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Résumé en Français

Méthodes numériques pour l’analyse de processus

intracellulaires dynamiques en microscopie

quantitative.

Depuis la première description de la cellule vivante par Robert Hook, il y a près de 350
ans [Hooke and Waller, 1705], l’observation à l’aide de microscope a toujours été d’une
grande fécondité dans l’étude de la cellule vivante. La dernière évolution majeure dans ce
domaine est sans conteste le développement des techniques de marquage par fluorescence.
Il est ainsi possible aujourd’hui, grâce aux techniques de marquage par ingénierie génétique,
couplées à la vidéo-microscopie optique de haute résolution, d’observer avec précision
les molécules régissant les fonctions de l’organisation intracellulaire. A l’opposé des
expérimentations en biochimie ou en génétique, la microscopie de fluorescence permet
des observations dynamiques in vivo capables de restituer l’hétérogénéité inhérente à la
complexité des interactions intracellulaires [Tinoco and Gonzalez, 2011].

Dans ce contexte, les méthodes numériques ont un rôle important à jouer. En traitement
d’image, les méthodes de reconstruction du signal permettent de corriger les artefacts
induits par l’instrumentation optique (di�raction, bruit de mesure) mais aussi induits
par le signal d’intérêt (bruit photonique, mouvement). Ensuite, en vision par ordinateur,
les phénotypes observés doivent être quantifiés et interprétés. Nous décrivons dans ce
manuscrit deux études représentatives des développements méthodologiques menés en
traitement d’image et en vision par ordinateur nécessaires pour l’étude du vivant.

Dans première partie du document, nous présentons une étude portant sur l’imagerie
de temps de vie de fluorescence sur structures dynamiques dans le domaine de fréquence
(FD FLIM). Une mesure en FD FLIM est définie par une série d’images présentant
une variation d’intensité sinusoïdale. La variation d’un temps de vie se traduit par une
variation dans la phase de la sinusoïde décrite par l’intensité. Sur cette thématique,
notre étude comporte deux contributions principales. Le processus de formation de
l’image est d’abord étudié afin de prendre en compte les bruits hétérogènes causés par
l’instrumentation et la nature photonique du signal. Nous démontrons la nécessité d’une
correction du modèle théorique et nous proposons une méthode d’estimation de ces
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paramètres. Un algorithme de débruitage tire parti du modèle de bruit pour améliorer
les séquences obtenues. Ensuite, l’estimation du temps de vie sur des molécules mobiles
est rendu possible grâce à une procédure d’estimation conjointe du temps de vie et
du mouvement des vésicules intracellulaires. L’algorithme de reconstruction de cartes
de temps de vie est finalement testé sur des séquences expérimentales. Des résultats
préliminaires sont présentés.

Dans la seconde partie du document, Nous présentons une étude portant sur la
quantification du transport hétérogène dans un environnement intracellulaire dense. Les
transitions entre la di�usion Brownienne dans le cytoplasme et les transports actifs
supportés par le cytosquelette sont en e�et des scénarios très couramment observés
dans des cellules vivantes. La complexité de la quantification de ces mouvements est
due au caractère imprévisible des transitions et nous montrons que les algorithmes
proposés dans la littérature ne sont pas conçus pour les détecter. De plus, accroître
artificiellement le rayon de recherche n’est pas une solution e�cace car ce choix conduit
à une augmentation du nombre de faux positifs dans des conditions denses. Notre
proposition d’algorithme exploite certains principes de l’algorithme de suivi u-track
[Jaqaman et al., 2008]. Nous proposons ainsi d’e�ectuer plusieurs filtrages de Kalman
qui évaluent plusieurs types de transport (Brownien, dirigé ...) [Genovesio et al., 2006]
indépendamment pour chaque particule. Par ailleurs, nous tirons parti de multiples
balayages de suivi pour e�ectuer un lissage de Kalman dit “forward-backward”. Nous
obtenons ainsi une estimation convergente de la vitesse à chaque point de temps et
nous tenons compte de la nature locale du mouvement. A notre connaissance, c’est la
première fois qu’une telle approche est proposée dans la littérature. Nous montrons,
sur di�érents scénarios simulés, la supériorité de notre approche face aux approches
compétitives reposant sur une modélisation des dynamiques multiples. Nous illustrons
sur séquences expérimentales l’aptitude de notre algorithme à détecter des mouvements
dirigés rares dans une population dense de vimentine. Nous montrons aussi la robustesse
de notre méthode sur des séquences réelles (virus) échantillonnées temporellement avec
des fréquences variables pour modifier l’amplitude des déplacements apparents.

Ce résumé en français est structuré comme suit. Nous présentons d’abord brièvement
le contexte général de notre étude en décrivant la révolution apportée par la microscopie
de fluorescence puis le rôle grandissant de la communauté du traitement et de l’analyse
d’image en microscopie de fluorescence. Nous présentons ensuite les résultats obtenus
dans deux études: la reconstruction de cartes de temps de vie sur molécule dynamique
d’une part, et la quantification de transport hétérogène dans une population dense de
particules d’autre part. Nous concluons ce résumé par quelques lignes directrices qui
doivent orienter nos futures investigations.
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1 Contexte: Analyse de données en microscopie de
fluorescence pour l’étude du vivant

La révolution du marquage par fluorescence

Aujourd’hui, les méthodes biochimiques et génétiques telles que la reconstruction de
processus cellulaires in vitro ou la détermination de la structure des protéines permettent
de mettre à jour, de façon extrêmement détaillée, les interactions moléculaires et lipidiques
régissant l’organisation intracellulaire et ses fonctions. Pourtant, ces méthodes présentent
plusieurs désavantages: elle ne permettent qu’une observation statique de la cellule,
ainsi qu’une projection moyennée et homogène de phénotypes potentiellement nombreux.
Par ailleurs, les expériences sont e�ectuées ex-vivo. Depuis l’avènement de l’imagerie
microscopique de fluorescence, l’étude de la cellule vivante est entrée dans une nouvelle
ère [Vonesch et al., 2006]. Grâce au marquage fluorescent des protéines d’intérêt, les
chercheurs en biologie peuvent observer les processus intracellulaires avec une grande
précision, parfois en temps réel. L’hétérogénéité des comportements inhérents à la cellule
vivante peut être désormais analysée et les expériences sont, dans une certaine mesure,
réalisées in vivo [Tinoco and Gonzalez, 2011].

La révolution de l’imagerie de fluorescence a été possible grâce à des avancées dans deux
domaines di�érents. C’est tout d’abord la purification de la GFP (Protéine Fluorescente
Verte) [Shimomura et al., 1962], son clonage [Prasher et al., 1992] et la diversification de
son expression [Tsien, 1998] qui ont ouvert la voie au marquage par protéine fluorescente
(Figure 0.1) . Exploitant les propriétés du phénomène de fluorescence et plus précisément
le décalage de Stokes, le marquage permet d’observer plusieurs types de protéines d’intérêt
simultanément alors que le milieu cellulaire est uniformément excité. Ce marquage est
e�ectué par recombinaison génétique et transfection dans la cellule hôte. Ainsi, depuis le
séquençage de l’intégralité du génome humain achevé en 2004, toutes les protéines d’intérêt
peuvent être marquées avant d’être observées en microscopie [Lippincott-Schwartz, 2003].
Comme nous le verrons dans notre première étude, la fluorescence n’a pas pour autant
pour seule vocation de révéler la présence d’une molécule d’intérêt. Ses propriétés
physiques sont très précieuses pour quantifier les interactions entre protéines à l’échelle
de quelques nanomètres, et par conséquent jouent un rôle essentiel dans la mesure de
l’activité moléculaire.

Deux phénomènes limitant sont néanmoins à considérer lors de l’acquisition d’images de
fluorescence: le photoblanchiment et la phototoxicité. Le premier correspond à la perte de
fluorescence du fluorophore induite par des dommages chimiques liés à un excès de photons.
Le second correspond aux dommages causés à l’échelle des structures intracellulaires
générant des radicaux libres d’oxygène, libérés par réaction à la fluorescence. En cherchant
à réduire autant que possible la quantité d’excitation nécessaire pour acquérir une image
de fluorescence, les progrès réalisés dans ce domaine (optique, capteurs de lumière) ont
permis de contrôler davantage ces deux phénomènes. A titre d’exemple, la microscopie
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Figure 0.1: –-tubuline marqué par la EGFP (GFP amélioré). a) cette chimère localise les
microtubules (b) la EGFP est attaché au N-terminus de la –-tubuline. La partie intérieur de la
structure cylindrique de la GFP est responsable du phénomène de fluorescence (source: Zeiss).

confocale (Figure 0.2) a permis de n’exciter que la zone d’intérêt dans une section optique
de la cellule. Par la suite, l’utilisation de capteurs à amplificateur (EMCCD) a facilité le
développement de l’imagerie à haute fréquence à faibles doses d’illumination. D’autres
avancées significatives sont à l’origine de progrès importants qui conduisent à des images
de très haute qualité et de séries temporelles finement résolues spatialement (en 2D
et 3D) et temporellement [Stephens and Allan, 2003; Lippincott-Schwartz et al., 2001].
L’acquisition dite 3D+temps s’est ainsi progressivement répandue grâce à la microscopie
confocale. De plus, les évènements membranaires peuvent être observés très finement
grâce à la technologie TIRF. La limite de di�raction optique (≥ 200 nm) a finalement
été brisée grâce aux récents progrès en microscopie de super-résolution.

Traitement et analyse d’image en microscopie de fluorescence

Le traitement et l’analyse d’image participent également aux avancées technologiques en
imagerie biologique.

Tout d’abord, la modélisation du processus de formation de l’image permet la
reconstruction du signal émis par l’échantillon expérimental. Ces algorithmes de
traitement d’image peuvent aider à réduire le bruit [Boulanger et al., 2010] ou à
déconvoluer les signaux [Hom et al., 2007]. Ils répondent également à des besoins
spécifiques tels que la mesure du temps de vie de fluorescence comme nous l’abordons dans
la première partie de ce document. Si le processus de formation des images est parfaitement
connu et l’optique est bien maîtrisé, les algorithmes numériques concourent aussi à la
mise en oeuvre de nouvelles pratiques d’acquisition. Par exemple, la super-résolution
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Figure 0.2: Comparaison schématique des microscopies à champ large et confocale typiquement
utilisées pour l’étude du vivant (source [Vonesch et al., 2006]).

par localisation de molécules uniques [Kechkar et al., 2013; Henriques et al., 2010]
ou l’illumination structurée [Gustafsson, 2005; Kner et al., 2009] sont des illustrations
parfaites de cette coopération.

Ensuite, le traitement d’image joue un rôle prépondérant pour la quantification et la
classification automatique de phénotypes observés. A cet égard, les apports des méthodes
d’analyse d’image peuvent être classés en quatre catégories. Premièrement, l’essor de la
vidéo-microscopie et les résolutions toujours plus hautes nécessitent le développement de
méthodes automatisées. Il est devient impossible pour un opérateur humain de quantifier
l’intégralité des évènements présents dans une image dans un temps raisonnable, avec une
précision constante [Meijering et al., 2006]. Deuxièmement, en considérant l’intégralité des
objets observables, les algorithmes peuvent identifier des évènements rares et hétérogènes
que l’opérateur peut manquer dans une population dense d’évènements homogènes
[Danuser, 2011]. On peut citer la localisation de cellules et des structures intracellulaires
[Smal et al., 2010; Zimmer, 2012], le suivi d’objets [Meijering et al., 2006; Genovesio et al.,
2006; Jaqaman et al., 2008; Chenouard et al., 2014; Zimmer, 2012], la détermination et la
classification automatique de phénotypes [Walter et al., 2010; Kim et al., 2013] etc ... La
troisième apports des méthodes de traitement d’image est la révélation d’informations
invisibles à l’expérimentateur. Les paramètres controlant les processus sous-jacents
peuvent être estimés en modélisant leurs relations avec les évenements mesurés sur
l’image. Les travaux pionniers de [Sprague et al., 2003] sur la dynamique des kinétochores
assurant la liaison chromosomes-microtubules durant la métaphase en est un exemple. A
cause des limites de résolution en microscopie optique, la position des kinétochores ne
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peut pas être précisément estimée. C’est la dynamique des microtubules, plus facilement
mesurable, qui a permis d’inférer le mouvement des kinétochores. Le procédé a été
nommé “la convolution de modèle” par les auteurs. De nombreux travaux s’inspirant du
principe de la “convolution de modèle”, ont été menés depuis [Vilela et al., 2013; Machacek
et al., 2009]. Enfin, les méthodes de traitement d’image permettent de rationaliser et
d’optimiser au mieux les e�orts d’acquisition des données. Dans nos travaux de thèse,
nous montrons qu’un algorithme de suivi de particules su�samment robuste permet de
réduire notablement la fréquence d’acquisition d’un échantillon tout en maintenant la
qualité pour des opérations de quantification. Ainsi, en exposant faiblement l’échantillon
à la lumière, nous pouvons limiter le photoblanchiment et la phototoxicité. Un algorithme
de suivi robuste au bruit et aux grands déplacements est alors capable de quantifier des
mouvements sur de longues périodes d’acquisition sans artefacts biologiques.

Néanmoins, un problème récurent est la validation de la qualité des mesures issues de
l’algorithme et la validation des modèles supposés [Zimmer, 2012]. Pour cela, trois tâches
doivent être e�ectuées. Une vérification visuelle est d’abord indispensable pour contrôler
les erreurs importantes et ajuster les paramètres. Une simulation aussi précise que
possible doit être aussi mise en oeuvre pour évaluer les performances de l’algorithme et les
erreurs d’estimation. Enfin, puisqu’il est extrêmement di�cile, voire parfois impossible, de
simuler parfaitement une image expérimentale, une dernière opération consiste à exploiter
des données expérimentales de référence pour lesquelles on dispose d’une “vérité-terrain”,
c’est à dire d’une mesure connue sur le phénotype d’intérêt.

Dans ce contexte, mes travaux de thèse portent sur deux aspects du traitement et de
l’analyse d’image en microscopie optique. Une première contribution vise à reconstruire
des cartes de temps de vie de fluorescence mesurées dans le domaine de fréquence sur des
structures intracellulaires en mouvement. Une deuxième contribution a pour objet de
quantifier le transport intracellulaire avec des algorithmes de suivi de cibles. Dans ces
deux situations, nous analysons finement les dynamiques observées afin de répondre au
mieux aux exigences requises pour des applications en biologie.

2 Reconstruction de cartes de temps vie de fluorescence
mesurés dans le domaine fréquentiel

Lorsqu’une molécule fluorescente absorbe un photon, elle atteint un état d’énergie excité.
De multiples voies de désexcitation sont alors possibles pour revenir à l’état de repos.
L’émission quasi immédiate d’un photon en est une; c’est ce qu’on appelle la fluorescence.
Le temps de vie de fluorescence est le temps moyen de résidence d’une molécule dans état
excité avant que celle-ci éventuellement relâche un photon. Cette grandeur dépend de la
probabilité des autres voies de désexcitation. Typiquement, la proximité d’une molécule
fluorescente du spectre d’absorption adéquat peut créer un transfert d’énergie non radiatif
entre le “donneur” et l’“accepteur” provoquant une baisse immédiate du temps de vie de
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Figure 0.3: Un exemple de mesure FD FLIM pour K = 6 signaux de modulation. Le contraste
a été augmenté artificiellement pour améliorer la visualisation. Les molécules fluorescentes
permettent de localiser le récepteur IFNAR1 marqué en GFP sur des cellules épithéliales (RPE1).

fluorescence. Ce phénomène, appelé FRET (pour Förster Resonance Energy Transfer),
est un des nombreuses avantages de l’étude du temps de vie de fluorescence. La mesure
de FRET est notamment recommandée pour quantifier l’activité de bio-capteurs ainsi
que les interactions entre protéines distantes de quelques nanomètres. Dans le cadre
d’une expérimentation e�ectuée à l’Institut Curie en collaboration l’équipe Inria Serpico,
nous avons étudié la mesure de FRET sur des récepteurs in vivo non fixés. Pour cela,
nous avons choisi l’unique technique compatible avec la quantification de temps de vie
sur structures dynamiques: l’imagerie de temps de vie de fluorescence en domaine de
fréquence (FD FLIM).

Imagerie de temps de vie de fluorescence en domaine de fréquence

En FD FLIM, le signal d’excitation et le signal émis par l’échantillon sont sinusoïdaux.
Les variations de temps de vie présentées par l’échantillon correspondent à des variations
dans la phase du signal émis. Afin de rendre mesurables ces variations qui ont lieu à
très hautes fréquences (> 40 Mhz), le signal est modulé en phase par K signaux. Au
final, à une mesure FD FLIM à un seul pas de temps, correspond une série de K images
présentant une variation d’intensité sinusoïdale (voir Figures 0.3 et 3.4). L’image S
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Figure 0.4: Résidus obtenus au sens des moindres carrés après estimation du modèle paramétrique
décrivant le comportement sinusoïdal de la modulation de phase (voir (0.1)). Les résidus sont
tracés pour l’ensemble de la mesure (Figure 3.4). La variation d’amplitude des résidus met en
évidence une forte hétéroscédasticité. Estimation e�ectuée sur un microscope confocal “spinning
disk” avec un intensifieur II18MD (Lambert Instruments).

La grande majorité des contributions en FD FLIM exploite cette formule, équivalente à
une estimation des paramètres de la sinusoïde au sens des moindres carrés [Holub, 2003;
van Munster and Gadella Jr, 2004; Spring and Clegg, 2009; Hutchinson et al., 1995].
Néanmoins, on suppose bien souvent que le bruit est homogène et que les structures sont
stationnaires, des hypothèses qui méritent toute notre attention.

D’emblée, on peut faire remarquer que la variance du bruit photonique dépend de
l’intensité du signal, ce qui devrait se traduire par un comportement hétéroscédastique
des erreurs d’estimation. Nous verrons que cette caractéristique est encore accrue en FD
FLIM (voir Figure 0.4). En outre, nous verrons que les aléas expérimentaux doivent être
rigoureusement pris en compte si on s’intéresse à la caractérisation du bruit d’acquisition.

Par la suite, nous traitons les artefacts liés aux mouvements endosomales et visibles sur
les images acquises en FD FLIM. Malgré la rapidité des acquisitions (de dix à quelques
centaines de millisecondes), les structures intracellulaires peuvent encore se déplacer lors
de la mesure. Ces mouvements résultent de l’expression d’un “e�et Doppler” sur la carte

22



Contents

Figure 0.5: “E�et Doppler” induit par le mouvement des endosomes sur les mesures de temps
de vie de l’ordre de quelques nanosecondes (séquence 0.3).

de temps de vie (voir Figure 0.5). Ils ne facilitent pas la mesure de temps de vie in vivo
d’une manière générale.

Nous proposons donc de traiter ces deux questions et d’améliorer les performances de
quantification en FD FLIM, une technologie prometteuse aux multiples applications.

Etude du bruit instrumental en FD FLIM

Modélisation du bruit de mesure de l’intensificateur

En raison du caractère sinusoïdal du mode d’acquisition, un intensificateur est
généralement requis en FD FLIM pour mesurer des signaux les plus faibles. De plus, la
variation de tension au borne l’intensificateur permet la modulation de phase du signal
émis. L’ensemble formé par l’intensificateur et le capteur CCD est communément appelé
ICCD (voir Figure 0.6).

Afin d’estimer le bruit localement causé par l’instrumentation, nous proposons une
dérivation originale pour identifier le modèle de variance du bruit Poisson-Gaussien généré
par le capteur ICCD, fonction de l’espérance locale de l’intensité:

Var[I(x)] = Var[gint]
E2[gint]

(E[I(x)] ≠ m
›

)2 + gccd(E[gint] + Var[gint]
E[gint]

)(E[I(x)] ≠ m
›

) + ‡2
›

où x = (x, y) œ R2 désigne la position d’un pixel dans l’image. Nous obtenons ainsi
une relation quadratique pour un capteur ICCD, alors qu’unt capteur CCD présente
théoriquement une relation linéaire. Cette di�érence est liée aux variations stochastiques
non négligeables du gain dans l’intensificateur.
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Figure 0.6: Processus de formation de l’image formation dans un CCD intensificateur de troisième
génération.

En testant notre modèle théorique en conditions expérimentales, nous observons bien
localement un comportement quadratique. Néanmoins, nous observons aussi une forte
instabilité du gain qui n’est pas pris en compte par notre modèle (voir Figure 0.7(a)).
Après quelques investigations, nous avons identifié une déformation supplémentaire,
probablement induite par le relais optique du capteur ICCD, qui perturbe spatialement
les variances mesurées. Pour vérifier cela, nous avons tracé les variances estimées
localement en fonction de leurs coordonnées spatiales (axes x et y), pour un plusieurs
valeurs d’intensité ⁄ avec une tolérance de plus ou moins 0.0005% (voir Figure 0.7(b))
pour une valeur donnée ⁄ = 2000 ± 10).

Nous proposons un nouveau modèle ainsi qu’une méthode d’estimation pour corriger
cette variation:

Var[I(x)] = (aE[I(x)]2 + bE[I(x)] + c)

Q

ae
≠ (x≠x

0

)

2

2‡

2

x

≠ (y≠y

0

)

2

2‡

2

y + o

R

b (0.2)

où a,b and c sont les paramètres dérivés de (0.2) et x0, y0, ‡
x

, ‡
y

et o sont les paramètres
contrôlant le terme de correction. La forme Gaussienne a été choisie pour des raisons de
stabilité numérique durant la phase d’estimation qui ne sera pas détaillée ici. Le modèle
et l’estimation ont été validés en microscopie confocale et en microscopie champ large.
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Figure 0.7: Gain expérimental non-stationnaire en FD FLIM. Représentation de la variance
calculée sur une mesure de référence FD FLIM de 12 images acquises avec un microscope confocal.

Sur les images de référence nous mesurons une division par deux de l’erreur de prédiction
de la variance du bruit par rapport à un modèle théorique. Nous envisageons désormais
d’e�ectuer ces mêmes expériences avec un ICCD fibré.

Application aux mesures FD FLIM

Nous exploitons notre modèle de bruit pour estimer les paramètres de correction, au sens
des moindres carrés pondérés:

‚◊
b

= argmin
◊

b

ÿ

kœ[1,K]

!
I(k)(x) ≠ S

◊

b

(k)(x)
"2

Var[I(k)(x)] (0.3)

où Var[I(k)(x)] est la variance obtenue à partir de (0.2) au pixel x et d’intensité I(k)(x).
La figure 0.8 présente la distribution de phase estimée à partir d’une mesure FD FLIM
en microscopie champ large et sur un échantillon uniforme de fluorescéine qui a la bonne
propriété de présenter un temps de vie unique. Nous comparons les résultats obtenus
avec une méthode de Fourier conventionnelle et avec notre approche hétéroscédastique. Il
ressort qu’un déplacement significatif du mode de la distribution est observé. Par ailleurs,
notre correction présente clairement un gain de 10% en kurtosis, ce qui est attendu pour
un échantillon homogène [Spring and Clegg, 2009].

Nous proposons d’intégrer notre modèle de bruit dans un schéma de débruitage de
séquences expérimentales FD FLIM. Deux filtres de Wiener élaborés sur la base du
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Figure 0.8: Histogrammes de phase comparant les résultats obtenus avec la méthode de Fourier
et la méthode des moindres carrés pondérés par l’échelle du bruit estimée.

modèle théorique et du modèle corrigé sont d’abord étudiés (voir Figure 4.11 page 98).
Nous avons ensuite considéré un algorithme plus sophistiqué, basé sur le principe des
moyennes non-locales (filtre “NL-means”) [Buades et al., 2005]. Le filtre “NL-means”
calcule une moyenne pondérée des valeurs d’intensité en identifiant à chaque position
spatiale les patches les plus similaires au patch central. Nous adoptons la formulation
Bayésienne décrite dans [Kervrann et al., 2007] pour élaborer un filtre approprié à la
nature du bruit observé. Nous considérons toujours une distance Euclidienne entre
patches (

Ô
n ◊

Ô
n) afin d’identifier empiriquement une loi de probabilité adaptée. Sous

des hypothèses de bruit blanc Gaussien, la distance entre patches non-recouvrants, suit
une distribution du ‰2 avec n degrés de liberté [Kervrann et al., 2007]. Dans notre
contexte de bruit Poisson-Gaussien, nous recourons à une distribution Gamma, plus
flexible que la distribution du ‰2. Ces considérations, également détaillées dans une
annexe du manuscrit, conduisent au filtre suivant de débruitage:
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où les positions y ≥ U
r

(x) sont uniformément tirés dans une boule de rayon r. Les
paramètres k et —, caractéristiques de la distribution Gamma, sont estimés sur l’image.
Les performances de cet algorithme de débruitage sont illustrés sur la figure 4.12 (voir
page 100).
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Estimation de temps vie sur les structures intracellulaires dynamiques
Estimation conjointe des paramètres de temps de vie et de mouvement

Les artefacts induits par les mouvements des structures cellulaires ont été précédemment
diagnostiqués par Hanley et al. [2001], puis finement analysés dans [Lajevardipour and
Clayton, 2013]. Pourtant, à notre connaissance, aucune méthode n’a été proposée pour
estimer le temps de vie sur ces objets. La mesure de FRET sur structures dynamiques
(pas de fixation) est pourtant d’une importance capitale. Dans le contexte d’une étude
menée à l’Institut Curie, nous nous sommes intéressés à la variation de temps de vie
de fluorescence sur des endosomes précoces. Nous proposons ici une modélisation des
variations spatiales et temporelles d’un endosome acquis en FD FLIM et une méthode
d’estimation de temps de vie conçue spécifiquement pour les endosomes en mouvement.

Soit x0(k) la position dans R2 d’un endosome dans l’image d’indice k. Nous proposons
le modèle suivant pour décrire le comportement des valeurs d’intensité d’un endosome:
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(voir (0.1)), S
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b

(k)(x) est le signal du fond avec la même signature, G
“

(·) est une fonction
Gaussienne de variance “2 décrivant la forme de la vésicule et Á est le bruit introduit par
le capteur ICCD, étudié précédemment.

Pour chaque particule détectée sur la première image, nous proposons une estimation
alternée des paramètres de temps de vie (régissant la sinusoïde) et ceux des mouvements
comme suit. Soit une trajectoire initialisée par estimation locale des paramètres du
spot Gaussien image-après-image. Soit une fenêtre W (xn

0 (k)) de 7◊7 pixels autour de la
position ‚xn

0 (k). Les paramètres de temps de vie d’une particule sont estimés à partir des
intensités mesuré aux l’emplacement estimé:

‚◊n
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◊

0

ÿ

kœ[1,K]

ÿ

xœW (‚xn

0

(k))

!
I(k)(x) ≠ S

◊

0

(k)G
“

n(x ≠ ‚xn

0 (k))
"2

Var[I(k)(x)] . (0.6)

Dans une seconde étape, les paramètres de mouvement sont re-estimés en exploitant
le modèle sinusoidale d’intensité grâce à une méthode de M-estimation qui calcule la
position et les paramètres du spot Gaussien sur chaque image:
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Les deux étapes sont itérées jusqu’à convergence des paramètres et ce indépendement
pour chaque vesicle détecté sur la première image. Quatre itérations sont généralement
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Figure 0.9: Erreurs moyennes de localisation. La méthode “Gaussian Fitting” [Anderson et al.,
1992] est analogue à notre méthode, mais sans prise en compte de modèle d’intensité sinusoïdale.
La méthode PPT est une méthode plus avancée combinant détection, puis calcul des trajectoires
selon le principe du filtrage stochastique [Genovesio et al., 2006]. Les résultats sont obtenus sur
des protéines RX marquées GFP et suivies manuellement (cellules épithéliales).

su�santes en pratique. Les détails décrivant le processus d’initialisation peuvent être
consultés au Chapitre 5.2.2.

Résultats expérimentaux

Evaluer la qualité de l’estimation de temps de vie sur des endosomes en conditions
expérimentales est une tâche complexe. Néanmoins, il est tout à fait possible de générer
une “vérité-terrain” des déplacements de la structure. Comme la précision de l’estimation
de temps de vie dépend avant tout de la qualité de l’estimation du mouvement, nous
adoptons cette procédure en deux étapes pour traiter les séquences expérimentales. Nous
comparons les performances d’estimation des déplacements avec deux autres méthodes
de suivi d’objets (voir Figure 0.9). Le fait de modéliser spécifiquement les variations
d’intensité, donne un net avantage à notre méthode qui gère mieux les images le plus
sombres, présentant un rapport signal sur bruit très faible. Notre méthode a aussi été
évaluée sur des séquences synthétiques.

Dans le cadre du challenge portant sur le suivi de particules organisé par E. Meijering
et J.-C. Olivo-Marin et publié récemment [Chenouard et al., 2014], nous avons également
proposé un M-estimateur très similaire pour le suivi de protéines fluorescentes. Le modèle
d’intensité sinusoïdale n’a pas d’intérêt dans ce contexte et n’a donc pas été utilisé ici.
Notre méthode est locale spatialement et temporellement, elle ne prend pas en compte
l’ensemble des protéines pour e�ectuer l’appariement. Malgré cela, notre méthode de
M-estimation s’est bien comportée puisqu’elle fut classée 2ème/14 en terme de précision
de localisation.
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(a) Endosomes suivis. (b) Temps de vie (bar de couleur: 0-5 ns).

Figure 0.10: RX protéine marquée GFP sur les endosomes (gauche) et temps de vie à la
membrane (droite) en l’absence d’accepteur.

Analyse des interactions entre protéines à la membrane au cours de
l’endocytose

Nos collaborateurs de l’équipe de Ludger Johannes à l’Institut Curie (UMR 144) sont
intéressés par l’étude des interactions par mesure de FRET entre un récepteur de cytokyne
RX et sa kynase KX1 à la membrane au cours de l’endocytose in vivo. Les cellules ne
sont pas fixées chimiquement. Leurs dynamiques internes nécessitent donc l’usage de
l’imagerie FD FLIM couplée à notre méthode numérique.

Pour di�érencier les temps de vie estimés au niveau des endosomes mobiles et au
niveau de la membrane, nous exploitons d’une part les objets suivis, et d’autre part le
fond de la cellule automatiquement segmentée (voir Figure 0.10). Quelques résultats
préliminaires sont présentés sur la figure 0.11. Les résultats obtenus semblent suggérer
une di�érence d’e�cacité de FRET entre la membrane et au niveau des endosomes,
en réponse à une augmentation de l’ajout de l’accepteur. L’interaction serait donc
plus importante au niveau des endosomes. Nous avons prévu de mener d’autres
expérimentations afin d’accroître le nombre d’endosomes et d’améliorer la significativité
statistique de ces résultats.

1Les molécules sont anonymes pour des raisons de confidentialité.
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Figure 0.11: Distribution de temps de vie estimés au niveau des endosomes et à la membranes
(voir détails Section 6.1 à la page 113).

Conclusion
Dans cette première partie, nous avons proposé une nouvelle étude rigoureuse du bruit
de mesure en FD FLIM et une nouvelle méthode pour compenser les mouvements des
structures intracellulaires. L’exploitation de ces méthodes dans le cadre d’une expérience
de biologie est toujours en cours et les résultats sont prometteurs.

De nouvelles investigations devront être menées pour poursuivre ce projet. Le bruit
issu de capteurs ICCD fibrés doit être étudié dans un premier temps pour tester notre
hypothèse quant à l’origine de la déformation observée. Ensuite, nous souhaitons porter
nos e�orts sur les aspects opérationnels de l’algorithme d’estimation de temps de vie de
fluorescence, dans des contextes biologiques variés. Pour cela, il est question de coupler
notre estimateur de temps de vie à des méthodes de suivi de protéines plus sophistiqués.
Dans la suite du manuscrit, nous présentons un algorithme qui répond bien à ce besoin.
D’autres pistes de travail devront être étudiées pour caractériser le temps de vie sur des
structures non-endosomales.
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Résumé des contributions:

• Analyse et modelisation du bruit issu d’un intensificateur CCD
– Un modèle de variance de bruit pre en compte les aberrations optiques

induites par le ICCD.
– Un estimateur des paramètres du modèle de variance.
– Application de notre modèle au débruitage de mesures FD FLIM.
– Une dérivation originale pour le bruit de capteur.

• Reconstruction de carte de temps de vie mesurée en domaine de fréquence
– La prise en compte du modèle de bruit améliore l’estimation du temps de

vie sur échantillon statique.
– Estimation conjointe du temps de vie et du déplacement des endosomes

mobiles.
• Une dérivation nouvelle pour le modèle de mesure FD FLIM (Annexe A).

3 Etude d’un algorithme de suivi de particules à
dynamiques hétérogènes dans un environnement
intracellulaire dense

J’ai eu la chance d’e�ectuer trois mois de mobilité internationale au sein du laboratoire
de Gaudenz Danuser, professeur à Harvard Medical School, grâce au soutien du GDR
2588, d’Inria et de l’École Doctorale MATISSE. Le projet initial concernait alors le suivi
de molécules de vimentine marquées en fluorescence, alternant mouvements di�usifs
dans le cytoplasme et transports actifs. Très rapidement, le défi bien plus large de la
quantification de trajectoires hétérogènes dans un environnement dense, s’est posé. Par
trajectoires hétérogènes, nous entendons qu’il existe parmi ces trajectoires des transitions
d’un type de transport à l’autre qui sont imprévisibles, dans l’espace et dans le temps.
C’est la combinaison des facteurs de densité de particules et d’hétérogénéité qui est
à l’origine de l’ambiguïté des associations. Ce problème, abordé depuis longtemps en
vision par ordinateur, reste néanmoins encore ouvert et aucune solution complète n’a été
publiée dans la littérature. L’ambition du projet a donc été de dépasser le problème de la
vimentine, pour proposer un algorithme de suivi performant dans le cas de populations
denses de particules présentant une hétérogénéité importante de mouvement. Nous avons
également souhaité conserver d’excellentes performances sur des scénarios plus simples,
sans surcoût en complexité algorithmique.
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Quantifier l’hétérogénéité de transport dans la cellule vivante

Les transports intracellulaires peuvent être classés en trois grandes catégories: les
transports di�usifs dans le cytoplasme, les transports actifs le long du cytosquelette
et les transports hétérogènes. Ces derniers sont de diverses natures, mais nous nous
intéressons ici aux variations instantanées de régimes de transport alternant di�usion
et transport actif. Ce comportement s’applique à de nombreux phénotypes comme le
transport axonale, les infections virales ou encore le transport de filaments unitaires de
vimentine.

La quantification de ces mouvements est complexe lorsque, à la densité, s’ajoute
l’hétérogénéité des mouvements des particules. Par densité intracellulaire, nous entendons
densité spatio-temporelle liée à la fréquence d’acquisition. C’est le rapport entre la vitesse
de déplacement et la vitesse d’acquisition qui va définir la di�culté des associations entre
les di�érentes molécules détectées. La détection de transitions brutales entre deux types
de transport n’est pas un problème s’il n’y a pas d’autres protéines dans le voisinage
immédiat. Par contre, la densité locale peut générer des appariements ambigus. Enfin, la
densité complique la tâche de détection d’initialisations et de terminaisons qui dépendent
des apparitions et des disparitions d’objets, fréquentes en bio-imgerie.

Les acquisitions de vimentine sont exemplaires à cet égard. La vimentine est une
protéine qui compose les filaments intermédiaires. Le support à leur formation, qui dure
quelques secondes, est encore mal connu et l’étude de leurs dynamiques devrait apporter
quelques réponses dans ce domaine. Les mouvements que nous observons et que nous
souhaitons quantifier sont rapides, de nature instable, transitant d’un état Brownien à
un état confiné ou dirigé. Ils doivent être détectés dans une population très dense de
protéines.

Etat de l’art des algorithmes de suivi de particules multiples

De nombreux algorithmes ont été proposés pour répondre aux défis très spécifiques posés
par le suivi de particules multiples en microscopie de fluorescence. Dans la littérature,
la grande majorité des méthodes repose sur une phase de détection, suivie d’une phase
de calcul des trajectoires. La détection, déjà largement étudiée [Smal et al., 2010],
n’est pas discutée dans nos travaux. Dans cette seconde partie, nous proposons une
classification des algorithmes en fonction de six critères: la modélisation de la dynamique,
l’optimisation des associations, le calcul du rayon de recherche, la mesure de la similarité
entre les objets, la détection de points manquants dans les trajectoires et la capacité à
détecter la fusion ou la séparation de particules. Dan ce résumé, nous portons notre
attention sur le premier point (modélisation de la dynamique), le plus important dans
notre étude.

