N

N

Profiling and debugging by efficient tracing of hybrid
multi-threaded HPC applications.
Jean-Baptiste Besnard

» To cite this version:

Jean-Baptiste Besnard. Profiling and debugging by efficient tracing of hybrid multi-threaded HPC
applications.. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Versailles Saint
Quentin en Yvelines, 2014. English. NNT: . tel-01102639

HAL Id: tel-01102639
https://theses.hal.science/tel-01102639
Submitted on 13 Jan 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01102639
https://hal.archives-ouvertes.fr

DE LA RECHERCHE A L'INDUSTRIE

ot S
UNIVERSITE DE QW%

Cea VERSAILLES &
| c— ST-QUENTIN-EN-YVELINES

THESIS SUBMITTED TO THE UNIVERSITY VERSAILLES
SAINT-QUENTIN EN YVELINES

Specialised in
Computer Science

at the Ecole doctorale des Sciences et Technologies de Versailles (STV)

in total fulfillment of the requirements for the award of
DOCTOR OF PHILOSOPHY
entitled

Profiling and debugging by efficient tracing of hybrid
multi-threaded HPC applications.

by Jean-Baptiste Besnard

hosted by

CEA, DAM, DIF
F-91297 ARPAJON FRANCE

Département des Sciences de la Simulation et de 'Information (DSSI)

Publicly defended the 16th of July 2014
in front of the following doctoral Committee:

Pr. Alfredo GOLDMAN Professor at the University of Sdo Paulo Jury President
Pr. Allen MALONY Professor at the University of Oregon Referee

Pr. Michael KRAJECKY Professor at the University of Reims Referee

Pr. William JALBY Director of research, University of Versailles Examiner

Dr. Marc PERACHE Tutor, Research Engineer at CEA,DAM Examiner

DE LA RECHERCHE A L'INDUSTRIE) {——---”‘
UNIVERSITE DE N/

Ccea VERSAILLES &
 — ST-QUENTIN-EN-YVELINES

_ THESE DE DOCTORAT DE
L'UNIVERSITE DE VERSAILLES SAINT-QUENTIN EN YVELINES

Spécialité
Informatique

a 'Ecole doctorale des Sciences et Technologies de Versailles (STV)

présentée pour obtenir le grade de
DOCTEUR de 'UNIVERSITE DE VERSAILLES

et intitulée

Profilage et débogage par prise de traces efficaces
d’applications hybrides multi-threadées HPC.

par Jean-Baptiste Besnard

Organisme d’accueil :

CEA, DAM, DIF
F-91297 ARPAJON FRANCE

Département des Sciences de la Simulation et de 'Information (DSSI)

Soutenue publiquement le 16 Juillet 2014
devant le jury composé de :

Pr. Alfredo GOLDMAN Professeur a 'université de Sao Paulo Président du jury
Pr. Allen MALONY Professeur a 'université d’Oregon Rapporteur

Pr. Michael KRAJECKY Professeur a I'université de Reims Rapporteur

Pr. William JALBY Directeur de Recherche, université de Versailles Examinateur

Dr. Marc PERACHE Tuteur, Ingénieur de recherche au CEA,DAM Examinateur

Abstract

Supercomputers’ evolution is at the source of both hardware and software chal-
lenges. In the quest for the highest computing power, the interdependence in-
between simulation components is becoming more and more impacting, requir-
ing new approaches. This thesis is focused on the software development aspect
and particularly on the observation of parallel software when being run on several
thousand cores. This observation aims at providing developers with the necessary
feedback when running a program on an execution substrate which has not been
modeled yet because of its complexity. In this purpose, we firstly introduce the
development process from a global point of view, before describing developer tools
and related work. In a second time, we present our contribution which consists
in a trace based profiling and debugging tool and its evolution towards an on-line
coupling method which as we will show is more scalable as it overcomes I10s lim-
itations. Our contribution also covers our time-stamp synchronisation algorithm
for tracing purposes which relies on a probabilistic approach with quantified error.
We also present a tool allowing machine characterisation from the MPI aspect and
demonstrate the presence of machine noise for both point to point and collectives,
justifying the use of an empirical approach. In summary, this work proposes and
motivates an alternative approach to trace based event collection while preserving
event granularity and a reduced overhead.

Résumeée

L'évolution des supercalculateurs est a la source de défis logiciels et architecturaux.
Dans la quéte de puissance de calcul, I'interdépendance des éléments du proces-
sus de simulation devient de plus en plus impactante et requiert de nouvelles ap-
proches. Cette thése se concentre sur le développement logiciel et particulierement
sur l'observation des programmes paralleles s’exécutant sur des milliers de coeurs.
Dans ce but, nous décrivons d’abord le processus de développement de maniére
globale avant de présenter les outils existants et les travaux associés. Dans un sec-
ond temps, nous détaillons notre contribution qui consiste d’'une part en des outils
de débogage et profilage par prise de traces, et d’autre part en leur évolution vers
un couplage en ligne qui pallie les limitations d’entrées—sorties. Notre contribu-
tion couvre également la synchronisation des horloges pour la prise de traces avec
la présentation d'un algorithme de synchronisation probabiliste dont nous avons
quantifié 'erreur. En outre, nous décrivons un outil de caractérisation machine qui
couvre aspect MPI. Un tel outil met en évidence la présence de bruit aussi bien sur
les communications de type point-a-point que de type collective. Enfin, nous pro-
posons et motivons une alternative a la collecte d’événements par prise de traces
tout en préservant la granularité des événements et un impact réduit sur les per-
formances, tant sur le volet utilisation CPU que sur les entrées—sorties.

Acknowledgement

These words end a three years adventure during which I met fascinating person-
alities and learned more than ever. First of all I want to thank Marc Pérache my
industrial tutor who made everything possible, I hope this work matches the trust
he has placed in me. By his careful and constant guidance he helped me to learn
from my mistakes without ever constraining my work or ideas in any manner. This
remarkable freedom is at the core of this work as it allowed the springing of new
ideas which became my contributions to the the performance tool field. This is this
inspiring boldness which is required in the HPC context where legacy is mixed with
novelty. I want to thank the CEA/DAM and my hierarchy who allowed me to work
at largest scales on world class supercomputers without any form of limitation —
allowing me to validate my work on representative cases. I also want to thank
William Jalby who directed my work from an academic point of view. Thanks to
both his original point of view and long experience in computer hardware architec-
ture he opened new ways of thinking of my problematics through shrewd remarks.
I am also grateful that he allowed me to join his team in order to pursue my work
on parallel tools. During these years I met several colleagues and friends from
CEA and university. I met trainees, doctoral candidates and post-doc from vari-
ous horizons involved in every stage of the simulation chain: Marc W., Emmanuel,
Emmanuel O., Bertrand, Alexandra, Alexandre, Xavier, Thomas, Nicolas, Jordan,
Asma and so many more. This was an inciting interdisciplinary environment where
we sharpened our point of views, shared good moments and supported each other.
I want to thank particularly all the members of the MPC Team, Marc of course,
Patrick, Julien J., Jean-Yves, Sébastien, Jérome, Camille, Augustin, Aurele, Syl-
vain, Julien A., Antoine, Emmanuelle and Francois for everything we shared dur-
ing this adventure. I also want to thank my reviewers, Professor Krajecky and
Malony who took the time to assess my work with interesting remarks in the light
of their long experience. 'am also honored that Professor Goldman has accepted
to preside my Jury. I want to express my gratitude to my family for its patience,
particularly my wife Anais for her continous support. Eventually, as I believe that
the transitioning to Exascale has just started, I am happy to be able to pursue my
work in the HPC field at Paratools, for this I want to thank Mr Shende and Malony.

Contents

1 Introduction

1.1 The MultiProcessor Computing Runtime
1.2 Requirements e e e e
1.3 Manuscript Outline e

Context

Thesis Context

2.1 Supercomputer Evolution Overview

2.2 Supercomputer Architecture and Performance

2.3 Programming Models
2.3.1 Shared Memory i e e
2.3.2 Distributed Memory
2.3.3 Accelerators e
2.3.4 SUMMATY o o e e e e e e e e e e e e e e e e

2.4 Thesis Computing Environment
2.4.1 Description e e e e e e e
2.4.2 Node Description
2.4.3 Network Topology e

25 Summary e e e e e

Development Cycle

3.1 Classical Development Methodologies
3.1.1 Constants in the Development Cycle
3.1.2 Waterfall Model
3.1.3 V-Model e e
3.14 AgileMethods e

3.2 Developing Against Complexity
3.2.1 Structural Loops e
3.2.2 Catalysing Loops e e e

3.3 Toolsas Heuristics i e e
3.3.1 Specifications e e
3.3.2 Software Development
3.3.3 Integration
3.34 Reporting e e e e e e e
3.3.5 Software Management
3.3.6 OVErVIEW i i it e e e e e e e

13
14
15
15

8 CONTENTS
3.4 Summary e e e e e e e 40
4 Role of Performance and Debugging Tools 41
4.1 Performance Metrics 41
4.1.1 Strongand Weak Scaling. 41
4.1.2 Canonical Speedup 42
4.1.3 ScalingBounds e 43
4.1.4 AccelerationversusScaling 44
415 Summary e e e e e e e e 46
4.2 Programs Correctness e 47
421 OVerview o v i i e e e e e e e e e e e e e 47
4.2.2 QualityProcess e 48
4.3 SUMMATY o o v o e e e e e e e e e e e e e e e e e e 50
II Key Concepts and Related Work 51
5 Architecture of Developer Tools 53
5.1 Canonical Architecture 53
5.2 Instrumentation Approaches 54
5.2.1 External Instrumentation 54
5.2.2 Embedded Instrumentation 55
5.3 Coupling Methods e 56
5.3.1 In-Place. e e 56
5.3.2 Post-Mortem 57
533 On-line e e 57
5.4 Performance Event Analysis e 58
5.5 Summary e e e e 59
6 Related Work 61
6.1 Developer Tools e 61
6.1.1 Debuggers e e e 61
6.1.2 Performance Tools., 62
6.1.3 Validation Tools e 67
6.2 Time-stamp Synchronisation 68
6.2.1 Time Source i i i i e e e e e e e e 70
6.2.2 Synchronisation 70
6.2.3 Logical Clocks e e 71
6.2.4 Time-stamps for Instrumentation. 71
6.3 Blackboard Systems. e 71
6.3.1 BlackBoard Architecture 72
6.4 Data Management e 73
6.4.1 File-Based Approach 73
6.4.2 Key-Value Data-stores 74
6.4.3 Distributed Data-Reduction 75
6.4.4 Tree-Based Overlay Networks (TBONS) 75

CONTENTS 9

IIT Contribution 77
7 MPI Runtime Characterisation 79
7.1 Tool Architecture e 79
7.2 Measurement Process. e 80
7.21 PointtoPoints e 80
7.2.2 Collectives Operations v i 80

7.3 Report Analysis e e 81
7.3.1 PointtoPoints 81
7.3.2 Collective Operations i 83

T4 SUMMATY o o o et e e e e e e e e e e e e e e e e 84
8 Timestamp Synchronisation 85
8.1 Synchronisation Principle 85
8.2 Distributed Synchronisation 86
8.2.1 Notations and Methodology 86
8.2.2 Centralised Topology e 87
8.2.3 k-tree Topology e e 87
8.2.4 RingTopology e e 88
8.2.5 Binomial Tree Topology 89
8.2.6 Summary e e e e e e e e e 90

8.3 Depth Distribution in 2-trees and Binomial Trees 91
8.3.1 Notations and Methodology 91
8.3.2 2-tree e e e e e e e 91
8.3.3 Binomial Tree 92
8.3.4 Summary e e e e e e e e e e e 93

8.4 Study of Synchronisation Error Propagation 93
8.4.1 Round-trip Error Distribution 93
8.4.2 Error Propagation. 96

8.5 Summary e e e e e e e 98
9 Trace Based Approach 101
9.1 Limitations of Existing Trace Formats 101
9.2 Proposed Architecture e 102
9.3 Instrumentation 102
9.3.1 MPI Profiling Interface 103
9.3.2 Compiler Level Instrumentation 103
9.3.3 Direct Instrumentation. 104
9.3.4 Library Interposition, 104
9.3.5 Instrumentation Summary 105

9.4 Trace Library e e e e 105
9.4.1 Topology Management 106
9.4.2 Event Description e 106
9.4.3 File Descriptor Handling 106
944 DebugBuffers 108
9.4.5 Symbol Extraction 108
9.4.6 CompresSSiOn v v it e e e e e e e e e e e e e e e 112

95 TraceReader e 118

10 CONTENTS

9.5.1 Trace Reader Architecture
9.5.2 Trace Reader Interface
9.5.3 SampleTool
9.5.4 Performance e e e
9.6 Limitation e e e e
9.7 Summaryo e e e e e e

10 Online Trace Analysis
10.1 Shifting to On-line Trace Analysis
10.2 Coupling Multiple Applications
10.2.1 Transparent Cohabitation (Virtualization)
10.2.2 Mappings (VMPI_Maps) i e
10.2.3 Communications (VMPI_Streams)
10.2.4 1to N Coupling e e
10.2.5 Runtime-Coupling Performance
10.2.6 SUMMArY o e e e e e e e e e e e e e
10.3 Blackboard e e
10.3.1 Blackboard Implementation
10.3.2 Limitations e e e e e e e
10.3.3 Summary e e e e e e e e e

11 Distributed Analysis and Reduction Tree (DART)
11.1 Motivations e e e e e e
11.2 Architecture e e
11.2.1 Fixed Topology 0 o e e e e e
11.2.2 Network Engine
11.3 Interface and Programming Principle
11.4 Analysis Projects e e e
11.4.1 Continuous Sampling Engine
11.4.2 Phase Based Sorting Filter
11.5 Limitations L e e
11.6 SUMmMATrY o o e e e e e e e e e e e e e e e e

12 Analysis
12.1 Tested Programs e
12.2 Trace-Based Debugger e
12.2.1 Architecture
12.2.2 Interactive Debugging
12.2.3 Hybrid Deadlock Detection
12.2.4 Trace-Based Crash-Dumps Performance
12.2.5 Trace-Based Crash-Dumps and Profiling
12.3 Reporting e e e e e e
12.3.1 Measure Collectors e
12.3.2 Module Example e
12.4 Profiling e e e
12.4.1 Profiles e
12.4.2 MPI Communication Mapping
12.4.3 Wait State Analysis

CONTENTS 11

12.4.4 Time Matrix e e e e e 165

12.4.5 MPI Quadrant e 170

12.4.6 Spatial Analysis e 170

12.5 Online Trace Analysis Overhead 171
12.6 SUMMATY ot e e e e e e e e e e e e e e e e e 173
IV Conclusion and Perspectives 175
13 Conclusion 177
14 Perspectives 179
14.1 Analysis e e e 179
14.2 Features i i e e e e e e e 180
Appendices 197
A Instrumentation Filtering at Compiler-Level 199
A1 Existing Filtering e 199
A.2 Proposed Extension e 200
Instrumenting the MPC Framework 201
B.1 MPCExtended TLS et e e 201
B.2 Launch Hooks e 201
B.3 Instrumentation Points, 202
B.3.1 MPI Profiling Interface 202

B.3.2 Thread Spawning e 202

B.3.3 Lock Instrumentation 202

B.4 Topology Getters e e 203

12

CONTENTS

CHAPTER 1

Introduction

As numerical simulation is becoming an important tool for scientific competitiveness with
various applications ranging from fundamental science (Quantum Physics) to industry (Aero-
nautic and automotive design), simulation codes have to be seen from the modelling process
macroscopic point of view. When dealing with high-end supercomputers, simulation programs
cannot be viewed as a tool which punctually validates an hypothesis. On the contrary, the
program becomes a constituting part of the simulation process which is aimed at providing
measurements matching an experiment. Therefore, although we often picture physicists in
their laboratory, performing precise measurements with bounded error rates, nowadays, sci-
ence is often seen through the lens of a computer program. Moreover, as we will further de-
velop in this thesis, computer programs have few in common with high level equations which
describe an objectified reality, instead, they describe an operational reality with iterative and
alternative behaviours. This, while coping with evolving execution substrates.

This thesis acknowledges this context and aims at providing developers with the neces-
sary feedback when using supercomputers. Because of their complexity, supercomputers are
somehow unpredictable as parallel interactions and contention on shared resources creates
a combinatory number of states, sometimes reached randomly because of freedom degrees in
the scheduling. Therefore, despite being formally defined at sequential level, parallel execu-
tion is sometimes not predictable from the code alone. In the absence of model, a common
approach is then to process empirical measurements in order to observe how a code behaves
on the execution substrate, approach that we adopted in this thesis by setting up a measure-
ment and analysis framework. The object of this work is then to explore the possibilities of
profiling and debugging for production grade applications (million lines of codes) at supercom-
puter scale (thousands of cores) in an hybrid context. Where, profiling is the examination of a
program’s performance on a given execution substrate whereas debugging is more concerned
by the correctness of the solution or faulty program state (crashes) investigation. The hybrid
aspects comes from one of the parallel execution runtime which is targeted by our analysis:
the Multi-Processor Computing runtime (MPC). It is a runtime which combines several paral-
lel programming models over an unified scheduler in order to allow their efficient mixing in
purpose of taking advantage of upcoming supercomputer architectures. We will pursue this
introduction with a brief presentation of the MPC framework insisting on how it constrained
our tool implementation. Then, we define our requirements more formally and provide an
outline of the organisation of this document.

