

MALPW_HAS_ARG_B(T, N) Begin a conditional section which is executed only if there is ar-
gument of type T and name N is present

MALPW_HAS_ARG_E() End a conditional section

Figure 10.5: List of MALP’s MPI wrapper commands.

COUPLING MULTIPLE APPLICATIONS 127

� �
#define MACRO_MPI_Comm(_c) i f (_c==MPI_COMM_WORLD)\

_c=VMPI_Get_partition_comm () ; \
e lse i f (_c==MPI_COMM_UNIVERSE)\

_c=MPI_COMM_WORLD;
/∗ Lets wrap a l l MPI functions except those we already defined ∗ /
<MALPW ! MPI_Init , ! MPI_Init_thread , ! MPI_Finalize>
MALPW_PROTOTYPE() ;
{

MALPW_WRAP(MPI_Comm , ∗ , MACRO_MPI_Comm) ;

MALPW_CALL(P) ;
return ret ;

}
</MALPW>� �

Figure 10.6: Wrapper script performing MPI virtualization.

Figure 10.5 lists commands which are used to generate wrappers and context files. For ex-
ample, Figure 10.6 presents the script file which is used to generate a virtualization wrapper
for every MPI functions. To do so, standard code is mixed with generated regions generating
MPI call dependent lines. The “MALPW_WRAP” call applies the macro “MACRO_MPI_Comm”
to every (*) arguments of type “MPI_Comm”. If we look at the “MACRO_MPI_Comm” itself,
it just replaces references to MPI_COMM_WORLD by the partition comm and does noting if the
communicator is equal to MPI_COMM_UNIVERSE (implemented as a “magic” value). This au-
tomatic method reduces programming effort while limiting the risk of error. Moreover, this
approach also adapts the interface to the target runtime which might not furnish every MPI
calls (for example with various MPI standards). The advantage of automatic wrapping can
also be attested at instrumentation level, as the generated PMPI interface contains 14446
lines generated from a script of 93 lines – saving a lot of development time and avoiding re-
dundant tasks.

Partition Detection

Figure 10.7: Illustration of our partition detection algorithm.

Partitions can be defined either from the command line or through a partition name defined
by a dedicated function call. As presented in Figure 10.7, partition detection is done using
a linear propagation of identifiers hashes (either command line or partition name). Each
process either append its hash to the list before sending it (if not already present) or picks
existing hash offset as its partition identifier. At this state, each process of a given group
has the same identifier, and the number of partition (number of unique hashes) has been

128 ONLINE TRACE ANALYSIS

broadcasted by the last process. Followingly, individual partition communicator are created
through MPI_Comm_split with partition id as colour. Eventually, the root process (as seen
from MPI_COMM_WORLD) receives all partition descriptions (name, size, root, command)
from each partition root (as seen from partition communicator) before broadcasting it to every
processes. After this step each process has a description of each partition.

VMPI Partition Management Interface

As presented in Figure 10.8, VMPI provides a compact interface to access and query parti-
tion list. VMPI can be used in two ways, either with a built-in virtualization interface which
can be preloaded to transparently separated applications in function of their command line.
Another version, stripped from this interface can be coupled with another interface, for exam-
ple for instrumentation purpose.

Function Description
VMPI_Enabled Returns one if running virtualised.
VMPI_Init Setup VMPI environment.
VMPI_Release Release virtualization interface.
VMPI_Get_partition_id Get local partition identifier.
VMPI_Get_desc Return local partition description.
VMPI_Get_partition_count Return the number of partitions.
VMPI_Get_partition_comm Return current partition communicator.
VMPI_Set_partition_name Set partitions name.
VMPI_Get_desc_by_name Returns description by partition name NULL if not found.
VMPI_Get_desc_by_id Returns description by partition id NULL if not found.
VMPI_Display_desc Display a partition description.
VMPI_Display_descs Display partitions descriptions.

Figure 10.8: VMPI Partition management interface.

10.2.2 Mappings (VMPI_Maps)

Figure 10.9: Mapping of two partitions with a pivot.

A basic component called VMPI_Map is provided in order to simplify process to process
mapping. It can be used to generate a mapping between two partitions by assigning to each
process a set of matching processes located in the remote partition according to a given policy.
As shown in Figure 10.9, when mapping two partitions, the larger partition becomes the slave
and the smaller one the master. Each process from the slave partition sends its global rank
to the root of master partition (available through partition descriptions). Then, each time the
master partition’s root receives a rank, it picks up a local rank within its partition (includ-
ing itself) according to a predefined policy, and associated local and remote ranks both-ways.
In some cases, centralised mapping can be avoided when topologies can be computed locally

COUPLING MULTIPLE APPLICATIONS 129

(for example topologies a and c of Figure 10.10). But, for specific cases, this approach allows
more general mappings by providing a user-defined function which takes a source as a param-
eter and returns the target. Moreover, it simplifies synchronisation when handling complex
topologies by providing a pivot which broadcasts the end of the mapping to every process.

(a) Round robin

0

1

2

(b) Random

0

1

2

(c) Fixed

Figure 10.10: Illustration of the three default mapping topologies.

The three default mappings are detailed in Figure 10.10. In order to be valid for code cou-
pling purposes, each process has to be associated with at least one other process. Partial
mappings, more advanced than the trivial random one, are nonetheless possible through user-
defined mapping-functions. Moreover, a VMPI_Map can be filled in an additive manner: a
partition can compute its mapping to several other partitions by successively appending new
entries. This feature which is particularly useful for multi-instrumentation.

VMPI_Map Interface

Function Description

VMPI_Map_partitions Initialise a mapping ’map’ to ’target_partition’ with a given
’mode’.

VMPI_Map_clear Initialise an empty ’map’ or release an existing one.

Figure 10.11: VMPI_Map interface.

As presented in Figure 10.11, MPI_Map interface is very compact with only two main func-
tion calls. The first one VMPI_Map_partitions can be used in a additive fashion to map multi-
ple partitions. Whereas the second one either initialises or frees a VMPI_Map. Dealing with
the VMPI_Map_mode, the three modes of Figure 10.10 are supported.

10.2.3 Communications (VMPI_Streams)

Efficient streamed-communications between partitions are provided by VMPI_Streams which
are persistent asynchronous communication channels. They can be either multi- or uni-
directional. They provide an interface and behaviour close to UNIX pipes. Writing to a stream
is then non-blocking, until all asynchronous buffers are full, preserving an adaptation window
between data producers and consumers. As depicted in Figure 10.12, each stream allocates

130 ONLINE TRACE ANALYSIS

Figure 10.12: Architecture of a VMPI_Stream.

buffers at both read and write endpoints to provide asynchronous streaming. Note that read
endpoints have NA (with NA = 3 in our example) buffers per incoming stream to ensure that
there is always a buffer available to receive any incoming data. This allows asynchronous
reception of data blocks and without unexpected message as the MPI runtime is able to write
directly in the reception buffer. On the opposite, on the writer side, NA output buffers are
shared between multiple endpoints, primarily to limit memory footprint (when using streams
for instrumentation purpose, block size tends to be large ≈ 1 MB). VMPI_Streams can be cre-
ated from a mapping in order to link two or more partitions, they can also be used between
two arbitrary ranks. As a single stream can be connected to multiple endpoints, streams are
initialised with a load-balancing policy which can be different at the two endpoints. Three
basic policies are proposed : none, random, round-robin. Non blocking read is also supported
to avoid deadlocks in multiple endpoints mode. When set, the call returns EAGAIN and tries
the next endpoint according to the policy, avoiding circular waits.

VMPI_Stream Interface

Function Description

VMPI_Stream_init Initialises a VMPI_Stream with its block size and
load-balancing policy.

VMPI_Stream_open Open a stream to dest with a given mode (r,w,rw),
should be called symmetrically.

VMPI_Stream_open_map Open streams from a mapping with a given mode.

VMPI_Stream_close Close a stream and sends EOF to reading endpoints
(if all streams closed).

VMPI_Stream_join Merge two VMPI_Streams.

VMPI_Stream_read Read from a stream a given number of blocks either
in a blocking or in a non-blocking fashion.

VMPI_Stream_write Write a given number of blocks to a VMPI_Stream.
VMPI_Stream_test_read Returns true if at least one block can be read.
VMPI_Stream_test_write Returns true if at least one block can be written.
VMPI_Stream_read_count Returns the number of inbound streams.
VMPI_Stream_write_count Returns the number of outbound streams.

Figure 10.13: VMPI Stream interface.

COUPLING MULTIPLE APPLICATIONS 131

Figure 10.14: Runtime coupling for multi-instrumentation purpose.

10.2.4 1 to N Coupling

The combination of virtualization, mappings and streams we briefly exposed, provides all the
necessary components to perform runtime coupling. In order to illustrate our method, we
perform the dynamic mapping shown in Figure 10.14. It consists in mapping N partitions to
one — mapping strictly identical to the one we do when instrumenting multiple applications.
The two source codes of Figure 10.15 and 10.16 are sufficient to build the runtime-coupling
described in Figure 10.14. In this case, each application is transparently running in its sand-
boxed communicator thanks to virtualization. They are able to connect to each other using
our mapping component and to setup inter-application communication channels which will
adapt to available resources thanks to VMPI_Streams’s load-balancing support. This example
demonstrates that our approach efficiently handles communications and mapping from N to
one partitions making multi-instrumentation trivial.

� �
MPI_Init (&argc , &argv) ;
/∗ F i l l in mapping data ∗ /
VMPI_Map map;
VMPI_Map_clear (&map) ;
/∗ Retrieve analyzer part i t i on ∗ /
VMPI_Partition_desc ∗p_an =

VMPI_Get_desc_by_name (" Analyzer ") ;
/∗ Could not f ind analyzer ∗ /
i f (! p_an) {

pr in t f (" Could not locate analyzer part i t i on\n") ;
ex i t (1) ;

}
/∗ Map to analyzer ∗ /
VMPI_Map_partitions (p_an−>id ,

VMPI_MAP_ROUND_ROBIN, &map) ;
/∗ Setup Stream ∗ /
VMPI_Stream st ;
/∗ I n i t i a l i z e stream ∗ /
VMPI_Stream_init (&st , 1024∗1024,

VMPI_STREAM_BALANCE_ROUND_ROBIN) ;
/∗ Create streams according to mapping ∗ /
VMPI_Stream_open_map (&st , &map, "w") ;
void ∗buff = malloc (1024 ∗ 1024) ;
/∗ Send some data ∗ /
int i ;
f o r (i = 0 ; i < 1024 ; i++)

VMPI_Stream_write (&st , buff , 1) ;
/∗ Close Stream ∗ /
VMPI_Stream_close (&st) ;
f ree (buff) ;
MPI_Finalize () ;� �

Figure 10.15: Code for a runtime-coupled instrumented program.

132 ONLINE TRACE ANALYSIS

� �
/∗ Set part i t i on name ∗ /
VMPI_Set_partition_name (" Analyzer ") ;
MPI_Init (&argc , &argv) ;
/∗ F i l l in mapping data ∗ /
VMPI_Map map;
VMPI_Map_clear (&map) ;
int i , ret ;
f o r (i = 0 ; i < VMPI_Get_partition_count () ; i ++){

/∗ Map each part i t i on except myself ∗ /
i f (i != VMPI_Get_partition_id ())

VMPI_Map_partitions (i ,
VMPI_MAP_ROUND_ROBIN,&map) ;

}
/∗ Setup Stream ∗ /
VMPI_Stream st ;
/∗ I n i t i a l i z e stream ∗ /
VMPI_Stream_init (&st , 1024∗1024,

VMPI_STREAM_BALANCE_ROUND_ROBIN) ;
/∗ Create streams according to mapping ∗ /
VMPI_Stream_open_map (&st , &map, " r ") ;
/∗ Allocate input buf fer ∗ /
void ∗buff = malloc (1024 ∗ 1024) ;
/∗ Start Read Loop ∗ /
do {

/∗ Read one block of 1M from stream ∗ /
ret = VMPI_Stream_read (&st , buff ,

1 , VMPI_STREAM_NONBLOCK) ;
i f (ret == VMPI_EAGAIN)

continue ;

i f (0 < ret) {
/∗ Process BUFFER ∗ /

}
/∗ 0 means a l l remote streams are closed ∗ /
} while (ret != 0) ;

VMPI_Stream_close (&st) ;
f ree (buff) ;
MPI_Finalize () ;� �

Figure 10.16: Code for a runtime-coupled analyzer.

10.2.5 Runtime-Coupling Performance

Figure 10.17 shows the throughput which can be achieved on Tera 100 with the coupling codes
of Figure 10.15 and 10.16 for different writer

reader ratios. The number of reader Nr for a given num-
ber of writer Nw is computed as follows : Nr = b NwRatioc if 1 < b NwRatioc, with a default value of
Nr = 1 to make sure there is always one process reading. As it could be expected the best
throughput is obtained when there are as many readers than writers, with for example at
2560 writers and readers, a cumulative throughput of 98.5 GB/sec between the two partitions.
This value has to be compared with the maximum IO throughput of Tera 100 which is of 500
GB/s for the whole machine which, scaled back to 2560 cores and considering an even band-
width balancing (expected because of the fat-tree topology), gives a theoretical throughput of
9.1 GB/s. Consequently, at this scale, VMPI_Streams are competitive with the file-system ap-
proach until a ratio of one reader for ≈ 25 writers. Practically, ratios between 1

1 and 1
32 provide

enough bandwidth for profiling purpose, 1
10 being a good bandwidth–resource trade-off.

BLACKBOARD 133

 0
 500

 1000
 1500

 2000
 2500

 3000

 0
 10

 20
 30

 40
 50

 60
 70

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

T
h

ro
u

g
h

p
u

t
in

 G
B

/s

Writer/Reader Ratio

Number o
f W

rite
r p

rocesses

 80
 50
 30
 10
 5
 3
 2

Figure 10.17: Global throughput of VMPI_Streams when writing 1GB per process at
various writer

reader ratios with programs of figures 10.15 and 10.16.

10.2.6 Summary

This section introduced our coupling mechanism,we demonstrated how several applications
can run concurrently (virtualization), connect to each other (mappings) and exchange data
(streams). We also presented an example of N to one coupling, similar to what is done when
instrumenting multiple applications. Eventually, we shown that our approach is competi-
tive with file system in terms of bandwidth. In the rest of this chapter, we will rely on this
method to connect instrumentation and analysis completely bypassing file-system, and thus,
both leveraging IO limitations and opening new parallelism opportunities. The rest of this
chapter will introduce a parallel data-flow engine derived from Blackboard Systems which
purpose is to perform an on-line performance data reduction.

10.3 Blackboard

Blackboard systems are good candidates to parallelise on-line reductions of large traces.
They combine high performance with flexibility as several analysis can be chained opportunis-
tically. This extends the approach previously described in section 9.5 by managing chained
analysis while offering better parallelism. In our previous implementation, the maximum
parallelism was the number of input files as reading threads were calling successive modules
on each event. Whereas, thanks to the Blackboard model, parallelism can be extracted from
events themselves. On-line coupling also enable new parallelism opportunities analysis can
be pipe-lined — drastically reducing the time to result.

Blackboard systems provide an anonymous storage structure. It allows cohabitation for
chained analyses which are dedicated to a set of data types. Their processing are triggered
each time suitable data are pushed on the blackboard. Our implementation relies on several
worker threads, providing analysis with natural parallelism. Figure 10.18(a) presents a sam-
ple data-flow analysis implementation on a blackboard: event packs streamed from the instru-
mented application are ’pushed’ on the blackboard, which triggers their unpacking by the ’KS
Unpacker’ which in turn pushes all the individual events. Then, MPI events are processed by
both topological analysis and MPI profiler, in order to reduce events to their individual data-

134 ONLINE TRACE ANALYSIS

(a) Example of data-flow analysis. (b) Concurrent application profiling with Multiple levels.

Figure 10.18: Implementation of a data-flow analysis in a Blackboard System.

structure. This approach does not only simplify data-analysis expression, but also enables to
analyse straightforward concurrent programs. At data-flow level, processing simply has to be
replicated for each program, using multi-level blackboard, each level being dedicated to an
application. As shown in Figure 10.18(b), a new KS in charge of dispatching each event pack
to its associated blackboard level, provides a direct multi-instrumentation support. Knowl-
edge sources can be developed in separated shared libraries which can be loaded dynamically,
integrating new KSs on the blackboard. This simplifies the development of profiling modules
as they can be developed in a very orthogonal manner. Moreover, thanks to the shared library
mechanism, these KS can rely on third party dependencies such as image processing libraries
and can perform analysis of arbitrary complexity with various levels of integration on the
Blackboard. Modules can just refer to a single event for notification purpose or completely
integrate themselves on the blackboard with multiple KS and data-types in order to benefit
from data-flow parallelism.

10.3.1 Blackboard Implementation

Figure 10.19: Implementation of our BlackBoard architecture.

Our blackboard implementation relies on two main components: data entries (DE) and
Knowledge Sources (KS). A Data Entry can be defined as a tuple: {Type, Size, Payload} with
Type being an integer identifier, Payload an arbitrary blob of data the size of which is given
by Size. A knowledge source is a couple: {{Sensivities}, Operation} with Sensitivities being a

BLACKBOARD 135

set of {Types} triggering an Operation defined as a function called over the input data. In or-
der to keep the control system as simple as possible, operations are first described as a static
data-flow. A simplified form of opportunistic reasoning is provided by the ability of any KS
to register or remove any KS including itself. The Control System (see Figure 6.4) is only in
charge of triggering KS with satisfied sensitivities. Figure 10.19 presents the architecture of
our parallel blackboard: when a data entry is submitted, matching sensitivities are looked
up in the sensitivities hash table; if a matching KS is found, a reference to the data entry is
pushed in a FIFO. In the case it is last unsatisfied sensitivity, a new job is created as a couple
{{Data entries}, Operation}. In order to reduce contention, jobs are randomly pushed in an ar-
ray of FIFOs, individually protected by a lock. A pool of workers is constantly looking for jobs
by sweeping FIFOs from a random starting point while a back-off system prevents threads
from spinning over the locks in the absence of jobs. In order to make parallelism manageable,
data entries are generally read only and are managed using a ref-counting mechanism, a data
being writable only if its ref-counter is equal to one. Besides, when data are pushed on the
blackboard, they are stored in a buffer which is automatically freed after all the processings
linked to this data are done. This allows the use of the blackboard as a temporary storage
medium, freeing MPI_Streams’s communication buffers and avoiding to block instrumented
processes. The multi-level blackboard is implemented using data-entries identifiers which are
computed as a hash of both level and data-type names. By doing so, identical KSs and data-
types can be present in multiple blackboard levels, providing multi-analysis as depicted in
Figure 10.18(b).

Blackboard Interface

Function Description
MALP_blackboard_init Initialise a Blackboard with a given number of workers.
MALP_blackboard_release Release a blackboard.
MALP_blackboard_set_default_KS_handler Set a default handler for data blocks with no associated KS.
MALP_blackboard_wait Wait for all data entries to be processed.
MALP_blackboard_wait Wait for all data entries to be processed.
MALP_Blackboard_ks_present Returns true if KS of a givent type is present.
MALP_Blackboard_new_ks Register a new Knowledge Source.
MALP_Blackboard_delete_ks Delete one KS of a given type.
MALP_Blackboard_submit_data Submit a data entry of a given type (from a memory segment).
MALP_Blackboard_submit_data_entry Submit an existing data entry.
MALP_Blackboard_writable_data Returs true if this entry is a data entry is writable.
MALP_Blackboard_pending Returns the number of data entries pending in the BB.
MALP_Blackboard_wait_pending Wait until N data entries are pending.

Figure 10.20: Parallel Blackboard interface.

10.3.2 Limitations

As discussed in previous sections, our coupling framework is built over MPI in MPMD mode,
despite allowing direct integration in existing supercomputers’ batch managers and software
stack, this design choice has drawbacks. Currently, a user who wants to instrument a set
of programs using our tool has to launch a job consisting in his own programs plus the dis-
tributed analysis engine. Resources being statically assigned, if programs have very different
wall-times, analysis resources will be over-sized for a part of the execution. A solution to

136 ONLINE TRACE ANALYSIS

overcome this problem would be MPI dynamic processes, but they are not particularly easy
when spawning multiple communicating processes. Even if we deal with the complexity of
MPI dynamic processes, we will not be able to provide an inter-node instrumentation service,
because ideally, it should not be included in the batch manager but instead in an identified
set of nodes providing a service. An implementation at network layer level would provide
more flexibility with dynamic program registration, persistence of instrumentation servers,
and more opportunities to manage authentication and centralisation of profiling metrics.

Dealing with analysis, our current blackboard implementation only provides analysis within
nodes boundaries, preventing analysis dependent from a global state. This limitation is comes
from the fact that our blackboard is not distributed across nodes, preventing remote queries.
As presented in next chapter we plan to address this limitation by extending out blackboard
with a communication engine. Allowing analysis to be distributed, and thus opening possibil-
ities for more interesting analysis.

10.3.3 Summary

This chapter presented MALP which is the successor of the MPC Trace library. It has
been completely rewritten to leverage IO limitations encountered by our first implementation
which relied on an unacceptable number of files. We first introduced our coupling method
which separates (virtualization), associates (mappings) and connect (streams) groups of pro-
cesses. Then, by coupling this communication primitive with a parallel data-flow engine in-
spired from Blackboard systems, we demonstrate how concurrent analysis of MPI programs
can be achieved. Our pipe-lined on-line analysis approach is therefore a method which both
leverages IO limitations and opens new parallelism opportunities. Approach providing an
improved scalability when compared to our first implementation while reducing the time to
result thanks to its on-line nature.

CHAPTER 11

Distributed Analysis and Reduction
Tree (DART)

This chapter introduces the Distributed Analysis and Reduction Tree (DART) which is a
trial to extend the parallel blackboard previously developed for our on-line analysis (in MALP)
in purpose of building a distributed one. We first detail the reasons which motivated this
development before introducing the architecture we adopted. Then, we detail our current
interface and explain how analysis could benefit from such infrastructure. Eventually, we
detail limitations which prevented us to stabilise its implementation before the redaction of
this document while pointing out aspects which still have to be enhanced to reach our goal.

11.1 Motivations

The parallel blackboard architecture we introduced in Section 10.3 provides efficient data-
flow analysis at node level thanks to shared memory parallelism. Despite this approach offers
enough semantic to reduce profiling data in place, generating various profiles (as presented
in section 12.4), local reduction alone cannot be satisfactory. Indeed, several analysis have
to cross analysis node boundaries, for example, to collate distributed events (point to points,
one sided, collective) to derive performance metrics similar to those generated by Scalasca
about wait-states [BGWA10]. In addition, from a data-flow aspect, it could be useful to be able
load balance or sort the profiled data, structuring analysis in sub-parts or specialised units,
for example for distributed phase analysis. Moreover, when running on a massively parallel
machines, our current blackboard implementation is very frustrating as it is not able to cross
nodes boundaries, and therefore has to rely on MPI to perform the final reduction, making
it is some aspects very close to a basic MapReduce approach as performance data are sent
to buckets (Map, via VMPI_Maps) in order to be processed locally (temporal reduction over
events) before being reduced (MPI Reduce) spatially, producing the final result which is con-
verted in a latex report. Consequently, our approach needed further development to allows
non-structured analysis which preserve the opportunistic reasoning aspect of Blackboard sys-
tems. This led us to the development of DART during the last month of this thesis in order to
overcome these limitations by building a fully distributed blackboard with support for hybrid
parallelism, allowing more ambitious analysis.

137

138 DISTRIBUTED ANALYSIS AND REDUCTION TREE (DART)

11.2 Architecture

DART is build over both our coupling mechanism (see Section 10.2) and a parallel Black-
board (see Section 10.3). It augments the blackboard with both a topology and communication
primitives in the purpose of allowing distributed analysis. This section is mainly focused on
DART communication engine which is at the core of DART’s features.

11.2.1 Fixed Topology

Figure 11.1: Overview of the distributed Blackboard architecture.

As presented in figure 11.1, a distributed blackboard is built from several blackboard inter-
connected thanks to a network engine. In DART, the network has a known topology in order
to define a clear neighbouring of processing units and therefore, spatially locating the com-
putation. As we explained when we introduced the MapReduce principle (see Section 6.4.3),
one challenge when dealing with distributed computation is to manage data scattering and
design scalable spatial interactions. Process which can become challenging in MPI where
point to point communication have to be defined from both endpoints (pair of MPI_Recv and
MPI_Send), possibly leading to a parallelism loss if computation is imbalanced. Therefore, in
our distributed blackboard approach we rely on a one-sided approach, avoiding task coupling
through communications. This approach is not new as it is at the basis of Partitioned Global
Address Space (PGAS) or Distributed Shared Memories (DSM) which allows any process/node
to access sections of a global memory which is partitioned over several nodes — completely
removing the need for explicit communications. However, implementing a PGAS is challeng-
ing task as it requires complex coherency [LH89, NL91] algorithms and have to cope with
some limitations of the underlying MPI run-time, particularly with Remote Memory Accesses
(RMA) [BD04].

ARCHITECTURE 139

In DART, transfers are explicit but only defined from the sender side, this poses the problem
of memory exhaustion on the receiver side which can possibly be flooded during N to one pat-
terns. To face this problem, we counted on the limited asynchronous window of VMPI_streams
which behave like UNIX pipes, blocking if data are not consumed while preserving data or-
dering. Then, instead of directly sending data to the target Blackboard, we rely on a routing
network to reach neighbouring Blackboards which are implicitly aware of remote blackboard
availability, simply by checking if their stream is ready for writing — this process can be
described as spatial spilling. Consequently, this N to one pattern becomes a succession of
pending data-blocks in remote processes memory, all directed to the target process. Naturally,
this process is clearly more costly than the direct network interfacing but is a simple way to
prevent both resource exhaustion and ordering problems. Solution which is quite simple, par-
ticularly when compared to solutions relying on one sided communications, approach which
generally requires handshakes [HWM02,WR07].

Topology Calculation

The first requirement to build our routing network is the capacity of efficiently computing
the topology. To simplify the routing, we relied on d-meshes from dimension 1 to 3. In this
purpose, we rely on a splitting of the binary representation over each dimension in order to
map a linear identifier into a topological space.

Figure 11.2: Simple example of 2D topology computed from the binary representation.

Consequently, the mapping process presented in figure 11.2 can be generated as follows:

• Compute the number of bits needed to storeN values (in our caseN = 3) by incrementing
p in 2p − 1 until this values is equal or higher than N. This immediately yields p = 2.

• In a second time, we compute bdim the number of bits per dimension such as bdim = p
d

with d the dimension of the mesh (here d = 2). We store this value in a tuple of dimension
d which we call width, while taking care of storing the remainder in the last dimension
(p is possibly not divisible by d).

140 DISTRIBUTED ANALYSIS AND REDUCTION TREE (DART)

• Then we repeat the same process in terms of number of nodes in order to determine the
remaining processes in the last dimension, those values are stored in a tuple called ceil.

• Eventually we compute the masks and shifts associated with each dimension. The mask
is simply width bit up and the shift is the sum of the previous dimension width.

Therefore, if we consider the mapping of 256 Blackboards in a 3D-mesh we get:

(1111 1111)b = (255)d (p=8 bits)
d = 3

bdim(1) = 3, bdim(2) = 3, bdim(3) = 2

Ceildim(1) = 8, Ceildim(2) = 8, Ceildim(3) = 4 (8× 8× 4 = 256)
(11 111 111)b

Mask(1) = (00 000 111)b, Shift(1) = 0 (11.1)
Mask(2) = (00 111 000)b, Shift(2) = 3 (11.2)
Mask(3) = (11 000 000)b, Shift(1) = 6 (11.3)

Yielding the following topology (output of our topology module) when connected in 8-neighbour
(including diagonals):

Figure 11.3: 3D-mesh topology for 256 processes.

Dealing with identifier to coordinate conversions, we rely on mask and shift tuples which
provide straightforward conversions. For example if we are looking for the coordinate (x, y, z)
of the Blackboard with the identifier 123 it the 3D-mesh we have just computed:

(0111 1011)b = (123)d

(01 111 011)b

x = ((123)d &Mask(1)) >> Shift(1) = ((123)d & (00 000 111)b) >> 0 = 3

y = ((123)d &Mask(2)) >> Shift(2) = ((123)d & (00 111 000)b) >> 3 = 3

z = ((123)d &Mask(3)) >> Shift(3) = ((123)d & (11 000 000)b) >> 6 = 1

(x, y, z) = (3, 3, 1)

ARCHITECTURE 141

A similar process can be derived in order to compute the identifier of any coordinate. For
example if we now look for the Blackboard with coordinate (x = 1, y = 2, z = 3):

x = (1)d = (00 000 001)b

y = (2)d = (00 000 010)b

z = (3)d = (00 000 011)b

id = (x << Shift(1)) &Mask(1)

| (y << Shift(2)) &Mask(2)

| (z << Shift(3)) &Mask(3)

id = ((00 000 001)b << 0) & (00 000 111)b

| ((00 000 010)b << 3) & (00 111 000)b

| ((00 000 011)b << 6) & (11 000 000)b

id = (11 010 001)b = (209)d

Neighbouring Calculation

During an actual execution, the whole graph such as in Figure 11.3 is never actually stored
as it would be too expensive for larger runs where the adjacency matrix would quickly grow
(Θ(N2) with N the number of Blackboards). Instead, each separated processing unit has to
derive its neighbouring, allowing a constant sized storage. This section describes the process
which allows the computation of the neighbours for d-meshes or tori with a lightweight data
structure. In the rest of this section we will exemplify this computation on the 2D-mesh of
figure 11.4 which has been generated in a 4-neighbour configuration (no diagonals).

0

8

1

9

16

2

10

17

3

11

18

4

12

19

5

13

20

6

14

21

7

15

22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Figure 11.4: 2D-mesh connected with 4-neighbouring of 64 nodes with node 27 in red
and its neighbouring (19,26,28,35) in blue.

142 DISTRIBUTED ANALYSIS AND REDUCTION TREE (DART)

This 2D-mesh of 64 nodes can be described with two dimensions of three bytes (111 111)b,
yielding directly the following shifts and widths:

Mask(1) = (000 111)b, Shift(1) = 0

Mask(2) = (111 000)b, Shift(2) = 3

Allowing us to compute the coordinates (x, y) of the node 27:

(27)d = (011 011)b

x = (011)b = (3)d

y = (011)b = (3)d

(x, y) = (3, 3)

19

26 27 28

35

Figure 11.5: Detail of node 27’s neighbouring with associated coordinates.