Deux approches ont été proposées pour modéliser les trajectoires hétérogènes [Genovesio
et al., 2006; Jaqaman et al., 2008]. Ces deux approches s’appuient sur de multiples filtres
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de Kalman pour évaluer autant de dynamiques possibles. Les matrices de transition
peuvent représenter un mouvement “Brownien”, “dirigé” ou “dirigé inversé”. De par
les mécanismes de filtrage, ces algorithmes ne peuvent détecter que des transitions
lentes entre les di�érents types de déplacement. Nous montrons que les mécanismes de
l’algorithme u-track [Jaqaman et al., 2008], qui ne comprend qu’un seul vecteur d’état, a
pour caractéristique de maintenir une certaine inertie lors de l’estimation de la vitesse
et d’orienter la convergence vers un seul vecteur par trajectoire. D’autre part, nous
montrons que les algorithmes de type IMM sont plus flexibles à cet égard.

En imagerie biologique la transition instantanée entre un transport Brownien et dirigé
est un phénotype fréquent, pourtant, aucun algorithme de l’état de l’art ne semble cibler
ce problème particulier.

Lissages multiples et estimation adaptative du rayon de recherche

Nous proposons deux contributions pour améliorer le suivi de particules avec des
mouvements hétérogènes dans un environnement dense. La première contribution
vise à prédire les transitions entre di�érents modèles de mouvement en considérant
les dynamiques passées et futures et en probabilisant les associations. La seconde
contribution a pour objet d’adapter localement et itérativement le rayon de recherche
propre à chaque objet/particule suivi, ceci afin d’améliorer la détection de terminaisons
et d’initialisations de trajectoires.

Interaction de modèles multiples itératifs

Afin de prendre en compte les dynamiques passées et futures de chaque trajectoire
avec une complexité algorithmique raisonnable, nous proposons l’utilisation d’un lissage
de type “forward-backward” [Fraser and Potter, 1969]. Plusieurs balayages de filtrage
stochastique sont appliqués itérativement en inversant la séquence temporellement. Ainsi,
chaque prédiction est mise en compétition avec la prédiction issue de l’état estimé au
balayage précédent. Nous appliquons ce principe à un filtrage de type IMM. Nous avons
ainsi implémenté un filtre IMM itératif permettant d’obtenir une estimation convergente
de la vitesse et du type de transport à chaque point de temps. La figure 0.12 illustre l’e�et
de trois balayages temporels restreints sur une séquence expérimentale de vimentine.
L’équation (0.7) permet de calculer la probabilité a posteriori qui tient compte des
probabilités associées aux di�érents types de transports et de la probabilité évaluée à
l’itération précédente:

p(x
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ÿ
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Figure 0.12: Convergence des estimations de vitesse à l’échelle du point de temps lors d’un
changement de brutal dynamique. Avant l’image # 46, la particule de vimentine présente un
mouvement Brownien confiné prolongé. Elle se déplace brutalement le long du cytosquelette pour
retrouver un état Brownien confiné prolongé dès l’image # 49. Les traits rouges représentent
la détection de déplacement dirigés, les traits verts représente la détection d’un mouvement
Brownien et les traits jaunes représentent la prédiction issue du calcul à l’itération précédente.

Estimation en ligne adaptative du rayon de recherche

Nous avons également amélioré l’estimation de la variance du bruit de processus.
Cette estimation est utile pour définir la zone d’appariement et permet de détecter
automatiquement la terminaison d’une trajectoire et, par conséquent, de réduire le
nombre de fausses trajectoires. Nous avons privilégié un calcul en ligne récursif permettant
d’appréhender les mesures d’erreur issues du précédent balayage temporel. Les filtres de
Kalman indépendants permettent également d’estimer le bruit de modèle pour chaque
type de mouvement et de s’adapter aux mouvements détectés (Brownien ou direct). Nous
ne détaillerons pas cet aspect de notre travail ici. La figure 0.13 illustre les performances
de notre nouvel estimateur.
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Figure 0.13: Erreurs d’estimation de la variance du bruit caractérisant le processus mesuré
sur simulations en fonction de la probabilité de changement de type de transport (0 indique
un déplacement purement Brownien confiné, 0.5 indique une chance sur deux de transiter vers
un mouvement dirigé à chaque point de temps). Notre méthode (en rouge) est sept fois plus
précise que l’estimateur u-track (en bleu). De plus, une simple estimation récursive de la variance,
prenant en compte les mesures d’erreur issues du calcul à l’itération précédente, met en évidence
l’intérêt de notre méthode basée sur l’algorithme u-track (en vert). L’adaptivité et l’agilité de
l’algorithme de suivi sont assurées par la mise en place de plusieurs filtres.

.

Résultats sur séquences synthétiques

La figure 0.14 illustre les performances de notre filtre IMM itératif sur simulations. De
plus, nous mettons en évidence que notre méthode se comporte mieux que les algorithmes
concurrents [Genovesio et al., 2006; Jaqaman et al., 2008] pour traiter des situations
variées telles que le transport actif à vitesse variable ou une vitesse de transition variable
entre états de transport. L’algorithme présente de meilleurs performances que u-track
pour calculer les trajectoires avec un sur-coût de complexité algorithmique négligeable.

Résultats sur séquences expérimentales

Quantification du transport hétérogène de vimentine

Selon l’hypothèse du professeur Gelfand (North Northeastern University, collaborateur de
G. Danuser), les filaments intermédiaires unitaires se déplacent le long des microtubules.
Afin de tester cette hypothèse, les cellules sont traitées au nocodazole, un agent
biologique qui provoque la dépolymérisation des microtubules. Si le traitement a�ecte
les mouvements dirigés de la vimentine, alors cela favorise l’hypothèse selon laquelle la
vimentine se déplace le long des microtubules. L’étude de la dynamique des protéines est
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Figure 0.14: Pourcentage de vrais positifs (et faux positifs sur le graphique de droite) sur données
simulées en fonction de la densité et de la probabilité de changement de type de transport (0
indique un déplacement purement Brownien confiné, 0.5 indique une chance sur deux de transiter
vers un mouvement dirigé à chaque point de temps). Comparaison des performances avec notre
méthode u-track et avec un filtrage IMM. La densité est fixé à 3 spots par micromètre carré sur
l’exemple à gauche et sur les résultats à droite. Notre approche présente une amélioration de 15%
par rapport à u-track sur le scénario le plus complexe.

.
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Figure 0.15: (a) & (b) Exemple de suivi de filaments unitaires de vimentine sur une cellule
témoin (à gauche) et traitée au nocodazole. (c) Proportion de mouvement d’amplitude importante
avant et après traitement au nocodazole. Un mouvement d’amplitude importante est défini
comme le 99,9 percentile de la vitesse estimée localement par le filtre de Kalman. L’évaluation de
la dynamique sur 6 cellules de contrôle et 6 cellules traitées (séquences de 100 images) met en
évidence une di�érence significative pour une p-valeur de 0.0088 (t-test).

.

e�ectuée par microscopie confocale à disques rotatifs après transfection cellulaire pour
marquer la vimentine par GFP. Le problème rencontré était de quantifier les dynamiques
des particules avant et après traitement (voir Figure 0.15(a)-(b)). La faible di�érence
est due au taux variable de pénétration du traitement au nocodazole. Pourtant, notre
méthode met en évidence une di�érence significative sur la figure 0.15(c). Ces résultats
confirment l’hypothèse initiale selon laquelle les filaments unitaires se déplacent bien le
long du réseau de microtubules.

Robustesse face à la baisse de la fréquence d’acquisition

Comme expliqué plus haut, une méthode fiable pour tester un algorithme de quantification
en biologie consiste à utiliser une séquence expérimentale pour un phénotype connu.
Dans ce cadre, les séquences exceptionnelles de virus issues des travaux présentés dans
[Burckhardt et al., 2011] ont pu être exploitées. En e�et, la fréquence d’acquisition rapide,
rendue possible grâce à une abondance de marquage, permet une quantification aisée
du déplacement des virus. Nous proposons alors d’utiliser cette quantification comme
“vérité-terrain” et de tester la robustesse de notre approche pour faire face à di�érents
échantillonnages d’acquisition temporels (voir Figure 0.16). Avec un niveau croissant
de décimation temporelle, notre algorithme présente une décroissance linéaire de ses
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performances, alors que u-track présente plutôt une décroissance quadratique.
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(a) Pourcentage de vrais positifs obtenus avec u-track et notre méthode en fonction de la
décimation temporelle de la séquence d’origine.
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(b) u-track échoue à partir d’un facteur de décimation égal à 30 tandis que notre approche
présente une seule erreur pour un facteur de décimation égal à 50 (les trajectoires les plus longues
sont liées des fréquences faibles d’échantillonnage).

Figure 0.16: Suivi automatique de virus dans la cellule [Burckhardt et al., 2011]. La fréquence
d’acquisition est artificiellement réduite pour tester la robustesse de l’algorithme.

Conclusion

Nous avons identifié un problème de quantification de trajectoires relativement fréquent
en imagerie du vivant: la quantification de dynamique hétérogène dans un environnement
dense. Nous avons mis en évidence que l’état de l’art ne permettait pas de répondre
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à cette problématique complètement. Partant de ce constat, nous avons proposé
des innovations ciblées et une méthode originale de suivi. Notre approche présente
d’excellentes performances pour une large gamme de scénarios biologiques ainsi qu’une
complexité algorithmique comparable aux algorithmes usuels de la littérature.

Notre approche peut être couplée aux techniques MHT qui ont été très récemment
expérimentées dans le domaine du suivi d’entités biologiques [Chenouard et al., 2014].
La prochaine étape, d’un point de vue méthodologique, est donc très clairement de
proposer une fenêtre d’analyse temporelle plus importante pour e�ectuer l’optimisation
des appariements. Cela dit, les innovations, pour être fécondes et robustes, doivent
être e�ectuées avec un objectif applicatif précis. Il est important de mettre d’abord
l’expérience acquise au service des problématiques biologiques, afin d’optimiser la qualité
et la quantité des données obtenues, de mieux comprendre les prochains défis de l’analyse
dynamique en biologie quantitative et de proposer des méthodes robustes qui auront un
impact fort dans de nombreuses communautés.

Résumé des contributions:

• Revue des méthodes de suivi de particules
– Descrition de la modélisation de dynamiques multiples dans l’algorithme

u-track, un algorithme de suivi très répandu en bio-imagerie.
– Discussion des capacités des algorithmes de suivi de particules selon six

caractéristiques techniques.
• Un nouvel algorithme conçut pour le suivi individuel de population dense de

particules à dynamiques hétérogènes
– Un lisseur IMM (Interacting Multiple Modeling en anglais) de type

“forward-backward” permet la détection de transitions brutales.
– Estimation adaptative et iterative du rayon de recherche.
– Faible surcoût algorithmique.

• Validation expérimentale
– Notre méthode propose de meilleurs performances que les algorithmes

connus sur données synthétiques simulant la probématique cible.
– Notre méthode propose de meilleurs performances que les algorithmes

connus sur données synthétiques simulant une variété de scénarios moins
sophistiqués.

– L’étude du tra�c de la vimentine met en avant des transitions rares et
brutales dans leur dynamiques.
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– Nous montrons que notre méthode est plus robuste face à la réduction de
la vitesse d’acquisition sur des séquences de virus.

4 Conclusion Générale

Nous avons présenté deux projets qui répondent aux défis actuels en biologie et en
bio-imagerie. La dynamique et l’hétérogénéité inhérente à tout processus bio-physique
est désormais observable par les techniques de fluorescence. Nous avons proposé des
solutions originales qui modélisent ces phénomènes et permettent d’estimer les paramètres
sous-jacents.

Une première contribution visait à améliorer la précision et la fiabilité de la mesure
de temps de vie sur des structures dynamiques en FD FLIM. Une seconde contribution
méthodologique a porté sur le suivi de particules afin d’améliorer la quantification des
dynamiques intra-cellulaires. Ces deux contributions sont au coeur des problématiques
abordées par la communauté spécialiste des méthodes numériques en microscope de
fluorescence: la modélisation de processus de formation des images de microscopie d’une
part, et d’autre part la modélisation et la quantification des phénotypes dynamiques. A
court terme, nous souhaitons valoriser ces travaux dans des études variées en biologie et
mettre ces approches numériques à disposition d’un grand nombre d’utitlisateurs.

En conclusion, je suis maintenant convaincu qu’un numéricien peut jouer un rôle
décisif dans la biologie moderne. La collaboration des di�érentes expertises en bio-chimie,
microscopie et analyse de données permettra de conduire des projets ambitieux en
microscopie. On peut s’attendre à l’émergence de nouvelles techniques d’imagerie qui
donneront une place important au modèle mathématique et à la modélisation. A titre
d’exemple, en microscopie de “speckle”, la modélisation est prise en compte dès la phase
de marquage fluorescent. Cette stratégie permettra de rationaliser les acquisitions de
données également. Le développement de méthodes de traitement de données synchrones
avec les problématiques biologiques est bénéfique pour la communauté des biologistes tout
comme pour la communauté des numériciens. Il assurera la qualité et la complétude des
données à analyser. Une meilleure coordination et une meilleure concertation devraient
assurer une exploitation plus rapide des données et une optimisation des e�orts. Les défis
dans le domaine de l’imagerie biologique sont nombreux et ils ne sont pas encore tous
identifiés. C’est dans cet état d’esprit que je vais continuer mes recherches post-doctorales
au sein du laboratoire de Gaudenz Danuser, un laboratoire de biologie cellulaire dirigé
par un expert en vision par ordinateur et en traitement du signal.
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Organization of the thesis
In this section, we detail the organization of the thesis. The two main contributions
are presented in two separate parts. The biological backgrounds related to these two
contributions are given the first chapter of each part.

Chapter 1: General introduction
In the first chapter, we place the present work in the more general context of fluorescence
microscopy and its application to the study of living cell. We briefly describe the
fundamental biophysical principles and experimental instruments that are required to
image dynamical intracellular processes.

Part I : Fluorescence lifetime map reconstruction in
frequency domain (FD) FLIM
This part detail is devoted to the estimation of fluorescence lifetime maps corrupted by
instrumental noise and motion in frequency domain FLIM.

Chapter 2: Fluorescence lifetime and biological application
We first describe the physical basis for fluorescence lifetime imaging. We describe the
competing des-excitation processes that influence magnitude. Finally, we present the
application to the measurement of various biophysical quantities, most notably the Förster
resonance energy transfer (FRET) between interacting molecules.

Chapter 3: Fluorescence lifetime imaging techniques
We present the fluorescence lifetime imaging instrumentation both in time and frequency
domain. Due to its speed of acquisition, the frequency domain approach is more suitable
for in vivo and/or dynamical acquisitions. We describe the computational approaches
proposed in the literature to estimate fluorescence lifetime out of a FD FLIM measurement.

Chapter 4: Instrumental noise in FD FLIM measurement
Our main contributions in FD FLIM are presented in this chapter. We describe a study
of the noise variance introduced by the intensifier CCD required in FD FLIM. A model
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correction and associated parameter estimation are proposed to take optical aberrations
into account. We apply this modeling to fluorescence lifetime estimation. We also
highlight the relevance of our model thanks to FD FLIM measurement denoising. We
use a simple Wiener filter to compare the influence of our adaptive model to a usual
constant noise variance model. A more advanced denoising algorithm (Non-local means)
is also introduced to produce better results.

Chapter 5: Fluorescence lifetime estimation on moving endosomes in
FD FLIM

This chapter focuses on the estimation of fluorescence lifetime on non-fixed endosomes.
We propose a robust statistical framework for the joint estimation of the fluorescence
lifetime and di�usive motion of particles. Our approach is tested on simulations and
experimental samples.

Chapter 6: Application to protein interaction analysis at the
membrane and during endocytosis

Our lifetime reconstruction framework is applied to an on-going study of the signaling
pathway triggered by a cytokine. In this chapter, we focus on the FRET-based detection
of interactions between the cytokine receptor and its kinesin. Our collaborators wished
to evaluate the level of interaction at the membrane or on the early endosomes. The
application of our fluorescence lifetime reconstruction framework on in vivo acquisition
hints for a stronger interaction on the endosomes. Our results guided the design of new
acquisitions for a better statistical significance in future work.

Conclusion

Part II : Tracking heterogeneous transports in a dense
intracellular environment
In the second part of the thesis, we present a more general study of the quantification
of a very frequent phenotype in living cells: the heterogeneous transport of vesicles or
molecules in dense cellular environments. This study has been carried out within the
Danuser lab in Harvard Medical School and supported by the GDR 2588, Inria and
MATISSE doctoral school.

Chapter 8: Quantifying transport heterogeneity in living cells

In this introductory chapter, we first present the variety of intracellular transports involved
in the living cell functions. In this non-exhaustive review, we classify those transports into
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three types : di�usion, active transport and heterogeneous transport. We then present
the possible pitfalls in the quantification of those phenotypes in fluorescence microscopy.
We finally focus on the challenging, yet frequent scenario, of unpredictable transitions
between di�usion inside the cytoplasm and active transport along the cytoskeleton in the
cluttered environment of the living cell. We introduce the vimentin dynamics study that
have been the starting point of our work.

Chapter 9: Technical review of particle tracking algorithms

We propose a study and a classification of the related works in the field of multiple particle
tracking. We classified fifteen algorithms chosen for their impact and originality in the
literature. We classify their strategies with respect to six key criteria: dynamic modeling,
linking cost optimization, spatial gating strategy, similarity distance, gap closing ability
and particle merging and splitting detection. Although we focus on a specific case study,
our tracking approach can be used for a large set of biological problems. In a nutshell,
we show that the related e�ort in modeling multiple motions such as interacting multiple
models is not designed to estimate abrupt changes in the transportation model.

Chapter 10: Iterative u-track

Building over the u-track algorithm, we propose a new, interacting multiple model
smoother that exploits recursive tracking in multiple rounds in forward and backward
temporal directions in order to achieve convergence of the instantaneous speed estimate
time-point-by-time-point instead of the average speed over a track. This allows us to
recover fast transitions from freely or confined di�usive to directed motion. To avoid
false positives we improved the recursive tracking with a robust in-line estimator of the
adaptive search radius for assignment (a.k.a. gating).

We tested our method on simulations to measure the influence of density and motion
switching probability. Our method is demonstrated to to outperform competing methods
that model multiple transport types such as interacting multiple models and General
Bayesian problem of order 1 (GP1). We also highlight the good performance of our
approach with respect to active transport speed in heterogeneous motion. We finally
show that our method outperforms competing methods in more homogeneous scenarios
such as varying speed in active transport or a mixed population of di�use particles and
actively transported particle. The measured computation time show a 10% with respect
to the U-track algorithm.

On biological applications, our algorithm allows us to quantify the extremely small
percentage of motor-driven movements of intermediate filament precursor particles along
microtubules in a dense field of unbound molecules of vimentin. We also show in
experimental data sets of virus tra�cking that our algorithm can cope with a high
reduction in recording frame rate without losing tracking performance relatively to
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methods relying on fast sampling.

Conclusion

General conclusion
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1 General introduction

Since the first description of the living cell by Robert Hook some 350 years ago [Hooke
and Waller, 1705], microscope-aided observation has been a fruitful mean of investigation
in cell biology. The last major evolution in microscopy is probably the discovery of the
fluorescent tagging technique. It is now possible thanks to genetic engineering coupled
with time lapse microscopy, to observe with molecular precision the events controlling
the function and organization of the living cell.

Microscopy is not the only approach available to probe the mechanisms and processes
in cell biology. Biochemical and genetic methods are also playing a major role in this
field. By measuring physical quantities on millions of molecules in a single experiment,
those techniques have been unfolding thousands of phenotypes. The experiments provide
homogeneous projections that average the behavior of an ensemble of molecules. While
e�cient and statistically significant, those techniques cannot measure the dynamics
of cells, the spatiotemporal distribution of subcellular components, and the transient
processes that involve intracellular molecules [Tinoco and Gonzalez, 2011]. Fluorescence
microscopy fills this need by allowing in vivo dynamical observations that render the
heterogeneity inherent to complex intracellular interactions.

Nowadays, thanks to time-lapse imaging in fluorescence microscopy, biologists can study
this heterogeneity of processes and structures in space and time [Lippincott-Schwartz,
2003]. In this first chapter, we will describe several technical breakthroughs that made
dynamical intracellular processes observation possible. First, fluorescence tagging opened
the way to single molecule detection. Now that the genome sequence of a variety of
organisms has been completed, the structures of interest can be precisely labeled and
studied. Secondly, the development of dedicated optical microscopes and light sensors
have permitted the acquisition of high-quality image datasets with increasing temporal
and spatial resolution. Modern microscopy allows an ever reducing amount of sample
excitation to reduce the light induced damages to the sample.

All these targeted innovations in genetics, optics and light sensing instruments allow
the observation of thousands of proteins and as many behaviours in the same sequence.
In this context, data processing and analysis have a major role to play. A dedicated
e�ort has recently emerged from the community in signal processing and image analysis
to master and interpret the ever increasing amounts of data produced in fluorescence
microscopy [Danuser, 2011; Zimmer, 2012]. This e�ort is two-fold. First, the method for
signal reconstruction model the signal and the instrumentation to push the envelope in
data acquisition by compensating artifacts (di�raction,noise...). Secondly, the computer
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vision and data analysis methods model, quantify and compare the biological phenotypes
described by the measured intensities.

We describe in this manuscript two representative studies for which e�orts in signal
processing and computer vision were required for the study of the cell in vivo.

In the first part, we introduce a statistical method for the reconstruction of fluorescence
lifetime map corrupted by instrumental noise and dynamical events. The fluorescence
lifetime is defined as the nanosecond-scale delay between excitation and emission of
fluorescence. Lifetime measurement yields numerous indications on cellular environmental
quantities, as much as interprotein and intraprotein mechanisms through fluorescent
tagging. We propose in this manuscript a study of the instrumentation required for the
quantification in frequency domain fluorescence lifetime imaging microscopy (FD FLIM).
Adapting to this specific instrumentation, we propose a statistical framework for noise
estimation and compensation. We also enable for the first time the measurement of
fluorescence lifetime on moving endosomes.

The second part presents a contribution to the tracking of multiple particles presenting
heterogeneous transports in dense conditions. Heterogeneous transports are ubiquitous
in the cell. We focus here on the switching between confined di�usion in the cytosol
and motor-mediated active transport in random directions. In time lapse fluorescence
microscopy, the current state-of-the-art in tracking of sub-resolved particles handles
correctly those types of transport on spatially sparse scenarios or high frequency
acquisitions. However, when the particle population densifies, the acquisition rate
cannot be increased endlessly because of photodamages and the signal-to-noise ratios
required for detection. This is the typical scenario we faced while studying the dynamics
of vimentin filaments formation. In this context, current multiple model filtering and
gating strategies fail at estimating unpredictable transitions between Brownian and
directed displacements. We propose in this manuscript a study and a classification of the
related works in the field. Upon this study, we propose two improvements on dynamical
modeling and search radius estimation to improve the tracking of heterogeneous types of
motion in challenging conditions. Our approach has been evaluated on simulated data,
we show that our method outperforms competing methods in the targeted scenario, but
also on more homogeneous types of dynamics challenged by density. On experimental
sequences we manage to quantify the challenging vimentin dynamics. We also highlight
the resistance of our method toward a reduction in temporal resolution.

Hence, the first part of this work describes a signal processing method that models an
instrumentation to enable its potential for quantification of dynamical processes. The
second part describes a data analysis method that models a phenotype to push the
boundaries in quantification of intracellular dynamics.

In this general introduction, we first describe the context of fluorescence microscopy.
We describe the principle and application of fluorescence structure labelling in Section
1.1. We then propose a brief overview of optical microscopy techniques used for live cell
imaging in Section 1.2.
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1.1 Fluorescence: principles and application to structures labelling

1.1 Fluorescence: principles and application to structures
labelling

1.1.1 Principles of fluorescence
The fluorescence phenomena has been discovered in 1852 by George G. Stokes [Stokes,
1852]. In this paper, the author reported light emission from a mineral (the fluospar that
gave its name to fluorescence) during its excitation with an ultra-violet light. He noted
that the emitted wavelength was longer than the the incident wavelength, a phenomenon
now known as the Stokes shift.

To understand this discovery, the electronic energy of fluorescent molecules must
be modeled. The electron energy depends on its orbital, and the energy of the whole
electronic configuration depends on the total electron energy and the symmetry of the
electron spin states. Due to the quantum nature of electronic energy, the molecular
energy is quantized. For each molecule, the lowest energy level is the so-called ground
state S0, followed by discrete excited states S1, S2, S3 or more. When a photon hits a
molecule in its ground energy state S0, some of its electrons undergo an orbital leap. If
the photon has su�cient energy, it can reach an excited quantum of higher energy S1 (or
less probably S2). This phenomenon known as absorption is illustrated on the simplified
Jablonsky diagram Figure 1.1. In order to return to the stable ground state S0, one
possible de-excitation pathway is the immediate emission of a photon. This rapid light
emission that happens within nanoseconds (10≠9 to 10≠10 seconds) is the fluorescence.

The wavelength shift observed by Stokes is due to the energy lost by the fluorescent
molecule before the photon emission (see Figure 1.1). This energy loss can have several
causes, but the main ones are the vibrational relaxation (S1 to S1) and internal conversion
(S2+ to S1) to its lowest vibrational energy level. The two phenomena consist in a very fast
(10≠14 - 10≠11 seconds) non-radiative process where the electronic energy is transformed
into kinetic energy absorbed by neighboring molecules. Due to its time scale this energetic
transition is very likely to happen before photon emission. The Planck equation

E = hc

⁄
(1.1)

where c is the speed of light and h is the Planck’s constant, makes the link between this
energy loss in a quantum E and the longer wavelength ⁄.

As depicted in Figure 1.1, multiple possible energetic transitions between vibrational
states are possible for absorption as well as emission. Depending on the electronic
configuration of the molecule, those transitions occur with di�erent probabilities. As
a result, each fluorescent molecule presents a characteristic absorption and emission
spectrum (see Figure 1.2). Due to the vibrational relaxation, the emission spectrum is
independent of the excitation wavelength.

The average time for a molecule to stay in an excited state before emitting a photon is
called the fluorescence lifetime. Lifetime is dependent on the multiple other de-excitation
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Figure 1.1: Simplified Jablonsky diagram. The thick horizontal lines denote electronic energy
levels. The thinner grey lines represents the various vibrational energy states. Straight arrows
are associated with absorption or emission of a photon. Wavy arrows illustrate molecular
internal conversions or non-radiative relaxation processes. Vertical upward arrows indicate the
instantaneous nature of excitation processes.

Figure 1.2: Stokes shift for di�erent species of GFP and some GFP mutation (adapted courtesy
of Damien Maurel)
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1.1 Fluorescence: principles and application to structures labelling

Figure 1.3: HeLa cells stained with antibody to actin (green), vimentin (red) and DNA (blue)
(courtesy of EnCor Biotechnology)

pathways that compete with photon emission for the molecule to return to its ground
state. So, there is numerous biological applications to the measurement of fluorescence
lifetime such as pH sensing and proximity measurement between fluorophores. We will
detail the physical origin, modeling and application in Part I which is dedicated to
lifetime estimation.

1.1.2 Bringing fluorescence to intracellular structures

The di�erence between excitation and emission wavelength is actually what makes
fluorochrome an invaluable tool in the study of the living cell. Combined with optical
microscopy using barrier filters that selectively transmit a wavelength of choice, the
fluorochrome can be localized with unprecedented precision within a larger sample that
is uniformly excited. Furthermore, the specific emission spectrum of each fluorophore
allows the decorrelation of the signal emitted by di�erent fluorophores in a same sample
at the same time. In order to exploit those properties at the cellular or subcellular
structure levels, fluorescence staining or labelling consists in highlighting structures in
biological tissues thanks to fluorochromes chemically or genetically attached to molecules.
In this Section we present the two main approaches exploited in cell biology to bring the
fluorescence to the biomolecule.
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1 General introduction

1.1.2.1 Fluorescent staining

Fluorescence staining consists in the injection inside the cell of a fluorescent probe.
This probe is introduced in the form of a fluorochrome chemically linked to a biological
vector molecule that binds the protein targeted for visualization. Various methods for
fluorescence staining have been discovered, generally classified by the vector molecule of
choice.

Immunofluorescence exploits antibodies to bind to their respective antigens associated
to the molecule of interest [Miller and Shakes, 1995]. If antibodies are used by
the immune system to neutralized biological objects from the external environment
(“non-self”), antigens also originate from within the body (“self”). Accordingly the
immunofluorescence can tag any biomolecule in the living cell. Two methods, direct and
indirect, are widely used for immunofluorescence staining. The first method directly
uses a fluorochrome-labelled antibody as a probe. In the indirect method, the primary
antibody that binds the antigen is not fluorescently labeled, the fluorophore is attached
to a secondary antibody that in turn binds the primary antibodies. The second approach
presents several advantages: the use of multiple secondary antibody enhances signal
quality and this method provide much more flexibility as a large number of secondary
antibody can bind to a given antibody and vice-versa. For the antibodies to e�ciently
penetrate the cell, the plasma membrane must be permeabilized or the cell sectioned.
Consequently, the technique generally requires the fixation procedure of tissues and cells
prior to the staining and is unsuitable for live-imaging.

Fluorescence in situ hybridization (FISH) is used to identify a specific gene or sequence
within a gene in DNA or RNA. Hence this technique allows the detection of gene expression
in the cell and localization in the chromosomes. To design the probe, fluorochrome
are chemically attached to specific genetic regions of microbes that will di�erentiate
them from other groups. Once injected, the fluorescent-labeled probes hybridize with
the complementary RNA or DNA molecules. Fixation and permeabilization are also
necessary.

Chemical fluorescent probe are yet an other category of fluorescent staining agent.
They can bind to biomolecules specific to the targeted structures in the Cell such as actin
fiber (FITC-Phalloidin, Rhodamine-Phalloidin), mitochondria (mitoTracker®,Rhodamine
123), chromosomes/nucleus (DAPI), Endoplasmic Reticulum (ERTracker®), lysosome
(LysoTrackers®) or Golgi apparatus. Except the actin fiber binder, all the pre-cited agent
are suitable for live cell imaging.

1.1.3 Fluorescent labelling of in vivo protein

The purification [Shimomura et al., 1962], cloning [Prasher et al., 1992] and heterogeneous
expression [Tsien, 1998] of the Green Fluorescent Protein (GFP) opened the way to the
synthesis of labelled proteins inside the cell. GFP has become a major tool for biologists
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Figure 1.4: –-tubulin labeled with GFP. a) this chimera localize to microtubule b) the EGFP
is tagged on the N-terminus of the –-tubulin. The interior part of the barrel shape structure is
responsible for the fluorescent phenomena (copyright Zeiss).

to tag specific target proteins in vivo and track the localization and dynamics of proteins,
organelles, and other cellular compartments [Giepmans et al., 2006].

The fluorescently labelled protein (or chimera) is a protein of which the gene is
composed by two distinct protein genes. The location for the fluorochrome on the original
protein must be carefully chosen in order not to conflict with the protein function under
study. While producing a biosensor, the pair of fluorophores must be located to trigger
the FRET e�ect (see Section 2.2.2) on protein activation. When too few information
on the optimal tagging locus is available, di�erent tagging sites must be experimented
(see Chapter 6). In order to produce the chimera, the two genes are fused together using
genetic recombination technique forming a recombinant DNA.

The recombinant DNA is then transfected into the cell using a plasmid or a viral
vector (in this second case, the process is called transduction). Multiple reagent are
commercially available with variable e�ciency to facilitate vectors uptake by the living
cell, but none of them necessitates permeabilization of the cell membrane. There is two
types of transfection depending on the persistency of the chimera inside the host cell.
In stable transfection the genetic material (DNA of mRNA) is integrated into the host
genome and sustains transgene expression even after host cells replicate. In the case of
transient transfection, the gene does not integrate into the chromosomes, and can be
expressed in the cytoplasm for a short period of time (72 to 96 hours after introduction)
[Kim and Eberwine, 2010].

Inside the cell, the recombinant DNA is translated by the ribosome to produce a specific
amino-acid chain that will later folds into a fluorescent protein. This genetic tagging
technique avoids the problem of purifying, tagging, and introducing labeled proteins into
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Figure 1.5: In stable transfection the vector DNA (red wave) pass through the cell and nuclear
membranes and integrated into the host genome (black wave) where it is expressed sustainably.
In transient transfection, the vector DNA is delivered into the nucleus but is not integrated into
the genome. (adapted from [Kim and Eberwine, 2010])

cells or the task of producing specific antibodies for surface or internal antigens.

1.1.4 Photobleaching and photoxicity

Two main limitations in the image acquisition process in fluorescence microcoscopy are
photobleaching and phototoxicity.

Photobleaching (or fading) is a permanent loss of fluorescence of a fluorophore. A
fluorescent molecule in the excited state presents a varying probability of interaction with
an other molecule, a reaction that will cause irreversible covalent modifications. This
probability will depend on the fluorophore and on the molecular environment. As a result,
photobleaching can occur after a few photons emission as well as millions of fluorescence
cycles depending on the fluorophore robustness and experimental conditions. Even if
various reagents can reduce bleaching rate, photobleaching is an issue that seriously
hinder the acquisition of strong signal or time lapse acquisition in fluorescence microscopy.
It is thus very important to manage the fluorescent capacity by controlling the sample
excitation during acquisition.

The photobleaching e�ect can also be exploited to measure biophysical quantities
in fluorescence microscopy. For example, in fluorescence recovery after photobleaching
(FRAP) experiments [Axelrod et al., 1976], the fluorophores are intentionally bleached in
a selected area using excessive illumination. The dynamic of non-bleached fluorophore
molecules di�using into the bleached area can then be measured. Using this technique,
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the local dynamics of fluorescently labeled molecules can be assessed with a spatial
resolution of 2 to 5 micrometers.

The other important limitation is phototoxicity due to the interaction between the
excited fluorophore and an other molecule, especially with oxygen. This reaction causes
the release of free radical oxygens in the living cells that can damage chemically destroy
other structures in the cell in addition to the fluorescent molecule. Phototoxicity often
occurs upon repeated laser exposures of fluorescently labeled cells.

1.2 Live cell fluorescence microscopy techniques
The fluorescence signal emitted by the fluorophores inside the cell is imaged thanks to
modern microscopy. A wide range of single molecule microscopy methods have been
proposed to adapt to specific structures, dynamics or intracellular location under study.

Microscopical methods should be chosen considering various factors: the sample under
study, the phenotype under study and the trade o� between the resulting signal-to-noise
ratio and damage on the sample during observation Stephens and Allan [2003]. Thickness
of the sample will guide the decision to wide-field or optical sectioning. The speed of the
process under study will have an impact on the acquisition speed. The spatiotemporal
scale of the entire phenotype under study can restrain the spatiotemporal resolution, via
depth resolution in 3D or acquisition speed, of the acquisition to harness photodamaging
e�ect.

Furthermore, the choice of the microscopical setup should be done in parallel with the
whole experiment design, considering diverse fluorescent tagging technologies and data
processing and analysis methods to optimize the quality of the resulting quantification.
Indeed, the quantum e�ciency of the fluorescently labelled protein will also define the
illumination needed for signal detectability. An other important factor is the amount
of signal and acquisition speed actually needed for object detection or quantification of
dynamics.

In this chapter we briefly present the main technologies that are relevant to the field
of dynamical process analysis.

1.2.1 Wide-field Microscopy
Wide-field microscopy allows for vesicle localization with a resolution of 200 nm in the
whole cell by illuminating the whole sample with a single light source. A lens focuses
the illumination field on the sample. The technique is schematically described Figure
1.6. This setup provide fast imaging and flexibility at low cost. As a result, it is the
most widely used imaging technique in biology. However, wide-field microscopy presents
some limitations. Using this technique, the blurred intensity stemming from out-of-focus
structures will be integrated as much as the focal plane in CCD sensor. This can reduce
the contrast on the structure of interest if the sample is not thin enough. Additionally,
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the plain illumination of the sample can cause unnecessary photodamages. Confocal
microscopy can address those restrictions by minimizing the out-of-focus interferences.

1.2.2 Optical sectioning

1.2.2.1 Computational optical sectioning microscopy

Computational optical sectioning microscopy (COSM) combines wide-field imaging with
deconvolution algorithms to remove out-of-focus light blurring [Conchello and Lichtman,
2005]. Deconvolution is based on the knowledge of the image formation process. The
algorithm use this information to solve an inverse problem and retrieve the original
optical section. Multiple two-dimensional images are acquired at di�erent focus depths
and are post-processed to obtain a three-dimensional view of the sample. Because of the
use of multiple plain sample illumination for a single time step, this method is sensitive
to photodamages as well as cellular motility.