13

14 INTRODUCTION

1.1 The MultiProcessor Computing Runtime

MPC [Pér06,PJNO08] aims at providing an unified framework to run massively parallel ap-
plications on clusters of (very) large multi-core numa nodes. It supports MPI 1.3, OpenMP
2.5 and POSIX threads interfaces over an unified runtime which is designed to mix those
standards in an efficient way [CPJ10]. One particularity of MPC is that MPI processes are
running within user-level threads, allowing fine grained scheduling and optimisations such
as busy-waiting removal. MPC supports Infiniband and TCP networks with a fully MPI
thread multiple support. It is built to allow communication overlapping [DCPJ12] and reduces
the overall memory consumption [PCJ09] by factorising process level resources thanks to ex-
tended thread local storage [CPJ11] and efficient memory management directives [TCP12]. It
is shipped with a patched GCC compiler, allowing both compilation of OpenMP programs and
automatic privatisation of global variables in purpose of eventually running program within
user-level threads. It also features a patched GDB, allowing transparent debugging of user-
level threads [PCJ10] and has been supported in commercial debuggers such as DDT. MPC has
evolved drastically since 2006 and is under constant evolution to alleviate the upcoming chal-
lenges of many-core architectures. Being used in production on the Tera 100 supercomputer,
it reached the petaflopic scale with a competitive memory footprint and a reduced launch
time [PCDJ12]. These gains come from the thread based nature of MPC which allows both
resource factorisation and reduces the number of MPI processes to launch by a factor which is
equal to the number of cores per node (32 on tera 100). Consequently, MPC requires only 4370
processes instead of 140 000 for the whole Tera 100 computer, therefore, drastically reducing
launch time'. Figure 1.1 presents the Multi-Processor Computing Runtime architecture. As
it is a thread based MPI, ranks which are commonly located in distinct processes, are now in
user-level threads. This configuration, reduces memory requirements and restores fairness in-
between threads which can run on the same scheduler. This avoids for example busy waiting
and opens opportunities when mixing programming models.

MPC Process
MPC Tasks

MPC user-space scheduler

MPC inter-tasks communications

MPC thread/NUMA-aware allocator

MPC MPC MPC MPC
VP VP 7\/% VP
[| L 7\’?

| L
[| [[
CPU CPU CPU CPU
Core Core Core Core
Memory Memory

Figure 1.1: Overview of the MPC runtime.

1 5000 MPI processes is a classical payload on Tera 100 whereas 140 000 is not.

REQUIREMENTS 15

From an instrumentation point of view, supporting MPC has some challenging aspects as
it requires a careful handling of parallelism (at task level) and extend the classical process
hierarchy (Cluster — Node — Process(Ranks) — Thread) to include the task level (Cluster
— Node — Process — Tasks(Ranks) — Thread), requiring a particular attention when han-
dling program state. Those, parallelism and topology requirements led to the development of
our own trace format (chapter 9), allowing, in complement of MPI programs, MPC programs
instrumentation which as we will further develop was not practical with existing formats.
Consequently, our support of the MPC framework yielded a certain number of requirements
which led to the design of our first implementation of a trace analysis framework called the
MPC Trace Library (chapter 9). In a second time, these requirements were relaxed when
our tool moved to an on-line approach to become MALP (chapter 10), work which has been
published in an article [BPJ13].

1.2 Requirements

As described in Chapter 3, managing simulation programs is a challenging task as it adds
the classical difficulties of programming with the complexity of modelling. Moreover, the tran-
sition toward Exascale which is expected around 2015-2020 [MSDS93] (see figure 2.1) will be
more than an hardware problem. Indeed, the increasing number of core per processor (since
~ 2002) already impacted programs as they now have to rely on hybrid approaches. But, cur-
rent trends, paving the way to Exascale by favouring many-cores and accelerators pose new
problematics as they require a dramatic shift in programs architecture — causing close to a
complete rewriting of simulation codes. For example the Tianhe-II supercomputer which is at
the moment the largest supercomputer includes Intel Xeon Phi for a total of 3,120,000 cores
only achieves an efficiency of 62.3 %~ on the Linpack Benchmark [D1.P03], emphasising the ar-
duousness associated with the programming of such demanding architectures. Consequently,
porting simulations programs to next generation machines will be a challenging task which
requires (1) the capacity of instilling transition by questioning local maximums (or stratifi-
cation) and (2) the availability of means of measure and control to guide developer teams in
the maze of Exascale simulation. This thesis is focused on a small subset of this problem:
measure. Our purpose is to provide developers with metrics of their programs in purpose of
guiding their choice in-between design alternatives (trial & error). In complement, our tools
shall be able to continuously qualify programs fitting relatively to performance criteria to build
a management metric — more likely to positively influence developer teams. Dealing with re-
liability, we also have to explore solutions to describe faulty program states in the context of
production jobs (particularly long running batch job) and unpredictable crashes which can be
hard to diagnose. Requirements which conducted this thesis to explore both profiling and de-
bugging aspects over a common tracing framework while developing corollary notions such as
time-stamp synchronisation and performance modelling.

1.3 Manuscript Outline

In Part I, we first present in more detail the context of this thesis in terms of supercomputer
evolution, architecture and their associated programming models. Then, Chapter 3 contextu-
alises the development task in terms of classical management processes (development cycle),

2 Tera 100 has an efficiency of 83.6 %.

16 INTRODUCTION

outlining the recursive roles and duties of each of its actors. Followingly, Chapter 4 introduces
the role of performance and debugging tools in the light of this development cycle. In Part
IT, we begin by a brief description of developer tools’ architecture before detailing in Chapter
6 work related to our subject. In part III, our contribution starts by presenting our machine
characterisation tool, called “MPI Bench” (Chapter 7). It describes which performance can
be expected from a given machine from the MPI point of view, measures which can be used
by developers to privilege most scalable MPI calls. Then, Chapter 8 introduces the principle
of our clock synchronisation algorithm which is needed to restore time coherence within dis-
tributed measurement, opening opportunities for time-based analysis. Then, we present the
two main parts of our contribution which are associated with two different data management
methods: trace-based (chapter 9) and on-line coupling (chapter 10). The trace-based approach
is described and contrasted with existing trace formats while introducing its support for de-
bugging. Then, the on-line approach is described as a more efficient coupling method which by-
passes the 10 bottleneck while providing analysis with enhanced parallelism. Analysis which
are covered in Chapter 12 through several modules which were, for most of them, ported from
the original trace-based approach to the new on-line trace analysis, demonstrating both de-
bugging (back-traces, deadlock detection, ...) and profiling facilities. Eventually, Part IV, sums
up our contribution and conclude this manuscript before outlining our future work.

PART 1

Context

17

CHAPTER 2

Thesis Context

This chapter provides some context on High Performance Computing, focusing on supercom-
puters’ architecture and their evolution. We will start by a brief reminder on supercomputers
evolution trends with a description of current hardware followed by an introduction of exist-
ing programming models. Our purpose is to insist on the complexity arising from parallel
computers as it is at the root of usability problems programmers now encounter.

2.1 Supercomputer Evolution Overview

Supercomputers are known for their rapid evolution, such trend can be witnessed thanks
to the well known top500.0rg website [MSDS93] which ranks the world largest supercomput-
ers relatively to the top performance obtained over the Linpack [Don87] benchmark. This
benchmark, performing linear algebra operations characterises the ability of a given super-
computer to solve numerical problems. Supercomputers are then ranked according to two
measurements in FLoating-point OPerations per Second or Flops: Rpeqx and Rpyax. Where
Rpeak 1s the cumulative peak performance of processing units as stated by manufacturers and
Rmax the operation throughput achieved on the Linpack benchmark. Although the Linpack
benchmark gives some insight on “real-world” problems, it does not describe applications in
general [DL.P03] as for example they might stress the interconnection network by performing
massive IOs or communications. To address Linpack’s limitations, a complementary bench-
mark graph500.org [BBK 10] has been proposed, more focused on data management as it
solves graph related problems [FGMMO6] and yields results in Traversed Edges Per Second
(TEPS). Schematically, real HPC applications are somewhere in-between those two extremes
as they perform floating point operations (top500) while managing large data-sets (graph500).
Despite aforementioned limitations, top500 is still at the moment the reference source for su-
percomputer ranking. Figure 2.1 is from the top500 website, it depicts the computing power
evolution since 1993 and projects its evolution until 2020. Exponential evolution of computing
power is clearly visible with approximately a tenfold increase every tree years. Moreover, look-
ing at projections, Exaflop shall be reached around year 2020 but not without efforts [BBC " 08].
Although an exponential computing power growth has been maintained over the years, super-
computers’ taxonomy has evolved drastically, starting in the 1960s with the first supercom-
puter designed by Saymour Cray where architectures relied mainly on specifically tailored
vectorial computing units and a small number of processors, until the 1990s where machines
with thousands of processors appeared. At this point programming models migrated from in-
tensive vectorisation (mainly in Fortran) to distributed memory paradigm over MPI or PVM in
purpose of taking advantage of the computing power provided by interconnected nodes. From

19

20

THESIS CONTEXT

Performance

10EFlops

Projected Performance Development

1 EFlops 4
100PFlops
10 PFlops
1 PFlops 4

100 TFlops

10 TFlaps | &5

il
H500

= Sum

— #1 Trend
Line

= #500 Trend
Line

— Sum Trend

Line

1 TFlops= 4
100 GFlaps {2
10 GFlops

1 GFlops He 2

1okFlops-4——7T—F——7" 7T+ 77T T T T T T T T T T T T T T T T

Figure 2.1: Evolution and projected performance development of supercomputers as
displayed on the top500.org website. (Source : top500.org [MSDS93].)

then until today, most supercomputers started to rely on more standard components (mostly
high-end x86 processors) to reduce production costs, MPI took the advantage over PVM and
the number of cores started its quick increase until reaching the million with the IBM Sequoia
supercomputer and later on several millions with Tianhe-II.

This spectacular increase in the number of cores finds its root in hardware limitations.
Until recently, Moore’s Law [Moo65] stating the the number of transistors in a given sur-
face doubles every two years has been the main source of computing power improvement as
microprocessors were becoming more efficient. Thus, thanks to the increase of processors’ fre-
quencies, the ’same work’ could be done faster with virtually no application modification. But
this trend came to and end around year 2002 when physical limitations (mainly power dissi-
pation) started to slowdown frequency increase, thus, limiting sequential performance gains.
Nonetheless, processors manufacturers managed to overcome this limitation, sustaining the
exponential performance increase, not in frequency but by multiplying the number of cores.
Creating a singularity in code development trends where parallelism became compulsory to
get performance improvements — situation which was summed up by the well known “Free
Lunch Is Over” [Sut05] quotation.

Figure 2.2: Sample communication scheme for ghost cells synchronisation.

SUPERCOMPUTER ARCHITECTURE AND PERFORMANCE 21

Because of the rapid increase in the number of cores per node, memory per core decreased
and programs were forced to combine both shared and distributed memory parallelism. In-
deed, on a given node, using distributed memory parallelism leads to data duplication not only
by multiplying processes and their associated file descriptors but also at program level. Figure
2.2 exemplifies this situation with a simple simulation code . It relies on a 2D-mesh and dupli-
cates the same cell up to four times for synchronisation in-between ghost cells (in red) and real
cells in blue. This imposed shift to mixed programming requires important program evolution,
forcing programs to work at multiple parallelism granularities. In this challenging context,
performance tools can provide important feedback to users, helping them to understand and
project design choices.

2.2 Supercomputer Architecture and Performance

Since the 1990s, supercomputers gather several computing nodes interconnected by a high
performance network. A consequence of cores multiplication, is the hierarchical aspect of
processing capabilities. Figure 2.3 presents a simplified assembler code corresponding with a
single multiplication (blue box). It can be seen that the operands (A and B) have to be loaded in
registers before being processed by the Arithmetic and Logical Unit (ALU, red box) which pro-
duces a result which can be stored in the main memory by the “store” instruction. Naturally
current processors are much more complex (addressing types, prefetching, branch prediction,
...) and won’t be covered in this introduction. But this simple load and store model is sufficient
to show that computation is done by combining data (operands/data-set) with data (program).
Consequently, it is the memory bandwidth and scattering which “shapes” calculation by defin-
ing how programs operate on data-sets within machines memory constraints. Therefore, we
start by exposing how data can move in current supercomputers (massive clusters) before
exposing some of the programming models being used to exploit them.

R = A x B] Rli(A) RZl(B)
LOAD RI, A

LOAD];{,27 B - ® = Oyﬁrfﬁtion
IMUL R1, R2}-~ .

STORE R1, R R1 (A x B)

Figure 2.3: Simple representation of an ALU (Arithmetic and Logical Unit) perform-
ing a multiplication on two scalar operands. The left part presents a sim-
plified assembler code performing the multiplication of two scalar values
A and B and their storage in R.

In current supercomputers, multiple data states can be identified both at a given distance
in time (or latency) from processing units and with a fixed symbol throughput (or bandwidth).
We define a cluster of machines as a group of computing nodes interconnected by a high perfor-
mance network with a fixed topology. Each node at its turn groups several processing units (or
cores each with an ALU) following a topology shaped by their local memory (as known as Non
Uniform Memory Access (NUMA) architectures). Context in which some accesses are done to

22 THESIS CONTEXT

local memory banks and others to distant ones with variable costs. Figure 2.4 illustrate this
trade-off between available memory and bandwidth. It can be seen that when moving closer
to processing units, data containers become faster but smaller. Whereas, when moving away
from processing units data-stores become larger but slower until reaching file system level.

—— Capacity
—— Bandwidth

—
>

\

Figure 2.4: Schematic and effective memory hierarchy.

As presented in figure 2.5, data can reside in various containers which expose different char-
acteristics, one of the biggest challenge of parallel programming is to actually distribute data
according to this topology in order to fully exploit the hardware. Consequently, data have to
be distributed evenly among the processing units in chunks which fit into the lowest caches.
In this context, two different level of parallelism have to be identified, (1) distributed paral-
lelism in-between the nodes which are connected through the network; (2) Shared memory
parallelism which takes place within nodes, where multiple threads access the same memory
area. To express parallel computations in these two contexts, several programming models
are available each with its own semantic and syntax. Moreover, as aforementioned, memory
limitations are forcing programmers to adopt a mixed approach, combining coarse and fine
grained parallelism for respectively distributed and shared memory contexts.

2.3 Programming Models

As we developed in previous section, supercomputers parallelism tends to rank memory,
complicating memory management and stressing parallel programming models adaptability.
Leading to the development of several programming models, each directed towards a particu-
lar level of parallelism. This section introduces main approaches, starting by shared memory
parallelism approaches, before describing distributed memory parallelism and accelerators.

[Data State Volume [Throughput | Resilient | User Managed
Long Term Storage Very Large (PB) Low (less than a GB/s) yes no (Storage policy)
File-System Large (TB) Low (less than a GB/s) yes yes (I0 calls)
Remote Memory Medium (GB) Medium (network bandwidth) no yes (Network calls)
Memory Medium (GB) High (GB/s) no yes (Allocator calls)
Caches Low (MB and KB) Very High (GB/s) no no (processor level)

Figure 2.5: List of common data states in HPC clusters (relatively to a single node).

PROGRAMMING MODELS 23

2.3.1 Shared Memory

Shared memory is the most common parallelism approach where multiple processing share
the same address space, allowing ’direct’ data exchanges. Pthread is the most widespread
parallel programming interface as it has been standardised in the POSIX standard, becoming
basic a block of higher level programming models. Threads are execution streams which can
overload the available number of computing units, in other words, operating systems feature
a scheduler which role is to switch in-between threads, evenly allocating computing power
to each stream. Thanks to this functionality, multitasking is possible even on a single core,
using a time-sharing approach. However, as the scheduler is located in the kernel, switching
between threads requires a context switch. Therefore, alternatives were developed in order to
build user-level threads, able to run multiple threads on top of a single execution stream. Such
threads are called user-level threads and can be scheduled very efficiently. Several libraries
feature user threads, for example, Marcel [DMN99,Nam01], MPC [PJN08] and GNU portable
threads [Eng03]. Relying on threads, several higher level approaches have been developed
in order to simplify parallelism expression, featuring various run-times and programming
interfaces, ranging from compiler pragmas to dedicated programming languages. A common
way of parallelising existing programs is OpenMP [DM98] which relies on compiler pragmas,
extracting the parallelism from for loops while providing a task model. Numerous other
parallel run-times have also been developed including StarSS [PBALO09], Kaapi [GBP07] in
conjunction with a wide range of programming approaches such as Charm++ [KK93] or Cilk
[BJK95] recursive functions.

2.3.2 Distributed Memory

Dealing with distributed-memory parallelism, the reference programming model is the Mes-
sage Passing Interface (MPI) [MF08] which relies on messages in-between distributed pro-
cesses. Several MPI implementations are available including: OpenMPI [GFB04], MPICH
[GLDS96], MVAPICH [KJPO8&]... MPI generally relies on a combination of both high perfor-
mance networks and shared memory segments, respectively providing parallelism inside and
outside nodes boundaries. One advantage of MPI is its immediate support for NUMA plat-
forms as data replication is enforced by programming model. However, these replications
and message buffers overhead, inevitably lead to an increased memory usage. As a conse-
quence, in order to face the rapid increase in terms of number of cores, MPI is often used in
conjunction with OpenMP in a mixed programming approach. Limiting the number of pro-
cesses per node, but, hardening program development. An alternative to message passing is
the Partitioned Global Address Space (PGAS) method which consists in splitting memory over
threads or distributed processes while providing a transparent access to remote data. Sev-
eral PGAS implementations are available with for example UPC [EGS06], Chapel [CCZ07],
X10 [CGST05]...

2.3.3 Accelerators

A recent evolution in parallel computing is the advent of accelerators which are complemen-
tary devices speeding up computation thanks to a data-flow approach. Such devices generally
use the Single Instruction Multiple Data (SIMD) paradigm which applies the same operation
to a large data vector. Accelerators were firstly derived from graphic card and programmed
through low level graphic calls (shaders), however, the growing popularity of these devices led
to the development of dedicated languages, greatly simplifying development: CUDA [Nvill]

24 THESIS CONTEXT

for Nvidia cards and OpenCL [M " 09] for both ATI and Nvidia cards. Such devices rely on
a large number of simple ’cores’, decreasing energy consumption per floating point operation
when compared to classical processors. This allowed supercomputers powered with Graph-
ical Processing Units(GPUs) to dominate the Green 500 [SF12] which lists the most power
efficient machines. One difficulty of GPUs is that they rely on vendor specific languages, and
thus, create an adherence between codes and devices. To face this limitation, several run-times
were developed among which are StarPU [ATNW11,Augl11], StarSS [LLab10], HMPP [DBB07]
or the recently standardised OpenACC [Opell] which aims at providing accelerators with a
pragma based programming model. More recently, Intel released its Xeon Phi, finding a trade
off between GPUs and classical processors by relying on several simple x86 processors (atom
like) with extended vectorial operations (AVX) — simplifying code porting but requiring an
important optimisation effort.

2.3.4 Summary

This section briefly introduced the variety of approaches which were developed to take ad-
vantage of supercomputers and parallel computing units. We have seen that several hardware
and software approaches were developed. Some of them being vendor specific and requiring a
partial code rewrite associated with a constant optimisation effort. Consequently, parallel pro-
grams have to cope with the rapid evolution of both hardware and programming models which
necessarily impact simulation codes while requiring a questioning of development habits.

