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Résumé en français

1 Introduction au flot optique

La mise en correspondance d’images est une composante essentielle de la vision par
ordinateur. Elle permet d’enrichir l’interprétation de l’information parfois ambigüe
contenue dans une image unique. Par exemple, la mise en correspondance de plusieurs
points de vue sur une même scène permet d’accéder à une mesure de profondeur et
à la structure tri-dimensionnelle de l’espace observé. L’étude de la variabilité entre
images de même type acquises dans des conditions différentes est à la base d’un grand
nombre de tâches d’interprétation ou de classification, par exemple dans un contexte de
diagnostique médical ou de classification de couverts végétaux en imagerie satellitaire.
Quand l’ensemble d’images étudié correspond à séquence temporelle, c’est l’information de
mouvement qui peut être extraite. Le principe commun à tous ces cas est donc la recherche
de transformations spatiales permettant de caractériser les différences d’une image à une
autre. Tous ces domaines applicatifs ont en commun un grand nombre de problématiques
méthodologiques. Cette thèse traite du problème de la mise en correspondance d’images
sous l’angle de l’estimation du mouvement.

Le mouvement dans une séquence d’images peut être abordé de plusieurs façons. Il est
implicitement présent dans des opérations de détection de changements photométriques ou
de suppression de flou de bougé. Quand il est explicitement estimé, le contenu dynamique
d’une séquence peut être soit résumé par un ensemble de trajectoires d’objets d’intérêt
pour une application donnée (véhicules, personnes, cellules. . . ), soit défini localement
par le déplacement de chaque pixel. Cette dernière représentation de mouvement est
dénommée flot optique.
Comme beaucoup de problèmes de traitement d’image, l’estimation du flot optique

peut être formulée comme un problème inverse mal posé, dont la mesure d’adéquation
aux données produit un système d’équations sous contraintes insuffisant pour garantir
l’unicité de la solution. Formellement, soit deux images successives I1, I2 : Ω → R, où
Ω désigne le domaine de l’image, et w : Ω → R2 le champ de déplacement recherché,
l’équation de conservation de l’intensité au cours du temps est de la forme suivante:

I2(x+ w(x))− I1(x) = 0, (0.1)
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où x ∈ Ω désigne un point de l’image. Sous l’hypothèse de petits déplacements, sa forme
linéarisée peut être obtenue:

∂I

∂t
(x) +∇I(x)>w = 0. (0.2)

Cette équation seule ne donne néanmoins accès qu’à la composante parallèle au gradient de
l’image de w; le gradient ∇I doit par ailleurs être non nul. Cette sous-détermination peut
être surmontée par une contrainte supplémentaire reflétant une hypothèse a priori sur la
forme du champ de déplacement. Les deux grandes familles d’approches se distinguent
par l’etendue locale ou globale de cette contrainte.

L’équation de conservation linéarisée 0.2 étant obtenue par développement de Taylor, son
domaine de validité se limite à des déplacements de faible amplitude. Nous mentionnons
d’emblée que les schémas d’estimation multi-résolution sont devenus l’approche standard
pour surmonter cette difficulté. Les estimations à des résolutions grossières sont propagées
incrémentalement aux résolutions les plus fines. Le principal effet indésirable de cette
technique est le lissage des petits objets à grands déplacements. Résoudre ce problème
fut un sujet de recherche très actif ces dernières années. Une solution efficace consiste
à intégrer des techniques de mise en correspondance de plusieurs descripteurs dans des
schémas d’estimation plus vastes [Brox and Malik, 2011; Weinzaepfel et al., 2013; Xu
et al., 2012b; Chen et al., 2013]. Nous préconisons également une mise en correspondance
en Section 3.

2 Approches locale et globale pour le calcul du flot optique

Nous résumons dans cette section les principaux axes méthodologiques structurant les
méthodes existantes. Nous portons notre attention sur les limites de ces techniques et les
points sur lesquels portent les contributions présentées dans les sections suivantes. Nous
considérons trois éléments essentiels qui permettent de caractériser les méthodes de calcul
du flot optique: le modèle de données, la paramétrisation locale et la régularisation globale.
Nous présentons égalment une première contribution sous forme d’étude préliminaire sur
la combinaison des approches locale et globale. Nous nous basons sur la méthode de
Bruhn et al. [2005] et proposons une adaptation spatialle du filtrage du terme de données.

2.1 Modèle de données

L’équation de conservation de l’intensité permet de construire un potentiel de données
ρdata de la forme:

ρdata(x, I1, I2,w) = φ(I2(x+ w(x))− I1(x)), (0.3)
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où φ(·) est une fonction de pénalisation. Le choix de φ(·) est déterminé par la nature de la
distribution des erreurs liées la contrainte de conservation. Dans certains cas, l’hypothèse
statistique sous-jacente peut se révéler insuffisante et c’est la contrainte elle-même qui
doit être adaptée.

Dans ce cas, une première approche consiste à élaborer des descripteurs aux propriétés
de conservation plus générales que la simple intensité. L’invariance à différents types de
changements d’illumination peut ainsi être obtenue en considérant le gradient de l’image
[Uras et al., 1988; Brox et al., 2004], la composante texturée de l’image [Wedel et al.,
2009b], différentes combinaisons d’espaces de couleurs [Mileva et al., 2007], des mesures de
corrélation [Werlberger et al., 2010; Drulea and Nedevschi, 2013] ou encore la transformée
de Census [Ranftl et al., 2012; Hafner et al., 2013]. L’efficacité de ces descripteurs est
néanmoins souvent limitée à un nombre restreint de situations. Dans ce contexte, la
sélection ou la combinaison locale optimale de plusieurs descripteurs a fait l’objet de
recherches récentes [Xu et al., 2012b; Kim et al., 2013].
L’autre approche consiste à modifier explicitement l’équation de conservation de

l’intensité via un terme d’erreur e(x, I1, I2, ξ) paramétré par un vecteur inconnu ξ:

ρdata(x, I1, I2,w) = φ(I2(x+ w(x))− I1(x)− e(x, I1, I2, ξ)). (0.4)

Le modèle général de Negahdaripour [1998] prend en compte les erreurs additive et
multiplicative englobant un grand nombre de phénomènes de changement d’illumination
possible. Ce modèle a été adopté avec quelques adaptations dans [Odobez and Bouthemy,
1995; Chambolle and Pock, 2011; Papadakis et al., 2013; Zach et al., 2008; Kim et al.,
2005], sans pourtant jamais atteindre de résultats globaux complètement satisfaisants.
Ceci s’explique en partie par la difficulté d’optimisation posée par l’estimation jointe,
souvent menée de manière alternée, des deux variables w et ξ. La fonction g(·) peut aussi
être spécifiée pour répondre à des besoins applicatifs précis, sur la base de considérations
physiques [Haussecker and Fleet, 2001].

Nous revisitons cette approche dans la Section 4.1 en nous affranchissant de ce problème
de minimisation alternée.

2.2 Paramétrisation locale

Comme évoqué en introduction, le modèle de données doit être intégré dans un schéma
d’estimation qui tire profit du contexte spatial. Une classe de méthodes dites locales,
s’appuie sur une modélisation paramétrique simple du champ de déplacement dans un
certain voisinage R ∈ Ω. Le champ wθ : R → R2 est alors entièrement déterminé par le
vecteur de paramètres θ, et l’énergie à minimiser est la somme des potentiels de données
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sur le support R, éventuellement pondérée par une fonction g(x):

θ̂ = arg min
θ

∑
x∈R

g(x) ρdata(x, I1, I2,wθ). (0.5)

Les modèles polynomiaux (e.g. constant, affine ou quadratique) sont une bonne
approximation de la projection dans le plan 2D de mouvements simples d’objets individuels
dans l’espace 3D. Ils sont les plus utilisés en pratique. Leur domaine de validité est
donc restreint aux zones de mouvement cohérent, sans discontinuité de mouvement. La
principale difficulté des approches locales est de déterminer les domaines R d’estimation
appropriés.

L’approche la plus simple est celle de [Lucas and Kanade, 1981]. On considère des régions
de forme et de taille fixes centrés en chaque pixel; l’estimation résultante ne concerne
que le pixel central de chaque région. Les régions ainsi définies sont sous-optimales car
susceptibles de se positionner soit au niveau d’une discontinuité de mouvement, invalidant
le modèle polynomial, soit dans une zone homogène sans gradient de l’image, rendant
impossible toute estimation fiable utilisant (0.2). Les tentatives d’estimation de la taille
des voisinages [Maurizot et al., 1995; Senst et al., 2012] ou de leurs positions [Jodoin
and Mignotte, 2009] n’ont jamais produit de résultats compétitifs sur les bases de vidéos
d’évaluation les plus récentes.

Les régions optimales correspondraient davantage à une partition de l’image au sens
du mouvement. Les approches conçues pour atteindre cet objectif sont nombreuses et
peuvent être classées en deux catégories. Une première catégorie de méthodes repose sur
une segmentation préalable de l’image et essaie d’ajuster un mouvement paramétrique
sur chaque région [Xu et al., 2008; Black and Jepson, 1996; Bleyer et al., 2006], avec
l’aide éventuelle d’une estimation variationnelle globale indépendante. L’inconvénient de
cette approche vient de la sur-segmentation du mouvement induite par la segmentation
au sens de l’intensité de l’image. La seconde catégorie de méthodes estime conjointement
les supports des régions et leur modèles de mouvement associés, [Bouthemy and François,
1993; Cremers and Soatto, 2005; Memin and Perez, 2002; Odobez and Bouthemy, 1998;
Sun et al., 2012; Unger et al., 2012]. L’énergie globale à minimiser est cependant
sévèrement non convexe et l’optimisation doit faire face à un grand nombre de minima
locaux. Pour un nombre de régions élevé, l’estimation ne peut en pratique pas s’écarter
drastiquement de son initialisation, en général obtenue à l’aide des méthodes globales
déjà très performantes [Sun et al., 2012; Unger et al., 2012].

Nous proposons dans la Section 3 un schéma d’agrégation sélectionnant implicitement
le meilleur voisinage pour une estimation polynomiale sans étape de segmentation.
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2.3 Régularisation globale

L’approche globale repose sur le choix d’un potentiel ρreg(x,w) de régularisation explicite.
Formellement, il s’agit de minimiser une fonctionnelle d’énergie de la forme:

Eglobal(w) =
∫

Ω
ρdata(x, I1, I2,w) + λ ρreg(x,w)dx (0.6)

où λ ∈ R est un coefficient de pondération qui équilibre les deux potentiels ρdata et ρreg.
Le terme de régularisation impose un lissage du champ de déplacement en pénalisant

ses variations spatiales et parfois temporelles. La difficulté est d’obtenir un lissage par
morceaux propageant le flot dans les zones cohérentes tout en préservant les discontinuités
de mouvement. La pénalisation quadratique du gradient de w dans la formulation initiale
de [Horn and Schunck, 1981] conduit à une énergie convexe et dérivable pour laquelle
un minimum global peut être atteint. Cependant, cette modélisation quadratique induit
un sur-lissage et ne respecte pas les discontinuités de mouvement. Un grand nombre de
fonctions robustes ont été proposées par la suite pour contourner cette difficulté. Parmi
celles-ci, la Variation Totale (TV) présente l’avantage d’être convexe et de préserver les
discontinuités spatiales et temporelles dans un grand nombre de cas. De nombreuses
variantes de ce modèle de base ont été conçues par la suite [Trobin et al., 2008a; Bredies
et al., 2010; Wedel et al., 2009b; Xu et al., 2012b; Zimmer et al., 2011; Werlberger et al.,
2010; Sun et al., 2010a; Nagel, 1990; Volz et al., 2011].

La grande flexibilité des méthodes de régularisation se heurte néanmoins à des difficultés
d’optimisation dès que les modèles d’énergie deviennent trop complexes. Les méthodes
de minimisation continue sont le plus souvent basées sur la résolution des équations
d’Euler-Lagrange [Brox et al., 2004], des approches de division proximales [Chambolle
and Pock, 2011] ou une discrétisation anticipée de l’énergie [Sun et al., 2010a]. Dans tous
les cas, dérivabilité et convexité de l’énergie sont requises pour assurer la convergence
globale. Les modèles les plus performants pour l’estimation du flot optique ne remplissent
cependant pas toutes ces conditions. Des compromis doivent être trouvés et des stratégies
doivent être élaborées pour garantir un bon minimum local à l’aide de techniques itératives
comme la non-convexité graduelle [Sun et al., 2014] ou des stratégies de points fixes [Brox
et al., 2004], ou en procédant par relaxation convexe de l’énergie [Werlberger et al., 2010;
Unger et al., 2012].

Une alternative aux méthodes variationnelles est le recours aux méthodes d’optimisation
discrète.Un des avantages de l’optimisation discrète est qu’elle ne requiert pas de calcul de
dérivation de l’énergie et autorise donc une plus grande variété de termes de données et
de régularisation. En contrepartie, un équilibre doit être trouvé entre bonne précision de
la discrétisation de l’espace des vecteurs de mouvement et un coût de calcul raisonnable.
Une discrétisation de l’espace 2D des vecteurs de déplacement étant incapable de résoudre
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ce dilemme, des stratégies alternatives ont été développées: contraintes sur les espaces de
recherche [Mozerov, 2013], fusion des estimations globales continues [Lempitsky et al.,
2010], raffinement itératif de l’espace de recherche [Glocker et al., 2008]. Dans cette thèse,
nous proposons d’adopter une nouvelle approche générant un ensemble fini d’estimations
locales continues paramétriques.

2.4 Filtrage adaptatif du terme de données

Nous présentons dans cette section une étude préliminaire conçue comme une première
tentative de combinaison des approches locales et globales. Notre contribution s’appuie sur
le travail de [Bruhn et al., 2005], qui intègre l’énergie des méthodes locales (0.5) dans un
schéma de régularisation global, par filtrage Gaussien du potentiel de données. Le filtrage
Gaussien est approprié pour réduire l’influence du bruit dans l’estimation. Cependant,
il a pour effet indésirable de lisser exagérément les discontinuités de mouvement si le
support de filtrage coïncide avec une composition de mouvements multiples.

Nous proposons de considérer un champ de déviations standard σ : Ω → R plutôt
qu’une valeur unique pour toute l’image. Notre première contribution est un modèle qui
s’inspire de l’énergie de [Bruhn et al., 2005] en incluant un terme de pénalisation portant
sur le module du gradient de σ. L’optimisation de l’énergie globale suivante est menée
conjointement par rapport au champ w et à la déviation standard σ du filtre Gaussien:

E(w, σ) =
∫

Ω
φ

(
kσ ∗

(
∂I

∂t
(x) +∇I(x)>w(x)

)2)
+ λ

∫
Ω
φ(‖∇w(x)‖2) dx (0.7)

+ β

∫
Ω
φ(‖∇σ(x)‖2) dx.

On note kσ le filtre Gaussien, ∗ l’opération de convolution, et λ et β sont des coefficients
pondérant les différents termes. Les premiers résultats mettent en évidence une
amélioration significative apportée par notre adaptation de σ vis à vis de la méthode de
[Bruhn et al., 2005]. Les résultats restent cependant légèrement inférieurs à ceux obtenus
en fixant σ = 0. En effet nous considérons dans cette étude un lissage isotrope, qui ne
permet pas de respecter complètement les discontinuités. Une extension anisotrope de
notre modèle est possible et fera l’objet de travaux futurs pour améliorer les premiers
résultats.

Nous avons exploré dans un second temps un terme de données différent de celui de
(0.7). Nous intégrons dans (0.7) une équation de conservation faisant intervenir une
mesure d’incertitude de l’estimation sur le support de filtrage, dérivée des travaux de
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[Corpetti and Mémin, 2012]. Nous obtenons l’énergie

E(w, σ(x)) =
∫

Ω
φ

kσ(x) ∗
(
It + Ix1u(x) + Ix2v(x) + σ2∆I

2

)2
 dx

+ λ

∫
Ω
φ(|∇w(x)|2)dx+ β

∫
Ω
φ(|σ(x)|2), (0.8)

qui diffère de (0.7) par le terme supplémentaire σ2∆I/2 dans le terme de données,
dérivé de la modélisation de l’incertitude locale du mouvement. Le support de filtrage
estimé tend alors à minimiser cette incertitude. Cette formulation pose des problèmes
d’implémentation qui ont empêché pour le moment son évaluation quantitative poussée.

3 Agrégation de candidats paramétriques locaux et
gestion des occultations par recherche d’exemples

Dans cette section, nous proposons une méthode originale d’estimation du flot optique
visant à répondre aux problèmes exposés précédemment. Notre approche comprend deux
étapes. La première opère au niveau local, en réalisant des estimations paramétriques
du mouvement sur une distribution de patches (fenêtres carrées de pixels) afin d’établir
une liste de candidats de mouvement pour chaque pixel. Les candidats sont agrégés dans
une deuxième étape en sélectionnant le meilleur candidat par optimisation d’une énergie
globale.
Le problème de la détection des occultations et de l’estimation du mouvement dans

les zones occultées est traité coopérativement au niveau des deux étapes de la méthode.
La détection des zones occultées à l’étape d’agrégation exploite une carte de confiance
estimée au niveau local dans la première étape. Un modèle d’estimation conjointe du
mouvement et des occultations est proposé dans l’étape d’agrégation,. Un terme de
parcimonie guidé par la mesure de confiance est notamment proposé. Le problème de
l’estimation de mouvement dans les zones d’occultation est résolue en mettant en oeuvre
une stratégie de recherche d’exemples générique, potentiellement applicable à d’autres
approches d’estimation du flot optique.

3.1 Candidats locaux et mesure de confiance dans les zones
d’occultation

3.1.1 Candidats de mouvement paramétrique

Notre approche locale se base sur une décomposition de l’image I1 en patches de différentes
tailles se recouvrant. Cet ensemble de patches PS,α est paramétré par l’ensemble des
tailles de patch S et par le taux de recouvrement α ∈ [0, 1] indiquant la proportion de
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surface partagée par des patches voisins. Le mouvement est estimé indépendamment sur
chaque patch selon la procédure en deux étapes suivante:

1. Mise en correspondance de patches:
A chaque patch P1 ∈ PS,α, nous associons un ensembleMN (P1) de N patches dans
l’image I2 les plus similaires à P1. Pour chaque paire de patches P1,2 = (P1, P2)
avec P2 ∈MN (P1), nous obtenons un vecteur de translation wP1,2 ∈ Z2 déplaçant
P1 en P2.

2. Raffinement par estimation affine:
Les déplacements estimés par mise en correspondance de patches correspondent à
des translations en valeurs entières. Pour atteindre une précision sous-pixellique
et autoriser des déformations plus complexes nous raffinons le vecteur wP1,2 par
une estimation affine δwP1,2 régie par le vecteur de paramètres θP1,2 [Odobez and
Bouthemy, 1995].

Le recouvrement des patches et le nombre de tailles de patches |S| > 1 implique qu’un
pixel donné appartient à plusieurs patches. L’estimation en deux étapes décrite ci-dessus,
appliquée à chaque patch de PS,α, génère donc un ensemble C(x) de candidats de vecteurs
de déplacement pour chaque pixel x ∈ Ω:

C(x) = {wP1,2(x) + δwP1,2(x) : P1 ∈ PS,α(x), P2 ∈MN (P1)}, (0.9)

où PS,α(x) = {P ∈ PS,α : x ∈ P}. Cette approche comporte plusieurs avantages:

• La distribution de patches PS,α permet de généraliser l’approche originale de Lucas
and Kanade [1981], qui revient à choisir Ps0,1− 1

s0
où s0 est une taille de patch unique.

Tout comme l’approche locale de [Lucas and Kanade, 1981], notre procédure est
simple sur le plan calculatoire et se prête à une parallélisation massive immédiate.
Contrairement à l’idée classique [Lucas and Kanade, 1981], nous conservons tous
les vecteurs de mouvement au sein de du patch, indexés par leurs positions dans le
patch et l’image, en plus de l’estimation niveau du pixel central de chaque patch.
La sélection du patch le plus approprié pour chaque pixel est réalisée au cours de
l’étape d’agrégation via la sélection du candidat correspondant.

• La sélection d’un candidat s’apparente donc à la sélection de la “meilleure” région
d’estimation pour chaque pixel, sans recours à une étape de segmentation coûteuse
et une minimisation délicate de l’énergie associée.

• Les mises en correspondance de patches servent d’initialisations grossières, comme
c’est également le cas dans quelques travaux récents [Chen et al., 2013; Leordeanu
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et al., 2013; Mozerov, 2013]. Cependant, dans tous ces travaux, le raffinement est
effectué dans un cadre de minimisation globale d’énergie, alors que notre procédure
exploite uniquement des estimations paramétriques locales.

• A la différence des autres méthodes mettant en correspondance des descripteurs
d’image [Brox and Malik, 2011; Chen et al., 2013; Weinzaepfel et al., 2013], nous ne
conservons pas que la solution qui minimise l’erreur de mise en correspondance, mais
mais les N meilleures correspondances. Cela nous permet d’assurer une meilleure
robustesse aux bruit et aux erreurs d’assignement.

• En considérant plusieurs tailles de patch, nous accédons à plusieurs échelles de
mouvement, notamment les grands déplacements des petits objets qui ne sont pas
bien gérés par les schémas de multi-résolution classiques.

3.1.2 Extension de candidats dans les zones occultées

Par pixel occulté, nous entendons des pixels qui disparaissent entre l’image I1 et l’image
I2, et qui n’ont donc pas de correspondant par définition. L’estimation des candidats C(x)
ne différencie pas les pixels occultés des pixels non-occultés. Notre schéma d’estimation
étant purement local, si tous les patches de PS,α(x) contiennent principalement des pixels
occultés, les estimations dans ces patches seront systématiquement erronées. Il nous faut
donc calculer les candidats de façon spécifique dans les zones occultées.
La carte d’occultation o : Ω→ {0, 1} est supposée dans un premier temps connue et

est définie comme suit:

o(x) =

1 si x est occulté,
0 sinon.

(0.10)

Soit O l’ensemble des pixels occultés de Ω. L’ensemble des candidats est alors étendu de
deux manières:

• Extension par recherche d’exemples:
Nous couplons à notre méthode de calcul du flot optique une méthode par recherche
d’exemples basée sur le même principe que celle adoptée pour résoudre des problèmes
d’inpainting en édition d’image. Pour tout pixel occulté x ∈ O, soit m(x) le pixel
non occulté le plus similaire à x, et donc (sous réserve de la qualité de la métrique
de similarité choisie) supposé appartenir au même objet en mouvement que x. Les
nouveaux candidats de mouvement relatifs à m(x) sont alors ajoutés à la liste qui
concerne le pixel x. On obtient un ensemble étendu C+(x):

C+(x) = C(x) ∪ C(m(x)), ∀x ∈ O. (0.11)
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MPI Sintel Middlebury
BCF avec extension de candidats 0.792 0.0710
BCF sans extension de candidats 1.851 0.0833
DeepFlow [Weinzaepfel et al., 2013] 4.691 0.386
MDP-Flow2 [Xu et al., 2012b] 4.006 0.223

Table 0.1: Erreurs obtenues sur les bases de vidéos MPI Sintel et Middlebury (distance
euclidienne à la vérité-terrain) avec les deux versions de BCF, avec et sans extension de candidats
dans les zones occultées, comparées avec les erreurs obtenues avec [Weinzaepfel et al., 2013] et
[Xu et al., 2012b].

• Extension aux mouvements de caméra:
Un type particulier d’occultation due au mouvement de caméra est pris en compte
via un schéma d’estimation robuste du mouvement dominant wcam dans l’image.
L’ensemble final de candidats est donc:

Cf (x) = C+(x) ∪ {wcam(x)}, ∀x ∈ Ω. (0.12)

3.1.3 Validation expérimentale

Pour valider notre méthode d’estimation de candidats, nous avons traité les séquences
avec vérité-terrain extraites des bases de données MPI Sintel [Butler et al., 2012]
et Middlebury [Baker et al., 2011]. Soit Best Candidate Flow (BCF) le champ de
déplacements construit en sélectionnant pour chaque pixel x, le candidat appartenant
à Cf (x) qui s’avère être le plus proche du vecteur de déplacement correspondant à la
vérité-terrain. L’erreur globale moyenne pour le champ BCF ainsi reconstruit pour
l’ensemble des séquences avec vérité-terrain issues des deux bases de vidéos est reportée
dans le tableau 0.1. Les résultats de BCF sont également comparés aux résultats obtenus
avec deux méthodes très performantes de l’état de l’art [Xu et al., 2012b; Weinzaepfel
et al., 2013]. BCF surclasse nettement ces deux méthodes sur les deux bases de données,
de manière plus significative encore sur la base de vidéos MPI Sintel qui comporte des
déplacements de grande amplitude et des zones d’occlusion très importantes. L’intérêt
d’étendre la liste des candidats dans les régions d’occultation est également illustré sur la
Figure 0.1.

Ces résultats mettent clairement en évidence que de simples estimations paramétriques
opérées sur des patches bien choisis suffiraient pour dépasser l’état de l’art de manière
significative. Tout l’enjeu de l’étape d’agrégation qui fait l’objet de la Section 3.2, est de
sélectionner les candidats de manière optimale en l’absence de vérité-terrain.
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I1 I2 Carte d’occultation

vérité-terrain BCF sans extension BCF avec extension
par recherche d’exemples

Figure 0.1: Extension par recherche d’exemples de candidats. Première ligne: deux images
successives de la séquence market_5 de la base de vidéo MPI Sintel, et vérité-terrain de la carte
d’occultations. Deuxième ligne: champs de déplacement correspondant à la vérité-terrain, BCF
sans extension de candidats, et BCF après ajout de candidats par recherche d’exemples.

3.1.4 Carte de confiance d’occultation

Notre extension de candidats par recherche d’exemples suppose que la carte d’occultation
o soit connue. En pratique, cette carte n’est pas disponible et doit donc être estimée
conjointement avec le champ de mouvement lors de l’étape d’agrégation. Au premier
niveau local, nous estimons une carte de confiance grossière ωo : Ω → [0, 1] qui nous
informe sur la présence potentielle d’une occultation. Cette information sera exploitée
dans l’étape d’agrégation pour guider l’estimation. Nous construisons ωo à partir d’une
première estimation grossière des occultations sur la base d’un critère de cohérence
forward/backward appliqué à la distribution de patches Ps1,α, avec s1 la plus petite
taille de patch. Une estimation de densité de Parzen fournit ensuite une distribution de
probabilité de présence d’occultation en chaque pixel.

3.2 Agrégation globale discrète

Comme l’a démontré l’analyse BCF, la sélection du meilleur candidat en chaque pixel est
potentiellement capable de produire d’excellents résultats. Nous formulons donc l’étape
d’agrégation comme un problème d’optimisation discrète, où l’espace des labels est défini
par l’ensemble des candidats Cf (x) en chaque point x. La carte d’occultation est estimée
conjointement avec le champ de déplacement en exploitant la carte de confiance ωo issue
de la première étape. Soit le problème d’optimisation:

{ŵ, ô} = arg min
{w,o}

E(w, o) sous la contrainte w(x) ∈ Cf (x) et o(x) ∈ {0, 1}, (0.13)
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où l’énergie E(w, o) est composée de quatre termes,

E(w, o) = Edata(w, o, I1, I2) + Eocc(o, ωo) + Ew
reg(w) + Eoreg(o) (0.14)

décrits brièvement par la suite.

3.2.1 Terme de données Edata

Le terme de données met en relation les variables de mouvement, d’occultation et
d’intensité dans les images. Il est composé de deux potentiels ρvis et ρocc, dédiés
respectivement aux pixels non occultés (ou visibles) et occultés:

Edata(w, o, I1, I2) =
∑
x∈Ω

(1− o(x)) ρvis(x,w) + λ1 o(x) ρocc(x,w,m). (0.15)

Le terme ρvis est un potentiel classique similaire à ceux discutés en Section 2.1. Le
potentiel ρocc correspond à une mesure d’adéquation aux données valide dans les zones
occultées. Par analogie, le problème de l’estimation du mouvement sur des zones occultées
est posé comme un problème d’inpainting. L’objectif est de synthétiser un contenu dans
des zones où aucune mesure (de mouvement dans le cas du flot optique) n’est disponible.
Les approches par diffusion sont systématiquement retenues en flot optique, alors que les
méthodes par recherche d’exemples sont plus efficaces pour combler des "trous" en édition
d’image. Nous proposons une approche par recherche d’exemples pour le traitement des
occultations en flot optique en recourant au potentiel ρocc suivant:

ρocc(x,w,m) = ‖w(x)−w(m(x))‖2 , (0.16)

où le champ m : O → Ω\O met en correspondance chaque pixel occulté avec un pixel
non occulté en minimisant une distance appropriée. Le vecteur de déplacement d’un
pixel occulté est donc contraint à être similaire au vecteur de déplacement du pixel
correspondant non-occulté.

Si on s’intéresse à la détection des occultations (minimisation par rapport à o), ce
terme de données favorise l’émergence de zones d’occultation dans les zones de violation
de l’hypothèse de conservation de l’intensité. Cette modélisation peut être interprétée
comme une version discrète de [Ayvaci et al., 2012].
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3.2.2 Contrainte d’occultation Eocc

Le terme de données (0.15) favorise l’apparition de pixels occultés et doit être équilibré
par un terme de pénalisation qui prend en compte le nombre de pixels occultés:

Eocc(o, ωo) = λ2
∑
x

ωo(x)o(x). (0.17)

Nous exploitons ici la carte de confiance ωo issue de la première étape pour contrôler ce
terme de pénalisation. Ce terme est en fait analogue à une contrainte de parcimonie dans
un cadre continu comme cela a été exposé dans [Ayvaci et al., 2012]. La pondération
ωo est essentielle aussi pour éviter un couplage trop fort entre o et w qui conduit à
la détection de minima locaux dès la première itération d’un schéma de minimisation
alternée.

3.2.3 Termes de régularisation E1
reg et E2

reg

Un lissage spatial du champ de déplacement w et de la carte d’occultation o est obtenu
via les termes E1

reg et E2
reg.

3.3 Résultats

La méthode proposée – AggregFlow – est évaluée sur les bases de vidéos MPI Sintel
[Butler et al., 2012] et Middlebury [Baker et al., 2011], couvrant un large spectre de
situations dynamiques en analyse de vidéos. Les évaluations quantitatives se basent sur
la moyenne de la distance euclidienne entre la vérité-terrain et le vecteur de déplacement
estimé en chaque pixel (EPE).
La base de vidéos MPI Sintel contient un grand nombre de séquences comportant

des déplacements de grande amplitude (plusieurs dizaines de pixels) qui induisent de
larges zones occultées. Les résultats reportés dans le tableau 0.2 mettent en évidence
les performances de notre méthode, notamment dans les zones d’occultation (“EPE
unmatched”). Notre modélisation s’avère donc pertinente pour traiter ces zones. Notre
algorithme AggregFlow est également classé 2ème si on examine l’erreur au voisinage de
discontinuités de mouvement (“d0-10”) et se classe 1er dans les zones qui correspondent à
des déplacements d’amplitudes supérieures à 40 pixels (s40+).