1.2.2.2 Confocal Microscopy

Confocal microscopy uses a convergent laser beam to focus on a single point on the
focal plane [Minsky, 1988]. A pinhole aperture is placed at the detection end to reduce
the impact of out-of-focus fluorescence, thus providing an optical sectioning e�ect. By
reducing the size of that pinhole below the size of the central airy disc pattern, the
resolution of the confocal microscope can be enhanced by a factor 1.4 when compared
with the wide-field microscope resolution [Conchello and Lichtman, 2005]. The precision
of this technique is limited by the di�raction of laser focal point.

The signal quality is obtained at the expense of its quantity. Two approaches have been
proposed to face this problem. Laser-scanning confocal microscopy consists in a raster
scan of the focal plane to image a two-dimensional slice of the sample. The sample can
be thus excited with high precision. Photobleaching experiments are possible with a local
raster scanning of the area of interest. A faster method is the spinning (a.k.a. Nipkow)
disk setup. This multifocal imaging technique allows the acquisition of multiple points on
the CCD at the same time (see Figure 1.6). The spinning disk setup is more a�ordable
than the instrumentation required for laser-scanning and o�ers higher sensitivity due
to CCD detector, thus reducing phototoxicity. However, controlled localization of the
excitation is not possible and optical resolution is usualy lower.

Three-dimensional images can be acquired with confocal microscopy by sequential
movement of the objective or the sample. However, acquisition time and photodamage
limit the axial resolution.
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Widefield Microscopy

Confocal Microscopy

Confocal Microscopy
with spinning disk

Figure 1.6: Comparison of wide-field, scanning confocal and spinning disk confocal systems, with
schematics for each. All systems are capable of being equipped for 3D and 4D data acquisition.
Excitation beams are shown in green; emission beams, in blue. The di�erences between these
systems mean that no single system is suited for every experiment. Typical system configurations
are shown, and user modification and options allow great flexibility (source: from [Stephens and
Allan, 2003]).
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Figure 1.7: TIRF technique exploits the evanescent field to measure fluoroscence at the plasma
membrane (source: from [Stephens and Allan, 2003]).

1.2.2.3 Total Internal Reflection fluorescence Microscopy

Total internal reflection fluorescence microscopy (TIRF) is better resolved than the
previous techniques both spatially (in axial direction) and temporally. Yet, this technique
is limited to a small sample region, near the coverglass, like the plasma membrane,
for example used to study selective exocytosis and endocysotis events at the plasma
membrane. Excitation at a critical angle generates an evanescent field of excitation light
which intensity decays rapidly (exponentially) with distance from the coverslip, limiting
the depth of excitation to a distance in a range of 50 tp 200 nm (see Figure 1.7).

1.2.2.4 Single Plane Illumination Microscopy

Single plane illumination microscopy (SPIM) has recently made important progress and
combines the advantages of wide-field and confocal microscopy: the light sheet-based
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Figure 1.8: Schematic representation of SPIM principle (source: from a scheme by Jan Krieger)

illumination reduces photobleaching while illuminating the whole sample uniformly
without the need for scanning. Thanks to the high acquisition speed and low photodamage,
SPIM is widely used for long term in toto time-lapse imaging of developing biological
specimens with cellular resolution, such as developing embryos. Its limitations are
the lowest axial resolution (thickness of the light sheet), the lack of spatial control of
illumination (compared to raster scanned systems) and the usualy huge size of datasets
that requires image registration for 3D reconstruction.
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Introduction

Fluorescence Lifetime Imaging Microscopy (FLIM) is now a widely spread, minimally
invasive, technique for sensing fluorophore environment in a living biological sample (pH,
ions, temperature ...). Fluorescence lifetime is also particularly useful to detect Förster
resonance energy transfer (FRET) between molecules in close proximity [Jares-Erijman
and Jovin, 2003; Lakowicz and Masters, 2008].

The numerous FLIM techniques proposed in the literature can be classified into two
main categories: time domain method and frequency domain method. Time domain
methods such as the Time-Correlated Single-Photon Counting (TCSPC) technique
measure the mean delay between a photon emission and a pulsed excitation. Those
methods are well established, propose a high temporal resolution for lifetime estimation
and provide a visually intuitive fluorescence decay with well established Poisson statistics
[Birch and Imhof, 1999] (see Figure 3.2). However, one drawback of time domain methods
is the time step required between each laser pulse for the fluorescence to decay completely.
Accordingly, an acquisition typically takes several seconds for conventional techniques
[Becker et al., 2009]. Frequency domain methods, on the other hand, do not present such
a limitation [Suhling et al., 2005]. A FLIM measurement in the frequency domain (FD
FLIM measurement) is a short image sequence presenting a sinusoidal intensity footprint
that reflects the sinusoidal excitation of the sample followed by the phase modulation of
the emitted signal. A fluorescence lifetime variation is reflected as a phase variation in
the measurement. This acquisition process results in 10-fold to 500-fold faster acquisition
times than temporal approaches [Lajevardipour and Clayton, 2013; P. C. Schneider,
1997; Holub et al., 2001]. The FD FLIM method is thus more suitable for the study of
dynamical processes and more generally for the study of the cell in vivo.

In the literature, the Fourier transform or equivalently the least mean squares fitting
of a sine function is the estimator of choice to compute the lifetime map from FD FLIM
measurement Spring and Clegg [2009]; Lakowicz and Masters [2008]. This estimator,
though e�cient, presents several issues. First, it implicitly makes a stationary Gaussian
assumption on instrumental noise. This is not a realistic assumption due to the photonic
nature of the emitted signal and the property of the acquisition instrument. Additionally,
those methods consider the sample to be static during the measurement acquisition.
Though, if those methods are faster than time domain approaches, transient motions of
intracellular structures can still happen during the FD FLIM measurement acquisition
and corrupt the estimated lifetime map Lajevardipour and Clayton [2013]; Hanley et al.
[2001].
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In this study we propose two contributions that enable the potential for in vivo and
dynamical experiments in FD FLIM. A thorough analysis of the noise induced by the
specific FD FLIM instrumentation is first carried out. We show that a theoretical model
for the local noise variance is not su�cient to describe this noise footprint accurately on
non-fibered FD FLIM setup. Thereby, we propose a model correction and a statistical
framework for parameter estimation. This noise model is first exploited for lifetime
estimation in the case of still background. A denoising algorithm that takes advantage of
this model has also been designed. We then exploit the FD FLIM intensity model and the
noise model to estimate fluorescence lifetime on vesicles that underwent non-negligible
motions during the acquisition. We propose a statistical framework that combines
weighted least squares based lifetime estimation and robust M-estimator-based tracking
to alternatively and iteratively estimate lifetimes and motions of vesicles.

Each of those contributions are calibrated and tested using experimental acquisitions
with controlled fluorophores, simulated measurement or visual inspection (for the denoising
method). Our noise model accuracy is tested on a plain FD FLIM reference measurement.
The impact of this modeling on phase and lifetime estimation is demonstrated on
controlled real samples presenting an homogeneous fluorescence lifetime. Our lifetime
estimator for moving structures is tested on both simulated and experimental sample. On
experimental data, it is extremely di�cult to obtain a ground truth for the fluorescence
lifetime of moving vesicles. The accuracy of our method is thus tested via the motion
estimation results that are compared against competitive particle trackers.

Finally, the complete lifetime map reconstruction framework is applied to the in vivo
study of receptor-kinase1 interactions in epithelial cells. The fluorescence lifetime is
measured on both membrane and moving endosomes to sense for the spatial distribution
of FRET e�ciency. The preliminary results of this on-going experiment are laid out.
From those data, we were able to point out some weakness in statistical significance and
propose the design of future acquisitions.

The remainder of Part I is organized as follows. The physical concepts behind
fluorescence lifetime and its application to biology are described in Chapter . Chapter 3
presents fluorescence lifetime imaging techniques, first briefly in the time domain with
TCSPC and then more extensively in the frequency domain (FD FLIM). The conventional
method for lifetime estimation in FD FLIM are described in the same chapter. Chapter
4.2 describes the instrumental noise modeling in FD FLIM. We describe our model
correction and the results of its application to fluorescence lifetime estimation and
denoising. Chapter 5 describes our lifetime estimation approach on dynamical structures,
presenting our results on both simulated and experimental FD FLIM measurements.
Finally, Chapter 6 presents our on-going experiments on receptor-kinase interaction
measurement.

1The name of the protein involved in this experiment and its biological background cannot be disclose
due to editorial conflicts.
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Contributions:

• Intensified CCD noise analysis and modeling.
– An original derivation for the ICCD theoretical noise model.
– A noise variance model correction taking experimental issues such as

optical aberration into account.
– A two-step estimation framework for the noise model parameters.
– Application to image denoising using an original patch-based Gamma

NL-means filter.
• FD FLIM lifetime map reconstruction algorithm.

– Weighted least squares make use of our experimental noise modeling to
improve static lifetime estimation.

– Joint estimation of vesicles lifetime and displacement.
• A new complete derivation for the FD FLIM signal model in appendix A.
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2 Fluorescence lifetime and biological
application

2.1 Fluorescence lifetime theory
We define the fluorescence lifetime · of a given fluorescent species as the average time
during which the fluorophore stays in excited state before relaxing to its ground state
and possibly emitting a photon. Let N(t) be the number of particles in an excited state
at time t among a population of fluorophores, the lifetime is defined as:

· =
s +Œ

0 tN(t)dt
s +Œ

0 N(t)dt
. (2.1)

Although an excited state can be the product of light absorption, mechanical friction
or chemical reaction, we will focus on the photon-induced excitation in this chapter.
As described in the general introduction of this work, the absorption of a photon by a
molecule is an all-or-nothing phenomena that can trigger the transition of the fluorophore
energy to di�erent quanta (denoted S0, S1 and S2 on the Jablonsky diagram Figure 2.1).
Accordingly, a fluorophore excitation by a photon that presents insu�cient energy to
reach a higher electronic state will not produce excitation and the fluorescent molecule
will remain in its ground state. On the contrary, an incident photon that presents too
much energy with respect to a given quantum might be absorbed (if not too energetic)
and the molecule will have this excess of energy converted into vibrational and rotational
energy (gray lines in Figure 2.1). This photonic radiation energy is inversely proportional
to the incident light wavelength as stated by Planck’s law. Therefore, a blue incident
light will result in higher energy quantum than a red one.

While the photon absorption process occurs in femtoseconds, the de-excitation processes
are much slower. After internal relaxation in a picosecond or less, the fluorophore energy
can be relaxed to its ground state through various de-excitation pathways (see Figure
2.1). The excited state energy can be dissipated non-radiatively by collision with
another molecule in its ground state. The energy is then dissipated by heat. When
an excited fluorophore is in close proximity with another molecule (1 to 10 nm) the
Förster Resonance Energy Transfer (FRET) can be an other non-radiative de-excitation
pathway. This phenomenon depends on distance between the an excited fluorophore
(donor) and a molecule in its ground state (acceptor), their spectral overlapping and the
orientation of the dipole-dipole association formed by both molecules. A relatively rare
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2 Fluorescence lifetime and biological application

phenomenon known as inter-system crossing to the lowest excited triplet state is yet an
other de-excitation pathway. Inter-system crossing results either in a photon emission
through phosphorescence, a slow process that can take one thousandth to hundreds of
seconds, or a transition back to the excited singlet state that yields delayed fluorescence.
Finally, a fluorophore can return to its ground state through photon emission in a few
to a hundreds nanoseconds, a phenomenon known as fluorescence. Consequently, there
are many de-excitation pathways, and their contributions must be taken into account to
provide a model for fluorescence lifetime.

Each of those de-excitation pathways can be modeled as kinetic reactions that compete
with each other to deactivate the excited state [Lakowicz and Masters, 2008]. Therefore,
each process is associated to a reaction rate. Accordingly, the higher the sum of reaction
rates in a population of fluorophores, the shorter the fluorescence lifetime is. Regrouping
the de-excitation rate as radiative fluorescent k

f

and non-radiative rates k
nr

, a population
of N(t) identical molecules excited at t = 0 will follow a first-order kinetics:

dN(t)
dt

= ≠(k
r

+ k
nr

)N(t) (2.2)

and then
N(t) = N(0)e≠t/· (2.3)

with the lifetime · defined as:
· = 1

k
f

+ k
nr

(2.4)

It is usually not possible to determine the number N(t) of excited molecules at a given
time. However, it is possible to measure the number of fluorescent molecules at a given
time thanks to photonic sensors. Given the quantum yield defined as:

� = N
emitted photon

N
absorbed photon

= k
f

k
f

+ k
nr

, (2.5)

the number of photons emitted by a sample N
p

(t) is proportional to the exponential
decay:

N
p

(t) = �N(0)e≠t/· . (2.6)

Following (9.11), we can infer that a modification in de-excitation pathways will impact
both the measured intensity decay time and amplitude.

Finally, in experimental conditions, there can be several populations of molecules with
di�erent lifetimes at a given point. As the ordinary di�erential equation above is linear,
the expected number of excited molecules will be the sum of negative exponentials of
which the rates are assumed to be constant:

N
p

(t) =
K≠1ÿ

i=0
A

i

e≠t/·

i (2.7)
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2.1 Fluorescence lifetime theory
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Figure 2.1: Jablonsky diagram: the thicker lines represent electronic energy levels and the
thinner lines denote the various vibrational energy states. A timescale for the transition or a
color is given as a an example when physically meaningful.
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2 Fluorescence lifetime and biological application

where K is the number of fluorescent species and A
i

and ·
i

denote the associated initial
photon counts and lifetime respectively.

2.2 Application to biophysical quantities measurement

Beyond the localization abilities o�ered by fluorescence tagging combined with modern
microscopy, fluorescence lifetime analysis allows the sensing of various physical quantities
such as pH, refractive index or viscosity. In contrast with intensity-based sensing
for fluorescence lifetime [Han and Burgess, 2010; Grynkiewicz et al., 1985], direct
fluorescence lifetime measurement can sense the living cell independently of fluorophores
concentration, illumination intensity variation, light optical path or cellular leakage
without the need for ratiometric methods [Suhling et al., 2005]. In this section, we focus
on two widespread usages of fluorescence lifetime measurement: pH sensing and FRET
e�ciency measurement.

2.2.1 pH sensing

Fluorescence lifetime enables the measurement of intracellular pH with spatial and
temporal resolution through the use of fluorescent sensors [Lin et al., 2003; Lakowicz and
Szmacinski, 1993]. Similarly to other potential ions of interest, the bounding probability
between hydrogen ions and fluorescent dyes will raise with the concentration of the
former. The resulting impact on fluorescent lifetime can be directly quantified through
fluorescence lifetime imaging.

2.2.2 Förster Resonance Energy Transfer sensing

An other widespread application of fluorescence lifetime measurements is the Förster
Resonance Energy Transfer (FRET) phenomenon [Jares-Erijman and Jovin, 2003; Hink
et al., 2002]. To probe for interactions between two types of proteins (see Figure 2.3.a),
each type of molecules are tagged with a distinct fluorophore, both fluorophores having
overlapping emission and absorption spectra. On protein proximity (< 10 nm), the excited
fluorophore takes the role of the donor and presents a fluorescence lifetime decrease
caused by a non-radiative energy transfer. Simultaneously, a lifetime increase will be
measured on the population of acceptors. The acceptor molecule does not need to be a
fluorophore, it can be a chromophore (a molecule that transmits or reflects visible light
after absorption of part of its spectrum) but fluorophores are generally used for both
donors and acceptors in practice. The FRET theory establishes that the energy transfer
decreases with the distance between the donor and the acceptor following:

E
FRET

(r) = 1
1 + (r/R0)6 (2.8)
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2.2 Application to biophysical quantities measurement
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Figure 2.2: FRET e�ciency evolution with the distance r between fluorophores ECFP and
EYFP (R0=4.9 nm).

(a) Intermolecular interaction can be detected
and quantified by measuring FRET e�ciency
(source: from [Olympus America Inc., 2012]).

(b) Conformational changes and structural
clivage are detected through FRET measurement
in a biosensor (source: from [Olympus America
Inc., 2012]).

Figure 2.3: FRET allows the measurement of structural dynamical events in vivo.

where R0 is the Föster distance, at which there is a 50% FRET e�ciency (see Figure
2.2). Fluorescent protein biosensor is an other widespread application of the FRET
e�ect [Machacek et al., 2009]. To form a biosensor, two di�erent parts of the protein are
fused with a donor and an acceptor respectively (see Figure 2.3.b). Fluorescence lifetime
variations will thus allow the detection on structural modification such as proteolysis or
conformational change.
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3 Fluorescence lifetime imaging
techniques

The aim of FLIM microscopy is to measure the fluorescence lifetime · at each location
in space and time. The values taken by · typically range from 10 picoseconds to 100
nanoseconds, needing highly specialized instruments that we will be detailed in this
chapter.

The first class of methods are the techniques that operate in the time domain. Those
approaches require repeated laser pulses to measure the mean delay between photon
emissions and instantaneous excitations of the sample. In Time-Correlated Single Photon
Counting (TCSPC) [O’Connor, 1984], each photon emission delay is explicitly measured.
The collected distribution of photon emission delays is then fitted with the exponential
decay described Section 2.1 (see left panel in Figure 3.1). In time-gated FLIM [Dowling
et al., 1997], various very short acquisitions are carried out at multiple nanoseconds delay
after excitations. This process results in a photon emission delay histogram that can also
be easily fitted.

A second class of methods are the frequency domain techniques. A modulated excitation
(i.e. sinusoidal) is imposed on the sample, fluorescence lifetime is retrieved from the
phase delay of the response [Gaviola, 1927, 1926] (see right panel in Figure 3.1).

The two approaches have been experimentally proven equivalent with respect to
measurement precision on fixed samples [Hedstrom et al., 1988]. However, for some
applications, the frequency domain instrumentation is considered easier to implement
since ultra-short pulsed laser sources are not required, especially for longer lifetimes
[Suhling et al., 2005]. Frequency domain techniques also present a better photon e�ciency
and require no deconvolution of the instrumental response. On the other hand, the time
domain measurements have been shown to present a better SNR [Philip and Carlsson,
2003]. They also more suitable to resolve two very di�erent lifetimes on a same sample
[Suhling et al., 2005]. Finally, lifetime measurements in the time domain require a
delay between each excitation pulse for the fluorescent sample to completely decay and
need several excitation pulses for an accurate lifetime estimation [Lakowicz and Masters,
2008]. This an important issue while dealing with the quantification of dynamical
processes. Frequency domain methods do not present such a requirement and the lifetime
measurement is only limited by the time taken for the phase modulation. As a result,
we will focus on this method which is intrinsically more suitable for dynamical process
analysis. We nevertheless briefly describe the analysis principles used in TCSPC in this
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3 Fluorescence lifetime imaging techniques

 

Figure 3.1: Representation of lifetime measurement and e�ect of a fluorescence lifetime loss in
the time domain and frequency domain.

chapter based on previous work in our lab [Chessel et al., 2013].
For the sake of clarity, we will restrain in this section to the description of the

main theoretical and instrumental concept put forward in two widespread technique for
fluorescence lifetime measurement: TCSPC and FD FLIM. For a historical perspective
on fluorescence lifetime imaging techniques and a detailed description of techniques, refer
to [Lakowicz and Masters, 2008].

3.1 Time-correlated single photon counting
In TCSPC imaging, each emitted photon is counted individually. This technology
generally uses confocal scanning for excitation and photon multiplier tube for photon
detection. A laser pulse is fired repeatedly, then for each pulse either one or zero photon
is received and the arrival time after the laser pulse is recorded. Depending on the sample,
this operation is repeated for a variable duration and photon arrival times accumulated
until the whole decrease can be recovered. An acquisition can take up to several minutes
(for 128 ◊ 128 or 256 ◊ 256 images) to accumulate enough photons on each pixel to
derive a fluorescence lifetime map (see Fig. 3.2).

Depending on the detector used, and given the very small time scale, the arrival time
is recorded with a finite accuracy. This will lead to a convolution of the data with the
Instrument Response Function (IRF) f

IRF

. Thus, taking into account a constant additive
background noise b, the full model of the measured intensity is defined as

I(t) =
⁄

f
IRF

(tÕ ≠ ”)N
p

(t ≠ tÕ)dtÕ + b (3.1)
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3.2 Frequency domain FLIM

Figure 3.2: Example of typical TCSPC FLIM data. Total fluorescence intensity is shown in the
center and corresponds to the sum of photon counts along the time axis at each pixel. The four
side graphs correspond to time dependent photon counts in four di�erent regions with variable
sizes. By considering large regions, we observe an exponential fluorescence decay (see D). A:
one pixel region; B and C: 3 ◊ 3 patches at di�erent locations; D: 15 ◊ 15 patch and lifetime
estimation by least mean squares fitting (commercial software).

where ” is a zero-time shift to be estimated and N
p

(t) is the fluorescent decay as described
in Section 2.1. In the literature, the intensity I(t) is assumed to follow a pure Poisson
process. Least mean squares estimation is often carried out to estimate the lifetime
parameter of the intensity decay [Lakowicz and Masters, 2008], even though the photon
counts can be too low to assume the Gaussian distribution. In [Chessel et al., 2013],
the authors proposed a maximum likelihood estimator to take into account Poisson
noise. It turns out the corresponding algorithm performs better than least mean squares
estimation especially for low photon-counts.

If the sample being studied is a living cell, the movements of proteins introduce some
blur in the acquired data. The longer the acquisition takes, the more important this
e�ect is. This problem justified our focus on the lifetime measurement in frequency which
is known to be faster and allows a more accurate and e�cient handling of motion-induced
artifacts.

3.2 Frequency domain FLIM
This section presents the basis for lifetime measurement in FD FLIM by homodyne
detection. For the sake of clarity, we propose here a high level description of the signal
transformation involved in the FD FLIM measurement production and then the lifetime
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3 Fluorescence lifetime imaging techniques
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Figure 3.3: Instrumental setup showing the di�erent elements of the system and the corresponding
signals for FD FLIM. E(t) denotes the excitation light, F (t) the fluorescence signal, Mk(t) the
detection modulation signal and S◊ is the resulting FD FLIM measurement.

estimate. A detailed and original mathematical derivation for the fluorescent signal
expression and the phase modulation can be found in Appendix A.

3.2.1 Frequency domain FLIM measurement

Instead of the pulsed laser excitation that characterizes time-domain methods, the FD
FLIM excitation source is a sinusoidally modulated signal E(t) (blue ray in Figure 3.3)
defined as:

E(t) = C
E

+ A
E

sin(Ê
E

t + �
E

) (3.2)

where Ê
E

denotes the radial frequency of the excitation signal, C
E

the o�set, A
E

the
amplitude and �

E

is the phase delay. This excitation can be operated in both wide-field
or confocal microscopy. The signal emitted by the sample F (t) (Green ray in Figure 3.3)

76



3.2 Frequency domain FLIM

is defined as :

F (t) = E(t) ú I(t)
= C

F

+ A
F

sin(Ê
E

t + �
E

≠ arctan(Ê
E

·)) (3.3)

where ú denotes the convolution operator. Accordingly, the phase delay �
E

≠arctan(Ê
E

·)
of F (t) allows us to recover · (see Figure 3.1). In an experimental setup, the frequency Ê

E

is too high (> 1 MHz) to be compatible with the frame rate of a CCD sensor. Therefore
the signal F (t) is phase-modulated with K sinusoidal signals M

k

(t), k œ [1, K] (black
signal in Figure 3.3) at the same frequency Ê

E

(homodyne detection):

M
k

(t) = C
M

+ A
M

sin
3

Ê
E

t + �
M

0

+ 2fik

K

4
. (3.4)

This modulation is operated by applying a time-varying voltage to the photocathode
terminal in the intensified CCD. As we shall see in the Chapter 4, the intensified CCD
is in turn required to acquire the lowest intensity images resulting from modulation.
Thanks to the low pass e�ect of the CCD detector, the higher frequencies of the
phase modulated-signal F (t)M

k

(t) are negligible. After phase-modulation, the K
time-independent signals described as a function of k œ [1, K] :

S
◊

(k) = Gccd(F (t)M
k

(t)) (3.5)

= C
S

+ A
S

cos
32fik

K
+ �

·

4

where C
S

= C
F

C
M

, A
S

= A
F

A
M

and �
·

is the phase. In what follows, we denote
◊ = (C

S

, A
S

, �
·

)T . Equation (9.34) describes the FD FLIM measurement. It thus
consists in K images presenting a sinusoidal footprint (see Figure 3.4). For each pixel,
the phase �

·

combined with proper calibration yields the lifetime estimate. The next
section discusses the brief state of the art in this domain.

3.2.2 Fluorescence lifetime estimation in FD FLIM

Estimating the fluorescence lifetime described by the FD FLIM measurement amounts
to estimating the parameters that control the sinusoidal footprint (see Figure 3.5.B).
These parameters, most notably the phase �

·

= (�
M

0

≠ �
E

+ arctan(Ê
E

·)), can be
recovered using conventional least mean squares-based sine fitting or the equivalent
Fourier decomposition. The phase delay (�

M

0

≠ �
E

) of the system must calibrated by
recording a reference frame sequence of a fluorescent sample with known lifetime. Finally,
as we monitor the frequency Ê

E

, the lifetime · comes straightforwardly. It is also possible
to recover the fluorescence lifetime using the relative modulation amplitude A

s

as detailed
in Appendix A. The latter approach has been shown less precise than the phase-based
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3 Fluorescence lifetime imaging techniques

Figure 3.4: An example of FD FLIM measurement with K = 12 phase-modulation signals.
The sequence must read from the upper left to the lower right. Fluorescent structures localize
receptors tagged with GFP in epithelial cells (RPE1). Contrast has been artificially enhanced on
the image presenting low intensity for visualization purpose.
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3.2 Frequency domain FLIM

Figure 3.5: Principle of FD FLIM measurement post-processing A: Example of an image sequence
showing the intensity variation (S◊) at di�erent phase shift values (K=12 values distributed on
2fi radians). B: Example of signal S◊ observed at a given pixel (black dots) with a sine fitting
curve (red). C: Fluorescence lifetime image reconstructed from the image sequence in B.

method on short lifetime [Hanley et al., 2001]. For that reason, the amplitude based
lifetime estimation will not be detailed in the present work.

As noted above, the classical method used in FD FLIM to estimate the phase of the
signal S

◊

(k) is based on the Fourier transform. It consists in computing the signal phase
pixel-by-pixel using:

‚�
·

= ≠ arctan
Aq

k

I(k) cos(2fik

K

)
q

k

I(k) sin(2fik

K

)

B

+ fi

2 (3.6)

where I(k) is the measured intensity in the phase-modulated image k. The large majority
of contributions in FD FLIM exploits this estimator [Holub, 2003; van Munster and
Gadella Jr, 2004; Spring and Clegg, 2009; Hutchinson et al., 1995] as much as commercial
softwares such as Li-FLIM®by Lambert Instrument. In order to handle the impact of
photobleaching, van Munster and Gadella Jr [2004] proposed to randomize the order of
phase modulation. The noise induced by photobleaching is thus shown to be mixed into
the uncorrelated measurement noise.

Very few works have been focusing in further improving or characterizing the phase
estimator. In [Gadella et al., 1994; Clegg et al., 1994], the authors proposed a linearization
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3 Fluorescence lifetime imaging techniques

of the problem which is equivalent to the Fourier expression above:

‚◊
b

= argmin
◊

b

ÿ

k

(I(k) ≠ S
◊

b

(k))2 (3.7)

= argmin
◊
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ÿ
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)T can thus be solved using an ordinary
linear least mean squares estimator:
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In [Boddeke, 1998], the author discussed the use of the Newton algorithm to solve the
least mean squares problem, showing that the Fourier-based estimator presents a lower
residual variance, that is closer to the Cramér-Rao lower bound.

A major issue with the methods cited above is that the least mean squares estimator
(see (3.7)), assumes the measurement noise to be homoscedastic and uncorrelated for
consistency and optimality in the class of linear unbiased estimators. This assumption
does not hold in FD FLIM measurement due to photonic noise and specific FD FLIM
instrumentation (see Figure 3.6 and Chapter 4). Furthermore, a large number of
image-based signal processing methods (denoising, optical flow, object detection ...)
depends on the same assumption of homoscedasticity. In Chapter 4, we propose a
thorough study of instrument-induced noise taking both theoretical and experimental
factors in consideration to compensate noise heterogeneity.

An other issue that presents pixel-by-pixel estimation is the underlying assumption of
spatial stationary of the sample. Yet, if the FD FLIM method is faster than the TCSPC
technique, the acquisition still takes up to hundreds of milliseconds [Lajevardipour and
Clayton, 2013; P. C. Schneider, 1997; Holub et al., 2001], as a result intracellular structure
can move between phase modulation image acquisition (see Figure 3.7 below and Figure
5.1 in Chapter 5). In this work we propose a joint estimation framework for fluorescence
lifetime and motion on moving vesicles.

80



3.2 Frequency domain FLIM

Figure 3.6: Residuals of least-squares estimates of the parameters controlling the sinusoidal
described by the phase modulation images (see (9.34)). The residuals associated to each pixel in
the whole stack presented Figure 3.4 are plotted. The residual amplitude variability highlights a
strong heteroscedasticity (Spinning disk and an intensifier II18MD from Lambert Instruments).
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3 Fluorescence lifetime imaging techniques

Figure 3.7: Dynamical structures in FD FLIM (normalized details from Figure 3.4).
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4 Instrumental noise in FD FLIM
measurement

In FD FLIM as in numerous imaging applications, a CCD (charge-coupled device)
transforms a light pattern into a discrete spatial distribution of photo-electrons trapped
in potential wells. Modeled as the realization of a random variable, the measured intensity
on a CCD follows a mixture of Poisson and Gaussian statistics. Those two noise processes
are respectively due to the photonic nature of light and the readout and dark current
noise of the CCD instrument. Let ›(x) be the incident photon number on the CCD
following a Poisson law of parameter ⁄(x). The measured intensity I(x) at location
x = (x, y, k) œ � µ R3 follows:

I(x) = gccd›(x) + › (4.1)

where › is the CCD readout Gaussian noise such as › ≥ N (m
›

, ‡2
›

), gccd is the gain of
the CCD sensor. Given an estimation problem where this intensity is the dependent
variable, a common approximation consists in modelling the intensity as Gaussian and
stationary across the measured sample. This approximation is also made in previous
work in phase-shift estimation in FD FLIM (see Section 3.2.2). However, the phase
modulation of the emitted signal in FD FLIM causes an important dynamic range across
the K phase-modulated images. As a result the approximation of homoscedasticity
does not hold in the phase estimation problem (see Figure 3.6 in the previous
chapter). Controlling heteroscedasticity is not only important to control parameters
estimation. Indeed, numerous techniques rely on homoscedasticity of the residuals
of the estimator such as parameters covariance estimation or robust estimation techniques.

As opposed to common biological imaging techniques, the specific intensity footprint
of FD FLIM imposes the use of an image sensor that is e�cient in a broad range of
intensity values. Consequently, an image intensifier is placed before the CCD in order to
increase low-level signal above the readout noise of the CCD [Lakowicz and Masters,
2008]. The resulting sensor is called an ICCD for intensified CCD. Because of the
physical properties of this intensifier, intensified measurements present a di�erent noise
spectrum than a classical scientific CCD acquisitions as described by (9.29). Accordingly,
the study of the dependent variable heteroscedasticity in the lifetime estimation problem
calls for a thorough study of the ICCD characteristic noise. While the performances of
this class of instruments has been studied in the past in the field of experimental physics
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[Boddeke, 1998; Frenkel et al., 1997], very few works have been dedicated to local noise
estimation and its application. A notable exception is the work of Spring and Clegg
[2009], where a theoretical noise model is derived and applied for noise stabilization. In
our work, we first present an original derivation for this theoretical noise model. We then
show that such a theoretical model is not su�cient to describe the noise measured on
non-fibered ICCD-image-formation, a widespread type of ICCD setup and the kind we
used for our experimental fluorescence lifetime measurements. Accordingly, we propose a
corrected model that takes non-stationary blurring into account. A robust estimation
framework for the parameters controlling this model is also proposed.

Thanks to this precise modeling, we can take instrumental noise into account
in our fluorescence lifetime estimation using a weighted least squares estimator for
phase-modulated signal phase estimation. To our knowledge, no previous method have
been taking heteroscedasticity into account for frequency domain fluorescence imaging.
The lifetime estimation results are compared with the widespread Fourier decomposition.
The comparison is carried out against FD FLIM acquisitions of plain reference fluorescein
sample and controlled living cell sample that both present a single fluorescence lifetime.

Exploiting further this experimental noise model, we apply it to two denoising
algorithms for FD FLIM measurements. We first highlight the advantages of a careful
modeling of noise heteroscedasticity with Wiener filtering. We compare the impact of
our noise model with a spatially uniform variance estimate. We also propose a more
advanced patch-based method based on the NL-means filter [Buades et al., 2005]. Our
denoising approach does not require a variance stabilizing transformation and we do
not assume the noise to be Gaussian. We have been testing this method on FD FLIM
measurement, but this method is suitable to any kind of imaging technique provided that
a noise model is available. Our approach has been compared against BM3D [Dabov et al.,
2007] and ND-SAFIR [Boulanger et al., 2010]. Visual inspection highlights that our
denoising algorithm presents a better noise reduction than the former while presenting
less artifact than the latter.

The remainder of this chapter is organized as follows. The ICCD is first described in
more details Section 4.1. We then present our theoretical noise model derivation and the
proposed correction presented in Section 4.2.1 and 4.2.2 along with parameter estimation
framework Section 4.2.3. Finally, Sections 5.3 and 4.3 presents experimental results on
both lifetime estimation and denoising in real FD FLIM sequences.

4.1 Intensified CCD

To image low-light signal using a scientific CCD, it is common practice to increase the
exposure time so as to integrate more photo-electrons in the sensor wells. To do so, the
thermal noise (causing dark current) can be controlled by exploiting the Peltier cooling
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Figure 4.1: Image formation process in a third generation Intensified CCD.

e�ect. However, in live cell microscopy, the exposure time is typically limited by biological
phenomena such as photo-bleaching, photo-toxicity or the dynamic of the object under
study. In such a case, an intensifier can amplify the signal before the CCD recording
process and thus allowing for shorter exposure time. Due to ICCD performances in
low-light conditions, it is used in a large variety of domains such as military, astronomy
or biological applications. Thanks to the high sensitivity of the phosphor screen, the
ICCD can even be used for photons counting [Bergamini et al., 2000]. This amplification
comes at the cost of other noise sources such as stronger spatial correlation and gain
variability. To better understand and model the amplified signal, we will shortly describe
the di�erent components of the common ICCD (see Figure 4.1).

The signal amplification takes place in the electronic domain. After a window typically
made of anti-vailing glass, a photocathode transforms incoming photons into electrons.
The intensification process consists in adding energy to the newly transformed electrons,
then transforming the electrons back into photons thanks to a phosphor screen. The
latter will translate this higher energy into a higher number of photons. To avoid
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additional electrons caused by ionization, the intensifier operate in a vacuum. In the first
generation of intensifier, this energy was induced by electrons acceleration controlled
by an electrical field. The space between the photocathode and the phosphor screen
is limited in order to reduce the e�ect of random electron motions that cause a loss
in spatial resolution. To improve further the gain of the instrument, a microchannel
plate (MCP) is placed between the photocathode and the phosphor screen in the second
generation of instrument (see Figure 4.1). A MCP is a very thin (0.5 mm) disc built
as a honeycomb of glass tubes with very small diameter (6 to 10 nm) and a resistive
coating. An incident electron with su�cient energy will trigger secondary electrons on
contact with a tube wall. This will trigger a snow ball e�ect that will result in a burst of
electrons at the tube output. Two to three MCPs can be put in cascade resulting in even
higher gain. As illustrated in Figure 4.1, a single electron out of a MCP tube will result
in a burst of photons on the phosphor screen. The phosphor screen is a thin (< 10 µm),
very sensitive, layer of phosphor particles that are crystalline compounds of Zinc Sulfide
impured with Silver atoms (1 to 5 µm). Finally, the output photons are brought to the
CCD wells via relay optics such as a lens or fiber optic.