2.4 Thesis Computing Environment

All this thesis measurements were done on two petaflopic range supercomputers. The first
one is Tera 100 [TOP10, Vet13](p. 45) (figure 2.6(a)) which belongs to the CEA (Commisariat
a ’Energie Atomique et aux énergies alternatives) which use it for defence applications. The
second one is Curie [TOP12] (figure 2.6(b)) which is funded by GENCI and aims at providing
the french industrial tissue and research with efficient simulation tools. These two machines
are manufactured by Bull SA, featuring a similar designs (see figure 2.7) although Curie uses
more recent processors (Sandy Bridge) than Tera 100 (Nehalem), thus, achieving higher per-
formances.

(a) Tera 100 Supercomputer (b) Curie Supercomputer

Figure 2.6: Views of Tera 100 and Curie supercomputers.

THESIS COMPUTING ENVIRONMENT 25

] Characteristic H Tera 100 H Curie ‘
Rpeak 1254.5 TFlop/s 1667.2 TFlop/s
Rinax 1050.0 TFlop/s 1359.0 TFlop/s
Processor type Intel Xeon 7500 || Intel Xeon E5-2680
Total Number of cores 138368 77184
Total Memory 276736 GB 308736 GB
Memory per core 2 GB 4 GB
Operating System Linux (Redhat) Linux (Redhat)
Interconnect Infiniband QDR Infiniband QDR
Network Topology Fat-tree Fat-tree

Figure 2.7: Characteristics of both Tera 100 and Curie supercomputers.

2.4.1 Description

These two supercomputers can be qualified as generalist ones as they provide powerful com-
puting units and relatively high volumes of memory per core. They also feature very effi-
cient Inputs and Outputs'(IOs) and legacy operating systems (Redhat Linux). Other TOP 500
machines adopted different approaches, for example, the IBM BlueGene line, favours a high
number of cores with less memory per core (between 512 MB and 1 GB per core) and until
recently (BlueGenes moved to linux) specifically tailored operating systems. Therefore, these
two generalist machines are able to run moderately parallel payload with acceptable perfor-
mance, approach not possible with architecture requiring more parallelism because of lower
sequential performance. In complement of supporting a wider application spectrum, general-
ist supercomputers have many advantages, for example relatively to legacy codes as they are
easier to port. They also have negative consequences as they do not enforce strict parallelism
in the development process as such ideal machines somehow maintain the “free lunch” illu-
sion. Moreover, this adaptability requires consequent engineering and administration efforts
to hide complexity from the end user, efforts which might not suffice with next generation ma-
chines which will feature millions of cores — eventually requiring efforts from end-users. It
is already the case at Petascale with supercomputers being less used as tool in a feed-forward
fashion but be included in the simulation process as an evolving tool which requires trade-
offs and feedback. Evolution testified by the development of several optimisation tools. Our
thesis work acknowledges this context and proposes to develop an optimisation tools which is
integrated in the development process, providing constant feedback on program’s performance
and positively influencing their adaptation to evolving execution substrates.

2.4.2 Node Description

As presented in figure 2.8(a), a Tera 100 node consists in four NUMA sockets with 16 GB
of local memory for a total of 64 GB per node. Each socket hosts an eight core Intel Xeon
7500 processor cadenced at 2.27 GHz, yielding a total of 32 cores with 2 GB of memory per
core. Nodes have a single Infiniband [Pfi01, A*01] Quad Data Rate(QDR, 3.2 GB/s) card *
located nearby a single socket. This configuration creates Non-Uniform Input/Outputs Access
(NUIOA) effects [MGN10,Mor11] where one socket has a privileged network access compared

Tera 100 had upon its release a record 10 throughput of 500 GB/s.

2 Each node also feature a Gigabit ethernet interface for administration puposes.

26 THESIS CONTEXT

Infiniband
Interface

|Numa Node O| |Nurna Node 1|

Socket 0 Socket 1

|Numa Node 2| |Nurna Node 3|
| il N\
Network uma Nodes
Socket 2| 1 |Socket 3| [l Adapter 16 GB each)
(a) Intra-node topology for Tera 100. (b) Node layout for a Bullx S6010 node in 1.5U (from

S6010 support page [Bull0]).

Figure 2.8: Overview of Tera 100 node (Bullx Super-Node 6010) topology.

to the three others. All these components fit in a Bullx Super-Node 6010 of 1.5 Rack Unit(U).
Allowing when L-shaped blade are stacked top-to-tail at a high density of 64 cores in 3U.

2.4.3 Network Topology

Uplink 18x3 QDR
~162 GB/s

o i

@ Router
Leaf Switch
Voltaire 4700
324 Ports

x 324
QDR links
~3 GB/s

(a) Example of fat-tree topology. (b) Tera 100 compute island network bandwidth.

Figure 2.9: Overview of Tera 100 node (Bullx Super-Node 6010) topology.

Tera 100 topology [Vet13](p. 53) is derived from a fat tree [Lei85, Gra03]. As presented in
figure 2.9(a), in a fat-tree routers are connected with an increasing number of links which role
is to compensate the loss of locality in terms of bandwidth (not in latency as the number of
hops increases). Fat-tree topologies also have the propriety of being able to efficiently convey
any communication topology with a satisfying efficiency [L.ei85]. Propriety which can be un-
derstood by looking at bandwidth scattering: thanks to the increasing number of links when
climbing the tree, any partition of nodes is guaranteed to reach the full bisection bandwidth.
Therefore, different topologies can run over a fat tree with limited performance impact on
bandwidth, whereas latency is only impacted logarithmically when the number of nodes in-
creases (tree-based topology). Fat-trees are then interesting topologies for generalist machines

SUMMARY 27

which want to be able to run a wide range of codes.

However, if we look more closely at Tera 100 network, it uses a pruned version of the fat
tree, in order to reduce both network costs and complexity while preserving performances.
As presented in figure 2.9(b), computing nodes are regrouped in thirteen island of 324 nodes
around the same Infiniband router. Therefore, each island gathers 324 x 4 x 8 = 10368
cores in a star topology. Moreover, island are interconnected with smaller routers (36 ports)
to form the whole 140 000 core machine. As depicted in figure 2.9(b), total leaf bandwidth
(324 x 3 = 972 GB/s)? is six times greater than the up-link bandwidth (162 GB/s)* because of
pruning. This 1@ pruning ratio reduced costs and network complexity while preserving correct
performance for regular jobs and full machine runs. More importantly, as most jobs are in the
1000-10000 range, they can take advantage of a regular star topology, while relying on the
up-link solely for Inputs and Outputs.

2.5 Summary

This section presented the rapidly evolving supercomputing context in which simulation
codes which generally evolve at a slower pace have to constantly adapt themselves to new
hardware constraints and programming models. We insisted on the topology of supercomputer
which has a direct impact over computation scattering and therefore has to be taken into
account by developers. We ended this chapter with a presentation of the two machines which
are used in the rest of this document. They both feature several cores per node with a non-
uniform memory architecture and a high performance Infiniband network relying on a fat-tree
network. In the light of this brief introduction, we have seen that these rapidly evolving and
complex architectures are very challenging and therefore require a constant effort to be used
productively. Effort which we aim at supporting with the tools developed during this thesis.

3’3 is approximately the Infiniband QDR (4X) data-rate in GB.
4 Note that the “service island” has a higher up-link bandwidth of 648 GB/s (216 x 4X).

28

THESIS CONTEXT

CHAPTER 3

Development Cycle

“Don’t gather requirements — Dig for them
Requirements rarely lie on the surface.
They’re buried deep beneath layers of assumptions, misconceptions and politics.”

Hunt and Thomas in the Pragmatic Programmer [HT99]
(Quick Reference Guide)

After we introduced supercomputers and current and upcoming challenges they are asso-
ciated with, this section briefly introduces software development methodologies which give
context to the use of the tools we developed during this thesis. After introducing the pur-
pose of adopting a development methodology, we present classical approaches followed by an
outline of several requirements associated with development in complex environment. Even-
tually, we finish up by exposing advantages which can be provided by tools when being used
as heuristics.

3.1 Classical Development Methodologies

A development methodology can be seen as a management approach which aims at coordi-
nating software developers, their managers and clients in a facilitating environment focused
on optimising the production of better software. Several organisation models were developed
in order to facilitate complex objects conception. Interestingly, all those models feature the
same basic blocks, differing more in their usage than in their strict organisation. This section
first describes the basic blocks being used in each process from an operative point of view.
Then, we present in order of appearance the three classical development cycle.

3.1.1 Constants in the Development Cycle

Development cycle purpose is to formalise the relationship between three entities (1) the
client, (2) a development team and (3) the code itself. This first section describes those entities
in an empirical context in order to introduce the development process and its goals. To do so,
we describe in a methodology agnostic manner some expectations and duties for each of those
actors as follows:

e The client is at requirements source as he originally formulated them according to his
needs. He generally expresses them to potential developers (often through a documen-

29

30 DEVELOPMENT CYCLE

tary process) and selects a solution rationally (quality of the solution, maintainabil-
ity, overall costs, ...) suiting his demand after reviewing preliminary design proposals
(Client +» Developer iteration). Omitting, intermediate Developer « Client iteration
we are going to analyse from a developer point of view, the client is eventually in charge
of judging product quality, attesting that it effectively satisfies his requirements. This
last phase, involves, for example, demonstrations, integration tests (...) and eventually
leads to the effective deployment at client’s site (Progam « Client iteration).

e The development team is central to the development process as it is in charge of
(1) understanding the client’s need, formulating them as a potential design (Client <
Developer iteration) and (2) expressing this design as a program which fits client’s re-
quirements (Developer <+ Program iteration). Programmers are therefore an interface
between codes and clients, understanding needs and transposing them in a program
which exactly' fulfils their requirements (generally with design constraints: architec-
tural, costs and design trade-offs, ...). This, while remaining in client’s acceptance range.

e The program is the development effort final product, supposed to fulfil every require-
ments while guaranteeing several qualities such as reliability, maintainability, code
readability (...). In other words, client’s requirements have to be transposed in the pro-
gram in terms of features (Progam < Client iteration). However, this process com-
plexity must remain manageable by developers, supposing a known and suitable design
(Progam + Developer iteration).

Development cycle aims at defining interactions between this trinity in purpose of maximis-
ing their efficiency. It supposes an ability for each of those entities to maintain a constant
coupling in purpose of maintaining mutual understanding. For example, the solution space
satisfying a given need is generally very wide (choice of languages, definition of the interface,
usage patterns, autonomy level,). Possibly requiring several client intervention in the de-
sign process. Similarly, programmers have to maintain their program in control for example
by setting a suitable environment for monitoring its features and reliability. Moreover, the de-
velopment team itself has to be structured (from a management point of view) to face common
conception risks (individual cognitive limitations, knowledge dilution, responsibility dilution,
...) and requirements (manageability, planning, productivity, ...). Consequently, it can be seen
that the development process involves multiple intricate level of representation with varying
constraints. Those levels are connected by several interactions (documentary, oral, formal
or not, ...) which can be equally bounded by either communications hazards or phenomenon
complexity. From this point of view the development cycle can be seen as an heuristic which
codifies interactions in the process leading from a need to a solution. In this purpose, it de-
fines communication templates, efficiency metrics and methods, helping developers to face the
complexity of their work.

After this high level development process contextualisation, we will now focus on the main
existing models. It shall be noted that such model can be very normative, detailing each
document, scheduling interactions, (...). Comparatively, our descriptions will remain brief, as
it solely aims at providing a sufficient context to the description of our work in the rest of this

1 Here exactly shall be understood as minimising development costs relatively to classical management metrics

(costs, time, workload, risks,...). The development team is supposed to furnish a rational solution focused on
satisfying the requirements, not an ideal solution (see H.A. Simon who develops these notions in [Sim97]).

CLASSICAL DEVELOPMENT METHODOLOGIES 31

document. We will try to reference complementary documents providing a wider view on the
subject for readers interested in details.

3.1.2 Waterfall Model

The waterfall project management model introduced by Royce [Roy70] is the most “natural”
development model anyone would adopt when required to fulfil a requirement. It sequentially
goes from gathering requirements to the integration and maintenance of the new product.

System
Requirements

Software <
Requirements

Analysis

Program
Design

Coding

Testing

Figure 3.1: Original waterfall model as introduced by Royce in [Roy70], including
feedback loops.

This process is generally described as a sequential process where phases succeed to each
other after a careful validation. In this context, as presented in Figure 3.1, needs and design
are both carefully expressed long before the coding phase. This model requires important docu-
mentary efforts at each phase, so that clients remain informed of project evolution. Such cycle
is also often cited to have the drawback of freezing the design too early in the development
process [Mar99, Rot11], neglecting unplanned requirement shifts or unplanned constraints.
This effect is called the tunnel effect, after specification phase, clients have “no news” from
the developer team until seeing the effective product. This augments the risk of not fulfilling
needs because of a communication lack and late risk factor identification as sometimes they
can only be identified when implementation begun.

Waterfall was very common in the 80’s as it happened to be advocated by large indus-
tries [Dep85, Dep88] as the reference model. However, its limitations led to new develop-
ment approaches which favour a more iterative approach. Nonetheless, it shall be noted that
Royce in its original paper [Roy70] already promoted an iterative approach (see Figure 3.1
with feedback loops in red), he even required the waterfall approach to be done twice (p. 7)
recognising that some requirement can be sensed only when actually implementing a prod-
uct. Therefore, even if misapplied as a sequential process, the waterfall model clearly sets the
canonical process of a project management model in terms of control and reporting but lacks of

32 DEVELOPMENT CYCLE

adaptability when dealing with the development process itself. Nonetheless, it is still widely
used (in modified forms as detailed in the next section), mainly for large industrial or building
projects which can reasonably express requirement early in the development cycle. However,
software design which is subject to evolving constraints had to rely on iterative methods which
eventually led to agile methods.

3.1.3 V-Model

Acceptance

System
Yy N Testing

Requirements

Integration ’
Testing

General
Design

Unit
Testing

Detailed
Desing

Implementation

I ‘

Figure 3.2: Example of V-Model development cycle.

The V-Model can be seen as a derivation of the waterfall model where testing phases are
designed symmetrically with conception phases. Despite its V shape, this process is still lin-
ear and therefore falls in the pitfalls of the linear waterfall model (tunnel effect). Moreover,
there are a wide range of interpretation of the V-model featuring different verbosity” levels
while preserving original waterfall steps. Another ambiguity is in the links between testing
and design phases, are they bidirectional or unidirectional ? Again, varying answers can be
found. However, V-models are widely adopted for large project management being featured
in several methodologies (naturally with variations): the German V-Model [[AB95], United
States Department of Transportation guidelines [Uni07], Great Britain Office of Government
Commerce PRINCE2 methodology [0GCO02]...

As a consequence, the V-Model can be described as an advantaging method in terms of
outsourcing as from a management point of view, specification and integration phases are cov-
ered. However, dealing with implementation phase itself, it is generally depicted as a single
step, the bottom of the V, as far as possible from clients. On implementation side, methods
are always iterative as developers progressively fulfil requirements. They might have new
interrogations as they get a better understanding of the project, but how does the client an-
swer them in a V process ? Implementing a software project is being able to both understand
and fulfil clients’ needs. This supposes that the client is able to express (specifications) and
judge (acceptance) the product while developers understand (design) and satisfy (integration)
requirements. In the V-Model this coupling happens only once (and leads to the V shape),
whereas, developers and clients might need a stronger coupling to face evolving needs or con-
straints, observation which led to an iterative development process which aims at preventing
tunnel effects by enforcing communication.

2 An image search of 'V-Model’ on any search engine can illustrate this variety.

CLASSICAL DEVELOPMENT METHODOLOGIES

3.1.4 Agile Methods

System

Acceptance

Requirements Testing
General Integration
Design Testing
Detailed Unit
Desing Testing

N

e

Implementation

Figure 3.3: Example of agile development cycle.

In opposition with classical project methodologies we developed in previous paragraphs, ag-
ile methods are profoundly iterative. Their purpose is to prevent tunnel effect by involving
clients in development phases in order to confirm requirements and diagnose possible risks
early in the development. As presented in Figure 3.3, this process can be seen as an iterative
V-process which purpose is to couple client and developers through control (requirements) and
measure (tests) (similar to the Wiener feedback loop of Figure 3.6). Agile methods as intro-
duced in the agile manifesto [BBvB 01] feature a lightweight project methodology, reducing
documentary process to a minimum while privileging communication. In that sense, they are
more focused on the actual development process than on managing the outsourcing process.
For example, developers are able to iterate on technical aspects (for example through inter-
mediate versions) before delivering the final product — guaranteeing client needs are actually
understood and satisfied [Rot11].

“Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.”

Figure 3.4: Four main values quoted from the agile manifesto as found on [BBuvB " 01].

The agile manifesto [BBvB"01], which is quoted in Figure 3.4 insists on four main val-
ues which gave origin to a wide range of agile programming models with varying meth-
ods: Adaptive Software Development (ASD) [Hig00], Crystal Clear [Coc04], Dynamic Soft-
ware Development Method (DSDM) [Con08], Rapid Application Development (RAD) [Mar91],

34 DEVELOPMENT CYCLE

Lean [PP03, WJR07], Scrum [TN86, SB08], (Rational) Unified Process (R)UP) [JBR12], eX-
treme Programming (XP) [Bec00]. All these methods apply the agile precepts to various indus-
trial processes while remaining focused around the development process and therefore devel-
opers. In this purpose several agile methods promote development specific processes such as
continuous integration, unit testing, pair programming..., going beyond classical management
process by clearly taking developers and by extension programs into account. Consequently,
those methods which are becoming the reference in terms of software development take ad-
vantage of both an holistic and iterative approach which is more suitable to manage complex
and evolving projects, even from an industrial point of view [Dep94, Def05].

3.2 Developing Against Complexity

This section proposes to analyse the development process from a systemic point of view
in order to emphasise the interactions between each entities. Instead of describing punctual
processes or documents (as in previous methods descriptions), we propose to start from a global
system layout which will be analysed in terms of interactions.

\
|
,'I Needs |
Expression of . ’ —
Requirements 7/
.\7v - - — Development Y
/InteractionsY” s A Cycle

F " lit Development \
unctionality C\ClP _\

. Computer
i \
e \ Program

Developper
Team

st /
: Design /

Figure 3.5: Systemic view of the development process in terms of operative systems.