Les séquences de Middlebury comportent des déplacements de plus faibles amplitudes.
L’enjeu principal est d’être capable de retrouver les déformations lisses, les discontinuités
de mouvement et les petits détails. Les différences entre les méthodes sont donc moins
importantes que sur MPI Sintel, comme l’atteste le tableau 0.3. L’algorithme AggregFlow
demeure très compétitif si on le compare aux méthodes les mieux classées (mesure EPE).
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EPE EPE EPE d0-10 s40+
all matched unmatched

AggregFlow 4.754 1.694 29.685 3.705 31.184
DeepFlow [Weinzaepfel et al., 2013] 5.377 1.771 34.751 4.519 33.701
MDP-Flow2 [Xu et al., 2012b] 5.837 1.869 38.158 3.210 39.459
EPPM [Bao et al., 2014] 6.494 2.675 37.632 4.997 39.152
S2D-Matching [Leordeanu et al., 2013] 6.510 2.792 36.785 5.523 44.187
Classic+NLP [Sun et al., 2014] 6.731 2.949 37.545 5.573 45.290
FC-2Layers-FF [Sun et al., 2012] 6.781 3.053 37.144 5.841 45.962
MLDP-OF [Mohamed et al., 2014] 7.297 3.260 40.183 5.581 51.146

Table 0.2: Résultats sur la base de vidéos MPI Sintel (version “clean”)

EPE all Avg. rank
MDP-Flow2 [Xu et al., 2012b] 0.245 7.8
FC-2Layers-FF [Sun et al., 2012] 0.283 19.3
Classic+NL [Sun et al., 2014] 0.319 27.1
EPPM [Bao et al., 2014] 0.329 32.6
AggregFlow 0.339 35.9
MLDP-OF [Mohamed et al., 2014] 0.349 32.6
S2D-Matching [Leordeanu et al., 2013] 0.347 34.6
DeepFlow [Weinzaepfel et al., 2013] 0.416 48.8

Table 0.3: Résultats sur la base de données Middlebury

3.4 Une autre approche: agrégation dans un cadre continu

Nous proposons une autre approche d’agrégation dans un cadre continu, qui peut être
considérée comme une alternative à l’agrégation discrète décrite en Section 3.2. L’ensemble
des candidats est alors considéré comme un dictionnaire de mouvement à partir duquel le
champ global est reconstruit. La sélection d’un candidat se fait au travers d’une contrainte
de parcimonie appliquée à un vecteur de poids α(x) en chaque pixel. L’énergie considérée
est de la forme:

E(w,α) =
∫

Ω

∥∥∥w(x)−α(x)>Wc(x)
∥∥∥

1
+ λ2 ‖α(x)‖1,β(x) + λ1‖∇w(x)‖1dx. (0.18)

où ‖ · ‖1,β(x) une norme L1 pondéré par des mesures de confiance β(x), Wc(x) est la
forme vectorielle de l’ensemble des candidats en x, et les paramètres λ1 et λ2 pondèrent
les différents termes. La minimisation dans l’espace continu tolère une déviation par
rapport au candidat sélectionné. Cette formulation est convexe, ce qui rend possible une
minimisation efficace.
les résultats quantitatifs globaux de l’agrégation continue sont légèrement inférieurs à
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cave_2 - I1 cave_2 - I2 Ground truth o AggregFlow o

Ground truth w AggregFlow w DeepFlow w MDP-Flow2 w

temple_3 - I1 temple_3 - I2 Ground truth o AggregFlow o

Ground truth w AggregFlow w DeepFlow w MDP-Flow2 w

Figure 0.2: Résultats visuels d’estimation de mouvement et d’occultations sur quelques séquences
de la base de vidéos MPI Sintel, comparés avec ceux obtenus par les méthodes décrites dans
[Weinzaepfel et al., 2013] et [Xu et al., 2012b].

ceux de l’agrégation discrète. L’approche continue présente cependant l’avantage d’un
temps de calcul plus faible. De plus la capacité de s’écarter des vecteurs mouvement définis
par les candidats permet d’obtenir des résultats satisfaisant même avec des candidats
moins pertinents, ce qui permet également de réduire le temps de calcul lié à la génération
des candidats.

4 Estimation du mouvement et de la diffusion en imagerie
biologique

Dans ce chapitre, nous nous intéressons à des problématiques d’estimation de mouvement
spécifiques rencontrées en imagerie biologique, et plus particulièrement en microscopie
optique de fluorescence. En particulier, nous proposons des solutions à deux problèmes
distincts: i) les grands changements d’intensité causés par des fluctuations de fluorescence;
ii) l’analyse de situations de diffusion de particules caractérisées par leur coefficient de
diffusion.
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4.1 Changements d’intensité en imagerie de fluorescence

Le changement d’intensité des objets en mouvement est un problème général à prendre
en considération dans l’estimation du flot optique. Comme évoqué en Section 2.1, une
manière simple est de choisir des descripteurs invariants à certains changements d’intensité
de fluorescence. Ces descripteurs sont cependant imparfaits et s’avèrent efficaces seulement
dans des cas particuliers. En imagerie de fluorescence, nous observons à la fois des zones
où l’intensité est préservée au cours du temps et des fortes variations temporelles du signal
de fluorescence. Ces phénomènes sont liés au photo-blanchiment (extinction progressive
de la fluorescence) et aux mouvements des entités sous-résolues.
Pour traiter ces situations difficiles, nous reprenons le schéma d’agrégation défini au

chapitre précédent, en y intégrant l’idée d’une modélisation explicite des changements
d’intensité décrite en Section 2.1. L’objectif est d’estimer conjointement au champ de
déplacements, une carte de changement local d’intensité de fluorescence. Nous considérons
le potentiel de correction d’intensité additive ξ0 : Ω→ R suivant:

ρdata(x, I1, I2,w, ξ0) = φ(I2(x+ w(x))− I1(x)− ξ0(x)). (0.19)

Des méthodes similaires ont déjà été proposées dans la littérature mais les performances
demeurent limitées. Notre énergie d’agrégation globale est similaire à la formulation
décrite dans [Chambolle and Pock, 2011; Kim et al., 2005]:

E(w, ξ0) =
∑
x∈Ω

ρdata(x, I1, I2,w, ξ0) + λ1
∑
<x,y>

ψ(‖w(x)−w(y)‖) (0.20)

+ λ2
∑
<x,y>

ψ(|ξ0(x)− ξ0(y)|).

La difficulté réside dans l’optimisation conjointe des deux variables w et ξ0. L’originalité
de notre approche consiste à éviter ce problème en proposant des candidats pour ξ0
conjointement aux candidats servant à estimer w.
L’étape de génération des candidats est menée de la façon suivante:

1. Mise en correspondance de patches:
Nous adoptons le coefficient de corrélation normalisé, invariant aux changements
additifs d’intensité, comme métrique de similarité. ∀P1 ∈ PS,α(x), P2 ∈ MN (P1),
ξP1,2 est une estimation grossière du changement d’intensité définie comme la
différence des moyennes des patches P1 et P2. Notons que ξP1,2 est indissociable de
l’estimation de mouvement wP1,2 définie précédemment.

2. Raffinement affine:
L’estimation de mouvement affine δwP1,2 nécessite également l’estimation d’un
paramètre supplémentaire δξP1,2 (potentiel de données (0.19)).
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L’ensemble de candidats est maintenant défini en fonction des paires
mouvement-changement d’intensité:

C(x) =
{(

wc
P1,2(x), ξcP1,2

)
: P1 ∈ PS,α(x), P2 ∈MN (P1)

}
. (0.21)

L’espace discret considéré pour chercher la solution minimisante (0.20) contient donc des
labels à la fois associés à w et à ξ0, ce qui évite le recours à une minimisation alternée.
Les résultats obtenus sur des séquences d’imagerie de fluorescence démontrent les

avantages de notre approche par rapport à des méthodes qui s’appuient sur des descripteurs
invariants à certains changements d’intensité tel que le gradient de l’image [Brox and
Malik, 2011] ou sa composante texturée [Sun et al., 2010a]. La Figure 0.3 illustre le type
de séquences traitées et les améliorations apportées par notre méthode.

4.2 Une approche variationnelle pour l’estimation de la diffusion

Un comportement dynamique commun à un grand nombre de phénomènes observés
en imagerie biologique est le mouvement de diffusion de particules. Le mouvement est
davantage caractérisé par le coefficient de diffusion que par le champ de déplacement.
L’approche la plus généralement adoptée pour estimer le coefficient de diffusion est la

méthode ICS (Image Correlation Spectroscopy) basée sur des mesures de corrélation de
patches de grande dimension. Les deux inconvénients majeurs de cette approche sont
d’une part le temps de calcul, et d’autre part l’incapacité à estimer des cartes denses
de diffusion, et donc de détecter des discontinuités de diffusion. Nous proposons une
approche variationnelle apportant une solution à ces problèmes.
Nous nous plaçons dans le cas du mouvement brownien des particules dont la taille

est inférieure à la résolution optique utilisée. A chaque pixel sont alors associées
potentiellement plusieurs particules. On peut donc considérer que l’intensité observée
est proportionnelle à une mesure de concentration. Dans ces conditions, le modèle de
diffusion suivant est exploitable:

∂I

∂t
= D0 ∆I, (0.22)

où D0 représente le coefficient de diffusion isotropique recherché et ∆ désigne l’opérateur
laplacien de l’image.

Contrairement à la technique ICS estimant un scalaire D0 constant pour toute l’image,
nous proposons un schéma d’estimation variationnelle pour estimer une carte dense
D : Ω→ R. Soit le problème de minimisation:

D̂ = arg min
D
{Edata(D, I) + λDEreg(D)} sous la contrainte D(x) ≥ 0 (0.23)

où le terme de données Edata(D, I) est dérivé de l’équation de diffusion. Une mesure
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I1 I2 Changement d’intensité ξ

Notre méthode [Brox and Malik, 2011] [Sun et al., 2010a]

Figure 0.3: Résultats sur une séquence de déplacement de cellules “HeLa” (acquisition réalisée
par le groupe de F. Perez, UMR 144 Institut Curie, PICT-IBiSA). Ligne du haut: les deux images
successives et la carte de changement d’intensité estimée par notre méthode. Lignes du milieu et
du bas: champs de déplacement esstimés respectivement par notre méthdode, [Brox and Malik,
2011] and [Sun et al., 2010a]. Les champs de déplacement sont visualisé par vecteurs et code
couleur.

d’écart ponctuel à (0.22) est insuffisante à cause de la nature aléatoire du phénomène
de diffusion. Nous adoptons donc une pénalisation non-ponctuelle en supposant que le
coefficient de diffusion D(x) est constant dans un voisinage de x:

Edata(D, I) =
∫

Ω
φ(D>JρD)dx (0.24)
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D2=0.01μm
2 . s−1

D1=0.1

μm2 . s−1

D

(a) Exemple d’image (b) Vérité-terrain de D (c) Estimation D

D̂2=0.017μm
2 . s−1

D̂1=0.082

μm2 . s−1

(d) Histogramme de D (e) Segmentation de D (f) Profils

Figure 0.4: Estimation variationnelle du coefficient de diffusion sur une séquence simulée de
diffusion spatialement inhomogène. Les courbes de (f) sont les profils des lignes pointillées de
(b),(c) et (e)

où D =
(
D

1

)
et Jρ = kρ ∗

(
∆I2 −It ∆I
−It∆I I2

t

)
.

Le terme de régularisation conduit à un lissage robuste du champ D. La contrainte
D(x) ≥ 0 est imposée par l’ajout d’une barrière logarithmique à l’énergie initiale.

En cas de diffusion constante sur toute l’image notre approche variationnelle produit
des résultats similaires à la méthode ICS et ses variantes. Quand le coefficient de diffusion
est inhomogène, comme c’est le cas sur l’exemple simulé de la Figure 0.4, notre méthode
permet d’estimer de manière satisfaisante les discontinuités de diffusion. La méthode ICS
est incapable de produire de telles estimations denses compte-tenu des temps de calcul
importants sur chaque patch.

5 Conclusion

Nous avons traité au cours de cette thèse plusieurs problèmes liés à l’estimation du flot
optique, que nous avons identifiés comme les facteurs limitant des méthodes actuelles.
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Notre approche générale est la combinaison de modèles locaux et globaux.
Nous avons dans un premier temps proposé une méthode s’appuyant sur le travail

de [Bruhn et al., 2005], qui intègre l’énergie des méthodes locales dans le terme de
données d’un modèle global. Notre méthode adapte spatialement le noyau gaussien utilisé
pour filtrer le potentiel de données standard. Les résultats préliminaires ont démontré
la pertinence de cette approche. Nous avons également exploré une version modifiée
intégrant le modèle d’incertitude stochastique de [Corpetti and Mémin, 2012].
L’axe principal de ce travail à été consacré à la conception d’un schéma d’estimation

original d’agrégation, également basé sur la combinaison des approches locales et
globales. L’idée principale est de revisiter les estimations locales paramétriques, et
plus particulièrement la sélection des tailles et positions de patches servant à l’estimation.
La procédure d’agrégation comprend deux grandes étapes. Une première étape réalise
des estimations locales paramétriques de mouvement dans une distribution régulière de
patchs, et une étape d’agrégation effectue une sélection parmi les candidats générée par
la première étape locale. Nous avons construit deux approches pour le problème de
l’agrégation, basées sur des méthodes d’optimisation discrète et continue. L’agrégation
discrète fournit de meilleurs résultats. L’agrégation continue reste cependant intéressante
d’un point du vue pratique pour son faible coût de calcul et sa robustesse à une moindre
qualité des candidats.
Un processus de gestion des occultations est conçu coopérativement entre les deux

étapes. Une mesure de confiance au niveau local est utilisé pour guider la détection
des occultations au niveau global. L’estimation du mouvement dans les zones occultées
ainsi détectées est réalisée par une approche par recherche d’exemples, qui surmonte les
difficultés des approches usuelles de diffusion. Cette approche est générale et pourrait
être intégrée dans d’autres schéma d’estimation. Une intégration originale de mise en
correspondance de descripteur est également permise par le schéma d’agrégation Pour
gérer les grands changement d’intensité, nous proposons une modélisation jointe du
mouvement et des changement d’intensité aux deux étapes de la méthode.

L’évaluation expérimentale a démontré la supériorité de notre méthode AggregFlow sur
les méthodes existantes dans des cas difficile de grands déplacement, en particulier sur la
base de vidéos récente MPI Sintel. Sur des séquences de faibles déplacements comme
celles de Middlebury, nos résultats restent compétitif avec la plupart des meilleures
méthodes. La plus grosse amélioration est observée au niveau des zones occultées. Des
exemples de grands changements d’intensité en imagerie de fluorescence montrent aussi
les avantages de notre approche.

Nous avons finalement proposé des solutions à des problèmes spécifiques rencontrés en
imagerie biologique. L’imagerie de fluorescence produit de grands changements d’intensité,
pris en compte dans le schéma d’agrégation. Une estimation variationnelle du coefficient
de diffusion permet également de caractériser des mouvement browniens de particules,
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fréquents en imagerie de fluorescence. Notre approche détecte les discontinuités de
diffusion plus fidèlement que les méthodes courante de corrélation.
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General introduction

A large range of computer vision tasks cannot be limited to the analysis of the content
of a single image, but requires to find correspondences between images. Indeed, the
information contained in one image, that is the spatial relations between intensities, can
be intrinsically ambiguous and insufficient to access essential interpretative elements
about the observed scene. Example of uncertainties yielded by analyzing single images
are numerous:

• optical illusions playing with uncertainties about depth ordering of objects in a
scene are well known and reveal the impossibility to access depth information from
a single point of view;

• objects with similar appearance can be indistinguishable in a static scene, and
reveal their individual shapes through the perception of their relative motions;

• the interpretation and classification of specific measures obtained from images, for
pathology diagnosis on anatomical structures in medical imaging, or classification
of ground types in remote sensing, is often impossible without comparison with
known reference data.

In all these cases, the information concerning spatial relations between pixels needs to
be extended to the transformation of these relations when passing from one image to
the other. Determining these transformations is one of the major field of research in
computer vision.
Methodological approaches for the correspondence problem described above can be

influenced by the type of transformation expected, and the type of images to deal with.
These characteristics can be assessed from the knowledge on the set of images to be
analyzed, depending on the targeted application. In medical imaging, the image set can
be composed of acquisitions of similar anatomical structures for several patients, the
same patient at different time steps, or with different imaging modalities. For depth
estimation or 3D reconstruction, a single scene is observed under several points of view.
When the objective is to estimate the motion of a scene, the images are successive frames
of a temporal sequence. While these applications need specific investigations in modeling
and adaptations, they share common methodologies. In this thesis, we are interested in
motion estimation, where the searched image correspondences account for the projection
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of the real 3D motion in the scene, creating a 2D dense motion field, the so-called optical
flow.
Optical flow can be considered as the most low-level dynamical characterization of an

image sequence since it is not concerned with any object detection or motion interpretation
task. As such, it is an essential component for numerous applications using it as a
fundamental module for a more semantic interpretation. Among the application fields,
we can mention robotics where the knowledge of the visual environment is essential
to achieve autonomous navigation and adaptation to unexpected situations in real
conditions. Augmented reality also requires a complete control of motion to ensure
consistency between augmented and original scenes, with applications in multimedia or
assisted surgery. Handling motion in biomedical imaging is also an important field of
research involving optical flow analysis to get rid of disturbances caused by heart beats or
patient undesirable displacements. Video compression also makes use of optical flow to
restrict the quantity of transmitted information exploiting motion redundancy. A large
and active application field also concerns the development of assisted driving systems
adapting responses and actions of a vehicle to the perceived motion. The quantification of
fluid motion is particularly important in meteorology to provide predictions based on the
motion of clouds. Tracking of individual objects can use optical flow as a key information
to analyze trajectories in contexts of biological imaging or video surveillance. The success
of these applicative systems, and of many others, is often based on the accuracy of the
optical flow estimation step. The large diversity of situations described above gives rise
to as many specific problems for motion estimation, and despite great progress over years,
existing methods still fail to handle all these issues together.

Like many other computer vision problems, optical flow estimation can be formulated
as an ill-posed inverse problem. As such, it relies on a data fitting measure leading to
an under-constrained system unable to guarantee unicity of the solution. In the case
of optical flow this measure is based on the assumption of constancy of a given image
descriptor (usually image intensity) during motion. To cope with the single constraint
insufficiency, modeling assumptions have then to be made to regularize the problem by
adding a priori constraints on the expected form of the motion field. Existing methods
can be broadly classified regarding the local or global extent of the spatial constraint.
Global models have always outperformed local approaches in terms of accuracy. In a

broad sense, the problem of the choice of appropriate regions for local estimation has never
been efficiently solved, whereas the global regularization framework offers appropriate
modeling capabilities and efficient optimization techniques. However, the complexity
of resulting global energy to cope with large displacements, occlusions or illumination
changes induces optimization issues like the use of coarse-to-fine scheme or optimization
in high dimensional spaces, which constitutes the main intrinsic limitations of global
methods.
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Based on the analysis of optical flow state-of-the-art and current limitations, we have
investigated new approaches. In particular, we have explored several ways to revisit local
motion estimation combined with global regularization models.

Our first contribution builds on the work of [Bruhn et al., 2005], which takes advantage
of both local and global models by considering an extended local energy in the data term
of the global energy model. We address the oversmoothing of the discontinuities implied
by this method by adapting spatially the standard deviation of the Gaussian filtering.
Secondly, the central part of this thesis is dedicated to the design of an original

aggregation framework for optical flow estimation. It is composed of two successive steps,
combining sequentially local and global estimations. We first demonstrate the potential
of local parametric methods to outperform existing global approaches. The framework
allows us to address several important issues of optical flow. The problem of selection
of the local estimation supports is solved by selecting a candidate in the aggregation
step. Multiple patch correspondences are integrated in an original and efficient way.
We solve the aggregation problem with discrete and continuous global optimization
techniques. We propose also an occlusion handling framework in our aggregation scheme.
The exemplar-based principle of our motion estimation in occluded regions is generic
and adaptable to other methods. Finally we also deal with large intensity changes
cooperatively in the two steps of the method.

In the last part of the thesis, we address specific issues for motion estimation occurring
in biological imaging. There is a growing interest for the use of live cell imaging for
cancer research and analysis of the dynamical behavior of biological structures. A lot
of related questions requires a quantification of motion of biological structures. We
proposed solutions on the one hand to cope with large intensity changes in fluorescence
microscopy, and on the other hand, to estimate spatially varying diffusion.

Organization of the thesis

Part I
This part is conceived as an introductory tutorial on optical flow. We focus on recent
developments and limitations of existing methods, which are presented as the context of
the contributions developed in subsequent parts.

Chapter 1 We introduce basic definitions and concepts of optical flow and present
standard evaluation procedures and benchmarks. These elements constitute the basis for
the understanding of the rest of the thesis.

Chapter 2 We classify existing data conservation assumptions used to design data terms.
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Chapter 8.1 The issues involved in the local parametric approaches are detailed and
classified regarding the choice of the motion model, the optimization strategy, and more
importantly the choice of an appropriate local region, which is directly linked with our
aggregation approach described in Part II.

Chapter 4 Principles and practices in global regularized optical flow estimation are
presented. The advantages and limitations of variational and discrete optimization
techniques are discussed. They play an essential role in the modeling and the strategy
involved in the contribution of the following parts.

Chapter 5 We analyze the recent trends of optical flow methods consisting in the
integration of feature matching for dense motion estimation. We classify current practices
and point out the main limitations.

Chapter 6 We make a first step towards combining local and global models based
on the work of [Bruhn et al., 2005]. We propose an original spatial adaptation
of the Gaussian filtering involved in the data term [Bruhn et al., 2005] to prevent
oversmoothing of the discontinuities while keeping the advantage of integration of
local information. We discuss this idea with the recent work of [Corpetti and Mémin, 2012].

Chapter 7 A summary of the main methodological directions is given, together with
the respective limitations that emerged from the analysis of each class of methods.

Part II
This part is dedicated to the description and evaluation of a new optical flow estimation
method based on a general aggregation framework.

Chapter 8 We describe our generation process for local parametric motion candidates.
An original feature matching integration and occlusion handling combined with simple
affine estimation are performed in a generalized patch distribution. We experimentally
demonstrate that the computed set of candidates is able to potentially outperform
state-of-the-art methods if the best candidate would be correctly selected at every image
point.

Chapter 9 Our aggregation method is presented as a discrete optimization problem in
the discrete label space composed of the candidates generated in the previous step. A
generic joint modeling of motion and occlusion is proposed. An original exemplar-based
occlusion filling strategy is integrated in the global energy. The move-making optimization
method is also detailed.
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Chapter 10 The method is evaluated on the most known computer vision benchmarks.
The main improvements are reached for occluded regions and large displacements, which
validates the models presented in previous chapters.

Chapter 11 We propose an alternative aggregation method to the discrete approach
presented in Chapter 9, in the continuous optimization setting. The motion field is
reconstructed from a sparse combination of motion candidates. Quantitative results
are less accurate than those obtained with the discrete aggregation approach, but
improvements are achieved regarding computational time and robustness to the quality
of the finite set of candidates.

Chapter 12 We conclude and present the perspectives of the proposed method and
modelling framework.

Part III
This part presents contributions to motion estimation in the context of biological imaging.

Chapter 13 An adaptation of variational methods to several biological imaging
situations is presented. Results are compared with correlation approaches which are
mostly used in biological imaging.

Chapter 14 One major problem to take into account in fluorescence microscopy
imaging is the intensity variation caused by fluorescence fluctuations. We propose an
adaptation of the aggregation framework for joint estimation of intensity changes and
motion. Our method outperforms other variational approaches in the case of large
intensity changes.

Chapter 15 We address the characterization of diffusive dynamics, which is a current
situation in fluorescence imaging. We propose a variational approach for diffusion
coefficient estimation, which overcomes limitations of usual correlation approaches in
terms of discontinuity recovering and computational time.

Chapter 16 We conclude and present the main applicative achievements and potential
impact of our contributions in biological imaging. We propose several perspectives of
improvements of the proposed methods and general research directions in biological image
analysis.
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Part I

Local and global approaches for
optical flow

7





List of Figures

Motion in image sequences can be characterized through different forms. It can be
implicitly contained in operations like change detection methods or motion blur estimation.
The motion of interest can be the tracking of individual objects like persons in video
surveillance, cellular structures in biological imaging or vehicles for driving assistance
purposes. The dynamical content is then determined by a sparse set of trajectories.
In other cases, optical flow estimation is necessary to retrieve dense deformation fields.
Complex fluid, organ or cell deformations, or global crowd displacement are examples of
complex deformations requiring to produce a dense motion field. Moreover, as a low-level
representation of motion, optical flow is often used as an input information for other
motion analysis tasks.
The design of a reliable generic optical flow estimation method is a difficult task. A

tremendous quantity of works have been carried out for thirty years, trying to overcome
new issues emerging with the increasing use of computer vision in a large number of areas.
This chapter is conceived as a tutorial aiming at organizing the main approaches and
practices developed for optical flow estimation. We will not try to tell the whole story
of the evolutions of optical flow, neither we give an exhaustive list of existing methods.
We rather propose a synthetic classification of the main methodological principles at the
basis of current methods, with a particular concern given to recent developments. We
will insist on the modeling aspects, practical interests and limitations of each introduced
methodological element. We will adopt a classifying approach, decomposing the optical
flow estimation problem in independent parts. This viewpoint has the advantage of being
didactic and giving a global view of existing method. However It should not hide that
individual methods are usually conceived as homogeneous and coherent approaches, not
restricted to a mere assembly of these elements.
Chapter 6 of this part is dedicated to a preliminary study. We investigate a first way

to combine the two main classes of methods for optical flow, namely local and global
approaches, through an adaptation of the work of [Bruhn et al., 2005] and [Corpetti and
Mémin, 2012].
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1 Basics of optical flow

1.1 Definition of optical flow

The concept of motion usually refers to the physical displacement of objects in a given
referential. Extended to images, which are composed of intensity patterns on a two
dimensional space, it can be understood as the shift of photometric features of the image,
usually designated as image motion. It is associated with the constancy of the intensity
patterns under motion. The difficulty in estimating image motion is to cope with the
uncertainty due to the ill-posedness of the problem.

The motion of interest to be extracted from images is usually related to the displacements
of objects in the physical scene. In video analysis, the motion field is defined as the
projection on the image plane of the 3D motion in the scene. The problem arising is
then that the temporal changes of image intensity are not necessarily caused by the
displacements of objects of the scene, but can also be due to other disturbing phenomena
like lighting changes, reflection effects or modification of the internal properties of the
objects affecting their light emission or reflectance. These two sources of intensity changes
(and consequently of image motion) have to be distinguished when computing the motion
field. The term of optical flow is most commonly used to designate the motion field, and
we will also consider this definition in the following.

1.2 Evaluation of optical flow

The accuracy of an optical flow estimation can be qualitatively evaluated through the
visualization of the motion field. The two main visualization methods are illustrated in
Figure 1.1. First, the arrow visualization directly represents motion vector and offers a
good intuitive perception of physical motion. On the counterpart, a clean display requires
to under-sample the motion field to prevent from overlapping arrows. Secondly, the
color code associates a color hue to a direction and a saturation to the magnitude of the
vector. It allows for a dense visualization of the flow field and a better visual perception
of subtle differences between neighbor motion vectors. In the manuscript, we will use
quasi-exclusively the color visualization. The visualization tools are useful to understand
behaviours of estimation methods, especially when ground truth is not available.

Objective evaluation based on error metrics measured from ground truth motion fields
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1 Basics of optical flow

Motion field

Color visualization

Arrow visualization

I1 I2

Figure 1.1: Arrow and color visualizations of optical flow

is necessary for an accurate comparison of methods performances When ground truth is
available, two error measures are commonly used, namely the Angular Error (AE) and
the Endpoint Error (EPE). The AE of an estimated motion vector w = (u, v)> w.r.t. the
reference vector wref = (uref , vref )> is defined by the 3D angle created by the extended
vectors (u, v, 1)> and (uref , vref , 1)>:

AE = cos−1

 u · uref + v · vref + 1
√
u2 + v2 + 1

√
u2
ref + v2

ref + 1

 . (1.1)

The EPE is defined as the euclidean distance between the two vectors:

EPE =
√

(u− uref )2 + (v − vref )2. (1.2)

The AE is more appropriate to accurately quantify small errors, occurring when the
displacement magnitudes are low. In the example of Fig. 1.2, results of [Xu et al., 2012b]
and [Chen et al., 2013] achieve both small errors, and the EPE is very small and cannot
differentiate the performance of the two considered methods, while the AE allows for a
more significant ranking. On the other hand, when errors are large, as in Fig. 1.3, AE
tends to under-estimate large errors. The EPE is more impacted than the AE by large
errors in the result of [Xu et al., 2012b] compared to the result of [Brox and Malik, 2011].

The design of challenging benchmarks with ground truth for evaluating optical
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1.2 Evaluation of optical flow

ground truth Result of [Xu et al., 2012b] Result of [Chen et al., 2013]
AE = 3.23 AE = 2.89
EPE = 0.08 EPE = 0.08

Figure 1.2: AE and EPE for small displacements.

ground truth Result of [Xu et al., 2012b] Result of [Brox and Malik, 2011]
AE = 35.261 AE = 29.0133
EPE = 48.034 EPE = 29.709

Figure 1.3: AE and EPE for large displacements.

flow methods has motivated a substantial amount of work. The first optical flow
benchmark with ground truth was established by Barron et al. [1994]. The procedure
was either to apply simple parametric transformations to real images, like translation
or rotation, or to generate synthetic sequences for which the true motion is available
by construction. The resulting motion fields were characterized by small displacements
and absence of discontinuities. More recent benchmarks have been proposed with new
challenges or applicative issues. The main successive benchmarks are illustrated in
Fig. 1.4. The Middlebury benchmark [Baker et al., 2007, 2011] is composed of more
challenging sequences, partly made of smooth deformations similar to the sequences
described in [Barron et al., 1994], but also involving motion discontinuities and motion
details. While some sequences are synthetic, several others were acquired in a strictly
controlled environment allowing to produce ground truth for real scenes. Issues raised
by Middlebury being almost solved by modern methods, the MPI Sintel benchmark
[Butler et al., 2012] has been recently proposed. It is extracted from a synthetic movie
opening new issues mostly related to very large displacements, occlusions, illumination
changes, and effects like blur or defocus. In parallel to this effort, dedicated datasets
have been designed to solve specific problems related to applicative contexts, the most
successful example being the Kitty benchmark [Geiger et al., 2012] devoted to assisted
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[Barron et al., 1994]

Middlebury [Baker et al., 2007]

Kitty [Geiger et al., 2012]

MPI Sintel [Butler et al., 2012]

Figure 1.4: Main optical flow benchmarks.
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1.3 Estimation principles

driving applications.