By looking at figure 11.5, it can be seen that neighbours are simply derived by incrementing
and decrementing each coordinate while taking care of remaining in the limits of the mesh:

(3, 4) = ((011)b, (100)b)→ (100 011)b = (35)d

(4, 3) = ((100)b, (011)b)→ (011 100)b = (28)d

(3, 2) = ((011)b, (010)b)→ (010 011)b = (19)d

(2, 3) = ((010)b, (011)b)→ (011 010)b = (26)d

Moreover, in order to generate a torus, if the neighbour is over the ceiling or lower than
0, the dimension is ’wrapped around’ in order to produce a torus (wrapped around mesh).
This process can be repeated to generate various configurations of meshes as presented in
figures of Figure 11.6 which were generated using the Graphviz [GN00] graph visualisation
tool, illustrating the variety of topologies which can be generated using this simple approach.

Routing

As far as the routing is concerned, we also use a simple method which relies on the quadratic
distance: for each neighbour, we compute its quadratic distance with the destination and
choose the nearest. We rely on the quadratic distance as computing the effective distance

ARCHITECTURE 143

(a) 1D-Mesh (b) 1D-Torus

(c) 2D-Mesh (d) 2D-Torus

(e) 3D-Mesh (f) 3D-Torus

Figure 11.6: Example of meshes (wrapped around or not) with 4096 nodes as gener-
ated using the method we introduced in this section.

144 DISTRIBUTED ANALYSIS AND REDUCTION TREE (DART)

would require a square-rooting which is quite expensive and useless as the square-root func-
tion is monotonous and what we are interested in here is to find the nearest node, not a
distance. We therefore rely on formula 11.4 which computes the distance between two nodes
X and Y in a d mesh. Note that we limited our routing algorithm to unwrapped meshes as we
faced routing problems using the torus distance in presence of multiple paths which led to the
formation of loops when using this (too?) simple approach.

D(X, Y)2 =

d∑
j=1

(Xj − Yj)
2 (11.4)

0

8

1

9

16

2

10

17

3

11

18

4

12

19

5

13

20

6

14

21

7

15

22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Figure 11.7: Sample route (in red) from node 51 to 0 as computed using this distance.

11.2.2 Network Engine

Now that we introduced our topology management method and our simple routing algo-
rithm, this section introduces the Network Engine we added to our Blackboard system in
order to build a distributed Blackboard.

Figure 11.8: Overview of the Network Engine.

INTERFACE AND PROGRAMMING PRINCIPLE 145

As presented in figure 11.8, our network engine is relies on a single threaded progress loop in
order to remain compatible with MPI runtimes which do not support the THREAD_MULTIPLE
level of parallelism. Therefore, messages are sent from the Blackboard through a FIFO which
is regularly scrutinised in search of message to send. Dealing with incoming streams the same
process takes place in round robin between streams. Sending an receiving phases are allocated
equivalent quantum of time in terms of a maximum number of operations and are executed
alternatively. Dealing with the data layout itself, we rely on small data-blocks (1KB) which
were inspired from flow control digits (flits) in high speed networks. Indeed, it is important
to split messages in order to balance the routing effort on several streams instead of monopo-
lising the router for a large message while blocking other streams. Store-and-forward which
consists in receiving the whole message before sending it is a very inefficient approach which
monopolises memory on the nodes, and augments latency. Therefore, splitting the message in
packets in crucial to gain in efficiency (see [Gra03] Section 2.5).

Data blocks are gathered on a per source basis as we assume that a given node will send
messages in a partial order relatively to a single destination, guaranteeing that another mes-
sage wont begin before the previous has been fully assembled. Once assembled the data block
is directly pushed on the blackboard with a type which has been encapsulated in the message
by the sender. Consequently, thanks to this mechanism, Blackboards are able to push data
remotely, triggering the associated processing with no need for explicit synchronisation (such
as a paired receive or connection). Eventually, it shall be noted that each Blackboard has a
parent, organising nodes in a binary tree shape which can be useful for reduction patterns
(see next section).

11.3 Interface and Programming Principle

Function Description
Dart_Engine_init Initialise the DART engine with a given topological policy
Dart_Engine_release Release the DART engine after waiting for job termination
Dart_Engine_push Push a new data entry in the Blackboard

Dart_Engine_send Send a data entry to a remote Blackboard according to its iden-
tifier

Dart_Engine_send_to_parent Send a data entry to parent blackboard (according to a binary
tree topology)

Dart_Engine_register_KS Register a new Knowledge Source to process a given set of
datatypes

Dart_Engine_register_reduction Register a reduction for a given datatype.

Figure 11.9: Distributed Blackboard interface.

Knowledge System Registration

As presented in figure 11.9, DART’s interface is relatively compact and consists in five calls,
providing all the data managements primitive to implement a distributed Blackboard-inspired
data-flow analysis. As previously with the parallel Blackboard, Knowledge Source can be
registered at any moment on a set of data-types with a call to register_KS which has the
following footprint:� �
void Dart_Engine_register_KS (struct Dart_Engine ∗dart_engine , void (∗ handler) () , char ∗names , . . .)� �

146 DISTRIBUTED ANALYSIS AND REDUCTION TREE (DART)

This function call takes the Dart_Engine in parameter a pointer to function and a list of
data-types defined as strings. A sample registration of a KS over two data-types A and B can
be defined as follows (NULL is used to delimit the variadic argument list):� �

void KS_A_B(struct Dart_Engine ∗de ,
struct MALP_blackboard ∗bb ,
struct Data_entry ∗De_A, struct Data_entry ∗De_B) {

/∗ Process Data Entries
Push new data entr ies l o c a l l y or remotely
Or reg i s ter new KSs ∗ /

}
[. . .]
Dart_Engine_register_KS (&dart_engine , KS_A_B, "A" , "B" , NULL) ;� �

Data Entry Submission

Then, each time two data entriesA and B are pushed on the Blackboard the KS_A_B function
is called with those to entries in parameter. Named data entries can be pushed as follows:� �
struct A_entry A;
struct B_entry B;
Dart_Engine_push (&dart_engine , "A" , &A, s i z e o f (s truct A_entry)) ;
Dart_Engine_push (&dart_engine , "B" , &B, s i z e o f (s truct B_entry)) ;� �

Similarly, data-entries can be created locally without being directly pushed on the Black-
board, this behaviour is useful for example when pushing a data on a remote Blackboard. It
uses a syntax very similar to Dart_Engine_push:� �
struct Data_entry ∗ Dart_Engine_new_data (struct Dart_Engine ∗dart_engine ,

char ∗name, void ∗payload , s i ze_ t s ize)� �
Once stored as a Data_entry it is possible to push it on a remote Blackboard allowing the

creation of distributed data-flow using the following call:� �
void Dart_Engine_send (struct Dart_Engine ∗dart_engine , s truct Data_entry ∗ entry , int dest) ;� �
Which can be used as follows:

� �
struct A_entry A;
struct Data_entry ∗ De_A = Dart_Engine_new_data (&dart_engine , "A" , &A, s i z e o f (s truct A_entry)) ;
void Dart_Engine_send (&dart_engine , De_A, 1 /∗ DEST (MPI Rank) ∗ /) ;� �

Another primitive similar to Dart_Engine_send can be used to send a Data_entry to
parent process according to a binary tree topology, if called on the root, this call pushes the
data on the local Blackboard:� �
void Dart_Engine_send_to_parent (struct Dart_Engine ∗de , struct Data_entry ∗ entry)� �

INTERFACE AND PROGRAMMING PRINCIPLE 147

Reduction Implementation

As depicted in figure 11.10, our reduction relies on a binary tree which is defined through
parent, children relationships. An user can register a reduction for a given data-type with a
single call to:� �
void Dart_Engine_register_reduction (struct Dart_Engine ∗de ,

char ∗input_name ,
void (∗ red_func) (s truct Data_entry ∗new_de ,

struct Data_entry ∗∗ entries , uint32_t count)
)� �

Figure 11.10: Overview of the reduction process.

This call will register a reduction for a type input_name which will be reduced by a function
red_func before being sent to the parent (or local Blackboard if root). If we look with Figure
11.10 at the reduction process itself, we can derive partial equations which eventually can be
used transitively in order to build the whole sum in a very straightforward way:

v3 = V3, v4 = V4

v5 = V5, v6 = V6

v1 = V1 + v3 + v4 = V1 + V3 + V4

v2 = V2 + v5 + v6 = V2 + V5 + V6

v0 = V0 + v1 + v2

v0 = V0 + V1 + V3 + V4 + V2 + V5 + V6

Consequently, when implementing a reduction KS, we have to setup sensitivities to the
data-type which comes from each child and a local data-entry. This is done using the command
DART_KEY_FROM(a , src) which relies on a sub-part of the data-type identifier (hash of
name) which can be used to specify up to (0xFFFF = 65535)1 source, allowing the query data not
only from their type but also from their source. Aspect which is important when processing
reduced data types which are dependent from where data are coming from. Once the result
reaches the root node it is pushed locally with the name Red(T) with T the type of the reduced
data-entry. A sample reduction using this mechanism is presented in figure 11.11.
1 This limitation shall be removed in later implementations by using larger identifiers to describe data-types.

148 DISTRIBUTED ANALYSIS AND REDUCTION TREE (DART)

� �
#include <DART_Engine . h>

/∗#### Print the value on 0 once reduced #### ∗ /
void print_red_double_handler (s truct Dart_Engine ∗de ,

struct MALP_blackboard ∗bb ,
struct Data_entry ∗a_double) {

double ∗ in = (double ∗) a_double−>payload ;
pr in t f (" Reduced %g\n" , ∗ in) ;

}

/∗#### Perform the reduction #### ∗ /
void reduce_double (struct Data_entry ∗new_de , struct Data_entry ∗∗ entries , uint32_t count) {

/∗ I n i t i a l i s e the output buf fer ∗ /
double ∗out = (double ∗)new_de−>payload ;
∗out =0;

/∗ Perform the reduction over count values (including l o c a l one) ∗ /
int i ;
f o r (i = 0 ; i < count ; i++) {

double ∗ in = (double ∗) entr ies [i]−>payload ;
∗out += ∗ in ;

}
/∗ Out i s automatically sent to parents by ca l l ee ∗ /

}

/∗#### Main Function #### ∗ /
int main (int argc , char ∗∗argv) {

/∗ I n i t i a l i s e MPI context ∗ /
int d ;
MPI_Init_thread (&argc , &argv , MPI_THREAD_MULTIPLE, &d) ;
int rank , s ize ;
MPI_Comm_rank(MPI_COMM_WORLD, &rank) ;
MPI_Comm_size (MPI_COMM_WORLD, &size) ;

s truct Dart_Engine de ;
/∗ Setup the topology as 2−tree (could have been a mesh)
∗ However any topology at least embeds a 2−tree
∗ f o r reduction purposes ∗ /

s truct Pol icy tree ;
Po l i cy_ in i t _ t ree (&tree , rank , s ize) ;

/∗ I n i t i a l i s e the DART engine with the given topology ∗ /
Dart_Engine_init (&de , &tree) ;
/∗ Register the reduction handler ∗ /
Dart_Engine_register_reduction (&de , " double " , reduce_double) ;
/∗ Register the handler which wi l l process the resul t ’Red (double) ’ ∗ /
Dart_Engine_register_KS (&de , print_red_double_handler , "Red (double) " , NULL) ;

double val = 1 ;
int i = 0 ;
/∗ Push values on l o c a l Blackboards for streamed reduction ∗ /
f o r (i = 0 ; i < 123456 ; i++)

Dart_Engine_push(&de , " double " , (void ∗)&val , s i z e o f (double)) ;

/∗ Wait for the resul t to be displayed and release ∗ /
Dart_Engine_release (&de) ;

/∗ Free MPI environment ∗ /
MPI_Finalize () ;
return 0;

}� �
Figure 11.11: Sample streamed-reduction of several double implemented in DART.

ANALYSIS PROJECTS 149

11.4 Analysis Projects

Now that we have introduced the global principle of the distributed Blackboard, we intro-
duce two types of analysis which we are studying at this state of the thesis. We start by a
continuous sampling engine before before presenting phase based sorting filter.

11.4.1 Continuous Sampling Engine

If we consider the parallel computation as a whole, it could be interesting to derive real time
values such as memory communication, IO bandwidth or floating point operations per second
(flops). To do so, we need to design a mean of continuously reducing sampled values in space
over a time axis. We can model this process as the projection of N two dimensional values over
a single two dimensional value. To do so we simply propose to use the barycentre definition
where the barycentre B(V(x, y)) of a discrete set of N points P with coordinates (xi, yi) and
weighted with V(pi) is such as:

B(P) = (xb, yb) =
1∑
V(Pi)

(
∑

V(Pi)× xi,
∑

V(Pi)× yi) (11.5)

V(B(P)) = V(Pi) =

∑
V(Pi)

N
(11.6)

Formula which allows us to project a set of points to its barycentre (which coordinates are
given by Equation 11.5) , assuming it has the average value of the set (Equation 11.6). We
now propose to use this approach in the context of a reduction which samples several values in
a given time-frame over several processes. As there can be a temporal jitter, in reduction, it is
interesting to compensate it while privileging larger values in order to find an approximated
position in both space and time for this set of samples. Moreover, thanks to barycentre asso-
ciativity (the barycentre of two sets of two points is the barycentre of their barycentre, and
so on ...) we can compute this value using a steamed-reduction similar to the one described in
Figure 11.11, greatly simplifying the implementation of this analysis.

As presented in Figure 11.12, this method can be used to spatially describe a measure over
a set of processes. Using this method the average value is mapped at a position which matches
the barycentre of samples. As depicted in Figure 11.12, which illustrates this method on sam-
ple data-sets with different random jitters (on the x axis), if value patterns are either regular
(Figure 11.12(a)) or random (Figure 11.12(b)), processes regularly distributed among values,
leading to a relatively stable barycentre. However, if the behaviour is structured, with either
square signals (Figure 11.12(c)) of sinusoidal waves (Figure 11.12(d)), we can observe that
we capture the average behaviour. Moreover, if we look a the different jitter rates of Figure
11.12, we can see that the overall behaviour is still captured despite a temporal uncertainty.
Consequently, we have seen that this relatively simple method can be applied to our streamed-
reduction approach in order to generate a continuous flow of functioning points. Points which
can be used to describe in some extent the average process behaviour not only on parame-
ter side but also spatially. We plan to use this approach in higher dimension by faking the
topology of processes in order to get a more discriminating barycentre, value which could be
represented using series of radar charts.

150
D

IST
R

IB
U

T
E

D
A

N
A

LY
SIS

A
N

D
R

E
D

U
C

T
IO

N
T

R
E

E
(D

A
R

T
)

2 points jitter
4 points jitter
8 points jitter

16 points jitter
32 points jitter
64 points jitter

 0 20 40 60 80 100 120

 0

 20

 40

 60

 80

 100

 120

-10000

-8000

-6000

-4000

-2000

 0

 2000

 4000

 6000

 8000

 10000

(a) Regular pattern.

2 points jitter
4 points jitter
8 points jitter

16 points jitter
32 points jitter
64 points jitter

 0 20 40 60 80 100 120

 0

 20

 40

 60

 80

 100

 120

 0

 20

 40

 60

 80

 100

 120

 140

(b) Random pattern.

2 points jitter
4 points jitter
8 points jitter

16 points jitter
32 points jitter
64 points jitter

 0 20 40 60 80 100 120

 0

 20

 40

 60

 80

 100

 120

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

(c) Symmetrical square signal.

2 points jitter
4 points jitter
8 points jitter

16 points jitter
32 points jitter
64 points jitter

 0 20 40 60 80 100 120

 0

 20

 40

 60

 80

 100

 120

-5000

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

 5000

(d) Diagonal waves.

Figure 11.12: Example baricentre signal generated using Equations 11.5 on synthetic performance event signals.

LIMITATIONS 151

11.4.2 Phase Based Sorting Filter

If we consider the source code of a program it could be interesting to let the programmer
describe hierarchical phases which could describe various computations steps. For example,
for a simulation time-step: CFL computation, ghost-cell handling, communications, fluxes
computation and time-stepping. One problem when managing a large number of phases is
that we have to handle them in each analysis process, possibly leading to a redundancy in
accumulation tables and eventually saturating memory. Consequently, it would be interesting
to perform a spatial splitting at phase level in the analysis nodes. This means that we could
preform the global analysis in every analysis nodes and then perform phase based analysis in
a subset of nodes to which events would be rerouted.

Figure 11.13: Example of phase based spatial splitting of analysis.

Consequently, events could be sent from the instrumented application to the analyser using
the whole bisection bandwidth, then internally to the analyser, groups of processes, could
exchange events in order to route phases related events to the correct processes, using a sub-
part of the overall internal bandwidth budget. Approach which would allow a larger number
of phases, as the would be distributed on sub-sets of nodes instead of impacting indifferently
all processes. Indeed, for example, if we consider that a phase analysis (all the accumulation
tables, hash tables which reduce events from a given set of processes, see coupling topology
Section 10.2.2) takes a volume of memory V, in a node which hasMmemory, when can have n
analysis with n = M

V . But now if we split this phase space over p processes, we get p memory
spaces of size M each able to store n = M

V phase analysis, leading to a gain of p in the number
of phases which can be processes, thanks to this spatial reduction.

11.5 Limitations

We have seen that DART relies on a single thread to perform communications as it has been
implemented over Bull MPI which is derived from OpenMPI and has a limited support for
THREAD_MULTIPLE, leading to random crashes (when running with several threads). There-
fore, messages are sent by a single thread which receives messages from the Blackboard via a
FIFO, ensuring a certain form of fairness and limited asynchronism relatively to the commu-
nication engine. However, this approach, made compulsory by the underling MPI implemen-
tation is clearly impacting our overall performance, serialising communication operations in

152 DISTRIBUTED ANALYSIS AND REDUCTION TREE (DART)

both directions. A solution to this limitation would be to rely on the MPC framework which
has been built to support programming model mixing and has a full THREAD_MULTIPLE sup-
port which would allow Knowledge Source to directly send data while preserving parallelism.
Morevoer, MPC has been designed to run with a very large number of threads which could be
used by the parallel blackboard.

Another aspect which was problematic was the routing in torus-based topologies as we faced
multi-path problems, which led to the appearance of routing loops. As a consequence, we have
to work further in order to extend our support to wrapped around meshes which reduce the
network diameter by a factor 2. Dealing with mesh based routing, we are able to run simple
examples but when the number of processes increases, we face random deadlocks which are
hard to diagnose. Are they caused by MPI, our routing algorithm or VMPI_Streams ? We have
to perform a survey of possible deadlocks in order to prevent such random faults which for the
moment prevented us to stabilise DART for performance metric analysis purposes. We hope
that the redesign of the communication layer, for MPC will fix those issues. Moreover, we plan
to benchmark the use of high order meshes (more than 3 dimensions) in purpose of limiting
the number of hops between blackboards while keeping a controlled amount of neighbours.

11.6 Summary

This chapter introduced the Distributed Analysis and Reduction Tree (DART) which is in-
spired from the distributed Blackboard paradigm to implement distributed data-flow engine.
It has been designed to provide our analysis with an efficient parallelism model, able to reduce
a constant data-stream. We have presented both a compact interface and reduction capabili-
ties which can be used to implement distributed analysis. Then, we illustrated possible uses
of this method with two analysis examples. Eventually, we detailed current limitations of
this early implementation which suffers from some design problems which might be solved
when porting DART to MPC. However, in the light of these early experiments, we believe
that this programming paradigm provides the flexibility and performance required to perform
distributed data-flow analysis, motivating further experimentation to propel our performance
analysis framework.

CHAPTER 12

Analysis

This chapter presents the various analysis which can be done thanks to our instrumenta-
tion framework in terms of debugging, validation and profiling. After introducing our test
programs, we start by describing our trace based debugger which takes advantage of our
crash-dump mechanism. Then we present our deadlock detection algorithms which can per-
form a hierarchical deadlock detection which mixes both MPI and Pthread events. Then, we
develop the profiling aspect, first by introducing our reporting infrastructure, before detailing
different analysis.

12.1 Tested Programs

Our trace analysis and debugging tools have been tested on a wide range of MPI applications
ranging from the simple MPI benchmark to large production-grade simulation codes. We will
focus on a representative subset of these programs which have been retained for simplicity
and conciseness. Programs which are both profiled and debugged in the rest of this chapter.

Our first application is EulerMHD [Wol11, WJIG11] which is a middle sized C++ MPI ap-
plication which simulates Euler ideal magneto-hydrodynamic at high order on a 2D Carte-
sian mesh. This code relies on a scalable communication scheme as it communicates on a
4-neighbour torus. It also performs a reduction (MPI_Allreduce) at each time-step in order
to compute the global error which is used to compute following time-step’s duration. This code
is scalable and has been used at the scale of the Tera 100 machine (80 000 cores).

Figure 12.1: Sample output of the lbm program.

A second middle sized application is lbm (Lattice BoltzMann) which is a C program which
simulates a Karman vortex street (see Figure 12.1 for a sample output). It has been pro-
grammed to teach program optimisation to our Master Informatique Haute Performance et
Simulation (MIHPS) students. Consequently, it has been developed in two version, one which

153

154 ANALYSIS

features several misconceptions (propagating wait-states, centralised IOs, redundant mes-
sages, ...) and another which on the contrary has been optimised. The availability of those two
versions will be interesting to illustrate bad performance patterns which can be captured by
our profiling tool.

We also tested our profiling infrastructure on Hera [Jou05] which is a large C++ Adaptive
Mesh Refinement (AMR) simulation platform. This application is an important test for our
tools as it outlines how a complex simulation program behaves. One of the main challenge
with this program is the verbosity of C++ traces which because of getters ans setters, tends
to generate larger traces with important overheads (getters/setters are short functions which
duration generally comparable with the instrumentation cost).

Eventually, we also tested our profiling chain on the NAS MPI Benchmark [BBB+91] which
are commonly used to qualify profiling tools overhead as they solve realistic problems. They
are mostly developed in Fortran and for some of them in C. Those benchmarks are available
in various classes which describe the size of the simulated problem (S for small, A a bit larger
and so on ...). We made our measurement using class D which allows strong scaling to several
thousands of processes for most benchmarks (some have fixed limitations in terms of number
of cores).

12.2 Trace-Based Debugger

Thanks to the debug buffer mechanism we introduced in section 9.4.4, out instrumentation
framework can be used to explore a temporal slice which represents the last N events before
program crash. This section introduces our trace-based debugger and presents the analysis
its provides in terms of both interactive debugging and validation.

12.2.1 Architecture

The trace-based debugger is built upon the MPC Trace reader we introduced in section 9.5.
It replays the crash-dump trace in parallel while collecting program states in an exploitable
fashion. In this purpose, each stream stack is replayed from individual entry and exit points
and contextualised with MPI and locking events which are described as transactions (see sec-
tion 12.2.3).

Figure 12.2: Architecture of the trace-based debugger.

TRACE-BASED DEBUGGER 155

As presented in Figure 12.2, our trace debugger relies on the parallel trace reader to dis-
tribute trace processing over several nodes. After trace processing, individual stream states
are distributed among debugging processes and can be queried through a simple prompt. Com-
mands are dispatched to individual processes and processed locally, then, suitable data are
sent back to the root node which displays them. This structure is in some extent similar to the
one of the DDT [All13a] debugger which relies on such tree for distributed debugging.

12.2.2 Interactive Debugging

� �
9 malloc at 0x10441f040 s ize 72
8 malloc at 0x10441f100 s ize 16
7 malloc at 0x10441f1e0 s ize 16
6 > Parameters : : SetParameters ()
5 > DomainDecomposition (Parameters&)
4 < DomainDecomposition (Parameters&)
3 > Parameters : : AllocateTables ()
2 < Parameters : : AllocateTables ()
1 BEGIN MPI_ALLREDUCE with MPI_COMM_WORLD
0 Process exited badly with signal Segmentation fau l t (11)� �

Figure 12.3: Example of trace-based back-trace with EulerMHD.

As presented in figure 12.3, our trace based debugger can generate simple back-traces which
include function calls, MPI and allocator calls. This back-trace is generated by replaying
the stack for each stream until the program gets signaled. Signal which is also stored as a
trace event by the launcher (after instrumented program interruption) as a return of the Wait
system call. The trace debugger supports the following list of commands:

Command Description
help Display command list and associated help.
open [PATH] Open a given trace.

read Replay the trace-based crash dump in order to generate back-
traces.

set [KEY] [VALUE] Alter debugger configuration keys (paths to external tools).
exit Leave the debugger.
deadlock Perform a deadlock analysis (see Section 12.2.3).
stat Generate a simple gnuplot-based profile.

bt [DEPTH] [TYPE] Generates a trace-based backtrace at given depth and with var-
ious types of outputs (Stdout, textual or Graphviz).

info [TID] Display information related to a given stream identifier.

topo [TYPE] Generate a topology map in various formats (Stdout, textual or
Graphviz).

select Incrementally select a list of stream IDs to investigate.
filter Removes a given stream ID from the investigated processes.
reset Select all streams (cancels select/filter effects).
List Lists all processes and theirs IDs in a compact fashion.

Figure 12.4: List of commands supported by the MPC Trace debugger.

12.2.3 Hybrid Deadlock Detection

The MPC trace debugger is able to detect hybrid deadlocks on a limited set of events:
Pthread mutex locks and unlocks, MPI Collectives and MPI Blocking Point to points. To do

156 ANALYSIS

Figure 12.5: Conversion from TRG to TWFG.

so, it uses an abstraction called transactions. Transactions are made of two events, one when
they begin and another upon their completion. We associated transactions with each of the
aforementioned events. If a program deadlocks, the incriminated transaction pattern is stored
into debug buffers and dumped upon program interruption. As seen in subsection 9.4.4, our
instrumentation will also dump mutexes’ statuses for each process. Deadlock detection uses
this dump to build a dependency graph between streams, replacing each reference to a mutex
address by one to the trace-id holding it (see Figure 12.5). After this process, a Task Wait For
Graph (TWFG) has been generated from the Task Resource Graph (TRG). As the out degree
of vertices in this graph is at most one because a stream can only make one call at a time,
the Single-Resource model [SS91, Kna87] associates deadlocks with cycles in the TWFG. The
same deadlock detection algorithm is applied at a each hierarchy level, propagating dead-
locked states from lower levels.

(a) Propagation (b) Cycle detection (c) Labeling

Figure 12.6: The three phases of cycle detection. Black is for unknown states, blue
waiting states and red deadlocked states.

Cycle Detection

deadlock detection is done in two passes of the same cycle detection algorithm which uses
a simple coloration approach. The algorithm is implemented using a graph G = (V, Γ) defined
by a set of vertices V associated with a stream and Γ a function linking each vertex with its
successor such as each couple generated by Γ matches a transaction. As shown by Figure 12.6,
cycle detection is done by exploring the path pi(Vi, Γpi) from the first uncolored node while
generating Γ−1pi which is the predecessor function for path pi (see figure 12.6(a)). If for a node
of the path pi, Γpi(vi) evaluates to a node vi+1 such as C(vi) = C(vi+1), then a cycle has been
detected (Figure 12.6(b)) this causes the algorithms to walk back the path using Γ−1pi while
flagging the nodes as deadlocked until vi+1. The resulting graph is shown in figure 12.6(c).

TRACE-BASED DEBUGGER 157

Hierarchical Components Labeling

Figure 12.7: Set-based graph associated with the cycle detection graph of Figure
12.6(c).

Each connected component of the cycle detection graph can be seen as a graph represent-
ing the relationship between groups of processes (see Figure 12.7). To do so, for each path,
vertices sharing the same state and consecutive in the cycle detection graph are grouped into
sets. After a first pass on Pthread calls, MPI deadlock detection is done by merging the states
of each rank’s streams to a rank state. Cycle detection is then applied to propagate Pthread
states through MPI point to point calls. This hierarchical component labelling greatly simpli-
fies inconsistent states representation by grouping processes instead of displaying individual
states which are not appreciable at large scale.

Experimental Results

Figure 12.8 shows outputs from the MPC trace debugger deadlock detection module on
two simple test cases. Our first test consists in calling MPI_Reduce in the root process and
MPI_Barrier in a random fashion among the rest of processes, the resulting pattern is given
in Figure 12.8(a) while Figure 12.8(b) shows the ranks missing in MPI_Barrier. The second
test consists in deadlocking one rank over a simple MPI ring causing its interruption. Figure
12.8(c) shows that 239 ranks among the 240 are waiting through MPI calls for rank 128 which
is deadlocked.

(a) Concurrent collectives (b) MPI_Barrier missing Ranks. (c) Deadlock on a ring

Figure 12.8: Output of the MPC trace debugger on two deadlock cases.

158 ANALYSIS

12.2.4 Trace-Based Crash-Dumps Performance

As presented in Figure 12.9, trace-based crash-dumps have been tested on Tera 100 on both
EulerMHD [MWIG11] and Hera [Jou05]. shows instrumented and uninstrumented wall clock
times for both applications. Instrumentation of MPI calls, mutex locks and mutex unlocks
is done using debug buffers of 1024 events per process which are flushed upon completion.
In order to keep computing time in a reduced range, we increased the problem size with the
number of processes. The maximum overhead is close to 20%, it accounts for instrumentation
dilation, time-stamps synchronisation and trace buffer flush to disk. In both cases, trace size
increases linearly from 4 MB at 32 processes to 512 MB at 4096 processes. Figure 12.9 also
indicates the time needed to process each crash dump. Processing has been done with an
empty handler called for every trace event. Consequently, trace processing time accounts for
the time needed to load and dispatch context information, plus the time to read in parallel
all the events. This time increases in both cases in a close to linear fashion, showing the
scalability of our hierarchical trace format and parallel trace reader. This increasing overhead
mainly comes from file listing which is performed sequentially by rank 0 in order to dispatch
event files at the beginning of the trace analysis.

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
 i
n
 s

e
c
o
n
d
s

MPI Processes

Instrumented
Uninstrumented

Trace processing time

(a) EulerMHD

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e
 i
n
 s

e
c
o
n
d
s

MPI Processes

Instrumented
Uninstrumented

Trace processing time

(b) Hera

Figure 12.9: Wall-times of instrumented and uninstrumented executions for Euler-
MHD and Hera on increasing problem sizes with debug buffers of 1024
events.

12.2.5 Trace-Based Crash-Dumps and Profiling

It is also possible to rely on debug buffers to do profiling traces. In this mode, IO are avoided
by storing events in a FIFO buffer. Using this method, profiling traces are less intrusive as
trace buffers do not have to be flushed anymore, limiting perturbation. However, if debug
buffers happen to be full, only an event subset (last N events) is available. Buffers are flushed
upon program completion by the launcher wrapper, thus, the instrumented program does not
perform IOs at all. Then, thanks to the unified trace reader, the trace can be processed indif-
ferently by either our profiling tool or the trace-based debugger.