Figure 3.5 depicts a development process systemic model, as mentioned in previous sec-
tion it is a tripartite process involving a client, developers and a program. Boxes with plain
lines are linked to observable/communicable events, for example client’s requirements can be
expressed as a document detailing its needs. On the contrary, boxes with dashed lines are
abstract models which are not directly communicable, thus, requiring a transposition to an
observable state (shared representation). Figure 3.5 is designed from a client point of view as
it focuses on the shift from a need to a satisfying program. More importantly, from a macro-
scopic point of view, this description is neither exhaustive nor unique. For example, a program
is an observable of a computer system, a design an observable of a program model and a need

DEVELOPING AGAINST COMPLEXITY 35

Purpose \'
f' Decision \v
Ego

Information Action - ————

A\ Environmental

Effects
Figure 3.6: Feedback loop described in [Wie61].

2

can be an observable of an organisation. Moreover, roles are not fixed as an observable can
become a model (features can be observed from the program, a design possibly describes an
abstract program, ...). Starting from Figure 3.5 (right) we can see a compact representation of
the development cycle which is a substrate allowing the shift from client’s need to a computer
program with developers (green loop) in charge of guaranteeing this transposition. Looking
at the left part of the figure, the process appears in more details with its interactions and
abstractions. More particularly, if we analyse interactions, two types of loops can be identified
and will be referred to as structural and catalysing ones with three occurrences of each.

Such loops have to be observed as feedback loops (from cybernetic theory [Wie61]). A cy-
bernetic loop (see Figure 3.6) can be defined as an action which observes its effect in order
to guide further actions. Notably, such loops are comparable to operative models which as-
sociate an empirical measurement with its abstract representation, for example in this case
the {decision,purpose} couple, models and is modelled by environmental effects. Recursive
relationship which applied symmetrically (by separate entities), and considering bounded ra-
tionality [Sim97] are studied by convention theory [Lew69, BT87, Amb03] which states that
cooperative behaviour requires and creates shared representations which cross individual
boundaries.

3.2.1 Structural Loops

Structural loops are in charge of coupling entities and are subject to communications re-
lated loss as they go through the environment. They generally rely on a shared symbol system
(most of the time oral or written language) to convey metrics associated with abstract repre-
sentations. They have no explicit substrate and therefore have to be maintained as inputs and
outputs of entities, being the consequence of a symmetrical effort from those entities. This bi-
partite aspect makes them relatively fragile as feedback can only be achieved bidirectionally.
These three loops can be described as follows: Client «+» Developer, Developer <+ Program,
Program < Client, each of them associated with a development cycle requirement and pos-
sibly modelled as a cybernetic loop (Figure 3.6) which expresses a certain form of trade-
off/adaptability.

Figure 3.7 illustrates those structural loops by expressing the exchanges of expectations
and internalised duties from the point of view of each entity. Ideally, such loops shall lead
to a symmetry between inputs and outputs of entities involved in the development process

36 DEVELOPMENT CYCLE

] Interaction \ Example of process

|

Did I express my needs ? Did they evolve? Are they well understood by
Client — Developer | developers ? Are developers within schedule ? Can I attest of their efficiency
(cost, quality, ...) ?

Are Client’s needs/requirements realistic, contextualised, detailed enough ?

Developer — Client What are our constraints ? What is our proposal and at at which cost ?

How to express the design in a program which matches requirements ? What
is the most efficient scattering of work amongst developers ? Are there known
problems, how does this program section work, who is responsible for it ? How
to guarantee and attest for reliability and functionality ?

Developer — Program

Is the code easy to develop (dependencies, compilation process, organisation,
coding conventions, ...) ? Does it matches the preliminary design, if not why
? It its complexity manageable ? Is every section tested for reliability, perfor-
mance and functionality (unit, performance and integration testing) ?

Program — Developer

Does it satisfies my requirements ? Is it easy to deploy (target machine, un-
Client — Program planned constraints, ...) and maintain (requires external maintenance, li-
cences, extensible to future needs, ...) ? Is it integrated in our processes ?

Does it provides functionality in an actionable fashion (Human Machine In-
terface, organisation specific processes or constraints, ...) ? Is it transferable
to client’s computing environment (dependencies, licences, reliability ...) ? Is
it possible to guarantee features over time, if not why ?

Program — Client

Figure 3.7: List of structural loop with examples of expectations /internalised duties.

(in order to fit in the feedback loop paradigm [Wie61]). Such loops are therefore correlated
with the ability to control and measure external processes. Points which are often defined by
development models as a documentary process, testing, meetings, team building...

3.2.2 Catalysing Loops

Catalysing loops can be described as an internalisation process which converts an observa-
tion to a decision which satisfies an individual purpose according to relative heuristics. These
loops are associated with a substrate (client, developer, program), allowing them to operate
separately. Their decision process is optimised to resolve a given set of problems (specialisa-
tion) which purpose is to satisfy the needs of their respective organisations as rationally as
possible [Sim97]. Three loops can be extracted from Figure 3.5: Needs < Requirements,
Program < Functionalities, Design < Development cycle.

It can be seen from Figure 3.8 that catalysing loops have a contextualisation role. Indeed
they match the actual development process with abstract models of surrounding organisa-
tions in order to ensure a sufficient coupling without having to expose their complexity to
every other entities. For example, a program evolves within a computational hardware which
imposes its constraint, client’s needs are part of its own organisation which requested their
expression as a computer program, software design obeys to rules which aim at optimising the
development process (UML modelling, component reuse, building process, complexity man-
agement, ...). More importantly, the development process finds its roots in the specialisation
of models to a particular purpose by discrete agents who by nature have diverging point of
view on a given problem (because of their specialisation, sort of “language gap”).

TOOLS AS HEURISTICS 37

] Interaction Example of process \

How to express and systematise the needs of my organisation
Needs — Requirements ? Will they evolve ? Does this need fits in the processes of my
organisation ?

Are there unplanned constraints, are they acceptable ? Is
Requirements — Needs this expression of requirements actually satisfying my needs
? Were they well understood ?

Does the program efficiently solve its problem ? Are features
constrained by the hardware ?

Does it satisfies the requirements ? Does it reflects the design
? Is it possible to guarantee features ?

What are the most efficient processes to design a program ?
Design — Development cycle | Are features identified and explicitly separated ? What are
the software components needed to satisfy client’s need ?
Does design describe a program which satisfies client’s re-
quirements within machine constraints ? Are programmers

in possessions of a sufficient knowledge to execute their work
?

Program — Functionalities

Functionalities — Program

Development cycle — Design

Figure 3.8: List of catalysing loop with examples of constraints/trade-offs arising
from interaction and respective contexts.

From a global point of view, all the entities involved in the development cycle are looking
for a point of agreement which satisfies a multidimensional problem going beyond individual
rationality. Their purpose is to efficiently express constraint arising from their surrounding or-
ganisation (computer hardware, client organisation, software design) as a satisfycing [Sim97]
computer program. In this purpose, they have to organise themselves in a process favouring
communication while making critical development cycle aspects observable through synthetic
metrics. Encouraging the constructive search for a satisfying trade-off. Development cycles
are in charge of impulsing this process by setting up a convention between all the partici-
pants, they codify interactions in order to achieve such trade-off. From this point of view, any
development process starts from specifications and finishes with a test phase — measuring the
achievement of the process. Main differences being in methodologies temporal aspects which
evolved concurrently with programs complexity and volatility from a linear process (waterfall)
to a fully iterative one (agile methods). Besides, as we detail in next section, in conjunction
with this holistic process, development methodologies are more and more relying on tools to
improve productivity for both structural and catalysing aspect, naturally integrating them in
the development cycle.

3.3 Tools as Heuristics

Tools are now compulsory to develop efficient codes for various purposes ranging from code
development to software documentation. This section proposes to list tools which are com-
monly integrated in the development cycle in terms of functionality. These tools could be
viewed as heuristics as they either create, convoy, preserve or inspect information alongside
the development cycle — helping actors in their development task.

38 DEVELOPMENT CYCLE

Integration Specifications

A

Reporting Reporting

Software
Management

Developper
Team

Software
Development

Figure 3.9: Classes of tools involved in the development cycle.

As presented in Figure 3.9, six interactions types can be derived from the client, developer,
program trinity. Each of them taking advantage of tools or normalised processes to gain in
efficiency. We propose to derive five classes of tools from these relationships: reporting, in-
tegration, specification, software development and management. This section details each of
these classes with sample tools and usage patterns in purpose of contextualising common uses
of tools within the development cycle.

3.3.1 Specifications

Specifications are the starting point of any project, they define its purpose and constraints
(costs, hardware, ...). In general, their expression is done through a documentary process
which allows their formal transmission to the development team. However, supplementary
communication channels are also used to complete the specification process, for example an
initial meeting allows to initiate an interaction process between the participants in order to
contextualise the initial document. Moreover, less formal communications has to be taken
into account (e-mail, phone-calls, ...) as an efficient information vector which can possibly
outcome conventional organisations, allowing clearer requirements definition.

3.3.2 Software Development

Dealing with software development, a lot of tools are commonly used by developers. At
first the compilation chain is used to validate the program from a static point of view. As far
as the code is concerned, Integrated Development Environments (IDEs) can help developer in
the management of their code by providing useful features such a syntax highlighting, code
completion, templates... Version control tools such as git or SVN can be used to handle various
versions of the same code, tag specific versions, sharing them between developers. Moreover,
on software design side, several modelling tools can be used to create UML diagrams depicting
program layout.

TOOLS AS HEURISTICS 39

3.3.3 Integration

Integration can be described as the phases which precede the actual deployment at client’s
site. It starts by a macroscopic validation through integration testing which purpose is to
validate global features. Some products also rely on a phased release’ in order to progres-
sively stabilise the product with clients (or in open-sourced development, users) feedback, this
has the advantage of providing a realistic test coverage but requires interlocutors who can
temporarily put up with unstable software. During this phase, for example with continuous
integration, developers and clients can report defects or iterate on features and how their are
brought to the user (interface for example) to enhance the product through successive adjust-
ments.

3.3.4 Reporting

Reporting couples clients with programmers, relatively to specifications, project progres-
sion, unplanned difficulties, documentation... As far as the client is concerned, he can re-
port his observations, request features or describe defects he encountered on a given program
version. This process can take place through various communication channels (see Specifica-
tions), although, current trend is to gather all those aspect as a wiki based portal which can
be accessed by both developers to enrich the knowledge base and clients to report defects or
make feature requests (as tickets). Such platforms(github, source-forge, bitbucket, ...) were
developed mainly to fulfil open-source requirements for decentralised use and development
and start to be used (declined as a commercial products) within the industry in support of the
development process.

3.3.5 Software Management

Software management covers all the methodologies which allow programmers to monitor
and understand their code in terms of reliability and efficiency. Unit testing which provides
feedback to developers, particularly during refactoring* phases as they guarantee individual
component features. Software documentation focused on technical aspect is also important to
face turnover while avoiding knowledge dilution amongst developers. It can be done coopera-
tively using for example a dedicated wiki which is easy to access and update. The particular
case of performance tools and debuggers will be discussed in more details in section 4 as it
embeds the work of this thesis.

3.3.6 Overview

As we have seen with the list of tools we enumerated, developers are evolving in an envi-
ronment which is indistinguishable from its tools. Successively providing valuable features
(debugger, profiler, editor, ...), giving rhythm to the development cycle (unit-testing, integra-
tion tests, planning,...) and conveying communication (source versionning, bug tracking, on-
line documentation, ...). Tools are therefore facilitators in the development cycle as they opti-
mise and carry repetitive tasks, helping and inciting developers to follow development process,
transitively finding a trade-off.

3
4

Debian for example has three levels: Stable, Unstable, Testing.
Action of changing code design while keeping similar software components.

40 DEVELOPMENT CYCLE

3.4 Summary

This Chapter started by introducing common development methodologies, insisting on their
overall similarity. Then, we proposed a systemic analysis of such process by focusing on in-
teractions. Analysis which highlighted two types of coupling that we ranked in structural and
operative loops. Operative loops have a contextualising role, taking advantage of both individ-
ual skills and local constraints. Whereas, structural loop have to convey both requirements
(control) and metrics (measure) in order to establish feedback in search for a satisfying trade-
off. In a second time, we analysed how tools match this tripartite process by mapping classes
of tools over structural loop, emphasising their heuristic aspect. However, as the purpose of
this work is to provide some building blocks among many others, the importance of the devel-
opment process as a whole has to be pointed out as a requirement for quality and productivity.
Dealing with this thesis, we focus on the coupling between developers and their program.
The increasing complexity of the computing substrate tends to emphasise the empirical as-
pect of the programming task, forcing developers to rely more and more on trial and error
approaches. Consequently, developers need compact performance metrics to asses the quality
or badness of their choice on a daily basis, making the uses of tools to both qualify reliability
and performance of programs compulsory — tools which are the object of next chapter.

CHAPTER 4

Role of Performance and Debugging
Tools

Lintelligibilité du compliqué se fait par simplification [...].
Lintelligibilité du complexe se fait par modélisation [...].

Jean-Louis le Moigne in La Modélisation des systémes complexes [Mo0i99](p. 10).

Classes of software management tool which are particularly interesting are are performance
and debugging tools. Such tools aim at ensuring that programs efficiently use supercomputers’
resources. This supposes that a supercomputer can be misused, subject that we will firstly
develop from both performance and functional aspects.

4.1 Performance Metrics

As parallel programs can be inefficient, we first introduce common metrics which objectively
define program performance. We start with common metrics as speedup and efficiency and de-
rive the Amdahl law which sets an upper bound to the speedup (assuming strong scalability).
Then, we conclude over challenges associated with the need for scaling simulations in the
context of current and upcoming supercomputers.

4.1.1 Strong and Weak Scaling

As presented in Figure 4.1, there are two approaches when scaling a given problem on a
supercomputer. To begin with, as presented in figure 4.1(a), it can be used to provide the same
result in a reduced time frame, allowing a more productive use for example when doing para-
metric searches. In such case, problem size is kept constant while the number of processing
unit grows — approach referred to as strong scaling. However, as depicted by Figure 4.1(b), a
larger processing power could also be used to process a larger problems, such as the problem
size remains constant on each processing unit — approach called weak scaling.

41

42 ROLE OF PERFORMANCE AND DEBUGGING TOOLS

Problem

Processing Units PO P PO Pl P

1 2
Do) Dy
Execution Time
\

(a) Strong scaling.

Processing Units PO P _P P P |

1 0 12
Execution Time k @ @
D)

(b) Weak scaling.

Figure 4.1: Graphical comparison between strong and weak scaling.

4.1.2 Canonical Speedup

Sequential Time

Parallel Time
seq(n) +par(n)

S(“»P) =

S(n,p) = (4.1)

seq(n) + %fn) + comm(n,p)

The speedup is commonly defined as the sequential time over the parallel time, yielding the
acceleration achieved by the parallel program when compared to its sequential counterpart.
As presented in equation 4.1, this quotient can be expressed through three components with
p the number of cores and n the problem size:

e A sequential part seq(n) which describes time spent in serial sections which cannot
be made parallel. Commonly program initialisation, finalisation and input/outputs con-
tribute to this sequential term.

e A parallel part par(n) which depicts computation which are distributed among pro-
cessing units, therefore, divided by p when running in parallel.

e Parallelism overhead comm(n,p) which accounts for the supplementary processes re-
quired by parallelism such as communication, memory duplication, contention, ... This
factor is generally an increasing function of both problem size n and processes count p.

By looking at equation 4.1, which presents the canonical speedup definition. Speedup can
be bounded in two ways either by sequential part or because of parallelism overhead. Con-
sequently, performance tools are aimed at identifying and help limiting these two factors in
order to achiever higher scalability. Speedup can be expressed in a more compact fashion as

PERFORMANCE METRICS 43

an efficiency which describes how a program achieved to be accelerated by p processing units
when compared to an ideal acceleration p, leading to:

eacc(n>p) = S(n)p) (4.2)
)

Efficiency as shown in equation 4.2 is a measurement of the achieved acceleration. This
metric does not take into account problem growth which would also be qualified of “more
efficient”. Therefore, such efficiency is only correlated with computation acceleration (strong
scaling) when larger problems (weak scaling) are expected to remain at constant speedup
(close to constant execution time) yielding a decreasing efficiency (at least in %, plus parallel
overhead) although processing larger problems.

4.1.3 Scaling Bounds

Starting from previous scaling definitions in terms of weak and strong approaches, different
kind of bounds can be derived from the execution substrate. This section proposes to observe
bounds derived from speedup equation from a more practical point of view.

Sequential Part . Parallel Part . Overhead ‘ ’ Sequential Part . Parallel Part . Overhead

1 4 8 12 16 1 4 8 12 16

(a) Strong scaling. (b) Weak scaling.

Figure 4.2: Execution time for strong and weak scaling scattered among speedup fac-
tors.

As it can be seen in Figure 4.2, weak and strong scaling lead to very different behaviours at
scale. As we mentioned before, strong scaling aims at accelerating the computation by scatter-
ing it on an increasing number of processing units. However, as presented in Figure 4.2(a) this
process has to face two main limitations: (1) the parallel computing time divided infinitely con-
verges to the sequential time, yielding the classical speedup boundary described by Amdahl’s

law: s(n,p) < ec;(n]. Moreover, (2) parallel overhead which is an increasing function of the

44 ROLE OF PERFORMANCE AND DEBUGGING TOOLS

number of cores tends to limit the speedup (in our case at ten processes). Therefore, limiting
the sequential part and communications’ complexity are two conditions needed to accelerate a
program. Moreover, if parallel computation complexity is higher (in function of p the number
of processes) than the one of both sequential part and overhead, larger problem sizes are asso-
ciated with higher speedups (more computation less communications) — observation which is
called the Amdahl effect. We can conclude that in presence of a sequential computation time
and/or communication costs, acceleration is always bounded, preventing strong scaling on cur-
rent and upcoming machines. In other words, a single node cannot hold problems addressed
by the whole machine and even if it could, time required to process this problem would be
impractical. Besides, when looking at the tendency which promotes a larger number of sim-
pler cores and less memory per core, we can only emphasise the increasing constraints on the
strong scaling approach: (1) lower sequential problem size and performance, (2) lower prob-
lem size increase per core (linked to memory per core) and (3) higher overhead (more distinct
computing units). This makes the acceleration of a fixed problem on a whole machine illusory,
except if embarrassingly parallel with a data-set which is sufficiently large and does not has
to fit in memory (i.e. generated) such as for example in crypt-analysis applications.