1.3 Estimation principles

Let us denote an image sequence by I : Ω× T → R, where Ω ⊂ R2 is the image domain
and T ⊂ N is the number of frames of the sequence. Every optical flow estimation
method is based on an assumption on the relationship between the searched motion field
w : Ω→ R2 at time t and the image I. The most natural and widely used assumption
is that pixel intensity remains constant during displacement. The brightness constancy
constraint equation (BCCE) is then defined by:

dI

dt
= 0. (1.3)

Other feature conservations can be chosen, each encoding specific image properties, which
will be discussed in Chapter 2. The discrete approximation of (1.3) at a given pixel x ∈ Ω
and time t yields:

I(x+ w(x), t+ 1)− I(x, t) = 0. (1.4)

However, the constraint (1.4) generates a particularly difficult optimization problem.
It can be much more tractable to consider the expanded version of (1.3) with partial
derivatives, resulting in a linear version of (1.4):

∂I

∂x
u+ ∂I

∂y
v + ∂I

∂t
= 0, (1.5)

where w = (u, v)>.
The linearized brightness conservation constraint (1.5) provides only one equation to

recover the two unknown components of w. From this single constraint, the component
of the motion vector w in the direction of the image gradient can be computed, but
the two-dimensional problem remains under-constrained. This is known as the aperture
problem, stating that motion of linear structures, as it is assumed by (1.5), is by nature
ambiguous if the neighboring context is not taken into account.
To make the problem well-posed, it is necessary to introduce an additional constraint

encoding a priori information on w. The a priori will take the form of spatial coherency
imposed by either local or global constraints. The classification of the usual practices and
recent advances will be presented in Chapters 3 and 4.
It is important to mention that while (1.4) holds for motion of arbitrary magnitude,

the continuous motion constraint (1.5) restricts its validity domain to the linear region
of I, which usually corresponds to small displacements or very smooth images. The
linearization is nevertheless necessary for methods relying on differential computations.
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1 Basics of optical flow

The standard technique to cope with large displacements is to embed the estimation in a
coarse-to-fine scheme [Enkelmann, 1988; Black and Anandan, 1996; Mémin and Pérez,
1998]. The idea is to create a pyramid of coarse-to-fine downsampled versions of the
original image. On coarse levels, the linearity domain of the image encompasses larger
displacements and the estimation can be based on (1.5). The estimations at coarser levels
serves to warp the image at subsequent finer levels, where the estimation then reduces
to search for small motion increments. The solution is iteratively refined at each level
until reaching the full image resolution. The solution at each level of the multi-resolution
pyramid can be interpreted as a fixed point in the direct optimization of the non-linearized
constancy equation (1.4) [Brox et al., 2004]. Almost all differential methods described in
this part and concerned by large displacements resort to the multiscale approach, possibly
with some additional strategies to avoid its drawbacks.

The main undesirable effect produced by smoothing at coarse levels is the loss of
small and rapidly moving objects in the final estimated flow field. If the object extent is
smaller than its displacement, it is likely to be smoothed out at coarse levels and then
“forgotten". Avoiding this drawback has been a very active topic in recent years. It has
been accomplished mainly by integrating feature matching in the estimation process,
as will be discussed in Chapter 5, or by resorting to discrete optimization methods, as
detailed in Section 4.3.2.
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2 Data constancy

The data term of optical flow methods penalizes deviations from the constancy assumption,
e.g. brightness constancy (1.4), via the sum of potentials ρdata(x, I1, I2,w) defined at
each pixel x ∈ Ω as

Edata(w, I1, I2) =
∫

Ω
ρdata(x, I1, I2,w)dx (2.1)

where I1 = I(·, t) and I2 = I(·, t + 1) denote two successive frames. In the case of
brightness constancy, the data potential writes

ρdata(x, I1, I2,w) = φ(I2(x+ w(x))− I1(x)) (2.2)

where φ(·) is the penalty function.
The brightness constancy assumption is in practice an imperfect photometric expression

of the real physical motion in the scene. The typical counter-example consists in moving
the light source of an immobile scene, producing brightness variations without motion
of any objects. In general, while it is possible to create synthetic sequences for which
the constraint strictly holds Butler et al. [2012], it is often violated in practice in case of
changes in the illumination source of the scene, shadows, noise in the acquisition process,
specular reflections or even complex motion.

Choosing a quadratic penalty function φ(z) = z2, as in early works [Horn and Schunck,
1981; Lucas and Kanade, 1981], makes optimization much easier, but assumes that the
residual of the brightness constancy constraint equation (1.3) is normally distributed
and thus gives a strong influence to large localized violations mentioned above. It is
then common to resort to robust statistics [Huber, 1981] to reduce the impact of local
errors considered as outliers [Odobez and Bouthemy, 1995; Black and Anandan, 1996;
Mémin and Pérez, 1998]. Adapted optimization schemes must then be adopted to cope
with non-linearity or non-convexity induced by the robust terms, as will be discussed in
Sections 3.2 and 4.3. A priori smoothness assumption based on parametric constraint
(Chapter 3) or explicit regularization (Chapter 4) also counterbalances local invalidity of
data constancy.
Robust statistics and regularization treat the problem of violations of the constancy

assumption by considering it as noise, with underlying distribution assumptions [Simoncelli
et al., 1991; Krajsek and Mester, 1996]. The considered distributions may not suitably
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2 Data constancy

model the possibly large localized violations implied by the above listed causes. Therefore,
a large number of alternatives to brightness constancy have been proposed, aiming at more
stable invariance properties. A few experimental studies have compared performances of
different data costs given fixed optimization and regularization contexts [Steinbrucker
et al., 2009; Vogel et al., 2013].

Let us notice as a preamble to this section that it is difficult in practice to design a data
term independently from the spatial coherence constraint and the optimization strategy
to which it will be associated. For example, sophisticated feature conservation usually
involves specific optimization difficulties, and is thus closely intricate with the choice of
the optimization solution. We will dedicate this chapter to a review of the main classes
of data terms for optical flow estimation, emphasizing their validity domains and their
limitations, independently from the estimation context in which they were elaborated.
We will not address in this chapter the problem of characterizing motion in occluded

regions; we will focus only on the behaviour of data terms when correspondences exist.
The specific treatment of occlusions will be addressed in Part II.

2.1 Beyond brightness constancy

We explore several matching costs aiming at compensating the drawback of the brightness
constancy, in particular its sensitivity to noise and illumination changes.

2.1.1 Image filtering

The first class of data potentials has the same pixel-wise form as (2.2), but operates on a
filtered version f(I) of the original image sequence:

ρdata(x, I1, I2,w) = φdata(f(I2)(x+ w(x))− f(I1)(x)) (2.3)

Image smoothing We can first notice that Gaussian smoothing is applied as a
pre-processing step by most methods [Brox et al., 2004; Zimmer et al., 2011], in order
to reduce the influence of noise. It can be viewed as a modified version of brightness
constancy, setting f as a Gaussian filtering operator.

High-order constancy Image derivatives possess illumination invariance properties
that are well suited for motion estimation. The constancy of spatial image gradient,
defined by f(I) = ∇I, has been introduced in [Uras et al., 1988] for its ability to overcome
the aperture problem when the determinant of the Hessian is non-zero. However, when
applied on the directional derivative vectors, the gradient conservation only holds for
translational or divergence motions. To achieve rotational invariance, the penalty should
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2.1 Beyond brightness constancy

rather be applied on the magnitude of the derivatives, that is f(I) = ‖∇I‖ [Brox et al.,
2004]. It was subsequently used in the context of the local approach (see Chapter 3) in
[Tistarelli, 1996] and integrated in global variational methods (see Chapter 4) in [Brox
et al., 2004].

Despite a demonstrated performance gain in the case of additive illumination changes
compared to brightness constancy, gradient conservation is also much more sensitive to
noise, and looses information in poorly textured regions. Therefore, it is always used in
complementarity with brightness constancy. A large number of methods rely on this
combination and achieve good results [Brox et al., 2004; Xu et al., 2012b; Mozerov,
2013]. Finally Papenberg et al. [2006] investigated higher-order constancy like Laplacian
f(I) = ∆I, or Hessian f(I) = H I conservation.

Texture Another way to obtain robustness against illumination changes is to work with
the structure and texture components of the image, as proposed in [Wedel et al., 2009b].
The decomposition proposed in [Aujol et al., 2006] consists in first obtaining the structure
part IS by discontinuity-preserving smoothing (using the ROF model [Rudin et al., 1992]
in [Wedel et al., 2009b]), and then deriving texture part IT by subtracting IS to the
original image. Illumination changes only affect the structure image while the texture
image is less impacted. However, similarly to the image gradient constraint, IT misses a
lot of other image information and is more sensitive to noise. To limit this drawback,
the texture image used to compute optical flow is blended with the structure part by a
parameter α: f(I) = I − αIS . A number of methods adopted this constraint in [Wedel
et al., 2009a; Sun et al., 2010a; Krähenbühl and Koltun, 2012]. From our experiments,
this constraint globally produces more erroneous measures than the combination of
brightness and gradient constancy.

Colour spaces When dealing with colour images, several photometric invariant colour
spaces can be exploited. In particular, multiplicative illumination invariance is essential
for realistic illumination models [van de Weijer and Gevers, 2004] and is achieved in the
HSV space by the hue channel (local and global changes) and the saturation channel (only
global changes) [Mileva et al., 2007]. As for previously mentioned image transformations,
the benefit in illumination change regions coincide with a loss of information in other
parts, and the colour channels are in practice combined with the intensity valued channel
[Zimmer et al., 2011]. Other colour spaces like normalized RGB [Golland and Bruckstein,
1997] or spherical space [van de Weijer and Gevers, 2004] have been proposed.

Combination of linear filters As mentioned before, it is often necessary to combine
several constancy assumptions. In [Sun et al., 2008], a learning approach is proposed for
finding the best combination of linearly filtered brightness (that is taking f as a linear
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filter). Each data potential induced by a given linear filter Jk is penalized by a Gaussian
Mixture Model (GSM) φGSM of L models. The weight accorded to each filter is encoded
in the parameters of φGSM , Ξk = {ξk1 , . . . , ξkL}. We obtain

ρdata(x, I1, I2,w) =
∑
k

φGSM (Jk ∗ I2(x+ w(x))− Jk ∗ I1(x),Ξk), (2.4)

where ∗ denotes the convolution operator, and

φGSM (z,Ξk) =
L∑
l=1

ξkl N (z, σ2/sl), (2.5)

where sl are the scales of the elements of the mixture. The parameters Ξk associated
to each filter are learned from a set of ground truth sequences. Spatially adaptive
combination is also of upmost importance and will be addressed in Section 2.2.1.

2.1.2 Patch-based measures

Rather than pre-filtering images, neighborhood information can be integrated directly in
the data term by patch-based similarity measures. We can already stress that a major
issue with patch-based measure is the determination of the size or shape of the patch.
The methods we have developped address this issue. They are presented in Chapter 6
and Part II.

Filtering the data term In addition to pre-smoothing the images (2.3), Bruhn et al.
[2005] proposed to filter the data potential as follows:

ρ(x, I1, I2,w) = f (φ(I2(x+ w(x))− I1(x))) . (2.6)

Bruhn et al. [2005] chose f to be a Gaussian filter. While it was demonstrated beneficial
for very noisy sequences, it also significantly blurs motion edges and degrades the
overall performance for low amount of noise, compared to pixel-wise data term, as
emphasized in [Zimmer et al., 2011]. This limitation is addressed in [Drulea and
Nedevschi, 2011; Rashwan et al., 2013] by replacing the Gaussian filtering with anisotropic
discontinuity-preserving filtering (e.g. bilateral filtering in [Drulea and Nedevschi, 2011]
and tensor voting in [Rashwan et al., 2013]). We suggest an additional variant in Chapter 6.

Correlation-based measures Similarity measures based on cross-correlation have been
extensively used for various correspondence problems. Normalized Cross Correlation
(NCC) is usually preferred for its invariance to linear illumination changes. The NCC for
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2.1 Beyond brightness constancy

a window W(x) centered at pixel x is defined as

NCC(x, I1, I2,w) =
∑
y∈W(x)(I2(y + w(x))− µ2(x+ w(x)))(I1(y)− µ1(x))

υ1(x)υ2(x+ w(x)) (2.7)

where for i = {1, 2}, µi(x) is the mean and υi(x) the standard deviation of Ii in the
window W(x). The associated data potential is

ρdata(x, I1, I2,w) = 1−NCC(x, I1, I2,w). (2.8)

NCC is actually discriminative enough to be used in a matching procedure without
additional regularization, and produces coarse but reasonably robust motion fields. It is
used in several applications like stereovision [Delon and Rougé, 2007], fluid flow analysis
[Becker et al., 2012] or biological imaging [Kolin and Wiseman, 2007] where it also enables
direct physical measures for diffusion processes, as it will be explained in Chapter 15.
The cost in the computation of (2.7) is a major limitation. Unlike simple

cross-correlation which can be efficiently computed with Fast Fourier Transform (FFT),
the computation of NCC for matching purpose cannot be easily performed in the
frequency domain. Lewis [1995] computes only the numerator with FFT and proposed to
rewrite the denominator as a product of sums independent of the position of the pixel,
and thus efficiently computable with integral images [Facciolo et al., 2013]. Luo and
Konofagou [2010] generalized this idea and compute also the numerator with integral
images, dramatically reducing the computation time and making it invariant to the patch
size.

Integrating NCC in a variational optimization scheme is challenging because it requires
differentiating it. Indeed, Taylor expansion on the terms containing w in (2.7) still
yields a highly non linear potential. The approach of [Molnár et al., 2010; Werlberger
et al., 2012] has been applied to NCC but is able to handle arbitrary data terms as
well. The authors directly linearize the data term and compute its spatial derivatives
with finite differences. Werlberger et al. [2012] keep a second order approximation
to ensure the convexity of the energy, necessary in the primal-dual scheme used.
Another recent technique allowing very fast computation of NCC relies on the fact that
NCC is actually equivalent to the Sum of Square Differences (SSD) when the images
are filtered with the cheaply computed correlation transform [Drulea and Nedevschi, 2013].

Census Census Transform [Zabih and Woodfill, 1994] recently regained interest and
was promoted by Stein [2004] for optical flow estimation [Müller et al., 2011; Muller et al.,
2011; Mohamed and Mertsching, 2012; Ranftl et al., 2012; Vogel et al., 2013; Hermann
and Klette, 2013; Hafner et al., 2013]. The Census signature is a bit string reflecting
relative value of pixels of a patch with the center pixel. By discarding the absolute
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2 Data constancy

intensity values, only the structure of the neighborhood is encoded in the signature,
which makes it robust to illumination changes. It has shown robust behaviour in outdoor
scenes and vehicle driving scenarios [Vogel et al., 2013; Ranftl et al., 2012; Stein, 2004].
Integrating the Census transform in variational optical flow is not trivial since it cannot
be easily linearized. Solutions to remedy this problem are convex approximation [Vogel
et al., 2013], reformulation as a generalization of the gradient constancy conservation
[Hafner et al., 2013] or linearization of the data term [Ranftl et al., 2012; Müller et al.,
2011] as previously mentioned for NCC [Werlberger et al., 2012]

2.2 Spatially adaptive matching costs

The validity of each of matching costs is limited to a given range of visual situations. In
a single frame regions can coexist satisfying a given constancy assumption, and violating
others. One solution could be to linearly combine them to take advantage of their
complementary invariance properties. Softly selecting the best constancy constraint at
each pixel is usually devoted to the robust penalty function, limiting the influence of
locally wrong assumptions. However, the data term should ideally be spatially adapted.

We distinguish two classes of methods achieving the spatial adaptivity: i) optimization
of the weights of a linear combination of data potentials, and ii) estimation of the spatial
distribution of the errors attached to a single data potential. The normalization of the
data term used in [Simoncelli et al., 1991; Schoenemann and Cremers, 2006; Zimmer
et al., 2011] could fall in this category since a spatially varying weight is applied to the
data term. It is derived from the linearized brightness constancy constraint to prevent
too strong data constraint in regions of high image gradient (see a detailed interpretation
in [Zimmer et al., 2011]).

2.2.1 Spatially adaptive combination of constancy assumptions

The combination of P data constraints can be expressed as the weighted sum of their
associated potentials ρp(x, I1, I2, w):

ρdata(x, I1, I2,w) =
P∑
p=1

λp(x) ρp(x, I1, I2,w). (2.9)

The weights λp(x) are spatially variant and have to be optimized to locally favor different
data terms.

The idea of combining several data constraints has already been explored twenty years
ago in [Heitz and Bouthemy, 1993]. In addition to the classical brightness constancy, the
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2.2 Spatially adaptive matching costs

authors exploit a complementary sparse edge-based constraint. The weights λp(x) are
binary confidence measures derived from hypothesis testing providing evidence on each
constraint.

Xu et al. [2012b] combine intensity and gradient conservation, experimentally showing
their complementarity. The weights are defined to operate a binary selection between the
two constraints and are obtained by considering a mean field approximation of (2.9), which
intuitively amounts to selecting the constraint having the lower (normalized) potential.
This idea has been used subsequently in [Mozerov, 2013].

The work of [Kim et al., 2013] addresses the problem in its most general form
(2.9), allowing the combination of an arbitrary number and type of data conservation
assumptions. A confidence measure for arbitrary data term is designed as an extension
of the feature discriminability [Shi and Tomasi, 1994] to data discriminability. The
confidence measures are used as local constraints on the weights λp(x) in (2.9), and a
regularization on λp(x) is also imposed. The weights are then optimized jointly with the
motion field.

2.2.2 Modeling of data constancy violations

Another way to handle errors related to the constancy constraint is to explicitly model
them as an additional variable of the problem. Considering the brightness constancy,
errors can be modeled by a parametrized function e(x, I1, I2, ξ):

ρdata(x, I1, I2,w, ξ) = φ(I2(x+ w(x))− I1(x)− e(x, I1, I2, ξ)). (2.10)

The model proposed by [Negahdaripour, 1998] is composed of an offset change ξo :
Ω→ R, accounting, e.g., for moving shadows or highlights, and a multiplicative change
ξm : Ω → R encoding linear illumination variations. The error function can then be
expressed as

e(x, I1, I2, ξ) = ξmI1(x) + ξo. (2.11)

This general formulation has been exploited in a number of works, considering either the
offset parameter alone [Odobez and Bouthemy, 1995; Chambolle and Pock, 2011], the
multiplier alone [Zach et al., 2008] or both parameters [Kim et al., 2005; Teng et al., 2005;
Lai, 2000]. They may differ on their type of spatial coherency, the penalty function, or
the optimization strategy. A smoothness constraint is assumed on ξo and ξm, either with
a local parametric form [Odobez and Bouthemy, 1995; Negahdaripour, 1998] or a global
regularization [Lai, 2000; Kim et al., 2005; Teng et al., 2005; Chambolle and Pock, 2011].
The offset formulation is also used in [Ayvaci et al., 2012], but it is constrained to be
sparse, rather than smooth, with the aim of retrieving violations only due to occlusions.

The model (2.11) is based on general assumptions about physics of imaging. If specific
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2 Data constancy

knowledge about the observed physical process is available, dedicated models can be
designed. Haussecker and Fleet [2001] explored a number of physical constraint and
design a generic local estimation framework based on a Taylor expansion of arbitrary
data constraints similar to the subsequent methods [Molnár et al., 2010; Werlberger et al.,
2012]. We will propose a variant of the offset approach in Chapter 14.
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3 Parametric approach

As explained in Section 1.3, a spatial coherence constraint must be added to the previously
described data terms. To this end, a class of methods impose the flow field to follow
a parametric model in region R ⊂ Ω. The motion field wθ : R → R2 is then fully
characterized by the associated parameter vector θ. When the region R is a small
sub-domain of the image, these methods are referred to as local approaches. The objective
energy to be minimized is the weighted sum of the potentials provided by each pixel of R:

θ̂ = arg min
θ

∑
x∈R

g(x)ρdata(x, I1, I2,wθ) (3.1)

where g(x) is a spatial weighting function controlling the influence of pixel x in the
estimation.
It is crucial to determine local estimation domains where the parametric form of

the motion model is a valid approximation of the true motion. Low-order polynomial
motion models like translation or affine deformation can usually represent motion in small
neighborhoods, whereas more complex models like deviations from affine constraint or
combination of basis functions can deal with larger regions.
We first give an overview of the mostly used motion models and their associated

optimization strategies. Secondly, we discuss about the different ways to define appropriate
local estimation domains. The aggregation method presented in Part II will propose a
new approach for the implicit selection of the region R.

3.1 Motion models

The choice of the motion model is driven by a trade-off between efficiency and
representativeness. Complex nonlinear and physical-based models can be exploited
to model deformations for image registration [Sotiras et al., 2013]. These models are
particularly well adapted to physically constrained situations as they can be encountered
in medical imaging, and in particular to capture smooth deformations. In contrast, optical
flow is dealing with temporal sequences of arbitrary type, usually involving motions of
several objects with unrelated behaviours, generating discontinuities as well as smooth
parts. As a result, it is difficult to capture the whole complexity of motion fields with a
single unifying and computationally tractable parametric model. Therefore, attempts in
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3 Parametric approach

this direction are not frequent and not among the best performing methods in optical
flow benchmarks. The approach of most parametric methods for optical flow is rather
to rely on much simpler motion models, mostly polynomial models, but to restrict their
application to local domains, where they can represent accurate approximations.
In this thesis, we restrict ourselves to linear models of the form

wθ(x) =
K∑
k=1

bk(x)θ(x), (3.2)

where bk(x) are basis functions and θ(x) the weights to be optimized. Other parametric
models than those described here can be found, like planar surfaces or rigid body [Bergen
et al., 1992], or wavelet basis [Wu et al., 2000; Dérian et al., 2011, 2012; Shen and Wu,
2010]. It can also be noted that parametric models are sometimes completed with explicit
regularization terms (see Chapter 4) imposed on the parameters themselves [Nir et al.,
2008; Dérian et al., 2011; Ju et al., 1996; Memin and Perez, 2002].

3.1.1 Polynomial models

Polynomial models are among the most compact parametric representations of motion
fields and are also remarkably well suited to retrieve local physical motion of individual
objects. Apart from the exception of [Nir et al., 2008] where the parameters are spatially
variant and regularized, the parameters are kept constant over the estimation domain,
θ(x) = θ. The basis bk(x) are functions of the coordinates of the domain, and the order
of the polynomial determines the complexity of the motion field. Low order polynomials
like translational and affine models are usually sufficient to model smooth motion fields,
and their small number of parameters allows for efficient computation:

Translational : θ = (a1, a2)>; bk(x) =
(

1 0
0 1

)
(3.3)

Affine : θ = (a1, a2, a3, a4, a5, a6)>; bk(x) =
(

1 x1 x2 0 0 0
0 0 0 1 x1 x2

)
(3.4)

with x = (x1, x2)>.
The translation assumption is very restrictive and must be applied to very small regions

[Lucas and Kanade, 1981]. The physical assumption underlying the affine model is a
rigid motion of 3D objects projected orthogonally on the image plane, which is often a
good approximation. Higher order polynomials can model more complex situations, but
are still too smooth to allow for motion discontinuities. For example, the 8-parameter
quadratic model represents rigid motion of a plane surface in perspective projection. The
small number of parameters of the affine model and its realistic local assumption make it
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3.1 Motion models

often considered as the best trade-off between complexity and descriptiveness [Odobez
and Bouthemy, 1995; Black and Anandan, 1996; Memin and Perez, 2002].

3.1.2 Learned basis

The basis functions can also be learned from a set of training flow fields. As polynomial
models, resulting motion fields cannot describe motion of complex scenes, but they are
able to retrieve a larger diversity of local motion patterns, including discontinuities.
The design of the training set reflects the assumption on the form of the flow. In a

generic point of view, Black et al. [1997] used synthetic motion fields representing simple
motion patterns. Nieuwenhuis et al. [2010] relied on a large number of patches of ground
truth motion fields. The training set can be dedicated to a specific application, as in
[Fleet et al., 2000] where the aim is to estimate mouth motion. To avoid resorting to
external ground truth, Garg et al. [2011] define the training set on the processed sequence
itself. The basis set is composed of trajectories constructed by feature tracking on large
temporal scales, in regions ensuring reliable tracks. In all these works, an orthogonal basis
of flow fields is generated by PCA decomposition, conserving only the first K components
containing most of the variance of the training set.

3.1.3 Free-form deformations

The free-form deformation model (FFD) [Rueckert et al., 1999] has been originally
introduced for image registration and has demonstrated great robustness to retrieve
smooth deformations. The displacements are defined on a coarse regular subgrid of
the image and is interpolated on the final resolution with B-splines. The motion basis
bk(x) is thus the displacements of the kth control point and the coefficient θk(x) is a
B-spline influence function. The dimensionality reduction induced by the subsampling
of the image grid makes the computation much easier, and the spatial coherence of
the deformation is ensured by the B-spline interpolation. On the counterpart, the
framework cannot retrieve sharp motion discontinuities, while it is necessary for optical
flow applications. Image-adaptive non-regular control points distribution [Schnabel et al.,
2001] or coarse-to-fine spacing strategies [Rueckert et al., 1999] are possibilities to address
this problem.
Szeliski and Shum [1996] were the first ones to apply this idea to optical flow, with

non-uniform control points defined on image-driven quadtrees. Glocker et al. [2008]
turned the problem in a discrete setting. They iteratively adapt the range of motion
labels by estimating a local uncertainty covariance. They obtained good results but their
method is still limited by over-smoothing. Shi et al. [2012] addressed the discontinuity
problem with a sparsity constraint on the B-spline coefficients, allowing to modulate
the influence of the control points. Recent approaches [Glocker et al., 2007, 2008; Shi
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et al., 2012] also add an explicit regularization on the motion field, overlapping with the
methodology described in Chapter 4.

3.2 Optimization

Parametric models are usually associated with the penalty of a pixel-wise data constancy
constraint (2.2). In case of intensity constancy (1.5), the energy (3.1) then writes:

E(θ) =
∑
x∈R

g(x)φ
(
∇I>(x)wθ(x) + It(x)

)
(3.5)

where ∇I is the image gradient and It = ∂I/∂t. The special case of a quadratic function
φ and a translational model w = θ as in [Lucas and Kanade, 1981] leads to a very simple
optimization problem, since the cancelling of the derivatives of (3.5) amounts to solving
the following linear system:

Mθ = b, (3.6)

with

M =
( ∑

x g(x) I2
x1(x) ∑

x g(x) Ix1(x)Ix2(x)∑
x g(x) Ix1(x)Ix2(x) ∑

x g(x) I2
x2(x)

)
and b =

( ∑
x g(x) Ix1(x)It(x)∑
x g(x) Ix2(x)It(x)

)
(3.7)

where Ix1 and Ix2 are the partial derivatives of I respectively along the horizontal axis
x1 and the vertical axis x2. The rank of M allows one to decide if a unique solution
of the linear system (3.6) exists, and can be used to adapt the size of the local domain
R (see Section 3.3.2). Despite the limitations of the quadratic penalty, this approach
has become very popular for its implementation simplicity, low computational cost and
available implementation in the OpenCV library [Bradski, 2000].

However, robust estimation is often advocated [Odobez and Bouthemy, 1995; Black and
Anandan, 1996; Black et al., 1997; Dérian et al., 2012; Senst et al., 2012] as mentioned in
Chapter 2, especially for polynomial models, to deal with the frequent case of multiple
motions in the estimation domain. Among the variety of optimization methods used to
optimize the robust penalty function, the Iterative Reweighted Least Squares (IRLS)
[Holland and Welsch, 1977] and gradient descent approaches have mostly been used. IRLS
proceeds by successive optimizations of quadratic problems weighted by a function of
the current estimate [Odobez and Bouthemy, 1995; Senst et al., 2012]. Gradient descent
approaches are often coupled with Graduated Non-Convexity (GNC) [Blake and Zisserman,
1987; Black and Anandan, 1996] to cope with non-convexity of (3.5). Regarding the
slow convergence of steepest descent, it is preferable to use second order approximations
and Newton methods, or quasi Newton methods like L-BFGS or Levenberg-Maquardt,
approximating the Hessian for large dimension problems.
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3.3 Neighborhood selection

3.3 Neighborhood selection

As previously mentioned, the spatial adaptation of the parameters θ(x) is a way to cope
with complex and discontinuous flow fields [Nir et al., 2008; Garg et al., 2011; Shi et al.,
2012]. This approach often involves a priori constraints on the spatial distribution of
θ(x) and is thus strongly related to the methods that will be presented in Chapter 4.
Such a dense parameter map moves away from the compactness of parametric models.
On the other hand, when the parameters are constant over the estimation domain R,

the resulting motion field is imposed to be smooth and is a valid approximation in regions
of coherent motion, free from motion discontinuities. The choice of the region R is then
crucial, R must be large enough to enable motion estimation, while small enough to keep
valid the parametric approximation. We will describe strategies for defining R in the case
of constant parameters θ(x) = θconst over R, for polynomial models.

3.3.1 Entire domain

Despite their inability to retrieve realistic motion in arbitrary scenes, polynomial models
combined with robust estimation are well adapted to capture dominant motion. Applied
in the whole image domain, they become particularly useful to estimate the camera
motion [Odobez and Bouthemy, 1995].

3.3.2 Square patches

The approach initiated by [Lucas and Kanade, 1981] performs independent estimations
in small square or circular patches. Most of the related methods use fixed patch size, and
conserve the velocity vector deduced from the estimated model at the square center [Baker
and Matthews, 2004; Bigun et al., 1991; Zach et al., 2008; Kim et al., 2004]. This choice
is very popular for its simplicity of implementation and can be naturally parallelized
nature [Zach et al., 2008; Sinha et al., 2011]. It is still extensively used for numerous
applications. However, following the generalized aperture problem, patches centered at
each pixel with a fixed size are likely to contain either multiple motions or no image
gradient, regarding the position of the pixel.

Multiple motions in a single patch can be partially handled with robust estimation by
rejecting secondary motions, considered as outliers [Odobez and Bouthemy, 1995; Black
and Anandan, 1996; Gelgon et al., 1999; Senst et al., 2012].

The second option is to adapt the size or the position of the patch so that it contains an
unimodal motion distribution. The size of the patch can be adapted with a bias-variance
criterion Maurizot et al. [1995], or based on a confidence measure on the reliability of
the local domain for parametric estimation. Starting from a small patch size, it is thus
possible to increase the size of the patch until it fulfils the condition for a reliable domain
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[Senst et al., 2012]. In the case of [Lucas and Kanade, 1981], such a condition can be
found by analyzing the singularity of the matrix M of the linear system (3.7) and, for
example, imposing a minimum threshold to the maximum eigenvalue of M [Barron et al.,
1994]. Rather than adapting the size, Jodoin and Mignotte [2009] adapt the position of
the patches. Patches corrupted by strong intensity edges are displaced by a mean-shift
procedure to reach homogeneous regions.

However, all these variants have never been competitive with state-of-the-art approaches
based on global regularization (Chapter 4) or segmentation (Section 3.3.3). Nevertheless,
we will show in Chapter 8 that if the sizes and positions are appropriately chosen, square
patches are sufficient approximations to yield better flow estimation than state-of-the-art
methods.

3.3.3 Segmented regions

The optimal regions R to perform polynomial estimations ideally correspond to a
segmentation of the image in coherently moving regions. We briefly describe two types of
approaches: independent image segmentation and joint estimation of motion and region
supports or frontiers.

Image segmentation While the ultimate goal is to segment the unknown motion
field, color-based image segmentation is a much simpler alternative which can help
motion estimation. It can be reasonably assumed that motion discontinuities coincide
with image discontinuities (but the inverse is far from being true). It implies that an
image segmentation is a motion field over-segmentation, and obtained regions are thus
guaranteed to contain no motion discontinuity. However, merely estimating motion in
the resulting regions is problematic for two reasons.

The first limitation is that the segmented regions, may not contain enough information
for motion estimation. Parametric estimations in these regions must be performed by
circumvented ways. The very fine over-segmentation of Zitnick et al. [2005] imposes for
instance to perform region matching. Generally, an independent coarse and cheap motion
estimation is fused with the color image segmentation to overcome the lack of information
[Xu et al., 2008; Black and Jepson, 1996; Bleyer et al., 2006]. Xu et al. [2008] find hybrid
regions by applying mean-shift segmentation in the extended space of color and motion.
Differently, [Black and Jepson, 1996; Bleyer et al., 2006] fit a parametric flow field on
the coarse initial motion field, obtained with a global regularized method [Black and
Anandan, 1993] for [Black and Jepson, 1996], and with the sparse KLT tracker [Shi and
Tomasi, 1994] for [Bleyer et al., 2006].