In order to summarize the impact of each component, the ICCD can be described by
four characteristics:

• The Photon-to-photon gain describes best the purpose of the intensifier. The
gain is controlled by the voltage over the MCP. Modulating the gain allow short
exposure time (nanoseconds), or high frequency (Mhz) sinusoidal modulation as in
FD FLIM acquisition. The phosphor screen can present a variable gain that will
hinder the overall gain stationarity.

• The Spectral sensitivity or quantum e�ciency is the probability that a photon
of a given wavelength is detected. It relies on the photocathode material. The
third generation of intensifier replaces the multi-alkali photocathode of the second
generation by a Gallium-Arsenide (GaAs) photocathode resulting in quantum
e�ciency extension to ultraviolet and infrared.

• An ICCD will also present a spectral conversion ability due to the spectrum of
the phosphor screen. An important characteristic while picking for the right CCD
sensor.

• The tube diameter in the micro channel plate and the phosphor screen has an
important impact on the spatial resolution of the intensifier. The photons
resulting from a single burst on the phosphor screen output will be spread out on
various CCD resulting in spatial smoothing.

In what follows, we will focus on the characterization of the noise footprint of the
ICCD induced by its di�erent components. Thanks to this model, we will be able to
better compensate the heteroscedastic measurement noise within our lifetime estimator.
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4.2 ICCD Noise modeling

4.2 ICCD Noise modeling
In this section we derive a theoretical model describing the noise induced by a third
generation ICCD. We present an original and alternative approach to the derivation
described in [Spring and Clegg, 2009] where the CCD gain is supposed to vary among
other approximations. We also propose a noise variance model correction for applications
in experimental conditions.

FD FLIM measurements are always coupled with a reference stack to calibrate the
excitation signal phase. This reference stack typically corresponds to the acquisition of
a plain fluorescein sample that will be imaged in conditions that are strictly identical
to the acquisition process of the sample of interest. The reference stack thus presents a
large range of locally uniform intensity. This makes reference FD FLIM measurement
attractive for modeling the noise induced by the instrumentation and for estimating the
noise variance that vary with intensity in living cells. After the calibration of our noise
model on this reference stack, our aim is to be able to estimate the noise at each location
in space and time on experimental samples.

4.2.1 Theoretical model
Let I(x) be the ICCD response at location x = (x, y, k) œ � µ R3 where k describes the
frame index, the intensification and sensing processes can be approximated by a linear
relation [Boddeke, 1998]:

I(x) = gccdgint›(x) + › (4.2)

where ›(x) is the incident photon number on the ICCD which follows a Poisson law
of parameter ⁄(x), › is the CCD readout Gaussian noise such as › ≥ N (m

›

, ‡2
›

), gccd

is the gain of the CCD sensor and gint is the gain of the intensifier assumed to be a
realization of a random variable. The goal is to estimate the parameters that control
the instrumental-induced noise variance of I(x) assumed to be a realization of a random
variable. Due to the quantum nature of light, this variance theoretically depends on
the expected number of photons ⁄(x). Accordingly, we first propose a robust regression
between the local expected intensity value E[I(x)] and the local variance Var[I(x)]. This
method has already first been proposed for bare CCD sensors in [Ramani et al., 2008;
Delpretti et al., 2008] using least mean squares estimation and later enhanced in a robust
framework in [Boulanger et al., 2010].

While CCD gain is considered constant throughout the whole sensor surface, it has
been experimentally showed in [Boddeke, 1998] that the uncontrolled photon bursts in the
phosphor screen result in a noisy gain that cannot be considered stationary. Figure 4.2
illustrates such a lack of stationarity with a so-called background image. The background
image is recorded without any illumination to calibrate the measurement with respect
to the readout and dark current noise of the CCD and the intensity o�set due to the
phosphor screen. In this image, one can observe the constant Gaussian noise footprint
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Figure 4.2: Spatial non-stationarity induced by the ICCD on a background image (an acquisition
in the absence of excitation on ICCD input). Spontaneous burst of photon in the intensified area
highlights the sensitivity of the device (raw intensity is presented on the middle magnification
and automatically highlighted in red in the right magnification)). The blue-squared area is not
intensified and describe a much more stationary intensity footprint for the CCD.

of the CCD on the non-intensified area while the intensified area presents a much more
unstable gain due to stochastic burst of photons. By modeling this noisy gain and under
the proper assumptions of independence, the intensity variance is given by:

Var[I(x)] = g2
ccd Var[gint›(x)] + ‡2

›

(4.3)
= g2

ccd Var[gint] Var2[›(x)] + g2
ccd(E2[gint] + Var[gint]) Var[›(x)] + ‡2

›

.

Taking the expectation of (9.29) we also obtain:

E[I(x)] = gccdE[gint]E[›(x)] + m
›

. (4.4)

As the properties of the Poisson process yields:

Var[›(x)] = ⁄(x) = E[›(x)], (4.5)

it follows a quadratic relationship between the local expectation and variance:

Var[I(x)] = Var[gint]
E2[gint]

(E[I(x)] ≠ m
›

)2 + gccd(E[gint] + Var[gint]
E[gint]

)(E[I(x)] ≠ m
›

) + ‡2
›

,

while a similar derivation with a scientific CCD straightforwardly yields:

Var[I(x)] = gccd(E[I(x)] ≠ m
›

) + ‡2
›

. (4.6)
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To estimate the parameters ruling this quadratic relation, we propose a robust regression
method. The values E[I(x)] are approximated by the median values taken in a 30 ◊ 30
pixels squared neighborhood centered at pixel x. The values of Var[I(x)] are obtained
using least-trimmed squares estimation on the pseudo-residuals1 computed over the
same neighborhood. Those measurements are carried on FD FLIM plain reference stack
measurement. Thanks to local uniformity, the empirical measures of expectation and
variance are not over-estimated by local structure in the images. Additionally they
present a very wide intensity amplitude (see Figure 4.3.a).

Inspired by Boulanger et al. [2010], we used an M-estimator with a Leclerc’s influence
function to obtain a robust fit for the model (9.40). The M-estimator will automatically
sorts out the outlier values that describe the non-intensified area and impurity. The
M-estimator scale is set using the median of absolute deviation. Figure 4.3.b shows an
example of such a robust fit on a phase calibration stack. To avoid undesirable e�ects
described in the next section and highlight the theoretical noise model, the FD FLIM
measurement have been cropped in the center.

4.2.2 Experimental issues and spatial dependency analysis

When analyzing the images recorded by specialists in daily experimental conditions, we
noticed unexpected asymmetric blurriness on the sample. To investigate that problem
further we measured the local variance estimated on a plain reference stack. As illustrated
in Figure 4.4, the spatial distribution of measured variances di�ers from the theory. Indeed,
on a simulated reference, the variances highlight the same symmetry as the intensity
(see Figure 4.4.a), a property that is dictated by the theoretical quadratic relationship
between intensity and variance. However, on experimental sequences, the asymmetry in
the measured variance does not cope with a stationary gain throughout the whole image.
This property has been observed on both wide-field and confocal microscopes.

Taking a di�erent angle on the data, Figure 4.5 shows that the noise footprint locally
follows the noise model in the whole image. Yet, there is an important gain variation
depending on the pixel location whereas a perfect ICCD and microscope should present
a single quadratic gain as depicted in Figure 4.3.

Such di�erences with the expected constant theoretical gain could come from
monochromatic aberrations. This can typically be due to the relay optics between
the phosphor screen and the CCD. To test this hypothesis, experimentations with a
fibered ICCD are currently planed. The most frequent aberration is the spherical
aberration which causes non-stationary blur on the recorded image. This blurring e�ect
increases with the distance from the center. Figure 4.6 illustrates the spatial dependency

1Assume I(x) is corrupted by a zero-mean white Gaussian noise with variance ‡

2. We define image
pseudo-residuals as e(x) = e(x, y) = 1Ô

20

(4I((x, y)≠(I(x≠1, y)+I(x+1, y)+I(x, y ≠1)+I(x, y +1))).
It follows that E[e(x, y)2] = ‡

2 if the true image is constant in the neighborhood of (x, y).
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(a) Plain reference stack used for noise calibration.
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(b) Robust fit from local estimation of E[I(x)] and Var[I(x)] computed from
a FD FLIM reference stack (a.i.u. (arbitrary intensity unit)).

Figure 4.3: Confirmation of the validity of the quadratic model from experimental measurements
in a given local area of the II18MD from Lambert Instruments.
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(a) Simulated reference stack.
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(b) Experimental reference stack of fluorescein.

Figure 4.4: Horizontal profiles (after normalization) of noise variance and intensity on a single
image. a) A simulated reference stack respecting the theoretical image formation highlights the
expected equivalent symmetry between intensity and variance. b) On an experimental wide-field
stack the curve highlights a dis-symmetry that is not compatible with a constant gain between
intensity and variance. The variance is estimated using the median of absolute deviation on a
30◊30 pixels square window.

of image variance for a given intensity value of ⁄ = 20000 (a.i.u.). This demonstrates
that the gain variation is significant and must be taken into account.

As illustrated in Fig. 4.6, we propose to model this monochromatic aberration by a
parametric Gaussian function that describes the additional blurring (9.9). The resulting
corrected variance model is of the following form:

Var[I(x)] = (aE[I(x)]2 + bE[I(x)] + c)
A

e
≠ (x≠x0)2

2‡

2
x

≠ (y≠y0)2

2‡

2
y + o

B
(4.7)
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Figure 4.5: Four di�erent gains at four di�erent locations computed from a FD FLIM reference
stack of 13 frames acquired with a confocal setup (crosses represent measured variances, lines
represent the theoretical noise model).
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Figure 4.6: Variance vs spatial coordinates for ⁄ = 20000 and ‘ = 10 (a.i.u.) from a reference
stack of 13 frames (FD FLIM confocal). In theory, the measured variance should form a horizontal
plane with constant estimates.

when a,b and c are the parameters derived from (9.40) and x0, y0, ‡
x

, ‡
y

and o are the
parameters of the correction term. A Zernike polynome would probably be more accurate
in the case of a spherical aberration, we though choose the close Gaussian correction for
numerical stability at the estimation step.

4.2.3 Spatially varying parameter estimation
In order to solve the estimation problem, we propose a two-step computational approach
since global optimization of eight parameters did not produce satisfying results. Let

⁄ œ � = {I
min

· · · I
max

} (4.8)

be a given intensity value. Let us consider the parameter

◊
⁄

= (A⁄, O⁄, x⁄

0 , y⁄

0 , ‡⁄

x

, ‡⁄

y

)T (4.9)

controlling the spatially-varying variance for a given intensity value ⁄ such that:

Var[I(x)] = A⁄e
≠

(x≠x

⁄

0

)

2

2‡

⁄

2

x

≠
(y≠y

⁄

0

)

2

2‡

⁄

2

y + O⁄, (4.10)

’x œ �
⁄

= {x : |E[I(x)] ≠ ⁄| < ‘} where �
⁄

is the level set ⁄. Furthermore, we consider
a subset �

M

= {⁄1 · · · ⁄
M

} of intensity values. An estimator of ◊
⁄

for a given ⁄ œ �
M

is
then defined as:

‚◊⁄ = argmin
◊

⁄

ÿ

xœ�
⁄

Q

aVar[I(x)] ≠ A⁄e
≠

(x≠x

⁄

0 )2

2‡

⁄

2
x

≠
(y≠y

⁄

0 )2

2‡

⁄

2
y ≠ O⁄

R

b
2

. (4.11)
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Figure 4.6 illustrates the estimation results for ⁄ = 20000 and ‘ = 10. Given the set of
estimates {‚◊⁄|⁄ œ �

M

}, we use a M-estimator to compute the remaining parameters a,b
and c as:

(‚a,‚b, ‚c) = argmin
a,b,c

ÿ

⁄œ�
M

fl
·

1
A⁄ ≠ (a⁄2 + b⁄ + c)

2
. (4.12)

The function fl is a Leclerc’s influence function from the M-estimator family and · is a
scale parameter used to weight down outliers. The scale parameter is defined as · = 3 Î
[Rousseeuw et al., 1987]:

Î = 1.4826 med
⁄œ�

M

(|r
⁄

≠ med
⁄œ�

M

(r
⁄

)|) (4.13)

where {r
⁄

} is the set of residuals when using the L2-norm as influence function, which is
equivalent to a least mean squares fit.

In order to estimate robustly the remaining parameters, the median estimator is
preferred to the mean (see Fig. 4.7):

‚‡
x

= med
⁄œ�

M

(‡⁄

x

), ‚‡
y

= med
⁄œ�

M

(‡⁄

y

), ‚o = med
⁄œ�

M

A
O⁄

A⁄

B

,

‚x0 = med
⁄œ�

M

(x⁄

0), ‚y0 = med
⁄œ�

M

(y⁄

0 ) (4.14)

4.2.4 Noise Variance estimation results

The noise variance estimation procedure has been tested on FD FLIM stacks depicting
living cells using confocal and wide-field setups (UMR 144 CNRS-PICT Institut Curie).
The ICCD is the third generation device built by Lambert Instruments (model II18MD).

We demonstrate the potential of our noise variance model using a plain fluorescein
FD FLIM reference stack acquired with a wide-field microscope. Figure 4.7 plots the
parameters ‚◊

⁄

resulting from the estimation (9.14) controlling the Gaussian model for ⁄
ranging from 10000 to 35000 a.i.u. Figure 4.7 shows that the height of the Gaussian model
and the o�set is conform to the theoretical quadratic evolution. Also, the estimated center
and scale for our spatial correction are stationary although estimated independently. This
experiment demonstrates that our proposed correction solve satisfyingly the problem of
spatial dependency.

Figure 4.8 plots (in red) our predicted noise map described by (4.15) for a given
intensity value ⁄ on each location of the image. The blue spots correspond to the set
{Var[I(x)]|x œ �

⁄

} of measured noise variances computed from the reference stack with
⁄ = 20000 and ‘ = 10. Table 4.1 gives the performances of the correction term that
reduce the average RMSE by a factor 2 while compared with the theoretical model.

We evaluate this estimation procedure in the next section.
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Figure 4.7: Global parameter estimation from a wide-field FD FLIM sequence.

Quadratic model Our model
|| \Var[I(x)] ≠ Var[I(x)]|| 63039 27259

Table 4.1: Mean RMSE between the predicted variance and the measured variance from five
experimental reference stacks using confocal and wide-field setups.
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Figure 4.8: Variance prediction with added correction (red: noise variance model; blue: measured
noise variance).

4.3 Application to parameter estimation in FD FLIM
imaging

In this Section, we propose to exploit the noise modeling to improve static sample lifetime
estimation and to adaptively reduce noise in images.

Most of state-of-the-art algorithms used for parameters estimation in photon-limited
imaging rely on variance stabilization to transform the heteroscedastic noise footprint
into a stationary Gaussian process. The main methods are dedicated to image denoising
[Makitalo and Foi, 2013; Dabov et al., 2007; Boulanger et al., 2010; Spring and Clegg,
2009]. When the parameter of interest is not the intensity value, denoising is considered
as a pre-processing step before parameter estimation such as particle localization [Smal
et al., 2010] or fluorescence lifetime estimation in FD FLIM [Spring and Clegg, 2009].

Denoising techniques that use Variance Stabilization Transform (VST) present two
issues. First the process of VST, denoising and inverse VST requires ad-hoc assumption
on the image statistics and the quality of the denoising. In [Makitalo and Foi, 2013]
the residual error is supposed to be symmetric and unimodal in order to control the
inverse Anscombe transform bias. In [Spring and Clegg, 2009], variance stabilization is
also applied but the denoising error is neglected leading to a biased inversed transform.
Secondly, if those techniques can e�ciently reduce the noise before parameter estimation
[Spring and Clegg, 2009], non-stationarity of the noise can still be present during
estimation and will not be taken into account in a homoscedastic regression procedure.

In this section, we apply our noise modeling to enhance the estimation of two parameters
described by FD FLIM measurement without the use of variance stabilization transform.
We first focus on the main objective of this work by estimating fluorescence lifetime using
a weighted least squares estimator. We then apply the heteroscedastic noise modeling for
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image denoising. We first combine our noise model to the well-known Wiener filtering.
We compare the performances with an assumed constant variance model estimated over
the whole image support. We then propose a more sophisticated patch-based Gamma
NL-means denoising method. In this approach, the noise model is exploited to normalize
the inter-patch distances. The empirical distribution of distances is approximated by a
Gamma distribution to cope with non-Gaussian noise and overlapping patches.

4.3.1 Background lifetime estimation

4.3.1.1 Weighted least squares estimator

Due to the high number of photons on the ICCD output we can model the
Poisson-Gaussian noise as a locally Gaussian process with variance Var[I(k)(x)]. Thanks
to the model derived and tested above, we can weight the residuals of the phase
least squares estimator with the locally estimated standard deviation to cope with
non-stationary noise. Accordingly, the background lifetime parameters are estimated by
minimizing the following least mean squares criterion:

‚◊
b

= argmin
◊

b

Kÿ

k=1

!
I(k)(x) ≠ S

◊

b

(k)(x)
"2

Var[I(k)(x)] (4.15)

where Var[I(k)(x)] is given by (9.38) at frame k and pixel x.

4.3.1.2 Phase estimation on a reference FD FLIM measurement

Figure 4.9 shows the phase distribution estimated on a FD FLIM acquisition of a sample
of fluorescein presenting a single fluorescence lifetime that is constant throughout the
sample. As a result, a single mode is expected for the estimated phase distribution. The
fluorescence sample has been acquired with a wide-field setup with a third generation
intensifier from Lambert Instruments (model II18MD) (see Figure 4.3.a). On this graph,
we compared the Fourier decomposition used in the literature (or equivalently, the least
mean squares estimator) and our heteroscedastic modeling approach. Those results
highlights the significant shift caused by the weighting of least squares residuals. Also,
our correction results in a 10% gain in kurtosis which is expected for a plain fluorescein
sample [Spring and Clegg, 2009].

4.3.1.3 Lifetime estimation on a control experimental sample

Figure 4.10 presents the lifetime distribution estimated on an epithelial cell membrane
(RPE1) using the Fourier decomposition and our weighted least squares method on
a control sample. Experimental data are a subset of the acquisition carried out in
the context of the experiment described Chapter 6. In this experiment, receptors on
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the membrane and early endosomes are tagged with GFP in the absence of a donor.
Experiments were conducted using a confocal microscope with spinning disk setup and
the same intensifier as above (UMR 144 CNRS-PICT Institut Curie).

Our method estimates a narrower distribution, highlighting a standard deviation 0.27 ns
while the Fourier decomposition estimates a standard decomposition of 0.48 ns. It is
hard to assess the quality of a lifetime distribution in experimental conditions. However,
the sample under study cannot present any transfer of energy and should thus present a
single lifetime distribution. It follows that a narrow lifetime distribution with a single
mode is expected by experts.

4.3.2 Application to FD FLIM measurement denoising
We tested our modeling approach by comparing two denoising methods. We tested those
methods on a living epithelial cell image acquired in FD FLIM coupled with a confocal
setup. Figure 4.11.a depicts the sample presenting fluorescently tagged caveolin proteins.
This image presents the lowest SNR value in the FD FLIM measurement since its average
intensity is the lowest among all the K frames.

4.3.2.1 Wiener filtering

First, we applied a spatial Wiener filter to highlight the advantages of a spatially varying
intensity-dependent noise model. Let m(I(x)) œ R and s(I(x))2 œ R be respectively the
mean and variance estimated locally over a 3 ◊ 3 pixels square window centered at pixel
x. The denoised image ‚I(x) at location x is given by [Lee, 1981]:

‚I(x) = m(I(x)) + s(I(x))2

s(I(x))2 + ‡2 (I(x) ≠ m(I(x))) (4.16)

where ‡2 is the noise variance to be estimated. Figure 4.11.b shows the e�ect of the
Wiener filter using an assumed constant noise variance. We used the least-trimmed
squares variance estimate computed from image pseudo-residuals. Figure 4.11.c highlights
the use of our noise model ‡2 = Var[I(x)]. We can see that the stationary estimation
results in noisy artifacts around bright spots. The spatially varying noise variance model
combined with Wiener filtering overcomes these issues.

4.3.2.2 Gamma NL-means filter

We considered also more sophisticated denoisers and one of the most recent examples is
the patch-based NL-means filter [Buades et al., 2005]. The denoised intensity of a given
pixel is obtained with the weighted average of the intensities of all pixels in the image.
The weights are proportional to the similarities between local neighborhoods (or patches)
and the central patch to be restored. We briefly describe in this Section a new approach
based on the same principle, more detail can be found in Appendix B.
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Figure 4.9: Phase histograms using the Fourier method and the weighted least squares method
exploiting the estimated noise scale on a reference FD FLIM measurement of a plain fluorescein
sample (see Figure 4.3.a).
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Figure 4.10: Lifetime histograms on the whole image control cells with GFP tagged receptor in
live cell RPE1.
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4 Instrumental noise in FD FLIM measurement

(a) Original FD FLIM image.

(b) Denoising with a constant noise variance.

(c) Denoising with the spatially adaptive noise variance.

Figure 4.11: Wiener filtering using the constant and spatially adaptive noise variances.
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4.3 Application to parameter estimation in FD FLIM imaging

Based on the Bayesian framework presented in [Kervrann et al., 2007], we propose
to investigate a more powerful method able to better capture patch-based distance
statistics. We introduce an Approximate Bayesian Computing approach for the selection
of “simulated” patches in the image (see Appendix B). In the patch selection step, the
Euclidean distance is used to calculate the error between “simulated” and “observed”
patches. We further use this patch collection to refine the distance function as in
[Kervrann et al., 2007]. In this work, the authors modified the usual Euclidean distance
used for patch comparison, yielding a filter which is better parametrized and with a
higher performance. They assumed the normalized distance between

Ô
n ◊

Ô
n patches

to follow a chi-square distribution with n degrees of freedom. However, the chi-square
distribution is mainly valid for white Gaussian noise and non-overlapping patch pairs.
Accordingly, we propose a more general distribution to extend the chi-square distribution
which is the Gamma distribution as suggested in [Kervrann, 2010]. The resulting Gamma
NL-means filter is given by the following expression:

‚I
GNL
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(x)Î2

2— Var[I(x)]

(4.17)

where the set of variables y ≥ U
r

(x) in the sum are uniformly drawn from a ball of
radius r. The proposed noise variance model is incorporated to normalize the inter-patch
distance. The parameters k and — controlling the Gamma distribution are estimated
by using the moment method given a large set of normalized distances computed from
pairs of patches in the noisy input image. A typical result of the performance of the
patch-based filter (r = 7 pixels and 7 ◊ 7 patches) is presented in Figure 4.12d.

This filter has been compared to state-of-the-art denoising algorithm tailored for
Poisson-Gaussian noise. We first first denoised our images using BM3D [Dabov et al.,
2007] after a General Anscombe transform for variance stabilization assuming a mixed
Poisson-Gaussian noise. Before applying BM3D, we use the exact unbiased inverse
stabilization transform described in [Makitalo and Foi, 2013]. Since ICCD is not addressed
by these authors, these methods suppose a linear dependency between local intensity and
noise variance. As plotted in Figure 4.7, the linear model is a good approximation on the
considered intensified sequence. We also filtered our images with ND-SAFIR [Boulanger
et al., 2010] where the Poisson-Gaussian noise variance is estimated and also used to
weight down the inter-patch distance in recent versions.

Compared to our filter, BM3D has not a significant impact on the resulting image;
we plan to take spatial dependency into account in the BM3D noise variance model.
ND-SAFIR performs better but creates piecewise constant areas contrary to the proposed
Gamma NL-means filter.
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4 Instrumental noise in FD FLIM measurement

a. Original image b. BM3D

c. ND-SAFIR d. Gamma NL-means filter
Figure 4.12: Comparisons of several denoising algorithms.
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5 Fluorescence lifetime estimation on
moving endosomes in FD FLIM

One of the advantage of FD FLIM over time domain techniques is the speed of operation
that puts time lapse measurements of fluorescence lifetime on dynamic sample within
reach. However, in the conventional methods presented in Section 3.2.2 as well as the
approach proposed above, the fluorescent objects are supposed to be static. If a FD FLIM
measurement can be acquired in tenth of milliseconds [Lajevardipour and Clayton, 2013;
P. C. Schneider, 1997; Holub et al., 2001], intracellular processes can present a wide range
of time scales, from the microsecond down to the nanoseconds [Tinoco and Gonzalez,
2011]. As a result, motions can occur on living cells during the phase modulation. Figure
5.1 shows the impact of motions on the phase estimation. The lifetime mis-estimation
results in a so-called doppler e�ect on the lifetime map as illustrated in Figure 5.2.
The issue has been previously diagnosed in [Hanley et al., 2001] and further analyzed
in [Lajevardipour and Clayton, 2013] where the impact of moving particle on lifetime
variance is measured. However, to our knowledge, no method has been proposed to
estimate the fluorescence lifetime on those moving structures.

In the context of an on-going biological experiment (see Chapter 6) we are interested
in the measurement of FRET e�ciency at the membrane and on the early endosomes.
In this section, we thus propose a statistical framework for robust lifetime estimation on
moving endosomes in order to provide a corrected reconstruction of the lifetime map. To
alleviate complexity while taking into account the correlation of parameters, we propose
an iterative estimation procedure where the estimation of lifetime parameter and the
movement parameter are decoupled. The proposed method need only two, non-critical,
input parameters : an upper-bound for the object number and the di�racted endosome
size in pixel (7◊7 is a typical choice, scale may vary on microscope magnification).

The remainder of this chapter is organized as follows. The intensity model for the
dynamical endosome is first laid out in Section 5.1. The joint estimator is then presented
in Section 5.2, first the iterative aspect, followed the by object detection and tracking
for initialization. Finally in Section 5.3, we test our method on simple simulation and
experimental sequences. As their can be no ground truth for fluorescence lifetime of
a few endosomes in experimental sequence, we compared the motion compensation
aspect of our method with two competing algorithms chosen because they share common
methodologies.
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5 Fluorescence lifetime estimation on moving endosomes in FD FLIM

Figure 5.1: Visualization of sub-cellular structure motions during image acquisition and e�ect
on the FLIM images. A: Example of image sequence with moving sub-structures (shown as series
of zoomed thumbnails) and of modulation signal S◊ with sine fitting in red. B. Global estimation
of motion by maximum intensity projections (MIP) and ratio with initial intensity I0 (right). C:
Reconstructed lifetime image showing outliers in red. D: Distribution of lifetime values in the
reconstructed lifetime map in C. showing extreme, non physical (negative or too high) values.
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5.1 Modeling spatial and temporal variations

Figure 5.2: “Doppler e�ect” on lifetime measurement (in nanoseconds) due to motion (see
Figure 3.7).

5.1 Modeling spatial and temporal variations
In order to model the lifetime of a moving particle, we propose a parametrization of
both spatial and temporal intensity variations of a sub-resolved object. In our approach
the microscope point spread function (PSF), corresponding to a Bessel function, is
approximated as a Gaussian function as it is a common practice in spot detection
literature [Smal et al., 2010]. Secondly, as the confocal equipment is not rigorously
stigmatic the signal is composed of a background and a pinpoint vesicle before microscope
di�raction. The background follows the model (9.34) due to the membrane imaging
and/or cytoplasmic fluorescence. Finally, the background is assumed to be smooth over
the PSF support.

More formally, let I(k)(x) be the intensity on frame k at location x œ � (pixel grid),
we have:

I(k)(x) = S
◊

b

(k)(x) + S
◊

0

(k)G
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(x ≠ x0(k)) + Á(k)(x) (5.1)
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0

(k) is the vesicle mean intensity parametrized by ◊0 = (C
S

0
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0
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)T as in
(9.34), S
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(k)(x) is the spatially varying background signal parametrized by ◊
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·
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(x))T , G
“

(x) is a Gaussian function of variance “2 describing the
shape of the vesicles and centered on the origin, x0(k) is the vesicle location on frame k,
Á is the noise introduced by the ICCD noise, described in Chapter 4.
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Figure 5.3: Moving vesicle model.

5.2 Vesicle parameter estimation
This section presents the estimation procedure of the decay time ·0 for each detected
vesicle. In this procedure, the vesicle location x0(k) and shape “ and the lifetime
parameter vector ◊0 are jointly estimated. This optimization problem is implemented
by successive and alternative minimization of criteria with respect to (x0(k), “) and to
◊0 until | ◊

n

0

≠◊

n+1

0

◊

n

0

| Æ ” with n the iteration number and ” a constant (set to 10≠6 in our
experiments). Our algorithm is illustrated in Figure 5.4 for the sake of clarity.

5.2.1 Iterative minimization procedure
5.2.1.1 Sinusoid parameter prediction

Given a collection of displacements ‚xn

0 (k) and a scale “n for a vesicle at iteration n of
our algorithm. The parameter vector ◊0 controlling the sinusoidal signal is estimated by
minimizing a weighted least squares criterion similar to (4.15). At iteration n, we have:
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where W (xn

0 (k)) is a 7◊7 window centered at ‚xn

0 (k). At each iteration, lifetime parameters
◊0 are initialized as follows :
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Figure 5.4: Iterative and alternative procedure for fluorescence lifetime estimation on moving
endosomes.
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5.2.1.2 Robust local motion estimation

At iteration n+1 of the algorithm, the motion parameters xn+1
0 (k) are estimated for each

vesicle over the K frames given the parameter ‚◊n

0 controlling the sinusoidal. Tracking is
performed frame-by-frame by minimizing a robust error function:

(‚xn+1
0 (k), ‚“n+1) = argmin
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0
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The function fl is a influence function chosen along a scale parameter ÷ = ⁄‡
res

(k) in order
to weight down outliers during the minimization process. Experiments show that the
Leclerc’s influence function defined as fl

÷

(r) = 1 ≠ e≠r

2

/÷

2 gives more stable results even if
no significant di�erence is noticeable with other M-estimators (e.g. Tukey Bi-weighted or
German-McClure). The scale parameter ‡
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(k) is defined for each frame as Rousseeuw
et al. [1987]:
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where {r
i

}
iœ[1,|W (x

0

(k)|] is the set of residuals of estimation introduced in (9.8) when using
the L2-norm as influence function which is equivalent to a least mean squares estimation.
We note that the background is not taken into account in this Gaussian fitting. Indeed
the motion estimator demonstrated better performances in very noisy conditions on
real data without the background modeling, probably because of the reduced number of
parameters. For each frame, the parameters estimation is initialized with the estimate
on the previous frame i.e. “(k + 1) = “n+1(k), x0(k + 1) = ‚xn+1

0 (k) for k œ [1, K ≠ 1]
and x0(0) = xn

0 (0), “(0) = “n(0) for the first frame.

5.2.2 Initialization

5.2.2.1 Object detection and initialization

Particles are detected on the first frame only using a two-step approach. First, pixels are
classified as potential particle pixels using a gradient-based measure. The measure used
in this study is based on the so-called structure tensor [Rao, 1990] or second-moment
matrix, whose elements are estimated by convolving the image with the first derivative
of the Gaussian kernel (‡=1 pixel). This can be done computationally very e�ciently
thanks to the separability of the Gaussian kernel. The tensor is integrated within a small
window (typically 7◊7 pixels) and the resulting smallest eigenvalue is used as classification
measure. The N particle positions are selected as the pixels having the highest scores for
the classification measure while respecting a distance of 7 pixels between these highest
measures. Here, N represents a coarse overestimation of the expected number of particles
set as a parameter of the algorithm. In the second step of the algorithm, the initially
detected locations are further analyzed in order to discriminate between correct and
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5.2 Vesicle parameter estimation

Figure 5.5: Matusita distance in red estimated on each bin of the histogram of the spot candidate
scores.

spurious detections. This is done by computing the threshold that best separates the two
populations in terms of their scores for the classification measure. The optimal threshold
m is estimated from the histogram of the scores by minimizing the Matusita distance
[Matusita, 1956]:

‚m = argmin
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(5.4)

Pixels with values above that threshold are taken as the true particle positions, up to
pixel precision. A refinement of the detected particle positions is performed in the next
stage.

5.2.2.2 Trajectory initialization

In order to initialize the iteration described in Section 5.2.1, each particle detected on
the first frame is first tracked over the K frames of the FD FLIM measurement. This
motion estimation is also carried out locally and without a priori on intensity variation.
To do so, a local robust Gaussian fitting algorithm [Anderson et al., 1992] is applied to
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estimate x0
0(k) and “0:

(‚x0
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(I(k)(x) ≠ (aG
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(x ≠ x0(k))) + b).

For each frame k œ [1, K], the parameter estimation is initialized with the position
and shape estimate on the previous frame, local background and local maximum for
amplitude. For the first frame, positions are initialized with the position estimated using
our spot detector.

We have been proposing this initialization method as a vesicle tracker for the particle
tracking challenge organized by E. Meijering and J-C Olivo-Marin recently published
in [Chenouard et al., 2014]. We took part in the vesicle scenario. Our algorithm is not
a tracking method per se but a lifetime estimation that compensate for local motion.
Accordingly, we did not expect our method to be able to compete with global methods
that optimize the set of associations between particles previously detected on each frame
(see Part II). However, thanks to our robust framework, our algorithm is ranked number
2 out of 14 methods in localization precision (RMSE on detected particle). The only
notable di�erence of our approach on the detection aspect is the M-estimation and
competing method that propose simple Gaussian fitting ranked lower.

5.3 Lifetime map reconstruction results
A lifetime map corrupted by motion is reconstructed by estimating lifetime on the
background (Section 4.3.1), and then imposing a patch of size ‚“ and value ‚·0 at location
‚x0(0) for each vesicle on the background lifetime map. As a particle motion produces
artifacts on the whole trajectory, we propose a basic inpainting technique based on
two-dimensional interpolation to fill the gap. We first illustrate our lifetime reconstruction
and motion estimation on simple simulations, we then highlight our results on real samples.

5.3.1 Lifetime map reconstruction on synthetic data

To illustrate the reconstruction of artifacts due to motion only, we applied our algorithm
on simulations (see Figure 5.6) where the lifetime estimate is only a�ected by the vesicle
motion without additional noise. The tracking is performed without issue, while parameter
estimation takes 7 to 8 iterations to converge. The precision is about 10≠6 after the first
iteration, on this simple example and additional iterations are not necessary.

We tested the impact of our iterative approach on more challenging data. Those
new simulations are based on our intensity model presented in Section 5.1 and the
noise model presented in Section 4.2. Background is simulated with an experimental
vesicle-free sample and cytoplasmic fluorescence is simulated in the background with
constant parameter ◊

b

. Vesicle intensities follow (9.28) and motions are limited to a
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5.3 Lifetime map reconstruction results

(a) Simulated noise free FD FLIM measurement presenting 5 moving vesicles (6 frames out a 12
frames simulation). Each vesicle present a di�erent lifetime and thus a di�erence phase delay
in intensity. The di�erences in phase delay has been artificially increased for the purpose of
illustration. The very high intensity gradient has been adapted for visualization purpose.

(b) Motion-induced
artifacts.

(c) lifetime ·
estimated on each
vesicle.

(d) Basic in painting. (e) Ground truth.

5 ns

0 ns

(f) Motion estimation results after our iterative process. Parameters converge after four to eight
iterations.

Figure 5.6: Simulating motion impact on lifetime map and reconstruction. a) Simulated sequence
with 5 vesicles exhibiting free Brownian motion modeled by a normal law for displacement with a
standard deviation of 2 pixels (contrast has been enhanced for visualization). b) The estimated
lifetime map on this FD FLIM measurement with the doppler e�ect footprint. c) Patches taking
the value of the estimated fluorescence lifetime are added on the initial vesicle detection locus.
The patch size is set to three times the size of the estimated spot scale d) A simple inpainting
algorithm is applied to correct secondary artifacts for cosmetic purpose.e True lifetime simulated
on background and vesicles f) Motion estimation carried out during the iterative process.
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Iteration n 0 1 2 3
Tracking mean error (pixel) 0.240 0.121 0.081 0.080
Lifetime mean error (ns) 0.387 0.248 0.247 0.247

Table 5.1: Convergence of tracking and lifetime errors is reach after 3 iterations on 30 simulated vesicles
and 95 % of vesicle tracked.

Figure 5.7: Left: Lifetime map using Fourier decomposition. Dark blue and red spots are unrealistic
values due to organelle movements. Right: lifetime map reconstruction using our method.

two-pixel displacement. The non-stationary Gaussian noise parameters are estimated on
the stack and then imposed on synthetic vesicles. Table 5.1 shows the convergence of
lifetime and motion parameter on simulated vesicles.