Dealing with weak scaling, as presented in Figure 4.2(b), it aims at linearly increasing
parallel computation time core count in order to keep it constant relatively to a single com-
putation unit. In such case, parallel time remains constant by construction, leveraging Am-
dahl’s speedup limit. Despite, sequential time and overhead are still bounding the speedup.
Such context is described by Gustafson-Barsis law [Gus88] which is S(p) = p — a(p — 1) with
p the number of core and « the sequential fraction parallel processes (including overhead).
This equation models an unbounded linear speedup under with a growing problem size. This
speedup is referred to as a scaled speedup as it compares the execution time to a sequential
problem which cannot be measured experimentally because of time and memory limitations.
Looking at the « factor, it depicts the sequential time relatively to a single process, factor
which might increase with p for example because of a growing communication cost. Therefore,
in order to achieve, “infinite” scaling as described by Gustafson-Barsis law, communication cost
(and more generally overhead) shall have a cost of lesser complexity than the computation of a
problem of size O(n), bound to grow linearly with the number of cores. More practically, com-
munication cost is generally bounding weak scaling, yielding the behaviour of Figure 4.2(b).
Where computation time increases with the number of core because of a growing overhead,
eventually preventing programs to solve a linearly growing problem in a fixed time. There-
fore, the main limitation to weak scaling are the sequential fraction and the overhead which
have to grow at most linearly in function of p, remaining therefore constant per processing
unit — allowing scaling in a fixed time frame.

4.1.4 Acceleration versus Scaling

This section analyses how scaling is related to acceleration. As common measurements
such as weak and strong scaling are somehow meta-concepts which as we mentioned before are
linked to a wide range of variables such as problem size, communication complexity, sequential
part ... We propose to sum up all those factors in a graphical fashion, making those concepts
more actionable while emphasising programs behaviour relatively to speedup.

As presented in Figure 4.3(a), we propose to analyse the relationship between speedup and
problem size per core in order to outline and sum up the concepts we developed. In this fig-

PERFORMANCE METRICS 45

Sequential Part [ll Parallel Part i Overhcad‘

Accelerating Under-Scaling
, - Amdahl S8
Strong Scaling St

uentially
Bound Over-Scaling

Speedup

t

Problem Siz

Core Co

1 4 8 12 16

(a) Speedup in function of problem size per (b) Computation time when scaling in pres-
core. Vectors represent possible evolutions for ence of increasing communication cost requir-
a growing number of computing units. ing problem size compensation.

Figure 4.3: Illustration of speedup and scaling factors in terms of problem size per
core.

ure, we consider that computation over a linearly growing data-set has an higher complexity
than the overhead, which mainly accounts for communication costs. Besides, we also suppose
that computation cannot be scattered symbolically (for example as in key space exploration)
but instead relies on a distributed data structure both growing with the number of cores and
requiring communications for spatial coupling'. Weak scaling keeps problem size per core con-
stant but faces an increasing overhead when increasing core count, making of “weak-scaling
speedup” (_) a decreasing function of the number of cores. This, because of an in-
creasing overhead when compared to the work per core (see figure 4.2(b)). Consequently, in
order to scale problem (_) in constant time as in Figure 4.3(b), problem size might

have to be decreased in order to compensate overhead (jorange vector). However, consider-
ing that overhead has a lower complexity than computation, its ratio can be diminished by
increasing problem size — effect commonly called the Amdahl effect (). Ef-
fect bounded by memory per core, naturally limiting problem size (represented as brackets
on the % axis). Dealing with strong scaling (), its gains also depend
on both overhead/computation complexity and maximum sequential problem size. When in-
finitely dividing a problem over a growing number of cores, the program fist accelerates but
fatally comes a moment where the potential computational gain is lower than the associated
overhead cost — the program being sequentially bound. In summary, Figure 4.3(a) proposes
four regions describing the speedup-scaling vector:

e Accelerating region: in this region code runs faster on a larger number of cores. This
corresponds to a decreasing computational cost per cores and therefore a lower problem
size per cores. Cost which has to decrease sufficiently to compensate parallel overhead.
Outlined by a decreasing speedup when doing weak scaling (see figure 4.2(h)).

e Under-scaling region: if problem size grows less than linearly with the number of

1 This is the case of most simulation codes which rely on a spatial decomposition and communications at each

time-step.

46 ROLE OF PERFORMANCE AND DEBUGGING TOOLS

cores p, problem size per core decreases with p, leading to an increasing speedup if the
computational gain compensates overhead.

e Over-scaling region: if problem size increases at least linearly with the number of
cores p, problem size per core either remains constant or augment with p. Necessarily
leading to a decreasing speedup respectively because of parallel overhead (weak scaling)
and increasing problem size.

e Sequentially-bound region: when problem size per core is too small compared to par-
allel overhead or sequential computation, a larger number of cores and therefore further
dividing the problem leads to a decreasing speedup, degrading program performances.

Dealing with scaling a problem on a larger number of cores, we already mentioned that
strong scaling is illusory for domain decomposition problems because of both the limited se-
quential problem size and parallel overhead which bounds speedup. However, when coming
to weak scaling, we shown that it is also impacted by parallel overhead, yielding a decreasing
speedup in function of core count. In every cases, this overhead has to be compensated when
scaling either by growing problems (Amdahl effect) but more generally — as they already fill
computing units’ memory — by reducing problem size. Thus, when scaling, the linear problem
size growth Ps on p cores could be denoted Ps(p) = s.p with s the size per core. However, to
run in constant time, this problem size must compensate parallel overhead, being reduced by
a size matching the overhead (in time) in terms of computation. If we denote C(n) the sequen-
tial computation time for a problem size of n, we need to find, n¢omp @ compensation size such
as C(nc¢omp) = Parallel Overhead. This yields, Ps(p) = s.p — Ncomp and makes higher com-
putation costs preferable than lower ones as they reduce nnp. Moreover, in order to allow
increasing problem sizes, compensation size n.,m, shall be of lesser complexity than the prob-
lem size itself which is in ©(s.p). In other words, compensation size have to be at most linear,
yielding P(p) = (s — Scomp).p With s¢comp the compensation size per core, being as a result a
constant which compensates a constant overhead C(scomp) linked to computational complexity.
Consequently, in order to scale without limitation on a large number of cores, programs have
to keep their overhead independent from p and more practically as far as communications are
concerned to communicate with a constant number of neighbours. For example, collective com-
munications with a growing number of cores have to be avoided as much as possible as their
cost per core for the less expensive ones grows in O(In(p)). Cost which even if logarithmic will
eventually limit problem size at larger scales.

4.1.5 Summary

We have seen that several factors prevent programs from scaling on supercomputers. Rel-
atively to maximum acceleration we outlined that it is bounded by the sequential part as
expressed by Amdahl’s law. We also emphasised that strong scaling is not feasible at super-
computer scale except for a limited range of problems featuring symbolic data-sets or expen-
sive computation . On the contrary, in order to scale a program supercomputer-wide, problem
also has to be scaled. For example by simulating more deeply the phenomenon by adding
more physics, switching to 3D, lowering the time step, augmenting mesh precision... Larger
machines are therefore great opportunities as they open the way to greater simulations. How-

2 NP-complete for example

PROGRAMS CORRECTNESS 47

ever, we shown that unbounded scaling requires a particular effort over parallel overhead: it
must remain constant per core in order to allow increasing problem sizes (with p).

For example, from a communication point of view, a given process has to communicate with
a constant number of neighbours — forbidding collective communications. More interestingly,
collectives are not strictly forbidden as far as they involve a constant number of processes.
From a general point of view there are very few programs satisfying these conditions, mainly
because of collective communications (generally MPI_Allreduce) at each time-steps, commonly
used to compute the next time-step while satisfying the CFL condition®. Consequently, finding
numerical schemes completely avoiding collectives might certainly be an important milestone
on the road to Exascale.

In this context it is then crucial to capitalise development processes — preparing for change.
This work is by nature interdisciplinary and crosses individuals boundaries, requiring a strong
coupling between scientists which recursively have to produce the best results in order to
produce the best results. More particularly, performance-tools and the work of this thesis
are part of this process as they locally guarantee efficiency on a link of the simulation chain.
They provide feedback to experimenters, positively influencing programs and by extension
the modelling process. Next section will focus on program correctness which is of primary
importance as there is no need to scale while producing the wrong result.

4.2 Programs Correctness

Computer programs are well known to be subject to bugs which cause them to fail or pro-
duce erroneous results. More generally, bugs can denote everything which causes a computer
not to do what the end-user or programmer wants, for example: program interruption (com-
monly called a crash), producing the wrong results (algorithmic defect), incompatibility with
user inputs (interfacing problem) or inconsistent behaviour such as lack of reproducibility or
deadlocks *.

4.2.1 Overview

The term bug is relatively vague and seems to describe something latent and almost un-
avoidable, just like small bugs lying deep in the code-base, randomly impacting programs
execution. In other words, programmers, particularly in parallel, have to implement both the
feature and its computing substrate. Process which is similar than linking a set of compo-
nents altogether in order to promote desirable behaviours while preventing undesirable ones.
In other words, programmers are supposed to express both what they want and what they
do not want. This second aspect being the most demanding as it supposes that programmers
are able to understand and predict any program state. Guaranteeing that they don’t lead to
a faulty state. In this context, debugging is observing a faulty state in purpose of preventing
it by fixing a defect. In the rest of this section we will rely on the terminology proposed by
Zeller [Zel09]:

Courant-Friedrichs-Lewy condition which guarantees numerical problem convergence.
A program deadlocks when it stays blocked in a circular waiting state which cause an infinite waiting prevent-
ing the program to terminate.

4

48 ROLE OF PERFORMANCE AND DEBUGGING TOOLS

e Defect: involuntary or unforeseen code statement, combined with a given context causes
an error in program state.

e Infection: the faulty-state is propagated through function calls and parallel interac-
tions, leading to an undefined behaviour. Note that sometimes, the infection phase can
hide bugs (for example by rewriting the erroneous value), not necessarily leading to a
failure.

e Failure: eventually, the defect becomes visible to the user as a failure, associated with
an erroneous outputs or crash — finding their root in a defect.

Consequently, a failure can find its origin in a defect, apparently not semantically linked,
because of complicated infection mechanisms as, for example, stack or memory corruption.
This propagation is potentially both temporal and spatial. In such case, different code sections
are being successively called and messages (with erroneous data for example) are sent to
remote processes. Therefore, back-tracing the causality chain which led to an erroneous state
can be costly and complicated — requiring specifically tailored tools.

One difficulty is that the programmer does not know what he is looking for, consequently,
debugging generally starts from the faulty state either reported by users or encountered by
the programmer. Requiring to be able to reproduce and isolate the failure in a compact test
case. Then, once the error is reproducible, the developer lists possible infection vectors which
could have led to such a state for example by examining function stack or variable values. He
proceeds by successively testing propagation hypothesis from the most probable (according to
his experience) to the less probable using various approaches such as breakpointing, watching
variables or producing debug outputs. Eventually, once the infection chain has been identified,
the developer isolates and fixes the defect which led to the failure. This process is described
in a more compact fashion by Zeller [Zel09] as seven steps which initial letters mnemonically
form the word TRAFFIC:

Focus

N

Track — Reproduce — Automate — Find Isolate — Correct

Figure 4.4: TRAFFIC bug-tracking technique as described in [Zel09].

The process presented in Figure 4.4, and particularly the search loop is very time consuming
for developers, Hailpern and Santhanam reported that debugging, verification and testing
took from 50% to 75% of the time in typical commercial development organisations [HS02].
Optimising these costs can therefore increase developers’ productivity, making compulsory for
programmers to be able to efficiency use debuggers in order to speed-up the debugging process.

4.2.2 Quality Process

More importantly, debugging has to be relocated in the development quality process which
role is to collect, find, fix and prevent program defects at both component and functionality
level. Program quality has to be a management-metric in order to incite programmers to

PROGRAMS CORRECTNESS 49

enhance their testing and bug-tracking infrastructure. By systematically relying on report-
ing front-ends to enforce communication and failure reporting through a bugtracker®. And
making sure software components are not solely tested by their developers but also by users,
providing actual test coverage in accordance with the expected functionality. Relying on a
modular design with a team for each component can be a possibility to enforce such cross
validation. However, it shall be done in a systematic fashion until the integration layers in
order to prevent responsibility dilution from “integrators” to “implementors”. In other words,
the integrated product itself has to be tested by a distinct team. In a simulation context, for
example, numericians are in charge of producing results for physicist who can judge their
quality and cannot be judged only in the light of incomplete (but necessary) metrics such as
convergence. Information management in the quality process shall therefore aim at creating
an interdependence between components. Allowing their cross validation and clearly identify-
ing each developer role, globally at component level, and locally at source code level (through
versioning and sub-components), making developers responsible for their code and therefore
caring for its quality. However, this process has to avoid the stratification danger when a
subset of developers is considered as furnishing the core functions and feel free to impose its
requirement to the whole project which inevitably looses in orthogonality. Preventing this pit-
fall requires an ability to preserve individual values in respect to distinct competences while
promoting their cohabitation in projects which have to take advantage of individual knowledge
and values as rationally as possible, statement which is close to the definition of management.
Therefore and ideally, code structure shall be mixed with the effective organisation in order to
allow component adaptability and preservation of individual values through a management
trade-off.

Once collected by programmers thanks to reporting tools and an inciting organisation, de-
fects have to be fixed using classical approaches that we previously summed up in Figure
4.4. This requires, efficient tools to explore program states such as parallel debuggers. Once
identified, the defect is naturally fixed and measures are taken to prevent its recurrence by
both informing developers (documentation, informal discussion, ...) and adding the issue to
the test-base. Then users are informed of issue’s resolution. This process aims at preventing
software entropy by not putting with a single issue, even if apparently small as it creates a
“sense of abandonment” and opens the way for larger issues®. This punctual code support
is combined with continuous testing where developers rely on several techniques to guaran-
tee programs reliability (see Hunt and Thomas [HT99] which introduces good programming
habits) such as:

e Component-based design: identify and design in separated components which are
connected with compact and clear interfaces.

e Unit testing: systematically test individual components in order to make sure they
provide and keep providing the expected function alongside the development cycle.

e Design by contract: as introduced in the Eiffel language [Mey97](p. 331), document
and test every preconditions, post-conditions and invariants in order to make code more
reliable by crashing early [HT99](p. 114) with a clear error which prevents state infec-
tions.

Ticket based web front-end where users report a program failure they encountered with as much detail as
possible in the expectation of having developers’ feedback on the issue (explanation, bugfix, advice, ...).
6 This effect is commonly called the broken window theory [WK82, HT99].

50 ROLE OF PERFORMANCE AND DEBUGGING TOOLS

e Regression tests: making sure programs evolution does not impact features or (re)creates
bugs. Therefore, it can be interesting to run a complete regression base against each
revision in order to point-out possibly harmful modifications or side-effect which could
otherwise make their way to the end-user.

e Integration tests: rely on representative use cases to test software modules before
releasing them to the end-user.

Far from being exhaustive, this list emphasises that there are methods to guarantee reliabil-
ity and that developers can always strengthen their quality concerns in purpose of producing
better software which is more likely to alleviate larger supercomputers requirements.

We have seen that the debugging process takes an important place in the development
process as it transforms a faulty program into a working one which satisfies the requirements.
However, and particularly with software products, working is not being reliable. Being subject
to parallel execution noise, data-set and user input variations, reliability has to be enforced
through careful testing at every component level, in fact just as what is done industrially when
building a plane or a car.

4.3 Summary

After introducing the developer tools role in terms of software performance and reliability.
This section, developed the notion of quality process which is classically linked to guarantee-
ing means of control and measure relatively to programs. This process allows developers to
constantly question important metrics about their program. Allowing an iterative develop-
ment process which compensates uncertainties by information (for example unit and integra-
tion testing, bug tracking, documentation, ...). In this complex process, this thesis proposes
means of measure in terms of performance and reliability. Once motivated by control, a tran-
sition necessarily need measurement to face uncertainties linked to the complex combination
of several values. Therefore, in complement of careful testing of every aspects and constant
reporting (both part of the classical development process and not covered in this thesis), it is
important to question reliability and performance of simulation programs to face supercom-
puters evolution.

PART 11

Key Concepts and Related Work

51

CHAPTER 5

Architecture of Developer Tools

After the global introduction of part I, this chapter sets up the specific context of this thesis:
developer tools development, with a particular interest for performance and debugging tools.
After presenting the canonical developer tools architecture, we detail various instrumenta-
tion and data coupling methods commonly used in existing tools before introducing analysis
methods.

5.1 Canonical Architecture

>
- _

Actual '% | Observed
Behaviour = | Behaviour
................................ GSJ Coupling] R
Computer | 2 f: Computer
Program *ré Program

4
<

Figure 5.1: Canonical architecture of developer tools.

Developer tools can be described in a very synthetic way as a mean which allows an user to
observe or interact with a computer program. As presented in Figure 5.1, and highlighted in
chapter 4, an effective program behaviour cannot be derived from its code. A tool is therefore
in charge of observing this behaviour (measurement), managing both instrumentation data
(coupling) and processing those data (reduction, projection) in order to make them intelligible.
This process can be seen as a cycle allowing observation and correction of defects through
iterative code enhancements. Three classical processes can be derived from Figure 5.1:

¢ Instrumentation captures program’s behaviour in order to make it analysable. This
process either associates each program step with a dedicated event or makes the program
state visible from an external point of view. Process which verbosity defines the overall
instrumentation chain requirements (for example in terms of coupling).

53

54 ARCHITECTURE OF DEVELOPER TOOLS

e Coupling allows the transfer of measurements to a third party tool in purpose of be-
ing analysed. This process can take several forms in function of both data volume and
interaction/integration levels. Moreover, every tool require a communication channel in
purpose of carrying measurements, component which as we will develop, has an impor-
tant impact over scalability.

e Analysis is the corner-stone of any tool. It aims at projecting observed behaviours on
known metrics generally code-related. This process often involves several spatial (over
cores or processes) and temporal reduction in purpose of eventually presenting informa-
tion in an intelligible manner. Consequently, the volume of data presented to users is
negligible when compared to the total amount of collected data.