The second problem is that spatial coherence between estimated motion in neighboring
segments is not ensured. Global regularization (see Chapter 4) can here be imposed,
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either on the motion parameters associated to each region [Xu et al., 2008] (similarly
to [Ju et al., 1996], not resorting to image segmentation), on the coarse motion field
completing color information [Black and Jepson, 1996] or, in a layered approach (see
below), on the layer assignment function [Bleyer et al., 2006]

Joint estimation and segmentation Color segmentation is usually too dependent
on the image content to make it the basis of a robust motion estimation method. Rather
than considering segmentation and estimation as two independent tasks, most methods
have a coupled approach of the problem. Motion parameters and region supports are
jointly estimated by minimizing a global energy imposing a coupling between them. This
approach has first been addressed as a labelling problem [Bouthemy and François, 1993;
Odobez and Bouthemy, 1998] where the label field l : Ω→ {l1, . . . , lN} associated to the N
regions is estimated jointly with the motion parameters in each region θ = {θ1, . . . ,θN},
in a discrete Markov Random Field framework:

E(θ, l) =
∑
x∈Ωd

ρdata
(
x, I1, I2,wθl(x)

)
+

∑
<x,y>

ρMRF
reg (l(x), l(y)) (3.8)

where ρMRF
reg (l(x), l(y)) is a regularization prior on the label field, typically chosen as

ρMRF
reg (l(x), l(y)) = 1− δ(l(x), l(y)), with δ the Kronecker function. Another viewpoint in

a variational framework extends the Mumford-Shah formulation of image segmentation
[Mumford and Shah, 1989] to motion segmentation [Paragios and Deriche, 2005; Cremers
and Soatto, 2005]. In addition to the data fitting potential (6.5) inside each region Ri,
a constraint restricting the length L(C) of the set of region boundaries C is imposed
globally with the energy:

E(w, C) =
N∑
i=1

∫
Ri
ρdata(x, I1, I2,wθi)dx+ ν L(C), (3.9)

where ΩD is the discrete image domain. The minimization is performed alternatively on
the flow and the boundaries. Minimizing (3.9) with respect to C requires a differentiable
approximation of the contour length L(C). It is common to implicitly represent the
partitioning of the image with level sets, which allows to represent the interior of the
regions by the sign of the function, as well as the total length of the boundaries by their
level lines. One level set function can only represent two regions. For an arbitrary number
of N regions, it is possible to define N corresponding levels sets, at the price of a high
computational cost and a more complex energy to prevent vacuums in the partitioning, or
other strategies can be employed, as the one of Chan et al. [2002] re-used in [Cremers and
Soatto, 2005], for more sophisticated combinations between functions. The optimization
is done alternatively between motion and regions. In [Paragios and Deriche, 2005], this
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level set framework is augmented with an edge-driven tracking and background detection.
A graph-cut optimization scheme has been proposed in [Dupont et al., 2005]. These two
formulations ((3.8) and (3.9)) can be found in numerous other works [Kervrann et al.,
2011; Memin and Perez, 2002; Unger et al., 2012; Sun et al., 2010a, 2012; Schnörr and
Peckar, 1995].
Two main drawbacks affect this joint estimation and segmentation approach based

on Mumford-Shah functionals. First, alternate minimization of regions and flow fields
is computationally expensive. The related layered approach [Sun et al., 2010b, 2012]
achieving state-of-the-art results requires several hours to process a pair of 640 × 480
pixels, and even GPU-based implementation [Unger et al., 2012] can need up to an hour.
Second, the evolution of the contours throughout the minimization procedure is very

dependent on the initialization of the segmentation. Therefore, the best performing
methods have to initialize the minimization of (3.9) with optical flow estimation methods
that are able to reach among the best results in optical flow benchmarks. For example,
[Sun et al., 2010b] is initialized with [Sun et al., 2010b], and [Unger et al., 2012] is
initialized with Werlberger et al. [2009].

Some works exploit more complex flow field representations than polynomial
approximation, by authorizing deformations from an initial affine model [Black and
Jepson, 1996; Sun et al., 2010b; Memin and Perez, 2002] or an explicit regularized model
[Brox et al., 2006; Amiaz and Kiryati, 2006]. Allowing such complex and discontinuous
motion fields in segmented regions actually tends too allow for larger regions, and
ultimately leads to global approaches detailed in Section 4, where motion discontinuities
are handled by the model itself. Consequently regions may not represent coherent motion,
but rather a delimitation adapted to the specific estimation method.
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Alternatively to the parametric representation of spatial coherence, mostly adapted to
smooth deformations, the global form of the motion field can be imposed by an explicit
regularization potential. Motion discontinuities are then no more represented by the
boundaries of the regions delimiting parametric motion fields, but they are involved the
global model, often considered as outliers w.r.t. smoothness assumptions. The variational
approach has been initially proposed by Horn and Schunck [1981] and is usually referred
to as the global approach, since the regularization term interconnects all the pixels of the
image and thus requires the optimization of the objective energy to be performed globally.
In this section, we review current versions of the regularization model and optimization
strategies.

4.1 General approach an principle

In its most general form, the energy minimized by globally regularized methods can be
written as:

Eglobal(w) =
∫

Ω
ρdata(x, I1, I2,w) + λ ρreg(x,w)dx (4.1)

where ρdata(x, I1, I2,w) is the data potential, as discussed in Chapter 2, ρreg(x,w) is
the regularization potential encoding an a priori assumption on the the field w, and
λ is a parameter tuning the balance between the two terms. Broadly speaking, the
regularization potential aims at smoothing the motion field in regions of coherent motion
while preserving motion discontinuities at the boundaries of moving objects. Finding the
trade-off can also be partially addressed in the adaptation of the balance parameter λ
[Ng and Solo, 1998; Zimmer et al., 2011; Krajsek and Mester, 2007; Héas et al., 2012].
A major interest of the global variational framework is its versatility, allowing one to

model different forms of flow fields by combining different data and regularization terms.
One must nevertheless keep in mind that minimizing (4.1) is often a tricky task. The
potentially unlimited combinations of data terms and regularization terms is restricted in
practice to those compatible with efficient minimization. Besides, advances in optical flow
have often been correlated with new possibilities offered by optimization techniques. For
example, efficient Primal-Dual minimization for Total Variation regularization [Chambolle
and Pock, 2011] have motivated a number of optical flow models [Zach et al., 2007;
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Werlberger et al., 2010; Unger et al., 2012]. The development of efficient discrete
optimization techniques based on graph cuts [Boykov et al., 2001] or message passing
[Kolmogorov, 2006] also inspired various works [Lempitsky et al., 2010; Chen et al., 2013;
Mozerov, 2013]. Another consequence of the close intricacy between energy model and
optimization method is the difficulty to compare performances of different models, as
global optimum is in general not guaranteed for sophisticated energies and the quality of
the local optimum depends on the type of optimization method.
We will detail in Section 4.2 existing regularization models independently from

optimization techniques, for the sake of clarity. Section 4.3 focuses on the dependency
between specific energy models and optimization methods.

4.2 Regularization models

4.2.1 Spatial gradient constraint

The most natural and widely used way to impose smoothness of the motion field is to
penalize the magnitude of the flow gradient:

ρreg(x,w) = f(x, I)φ(‖∇w‖2) (4.2)

where ψ(·) is the penalty function and f(x, I) is a weighting function.
A taxonomy of optical flow regularizers has been proposed in [Weickert and Schnorr,

2001]. The authors focus on convex and rotational invariance properties, and prove
uniqueness of the solution in each case. For each regularization of type (4.2), they show
the equivalence between the resolution of the Euler-Lagrange equations associated with
energy (4.1) and diffusion filtering. In addition, a diffusion tensor is derived for each
particular variation of (4.2). We will give a more succinct overview, taking only some
elements from this classification and integrating more recent approaches.

Flow-driven regularization In flow-driven approaches, no relation between the form
of the flow field and the structure of the image is assumed. The weighting function is
thus ∀x ∈ Ω, f(x, I1) = 1. The seminal formulation of [Horn and Schunck, 1981] adopts
a quadratic penalization function:

ρreg(x,w) = u(x)2 + v(x)2, (4.3)

with w = (u, v)>. The quadratic penalization is unable to capture motion discontinuities.
Robust sub-quadratic penalties have soon been employed to overcome the problem
[Mémin and Pérez, 1998; Deriche et al., 1996; Black and Anandan, 1996]. Among
the wide panel of robust functions, the popular parameter-free Total Variation (TV)
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prior, has interesting and useful properties [Brox et al., 2004; Zach et al., 2007; Xu
et al., 2012b]. Contrary to most other robust norms, the TV yields a convex constraint
facilitating optimization. The non-differentiability in 0 is generally circumvented by using
the regularized version φ(z) =

√
z2 + ε2, where ε is a small constant. Associated to

proximal splitting minimization, TV involves solving several ROF (Rudin-Osher-Fatemi)
models [Rudin et al., 1992], for which very efficient algorithms exist [Chambolle, 2004]. A
series of accurate optical flow estimation methods have exploited this idea for fast and
accurate minimization [Zach et al., 2007; Wedel et al., 2009b; Chambolle and Pock, 2011;
Werlberger et al., 2012].

TV regularization actually favors piecewise constant flow fields. This framework is
known to transform smoothly varying motion to a succession of small discontinuous
constant steps (staircasing artifacts). This undesirable effect can be reduced by replacing
the L1 penalization by a quadratic one for small gradient magnitude, which is the
behaviour of the Huber norm [Shulman and Herve, 1989; Werlberger et al., 2009]. Another
possibility is to penalize higher order derivatives of the flow, as done in [Trobin et al.,
2008a] for the second derivative, to favor piecewise affine flow fields. The Total Generalized
Variation (TGV) [Bredies et al., 2010], generalizes L1 penalization to arbitrarily high
order derivatives. The performance gain of the second order TGV has been experimentally
shown for smooth deformation conditions, for which the staircasing effect is prominent
with TV regularization [Ranftl et al., 2012; Vogel et al., 2013; Braux-Zin et al., 2013].

Despite the demonstrated performance of TV due to its algorithmic attractiveness, the
real distribution of optical flow derivatives has been shown to follow a more heavy-tailed
and concave distribution [Roth and Black, 2007]. Finding good approximate solutions for
non-convex priors has motivated a number of works and will be discussed in Section 4.3.
When appropriate minimization strategy is available, like graph cuts or the recent work
of [Ochs et al., 2013], this kind of penalties has proven to yield improvements compared
to the TV model.

Integrate image gradient information It is natural to assume a link between the
motion field and its source image I1. As already stated in Section 3.3.3 about the
relationship between motion and image segmentation, it is reasonable to consider that
motion discontinuities coincide with image discontinuities delineating moving objects.
This information can be incorporated in the regularization through the weighting function
g(x, I) taken as a smooth decreasing function of ‖∇I‖2 [Alvarez et al., 1999; Wedel et al.,
2009b; Xu et al., 2012b; Ayvaci et al., 2012; Mozerov, 2013], often defined as

g(x, I) = e
−
(
‖∇I(x)‖2

ς2

)
. (4.4)

where ς is a parameter setting the influence of the image gradient on the regularization.
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Despite the risk of over-segmentation, this simple weighting strategy usually improves
significantly the results in practice.
The previous approach is isotropic since the smoothing is modulated by the same

value in all the directions. This is suboptimal since we would ideally like to prevent the
smoothing only across the boundaries, and allow it along them. This can be achieved by
defining the regularization axes differently from the horizontal and vertical axes. The
eigenvectors s1 and s2 of the structure tensor Rρ = Kρ ∗ [∇I∇I>] are well adapted since
s1 is oriented across local image edges and s2 is orthogonal to s1. This idea has been
first exploited by Nagel and Enkelmann [1986], which regularizer has been rewritten in
[Zimmer et al., 2011] as:

ρreg(x,w) = 1
‖∇I‖2 + 2κ2

(
κ2
(
u2
s1 + v2

s1

)
+ (‖∇I‖2 + κ2)

(
u2
s2 + v2

s2

))
(4.5)

where the eigenvectors s1 and s2 are obtained with a radius ρ = 0 for the Gaussian
filtering of the structure tensor Rρ, usi are the derivatives of u along the si axis and κ is a
regularization parameter. When κ is small, the regularization is reduced in the direction
of the image gradient s1 and strengthened along image edges s2 depending on the image
gradient magnitude ‖∇I‖2.

The classical artifact produced by purely image-driven regularizations is an over-fitting
of the flow field on image boundaries, creating artificial motion discontinuities. To reduce
the impact of image gradient in the regularization, Sun et al. [2008] proposed to keep the
s1 and s2 directions, while suppressing the weighting on ‖∇I‖2 in (4.5) and to employing
robust penalization:

ρreg(x,w) = φ(u2
s1) + φ(v2

s1) + φ(u2
s2) + φ(v2

s2). (4.6)

Zimmer et al. [2011] proposed a generalized computation of the regularization axes,
oriented to follow the data constraint rather than the image edges. In analogy with the
previous approach defining s1, s2 from the structure tensor, they compute the eigenvectors
of a so-called regularisation tensor, designed to be complementary with the data term.
The approach of Zimmer et al. [2011] can be generalized to data potentials built from the
combination of L linear constancy constraints, that is,

ρdata(x, I1, I2,w) =
L∑
`=1

φ(A` w +B`). (4.7)

For this kind of data potential, the regularisation tensor is defined by

Rρ =
L∑
`=1

kρ ∗A`A>` , (4.8)
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where kρ is a Gaussian kernel and s1,s2 are the eigenvectors of Rρ. Taking L = 1, A1 = ∇I
and B1 = It yields the brightness constancy constraint, and the regularization tensor
reduces to the structure tensor. For more elaborated data terms, as the combination of
normalized brightness and gradient constancy used in [Zimmer et al., 2011], the resulting
axes are more consistent with the data constraints.

4.2.2 Non-local regularization

The gradient of the flow can only provide a local constraint on the interaction between
pixels. Assuming longer range interactions can model more precisely the form of the
motion field. Such non-local regularization has been recently investigated in [Sun et al.,
2010a; Werlberger et al., 2010; Krähenbühl and Koltun, 2012; Drulea and Nedevschi,
2013] by describing the structure of the flow in an extended neighborhood N (x) in a
discrete setting as:

ρreg(x,w) =
∑

y∈N (x)
g(x, y, I1)φ

(
‖w(x)−w(y)‖2

)
. (4.9)

The weights g(x, y, I1) indicate which pixel y ∈ N (x) should share a similar motion with
pixel x. They are derived from the bilateral filter, favoring small distances in the spatial
and color spaces [Yoon and Kweon, 2006]:

g(x, y, I1) = exp
(
−‖x− y‖

2

σ2
s

− ‖I1(x)− I1(y)‖2
σ2
c

)
(4.10)

where σs and σc control the influence of spatial distance and color similarity. This
approach is image-driven in a similar way to local weighting (4.4), in the sense that the
smoothness is weighted by the image edges. Nevertheless, the integration on a large
neighborhood reduces the influence of local gradients and exhibits more globally the
structure of the objects. It is implemented as an alternate weighted median filtering in
[Sun et al., 2010a] and interpreted as a low-level soft segmentation in [Werlberger et al.,
2012].
The high order regularization causes severe optimization difficulties discussed in

Section 4.3, in particular in terms of computational cost, increasing with the size of the
neighborhood N (x).

4.2.3 Temporal coherence

A natural idea is to extend the spatial regularization described above to the temporal
dimension, assuming that motion varies smoothly across consecutive frames. Similarly
with the spatial case, smoothness on the time axis can be achieved either locally, based on
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the temporal gradient, or taking into account a longer interval by working on trajectories.

Constraint on the temporal gradient The most straightforward way to model
temporal smoothness is to penalize the temporal flow gradient, analogously with
the spatial flow gradient in Section 4.2.1. As for spatial dimension, constant or
quadratic smoothness assumption [Murray and Buxton, 1987] is unrealistic since it
cannot account for the temporal discontinuities frequently occurring when objects
change direction. Robust temporal consistency is achieved in [Nagel, 1990; Chin
et al., 1994; Weickert and Schnörr, 2001; Zimmer et al., 2011] by simple extensions
of the spatial gradient penalties described in Section 4.2.1 to the temporal dimension.
However, the performances of the local temporal regularization are deceiving in most cases.

Constraint on the trajectory In case of large displacements, the temporal gradient
at a given pixel can be high even if the motion remains constant across frames. Temporal
coherence is then more adequately modeled by constraining the trajectories of objects. It
was done by [Black, 1994], who does not model explicitly the trajectories but estimates
temporal changes on warped images to alleviate the problem of large displacements.
However, the warping is done sequentially in the forward direction and is thus prone to
propagate errors. In the same spirit, [Volz et al., 2011] considers the same coordinate
system for groups of five frames, which implies an implicit natural registration. The
estimation is done jointly in all frames of the sequence, which overcomes lack of feedback
with previous frames of [Black, 1994]. The trajectory constraint of Garg et al. [2011] is
explicitly imposed by modeling the flow field as linear combination of long-term trajectory
bases, obtained from reliable sparse tracks.

4.3 Optimization

As mentioned in Section 4.1, the optimization strategy employed to minimize (4.1) has a
decisive influence on the final result. We give an overview of the main continuous and
discrete optimization methods and point out their adaptability to specific energy terms.

4.3.1 Continuous methods

Resolution of the Euler-Lagrange equations The Euler-Lagrange equations give
necessary conditions for minimizing energy of the form

E(w) =
∫

Ω
F (x,w,∇w) dx, (4.11)
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which is the case of (4.1) when the regularization is a function of the flow gradient
(4.2). With simplified notations, they provide the following system of partial differential
equations: 

∂ρdata
∂u + div

(
∂ρreg
∂∇u

)
= 0,

∂ρdata
∂v + div

(
∂ρreg
∂∇v

)
= 0,

(4.12)

which can be rewritten by introducing the diffusion tensor D accounting for their relation
with diffusion equations [Weickert and Schnorr, 2001]:

∂ρdata
∂u + div (D∇u) = 0,

∂ρdata
∂v + div (D∇v) = 0.

(4.13)

The analogy with diffusion equations makes explicit the direction and magnitude of the
smoothing, which correspond respectively to the eigenvectors and eigenvalues of D.
The discretization of the gradient and divergence operators yields a large system of

equation to be solved. If the system is linear, its sparsity makes it well suited for iterative
solvers like Gauss-Seidel or successive over-relaxation (SOR) [Brox et al., 2004]. These
methods are guaranteed to converge for strictly diagonally dominant systems and also
converge in practice in case of small deviations from diagonal dominance, which occurs in
practice for most optical flow models. Nevertheless, the linear case is in practice only
encountered in the model of Horn and Schunck [1981] using quadratic penalties and
linearized data constraint. To cope with non-linearity, the typical approach [Weickert
et al., 2001; Brox et al., 2004] is to resort to time-lagged schemes [Ciarlet, 1978] by
handling each source of non-linearity by fixed point iterations, turning the problem into a
succession of linear systems, and updating iteratively the non-linear parts. Convergence
of the scheme is ensured if the linear systems are solved exactly, but approximations and
frequent updates often yield in practice good results and much faster convergence.
Fast computational schemes have been employed for achieving near real-time

performance. A multigrid framework has been proposed in [Bruhn and Weickert,
2006]. The scheme is very efficient, but it is problem-specific and requires a substantial
implementation effort. Another approach is to consider the solution of the Euler-Lagrange
equation as the steady state of the corresponding diffusion process (4.13), and use the
Fast Explicit Diffusion (FED) principle [Grewenig et al., 2010] to accelerate convergence
by adapting the time steps. Gwosdek et al. [2012] exploited the natural parallelization
of explicit schemes to implement a quasi real-time version of the variational method of
[Zimmer et al., 2011] on GPU, based on FED.

This approach has become standard because of its simplicity, the wide range of models
it can handle, and its good experimental performances even for non-convex energies [Brox
et al., 2004; Li et al., 2013; Volz et al., 2011].
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Early discretization The computation of the Euler-Lagrange equations can be complex
or impossible for some forms of the energy (4.1). Moreover, one can argue that the
discretization of the Euler-Lagrange equations can generate numerical errors with respect
to the original energy [Pock et al., 2007]. A way to overcome these shortcomings is to
avoid computing the Euler-Lagrange equations and directly discretize the energy (4.1).
The equation to solve is then simply the cancellation of the differentiated discretized
energy:

∂E(w)
∂w = 0. (4.14)

Solving (4.14) amounts to inversing a large linear system, similar to the one obtained
by Euler-Lagrange equation discretization for energies of the form (4.11). Employing a
fixed-point iterations scheme to cope with non-linearity amounts to an IRLS approach,
which is shown by Liu et al. [2009] to be equivalent to the above described resolution of
the Euler-Lagrange equations with fixed-point.

Contrary to the Euler-Lagrange scheme, the regularization is not imposed to be a
derivative of w, and non-local regularization terms (4.9) can be handled. However, such
an approach yields a dense linear system, not solvable with standard iterative methods.
Krähenbühl and Koltun [2012] proposes a linear-time method to compute matrix product
by successive Gaussian filtering, allowing to efficiently inverse the dense linear system
with a conjugate gradient solver. Sun et al. [2008] also exploited the ability of handling
more general energies to optimize learned data and regularization terms. The general
experimental study of [Sun et al., 2010a] and the complex method of [Sun et al., 2010b] also
exploits this approach, with Graduated Non Convexity (GNC) to cope with multimodality
of the energy [Blake and Zisserman, 1987; Black and Anandan, 1996].

Instead of solving (4.14), a gradient descent method can be applied to minimize the
discretized energy. Due to the large scale of the problem, Newton methods requiring the
inversion of the Hessian of the energy are not applicable, and only quasi-Newton methods
are computationally tractable. A few works have explored this direction, with Truncated
Newton [Kalmoun et al., 2011; Kalmoun and Garrido, 2013] or L-BFGS [Dérian et al.,
2011].

Half-quadratic minimization Instead of solving directly the energy (4.1) a number
of optimization approaches proceed to the addition of an auxiliary variable splitting
the original problem into easier sub-problems. The half-quadratic minimization falls in
this class. It can be shown that under large conditions [Geman and Reynolds, 1992;
Charbonnier et al., 1997], a function φ can be rewritten as the following function Φ
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introducing the additional variable γ ∈]0, 1]:

φ(z) = inf
γ

Φ(z,γ) = inf
γ

(
γ z2 + ψ(γ)

)
, (4.15)

where the function ψ can be explicitly derived from φ. The robust non-convex penalty
φ(z) in data and regularization potentials can be replaced by Φ(z,γ) in the data and
regularization terms, so that the optimization in z becomes easy since it involves only
quadratic terms. Moreover, the minimization w.r.t. γ has a closed-form solution:

γ̂ = arg min
γ

Φ(z,γ) = φ′(z)
2z . (4.16)

The original minimization problem in z is thus turned into alternate simple optimizations
on z and γ. This approach also leads to the IRLS algorithm described in Section 3.2.

The introduction of this approach for optical flow estimation coincided with the use of
robust penalties for discontinuity preserving regularization [Deriche et al., 1996; Black
et al., 1997; Mémin and Pérez, 1998; Aubert et al., 1999] and was more recently exploited
in [Corpetti et al., 2002; Héas et al., 2012].

Proximal splitting Another successful optimization method based on alternate
minimization of simple sub-problems has been proposed by Aujol et al. [2006] and
used for optical flow in [Zach et al., 2007]. The data and regularization terms are splitted
and associated to separate variables, which are quadratically coupled by a third term:

Esplit(w,v) =
∫

Ω
ρdata(x, I1, I2,w)dx︸ ︷︷ ︸

Edata

+ 1
2ε

∫
Ω
‖w(x)− v(x)‖2dx+ λ

∫
Ω
ρreg(x,v)dx︸ ︷︷ ︸

Ereg

,

(4.17)
where v is an auxiliary variable. The parameter ε sets the intensity of the coupling. If ε
is small, (4.17) tends to the original univariate problem (4.1). The minimization on each
variable is the computation of the proximal operator of Edata and Ereg:arg minwEsplit(w, v̂) = proxEdata(v̂)

arg minbEsplit(ŵ,v) = proxEreg(ŵ)
(4.18)

where the proximity operator of a function f is defined by

proxf (z) = arg min
u

(
f(u) + 1

2‖u− z‖2
)
. (4.19)

The minimization problems (4.18) can be viewed as alternating coarse pixel-wise data
matching and denoising of the flow field. A generalization of this approach and its
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formalization in a primal-dual framework is described in [Chambolle and Pock, 2011].
This approach has initially been designed for L1 penalty on the data and regularization

terms, a.k.a. TV -L1 model [Aujol et al., 2006; Zach et al., 2007], for the simplicity of
the resulting optimization sub-problems. The optimization of the data term with v fixed
is efficiently performed by a thresholding scheme, and fixing w yields the ROF model,
optimized with the duality based algorithm of [Chambolle, 2004]. An advantage is that a
differentiable approximation of the L1 norm is not required, as in [Brox et al., 2004], and
one can solve for the exact TV -L1 model.
In a general point of view, the independence of the optimization of data and

regularization parts allows one to design dedicated minimization schemes in a variety
of cases. The restriction is to be able to compute the proximal operators, and the
convergence is ensured only for convex energies. For the data part, the thresholding
scheme of [Zach et al., 2007] is applicable in some cases for the L1 norm, and efficient
solutions have been found to handle an additional fundamental matrix constraint [Wedel
et al., 2008], a truncated L1 norm of normalized cross correlation [Werlberger et al., 2010],
or mutual information [Panin, 2012]. Another advantage of the pixel-wise nature of the
data part minimization is the naturally parallel implementation strategies which can
dramatically speed up the algorithm and reach real-time [Zach et al., 2007]. Based on the
pixel-wise observation, [Steinbrucker et al., 2009] proposes a discrete exhaustive matching
for optimization in w, which opens the usage of arbitrary data terms, only limited by the
computational cost of the matching. Patch-based similarity measures have also recently
been implemented with the fast PatchMatch algorithm [Barnes et al., 2009] by [Heise
et al., 2013].
Concerning the regularization part, it is possible to minimize non-local regularization

terms [Werlberger et al., 2012; Drulea and Nedevschi, 2013]. The decoupling also allows
for a fair comparison of data or regularization models due to the absence of interference
between the minimization of the two parts [Vogel et al., 2013].

4.3.2 Discrete methods

In a discrete setting, the solution of the minimization of (4.1) is searched in a set of
discrete labels L(x) corresponding to a quantization of the continuous motion vector
space or the selection of a finite subset of motion vectors. We give a fast overview of
basic principles of discrete optimization methods. For a more complete analysis, see the
recent review of [Wang et al., 2013]. The spatial discretization of (4.1) yields an energy
in the Markov Random Field (MRF) framework:

ED(w) =
∑
x∈ΩD

ρdata(x, I1, I2,w) +
∑

y∈N (x)
ρMRF(x, y,w) (4.20)
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where ΩD is the discrete image domain, N (x) denotes the pixels interacting with x in
the model and ρMRF is the discrete version of ρreg(x, y, I1, I2,w) which explicitly takes
into account the interaction between two neighboring pixels x and y.

An important advantage of discrete optimization over the continuous approach is that it
does not require differentiation of the energy and can thus handle a wider variety of data
and regularization terms. On the counterpart, a trade-off has to be found between the
accuracy of the motion labelling and the size of the search space L(x). Indeed, discrete
optimization methods are usually severely limited in terms of accuracy and speed by
the number of labels, particularly for optical flow where subpixel accuracy is necessary,
and where the two-dimensional motion space becomes more rapidly intractable than the
one-dimensional stereo case for instance. Therefore, the design of the label space L(x) is
a crucial component of discrete optimization methods for optical flow.

Among early methods for minimizing (4.20), simulated annealing [Geman and Geman,
1984] offers proved convergence towards the global minimum based on stochastic
relaxation, which can be viewed as the stochastic counterpart of the GNC scheme
discussed above in Section 4.3.1. However, the optimal convergence is guaranteed only
under prohibitive computational cost. An approximate solution can be obtained much
faster with the Iterated Conditional Modes [Besag, 1986], operating by iterative local
minimizations of the energy, but this local optimum often yields poor results compared
to modern methods [Szeliski et al., 2008], especially for non-convex functions.

Graph cut The work of [Boykov et al., 1998] gave rise to rapidly growing research
interest and advances on graph cut approaches for MRF minimization. The basis of graph
cuts is the max-flow/min-cut problem consisting in finding the optimal path between to
nodes in a directed graph, solvable by many algorithm in polynomial time [Fulkerson,
1962; Goldberg and Tarjan, 1988]. It is possible to model an undirected MRF structure as
a directed graph by introducing two additional source and sink nodes, and then interpret
the min-cut partition as a binary label segmentation of the MRF energy. The global
minimum of the binary optimization can be guaranteed for pairwise interactions and
submodular functions. In summary, it is possible to find the global optimum for the
energy (4.20) under the following conditions:

• submodularity of ρMRF(x, y, I1, I2,w),
• pairwise interactions,
• binary labels.

Research on graph cuts has attempted to overcome these three constraints, based on the
original max-flow/min-cut algorithm.
Submodularity of the pairwise term is a required property for convergence of the

algorithm. Finding good approximate solution can be achieved with the Quadratic
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Pseudo Boolean Optimization (QPBO) [Boros et al., 1991; Kolmogorov and Rother, 2007;
Rother et al., 2007], leading to an optimal but partial labelling. Dealing with higher-order
local interactions between pixels has also been addressed in several recent works [Kohli
et al., 2009; Ishikawa, 2009; Komodakis and Paragios, 2009; Fix et al., 2011].
Submodularity and pairwise interactions are not too restrictive constraints for a large

range of computer vision problems and let room for a number of applications. On the
contrary, the cardinality of the label space verifies almost always |L(x)| > 2, so the binary
label requirement is a much harder limitation. The extension of binary graph cuts to
multi-label have mostly been realized through iterative move-making techniques. The
idea is to create at each iteration a binary-labeled space composed of the current solution
and a new proposal label. The label space L(x) is thus explored progressively by each new
proposal. If each binary minimization performed with the max-flow/min-cut method is
ensured to be optimal, a decreasing of the energy is guaranteed at each iteration, and the
method converges to a local minimum. It can be noticed that the class of move-making
methods is not restricted to graph cuts and the moves can be achieved by other techniques
such as the variational approach of [Trobin et al., 2008b], optimizing in the continuous
space by relaxing the binary variable.
The elements of a move-making method are the move-space, specifying the set of new

labelling proposals at each iteration, and the way the moves themselves are performed.
The most popular move-space is the expansion-move, where the proposal labelling is
defined as a constant label map. Another common alternative is the αβ-swap move
based on a label exchange at pixels having labels α or β. The range-move [Veksler, 2007]
extends binary proposal choice to a larger range of labels, in the case of ordered label
spaces. Pre-computed labellings computed with independent and possibly continuous
methods, can also serve as proposals [Lempitsky et al., 2010].

Additionally, computational efficiency of graph cut approaches have been addressed by
several works. The most representative ones are [Komodakis et al., 2008], operating in a
Primal-Dual framework and speeding up convergence by minimizing the Primal-Dual gap,
and on the other hand, [Kohli and Torr, 2007] working on dynamic MRF and exploiting
previous iterations as initializations. For more details about existing move-spaces, see
[Veksler, 1999; Wang et al., 2013]. Applications for optical flow have increased fastly in
recent years [Lempitsky et al., 2010; Chen et al., 2013; Cooke, 2008; Glocker et al., 2008,
2010; Sun et al., 2012; Xu et al., 2012b; Li et al., 2013].