5.3.2 Endosome tracking accuracy in experimental conditions
We tested our reconstruction on living epithelial cells presenting GFP-tagged receptors,
acquisitions that are further described in Chapter 6. We highlight the result of our
reconstruction method on experimental samples in Figure 5.7. However, it is very
challenging to assess the precision of the estimated endosome fluorescence lifetime on
experimental samples. Nevertheless, the lifetime parameter is closely related to the quality
of the displacement estimate, and we can much easily measure the quality of motion
tracking. To test our algorithm in experimental conditions, 30 moving spots localizing
the GFP-tagged receptors have been imaged with our FD FLIM setup and manually
tracked using the MJtrack software [Smal et al., 2010]. In order to highlight the e�ect
of the proposed intensity modeling, we first compared the performances of our method
against a frame-by-frame Gaussian fitting [Anderson et al., 1992]. This simple method
reuses the estimated position on the previous frame as an initialization for spot fitting.
In order to compare our approach with a more competitive method, we also tracked
those vesicles with the probabilistic particle tracker described in [Genovesio et al., 2006]
and implemented in the ICY software [de Chaumont et al., 2012]. This multiple particle
tracking algorithm detects spots using an undecimated wavelet transform [Olivo-Marin,
2002] on each frame before building tracks frame-by-frame. For each frame pair, the
correspondences between the two sets of detections are optimized thanks to Brownian
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Figure 5.8: Mean localization error using Gaussian fitting [Anderson et al., 1992], Probabilistic
particle tracking [Genovesio et al., 2006] and our method on fluorescently tagged RX protein in
living epithelial cells. Endosomes have been tracked by hand using the MJtrack software [Smal
et al., 2010].

motion modeling and combinatorial optimization. This method is extensively described
and tested along other particle tracking techniques in Part II. To address the problem of
intensity variations that we modeled in our method, images are normalized using the
Midway equalization method described in [Angelini et al., 2007].

The detector proposed in [Olivo-Marin, 2002] cannot adapt to local changes of SNR. As
a result, the lowest SNR images that are normalized by our histogram equalization present
an higher number of detected objects due to noise artifacts. However, as particles are
sparsely localized in our experimental data-set, the three compared algorithms manage to
track the 30 particles on the entire stack of 12 frames. The mean localization errors are
represented in Figure 5.8 and the tracking of our method is visually illustrated in Figure
5.9. As one could expect, the localization errors occur as the signal-to-noise ratio drops
at lower intensities. Thanks to our thorough intensity modeling, our method presents a
more precise spot localization throughout the whole sequence, a di�erence that intensifies
on more noisy images.
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Figure 5.9: An example of GFP-tagged receptor tracking on a 12 frames stack (images have
been normalized for visualization purpose). The data points presenting the highest localization
error coincide with the noiser images presented in the second line.
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6 Application to protein interaction
analysis at the membrane and during
endocytosis

Our collaborators in the Ludger Johannes’ team at Institut Curie (UMR 144) are
interested in the signaling pathways triggered by the cytokine CX1 in eukaryotic cells.
The tra�cking of this protein at the membrane triggers a signaling cascade inside the
cell that eventually end in the nucleus where it provokes the transcription of genes
involved in major diseases. The first step of this signaling cascade is known to be the
association between the cytokine receptor RX and its associated kinase KX. However,
the spatiotemporal localization of this interaction remains to be understood. In an
experiment set up by the Ludger Johannes’ team, the interaction between CX and RX are
measured at di�erent locations in space and time: at the membrane, in the endocytotic
transport pathway, before and after injection of the cytokine.

6.1 Data acquisition
The methodology recommended to test such interactions is the FRET measurement
e�ciency (see Section 2.2) between RX and KX. Thanks to our motion compensation
method, we can measure lifetime loss on dynamical structures such as tra�cking
endosomes as well as at the membrane. To trigger the FRET phenomenon on protein
proximity, the RX donor protein has been tagged with GFP and the acceptor KX has
been tagged with mCherry at di�erent tagging sites. Experiments were conducted on
epithelial cells (RPE1) using a confocal microscope with spinning disk setup (UMR
144 CNRS-PICT Institut Curie). The sub-resolved spot that are localized outside of
the cluttered recycling compartment are the endosome of interest and the membrane is
described by the cell background. The intensifier is a third generation from Lambert
Instruments (model II18MD).

FRET e�ciency can only be measured using relative lifetime loss. To that end,
lifetime e�ciency has been measured on GFP-tagged RX protein alone. Then to test
the spatiotemporal localization of the RX-KX interaction and the e�ect of the cytokine
CX, lifetime has been measured on GFP-tagged RX protein in the presence of its

1Due to editorial conflicts, the name of protein involved in this study has been changed and the biological
background of this study cannot be laid out.
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(a) Tracked endosomes. (b) Membrane lifetime (LUT from 0 to 5 ns).

Figure 6.1: Tracked GFP-tagged RX on endosomes (left) and membrane lifetime map (right) in
the absence of acceptor.

mCherry-tagged kinesin KX and the same donor-acceptor couple 15 minutes after CX
treatment. In order to find the best tagging site for KX, the kinesin has been tagged on
two di�erent sites denoted mCherry-RX and RX-mCherry in what follows.

6.2 Data analysis
To di�erentiate the lifetime estimated on the early endosomes from the membrane, we
exploit the lifetime estimated on tracked vesicles for the former and we automatically
segment the cell background for the latter (see Figure 6.1). A summary of the lifetime
measurement on the resulting five experiments is presented in Figure 6.2. The first
conclusion we can draw is that the chosen site for tagging may have an impact on FRET
e�ciency. Indeed, both experiments in the mCherry-RX configuration show an higher
lifetime loss.

As we could expect, adding an acceptor by tagging KX with mCherry results in a drop
in measured lifetime across the whole cell. However, we also wish to probe if the FRET
phenomena is more prominent on the membrane or the endosomes. In order to cope
with inter-cellular variations, we have been measuring the di�erences between the mean
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6.2 Data analysis

Figure 6.2: Lifetime distribution estimated on endosomes and the membrane in the five di�erent
experimental conditions.

endosomes lifetime and the mean membrane lifetime on each cell under study. On the
10 control cells that do not present mCherry-tagged KX (see Figure 6.1), the average
di�erence is +0.0099 ns, meaning that the FRET phenomenon is slightly higher on the
membrane. On the other hand, on the 13 cells presenting the mCherry-KX acceptor,the
measured mean lifetime di�erence is -0.055 ns. This results may hint for a higher FRET
on endosomes, and thus a RX-KX interaction localized at the endosomal level. However,
a one-tail two-sample t-test that probes for the statistical significance of the shift between
the two experimental conditions only gives a p-value of 0.07. This result hinders a
conclusion on this relative lifetime loss shift.

This lack of statistical significance can be due to the phenotype inexistence, but it
can also be due to the low number of endosomes on experimental sequences. Indeed,
the number of detected endosomes measured between the control and acceptor treated
cells drops from 10 per cell to 6 per cell. This di�erence is due to the high number of
acquisitions that do not present endosomes in the second experiment. Similarly, the cells
treated with the cytokine CX show a number of endosomes per cell dropping to 4, and
a closer look shows numerous cells with acquisition induced artifacts (see Figure 6.4).
We also measured a strong variability of the lifetime measured on the membrane with
sometimes two lifetime populations across ten cells in the same experimental conditions
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6 Application to protein interaction analysis at the membrane and during endocytosis

(a) Tracked endosomes. (b) Membrane lifetime (LUT from 0 to 5 ns).

Figure 6.3: Tracked GFP-tagged RX on endosomes (left) and membrane lifetime map (right) in
the presence of acceptor mCherry-KX.

(data not shown). Accordingly, further acquisitions are planned with our collaborators in
order to investigate the significance of the endosomal FRET e�ciency and to acquire
better data after CX treatment.

6.3 Additional experiments
The spinning disk setup coupled with the cell morphological variation can provoke
uncontrolled depth variation in the optical sectioning of the cell. This optical sectioning
variation can hinder a constant measurement of the cell membrane fluorescence across
the whole experiment as much as the imaging of endosomes. To address this problem,
we propose to carry out the FD FLIM measurement with a TIRF microscope. Thanks to
this technique, the cell can be imaged at a constant depth at the membrane level while
still proposing a visualization of the early endosomes. Using this acquisition method, we
hope to obtain a higher signal-to-noise ratio, a more consistent signal quality across the
cells and more stationarity in lifetime measurement and spot detection under the same
experimental conditions.

We also propose several strategies to improve the lifetime estimation specific to the
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6.3 Additional experiments

(a) GFP-tagged RX protein in endosomes
without acceptor.

(b) Membrane lifetime (LUT from 0 to 5 ns).

Figure 6.4: Tracked GFP-tagged RX on endosomes (left) and membrane fluorescence lifetime
map (right) in the presence of acceptor mCherry-KX 15 minutes after CX injection. Among the
KX-injected cells, only two cells present early endosomes that do not belong to the recycling
compartment. Additionally the lifetime estimated on the membrane exhibits strong variations.

FD FLIM instrumentation on both endosomes and membrane. A modulated signal with
a lower amplitude will present a higher noise stationarity that could be ignored or easily
compensated. On the other hand, a very low sinusoidal amplitude does not allow for
an accurate phase estimation. We propose to determine the best trade-o� between the
modulated signal amplitude and the lifetime estimation accuracy. To do so, we will use
a plain fluorescein sample with known lifetime that will allow the estimator bias and
covariance to be estimated empirically. Thanks to this strategy, we are hoping to reduce
instrument induced noise in lifetime estimation.

In order to improve the tracking of endosomes, we will not randomize the recording
order of the phase-modulation frames. This randomization was advised in [van Munster
and Gadella Jr, 2004] to suppress the artifacts induced by photobleaching. If necessary,
we will model photobleaching by combining the sinusoidal variation with an exponential
decay. The LI-FLIM software [Lambert Instruments, 2010] includes a frame averaging by
default to increase image intensity; we will deactivate this option to avoid over smoothing.
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7 Conclusion

In the first part of this thesis, we have presented a dedicated signal processing method to
reconstruct the fluorescein lifetime map corrupted by instrumental noise and intracellular
motions in FD FLIM. A thorough study of the instrument-induced noise variance is first
carried out to harness the strong heteroscedasticity that presents FD FLIM measurements.
The ICCD noise footprint is thus presented. Our analysis shows that a correction is
needed to cope with optical aberration. Apart from the application to fluorescence
lifetime measurement, the advantages of our noise variance model is demonstrated with
the help of two denoising algorithms. As the ICCD is a widespread instrument in low-light
imaging, the associated methods could thus be useful in other fields. In addition, we
proposed a fluorescence lifetime estimation method for dynamical analysis of endosomes
inside the cell. Endosomes are detected on the first frame of the FD FLIM measurement.
For each detected object, the lifetime and motion parameters are jointly estimated in
an iterative and alternative fashion. On experimental sequences, the performance of the
motion estimation is shown to outperform tracking algorithms that does not take the
specific intensity model into account. The proposed methods are fully automatic and
need only minimal and non-critical parameter setting.

Thanks to those contributions we are hoping to pave the way for fluorescence lifetime
imaging microscopy on living cells presenting dynamical intracellular structures. In that
sense, our method is applied on the biological experiment presented in the last chapter.
The results hint for a higher protein interaction on the endosomes. From those data,
we were able to point out some weakness in statistical significance and we propose the
design of future acquisitions.

Two improvements could be envisaged for future work based on experimental
requirements. To further improve the noise variance analysis, the next step is the study
of the spatial correlation on the ICCD output. The estimation of multiple fluorescence
lifetime on a pixel basis could be also interesting in the context of fluorophore with
overlapping emission spectra. FD FLIM exploiting multiple frequencies have shown to
be able to resolve multiple lifetimes [Gratton and Limkeman, 1983; Squire et al., 2000].
To evaluate the tracking method, more diversified intracellular structures should be
considered. A few leads are already in this direction work, such as pixel soft classification
between object and background.

More generally, the long-term goal is to perform time lapse FD FLIM measurement on
a longer acquisition time. The motivation is to quantify protein interaction throughout for
several cell cycles. If our method can already handle time lapse FD FLIM measurements,
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7 Conclusion

the time between each measurement must be short enough for the local motion
compensation to perform properly. By spacing out FD FLIM measurements, the reduced
photo-toxicity and photo-bleaching would allow much longer time-lapse acquisitions. The
motion estimation between each FD FLIM measurement should thus be carried out with
multiple particle tracking method. Semi-global optimization strategies to optimize the
set of trajectories needs then to be investigated. Part II presents a tracking algorithm
suitable to cope with small and large displacements.
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A Derivation of the phase modulated
signal for FD FLIM

This appendix presents the derivation of the model used to recover the fluorescence
lifetime from an excited sample. Mono-exponential decay and simple sinusoidal excitation
is assumed. We start by deriving the equation of the excited signal, then we explain in
details the experimental method to estimate the fluorescence lifetime of a given sample.
To our knowledge, this derivation has not been described to such a full extent before in
the literature.

A.1 The excited signal

Let E(t) and I(t) be an emission signal and the response of a fluorescent molecule
respectively at time t and let · be the unknown lifetime. The excited fluorescent signal
is given by

F (t) = E(t) ú I(t) (A.1)

where ú denotes the convolution operator. Assume a mono-exponential decay and a
simple sinusoidal excitation of the following form:

E(t) = E0[1 + M
E

sin(Êt + „
E

)], (A.2)

I(t) = I0e≠t

Õ
/· (A.3)

where I0 denote the intensity at time t = 0. It follows that

F (t) =
⁄ Œ

0
E(t ≠ tÕ)I(tÕ)dtÕ

= E0I0

3⁄ Œ

0
e≠t

Õ
/· dtÕ + M

E

⁄ Œ

0
sin(w(t ≠ tÕ) + „

E

)e≠t

Õ
/· dtÕ

4

= E0I0(C + M
E

B(t))

such that

C =
⁄ Œ

0
e≠t

Õ
/· dtÕ = ·
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and

B(t) =
⁄ Œ

0
sin(w(t ≠ tÕ) + „

E

)e≠ t

Õ
· dtÕ

=
5
≠· sin(w(t ≠ tÕ) + „

E

)e≠ t

Õ
·

6Œ

0
≠ w·

⁄ Œ

0
cos(w(t ≠ tÕ) + „

E

)e≠ t

Õ
· dtÕ

= · sin(wt + „
E

) ≠
35

≠w·2 cos(w(t ≠ tÕ) + „
E

)e≠ t

Õ
· )

6Œ

0
+ (w·)2

⁄ Œ

0
sin(w(t ≠ tÕ) + „

E

)e≠ t

Õ
· dtÕ

4

= · sin(wt + „
E

) ≠ w·2 cos(wt + „
E

) ≠ (w·)2B(t).

Hence, we have

B(t) = ·

1 + (w·)2 (sin(wt + „
E

) ≠ w· cos(w· + „
E

))

= ·

1 + (w·)2

3
sin(wt + „

E

) ≠ sin(arctan(w·)) cos(w· + „
E

)
cos(arctan(w·))

4

= ·

cos(arctan(w·))(1 + (w·)2) (cos(arctan(w·)) sin(wt + „
E

) ≠ sin(arctan(w·)) cos(w· + „
E

))

= ·

cos(arctan(w·))(1 + (w·)2) sin(wt + „
E

≠ arctan(w·)).

Finally, we obtain

F (t) = E0I0·
3

1 + 1
cos(arctan(w·))(1 + (w·)2) sin(wt + „

E

≠ arctan(w·))
4

(A.4)

= F0[1 + M
F

sin(Êt + „
E

≠ arctan(Ê·))] (A.5)

where M
F

= 1Ô
1+(Ê·)2

and F0 = E0I0· (as in [Holub, 2003]).
This result shows that the fluorescence response of the sample induces a phase delay

and an amplitude decrease in the excited signal which is coherent with physical intuition.

A.2 Lifetime estimation

As we control the frequency of the emission signal, (9.15) shows that the phase and
amplitude of the signal yield the lifetime · (using a calibration reference measurement to
retrieve „

E

). Actually, the experimental frequency in such experiment is too high for the
phase to be directly measurable on a CCD sensor. To overcome this problem, it is usual
to modulate the detection sensitivity with an other sinusoidal signal G(t) (see (9.9)):

G(t) = G0[1 + M
G

sin(Êt + „
G

)]. (A.6)

125



A Derivation of the phase modulated signal for FD FLIM

In the homodyne case, we use the same frequency as the original signal. The result of
this modulation then yields to:

D(t) = G(t)F (t)
= F0G0[1 + M

F

M
G

sin(Êt + „
G

) sin(Êt + „
E

≠ arctan(w·))
+ sin(Êt + „

E

≠ arctan(w·)) + sin(Êt + „
G

)]
= F0G0[1 + M

F

M
G

cos(„
E

≠ arctan(w·) ≠ „
G

)
+ cos(2Êt + „

E

≠ arctan(w·) + „
G

)
+ sin(Êt + „

E

≠ arctan(w·))
+ sin(Êt + „

G

)]
¥ F0G0[1 + M

F

M
G

cos(„
G

≠ �
E

+ arctan(w·)].

This approximation comes from the low-pass behavior of the CCD camera. The measured
signal is then time-independent. One solution to recover the value arctan(Ê·) is to tune
„

G

the following way :
„

G

= „
G

0

+ 2fik

K
. (A.7)

Thus, we obtain K samples (K must be chosen > 3 ) defined as:

D(k) = F0G0[1 + M
F

M
G

cos(„
G

0

+ 2fik

K
≠ „

E

+ arctan(Ê·)]. (A.8)

The observations D(k) can be then fitted with cosine function (using various methods
including Fourier decomposition and robust regression methods) to estimate the parameter
controlling (9.35), most notably the phase � = „

G

0

≠ „
E

+ arctan(Ê·) and amplitude
ratio M

F

M
G

= M
G

(1 + (Ê·)2)≠1/2. We thus have to estimate the lifetime, provided we
can calibrate the optical setup to measure „

G

0

≠ „
E

and M
G

. To do so, a FD FLIM
measurement of reference sample is with known lifetime ·

ref

is acquired in the same
condition. By fitting the D

ref

(k) on cosine function, we obtain an estimate for the
reference phase ‚�

ref

yielding :

\(„
G

0

≠ „
E

) = ‚�
ref

≠ arctan(Ê·
ref

) (A.9)

and
„M

G

= \M
F

M
G

ref

Ò
1 + (Ê·

ref

)2 (A.10)

Finally the phase lifetime is given by:

‚·
„

= 1
Ê

tan(‚� ≠ ‚�
ref

+ arctan(Ê·
ref

)) (A.11)
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and the modulation lifetime is as follows:

‚·
M

= 1
Ê

ı̂ııÙ

Q

a
\M

F

M
G

\M
F

M
G

ref

Ò
1 + (Ê·

ref

)2

R

b
2

≠ 1. (A.12)
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B Gamma NL-means and approximate
Bayesian Computation

In this appendix, we present the Gamma NL-means-based denoising algorithm. The
approach inspired from the Approximate Bayesian Computation (ABC) framework
[Beaumont et al., 2002; Marjoram et al., 2003], is especially adapted to complex situations
where the posterior cannot be easily derived or computed. We exploit empirical noise
statistics and propose a distance learning framework to adapt to di�erent conditions.
This is particularly relevant for images contaminated by heterogeneous sources of noise.

B.1 Bayesian interpretation of NL-means
Consider a gray-scale image I = (I(x))

xœ� defined over a bounded domain � µ R2 and
I(x) œ R+ is the noisy observed intensity at pixel x œ �. Assume that the image I
is a noisy version of an unknown image u, that is I = u + noise. Define a

Ô
n ◊

Ô
n

observed patch S
I

(x) at pixel x as: S
I

(x)(t) —= I(x + t), ’t œ [≠
Ô

n≠1
2 , · · · ,

Ô
n≠1
2 ]2.

The NL-means at pixel x is weighted average of all gray values in the entire image.
Formally, we have [Buades et al., 2005]:

‚I
NL

(x) = 1
Z(x)

ÿ

yœ�
exp

A

≠ÎS
I

(x) ≠ S
I

(y)Î2
2

h2

B

I(y) (B.1)

and Z(x) is a normalizing factor. The weights express the amount of similarity (Î · Î2
denotes the Euclidean distance) between the n-dimensional image patches S

I

(x) and
S

I

(y) of each pair of pixels x and y involved in the computation. For the sake of
simplicity, we omitted in (B.1) the choice of a weighted Euclidean norm over the patches
as described in [Buades et al., 2005]. The decay parameter h2 acts as a filtering parameter.
The range of the search space can be as large as the whole image but, in practice, it is
necessary to restrict the computation of weights to semi-local neighborhoods.

In the line of work of [Buades et al., 2005; Kervrann et al., 2007], we describe a
more recent interpretation of NL-means in the Bayesian setting [Louchet, 2008]. Define
a prior on patches z œ Rn from the noisy image I. A simple histogram is given by
p(z) = 1

|�|
q

yœ� 1[z = S
I

(y)] where 1[·] denotes the indicator function. The Bayesian
estimate „S

u

(x) of a patch S
u

(x) with L2-risk and prior p on patches is given by the

128



B.2 Approximate Bayesian Computation NL-means filtering

posterior expectation „S
u

(x) = E
p

[S
U

(x)|S
I

(x)], i.e.

„S
u

(x) =
⁄ posterior

˙ ˝¸ ˚
p(z|S

I

(x)) z dz =
⁄ prior

˙˝¸˚
p(z)

likelihood˙ ˝¸ ˚
p(S

I

(x)|z) z dz.

In the case of zero-mean white Gaussian noise (variance ‡2),

„S
u

(x) = 1
Z(x)

⁄
p(z)e≠

ÎS

I

(x)≠zÎ2

2

2‡

2 z dz. (B.2)

Given p(z) as defined above and switching the sums, we get

„S
u

(x) = 1
Z Õ(x)

⁄ ÿ

zœRn

1[z = S
I

(y)] e≠
ÎS

I

(x)≠zÎ2

2

2‡

2 z dz. (B.3)

For a given y, a patch z yielding a non-zero term can only be z = S
I

(y). Finally, after
central projection [Salmon and Strozecki, 2012], we get ‚I

NL

(x) (see (B.1)). NL-means is
therefore a posterior expectation and the prior model is based on the empirical histogram
of patches taken in the input noisy image. In the next section, we consider more general
likelihood models and priors.

B.2 Approximate Bayesian Computation NL-means
filtering

B.2.1 Principles of ABC rejection method
One of the basic problem in Bayesian statistics is the computation of the posterior for
general forms of noise distributions. If the posterior density cannot be computed explicitly
or is time consuming, we usually resort to stochastic simulation to generate samples for
the posterior. The commonly-used approach is the rejection method but, more recently,
Beaumont et al. [Beaumont et al., 2002] described a generalization of the usual rejection
method in the domain of genetics.

Formally, assume data D generated from a model determined by ⁄ whose prior is
denoted p(⁄). The so-called ABC method is as follows [Beaumont et al., 2002; Marjoram
et al., 2003]:

1. Generate ⁄ from p(·);

2. Simulate DÕ from the model with parameter ⁄;

3. Calculate a distance fl(D, DÕ) between DÕ and D, accept ⁄ if fl(D, DÕ) Æ ”, and
return to 1.
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As ” æ Œ, accepted observations come from the prior. When ” æ 0, this rejection
algorithm is exact and accepted observations are independent and identically distributed
from the posterior distribution p(⁄|D). Nevertheless, most of samples are rejected if we
set ” = 0. Then, this approach requires the setting of ” and the selection of a suitable
metric fl(·).

The next step is to calculate expectations of the form E(⁄|D) =
s

p(⁄|D) ⁄ d⁄ where
the expectation is taken with respect to the posterior distribution of ⁄. The simplest
way to approach this is to draw samples {⁄

i

}
i=1,··· ,N

, from p(⁄|D) using the previous
algorithm and then approximate using the sum N≠1 q

⁄
i

. However, a more stable
estimate can be obtained by weighting the ⁄ values with the posterior. Consequently, all
values of ⁄ are included in the the sum and there is no rejection step. This is a direct
extension of the estimate given in Beaumont et al. [Marjoram et al., 2003] which used
Epanechnikov kernels to weight each value of ⁄.

B.2.2 Patch-based ABC method
The interpretation of ABC given above allows us to revisit previous analyzes of the
NL-means in the Bayesian setting. The objective is to restore pixel x given an observed
patch S

v

(x). Denote ⁄ the unknown scalar intensity value at a given pixel whose whose
prior p(⁄) is assumed to be uniform in the range [0, · · · , ⁄

M

] where ⁄
M

is the maximum
intensity value. Consider the ABC procedure following the previous guidelines in the
case of zero-mean white Gaussian noise:

1. Generate ⁄ ≥ U [0, · · · , ⁄
M

];

2. Find a pixel value I(y) in the entire image such that I(y) = arg min
y

Õœ� |I(yÕ) ≠ ⁄|
and apply a central retro-projection to get a patch S

I

(y);

3. Calculate the error ‘(x, y) = ÎS

I

(y)≠S

I

(x)Î2

2

2‡

2

between the “simulated” patch S
I

(y)
and the “observed” patch S

I

(x) at pixel x, compute fi(‘(x, y)) and return to 1.

Here fi(·) denotes the unknown probability density function of the error term. Instead of
uniformly drawing independent samples in the n-dimensional space, Step 2 is expected
to generate more plausible artificial data, “closer” to the observed data. Note that Step 2
amounts to uniformly drawing a patch in the entire image domain.

B.2.3 Data-driven density learning
For most cases, we will expect ‘(x, y) to have one mode located at 0. In the Gaussian case
and non-overlapping patches, the errors are not centered at 0 but are expected to follow
a chi-square distribution ‰2

n

with n degrees of freedom. Yet, for overlapping patches,
it is established that the error is the sum of three independent ‰2

n

variables: ‘(x, y) =
z1 + 2z2 + 3z3 such as z1 ≥ ‰2

n≠p

, z2 ≥ ‰2
2p≠n

and z3 ≥ ‰2
n≠p

where n

2 < p < n controls
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the rate of overlapping. This is explicitly true for sliding windows in one-dimensional
signals and we have E[‘(x, y)] = 2n and Var[‘(x, y)] = (12n ≠ 4p).

In the case of variable and multiple overlappings in 2D, a general form for the
distribution of the error cannot be obtained. Nevertheless, it is established in [Feiveson
and Delaney, 1968] that the sum of weighted chi-squares variables can be approximated
by a Gamma distribution controlled essentially by two parameters k and —. Consequently,
we have experimentally investigated this idea of approximating the empirical density
fi(·) of errors by fitting Gamma distributions using the moment method, yielding the
following algorithm.

B.2.4 Gamma NL-means (GNL-means)
The proposed ABC-based Gamma NL-means is based on the following stochastic
two-step procedure:

Step 1: Data-driven density learning

1. Draw uniformly fir2|�| pairs of patches (S
I

(x), S
I

(y)) in the entire noisy image
I such as Îx ≠ yÎ2 Æ r, r > 0 and compute the empirical density fi(·) of errors
‘(x, y) = ÎS

I

(y) ≠ S
I

(x)Î2
2/(2‡2);

2. Estimate the Gamma distribution parameters k and — using the moment method,
i.e. by fitting the empirical mode = (k ≠ 1)— and variance = k—2 of the density.

Step 2: ABC-based denoising

‚I
GNL

(x; k, —) = 1
C(x)

ÿ

y≥U

r

(x)
(‘(x, y))k≠1 e≠ ‘(x,y)

— I(y) (B.4)

where the set of N variables y ≥ U
r

(x) in the sum are uniformly drawn from a ball of
radius r (same value as in Step 1) centered at pixel x and C(x) is normalization constant.

The computational time of the GNL-means is of about 80s on a 512 ◊ 512 image and
C++ implementation on an Intel Core i7 64-bit CPU 2.4GHz. Performances of the
GNL-means are first demonstrated on real images in confocal imaging combined with
frequency domain fluorescence lifetime imaging (FD FLIM) (see Section 4.3.2).
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Part II

Tracking heterogeneous
transports in a dense intracellular

environment
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Introduction

The quantification of intracellular dynamics is a fundamental task to understand
mechanisms such as protein assembly and tra�cking, intracellular signaling or pathogens
invasion as much as cell scale phenomena like morphogenesis, mitosis or cell migration.
As time lapse microscopy and increasing resolution in modern microscopy generates
a huge amount of data, automatic quantification of motion is required to understand
biological dynamics, mechanisms and processes Meijering et al. [2006]. The diversity of
possible motion types in a single experiment, the possible rarity of transient events call
for a per-object method in order to unbiasedly measure the individual behaviors.

During the last decade, several algorithms have been tailored to cope with di�erent
types of cellular and subcellular motion down to Brownian single molecule behavior.
One of the remaining big challenges in this area of methodological development has
been the tracking of extremely heterogeneous movements of objects in crowded scenes.
In our first preliminary work, we evaluated the performances of several state-of-the-art
algorithms in complex scenario including dense populations of di�using particles, which
suddenly change to directed motion. A typical cellular scenario with this property is
the jerky motion of vesicles and viruses switching between cytoplasmic di�usion and
motor-mediated, sudden displacements. These switches are particularly challenging to
detect because they occur rarely. The presence of numerous neighboring candidates in
the expected range of particle motion makes the tracking ambiguous and induces false
positives. Limiting the ambiguity by reducing the search range, on the other hand, is
not an option, as this would increase the rate of false negatives. This very interesting
problem has been brought to our intention during a three-month laboratory visit in the
Danuser lab. The tracking problem amounted to quantify extremely rare and sudden
active transport of vimentin along the cytoskeleton while the rest of dense population of
protein undergo a confined di�usion.

In this work, we first propose an original review of the multiple particle tracking (MPT)
algorithms proposed in the literature. The most common strategies put forward to face
the MPT challenges in bioimaging are presented. Throughout this technical review, a
large focus is made on heterogeneous type of motions and particle density. Accordingly,
we reserve a significant part to the methods that model various dynamics in a single
trajectories such as the Interacting Multiple Modeling [Blom and Bar-Shalom, 1988;
Genovesio et al., 2006] or the u-track algorithm Jaqaman et al. [2008]. In this context,
we propose a mathematical formulation to the dynamical filter proposed in u-track. To
the best of our knowledge, this is the first time such an e�ort is made for this widespread

135



tracking software in bio-imaging. From this review, we conclude that no method in the
literature is designed to detect abrupt transitions from di�usive transport to fast active
transport in a dense population of particle.

Building on the u-track platform we propose here a new, interacting multiple model
smoother that exploits recursive tracking in multiple rounds in forward and backward
temporal directions in order to achieve convergence of the instantaneous speed estimate
time-point-by-time-point. This allows us to estimate fast transitions from freely or
confined di�usive to directed motion. To avoid false positives we complemented recursive
tracking with a robust inline estimator of the adaptive search radius for assignment
(a.k.a. gating). We tested our method on simulation to measure the influence of density
and motion switching probability. In biological applications, our algorithm allows us
to quantify the extremely small percentage of motor-driven movements of intermediate
filament precursor particles along microtubules in a dense field of unbound particles. We
also show in experimental data sets of virus tra�cking that our algorithm can cope with
up to a strong reduction in recording frame rate without losing tracking performance
relative to methods relying on fast sampling.
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Contributions:

• Literature review:
– Description of the u-track algorithm in a mathematical framework as a

Generalized Pseudo Bayesian filter of order 1
– A focus on particle density and motion heterogeneity.
– Systematic classification into six key features to evaluate strengths and

weaknesses of related works.
• A new tracker design for dense condition and heterogeneous types of motion:

– Interacting Multiple Modeling smoother fusing forward and backward
tracking for dynamic modeling with low computational overhead.

– Adaptive search radius online estimation scheme exploiting recursive
tracking and adapting to the detected local motion type.

• Performance validation:
– Our method out-performs competitive particle tracking methods on the

targeted problematic on simulated data.
– Our method out-performs competitive particle tracking methods in a

variety of less sophisticated scenario on simulated data.
– Study of the vimentin tra�cking on the cytoskeleton measure very rare

and sudden transition in the dynamics.
– Our method is proven to be more robust to acquisition speed reduction

on virus sequences.

Disambiguation: particle tracker and particle filters
The present manuscript makes an extensive use of the word “particle”. Most of the
time, it is used to designate the target of the tracker, i.e. a vesicle or a molecule
that appears di�racted in a fluorescence microscopy sequence. However, the word
“particle” seldomly refers to the particle filtering technique where particles are used
to represent a posterior probability. In such case, the context clearly precises it.

137



138



8 Quantifying transport heterogeneity
in living cells

To introduce our main study, this section gives a short overview of fundamental dynamical
processes inside the cell. We shortly describe the foundation for intracellular passive and
active transports, and we describe the biological origins of the heterogeneous dynamics
that are observable in the cell.

We then present the challenges related to the estimation of the parameters controlling
dynamics on sub-resolved molecules. We discuss the influence of parameter heterogeneity
and moving target density.

Finally, we present a typical case studying of challenging dynamic quantification
experiment, namely the detection of rare motor-mediated motion in a crowded population
of unit length filament of vimentin. This study has been the starting point for the design
of our new tracker for multiple particle motion analysis.

8.1 Dynamical models in living cell

It has been established for a while that protein tra�cking was only due to di�usion
inside the cytoplasm [Agutter et al., 1995], and if simple thermal agitation does actually
represent a non-negligible proportion of molecular motions inside the cell, tra�cking
mechanisms are much more complex.

8.1.1 Passive transport

The first dynamical event that has been observed in the cell is the aforementioned
di�usion or Brownian motion. The di�usion phenomenon has been described by Robert
Brown in the early 19th after his observation of the stochastic motion of pollen particles.
It has been later demonstrated that this motion is due to the thermal agitation in the
medium resulting in shocks between molecules and causing stochastic trajectories (see
Figure 8.1). The propagation function of a pure Brownian motion with n degrees of
freedom is described by the following probability distribution function:

p(x, t|x0) = 1
(4fiDt)

n

2

e≠ (x≠x

0

)

€
(x≠x

0

)

4Dt . (8.1)
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8 Quantifying transport heterogeneity in living cells

Figure 8.1: Trajectory of a single molecule undergoing Brownian motion in three dimensions.
Segment color strength indicates temporal progression.

The mean squared displacement (MSD) is also often used since it yields a simple form
to describe di�usion. By integrating 9.5 over time we obtain and the mean squared
displacement:

ÈÎx(t) ≠ x(0)Î2Í = 2nDt (8.2)

where D is the di�usion coe�cient which depends on object size, medium viscosity and
temperature. Inside the cell, di�usive dynamics are a key component in short distance
transportation. Di�usion triggers the connectivity for signal transduction and is involved
in reaction-di�usion system during embryonic development.

8.1.2 Active transport

An other dynamical process that has been heavily studied in the past decade is the
motor-mediated transport of molecules. Primarily supported by actin filament and
microtubule networks, it ensures spatial organization and temporal synchronization in
the intracellular mechanisms and structures. At the microscopical level, the observed
displacement is not stochastic and presents a locally constant speed v along the
cytoskeleton. The particle MSD can be straightforwardly described by the following
equation [Saxton, 1994a]:

ÈÎx(t) ≠ x(0)Î2Í = v2t2. (8.3)
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8.1 Dynamical models in living cell

Figure 8.2: Motor-mediated vesicular transport along the microtubule network (soource: [Vale,
2003]).

Motor-mediated transport is involved in numerous dynamical events in the cell: large
membrane organelles transport (e.g. Golgi, mitochondria and nucleus), vesicular mediated
transportation that takes part in protein secretion from the endoplasmic reticulum
(protein assembly) to the Golgi apparatus (protein sorting) and then to the membrane as
well as endocytic pathways, cytoskeletal filaments dynamics, intracellular signaling, cell
migration and transportation of a subset of mRNAs [Vale, 2003]. The motor toolbox
involved in such transportation is specific to each cytoskeleton component. Motors
moving towards the microtubule plus-end are the kynesin family. As illustrated in Figure
8.2, they are used for transporting vesicular cargoes. They also have a role in chromosome
segregation, anterograde axonal transport and protein secretion pathways. Motors moving
in the opposite direction towards the microtubule minus-end belong to the dynein family.
They present a more complex structure. The role of the dynein encompasses retrograde
axonal transport mitotic, spindle positioning, nuclei positioning, mRNA localization,
intermediates filament transport and endocytic pathways. The motor operating along
actin filaments is the myosin protein. It is primarily associated to cellular attachments,
contraction and migration.