In the rest of this chapter we present developer tools in the light of those three aspects, in
purpose of comparing the design choices they incur. We will begin with various instrumenta-
tion approaches and then focus on data management methods. Eventually, we detail various
analysis principles.

5.2 Instrumentation Approaches

This section presents the wide variety of instrumentation approaches and the spectrum of
measurement they provide. In this purpose we outline two classes of methods qualified of
external and embedded. (1) Externals methods suppose a control over the execution substrate
in order to isolate programs in terms of state and resource usage. Such approach provides
detailed measurements but requires a cooperating execution substrate which in some cases
differs drastically from the nominal one. (2) Embedded methods rely on an internal program
view during its execution, it has the advantage of describing the real substrate but poses the
question of measurement perturbation.

5.2.1 External Instrumentation

Environment
Hardware Environment
(a) Software Instrumentation. (b) Hardware Instrumentation.

Figure 5.2: Overview of external instrumentation.

INSTRUMENTATION APPROACHES 55

As presented in Figure 5.2, external instrumentation supposes that the tool runs in an envi-
ronment surrounding the target application, allowing its separate operation without interfer-
ing with the application. This method provides a lot of advantages, among which are both the
ability to stop program execution while allowing its inspection and the full cooperation of the
executing substrate with the observer. Most of the time, as in Figure 5.2(a), external instru-
mentation is achieved through execution virtualisation where a software component (instead
of directly the operating system) executes a program. Another external instrumentation ap-
proach is when the operating system instruments the applications it hosts, combining virtual-
isation advantages with sometimes close to native execution performance. On hardware side,
as presented in Figure 5.2(b), instrumentation can be seen as surrounding the hardware, for
example, when using the Joint Test Action Group (JTAG) port of an electronic programmable
device for control and inspection purposes. More closely to current processors, hardware coun-
ters are also a form of external instrumentation as they provide hardware level metrics which
can be retrieved by running applications.

5.2.2 Embedded Instrumentation

Program

Program

Instrumentation
Instrumentation o) t observati0n<)
L 2, control
control &
Environment Environment
(a) Embedded Instrumentation. (b) Embedded Self-Instrumentation.

Figure 5.3: Overview of embedded instrumentation.

Figure 5.3 presents the setup used when an application instruments itself. In this case the
application is in charge of redirecting its control flow into instrumentation components in or-
der to generate an observable (usually as events). Those events can be either directed in a
trace for post-mortem processing (Figure 5.3(a)) or accumulated locally for profiling purposes
(Figure 5.3(b)). When using this method measurement-related perturbation might become
problematic as there is no way of guaranteeing that the observed behaviour is accurate. In-
deed, for example, when storing performance events in a trace, buffer flushes costs are im-
peded to the instrumented application, delaying local event execution. Difference which as
in the butterfly effects can be propagated to every processes through interactions (locks, mes-
sages, collectives). Nonetheless, one of the main advantage of embedded instrumentation is
that it depicts (even if slightly modified) an actual behaviour as observed on the execution
substrate, allowing observations which might not be practical by virtualisation.

The approach consisting in storing measurements (as a trace) for latter processing is re-
ferred to as a post-mortem approach. It has the advantage of allowing analysis of arbitrary
complexity as they are decoupled from instrumentation. Moreover, post-mortem analysis also

56 ARCHITECTURE OF DEVELOPER TOOLS

opens post-processing opportunities (for example for time-stamp synchronisation) and itera-
tive or comparative exploration. More generally, post-mortem instrumentation stores “unre-
duced” or slightly reduced events, thus, decoupling instrumentation from analysis and leav-
ing freedom degrees around a common denominator: the trace format. Consequently, trace-
based methods can be considered in some aspects as one of the most versatile instrumentation
method. However, as we will see in following sections, this approach has drawbacks as, for ex-
ample, it supposes the ability to manage verbose data in very large traces — causing several
data management problems. In particular, post-mortem approaches are subject to the per-
turbation versus event verbosity trade-off which eventually constrains the set of affordable
analysis. Creating a strong need for either online filtering (spatial (per process), per event,
temporal (usually trace buffers or sampling), ...) or reductions maintaining a cumulative (pro-
file) state at runtime.

Dealing with local event processing, as presented in Figure 5.3(b), it has the advantage of
immediately reducing events by performing analysis “in place”, thus, relaxing data manage-
ment problems. However, such tools cannot perform complex analysis a they directly have to
process events with, in general, a limited intermediate storage space. As such tool target run-
time instrumentation the retrieval of a global state can be problematic as is goes against the
scalability requirement — requiring particular efforts such as suitable topologies (for example
tree based overlay networks (TBONS)). Because of those limitations, online approach is privi-
leged by tools which perform lightweight analysis and which are not strongly dependent from
a global state such as profilers and validation tools. Nonetheless, some validations such as
deadlock detection, requiring a global state, have been successfully developed either centrally
or through a TBON (see section 6.4.4).

5.3 Coupling Methods

As aforementioned, the instrumentation process generates a large amount of information
which has to be processed in purpose of generating valuable metrics. This section analyses
mediums and processes which allow instrumentation—analysis coupling. We detail the three
main approaches adopted by tools: (1) analysing data in place, (2) storage of event traces for
latter processing or (3) online processing of data (with dedicated resources). Methods which
are not mutually exclusive.

5.3.1 In-Place

Instrumented —
Overhea(i Analysis Rcduotion

Figure 5.4: Schematic representation of instrumentation data processed locally.

Figure 5.4 schematically represents the data-flow and control flow associated with local in-
strumentation data processing. As described in previous section, analysis overhead is directly

COUPLING METHODS 57

impeded to the instrumentation wrapper as the control flow is rerouted to analysis routines.
Dealing with the data management aspect, instrumentation events are immediately projected
to compact metrics (for example, a profile, arguments validation,). They are stored on the
stack and directly passed to analysis routines which immediately perform their projection on
compact metrics (either spatially, temporally or functionally, see section 5.4). In summary,
in-place analysis is the most space efficient approach as data are not stored at all, however,
projection costs have to be limited, restraining analysis verbosity. Moreover, by nature such
approach only allow the generation of either punctual events (issuing warnings, aborting, ...)
or reduced events (cumulative state must fit in programs memory) — preventing for example
exploratory analysis.

5.3.2 Post-Mortem

Instrumented

Event

ertlng Analysis Reduction E.E

Overhead

Call

Event Trace

Figure 5.5: Schematic representation of instrumentation data post-mortem process-
ing.

As presented in Figure 5.5, trace based approach consists in storing events outside of the
parallel programs (generally in a file based trace) in order to process them separately. This
process, allows complex analysis as they wont disrupt the execution. It also open possibil-
ities for successive analysis on the same data-set. However, managing large traces can be
quite challenging as they grow rapidly with both event verbosity and the number of core'.
This poses the question of management and post-processing of those large data-set which are
challenging payloads for peta-scale file-systems. Consequently, trace-based analysis requires
a specific handling of file-system resources (for example through parallel I/O” libraries, see
Section 6.4.1) to scale up to a full machines. Moreover, trace processing must be parallel in
order to process measurements in a time frame compatible with iterative use.

5.3.3 On-line

The on-line approach presented in Figure 5.6 can be seen as a combination of in-place and post-
mortem approaches. Instead of being processed locally, data are sent (for example, through
the network or a shared memory segment) to an on-line analyser which is able to reduce
data without impacting the application. As the analyser has a limited amount of memory,
data have to be either reduced quickly or limited in size in order not to block the application.
Moreover, as events are reduced/filtered before being stored, this approach does not allow

Traces of hundreds of GigaBytes are common.
2 1/O: Inputs/Outputs

58 ARCHITECTURE OF DEVELOPER TOOLS

Instrumented

Event AﬂaIYSiS Reduotion]

———— Event
OYerhea’d Transmission Reception

~ Call

Figure 5.6: Schematic representation of instrumentation data on-line processing.

iterative analysis over fine-grained events — preventing exploratory analysis which is always
possible with traces. However, due to its on-line nature, this methods does not stress the
file-system as in the trace based approach and allows the scaling of analysis resources in
accordance with both analysis costs and data verbosity. Indeed, the 10 budget is determined
by the number of servers providing this service, value which is generally a limited portion of
the machine. Whereas, the on-line approach takes its resources (including bandwidth) from
the computing partition with the possibility of reaching higher performance.

5.4 Performance Event Analysis

Performance analysis consists in reducing events to synthetic metrics which can be eas-
ily matched with possible program improvements. It projects a large volume of individual
events over various models which capture important execution aspects while remaining un-
derstandable by users. If we consider the parallel execution as a whole it can be seen as a
multidimensional experiment which can be projected on a wide range of metrics:

e Space: distributed programs are running on a discrete set of machines. Moreover, as
we previously described, supercomputers have both intra-node (NUMA, NUOIOA) and
inter-node (network) topologies, definitively “shaping” the execution space. Therefore,
spatial reduction can provide some insight on computation and data scattering, empha-
sising phenomenons such as imbalances or dependency propagation.

e Time: by nature, a program is designed to perform a set of operation in a defined order,
in the purpose of fulfilling its purpose. Consequently, it is interesting to observe compu-
tation progress over time as it depicts the ability of the program to actually perform its
task in terms of both parallelism and synchronisation.

e Code: a parallel program execution is always preceded by its expression as an human
readable code. Therefore, projecting the execution on program sources can be an efficient
way of providing feedback to programmers. Expressing measurements in an actionable
language (iterative code modifications, coupling with version control to identify regres-
sions, hotspots identification, ...).

e Programming models: parallel execution is strongly coupled with the way parallelism
is expressed at source code level. As there are several parallel programming models
and that their mixing becomes the norm (see Section 2.3) it can be useful to correlate
programs behaviour with individual models. Not only for validation purpose but also
at performance level, for example by identifying missuses of MPI, OpenMP fork-joins,
locking schemes...

SUMMARY 59

An important aspect of performance event analysis is that it aims at providing the user
with intelligible metrics, summarising the parallel execution. Consequently, analysis is gen-
erally a destructive operation (except in some rare cases of trace visualisation with tools such
as Vampir) which operates a reduction of individual events over the aforementioned met-
rics. In this context, when comparing profiling and tracing, analysing performance data is
a way of reducing their volume through what can be described as a computation—performance
trade-off. Consequently, where the analysis takes place is crucial to budget important factors
such as overhead, analysis complexity and performance data verbosity. For example, reducing
data early is a way of avoiding unneeded data transport while producing valuable measure-
ments. However, as this reduction is a destructive process, it prevents further analysis and
exploratory approach. Eventually, another consequence of early reduction is that every analy-
sis must have its associated storage description in order to be transferable to the user either
as a report or through a graphical interface. This makes tools performing early reduction *
quite dependent from their underling performance description scheme, possibly complicating
analysis extension as it can impact the whole measurement chain.

5.5 Summary

This chapter presented the context of developer tools, and particularly performance and
debugging tools from a global point of view. We introduced the two main instrumentation
approaches which either consist in instrumenting either internally or externally. Then we
detailed the three different coupling methods, processing data locally, through post-mortem
traces or remotely via an on-line coupling method. Eventually, we described the analysis pro-
cess as a reduction which projects performance data over intelligible metrics in order to be
fully understandable by the user — process which can also be an opportunity for performance
gains. Consequently, this chapter underlined the fact that there are several design alterna-
tives to implement performance tools, offering tools developers a wide range of alternatives.

Apart the trivial case where a profile is displayed on STDOUT.

4 Mentioned later as hybrid Instrumentation Chains in section 6.1.2.

60

ARCHITECTURE OF DEVELOPER TOOLS

CHAPTER 6

Related Work

This section presents both existing and related work for different parts of our contribution.
We start by introducing existing developer tools with debuggers, and then pursue with pro-
filing and validation tools. Then, we detail complementary subjects which are time-stamps
synchronisation, blackboard systems and data-management approaches. This chapter gath-
ers most of the references when dealing with the state of the art itself, several references of
corollary subjects can be found in other parts of this manuscript. Note that back-links are
available in the bibliography in order to explore citation sites.

6.1 Developer Tools

This section presents the main classes of developer tools, insisting on their functions and
common implementations in terms of instrumentation, coupling and analysis. We successively
introduce debuggers, performance tools and validations tools. In each case we recall some
context, expectations and advantages associated with existing approaches.

6.1.1 Debuggers

Debugger are the most commonly used developer-tool as they are an efficient way of diagnos-
ing a faulty program in order to reestablish a feature which is the reason to be of a computer
program. Therefore, programmers generally start from a faulty state and re-launch their
program using a debugger in purpose of exploring its state. Consequently, debuggers must be
able to describe faulty program state, to do so, they generally rely on the ptrace [HC99] system
call which allows a parent process to observe and control one of its child. This single system
call provides enough fuctionalities to build a full featured debugger such as GDB [Prol13b],
IDB [Int12a], LLDB [Pro13c] or DBX [Lin90] for example: acessing child’s memory or regis-
ters, retrieving signal informations and controling child’s execution (trough signals). Other
approaches can also rely either on sampling to continuously collect call-stacks as in the STAT
debugger [AdSL09] or, more commonly, use crash-dumps to collect programs final state.
More particularly, some debuggers can take advantage of the JTAG [LG98, Gra01] or serial
port [Axe07] of electronic devices to perform debugging from an external point of view. Debug-
gers cover a wide range of the instrumentation spectrum, with on-line approach generally via
ptrace [Prol13b, Int12a] or sampling [AADS 07, AdSL"09] followed by a reduction through a
TBON [RAMO3], post-mortem approach with crash dumps or traces [Rei93, Tea06, HMO1] or
even in-place debugging using back-trace libraries such as libunwind [It11] or libc’s backtrace
function [KP07] from a signal handler.

61

62 RELATED WORK

Dealing with the interfacing, debuggers generally provide a command line interface [Pro13b,
Int12a,Prol13c,LLin90] for common use at single node scale. However, when dealing with paral-
lel payloads, displaying programs states becomes a challenging task which requires a scalable
design not only to collect data but also to display them. Tools such as net-DBX [NEO01], p2d2
[Ho096] or Panorama [MB93] debugger relied on a client server approach where a graphical
user interface could be attached to several processes. However, the increasing number of cores
made the use of scalable communication topologies compulsory. Therefore, Tree Based Over-
lay Networks (TBONs) such as Paradyn MrNEt [APM06, RAMO03, Rot05] became a common
intermediate in scalable debuggers for both control and reduction purposes. Such approach
proven its scalability with the STAT debugger [AdSL " 09] which relies on MrNet [RAMO03] as
it has reached the petaflopic scale on the Sequoia supercomputer. Dealing with commercial
MPI-aware debugger such as Allinea DDT [All13a] or Totalview [Sof13] which are commonly
used on petaflopic range supercomputers, they also rely on a tree based topologies, reducing
data before displaying them in a graphical interface.

6.1.2 Performance Tools

Performance tools can be sorted in two main categories, on one hand those which rely on
fine-grained events through tracing and on the other hand those which process data locally.
However we will see that some tools, combine these two approaches in a third category, in
purpose of getting the best of both world, for example, by reducing an event subset and tracing
another.

Trace-Based Approach

The trace-based approach which consists in storing events in a file-based trace for post-
mortem processing requires a trace format which is in charge of defining an efficient storage
layout in term of storage and scalability. Consequently, a trace format shall not only contain
time-stamped events but also meta-data describing the execution context (topology, symbols,
...). From a more general point of view a trace format have to satisfy the following aspects:

e Consistency: a trace have to be readable out of its original context. It shall be processes
later after the execution without information loss. This supposes that the trace format
embeds specific contextual informations (symbols, topology, timing, ...).

e Scalability: as tracing targets are highly parallel programs. Analysis has to be scal-
able at both writing and reading time. Supposing particular efforts on IO management,
preserving an end to end parallelism.

e Compact data: important data size generated by tracing tools is of the main limitation
for trace-based approaches (data management and its associated overhead). This makes
efforts to restrain instrumentation data size compulsory.

e Topology handling: tracing tools generally define execution stream topology as an
acyclic graph relying on (parent, child) relationships stored within the trace.

e Events: the core of a trace format is the set of events it supports. Formats generally
define event semantic by providing common events with a fixed definition (for example,
MPI interface). It shall be noted that this specialisation of trace formats poses questions
of format adaptability.

DEVELOPER TOOLS 63

e File Handling: as a trace format aims at storing data in a parallel file system, particular
efforts are required to guarantee a minimum of scalability, for example, by limiting the
total number of open file descriptors.

In addition to those common concerns, the way analysis are processing instrumentation data
necessarily constraints their layout. Indeed displaying a temporal trace with the ability to
scroll or zoom in and out makes temporal look-up crucial (as in the SLOG2 [CGL08]). Whereas,
such format used for debugging might suffer from limitations, for example, when processing
a single type of event which being mixed with others might require a complete trace walk.
There are several trace format (one for each tools ?), however, some formats became more
widespread than others, setting a common ground for performance analysis and as we will see
opening interesting interfacing opportunities between tools.

Trace-Based Tools

An extensible trace format which relies on a meta-description approach in the purpose of
instrumenting multi-threaded programs is the Pajé [dOSdKM10] trace format which is asso-
ciated with a trace-visualisation tool [DKdOSO00] for interactive exploration of event traces.
Despite its versatility, the main default of the Pajé trace format is its text based (ASCII based)
storage approach which privileged modularity over space efficiency. Consequently, Pajé is
with no doubt one of the most extensible trace format but it lacks of a proper compression and
parallel 10 infrastructure to be suitable for massively parallel application tracing. Moreover,
parsing a text-based trace format costs generally more than reading a binary format which
can be immediately matched with a C structure.

Another trace format which has been used to trace parallel applications is the Open Trace
Format (OTF) [KBB 06, KBMS06]. This format relies on an ASCII-based storage method
which stores values without leading zeroes (for compression purposes). Writing and reading
are performed using a state machine which describes event layout. At the beginning of this
thesis, OTF was the state of the art trace format, as it was used by production grade tools
such as Vampir Trace [KBD " 08] to store massively parallel event traces. OTF provides both
reading and writing primitives to handle individual events stream and supports compression
using zlib [DG96]. It provides predefined events for common MPI calls, efficiently instru-
menting parallel applications while supporting fast event look-up in terms of both time and
space (between processes). However, OTF does not handle parallel IO libraries, preventing its
use at larger scale as the large number of files (one per process thus one per core) can satu-
rate file-system meta-data servers. Another limitation is the identifier handling which upon
trace collection are all local to their stream, requiring a full trace rewrite to unify collected
data. OTF2 [EWG11] which succeeded ' to OTF brought several improvements. It added
the support for the SIONIib [FWP09] which provides parallel IOs and therefore leverages the
problems of scalability associated with the number of files. Moreover, OTF2 storage format
moved to binary, evolution which drastically reduced traces storage size (see section 9.4.6).
Dealing with the identifier unification “problem”, OTF2 features a direct conversion approach
through a local to global mapping table which avoids file copies.