Message passing Belief propagation is based on the max-product algorithm, which
is able to find the MAP of a probability distribution expressed as a product of factors,
and thus representable in a factor graph (see [Kschischang et al., 2001] for a detailed
introduction). Taking the negative logarithmic version of such distribution amounts to
work on MRFs of the form (4.20), which can motivate to rename the algorithm min-sum
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in this case. In a nutshell, the minimization is done by iteratively updating local messages
reflecting influence of local label configurations on the energy. After convergence of the
messages, they can be used to define the probability of assigning a given label to a node,
and the label with the maximum probability is chosen. The max-product has originally
been designed for tree structures and is guaranteed to find the global optimum in this
case. Nevertheless, it can also be used for MRFs exhibiting cycles (it is referred to as
loopy belief propagation in this case [Pearl, 1988]), without convergence guarantees but
showing good experimental results in a large number computer vision problems [Szeliski
and Shum, 1996; Kappes et al., 2013]. The Tree Reweighted message passing approach
[Wainwright et al., 2005] deals with similar concepts, but with a particular message
passing strategy based on tree representations. The sequential approach of [Kolmogorov,
2006] has proven to yield good results and computational performance compared to other
discrete methods in [Szeliski et al., 2008]. It has been applied for optical flow estimation
in [Mozerov, 2013; Lee et al., 2010; Grauer-Gray and Kambhamettu, 2009].
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5 Combining feature matching and
optical flow

An increasingly addressed challenge for optical flow estimation is to handle very large
displacements and deformations, as it is reflected in the recent MPI Sintel benchmarks
[Butler et al., 2012], where is it not rare to find displacements of more than 100 pixels.
As a consequence, the gap between feature matching and optical flow tends to vanish,
and several methods have tried to combine density and accuracy of optical flow with the
ability to capture large displacements of feature matching.
Finding correspondences by matching image features can be considered as a local

parametric approach since a given neighborhood of the pixel to match is assumed to
translate or undergo another parametric transformation towards its correspondence
location. The similarity measures can be patch-based distances (see Section 2.1.2), or
more complex and sparse feature descriptions often based on histogram of oriented
gradients [Dalal and Triggs, 2005; Lowe, 2004; Bay et al., 2006; Yu and Morel, 2009],
or segment matching [Wang et al., 2009]. The fundamental difference lies in the
optimization process, since the parametric formulation has a differential optimization
process imposing linearization, whereas feature matching explores a discrete space of
admissible correspondences. Although being integer displacements and prone to errors,
feature matching can thus handle large displacements without coarse-to-fine-schemes, with
arbitrarily complex similarity measures. Regarding their complementarity of advantages,
the combination of feature matching with regularized approaches is therefore of upmost
interest.

We consider three approaches to obtain dense and accurate motion fields with feature
matching: local filtering of correspondences, integration in a variational framework, and
generation of coarse initialization for variational refinement.

5.1 Correspondence filtering

Pure feature matching has long been considered unable to produce dense flow fields with
competitive accuracy with the previously described local and global approaches. There
are three reasons for this:

1. the optimization of the similarity measure is often performed with exhaustive search,
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which induces prohibitive computational cost,

2. repetitive textures or uninformative regions are sources of ambiguities for the
matching process and generate large errors,

3. the correspondence process usually limits the accuracy to integer displacements,
contrary to local and global approaches working in the continuous R2 space.

Several recent advances attempted to overcome these three seemingly inherent limitations.
Research on speeding up block matching include multi-scale search strategies [Tzovaras

et al., 1994], integral images [Facciolo et al., 2013] or search in trees [Kumar et al.,
2008], but the recent most spectacular contribution was achieved in [Barnes et al., 2009,
2010] with the PatchMatch algorithm. The method scans the image in the lexicographic
and inverse order, and alternates two simple steps at each pixel: the propagation step
minimizes locally the data cost in the space composed by the current pixel and its two
predecessors in the scanning order, the second step proposes a small set of new candidates
randomly chosen in the neighborhood of the current correspondence. It is easy to extend
the matching to more complex transformations than translation, like rotation or scale
factor [Barnes et al., 2010] by increasing the degree of the search space. The method
was originally designed for image editing and was applied to several other applications
[Barnes et al., 2010], with impressive results regarding the low computation time. For
motion estimation, the interesting property is that the computational cost is not affected
by the spatial extension of the search space, so that no trade-off has to be found between
speed and displacement range.
The problem of matching ambiguities comes from the lack of discriminative power of

the data cost. Without resorting to explicit regularization (Chapter 4), the coherency
induced by simple local filtering of patch correspondences [Hosni et al., 2013] has been
shown to be sufficient in practice to reduce most ambiguities and provide excellent dense
results. The filtering is achieved in [Hosni et al., 2013] by guided filtering [He et al., 2010]
and in [Ma et al., 2013] by weighted median.
Subpixel accuracy is usually reached by upscaling image resolution. The induced

computational cost is reduced in [Hosni et al., 2013; Steinbrucker et al., 2009] by GPU
implementation, and can also be handled by iterative refinement [Lee et al., 2010].
The combination of the three ingredients has led to the development of competitive

optical flow estimation methods based on pure feature matching locally filtered [Hosni
et al., 2013; Ma et al., 2013; Tao et al., 2012]
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5.2 Feature matching in global regularized model

As discussed in Section 1.3, a major limitation of the global variational framework is the
loss of small and fast objects due to the use of a coarse-to-fine estimation scheme. One
recently investigated approach to overcome this problem is to integrate an information
from feature matching into the variational framework, thus combining advantages of both
methods.
Brox and Malik [2011], inspired by [Héas et al., 2007], made the first step in this

way by adding to the classical data potential a new constraint taking into account an
off-line computation of sparse feature correspondences. Let us denote wc the displacement
field obtained with a possibly sparse feature matching process. The new combined data
potential is then

ρExtendeddata (x, I1, I2,w,wc) = ρdata(x, I1, I2,w) + βρCorrespdata (x,w,wc) (5.1)

where β is a trade-off parameter and the matching potential is defined as:

ρCorrespdata (x,w,wc) = δ(x,wc)c(x,wc)φ(‖w(x)−wc(x)‖2). (5.2)

The binary function δ(x,wc) returns 1 if wc is defined at x and 0 otherwise, and the
weights c(x,wc) correspond to the matching cost. The matching term (5.2) imposes the
motion field to be close to the motion vectors obtained by feature matching.

The advantage of this approach is that the term ρCorrespdata (x,w,wc) is both differentiable
and valid for large displacements. Problems related to the use of coarse-to-fine schemes
are thus avoided. The main drawback is that the importance of the matching term
ρCorrespdata (x,wc,w) relatively to the data term ρdata(x, I1, I2,w) is mostly determined by
the value of the matching cost c(x,wc). Consequently the final variational estimation is
extremely dependent on the reliability of the confidence measure, which is very difficult
to guarantee, as emphasized in [Braux-Zin et al., 2013]. Matching errors are thus easily
driven by c(x,wc) and are likely to have a high impact on the final result. Reducing the
impact of local feature matching errors by the regularization and the robust penalization
φ() is insufficient in practice in a lot of cases.
Recently, [Weinzaepfel et al., 2013] based their method on [Brox and Malik, 2011] by

taking the model (5.2) and improving the feature matching stage. They demonstrated
a significant performance improvement due to the increased reliability of the matching.
[Braux-Zin et al., 2013] also built their method upon [Brox and Malik, 2011] and modified
the matching component by using segment matching [Wang et al., 2009]. The matching
term is generalized to handle weakly localized line features. It is done through a
point-to-line distance in addition to the point to point distance of (5.2), combined
with a confidence measure for segment matching based on the assumption of a linear
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5 Combining feature matching and optical flow

mapping between segment matches. Moreover, considering the unreliability of confidence
measure, Braux-Zin et al. [2013] gets rid of the matching cost c(x,wc) and relies only on
the regularization for robustness to matching errors. To sum up, the tendency is to take
into account the great dependency of the estimation on the quality of the feature matching,
and thus to concentrate most efforts on the design of robust matching algorithms.

5.3 Coarse initialization

Another recently investigated approach taking advantage of feature matching consists in
exploiting the integer displacements and possibly sparse result to provide a coarse but
relevant initialization for a variational refinement [Xu et al., 2012b; Mozerov, 2013; Chen
et al., 2013]. These methods are composed of three steps:

1. a feature matching step provides a limited number of candidates at each pixel;

2. these candidates serve as labels for the discrete optimization (see Section 4.3) of a
global regularized model;

3. the resulting coarse optical flow field is refined with one of the variational
optimization techniques described in Section 4.3.

The idea is that steps 1 and 2 handle indifferently small and large displacements of
objects at any scale, and the initialization is assumed to be good enough to avoid the
coarse-to-fine scheme in step 3. The specificity of [Xu et al., 2012b] is that the three
steps are repeated at each level of a multiresolution pyramid. Since steps 2 and 3 have
already been discussed in previous sections, we focus on the specificity of step 1, that is,
the production of candidates from feature matching.
In [Xu et al., 2012b], the feature matching in only performed at a restricted number

of keypoints. After pruning of similar vectors, only a few displacement vectors are
retained. Each of these vectors is expanded to produce a global constant flow field, used
as candidates for step 2.
Mozerov [2013] considers a integer discretization of the two-dimensional motion field.

Based on the observation that correlation-based patch matching is able to reproduce
coarsely the motion distribution pattern of ground truth motion fields, the discretized
motion space is delineated by the matching vectors.

The approach of [Chen et al., 2013] is close to [Mozerov, 2013] since the idea is to rely
on the dominant motion patterns of dense patch matching. In [Chen et al., 2013], the
candidates to feed discrete optimization are obtained by explicitly clustering PatchMatch
motion fields [Barnes et al., 2010] to keep only dominant patterns.

50



6 Adaptive filtering of data term

The previous analysis of optical flow literature methods exhibited local and global
approaches as the two main classes of optical flow methods. We present in this chapter a
preliminary study conceived as a first attempt to combine these two classes. We base our
contribution on the work of [Bruhn et al., 2005], integrating the constant flow assumption
of local methods in a global regularized model through Gaussian filtering of the data term.
We propose a spatial adaptation of this filtering to prevent its induced over-smoothing
effect.

6.1 Combined Local-Global method of [Bruhn et al., 2005]

The idea of combining advantages of local and global approaches in a single model
has been investigated by Bruhn et al. [2005]. A similar approach, generalized to other
image processing problems can be found in [Tschumperlé and Brun, 2011]. The so-called
“Combined Local-Global” method (CLG) was motivated by the robustness of local methods
to the presence of noise in input images. It is made possible by the local filtering of the
data term, implying a neighborhood-wise data constancy constraint, less sensistive to
noise than pixel-wise measures. In contrast, global methods tackle noise by increasing the
regularization term, which also tends to over-smooth the motion field. Indeed, the role
of motion regularization is to model the a priori on the motion field, regardless of the
nature of data. Noise in the data should therefore be taken into account in the data term.

As already discussed in Chapter 2, the usual way to cope with noise in the optical flow
estimation process is to apply a pre-filtering operation to the input images. Simple
Gaussian filtering is the standard choice. We experimented that more advanced
edge-preserving image smoothing globally has less beneficial impact on motion estimation
than Gaussian smoothing. This is because fine texture information is often smoothed
out by denoising filters, and the resulting homogeneous regions are then not informative
enough for optical flow estimation. However, Gaussian smoothing also blurs image
discontinuities and thus affects the recovery of discontinuities of the motion field, as
analyzed in [Bruhn et al., 2005].

The idea of [Bruhn et al., 2005] is then to more deeply account for noise in the data term
of the global energy, by considering no more pixel-wise data constraint, but patch-based
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6 Adaptive filtering of data term

constraint, assuming locally constant motion. Let us consider the usual global energy

Eglobal(w) =
∫

Ω
ρdata(x, I1, I2,w) + λ ρreg(x,w)dx. (6.1)

The pixel-wise data fidelity potential obtained from the brightness constancy constraint
equation (1.5) with quadratic penalization is given by

ρ0
data(x, I1, I2,w) = (It + Ix1u+ Ix2v)2 , (6.2)

where x1 and x2 are the image axis, w = (u, v)>, It = ∂I/∂t, Ix1 = ∂I/∂x1 and
Ix2 = ∂I/∂x2. It is modified in [Bruhn et al., 2005] by Gaussian filtering:

ρσdata(x, I1, I2,w) = kσ ∗ (It + Ix1u+ Ix2v)2 , (6.3)

where kσ is a Gaussian filter of standard deviation σ and ∗ is the convolution operator.
In (6.3), the Gaussian filtering is applied only on the image variables It, Ix1 , Ix2 and
not on w which is assumed to be locally constant. It can be written in a tensor-based
representation taking into account the constancy of w:

ρσdata(x, I1, I2,w) = α>wJσαw (6.4)

with αw =

 u

v

1

 , Jσ = kσ(x) ∗

 I2
x1 Ix1Ix2 Ix1It

Ix1Ix2 I2
x2 Ix2It

Ix1It Ix2It I2
t

 .
Besides, the energy minimized by local methods (see Chapter 3), is of the following

general form:
Elocal(θ) =

∫
x∈R

g(x) (It + Ix1uθ + Ix2vθ)2 dx, (6.5)

where θ is the parameter vector for the motion model over region R. It is equivalent to
the data term (6.3) if g(x) is a Gaussian kernel. The global minimization of (6.1) with
data term (6.3) can thus be interpreted as an integration of a local model in a global
regularized framework, in order to take advantage of robustness of local approaches to
noise.
Experiments in [Bruhn et al., 2005] demonstrate the increased robustness to noise of

the results obtained by Gaussian filtering of the data term. The method has been applied
to several applicative domains where acquisition conditions induce noise in the image
[Dawood et al., 2008; Delpiano et al., 2012].

Nevertheless, isotropic Gaussian smoothing also tends to over-smooth the resulting flow
field. For large signal-to-noise ratio, the motion field estimated with the Gaussian filtered
data potential (6.3) is usually less accurate than the one obtained with the pixel-wise
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potential (6.2), as experimented in [Zimmer et al., 2011]. One can thus be interested in
improving the behaviour at motion discontinuities while keeping noise robustness.
It should also be noted that in addition to be more robust to noise, local filtering on

the data term can also provide a richer description of the local structure of the image.
Consequently, motion estimation could also be improved in the absence of noise if relevant
local image information is integrated in the data term.

6.2 Adaptive filtering of data term

Over-smoothing occurs with the method [Bruhn et al., 2005], as for local methods,
when the support of the local filtering contains multiple motions, that is, at motion
discontinuities. The aim is then to restrict the spatial support to coherently moving
regions by replacing Gaussian filtering with fixed standard deviation by an adaptive
filtering. A few works, already mentionned in Section 2.1.2, have been done in that
direction. Drulea and Nedevschi [2011] replaces Gaussian filtering by bilateral filtering,
and Rashwan et al. [2013] exploit tensor voting. These latter approaches rely on image
measurements to specify filters. Similarly to image-based regularization, they are still not
robust enough to noise and produce over-segmentation of the motion field.

In this chapter, we propose a spatially adaptive filtering approach estimating the filter
parameters jointly with motion. Considering the simplest case of Gaussian smoothing,
the parameter to optimize jointly with w is the standard deviation of the Gaussian filter,
now defined as a dense field σ : Ω→ R+. The optimization problem is then:

(ŵ, σ̂) = arg min
w,σ

E(w, σ) (6.6)

where we define E(w, σ), the energy coupling w and σ, as follows:

E(w, σ) =
∫

Ω
φd

(
α>wJσ(x) αw

)
︸ ︷︷ ︸
ρσ
data

(x,I1,I2,w) (6.3)

dx+ λ

∫
Ω
φr(‖∇w(x)‖2) dx+ β

∫
Ω
φr(|∇σ(x)|2) dx

(6.7)
where λ and β are parameters that balance the contributions of the data and regularization
terms, and φd, φr are penalization functions. The first term is identical to the data
potential (6.3), and the two other terms are regularizations on w and σ. For the sake
of simplicity, we consider a unique penalty function for the two regularization terms,
but they could be different. The minimization of (6.9) w.r.t. w amounts to the CLG
method [Bruhn et al., 2005]. Minimizing also w.r.t. σ adapts spatially the standard
deviation of the convolution σ(x) at each point x. The aim is to reduce σ at motion
discontinuities, where Gaussian smoothing tends to blur the estimated motion field. If a
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6 Adaptive filtering of data term

discontinuity is contained in the Gaussian support defined by σ, the locally constant
motion assumption will be violated and lower values σ will be favoured. Rather than
being adapted to the image content as in [Drulea and Nedevschi, 2011; Rashwan et al.,
2013], σ is guided now by the data term. Its variations follow motion discontinuities
rather than image discontinuities. The smoothness assumption on σ is also relevant
since it is expected to vary linearly with the distance from a motion discontinuity. We
considered a regularized L1 penalty of the gradient of σ in our experiments, but a
quadratic penalty could also be used under the assumption that the variation of σ is
smooth in the whole image. We mention that a similar approach has been developed for
image denoising in [Azzabou et al., 2007], where a spatially variable bandwidth of an
integration kernel is also estimated jointly with the recovered image. The filtering was
applied to the regularization term.

Optimization The optimization is performed alternatively on w and σ. In the
following, we consider regularized L1 norm in the smoothness terms, φr(z2) =

√
z2 + ε2.

Minimization w.r.t. w with σ fixed amounts to a classical optimization problem in optical
flow. We derive the associated non-linear Euler-Lagrange equation and we consider a
fixed point scheme, as detailed in [Brox, 2005].

The energy to minimize w.r.t. σ given an estimate of w is of the following form:

J(σ) =
∫

Ω
φd
(
α>wJσ(x)αw

)
dx+ β

∫
Ω
φr(|∇σ(x)|2) dx (6.8)

We adopt a gradient-based minimization approach using the quasi-Newton method
L-BFGS [Nocedal, 1980], approximating the Hessian for faster computation. The
approximation requires the computation of the first derivative of the energy dJ(σ)/dσ.
In what follows, we detail the analytical computation of the derivative in the case of a
quadratic penalization φd(z2) = z2. We work on a spatially discretized version of J(σ):

J(σ) =
∑
x∈Ω

φd
(
α>wJσ(x)αw

)
+

∑
z∈N (x)

φr((σ(x)− σ(z))2) (6.9)

Where N (x) is the set of four neighbours of x. We first explicitly develop the convolution
operation. As explained before on the equivalence between (6.3) and (6.4), we can write:

J(σ) =
∑
x∈Ω

kσ(x) ∗ (It + Ix1u(x) + Ix2v(x))2 + β
∑

z∈N (x)
φr((σ(x)− σ(z))2)

=
∑
x∈Ω

∑
y∈Ω

kσ(x)(x, y) (It + Ix1u(y) + Ix2v(y))2

+ β
∑

z∈N (x)
φr((σ(x)− σ(z))2)
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Then, differentiation gives:

∂J(σ)
∂σ(x) =

∑
y∈Ω

∂kσ(x)(x, y)
∂σ(x) (It + Ix1u(x) + Ix2v(x))2

 (6.10)

−2β
∑

z∈N (x)
(σ(x)− σ(z))φ′r((σ(x)− σ(z))2).

The differentiation of weights are obtained from definition:

kσ(x)(x, y) = 1√
2πσ(x)

e
− ‖x−y‖

2

2σ2(x) ,

leading to

∂kσ(x)(x, y)
∂σ(x) =

kσ(x)(x, y)
σ(x)

(
‖x− y‖2

σ2(x) − 1
)
. (6.11)

By substituting (6.11) in (6.10), we have:

∂J(σ)
∂σ(x) =

∑
y∈Ω

kσ(x)(x, y)
σ(x)

(
‖x− y‖2

σ2(x) − 1
)

(It + Ix1u(y) + Ix2v(y))2

−2β
∑

z∈N (x)
(σ(x)− σ(z))φ′r((σ(x)− σ(z))2).

We introduce the filter hσ(x) defined by:

hσ(x) ∗ I =
∑
y∈Ω

kσ(x)(x, y)
σ(x)

(
‖x− y‖2

σ2(x) − 1
)
I(y).

The derivative of J(σ) w.r.t. σ can then be rewritten in a simpler form, with an analogy
between hσ(x) and the Gaussian filter kσ(x) of the original data term (6.3):

∂J(σ)
∂σ(x) = hσ(x) ∗ (It + Ix1u(y) + Ix2v(y))2 − 2β

∑
z∈N (x)

(σ(x)− σ(z))φ′r((σ(x)− σ(z))2)

Following the same steps, we can write its expression for an arbitrary φ:

∂J(σ)
∂σ(x) = hσ(x) ∗ (It + Ix1u(y) + Ix2v(y))2 φ′

(
kσ(x) ∗ (It + Ix1u(y) + Ix2v(y))2

)
−2β

∑
z∈N (x)

(σ(x)− σ(z))φ′r((σ(x)− σ(z))2)
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Extended model As explained in Chapter 2, it is important to combine brightness
constancy with other illumination-invariant descriptors. The combination with image
gradient constancy has demonstrated good performance [Brox et al., 2004; Xu et al.,
2012b]. Therefore, we adopt it in our experiments. We also add a normalization of the
data term [Zimmer et al., 2011] that we found important in practice to improve results.
The resulting energy is similar to (6.9):

E(w, σ) =
∫

Ω
φ
(
α>wJ

0
σ(x)αw

)
+ φ

(
α>w(x)Jx1x2

σ(x) αw(x)
)
dx

+λ
∫

Ω
φ(‖∇w(x)‖2) dx+ β

∫
Ω
φ(|σ(x)|2) dx

where we denote x1, x2 the vertical and horizontal axes, and

αw(x) =

 u(x)
v(x)

1

 , w =
(
u

v

)
, J0

σ(x) = kσ(x) ∗

 η0I
2
x1 η0Ix1Ix2 η0Ix1It

η0Ix1Ix2 η0I
2
x2 η0Ix2It

η0Ix1It η0Ix2It η0I
2
t

 ,
Jx1x2
σ(x) = kσ(x) ∗

(
ηx1I

2
x1x1 + ηx2I

2
x1x2 ηx1Ix1x1Ix1x2 + ηx2Ix1x2Ix2x2 ηx1Ix1x1Ix1t + ηx1Ix1x2Ix2t

ηx1Ix1x1Ix1x2 + ηx2Ix1x2Ix2x2 ηx1I
2
x1x2 + ηx2I

2
x2x2 ηx1Ix1x2Ix1t + ηx2Ix2x2Ix2t

ηx1Ix1x1Ix1t + ηx1Ix1x2Ix2t ηx1Ix1x2Ix1t + ηx2Ix2x2Ix2t ηx1I
2
x1t

+ ηx2I
2
x2t

)
.

η0 = 1
Ix1 + Ix2 + a

, ηx1 = 1
Ix1x1 + Ix1x2 + a

, ηx2 = 1
Ix2x1 + Ix2x2 + a

where a = 0.1 avoids division by 0.
The differentiation of E is similar to the one of J and is detailed in Appendix B.

6.3 Preliminary results

In our experiments, we considered the model (6.9). Without optimization on σ, it amounts
to the method of [Bruhn et al., 2005], denoted CLG0 when σ = 0 (pixel-wise data term)
and CLG when σ = 1.5. Our method with optimization on σ is denoted CLG-adaptive.
In our implementation, we embedded the estimation in a coarse-to-fine scheme to cope
with large displacements. The value of σ is adapted at each level of the pyramid and the
alternate optimization of w and σ is performed at each level. All the estimations have
been carried out with constant regularization parameter λ = 2.5.

The method is designed to enhance discontinuities compared to the baseline method of
[Bruhn et al., 2005]. Therefore, we evaluate the improvements yielded by CLG-adaptive
on the Middlebury benchmark, which main challenge is the recovering of discontinuities.
Figure 6.1 shows visual results obtained by the three versions CLG0, CLG and
CLG-adaptive, with corresponding endpoint errors (EPE). The map of σ estimated
with CLG-adaptive is also displayed, encoding σ values by the image intensity (dark
regions correspond to small value of σ and bright regions to large value of σ). Minimum
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RubberWhale Venus Urban3 Grove2
CLG0 0.124 0.399 0.473 0.159
CLG 0.143 0.420 0.585 0.193

CLG-adaptive 0.126 0.410 0.486 0.176

Table 6.1: Results on sequences of the Middlebury benchmark. The method of [Bruhn et al.,
2005] is refered as CLG0 when σ = 0 and CLG when σ = 1.5. Our method is named CLG-adaptive.

and maximum values σmin and σmax of σ are also reported. In Table 6.1, we give more
quantitative results on the Middlebury benchmark.
In terms of EPE, we can first notice from Table 6.1 that CLG0 performs significantly

better than CLG, which confirms the experiments in [Zimmer et al., 2011] stating that
in the absence of noise CLG degrades the results. CLG-adaptive allows to significantly
decrease the error compared to CLG. The visualization of σ in Fig. 6.1 shows that low
values of σ are mostly localized at motion discontinuities. Consequently, the blurring of
motion discontinuities observed in CLG and due to the Gaussian convolution is reduced
by CLG-adaptive. The range of values given by σmin = 0.1 and σmax = 1.7 show that the
algorithm does not converge to σ = 0, but retains large values of σ in appropriate regions.
However, the results obtained with the adaptive convolution of CLG-adaptive are

still slightly less accurate than those obtained without convolution, by CLG0. This
could be due on one hand to the convergence of σ to a bad local minimum. On the
other hand, considering isotropic Gaussian filtering is not the best choice for retrieving
sharp discontinuities. The extension of our model and related optimization scheme for
anisotropic Gaussian filtering is a line of work which should help to improve the results.

6.4 Relation with stochastic uncertainty models

In the energy (6.9), σ(x) is determined according to the local validity of the data
constancy assumption for the current value w(x). It is therefore very dependent on the
accuracy of w. To relax this dependency, it could be beneficial to investigate other data
terms guiding σ more independently to w. In this section, we propose such a data term
in the line of work of [Corpetti and Mémin, 2012].

Stochastic uncertainty models for the luminance consistency assumption
[Corpetti and Mémin, 2012] We briefly summarize the basic principle of the
stochastic uncertainty model proposed in [Corpetti and Mémin, 2012].

In the standard deterministic intensity differentiation, the image I is defined on a fixed
grid of axes x1 and x2 such that we can write at pixel x:

dI(x, t) = Itdt+ Ix1dx1 + Ix2dx2,
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I1 I2

CLG σ = 0, EPE = 0.124 CLG σ = 1.5, EPE = 0.143

CLG-adaptive, EPE = 0.126 Estimated σ
σmin = 0.1, σmax = 1.7

Figure 6.1: Comparison of CLG-adaptive with CLG and CLG0. Top row: two input images.
Middle row: motion field obtained with CLG0 and CLG. Bottom row: motion field and σ field
obtained with CLG-adaptive.
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6.4 Relation with stochastic uncertainty models

and dx1 = u dt, dx2 = v dt, where w = (u, v)>. The classical motion constraint is then
obtained by the chain rule:

dI(x, t)
dt

= It + Ix1du+ Ix2dv = 0. (6.12)

The stochastic intensity constancy is analogously derived by considering a moving grid
X = (X1, . . . ,Xm)> composed of 2D points Xi ∈ R2, and defined as a stochastic process.
If the transport of the grid by the motion w is achieved up to a Brownian motion
B = (B1, . . . , Bm)>, dX verifies:

dX = w dt+ Σ dB, (6.13)

where Σ is a covariance matrix. The image I(X, t) being a function of the stochastic
process, its differentiation is given by the Itô formula:

dI(X, t) = Itdt+ Ix1dX1 + 1
2Ix2dX2 +

∑
(i,j)=(1,2)×(1,2)

∂2I

∂Xi∂Xj
d < Xi, Xj > . (6.14)

We consider only isotropic uncertainty of the form:

Σ dB = diag(σ)⊗ 112 dB, 112 =
(

1 0
0 1

)
, (6.15)

where σ is an uncertainty variance map. Applying the expression (6.15) to (6.14) yields:

dI(X, t)
dt

= It + Ix1u+ Ix2v︸ ︷︷ ︸
deterministic intensity variation

+ σ2∆I
2︸ ︷︷ ︸

uncertainty / deterministic part

+ σ∇I dB
dt︸ ︷︷ ︸

uncertainty / stochastic part

.

(6.16)
The image derivative is thus composed of the usual deterministic intensity variation (6.12),
augmented by two uncertainty terms. The uncertainty is derived from the stochastic
assumption of Brownian motion of the grid (6.13). Since (6.16) contains a stochastic
part, the constancy constraint equation is defined through the expectation, which can be
written as (see [Corpetti and Mémin, 2012] for details):

E
(
dI(X, t)

dt

)
= kσ(x) ∗

(
It + Ix1u+ Ix2v + σ2∆I

2

)
= 0. (6.17)

An intuitive interpretation of (6.17) is to consider the Gaussian convolution as an
operator which captures the uncertainty yielded by the intensity constancy constraint. In
homogeneous regions without image gradients, the uncertainty is high and the value of σ
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should therefore be large to extend the neighborhood until it contains enough image
information to cancel the uncertainty. At an image discontinuity, ∆ is high and thus
favors small values of σ.

Relation with adaptive filtering of the data term We recognize a close similarity
between the stochastic conservation (6.17) and the filtered data term of (6.3). The first
main crucial difference is that, as explained in Section 6.1, the convolution in (6.3) does
not apply to the motion w. In contrast, the convolution in (6.17) also concerns motion by
construction. This difference reflects the diverging assumptions underlying the Gaussian
filtering in the two cases. In (6.3), the Gaussian convolution represents an area of local
motion constancy. Consequently, it has a regularization effect. In (6.17) the Gaussian
convolution is rather the expression of estimation uncertainty. It represents the most
appropriate regions to remove ambiguity of motion estimation (aperture problem).

The second difference is the presence of the uncertainty term in (6.17). Intuitively, the
presence of the Laplacian adapts σ to image edges, and the presence of σ2 inhibits too
large Gaussian kernels.

In [Corpetti and Mémin, 2012], motion estimation based on the stochastic brightness
constancy is performed with a local parametric approach [Lucas and Kanade, 1981]. The
uncertainty map σ is estimated independently with local image-based measurements. In
contrast, we integrate (6.17) in our global energy:

E(w, σ(x)) =
∫

Ω
φ

kσ(x) ∗
(
It + Ix1u(x) + Ix2v(x) + σ2∆I

2

)2
 dx

+ λ

∫
Ω
φ(|∇w(x)|2)dx+ β

∫
Ω
φ(|σ(x)|2). (6.18)

Compared to our previous energy (6.9), the minimization on σ is less dependent on
the value of w owing to the uncertainty term. The integration of the stochastic model
in a global approach also allows for an alternative uncertainty estimation to [Corpetti
and Mémin, 2012]. We also expect to increase the quantitative performance of motion
estimation compared to the local framework based on [Lucas and Kanade, 1981] used in
[Corpetti and Mémin, 2012].

As in [Corpetti and Mémin, 2012], we approximate the energy by assuming that the
convolution does not apply to motion. A tensor notation similar to (6.9) can then be
applied:

E(w, σ) =
∫

Ω
φ
(
α>w,σ(x)Jσ(x)αw,σ(x)

)
dx+ λ

∫
Ω
φ(|∇w|2) dx+ β

∫
Ω
φ(|∇σ|2) dx (6.19)
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6.4 Relation with stochastic uncertainty models

with αw,σ(x) =
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Optimization The optimization problem w.r.t. σ does not differ fundamentally from
the one described in Section 6.2. We also resort to the L-BFGS technique, and the
computation of the gradient of (6.19) is provided in Appendix C.