Figure 12.10 shows performance results from the instrumentation of MPI plus memory al-
locator on EulerMHD with debug buffers of 100000 events per process on the Curie super-
computer. Dilations are calculated from wall-times including time-stamps synchronisation

REPORTING 159

 0

 10

 20

 30

 40

 50

 0 1024 2048 3072 4096

D
il
a
ti
o
n
 i
n
 %

MPI Processes

(a) EulerMHD: instrumentation.

 0

 50

 100

 150

 200

 250

 0 1024 2048 3072 4096
 0

 5

 10

T
ra

c
e
 p

ro
c
e
s
s
in

g
 t
im

e
 i
n
 s

e
c
o
n
d
s

T
ra

c
e
 s

iz
e
 i
n
 G

B

MPI Processes

Trace size
Trace processing time

(b) EulerMHD: trace processing.

Figure 12.10: Instrumentation dilation (MPI and memory allocator) and trace pro-
cessing performance for EulerMHD with debug buffers of 100000 events
per process.

and debug buffers flush. As shown in figure 12.10(a) overhead remains close to 20% at any
scale demonstrating the scalability of our instrumentation. Figure 12.10(b) presents the time
needed to generate profiling reports with the MPC trace analyser for each crash dump size.
For a trace size increasing linearly from 80 MB to 11.32 GB, the time needed to generate a
report in parallel on the same number of cores increases also linearly from 8.2 seconds at
32 processes to 229.19 seconds for 4096 processes. The linear increase despite the increasing
number of cores (which then process a constant amount of data) comes from two main reasons,
(1) sequential trace processing performed by the root process before launching the distributed
analysis. Indeed, it has to scan recursively trace sub-directories in order to generate iden-
tifiers, process which takes more time at larger scales. Moreover, (2) analysis we performed
during report rendering can have a cost which depends from the overall number of cores (for
example density maps are larger), yielding an increasing cost as the rendering is also done
sequentially.

12.3 Reporting

On the trace analyser side, in both trace-based and on-line cases, reports are represented
as a tree which matches the document layout. It is therefore possible to generate a document
containing sections describing various analysis. This report tree is present in each analysis
node in order to perform a distributed trace reading before performing a reduction which will
produce the final metrics which are rendered by the root process. Consequently, the trace anal-
yser relies extensively on the MPC Trace reader (in its first implementation) to read the trace
and parse meta-data — analysis modules being registered to individual or multiple events.
In this purpose, as presented in Figure 12.11, modules called measure collectors are gath-
ered in a tree and registered to valuable events. Then, the trace is processed in parallel with
events reduced by individual modules. Followingly, once the whole trace has been processed
a reduction is performed between collectors in order to gather all the data in the root process
which can then perform the report rendering relying on the tree structure of the report engine.
Moreover, thanks to this generic report representation different type of output are proposed:
HTML, latex, markdown.

160 ANALYSIS

Figure 12.11: Overview of the reporting infrastructure in the trace analyser.

12.3.1 Measure Collectors

Function Description

Measure_Collector_init Initialises a measure collector for a given partition_id and event
type.

Measure_Collector_release Releases a measure collector.
Measure_Collector_set_handlers Registers measure collector handlers (rendering, reduction, ...).
Measure_Collector_set_handlers Registers measure collector handlers (rendering, reduction, ...).

Figure 12.12: Measure collector interface.

Measure collectors are the basic block of our profiling report as they convey the report struc-
ture and take care of the integration with the MPC Trace reader (blackboard in the on-line
version) in order to collect performance events. As presented in Figure 12.12, measures col-
lectors have a very compact interface as they can be registered on an event type (or on every
event types). Moreover, handlers can be defined to manage event collection, reduction and
rendering:

• Setup: this handler is called when the module is loaded. It is generally used to allocate
local arrays or initialise context information.

• Unset: this handler is called at the very end of the analysis, it is used to free arrays
allocated in the setup call.

• Reduce: this handler is called once the whole trace has been read (or when all instru-
mented applications have ended in the on-line case). It is used to reduce collected data
in the root report in purpose of performing the rendering.

REPORTING 161

• Push: this handler is called in a thread-safe fashion for every events matching the types
provided at collector initialisation. It is the main entry point to reduce data in the anal-
yser.

Each handler is called in depth first order (relatively to the Measure collector tree) in order
to guarantee a consistent order when running on several processes (particularly for reduc-
tions). Then the rendering is called solely on the root process which generates the final report
in the chosen output format. This approach simplifies the design of modules as they can
be developed in a very orthogonal fashion (thanks to the compact interface of Figure 12.12).
Moreover, when relying on the parallel blackboard which is used in the on-line approach those
modules can be developed in separated shared libraries which can themselves be linked to
other libraries (for example for digital image processing).

12.3.2 Module Example

� �
/∗ MODULE DECLARATION ∗ /
void Sample_Analysis_init (s truct Measure_Collector ∗mc, uint64_t par t i t i on_ id) {

/∗ Register module and hook to every events MALP_EVENT_ANY
∗ (e i ther MALP_EVENT_ANY or values from MALP_Trace_event_type in Event_Desc . h) ∗ /

Measure_Collector_init ((void ∗)mc, "Sample Analysis " ,
" This i s a sample analysis " , part i t ion_id , MALP_EVENT_ANY) ;

/∗ Register Handlers ∗ /
Measure_Collector_set_handlers ((void ∗)mc, Sample_Analysis_push /∗ PUSH∗ / ,

Sample_Analysis_reduce /∗ REDUCE ∗ / ,
Sample_Analysis_render /∗ RENDER ∗ / ,
Sample_Analysis_setup /∗ SETUP ∗ / ,
Sample_Analysis_unset /∗ RELEASE ∗ /) ;

}
/∗ MODULE HOOKS −−−−−−−−−−−− IN CALL ORDER ∗ /
void Sample_Analysis_setup (struct Measure_Collector ∗mc) {

/∗ Called before processing any event ∗ /
}
/∗ PUSH IS CALLED FOR EVERY EVENT ∗ /
void Sample_Analysis_push (struct MALP_Trace_Event ∗evt , s truct Measure_Collector ∗mc) {

switch (evt−>type) {
case MALP_EVENT_META: / /CONTEXT INFORMATION
break ;
case MALP_EVENT_MPI: / / MPI EVENTS
break ;
case MALP_EVENT_WRAPPED: / / POSIX EVENTS
break ;

}
}

void Sample_Analysis_reduce (struct Measure_Collector ∗mc) { /∗ Called just before rendering ∗ / }
void Sample_Analysis_render (struct Measure_Collector ∗mc) { /∗ Called before releasing ∗ / }
void Sample_Analysis_unset (s truct Measure_Collector ∗mc) { /∗ Called at the end (no more events) ∗ / }� �

Figure 12.13: Minimal measure collector declaration for a sample analysis, called on
every events.

Figure 12.13 presents a sample module implementation. In Sample_Analysis_init, var-
ious handlers are registered in order to initialise, reduce, render or push events. As aforemen-

162 ANALYSIS

tioned, modules are integrated in a report tree which provides several rendering options (not
detailed) among which are for example drawing primitives density maps or table generation.

12.4 Profiling

This section presents profiling reports excerpts from various applications in order to illus-
trate our performance analysis. Most of those measurements are available either trough our
trace-based approach (MPC Trace library) or were ported to MALP, therefore relying on a
on-line approach. Reports are 20-70 pages latex documents which describe one or several pro-
grams (when running in MALP). In the remainder of this section we present each analysis,
explaining its purpose and measurement principle while presenting sample outputs from tests
programs which were described in section 12.1.

12.4.1 Profiles

Our instrumentation framework is able to generate three types of profiles:

• MPI Profiles: with MPI calls, transmitted size and duration.

• POSIX Interface Profiles: with duration and total size when suitable.

• Program functions: with number of hits, total time and code locus.

Operation Hits Time Avg time % Datas Avg Datas
mkdir 4096 2 m 42 s 39.63 ms 3 - -
fopen 4099 2 m 18 s 33.88 ms 2.5 - -
fgets 393216 47.24 s 120.1 us 0.86 95.62 MB 255 B

memcpy 81247392 15.88 s 195.2 ns 0.29 91.62 GB 1.18 KB
write 15545 5.519 s 355 us 0.1 1.57 MB 105 B

memset 68782153 4.51 s 65.56 ns 0.082 11.80 GB 184 B
malloc 14182495 2.508 s 176.7 ns 0.046 5.28 GB 399 B

free 6800179 727.2 ms 106.7 ns 0.013 - -
sscanf 126976 117.5 ms 925.6 ns 0.0021 - -
fclose 4098 51.27 ms 12.51 us 0.00093 - -

sprintf 20525 43.29 ms 2.109 us 0.00079 - -
strlen 533641 31.81 ms 59.26 ns 0.00058 - -

posix_memalign 579 6.65 ms 11.48 us 0.00012 - -
gethostname 4096 4.189 ms 1.023 us 7.6e-05 - -

fprintf 541 813.3 us 1.503 us 1.5e-05 2.28 KB 4 B
lrand48 2121 798.8 us 376.3 ns 1.5e-05 - -

memmove 8190 662.7 us 80.74 ns 1.2e-05 - -
fflush 8 1.336 us 167 ns 2.4e-08 - -

Figure 12.14: POSIX interface profile when running EulerMHD on the Curie super-
computer with 4096 cores.

PROFILING 163

MPI Operation Hits Time Avg time % Datas Avg Datas
MPI_Allreduce 544768 51 m 50 s 5.709 ms 57 4.39 MB 8 B

MPI_Wait 34111488 10 m 12 s 17.94 us 11 - -
MPI_Isend 17055744 32.99 s 1.934 us 0.6 43.99 GB 2.70 KB
MPI_Irecv 17055744 4.237 s 248.2 ns 0.077 43.99 GB 2.70 KB

MPI_Comm_rank 4096 16.54 ms 4.039 us 0.0003 - -
MPI_Comm_size 4096 1.423 ms 347.4 ns 2.6e-05 - -

Figure 12.15: MPI Profile when running EulerMHD on the Curie supercomputer with
4096 cores.

These profiles are presented in the latex report exactly as those of figure 12.14 for POSIX
function calls and 12.15 for MPI calls. Their generation relies on simple static arrays which
are incremented by each events. Dealing with the function profile, we rely on a stack replay ap-
proach which matches entry and exit events in order to generate actual duration. From these
profiles we can identify some performance problems, for example in Figure 12.14, we can see
that the result directory is created by every processes (4096 calls to mkdir) — unnecessarily
soliciting the file-system. On the MPI side, we can see in Figure 12.15 that EulerMHD, spends
57% of the time in MPI_Wait, revealing an important communication overhead, although it
shall be noted that this measure were done with a reduced test case. It can been seen that
EulerMHD does not recover communications (see figure 12.18(a)) — directly impeding com-
munication costs to the application (≈ 20% on a nominal test case.

12.4.2 MPI Communication Mapping

(a) lbm with IOs
(1024 cores).

(b) lbm without IOs
(1024 cores).

(c) NAS Lu.D
(1024 cores).

(d) EulerMHD
(4096 cores).

Figure 12.16: Sample weighted communication topologies.

Figure 12.16 presents topology maps generated by our analyser using the Graphviz tool
[GN00]. Figure 12.16(a) presents the topology associated with lbm communications with IOs
activated. It can be seen that the rank 0 is a central communication point, having to succes-
sively gather data-blocks from each process. Whereas, Figure 12.16(b) presents the same code
with IOs deactivated, greatly simplifying the communication scheme which becomes less cen-
tralised. Figure 12.16(c) depicts the topology of NAS benchmark LU, with the LU pattern in
the communication size. Eventually, Figure 12.16(d) presents EulerMHD 4-neighbour torus
topology on 4096 cores, emphasising space imbalance.

164 ANALYSIS

12.4.3 Wait State Analysis

(a) Wait chains.

(b) Associated scale in seconds.

Figure 12.17: “Most waited” topological analysis for EulerMHD on 4096 cores.

Figure 12.17 presents the wait-graph for EulerMHD at 4096 cores on the Curie supercom-
puter. This directed graph is built by linking each process with the process it waits the most in
terms of cumulative waiting time, thus, revealing possible dependency chains. For example,
we can in if Figure 12.17 which matches the topology of Figure 12.16(d) that the torus-based
topology which contains cycles tends to created circular dependencies.

(a) EulerMHD. (b) lbm.

Figure 12.18: Asynchronism level comparison between EulerMHD and lbm.

PROFILING 165

Dealing with Figure 12.18, it depicts the average anachronisms in-between communication
issue and first wait, providing information over the level of asynchronism provided by the
instrumented program’s communications. If figure 12.18(a), witch presents the level of asyn-
chronism for EulerMHD on 4096 processes, we can see that communications are immediately
waited with an average asynchronism of 30µs — so small that it is subject to measurement
noise. On the contrary, in Figure 12.18(b), we can see that lbm (with IO deactivated) has
a much better asynchronism with close to 50ms between communication issue and first wait.
This lack of asynchronism is at the origin of the dependency chains we observe in Figure 12.17
as communications are always waited for in the same order.

(a) MPI_Wait Topology.

(b) Associated scale in seconds.

Figure 12.19: Overview of lbm topology with IOs on Curie (1024 processes).

Figure 12.19 presents the wait topology for lmb with IOs activated. It immediately reveals
the main source of inefficiency as each computing process has to wait for the N − 2 others
which have to send their local data to the root process (see Figure 12.22(b)) before continuing
to the next computation step.

12.4.4 Time Matrix

The Time Matrix module aims at combining both spatial and temporal aspects in a compact
fashion. In this purpose, it displays metrics in a space time coordinate system thanks to a
colour coding of values over a linear scale. In order to bound memory requirements, perfor-
mance values are projected on a fixed size array, using a simple proportionality rule between
the wall-time and sample time, each cell of this time matrix being defined by ∆t and ∆p respec-
tively space and time steps. When dealing with on-line analysis, wall-times are not available,

166 ANALYSIS

therefore preventing ∆t from being fixed — requiring a regular resampling of the matrix.
Moreover, as time matrices tend to be large with an irregular repartition of samples (some
events such as allocations phases are very local), we developed a sparse array with reduction
support, providing two advantages: (1) gains in space (in most cases) but also (2) limiting the
re-sampling to existing samples only instead of scanning the whole matrix.

Sparse Matrix Reduction

Our sparse array is based on a hash table which can be used to abstract tree based re-
ductions. It relies on a binary tree and can be initialised with a set of functions which are
sufficient to build our sparse array:

• Red_func: a function which takes two elements as arguments and reduces them into
one another.

• Test_func: a function which returns true when two elements are equal (i.e. reducible
to one another)

• Key_func: returns the key of a given element.

Using those functions our reduction hash table is able to serialise all the elements it contains
before sending it to the parent node which does the following for each incoming element:

1. For each child (right and left) query the hash table for a similar element using thanks to
Key_func and Test_func.

a. If it is present operate the reduction (using Red_func) and push the result locally.
b. Or simply push the element locally.

2. If not the root serialise and send to parent.

A framework which can be used to implement a sparse array sum reduce as presented in
Figure 12.20. Obviously, if the matrix if full, memory consumption will be higher because of
the supplementary offset parameter which is required to disambiguate in-between elements
which are referred to via a key. Moreover, the hash table internally stores the key in a 64bit
value, leading to a space requirement of 64 + 32 + 64 = 160 instead of a single 64 bits values.
Therefore, this size ratios defines in a straightforward way the optimality limit Os of this
method in terms of space as follows:

Os =
64

160
=
2

5

Consequently, this approach is advantageous only if less than 2
5 of cells carry a value and

leads to a threefold increase in memory consumption if the matrix if full. Naturally, not all
time matrices carry sparse data, preventing this method which is currently implemented as
Boolean switch in our configuration from being fully space efficient. Further development will
explore the possibility of mutating the time matrix towards a static array once the space opti-
mality limit is reached. Moreover, although it simplifies the re-sampling process by avoiding
a full matrix scan, later processing such as rendering which does a systematic scan suffer

PROFILING 167

from the extra access time caused either by colliding keys in our has table or reduced cache
efficiency. Cache efficiency which could be enhanced thanks to spatial hashing such as modulo
which might preserve spatial locality1 or again thanks to a data-structure mutation.� �
/ / Point declarat ion
struct Dataset_1D_point {

uint32_t x ;
uint64_t value ;

} ;

/ / Reduction function in 1D
void Dataset_1D_point_reduce (void ∗pa , void ∗pb) {

s truct Dataset_1D_point ∗a = (struct Dataset_1D_point ∗) pa ;
s truct Dataset_1D_point ∗b = (struct Dataset_1D_point ∗) pb ;

a−>value += b−>value ;
}

/ / Point tes t function for key disambiguation
int Dataset_1D_point_test (void ∗pa , uint64_t key , void ∗pb) {

s truct Dataset_1D_point ∗a = (struct Dataset_1D_point ∗) pa ;
s truct Dataset_1D_point ∗b = (struct Dataset_1D_point ∗)pb ;

i f (a−>x == b−>x)
return 1;

return 0;
}

/ / Key computation from element
uint64_t Dataset_1D_point_key (void ∗pa) {

s truct Dataset_1D_point ∗a = (struct Dataset_1D_point ∗) pa ;

return MALP_crc64 ((char ∗)a , s i z e o f (s truct Dataset_1D_point)) ;
}
[. . .]
/ / Reduce c a l l
Red_Ht_reduce(&dts−>rht , Dataset_1D_point_reduce ,

Dataset_1D_point_test , Dataset_1D_point_key , NULL) ;
[. . .]� �

Figure 12.20: Sparse reduction using the reduction hash table.

Temporal and Spatial Filtering

A possible complementary step before rendering the Time Matrix is its filtering. Indeed, as
presented in Figure 12.21(a), a “raw” Time Matrix is a set of discrete values with no coupling
over space and time — complicating the reading. Our approach relies on a low-pass filter in
order to (1) emphasise low frequency behaviours in both space and time while mitigating high
frequencies, (2) convert the source discrete value set in a continuous one, (3) point out spatial
and temporal correlations. In our implementation, this low-pass filter in the frequency domain
in implemented using a convolution. Indeed, if we denote the convolution with ~, F(x, y) and
G(x, y) the Fourier transforms of respectively f(x, y) and g(x, y) we have by definition of the
Convolution Theorem (see Gonzalez and Woods [Gon09], section 4.2.4):

1 Our implementation relies on our common hash table which uses CRC64 based keys.

168 ANALYSIS

(a) Raw data. (b) 7× 7 Gaussian filtered.

Figure 12.21: Example of Time Matrix low-pass filtering.

f(x, y)~ g(x, y)⇔ F(u, v)×G(u, v) (12.1)
f(x, y)× g(x, y)⇔ F(u, v)~G(u, v) (12.2)

Theorem which simply states the symmetry of both convolution and multiplication through
the Fourier transform where one matches the other. Convolution which when dealing with
digital images can be expressed in a very practical way as the multiplication of each point of
a given function with all the shifted values of another one. Let us consider the following 3× 3
Gaussian convolution kernel K(i,j):

K(i,j) -1 0 1
-1 1 2 1
0 2 4 2
1 1 2 1

It can be applied to an image f(x, y) by shifting the kernel over each point in order to
generate Cf(x, y) the 3× 3 Gaussian filtered image of f(x, y) as follows:

Cf(x, y) =

1∑
i=−1

1∑
j=−1

f(x, y)K(i, j) (12.3)

Using this convolution equation, and the Gaussian kernel K(i,j), it is therefore possible to
filter a data-set in the frequency domain without relying on an explicit transform. Moreover,
thanks to the proprieties of the Gaussian function, its transform is also Gaussian with an
inversely proportional bandwidth, for example, a large spatial Gaussian will be very narrow
in the frequency domain, yielding a better low-pass filter. Now that we developed our simple
filtering method, we can see in Figure 12.21 which presents in Figure 12.21(a) a raw version
of the Time Matrix and in Figure 12.21(b) a version filtered with a 7 × 7 Gaussian kernel.

PROFILING 169

We can see that such filtering makes spatial and temporal dependencies more visible, sim-
ply by restoring transitions in-between states. Therefore, privileging spatially or temporally
correlated states.

Sample Outputs

(a) Space/Time MPI_Wait matrix lbm without IOs. (b) Space/Time MPI_Wait matrix lbm with IOs.

(c) Associated scale in seconds. (d) Associated scale in seconds.

Figure 12.22: “Time matrix” analysis for MPI_Wait for lmb with and without IOs
when running on Curie (1024 cores).

Figure 12.22 presents sample Time Matrix outputs on lbm either with centralised IOs acti-
vated (Figure 12.22(b)) or without (Figure 12.22(a)). It can be seen in figure 12.22(a) that rep-
resents MPI_Wait time over space (vertically) and time (horizontally) that intermediate ranks
are in advance when compared to others. This phenomenon can be explained when looking
a the domain decomposition (for example Figure 12.1) where simulated obstacle are centred
vertically and forced to zero, requiring no computation and leading to this computational im-
balance. On the contrary as shown in Figure 12.22(b) when IOs are activated, performances
are catastrophic. Indeed, processes spend most of their times waiting for all processes to send
their block (red areas) instead of computing (green areas). Moreover, we can also observe in
figure 12.22(b), the delay caused by the communication for loop which as we can observe starts
from 0 and ends at 1024, we can even see the increased cost of the first communication which
accounts for queue-pair establishment.

170 ANALYSIS

12.4.5 MPI Quadrant

MPI Quadrants presented in Figure 12.23 are built using time-matrices in a time indepen-
dent fashion. Four components: computing, collective, point to point and waiting times are
gathered around the same radar chart. Then we used time matrices in order to compute the
time distribution between those four components, yielding a coordinate in the MPI quadrant.
This operation is repeated for each time-bucket in order to generate a density of functioning
points. Using this distribution it is then possible to analyse which MPI component prevents
computing (measured as non-MPI time). In Figure 12.23 we illustrate the difference between
lbm with and without IOs, we can see that functioning points are forming a line between the
compute and MPI waits in both cases. However, the most probable functioning point (circled
in red for readability) varies from compute with a small drift towards waits when running
without IOs (Figure 12.23(b)). However, when relying on centralised IOs in Figure 12.23(a)
the program spends most of its time waiting with small computing phases (as seen in Figure
12.22(b)), yielding poor performance.

(a) lbm with IOs. (b) lbm without IOs.

Figure 12.23: Example of MPI Quadrants with the most probable functioning point
circled in red.

12.4.6 Spatial Analysis

Another module generates density maps for process behaviour comparison. Such maps are
available for all MPI and most POSIX calls in terms of hits, time and total size (when suit-
able) and are useful to identify spatial imbalances. For example, Figures 12.24(a) and 12.24(b)
present density maps for LU.D on 1024 cores. In Figure 12.24(a), it can be clearly seen that the
number of MPI_Send calls issued by the benchmark is correlated with the number of neigh-
bours in the mesh (see Figure 12.16(c) for the associated topology). Dealing with the total
size, Figure 12.24(b) shows a small imbalance which seems to follow the LU decomposition
pattern. Figures 12.24(c), 12.24(d) and 12.24(e) present density maps for BT.D on 8281 cores.
This example shows an imbalance in total MPI point-to-point size (see Figure 12.24(e) with
blue at 660.93 MB and red at 664.87 MB). Interestingly, times spent in MPI wait calls (Figure
12.24(d)) and in collectives (Figure 12.24(c)) follow the same symmetry with nearly twice as
much time between red (491.8 ms) and green areas (288.5 ms) — suggesting a possible com-

ONLINE TRACE ANALYSIS OVERHEAD 171

putational imbalance. Although empirical, observations made upon Figure 12.24 can provide
spatial insights on codes, helping developers to understand and observe the consequences of
their balancing policies.

(a) (b) (c) (d) (e)

Figure 12.24: Sample outputs from the density map module.

12.5 Online Trace Analysis Overhead

Our instrumentation chain has been tested on Tera 100 on NAS-MPI Benchmarks (class C
and D) and EulerMHD [WJIG11]. All measurements were done three times and averaged,
combinations of problem sizes and classes not supported by NAS benchmarks are omitted.

-5

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200

R
e

la
ti
v
e

 o
v
e

rh
e

a
d

 i
n

 %

Number of MPI processes

BT.C
BT.D
CG.C

FT.C
LU.C
SP.C

SP.D
EulerMHD

LU.D

Figure 12.25: Relative overhead for NAS Benchmarks and EulerMHD running with
one analysis core for one instrumented process (on Tera 100).

Figure 12.25 presents the relative overhead caused by our analysis tool (between MPI_Init
and MPI_Finalize) when instrumenting MPI calls and their context with a 1

1 ratio. This config-
uration maximises the bisection bandwidth and thus minimises the overhead. All overheads
are all lower than 25% but vary with the application. In particular, NAS benchmarks in class
C seem to expose a larger overhead than in class D. This behaviour can be understood by
looking at the average instrumentation data bandwidth computed as Bi = Total event size

Execution time . Ap-
plications with larger problem size, more time consuming in computation, issuing MPI calls
less intensively, yielding a lower Bi. For example, comparing SP.C and SP.D at 900 cores, we
have Bi(SP.C) = 2.37 GB/s and Bi(SP.D) = 334.99 MB/s. Overhead is then correlated with the
average instrumentation data bandwidth which has to fit in the available throughput (Figure
10.17) without impacting the instrumented program.

172 ANALYSIS

-5

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
e

la
ti
v
e

 o
v
e

rh
e

a
d

 i
n

 %
Number of MPI processes

Reference
Scalasca

ScoreP profile (MPI)

ScoreP trace (MPI+SionLib)
Online Coupling

Figure 12.26: Relative overhead with different tools for NAS Benchmarks SP.D on the
Curie supercomputer (averaged 5 times).

Figure 12.26 shows the relative overhead (between MPI_Init and MPI_Finalize) for NAS
benchmark SP.D on the Curie [TOP12] supercomputer, comparing our method with two profil-
ing tools: Scalasca 1.4.3 [SGS+11,GWW+10] and ScoreP 1.1.1 [aMBB+12]. This last one gen-
erates either OTF2 traces (compatible with Vampir [NAW+96]) or runtime profiles for Scalasca
or Tau. Measurements are done with default buffer configuration for MPI only (compiler in-
strumentation disabled), using SionLib [FWP09] when generating ScoreP traces. It can be
seen that on this benchmark, our on-line instrumentation has an overhead lower than file
based traces despite manipulating larger volumes of data (ScoreP traces grow linearly from
313 MB to 116 GB and online coupling ones from 923.93 MB to 333.22 GB). This suggests that
runtime-coupling is more scalable than the trace-based approach which might suffer from
file-system limitations. We have no definitive explanation for the variations observed with
other tools, they might be caused by varying machine load or process layouts (although nodes
were allocated exclusively). Moreover, it shall be noted that NAS benchmarks have a reduced
wall-time at larger scale, making them more subject to measurement noise despite several
averaging passes.

 250
 200
 180
 150
 130
 120
 110
 105
 102

 0 200 400 600 800 1000 1200

Number of cores

 0

 10

 20

 30

 40

 50

 60

 70

A
n
a
ly

z
e
r

p
e
r

in
s
tr

u
m

e
n
te

d
 p

ro
c
e
s
s
 r

a
ti
o

Figure 12.27: Overhead isolines for LU.D in strong scaling.

SUMMARY 173

Figure 12.27 shows the relative overhead isolines in percents for NAS Benchmark LU.D
with MPI instrumentation. As expected best performances are obtained with a ratio of 1

1 .
Nonetheless, it is possible to operate a resource–overhead trade-off by using less analysers
while keeping acceptable performances. However, at larger scales, the rapid decrease of the
bisection bandwidth when lowering ratio (figure 10.17) combined with the increase of Bi be-
cause of strong scaling (from 0.47 MB/s to 2.58 GB/s) tends to reduce the “acceptable” overhead
interval requiring higher ratios.

12.6 Summary

This chapter described various analysis which can be performed with our profiling and de-
bugging tools. We firstly introduced the debugging support which was provided by our trace-
based debugger with back-traces and hierarchical deadlock detection. Then, after describing
our reporting interface, we pursued with the profiling part which gathers most analysis. We
presented several analysis including profiles, spatial and spatio-temporal analysis. Moreover,
we have shown with sample codes how such analysis can highlight performance problems.
We presented outputs gathered in a structured latex report, possibly gathering analysis for
several applications (when running on-line). One limitation of our analysis approach is the
adherence to the rendering tools and the absence of intermediate analysis storage, preventing
profiles exchange except under their report layout. We will have to overcome this limitation
in following versions as if users are not likely to share traces, they might have to store raw
reduced data for further processing (transverse metrics, expert consulting, ...). An example of
such approach is ScoreP [aMBB+12] reports which can be opened by several tools allowing for
example the invocation of Vampir from Scalasca — combining tools advantages. This stresses
the fact that tools have to be included in work-flows, linking not only programs with program-
mers but also programmers to each other. It is therefore necessary to generate transmissible
measurements, by relying on standard data-exchange technologies.

174 ANALYSIS

PART IV

Conclusion and Perspectives

175

CHAPTER 13

Conclusion

La conception est une action cognitive finalisée, et donc intelligente
C’est la quête de solutions possibles à des problèmes artificiellement posés qui guide en
permanence la démarche du concepteur : elle est, par construction, tâtonnante, s’auto
jalonnant d’objectifs intermédiaires, mettant en œuvre de multiples heuristiques. Elle
postule qu’elle peut avoir à connaître des résultats qui n’existent pas encore... et que
pourtant elle trouvera peut-être.

J.L.L. Moigne in Intelligence et Conception [Moi86]

This thesis has introduced new developer tools which dealt with both profiling and de-
bugging aspects. We first outlined development cycle macroscopic aspects. In Section 3.2,
we insisted on the distributed nature of the development process which involves several en-
tities (client, developer, programs) in a recursive communication scheme (structural loops)
which purpose is to find a satisficing1 trade-off relatively to external constraints (catalysing
loops) which give context to the development effort. Process similar to the management of
ill-structured problems proposed by H.A. Simon which states that once divided, a complex
problem (in terms of required computation and solution space size) can be reduced to several
well structured problems with the added coordination pitfall. Thus, requiring a “long-term
memory” which “is literally a distributed memory, divided among the various groups of experts
who are involved at one or another stage of the design process.” [Sim74](Section 3.3). Mem-
ory “which continually modifies the problem space by evoking from long-term memory, new
constraints, new sub-goals, and new generators for design alternatives.”(ibid Section 3.2.3).
Description which fits perfectly both development and simulation tasks, simply because they
are both ill structured problems with unbounded solution spaces.