1 OTF2 was not available at the beginning of this work. Otherwise, as discussed in the limitation section of our

trace based approach we would probably have used it to propel our tracing tool.

64 RELATED WORK

SLOG(Scalable LOG file) [CGL08] is a trace format specifically designed to handle temporal
traces visualisation. Events are stored in the form of a binary tree which defines temporal
intervals in the visualisation window. Therefore, zooming in and out is choosing a node in this
tree, node defining a bounding box matching current viewpoint. Approach used in complement
of SLOG in the Jumpshot [ZLG 99, WBS " 00] trace visualisation tool.

The EPILOG (Event Processing, Investigating, and Logging) [WMO04] trace format has been
developed for the KOJAK [MW03] measurement infrastructure, it relies on a binary data for-
mat and supports both MPI and OpenMP hybrid codes including performance counters,thanks
to the PAPI [MBDHO99] library. The KOJAK performance tool set (which is the precursor
of Scalasca) allows OpenMP instrumentation programs using the Opari [MMSWO02] source
translation tool-chain in order to insert instrumentation calls. It stores events within traces
which are processed using EARL [WB04] which is the high-level interface for accessing EPI-
LOG traces. It defines event abstractions (a hierarchy of event types) and provides pro-
gram state handling (stacks, messages) with random access capabilities. Thanks to this
high level interface, the EXPERT [WMO03] analysis tool is able to process the trace in or-
der to generate a compact representation of performance information which can be visualised
using CUBE(CUBE Uniform Behavioral Encoding) [SW04] visualisation tool. CUBE relies
on three panes to present performance data in a compact manner (1) metrics, (2) call-tree
and (2) location, allowing the exploration of measurement data in the CUBE performance
space [WMO03, Wol03].

Trace visualisation tools such as Vampir [KBD "08] trace are able to visualise OTF traces,
collected either with the libVT (included in OpenMPI), producing OTF'1 traces or more recently
with the ScoreP measurement system (see next section) which produces OTF2 traces. Vampir
allows interactive exploration of large event traces which can be augmented with several per-
formance metrics (hardware counters, communication matrices, ...). To face the challenge of
displaying very large traces, the Vampir GUI can be used as a client to the VampirNG [BMO08]
trace analysis engine which performs a parallel trace processing of OTF traces. Vampir also
has its own trace format called VITF3 [SKMPO04]. A non-commercial alternative to Vampir is
Vite [CDFT12] which also allows interactive visualisation of OTF traces.

Paraver [PLLCG95] is a performance visualisation tool which relies on both its own trace for-
mat and instrumentation layer called EXTRAE [BDMQO12] which brings support for Pthread,
OmpSs, OpenMP and MPI. Paraver has the particularity of allowing the user to build its own
performance metrics in purpose of exploring program states using a powerful filter function-
ality. Paraver is also able to process multiple-traces in parallel, feature which can be useful
for example to compare two versions of the same code.

Valgrind [NS07b] tool, callgrind [WeiO8] can perform profiling of programs thanks to the
valgrind infrastructure. Despite a relatively important overhead and a limited support for
parallelism (due to virtualisation), callgrind and its associated visualiser Kcachegrind are one
of the most comprehensive profiling tool, providing in the same tool, callgraph visualisation,
visual profiles and performance metrics projection at source code level.

The paradyn [MHC94] tools are a set of tools which rely on binary instrumentation thanks
to the dyninst [RBR"07] tool in order to instrument unmodified executables. Paradyn pro-

DEVELOPER TOOLS 65

vides performance analysis though a parallel “Performance Consultant” engine [MCC"95].
The paradyn team is also at the origin of the MrNET [RAMO03,JBM12] TBON framework with
propelled the STAT debugger [AJSL " 09] at petaflopic scale. If we compare Paradyn which
our on-line approach, we can see that it also performs a runtime coupling thanks to the Mr-
Net [RAMO3] framework which itself relies on TCP sockets (MrNET 4.0.0). Consequently,
as we will further develop in Chapter 10, our method provides support for high performance
networks (thanks to the underlying MPI) and is build around a distributed data-flow engine
which simplifies analysis specification.

Hybrid Instrumentation Chains

In order to reduce the volume of data stored in performance traces, some tools adopted
an hybrid approach by combining both profiling and tracing. Therefore, most performance
event are reduced in place, for example by being projected on a call-path profile, whereas, a
manageable subset of events is actually stored for latter processing (for example MPI commu-
nications). If balanced correctly in terms of embedded analysis cost, this method can provide
valuable measurements while remaining scalable and non-invasive.

OTF2 has been included in the ScoreP [aMBB " 12] measurement system which gathers sev-
eral profiling tools (Vampir, Scalasca, Tau, Paraver) around the same measurement infras-
tructure and trace format, allowing users to use several tools on the same trace file. Opening
opportunities for complementary use and interaction between tools. ScoreP features state of
the art instrumentation capabilities, including OpenMP tasks [LPSW12] and is able to gener-
ate OTF2 traces, Cube profiles (see Scalasca subsection) and Tau profiles (see Tau subsection)
— both making of ScoreP the most versatile instrumentation library and filling the gap be-
tween tools which were isolated because of their different trace formats”.

Scalasca [GWW10] is the successor of KOJAK, it relies on an hybrid approach which com-
bines both profiling and tracing in order to produce valuable performance metrics with a re-
duced overhead. Functions calls which are among the most verbose events are reduced in
place using a profiling approach which can be made even more lightweight thanks to sam-
pling [SGS"11, SWW11]. Dealing with MPI events stored for post-mortem processing are
processed in an original fashion as they are replayed upon application end, in purpose of
generating performance metrics such as wait-state analysis [GWWMO09]. As Scalasca also
subject to the problematic of identifiers unification (see OTF trace format), a scalable hierar-
chical approach [GSS12] had to be developed in order to scale to larger systems [WGM " 10].
Dealing with analysis, Scalasca relies on the CUBE [SWO04] visualiser, enriched with sev-
eral performance metrics such as Wait-states [BGWA10] analysis, load-imbalance [BWG12],
one-sided communications support (thanks to the replay approach) [HKW11], performance
dynamics [Sze12] (to our knowledge not included yet in current release 1.4.3).

Dealing with the TAU [MMSH10] performance tool-set, it is probably one of the most ver-
satile one. It supports a wide range of instrumentation methods among which are directive
rewriting [MMSWO01], function and loop instrumentation [JDA "09], GPU support [MBS " 11]
and sampling [SMH98]. On the analysis side TAU relies on the PerfDMF [HMBMO05] per-
formance data management framework which provide TAU analysis with a common storage

2 Trace format converters are available, but who would convert a 100GB+ trace ?

66 RELATED WORK

and data access infrastructure. TAU supports snapshots [MSMS08] which can be viewed as
sampled profiles, it also supports phase based profiling [MSMO05]. The Paraprof tool can be
used to explore performance measurements by displaying profiles, time matrices, call-graphs
and also features an interactive 3D visualisation tool [SML"12]. TAU also relies on Perf-
Explorer [HMO5] for original performance analysis capabilities [HMSMO7], including data-
mining in-between application runs. TAU provides support for run-time monitoring [SMS99],
for example with the MrNET [RAMO03] TBON framework [NMM 08, LMM11].

Static Analysis

Static analysis consists in deriving information from the binary without requiring program
execution. This approach has the obvious advantage of relaxing hardware dependencies, al-
lowing program projection in any context as far as it has been modelled. Moreover, this method
forces the setup of a symbolic execution model which is an important field of research as ma-
chines are becoming more and more complex. We cannot solely rely on empirical metrics
(profiling) and it is important to define what can be expected from a given platform to initi-
ate a proactive approach toward the computing substrate — encouraging the advent of new
programming models while helping during the machine/hardware design process. However,
static analysis can be very challenging, not only because it relies on low level representations
(mostly source code or sometimes the binary itself) but also because it faces execution com-
binatorial aspect which arises from both parallelisms and architectures complexity (caches,
prefetching, branch prediction, ...).

MAQAO [DBC'05] is a tool aimed at optimising binary code. It relies on a powerful static
analyser to disassemble the binary in order to rebuild the control flow graph (CFG). Dissas-
embler which provides an instrumentation interface and has OpenMP support [BRJ " 10]. On
top of this infrastructure, MAQAO provides a plugin framework in order to support different
types of analysis [SCOJ13]: a static architecture performance model, STAN for performance
tuning hints, DECAN [KZO " 10] which allows decremental analysis and memory based value
profiling. More generally, compilers such as GCC or ICC are also relying on performance pre-
diction, for example to choose between optimisations alternatives (such as unrolling factors),
choices made from heuristics which are derived from static analysis.

On-line and In-place Tools

As detailed in previous chapter, on-line approach handles performance data using comput-
ing resources distinct from those on which the program runs, thanks to a coupling mechanism
which forwards data to the analyser (generally through the network or via shared memory
segments). This approach avoids file-system bottleneck while preserving fine grained events.
It also opens opportunities for “real-time” profiling (introspection). Dealing with the profiling
approach, it consists in reducing events locally by directly projecting on performance metrics
(profile, counters, call-path, ...), thus, completely avoiding performance data manipulation.
However, as profiling cost directly impact instrumented application, analysis have to remain
simple (in terms of computational complexity) and independent from a global state.

Periscope [BPG10] is a tool which performs online automatic analysis of parallel programs.
It relies on a tree of agents performing a reduction on performance metrics, displaying them
in an interface fully integrated in the Eclipse integrated development environment. It can

DEVELOPER TOOLS 67

perform (among others) memory accesses analysis [GKO07] or finds inefficiencies in the use
of OpenMP [HSC"08]. Analysis modules can rely on a powerful performance specification
language ASL (APART Specification Language) [GF07] which allows automated performance
analysis [GFKO05, FGO7].

mpiP [VMO01] is an MPI profiling tool which relies on a statistical aggregate of communi-
cation operations. Profiling data are collected locally to each task and reduced at the end of
the execution. Thanks to its lightweight approach mpiP has less overhead while providing
resuls close to the effective execution. HPCtoolkit [ABF " 10] relies on sampling combined with
stack unwiding and performance counter collection to generate scalable MPI program pro-
files, with support for node level parallelism [TMCO09]. For example, it can generate call-path
profiles [AMCT10], analyse lock contention [TMCP10] and load imbalances [TAMC10].

6.1.3 Validation Tools

Validation tools aim at projecting programs behaviours on their underlying model, therefore,
producing highly valuable errors which can be immediately matched with actionable concepts.
At the difference of profiling which only displays the consequences of a defect, validation’s pur-
pose is to find the cause of this defect — directly yielding valuable information. Consequently,
there could be as many validation tools than programming model or concepts, here we present
those we are directly concerned with: parallel programming models (MPI, OpenMP, Pthread)
and memory management.

Message Passing Interface

Marmot [KIMR04a] is an MPI checking tool which validates the use of the MPI interface us-
ing the PMPI interface. It allocates an extra process which takes care of analysis such as dead-
lock detection which require a global state. It support hybrid OpenMP programs [HMKO09] and
provides feedback on several types of events such as MPI 10 [KMRO04b] or one sided communi-
cations [KR06]. Marmot is able to generate comprehensive HTML reports and have been in-
cluded in both the DDT debugger [KHL " 07] and the CUBE visualisation tool. Umpire [VdS00]
is quite similar to Marmot as it provides MPI checking capabilities, however, unlike Marmot,
it is limited to shared memory platforms as tasks communicate through a shared-memory seg-
ment, the manager being a thread in task 0. Umpire is able to perform several MPI related
checks, including deadlock and mismatched collectives detection. Similarly MPI-CHECK can
be used to validate the MPI Fortran 90 interface by building a "knowledge base" of MPI calls
which is used to instruments individual MPI call at source code level. Other tools such as the
Intel Message Checker [DKDS 05](IMC) can provide such analysis at MPI layer level. IMC
has also been included in the DDT parallel debugger. Eventually, Some MPI implementations
also feature checking methods such as MPICH for MPI program correctness [PGK"07].

Another tool which succeeded to Marmot and Umpire is MUST which provides features sim-
ilar to those of marmot but with an extended scalability thanks to a tree based overlay net-
work (or TBON) architecture. The Generic Tool Infrastructure (GTI) [HMdS" 12] which relies
on PNMPI and provides a generic infrastructure for instrumentation and event reduction pur-
poses allows efficient generation of event instrumentation, transport and reduction through
XML specifications, allowing the offload and parallelization of MUST validations. The GTI is
build over PNMPI [SdS07] which is a framework allowing the stacking of several tools at the

68 RELATED WORK

PMPI interface level. Moreover, PN MPI introduced an MPI virtualisation approach which con-
sisted in wrapping the whole MPI interface while replacing references to MPI_COMM_WORLD.
Idea which motivated our on-line tracing approach, eventually leading to our stream imple-
mentation for on-line profiling purpose (see section 10.2.3).

Thread Level

Some tools also target thread level parallelism to detect programming model misuses or
involuntary error such as race conditions. For example the Valgrind [NS07b] tool Helgrind
[MWO07], is able to detect race conditions using a lockset algorithm. Other tools such as Thread
Sanitizer [SI09] or Helgrind® [JT08] extend Helgrind’s lockset approach with an happened
before relationship to reduce the number of false positives. Sun Thread Analyzer [Ora07]
or the Intel Thread Checker [BBMP06, PS03] can perform either race condition or deadlock
detection on either Pthread and OpenMP programs, both featuring a graphical user interface
allowing faulty code exploration.

Memory

As memory errors are very common in computers programs (leaks, double free, unauthorised
access leading to a segmentation fault...), several validation tools were developed in order to
help programmers to diagnose and fix those errors. For example, the Memcheck [NS07a] tool
which is part of the Valgrind [NS07b] framework is able to track most memory related errors
at the cost of a relatively important overhead and limited parallelism support due to Valgrind’s
virtualisation approach — drawback which is also a strength when coming to measurement
accuracy as it allows the instrumentation of every load and stores. Another approach used
by AddressSanitizer [SBPV12] (ASan) relies on the LLVM compiler to instrument memory
accesses in purpose of producing errors similar to those of Memcheck, minus the consequences
of virtualisation. Debug allocators such as Electric Fence [Per03] add restricted guard pages
before and after each allocated segment in order to catch the exceptions associated with out-of-
bounds errors. These tools provide less features than memory validation tools which are able
to instrument load and stores. Moreover, they increase program memory consumption (guard
pages) and slow down allocation because of the systems calls required to set guard pages
permissions (mprotect). Eventually, other debug allocators such as DieHard [BZ06] can rely
on canary (or ‘'magic’) values around allocated segments to detect out-of-bounds modifications.

6.2 Time-stamp Synchronisation

Synchronising clocks is critical to allow temporal analyses or rendering which require an
accurate global distributed event view. This section describes common clock synchronisation
techniques. We first outlines the importance of time-stamp synchronisation for performance
analysis. Then we present common time sources before describing time-stamp handling in
instrumentation context.

When running a program on a supercomputer and therefore on several computing nodes,
synchronising clocks is compulsory to acquire a global temporal view. Although some super-
computer architectures such as the Blue Gene/P have a centralised time source, providing
user with an accurate global time [CBC"05], most platform does not offer such facilities. In
general, the most precise time source is available at processor level (see next section). It is

TIME-STAMP SYNCHRONISATION 69

synchronised between the cores of a given node but not in-between nodes. In this context,
events within the same node can be observed at clock resolution (close to nanosecond), allow-
ing a fine-grained event study. Whereas, there is solely the “happened before” relationship for
guaranteeing time-stamps outside of nodes boundaries, for example, through a Logical Clock
(LC) [Lam78].

Processg —0 o —0 >

Process;

Processy 0 —>

Figure 6.1: Example of Lamport Logical Clock [Lam78] for tree communicating pro-
cesses.

As presented in Figure 6.1, a logical clock ensures causality between two interacting pro-
cesses but does not ensure causality between processes which do not communicate. This log-
ical clock has been extended to a vector clock [Mat88, Fid88], not only propagating a single
clock but the whole “synchronisation vector”, allowing a stronger ordering propagation. When
targeting profiling applications, this method cannot be satisfactory as it does not provide du-
ration information for inter-nodes events. For example, in two communicating nodes, a logical
clock is not sufficient to qualify messages latency or collectives duration, which by nature are
distributed events. In such context, a coherent time source with an error lower than observed
event duration (messages latency is in the psec range) is required to provide a coherent view
outside of nodes boundaries.

>t

Figure 6.2: Parametrisation of clock error assuming a linear representation.

Assuming a linear representation of clock time T(t) = at+ b with a the drift factor and t the
time offset, the error can be described by these two parameters. As presentedA&in Figure 6.2,
the offset is the absolute difference between clocks and the drift is their frequency difference.
Naturally, this approach is only a model as in practice clocks are not linear, depending on
several factors. For example the temperature which influences oscillator frequency, creating
non linear errors. However, in a first approximation, clock frequencies can be assumed to be

70 RELATED WORK

uniform on a given interval of time. But, provide time references which are bound to diverge
after a sufficiently long time. Correcting drift variations errors requires much more computing
efforts and complex algorithms such as Scalasca’s amortisation [BRW07, BLRWO08, Bec10].
The Intel trace analyzer and collector [Int12b](section 5.1) relies on a linear interpolation
in-between timestamps taken at the beginning and upon program completion, method also
used by Vampir trace which can also extends the process by resynchronising at every global
collective [fISZ13].

6.2.1 Time Source

Our instrumentation relies on the most precise time source available in current supercom-
puters: the TimeStamp Counter (T'SC). This counter, available on most processors, runs at a
frequency close to the processor one, making it by far the most precise time source available
(fs = 2.8 x 10 — T, = 0.35ns) with resolutions in the nanosecond range. It is generally a 64
bits counter, incremented at a constant frequency fs since the machine has been started. Its
value can be retrieved through an assembler call similar to the one of Figure 6.3 or using the
cycle.h header from the FFTW project which provides a portable implementation. On recent
architectures, this source is synchronised in-between cores, providing a reliable time source at
node level [INT10].

static inline uint64_t get_TSC(void) {
unsigned a , d;

asm("mfence"); //Memory Barrier

asm("Ifence "); //Load barrier

asm volatile ("rdtsc" : "=a"(a),"=d"(d)) ; //TSC retrieval
return (a)l (((d)<<32) ;

Figure 6.3: TSC Retrieval on the x86-64 architecture.