Optimization w.r.t. w is more difficult than in Section 6.2. Indeed, in Section 6.2 we
adopted the approach briefly described in Section 4.3.1 and precisely detailed in [Brox,
2005] based on solving Euler-Lagrange equations. It amounts to solving a large and
sparse linear system, which is usually very efficiently achieved with iterative methods
like Gauss-Seidel methods or its SOR variant (Successive Over Relaxation). A sufficient
condition for these iterative methods to converge is the diagonal dominance of the system.
A matrix is diagonally dominant if for each row, the absolute value of its diagonal element
is superior to the sum of the absolute values of the other elements of the row, which
writes:

|ai,i| ≥
∑
j 6=i
|ai,j | (6.20)

where ai,j are the elements of the matrix. In practice, this condition rarely strictly holds
for typical optical flow energies, but Gauss-Seidel methods still converge without this
guarantee if the deviations from (6.20) are not too strong. For the energy (6.9), the
diagonal elements correspond to

ai,i = I2
` + φ′(It + Ix1u+ Ix2v)− 2φ′(‖w‖2), (6.21)

with ` being the x1 or x2 axis. It is most of the time largely greater than the non-diagonal
terms. In the case of stochastic uncertainty model, the diagonal elements differ by the
additional uncertainty term:

ai,i = I2
` + φ′

(
It + Ix1u+ Ix2v + σ2∆I

2

)
− 2φ′(‖w‖2). (6.22)

The frequent large negative values of the Laplacian in (6.22) implies a large number of
very low values of ai,i, and consequently implies strong violations of diagonal dominance.
In our experiments, the lack of diagonal dominance was prohibitive for the convergence of
Gauss-Seidel and SOR solvers, mostly used for optical flow energies. It made also diverge
all the more sophisticated solvers implemented in the reference PETSc library [Balay
et al., 2014] for linear system solvers.
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6 Adaptive filtering of data term

Quasi-Newton schemes and proximal splitting algorithms have been tested but all led
to divergence. As a consequence, we cannot present results of numerical evaluation of the
method. Solving this optimization problem will be the subject of future work.

6.5 Conclusion - Perspectives

In the preliminary study presented in this chapter, we have proposed two energy models
for joint optimization of motion and Gaussian kernel, based on [Bruhn et al., 2005].
First results on the model presented in Section 6.2 demonstrate significant improvements
compared to the baseline method [Bruhn et al., 2005]. A persisting oversmoothing
due to the isotropy of the filtering still remains and prevents from outperforming the
pixel-wise version of the method. The full potential of our framework could be exploited
by considering anisotropic Gaussian filters to reduce smoothing across discontinuities.
The second model presented in Section 6.4, inspired by [Corpetti and Mémin, 2012],

provides a new data potential modeling the estimation uncertainty in the support of
the filtering. This approach sounds more appropriate to an adaption of the filtering.
However, numerical issues prevented from a performance evaluation of this approach.
The optimization problem caused by the uncertainty modeling will be addressed in the
future.
Despite potential important improvements at motion discontinuities, this adaptive

framework is not designed to handle major issues in optical flow like occlusions, intensity
changes or limits of the coarse-to-fine scheme. Therefore, in Part II, we explore another
approach for the combination of local and global models. We design it with the purpose
of addressing the aforementioned limiting issues of optical flow.
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7 Summary of main challenges

Through the analysis of optical flow literature, we have introduced principles of optical
flow estimation and classified the main methodological aspects of existing methods. From
this taxonomy, limiting points of each class have been put forward. We summarize the
main conclusions of this study.

Since the intensity constancy assumption is not guaranteed in a lot of situations, more
robust data terms have been investigated The most appealing direction is the explicit
estimation of deviations from the intensity constancy constraint. However, it is limited
by optimization issues. In Chapter 14, we will propose to revisit the latter category to
overcome its difficulties.
Concerning local parametric methods, polynomial models have been proven to be

appropriate for local motion representation. The main issue remains the appropriate
delineation of estimation supports. The aggregation framework described in Part II can
be viewed as a new way to select appropriate neighborhoods.
Global regularization offers very powerful modeling capacities, which have to be

tempered by optimization tractability constraints. We will exploit variational and discrete
optimization principles in different parts of our thesis work. In particular, we will
tackle several issues (occlusions, intensity changes, Gaussian kernel adaptivity) by jointly
minimizing motion and other variables, while taking care of the validity of the proposed
optimization.
The multi-resolution scheme is necessary to recover large displacements when the

estimation is based on a linearized data constraint. However, it also generates artifacts.
The integration of feature matching in dense optical flow estimation frameworks is a
fruitful alternative. We will describe in Part II an original feature matching integration
in the aggregation framework.
Occlusion handling has not been addressed in this part but is another crucial issue

for optical flow estimation. Joint occlusion detection and motion estimation will be
investigated in Part II. We also propose an exemplar-based approach for motion estimation
in occluded areas.
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Part II

Aggregation of local parametric
motion candidates with
exemplar-based occlusion

handling
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In this part, we propose a new method for optical flow computation called AggregFlow
which exhibits several distinctive and original features. First, we advocate the systematic
computation of affine motion models over a set of size-varying square patches combined
with patch-based pairings. Indeed, we experimentally demonstrate that the set of motion
vectors computed that way comprises at least one accurate motion vector for each pixel. On
this basis, we build an optical flow estimation method composed of a first step computing
local parametric candidates followed by a second step aggregating these candidates to
produce the global flow field. The motion vector candidates are independently estimated
on local supports without segmentation step. The aggregation is performed by a discrete
optimization algorithm which selects one candidate at each pixel while ensuring piecewise
smoothing of the resulting flow field.
Secondly, we address the occlusion problem in an original way by blending it with

the motion estimation issue through the two steps of AggregFlow. In particular, we
properly deal with very large displacements producing large occluded regions. Motion
candidates are extended in occlusion areas with an exemplar-based approach. The
estimated parametric model of the dominant motion in the image also contributes to
create supplementary motion candidates. We extract an occlusion confidence map in the
first step of AggregFlow and exploit them to guide the joint estimation of the occlusion
map and motion field in the aggregation step.

Our method can thus be viewed as a novel and efficient combination of local and global
approaches for occlusion-aware optical flow computation. The main original features and
contributions of our method AggregFlow are listed below:

• Motion candidates are locally estimated by a general parametric patch-based method
which ensures relevant and accurate motion vectors at every point among all the
computed candidates.

• Feature matching is integrated in an original and efficient way in the two-step
aggregation framework.

• We define a generic exemplar-based method for occlusion filling with motion vectors.

• We propose a joint motion and occlusion estimation framework based on a sparse
model guided by a local occlusion confidence map.

• AggregFlow outperforms existing methods on the MPI Sintel benchmark which
involves large displacements and occlusions, and it is competitive in the Middlebury
benchmark composed of videos depicting smaller movements.

We propose an alternative continuous apporach to the discrete optimization of the
aggregation stage. A sparse dictionnary model is exploited to achieve the selection of a
few candidates with global continuous optimization.
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7 Summary of main challenges

Another variant of AggregFlow with variational candidates estimation is proposed and
analyzed in Appendix A.

Positioning from related work
Hereunder, we briefly emphasize on the relations of AggregFlow with the vast literature
on optical flow computation, more detailed in Part I.

Feature correspondences and large displacements The integration of feature
correspondences in dense motion estimation has been investigated in several recent works.
A first class of methods integrates feature correspondences in a global energy model.
Variational methods [Braux-Zin et al., 2013; Brox and Malik, 2011; Héas and Mémin,
2008; Weinzaepfel et al., 2013; Hellier and Barillot, 2003] include an additional term to a
classical global energy to impose the flow to be close to pre-computed correspondences.
Giving a fixed weight to the correspondences, this approach is sensitive to matching errors.
To overcome this problem, [Braux-Zin et al., 2013; Weinzaepfel et al., 2013] focused on
improving the matching step. Another class of methods use correspondences to reduce the
search space for discrete optimization and provide a coarse initialization for subsequent
refinement [Chen et al., 2013; Mozerov, 2013; Xu et al., 2012b]. The main motivation of
the attempts based on feature matching is to get rid of the drawbacks of the coarse-to-fine
scheme imposed by variational optimization, in particular the loss of large displacements
of small objects.
Our patch correspondence is related to [Chen et al., 2013; Mozerov, 2013; Xu et al.,

2012b] in the sense that it is used in the candidate generation process, but differently
from these approaches. Our method does not produce coarse approximations to be
refined in a continuous subsequent step and we do not adopt any global variational
optimization.

Occlusions Occlusions play a crucial role for motion estimation [Stein and Hebert,
2009], especially under large displacements, since no motion measurements are available
in occluded areas. Therefore, a proper occlusion handling must distinguish between
occlusion detection, segmenting the image into occluded and non-occluded regions,
and occlusion filling, applying a specific treatment to motion estimation in occluded
regions. Occlusion detection has been mostly undertaken as a subsequent operation to
motion computation, by thresholding a consistency measure issued from the estimated
motion field, like geometric forward-backward motion mismatch [Ince and Konrad, 2008],
mapping uniqueness [Xu et al., 2012b] or data constancy violation [Xiao et al., 2006]. The
main limitation of this post-processing is that accuracy of occlusion detection is highly
dependent on the quality of the initial motion estimation. Several flow and image criteria
have been be combined in a learning framework [Humayun et al., 2011]. Retrieving
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occlusion map without optical flow computation have been realized in [Kervrann et al.,
2011] based on semi-local patch-based hypothesis testing. Other approaches estimate the
occlusion map jointly with the motion field in an alternate optimization scheme [Ayvaci
et al., 2012; Ince and Konrad, 2008; Papadakis et al., 2013]. Our occlusion detection falls
in the latter category.

The problem of filling occlusion regions with estimated velocity vectors when the
occlusion map is known is closely related to the inpainting problem. While inpainting
aims at filling missing regions without image information, occlusion filling aims at
estimating motion in regions without motion information. Inpainting methods can
be coarsely divided into two classes : diffusion-based methods [Chan et al., 2002]
and exemplar-based methods [Criminisi et al., 2004; Komodakis and Tziritas, 2007;
Daisy et al., 2013; Forbin et al., 2005]. A synthesis of these two approaches has been
investigated in [Bugeau et al., 2010; Arias et al., 2011] which provide a general variational
framework for non-local image inpainting. Occlusion handling is usually achieved by
diffusion-based (or geometry-oriented) methods, propagating motion from non-occluded
regions to occluded regions via partial derivative equation (PDE) resolution [Ayvaci et al.,
2012; Ince and Konrad, 2008; Papadakis et al., 2013; Xu et al., 2012b]. In exemplar-based
inpainting, the missing part is filled by copying pixels of the observed images. The
framework is non local in the sense that similar pixels can be sought wherever in the
image. We adapt this strategy to occlusion filling. Finally, we mention the work of
[Ballester et al., 2012] wich defines a data constraint for occluded pixels under the
assumption of temporal motion constancy between three consecutive frames. At occluded
pixel, the intensity constancy constraint is thus applied between the current frame and
the previous frame.

Parametric motion estimation
The use of a parametric model has been widely investigated in motion estimation

[Black and Anandan, 1996; Cremers and Soatto, 2005; Leordeanu et al., 2013; Mémin
and Pérez, 1998; Odobez and Bouthemy, 1995; Sun et al., 2012]. Applied on the whole
image domain, affine or quadratic models are adequate to estimate the dominant image
motion induced by the camera motion [Odobez and Bouthemy, 1995]. For accurate dense
motion estimation, parametric approximations are only valid locally. Local regions are
usually defined as square patches centered on each pixel [Black and Anandan, 1996; Lucas
and Kanade, 1981]. However, this choice is suboptimal in particular in two situations
illustrated in Fig. 7.1: when the patch contain a motion discontinuity invalidating the
motion model, and when it does not contain enough image gradient to estimate motion.
Adaptation of the size of the patch [Maurizot et al., 1995; Senst et al., 2012], or its
position [Jodoin and Mignotte, 2009] have been investigated. This approach has the merit
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7 Summary of main challenges

I1 Motion field

1. 2.

Figure 7.1: Illustration of the two typical issues of patch distribution in [Lucas and Kanade,
1981]. Case 1.: motion discontinuity invalidating polynomial motion model. Case 2.: not enough
image gradient to estimate motion in the patch.

of being easy to implement with a low computational cost, but it is clearly outperformed
by sophisticated extensions of [Horn and Schunck, 1981] introduced in modern global
optical flow methods.
As aforementioned, more complex region shapes can be estimated by joint motion

segmentation and estimation. Existing approaches can be divided in two classes. A
first class of methods relies on an independent image color segmentation and tries
to fit parametric motion in each region [Black and Jepson, 1996; Bleyer et al., 2006;
Gelgon and Bouthemy, 2000; Xu et al., 2008; Zitnick et al., 2005], possibly with the
help of an independent global variational estimation [Black and Jepson, 1996; Xu et al.,
2008]. The drawback of this approach is that image color segmentation may lead to an
over-segmentation of the motion field. The second class of methods jointly estimates
supports of regions and parametric motion models in these regions [Bouthemy and François,
1993; Cremers and Soatto, 2005; Odobez and Bouthemy, 1998; Sun et al., 2012]. It is
achieved by minimizing a global energy with respect to supports and motion parameters
of the regions. However, this global energy is highly non-convex and consequently difficult
to minimize and particularly sensitive to the initialization of the optimization procedure,
as illustrated in Fig. 7.2.
The motion field produced by AggregFlow is composed of affine motion vectors

estimated in square patches, without motion segmentation. Our aggregation strategy
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Global variational 
initialization

Affine models in regionsRegions
Figure 7.2: Example of the importance of initialization in joint motion estimation and
segmentation methods, with the result of [Unger et al., 2012]. First row: intialization with
[Werlberger et al., 2009]. Second row: Final segmented regions and motion estimation result.
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7 Summary of main challenges

allows us to select the best patch size and position for each pixel.

Motion discontinuities In the variational setting, the problem of preserving
discontinuities has been addressed by modifying the regularization term. The seminal
work of [Horn and Schunck, 1981] used a quadratic penalty function on the gradient
magnitude of motion vectors. The first attempt to preserve discontinuities was
investigated in [Heitz and Bouthemy, 1993] where a binary map of local motion
discontinuities was introduced and estimated jointly with the motion field using two
interwoven Markov Random Fields (MRF). The regularization is thus canceled on motion
discontinuities. Subsequent improvement has then been reached with the use of robust
penalty functions in the regularization term [Black and Anandan, 1996; Mémin and
Pérez, 1998]. The robust L1 norm has demonstrated its efficiency in a variational context
thanks to its convexity [Brox et al., 2004; Werlberger et al., 2010]. These methods still
suffer from local minima when minimizing non-convex functions which usually supply
more accurate results, and are limited by the coarse-to-fine scheme.

Discrete optimization and aggregation paradigm Discrete optimization is an
alternative to variational methods and is able to find good local minima for more general,
non differentiable and non-convex energy functionals. To combine the subpixel accuracy
of the continuous variational approach and the efficiency of discrete minimization, the
authors of [Lempitsky et al., 2008] built a discrete motion space from motion fields
delivered by several global variational estimations with different parameter settings. A
classical energy model is then optimized by successive fusions of global proposals, efficiently
performed by binary graph-cut methods. In [Alba et al., 2010], a set of candidate motion
vectors is computed at each pixel using phase correlation in overlapping patches. The
candidates are then linearly combined to create a global motion field. Recent works
[Chen et al., 2013; Mozerov, 2013] also exploit discrete graph-cut optimization in a
two-step paradigm. However, the philosophy of their method is different. Indeed, their
motion candidate generation step only aims at finding dominant displacements and the
aggregation provides a coarse initialization for a subsequent global variational estimation.
Discrete optimization is also associated with a variational framework in [Xu et al., 2012b]
as an intermediate stage between scales of a coarse-to-fine framework, in order to limit
the loss of details of the flow.
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8 Local motion candidates and occlusion
cues

We describe in this chapter the first step of our method AggregFlow. It exploits local
constraints to supply motion candidates and occlusion cues. A set of motion vector
candidates is generated at every pixel by a combination of patch correspondences and
local parametric motion model estimations. A specific treatment is applied to occluded
regions by exemplar-based extension of the motion candidates set. We also exploit the
dominant motion in the image due to camera motion. Motion candidates and occlusion
cues form the input of the second stage of AggregFlow described in Chapter 9.

Local motion estimations are performed in overlapping square patches of different sizes,
so that each pixel is contained in various patches. Our approach can be viewed as a new
way to address the problem emphasized in the introduction of this part of the choice of
the local neighborhood for parametric estimation. Rather than adapting the regions a
priori or jointly with the motion field, we operate in two steps: 1) estimation of motion
candidates on several supports at every pixel, 2) implicit selection of the best support
through the selection of the optimal candidate at each pixel within the aggregation step
(Chapter 9).

8.1 Local parametric motion candidates

In this section, we describe a combination of parametric estimation and patch
correspondences for candidates computation. Nevertheless, the genericity of the framework
allows for other types of local estimation. In particular, the reader can refer to Appendix
A for an analysis of candidates computation with a regularized variational method.

8.1.1 Set of overlapping patches in I1

The local supports for motion candidates computation are overlapping square patches
of different sizes. Let us denote Ps,α the patch set for a fixed patch size s and an
overlapping ratio α ∈ [0, 1] indicating the proportion of surface shared by neighboring
patches (see illustration of Fig. 8.1). Let S = {s1, . . . , sn} be a set of n patch sizes, we
then define PS,α = ⋃

s∈S Ps,α. To capture different motion scales, the patch sizes must
cover a large range of values. In all our experiments, we will use S = {16, 44, 104}. Due
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8 Local motion candidates and occlusion cues

x

P2P1

P3 P4

s1s2s3

Patch sizes

s2

Figure 8.1: Four patches of set Ps2,α for a given size s2 of the set S = {s1, s2, s3}, and overlapping
ratio α = 0.3. The pixel x is contained in the patches P1, . . . , P4. Motion estimation in each of
these patches provide motion candidates for x.

to the overlap and the number of patch sizes (n > 1), one given pixel x ∈ Ω belongs to
several patches. The motion vectors are estimated independently in each patch in two
sub-steps described below: patch correspondences and affine motion estimations.

8.1.2 Patch correspondences

For each patch P1 ∈ PS,α, we first determine the set MN (P1) of the N most similar
patches to P1 in I2. Let us point forward that we do not aim at keeping at this stage the
best correspondence only but at selecting N relevant correspondences to subsequently
constitute motion candidates. The matching step is generic and could be achieved with
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8.1 Local parametric motion candidates

any arbitrary feature matching algorithm. We use a combination of the saturation and
value channels of the HSV color space to gain partial robustness to illumination changes
[Zimmer et al., 2011] and we use the Sum of Absolute Distances (SAD) to compare
patches. To avoid that the setMN (P1) uselessly contains too close patches, we impose a
minimal distance between two patches ofMN (P1). Hence, for each established pair of
corresponding patches P1,2 = (P1, P2) with P2 ∈MN (P1), we get the translation vector
wP1,2 ∈ Z2 shifting P1 onto P2.

8.1.3 Affine motion refinement

The displacements estimated by patch correspondences are integer-pixel translational
approximations. To reach subpixel accuracy and to allow for more complex motion, we
refine the first sub-step of coarse translation computation with the estimation of a local
affine motion model in every pair P1,2. Denoting ΩP1 the pixel domain of P1, the affine
motion model δwP1,2 : ΩP1 → R2 between P1 and P2 is defined at a pixel x = (x1, x2)>
as:

δwP1,2(x) = (a1 + a2x1 + a3x2, a4 + a5x1 + a6x2)>. (8.1)

The affine model parameter vector θP1,2 = (a1, a2, a3, a4, a5, a6)> is estimated using the
brightness constancy constraint:

θ̂P1,2 = arg min
θP1,2

∫
ΩP1

ψ(P2(x+ δwP1,2(x))− P1(x))dx (8.2)

where the penalty function ψ(·) is chosen as the robust Tukey’s function. The problem
(14.3) is solved with the publicly available Motion2D software1 [Odobez and Bouthemy,
1995], which implements a multi-resolution incremental minimization scheme involving
an IRLS (Iteratively Reweighted Least Squares) technique for solving the successive
linearizations of the penalty function in (14.3).

8.1.4 Final set of motion candidates

The above described two-step estimation is repeated for every patch of PS,α and generates
a set of candidate motion vectors C(x) at each pixel x ∈ Ω defined as follows:

C(x) = {wP1,2(x) + δwP1,2(x) : P1 ∈ PS,α(x), P2 ∈MN (P1)}, (8.3)

where PS,α(x) = {P ∈ PS,α : x ∈ P}.
Let us make a few comments on the estimation scheme for computing motion candidates.

A coarse motion estimation followed by a refinement step has been investigated in several
1http://www.irisa.fr/vista/Motion2D/
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8 Local motion candidates and occlusion cues

previous works [Chen et al., 2013; Leordeanu et al., 2013; Mozerov, 2013], but it has always
been dedicated to global motion fields. In our case, the refinement is local and adapted to
each patch correspondence. Classical local motion estimation methods based on [Lucas
and Kanade, 1981] also rely on square patches, but assign the computed motion vector
only to the center point of each patch. On the opposite, parametric motion estimation
in segmented regions as in [Cremers and Soatto, 2005] apply to regions of arbitrary
shape. Our patch distribution can be considered as an intermediate level between these
two extremes. Indeed, we use square patches as in [Lucas and Kanade, 1981] and thus
avoid the complex segmentation step. However, we exploit the whole vector field issued
from the affine model estimated in each patch. As a consequence, every pixel inherits
several motion candidates from the affine motion estimations performed in patches of
different positions and sizes which the given pixel belongs to. Finally, in contrast to
several other methods using feature correspondences [Brox and Malik, 2011; Chen et al.,
2013; Weinzaepfel et al., 2013], we do not select one single patch correspondence but we
keep the N best ones.

The interest of the local set of motion candidates supplied by AggregFlow is three-fold.
First, the correspondence sub-step enables to capture large displacements even for small
patch sizes. Thus, it allows us to correctly deal with small structures undergoing large
displacements in contrast to coarse-to-fine schemes. Second, by considering a large variety
of patches, we get rid of the predefined choice of the local neighborhood encountered in
parametric motion estimation. The selection of the proper patch via its corresponding
motion candidate is transferred to the aggregation stage. Third, introducing patches of
several sizes enables to tackle motion of different scales.

8.2 Motion candidates in occluded areas

The generation of motion candidates described in Section 8.1 does not differentiate
between occluded and non-occluded pixels. For a given pixel x, if all the patches of
PS,α(x) mainly contain occluded pixels, there is no chance to correctly estimate a relevant
motion candidate at x in that way. Therefore, we compute motion candidates in occluded
regions in a specific manner.
Let us define the occlusion map o : Ω→ {0, 1}

o(x) =

1 if x is occluded,
0 otherwise.

(8.4)

The occluded regions are denoted O = {x ∈ Ω : o(x) = 1}. The computation of map o
will be addressed in Section 8.4 and Chapter 9, and we assume for now that o is known.
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8.2 Motion candidates in occluded areas

8.2.1 Occlusion filling

Let us first emphasize the relation between occlusion filling and inpainting. When
occlusion regions are known, occlusion filling is conceptually closely related to image
inpainting, since it recovers motion in regions where it is by definition not observable.
Classical methods for occlusion filling operate in a variational framework by cancelling
the data term and letting the diffusion process of the regularization propagate the
optical flow in occluded regions [Ayvaci et al., 2012; Xu et al., 2012b]. This is also
the approach of the diffusion-based class of inpainting methods [Bertalmio et al.,
2000]. This class of inpainting methods performs well in case of thin missing areas or
cartoon-like images, but they are usually outperformed by the class of exemplar-based
inpainting methods [Criminisi et al., 2004] for large missing regions. The idea is to
copy image pixels from the observed regions of the image to the region to be filled.
In order to deal with large occlusions produced by large displacements, we follow
the inpainting analogy and we overcome the problem of local motion candidates
estimation in occluded areas by designing an exemplar-based scheme. In the first
step of AggregFlow, the motion candidates set is thus augmented by copy-paste operations.

8.2.2 Exemplar-based candidates extension

We rely on the assumption that motion at an occluded pixel x ∈ O is similar to the motion
of a close non-occluded pixel mo(x) ∈ Ω\O belonging to the same object or the same
background part. To provide relevant motion candidates at x, we copy motion candidates
from C(mo(x)) to C(x). The search domain Vo(x) ⊂ Ω\O for mo(x) is constrained to be
close to the occlusion boundaries. Figure 8.2(e) and 8.3(e) represents the occluded regions
O (in white) and the search domain Vo (in red), and Fig. 8.2(f) and 8.3(f) superimposes
the two sets on I1. Searching for the pixel mo(x) is actually easier for occlusion filling
than for image inpainting. Indeed, occluded regions are not completely uninformative,
while inpainted regions are, since we have access to the information supplied by image I1
even in O. Thus, as mo(x) is expected to belong to the same object as x, we use color
similarity to find the match in I1:

mo(x) = arg min
y∈Vo(x)

D(I1, x, y), (8.5)

where D(I1, x, y) is the distance between patches centered respectively in x and y. As in
Section 8.1, we resort to a SAD in the HSV space.

An extended candidate set C+(x) is created for occluded pixels by adding to the initial
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set C(x), which is usually empty, the motion candidates of their matched pixel mo(x):

C+(x) = C(x) ∪ C(mo(x)), ∀x ∈ O. (8.6)

By convention, ∀x ∈ Ω\O, C+(x) = C(x).

8.2.3 Occlusions due to camera motion

A particular class of occluded (or disappearing) regions occurs at image borders in the case
of large camera motion (Fig. 8.4). We cope with this issue by estimating the dominant
image motion due to camera motion. To do so, we use again the robust parametric
estimation described in Section 8.1, but now, we apply it to the whole image [Odobez and
Bouthemy, 1995], to retrieve the dominant motion. We found in our experiments that
the quadratic model was more adequate to accurately cope with large and sometimes
complex camera motion. The resulting parametric motion field wcam : Ω→ R2 is added
to the motion candidates, and we end up with the final set of motion candidates Cf :

Cf (x) = C+(x) ∪ {wcam(x)}, ∀x ∈ Ω. (8.7)

The camera motion candidates are mostly useful for occluded pixels, but it can sometimes
provide relevant motion candidates in unoccluded regions of the background as well, so
that we finally add it to all pixels in Ω.

8.3 Best candidate flow

To validate our method for computing motion candidates, we have exploited sequences
from MPI Sintel and Middlebury datasets [Baker et al., 2011; Butler et al., 2012]
provided with ground truth. We create the Best Candidate Flow (BCF) by selecting at
each pixel x the candidate motion vector of Cf (x) closest to the ground-truth vector. In
order to evaluate our occlusion module, we distinguish between the BCF determined
with the candidates extension described in the preceding section (or full BCF) and
the BCF without it. Parameters involved in the local motion computation are set to
S = {16, 44, 104}, α = 0.75, N = 2.

Illustrations of the accuracy of the BCF are provided in Fig. 8.2, Fig. 8.3 and Fig. 8.4
on sequences of the MPI Sintel benchmark with large occluded regions. Besides, we
make a specific focus on the improvements obtained with the candidates extensions. The
difference between BCF without candidates extension and the full BCF is clearly visible
for occluded pixels and testify to the importance of the exemplar-based and camera motion
candidates extensions. Overall, the full BCF is very close to the ground-truth motion
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8.3 Best candidate flow

(a) I1 (b) I2

(c) Ground truth occlusion (d) Ground truth w

(e) Occlusions (white) (f) I1 with occlusions (green)
and search domain Vo (red) and search domain Vo (red)

(g) BCF without exemplar-based (h) BCF with exemplar-based
candidates extension candidates extension

Figure 8.2: Illustration of the performance improvement with exemplar-based candidates
extension. First row: two successive input images. Second row: ground-truth occlusion map and
motion field. Third row: representation of the search domain Vo (displayed here after median
filtering of the occlusion map for the sake of visibility only). Fourth row: Best Candidate Flow
obtained respectively without and with the exemplar-based candidates extension.
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8 Local motion candidates and occlusion cues

(a) I1 (b) I2

(c) Ground truth occlusion (d) Ground truth w

(e) Occlusions (white) (f) I1 with occlusions (green)
and search domain Vo (red) and search domain Vo (red)

(g) BCF without exemplar-based (h) BCF with exemplar-based
candidates extension candidates extension

Figure 8.3: Illustration of the performance improvement with exemplar-based candidates
extension. First row: two successive input images. Second row: ground-truth occlusion map and
motion field. Third row: representation of the search domain Vo (displayed here after median
filtering of the occlusion map for the sake of visibility only). Fourth row: Best Candidate Flow
obtained respectively without and with the exemplar-based candidates extension.
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8.3 Best candidate flow

I1 I2

ground-truth occlusion ground truth w

BCF without camera motion BCF with camera motion
candidates extension candidates extension

Figure 8.4: Illustration of the performance improvement with camera motion candidates extension.
First row: two successive input images. Second row: ground-truth occlusion map and motion
field. Third row: Best Candidate Flow obtained respectively without and with the camera motion
candidates extension.

field which demonstrates the performance of the local parametric motion computation
in the first step of AggregFlow. Indeed, we report in Table 8.1 the objective evaluation
given by the Endpoint Error (EPE) scores for the full BCF and BCF without candidates
extensions, on the sequences provided with ground-truth in the datasets MPI Sintel and
Middlebury. We also compare them with those of motion fields supplied by [Weinzaepfel
et al., 2013; Xu et al., 2012b], as obtained with publicly available code. Both BCFs
outperform state-of-the-art methods [Weinzaepfel et al., 2013; Xu et al., 2012b] in the
two benchmarks. Accuracy is further significantly improved with full BCF, especially
for the MPI Sintel sequences where large displacements and wide occluded regions are
present. It demonstrates that the combination of local affine estimations in square patches
with patch correspondences as described in Section 8.1, is quite relevant and sufficient
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8 Local motion candidates and occlusion cues

Table 8.1: EPE-all scores of motion fields on sequences with ground-truth from MPI MPI Sintel
and Middlebury datasets

MPI Sintel Middlebury
Full BCF 0.792 0.0710
BCF w/o candidates extension 1.851 0.0833
DeepFlow [Weinzaepfel et al., 2013] 4.691 0.386
MDP-Flow2 [Xu et al., 2012b] 4.006 0.223

to recover very accurate motion fields. The challenge now is to select the best velocity
vector among the motion candidates at every pixel.

8.4 Occlusion confidence map

In Section 8.2, the occlusion map o was assumed to be known, and we addressed
the occlusion filling problem by recovering motion candidates for occluded pixels from
non-occluded areas. The occlusion detection task, that is the determination of o, will
be performed through the two steps of AggregFlow. In the first step, we compute a
coarse occlusion confidence map, which will be used in the aggregation to guide the
estimation. Our procedure is simple and exploits the patch distribution and PS,α and
the correspondences used for motion candidates estimation. Nevertheless, from a more
general point of view, other coarse occlusion confidence map could be designed differently,
for example in the framework of [Kervrann et al., 2011].
We first perform a coarse occlusion detection at the patch level. We consider the

smallest patch size s1 of the set S defined in Section 8.1 and detect the occluded patches
of the set Ps1,α. A common and simple occlusion detection consists in checking the
consistency of forward and backward estimated motion vectors [Humayun et al., 2011;
Ince and Konrad, 2008; Mozerov, 2013]. We apply the same principle to patches of Ps1,α.
Simplifying the notations of Section 8.1 for the sake of readability, let us denote T fP the
forward displacement between a patch P ⊂ I1 and its matched patchMP ⊂ I2, and T bP the
backward displacement between MP and its matched patch in I1. The forward-backward
consistency criterion states that the patch P is occluded if ‖T fP + T bP ‖ > ν, where ν is a
threshold. We then infer a patch-based occlusion map oP as follows:

oP (x) =

1 if ∃P ∈ Ps1,α(x) such that P is occluded
0 otherwise.