8.1.3 Heterogeneous transport
In experimental conditions, the strict classification presented above rarely holds. The
complexity of internal structures and molecular processes in the living cell influences
the molecular dynamics and prevents the systematic application of pure Brownian or
directed motion modeling. This section gives a few examples of heterogeneous transports.
The two first types are extensions of the Brownian di�usion model to subdi�usion, active
di�usion or uniform flow. The third one is the particle switching between active and
Brownian transports or active transport regime. This frequent dynamical scenario is the

141



8 Quantifying transport heterogeneity in living cells

time

M
SD

Normal di�usion
Anomalous subdi�usion

Anomalous active di�usion

Figure 8.3: Simulation of anomalous subdi�usion and active di�usion as a function of time.

main transport type of interest in the present study.
In the Brownian di�usion case, intracellular clutter can cause anomalous di�usion

resulting in MSD measurements that di�er from the theory (see Figure 8.3). On the one
hand, cytoskeleton density will hinder the free displacement of the particle resulting in a
non-linear evolution of the MSD below the theoretical expectation, a phenomena called
subdi�usion (green curve in Figure 8.3). On the other hand, the cytoskeleton elasticity
combined with thermal bending can contribute to active di�usion which will result in
higher MSD measurements than predicted by a normal di�usion process (red curve in
Figure 8.3) [Caspi et al., 2002; Brangwynne et al., 2009].

Heterogeneous transports have also been used by Qian et al. [1991] and Kusumi et al.
[1993] to describe the random di�usion of protein in a uniform flow at the membrane.
The dynamic is thus described as a Brownian motion on top of a directed displacement
bearing the following probability distribution:

p(x, t|x0) = 1
(4fiDt) n

2

e≠ (x≠x

0

≠vt)

€
(x≠x

0

≠vt)

4Dt (8.4)

and associated mean squared displacement:

ÈÎx(t) ≠ x(0)Î2Í = 2nDt + v2t2. (8.5)

Finally, a frequent intracellular scenario is the jerky motion of vesicles or virus switching
between cytosolic di�usion and motor-mediated displacements. Such dynamics have
been described as the “conveyor belt” model in [Saxton, 1994a], that is a combination
of active and passive transports described earlier. This model has also been used in
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8.2 Challenges of intracellular particle transport quantification in fluorescence microscopy

(a) (b)

Figure 8.4: Heterogeneous motion model on a disordered cytoskeleton network (a) and associated
vesicle trajectory undergoing switches between confined di�usion and directed motion (see [Bresslo�
and Newby, 2013]).

[Bresslo� and Newby, 2013] to describe motor-transported particle transitions from a
cytoskeleton network to an other (see Figure 8.4). A non-exhaustive list of biological
events described by such a model includes: intermediate filaments protein transport along
the cytoskeleton as described in [Prahlad et al., 1998] and in the present work, axon
neurofilament transportation by fast motors in an intermittent and asynchronous fashion
[Wang and Brown, 2001; Li et al., 2012], viral infection that intermittently exploits
endosomal directed transport to reach the nucleus (e.g. HIV) [Lagache et al., 2009] or
protein di�usion in the mesh of actin microfilaments network [Bresslo� and Newby, 2013].

8.2 Challenges of intracellular particle transport
quantification in fluorescence microscopy

To analyze the role of specific proteins in intracellular tra�cking and signaling pathways
of the living cell, a fundamental task is the identification of the di�erent motion models
described above and the estimation of the parameters controlling them. Before introducing
our problematic in the next section, we discuss the challenges faced by the quantification
of intracellular motion in fluorescence microscopy. Those challenges stem from the
inherent limitations of fluorescence microscopy as much as the intracellular phenotypes
under study.

8.2.1 Fluorescence microscopy limitations
Due to the resolution limit in light microscopy (200 nm) and the small size of the
molecule under study (¥ 0.2 µm), the imaged molecule appears di�racted. As a result,
its appearance is more dependent on the microscope characteristic point spread function
than the object itself. This raises the advantages that the particle can easily be modeled
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8 Quantifying transport heterogeneity in living cells

and detected as far as signal intensity is su�cient [Smal et al., 2010]. However, this raises
the issue that molecules cannot be characterized by their appearances. This can trigger
ambiguities in trajectories estimation especially in a dense population of particles.

Other challenges stem from the illumination dose limitation due to photodamages. For
a given illumination dose and acquisition time, the experimenter can adjust the acquisition
frequency to optimize motion quantification. The first option is to increase the acquisition
frequency. The particles thus show little frame-by-frame displacements, making motion
estimation an easier task only limited by spatial density. However, this high frame rate
decimates the available illumination per image. The higher image quantity comes at the
cost of signal quality because of the light sensor sensitivity in low-light conditions. The
lower signal-to-noise will thus hinder the detection of particles. As we will detail in our
review section, several e�orts have been described in the literature to improve tracking
in low light conditions [Godinez et al., 2011; Smal et al., 2008a; Godinez et al., 2009;
Aguet et al., 2013; Chenouard et al., 2013]. Another possibility for the experimenter
consists in reducing the acquisition frequency. This results in brighter objects, alleviating
the detection issue. However, in this case, motion quantification can be more di�cult
depending on the phenotypes under study.

8.2.2 Challenging intracellular phenotypes

A living cell time lapse acquisition can present thousands of proteins in one image. In the
case of fluorescence staining techniques or tagging of very dense population of proteins,
the di�erent fluorophores can not even be di�erentiated from each other. In this case,
single particle tracking is not possible and only semi-local approaches such as correlation
technique (STICS) or even optical flow methods can estimate homogeneous parameters
in the image such as di�usion constant or uniform flows [Fortun et al., 2013]. Otherwise
the estimation of single particle trajectories is preferred. In this context, the density is
not an issue per se. The motion quantification challenge arises from the combination
of dense population, objects mean squared displacement and acquisition speed. Indeed,
large apparent displacements combined with spatial density trigger numerous ambiguities
due to particle similarity. We name this ratio “spatiotemporal density” in what follows.

Additional challenges in protein motion estimation is the sudden trajectory apparitions
and terminations as well as transient disappearances. In some scenarios, proteins can
also merge and split, adding to ambiguity with trajectory apparitions and terminations
in the neighborhood.

Those various challenges can be harnessed thanks to the dynamical homogeneity of
particle trajectories. As detailed in our review e�ort (see Chapter 9), large apparent
displacements can be predicted by analyzing the measured time points. To detect
trajectories termination a local search radius can also be estimated [Genovesio et al.,
2006; Jaqaman et al., 2008; Liang et al., 2010; Winter et al., 2012]. However, as discussed
above, dynamical heterogeneity is a widespread behavior in the cell. Motion type
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8.3 A challenging case study: dense intermediate filament network dynamics analysis

switching combined with low temporal resolution results in unpredictable transitions
in space and time from confined di�usion to large active transport. In the biological
experiment described in the following section, those transitions are extremely rare in a
dense population of particles.

In the next Chapter we will detail the various strategies that helped taking up those
challenges. Before that, the next section describes the motion quantification problem
that justified our focus on heterogeneity and spatiotemporal density.

8.3 A challenging case study: dense intermediate filament
network dynamics analysis

I had the opportunity to work on intermediate filament (IF) of vimentin production
within Gaudenz Danuser’s lab in Harvard Medical School (Boston, U.S.A.) during a
three month laboratory visit. We discovered a very interesting tracking challenge while
studying the support of the IF network formation. The heterogeneity of motion types,
molecular density and the rarity of events of interest called for a original approach on
multiple particle tracking based on a thorough study of existing algorithm strengths and
weaknesses.

The biological background of this specific study is briefly presented in this section.
We introduce the tracking challenges that arose from the preliminary quantification
experiment and motivated the research activity in multiple particle tracking methods.

8.3.1 Intermediate filament network

The IFs network is part of the cytoskeleton with the actin filaments and microtubules
(see Figure 8.5). While microtubules are known for their resistance to compression, and
actin microfilaments for their weaker bounds, IFs characteristics are high flexibility, high
stretching ability and strong bound. They have a supportive role to reinforce the cell and
help to maintain the position and integrity of various organelles and to provide anchorage
within the cytoplasm [Goldman et al., 2008; Herrmann et al., 2007]. Vimentin is the
most widely distributed of all IF proteins. It can be found in fibroblasts, leukocytes, and
blood vessel endothelial cells.

As opposed to actin filament and tubulin complex polymerization mechanisms, IF
assembled themselves under simple conditions [Eriksson et al., 2009]. It has been proven
that vimentin IF form in three phases as illustrated in Figure 8.6. The first step is
completed within seconds as vimentin associates laterally in four octamers that form into
60 nm Unit Length Filament (ULF) (Figure 8.6.A). Much slowly, ULFs longitudinally
anneal into IF (Figure 8.6.B) in a second step. Growing IF can also fuse end-to-end
(Figure 8.6.C). Finally, IF diameter reduction suggests IFs maturation [Herrmann et al.,
2007].
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8 Quantifying transport heterogeneity in living cells

Figure 8.5: The three fundamental networks forming the cytoskeleton (source: from [Lodish,
2008]).

Figure 8.6: Intermediate filament (IF) formation (source: from [Kirmse et al., 2007]).
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8.3 A challenging case study: dense intermediate filament network dynamics analysis

48

Figure 8.7: Vimentin motility seems to present a large proportion of confined Brownian motion
and rare, sudden, motor-mediated transport. Vimentin null epithelial cell (cell line SW13)
transfected with ULF of vimentin Y117L mutant fused to GFP. Image acquired with a spinning
disk confocal microscope with a 100x objective zoom 1.5 (Numerical Aperture 1.4, pixel size
0.10905 µm/pixel). Colored Tracks have been computed with an advanced u-track parametrization.
This quantification is not perfect as demonstrated in Figure 8.8. However, u-track manages to
highlight a large directed motion in a dense population of Brownian moving particles.

8.3.2 Unit length filament (ULF) dynamics analysis

While the IF network formation process has been extensively studied [Herrmann et al.,
2007], a few studies have already been dedicated to vimentin motility and structural
support [Prahlad et al., 1998; Yoon et al., 1998]. More than ten years ago, Prahlad et al.
[1998] already stated that “a single [vimentin ULF] often [displays] vibrational movements
for a short period of time, followed by a burst of rapid unidirectional movement”.
Additionally, an inhibition in vimentin motility after nocodazole treatment was already
observed in this work, hinting for a transport along the microtubule network. However, the
Material and Methods Section cites the use of “Measure Distance” Metamorph function
for quantification, hinting for a semi-manual quantification of motion. Furthermore, the
resulting tracks put forward in this study are spatially sparse inside the cells while the
highlighted acquisition in the same work are crowded.

Recently, Professor Gelfand in NorthEastern University proposed a similar experiment
to investigate the support for the longitudinal annealing of ULF (see Figure 8.6.B
and C). Having evidences that vimentin could bind to actin and microtubules during
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Figure 8.8: U-track best e�ort in dense spatiotemporal conditions does not retrieve motion type
switching correctly. A) Vimentin ULF presents a fast directed motion between two stationary
Brownian states (orange detail in Figure 8.7). The tracking algorithm misses the brutal transition
pointed by the red arrow. B) The ULF undergoes a direct motion and then switches to a confined
Brownian motion scheme (blue detail in Figure 8.7). The u-track algorithm produces a false
positive, pointed by the red arrow, due to the strong inertia of the stochastic filtering.

longitudinal annealing, researchers in his lab treated epithelial cells with latrunculin and
nocodazole separately to probe various contributions of the cytoskeleton component. The
polymerization of actin (induced by latrunculin) or microtubule (induced by nocodazole)
should indeed yield an inhibition in motor-mediated displacement if one of those hypothesis
is verified. Visually, the experimenter could observe the motor-mediated motions described
by Prahlad et al. [1998] in control cells. However, approximately three fast motions per
minute were observable in the control cells (see Figure 8.7) on a population of thousands
of ULF, while the aforementioned study claim 50% of directed motions. Thus, if visual
assessment of dynamics is already known as a weak experimental procedure, the events
rarity in the data reproduced several times within the Gelfand lab makes it even more
fragile, making the use of a automatic tracker mandatory. The important vesicle density
and motion type heterogeneity (see Figure 8.7) places this quantification experiment in the
most challenging part of the quantification we proposed in Section 8.2. Not surprisingly,
the Gelfand lab struggled to quantify this dynamics using on-the-shelf automatic tracking
algorithm. The Gelfand’s lab thus sought for the Danuser’s lab expertise in that domain.

The u-track algorithm [Jaqaman et al., 2008] is a robust multiple particle tracking
method that has been developed specifically for biological dynamics quantification in the
Danuser’s lab and has been exploited for numerous collaborations ever since. U-track
is a very versatile tracker, and we configured it thoroughly to detect the sub-resolved
ULF and quantify the above-described dynamics. The detection of those spot-shaped
ULF has not been a challenge thanks to the work of Aguet et al. [2013], and the large
majority of jiggling ULF probably bound to the cytoskeleton were easily tracked. The
results were much di�erent on the motor-mediated motions described above. U-track
best e�ort does not manage to retrieve the rare transitions from confined di�usion to fast
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8.3 A challenging case study: dense intermediate filament network dynamics analysis

directed motion which are very di�cult to predict because of the strong spatiotemporal
density (see Figure 8.8). As we will show in our technical review, this is an issue with all
state-of-the-art tracking algorithm design. Augmenting artificially the search radius is not
a solution, as the density will cause numerous false positives as illustrated in Figure 8.9.
Additionally, u-track implementation of directed motion estimation can induce additional
false positives in crowded scenes (see Figure 8.7). This is due to a characteristic of this
stochastic filtering scheme that I also investigated during my stay in the Danuser’s lab.
The literature study and numerical experiments I carried out as a visiting scholar and
that will be detailed in the following sections proved those preliminary results to be
worth the design of a new algorithm and tracking concepts.
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9 Technical review of particle tracking
algorithms

Automatic tracking algorithms were originally proposed for applications in aerospace or
street surveillance [Bar-Shalom, 1990]. This literature has naturally inspired the various
algorithms proposed for multiple particle tracking (MPT) in bio-imaging. However, no
method described in other fields is able to address in a common framework all of the
challenges and issues that are specific to intracellular motion quantification in fluorescence
microscopy [Kalaidzidis, 2007]:

• Bleaching and phototoxicity hinder the excitation dose which lower the signal
quality and acquisition speed.

• Spatiotemporal density due to spatial density of particles combined with low
acquisition speed.

• Stochastic nature of particle motions, multiple types of dynamics and switching
behaviors.

• Sudden apparitions and terminations of particle trajectories.
• Transient disappearances of particles causing gaps in the tracks. Gaps are due to

temporary out-of-focus displacements in confocal or TIRF microscopy or object
mis-detection caused by potentially low light conditions.

• High number of particles triggering high computational cost.
• High degree of similarity of isotropically shaped target profiles.
• Particle merging and splitting events that can result from particles that are too close

to be resolved by the microscope (also called particle coalescence), or physical
molecular interaction.

Therefore tracking multiple particles in bio-imaging has been an open problem over the
past decades [Gelles et al., 1988; Meijering et al., 2006; Kalaidzidis, 2009].

In a nutshell, intracellular object trackers can be roughly divided into two groups of
methods [Godinez et al., 2009]:

• The first category gathers two-step methods relying on object detection followed
by an association step to find the optimal linking cost between sets of detections.
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9 Technical review of particle tracking algorithms

A large number of challenges faced by the quantification of intracellular dynamics
observed in live cell microscopy has been tackled by those methods. Assignment
in a group of particles which are close together is handled by combinatorial
assignment [Jaqaman et al., 2008; Sbalzarini and Koumoutsakos, 2005; Racine
et al., 2006; Chenouard et al., 2009; Magnusson and Jaldén, 2012]. Multiple
transport types inside the cell have been analyzed using Bayesian filtering techniques
[Genovesio et al., 2006; Jaqaman et al., 2008]. Temporary disappearances or object
mis-detections are recovered by either considering link cost minimization on a group
of frames [Sbalzarini and Koumoutsakos, 2005; Chenouard et al., 2013; Sergé et al.,
2008] or on the whole sequence [Racine et al., 2006; Magnusson and Jaldén, 2012],
or by a second linking step applied on tracklets [Jaqaman et al., 2008]. Some
methods also propose to iterate successive detection and tracking steps to locally
refine spot localization [Sergé et al., 2008].

• The second category of trackers does not rely on such a two-step approach. Object
detection is performed on a per-track basis (instead of per-frame) and directly
inferred from image data to solve ambiguous situations thanks to particle filtering
or joint probabilistic data association (JPDA) [Smal et al., 2008a; Godinez et al.,
2009; Smal et al., 2008b; Sergé et al., 2008]. This second category has been designed
to cope with other challenging scenarios, especially low dose imaging presenting
low signal-to-noise ratios.

In either frameworks, merging and splitting of vesicles can also be addressed in a
post-processing step [Jaqaman et al., 2008; Feng et al., 2011], or as a single pass, within
the link cost minimization [Racine et al., 2006; Magnusson and Jaldén, 2012].

As suggested in the previous chapters, a big challenge in this area is related to motion
heterogeneity in crowded scenes. Yet, a frequent cellular scenario with this property is
the jerky motion of vesicles and viruses switching between cytoplasmic di�usion and
motor-mediated, fast displacements [Saxton, 1994b; Bresslo� and Newby, 2013]. As
illustrated in Figures 9.1 and 9.2, these switches are particularly challenging to detect since
they are not predictable spatially or temporally and they occur in a dense spatiotemporal
context of otherwise homogeneous population of particles. As we shall see will in this
review, existing approaches that model motion heterogeneity are not designed to cope
with rapid transitions from Brownian to direct motion that are not predictable (see Figure
9.1). Increasing the search radius is not the solution as it can generate false positives in
such dense conditions. The u-track algorithm [Jaqaman et al., 2008] manages to recover
a part of the directed motion (see Figure 9.1)) thanks to a adaptive initialization of speed
estimate (see Section 9.3). Nonetheless, Figure 9.2 displays the downside of such inertia
as the same algorithm produces false positives in the same sequence.

To improve this tracking approach, we propose an original analysis of fifteen algorithms
chosen for their performances and originality in the literature. We consider six criteria
for classification:
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Figure 9.1: Particles presenting motion type switching are challenging to track. A) An example
of heterogeneous motion type on a single track (detail). The ULF of vimentin presents a fast
directed motion between two Brownian states. B) An IMM based algorithm, similar to [Genovesio
et al., 2006] (supporting an forward-backward initialization step) does not retrieve the direct
segment, only the Brownian sections are correctly tracked. An artificial increase of the search
radius is not possible without an important number of false positives in the whole sequence.
C) The u-track algorithm will allow to retrieve a part of the direct motion segment thanks to
the Kalman Filter initialization routine and speed transmission. In this algorithm, the search
radius has the same size for Brownian and directed motion hypothesis. Color code: Red and
Green segments represent the detected types of displacement, which can be directed or Brownian
respectively. Blue and Green circles represent the search radius associated with directed and
Brownian motions respectively. The position of the search radius reflects the predicted localization
(scale bar is 0.5 µm, acquisition frequency is 1Hz).

1. As heterogeneous dynamical modeling is a major problem in our study, we
extensively describe the ability of the methods that have been put forward to
model di�usion, active transport and heterogeneous motions.

2. We review the linking cost optimization scheme used to estimate the best set
of assignments between detections at di�erent temporal levels: from consecutive
frames, groups of frames or at the whole sequence level.

3. The spatial gating parameter estimation (a.k.a. search radius) is an other crucial
issue when dealing with crowded scenes and unpredictable transitions.

4. The similarity distance used to build the cost function also deserves a separated
discussion.
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Figure 9.2: An example of motion heterogeneity in more dense conditions. A) The ULF move
fast and switch to a confined Brownian motion. B) An IMM based algorithm produces a correct
track, switching to a Brownian motion scheme. The merging of Kalman filters posterior results
in an adaptive estimation of the speed that quickly converges to zero. C) The u-track algorithm
produces a false positive due to the strong inertia of the stochastic filter. This figure shows
an example of u-track convergence to a single speed for the track. Accordingly, the Kalman
filter constantly “looks” in the general direction of the trajectory. Color code: Red and Green
segments represent the detected types of displacement, which can be directed or Brownian
respectively. Blue and Green circles represent the search radius associated with directed and
Brownian motions respectively. The position of the search radius reflects the predicted localization
(scale bar is 0.5 µm, acquisition frequency is 1Hz).
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5. Gap closing ability that fills “gaps” in tracks caused by transient disappearances or
mis-detections.

6. The detection of particle merging or splitting events is crucial for molecule
interaction analysis.

In this framework, we emphasize on their respective strengths and weaknesses at tracking
heterogeneous motions in dense conditions. This will help to understand the limits of
the methods described in the literature and suggest possible improvements. Finally,
it is worth noting that a contribution of this review is the description of the u-track
algorithm with statistical and probabilistic tools. This software is indeed widely used
for various applications in MPT because of its robustness and flexibility. While the
original publication focused mainly on the linear assignment problem, cost function
design and experimental results, we describe in this review the dynamics modeling and
gating method after a thorough analysis of the algorithm.

The outline of the Section is as follows. We first report the previous review e�orts
in the literature and we explain our positioning (see Section 9.1). As motion modeling
and track termination/apparition are among the highest hurdles in our study, particle
detection methods are briefly described (see Section 9.2). The six key criteria that allow
for a complete description of each tracker in the literature are then discussed (see Sections
9.3 to 9.8). We conclude this study with a Table that uniquely summarize the numerical
strategies put forward in fifteen algorithms chosen for their performances in biological
imaging and originality (see Section 9.9).

9.1 Previous review e�ort

In [Meijering et al., 2012], the authors proposed a classification and a comparison of cell
and particle tracking software, a majority of the related methods being also presented
in this review. This valuable study allows an overview of particle tracking software
to provide the end-users with a comprehensive comparison of the software availability
and ability (cell, particle, 2D or 3D tracking . . . ) and to label the algorithm class
as: “manual”, “semi-automatic” and “automatic”. In this section we will precise this
aspect focusing essentially on “automatic” trackers. We discuss the flexibility of several
trackers from a more technical point of view. As in [Meijering et al., 2012], we present a
summarizing table at the end of this Chapter. However, we propose a more technical
classification since we analyse underlying approximations, modelings and optimization
solutions.

Kalaidzidis [2009] and Kalaidzidis [2007] also proposed a technical comparison of
tracking algorithms. In this review, the author proposed a general description of tracking
algorithms followed by a short discussion about applications to bio-imaging. In our
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review e�ort, we also focus on the ability of algorithms to track particles with temporally
varying dynamical models.

Finally, in sight of the 2012 ISBI conference, Erik Meijering and Jean-Christophe
Olivo-Marin came up with a challenge in order to objectively compare state-of-the-art
MPT methods on four simulated scenarios. The proposed simulated benchmarks are
di�using vesicles, microtubule plus-TIPs presenting directed motions, receptors exhibiting
heterogeneous motions and finally three-dimensional di�usion of viruses. Each scenario
were declined in low (100 particles/ 512◊512 pixels) to high (1000 particles/ 512◊512)
particle density, and signal-to-noise ratios ranging from very low dose imaging (SNR
1) to the highest quality (SNR 7). Most of the challenge participants, fourteen teams
in total, contributed to the MPT field. Those studies are also reported in our review.
However, a few teams adapted algorithms primarily dedicated to track cells, aircrafts
or even submarines1. We also took up this challenge with a slight adaption of the local
tracker presented in Section 5.2.2. Our modest contribution was suboptimal by design
(no optimization at the frame scale, no motion modeling), and was submitted to highlight
the impact of robust Gaussian fitting. Nevertheless, our detection reached the second
position in detection RMSE on the “vesicle” experiment (the only one for which we
submitted results). Detail on the implementation can found in Part I of this manuscript.
The MPT algorithm we present in the current study is much more advanced tracking
wise, but this study started long after the challenge was ended. As the recent publication
associated to the challenge [Chenouard et al., 2014] was still in the reviewing process as
we prepared this work, we did not exploit the simulated benchmark in our experiments.

It is worth noting that the competing methods were specifically designed given a
specific training dataset provided by the organizers. As a result, a large set of submitted
methods were conceptually very di�erent from the original publications which served
as starting points [Sbalzarini and Koumoutsakos, 2005; Smal et al., 2008b; Godinez
et al., 2011]. Consequently, no specific probabilistic tracker (JPDA, Particle filters) was
competing. The take-away message given by the organizers was fourfold: i) there is
not a unique method that outperforms any others for a given scenario; ii) as expected,
the methods that make use of multiple time points using Kalman filtering, multiple
hypothesis tracking or gap closing perform better than the the others; iii) all the best
performing methods use dedicated motion model to adapt to known dynamics for each
dataset; iv) the methods that proved su�cient design flexibility to adapt to each scenario
performed better.

In [Meijering et al., 2012], the underlying techniques are described in the Supplemental
Method Section but only the tracking results are compared. In the present review, we
propose a more technical comparison based on modeling and tracking strategies. While

1When describing the work of Magnusson and Jaldén [2012] in our review, we actually refer to the
adaptation to MPT that has been proposed for this challenge, as the original algorithm was designed
for cell tracking.

156



9.2 Particle detection

Figure 9.3: Object detection framework including noise reduction, signal enhancement and
thresholding (source from: [Smal et al., 2010]).

experimenting with our method, we experimentally compared the methods that were
designed for our targeted issue, i.e. those able to adapt to heterogeneous motion. Those
methods consider multiple models to describe the dynamics in the literature and are
implemented in the the best performing methods in the challenge. As in our study,
the u-track performances were experimentally compared in the challenge. However, the
competing implementation of u-track (independently developed from u-track designers)
was not fair since it did not make use of the u-track multiple motion modeling.

9.2 Particle detection

It has been shown in an extensive review [Smal et al., 2010] that a variety of methods
perform well for a wide range of signal-to-noise ratios. For SNR > 3, the general framework
described by Smal et al. [2010] starts with an image pre-processing for noise reduction
and object enhancement by using median, wavelet-based or Laplacian-of-Gaussian filters.
The candidate spot coordinates are then selected using local-maxima localization or
thresholding. Finally, the center coordinates of spots can be estimated using Gaussian
model fitting or intensity centroid localization (see Figure 9.3 for an overview). For lower
dose imaging, some authors advise to focus on machine learning-based methods to obtain
more satisfying results.

As motion modeling and termination detection are the main issues in this study and
detection can be performed independently, particle detection will not be described further.
We refer the reader to the following works for an overview of spot detection methods
[Cheezum et al., 2001; Thomann et al., 2002; Henriques et al., 2010; Smal et al., 2010].
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Figure 9.4: Dependency graph of a Hidden Markov process applied to the state xt and measure
zt, ’t œ N.

9.3 Dynamics modeling

9.3.1 Bayesian filtering

Bayesian filtering has been applied in a large number of studies of dynamical system.
While the parameters of a system evolve over time, sensors give a projection of this system
by providing a limited, noisy and sometimes sparse measurements of the system state.
By modeling the system state as a Hidden Markov Model, Bayesian filtering analyses
measurement over time in order to provide an estimation of the system parameters. In
this Section, we describe Bayesian filtering applied to the study of intracellular object
dynamics. This includes Kalman filtering, multiple modeling and particle filtering.

In the Bayesian filtering framework, we assume an evolution model which is generally
a Markov process of 1st or 2nd order. Denoting by x

t

and z
t

respectively the hidden
state and the observation at time t and assuming a 1st order Markov model, we have:

p(x
t+1|x1:t) = p(x

t+1|x
t

) (9.1)

where x1:t = {x1, . . . , x
t

}. The filtering distribution p(x
t+1|z1:t) (posterior distribution)

obeys the following recursion rule if we assume a conditionally independent observation
process:

p(x
t+1|z1:t+1) Ã p(z

t+1|x
t+1)

⁄

x

t

p(x
t+1|x

t

)p(x
t

|z1:t)dx
t

(9.2)

and z1:t = {z1, . . . , z
t

}. The recursion requires the specification of a dynamic model
describing the state evolution p(x

t+1|x
t

) and the likelihood function of the data. A Hidden
Markov Model, as illustrated in Figure 9.4, is entirely described by a prior distribution
p(x0), a transition probability p(x

t+1|x
t

) (from x
t

to x
t+1 ) and the likelihood function

p(z
t

|x
t

). The aim of the recursive filtering is to estimate the a posteriori distribution
p(x

t+1|z1:t+1). A two-step approach (prediction and updating) is recommended to
compute the filtering density:

Prediction step The prediction step, also known as process update, makes use of an
evolution model to predict the probability distribution p(x

t+1|z1:t) at time t + 1 given all
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measurements till time t. The relationship between the measurements and the evolution
model is given by the Chapman-Kolmogorov equation:

p(x
t+1|z1:t) =

⁄
p(x

t+1|x
t

)p(x
t

|z1:t)dx
t

. (9.3)

Update (or filtering) step When a measurement is available at time t+1, the predicted
probability distribution is updated in one step, also called sensor update. An recursive
expression for probability distribution p(x

t+1|z1:t+1) is obtained from the Bayes’ rule:

p(x
t+1|z1:t+1) = p(z

t+1|x
t+1)p(x

t+1|z1:t)
p(z

t+1|z1:t)
(9.4)

= p(z
t+1|x

t+1)p(x
t+1|z1:t)s

p(z
t+1|x

t+1)p(x
t+1|z1:t)dx

t+1

where the denominator is a normalization term. The two-step optimal filter is only a
conceptual solution, since the multidimensionality of the integral prevents the calculation
of the analytical solution in most cases. However, di�erent methods have been proposed
in the literature to solve (9.3) and (9.4) with appropriate approximations. Assuming
linearity and Gaussianity of the model, the Kalman filter provides the optimal solution.
Similarly, an optimal solution is provided by the Grid-based Method [Doucet et al., 1998]
under the assumption of a discrete state space and finite number of states. Suboptimal
methods like Extended Kalman filters [Bar-Shalom, 1987], Unscented Kalman filter
[Julier et al., 1995], and particle filters [Isard and Blake, 1996; Arulampalam et al., 2002]
have been proposed to approximate the posterior density in more general cases, that
is when linearity or Gaussianity cannot be assumed. In what follows, we discuss these
probabilistic formulations applied to dynamics analysis of intracellular objects. We focus
on three general modeling frameworks: Kalman filtering [Kalman and others, 1960],
extension to interacting multiple models [Bar-Shalom et al., 2004] and particle filtering
[Arulampalam et al., 2002].

9.3.2 Kalman Filtering
It is established that Kalman filtering [Kalman and others, 1960] provides the optimal
estimation of the state of a linear stochastic process. In single molecule tracking [Genovesio
et al., 2003; Briquet-Laugier et al., 1999], the vector state x

t

at time t usually represents
the position and speed of the target (or object) or an equivalent description (modeled
here in 2D for simplicity, a 3D model deriving straightforwardly):

x
t

= (x
t

, y
t

, dx
t

, dy
t

)€. (9.5)
The filtering problem can be described by the following equation system:

x
t+1 = Fx

t

+ w
t

(9.6)
z

t+1 = Hx
t+1 + v

t

(9.7)
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where the transition matrix F represents the motion type, usually expressed as:

F =

Q

ccca

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

R

dddb
or F =

Q

ccca

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

R

dddb
(9.8)

for Brownian and directed motion. The matrix H is an observation matrix projecting from
the state space to the measurement space. The variable w

t

and v
t

represent respectively
the model noise and the measurement noise assumed to be zero-mean independent white
noise with covariance matrices Q

t

and R
t

. In Bayesian sequential estimation with the
aforementioned hypothesis, the filtering distribution p(x

t+1|z1:t+1) ≥ N (‚x
t+1, ‚P

t+1) can
be computed recursively as derived in [Anderson and Moore]. The prediction step yields:

x̄
t+1 = F‚x

t

(9.9)
P̄

t+1 = F ‚P
t

F€ + Q
t

(9.10)
followed by the update step when a new measurement z

t+1 is available:

K
t+1 = P̄

t+1H€

HP̄
t+1H€ + R

t+1
(9.11)

‚P
t+1 = (I ≠ K

t+1H)P̄
t+1 (9.12)

‚x
t+1 = x̄

t+1 + K
t+1(z

t+1 ≠ Hx̄
t+1) (9.13)

where K
t+1 is the adaptive Kalman gain applied to the measured innovation (z

t+1≠Hx̄
t+1)

and I denotes the identity matrix. Updated at each time step, the gain represents the
inertia of the Kalman filter. Low prediction errors (w.r.t. measurement errors) will
lead to a low value for the gain and strong inertia as the filter follows the prior model.
Conversely, for high prediction errors, the estimate is very close to the measurement.
Let us note that in a large number of tracking algorithms, combinatorial assignment
algorithms are used to associate the predicted state x̄

t+1 with the “best” measurement
considering the entire set of detections. Accordingly, the measurement z

t

does not depend
only on x

t

and (9.15) is considered as an approximation.

9.3.3 Multiple dynamical model filtering
A single Kalman filter cannot take into account the variety of intracellular transportation.
Moreover, a general constant speed model is not reactive enough to deal with abrupt
temporal changes [Genovesio et al., 2006]. To handle di�erent dynamics, tracking methods
for maneuvering targets [Blom and Bar-Shalom, 1988; Bar-Shalom et al., 2004] use N
Kalman Filters with di�erent transition matrices:

x
t+1 = F◊

t+1x
t

+ w◊

t+1

t+1 (9.14)

z
t+1 = H◊

t+1x
t+1 + v◊

t+1

t+1 , (9.15)
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where ◊
t

œ � = {1, . . . , N} and ◊1:t = {◊1, ◊2, . . . , ◊
t

} is the sequence of model indexes
to be estimated and assumed to follow an homogeneous Markov process, F◊

t+1 is the
transition matrix associated to the dynamical model ◊

t+1 œ �. The same association
applies for the other Kalman filtering notations presented Section 9.3.2. Each possible
sequence for ◊1:t should be considered to filter the state parameter optimally as:

p(x
t+1, z1:t+1) =

ÿ

◊

1

œ�

ÿ

◊

2

œ�
· · ·

ÿ

◊

t+1

œ�
p(x

t+1, z1:t+1, ◊1, . . . , ◊
t+1, ) (9.16)

Ã
ÿ

◊

1

œ�

ÿ

◊

2

œ�
· · ·

ÿ

◊

t+1

œ�
p(◊1:t+1|z1:t+1)p(x

t+1|◊1:t+1, z1:t+1) (9.17)

The parameter space describing ◊1:t is exponentially increasing with time. Accordingly,
this model “history” [Bar-Shalom et al., 2004] would require an exponentially growing
number of Kalman filters to estimate the a posterior distribution. A common
approximation proposed in the literature is to consider the last N œ N possible modes as:

p(x
t+1, z1:t+1) ¥

ÿ

◊

t+1

œ�
p(◊

t+1|z1:t+1)p(x
t+1|◊

t+1, z1:t+1), (9.18)

implemented as N competing Kalman filters, that is

p(x
t+1|z1:t+1, ◊

t+1) ≥ N (x
t+1; ‚x◊

t+1

t+1 , ‚P◊

t+1

t+1 ). (9.19)

Finally the moments of the Gaussian mixture yields the expectation and covariance of
the overall posterior at time step t + 1:

‚x
t+1 =

ÿ

◊

t+1

œ�
p(◊

t+1|z1:t+1)‚x◊

t+1

t+1 (9.20)

‚P
t+1 =

ÿ

◊

t+1

œ�
p(◊

t+1|z1:t+1)
1

‚P◊

t+1

t+1 + ||‚x◊

t+1

t+1 ≠ ‚x
t+1||2

2
. (9.21)

In the application to multiple intracellular target tracking, the predictions provided
by Kalman filters are used in the linking cost optimization procedure. Two works
[Genovesio et al., 2006; Jaqaman et al., 2008] have been proposing di�erent approaches
to motion heterogeneity modeling. In [Genovesio et al., 2006], the Interacting Multiple
Model estimator introduced in [Blom and Bar-Shalom, 1988] is first proposed. It is well
characterized and it is now widespread in the MPT literature. The u-track method
[Jaqaman et al., 2008] has not been described formally with mathematical justification.
In this Section, we show that this algorithm can be interpreted as a Generalized Pseudo
Bayesian filter of order 1. We also describe in detail the implementation of the u-track
algorithm to give further insights into its performance.
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9.3.3.1 Generalized Pseudo Bayesian of order 1

In the u-track algorithm [Jaqaman et al., 2008], a thorough reverse engineering analysis
shows that the algorithm is similar to the Generalized Pseudo Bayesian algorithm of order
one (GPB1). This algorithm has primarily been described by Ackerson and Fu [1970] and
is refereed in [Tugnait, 1982; Bar-Shalom et al., 2004]. In this modeling approach, the
Gaussian mixture described by (9.18) is directly exploited by Kalman filters. Accordingly,
the overall posterior described by ‚x

t

and ‚P
t

in (9.19) is considered as the current filtered
estimate for each dedicated Kalman filters. Each filter obeys to (9.9) and (9.11) with
di�erent transition matrices. The probability p(◊

t

|z1:t), ’◊
t

œ � can then be derived
recursively as:

p(◊
t+1|z1:t+1) = p(z

t+1|z1:t, ◊
t+1)

ÿ

◊

t

œ�
p(◊

t+1|◊
t

)p(◊
t

|z1:t). (9.22)

In practice, u-track does not consider model “history” to estimate the current dynamical
model probability. Only the most probable model is kept in the posterior:
Y
]

[
p(◊

t+1|z1:t+1) = 1 if ◊
t+1 = argmax

◊

t+1

œ�

1
N (z

t+1; Hx̄◊

t+1

t+1 , H◊

t+1P̄ ◊

t+1

t+1
tH

◊

t+1 + R◊

t+1

t

)
2

p(◊
t+1|z1:t+1) = 0 else

(9.23)
Hence, only the Kalman filter associated to the most probable model is updated. Using
this approximation, GPB1 algorithm can operate every filtering cycle with N prediction
steps and only one Kalman filter that operates full recursion. This can reduce significantly
the computational complexity.