6.2.2 Synchronisation

Dealing with the synchronisation process itself, feedback loops based on round-trip esti-
mation, derived from Cristian’s synchronisation algorithm [Cri89] are the most widespread
approach. Such method is for example used by the Network Time Protocol (NTP) [Mil91] and
has been used by previous versions of the Linux kernel [Kle05] (before being removed because
of hardware synchronisation [Mol07]). A study, of global time round-trip based synchroni-
sation over given topologies (fully-connected, ring, star and hypercubes) has been done by
Jezequel [Jéz89]. Similarly, Dunigan analyses such synchronisation for hypercubes [Dun92].
Several alternative methods are proposed, including the one sided synchronisation approach
proposed by Drummond et al. [DB93]. It relies on point to point communications at the con-
dition of being able to derive a communication pattern involving every processes. Method
limited by latency variations (no feedback), messages heterogeneity and one-sided commu-
nication patterns diameter which, by nature, are decentralised. Dealing with hardware re-
lated methods, Liao et Al. [LMC99] achieved a 1us accuracy relying on a specific Myrinet
network support (MyriTime packets) and Cristian’s algorithm [Cri89]. Sensors network of-
ten rely on network layer broadcasts to perform distributed synchronisation either in single
hop [VCR93, VRC97,HC02] or multi-hop manner [EGE02]. More generally, one of the most
widespread use of distributed time synchronisation is with no doubt the Global Positioning

BLACKBOARD SYSTEMS 71

System (GPS) [KHO06] which relies on tight synchronisation thanks to atomic clocks in order
to provide its positioning service.

6.2.3 Logical Clocks

As far as logical clocks are concerned they were introduced by Lamport [Lam78] as simple
counters guaranteeing causality in-between interacting processes. By nature, such counter
do not offer time measurement capabilities as events are numbered in order of occurrence as
monotonous sequences. This first logical clock only propagated interacting process status, ne-
glecting its previous temporal context. This limitation has been addressed by vector clocks
simultaneously designed by Mattern [Mat88] and Fidge [F1d88] by propagating the whole set
of temporal constraints, yielding tighter causality bounds. Vector clocks are strongly consis-
tent as they accurately capture causality. However, Charron-Bost shown that their size in
purpose of capturing causality cannot be less than n [CB91], with n the number of processes,
posing the question of their scalability. Logical clocks have the propriety of clearly describ-
ing the dependency links in-between events and therefore freedom degrees, propriety which
cannot be compactly captured by classical time-stamping, even if arbitrarily precise. Conse-
quently, this approach might be a good candidate for parallel instrumentation, maybe not only
as a corrective component but also as the actual timing substrate.

6.2.4 Time-stamps for Instrumentation

Getting back to trace related time-stamp synchronisation, various approach were adopted.
A common method consists in synchronising clocks at both program start-up and ending
in purpose of performing a linear time approximation, approach used by both VampirTrace
[fISZ13] and the Intel Trace Analyzer [Int12b]. Approximation method which statistical ef-
fects have benn studied by Maillet et Al. [MT95]. On the opposite, the Scalasca tool-set relies
on a replay based strategy which purpose is to reestablish the clock condition for messages
through forward and backward amortisation [BRW07, BLRWO08,Bec10]. The VampirTrace in-
strumentation library can also rely on an internal timer synchronisation [DKMNO08] which
takes advantage of collective operation in order to regularly synchronise time-stamps thanks
to a multi-hop algorithm based on a k-regular topology, with the possible drawback of impact-
ing collectives performance. More generally, synchronisation quality is subject to a trade-off
relatively to its performance impact. Indeed, when trying to model the impact of a measure-
ment or time-stamp correction, as outlined by Malony et Al. [MR91, MRW92, SM93], several
combinatorial aspects have to be taken into account as such correction are not only linked to
local parameters. For example when correcting a local clock offset, a special care has to be
taken not to violate the clock condition: “a message cannot be received before being sent” —
simple predicate which is far from being obvious in presence of non-linear clock effects, for
example, because of cascade effects, randomly propagating corrections.

6.3 Blackboard Systems

Blackboard systems are a class of expert system which has been deeply influenced by ar-
tificial intelligence (AI) related concepts. Expert systems purpose is to find a way of mod-
elling knowledge in order to help decision in either complex or uncertain environment. Sev-
eral approaches were developed among which the forward inference model (if-then) used by

72 RELATED WORK

both MYCIN [Sho76] which identified bacterias in order to recommend antibiotics and DEN-
DRAL [LBFL80] which made hypothesis on chemical structures. A more recent approach
relies on inference engines, formulating hypothesis using either logic or fuzzy logic thanks to
specifically tailored symbolic languages such as LISP [Ste90] or PROLOG [Rou75,SSE90]. Ex-
pert systems became very popular in the 80’s [RN10], a lot of shell’ were developed in order to
build meta-expert systems from higher level values [FFG87]. Blackboard systems which found
their origins in this context [EL.80,EM8&8], are a kind of problem solving framework where sev-
eral agents [Cor03] or Knowledge Sources (KS) are gathered around a common data-structure
or Blackboard (BB). Those agents can read and write on this data-structure in order to pro-
duce new data which will be at their turn globally available for opportunistic processing by
other Knowledge Sources. This work-flow, derived from the analogy of several experts, gath-
ered around a blackboard and iteratively solving a problem has several advantages [EM88]
among which are:

e Natural Parallelism: data can be processed by KSs as soon as they are available. More-
over, the data-flow model associated with this approach is easy to parallelise.

e Multiple levels of representation: as we will detail later, Blackboard systems were
originally developed to solve signal processing problems [EL80, NFAR88] with several
levels of representation. In this architecture, several data formats can cohabit on the BB
while being processed by different KSs, simplifying chained analysis.

e Constant visibility: as data are constantly pushed to a common data-structure, allow-
ing KSs to interfere with non-finalised, deriving possible solutions.

¢ Knowledge sand-boxing: KSs can be of arbitrary complexity as their internal process-
ing is not visible. They can contribute to the analysis at the only requirement of sharing
a representation (data-type) with another KSs.

6.3.1 BlackBoard Architecture

KS,

KS,

° KS.
Blackboard

| Control System |

Figure 6.4: Canonical BlackBoard architecture.

As presented in Figure 6.4, a canonical BB framework consists in several components en-
abling opportunistic reasoning. The blackboard model being at first conceptual, it has to be

DATA MANAGEMENT 73

adapted to a computing substrate by adding a control system in charge of triggering data com-
putation [EM88]. Consequently, a Blackboard framework gathers the following components:

e The BlackBoard (BB) is a data-structure used as common denominator between KSs.
Data are organised hierarchically in different levels and objects are namely identified®.
Blackboards allowing multiple levels [ET79] with distinct data representations.

e Knowledge Sources (KSs) are either procedures or rules, defining how data present
on the BB are processed and represented in a domain specific fashion. A KS generally
inform the control module about how it can contribute to a given solution, deciding which
KS to trigger on a given data. KSs which are only allowed to communicate through the
BB.

e The Control Module provides a control flow to a blackboard model implementation,
reacting to changes on the BB. It is also in charge of ranking KSs contribution to decide
which data will be processed next (also reffered to as focus of attention).

Consequently, a classical Blackboard work-flow could be described as follows: (1) several
KSs are gathered around a BB, as (2) new data become available, the control system decides
which KS(s) to trigger (focus of attention) in function of an heuristic of their contribution.
Then, (3) this analysis can at its turn produce new data and so on. The (4) stop condition is
also at the discretion of the control system either through a special condition or simply be-
cause the solution has been found. Dealing with parallelism, blackboard systems are good
candidates for concurrency [Cor88] as their data-flow nature is inherently parallel. Two types
of parallelism can be identified [EM88, DQZ90]: (1) executing several blackboards in paral-
lel [LLC83, Wil88] with communications in between systems, approach which can be called a
distributed blackboard. Or (2) running several knowledge sources in parallel [NAR90] in or-
der to take advantage of the data-flow parallelism. Approaches which can be combined to build
a blackboard which is both parallel and distributed [Sch86] with the drawback of preventing
global visibility of data (due to memory scattering).

6.4 Data Management

The exponential computing power growth led to a large increase in the amount of data that
is being manipulated. This section presents some data management approaches in terms
of storage, representation and processing. We start with the file-based approach which is
the norm in the HPC context before shifting toward key-value data-stores which are now
propelling Internet largest websites. In a second time, we present data analysis methods
associated with key value data-stores before finishing with TBONS which are used by some
HPC tools for both reduction and control purposes.

6.4.1 File-Based Approach

A common way of managing simulation output is to store them in a parallel file system such
as lustre [BS02], GPFS [SH02] or PVFS [RT00] which are specifically tailored to manage sev-
eral clients, for example, through the replication of meta-data servers which are the main point

3 This data representation described in [EM88](p.13) has to be compared with current approaches such as No-IO,

No-SQL and Map-Reduce which favour key-value data-stores.

74 RELATED WORK

of contention in a coherent file-system. However, directly using the POSIX interface to address
such parallel file-system is often not recommended as it can lead to poor performance (because
of meta-data contention). Possibly leading to file-system instability, possibly impacting the
whole machine, despite the availability of meta-data caches in specifically tailored production
grade NFS servers [DLL07]. Consequently, in order to run at higher scale the use of parallel
I/O libraries is compulsory to reduce the number of files from one per core to one per node
(or less). Therefore, such library are in charge of multiplexing data streams through network
calls before handing them to the file-system. For example, MPI I/O [MF08,TL.G97] embeds this
support in the MPI standard and other libraries such as HDF5 [The13] or NetCDF [NET13]
define standard ways of managing scientific data in parallel (including internal layout). An-
other parallel I/0 library, which brings less constraints over data-layout is SionL.IB [FWP09]
which is used by the ScoreP [aMBB " 12] framework for parallel traces writing. Consequently,
the management of scientific data-set have seen the development of several approaches which
for most of them defined both IO abstractions and data-formats, contributing to their complex-
ity. Handling simulation outputs over a file-system abstraction is therefore a challenging task
requiring specifically tailored libraries such as, for example, Hercule [BCF " 12, Vet13] which
defines a meta-model for parallel code coupling purposes.

6.4.2 Key-Value Data-stores

Big-data® is a concept which fast-developed in the context of the WEB 2.0 challenges. In-
deed, web services such as Facebook, Google, Amazon... now manipulate unprecedented
amount of data which are both at the core of their services and economical model. Conse-
quently, most widespread Big-data evolutions came from web actors as means to face their
data manipulation challenges, addressing, collection, storage, manipulation, analysis and vi-
sualisation problems associated with large data-sets. Firstly, data storage evolved from a
transactional one (satisfying the ACID® proprieties) to a much simpler one: NoSQL data-
stores. They rely on a key-value representation and can be viewed as large associative arrays.
The first NoSQL database was Memecached [Fit04] which allowed temporary data storage
in memory with a key/value interface. Approach which has been generalised to persistent
databases which were stripped of their SQL® interface, greatly decreasing their complexity
and therefore, yielding higher performance. Key/value database can also be distributed on
several nodes, approach referred to as sharding in order to horizontally scale the database
(more node) instead of relying on vertical scaling (upgrading nodes) — allowing scaling over
commodity machines instead of expensive mainframes. Sharding can be performed on natural
data segmentation, indexing, replication, key space splitting with the pitfall of unbalanced
data-sets or through consistent hashing which maps a hashing space over distributed nodes.
This shift led to the development of several database such as MongoDB [CD10], Facebook’s
Cassandra [LLM09], Google’s Bigtable [CDG " 08] (cloned in open-source as HBase [Geol1]),
Voldemort [Teal3b] (used for example by LinkedIn, an open-source clone of Amazon Dy-
namo [DHJ 07]), Redis [Teal3a]... Each of them come with its subtleties and advantages
while relying on the key-value approach and a sharding method. Several distributed file-
systems were designed to scale on commodity hardware for big data usage, including Amazon
Simple Storage Service [ws13] (S3), Hadoop Distributed File System [Bor07] (HDFS) (which
aims at powering the Hadoop MapReduce framework) or Google File System (GFS) [GGLO03].

4 Sometimes used as a buzzword, but with no doubt highlighting critical problems.

Atomicity Consistency Isolation Durability [Gra81].

6 Structured Query Language [CB74] see [HM10, Hai12] for underlying concepts.

DATA MANAGEMENT 75

6.4.3 Distributed Data-Reduction

Derived from the key-value paradigm and inspired from functional programming, the MapRe-
duce [DGO8] approach is an algorithm design pattern which as stated by its name consists of
mapping a data set to several nodes in order to perform a computation before reducing the
result. MapReduce can be used to scatter a problem on a large cluster of commodity machines
which for example parse the data contained in chunks (mapping) in order to perform a com-
putation over parsed chunks (reduction), eventually generating a result stored as a file. This
simple process is coordinated by a master which is in charge of dispatching jobs while provid-
ing fault-tolerance support either through job replication or by restarting failing jobs. MapRe-
duce is a powerful technique describing parallel processing work-flows for large data volumes.
One interesting aspect of this approach is that computation is made space independent in the
sense that the programmer is prompted to specify primitive with both spatial and temporal
aspects, giving parallelism opportunities to the underlying run-time. Indeed, one of parallel
programming challenge is scattering data over computing units while following architecture’s
hierarchy (particularly with a steadily increasing number of cores). Therefore, expressing
computation in term of data dependency and spatial operations (thanks to an explicit data
scattering scheme or as in MapReduce a shuffle operation) can be an opportunity for simplify-
ing parallel programming models. There are numerous implementations of MapReduce with,
for example, Hadoop [Whi12] (which uses Java) and even over MPI [PD11].

6.4.4 Tree-Based Overlay Networks (TBONS)

Tree-Based Overlay Networks or TBONS [APMO0G] are a scalable structure for control and
measure over large cluster of nodes. They take advantage of trees logarithmic complexity
in order to connect several processes in a space efficient manner. They can be used to im-
plement high throughput reductions and broadcasts with custom filters. The reduction case
opens opportunities for streamed data reduction, processing data through filters at each tree
level. In this case, instrumented processes are part of leaf nodes (called back-end) and data
are streamed to the front-end (root node) while being processed by several reduction filters.
This method is used in the DDT debugger [All13a] for control and program state reduc-
tion purposes. Frameworks such as MrNET [RAMO03, JBM12] which is part of the Paradyn
project [MCC'95] can be used to build efficient TBONS with arbitrary reduction filters, frame-
work which proved its scalability in the STAT debugger [AdSL"09]. TBONSs are also used
in the Generic Tool Infrastructure (GTI) [HMdS' 12] which relies on PNMPI and provides a
generic infrastructure to instrument and reduce events. The GTI allows instrumentation,
transport and reduction through XML specifications and has been successively used to offload
and parallelise MUST’s validations. Examples of profiling tools using the TBON paradigm are
Periscope [BPG10] and MAP [All13b] (derived from DDT) which operate a tree-based reduc-
tion on performance metrics.

76

RELATED WORK

PART I11

Contribution

77

CHAPTER 7

MPI Runtime Characterisation

This chapter introduces a tool which aims at characterising the execution substrate from the
MPI programming model viewpoint. This tool has been firstly developed to acquire a better
understanding of machine constrains and capabilities in prevision of application profiling. Its
purpose is to empirically explore MPI based program performance by characterising individual
MPI calls in function of various parameters. This process could be described as fingerprinting
a given supercomputer in the purpose of generating a reference document allowing developers
to objectively assess their programs costs in terms of MPI calls. This chapter firstly describes
our characterisation tool followed by excerpt from reports studied through an empirical cost
analysis of the MPI interface.

7.1 Tool Architecture

Benchmark Post-Processing Report Renort Generati
+J\’Ieasurements |- " | por | Report Generation
MPI C program R Scripts ig Data C program —>r Report
MPI Bench

Bash Script

Figure 7.1: Overview of the architecture of our MPI Benchmarking tool.

As presented in figure 7.1, our MPI benchmarking tool MPI_Bench is based on a bash script
which provides a convenient interface for both measurements and report generation. The
bench-marking process relies on a simple MPI program which stores several realisation dura-
tions for each MPI call using varying processes counts and message sizes. Measurements are
collected in an iterative fashion, samples being appended at the end of existing measures. It
allows a better test coverage as samples are not necessarily correlated in time as many factors
can influence machine load: hour of the day, holidays, automated runs... Once collected mea-
surements are post-processed by R scripts in order to extract for each case common metrics
(such as average, minimum, maximum, deviation) while producing associated graphs. These
data once processed form a Report Data bundle which can also be used to produce compara-
tive reports. Then, this Report Data bundle is converted into a latex report which regroups

79

80 MPI RUNTIME CHARACTERISATION

all measurement with hyperlinks redirecting to associated realisation graphs and probability
density functions, for each {size,process count} combination. Eventually, this report can be
compiled as an autonomous PDF file for further reference.

7.2 Measurement Process

The measurement process is carried over by a simple MPI ¢ program which times several re-
alisations for most MPI calls using different {size, process count} parameters, thus, exploring
the possible performance space of the MPI interface. This section details our measurement
method for different types of MPI calls.

7.2.1 Point to Points

Figure 7.2: Process sweeping used by our point to point measurement method.

Send, Ssend, Isend and Issend point to point communications are measured for different
message sizes and process counts. As presented in figure 7.2, we rely on a simple sweeping
measurement by proceeding with N measurement of size S on several processes. We use this
approach to cover most topological cases at both intra-node (see figure 2.8(a)) and inter-node
level (see figure 2.9(a)) as latency and bandwidth vary with process layout. Measurement is
performed from sender point of view by measuring the send duration. Using this simple ap-
proach, we are able to derive minimum, maximum and average time for each message size on
a representative sampling of the topology (thanks to sweeping). Moreover, when dealing with
asynchronous messages, we also measure the asynchronous window or time for the request to
be returned by MPI_Wait during the sending process.

7.2.2 Collectives Operations

As depicted in figure 7.3, nothing prevents some processes to leave the collective operation
once they have made their contribution, making timing of su