Our tools address a small aspect of this much wider context which includes both the devel-
opment cycle and transitively the simulation process. Our purpose is to preserve measure in
the complex environment of massively parallel simulation programs in order to help program-
mers who are facing either faults or performance problems. In this purpose we developed
our contribution in part III, by firstly providing in Chapter 7 a way to understand the em-
pirical behaviour of an MPI implementation, highlighting the presence of noise and punctual
effects such as queue pair establishment which might create a certain form of performance
unpredictability. Then, Chapter 8 introduced our time-synchronisation method which is a
1 Neologism proposed by H.A. Simon [Sim97] for a solution which instead of being the optimal solutions aims at

covering most needs in a satisfying manner.

177

178 CONCLUSION

prerequisite to any measure in a distributed environment. Then, we proceeded with the de-
scription of two successive approaches which gave frame to our performance and debugging
tools: trace-based and on-line coupling.

Trace-Based approach, described in Chapter 9 introduced the MPC trace library which
is a complete profiling and debugging framework. We firstly developed a new trace format
which provided an advantageous alternative to OTF12 by simplifying meta-data management
thanks to a hierarchical layout (see Section 9.4.1) while offering better compression ratios (Sec-
tion 9.4.6). We also introduced our debug buffers which allowed both debugging and profiling
of faulty application thanks to a shared memory buffer which is flushed upon crash (Section
9.4.4). Eventually, we presented a generic analysis tool interface which can be used to process
MPC traces in parallel, greatly simplifying tool design and meta-data management. In Chap-
ter 10, MALP an on-line approach succeeded to the MPC Trace library in order to leverage
IO related limitations. In this purpose, it has been designed to completely avoid file-based
traces by relying on an on-line coupling method and a parallel data-flow analysis, greatly sim-
plifying analysis expression. We firstly introduced in Section 10.2 our coupling method which
sandboxes applications in partitions, map them to each other and provides a coupling method
with a behaviour close to UNIX pipes in-between partitions — completely abstracting coupling
topology. In a second time, we introduced in Section 10.3 our parallel data-flow engine which
is inspired from Blackboard Systems. Then, we described our multi-analysis support which
can be straightforwardly implemented thanks to runtime coupling and multi-level blackboard.
Eventually, we highlighted the limitations of this approach which does not furnish a data-flow
based distributed communication abstraction, requiring the explicit use of synchronising MPI
calls — requirement which led to the development of the Distributed Analysis and Reduc-
tion Tree (DART). Chapter 11 introduced the DART engine which relies on a network engine
in order to connect several blackboard. We firstly introduced our topology management and
routing policy in Section 11.2. Then Section 11.9 detailed its interface with a simple example
followed by two motivating analysis. Eventually, Chapter 12 presented analysis which were
developed on top of both our trace-based and on-line implementations. Firstly developing the
debugging aspect in Section 12.2 before detailing our deadlock detection algorithm in Section
12.2.3. Then, we proceeded with profiling related analysis, with both temporal and spatial
analysis before concluding with a performance analysis of our on-line analysis framework,
demonstrating its scalability and reduced overhead.

In summary, this work developed an alternative to trace-based coupling without sacrificing
all its advantages among which are modularity and event granularity. As several modules can
be loaded, the on-line analysis can be as modular as a post-mortem one at the condition that
enough computing power is available to process data “on-the-fly”. Dealing with granularity,
not reducing events before analysing them avoids to constrain too early the type of analysis.
Propriety which is guaranteed by on-line analysis thanks to a high coupling bandwidth and
a pipe-lined processing which avoids storage of verbose data, as it would be done with a file-
based trace possibly exhausting file-system space for a long running job (days – weeks). Then,
instead of relying on a shared resource as file-system which is subject to scalability limitations,
we propose to rely on the network and a distributed processing engine which takes advantage
of the large number of cores in high-end systems.

2 OTF2 was not available when this work started.

CHAPTER 14

Perspectives

Despite its has drastically evolved since its first version, MALP still suffers from several
limitation. Consequently, there are still several research and development axis which require
our attention in purpose of stabilising MALP’s features in a robust product. This chapter
proposes to list our main ideas and some basic implementation guidelines. Ideas which can be
regrouped in two categories analysis and features.

14.1 Analysis

For now the set of analysis supported by MALP is clearly MPI centred despite the POSIX
interface is fully instrumented. Consequently, we have to implement analysis on important
aspects such as IOs or memory. Moreover, the architecture of our analysis allows “real-time”
measurements which would be interesting to provide developers with a “dashboard” for their
long running applications. A feature with is crucial is the support of OpenMP which is impor-
tant to qualify hybrid applications in the context of upcoming supercomputer architectures.
We plan to rely on the standard OpenMP instrumentation interface which is currently under
specification in order to be inter-operable with most runtimes. We plan to implement various
analysis among which are for example:

• An OpenMP region balancing analysis which would allow developers to see if the pro-
cessing is evenly balanced over processing units. This could be implemented using a
distribution reduction for each parallel region.

• A simple region profiling with the time and estimated speedup for each parallel for con-
sidering that the OpenMP runtime overhead can be estimated.

• An instantaneous parallelism analysis (similar to what is displayed in Vtune) which
gives on a temporal axis the number of running execution streams. This would allow the
identification of sequential bottlenecks.

Another type of analysis which could give some insight on performance is the phase-based
profiling. Using user defined regions or simply functions boundaries, it could be possible to
scatter the analysis (by duplicating them) over several code regions in order to allow the pro-
grammer to qualify them one by one. Idea which is similar to the Cube visualisation which
projects MPI events over code regions. Method that we would like to adopt in order to en-
rich our profiling semantic relatively to code locations without requiring a complete rewrite of
analysis.

179

180 PERSPECTIVES

Continuous profiling is also an aspect which is not covered by our tools. Indeed, if as we
stated the development process is empirical and guided by trial and error, it is crucial to be able
to compare two versions on the same code to attest of improvements. This could be done as in
Cube through trace arithmetic or as in Tau trough a logging of different runs in Perfexplorer’s
database. In order to implement this functionality, we see three main requirements:

• Coupling to current program version by storing current commit identifier, ideally at com-
pilation time (through a define altered by a compiler argument for example).

• Availability of a common storage database for profiling reports and naturally the auto-
coherency of profiles.

• Possibility of identifying in a unique way programs arguments and problem sizes in order
to cluster solely programs running the same test case (for strong and weak scaling). This
is required as some programs can run a wide range of test cases which sometimes have
few in common. In this purpose we have to define an unified way or registering a test case
which would yield an unique hash for a given test-case and an integer which describes
the problem size (for weak scaling analysis).

If we manage to gather these informations, we would be able to characterise the speedup
of an application over time, allowing the quick identification of performance regression or
improvements. Moreover, this would capitalise and fingerprint applications on the long term
with speedup, efficiency and measurement noise estimations.

14.2 Features

Dealing with the features, as discussed in Chapter 11, our distributed analysis implementa-
tion is not stabilised yet. We still have to work on the routing policy and improve the routing
parallelism by either moving to MPC which provides a full MPI thread multiple support or di-
rectly relying on network sockets. We plan to merge the analysis and reduction network with
our blackboard implementation to build what looks like an event driven distributed database
which would implement the following interface mixing a key value data-store and a Black-
board using Node.js inspired event notations with ’closure functions’:

• set(key , value) attribute value to ’key’, store it in the blackboard for latter reference.

• get(key) retrieve data associated to ’key’ null if it does not exist

• delete(key) delete ’key’ and its associated data from the Blackboard

• on(key, function, [id]) call ’function’ when an element of type key is set or emitted.
The optional ’id’ argument allows a processing to be registered to a remote (in terms of
process) event, therefore requiring data forwarding upon its occurrence.

• emit(key, [data], [id]) emit an event of type ’key’ which can optionally convey ’data’.
Event which can be emitted locally or remotely thanks to the ’id’ parameter.

• reduce(key, function) applies function to reduce two entries of type ’key’ coming from
child processes and sends the result to the parent. As in DART, it eventually produces
ad data of type RED(’key’) which can be referred to by other processing. Moreover, it

FEATURES 181

would be interesting to dispatch the tree root over processing nodes using a consistent
hashing technique in order to maximise client bandwidth. In such case “on” registration
call over data which are the product of a reduction would be transparently mapped to
the ’id’ which is the root of the reduction.

Once we will have managed to implement this new version of DART we believe will have
all the necessary features to perform distributed analysis with a simpler and more compact
semantic. Moreover, the rendering engine will be able to register itself to valued data (product
of reduction) in order to propose a real time rendering thanks to the blackboard approach.

The current report layout is a static linear PDF files which embeds all the analysis, each
in its dedicated chapter. Thanks to user feedback we have seen that PDF reports, despite
being easily portable by nature do not offer much rendering and interaction possibilities. Con-
sequently, we have a prototype of HTML5 based implementation which relies on a Node.js
server which is coupled to a key value data-store embedded in a C application through a TCP
socket. This architecture is promising as it offers full interactivity, including bidirectional
interactions in-between the application and the analysis. Moreover, it completely separates
analysis rendering from the data reduction, aspects which were mixed in our previous imple-
mentation. This approach can also be an opportunity for simulation codes to export more data
than the common lightweight STDOUT output with for example curves, diagrams or complete
data-structures. Features similar to the ones of state of the art debuggers such as DDT which
is able to render the data stored in data-structures of an interrupted program.

Another aspect, if not the most important is inter-operability as there are a lot of profiling
tools, each providing different analysis. Consequently, it is important to produce standard
traces such as OTF2 which is standardised by the ScoreP framework as a common denomina-
tor for several prominent profiling tools. In this purpose, the engineering work to implement
OTF2 support in MALP has been outsourced and is undergoing under my supervision at the
moment I write these lines. This, in purpose of allowing a positive interaction with existing
tools, moreover, this complementary trace support will reestablish iterative analysis which
was lost due to the online aspect of our implementation.

182 PERSPECTIVES

Bibliography

183

BIBLIOGRAPHY 185

[A+01] InfiniBandSM Trade Association et al.
InfiniBand R© Architecture Specification vol.
1. Jun, 19:1–131, 2001. pages 25

[AADS+07] Dorian C Arnold, Dong H Ahn, Bronis R
De Supinski, Gregory L Lee, Barton P Miller,
and Martin Schulz. Stack trace analysis for
large scale debugging. In Parallel and Dis-
tributed Processing Symposium, 2007. IPDPS
2007. IEEE International, pages 1–10. IEEE,
2007. pages 61

[ABF+10] Laksono Adhianto, Sinchan Banerjee, Mike Fa-
gan, Mark Krentel, Gabriel Marin, John Mellor-
Crummey, and Nathan R Tallent. HPCToolkit:
Tools for performance analysis of optimized par-
allel programs. Concurrency and Computation:
Practice and Experience, 22(6):685–701, 2010.
pages 67

[AdSL+09] Dong H. Ahn, Bronis R. de Supinski, Ignacio
Laguna, Gregory L. Lee, Ben Liblit, Barton P.
Miller, and Martin Schulz. Scalable temporal
order analysis for large scale debugging. In Pro-
ceedings of the Conference on High Performance
Computing Networking, Storage and Analysis,
SC ’09, pages 44:1–44:11, New York, NY, USA,
2009. ACM. pages 61, 62, 65, 75

[All13a] Allinea. Allinea DDT. http://www.allinea.
com/products/ddt/, 2013. pages 62, 75, 155

[All13b] Allinea. Allinea MAP. http://www.allinea.
com/products/map/, 2013. pages 75

[Amb03] M. Amblard. Conventions & management. Man-
agement (Bruxelles). De Boeck, 2003. pages 35

[aMBB+12] Dieter an Mey, Scott Biersdorff, Christian
Bischof, Kai Diethelm, Dominic Eschweiler,
Michael Gerndt, Andreas Knüpfer, Daniel
Lorenz, Allen D. Malony, Wolfgang E. Nagel,
Yury Oleynik, Christian Rössel, Pavel Sa-
viankou, Dirk Schmidl, Sameer S. Shende,
Michael Wagner, Bert Wesarg, and Felix Wolf.
Score-P: A Unified Performance Measurement
System for Petascale Applications. In Proc. of
the CiHPC: Competence in High Performance
Computing, HPC Status Konferenz der Gauß-
Allianz e.V., Schwetzingen, Germany, June 2010,
2012. pages 65, 74, 112, 123, 172, 173

[AMCT10] Laksono Adhianto, John Mellor-Crummey, and
Nathan R Tallent. Effectively presenting call
path profiles of application performance. In
Parallel Processing Workshops (ICPPW), 2010
39th International Conference on, pages 179–
188. IEEE, 2010. pages 67

[APM06] Dorian C Arnold, Gary D Pack, and Barton P
Miller. Tree-based overlay networks for scalable
applications. In Parallel and Distributed Pro-
cessing Symposium, 2006. IPDPS 2006. 20th In-
ternational, pages 8–pp. IEEE, 2006. pages 62,
75

[ATNW11] Cédric Augonnet, Samuel Thibault, Raymond
Namyst, and Pierre-André Wacrenier. StarPU:

a unified platform for task scheduling on het-
erogeneous multicore architectures. Concur-
rency and Computation: Practice and Experi-
ence, 23(2):187–198, 2011. pages 24

[Aug11] Cédric Augonnet. Scheduling Tasks over Multi-
core machines enhanced with acelerators: a Run-
time System’s Perspective. PhD thesis, Univer-
sité Bordeaux 1, 2011. pages 24

[Axe07] J. Axelson. Serial port complete [electronic re-
source]: COM ports, USB virtual COM ports,
and ports for embedded systems, second edi-
tion. Complete Guides Series. Lakeview Re-
search, LLC, 2007. pages 61

[BBB+91] David H Bailey, Eric Barszcz, John T Barton,
David S Browning, Robert L Carter, Leonardo
Dagum, Rod A Fatoohi, Paul O Frederick-
son, Thomas A Lasinski, Rob S Schreiber,
et al. The nas parallel benchmarks summary
and preliminary results. In Supercomputing,
1991. Supercomputing’91. Proceedings of the
1991 ACM/IEEE Conference on, pages 158–165.
IEEE, 1991. pages 154

[BBC+08] Keren Bergman, Shekhar Borkar, Dan Camp-
bell, William Carlson, William Dally, Monty
Denneau, Paul Franzon, William Harrod,
Jon Hiller, Sherman Karp, Stephen Keckler,
Dean Klein, Robert Lucas, Mark Richards,
Al Scarpelli, Steven Scott, Allan Snavely,
Thomas Sterling, R. Stanley Williams, Kather-
ine Yelick, Keren Bergman, Shekhar Borkar,
Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod,
Jon Hiller, Stephen Keckler, Dean Klein, Pe-
ter Kogge, R. Stanley Williams, and Katherine
Yelick. ExaScale Computing Study: Technology
Challenges in Achieving Exascale Systems Pe-
ter Kogge, Editor and Study Lead, 2008. pages
19

[BBK+10] David A. Bader, Jonathan Berry, Simon Ka-
han, Richard Murphy, E. Jason Riedy, and
Jeremiah Willcock. Graph 500 Benchmark
1 ("Search"). http://www.graph500.org/
Specifications.html, October 2010. Version
1.1. pages 19

[BBMP06] Utpal Banerjee, Brian Bliss, Zhiqiang Ma, and
Paul Petersen. Unraveling data race detection
in the Intel Thread Checker. In First Work-
shop on Software Tools for Multi-core Systems
(STMCS), in conjunction with IEEE/ACM In-
ternational Symposium on Code Generation and
Optimization (CGO), March, volume 26, 2006.
pages 68

[BBvB+01] K. Beck, M. Beedle, A. van Bennekum, A. Cock-
burn, W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mallor,
Ken Shwaber, and Jeff Sutherland. The Ag-
ile Manifesto. http://www.agilemanifesto.
org/, 2001. pages 33

[BCF+12] O. Bressand, L. Colombet, A. Fontaine, G. Harel,
and J.-B. Lekien. Hercule: A library of scientific

http://www.google.com/search?q=InfiniBand+Architecture+Specification+vol.+1
http://www.google.com/search?q=InfiniBand+Architecture+Specification+vol.+1
http://www.google.com/search?q=Stack+trace+analysis+for+large+scale+debugging
http://www.google.com/search?q=Stack+trace+analysis+for+large+scale+debugging
http://www.google.com/search?q=HPCToolkit:+Tools+for+performance+analysis+of+optimized+parallel+programs
http://www.google.com/search?q=HPCToolkit:+Tools+for+performance+analysis+of+optimized+parallel+programs
http://www.google.com/search?q=HPCToolkit:+Tools+for+performance+analysis+of+optimized+parallel+programs
http://www.google.com/search?q=Scalable+temporal+order+analysis+for+large+scale+debugging
http://www.google.com/search?q=Scalable+temporal+order+analysis+for+large+scale+debugging
http://www.google.com/search?q=Allinea+DDT
http://www.allinea.com/products/ddt/
http://www.allinea.com/products/ddt/
http://www.google.com/search?q=Allinea+MAP
http://www.allinea.com/products/map/
http://www.allinea.com/products/map/
http://www.google.com/search?q=Score-P:+A+Unified+Performance+Measurement+System+for+Petascale+Applications
http://www.google.com/search?q=Score-P:+A+Unified+Performance+Measurement+System+for+Petascale+Applications
http://www.google.com/search?q=Effectively+presenting+call+path+profiles+of+application+performance
http://www.google.com/search?q=Effectively+presenting+call+path+profiles+of+application+performance
http://www.google.com/search?q=Tree-based+overlay+networks+for+scalable+applications
http://www.google.com/search?q=Tree-based+overlay+networks+for+scalable+applications
http://www.google.com/search?q=StarPU:+a+unified+platform+for+task+scheduling+on+heterogeneous+multicore+architectures
http://www.google.com/search?q=StarPU:+a+unified+platform+for+task+scheduling+on+heterogeneous+multicore+architectures
http://www.google.com/search?q=StarPU:+a+unified+platform+for+task+scheduling+on+heterogeneous+multicore+architectures
http://www.google.com/search?q=The+nas+parallel+benchmarks+summary+and+preliminary+results
http://www.google.com/search?q=The+nas+parallel+benchmarks+summary+and+preliminary+results
http://www.google.com/search?q=ExaScale+Computing+Study:+Technology+Challenges+in+Achieving+Exascale+Systems+Peter+Kogge,+Editor+and+Study+Lead
http://www.google.com/search?q=ExaScale+Computing+Study:+Technology+Challenges+in+Achieving+Exascale+Systems+Peter+Kogge,+Editor+and+Study+Lead
http://www.google.com/search?q=ExaScale+Computing+Study:+Technology+Challenges+in+Achieving+Exascale+Systems+Peter+Kogge,+Editor+and+Study+Lead
http://www.google.com/search?q=Graph+500+Benchmark+1+("Search")
http://www.google.com/search?q=Graph+500+Benchmark+1+("Search")
http://www.graph500.org/Specifications.html
http://www.graph500.org/Specifications.html
http://www.google.com/search?q=Unraveling+data+race+detection+in+the+Intel+Thread+Checker
http://www.google.com/search?q=Unraveling+data+race+detection+in+the+Intel+Thread+Checker
http://www.google.com/search?q=The+Agile+Manifesto
http://www.google.com/search?q=The+Agile+Manifesto
http://www.agilemanifesto.org/
http://www.agilemanifesto.org/
http://www.google.com/search?q=Hercule:+A+library+of+scientific+data+management

186 BIBLIOGRAPHY

data management. In CHOCS (Numéro 41), Re-
vue Scientifique et Technique de la Direction des
applications militaires, pages 29–37. CEA,DAM,
2012. pages 74

[BD04] Dan Bonachea and Jason Duell. Problems with
using MPI 1.1 and 2.0 as compilation targets
for parallel language implementations. Interna-
tional Journal of High Performance Computing
and Networking, 1(1):91–99, 2004. pages 138

[BDMQO12] Maria Barreda, Manuel F Dolz, Rafael Mayo,
and Enrique S Quintana-Ortı. Un Entorno de
Análisis del Consumo de Aplicaciones Paralelas.
2012. pages 64

[Bec00] K. Beck. Extreme Programming Explained.:
Embrace Change. An Alan R. Apt Book Series.
Addison-Wesley, 2000. pages 34

[Bec10] Daniel Becker. Timestamp Synchronization
of Concurrent Events. PhD thesis, RWTH
Aachen University, volume 4 of IAS Series,
Forschungszentrum Jülich, 2010. ISBN 978-3-
89336-625-5. pages 70, 71

[BGRW13] Daniel Becker, Markus Geimer, Rolf Raben-
seifner, and Felix Wolf. Extending the scope of
the controlled logical clock. Cluster Computing,
16(1):171–189, 2013. pages 100

[BGWA10] David Bohme, Markus Geimer, Felix Wolf, and
Lukas Arnold. Identifying the root causes of
wait states in large-scale parallel applications.
In Parallel Processing (ICPP), 2010 39th Inter-
national Conference on, pages 90–100. IEEE,
2010. pages 65, 137

[BJK+95] Robert D Blumofe, Christopher F Joerg,
Bradley C Kuszmaul, Charles E Leiserson,
Keith H Randall, and Yuli Zhou. Cilk: An effi-
cient multithreaded runtime system, volume 30.
ACM, 1995. pages 23

[BLRW08] D. Becker, J.C. Linford, R. Rabenseifner, and
F. Wolf. Replay-Based Synchronization of Times-
tamps in Event Traces of Massively Parallel Ap-
plications. In Parallel Processing - Workshops,
2008. ICPP-W ’08. International Conference on,
pages 212–219, 2008. pages 70, 71

[BM08] Holger Brunst and Bernd Mohr. Performance
analysis of large-scale OpenMP and hybrid
MPI/OpenMP applications with Vampir NG.
In OpenMP Shared Memory Parallel Program-
ming, pages 5–14. Springer, 2008. pages 64

[Bor07] Dhruba Borthakur. The hadoop distributed
file system: Architecture and design. Hadoop
Project Website, 11:21, 2007. pages 74

[BPG10] Shajulin Benedict, Ventsislav Petkov, and
Michael Gerndt. PERISCOPE: An Online-Based
Distributed Performance Analysis Tool. In
Matthias S. MÃijller, Michael M. Resch, Alexan-
der Schulz, and Wolfgang E. Nagel, editors,
Tools for High Performance Computing 2009,
pages 1–16. Springer Berlin Heidelberg, 2010.
pages 66, 75

[BPJ13] Jean-Baptiste Besnard, Marc Pérache, and
William Jalby. Event Streaming for Online Per-
formance Measurements Reduction. Fourth In-
ternational Workshop on Parallel Software Tools
and Tool Infrastructures (PSTI 2013), 2013.
pages 15, 123

[BRJ+10] Denis Barthou, Andres Charif Rubial, William
Jalby, Souad Koliai, and Cédric Valensi. Perfor-
mance tuning of x86 openmp codes with maqao.
In Tools for High Performance Computing 2009,
pages 95–113. Springer, 2010. pages 66

[BRW07] Daniel Becker, Rolf Rabenseifner, and Felix
Wolf. Timestamp synchronization for event
traces of large-scale messagepassing applica-
tions. In In Proceedings of the 14th European
PVM/MPI Conference, pages 315–325. Springer,
2007. pages 70, 71

[BS02] Peter J Braam and Philip Schwan. Lustre: The
intergalactic file system. In Ottawa Linux Sym-
posium, page 50, 2002. pages 73

[BT87] L. Boltanski and L. Thévenot. Les économies
de la grandeur. Cahiers du Centre d’études de
l’emploi. Presses universitaires de France, 1987.
pages 35

[Bul10] Bull. Bullx super-node 6010 sup-
port. http://support.bull.com/ols/
product/platforms/hw-extremcomp/
hw-bullx-sup-node/bullx-s6010, 2010.
pages 26

[BWG12] David Bohme, Felix Wolf, and Markus Geimer.
Characterizing Load and Communication Im-
balance in Large-Scale Parallel Applications. In
Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2012 IEEE
26th International, pages 2538–2541. IEEE,
2012. pages 65

[BZ06] Emery D Berger and Benjamin G Zorn.
DieHard: probabilistic memory safety for un-
safe languages. In ACM SIGPLAN Notices, vol-
ume 41, pages 158–168. ACM, 2006. pages 68

[C+95] TIS Committee et al. Tool interface standard
(TIS) executable and linking format (ELF) spec-
ification, 1995. pages 109

[C+10] DWARF Debugging Information Format Com-
mittee et al. DWARF debugging information for-
mat version 4, 2010. pages 109, 111

[CB74] Donald D Chamberlin and Raymond F Boyce.
SEQUEL: A structured English query language.
In Proceedings of the 1974 ACM SIGFIDET (now
SIGMOD) workshop on Data description, access
and control, pages 249–264. ACM, 1974. pages
74

[CB91] Bernadette Charron-Bost. Concerning the
size of logical clocks in distributed systems.
Inf. Process. Lett., 39(1):11–16, July 1991.
http://dx.doi.org/10.1016/0020-0190(91)90055-
M. pages 71

http://www.google.com/search?q=Hercule:+A+library+of+scientific+data+management
http://www.google.com/search?q=Hercule:+A+library+of+scientific+data+management
http://www.google.com/search?q=Problems+with+using+MPI+1.1+and+2.0+as+compilation+targets+for+parallel+language+implementations
http://www.google.com/search?q=Problems+with+using+MPI+1.1+and+2.0+as+compilation+targets+for+parallel+language+implementations
http://www.google.com/search?q=Problems+with+using+MPI+1.1+and+2.0+as+compilation+targets+for+parallel+language+implementations
http://www.google.com/search?q=Un+Entorno+de+Analisis+del+Consumo+de+Aplicaciones+Paralelas
http://www.google.com/search?q=Un+Entorno+de+Analisis+del+Consumo+de+Aplicaciones+Paralelas
http://www.google.com/search?q=Extending+the+scope+of+the+controlled+logical+clock
http://www.google.com/search?q=Extending+the+scope+of+the+controlled+logical+clock
http://www.google.com/search?q=Identifying+the+root+causes+of+wait+states+in+large-scale+parallel+applications
http://www.google.com/search?q=Identifying+the+root+causes+of+wait+states+in+large-scale+parallel+applications
http://www.google.com/search?q=Replay-Based+Synchronization+of+Timestamps+in+Event+Traces+of+Massively+Parallel+Applications
http://www.google.com/search?q=Replay-Based+Synchronization+of+Timestamps+in+Event+Traces+of+Massively+Parallel+Applications
http://www.google.com/search?q=Replay-Based+Synchronization+of+Timestamps+in+Event+Traces+of+Massively+Parallel+Applications
http://www.google.com/search?q=Performance+analysis+of+large-scale+OpenMP+and+hybrid+MPI/OpenMP+applications+with+Vampir+NG
http://www.google.com/search?q=Performance+analysis+of+large-scale+OpenMP+and+hybrid+MPI/OpenMP+applications+with+Vampir+NG
http://www.google.com/search?q=Performance+analysis+of+large-scale+OpenMP+and+hybrid+MPI/OpenMP+applications+with+Vampir+NG
http://www.google.com/search?q=The+hadoop+distributed+file+system:+Architecture+and+design
http://www.google.com/search?q=The+hadoop+distributed+file+system:+Architecture+and+design
http://www.google.com/search?q=PERISCOPE:+An+Online-Based+Distributed+Performance+Analysis+Tool
http://www.google.com/search?q=PERISCOPE:+An+Online-Based+Distributed+Performance+Analysis+Tool
http://www.google.com/search?q=Event+Streaming+for+Online+Performance+Measurements+Reduction
http://www.google.com/search?q=Event+Streaming+for+Online+Performance+Measurements+Reduction
http://www.google.com/search?q=Performance+tuning+of+x86+openmp+codes+with+maqao
http://www.google.com/search?q=Performance+tuning+of+x86+openmp+codes+with+maqao
http://www.google.com/search?q=Timestamp+synchronization+for+event+traces+of+large-scale+messagepassing+applications
http://www.google.com/search?q=Timestamp+synchronization+for+event+traces+of+large-scale+messagepassing+applications
http://www.google.com/search?q=Timestamp+synchronization+for+event+traces+of+large-scale+messagepassing+applications
http://www.google.com/search?q=Lustre:+The+intergalactic+file+system
http://www.google.com/search?q=Lustre:+The+intergalactic+file+system
http://www.google.com/search?q=Bullx+super-node+6010+support
http://www.google.com/search?q=Bullx+super-node+6010+support
http://support.bull.com/ols/product/platforms/hw-extremcomp/hw-bullx-sup-node/bullx-s6010
http://support.bull.com/ols/product/platforms/hw-extremcomp/hw-bullx-sup-node/bullx-s6010
http://support.bull.com/ols/product/platforms/hw-extremcomp/hw-bullx-sup-node/bullx-s6010
http://www.google.com/search?q=Characterizing+Load+and+Communication+Imbalance+in+Large-Scale+Parallel+Applications
http://www.google.com/search?q=Characterizing+Load+and+Communication+Imbalance+in+Large-Scale+Parallel+Applications
http://www.google.com/search?q=DieHard:+probabilistic+memory+safety+for+unsafe+languages
http://www.google.com/search?q=DieHard:+probabilistic+memory+safety+for+unsafe+languages
http://www.google.com/search?q=Tool+interface+standard+(TIS)+executable+and+linking+format+(ELF)+specification
http://www.google.com/search?q=Tool+interface+standard+(TIS)+executable+and+linking+format+(ELF)+specification
http://www.google.com/search?q=Tool+interface+standard+(TIS)+executable+and+linking+format+(ELF)+specification
http://www.google.com/search?q=DWARF+debugging+information+format+version+4
http://www.google.com/search?q=DWARF+debugging+information+format+version+4
http://www.google.com/search?q=SEQUEL:+A+structured+English+query+language
http://www.google.com/search?q=Concerning+the+size+of+logical+clocks+in+distributed+systems
http://www.google.com/search?q=Concerning+the+size+of+logical+clocks+in+distributed+systems

BIBLIOGRAPHY 187

[CBC+05] P. Coteus, H. R. Bickford, T. M. Cipolla, P. G.
Crumley, A. Gara, S. A. Hall, G. V. Kopcsay,
A. P. Lanzetta, L. S. Mok, R. Rand, R. Swetz,
T. Takken, P. La Rocca, C. Marroquin, P. R. Ger-
mann, and M. J. Jeanson. Packaging the Blue
Gene/L supercomputer. In IBM Journal of Re-
search and Development, volume 49, page 123,
2005. pages 68