9.3.3.2 Interacting multiple model

In the Interacting Multiple Model estimator (IMM) [Blom and Bar-Shalom, 1988], a
recursive estimation of the dynamical model transition probability is exploited to increase
the amount of information available from the model “history” while using only N Kalman
filters. The N Kalman filters estimate the respective posteriors from a mixture of
Gaussians which is an alternative to the overall posterior (9.18). The “mixing” of the
Gaussian distributions is controlled by the estimated transition probabilities. This method
has been primarily designed for the detection of smooth transitions in aircraft dynamics
between cruising (directed displacement) and maneuvering (Brownian model or constant
acceleration model). It was exploited to track multiple particles in bio-imaging for the
first time in [Genovesio et al., 2006]. This method is now widespread in the field of MPT
[Feng et al., 2011; Rezatofighi et al., 2012; Chenouard et al., 2014]. In this section, we
briefly describe this algorithm.

Each probability p(x
t+1|◊

t+1, z1:t+1) in (9.18) is further decomposed to point out the
model transition from the dynamic model at time t to the future dynamic model at time
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t + 1 [Blom and Bar-Shalom, 1988]:

p(x
t+1, z1:t+1)

=
ÿ

◊

t+1

œ�
p(◊

t+1|z1:t+1)p(z
t+1|x

t+1, ◊
t+1)

p(z
t+1|z1:t, ◊

t+1) p(x
t+1|◊

t+1, z1:t) (9.24)

=
ÿ

◊
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t+1, ◊
t+1)

p(z
t+1|z1:t, ◊

t+1)

⁄
p(x

t+1|x
t

, ◊
t+1)p(x

t

|z1:t, ◊
t+1)dx

t

. (9.25)

The last term p(x
t

|z1:t, ◊
t+1) represents the probability of the state x

t

given a possible
future dynamical model ◊

t+1. It can be further derived as

p(x
t

|z1:t, ◊
t+1) Ã

ÿ

◊

t

œ{1...N}
p(x

t

|z1:t, ◊
t

)p(◊
t

|◊
t+1, z1:t). (9.26)

For a given dynamical model index ◊
t

œ �, the associated Kalman filter yields:

p(x
t

|z1:t, ◊
t

) ≥ N (x
t

; ‚x◊

t

t

, ‚P◊

t

t

). (9.27)

Accordingly, the integral in (9.25) can be interpreted as a Kalman state prediction,
and each member of the sum can be interpreted as a sensor update of a Kalman filter
associated to the model ◊

t+1 (see (9.4)). In other words, before estimating the filtered
state at time t + 1 with the Kalman filter associated to model ◊

t+1, the Gaussian mixture
(9.19) is reconditioned as [Blom and Bar-Shalom, 1988]:

p(x
t

|z1:t, ◊
t+1) ≥ N (x

t

; x̃◊

t+1

t

, P̃◊
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)
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The probability p(◊
t

|◊
t+1, z1:t) can be derived using the Bayes’ rule as [Bar-Shalom et al.,

2004]:

p(◊
t

|◊
t+1, z1:t) Ã p(◊

t+1|◊
t

, z1:t)p(◊
t

|z1:t), (9.30)
= p(◊

t+1|◊
t

)p(◊
t

|z1:t). (9.31)

The probability p(◊
t

|z1:t), ’◊
t

œ � is computed as in (9.22).

163



9 Technical review of particle tracking algorithms

9.3.3.3 Implementations of multiple modeling algorithms

The di�erences between the algorithms proposed in [Genovesio et al., 2006] and in
[Jaqaman et al., 2008] reside in their implementation as much as the underlying theory.
A combination of three aspects must be taken into account to understand the di�erences
highlighted in Figures 9.1 and 9.2.

The first aspect is the initialization step. In order to set a prior for the initialization
of the Kalman filter speed, u-track performs three rounds of tracking in forward and
backward directions by reversing the temporal order of the image sequence. The IMM
algorithm that we have re-implemented for illustration and experimental results also
supports this strategy.

An other specificity of u-track is the unusual transition matrix used to model the
Brownian state:

F =

Q

ccca

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

R

dddb . (9.32)

This representation means that the speed vector (dx
t

, dy
t

)€ in the state parameter is
entirely transmitted by the Brownian Kalman filter as far as the estimated gain is low.

Finally, u-track does not merge estimates. As a result, if a particle stays in a Brownian
state and follows this model, it will present a low gain and the temporal filter will let
the speed estimate unfiltered. This speed estimate will be unchanged even if it is not
realistic in the current situation.

The consequence of these three implementation details is that the estimates ‚x
t

can
converge on a single vector („dx

t

, „dy
t

)€ during the three rounds of tracking, even if motion
type switches have been detected. This modeling actually increases robustness when
an object undergoes a directed displacement in a unique direction or slowly changes
before switching to a Brownian walk. Figure 9.1B shows that u-track converges on a
single displacement for the track and can estimate a segment of the directed motion.
On the same data, a more classical IMM, even with the improved initialization, is only
able to recover the Brownian segments. Figure 9.2 highlights the limitations of such
an approach. The strong inertia of the filter and the unique speed estimation result in
important false positives in dense and heterogeneous conditions. In our new tracking
method, we will combine the two approaches to benefit from IMM flexibility and good
convergence properties of u-track.

9.3.4 Particle filtering

When the linear and/or Gaussian assumptions do not hold, particle filtering [Arulampalam
et al., 2002] allows us to estimate the posterior density p(x

t+1|z1:t+1). Particle filters
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represent the posterior by a finite set of N
p

particles xm

t+1 and associated weights wm

t+1 as:

p(x
t+1|z1:t+1) =

N

pÿ

m=1
wm

t+1”(x
t+1 ≠ xm

t+1) (9.33)

where
q

N

p

m=1 wm

t+1 = 1. The particles can be chosen carefully from the importance
function xm

t+1 ≥ q(x
t+1|xm

t

, z
t+1) allowing for an e�cient representation of the posterior.

The updating of weights is then as follows:

wm

t+1 = wm

t

p(z
t+1|xm

t+1)p(xm

t+1|xm

t

)
q(x

t+1|xm

t

, z
t+1) . (9.34)

The default choice consists in taking q(x
t+1|xm

t

, z
t+1) = p(x

t+1|x
t

) (bootstrap filter). An
estimate ‚x

t+1 can then be obtained using the minimum mean square estimator as in
[Smal et al., 2008a] yielding ‚x

t+1 =
q

N

p

m=1 wm

t+1xm

t+1 ¥ E[x
t+1|z1:t+1].

The exponential complexity due to the simultaneous tracking of several objects
combined with the tendency of the particle filter to coalesce on one single mode can
be problematic if the object number is too large [Smal et al., 2008a]. To circumvent
this issue, mixture of particles [Smal et al., 2008a; Yoon et al., 2008] and independent
particle filters [Godinez et al., 2009], have been proposed. Moreover, these techniques use
image intensity to define measurements. For instance, patch-based distance between a
Gaussian model and image data is generally adopted. Detection is carried out online on
a per-track basis and proved to be robust to low dose imaging conditions and in the case
of highly spatially and temporally varying background. Nevertheless, as particle filter
based methods present a high computational cost [Smal et al., 2008b] and the objects
(spots) look very similar [Godinez et al., 2009], these probabilistic approaches are often
applied in sparse and noisy scenario as in [Smal et al., 2008a; Godinez et al., 2009]. Note
that motion heterogeneity modeling has been recently combined with particle filtering in
[Yang et al., 2012] to estimate “stop-and-go” dynamics of growing axons.

9.3.5 Other statistical methods
In a recent paper, Winter et al. [2012] proposed an original approach to quantify the
directed axonal transport without stochastic filtering. Let L0,t

be the track set at time
t. Each possible trajectory up to time t + W is built (typically W is set to 6 in the
experiment). In this set, the ith track is described by the length l

i

, the set of intensities
{I0,i

, . . . , I
T +W,i

} and the set of local speeds {dx0,i

, . . . , dy
T +W,i

} and {dy0,i

, . . . , dy
T +W,i

}.
The cost of the ith track is thus computed based on speed, intensity and track length as
a weighting cue:

C(i) = l
i

Q

ca
Var

tœ{0..T +W }
[I

t,i

]

mean
tœ{0..t+W }

[I
t,i

] +
Var

tœ{0..T +W }
[
Ò

dx2
t,i

+ dy2
t,i

]

mean
tœ{0..t+W }

[
Ò

dx2
t,i

+ dy2
t,i

]

R

db (9.35)
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Contrary to filter-based methods, this estimator exploits past and future measurements
and thus could potentially handle unpredictable switching. However the speed estimate
is not temporally locally adaptive, leading an over-smoothing of the speed estimation.

Finally, a large collection of other methods relies on the Euclidean distance or
Mahalanobis distance with global covariance parameter to capture Brownian motion
[Bonneau et al., 2004; Sbalzarini and Koumoutsakos, 2005; Racine et al., 2006; Sergé
et al., 2008; Liang et al., 2010; Magnusson and Jaldén, 2012].

9.3.6 Conclusion

The flexibility and simplicity of multiple Kalman filtering is the best trade-o� between
precision and computational cost. This statement made on theoretical basis is confirmed
by the algorithm chosen by the participants of the MPT challenge organized for ISBI
2012 (and recently published [Chenouard et al., 2014]). Particle filtering is more general
and more flexible, but also computationally demanding; it cannot easily handle several
hundreds of targets in dense conditions. The usual issue of filter-based motion modeling
is that they do not exploit the whole dataset. Accordingly, the related methods cannot
predict sudden changes of direction. More recently, Winter et al. [2012] have proposed an
interesting approach to profit from past and future measurements. This method handles
only directed motions, but the cost function could be adapted to piecewise stationary
dynamics. However this method requires to compute a cost for every physically possible
track. The temporal window must be reduced to lower the computational demand, but
one would then loose the temporal perspective. In our method, we propose a stochastic
smoothing approach on dynamic modeling exploiting each measurement in the sequence
while keeping a computationally e�cient per-track basis.

9.4 Linking cost optimization

A prior dynamical model can be used to predict object positions at di�erent time steps,
but the optimal assignment between the set of predictions and measurements must also
be estimated. The so-called linking problem is formulated as the minimization of an
objective energy of the following form:

L
T

e

,T

s

= argmin
{C

t,ij

œ{0,1}}

T

eÿ

t=T

s

N

tÿ

i=1

N

t+1ÿ

j=1
C

t,ij

d(x̄
t,i

, z
t+1,j

) (9.36)

z
t+1,j

is the jth detected spot at time t + 1.

x̄
t,i

is the prediction at time t + 1 associated with the ith detection at time t.

N
t

is the number of detected spots at time t.
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T
s

and T
e

denote respectively the beginning and the end of the temporal
window used for linking cost minimization.

C
t,ij

œ {0, 1} is a binary variable indicating the presence of a link (C
t,ij

= 1)
or the absence (C

t,ij

= 0) between the detected targets i and j at time t
and t + 1.

d(·) is a similarity measure to evaluate the correspondence between
predictions and measurements.

We add a flexible constraint on assignment to model particle appearance, linking,
disappearance, merging and splitting:

ÿ

jœN

t+1

C
t,ij

Æ 2, ’i œ N
t

, ’t œ {T
s

, . . . , T
e

}, (9.37)

ÿ

iœN

t

C
t,ij

Æ 2, ’j œ N
t+1, ’t œ {T

s

, . . . , T
e

}.

Due to the computational complexity, no optimization method attempts to estimate
the whole track set as a single combinatorial problem (see [Racine et al., 2006] for a
seldom e�ort). Instead, the parameter space of possible associations is gated in space and
time. In order to gate the parameter spatially, most of the algorithms straightforwardly
use a search radius generally set by the user (see Section 9.5). The strategies used for
temporal gating are more diversified, ranging from single frame-to-frame association
[Jaqaman et al., 2008; Genovesio et al., 2006; Smal et al., 2008b; Sergé et al., 2008;
Godinez et al., 2009; Rezatofighi et al., 2012; Smal et al., 2008a; Liang et al., 2010;
Winter et al., 2012], optimization on a group of frames [Sbalzarini and Koumoutsakos,
2005; Chenouard et al., 2013; Feng et al., 2011] to more global optimization techniques
[Racine et al., 2006; Magnusson and Jaldén, 2012]. Those di�erent optimization strategies
have an important impact on the intrinsic properties of linking algorithms. The number
of objects that can be handled is limited for some of them [Kalaidzidis, 2009]. Those
design choices also define the ability to close gaps in tracks due to object mis-detection or
temporary disappearance, to detect track termination and creation or to handle merging
and splitting of tracks.

In this section we give an overview of possible strategies, starting from the naive
Nearest Neighbors up to the more complex MHT based algorithm. We also propose a
short description of three ad-hoc methods that stands out in the MPT literature.

9.4.1 Nearest Neighbor assignment

A Nearest Neighbor-based method for frame-to-frame assignment has been proposed by
Genovesio et al. [2006]. Let N

t

be the number of detections at time t. A similarity measure
list is computed for each possible association: {d(x̄

t,i

, z
t+1,j

)/(i, j) œ [1, N
t

] ◊ [1, N
t+1]}.
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Dense area Naive NN Global optimization

Figure 9.5: Naive Nearest-Neighbor assignment and global optimization. Filled circles represent
detection zt+1,i, outlined circles represent associated prediction x̄t,i.

Furthermore, This list is sorted, and the min(N
t

, N
t+1) shortest links that satisfy a

threshold set by the user are selected. This method is “sub-optimal in a global sense” as
noticed by the authors. Indeed, in the case of particles close to each other, this method is
not sophisticated enough to match particles properly (see Figure 9.5). However it allows
the detection of track appearances and disappearances which correspond respectively to
the predictions and measurements that have not been assigned.

9.4.2 Linear programming in a bi-partite detection graph

In order to improve the frame-to-frame linking method, Sbalzarini and Koumoutsakos
[2005] have proposed an approach formulated as a transportation problem, as already
described in [Hitchcock, 1941]. Given a set of links L

T

s

,T

s+1

, assignments are initialized
using a Nearest Neighbor approach similar to [Genovesio et al., 2006]; then possible
re-assignments for each link are evaluated until the minimum cost is reached. Additionally,
to handle temporary disappearances of the tracked object, Sbalzarini and Koumoutsakos
[2005] proposed to estimate multiple link sets L

T

s

,T

s+r

separately. For each detection at
time T

s

, the best association among the r œ {2, 3} link sets is selected. As a link between
two non temporally consecutive detections can be selected against consecutive detections,
the algorithm is e�cient to handle short disappearances. The disadvantage is that it
can also bypass a detection in a track, or create false positives due to target crossing
paths. In order to model appearance, disappearance and gap closing, dummy (also called
virtual) detections have been introduced.

To address the temporal suboptimality issue, the link set is optimized both spatially and
temporally in [Jaqaman et al., 2008] using a two-step approach. The spatial optimization is
performed on each pair of frames resulting in track segments (or tracklets). The temporal
optimization associates tracklets that are likely to stem from the same trajectory but
corrupted by transient disappearances or mis-detections. Both steps rely on a sparse
graph model representation and require the use of the shortest-path algorithm [Jonker
and Volgenant, 1987]. To avoid irremediable false positive linking due to the lack of
temporal perspective in the first step, the authors proposed to set an upper bound on
the search radius.
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9.4.3 Probabilistic methods

While those methods select the most likely measurement at each time step, joint
probabilistic data association (JPDA) [Bar-Shalom, 2000; Fortmann et al., 1980; Blackman
and House, 1999] iteratively maintains the probability distribution for each possible
assignment, assuming a fix number of tracks. Several strategies have been put forward to
handle track creations and terminations for a limited number of bio-image sequences [Smal
et al., 2008b; Godinez et al., 2011; Rezatofighi et al., 2012]. At each frame, the best set of
assignments can be determined using an exhaustive review of possible hypothesis inside
the same track gate [Sergé et al., 2008]. This method can be computationally expensive
[Kalaidzidis, 2009] though, in theory, this could be achieved more e�ciently using linear
programming algorithm [Blackman and House, 1999]. To handle short disappearances,
trajectories are maintained during a few frames using virtual detections. The track is
considered terminated after a fix number of frames without assignment candidate within
the track gate. Those methods can solve ambiguous scenarios like nearby tracks that
coalesce and temporarily result in a single detection. However, dense scenarios associated
with numerous disappearances would trigger high computational cost and cannot perform
better than the aforementioned methods [Kalaidzidis, 2009].

Some recent works exploit particle filtering to implement tracking in the Bayesian
framework [Godinez et al., 2009; Smal et al., 2008a] as presented in Section 9.3.4. As
the measurement is the whole image, there is no explicit linking cost optimization as
described by (9.36). In a paper focused on probabilistic and deterministic approaches
by [Godinez et al., 2009], the authors concluded that the best performing methods rely
on independent particle filters. In the case of close predictions (i.e. Euclidean distance
is inferior to a given threshold) when the a posterori distribution is not unimodal, a
local optimization scheme and a graph-based model are proposed to handle interactions.
Godinez et al. [2009] use the same method as described in [Sbalzarini and Koumoutsakos,
2005] to deal with close spot assignment. This work hints that probabilistic tracking
appears especially suitable to challenging detection and estimation of a low number of
targets; deterministic combinatorial algorithm are required to tackle density.

9.4.4 Multiple Hypothesis Tracking

To go beyond simple frame-to-frame association, multiple hypothesis tracking (MHT)
methods have been proposed to optimize the linking set by considering all possible tracks
on the entire sequence using linear programming algorithms [Reid, 1979; Blackman, 2004].
Nevertheless, the exponentially growing computational complexity is a limiting factor
for applications in biological imaging. They are typically designed for tracking twenty
objects at most [Kalaidzidis, 2009; Liang et al., 2010]. In a recent paper [Chenouard
et al., 2013], the authors proposed a contribution to address this issue by reducing the
parameter space using a tow-fold strategy: i) the sequence is first divided into groups of
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frames (up to five frames); ii) all the possible tracks are clustered spatially in order to take
advantage of sparsity. To do so, two tracks are considered in the same cluster if they share
a common detection inside their track gates. The computational cost is thus shown to
increase linearly with the image size and frame number. However, in dense spatiotemporal
conditions, even restricted gatings do not always allow for tracks clustering. Increasing
linearly, spatiotemporal density is likely to increase the exponentially computational
complexity.

In order to handle short disappearances, virtual detections are inserted as association
candidates at each time step. All possible tracks cost are estimated with stochastically
filtering. For each cluster, the optimal track set is finally estimated using a linear
programming algorithm. The method is demonstrated to outperform competing methods
in low SNR conditions and sparse scenarios.

9.4.5 Three ad-hoc assignement methods

Other authors proposed original approaches to address the linking cost optimization
problem. These approaches are based on di�erent concepts but produce very satisfying
results in many applications. In this section, we detail three representative algorithms.

In [Winter et al., 2012], the authors proposed a method appropriate for specific
applications such as the tracking of axonal transport presenting a constant speed and no
transient disappearances. The link set L

T

e

,T

e

+1 is optimized on a frame-to-frame basis
but a given temporal window [T

e

, T
e

+ W ] is used to estimate the local velocity. Instead
of using a traditional stochastic filter, costs are assigned to each possible track extension
using a least mean squares estimation of the local speed of each possible tracklet in the
group of frames [T

e

, T
e

+ W ] (Section 9.3.5). Hence, the best track set is selected using a
minimum spanning tree passing by every detection. The link set L

T

e

,T

e

+1 between the
first two frames is finally selected and the process is iterated at time T

e

+1. The minimum
spanning tree algorithm handles e�ciently merging and splitting but gap closing is not
possible and termination can be confounded with merging.

Racine et al. [2006] proposed an ambitious method that optimizes the link set in a
single optimization step. The track set is initialized using a frame-to-frame Nearest
Neighbor procedure. Simulated annealing algorithm is then used to estimate the global
minimum of the objective energy. The method can also handle merging and splitting.
Recently, a extension has been proposed to handle gap closing in the particle tracking
challenge [Chenouard et al., 2014]. Yet, incorporating constant speed or heterogeneous
motion models cannot be implemented in this framework [Racine et al., 2006] so that the
algorithm cannot stray from homogeneous di�usion scenarios. Additionally, no theoretical
and empirical study is provided to characterize the link set estimate convergence toward
the optimal solution. The authors propose to use the method as a starting point for
manual validation by an expert biologist.

In [Magnusson and Jaldén, 2012], the authors aim at optimizing the whole track set
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with a greedy algorithm in a track-by-track fashion. At each iteration, a track is randomly
selected in the graph of physically possible links and added dynamically to the estimated
track set using the Viterbi shortest path algorithm. This track is selected if it increases
the likelihood of the track set, otherwise, it is rejected. If selected, the track is evaluated
and compared with the current track set. In case of conflict, the conflicting track is
removed and re-inserted following the Viterbi principle. The method [Magnusson and
Jaldén, 2012] is spatially greedy while the large majority of methods described above
are temporally greedy as they concatenate spatially optimized link set. As mentioned
by the authors, this method does not reach the global optimum (as it is probably the
case in [Racine et al., 2006]), though it is very e�cient computationally. No specific
dynamical modeling is proposed, though the cost of each added track could be estimated
by stochastic filtering.

9.4.6 Conclusion

Picking a link set optimization scheme largely depends on the data at hand. Noisy
data with unreliable detections (SNR<2) call for probabilistic methods where detection
can be performed on a per-track basis. While testing for a general trend in object
dynamics, global though suboptimal method are also an interesting lead [Racine et al.,
2006]. Otherwise, reliable detection and the need for precision call for a graph-based
optimization on a limited number of frames coupled with a gap closing step. The
computational complexity can then guide the decision toward a bipartite detection
graph-based optimization, or a more complex MHT based algorithm. In the recent
particle tracking challenge [Chenouard et al., 2014] only deterministic methods are
proposed (unlike JPDA or particle filtering) and the authors underline that competing
methods that use several time steps for optimization seem to perform better.

9.5 Estimation of spatial gating parameter
The spatial gating parameter is not only useful to reduce computational complexity, it is
also decisive to handle track terminations. The cost for track termination is generally
defined as [Blackman and House, 1999]:

C
i0 = —(1 ≠ P

D

P
G

) (9.38)

where P
D

denotes the probability of detection, P
G

denotes the probability that this
detection is found into the track gate and — is related to the expected termination rate.
Those parameters are chosen empirically by the user and are not spatially and temporally
adaptive. Accordingly, prior dynamical modeling is the more satisfying solution for track
termination or temporary disappearance detection. Most gating methods are controlled
by the global covariance parameter of prediction errors. The global covariance can
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be either specified by the user [Sergé et al., 2008; Sbalzarini and Koumoutsakos, 2005;
Godinez et al., 2009], trained o�ine from simulations [Magnusson and Jaldén, 2012] or
estimated from data [Racine et al., 2006]. In crowded scene presenting heterogeneous
types of motion, the high probability of false positives due to mis-detections of track
termination requires a locally adaptive search radius. In [Genovesio et al., 2006] and
[Jaqaman et al., 2008], the authors proposed to limit the search radius C based on the
covariance matrix Q

t

that models the process noise of the temporal stochastic filter.
Assuming a normal distribution, the search radius is then based on a p-value [Genovesio
et al., 2006], or an equivalent heuristic [Jaqaman et al., 2008] of the following form:

C = ⁄(2Ht ‚Q
t

H)
1

2 (9.39)

The covariance matrix is derived from Var[z1:t ≠ Hx̄1:t], which performs well for long
tracks that individually present homogeneous behaviors.

In a more marginal note, an isotropic search radius is preferred over an anisotropic
shape in [Jaqaman et al., 2008]. Actually, the mixing of the prediction error in the x, y
and possibly z directions allows for a more robust estimate of the search radius on short
tracks.

As we shall in our experiments, we can improve this estimation algorithm by specifying
a search radius estimator which adapts to motion type switching detection.

9.6 Similarity measure
As shown in Table 9.1, several methods use more than one coordinate to measure the
distance between predictions and measurements. A frequent additional cue is intensity.
For example, let us consider two vesicles moving at di�erent depth and acquired on
the same image by a confocal microscope. On this two-dimensional projection, the two
vesicles might appear very close from each other. As they will present di�erent intensities
on the focal plane, the intensity distance can indeed help lifting the ambiguity. But
intensity can also be a misleading cue. Indeed, the depth of an object can rapidly change
and rapid motion can strongly modify the intensity. Additionally, balancing the di�erent
contributions between spatial and appearance proximity is not an easy task. Intensity
must thus be used with care for specific applications as in [Liang et al., 2010], or to lift
ambiguities on merging detection as in [Jaqaman et al., 2008].

Along the same line, the geometry of the target should be used carefully. The first
reason is that the scale of sub-resolution depends on the optical microscope and cannot
help to discriminate two particles. However, in practice, particle motions have a high
impact on vesicle appearance. In the case of locally constant motion such as microtubule
plus-TIP tracking, geometry becomes an interesting cue (see Figure 9.6), but abrupt
change in dynamical behaviour can strongly modify the shape of the tracked object
(see first row in Figure 9.1.A). One could argue that if shape is not a descriptor for a
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Figure 9.6: Tracking of comet-shaped EB1 protein marking microtubule plus-TIP (courtesy of
the Danuser Lab). In this imaging use-case, object shape is a very valuable cue for tracking.

single spot, it could give a prior for motion estimation. This is true, but spots that
are close to each other and not discriminated by the detector, can also present such an
elongated intensity footprint. In practice, we thus recommend to use shape only for
specific scenarios such as plus-TIPs tracking or axon extremities tracking [Yang et al.,
2012].

A measure of perceivability has also been proposed in the literature. It has been first
introduced by Sergé et al. [2008] to model the probability of blinking of quantum dots. The
blinking probability allows lifting the ambiguity between partially and completely turned
o� particles. This probabilistic representation is also needed because the computational
scheme cannot handle gap closing. In the recent e�ort of Chenouard et al. [2013], the
probability of the perceivability is embedded in a Bayesian framework. As the MHT
method evaluates every possible track combination and every possible gap size in a given
temporal window, tracks that contain a lot of dummy detections could be preferred over
similar tracks that present more consistency. Instead of using an arbitrary set cost for
linking virtual detection, the perceivability measure promotes tracks that are built with
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less dummy variables. The built tracks contain a low number of false detections2 and
present a high consistency.

One should also note the important di�erence between the Euclidean distance and the
Mahalanobis distance defined as:

D
M

(x, y) = (x ≠ y)€�≠1(x ≠ y). (9.40)

The latter is of course appealing when dealing with heterogeneous di�usion constant or
process noise in experimental sequences. Though the use of the Mahalanobis distance
should be restricted to long tracks as covariance mis-estimation could induce important
bias in the resulting distance estimate.

To conclude, the only universal cue for similarity measure in sub-resolution object
tracking is thus the spatial coordinates supported by an accurate modeling of the particle
dynamics. Other cues can also be used e�ciently to handle specific biological problems
[Liang et al., 2010] or to adapt to the specificity of the algorithm [Chenouard et al., 2013].

9.7 Gap closing
A gap is a missing sample in an expected continuous track. Such a gap can be caused by
several factors: transient motions out of the focus plan in confocal or TIRF microscopy,
spot mis-detection due to low-dose imaging and finally transient coalescence of spots
that cannot be discriminated. We recall briefly here the three categories of strategies
used to tackle missing particles in the literature.

The first strategy, introduced by Sbalzarini and Koumoutsakos [2005], consists in
optimizing the link set over multiple frames. Virtual detections are introduced to formally
represent the missing samples in the trajectory. As in [Chenouard et al., 2013], these
methods can only fill short gaps (up to four or five frames).

In the probabilistic framework [Sergé et al., 2008; Smal et al., 2008a,b; Godinez et al.,
2009], the absence of detection inside the track gate does not immediately trigger track
termination. A parameter controlling the particle blinking probability can be iteratively
updated at each time step to make the good decision. Finally, the track is considered
terminated after a fix number of frames without assignment of candidates. Contrary to
the previous method, this approach is not robust to transient false detection in a target
gate.

The third strategy implemented by Jaqaman et al. [2008] and also recommended
by Chenouard et al. [2013] consists in handling gap closing in a post-processing step.
In [Jaqaman et al., 2008], the linear programming algorithm [Jonker and Volgenant,
1987] is re-used using tracklets instead of detections, thus handling the gap closing in

2In this paper the probability of false detection is determined by the user. It can vary in space and time
to take bleaching and intracellular structures into account. One could also use the confidence measure
stemming from spot detector.
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polynomial time. The tracklet extremities are first classified into two motion categories
(directed and Brownian) using an asymmetry metric [Huet et al., 2006], and the motion
parameter (di�usion parameter or speed) are locally re-estimated. This local motion
model determines the probability of the presence of a gap before or after the tracklet.
The gap length also weights down this probability distribution in an empirical fashion.
As in the linking cost optimization step, the u-track algorithm uses a search radius based
on the local motion to gate the parameter space.

9.8 Merging and splitting
There is two sources of merging and splitting events that an algorithm can detect.
Some events are due to biological interactions between molecules or vesicles. Others
are due to the resolution limit of the microscope, when the detector cannot resolve
multiple neighboring particles. The former are detected to quantify a biological process
inside the cell, while the latter must be detected to measure complete tracks. When
detection-induced mergings occur, they are often transient and a gap closing scheme
can be su�cient to links partial trajectories. In the case of biology-induced merging or
splitting, a specific scheme must be designed to evaluate the underlying biology processes.

In the global link set optimization-based methods [Racine et al., 2006; Magnusson and
Jaldén, 2012] merging and splitting are systematically considered along with bi-partite
link without specific cost. In [Smal et al., 2008a; Godinez et al., 2009], particle filter
coalescence is considered to detect merging events. In [Jaqaman et al., 2008; Feng et al.,
2011], events are detected as a post-processing step using position, speed and intensity
of track segment to measure similarities. In cluttered conditions, the metric used to
detect such events will strongly a�ect the detection of track creation and termination.
As a result, using either online or o�ine merge and split detection, it is important to
decorrelate the track estimation step from the merging and splitting detection . It should
be achieved with dedicated parameters and models.

9.9 Conclusion & Table
Based on this review, we analyzed fifteen algorithms and methods. We systematically
classified those algorithms using eight criteria, adding two criteria to the six already
listed and previously detailed (see Table 9.1):

• Dynamics modeling (di�usion, constant speed or heterogeneous transport).
• Optimization algorithms for linking predictions and measurements (linear

programming, ...).
• Temporal windowing for fast optimization.
• Spatial gating for optimal matching (manual, global or local covariance).
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• Similarity measure for correspondence.
• Gap closing for track continuity.
• Merging and splitting for adaptivity.
• Sequential tracking for the on-the-fly analysis.

As the time scale for experiment can be weeks or even months in quantitative biology,
MPT algorithms design should favor quality over computational e�ciency. Online MPT
algorithms are thus not required and o�ine trackers are more appropriate as they exploit
all the data set. However, the computational time must be predictable and be kept
reasonable to allow an optimal parametrization of algorithm. MPT algorithms should
then ideally be designed to bear a linear complexity with respect to frame number, the
track number and the particle spatiotemporal density.
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10 Iterative u-track

Our study shows that state-of-the-art algorithms in the Bayesian framework are able to
model di�usive, active and heterogeneous motions e�ciently. Moreover, thanks to the
use of combinatorial algorithm to handle linking cost optimization, state-of-the-art
algorithms can also tackle scenarios that are made ambiguous by spatiotemporal
density. However, the combination of large apparent displacements, particle density
and unpredictable transitions in transport type (heterogeneity) can severely impact the
tracking performances.

First, heterogeneity requires the ability to accurately detect abrupt changes in the
particle dynamics to lift the ambiguities in dense conditions. However, as explained
in the previous chapter, a stochastic filter cannot estimate the brutal transitions from
Brownian to directed motion resulting in false negatives (see Figure 9.1). Advances in
combinatorial optimization such as MHT based trackers [Chenouard et al., 2013; Liang
et al., 2010] or more global methods [Racine et al., 2006] are valuable since they improve
those results but are yet limited. Indeed, those approaches are independent from the
cost applied to each possible track. Using a di�erent similarity cue (intensity or shape)
is also appropriate to lessen the density in the parameter space but only in some specific
application as explained in the previous chapter. In this chapter, we propose a stochastic
smoothing approach to interacting multiple modeling of dynamics. We can forecast
rapid transitions and estimate the track speed at each time point. Each displacement is
predicted by considering the past and future measurements without using a temporal
window larger than two time points for linking cost optimization.

Secondly, the spontaneous apparition and terminations of trajectories in a dense
environment can generate false positives and negatives (see Figure 8.9 and 9.2).
Accordingly, the search radius gating parameter plays an important role and must
be reactive to adapt the local transport type and possible transition. In our approach,
we exploit the detected motion type to adapt the search radius locally. We also exploit
the iterative characteristic of our method to obtain a convergent estimate for the search
radius.

We build our algorithm over the u-track platform because of its design modularity.
Additionally, it is well designed to handle large number of objects and complex dynamics.
The frame-to-frame linking step is not computationally prohibitive while MHT based
method complexity tends to grow exponentially with density. As the gap closing is
decorrelated from the frame-to-frame optimization, longer gaps can be computed with a
lower impact on computational cost than a single step optimized on a larger temporal
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10 Iterative u-track

window. Finally, the per-track gating estimation approach and multiple motion modeling
makes this tracker attractive for our challenging study.

Finally we assess the performances of our method on synthetic and biological data. In
the controlled framework of simulated data, our method is compared with multiple model
filtering algorithms: IMM-based tracker (similar to [Genovesio et al., 2006]) and u-track
GPB1 implementation [Jaqaman et al., 2008]. We first test heterogeneous scenarios such
as increasing probability of abrupt transitions combined with increasing particle density
or increasing active transport velocity within an heterogeneous track. More general
scenarios are tested such as mixture of trajectories that undergo exclusively free, confined
di�usion or directed motion. We also demonstrate the performances of our method in the
case of directed motions with stationary direction and varying velocities. On biological
data, the challenging vimentin study is successfully analyzed. Furthermore, we highlight
the robustness of our method with respect to acquisition speed reduction in experimental
conditions using fluorescence imaging of viruses.

10.1 Iterative Interacting Multiple Model (IIMM) Method
To improve the detection of abrupt changes from a dynamical regime to an other in a
track, it seems natural to exploit past and future measurements and thus increasing the
amount of information about the dynamics of the quantified trajectory. Concretely, while
a transition from confined di�usion to directed motion (see Figure 9.1) is challenging to
detect in dense conditions, the same transition is much easier to recover in reverse temporal
order (backward tracking) since it becomes a directed to confined Brownian motion (see
Figure 9.2). To exploit this strategy, we first propose an Interacting Multiple Model that
proves su�cient flexibility to detect the less challenging transitions. Additionally one
wants to fuse forward and backward tracking method in order to recover more challenging
transitions. We thus propose an iterative framework that exploits tracking and forward
and backward temporal directions to converge on a single speed estimate by time point
as illustrated in Figure 10.1. The new algorithm is thus an iterative interacting multiple
model smoother (IIMM). This method presents the flexibility of IMM filtering while
keeping the converging ability of the u-track approach to dynamic model.