(8.8)

Let us now consider the point set XoP composed of the centers of each occluded patch
XoP = {x ∈ Ω : ∃P ∈ Ps1,α, x is the center pixel of P}. We use the density of this point
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8.4 Occlusion confidence map

I1 + I2 occlusion ground-truth

oP ωo

Figure 8.5: Illustration of patch-based occlusion detection. First row: Overlap of the two
successive input images and occlusion ground-truth. Second row: Corresponding computed
patch-based occlusion map oP and occlusion confidence map ωo.

set as an indicator of the presence of occlusions. We apply a Parzen density estimation
on XoP = {x1, . . . , xNP }, with NP the number of occluded patches:

ωo(x) = 1
NP

NP∑
i=1

1
σ
K

(
x− xi
σ

)
, (8.9)

where σ is the bandwidth parameter and we choose K to be a Gaussian kernel. We set
σ = s1. The occlusion confidence map ωo is thus built as a probability density of the
occlusion state. Figure 8.5 shows an example of oP and ωo. The map ωo will be exploited
in the aggregation stage to guide a sparsity-constrained occlusion detection.

The output variables of the whole first step are the motion candidates set Cf (x) and the
occlusion confidence map ωo. They will be exploited in the aggregation stage described
in the following chapter, to generate final motion and occlusion fields.
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9 Discrete aggregation

The first step of AggregFlow yields the set of motion candidates Cf (x) along with the
occlusion confidence map ωo. They are aggregated in the second step of AggregFlow to
produce the global flow field w : Ω→ R2 and the final occlusion map o : Ω→ {0, 1}. The
analysis of the Best Candidate Flow in Section 8.3 has shown that the set of candidates at
each pixel contains at least one motion vector very close to the ground truth. Therefore,
we conceive the aggregation as the selection of the best candidate at every pixel. To this
end, we formulate the aggregation as a discrete optimization problem, where the discrete
finite motion vector space at each pixel x is composed of the motion candidates Cf (x).
The occlusion map will be estimated jointly with the motion field while exploiting the
occlusion confidence map ωo. The aggregation step amounts to the minimization of the
global energy function E(w, o) as follows:

{ŵ, ô} = arg min
{w,o}

E(w, o) s.t. w(x) ∈ Cf (x), o(x) ∈ {0, 1}. (9.1)

In the following, we detail the design of E(w, o) and the optimization strategy we have
adopted.

9.1 Global energy

The aggregation energy is composed of four terms:

E(w, o) = Edata(w, o, I1, I2) + Eocc(o, ωo) + Ew
reg(w) + Eoreg(o). (9.2)

In the following we describe the modeling assumption leading to each term.

9.1.1 Data term Edata

The data term accounts for the relations between motion, occlusion and input images. At
non-occluded pixels, i.e., o(x) = 0, we rely on the usual constancy assumption of image
intensity and of spatial image gradient, and we robustly penalize the deviation from the
constraints. The potential ρvis associated to non-occluded (or visible) pixels is given by:

ρvis(x,w) = φ(I2(x+ w(x))− I1(x)) + γφ(∇I2(x+ w(x))−∇I1(x)). (9.3)
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9 Discrete aggregation

where φ is the L1 norm and γ balances intensity and gradient constancy constraints.
Resorting to discrete optimization allows us to use the non-linearized brightness constancy
constraint. Thus, coarse-to-fine scheme is not required to cope with large displacements,
and we avoid drawbacks related to the loss of small objects with large displacements.

At occluded pixels, no correspondence can be established by definition, and consequently
none image feature constancy constraint can be formulated. Therefore, coherently with
the motion candidate extension of the first step, we define an exemplar-based constraint
for occluded pixels, encoded in the potential ρocc:

ρocc(x,w,m) = ‖w(x)−w(m(x))‖2 (9.4)

where m(x) is the visible pixel matched with x as obtained in (8.5). The motion vector
of an occluded pixel is thus expected to be similar to the motion vector of its matched
non-occluded pixel. The data term is finally formed by incorporating the selection of
either the visible or the occlusion potential using the occlusion map:

Edata(w, o, I1, I2) =
∑
x∈Ω

(1− o(x)) ρvis(x,w) + λ1 o(x) ρocc(x,w,m). (9.5)

Contrary to other occlusion filling methods which only cancel the visibility term ρvis in
occluded areas and fill the occlusions with motion vectors by diffusion [Ayvaci et al., 2012;
Xu et al., 2012b; Papadakis et al., 2013], the potential ρocc acts as a valid data constraint
at occluded pixels.
Concerning the occlusion detection (i.e., the optimization on o), the data term favors

the selection of the occluded label at pixels where the data constancy constraint is
strongly violated. The continuous approach of [Ayvaci et al., 2012] operates in a
similar way. In [Ayvaci et al., 2012], the conservation constraint score is balanced by an
estimated continuous residual intensity field, from which occluded points are retrieved by
thresholding. In contrast, our occlusion map is binary by nature, and strongly prevents
the influence of irrelevant data-constancy constraints on motion estimation in occluded
areas, as in the recent work of [Papadakis et al., 2013].

9.1.2 Occlusion constraint Eocc

The constraint (13.4) favours detection of occluded pixels and must be counterbalanced
by another constraint penalizing occlusion occurrence. It is defined as

Eocc(o, ωo) = λ2
∑
x

ωo(x)o(x) (9.6)

where ωo is the occlusion confidence map computed in the first stage. The penalty of
occlusion occurrence can be interpreted as a sparsity constraint on the binary occlusion
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9.1 Global energy

field o. A sparsity constraint for occlusion detection was also proposed in [Ayvaci et al.,
2012] in a continuous setting, and in [Papadakis et al., 2013] for a binary occlusion
variable, but without confidence map.

If we set ∀x ∈ Ω, ωo(x) = 1, which would be similar to what is done in [Ayvaci et al.,
2012; Papadakis et al., 2013], the data-driven occlusion detection would boil down to the
data term (9.5) and (9.6) would be a pure sparse prior constraint. The detection of the
occlusion map would be then too tightly coupled with the currently estimated motion
field. We would face a chicken-and-egg problem, where o is determined by w, which also
depends on o. The consequence on the alternate optimization scheme would be a rapid
trap into a local minimum.
Illustrations are given in Fig. 9.1. The results of two variational methods without

occlusion handling [Brox and Malik, 2011; Weinzaepfel et al., 2013] are displayed in Fig.
9.1 (e,f). In both cases, the motion field in the occluded region, highlighted by the red
bounding box, is wrongly estimated because no occlusion detection is performed. If the
occlusion map is initialized to o(x) = 0, ∀x ∈ Ω, the occlusion terms of our energy (9.2)
are canceled in the very first iteration of the alternate optimization, which results in
a similar behaviour to the methods [Brox and Malik, 2011; Weinzaepfel et al., 2013].
If ∀x ∈ Ω, ωo(x) = 1, the convergence remains trapped in the initial local minimum,
as displayed in Fig. 9.1 (g,h). The reason is that the occlusion map is determined by
the motion field and cannot deviate from the output of the first iteration. The role of
the confidence map ωo is then to act as an additional evidence for occlusion detection,
relaxing the coupling between w an o. The guidance of ωo enables to deviate from the
output of the first iteration and to converge to the result shown in Fig. 9.1 (i,j).

9.1.3 Regularization terms E1
reg and E2

reg

The regularization term Ew
reg(w) enforces piecewise smoothness of the motion field:

Ew
reg(w) = λ3

∑
<x,y>

β(x)φ(‖w(x)−w(y)‖2) (9.7)

where < x, y > denotes the two-site clique issued from the 8-neighborhood system. The
weights β(x) are given by β(x) = exp

(
−‖∇I0

1 (x)‖2/τ2) to modulate the regularization
according to the intensity edge strength. To limit the influence of noise and textured
regions on the weights, we consider a smoothed version I0

1 of I1 obtained with the L0
smoothing of [Xu et al., 2011], favouring piecewise constant images and preserving only
the abrupt edges.
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9 Discrete aggregation

(a) I1 (b) I2

(c) ground truth w (d) Ground truth o

(e) LDOF [Brox and Malik, 2011] (f) DeepFlow [Weinzaepfel et al., 2013]

(g) AggregFlow w, without ωo (h) AggregFlow o, without ωo

(i) AggregFlow w, with ωo (j) AggregFlow o, with ωo

Figure 9.1: Influence of the occlusion confidence map ωo on motion and occlusion estimation.
(e),(f): variational methods [Brox and Malik, 2011; Weinzaepfel et al., 2013] without occlusion
handling. (g),(h): similar behaviour of our method without occlusion confidence map and impact
on the occlusion detection. (i),(j): output of AggregFlow when integrating the occlusion confidence
map.
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9.2 Optimization

It is also important to impose smoothness of the occlusion map with the term Eoreg:

Eoreg(o) = λ4
∑
<x,y>

(1− δ(o(x) = o(y))), (9.8)

where δ designates the Kronecker function equal to 1 if its argument is true. The term
Eoreg(o) completes the exemplar-based occlusion filling described in Section ?? with
diffusion-based occlusion filling.

9.2 Optimization

The optimization problem (9.1) is addressed by alternating minimization of w and o.
The initial value of o is given by the coarse patch-based occlusion detection oP defined in
(8.8). The matching variable m attached to the exemplar-based candidates extension is
initialized with mo defined in (8.5) and recomputed after each update of the occlusion
map. Convergence was empirically observed after three iterations in most cases. Thus,
to avoid unnecessary computational cost, we fix the number of iterations to 3 for all
sequences. Table 9.1 gives an overview of the main steps of AggregFlow. Hereafter, we
give details on the minimization procedure concerning w and o.
When ŵ is fixed, the energy to optimize w.r.t. o amounts to:

min
o

∑
x∈Ω

(1− o(x)) ρvis(x, ŵ) + λ1 o(x) ρocc(x, ŵ,m) (9.9)

+ λ2
∑
x

ωo(x)o(x) + λ4
∑
<x,y>

(1− δ(o(x) = o(y))).

Since o takes binary values and the pairwise term is submodular, this problem can be
solved exactly with standard graph cut method [Boykov et al., 2001].

The optimization w.r.t. w with ô fixed is more difficult. The reduced energy function
writes:

ŵ = min
w

∑
x∈Ω

(1− ô(x)) ρvis(x,w) + λ1 ô(x) ρocc(x,w,m)

+ λ3
∑
<x,y>

β(x)φ(‖w(x)−w(y)‖2). (9.10)

Our overall label set is the union of the sets of motion candidates over the image points.
As a consequence, our discrete optimization problem has several specific features:

1. Large number of labels: we have a large number of motion candidates (typically
around 200) at each point.
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9 Discrete aggregation

2. Local labels: the motion candidates are generated by local (or semi-local) estimations.
Therefore, proposal label field to be fused with the current labeling cannot be
naturally derived, as in fusion-move.

3. Redundancy of the labels: the motion candidate set is redundant, that is, it usually
contains groups of similar candidates (generated by estimation on similar patch-based
supports).

The number of labels is an important limitation of existing discrete optimization
algorithms. Message passing methods like belief propagation [Felzenszwalb and
Huttenlocher, 2006] and TRW-S [Kolmogorov, 2006] can be applied to spatially varying
label sets, as investigated in [Ulén and Olsson, 2013] for stereo, but we found these
methods to be too slow for the minimization of (9.2). An alternative is to resort to
graph-cut move-making methods [Boykov et al., 2001], generalized in [Lempitsky et al.,
2008] to spatially varying label sets. In this setting, each move is a binary optimization
problem defined on an auxiliary variable selecting between global proposals. The design
and ordering of the proposals has a crucial impact on the result [Nieuwenhuis et al., 2013].
Move-making algorithms [Boykov et al., 2001; Komodakis et al., 2008; Lempitsky et al.,

2008; Rother et al., 2007; Kohli and Torr, 2007] proceed by iterative modifications of the
current labelling, called moves. A move is achieved by tackling the original optimization
problem in a restricted label space making the solving easier. The restricted space is
composed of the current labelling augmented by a move-space. In order to apply efficient
s− t mincut algorithms, the move-space is usually defined as a proposal labelling, turning
the problem into a binary optimization : keep the current label or switch to the proposal
label. Extension to larger move-spaces enabling to select between several labels at a time,
is possible when a natural ordering can be defined on the range of involved labels [Veksler,
2007].

Building appropriate move-spaces at each iteration is important to ensure the quality
of the minimum reached by the algorithm. The popular α-expansion [Boykov et al.,
2001] defines each move-space as a constant labelling and passes in turn over all labels
in an arbitrary order. Such move-spaces allow for optimal moves when the energy
is submodular. In Fusion-move [Lempitsky et al., 2008], proposals are independent
estimations performed with several methods. Such elaborated move-spaces come at the
price of non-submodularity and only suboptimal moves can be achieved using quadratic
pseudo-boolean optimization (QPBO) [Rother et al., 2007].
While several works have focused on improving or speeding up the moves themselves

[Kohli and Torr, 2007; Komodakis et al., 2008], they all use fixed pre-defined move-spaces.
However, the final result is highly dependent upon the succession order of the proposals
as emphasized in [Nieuwenhuis et al., 2013]. Therefore, it is not sufficient to have the
right label somewhere in the label space, but it should also be included in a move-space
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at the wright iteration. The move-space must i) be adapted to the energy, ii) be updated
at each iteration in accordance with the current labelling. α-expansion satisfies none
of the two conditions, whereas fusion-move fulfills the first one. To the best of our
knowledge, only the two works [Batra and Kohli, 2011] and [Ishikawa, 2009] actually take
into account both requirements. In [Batra and Kohli, 2011], the move-space is chosen so
as to maximize the primal-dual gap. In [Ishikawa, 2009], the move-space is constructed
by gradient descent of the energy, which must be differentiable.
In our case the motion candidates are locally determined. In contrast, [Lempitsky

et al., 2008] exploits global flow fields that can be directly used as proposals in the
move-making process. Thus, we have to build global flow field proposals at each iteration
from the local motion candidates computed in patches. The important point is to ensure
spatial smoothness of the proposals, in accordance with the regularization term of the
model (9.12). Therefore, we build a global flow field proposal by considering a tiling
of non-overlapping patches of a given size and by selecting at every pixel in each patch
the motion candidate precisely issued from that patch. This construction maintains the
spatial coherency of the local affine estimations. We build as many global proposals as
necessary to reasonably explore the motion candidate space. Designing more general and
adaptive move-space generation over the move-making iterations is an important line of
research to improve our method.

Another issue arises from the non-local interaction involved in the exemplar-based term
ρocc(x,w,m). To make the optimization problem tractable, we transform ρocc(x,w,m) to
a pixel-wise term at each move-making iteration by fixing the exemplar-based constraint
w(m(x)) to its value at the previous iteration. At a given move-making iteration i,
denoting ŵ(i−1) the value of w at iteration i− 1, the potential becomes:

ρocc(x,w,m) =
∥∥∥w(x)− ŵ(i−1)(m(x))

∥∥∥2
. (9.11)

In the next Chapter, we analyse the performance of the overall method composed of
the candidates computation step and aggregation, through experiments on challenging
data.
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9 Discrete aggregation

1. Local step
1.1. Generate the motion candidates sets C(x) (8.3)

C(x) = {wP1,2(x) + δwP1,2(x) : P1 ∈ PS,α(x), P2 ∈MN (P1)}

1.2. Compute patch-based occlusion map oP
Derive the occlusion confidence map ωo from oP

1.3. Compute the matching variables mo(x) (8.5)

mo(x) = arg min
y∈Vo(x)

D(I1, x, y),

Extend motion candidates in occluded regions to obtain Cf

Cf (x) = (C(x) ∪ C(mo(x))) ∪ {wcam(x)}

Output of the 1st step: Cf , ωo

2. Global aggregation
Initialize o = oP and m = mo

Iterate:
2.1. Estimate w (9.12)

ŵ = min
w

∑
x∈Ω

(1− ô(x)) ρvis(w) + λ1 ô(x) ρocc(w,m(x))

+λ3
∑
<x,y>

β(x)φ(‖w(x)−w(y)‖2).

2.2. Estimate o (9.12)

ô = min
o

∑
x∈Ω

(1− o(x)) ρvis(ŵ) + λ1 o(x) ρocc(ŵ,m(x))

+λ2
∑
x

go(x)o(x) + λ4
∑
<x,y>

(1− δ(o(x) = o(y))).

2.3. Update m (8.5)

Output of the 2nd step: w, o

3. Post-processing : weighted median filtering on w

Table 9.1: Overview of AggregFlow
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We provide in this chapter an extensive evaluation of AggregFlow in reference computer
vision benchmarks. We detail the influence of the different aspects of the method, with a
particular concern on the impact of our occlusion handling process.

10.1 Implementation details

All the patch correspondences involved in AggregFlow are computed with the PatchMatch
algorithm [Barnes et al., 2009] based on the minimal C++ code provided by the authors1.
A weighted median filtering with bilateral weights [Xu et al., 2012a] is performed as a
post-processing step to enhance motion edges as advocated in [Sun et al., 2014]. For
the discrete minimization, we use available QPBO and max-flow code2. After extensive
experimental tests, the aggregation parameters have been set to λ1 = 5, λ2 = 50, λ3 = 500,
λ4 = 20 for the MPI Sintel benchmark and to λ1 = 2, λ2 = 10, λ3 = 250, λ4 = 4.5 for the
Middlebury dataset. As a representative example (the one used to compare methods),
the computation time for the Urban2 sequence of the Middlebury benchmark is 27
minutes on a Intel Xeon laptop with 2.20GHz clock speed and 64Gb RAM. Nevertheless,
the first step of AggregFlow can be massively parallelized, which should lead to a far less
computation cost with a GPU implementation for instance. Most of the computation time
is consumed in the patch correspondence sub-step for the largest patch size (106× 106
pixels). The determination of the matching variable m is performed with patches of size
11× 11.

10.2 Quantitative results on computer vision benchmarks

We have evaluated AggregFlow on the two most representative benchmarks for optical
flow: MPI Sintel flow dataset3 [Butler et al., 2012] and Middlebury flow dataset4

[Baker et al., 2011], which offer different and complementary challenges. We have retained
the Endpoint Error measure (EPE) for quantitative evaluation. Results of [Xu et al.,

1http://gfx.cs.princeton.edu/pubs/Barnes_2009_PAR/index.php
2http://pub.ist.ac.at/ vnk/software.html
3http://sintel.is.tue.mpg.de/
4http://vision.middlebury.edu/flow/
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DeepFlow Weinzaepfel et al. [2013]
MDP-Flow2 Xu et al. [2012b]
EPPM Bao et al. [2014]
S2D-Matching Leordeanu et al. [2013]
Classic+NL Sun et al. [2014]
FC-2Layers-FF Sun et al. [2012]
MLDP-OF Mohamed et al. [2014]

Table 10.1: References of the method names.

2012b] and [Weinzaepfel et al., 2013] reported in Table 10.5 and from Fig. 10.1 to Fig.
10.7 have been obtained with the public codes provided by the authors5,6. The references
associated to the name of each method used for comparison are given in Table 10.1.

MPI Sintel flow dataset Sequences of the most recent MPI Sintel benchmark [Butler
et al., 2012] are characterized by long-range motion, motion blur, non-rigid motion, and
wide occluded areas. Methods are evaluated on two versions of the sequences named
Clean and Final. The Final version adds motion and defocus blur along with atmospheric
effects like fog on some sequences. We reproduce in Tables 10.2 and 10.3 public results
of the top ranked methods at the submission date of this manuscript (May 22nd 2014),
which are available on the MPI Sintel website. Results are analyzed through several
indicators: “EPE all” is the average EPE on all the sequences; “EPE matched” and
“EPE unmatched” restrict the error measure respectively to regions that remain visible
in adjacent frames (non-occluded pixels) and to regions that are visible only in one of
two adjacent frames (occluded pixels); “d0-10” denotes EPE over regions closer than 10
pixels to the nearest occlusion boundary, and thus reveals the ability to recover motion
discontinuities; “s40+” denotes EPE over regions with velocities larger than 40 pixels
per frame. Methods are ranked regarding their EPE all. Visual comparison with results
supplied by [Weinzaepfel et al., 2013] and [Xu et al., 2012b] on training sequences (i.e.,
MPI Sintel sequences provided with ground truth) is available from Fig. 10.1 to Fig.
10.4.

As for the Clean subset, our method AggregFlow ranks first over the published
methods. The most significant improvement is obtained on the unmatched category, which
emphasizes the efficiency of our occlusion framework. AggregFlow is ranked second for the
d0-10 metric which demonstrate its capacity to recover motion discontinuities as confirmed
by results displayed from Fig. 10.1 to Fig. 10.4. First, it is due to the robust affine
estimation of the motion candidates able to capture locally dominant motion in case of
two or even several motions present inside patches, which preserves motion discontinuities.

5http://www.cse.cuhk.edu.hk/ leojia/projects/flow/
6http://lear.inrialpes.fr/src/deepmatching/
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10.2 Quantitative results on computer vision benchmarks

EPE EPE EPE d0-10 s40+
all matched unmatched

AggregFlow 4.754 1.694 29.685 3.705 31.184
DeepFlow 5.377 1.771 34.751 4.519 33.701
MDP-Flow2 5.837 1.869 38.158 3.210 39.459
EPPM 6.494 2.675 37.632 4.997 39.152
S2D-Matching 6.510 2.792 36.785 5.523 44.187
Classic+NLP 6.731 2.949 37.545 5.573 45.290
FC-2Layers-FF 6.781 3.053 37.144 5.841 45.962
MLDP-OF 7.297 3.260 40.183 5.581 51.146

Table 10.2: Results on the MPI Sintel Clean test subset

It is also made successful by the efficient occlusion module, which allows us to moderate
the need for motion field regularization. Indeed, large errors in occluded regions are
usually alleviated by imposing high regularization with the result of over-smoothing the
rest of the motion field (see motion fields computed with DeepFlow [Weinzaepfel et al.,
2013] from Fig. 10.1 to Fig. 10.4). In case of very large displacements (s40+ metric),
all the first five methods (AggregFlow, [Weinzaepfel et al., 2013; Xu et al., 2012b; Bao
et al., 2014; Leordeanu et al., 2013]) somehow integrate feature matching in their motion
estimation process to capture the largest deformations. The top rank of AggregFlow
demonstrates the efficiency of the aggregation framework for integrating feature matching.
As for the Final version AggregFlow is ranked second in terms of EPE all. The slight

decreasing in performance compared to the Clean subset is mainly due to large errors
caused by the added fog effect in the two ambush sequences. As emphasized in [Bao
et al., 2014], local intensity-based displacement computation tends to capture the motion
of the fog rather than the motion of objects appearing in transparency. As our candidates
estimation is local, it is subject to this limitation. Global variational approaches are
able to diffuse motion estimates in these regions and are consequently better suited
for this kind of situations. Despite this shortcoming, our method still yields significant
improvement in unmatched regions and on motion discontinuities. One solution to
improve results in fog regions would be to incorporate a more sophisticated feature
correspondence technique as the ones proposed in [Leordeanu et al., 2013; Weinzaepfel
et al., 2013].

Middlebury dataset The Middlebury benchmark is composed of sequences with small
displacements, where the main challenge is to be able to recover both complex smooth
deformation, motion discontinuities and motion details. Table 10.4 reproduces public
results at the submission date of this manuscript (May 22nd 2014) for the same methods
as those taken for comparison on the MPI Sintel benchmark. Visual comparative results
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10 Experimental results

EPE EPE EPE d0-10 s40+
all matched unmatched

DeepFlow 7.212 3.336 38.781 5.650 44.118
AggregFlow 7.329 3.696 36.929 5.538 44.858
S2D-Matching 7.872 3.918 40.093 5.975 48.782
FC-2Layers 8.137 4.261 39.723 6.537 51.349
MLDP-OF 8.287 4.165 41.905 6.345 50.540
Classic+NLP 8.291 4.287 40.925 6.520 51.162
EPPM 8.377 4.286 41.695 6.556 49.083
MDP-Flow2 8.445 4.130 43.430 5.703 50.507

Table 10.3: Results on the MPI Sintel Final test subset

EPE all Avg. rank
MDP-Flow2 0.245 7.8
FC-2Layers-FF 0.283 19.3
Classic+NL 0.319 27.1
EPPM 0.329 32.6
AggregFlow 0.339 35.9
MLDP-OF 0.349 32.6
S2D-Matching 0.347 34.6
DeepFlow 0.416 48.8

Table 10.4: Results on the Middlebury benchmark.

are displayed from Fig. 10.5 to Fig. 10.7. It can be observed that the absolute EPE
values, together with the differences between methods, are much lower than on the MPI
Sintel dataset. The average EPE score computed over the considered methods is equal
to 6.22 for the MPI Sintel Clean subset and to 0.327 for the Middlebury dataset,
with respective variance of 0.613 and 0.0025. We also provide the average rank over
the 8 test sequences for each method which is the metric used for global ranking on the
Middlebury website.
On the whole Middlebury benchmark, AggregFlow is ranked 38 over 97 submitted

methods in terms of average rank on the results (evaluated with the average endpoint
error on the sequence) obtained on the eight test sequence. Notwithstanding, it is still
very close to the ranked two MDP-Flow2 method [Xu et al., 2012b] in terms of EPE
metric, knowing that the top ranked published method OFLAF [Kim et al., 2013] has
an average rank of 6.8 and an EPE all of 0.197 (OFLAF method was not tested on the
MPI Sintel benchmark). Visual results reported from Fig. 10.5 to Fig. 10.7 confirm the
tightness of performance gap. In particular, the preservation of motion discontinuities
with AggregFlow is more satisfying than with the DeepFlow method [Weinzaepfel et al.,
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10.3 Occlusion handling

AggregFlow AggregFlow DeepFlow MDP-Flow2
w/o occlusion

ambush_2 5.632 9.456 14.743 12.083
ambush_4 11.923 16.515 14.647 15.570
ambush_5 5.042 5.4996 8.333 6.591
ambush_6 5.854 6.251 9.928 8.466
market_5 9.957 11.958 15.056 12.816
market_6 3.626 4.547 6.606 5.384
cave_2 6.029 8.228 10.082 8.347
cave_4 3.706 4.185 4.234 3.815
temple_3 5.875 8.314 11.895 9.011
Average 6.002 8.417 10.614 9.120

Table 10.5: Results on the MPI Sintel training subset. Scores correspond to the EPE all metric.

2013]. These results also show that AggregFlow is competitive for recovering motion
details in addition to the large velocities of the MPI Sintel benchmark.

10.3 Occlusion handling

As aforementioned, the impact of our occlusion framework on optical flow estimation is
demonstrated by the EPE unmatched metric scores obtained on the MPI Sintel benchmark
(Tables 10.2 and 10.3). Results from Fig. 10.1 to Fig. 10.4 reveal the superiority of
AggregFlow in coping with occluded regions. Since the occlusion framework is composed
of several elements, we detail the influence of each one in the following. The efficiency
of the motion candidates extension in occluded regions has already been highlighted in
Section 8.3 and Table 8.1 through the analysis of the Best Candidate Flow.
To evaluate the occlusion model of the aggregation step, we report in Table 10.5

results obtained on a selection of training sequences of the MPI Sintel benchmark with
the largest displacements. We distinguish between the full AggregFlow method, and
AggregFlow without the occlusion-related terms in (9.2), that is, by setting λ1 = 0, λ2 = 0
and λ3 = 0. The improvement due to the occlusion terms is clearly significant since the
average EPE is 8.417 for AggregFlow without occlusions and 6.002 for full Aggregflow.
It can also be noticed that even without handling occlusion AggregFlow still performs
better than competing methods. The role of the occlusion confidence map involved in
the sparsity constraint (0.17) has already been explained and illustrated in Section 9.1.2
and Fig. 9.1.
Recovered occlusion maps are displayed from Fig. 10.1 to Fig. 10.7. For the large

occluded regions of Fig. 10.1 to Fig. 10.4 for which ground truth is available, the estimated
occlusion map is correct in most cases. A specific behaviour is particularly prominent in
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cave_2 - I1 cave_2 - I2

Ground truth o AggregFlow

Ground truth w AggregFlow

DeepFlow [Weinzaepfel et al., 2013] MDP-Flow2 [Xu et al., 2012b]

Figure 10.1: Comparative evaluation with [Weinzaepfel et al., 2013] and [Xu et al., 2012b] on
the cave_2 sequence of the MPI Sintel dataset. First row: successive input images. Second row:
ground truth occlusion and occlusion map computed with AggregFlow. Third row: ground truth
motion field and motion field computed with AggregFlow. Fourth row: motion fields computed
resp. with DeepFlow [Weinzaepfel et al., 2013] and MDP-Flow2 [Xu et al., 2012b].