[CCZ07] Bradford L Chamberlain, David Callahan, and
Hans P Zima. Parallel programmability and
the Chapel language. International Journal
of High Performance Computing Applications,
21(3):291–312, 2007. pages 23

[CD10] Kristina Chodorow and Michael Dirolf. Mon-
goDB: the definitive guide. O’Reilly Media, 2010.
pages 74

[CDFT12] Kevin Coulomb, Augustin Degomme, Mathieu
Faverge, and François Trahay. An open-source
tool-chain for performance analysis. In Tools for
High Performance Computing 2011, pages 37–
48. Springer, 2012. pages 64

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat,
Wilson C Hsieh, Deborah A Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. Bigtable: A distributed stor-
age system for structured data. ACM Trans-
actions on Computer Systems (TOCS), 26(2):4,
2008. pages 74

[CGL08] Anthony Chan, William Gropp, and Ewing
Lusk. An efficient format for nearly constant-
time access to arbitrary time intervals in large
trace files. Scientific Programming, 16(2):155–
165, 2008. pages 63, 64, 112

[CGS+05] Philippe Charles, Christian Grothoff, Vijay
Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph Von Praun, and
Vivek Sarkar. X10: an object-oriented approach
to non-uniform cluster computing. Acm Sigplan
Notices, 40(10):519–538, 2005. pages 23

[Coc04] A. Cockburn. Crystal Clear: A Human-Powered
Methodology for Small Teams. The agile soft-
ware development series. Pearson Education,
2004. pages 33

[Con08] DSDM Consortium. DSDM Atern Handbook.
http://www.dsdm.org/, 2008. pages 33

[Cor88] Daniel D Corkill. Design alternatives for paral-
lel and distributed blackboard systems. Com-
puter and Information Science, University of
Massachusetts, 1988. pages 73

[Cor03] Daniel D Corkill. Collaborating software: Black-
board and multi-agent systems & the future.
In Proceedings of the International Lisp Confer-
ence, volume 10, 2003. pages 72

[CPJ10] Patrick Carribault, Marc Pérache, and Hervé
Jourdren. Enabling Low-Overhead Hybrid
MPI/OpenMP Parallelism with MPC. In
IWOMP, pages 1–14, 2010. pages 14

[CPJ11] Patrick Carribault, Marc Pérache, and Hervé
Jourdren. Thread-Local Storage Extension to
Support Thread-Based MPI/OpenMP Applica-
tions. In IWOMP, pages 80–93, 2011. pages 14,
201

[Cri89] Flaviu Cristian. Probabilistic Clock Synchro-
nization. Distributed Computing, 3(3):146–158,
1989. pages 70, 93, 98

[DB93] RogÃl’rio Drummond and ÃŰzalp BabaoÄİlu.
Low-cost clock synchronization. Dis-
tributed Computing, 6(4):193–203, 1993.
http://dx.doi.org/10.1007/BF02242707. pages
70

[DBB07] Romain Dolbeau, Stéphane Bihan, and François
Bodin. HMPP: A hybrid multi-core parallel pro-
gramming environment. In Workshop on Gen-
eral Purpose Processing on Graphics Processing
Units (GPGPU 2007), 2007. pages 24

[DBC+05] Lamia Djoudi, Denis Barthou, Patrick Carrib-
ault, William Jalby, Christophe Lemuet, Jean-
Thomas Acquaviva, et al. Exploring application
performance: a new tool for a static/dynamic ap-
proach. In LACSI Symposium, Santa Fe, pages
41–49, 2005. pages 66

[DCPJ12] Sylvain Didelot, Patrick Carribault, Marc
Pérache, and William Jalby. Improving MPI
Communication Overlap with Collaborative
Polling. In EuroMPI, pages 37–46, 2012. pages
14

[Def05] Defense Technical Information Center. Revised
DoD Directive 5000.1 (Major System Acquisi-
tions), 2005. pages 34

[Dep85] Department Of Defense (DOD). DOD-STD-2167
Military Standard: Defense System Software
Development, 1985. pages 31

[Dep88] Department Of Defense (DOD). DOD-STD-
2167A Military Standard: Defense System Soft-
ware Development, 1988. pages 31

[Dep94] Department Of Defense (DOD). MIL-STD-498 -
DI-IPSC-81433: Software Requirements Specifi-
cation, December 1994. pages 34

[DG96] Peter Deutsch and Jean-Loup Gailly. RFC 1950–
ZLIB Compressed Data Format Specification
version 3.3. IETF/IESG, May, 1996. pages 63,
116

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapRe-
duce: simplified data processing on large clus-
ters. Communications of the ACM, 51(1):107–
113, 2008. pages 75

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Siva-
subramanian, Peter Vosshall, and Werner Vo-
gels. Dynamo: amazon’s highly available key-
value store. In ACM Symposium on Operating
Systems Principles: Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems
principles, volume 14, pages 205–220, 2007.
pages 74

http://www.google.com/search?q=Packaging+the+Blue+Gene/L+supercomputer
http://www.google.com/search?q=Packaging+the+Blue+Gene/L+supercomputer
http://www.google.com/search?q=Parallel+programmability+and+the+Chapel+language
http://www.google.com/search?q=Parallel+programmability+and+the+Chapel+language
http://www.google.com/search?q=An+open-source+tool-chain+for+performance+analysis
http://www.google.com/search?q=An+open-source+tool-chain+for+performance+analysis
http://www.google.com/search?q=Bigtable:+A+distributed+storage+system+for+structured+data
http://www.google.com/search?q=Bigtable:+A+distributed+storage+system+for+structured+data
http://www.google.com/search?q=An+efficient+format+for+nearly+constant-time+access+to+arbitrary+time+intervals+in+large+trace+files
http://www.google.com/search?q=An+efficient+format+for+nearly+constant-time+access+to+arbitrary+time+intervals+in+large+trace+files
http://www.google.com/search?q=An+efficient+format+for+nearly+constant-time+access+to+arbitrary+time+intervals+in+large+trace+files
http://www.google.com/search?q=X10:+an+object-oriented+approach+to+non-uniform+cluster+computing
http://www.google.com/search?q=X10:+an+object-oriented+approach+to+non-uniform+cluster+computing
http://www.google.com/search?q=DSDM+Atern+Handbook
http://www.dsdm.org/
http://www.google.com/search?q=Collaborating+software:+Blackboard+and+multi-agent+systems+&+the+future
http://www.google.com/search?q=Collaborating+software:+Blackboard+and+multi-agent+systems+&+the+future
http://www.google.com/search?q=Enabling+Low-Overhead+Hybrid+MPI/OpenMP+Parallelism+with+MPC
http://www.google.com/search?q=Enabling+Low-Overhead+Hybrid+MPI/OpenMP+Parallelism+with+MPC
http://www.google.com/search?q=Thread-Local+Storage+Extension+to+Support+Thread-Based+MPI/OpenMP+Applications
http://www.google.com/search?q=Thread-Local+Storage+Extension+to+Support+Thread-Based+MPI/OpenMP+Applications
http://www.google.com/search?q=Thread-Local+Storage+Extension+to+Support+Thread-Based+MPI/OpenMP+Applications
http://www.google.com/search?q=Probabilistic+Clock+Synchronization
http://www.google.com/search?q=Probabilistic+Clock+Synchronization
http://www.google.com/search?q=Low-cost+clock+synchronization
http://www.google.com/search?q=HMPP:+A+hybrid+multi-core+parallel+programming+environment
http://www.google.com/search?q=HMPP:+A+hybrid+multi-core+parallel+programming+environment
http://www.google.com/search?q=Exploring+application+performance:+a+new+tool+for+a+static/dynamic+approach
http://www.google.com/search?q=Exploring+application+performance:+a+new+tool+for+a+static/dynamic+approach
http://www.google.com/search?q=Exploring+application+performance:+a+new+tool+for+a+static/dynamic+approach
http://www.google.com/search?q=Improving+MPI+Communication+Overlap+with+Collaborative+Polling
http://www.google.com/search?q=Improving+MPI+Communication+Overlap+with+Collaborative+Polling
http://www.google.com/search?q=Improving+MPI+Communication+Overlap+with+Collaborative+Polling
http://www.google.com/search?q=Revised+DoD+Directive+5000.1+(Major+System+Acquisitions)
http://www.google.com/search?q=Revised+DoD+Directive+5000.1+(Major+System+Acquisitions)
http://www.google.com/search?q=Revised+DoD+Directive+5000.1+(Major+System+Acquisitions)
http://www.google.com/search?q=DOD-STD-2167+Military+Standard:+Defense+System+Software+Development
http://www.google.com/search?q=DOD-STD-2167+Military+Standard:+Defense+System+Software+Development
http://www.google.com/search?q=DOD-STD-2167+Military+Standard:+Defense+System+Software+Development
http://www.google.com/search?q=DOD-STD-2167A+Military+Standard:+Defense+System+Software+Development
http://www.google.com/search?q=DOD-STD-2167A+Military+Standard:+Defense+System+Software+Development
http://www.google.com/search?q=DOD-STD-2167A+Military+Standard:+Defense+System+Software+Development
http://www.google.com/search?q=MIL-STD-498+-+DI-IPSC-81433:+Software+Requirements+Specification
http://www.google.com/search?q=MIL-STD-498+-+DI-IPSC-81433:+Software+Requirements+Specification
http://www.google.com/search?q=MIL-STD-498+-+DI-IPSC-81433:+Software+Requirements+Specification
http://www.google.com/search?q=RFC+1950--ZLIB+Compressed+Data+Format+Specification+version+3.3
http://www.google.com/search?q=RFC+1950--ZLIB+Compressed+Data+Format+Specification+version+3.3
http://www.google.com/search?q=RFC+1950--ZLIB+Compressed+Data+Format+Specification+version+3.3
http://www.google.com/search?q=MapReduce:+simplified+data+processing+on+large+clusters
http://www.google.com/search?q=MapReduce:+simplified+data+processing+on+large+clusters
http://www.google.com/search?q=MapReduce:+simplified+data+processing+on+large+clusters
http://www.google.com/search?q=Dynamo:+amazons+highly+available+key-value+store
http://www.google.com/search?q=Dynamo:+amazons+highly+available+key-value+store

188 BIBLIOGRAPHY

[DKdOS00] Jacques Chassin De Kergommeaux and Benhur
de Oliveira Stein. Pajé: an extensible environ-
ment for visualizing multi-threaded programs
executions. In Euro-Par 2000 Parallel Process-
ing, pages 133–140. Springer, 2000. pages 63

[DKDS+05] Jayant Desouza, Bob Kuhn, Bronis R De Supin-
ski, Victor Samofalov, Sergey Zheltov, and
Stanislav Bratanov. Automated, scalable de-
bugging of MPI programs with Intel R© Mes-
sage Checker. In Proceedings of the second in-
ternational workshop on Software engineering
for high performance computing system applica-
tions, pages 78–82. ACM, 2005. pages 67

[DKMN08] Jens Doleschal, Andreas Knupfer, Matthias S.
Muller, and Wolfgang E. Nagel. Internal Timer
Synchronization for Parallel Event Tracing. In
Recent Advances in Parallel Virtual Machine
and Message Passing Interface, volume 5205 of
Lecture Notes in Computer Science, pages 202–
209. Springer Berlin Heidelberg, 2008. pages 71

[DLL07] Philippe Deniel, Thomas Leibovici, and Jacques-
Charles Lafoucrière. GANESHA, a multi-usage
with large cache NFSv4 server. In Linux Sym-
posium, page 113, 2007. pages 74

[DLP03] Jack J. Dongarra, Piotr Luszczek, and An-
toine Petitet. The LINPACK benchmark: Past,
present, and future. Concurrency and Computa-
tion: Practice and Experience, 2003. pages 15,
19

[DM98] Leonardo Dagum and Ramesh Menon. OpenMP:
an industry standard API for shared-memory
programming. Computational Science & Engi-
neering, IEEE, 5(1):46–55, 1998. pages 23

[DMN99] Yves Denneulin, Jean-François Méhaut, and
Raymond Namyst. Customizable thread
scheduling directed by priorities. 1999. pages
23

[Don87] Jack Dongarra. The LINPACK Benchmark: An
Explanation. In Elias N. Houstis, Theodore S.
Papatheodorou, and Constantine D. Poly-
chronopoulos, editors, Supercomputing, 1st In-
ternational Conference, Athens, Greece, June
8-12, 1987, Proceedings, volume 297 of Lec-
ture Notes in Computer Science, pages 456–474.
Springer, 1987. pages 19

[dOSdKM10] B de Oliveira Stein, J Chassin de Kergom-
meaux, and G Mounié. Pajé trace file format.
Technical report, Tech. rep.(March 2003), 2010.
pages 63, 112

[DQZ90] K. J. Danhof, J. Quisenberry, and M. Zargham.
Concurrency in blackboard systems. In Pro-
ceedings of the 3rd international conference on
Industrial and engineering applications of arti-
ficial intelligence and expert systems - Volume
1, IEA/AIE ’90, pages 109–113, New York, NY,
USA, 1990. ACM. pages 73

[Dun92] Thomas H. Dunigan. Hypercube clock synchro-
nization. Concurrency - Practice and Experience,
4(3):257–268, 1992. pages 70

[EGE02] Jeremy Elson, Lewis Girod, and Deborah
Estrin. Fine-grained network time synchroniza-
tion using reference broadcasts. SIGOPS Oper.
Syst. Rev., 36(SI):147–163, December 2002.
http://doi.acm.org/10.1145/844128.844143.
pages 70

[EGS06] Tarek El-Ghazawi and Lauren Smith. UPC:
unified parallel C. In Proceedings of the
2006 ACM/IEEE conference on Supercomput-
ing, page 27. ACM, 2006. pages 23

[EL80] Lee D. Erman and Victor R. Lesser. The
HEARSAY-II speech understanding system: In-
tegrating knowledge to resolve uncertainty.
Computing Surveys, 12:213–253, 1980. pages
72

[EM88] R. Engelmore and T. Morgan. Blackboard sys-
tems. Insight series in artificial intelligence.
Addison-Wesley, 1988. pages 72, 73

[Eng03] RS Engelschall. pth GNU Portable Threads. Pth
Manual, Online, pages 1–31, 2003. pages 23

[ET79] Robert Engelmore and Allan Terry. Structure
and Function of the CRYSALIS System. In Pro-
ceedings of the 6th international joint conference
on Artificial intelligence-Volume 1, pages 250–
256. Morgan Kaufmann Publishers Inc., 1979.
pages 73

[EWG+11] Dominic Eschweiler, Michael Wagner, Markus
Geimer, Andreas Knüpfer, Wolfgang E Nagel,
and Felix Wolf. Open Trace Format 2-The next
generation of scalable trace formats and support
libraries. In Proc. of the Intl. Conference on Par-
allel Computing (ParCo), Ghent, Belgium, 2011.
pages 63, 101, 112

[FG87] B FLAMANT and G GIRARD. Intelligence Ser-
vice: construisez votre propre système expert.
Revue des Télécommunications, 61(4):417–421,
1987. pages 72

[FG07] Karl Fürlinger and Michael Gerndt. Automated
performance analysis using ASL performance
properties. In Applied Parallel Computing. State
of the Art in Scientific Computing, pages 390–
397. Springer, 2007. pages 67

[FGMM06] John Feo, John Gilbert, Kamesh Madduri, and
Bill Mann. HPCS Scalable Synthetic Compact
Applications #2 Graph Analysis, 2006. pages 19

[Fid88] Colin J. Fidge. Timestamps in message passing
systems that preserve the partial ordering. In
Theoretical Computer Science, 1988. pages 69,
71, 100

[fISZ13] TU Dresden Center for Information Services
and High Performance Computing (ZIH). Vam-
pirTrace 5.14.3 User Manual, 2013. pages 70,
71

[Fit04] Brad Fitzpatrick. Distributed caching with
memcached. Linux journal, (124):72–74, 2004.
pages 74

http://www.google.com/search?q=Paje:+an+extensible+environment+for+visualizing+multi-threaded+programs+executions
http://www.google.com/search?q=Paje:+an+extensible+environment+for+visualizing+multi-threaded+programs+executions
http://www.google.com/search?q=Paje:+an+extensible+environment+for+visualizing+multi-threaded+programs+executions
http://www.google.com/search?q=Automated,+scalable+debugging+of+MPI+programs+with+Intel+Message+Checker
http://www.google.com/search?q=Automated,+scalable+debugging+of+MPI+programs+with+Intel+Message+Checker
http://www.google.com/search?q=Automated,+scalable+debugging+of+MPI+programs+with+Intel+Message+Checker
http://www.google.com/search?q=Internal+Timer+Synchronization+for+Parallel+Event+Tracing
http://www.google.com/search?q=Internal+Timer+Synchronization+for+Parallel+Event+Tracing
http://www.google.com/search?q=GANESHA,+a+multi-usage+with+large+cache+NFSv4+server
http://www.google.com/search?q=GANESHA,+a+multi-usage+with+large+cache+NFSv4+server
http://www.google.com/search?q=The+LINPACK+benchmark:+Past,+present,+and+future.+Concurrency+and+Computation:+Practice+and+Experience
http://www.google.com/search?q=The+LINPACK+benchmark:+Past,+present,+and+future.+Concurrency+and+Computation:+Practice+and+Experience
http://www.google.com/search?q=The+LINPACK+benchmark:+Past,+present,+and+future.+Concurrency+and+Computation:+Practice+and+Experience
http://www.google.com/search?q=OpenMP:+an+industry+standard+API+for+shared-memory+programming
http://www.google.com/search?q=OpenMP:+an+industry+standard+API+for+shared-memory+programming
http://www.google.com/search?q=OpenMP:+an+industry+standard+API+for+shared-memory+programming
http://www.google.com/search?q=Customizable+thread+scheduling+directed+by+priorities
http://www.google.com/search?q=Customizable+thread+scheduling+directed+by+priorities
http://www.google.com/search?q=The+LINPACK+Benchmark:+An+Explanation
http://www.google.com/search?q=The+LINPACK+Benchmark:+An+Explanation
http://www.google.com/search?q=Paje+trace+file+format
http://www.google.com/search?q=Concurrency+in+blackboard+systems
http://www.google.com/search?q=Hypercube+clock+synchronization
http://www.google.com/search?q=Hypercube+clock+synchronization
http://www.google.com/search?q=Fine-grained+network+time+synchronization+using+reference+broadcasts
http://www.google.com/search?q=Fine-grained+network+time+synchronization+using+reference+broadcasts
http://www.google.com/search?q=UPC:+unified+parallel+C
http://www.google.com/search?q=UPC:+unified+parallel+C
http://www.google.com/search?q=The+HEARSAY-II+speech+understanding+system:+Integrating+knowledge+to+resolve+uncertainty
http://www.google.com/search?q=The+HEARSAY-II+speech+understanding+system:+Integrating+knowledge+to+resolve+uncertainty
http://www.google.com/search?q=The+HEARSAY-II+speech+understanding+system:+Integrating+knowledge+to+resolve+uncertainty
http://www.google.com/search?q=pth+GNU+Portable+Threads
http://www.google.com/search?q=Structure+and+Function+of+the+CRYSALIS+System
http://www.google.com/search?q=Structure+and+Function+of+the+CRYSALIS+System
http://www.google.com/search?q=Open+Trace+Format+2-The+next+generation+of+scalable+trace+formats+and+support+libraries
http://www.google.com/search?q=Open+Trace+Format+2-The+next+generation+of+scalable+trace+formats+and+support+libraries
http://www.google.com/search?q=Open+Trace+Format+2-The+next+generation+of+scalable+trace+formats+and+support+libraries
http://www.google.com/search?q=Intelligence+Service:+construisez+votre+propre+systeme+expert
http://www.google.com/search?q=Intelligence+Service:+construisez+votre+propre+systeme+expert
http://www.google.com/search?q=Automated+performance+analysis+using+ASL+performance+properties
http://www.google.com/search?q=Automated+performance+analysis+using+ASL+performance+properties
http://www.google.com/search?q=Automated+performance+analysis+using+ASL+performance+properties
http://www.google.com/search?q=HPCS+Scalable+Synthetic+Compact+Applications+2+Graph+Analysis
http://www.google.com/search?q=HPCS+Scalable+Synthetic+Compact+Applications+2+Graph+Analysis
http://www.google.com/search?q=Timestamps+in+message+passing+systems+that+preserve+the+partial+ordering
http://www.google.com/search?q=Timestamps+in+message+passing+systems+that+preserve+the+partial+ordering
http://www.google.com/search?q=VampirTrace+5.14.3+User+Manual
http://www.google.com/search?q=VampirTrace+5.14.3+User+Manual
http://www.google.com/search?q=Distributed+caching+with+memcached
http://www.google.com/search?q=Distributed+caching+with+memcached

BIBLIOGRAPHY 189

[FWP09] Wolfgang Frings, Felix Wolf, and Ventsislav
Petkov. Scalable massively parallel I/O to task-
local files. In Proceedings of the Conference on
High Performance Computing Networking, Stor-
age and Analysis, SC ’09, 2009. pages 63, 74,
123, 172

[GBP07] Thierry Gautier, Xavier Besseron, and Laurent
Pigeon. KAAPI: A thread scheduling runtime
system for data flow computations on cluster of
multi-processors. In Proceedings of the 2007 in-
ternational workshop on Parallel symbolic com-
putation, pages 15–23. ACM, 2007. pages 23

[Geo11] Lars George. HBase: the definitive guide.
O’Reilly Media, Incorporated, 2011. pages 74

[GF07] Michael Gerndt and Karl Fürlinger. Specifica-
tion and detection of performance problems with
ASL. Concurrency and Computation: Practice
and Experience, 19(11):1451–1464, 2007. pages
67

[GFB+04] Edgar Gabriel, Graham E Fagg, George Bosilca,
Thara Angskun, Jack J Dongarra, Jeffrey M
Squyres, Vishal Sahay, Prabhanjan Kambadur,
Brian Barrett, Andrew Lumsdaine, et al. Open
MPI: Goals, concept, and design of a next gen-
eration MPI implementation. In Recent Ad-
vances in Parallel Virtual Machine and Message
Passing Interface, pages 97–104. Springer, 2004.
pages 23

[GFK05] Michael Gerndt, K Fürlinger, and E Kereku.
Periscope: Advanced techniques for perfor-
mance analysis. In Proceedings of the 2005
International Conference on Parallel Comput-
ing (ParCo 2005), pages 15–26. Citeseer, 2005.
pages 67

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung. The Google file system. In ACM
SIGOPS Operating Systems Review, volume 37,
pages 29–43. ACM, 2003. pages 74

[GK07] Michael Gerndt and Edmond Kereku. Auto-
matic memory access analysis with periscope. In
Computational Science–ICCS 2007, pages 847–
854. Springer, 2007. pages 67

[GLDS96] William Gropp, Ewing Lusk, Nathan Doss,
and Anthony Skjellum. A high-performance,
portable implementation of the MPI message
passing interface standard. Parallel computing,
22(6):789–828, 1996. pages 23

[GN00] Emden R Gansner and Stephen C North. An
open graph visualization system and its applica-
tions to software engineering. Software Practice
and Experience, 30(11):1203–1233, 2000. pages
142, 163

[Gon09] R.C. Gonzalez. Digital Image Processing. Pear-
son Education, 2009. pages 167

[Gra81] Jim Gray. The transaction concept: Virtues
and limitations. In Proceedings of the Very
Large Database Conference, pages 144–154,
1981. pages 74

[Gra01] Paul S Graham. Logical hardware debuggers
for FPGA-based systems. PhD thesis, Brigham
Young University, 2001. pages 61

[Gra03] A. Grama. Introduction to Parallel Computing.
Pearson Education. Addison Wesley Publishing
Company Incorporated, 2003. pages 26, 145

[GSS+12] Markus Geimer, Pavel Saviankou, Alexan-
dre Strube, Zoltán Szebenyi, Felix Wolf, and
Brian JN Wylie. Further improving the scala-
bility of the Scalasca toolset. In Applied Par-
allel and Scientific Computing, pages 463–473.
Springer, 2012. pages 65

[Gus88] John L Gustafson. Reevaluating Amdahl’s law.
Communications of the ACM, 31(5):532–533,
1988. pages 44

[GWW+10] Markus Geimer, Felix Wolf, Brian J. N. Wylie,
Erika Ábrahám, Daniel Becker, and Bernd
Mohr. The Scalasca performance toolset archi-
tecture. Concurr. Comput. : Pract. Exper., 2010.
pages 65, 172

[GWWM09] Markus Geimer, Felix Wolf, Brian JN Wylie, and
Bernd Mohr. A scalable tool architecture for di-
agnosing wait states in massively parallel ap-
plications. Parallel Computing, 35(7):375–388,
2009. pages 65

[GZ83] Riccardo Gusella and Stefano Zatti. TEMPO:
A Network Time Controller for a Distributed
Berkeley UNIX System. Technical Report
UCB/CSD-83-163, EECS Department, Univer-
sity of California, Berkeley, Dec 1983. pages 93

[Hai12] J.L. Hainaut. Bases de données - 2e éd. -
Concepts, utilisation et développement: Con-
cepts, utilisation et développement. Informa-
tique. Dunod, 2012. pages 74

[HC99] M Haardt and M Coleman. ptrace (2), 1999.
pages 61

[HC02] Jason Hill and David Culler. A wireless em-
bedded sensor architecture for system-level op-
timization. Technical report, UC Berkeley Tech-
nical Report, 2002. pages 70

[Hig00] J.A. Highsmith. Adaptive Software Develop-
ment: An Evolutionary Approach to Control-
ling Chaotic Systems. Dorset House Publishing,
2000. pages 33

[HKW11] Marc-André Hermanns, Sriram Krishnamoor-
thy, and Felix Wolf. A Scalable Replay-based
Infrastructure for the Performance Analysis of
One-sided Communication. In Proc. of the 1st
Intl. Workshop on High-performance Infrastruc-
ture for Scalable Tools (WHIST), Tucson, AZ,
USA, June 2011. pages 65

[HM01] Simon Huband and D McDonald. A preliminary
topological debugger for MPI programs. In Clus-
ter Computing and the Grid, 2001. Proceedings.
First IEEE/ACM International Symposium on,
pages 422–429. IEEE, 2001. pages 61

http://www.google.com/search?q=Scalable+massively+parallel+I/O+to+task-local+files
http://www.google.com/search?q=Scalable+massively+parallel+I/O+to+task-local+files
http://www.google.com/search?q=KAAPI:+A+thread+scheduling+runtime+system+for+data+flow+computations+on+cluster+of+multi-processors
http://www.google.com/search?q=KAAPI:+A+thread+scheduling+runtime+system+for+data+flow+computations+on+cluster+of+multi-processors
http://www.google.com/search?q=KAAPI:+A+thread+scheduling+runtime+system+for+data+flow+computations+on+cluster+of+multi-processors
http://www.google.com/search?q=Specification+and+detection+of+performance+problems+with+ASL
http://www.google.com/search?q=Specification+and+detection+of+performance+problems+with+ASL
http://www.google.com/search?q=Specification+and+detection+of+performance+problems+with+ASL
http://www.google.com/search?q=Open+MPI:+Goals,+concept,+and+design+of+a+next+generation+MPI+implementation
http://www.google.com/search?q=Open+MPI:+Goals,+concept,+and+design+of+a+next+generation+MPI+implementation
http://www.google.com/search?q=Open+MPI:+Goals,+concept,+and+design+of+a+next+generation+MPI+implementation
http://www.google.com/search?q=Periscope:+Advanced+techniques+for+performance+analysis
http://www.google.com/search?q=Periscope:+Advanced+techniques+for+performance+analysis
http://www.google.com/search?q=The+Google+file+system
http://www.google.com/search?q=Automatic+memory+access+analysis+with+periscope
http://www.google.com/search?q=Automatic+memory+access+analysis+with+periscope
http://www.google.com/search?q=A+high-performance,+portable+implementation+of+the+MPI+message+passing+interface+standard
http://www.google.com/search?q=A+high-performance,+portable+implementation+of+the+MPI+message+passing+interface+standard
http://www.google.com/search?q=A+high-performance,+portable+implementation+of+the+MPI+message+passing+interface+standard
http://www.google.com/search?q=An+open+graph+visualization+system+and+its+applications+to+software+engineering
http://www.google.com/search?q=An+open+graph+visualization+system+and+its+applications+to+software+engineering
http://www.google.com/search?q=An+open+graph+visualization+system+and+its+applications+to+software+engineering
http://www.google.com/search?q=The+transaction+concept:+Virtues+and+limitations
http://www.google.com/search?q=The+transaction+concept:+Virtues+and+limitations
http://www.google.com/search?q=Further+improving+the+scalability+of+the+Scalasca+toolset
http://www.google.com/search?q=Further+improving+the+scalability+of+the+Scalasca+toolset
http://www.google.com/search?q=Reevaluating+Amdahls+law
http://www.google.com/search?q=The+Scalasca+performance+toolset+architecture
http://www.google.com/search?q=The+Scalasca+performance+toolset+architecture
http://www.google.com/search?q=A+scalable+tool+architecture+for+diagnosing+wait+states+in+massively+parallel+applications
http://www.google.com/search?q=A+scalable+tool+architecture+for+diagnosing+wait+states+in+massively+parallel+applications
http://www.google.com/search?q=A+scalable+tool+architecture+for+diagnosing+wait+states+in+massively+parallel+applications
http://www.google.com/search?q=TEMPO:+A+Network+Time+Controller+for+a+Distributed+Berkeley+UNIX+System
http://www.google.com/search?q=TEMPO:+A+Network+Time+Controller+for+a+Distributed+Berkeley+UNIX+System
http://www.google.com/search?q=TEMPO:+A+Network+Time+Controller+for+a+Distributed+Berkeley+UNIX+System
http://www.google.com/search?q=ptrace+(2)
http://www.google.com/search?q=A+wireless+embedded+sensor+architecture+for+system-level+optimization
http://www.google.com/search?q=A+wireless+embedded+sensor+architecture+for+system-level+optimization
http://www.google.com/search?q=A+wireless+embedded+sensor+architecture+for+system-level+optimization
http://www.google.com/search?q=A+Scalable+Replay-based+Infrastructure+for+the+Performance+Analysis+of+One-sided+Communication
http://www.google.com/search?q=A+Scalable+Replay-based+Infrastructure+for+the+Performance+Analysis+of+One-sided+Communication
http://www.google.com/search?q=A+Scalable+Replay-based+Infrastructure+for+the+Performance+Analysis+of+One-sided+Communication
http://www.google.com/search?q=A+preliminary+topological+debugger+for+MPI+programs
http://www.google.com/search?q=A+preliminary+topological+debugger+for+MPI+programs