At each tracking round k + 1, the estimated state posterior p(x
t+1,k+1, z1:T ) is modeled

as a mixture of predictions provided by the last N Kalman filters (see (9.18)) and the
overall posterior estimated at the previous tracking round as:

p(x
t+1,k+1, z1:T ) ¥

ÿ

◊

t+1,k+1

œ�
p(◊

t+1,k+1|z1:t+1)p(x
t+1,k+1|◊

t+1,k+1, z1:t+1) (10.1)

+ p(‚◊
t+1,k

|z
t+1:T )p((2H ≠ I)x

t+1,k

|‚◊
t+1,k

, z
t+1:T )

Similarly to the IMM derivation (see Section 9.3.3.2), and unlike the original u-track
design (see Section 9.3.3.1), the state probability considering a single mode is further
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10.1 Iterative Interacting Multiple Model (IIMM) Method

46 47 48 49

16151413

46 47 48 49

Figure 10.1: Convergence of speed estimation at the time point scale. Red links represent
directed prediction selection, Green links represent Brownian prediction and Yellow represent
prediction stemming from the previous tracking round. A small tracklet motion is easily retrieved
during the first tracking round; it serves as a track initialization for the following track rounds
(scale bar is 0.5 µm, acquisition frequency is 1Hz).
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derived as:

p(x
t+1,k+1|◊

t+1,k+1, z1:t+1) = p(z
t+1|x

t+1,k+1, ◊
t+1,k+1)

p(z
t+1|z1:t, ◊

t+1,k+1) p(x
t+1,k+1|◊

t+1,k+1, z1:t)

= p(z
t+1|x

t+1,k+1, ◊
t+1,k+1)

p(z
t+1|z1:t, ◊

t+1,k+1) (10.2)

◊
⁄

p(x
t+1,k+1|x

t,k+1, ◊
t+1,k+1)p(x

t,k+1|z1:t, ◊
t+1,k+1)dx

t

.

IMM-based methods have been primarily designed to detect slow maneuvers of aircrafts at
high acquisition frequency [Blackman and House, 1999]. Those methods are well designed
for smooth transitions from cruising, modeled by directed motion, and a maneuvering
aircraft, modeled by Brownian motion or a more precise acceleration model. Clearly, the
IMM algorithm reconditions the overall posterior before the next Kalman filtering cycle.
This “mixing” [Blackman and House, 1999] exploits the estimated transition probability
p(◊

t,k+1|◊
t+1,k+1, z1:t) (see (9.28) and (9.29)). The low temporal resolution that can

be used in fluorescence microscopy does not allow the observation of such a smooth
transitions. The switches from motor-mediated motion to local jiggling or Brownian
di�usion is chemically triggered and observed as an instantaneous process. In order to
take into account the abrupt transitions, we propose the following approximation that
does not require the transition probability p(◊

t,k+1|◊
t+1,k+1, z1:t):

p(x
t,k+1|z1:t, ◊

t+1,k+1) ≥ N (‚x
t,k+1; x◊

t+1,k+1

t,k+1 , ‚P◊

t+1,k+1

t,k+1 ) (10.3)

Given (10.3), the integral in (10.2) can be interpreted an update step in the recursive
Kalman filter. We thus simplify the IMM mixing with N independent Kalman filters
updated independently and individually from (‚x◊

t+1,k+1

t,k+1 , ‚P◊

t+1,k+1

t,k+1 ). It follows that the
estimated prior of a given Kalman filter is not influenced by other transport type
probabilities as this is the case in (9.28).

Following (10.1), the filtered state at the current tracking round k + 1 competes with
the state probability filtered by the previous tracking round (‚x‚

◊

t+1,k

t+1,k

, ‚P‚
◊

t+1,k

t+1,k

). At the
temporal update step, only the prediction with the highest likelihood is considered in
the assignment graph to be optimized using the shortest-path algorithm presented in
[Jonker and Volgenant, 1987]. The sensor update is then carried out for each filter upon
the measurement selected by the combinatorial assignment algorithm. The complete
algorithm implementation is summarized in a flowchart in Figure 10.2. This approach
can also be interpreted as an iterative forward-backward filtering-based smoother, as
described in [Fraser and Potter, 1969], applied to IMM filtering.

As in the u-track platform, K = 3 tracking rounds are performed to obtain a converging
estimation of the speed. We thus obtain a converging speed estimation time point by time
point as illustrated in Figure 10.1, instead of speed per track on the former algorithm.
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(x̄‚
◊

t+1,k+1

t+1,k+1 , z
t+1) = argmin

◊

Õœ{1,..N,

‚
◊

t+1,k+1

},

dœD

t+1

||Hx̄◊

Õ
t+1,k+1 ≠ d||

x̄◊

t+1,k+1

t+1,k+1 = F◊

t+1,k+1 ‚x◊

t+1,k+1

t,k+1

’◊
t+1,k+1 œ �

x̄‚
◊

t+1,k

t+1,k+1 = F‚
◊

t+1,k(2H ≠ I)‚x
t,k

Q◊

t+1,k+1

t+1,k+1 P̄◊

t+1,k+1

t+1,k+1

K◊

t+1,k+1

t+1,k+1
‚P◊

t+1,k+1

t+1,k+1‚x◊

t+1,k+1

t+1,k+1

Figure 10.2: Overview of our tracking algorithm at tracking round k + 1. Let Dt+1 be the
detection (measurement) set at time t + 1. For each measurement, the closest prediction x̄‚◊

t+1,k+1
t+1,k+1

is selected by the among predictions made by N Kalman filters at round k + 1 and the estimated
posterior at round k. The graph-based combinatorial algorithm [Jonker and Volgenant, 1987]
estimates the optimal assignment (x̄‚◊

t+1,k+1
t+1,k+1 , zt+1) between the closest prediction and detections

for every track. Once the best measurement is assigned to the track, this measurement is used to
update each Kalman filter variable independently.

In this example, the vimentin undergoes very confined Brownian motion followed by a
sudden motor-mediated motion (experimental results showed that the support of such
displacement are microtubules). Such transitions could not be detected by usual Kalman
filtering without manually extending the search radius, rising the false positive probability
on the whole sequence. Our scheme iteratively estimates the whole direct transition
between two stationary confined di�usion regimes.

10.2 On-line iterative estimation of gating parameter

As discussed in Section 9.5, locally adaptive gating is required in spatiotemporal dense
conditions combined with heterogeneous particle behaviors to accurately detect track
apparitions and terminations. We benefit from the iterative behavior of our algorithm
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10 Iterative u-track

to improve the estimation of the search radius. First, we save memory by adapting the
classic online process noise estimator [Stengel, 1986] to our problem. At each time step,
the parameters (m

t,k

, n
t,k

, M
t,k

) are updated as:

z̄
t+1 = z

t+1 ≠ Hx̄
t+1,k

(10.4)
n

t+1,k

= n
t,k

+ 1 (10.5)

m
t+1,k

= m
t,k

+ z̄
t+1 ≠ m

t,k

n
t+1,k

(10.6)

M
t+1,k

= M
t,k

+ (z̄
t+1 ≠ m

t+1,k

)€(z̄
t+1 ≠ m

t+1,k

) (10.7)

where n
t+1,k

œ N is the number of prediction errors iteratively incremented, m
t+1,k

œ R
is the associated mean and M

t+1,k

œ R is the sum of squares of di�erences from the mean.
The process noise variance is thus given by:

H ‚Q
t+1,k

= M
t+1,k

n
t+1,k

. (10.8)

This method can converge towards a single spatial process noise variance estimation for
the whole track (as demonstrated in Figure 10.3). However, this is not su�cient in our
heterogeneous use case.

The transition from directed to Brownian motion can favor on over-estimation of the
search radius. To adapt to those rapid transitions, we propose to maintain a parameter
set (m0

t,k

, n0
t,k

, M0
t,k

) dedicated to Brownian motion on each track. When a motion type
switch from directed to Brownian displacement is detected by the IIMM, i.e. when the
prediction of the Brownian Kalman filter is the most probable, the triplet (m

t,k

, n
t,k

, M
t,k

)
is reset to (m0

t,k

, n0
t,k

, M0
t,k

). Finally, we exploit the iterative properties of our algorithm
to make the search radius estimation more robust. On track apparition, or when a
prediction from the previous tracking round is selected against the current IMM filter
prediction, we use the noise estimation variable from the previous tracking round:

(m
t,k+1, n

t,k+1, M
t,k+1) = (m

t,k

, n
t,k

, M
t,k

). (10.9)

We thus obtain a process-noise estimate that is adapted to each dynamical sub-regime in
a track. We also avoid a search radius underestimation due to the converging predictions
of our IIMM filter.

10.3 Tracking performances on synthetic data
In this Section we demonstrate the performance of our algorithm on synthetic data in
connection with the vimentin case study, that is the tracking of particles presenting
heterogeneous motion in a dense environment. We show that our algorithm performs
very well compared to competing methods in this specific scenario as well as others, more
homogeneous, dynamics quantification studies.
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10.3 Tracking performances on synthetic data

(a) U-track needs a few frames to calibrate the noise process.

(b) Online iterative cut-o� estimation that exploits backward and
forward tracking to smooth estimates.

Figure 10.3: U-track cut-o� estimation and online iterative estimation on the last forward
tracking round. Red and Blue lines represent the prediction errors in x and y. The Green line
describes the median of absolute deviation scaled by a factor 3; it gives the scale of the prediction
residuals. The Black line is the cut-o� estimated by u-track.
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Figure 10.4: Impact of noise adaptation on linking cut-o� for a single track. In this example,
the low number of data points on the first few frames results in a weak estimate of the search
radius leading to a false positive. Above, the process noise is computed using the iterative online
estimator [Stengel, 1986]. As the method is not locally adaptive, it exploits all the prediction
errors (Red and Blue lines) and repeats the tracking errors during backward tracking. Below, the
process noise is computed using our method. By finally estimating the Kalman Filter process
noise, we provide an accurate end of track time point on the backward tracking. The subsequent
forward tracking does not repeat the previous mistakes (data not shown).
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Figure 10.5: A) Example of track simulation presenting a density of 1 spot/µm2. B) Correct
linking percentage with respect to density and motion type switching probability. Our method
outperform u-track by 15% in the hardest case. C) True positive and false positive ratio on the
same simulation with a density of 3 spots/µm2 comparing our method with u-track, u-track with
an online process noise estimator and an IMM algorithm with forward-backward initialization.

10.3.1 Tracking performances on heterogeneous dynamics in a dense
intracellular environment

This simulated data is mainly described by two parameters: heterogeneity and density.
Heterogeneity is modeled by the probability of having a motion type switching between
confined Brownian and directed displacement at a given time point. Each simulated
track starts with confined Brownian motion with a 2D di�usion coe�cient uniformly
distributed ranging from 0.05 to 2.5 µm/image (0.1 to 4 pixels) and a confinement radius
with a uniform distribution ranging from 0.25 to 1.75 µm (0.5 to 2 pixels). The directed
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(a) 1 spots/µm2 (b) 3 spots/µm2 (c) 5 spots/µm2

Figure 10.6: Display of several simulated densities.

segment speed follows a uniformly random distribution bounded by 0.5 µm/image (10
pixels/image) in a 10 µm by 10 µm image (200◊200 pixels), though the speed value is
fixed for every directed segment. The track length is a realization of a Gaussian variable
L ≥ N (50,20) for every experiment. Each sequence is composed of 500 frames. To control
density, the number of detected objects ranges from 1 to 6 spots/µm2 (see Figure 10.6).
In order to evaluate the motion estimation only, the simulated position is directly used
without the detection step. Those results are thus valid for di�erent types of tracked
objects.

We compared our method with the original u-track algorithm, the u-track algorithm
with additional support for our online gating parameter estimation algorithm and a IMM
algorithm similar to the work of Genovesio et al. [2006]. The IMM we re-implemented
supports a combinatorial optimization scheme and a forward-backward scheme for Kalman
filters initialization to provide a fair comparison. A three dimensional graph illustrates
the impact of both density and heterogeneity in Figure 10.5.B. This Figure shows only the
di�erences between u-track and our method for clarity. Results in Figure 10.5.C highlight
that the superiority of our method increases with motion probability while performances
are similar for confined motion (motion switching probability set to 0). While density
increases, our method faces a 15% drop in performances while other methods can lose up
to 25% percent of correct linking percentage.

Thanks to the process noise variance online estimation scheme, the measured
computational overhead is only 10% in the worst case compared with u-track. It is
negligible compared with the IMM implementation.

10.3.2 Evaluation the gating parameter estimation
We also assess independently the performance of our adaptive gating parameter estimator
on the same simulations. As shown in Figure 10.4, the process noise estimation error is
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Figure 10.7: Process noise estimation error on simulation wrt motion switching probability: 0
means pure Brownian motion, 0.5 means a rate of 50% chances to switch to direct or Brownian
motion. Vesicle density is set to 3 spots/µm2. Our method is compared with process-noise
variance estimation on the whole track up to time t (u-track) and an online and iterative though
non adaptive process noise variance estimation (u-track online process).

dramatically reduced, even when the target maneuver is completely unpredictable due to
motion type switching. One can note that the use of an online variance estimator that
takes advantage of forward-backward tracks has little impact on process noise estimation
error. This shows that our adaptive scheme has a decisive impact on gating parameter
estimation (see Figure 10.7).

10.3.3 Sensibility to transition speed

We tested our algorithm against the amount of unexpected switch in dynamics combined
with density. However, an other interesting challenge is the velocity involved in those
switching. We have been testing, using the same simulations, the robustness of our tracker
with respect to speed of motor-mediated displacement that occurs instantaneously after a
long period of confined displacement. We show in Figure 10.8 that our method outperforms
competing methods in this scenario. The speed varies from 0 to 0.5 µm/image (0 to 10
pixels/image) and the density is set to 3 spots/µm2.
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Figure 10.8: Correct linking and false positive percentage wrt transition speed.
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Figure 10.9: Correct linking and false positive percentage wrt speed switching probability.

10.3.4 Sensibility to speed variation

We have also tested our method on additional simulated cases out of the original scope.
An interesting study is the ability to adapt to speed variation in a single direction.
The multiple intracellular structures in the cell can indeed have a strong impact on
vesicular-mediated transportation; the vesicles move with variable velocities in real data.
To test this scenario, we tested our method on simulated objects moving at varying speed
in a fixed direction chosen randomly. The speed varies from 0.05 to 0.5 µm/image (1 to
10 pixels/image) and the density is set to 3 spots/µm2. In those sequences our method
outperforms u-track by 10%, showing its versatility (see Figure 10.9).
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Figure 10.10: The same simulation scheme used for u-track training has been tested and the
performance of our method (KF iter in this figure) compared with the u-track algorithm. The
probabilities of confined di�usion, free di�usion, directed are 0.5, 0.4 and 0.1 respectively.

10.3.5 Motion type heterogeneity with individual stationarity: non
regression test

We saw in the previous section that our method outperforms IMM-based and GPB1-based
method on trajectories exhibiting non-stationary behavior. To prove that our algorithm
performs well for many case studies, from simple to complex scenarios, we performed a non
regression test using the original training data used to test the u-track algorithm. Those
simulations consist in a mix of confined di�usion (50%), free di�usion (40 %) and direct
motions (10%) with fixed speed and slowly changing directions. The confinement radius
ranges from 0.2 to 2 pixels. The di�usion coe�cient ranges from 0.1 to 4 pixels/image.
The speed ranges is from 4 to 10 pixels/imag. The mean trajectory length is 50 frames.
Each sequence is composed of 500 frames.

10.3.6 Computational time overhead

Finally, we measured the computational time and the relation to density. Experiment
has been carried out with the simulations described in the previous section. As above,
detection is not taken into account. We can see that the complexity grows linearly with
density in both cases. Our approach presents a higher complexity due to the independent
Kalman Filters and the iterative characteristic. However, our online variance estimation
keeps computational complexity overhead to 10%.
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Figure 10.11: Computation time measured on the tracking alone (no detection). Mixture of
confined di�usion (50%), free di�usion (40 %) and direct motions (10%). Computation overhead
is around 10% with respect to u-track. The complexity grows linearly with density.

10.4 Motion quantification results on experimental data
This algorithm has primarily been designed to quantify specific behaviors of intra-cellular
objects that could not be estimated by state-of-the-art algorithms (see Figure 9.1,9.2). In
this Section we present the biological interpretation that can be drawn by the application
of our new algorithm on unit length filament of vimentin dynamics. We also show that
our algorithm is more robust to frame rate reduction, opening the way for a better image
signaling quality while keeping a robust quantification of dynamics.

10.4.1 Detection method

To quantify dynamical process inside the cell, one needs a set of measurements for
estimating object locations. We focus in our experimental results on the detection of
sub-resolved objects (vesicle, viruses ...) that appear as blurred spots in the image. In a
cluttered environment, accurate detection is crucial. False positives can indeed influence
the track termination detection and, on the other hand, too few detections can hinder
motion modeling accuracy. To ensure a high quality of detection, we tested our algorithm
with a state-of-the-art detector, using a recent algorithm proposed by [Aguet et al., 2013]
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10.4 Motion quantification results on experimental data

(see Appendix C for a detailed description). This new spot detector has proven a robust
design and was heavily tested on experimental sequences. We describe this detector for
completeness. This will give the reader an example of a typical and well design detection
framework that combines linear filtering, robust local maxima detection and model fitting
as reviewed in [Smal et al., 2008a].

10.4.2 Vimentin is bound to microtubules
A biological experiment has been performed in the Gelfand Lab to measure the relationship
between vimentin intermediate filament (IF) polymerization with other components of the
cytoskeleton, namely the actin and microtubule networks. A detailed background of this
biological experiment is given Section 8.3. To quantify the interaction between unit length
filament of vimentin and the microtubule network, the cells were treated with nocodazole.
If the hypothesis that vimentin is bound to microtubule is true, control cell should
exhibit few motor-mediated motions and a large number of confined Brownian motions
while the treated cell should present a reduction in the directed motion proportion. As
shown in Figure 10.12, our algorithm allows us to quantify such a tiny di�erence with
a very significant p-value of 0.0088 using a one-sided two-samples t-test. After careful
parametrization, we manage to obtain with u-track a five-fold p-value of 0.045 with the
same test on the same data. Also, Figure 10.13 demonstrate that control cells present
a consistently larger number of large directed motions, the threshold can range from
2 pixels to 10 pixels (max). Those results are in accordance with preliminary studies
published in [Prahlad et al., 1998].

10.4.3 Robustness against acquisition speed reduction
Tracker robustness against low frame-rate is crucial in biological imaging. It allows for a
reduction of the excitation to reduce light inducing damage on the sample and permitting
longer acquisitions. Also for a given illumination dose and acquisition time, a lower
acquisition speed allows a better signal-to-noise ratio. To assess the performance of our
tracker, we used data from a previous experiment on viruses [Burckhardt et al., 2011].
To quantify those motions, new protocols needed to be designed. Those virus required
to be heavily labeled in ordered to obtain a su�cient signal while keeping a very high
acquisition speed. Thanks to the high acquisition frequency (30Hz) of those sequences,
viruses motion estimation is not a hard task. This allows us to consider the original track
as a ground truth and artificially reducing the frame rate to test the robustness of the
tracker. In Figure 10.14, we plot the number of correct tracks versus the decimation
factor. The performances of our tracker reduce linearly while the performances of the
u-track algorithm drop quadratically with a 12% di�erence. Figure 10.4.3 illustrates
those measurements showing that our method can estimate entire tracks with fewer errors
on a 50-fold decimation while u-track is not able to estimate the complete trajectory.
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on the control cell (t-test p-value=0.0088.

Figure 10.12: A. Control cell. B. After nocodazole treatment, the ULF should exhibit a decrease
of its large motions proportion. C. A threshold for detecting large motion is estimated using the
99.9 percentile of the speed estimated. A t-test on the whole experiment gives a p-value of 0.0088.
Imaging with spinning disk confocal microscope. Acquisition speed is set to 1 Hz for a minute.
Scale bar is 1 µm.
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10.4 Motion quantification results on experimental data

Figure 10.13: Evolution of large motion count with large motion threshold for control and
treated cells. This is equivalent to a inverted cumulative histogram for the estimated velocities.
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Figure 10.14: Error rate of u-track and iu-track wrt frame-rate decimation on a virus tracking
experiment [Burckhardt et al., 2011]. Frame-rate is artificially reduced to test the robustness of
our tracker.
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Figure 10.15: Viruses tracking inside the cell [Burckhardt et al., 2011]. Frame-rate is artificially
reduced to test the robustness of our tracker. On this example, we observe that u-track break
point is around a 30-fold decimation while our improvement exhibits a single error at a 30-fold
decimation (longer tracks on the last experiment are due to lower frame rate but represent real
tracks). Imaging with spinning disk confocal microscope. Acquisition speed is set to 30 Hz. Scale
bar is 0.9 µm.
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11 Conclusion

In this work, we have first carried out a review of the multiple particle tracker algorithms
proposed in the literature. We mainly focus on their ability to track heterogeneous
intracellular motions and transports in spatiotemporal dense conditions induced by
acquisition limitations. This problem is interesting because heterogeneous transports
are very wide spread inside the cell. Additionally, limitations in fluorescence microscopy,
spatial density of particles in the cell and potentially large displacements produce
ambiguities in the formation of trajectories. In our review dedicated to this challenging
problem, we put the emphasis on dynamical modeling, more specifically on multiple
dynamical model filtering. In this context, we have proposed a statistical and probabilistic
formulation for the u-track [Jaqaman et al., 2008] multiple dynamical model estimator.
To the best of our knowledge, it is the first time that such a description is proposed
for this algorithm widely used in biology and bio-imaging. This filter is very similar to
the Generalized Pseudo Bayesian of order 1, which was not clear in the literature. Also,
we put it in perspective with the well known Interacting Multiple Modeling [Blom and
Bar-Shalom, 1988]. Based on this review, we showed that no multiple particle tracking
algorithm is designed to retrieve unpredictable transition from Brownian to large directed
displacements. Recent advances in multiple particle tracking such as MHT [Reid, 1979;
Chenouard et al., 2013] recommend to exploit several frames and time points for tracking,
but no solution is given to identify rapid transitions in motion types.

Based on this analysis, we have proposed an iterative interacting multiple model
smoother that tracks particles in forward and backward directions until convergence of
the local speed estimates. This method retrieves abrupt switches in the particle behavior
that an usual temporal filter cannot forecast. We have also proposed a new adaptive
search radius to improve gating of possible assignments and to better detect terminations
in cluttered environment. Our method has been evaluated on simulated data and is
demonstrated to outperform previous filters based on multiple modeling in heterogeneous
and dense conditions. Simulations also show that our algorithm outperforms those
competing methods on non-heterogeneous scenarios such as particles exhibiting varying
velocities. On experimental sequences, our method identifies very small di�erences in
vimentin heterogeneous dynamics with a better statistical significance than u-track. We
also shown that our tracker is more robust toward low acquisition frame-rate. Those
results could pave the way to longer quantification experiment in bio-imaging that has
been previously been prevented by photo-damages and limitations of tracking algorithms.

Future works in the tracking area will be two-fold. We will first focus on application
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11 Conclusion

to a wider range of problematics. Numerous collaborations and exciting challenges
requiring object tracking are envisaged in the Danuser lab. We also hope that the
expertise developed in tracking would make possible the collaborative design of motion
quantification experiments with microscopists and biologists. A possible project is to
optimize the quality of trajectories with minimal photo-damages. The second focus will
be on methodological issues. In the short-term, we plan to investigate more the influence
of iteration on speed and trajectory accuracy. If the advantages of this technique has
been visually assessed, we did not analyse the actual role of iteration in the work. In
the mid-term, the use of our IIMM smoother in the context of MHT is a very appealing
approach. Short gaps could be then e�ciently filled using our iterative scheme.
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C Particle detection in experimental
conditions

C.1 Modeling

In the work of Aguet et al. [2013], the image model M(x) on position x œ � (pixel grid)
of a particle is:

M(x, A, ‡, µ, C) = AG
‡,µ

(x) + C + ›(x) (C.1)

where A œ R+ is the spot amplitude, G
‡,µ

(·) is a Gaussian function with standard
deviation ‡ and mean µ that approximates the microscope PSF and ›(x) ≥ N (0, ‡

r

) with
‡

r

œ R+ denotes the standard deviation of the read-out noise. The scale ‡ that describes
the Gaussian function is a characteristic of the acquisition setup and thus constant
throughout the whole image. This precise model allows particle location estimation using
least-square-based single or mixture model fitting. The main challenge addressed by the
authors is the localization of the candidate positions for spot fitting.

C.2 Significant local maxima detection

A classic approach to detect probable locii for particle is to determine the local maxima
on a filtered image [Smal et al., 2010]. The filter (e.g. Laplacian-of-Gaussian filtering)
reduces noise and enhances object of interest. An issue is that all noise-induced signal
variation that have been blurred out by the filter, can also result in a local maxima.
One could perform a statistical test on least squares fitted residuals individually for
each local maxima, but this is computationally ine�cient at best and often untractable.
To solve this problem, Aguet et al. [2013] proposed to estimate the amplitude A and
background level C for each pixel and then test for the statistical significance of those
estimation for each pixel on the whole image. The authors show that this is possible using
simple linear filtering of the image, provided that the standard deviation ‡ is known (or
estimated o�-line as detailed Section C.4). This lightweight filtering process alleviates
the computational constraint while still testing every single pixel on the image for the
presence of a particle.

Let us consider an objective function f(A, C) to be minimized at each location x0 œ �
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C.2 Significant local maxima detection

on the pixel grid �:

f(A, C) =
ÿ

xœW

(AG
‡,0(x) + C ≠ I(x0 ≠ x))2, ’x0 œ � (C.2)

where W of size 8 ◊ ‡ is a spatial window centered on zero. By di�erentiation, we have:
Y
____]

____[

ˆf

ˆA
(A, C) =

ÿ

xœW

2G
‡,0(x)(AG

‡,0(x) + C ≠ I(x0 ≠ x)) = 0

ˆf

ˆC
(A, C) =

ÿ

xœW

2(AG
‡,0(x) + C ≠ I(x0 ≠ x)) = 0

’x0 œ � (C.3)

which finally yields an estimate for the amplitude ‚A(x0) and the background level ‚C(x0):
Y
____]

____[

‚A(x0) = (I ú G
‡,0)(x0) ≠ G

‡,0(I ú 1
W

)(x0)
nG2

‡,0 ≠ nG
‡,0

2 ,

‚C(x0) = (I ú 1
W

)(x0) ≠ nG
‡,0 ‚A(x0)

n

(C.4)

where G
‡,0 is the Gaussian kernel of size 8 ◊ ‡ and G

‡,0 the mean value, n is the number
of pixels in W and 1

W

is a summation filter over W .
To determine if the amplitude ‚A(x0) stems from a particle, Aguet et al. [2013] proposed

to test for the statistical significance of the estimated amplitude with respect to the
background local variations. First, a local threshold that discriminate non-significant
amplitudes is estimated based on the local background noise variance. Secondly, a t-test
is carried out to assert which amplitudes are significantly below the given local threshold.
The background variance ‡2

r

is estimated using the estimated residuals1:

‚‡2
r

=
q

xœW

( ‚AG
‡,0(x) + ‚C ≠ I(x0 ≠ x))2

n ≠ 1 (C.5)

which can also be interpreted as a linear filtering over the whole image. Thanks to the
normal assumption ›(x) ≥ N (0, ‡

r

), one can measure the probability that a realization
of the background is above a given threshold T using the Gauss error-function:

– = 1
2

3
1 ≠ erf

3
TÔ
2‡

r

44
. (C.6)

By fixing the p-value – that describes the desired sensitivity of the detector, we obtain a
local threshold estimate defined as:

T =
Ô

2‡
r

erf≠1(1 ≠ 2–) (C.7)
1As one can note, this equation is slightly di�erent from the proposed formula in [Aguet et al., 2013]

and the associated code. Further discussions with the authors ruled the latter a mistake that has
little consequence on the rest of the derivation and results validity.
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Figure C.1: One dimensional illustration of ‡r (black), ‡A (in blue) and ‡T (in red) and t-test
that assert the statistical significance of the estimated amplitude (illustration courtesy of François
Aguet).

A low p-value (e.g. – = 0.01) thus results in a high threshold and a high rejection rate of
amplitude induced by noise or weaker signal. Once this threshold has been estimated,
the uncertainty on ‚A is exploited to test for the statistical significance of the hypothesis
H0 : ‚A Æ T using a t-test. The unbiased estimator for ‡

A

assuming A ≥ N ( ‚A, ‡
A

) and
C ≥ N ( ‚C, ‡

C

) gives:

‡
A

=
ı̂ıÙ

q
xœw

( ‚AG
‡,0(x) + ‚C ≠ I(x0 ≠ x))2

n ≠ 3
ÿ

xœW

G
‡,0(x)2 (C.8)

and the standard error ‡
t

for the threshold T is approximated by:

‡
T

¥ ‡
r

(n ≠ 1)
erf≠1(1 ≠ 2–). (C.9)

As a clear illustration of the physical meaning of ‡
r

, ‡
A

and ‡
T

has been proposed in
[Aguet et al., 2013]. We reproduce the illustration for sake of clarity in Figure C.1. We
can thus calculate the one-sided, two sample t-test statistic:

t =
‚A ≠ T

Ò
‡

2

A

+‡

2

T

n

(C.10)

Finally, for the whole image, the comparison tcdf(t) Æ – where tcdf denote the
Student’s cumulative distribution gives a mask of significance for each pixel as illustrated
in Figure C.2.

C.3 Model fitting
For each local maxima on the Laplacian-of-Gaussian filtered image that coincide with the
mask of significance of a 2D Gaussian model or Gaussian mixture is fitted to estimate
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C.4 PSF scale estimation

Input image Significant local maxima
Localization of

significant signals

Mask of significant pixels

Laplacian-of-gaussian filtered

Figure C.2: Detection workflow as described in [Aguet et al., 2013].

(A, µ, C, ‡)t on a sub-resolved level. This estimation is carried out solving a non linear
least square problem thanks to the Levenberg–Marquardt algorithm provided by the
GSL.The t-test described above is performed again to test for other spurious detections
after the first pixel-resolved approximation. If a mixture of Gaussian is used, a similar
F-test is carried out to check the most significant number of modes. As u-track handles
well merging and splitting thanks to its dedicated post-processing step and similarity
cost, we stick to single Gaussian fitting estimation and thus select false positive to a
minimum.

C.4 PSF scale estimation

The standard deviation ‡ characteristic of the 2D Gaussian PSF is estimated as a
pre-processing step. The detection algorithm above is applied using a rough approximation
‡0 (which is a constant set to ‡0 = 1.5 pixel). Using Gaussian mixture modeling on the
distribution of estimated ‡, we select the PSF scale as the most probable mode.
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12 General conclusion

The dynamic and heterogeneity inherent to every bio-physical process is now observable
thanks to time-lapse fluorescence microscopy techniques. Quantitative microscopy consists
in the measurement of those complex phenotypes. The challenges faced by quantitative
biology originate from the instrumentation as much as on the phenotypes under study.
In this manuscript, we have presented two projects that attempt to tackle some of those
challenges by modeling those phenomena and estimating the parameters that control
them.

Our first contribution opens the way to the measurement of fluorescent lifetime
on dynamical structures in vivo. Frequency domain FLIM (FD FLIM) is arguably
the most suitable technique for fluorescence lifetime imaging on living cell. However,
transient intracellular motions can still happen during acquisition. The conventional
Fourier transform, widely used for lifetime estimation with this technology, does not take
those motions into account, neither it adapts to the specific noise footprint of the FD
FLIM measurement. We have thus presented a dedicated signal processing method that
reconstructs the fluorescein lifetime map corrupted by instrumental noise and intracellular
motions in FD FLIM. Potentially low intensities in FD FLIM measurements require
the use an Intensified CCD. While this technology enables the detection of very low
photon counts, it also induces a very specific noise footprint. A thorough study of
the noise variance model induced by the ICCD was first carried out to harness the
strong heteroscedasticity that present FD FLIM measurements. Further analyses have
shown that a model correction is needed to cope with optical aberrations in the ICCD.
The noise model and the estimation of the associated parameter is first applied to
the estimation of fluorescence lifetime. The performances of our noise variance model
are further demonstrated using the well-known Wiener filter and a new patch-based
algorithm for denoising images. This study is also relevant in other fields were the ICCD
is exploited (military, astronomy). We then introduce a fluorescence lifetime estimation
method for moving endosomes in the cell. For each particle detected in the FD FLIM
measurement, the lifetime and motion parameters are jointly estimated locally in an
iterative and alternative fashion. As the lifetime parameters control sinusoidal variation
of the intensity, we use this intensity model to further improve motion compensation.
On experimental sequences, endosome localization error is shown to be reduced by this
modeling. The localization error is shown to be lower than a wide-spread wavelet-based
detection method. The proposed methods are fully automatic and need only minimal
and non-critical parametrization.
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12 General conclusion

Our second contribution pushes the envelope in intracellular dynamics quantification.
The second part of this manuscript describes our contribution to the tracking of multiple
particles presenting heterogeneous transports in dense conditions. We focus here on
unpredictable transitions between di�erent types of transportation in a single trajectory.
A frequent intracellular scenario with this property is the switching between confined
di�usion in the cytosol and motor-mediated active transport in random directions. We
first propose a review of the tracking methods proposed in the literature for sub-resolved
particle tracking with an emphasis on motion heterogeneity and density. We show that
those algorithms are not designed to retrieve unpredictable transitions between Brownian
and directed displacements. We propose in this manuscript a study and a classification of
the related works in this area. Our contribution is the description of the u-track algorithm
in the adapted Bayesian framework. While this software is widely used in quantitative
biology for its robustness and performances, the detail of the dynamical modeling has
not been disclosed. To allow for an objective comparison of the di�erent approaches
for multiple dynamics filtering, we show here that the u-track algorithm is similar to
a Generalized Pseudo Bayesian of order 1. We also present the implementation details
that explain the observed experimental behavior in u-track and competing methods.
After the conclusion we draw, we have proposed two adaptations to improve the tracking
of heterogeneous types of motion in dense conditions. We first introduced an iterative
interacting multiple model smoother. In a nutshell, this methods fuses forward and
backward tracking to improve the detection of abrupt transitions between di�using and
directed motion. Upon this improvement, we proposed a locally adaptive estimator for
the tracker search radius. Our approach has been tested on simulations. We show that
our method outperforms competing methods in the targeted scenario, but also on more
homogeneous types of dynamics challenged by density. On experimental sequences, we
manage to quantify the rare switching between confined di�usion and motor-mediated
dynamics of unit length filament of vimentin. We also highlight the resistance of our
method toward a reduction in temporal resolution.

Those contributions lie at the heart of the on-going e�ort by the community in signal
processing and computer vision in quantitative fluorescence microscopy: on the one hand
the modeling and correction of the instrumental impact, on the other hand the modeling
and quantification of cellular phenotypes.

As detailed in the conclusion of each part, both methods can be further improved.
However the short-term e�ort is focused on the application to biological problematics.
In FD FLIM we planned additional experiments to further probe the spatiotemporal
localization of a receptor interaction with its kinase. The long-term goal of this experiment
is to measure fluorescence lifetime on a longer time scale in order to measure the evolution
of the local FRET e�ciency during the whole endocytic process. To handle complex or
large motions that could happen in between FD FLIM acquisitions, our new tracking
algorithm could be used. Also, our e�ort on multiple particle tracking will be directly
exploited at the beginning of my upcoming post-doc to measure abortion rates in clathrin
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mediated endocytosis. As the multiple particle tracking has been shown to improve
u-track performances on u-track training data, this method will be widely available
through a new release of the u-track algorithm.

I am now convinced by the essential place of the computational expert in modern biology.
The collaboration between the di�erent expertise in bio-chemistry, microscopy and data
analysis pave the way to the advent of ambitious techniques that inject the model very
early in the experimental process (in speckle microscopy the modeling is taken into account
from the fluorescent tagging step). This configuration allows pushing the boundaries
on the quantity and quality of the data extracted from living cells. The development
of data processing methods in synchronization with the biological problematic at stake
is beneficial for the biologist community as well as the computational community. It
ensures the quality and completeness of the data. It ensures fast feedback and e�ciency
of e�orts. It encourages the design of robust and flexible computation methods that can
have a large impact in other fields. It proposes extremely interesting challenges, a large
part of which remains to be explored.
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