190 BIBLIOGRAPHY

[HM05] Kevin A Huck and Allen D Malony. Perfex-
plorer: A performance data mining framework
for large-scale parallel computing. In Proceed-
ings of the 2005 ACM/IEEE conference on Su-
percomputing, page 41. IEEE Computer Society,
2005. pages 66

[HM10] T. Halpin and T. Morgan. Information Modeling
and Relational Databases. The Morgan Kauf-
mann Series in Data Management Systems. El-
sevier Science, 2010. pages 74

[HMBM05] Kevin A Huck, Allen D Malony, Robert Bell,
and Alan Morris. Design and implementa-
tion of a parallel performance data management
framework. In Parallel Processing, 2005. ICPP
2005. International Conference on, pages 473–
482. IEEE, 2005. pages 65

[HMdS+12] Tobias Hilbrich, Matthias S. Müller, Bronis R.
de Supinski, Martin Schulz, and Wolfgang E.
Nagel. GTI: A Generic Tools Infrastructure for
Event-Based Tools in Parallel Systems. In Pro-
ceedings of the 2012 IEEE 26th International
Parallel and Distributed Processing Symposium,
IPDPS ’12, pages 1364–1375, Washington, DC,
USA, 2012. IEEE Computer Society. pages 67,
75

[HMK09] Tobias Hilbrich, Matthias S Müller, and Bettina
Krammer. MPI correctness checking for Open-
MP/MPI applications. International Journal
of Parallel Programming, 37(3):277–291, 2009.
pages 67

[HMSM07] Kevin A Huck, Allen D Malony, Sameer Shende,
and Alan Morris. Scalable, automated per-
formance analysis with tau and perfexplorer.
Parallel Computing (ParCo), Aachen, Germany,
pages 1–8, 2007. pages 66

[Hoo96] Robert Hood. The p2d2 project: building a
portable distributed debugger. In Proceedings
of the SIGMETRICS symposium on Parallel and
distributed tools, pages 127–136. ACM, 1996.
pages 62

[HS02] B. Hailpern and P. Santhanam. Soft-
ware debugging, testing, and verification.
IBM Syst. J., 41(1):4–12, January 2002.
http://dx.doi.org/10.1147/sj.411.0004. pages 48

[HSC+08] Oscar Hernandez, Fengguang Song, Barbara
Chapman, Jack Dongarra, Bernd Mohr, Shirley
Moore, and Felix Wolf. Performance in-
strumentation and compiler optimizations for
MPI/OpenMP applications. In OpenMP Shared
Memory Parallel Programming, pages 267–278.
Springer, 2008. pages 67

[HT99] A. Hunt and D. Thomas. The Pragmatic Pro-
grammer: From Journeyman to Master. Pearson
Education, 1999. pages 29, 49

[HWM02] Wei Huang, Zhe Wang, and Jie Ma. Design of
DMPI on DAWNING-3000. In Recent Advances
in Parallel Virtual Machine and Message Pass-
ing Interface, pages 314–322. Springer, 2002.
pages 139

[IAB95] IABG. V-Model, Lifecycle Process Model. http:
//v-modell.iabg.de/, 1995. pages 32

[INT10] Intel 64 and IA-32 Architectures Software De-
veloper’s Manual Volume 3B: System Program-
ming Guide, Part 2, 2010. pages 70

[Int12a] Intel. Intel Debugger for Linux (IDB).
http://software.intel.com/en-us/
articles/idb-linux/, 2012. pages 61, 62

[Int12b] Intel. Intel Trace Collector Reference Guide,
2012. pages 70, 71

[JBM12] Emily R Jacobson, Michael J Brim, and Bar-
ton P Miller. A lightweight library for building
scalable tools. In Applied Parallel and Scien-
tific Computing, pages 419–429. Springer, 2012.
pages 65, 75

[JBR12] I. Jacobson, G. Booch, and J. Rumbaugh. The
Unified Software Development Process. Addison-
Wesley Object Technology Series. Pearson Edu-
cation, Limited, 2012. pages 34

[JDA+09] Heike Jagode, Jack Dongarra, Sadaf Alam, Jef-
frey Vetter, Wyatt Spear, and Allen D Malony. A
holistic approach for performance measurement
and analysis for petascale applications. In Com-
putational Science–ICCS 2009, pages 686–695.
Springer, 2009. pages 65

[Jéz89] Jean-Marc Jézéquel. Building a Global Time on
Parallel Machines. In WDAG, pages 136–147,
1989. pages 70

[Jou05] Hervé Jourdren. HERA: A Hydrodynamic AMR
Platform for Multi-Physics Simulations. In
Adaptive Mesh Refinement - Theory and Appli-
cations, volume 41 of Lecture Notes in Computa-
tional Science and Engineering. Springer Berlin
Heidelberg, 2005. pages 154, 158

[JT08] Ali Jannesari and Walter F Tichy. On-the-fly
race detection in multi-threaded programs. In
Proceedings of the 6th workshop on Parallel and
distributed systems: testing, analysis, and de-
bugging, page 6. ACM, 2008. pages 68

[KBB+06] Andreas Knüpfer, Ronny Brendel, Holger
Brunst, Hartmut Mix, and Wolfgang E Nagel.
Introducing the open trace format (OTF). In
Computational Science–ICCS 2006, pages 526–
533. Springer, 2006. pages 63, 101, 112

[KBD+08] Andreas Knüpfer, Holger Brunst, Jens Do-
leschal, Matthias Jurenz, Matthias Lieber, Hol-
ger Mickler, Matthias S Müller, and Wolfgang E
Nagel. The vampir performance analysis tool-
set. In Tools for High Performance Computing,
pages 139–155. Springer, 2008. pages 63, 64

[KBMS06] Holger Brunst Andreas Knüpfer, Holger Brunst,
Allen D Malony, and Sameer S Shende. Open
trace format api specification version 1.1. Cen-
ter for High Performance Computing University
of Dresden, Germany, 2006. pages 63

[KH06] Elliott D Kaplan and Christopher J Hegarty.
Understanding GPS: principles and applica-
tions. Artech House Publishers, 2006. pages 71

http://www.google.com/search?q=Perfexplorer:+A+performance+data+mining+framework+for+large-scale+parallel+computing
http://www.google.com/search?q=Perfexplorer:+A+performance+data+mining+framework+for+large-scale+parallel+computing
http://www.google.com/search?q=Perfexplorer:+A+performance+data+mining+framework+for+large-scale+parallel+computing
http://www.google.com/search?q=Design+and+implementation+of+a+parallel+performance+data+management+framework
http://www.google.com/search?q=Design+and+implementation+of+a+parallel+performance+data+management+framework
http://www.google.com/search?q=Design+and+implementation+of+a+parallel+performance+data+management+framework
http://www.google.com/search?q=GTI:+A+Generic+Tools+Infrastructure+for+Event-Based+Tools+in+Parallel+Systems
http://www.google.com/search?q=GTI:+A+Generic+Tools+Infrastructure+for+Event-Based+Tools+in+Parallel+Systems
http://www.google.com/search?q=MPI+correctness+checking+for+OpenMP/MPI+applications
http://www.google.com/search?q=MPI+correctness+checking+for+OpenMP/MPI+applications
http://www.google.com/search?q=Scalable,+automated+performance+analysis+with+tau+and+perfexplorer
http://www.google.com/search?q=Scalable,+automated+performance+analysis+with+tau+and+perfexplorer
http://www.google.com/search?q=The+p2d2+project:+building+a+portable+distributed+debugger
http://www.google.com/search?q=The+p2d2+project:+building+a+portable+distributed+debugger
http://www.google.com/search?q=Software+debugging,+testing,+and+verification
http://www.google.com/search?q=Software+debugging,+testing,+and+verification
http://www.google.com/search?q=Performance+instrumentation+and+compiler+optimizations+for+MPI/OpenMP+applications
http://www.google.com/search?q=Performance+instrumentation+and+compiler+optimizations+for+MPI/OpenMP+applications
http://www.google.com/search?q=Performance+instrumentation+and+compiler+optimizations+for+MPI/OpenMP+applications
http://www.google.com/search?q=Design+of+DMPI+on+DAWNING-3000
http://www.google.com/search?q=Design+of+DMPI+on+DAWNING-3000
http://www.google.com/search?q=V-Model,+Lifecycle+Process+Model
http://v-modell.iabg.de/
http://v-modell.iabg.de/
http://www.google.com/search?q=Intel+64+and+IA-32+Architectures+Software+Developers+Manual+Volume+3B:+System+Programming+Guide,+Part+2
http://www.google.com/search?q=Intel+64+and+IA-32+Architectures+Software+Developers+Manual+Volume+3B:+System+Programming+Guide,+Part+2
http://www.google.com/search?q=Intel+64+and+IA-32+Architectures+Software+Developers+Manual+Volume+3B:+System+Programming+Guide,+Part+2
http://www.google.com/search?q=Intel+Debugger+for+Linux+(IDB)
http://software.intel.com/en-us/articles/idb-linux/
http://software.intel.com/en-us/articles/idb-linux/
http://www.google.com/search?q=Intel+Trace+Collector+Reference+Guide
http://www.google.com/search?q=A+lightweight+library+for+building+scalable+tools
http://www.google.com/search?q=A+lightweight+library+for+building+scalable+tools
http://www.google.com/search?q=A+holistic+approach+for+performance+measurement+and+analysis+for+petascale+applications
http://www.google.com/search?q=A+holistic+approach+for+performance+measurement+and+analysis+for+petascale+applications
http://www.google.com/search?q=A+holistic+approach+for+performance+measurement+and+analysis+for+petascale+applications
http://www.google.com/search?q=Building+a+Global+Time+on+Parallel+Machines
http://www.google.com/search?q=Building+a+Global+Time+on+Parallel+Machines
http://www.google.com/search?q=HERA:+A+Hydrodynamic+AMR+Platform+for+Multi-Physics+Simulations
http://www.google.com/search?q=HERA:+A+Hydrodynamic+AMR+Platform+for+Multi-Physics+Simulations
http://www.google.com/search?q=On-the-fly+race+detection+in+multi-threaded+programs
http://www.google.com/search?q=On-the-fly+race+detection+in+multi-threaded+programs
http://www.google.com/search?q=Introducing+the+open+trace+format+(OTF)
http://www.google.com/search?q=The+vampir+performance+analysis+tool-set
http://www.google.com/search?q=The+vampir+performance+analysis+tool-set
http://www.google.com/search?q=Open+trace+format+api+specification+version+1.1
http://www.google.com/search?q=Open+trace+format+api+specification+version+1.1

BIBLIOGRAPHY 191

[KHL+07] Bettina Krammer, Valentin Himmler, David
Lecomber, et al. Coupling DDT and Marmot for
debugging of MPI applications. Proc. of ParCo
2007, pages 4–7, 2007. pages 67

[KJP08] Matthew J Koop, Terry Jones, and Dha-
baleswar K Panda. Mvapich-aptus: Scalable
high-performance multi-transport MPI over in-
finiband. In Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Sympo-
sium on, pages 1–12. IEEE, 2008. pages 23

[KK93] Laxmikant V Kale and Sanjeev Krishnan.
CHARM++: a portable concurrent object ori-
ented system based on C++, volume 28. ACM,
1993. pages 23

[Kle05] Andi Kleen. Update TSC sync al-
gorithm, Linux Kernel (commit
dda50e716dc9451f40eebfb2902c260e4f62cf34),
May 2005. pages 70

[KLW+03] Sushmitha P Kini, Jiuxing Liu, Jiesheng Wu,
Pete Wyckoff, and Dhabaleswar K Panda. Fast
and scalable barrier using rdma and multicast
mechanisms for infiniband-based clusters. In
Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pages 369–378.
Springer, 2003. pages 83

[KMR04a] Bettina Krammer, Matthias S. Müller, and
Michael M. Resch. MPI Application Develop-
ment Using the Analysis Tool MARMOT. In In
ICCS 2004, volume LNCS 3038. Springer, 2004.
pages 67

[KMR04b] Bettina Krammer, Matthias S Müller, and
Michael M Resch. MPI I/O analysis and error
detection with MARMOT. In Recent Advances in
Parallel Virtual Machine and Message Passing
Interface, pages 242–250. Springer, 2004. pages
67

[Kna87] Edgar Knapp. Deadlock detection in distributed
databases. ACM Computing Surveys (CSUR),
19(4):303–328, 1987. pages 156

[Kos10] Joseph Koshy. libelf by Example. Web site:
http://people.freebsd.org/jkoshy/
download/libelf/article.html, 2010.
pages 109

[KP07] M Kerrisk and J Pryzby. backtrace (3), 2007.
pages 61

[KR06] Bettina Krammer and Michael M Resch. Cor-
rectness checking of MPI one-sided communica-
tion using MARMOT. In Recent Advances in
Parallel Virtual Machine and Message Passing
Interface, pages 105–114. Springer, 2006. pages
67

[KZO+10] Souad Koliai, Stéphane Zuckerman, Emmanuel
Oseret, Mickaël Ivascot, Tipp Moseley, Dinh
Quang, and William Jalby. A balanced approach
to application performance tuning. In Lan-
guages and Compilers for Parallel Computing,
pages 111–125. Springer, 2010. pages 66

[Lab10] Jesus Labarta. StarSS: A programming model
for the multicore era. In PRACE Work-
shopâĂŹNew Languages & Future Technology
PrototypesâĂŹ at the Leibniz Supercomputing
Centre in Garching (Germany), 2010. pages 24

[Lam78] Leslie Lamport. Time, clocks, and the or-
dering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.
http://doi.acm.org/10.1145/359545.359563.
pages 69, 71

[LBFL80] Robert K Lindsay, Bruce G Buchanan, Ed-
ward A Feigenbaum, and Joshua Lederberg. Ap-
plications of artificial intelligence for organic
chemistry: The DENDRAL project. Structure,
2(2.7):2–8, 1980. pages 72

[LC83] Victor R Lesser and Daniel G Corkill. The dis-
tributed vehicle monitoring testbed: A tool for
investigating distributed problem solving net-
works. AI magazine, 4(3):15, 1983. pages 73

[Lei85] C.E. Leiserson. Fat-trees: Universal networks
for hardware-efficient supercomputing. Com-
puters, IEEE Transactions on, C-34(10):892–
901, 1985. pages 26

[Lew69] D. Lewis. Convention: A Philosophical Study.
Wiley(2008), 1969. pages 35

[LG98] Delon Levi and Steven A Guccione. BoardScope:
A debug tool for reconfigurable systems. Con-
figurable Computing Technology and its uses in
High Performance Computing, DSP and Systems
Engineering, pages 239–246, 1998. pages 61

[LH89] Kai Li and Paul Hudak. Memory coherence in
shared virtual memory systems. ACM Trans-
actions on Computer Systems (TOCS), 7(4):321–
359, 1989. pages 138

[Lin90] Mark A Linton. The evolution of Dbx. In Pro-
ceedings of the Summer USENIX Conference,
pages 211–220. Citeseer, 1990. pages 61, 62

[LM09] Avinash Lakshman and Prashant Malik. Cas-
sandra: a structured storage system on a P2P
network. In Proceedings of the twenty-first an-
nual symposium on Parallelism in algorithms
and architectures, SPAA ’09, pages 47–47, New
York, NY, USA, 2009. ACM. pages 74

[LMC99] Cheng Liao, Margaret Martonosi, and Dou-
glas W. Clark. Experience with an adaptive
globally-synchronizing clock algorithm. In Pro-
ceedings of the eleventh annual ACM symposium
on Parallel algorithms and architectures, SPAA
’99, pages 106–114, New York, NY, USA, 1999.
ACM. pages 70

[LMM11] Chee Wai Lee, Allen D Malony, and Alan Mor-
ris. TAUmon: scalable online performance data
analysis in TAU. In Euro-Par 2010 Parallel
Processing Workshops, pages 493–499. Springer,
2011. pages 66

http://www.google.com/search?q=Coupling+DDT+and+Marmot+for+debugging+of+MPI+applications
http://www.google.com/search?q=Coupling+DDT+and+Marmot+for+debugging+of+MPI+applications
http://www.google.com/search?q=Mvapich-aptus:+Scalable+high-performance+multi-transport+MPI+over+infiniband
http://www.google.com/search?q=Mvapich-aptus:+Scalable+high-performance+multi-transport+MPI+over+infiniband
http://www.google.com/search?q=Mvapich-aptus:+Scalable+high-performance+multi-transport+MPI+over+infiniband
http://www.google.com/search?q=Update+TSC+sync+algorithm,+Linux+Kernel+(commit+dda50e716dc9451f40eebfb2902c260e4f62cf34)
http://www.google.com/search?q=Update+TSC+sync+algorithm,+Linux+Kernel+(commit+dda50e716dc9451f40eebfb2902c260e4f62cf34)
http://www.google.com/search?q=Update+TSC+sync+algorithm,+Linux+Kernel+(commit+dda50e716dc9451f40eebfb2902c260e4f62cf34)
http://www.google.com/search?q=Fast+and+scalable+barrier+using+rdma+and+multicast+mechanisms+for+infiniband-based+clusters
http://www.google.com/search?q=Fast+and+scalable+barrier+using+rdma+and+multicast+mechanisms+for+infiniband-based+clusters
http://www.google.com/search?q=Fast+and+scalable+barrier+using+rdma+and+multicast+mechanisms+for+infiniband-based+clusters
http://www.google.com/search?q=MPI+Application+Development+Using+the+Analysis+Tool+MARMOT
http://www.google.com/search?q=MPI+Application+Development+Using+the+Analysis+Tool+MARMOT
http://www.google.com/search?q=MPI+I/O+analysis+and+error+detection+with+MARMOT
http://www.google.com/search?q=MPI+I/O+analysis+and+error+detection+with+MARMOT
http://www.google.com/search?q=Deadlock+detection+in+distributed+databases
http://www.google.com/search?q=Deadlock+detection+in+distributed+databases
http://www.google.com/search?q=libelf+by+Example
http://people.freebsd.org/jkoshy/download/libelf/article.html
http://people.freebsd.org/jkoshy/download/libelf/article.html
http://www.google.com/search?q=backtrace+(3)
http://www.google.com/search?q=Correctness+checking+of+MPI+one-sided+communication+using+MARMOT
http://www.google.com/search?q=Correctness+checking+of+MPI+one-sided+communication+using+MARMOT
http://www.google.com/search?q=Correctness+checking+of+MPI+one-sided+communication+using+MARMOT
http://www.google.com/search?q=A+balanced+approach+to+application+performance+tuning
http://www.google.com/search?q=A+balanced+approach+to+application+performance+tuning
http://www.google.com/search?q=StarSS:+A+programming+model+for+the+multicore+era
http://www.google.com/search?q=StarSS:+A+programming+model+for+the+multicore+era
http://www.google.com/search?q=Time,+clocks,+and+the+ordering+of+events+in+a+distributed+system
http://www.google.com/search?q=Time,+clocks,+and+the+ordering+of+events+in+a+distributed+system
http://www.google.com/search?q=Applications+of+artificial+intelligence+for+organic+chemistry:+The+DENDRAL+project
http://www.google.com/search?q=Applications+of+artificial+intelligence+for+organic+chemistry:+The+DENDRAL+project
http://www.google.com/search?q=Applications+of+artificial+intelligence+for+organic+chemistry:+The+DENDRAL+project
http://www.google.com/search?q=The+distributed+vehicle+monitoring+testbed:+A+tool+for+investigating+distributed+problem+solving+networks
http://www.google.com/search?q=The+distributed+vehicle+monitoring+testbed:+A+tool+for+investigating+distributed+problem+solving+networks
http://www.google.com/search?q=The+distributed+vehicle+monitoring+testbed:+A+tool+for+investigating+distributed+problem+solving+networks
http://www.google.com/search?q=The+distributed+vehicle+monitoring+testbed:+A+tool+for+investigating+distributed+problem+solving+networks
http://www.google.com/search?q=Fat-trees:+Universal+networks+for+hardware-efficient+supercomputing
http://www.google.com/search?q=Fat-trees:+Universal+networks+for+hardware-efficient+supercomputing
http://www.google.com/search?q=BoardScope:+A+debug+tool+for+reconfigurable+systems
http://www.google.com/search?q=BoardScope:+A+debug+tool+for+reconfigurable+systems
http://www.google.com/search?q=Memory+coherence+in+shared+virtual+memory+systems
http://www.google.com/search?q=Memory+coherence+in+shared+virtual+memory+systems
http://www.google.com/search?q=The+evolution+of+Dbx
http://www.google.com/search?q=Cassandra:+a+structured+storage+system+on+a+P2P+network
http://www.google.com/search?q=Cassandra:+a+structured+storage+system+on+a+P2P+network
http://www.google.com/search?q=Cassandra:+a+structured+storage+system+on+a+P2P+network
http://www.google.com/search?q=Experience+with+an+adaptive+globally-synchronizing+clock+algorithm
http://www.google.com/search?q=Experience+with+an+adaptive+globally-synchronizing+clock+algorithm
http://www.google.com/search?q=TAUmon:+scalable+online+performance+data+analysis+in+TAU
http://www.google.com/search?q=TAUmon:+scalable+online+performance+data+analysis+in+TAU

192 BIBLIOGRAPHY

[LPSW12] Daniel Lorenz, Peter Philippen, Dirk Schmidl,
and Felix Wolf. Profiling of OpenMP tasks
with Score-P. In Parallel Processing Workshops
(ICPPW), 2012 41st International Conference on,
pages 444–453. IEEE, 2012. pages 65

[lt11] The libunwind team. The libunwind project.
http://www.nongnu.org/libunwind/,
2011. pages 61

[M+09] Aaftab Munshi et al. The opencl specification.
Khronos OpenCL Working Group, 1:l1–15, 2009.
pages 24

[Mar91] J. Martin. Rapid Application Development. The
James Martin productivity series. MacMillan,
1991. pages 33

[Mar99] Brian Marick. New Models for Test De-
velopment. http://www.exampler.com/
testing-com/writings/new-models.pdf,
1999. pages 31

[Mat88] Friedemann Mattern. Virtual Time and Global
States of Distributed Systems. 1988. pages 69,
71

[MB93] John May and Francine Berman. Panorama:
A portable, extensible parallel debugger. In
ACM Sigplan Notices, volume 28, pages 96–106.
ACM, 1993. pages 62

[MBDH99] Philip J Mucci, Shirley Browne, Christine
Deane, and George Ho. PAPI: A portable inter-
face to hardware performance counters. In Proc.
Department of Defense HPCMP Users Group
Conference, 1999. pages 64

[MBS+11] Allen D Malony, Scott Biersdorff, Sameer
Shende, Heike Jagode, Stanimire Tomov, Guido
Juckeland, Robert Dietrich, Duncan Poole, and
Christopher Lamb. Parallel performance mea-
surement of heterogeneous parallel systems
with GPUs. In Parallel Processing (ICPP),
2011 International Conference on, pages 176–
185. IEEE, 2011. pages 65

[MCC+95] Barton P. Miller, Mark D. Callaghan,
Jonathan M Cargille, Jeffrey K. Hollingsworth,
R. Bruce Irvin, Karen L. Karavanic, Krishna
Kunchithapadam, and Tia Newhall. The Para-
dyn parallel performance measurement tool.
Computer, 28(11):37–46, 1995. pages 65, 75

[Mey97] B. Meyer. Object-oriented software construction.
Prentice-Hall International Series in Computer
Science. Prentice Hall PTR, 1997. pages 49

[MF08] MPI-Forum. MPI: A message passing interface
standard, version 2.1. 2008. pages 23, 74, 103

[MGN10] Stephanie Moreaud, Brice Goglin, and Raymond
Namyst. Adaptive MPI Multirail Tuning for
Non-uniform Input/Output Access. In EuroMPI,
pages 239–248, 2010. pages 25

[MHC94] Barton P Miller, Jeffrey K Hollingsworth, and
Mark D Callaghan. The paradyn parallel per-
formance tools and pvm. 1994. pages 64

[Mil91] David L. Mills. Internet Time Synchronization:
the Network Time Protocol. IEEE Transactions
on Communications, 39:1482–1493, 1991. pages
70, 93

[MMSH10] Alan Morris, Allen D. Malony, Sameer Shende,
and Kevin Huck. Design and Implementation
of a Hybrid Parallel Performance Measurement
System. In Proceedings of the 2010 39th Interna-
tional Conference on Parallel Processing, 2010.
pages 65

[MMSW01] Bernd Mohr, Allen D Malony, Sameer Shende,
and Felix Wolf. Towards a performance tool in-
terface for OpenMP: An approach based on direc-
tive rewriting. Citeseer, 2001. pages 65

[MMSW02] Bernd Mohr, Allen D Malony, Sameer Shende,
and Felix Wolf. Design and prototype of a perfor-
mance tool interface for OpenMP. The Journal
of Supercomputing, 23(1):105–128, 2002. pages
64

[Moi86] J.L.L. Moigne. Intelligence et Concep-
tion. Nouvelle encyclopédie des sciences et
des techniques. Fondation Diderot, 1986.
http://www.intelligence-complexite.
org/fileadmin/docs/1306jlm86.pdf.
pages 177

[Moi99] J.L.L. Moigne. La Modélisation des systèmes
complexes. Sciences des organisations. Dunod,
1999. pages 41

[Mol07] Ingo Molnar. x86: rewrite SMP
TSC sync code, Linux Kernel (commit
95492e4646e5de8b43d9a7908d6177fb737b61f0),
February 2007. pages 70

[Moo65] Gordon E. Moore. Cramming more components
onto integrated circuits. 38(8), April 1965. pages
20

[Mor11] Stéphanie Moreaud. Mouvement de données
et placement des tâches pour les communica-
tions haute performance sur machines hiérar-
chiques. http://tel.archives-ouvertes.
fr/tel-00635651/fr/, October 2011. pages
25, 83

[MR91] Allen D. Malony and Daniel A. Reed. Mod-
els for Performance Perturbation Analysis. In
Workshop on Parallel and Distributed Debug-
ging, pages 15–25, 1991. pages 71

[MRW92] A.D. Malony, D.A. Reed, and Harry A G Wi-
jshoff. Performance measurement intrusion and
perturbation analysis. Parallel and Distributed
Systems, IEEE Transactions on, 3(4):433–450,
1992. pages 71

[MSDS93] H. Meuer, E. Strohmaier, J. Dongarra, and H. Si-
mon. Top500(www.top500.org). http://www.
top500.org, 1993. pages 15, 19, 20

[MSM05] Allen D Malony, Sameer S Shende, and Alan
Morris. Phase-based parallel performance pro-
filing. In Proceedings of the PARCO 2005 confer-
ence, 2005. pages 66

http://www.google.com/search?q=Profiling+of+OpenMP+tasks+with+Score-P
http://www.google.com/search?q=Profiling+of+OpenMP+tasks+with+Score-P
http://www.google.com/search?q=The+libunwind+project
http://www.nongnu.org/libunwind/
http://www.google.com/search?q=The+opencl+specification
http://www.google.com/search?q=New+Models+for+Test+Development
http://www.google.com/search?q=New+Models+for+Test+Development
http://www.exampler.com/testing-com/writings/new-models.pdf
http://www.exampler.com/testing-com/writings/new-models.pdf
http://www.google.com/search?q=Virtual+Time+and+Global+States+of+Distributed+Systems
http://www.google.com/search?q=Virtual+Time+and+Global+States+of+Distributed+Systems
http://www.google.com/search?q=Panorama:+A+portable,+extensible+parallel+debugger
http://www.google.com/search?q=Panorama:+A+portable,+extensible+parallel+debugger
http://www.google.com/search?q=PAPI:+A+portable+interface+to+hardware+performance+counters
http://www.google.com/search?q=PAPI:+A+portable+interface+to+hardware+performance+counters
http://www.google.com/search?q=Parallel+performance+measurement+of+heterogeneous+parallel+systems+with+GPUs
http://www.google.com/search?q=Parallel+performance+measurement+of+heterogeneous+parallel+systems+with+GPUs
http://www.google.com/search?q=Parallel+performance+measurement+of+heterogeneous+parallel+systems+with+GPUs
http://www.google.com/search?q=The+Paradyn+parallel+performance+measurement+tool
http://www.google.com/search?q=The+Paradyn+parallel+performance+measurement+tool
http://www.google.com/search?q=MPI:+A+message+passing+interface+standard,+version+2.1
http://www.google.com/search?q=MPI:+A+message+passing+interface+standard,+version+2.1
http://www.google.com/search?q=Adaptive+MPI+Multirail+Tuning+for+Non-uniform+Input/Output+Access
http://www.google.com/search?q=Adaptive+MPI+Multirail+Tuning+for+Non-uniform+Input/Output+Access
http://www.google.com/search?q=The+paradyn+parallel+performance+tools+and+pvm
http://www.google.com/search?q=The+paradyn+parallel+performance+tools+and+pvm
http://www.google.com/search?q=Internet+Time+Synchronization:+the+Network+Time+Protocol
http://www.google.com/search?q=Internet+Time+Synchronization:+the+Network+Time+Protocol
http://www.google.com/search?q=Design+and+Implementation+of+a+Hybrid+Parallel+Performance+Measurement+System
http://www.google.com/search?q=Design+and+Implementation+of+a+Hybrid+Parallel+Performance+Measurement+System
http://www.google.com/search?q=Design+and+Implementation+of+a+Hybrid+Parallel+Performance+Measurement+System
http://www.google.com/search?q=Design+and+prototype+of+a+performance+tool+interface+for+OpenMP
http://www.google.com/search?q=Design+and+prototype+of+a+performance+tool+interface+for+OpenMP
http://www.intelligence-complexite.org/fileadmin/docs/1306jlm86.pdf
http://www.intelligence-complexite.org/fileadmin/docs/1306jlm86.pdf
http://www.google.com/search?q=x86:+rewrite+SMP+TSC+sync+code,+Linux+Kernel+(commit+95492e4646e5de8b43d9a7908d6177fb737b61f0)
http://www.google.com/search?q=x86:+rewrite+SMP+TSC+sync+code,+Linux+Kernel+(commit+95492e4646e5de8b43d9a7908d6177fb737b61f0)
http://www.google.com/search?q=x86:+rewrite+SMP+TSC+sync+code,+Linux+Kernel+(commit+95492e4646e5de8b43d9a7908d6177fb737b61f0)
http://www.google.com/search?q=Cramming+more+components+onto+integrated+circuits
http://www.google.com/search?q=Cramming+more+components+onto+integrated+circuits
http://www.google.com/search?q=Mouvement+de+donnees+et+placement+des+taches+pour+les+communications+haute+performance+sur+machines+hierarchiques
http://www.google.com/search?q=Mouvement+de+donnees+et+placement+des+taches+pour+les+communications+haute+performance+sur+machines+hierarchiques
http://www.google.com/search?q=Mouvement+de+donnees+et+placement+des+taches+pour+les+communications+haute+performance+sur+machines+hierarchiques
http://www.google.com/search?q=Mouvement+de+donnees+et+placement+des+taches+pour+les+communications+haute+performance+sur+machines+hierarchiques
http://tel.archives-ouvertes.fr/tel-00635651/fr/
http://tel.archives-ouvertes.fr/tel-00635651/fr/
http://www.google.com/search?q=Models+for+Performance+Perturbation+Analysis
http://www.google.com/search?q=Models+for+Performance+Perturbation+Analysis
http://www.google.com/search?q=Performance+measurement+intrusion+and+perturbation+analysis
http://www.google.com/search?q=Performance+measurement+intrusion+and+perturbation+analysis
http://www.google.com/search?q=Top500(www.top500.org)
http://www.top500.org
http://www.top500.org
http://www.google.com/search?q=Phase-based+parallel+performance+profiling
http://www.google.com/search?q=Phase-based+parallel+performance+profiling

BIBLIOGRAPHY 193

[MSMS08] Alan Morris, Wyatt Spear, Allen D Malony, and
Sameer Shende. Observing performance dynam-
ics using parallel profile snapshots. In Euro-
Par 2008–Parallel Processing, pages 162–171.
Springer, 2008. pages 66

[MT95] Eric Maillet and Cécile Tron. On effi-
ciently implementing global time for perfor-
mance evaluation on multiprocessor systems.
J. Parallel Distrib. Comput., 28(1):84–93, July
1995. http://dx.doi.org/10.1006/jpdc.
1995.1090. pages 71

[MW03] Bernd Mohr and Felix Wolf. KOJAK–A tool set
for automatic performance analysis of parallel
programs. In Euro-Par 2003 Parallel Processing,
pages 1301–1304. Springer, 2003. pages 64

[MW07] Arndt Mühlenfeld and Franz Wotawa. Fault
detection in multi-threaded C++ server applica-
tions. Electronic Notes in Theoretical Computer
Science, 174(9):5–22, 2007. pages 68

[MWIG11] Stéphane Jaouen Marc Wolff and Lise-Marie
Imbert-Gérard. Conservative numerical meth-
ods for a two-temperature resistive MHD model
with self-generated magnetic field term. In
CEMRACS’10 research achievements: Numeri-
cal modeling of fusion, volume 32. 2011. pages
158

[Nam01] Raymond Namyst. Habilitation à diriger les
recherches. 2001. pages 23

[NAR90] H Penny Nii, Nelleke Aiello, and James Rice.
Experiments on Cage and Poligon: Measuring
the performance of parallel blackboard systems.
Morgan Kaufmann Publishers Inc., 1990. pages
73

[NAW+96] W. E. Nagel, A. Arnold, M. Weber, H.-Ch. Hoppe,
and K. Solchenbach. VAMPIR : Visualization
and Analysis of MPI Resources. Supercomputer,
1996. pages 172

[NE01] Neophytos Neophytou and Paraskevas Evripi-
dou. Net-dbx: a web-based debugger of MPI
programs over low-bandwidth lines. Parallel
and Distributed Systems, IEEE Transactions on,
12(9):986–995, 2001. pages 62

[NET13] NetCDF : Network Common Data Form. http:
//www.unidata.ucar.edu/software/
netcdf/, 2013. pages 74

[NFAR88] H. Penny Nii, Edward A. Feigenbaum, John J.
Anton, and A. J. Rockmore. Readings from the
AI magazine. chapter Signal-to-symbol transfor-
mation: HASP/SIAP case study. 1988. pages 72

[NL91] Bill Nitzberg and Virginia Lo. Distributed
shared memory: A survey of issues and algo-
rithms. Computer, 24(8):52–60, 1991. pages 138

[NMM+08] Aroon Nataraj, Allen D Malony, Alan Morris,
Dorian Arnold, and Barton Miller. A frame-
work for scalable, parallel performance monitor-
ing using tau and mrnet. In International Work-
shop on Scalable Tools for High-End Comput-
ing (STHEC 2008), Island of Kos, Greece, 2008.
pages 66

[NS07a] Nicholas Nethercote and Julian Seward. How
to shadow every byte of memory used by a pro-
gram. In Proceedings of the 3rd international
conference on Virtual execution environments,
pages 65–74. ACM, 2007. pages 68

[NS07b] Nicholas Nethercote and Julian Seward. Val-
grind: a framework for heavyweight dynamic
binary instrumentation. ACM Sigplan Notices,
42(6):89–100, 2007. pages 64, 68

[Nvi11] CUDA Nvidia. NVIDIA CUDA programming
guide, 2011. pages 23

[oGC02] Great Britain. Office of Government Commerce.
Managing Successful Projects with PRINCE2.
Prince Guidance Series. H.M. Stationery Office,
2002. pages 32

[Ope11] OpenACC. The OpenACCTMApplication Pro-
gramming Interface. http://www.openacc.
org/sites/default/files/OpenACC.1.0_
0.pdf, 2011. pages 24

[Ora07] Orace. Sun Studio 12: Thread Analyzer
User’s Guide. http://docs.oracle.com/cd/
E19205-01/820-0619/820-0619.pdf, 2007.
pages 68

[PBAL09] Judit Planas, Rosa M Badia, Eduard Ayguadé,
and Jesus Labarta. Hierarchical task-based pro-
gramming with StarSs. International Journal
of High Performance Computing Applications,
23(3):284–299, 2009. pages 23

[PCDJ12] Marc Pérache, Patrick Carribault, Francois Di-
akhate, and Hervé Jourdren. MPC: A uni-
fied parallel framework for HPC. In CHOCS
(Numéro 41), Revue Scientifique et Technique de
la Direction des applications militaires, pages
22–29. CEA,DAM, 2012. pages 14

[PCJ09] Marc Pérache, Patrick Carribault, and Hervé
Jourdren. MPC-MPI: An MPI Implementation
Reducing the Overall Memory Consumption. In
PVM/MPI, pages 94–103, 2009. pages 14

[PCJ10] Marc Pérache, Patrick Carribault, and Hervé
Jourdren. User level DB: a debugging API for
user-level thread libraries. In IPDPS Work-
shops, pages 1–7, 2010. pages 14

[PD11] Steven J Plimpton and Karen D Devine. MapRe-
duce in MPI for large-scale graph algorithms.
Parallel Computing, 37(9):610–632, 2011. pages
75

[Per03] Bruce Perens. Electric Fence malloc() Debug-
ger. http://perens.com/FreeSoftware/
ElectricFence/, 2003. pages 68

[Pér06] Marc Pérache. Contribution à l’élaboration
d’environnements de programmation dédiés au
calcul scientifique hautes performances. Thèse
de doctorat, spécialité informatique, CEA/DAM
Île de France, Université de Bordeaux 1, Do-
maine Universitaire, 351 Cours de la libération,
33405 Talence Cedex, October 2006. 141 pages.
pages 14

http://www.google.com/search?q=Observing+performance+dynamics+using+parallel+profile+snapshots
http://www.google.com/search?q=Observing+performance+dynamics+using+parallel+profile+snapshots
http://www.google.com/search?q=On+efficiently+implementing+global+time+for+performance+evaluation+on+multiprocessor+systems
http://www.google.com/search?q=On+efficiently+implementing+global+time+for+performance+evaluation+on+multiprocessor+systems
http://www.google.com/search?q=On+efficiently+implementing+global+time+for+performance+evaluation+on+multiprocessor+systems
http://dx.doi.org/10.1006/jpdc.1995.1090
http://dx.doi.org/10.1006/jpdc.1995.1090
http://www.google.com/search?q=KOJAK--A+tool+set+for+automatic+performance+analysis+of+parallel+programs
http://www.google.com/search?q=KOJAK--A+tool+set+for+automatic+performance+analysis+of+parallel+programs
http://www.google.com/search?q=KOJAK--A+tool+set+for+automatic+performance+analysis+of+parallel+programs
http://www.google.com/search?q=Fault+detection+in+multi-threaded+C+++server+applications
http://www.google.com/search?q=Fault+detection+in+multi-threaded+C+++server+applications
http://www.google.com/search?q=Fault+detection+in+multi-threaded+C+++server+applications
http://www.google.com/search?q=Conservative+numerical+methods+for+a+two-temperature+resistive+MHD+model+with+self-generated+magnetic+field+term
http://www.google.com/search?q=Conservative+numerical+methods+for+a+two-temperature+resistive+MHD+model+with+self-generated+magnetic+field+term
http://www.google.com/search?q=Conservative+numerical+methods+for+a+two-temperature+resistive+MHD+model+with+self-generated+magnetic+field+term
http://www.google.com/search?q=Habilitation+a+diriger+les+recherches
http://www.google.com/search?q=Habilitation+a+diriger+les+recherches
http://www.google.com/search?q=VAMPIR+:+Visualization+and+Analysis+of+MPI+Resources
http://www.google.com/search?q=VAMPIR+:+Visualization+and+Analysis+of+MPI+Resources
http://www.google.com/search?q=Net-dbx:+a+web-based+debugger+of+MPI+programs+over+low-bandwidth+lines
http://www.google.com/search?q=Net-dbx:+a+web-based+debugger+of+MPI+programs+over+low-bandwidth+lines
http://www.google.com/search?q=NetCDF+:+Network+Common+Data+Form
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
http://www.google.com/search?q=Readings+from+the+AI+magazine
http://www.google.com/search?q=Readings+from+the+AI+magazine
http://www.google.com/search?q=Distributed+shared+memory:+A+survey+of+issues+and+algorithms
http://www.google.com/search?q=Distributed+shared+memory:+A+survey+of+issues+and+algorithms
http://www.google.com/search?q=Distributed+shared+memory:+A+survey+of+issues+and+algorithms
http://www.google.com/search?q=A+framework+for+scalable,+parallel+performance+monitoring+using+tau+and+mrnet
http://www.google.com/search?q=A+framework+for+scalable,+parallel+performance+monitoring+using+tau+and+mrnet
http://www.google.com/search?q=A+framework+for+scalable,+parallel+performance+monitoring+using+tau+and+mrnet
http://www.google.com/search?q=How+to+shadow+every+byte+of+memory+used+by+a+program
http://www.google.com/search?q=How+to+shadow+every+byte+of+memory+used+by+a+program
http://www.google.com/search?q=How+to+shadow+every+byte+of+memory+used+by+a+program
http://www.google.com/search?q=Valgrind:+a+framework+for+heavyweight+dynamic+binary+instrumentation
http://www.google.com/search?q=Valgrind:+a+framework+for+heavyweight+dynamic+binary+instrumentation
http://www.google.com/search?q=Valgrind:+a+framework+for+heavyweight+dynamic+binary+instrumentation
http://www.google.com/search?q=NVIDIA+CUDA+programming+guide
http://www.google.com/search?q=NVIDIA+CUDA+programming+guide
http://www.google.com/search?q=The+OpenACC+Application+Programming+Interface
http://www.google.com/search?q=The+OpenACC+Application+Programming+Interface
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.google.com/search?q=Sun+Studio+12:+Thread+Analyzer+Users+Guide
http://www.google.com/search?q=Sun+Studio+12:+Thread+Analyzer+Users+Guide
http://docs.oracle.com/cd/E19205-01/820-0619/820-0619.pdf
http://docs.oracle.com/cd/E19205-01/820-0619/820-0619.pdf
http://www.google.com/search?q=Hierarchical+task-based+programming+with+StarSs
http://www.google.com/search?q=Hierarchical+task-based+programming+with+StarSs
http://www.google.com/search?q=MPC:+A+unified+parallel+framework+for+HPC
http://www.google.com/search?q=MPC:+A+unified+parallel+framework+for+HPC
http://www.google.com/search?q=MPC-MPI:+An+MPI+Implementation+Reducing+the+Overall+Memory+Consumption
http://www.google.com/search?q=MPC-MPI:+An+MPI+Implementation+Reducing+the+Overall+Memory+Consumption
http://www.google.com/search?q=User+level+DB:+a+debugging+API+for+user-level+thread+libraries
http://www.google.com/search?q=User+level+DB:+a+debugging+API+for+user-level+thread+libraries
http://www.google.com/search?q=MapReduce+in+MPI+for+large-scale+graph+algorithms
http://www.google.com/search?q=MapReduce+in+MPI+for+large-scale+graph+algorithms
http://www.google.com/search?q=Electric+Fence+malloc()+Debugger
http://www.google.com/search?q=Electric+Fence+malloc()+Debugger
http://perens.com/FreeSoftware/ElectricFence/
http://perens.com/FreeSoftware/ElectricFence/

194 BIBLIOGRAPHY

[Pfi01] Gregory F Pfister. An introduction to the In-
finiBand architecture. High Performance Mass
Storage and Parallel I/O, 42:617–632, 2001.
pages 25

[PGK+07] Salman Pervez, Ganesh Gopalakrishnan,
Robert M Kirby, Robert Palmer, Rajeev Thakur,
and William Gropp. Practical model-checking
method for verifying correctness of mpi pro-
grams. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface, pages
344–353. Springer, 2007. pages 67

[PJN08] Marc Pérache, Hervé Jourdren, and Raymond
Namyst. MPC: A Unified Parallel Runtime
for Clusters of NUMA Machines. In Euro-Par,
pages 78–88, 2008. pages 14, 23

[PLCG95] Vincent Pillet, Jesús Labarta, Toni Cortes, and
Sergi Girona. Paraver: A tool to visualize and
analyze parallel code. WoTUG-18, pages 17–31,
1995. pages 64

[PP03] M. Poppendieck and T. Poppendieck. Lean soft-
ware development: an agile toolkit. The Agile
Software Development Series. Addison-Wesley,
2003. pages 34

[Pro13a] GNU Project. GCC 4.7 Release Series. http:
//gcc.gnu.org/gcc-4.7/, 2013. pages 199

[Pro13b] GNU Project. GDB: The GNU Project Debug-
ger. https://www.gnu.org/software/gdb/,
2013. pages 61, 62

[Pro13c] The LLDB Project. The LLDB Debugger. http:
//lldb.llvm.org/, 2013. pages 61, 62

[PS03] Paul Petersen and Sanjiv Shah. OpenMP sup-
port in the Intel R© thread checker. In OpenMP
Shared Memory Parallel Programming, pages
1–12. Springer, 2003. pages 68

[RAM03] Philip C. Roth, Dorian C. Arnold, and Barton P.
Miller. MRNet: A Software-Based Multicast/Re-
duction Network for Scalable Tools. In Proceed-
ings of the 2003 ACM/IEEE conference on Su-
percomputing, SC ’03, pages 21–, New York, NY,
USA, 2003. ACM. pages 61, 62, 65, 66, 75

[RBR+07] Giridhar Ravipati, Andrew R Bernat, Nate
Rosenblum, Barton P Miller, and Jeffrey K
Hollingsworth. Toward the deconstruction of
Dyninst. Technical report, Technical Report,
Computer Sciences Department, University of
Wisconsin, Madison (ftp://ftp. cs. wisc. edu/para-
dyn/papers/Ravipati07Symta bAPI. pdf), 2007.
pages 64

[Rei93] Steven P Reiss. Trace-based debugging. In Auto-
mated and Algorithmic Debugging, pages 305–
314. Springer, 1993. pages 61

[RN10] S.J. Russell and P. Norvig. Artificial Intelligence:
A Modern Approach. Prentice Hall Series in Ar-
tificial Intelligence. Pearson Education/Prentice
Hall, 2010. pages 72

[Rot05] Philip Charles Roth. Scalable on-line automated
performance diagnosis. PhD thesis, University
of Wisconsin, 2005. pages 62

[Rot11] V.M. Rota. Gestion de projet agile: Avec Scrum,
Lean, eXtreme Programming... Architecte logi-
ciel. Eyrolles, 2011. pages 31, 33

[Rou75] Ph Roussel. PROLOG: Manuel de Reference
et d’Utilisation. Université d’Aix-Marseille II,
1975. pages 72

[Roy70] Winston W Royce. Managing the development of
large software systems. In proceedings of IEEE
WESCON, volume 26. Los Angeles, 1970. pages
31

[RT00] Robert B Ross and Rajeev Thakur. PVFS: A par-
allel file system for Linux clusters. In in Pro-
ceedings of the 4th Annual Linux Showcase and
Conference, pages 391–430, 2000. pages 73

[SB08] K. Schwaber and M. Beedle. Agile Software De-
velopment with Scrum. Series in agile software
development. Pearson Education International,
2008. pages 34

[SBPV12] Konstantin Serebryany, Derek Bruening,
Alexander Potapenko, and Dmitry Vyukov. Ad-
dressSanitizer: A fast address sanity checker.
In USENIX ATC, volume 12, 2012. pages 68

[Sch86] Eric Schoen. The CAOS system. Department
of Computer Science, Stanford University, 1986.
pages 73

[SCOJ13] Anthony Scemama, Michel Caffarel, Emmanuel
Oseret, and William Jalby. Quantum Monte
Carlo for large chemical systems: Implement-
ing efficient strategies for petascale platforms
and beyond. Journal of computational chem-
istry, 2013. pages 66

[SdS07] Martin Schulz and Bronis R. de Supinski.
PNMPI tools: a whole lot greater than the
sum of their parts. In Proceedings of the
2007 ACM/IEEE conference on Supercomput-
ing, 2007. pages 67, 125, 126

[SF12] Balaji Subramaniam and Wu-chun Feng. The
Green Index: A Metric for Evaluating System-
Wide Energy Efficiency in HPC Systems. In 8th
IEEE Workshop on High-Performance, Power-
Aware Computing (HPPAC), Shanghai, China,
May 2012. pages 24

[SGS+11] Zoltán Szebenyi, Todd Gamblin, Martin Schulz,
Bronis R. de Supinski, Felix Wolf, and Brian
J. N. Wylie. Reconciling Sampling and Direct In-
strumentation for Unintrusive Call-Path Profil-
ing of MPI Programs. In IPDPS, Anchorage, AK,
USA. IEEE Computer Society, 2011. pages 65,
172

[SH02] Frank Schmuck and Roger Haskin. GPFS: A
shared-disk file system for large computing clus-
ters. In Proceedings of the First USENIX Con-
ference on File and Storage Technologies, pages
231–244, 2002. pages 73

http://www.google.com/search?q=An+introduction+to+the+InfiniBand+architecture
http://www.google.com/search?q=An+introduction+to+the+InfiniBand+architecture
http://www.google.com/search?q=Practical+model-checking+method+for+verifying+correctness+of+mpi+programs
http://www.google.com/search?q=Practical+model-checking+method+for+verifying+correctness+of+mpi+programs
http://www.google.com/search?q=Practical+model-checking+method+for+verifying+correctness+of+mpi+programs
http://www.google.com/search?q=MPC:+A+Unified+Parallel+Runtime+for+Clusters+of+NUMA+Machines
http://www.google.com/search?q=MPC:+A+Unified+Parallel+Runtime+for+Clusters+of+NUMA+Machines
http://www.google.com/search?q=Paraver:+A+tool+to+visualize+and+analyze+parallel+code
http://www.google.com/search?q=Paraver:+A+tool+to+visualize+and+analyze+parallel+code
http://www.google.com/search?q=GCC+4.7+Release+Series
http://gcc.gnu.org/gcc-4.7/
http://gcc.gnu.org/gcc-4.7/
http://www.google.com/search?q=GDB:+The+GNU+Project+Debugger
http://www.google.com/search?q=GDB:+The+GNU+Project+Debugger
https://www.gnu.org/software/gdb/
http://www.google.com/search?q=The+LLDB+Debugger
http://lldb.llvm.org/
http://lldb.llvm.org/
http://www.google.com/search?q=OpenMP+support+in+the+Intel+thread+checker
http://www.google.com/search?q=OpenMP+support+in+the+Intel+thread+checker
http://www.google.com/search?q=MRNet:+A+Software-Based+Multicast/Reduction+Network+for+Scalable+Tools
http://www.google.com/search?q=MRNet:+A+Software-Based+Multicast/Reduction+Network+for+Scalable+Tools
http://www.google.com/search?q=Toward+the+deconstruction+of+Dyninst
http://www.google.com/search?q=Toward+the+deconstruction+of+Dyninst
http://www.google.com/search?q=Trace-based+debugging
http://www.google.com/search?q=Managing+the+development+of+large+software+systems
http://www.google.com/search?q=Managing+the+development+of+large+software+systems
http://www.google.com/search?q=PVFS:+A+parallel+file+system+for+Linux+clusters
http://www.google.com/search?q=PVFS:+A+parallel+file+system+for+Linux+clusters
http://www.google.com/search?q=AddressSanitizer:+A+fast+address+sanity+checker
http://www.google.com/search?q=AddressSanitizer:+A+fast+address+sanity+checker
http://www.google.com/search?q=Quantum+Monte+Carlo+for+large+chemical+systems:+Implementing+efficient+strategies+for+petascale+platforms+and+beyond
http://www.google.com/search?q=Quantum+Monte+Carlo+for+large+chemical+systems:+Implementing+efficient+strategies+for+petascale+platforms+and+beyond
http://www.google.com/search?q=Quantum+Monte+Carlo+for+large+chemical+systems:+Implementing+efficient+strategies+for+petascale+platforms+and+beyond
http://www.google.com/search?q=Quantum+Monte+Carlo+for+large+chemical+systems:+Implementing+efficient+strategies+for+petascale+platforms+and+beyond
http://www.google.com/search?q=PNMPI+tools:+a+whole+lot+greater+than+the+sum+of+their+parts
http://www.google.com/search?q=PNMPI+tools:+a+whole+lot+greater+than+the+sum+of+their+parts
http://www.google.com/search?q=The+Green+Index:+A+Metric+for+Evaluating+System-Wide+Energy+Efficiency+in+HPC+Systems
http://www.google.com/search?q=The+Green+Index:+A+Metric+for+Evaluating+System-Wide+Energy+Efficiency+in+HPC+Systems
http://www.google.com/search?q=The+Green+Index:+A+Metric+for+Evaluating+System-Wide+Energy+Efficiency+in+HPC+Systems
http://www.google.com/search?q=Reconciling+Sampling+and+Direct+Instrumentation+for+Unintrusive+Call-Path+Profiling+of+MPI+Programs
http://www.google.com/search?q=Reconciling+Sampling+and+Direct+Instrumentation+for+Unintrusive+Call-Path+Profiling+of+MPI+Programs
http://www.google.com/search?q=Reconciling+Sampling+and+Direct+Instrumentation+for+Unintrusive+Call-Path+Profiling+of+MPI+Programs
http://www.google.com/search?q=GPFS:+A+shared-disk+file+system+for+large+computing+clusters
http://www.google.com/search?q=GPFS:+A+shared-disk+file+system+for+large+computing+clusters
http://www.google.com/search?q=GPFS:+A+shared-disk+file+system+for+large+computing+clusters

BIBLIOGRAPHY 195

[Sho76] Edward Hance Shortliffe. Computer-based medi-
cal consultations: MYCIN, volume 388. Elsevier
New York, 1976. pages 72

[SI09] Konstantin Serebryany and Timur
Iskhodzhanov. ThreadSanitizer: data race
detection in practice. In Proceedings of the
Workshop on Binary Instrumentation and Ap-
plications, pages 62–71. ACM, 2009. pages
68

[Sim74] Herbert A Simon. The structure of ill structured
problems. Artificial intelligence, 4(3):181–201,
1974. pages 177

[Sim97] H.A. Simon. Administrative Behavior, 4th Edi-
tion. Free Press, 1997. pages 30, 35, 36, 37,
177

[SKMP04] Stephan Seidl, A Knüpfer, and R Müller-
Pfefferkorn. VTF3-A Fast Vampir Trace File
Low-Level Management Library. Technical re-
port, Technical report, ZIH TU Dresden, 2004.
pages 64

[SM93] Sekhar R. Sarukkai and Allen D. Malony. Per-
turbation Analysis of High Level Instrumenta-
tion for SPMD Programs. In PPOPP, pages 44–
53, 1993. pages 71

[SMH98] Sameer Shende, Allen D Malony, and Steven T
Hackstadt. Dynamic performance callstack
sampling: Merging TAU and DAQV. In Applied
Parallel Computing Large Scale Scientific and
Industrial Problems, pages 515–520. Springer,
1998. pages 65

[SML+12] Wyatt Spear, Allen D Malony, Chee Wai Lee,
Scott Biersdorff, and Sameer Shende. An ap-
proach to creating performance visualizations
in a parallel profile analysis tool. In Euro-
Par 2011: Parallel Processing Workshops, pages
156–165. Springer, 2012. pages 66

[SMS99] Timothy J Sheehan, Allen D Malony, and
Sameer S Shende. A runtime monitoring frame-
work for the tau profiling system. In Computing
in Object-Oriented Parallel Environments, pages
170–181. Springer, 1999. pages 66

[Sof13] Rogue Wave Software. Totalview.
http://www.roguewave.com/products/
totalview.aspx, 2013. pages 62

[SS91] Chia-Shiang Shih and John A Stankovic. Survey
of deadlock detection in distributed concurrent
programming environments and its application
to real-time systems and Ada. Technical report,
Citeseer, 1991. pages 156

[SSE90] Leon Sterling, Ehud Shapiro, and Michel Eytan.
The art of Prolog. Wiley Online Library, 1990.
pages 72

[Ste90] Guy L Steele. Common LISP: the language. Dig-
ital Pr, 1990. pages 72

[Sut05] Herb Sutter. The Free Lunch Is Over: A Funda-
mental Turn Toward Concurrency in Software.
Dr. Dobb’s Journal, 30(3), 2005. pages 20

[SW04] Fengguang Song and Felix Wolf. CUBE User
Manual. Technical Report ICL-UT-04-01, Uni-
versity of Tennessee, Innovative Computing
Laboratory, 2004. pages 64, 65

[SWW11] Zoltán Szebenyi, Felix Wolf, and Brian JN Wylie.
Performance Analysis of Long-running Appli-
cations. In Parallel and Distributed Process-
ing Workshops and Phd Forum (IPDPSW), 2011
IEEE International Symposium on, pages 2105–
2108. IEEE, 2011. pages 65

[Sze12] Zoltán Szebenyi. Capturing Parallel Per-
formance Dynamics. PhD thesis, RWTH
Aachen University, volume 12 of IAS Series,
Forschungszentrum Jülich, 2012. ISBN 978-3-
89336-798-6. pages 65

[TAMC10] Nathan R Tallent, Laksono Adhianto, and
John M Mellor-Crummey. Scalable identifica-
tion of load imbalance in parallel executions us-
ing call path profiles. In Proceedings of the
2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Stor-
age and Analysis, pages 1–11. IEEE Computer
Society, 2010. pages 67

[TCP12] Marc Tchiboukdjian, Patrick Carribault, and
Marc Pérache. Hierarchical Local Storage: Ex-
ploiting Flexible User-Data Sharing Between
MPI Tasks. In IPDPS, pages 366–377, 2012.
pages 14

[Tea06] LAM/MPI Team. XMPI – A Run/Debug GUI for
MPI. http://www.lam-mpi.org/software/
xmpi/, 2006. pages 61

[Tea13a] Redis Team. Redis, open source, BSD licensed,
advanced key-value store. http://redis.io/,
2013. pages 74

[Tea13b] Voldemort Team. Project Voldemort A
distributed database. http://www.
project-voldemort.com, 2013. pages
74

[The13] The HDF Group. Hierarchical data format
version 5. http://www.hdfgroup.org/HDF5,
2013. pages 74

[TLG97] Rajeev Thakur, Ewing Lusk, and William
Gropp. Users guide for ROMIO: A high-
performance, portable MPI-IO implementation.
Technical report, Technical Report ANL/MCS-
TM-234, Mathematics and Computer Science
Division, Argonne National Laboratory, 1997.
pages 74

[TMC09] Nathan R Tallent and John M Mellor-Crummey.
Effective performance measurement and analy-
sis of multithreaded applications. In ACM Sig-
plan Notices, volume 44, pages 229–240. ACM,
2009. pages 67

[TMCP10] Nathan R Tallent, John M Mellor-Crummey, and
Allan Porterfield. Analyzing lock contention in
multithreaded applications. In ACM Sigplan
Notices, volume 45, pages 269–280. ACM, 2010.
pages 67

http://www.google.com/search?q=ThreadSanitizer:+data+race+detection+in+practice
http://www.google.com/search?q=ThreadSanitizer:+data+race+detection+in+practice
http://www.google.com/search?q=The+structure+of+ill+structured+problems
http://www.google.com/search?q=The+structure+of+ill+structured+problems
http://www.google.com/search?q=VTF3-A+Fast+Vampir+Trace+File+Low-Level+Management+Library
http://www.google.com/search?q=VTF3-A+Fast+Vampir+Trace+File+Low-Level+Management+Library
http://www.google.com/search?q=Perturbation+Analysis+of+High+Level+Instrumentation+for+SPMD+Programs
http://www.google.com/search?q=Perturbation+Analysis+of+High+Level+Instrumentation+for+SPMD+Programs
http://www.google.com/search?q=Perturbation+Analysis+of+High+Level+Instrumentation+for+SPMD+Programs
http://www.google.com/search?q=Dynamic+performance+callstack+sampling:+Merging+TAU+and+DAQV
http://www.google.com/search?q=Dynamic+performance+callstack+sampling:+Merging+TAU+and+DAQV
http://www.google.com/search?q=An+approach+to+creating+performance+visualizations+in+a+parallel+profile+analysis+tool
http://www.google.com/search?q=An+approach+to+creating+performance+visualizations+in+a+parallel+profile+analysis+tool
http://www.google.com/search?q=An+approach+to+creating+performance+visualizations+in+a+parallel+profile+analysis+tool
http://www.google.com/search?q=A+runtime+monitoring+framework+for+the+tau+profiling+system
http://www.google.com/search?q=A+runtime+monitoring+framework+for+the+tau+profiling+system
http://www.google.com/search?q=Totalview
http://www.roguewave.com/products/totalview.aspx
http://www.roguewave.com/products/totalview.aspx
http://www.google.com/search?q=Survey+of+deadlock+detection+in+distributed+concurrent+programming+environments+and+its+application+to+real-time+systems+and+Ada
http://www.google.com/search?q=Survey+of+deadlock+detection+in+distributed+concurrent+programming+environments+and+its+application+to+real-time+systems+and+Ada
http://www.google.com/search?q=Survey+of+deadlock+detection+in+distributed+concurrent+programming+environments+and+its+application+to+real-time+systems+and+Ada
http://www.google.com/search?q=Survey+of+deadlock+detection+in+distributed+concurrent+programming+environments+and+its+application+to+real-time+systems+and+Ada
http://www.google.com/search?q=The+Free+Lunch+Is+Over:+A+Fundamental+Turn+Toward+Concurrency+in+Software
http://www.google.com/search?q=The+Free+Lunch+Is+Over:+A+Fundamental+Turn+Toward+Concurrency+in+Software
http://www.google.com/search?q=CUBE+User+Manual
http://www.google.com/search?q=CUBE+User+Manual
http://www.google.com/search?q=Performance+Analysis+of+Long-running+Applications
http://www.google.com/search?q=Performance+Analysis+of+Long-running+Applications
http://www.google.com/search?q=Scalable+identification+of+load+imbalance+in+parallel+executions+using+call+path+profiles
http://www.google.com/search?q=Scalable+identification+of+load+imbalance+in+parallel+executions+using+call+path+profiles
http://www.google.com/search?q=Scalable+identification+of+load+imbalance+in+parallel+executions+using+call+path+profiles
http://www.google.com/search?q=Hierarchical+Local+Storage:+Exploiting+Flexible+User-Data+Sharing+Between+MPI+Tasks
http://www.google.com/search?q=Hierarchical+Local+Storage:+Exploiting+Flexible+User-Data+Sharing+Between+MPI+Tasks
http://www.google.com/search?q=Hierarchical+Local+Storage:+Exploiting+Flexible+User-Data+Sharing+Between+MPI+Tasks
http://www.google.com/search?q=XMPI+--+A+Run/Debug+GUI+for+MPI
http://www.google.com/search?q=XMPI+--+A+Run/Debug+GUI+for+MPI
http://www.lam-mpi.org/software/xmpi/
http://www.lam-mpi.org/software/xmpi/
http://www.google.com/search?q=Redis,+open+source,+BSD+licensed,+advanced+key-value+store.
http://www.google.com/search?q=Redis,+open+source,+BSD+licensed,+advanced+key-value+store.
http://redis.io/
http://www.google.com/search?q=Project+Voldemort+A+distributed+database.
http://www.google.com/search?q=Project+Voldemort+A+distributed+database.
http://www.project-voldemort.com
http://www.project-voldemort.com
http://www.google.com/search?q=Hierarchical+data+format+version+5
http://www.google.com/search?q=Hierarchical+data+format+version+5
http://www.hdfgroup.org/HDF5
http://www.google.com/search?q=Users+guide+for+ROMIO:+A+high-performance,+portable+MPI-IO+implementation
http://www.google.com/search?q=Users+guide+for+ROMIO:+A+high-performance,+portable+MPI-IO+implementation
http://www.google.com/search?q=Effective+performance+measurement+and+analysis+of+multithreaded+applications
http://www.google.com/search?q=Effective+performance+measurement+and+analysis+of+multithreaded+applications
http://www.google.com/search?q=Analyzing+lock+contention+in+multithreaded+applications
http://www.google.com/search?q=Analyzing+lock+contention+in+multithreaded+applications

196 BIBLIOGRAPHY

[TN86] Hirotaka Takeuchi and Ikujiro Nonaka. The
New New Product Development Game. Harvard
Business Review, 1986. pages 34

[TOP10] TOP 500. Tera 100 Supercomputer. http://
top500.org/system/10589, 2010. pages 24

[TOP12] TOP 500. Curie Supercomputer (thin nodes).
http://top500.org/system/177818, 2012.
pages 24, 172

[Uni07] United States Department of Transportation.
Systems Engineering for Intelligent Transporta-
tion Systems. http://ops.fhwa.dot.gov/
publications/seitsguide/seguide.pdf,
2007. pages 32

[VCR93] Paulo Veríssimo, Antonio Casimiro, and Luís
Rodrigues. Using Atomic Broadcast to Imple-
ment a posteriori Agreement for Clock Synchro-
nization. In SRDS, pages 115–124, 1993. pages
70

[VdS00] Jeffrey S Vetter and Bronis R de Supinski. Dy-
namic software testing of MPI applications with
Umpire. In Supercomputing, ACM/IEEE 2000
Conference, pages 51–51. IEEE, 2000. pages 67

[Vet13] J.S. Vetter. Contemporary High Performance
Computing: From Petascale Toward Exascale.
Chapman and Hall/CRC Computational Science
Series. Taylor & Francis Group, 2013. pages 24,
26, 74, 84

[VM01] Jeffrey S. Vetter and Michael O. McCracken.
Statistical scalability analysis of communication
operations in distributed applications. In Pro-
ceedings of the eighth ACM SIGPLAN sympo-
sium on Principles and practices of parallel pro-
gramming, 2001. pages 67

[VRC97] Paulo Veríssimo, Luís Rodrigues, and Antonio
Casimiro. CesiumSpray: a Precise and Accu-
rate Global Time Service for Large-scale Sys-
tems. Real-Time Systems, 12(3):243–294, 1997.
pages 70

[WB04] Felix Wolf and Nikhil Bhatia. EARL-API Doc-
umentation. Technical report, Technical Report
ICL-UT-04-03, University of Tennessee, Innova-
tive Computing Laboratory, 2004. pages 64

[WBS+00] C Eric Wu, Anthony Bolmarcich, Marc Snir,
David Wootton, Farid Parpia, Anthony Chan,
Ewing Lusk, and William Gropp. From trace
generation to visualization: A performance
framework for distributed parallel systems. In
Supercomputing, ACM/IEEE 2000 Conference,
pages 50–50. IEEE, 2000. pages 64

[Wei08] Josef Weidendorfer. Sequential performance
analysis with callgrind and kcachegrind. In
Tools for High Performance Computing, pages
93–113. Springer, 2008. pages 64

[WGM+10] Brian J. N. Wylie, Markus Geimer, Bernd Mohr,
David Böhme, Zoltán Szebenyi, and Felix Wolf.
Large-scale performance analysis of Sweep3D
with the Scalasca toolset. Parallel Processing
Letters, 20(4):397–414, December 2010. pages
65

[Whi12] Tom White. Hadoop: The definitive guide.
O’Reilly Media, Inc., 2012. pages 75

[Wie61] N. Wiener. Cybernetics: Or, Control and Com-
munication in the Animal and the Machine. The
@MIT paperback series: Massachusetts Insti-
tute of Technology. Mit Press, 1961. pages 35,
36

[Wil88] Mark Williams. Hierarchical Multi-expert Sig-
nal Understanding,". Blackboard Systems,
Robert Engelmore and Tony Morgan, editors,
Addison-Wesley, pages 387–415, 1988. pages 73

[WJIG11] Marc Wolff, Stéphane Jaouen, and Lise-Marie
Imbert-Gérard. Conservative numerical meth-
ods for a two-temperature resistive MHD model
with self-generated magnetic field term. In
CEMRACS’10 research achievements: Numeri-
cal modeling of fusion. 2011. pages 153, 171

[WJR07] J.P. Womack, D.T. Jones, and D. Roos. The Ma-
chine That Changed the World: The Story of
Lean Production– Toyota’s Secret Weapon in the
Global Car Wars That Is Now Revolutionizing
World Industry. Free Press, 2007. pages 34

[WK82] James Q. Wilson and George L. Kelling. The po-
lice and neighborhood safety: Broken windows,
1982. pages 49

[WM03] Felix Wolf and Bernd Mohr. Automatic Perfor-
mance Analysis of Hybrid MPI/OpenMP Appli-
cations. In Proc. of 11th Euromicro Workshop
on Parallel Distributed and Network-Based Pro-
cessing (PDP), Genua, Italy, pages 13–22. IEEE
Computer Society, February 2003. pages 64

[WM04] Felix Wolf and Bernd Mohr. EPILOG binary
trace-data format. FZJ-ZAM, 2004. pages 64,
112

[Wol03] Felix Wolf. Automatic Performance Analysis on
Parallel Computers with SMP Nodes. PhD the-
sis, RWTH Aachen, Forschungszentrum Jülich,
February 2003. ISBN 3-00-010003-2. pages 64

[Wol11] Marc Wolff. Analyse mathématique et numérique
du système de la magnétohydrodynamique ré-
sistive avec termes de champ magnétique auto-
généré. PhD thesis, Université de Strasbourg,
2011. pages 153

[WR07] H’sien Jin Wong and Alistair P Rendell. The
design of MPI based distributed shared mem-
ory systems to support OpenMP on clusters.
In Cluster Computing, 2007 IEEE International
Conference on, pages 231–240. IEEE, 2007.
pages 139

[ws13] Amazon web services. Amazon Simple Storage
Service (Amazon S3). http://aws.amazon.
com/en/s3/, 2013. pages 74

[Zel09] A. Zeller. Why programs fail: a guide to system-
atic debugging. Morgan Kaufman Incorporated,
2009. pages 47, 48

[ZLG+99] Omer Zaki, Ewing Lusk, William Gropp, Deb-
orah Swider, et al. Toward scalable perfor-
mance visualization with Jumpshot. Interna-
tional Journal of High Performance Computing
Applications, 13:277–288, 1999. pages 64

http://www.google.com/search?q=The+New+New+Product+Development+Game
http://www.google.com/search?q=The+New+New+Product+Development+Game
http://www.google.com/search?q=Tera+100+Supercomputer
http://top500.org/system/10589
http://top500.org/system/10589
http://www.google.com/search?q=Curie+Supercomputer+(thin+nodes)
http://top500.org/system/177818
http://www.google.com/search?q=Systems+Engineering+for+Intelligent+Transportation+Systems
http://www.google.com/search?q=Systems+Engineering+for+Intelligent+Transportation+Systems
http://ops.fhwa.dot.gov/publications/seitsguide/seguide.pdf
http://ops.fhwa.dot.gov/publications/seitsguide/seguide.pdf
http://www.google.com/search?q=Using+Atomic+Broadcast+to+Implement+a+posteriori+Agreement+for+Clock+Synchronization
http://www.google.com/search?q=Using+Atomic+Broadcast+to+Implement+a+posteriori+Agreement+for+Clock+Synchronization
http://www.google.com/search?q=Using+Atomic+Broadcast+to+Implement+a+posteriori+Agreement+for+Clock+Synchronization
http://www.google.com/search?q=Dynamic+software+testing+of+MPI+applications+with+Umpire
http://www.google.com/search?q=Dynamic+software+testing+of+MPI+applications+with+Umpire
http://www.google.com/search?q=Dynamic+software+testing+of+MPI+applications+with+Umpire
http://www.google.com/search?q=Statistical+scalability+analysis+of+communication+operations+in+distributed+applications
http://www.google.com/search?q=Statistical+scalability+analysis+of+communication+operations+in+distributed+applications
http://www.google.com/search?q=CesiumSpray:+a+Precise+and+Accurate+Global+Time+Service+for+Large-scale+Systems
http://www.google.com/search?q=CesiumSpray:+a+Precise+and+Accurate+Global+Time+Service+for+Large-scale+Systems
http://www.google.com/search?q=CesiumSpray:+a+Precise+and+Accurate+Global+Time+Service+for+Large-scale+Systems
http://www.google.com/search?q=EARL-API+Documentation
http://www.google.com/search?q=EARL-API+Documentation
http://www.google.com/search?q=From+trace+generation+to+visualization:+A+performance+framework+for+distributed+parallel+systems
http://www.google.com/search?q=From+trace+generation+to+visualization:+A+performance+framework+for+distributed+parallel+systems
http://www.google.com/search?q=From+trace+generation+to+visualization:+A+performance+framework+for+distributed+parallel+systems
http://www.google.com/search?q=Sequential+performance+analysis+with+callgrind+and+kcachegrind
http://www.google.com/search?q=Sequential+performance+analysis+with+callgrind+and+kcachegrind
http://www.google.com/search?q=Large-scale+performance+analysis+of+Sweep3D+with+the+Scalasca+toolset
http://www.google.com/search?q=Large-scale+performance+analysis+of+Sweep3D+with+the+Scalasca+toolset
http://www.google.com/search?q=Hierarchical+Multi-expert+Signal+Understanding,"
http://www.google.com/search?q=Hierarchical+Multi-expert+Signal+Understanding,"
http://www.google.com/search?q=Conservative+numerical+methods+for+a+two-temperature+resistive+MHD+model+with+self-generated+magnetic+field+term
http://www.google.com/search?q=Conservative+numerical+methods+for+a+two-temperature+resistive+MHD+model+with+self-generated+magnetic+field+term
http://www.google.com/search?q=Conservative+numerical+methods+for+a+two-temperature+resistive+MHD+model+with+self-generated+magnetic+field+term
http://www.google.com/search?q=The+police+and+neighborhood+safety:+Broken+windows
http://www.google.com/search?q=The+police+and+neighborhood+safety:+Broken+windows
http://www.google.com/search?q=Automatic+Performance+Analysis+of+Hybrid+MPI/OpenMP+Applications
http://www.google.com/search?q=Automatic+Performance+Analysis+of+Hybrid+MPI/OpenMP+Applications
http://www.google.com/search?q=Automatic+Performance+Analysis+of+Hybrid+MPI/OpenMP+Applications
http://www.google.com/search?q=The+design+of+MPI+based+distributed+shared+memory+systems+to+support+OpenMP+on+clusters
http://www.google.com/search?q=The+design+of+MPI+based+distributed+shared+memory+systems+to+support+OpenMP+on+clusters
http://www.google.com/search?q=The+design+of+MPI+based+distributed+shared+memory+systems+to+support+OpenMP+on+clusters
http://www.google.com/search?q=Amazon+Simple+Storage+Service+(Amazon+S3)
http://www.google.com/search?q=Amazon+Simple+Storage+Service+(Amazon+S3)
http://aws.amazon.com/en/s3/
http://aws.amazon.com/en/s3/
http://www.google.com/search?q=Toward+scalable+performance+visualization+with+Jumpshot
http://www.google.com/search?q=Toward+scalable+performance+visualization+with+Jumpshot

Appendices

197

APPENDIX A

Instrumentation Filtering at
Compiler-Level

This section presents some work which has been done on the GCC compiler in order to filter
instrumented functions in a more effective way. After presenting existing filtering possibilities
and their limitations, we present our patch which extends filtering possibilities. Eventually
we perform some performance measurements to illustrate its use and demonstrate the perfor-
mance gains it provides.

A.1 Existing Filtering

Command Effect

-finstrument-functions-exclude-file-list=file,... Filter a list of file from which functions wont be in-
strumented. The match is done on substrings.

-finstrument-functions-exclude-function-list=sym,... Filter a list of symbols which wont be instrumented.
The match is done on substrings.

Figure A.1: Description of the two filtering options associated with the -finstrument-
functions flag.

By looking at the GCC (4.7.1) documentation [Pro13a] which is summed up in figure A.1,
it can be seen that “finstrumented-functions” can be filtered using two command line options
which operate either on the source file or on symbol name. In particular, the filter is applied
if it is a substring of a given file or symbol. Although practical, for example, to filter files
from a given directory or symbol from a single library (with same prefix), this approach makes
selective instrumentation not practical. Indeed, substrings matching can lead to involuntary
filtering of function even when providing exact names, possibility which becomes a highly
probable when handling large simulation programs (thousands of functions). Moreover, when
filtering in the purpose of reducing the overhead, it would be easier to white-list instead of
blacklisting them as the target set is by definition smaller, feature not supported by current
interface. The way lists are passed can also be problematic when managing large sets as
command lines cannot be too large without quickly becoming unmanageable, an alternative
way of passing them could therefore be useful to leverage this limitation.

199

200 INSTRUMENTATION FILTERING AT COMPILER-LEVEL

A.2 Proposed Extension

This section details the functionalities added by our ≈ 270 lines patch to GCC 4.7.1 which
aimed at fixing the limitations we identified in previous section. This small patch modified
three files gcc/opts.c, gcc/gimplify.c and gcc/common.opt and left previous flags unmodified to
ensure compatibility. Our purpose was to fix the following limitations of GCC’s instrumenta-
tion filtering:

• Filtering matches are only done on substrings (current implementation calls substr).

• There is no white-listing mechanism.

• Filter list can only be passed as a command line argument.

In this purpose we extended the existing filtering commands with eight new ones which
support either substring or exact matching, allow white-listing and blacklisting and which are
able to retrieve the list either from the command line or from a file.

Command Effect
-finstrument-functions-blacklist-function-list=sym,... Blacklists a list of symbols.
-finstrument-functions-blacklist-file-list=file,... Blacklists a list of files.

-finstrument-functions-blacklist-function-from-file=sym.txt Blacklists a list of symbols taken from a
file.

-finstrument-functions-blacklist-file-from-file=file.txt Blacklists a list of files taken from a file.
-finstrument-functions-whitelist-function-list=sym,... White-lists a list of symbols.
-finstrument-functions-whitelist-file-list=file,... White-lists a list of files.

-finstrument-functions-whitelist-function-from-file=sym.txt White-lists a list of symbols taken from a
file.

-finstrument-functions-whitelist-file-from-file=file.txt White-lists a list of files taken from a file.

Figure A.2: Additions to filtering options associated with the -finstrument-functions
flag.

Figure A.2 presents the eight new filtering options which are added by the patch. Note
that the two first ones provide are similar to previously existing functions. However, it shall
be noted that they still provide an extra feature. Indeed, in order to propose both sub-string
matching and exact matching we adopted the convention of preceding symbol name with an
’=’ to perform an exact match.

APPENDIX B

Instrumenting the MPC Framework

This appendix presents some point which might help tool developer who would like to in-
strument the MPC runtime. We start by describing the extended TLS mechanism of MPC,
then we present some useful instrumentation points. Eventually, we detail all the topology
getters which can be used to provide a context to the instrumented events.

B.1 MPC Extended TLS

As presented in section 1.1, MPC executes “MPI tasks” in user level threads, making the
use of classical Thread Local Storage (TLS) impossible as they would be shared between mul-
tiple tasks, therefore, failing a providing an unique context to the instrumentation. However,
thanks to the extended TLS mechanism [CPJ11], MPC can switch those values at scheduler
level in order to maintain a context for each task. Their default value is NULL. As our instru-
mentation library required such TLS, two of them were added to the runtime. To use them
just declare two extern variables:

• extern __thread void *tls_trace_module;

• extern __thread void *tls_args;

These variables are declared in sctk_tls.h and can be used to store the instrumentation
context in post initialisation code (see next section).

B.2 Launch Hooks

As developed in section 9.3.3, two hooks have been added to capture MPC’s initialisation at
both process and task level, allowing the setup of respectively global and local contexts.

• void MPC_Process_hook()

– Called once for each process.
– You cannot do MPI calls from here.
– MPC TLS are not available.

• void MPC_Task_hook(int rank)

– Called once for each MPI task.
– You can do MPI calls from here.
– MPC TLS are available.

201

202 INSTRUMENTING THE MPC FRAMEWORK

B.3 Instrumentation Points

This section details common instrumentation points which can be used to retrieve useful
events from the MPC runtime. After presenting the profiling interface, we provide examples
on how to intercept thread creation and lock related calls.

B.3.1 MPI Profiling Interface

MPC implements PMPI and PMPC calls they are both the same except that PMPI is called
by MPI_* calls (classical MPI code) and PMPC is called by MPC_* by explicitly MPC codes.
If you compile codes including <mpi.h> with mpc_cc they will be automatically redirected to
MPC. PMPC calls were not redirected to PMPI calls because they slightly extend the MPI api.

B.3.2 Thread Spawning

As the TLS are only available after the creation of the thread you have to use MPC_Task_hook
to set them up these tasks are created with sctk_thread_create in sctk_thread.c:685. Further
thread creation are done by sctk_thread.c:784. Note that those symbol have no associated
weak symbol because we currently intercept it by preloading our library as presented in Figure
B.1.* Note that MPC creates a number of worker threads which should be ignored or at least
processed separately. You should instrument only threads which were created in a parent
which TLS was setup by MPC_Task_hook.� �
#include <mpc . h>

int sctk_thread_create (sctk_thread_t ∗ thread ,
const sctk_thread_attr_t ∗ attr ,
void ∗ (∗ start_rout ine) (void ∗) ,
void ∗arg , long task_id)

{
int tmp = 0;
tmp = _sctk_thread_create (thread , attr , THREAD_HOOK, THREAD_STRUCT, task_id) ;
return tmp ;

}

int sctk_user_thread_create (sctk_thread_t ∗ thread ,
const sctk_thread_attr_t ∗ attr ,
void ∗ (∗ start_rout ine) (void ∗) ,
void ∗arg)

{
int tmp = 0;
tmp = _sctk_user_thread_create (thread , attr , THREAD_HOOK, THREAD_STRUCT) ;

return tmp ;
}� �

Figure B.1: Illustration of the interception of MPC threads creation.

B.3.3 Lock Instrumentation

Mutex_lock and mutex_unlock have their weak symbols, allowing them to be instrumented as
in Figure B.2.

TOPOLOGY GETTERS 203

� �
int user_sctk_thread_mutex_lock (sctk_thread_mutex_t ∗ mutex)
{

int ret = 0;
ret = sctk_thread_mutex_lock (mutex) ;
return ret ;

}
int user_sctk_thread_mutex_unlock (sctk_thread_mutex_t ∗ mutex)
{

int ret = 0;
ret = sctk_thread_mutex_unlock (mutex) ;
return ret ;

}� �
Figure B.2: Sample instrumentation of MPC locks.

B.4 Topology Getters

MPC is hierarchical : one node hosts one or multiple processes which embed VCPUS (user-
space abstraction of cores) which themselves are used to run MPC tasks. Once MPC is ini-
tialised (MPC_Task_hook) it is possible to retrieve the various identifiers as presented in fig-
ure B.3 and use them as in figure B.4.

Description MPC Call
Node rank MPC_Node_rank(int *n)
Node count MPC_Node_number(int *n)
VCPU Rank MPC_Processor_rank(int *n)
VCPU count MPC_Processor_number(int *n)
Local process rank (on node) MPC_Local_process_rank(int *n)
Local process count MPC_Local_process_number(int *n)
Process rank (global) MPC_process_rank(int *n)
Process count (global) MPC_process_number(int *n)
MPI task rank MPC_Comm_rank(MPC_COMM_WORLD, int *n)
MPI task count MPC_Comm_size(MPC_COMM_WORLD, int *n)

Thread id and task rank sctk_get_thread_info (int *task_id, int *thread_id) (Note that
this thread id is not unique)

Figure B.3: List of topology getters available in MPC.

204 INSTRUMENTING THE MPC FRAMEWORK

� �
#include <std io . h>
#include <mpc . h>
#include <pthread . h>

void ∗ foo (void ∗a) {
int thread_id , task_id ;
sctk_get_thread_info (&task_id , &thread_id) ;
pr in t f ("CThid : %d \t CTskid : %d \n" , thread_id , task_id) ;

}

int main (int argc , const char ∗argv []) {
int node , node_c , proc , proc_c , loca l , l oca l_c , process ;
int process_c , rank , size , thread_id , task_id ;

sctk_get_thread_info (&task_id , &thread_id) ;
MPC_Node_rank(&node) ;
MPC_Node_number(&node_c) ;
MPC_Processor_rank (&proc) ;
MPC_Processor_number (&proc_c) ;
MPC_Local_process_rank (&l o c a l) ;
MPC_Local_process_number (&l o c a l _ c) ;
MPC_Process_rank (&process) ;
MPC_Process_number (&process_c) ;
MPC_Comm_rank(MPC_COMM_WORLD, &rank) ;
MPC_Comm_size(MPC_COMM_WORLD, &size) ;

pthread_t th ;
pthread_create (&th , NULL, foo , NULL) ;
int i = 0 ;
f or (i = 0 ; i < s ize ; i++) {

i f (i == rank) {
pr in t f ("=========================\n") ;
pr in t f ("R : %d \t RC : %d\n" , rank , s ize) ;
pr in t f (" Thid : %d \t Tskid : %d \n" , thread_id , task_id) ;
pr in t f ("N : %d \t NC : %d\n" , node , node_c) ;
pr in t f ("PROC : %d \t PROCC : %d\n" , proc , proc_c) ;
pr in t f ("LP : %d \t LPC : %d\n" , loca l , l o c a l _ c) ;
pr in t f ("PR : %d \t PC : %d\n" , process , process_c) ;
pr in t f ("=========================\n") ;

}
MPC_Barrier (MPC_COMM_WORLD) ;

}
pthread_join (th , NULL) ;
return 0;

}� �
Figure B.4: Example using every topology getters in MPC.

	1 Introduction
	1.1 The MultiProcessor Computing Runtime
	1.2 Requirements
	1.3 Manuscript Outline

	I Context
	2 Thesis Context
	2.1 Supercomputer Evolution Overview
	2.2 Supercomputer Architecture and Performance
	2.3 Programming Models
	2.3.1 Shared Memory
	2.3.2 Distributed Memory
	2.3.3 Accelerators
	2.3.4 Summary

	2.4 Thesis Computing Environment
	2.4.1 Description
	2.4.2 Node Description
	2.4.3 Network Topology

	2.5 Summary

	3 Development Cycle
	3.1 Classical Development Methodologies
	3.1.1 Constants in the Development Cycle
	3.1.2 Waterfall Model
	3.1.3 V-Model
	3.1.4 Agile Methods

	3.2 Developing Against Complexity
	3.2.1 Structural Loops
	3.2.2 Catalysing Loops

	3.3 Tools as Heuristics
	3.3.1 Specifications
	3.3.2 Software Development
	3.3.3 Integration
	3.3.4 Reporting
	3.3.5 Software Management
	3.3.6 Overview

	3.4 Summary

	4 Role of Performance and Debugging Tools
	4.1 Performance Metrics
	4.1.1 Strong and Weak Scaling
	4.1.2 Canonical Speedup
	4.1.3 Scaling Bounds
	4.1.4 Acceleration versus Scaling
	4.1.5 Summary

	4.2 Programs Correctness
	4.2.1 Overview
	4.2.2 Quality Process

	4.3 Summary

	II Key Concepts and Related Work
	5 Architecture of Developer Tools
	5.1 Canonical Architecture
	5.2 Instrumentation Approaches
	5.2.1 External Instrumentation
	5.2.2 Embedded Instrumentation

	5.3 Coupling Methods
	5.3.1 In-Place
	5.3.2 Post-Mortem
	5.3.3 On-line

	5.4 Performance Event Analysis
	5.5 Summary

	6 Related Work
	6.1 Developer Tools
	6.1.1 Debuggers
	6.1.2 Performance Tools
	6.1.3 Validation Tools

	6.2 Time-stamp Synchronisation
	6.2.1 Time Source
	6.2.2 Synchronisation
	6.2.3 Logical Clocks
	6.2.4 Time-stamps for Instrumentation

	6.3 Blackboard Systems
	6.3.1 BlackBoard Architecture

	6.4 Data Management
	6.4.1 File-Based Approach
	6.4.2 Key-Value Data-stores
	6.4.3 Distributed Data-Reduction
	6.4.4 Tree-Based Overlay Networks (TBONS)

	III Contribution
	7 MPI Runtime Characterisation
	7.1 Tool Architecture
	7.2 Measurement Process
	7.2.1 Point to Points
	7.2.2 Collectives Operations

	7.3 Report Analysis
	7.3.1 Point to Points
	7.3.2 Collective Operations

	7.4 Summary

	8 Timestamp Synchronisation
	8.1 Synchronisation Principle
	8.2 Distributed Synchronisation
	8.2.1 Notations and Methodology
	8.2.2 Centralised Topology
	8.2.3 k-tree Topology
	8.2.4 Ring Topology
	8.2.5 Binomial Tree Topology
	8.2.6 Summary

	8.3 Depth Distribution in 2-trees and Binomial Trees
	8.3.1 Notations and Methodology
	8.3.2 2-tree
	8.3.3 Binomial Tree
	8.3.4 Summary

	8.4 Study of Synchronisation Error Propagation
	8.4.1 Round-trip Error Distribution
	8.4.2 Error Propagation

	8.5 Summary

	9 Trace Based Approach
	9.1 Limitations of Existing Trace Formats
	9.2 Proposed Architecture
	9.3 Instrumentation
	9.3.1 MPI Profiling Interface
	9.3.2 Compiler Level Instrumentation
	9.3.3 Direct Instrumentation
	9.3.4 Library Interposition
	9.3.5 Instrumentation Summary

	9.4 Trace Library
	9.4.1 Topology Management
	9.4.2 Event Description
	9.4.3 File Descriptor Handling
	9.4.4 Debug Buffers
	9.4.5 Symbol Extraction
	9.4.6 Compression

	9.5 Trace Reader
	9.5.1 Trace Reader Architecture
	9.5.2 Trace Reader Interface
	9.5.3 Sample Tool
	9.5.4 Performance

	9.6 Limitation
	9.7 Summary

	10 Online Trace Analysis
	10.1 Shifting to On-line Trace Analysis
	10.2 Coupling Multiple Applications
	10.2.1 Transparent Cohabitation (Virtualization)
	10.2.2 Mappings (VMPI_Maps)
	10.2.3 Communications (VMPI_Streams)
	10.2.4 1 to N Coupling
	10.2.5 Runtime-Coupling Performance
	10.2.6 Summary

	10.3 Blackboard
	10.3.1 Blackboard Implementation
	10.3.2 Limitations
	10.3.3 Summary

	11 Distributed Analysis and Reduction Tree (DART)
	11.1 Motivations
	11.2 Architecture
	11.2.1 Fixed Topology
	11.2.2 Network Engine

	11.3 Interface and Programming Principle
	11.4 Analysis Projects
	11.4.1 Continuous Sampling Engine
	11.4.2 Phase Based Sorting Filter

	11.5 Limitations
	11.6 Summary

	12 Analysis
	12.1 Tested Programs
	12.2 Trace-Based Debugger
	12.2.1 Architecture
	12.2.2 Interactive Debugging
	12.2.3 Hybrid Deadlock Detection
	12.2.4 Trace-Based Crash-Dumps Performance
	12.2.5 Trace-Based Crash-Dumps and Profiling

	12.3 Reporting
	12.3.1 Measure Collectors
	12.3.2 Module Example

	12.4 Profiling
	12.4.1 Profiles
	12.4.2 MPI Communication Mapping
	12.4.3 Wait State Analysis
	12.4.4 Time Matrix
	12.4.5 MPI Quadrant
	12.4.6 Spatial Analysis

	12.5 Online Trace Analysis Overhead
	12.6 Summary

	IV Conclusion and Perspectives
	13 Conclusion
	14 Perspectives
	14.1 Analysis
	14.2 Features

	Appendices
	A Instrumentation Filtering at Compiler-Level
	A.1 Existing Filtering
	A.2 Proposed Extension

	B Instrumenting the MPC Framework
	B.1 MPC Extended TLS
	B.2 Launch Hooks
	B.3 Instrumentation Points
	B.3.1 MPI Profiling Interface
	B.3.2 Thread Spawning
	B.3.3 Lock Instrumentation

	B.4 Topology Getters