10.3 example, where occlusions are over-detected. This is due to the modeling assumption
stating that occluded regions correspond to large violations of the data conservation
constraint. Large regions of illumination changes can thus be detected as occlusions.
While it leads strictly speaking to wrong occlusion detection, it can still be beneficial to
motion estimation by treating illumination changes.
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ambush_5 - I1 ambush_5 - I2

Ground truth o AggregFlow

Ground truth w AggregFlow

DeepFlow [Weinzaepfel et al., 2013] MDP-Flow2 [Xu et al., 2012b]

Figure 10.2: Comparative evaluation with [Weinzaepfel et al., 2013] and [Xu et al., 2012b] on the
ambush_5 sequence of the MPI Sintel dataset. First row: successive input images. Second row:
ground truth occlusion and occlusion map computed with AggregFlow. Third row: ground truth
motion field and motion field computed with AggregFlow. Fourth row: motion fields computed
resp. with DeepFlow [Weinzaepfel et al., 2013] and MDP-Flow2 [Xu et al., 2012b].
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market_5 - I1 market_5 - I2

Ground truth o AggregFlow

Ground truth w AggregFlow

DeepFlow [Weinzaepfel et al., 2013] MDP-Flow2 [Xu et al., 2012b]

Figure 10.3: Comparative evaluation with [Weinzaepfel et al., 2013] and [Xu et al., 2012b] on the
market_5 sequence of the MPI Sintel dataset. First row: successive input images. Second row:
ground truth occlusion and occlusion map computed with AggregFlow. Third row: ground truth
motion field and motion field computed with AggregFlow. Fourth row: motion fields computed
resp. with DeepFlow [Weinzaepfel et al., 2013] and MDP-Flow2 [Xu et al., 2012b].
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temple_3 - I1 temple_3 - I2

Ground truth o AggregFlow

Ground truth w AggregFlow

DeepFlow [Weinzaepfel et al., 2013] MDP-Flow2 [Xu et al., 2012b]

Figure 10.4: Comparative evaluation with [Weinzaepfel et al., 2013] and [Xu et al., 2012b] on the
temple_3 sequence of the MPI Sintel dataset. First row: successive input images. Second row:
ground truth occlusion and occlusion map computed with AggregFlow. Third row: ground truth
motion field and motion field computed with AggregFlow. Fourth row: motion fields computed
resp. with DeepFlow [Weinzaepfel et al., 2013] and MDP-Flow2 [Xu et al., 2012b].
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Dimetrodon - I1 Ground truth w AggregFlow w

AggregFlow o DeepFlow MDP-Flow2

Grove2 - I1 Ground truth w AggregFlow w

AggregFlow o DeepFlow MDP-Flow2

Figure 10.5: Comparative evaluation with [Weinzaepfel et al., 2013] and [Xu et al., 2012b] on
the Dimetrodon and Grove2 sequences of the Middlebury dataset. For each sequence, from left
to right: in the first row, first input image, ground truth motion field, motion field computed
with AggregFlow; in the second row, occlusion map computed with AggregFlow, motion field
computed with DeepFlow [Weinzaepfel et al., 2013] and MDP-Flow2 [Xu et al., 2012b].
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Grove3 - I1 Ground truth w AggregFlow w

AggregFlow o DeepFlow MDP-Flow2

Rubberwhale - I1 Ground truth w AggregFlow w

AggregFlow o DeepFlow MDP-Flow2

Figure 10.6: Comparative evaluation with [Weinzaepfel et al., 2013] and [Xu et al., 2012b] on
the Grove3 and RubberWhale sequences of the Middlebury dataset. For each sequence, from
left to right: in the first row, first input image, ground truth motion field, motion field computed
with AggregFlow; in the second row, occlusion map computed with AggregFlow, motion field
computed with DeepFlow [Weinzaepfel et al., 2013] and MDP-Flow2 [Xu et al., 2012b].
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Urban2 - I1 Ground truth w AggregFlow w

AggregFlow o DeepFlow MDP-Flow2

Urban3 - I1 Ground truth w AggregFlow w

AggregFlow o DeepFlow MDP-Flow2

Figure 10.7: Comparative evaluation with [Weinzaepfel et al., 2013] and [Xu et al., 2012b] on
the Urban2 and Urban3 sequences of the Middlebury dataset. For each sequence, from left to
right: in the first row, first input image, ground truth motion field, motion field computed with
AggregFlow; in the second row, occlusion map computed with AggregFlow, motion field computed
with DeepFlow [Weinzaepfel et al., 2013] and MDP-Flow2 [Xu et al., 2012b].
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11 Another strategy: aggregation in a
continuous setting

In this section, we present an aggregation strategy in a continuous setting which can be
considered as an alternative to the discrete aggregation method described in Chapter
9. Despite the convincing results obtained with the move-making approach described
in Section 9.2, we have pointed out the issues raised by the large label set composed of
the motion candidates. The difficulty to build global proposals from locally estimated
candidates for the move-making optimization, and the important computational time were
the two limitating issues. The continuous aggregation we propose in this section is not
affected by the local nature of candidates estimation, and achieves lower computational
time. While the quantitative results of this approach are globally less convincing than
those obtained with the discrete aggregation, it still brings several local improvements
and advantages.
In a continuous setting, we minimize an energy of the form

E(w) =
∫

Ω
ρdata(x,w, Cf ) + λ1φ(∇w(x))dx, (11.1)

where ρdata(x,w, Cf ) is the data term and the second term imposes smoothness of
w, balanced by the parameter λ1. In the following, we consider a Total Variation
regularization: φ(∇w(x)) = ‖∇w(x)‖1. Unlike usual approaches for optical flow discussed
in Part I, the input images are not a parameter of the data potential ρdata(x,w, Cf ), but
are replaced by the motion candidates set Cf . It means that in the continuous aggregation
stage, the data is not the image sequence, but the motion candidates. Thus, the potential
ρdata(x,w, Cf ) does not encode constancy of image feature, but a relationship between w
and the candidates set Cf .

Minimizing in the continuous domain w.r.t. w implies that the estimated motion field is
allowed to deviate from the motion vectors of Cf . This could seem contradictory with the
BCF analysis of Section 8.3 showing that the hard selection of one candidate is sufficient
to outperform existing methods. However, from a practical point of view, one could
be interested in achieving good results even when the set of candidates is less accurate.
Critical parameters for the computational cost of the method, such as the overlapping
ratio α, could then be adapted to speed up candidates computation.
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11 Another strategy: aggregation in a continuous setting

An alternative approach could be to follow the class of methods presented in Section 5.2,
considering both images and candidates as input data. In this case the motion candidates
contribute to additional constraint to usual intensity constancy constraint (see (5.1)).
Drawbacks of this approach are given in Section 5.2.

11.1 Candidate distribution

If the motion candidates set is considered as the input data for the aggregation stage, we
have to study the distribution of the candidates. Figure 11.1 illustrates the 2D distribution
of candidates Cf (x) at several locations in an image (blue points), while also plotting the
ground truth motion vector among them (red triangle).

We can first observe that it is not always possible to identify modes of the distribution of
motion candidates. While in regions of constant or smoothly varying motion most motion
vectors are clustered around the same mode, the distribution at motion discontinuities
is unpredictable. Secondly, when a mode exists, the ground truth motion vector does
not always correspond to this mode. The best motion candidate is sometimes isolated
from the rest of the candidates. As a matter of fact, the two cases (absence of modes and
isolated best candidate) frequently occur in all types of sequences.
We can conclude that the candidates distribution is not a relevant information for

modelling of the continuous aggregation. Options like linear combination of candidates,
fitting of a statistical distribution or clustering are then excluded.

11.2 Continuous aggregation

We propose two versions for the data potential of (11.1). We impose ρdata(x,w, Cf ) to
be a measure of proximity of w to the set of candidates Cf . However, it must not be a
distance measure to a mode of Cf or a weighted average of candidates, as pointed out in
the previous section. We rather define it as the distance to a single appropriately selected
candidate from Cf . Therefore, as for discrete aggregation, we still aim at selecting one
candidate, but we will exploit it as a constraint in the data potential.

11.2.1 Minimum distance constraint

The selection of one candidate can be achieved by the following data potential:

ρdata(x,w, Cf ) = min
wc∈Cf (x)

‖w(x)−wc‖1. (11.2)

The min function naturally selects one candidate used for distance measure. However,
the non-differentiability of the min function makes the minimization difficult. Methods
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11.2 Continuous aggregation

Figure 11.1: Visualization of the distribution of the motion candidates Cf (x) at several pixels x.
The central image is the ground motion field of the RubberWhale sequence of the Middlebury
benchmark. The six plots represent the motion vector candidates and the motion vector ground
truth at each corresponding pixel. The horizontal and vertical axes are respectively the horizontal
and vertical components of the motion vectors. Blue points are motion candidates and red triangle
are ground truth motion vectors.

based on gradient descent or on resolution of Euler-Lagrange equations cannot be applied
here. To minimize (11.1) with the data potential (11.2) we use the primal-dual approach
of [Chambolle and Pock, 2011]. The main steps of the method are the computation of
proximal operators:arg minu

∫
Ω

1
2ε‖u(x)− v̂(x)‖22 + λ1‖∇u(x)‖1dx

arg minv
∫
Ω

1
2ε‖û(x)− v(x)‖22 + minwc∈C(x) ‖v(x)−wc‖1dx.

(11.3)
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11 Another strategy: aggregation in a continuous setting

The first problem corresponds to a ROF model [Rudin et al., 1992] and can be efficiently
solved with the method of [Chambolle, 2004]. The second problem is pixel-wise and can
be solved as follows. First, by inversing the min functions, we can write:

min
v

{
‖û(x)− v(x)‖22 + min

wc∈Cf (x)
‖v(x)−wc‖1

}
= min

wc∈Cf (x)

{
min
v

{
‖û(x)− v(x)‖22 + ‖v(x)−wc‖1

}}
. (11.4)

The subproblem
min

v

{
‖û(x)− v(x)‖22 + ‖v(x)−wc‖1

}
(11.5)

can be solved very efficiently by thresholding, as in [Zach et al., 2007]. The thresholding
operation being very fast, it is computationally tractable to solve the minimization
problem (11.5) for all the motion vectors wc ∈ Cf (x). Thus, the minimization problem
(11.4) can be solved by exhaustive search over Cf (x).

The problem of the potential ρ(x,w, C) = minwc∈C(x)‖w(x) − wc‖1 is its high non
convexity, leading inevitably to local minima. In practice, we experimentally observe a
convergence of the algorithm, but it stays trapped in a local minimum very dependent on
the initialization.
In the next section, we adopt a second modeling to relax the selection of a unique

candidate and achieve more efficient minimization.

11.2.2 Sparse dictionary constraint

We want to keep the idea of selecting one candidate, but with a convex formulation.
To this end, we define a relaxed data potential with an auxiliary variable α, imposing
proximity to a sparse linear combination of candidates:

ρdata(w,α) =
∥∥∥w(x)−α(x)>Wc(x)

∥∥∥
1

+ λ2 ‖α(x)‖1 (11.6)

where α(x) = (α1(x), .., αn(x)(x))> is a sparse coefficient vector associated to the n(x)
candidates at pixel x, Wc(x) = (w1(x), ..,wn(x)(x))> is the candidates set written as
a vector, and λ2 balances the influence of the two terms. The first term imposes a
reconstruction by a linear model, considering the candidates as a motion dictionary. The
second term imposes sparsity of the coefficients α(x). If the balance coefficient λ2 is high
enough, only one or a few components of α(x) will be non null, which will amount to the
selection of almost one single candidate in (11.6). Besides, potential (11.6) is convex and
thus more easily minimizable than (11.2), while having a similar behaviour.
Considering potential (11.6), we are facing a very similar problem to the one we

encountered in Section 9.1.2 with the modelling of the occlusion map. Indeed, in an
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11.2 Continuous aggregation

alternate optimization scheme, the tight coupling between w and α could imply that in
practice α(x) stays trapped in the local minimum of the first iteration. We overcome this
problem similarly to the occlusion case of Section 9.1.2 by replacing the pure sparsity
constraint of (11.6) by a weighted sparsity constraint defined by:

‖α(x)‖1,β(x) =
n(x)∑
i=1

βi(x) |αi(x)| (11.7)

where βi(x) is a confidence measure associated to the ith candidate of pixel x. Apart from
[Kondermann et al., 2008; Kybic and Nieuwenhuis, 2011], existing confidence measures
are dedicated to specific motion estimation methods. For a variational approach, [Bruhn
and Weickert, 2006] uses the inverse of the global energy. For local approaches like [Lucas
and Kanade, 1981], eigenvalues of the structure tensor are usually exploited [Mota et al.,
2001]. For parametric estimations in general, the variance of the estimate is also a possible
confidence measure. To keep the generality and simplicity of our method, we consider
the following general weights:

βi(x) = exp
{
−
∑
y∈Ωd g(x, y, I1)ρ0(y, wi(x), I1, I2)

σ2

}
(11.8)

where Ωd is the discrete image grid and g(x, y, I1) are bilateral weights defined by:

g(x, y, I1) = exp
(
−‖x− y‖

2
2

σ2
s

+ |I1(x)− I1(y)|
σ2
g

)
(11.9)

and ρ0(y, wi(x), I1, I2) is a classical data potential penalizing deviations from brightness
constancy

ρ0(y, wi(x), I1, I2) = |I2(x+ w(x))− I1(x)|. (11.10)

The weight βi(x) is then a measure of the local coherency of brightness constancy through
bilateral filtering.
The final energy is:

E(w,α) =
∫

Ω

∥∥∥w(x)−α(x)>Wc(x)
∥∥∥

1
+ λ2 ‖α(x)‖1,β(x) + λ1‖∇w(x)‖1dx. (11.11)

We minimize E(w,α) alternatively on w and α. Minimization w.r.t. w is realized
by solving the Euler-Lagrange equations with fixed point iterations [Brox, 2005]. To
minimize w.r.t. α, we resort to a greedy algorithm. From an initial configuration of α,
we search for possible configurations of α, and a configuration is kept if it leads to a
decreasing of the energy. The search strategy consists in iteratively adding non null
components ordered by decreasing value of the confidence measure.
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Table 11.1: Angular errors obtained with AggregFlow-C, AggregFlow-D, [Brox and Malik, 2011]
and [Chambolle and Pock, 2011] on sequences of the Middlebury benchmark.

Grove2 Grove3 Hydrangea Urban2 Urban3
SL-D 2.19 5.43 2.47 2.47 3.42
SL-C 2.43 5.92 2.29 2.53 4.12

[Brox and Malik, 2011] 2.38 5.97 2.10 2.50 3.91
[Chambolle and Pock, 2011] 2.92 6.72 2.29 43 6.10

11.3 Results

We have evaluated our method on sequences of the Middlebury benchmark [Baker
et al., 2011]. We provide comparisons with our discrete aggregation method and the
methods of [Brox and Malik, 2011; Chambolle and Pock, 2011]. Local improvements
related to discontinuity preservation and large displacements are illustrated visually.
The candidates computation and discrete aggregation are performed without occlusion
handling, and no post-processing is applied on the flow fields. The candidates set was
obtained with parameters S = {15, 45, 115}, α = 0.8, N = 2. We refer to the continuous
aggregation version as AggregFlow-C, and the discrete version as AggregFlow-D. Other
parameters are set to σ = 0.1, σs = 5 and σc = 20.

Table 1 contains Angular Errors, defined in (1.1), obtained with AggregFlow-C,
AggregFlow-D and the variational methods [Brox and Malik, 2011; Chambolle and
Pock, 2011] for sequences of the Middlebury benchmark. The results of AggregFlow-C
are globally less accurate than those of AggregFlow-D. It is particularly obvious on
sequences with small motion details or sharp motion discontinuities. Another drawback
of AggregFlow-C is the impact of the confidence measures βi on final results. Large
errors of confidence measures can significantly decrease the accuracy of AggregFlow-C.
Nevertheless AggregFlow-C yields better performance than [Chambolle and Pock, 2011]
and is competitive with [Brox and Malik, 2011].
Figure 11.2 illustrates the ability of AggregFlow-C and AggregFlow-D to capture

motion discontinuities and small details. Motion fields computed with AggregFlow-C
are less sharp than with AggregFlow-D but, they are significantly better than [Brox and
Malik, 2011; Chambolle and Pock, 2011].
In Fig. 11.3, the large displacement of the small ball is typically badly handled by

variational methods using coarse-to-fine schemes, as [Chambolle and Pock, 2011]. In
contrast, AggregFlow-C and AggregFlow-D satisfyingly retrieve the large displacement.
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The method of [Brox and Malik, 2011] integrating feature matching in a variational
framework also captures the motion of the ball, but the shape of the ball is less preserved.
Also, it is more impacted by the associated occlusion region.

Figure 11.4 illustrates the ability of AggregFlow-C to deal with less accurate motion
candidates. In this experiment, we set the overlap ratio, setting the proportion of area
shared by two neighbor patches, to α = 0.5. This parameter is essential to deliver good
candidates. In Fig. 11.4, typical artifacts of AggregFlow-D can be observed. At motion
discontinuities, the patches are not overlapping enough to produce accurate candidates,
which implies block artifacts for AggregFlow-D, due to the hard selection of one candidate.
In contrast, AggregFlow-C can deviate from the set of candidates to preserve clean
discontinuities.
Discrete aggregation presented in Section 9.2 tends to produce block artifacts for

complex smooth deformations, as illustrated in Fig. 11.5. The variational optimization
of AggregFlow-C does not have this problem and estimate more accurately smooth flow
fields.

Finally, the computational time of AggregFlow-C is around 5 minutes while Aggreg-Flow
requires 20 minutes.

11.4 Conclusion

We have proposed an aggregation strategy minimizing a global energy in the continuous
setting, as an alternative to the discrete aggregation presented in Chapter 9. A first version
uses the min function and is minimized with a primal-dual scheme. It is however limited
because of severe non-convexity of the energy. A more attractive convex formulation
exploits a sparse dictionary model. Experiments show that the overall quantitative
performance remains lower than with discrete aggregation. However results are still
competitive with standard variational methods. Moreover, the ability to reconstruct
motion vectors different from the candidates set makes the continuous aggregation more
robust to smaller and suboptimal candidate sets. It is also better suited in case of complex
and smooth motion fields. The computational cost of continuous aggregation is finally
lower than for discrete aggregation
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I1 Ground truth motion field

AggregFlow-D AggregFlow-C

[Chambolle and Pock, 2011] [Brox and Malik, 2011]

Figure 11.2: Ability of preserving small motion details and discontinuities on the Grove3 sequence
of the Middlebury benchmark. Top row: first frame and ground truth motion field. Middle
row: motion field estimated with AggregFlow-D and AggregFlow-C. Bottom row: motion field
estimated with [Chambolle and Pock, 2011] and [Brox and Malik, 2011]. Zooms on regions of
interest overlay the images.
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I1 I2

AggregFlow-D AggregFlow-C

[Chambolle and Pock, 2011] [Brox and Malik, 2011]

Figure 11.3: Results on the Backyard sequence of the Middlebury benchmark. Top row: first
and second frames (ground truth is not available for this sequence). Middle row: motion field
estimated with AggregFlow-D and AggregFlow-C. Bottom row: motion field estimated with
[Chambolle and Pock, 2011] and [Brox and Malik, 2011].
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I1 Ground truth motion field

(a) AggregFlow-D, α = 0.5 (b) AggregFlow-C, α = 0.5

Figure 11.4: Comparison of discrete and continuous aggregation for a small set of candidates
on the Grove2 sequence of the Middlebury benchmark. The candidates were computed with
α = 0.5. Top row: first frame and ground truth motion field. Middle row: motion field estimated
with AggregFlow-D and AggregFlow-C. Zooms on regions of interest overlay the images.
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I1 Ground truth motion field

(c) AggregFlow-D (d) AggregFlow-C

Figure 11.5: Comparison of discrete and continuous aggregation for complex and smooth
flow fields on the Dimetrodon sequence of the Middlebury benchmark. Top row: first frame
and ground truth motion field. Middle row: motion field estimated with AggregFlow-D and
AggregFlow-C. Zooms on regions of interest overlay the images.
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12 Conclusion and perspectives

We have presented a new two-step optical flow estimation method called AggregFlow.
This method combines the computation of local motion candidates and their global
aggregation while jointly recovering occlusion maps. The framework is generic, and both
the local and global steps could be adapted for specific purposes. We demonstrated the
added value of combining patch correspondences and patch-based affine motion estimation
to produce highly accurate motion candidates. It advocates the relevance of patch-based
parametric motion estimation, provided size and position of the patches are appropriately
defined. Candidates estimation with a variational regularized method is also envisaged
in Appendix A. The integration of multiple patch correspondences in the candidate
generation process allows us to deal with local matching ambiguities. We formulated the
aggregation step as a discrete optimization problem, selecting the best motion candidate
at every pixel while preserving motion discontinuities and achieving occlusion recovery.
The occlusion scheme acts in both steps of AggregFlow. An exemplar-based occlusion
term is incorporated in the global aggregation energy. Incidentally, it could be integrated
in other estimation paradigms as well, e.g., in variational approaches. Occlusion cues
derived from the computed motion candidates are exploited in the sparse modeling of
occlusions. Overall, AggregFlow achieves state-of-the-art results on the MPI Sintel
benchmark. The most significant improvements are reached in occluded regions and for
large displacements. We proposed an alternative aggregation approach operating in a
continuous setting. Despite lower global quantitative results, this continuous aggregation
is more robust to suboptimal candidates set and computationally more efficient than the
discrete method.
Extensions of the method could tackle remaining matching errors in the patch

correspondence and in the exemplar search stages. A more elaborate and discriminative
distance than the pixel-based L1 distance could be envisioned for patch matching. Future
work could also deal with the GPU implementation of AggregFlow to largely improve
computation efficiency. The discrete optimization problem could be adapted to the
specific label set constituted by the motion candidates.
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Part III

Applications in fluorescence
imaging and light microscopy

119





The methods described in the previous chapters have been designed to cope with the
largest possible collection of problems involved in optical flow estimation. Our aim was to
identify typical dynamic behaviours (large displacements, discontinuities, occlusions. . . )
and image effects (illumination changes, motion blur. . . ) affecting motion estimation, and
to try to take into account all these issues together in a single methodological framework.
While this unifying ambition may be appealing, handling too diverse situations and
contradictory requirements is likely to end up in a compromise, averaging the performances
to satisfy all the conditions. When a well defined problem in a clearly delineated
environment is identified, it can be beneficial to focus the methodology on the restricted
number of motion an image patterns defined by the application.
In this chapter, we explore such an applicative field and we propose to adapt our

modeling approach to images acquired in biological imaging. Estimating motion in live
cell imaging is a fundamental task to analyse dynamic properties of biological phenomena
[Pinot et al., 2012; Boncompain et al., 2012]. The difficulties arise from the variety of
situations encountered in microscopy images. Indeed, we have to deal with different
imaging modalities (e.g. fluorescence microscopy, contrast-phase imaging) in order to
observe interacting structures with different sizes and shapes such as cells, vesicles,
microtubules, with different types of motion and deformation.
A majority of approaches for motion analysis in biological sequences is based on

individual tracking of biological objects [Meijering et al., 2006]. However tracking methods
are not adapted to answer to a set of biological questions, especially when the density
and the lack of prominent features prevent the individual extraction of objects of interest
undergoing complex motion (e.g. protrusions or membrane deformation in bio-mechanical
studies). Accordingly, estimating the global deformation field can be more appropriate to
capture complex dynamics observed in biological sequences [Lecomte et al., 2012; Kim
et al., 2011; Delpiano et al., 2011]. In this part, we first compare features and performances
of traditionally used correlation-based methods with variational approaches on a set of
sequences representing typical dynamic patterns observed in biological imaging. Secondly,
we show how the generic aggregation approach described in Part II is able to handle a
variety of problems proposed in biological imaging. We adapt our method to the specific
purpose of large intensity changes caused by fluorescence variations. Finally we are
interested in analyzing the diffusion of particles, often occurring in intra-cellular processes.
We propose a variational method for diffusion coefficient estimation and compare it with
the standard approach based on correlation measures

121



12 Conclusion and perspectives

Introduction to fluorescence microscopy

In this part, we will be mainly interested in sequences acquired by fluorescence imaging.
We provide here a short description of fluorescence and Green Fluorescence Protein (GFP)
tagging for application to microscopy and live cell imaging.

Basics in fluorescence In 1852, George G. Stokes observed for the first time the
fluorescence phenomena corresponding to the light emitted by a mineral (fluospar) excited
by ultra-violet lights. He noticed that that the emitted wavelength was longer than the
incident wavelength.

Formally, the electron energy is known to be depend on its orbital. Due to the quantum
nature of electron energy, the molecular energy is quantized in several discrete states. For
each molecule, the lowest energy level is the so-called ground state. When a photon hits
a molecule at its ground energy state, several electrons undergo an orbital leap. If the
photon has sufficient energy, it can reach an excited quantum of higher energy (absorption
phenomenon). In order to return to the stable ground state, an usual de-excitation
pathway is the immediate emission of a photon. This rapid light emission that happens
within nanoseconds (10−9 to 10−10 seconds) is the so-called fluorescence.

Fluorescent staining Fluorescence staining consists in the injection inside the cell of
a fluorescent probe. This probe is introduced in the form of a fluorochrome chemically
linked to a biological vector molecule that binds the protein targeted for visualization.
The most popular tagging fluorescent protein is probably Green Fluorescence Protein
(GFP) which has become a major tool for biologists to tag and to quantify dynamics
of specific target proteins in vivo. The fluorescently labelled protein (or chimera) is a
mutant protein resulting from the fusion of two protein genes (using genetic recombination
technique) forming a recombinant DNA. The recombinant DNA is then transfected into
the cell using a plasmid or a viral vector (transduction). Inside the cell, the recombinant
DNA is translated by the ribosome to produce a specific amino-acid chain that will later
folds into a fluorescent protein.

Photobleaching and photoxicity Two main limitations in the image acquisition
process in fluorescence microscopy are photobleaching and phototoxicity.
Photobleaching (or fading) is a permanent loss of fluorescence of a fluorophore. A

fluorescent molecule in the excited state presents a varying probability of interaction with
an other molecule, a reaction that will cause irreversible covalent modifications. This
probability depends on the fluorophore and on the molecular environment. Photobleaching
is an issue that seriously hinder the acquisition of strong signal or time lapse acquisition
in fluorescence microscopy. It is thus very important to manage the fluorescent capacity
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Figure 12.1: α-tubulin labeled with GFP. a) this chimera localize to microtubule b) the EGFP
is tagged on the N-terminus of the α-tubulin (copyright Zeiss).

by controlling the sample excitation during acquisition. Photobleaching effect can also
be exploited positively to measure biophysical quantities in fluorescence microscopy.
For example, in fluorescence recovery after photobleaching (FRAP) experiments, the
fluorophores are intentionally bleached in a selected area using excessive illumination. The
dynamic of non-bleached fluorophore molecules diffusing into the bleached area can then
be measured. Using this technique, the local dynamics of fluorescently labeled molecules
can be assessed with a spatial resolution of 2 to 5 micrometers.
An important limitation in live cell imaging is phototoxicity which results from the

interaction between the excited fluorophore and an other molecule, especially with oxygen.
This reaction causes the release of free radical oxygens in the living cells that can damage
chemically destroy other structures in the cell. Phototoxicity often occurs upon repeated
laser exposures of fluorescently labeled cells.

Fluorescence microscopy for live cell imaging The fluorescence signal emitted by
the fluorophores inside the cell can be imaged using a large range of modern microscopy
techniques chosen depending on phenotypes under study and the preservation of the
integrity of the cell. The quantum efficiency of the fluorescently labelled protein defines
the illumination needed for signal detectability. Thickness of the sample will guide the
decision to wide-field or optical sectioning. An other important factor is the amount
of signal and acquisition speed actually needed for object detection or quantification of
dynamics. The spatiotemporal scale of a given phenotype can limit the spatiotemporal
resolution, via depth resolution in 3D or acquisition speed, of the acquisition to harness
photodamaging effect. Finally, a microscopy setup is also chosen according to fluorescent
tagging technologies, data processing and analysis methods.
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12 Conclusion and perspectives

The most popular microscopy approach in live cell imaging is wide-field microscopy
which allows for vesicle localization with a resolution of 200 nm by illuminating the whole
sample with a single light source. This technology provides fast imaging and flexibility at
low cost. However, wide-field microscopy presents some limitations such as blurring effect
induced by out-of-focus fluorescence signals at the focal plane. The plain illumination of
the sample can also cause undesirable photodamages.

Generally, confocal microscopy is more recommended to reduce out-of-focus interferences.
In this approach, a convergent laser beam is used to focus on a single point on the focal
plane. A pinhole aperture is placed at the detection end to reduce out-of-focus fluorescence,
thus providing an optical sectioning effect. By reducing the size of that pinhole below
the size of the central airy disc pattern, the resolution of the confocal microscope can be
enhanced by a factor 1.4 when compared with the wide-field microscope resolution. The
precision of this technique is limited by the diffraction of laser focal point. Two confocal
technologies are recommended depending on the application. First, laser-scanning confocal
microscopy consists in a raster scan of the focal plane to image a two-dimensional slice
of the sample. The sample can be thus excited with high precision. Secondly, a faster
method is the spinning (a.k.a. Nipkow) disk setup which allows the acquisition of multiple
points on the CCD sensor at the same time. The spinning disk setup is more affordable
than the instrumentation required for laser-scanning and offers higher sensitivity due
to CCD detector, thus reducing phototoxicity. However, controlled localization of the
excitation is not possible and optical resolution is usually lower. Finally, three-dimensional
images can be acquired with confocal microscopy by sequential movement of the objective
or the sample. However, acquisition time and photodamage limit the axial resolution.
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13 Analysis of correlation and
variational approaches for motion
estimation

The most popular techniques for motion estimation in live cell imaging are based on
correlation measures. They have been well suited for a set of problems verifying temporal
stationarity of fluorescence signals, and affected by illumination changes. In this chapter,
we briefly review the Spatio-Temporal Image Correlation Spectroscopy technique (STICS),
representative of correlation-based methods for motion and diffusion estimation. We
compare this correlation approach to variational principles [Zimmer et al., 2011] described
in Chapter 4. Global variational approaches have been recently investigated in biological
imaging [Lecomte et al., 2012; Delpiano et al., 2011; Pizarro et al., 2011] but were applied
to non-dense deformations or synthetic motion.

13.1 Correlation approach

Motion estimation in biological imaging is often performed as a block matching procedure,
minimizing a patch-based distance measure to find corresponding pixels between the
two consecutive images [Ji and Danuser, 2005; Rohr et al., 2010; Würflinger et al., 2004;
Goobic et al., 2005; Baheerathan et al., 1998; Bornfleth et al., 1999]. Variations and
improvements of the matching procedure have been added when assumptions adapted to
the application can be made. Under temporal stationarity, temporal integration improves
results [Ji and Danuser, 2005]. Multi-resolution techniques are also employed in [Rohr
et al., 2010] to avoid local minima structures when similar shapes are present in the
image.

Simple feature matching based on the Normalized Cross Correlation measure defined in
(2.7) is often used in practice, and yields coarse but robust results. Its invariance under
linear intensity changes is particularly important to cope with fluorescence variations. As
already mentionned in Section 2.1.2, the computational complexity is a major limitation,
which can be addressed by accelerating distance computation [Lewis, 1995; Luo and
Konofagou, 2010] or correspondences space exploration [Barnes et al., 2009, 2010].

In a fluorescence scenario, a more theoretically justified exploitation of the correlation

125



13 Analysis of correlation and variational approaches for motion estimation

ratio can be derived from physical fluorescence models. The Image Correlation
Spectroscopy (ICS) approaches have then been developed specifically for fluorescence
microscopy, taking advantage of physical properties of fluorescent particles and their
relationship with correlation. These methods integrate the variations of fluorescence over
space and/or time via correlation measures to access to information at the molecular
level, such as diffusion coefficients or dominant flow speed and direction [Hebert et al.,
2005]. The generalized spatial and temporal correlation expression is defined as follows

C(w, I, τ) = 1
N

N−τ∑
t=1

〈δI(x, t) δI(x+ w, t+ τ)〉
〈I(x, t)〉〈I(x, t+ τ)〉 (13.1)

where 〈·〉 denotes the spatial average over a patch. We define δI(x) = I(x, t)−〈I(x, t)〉 as
the intensity variation and N is the number of frames. The parameter τ is the temporal
offset, that we set to τ = 1 in this section, so we drop this notation in the following. The
number N of frames is chosen such that an assumption of temporal stationarity of motion
is valid in the considered subsequence. We point out that C(w, I) is not a normalized
correlation criterion but enables to recover the biophysical parameters associated to
density, motion of molecules, and diffusion coefficient [Hebert et al., 2005]. In Chapter
15, we use it to estimate the diffusion coefficient.

For motion estimation purpose, the goal is to estimate the translation vectors
corresponding to the tracking of the correlation peak over time (Fig. 13.1). In our
experiments, the static or immobile molecule population is filtered by local averaging and
C(w, I) is computed by Fast Fourier Transform (FFT). We define

C(w, I) = C(wp, I)e
− (u−up)2+(v−vp(τ))2

κ2
0 + r∞ (13.2)

where wp = (up, vp)> is the motion vector at the previous frame, r∞ is the spatial lag
offset and κ0 is the laser beam size which depends on the microscope. The correlation
peak is tracked by linear regression to find the velocity vector from wp (Fig. 13.1).
We consider a 2D Gaussian function to estimate accurately the correlation peak over
time [Hebert et al., 2005] using a Levendberg-Marquardt optimization scheme. In the
experiments, the analysis is performed on image blocks. The size of the blocks determines
the scale of moving objects retrieved and the maximum complexity of the estimated
deformation (we take 64× 64 pixels block size). The spatial lag between blocks is chosen
to achieve an acceptable trade-off between spatial accuracy and computational time (we
take 16 pixels spatial lag).

The requirement of temporal stationarity of motion limits the application of STICS to
sequences without temporal motion discontinuities. This assumption is quite restrictive
in practice. When it does not hold, we use in our experiments simple block matching
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13.2 Variational approach

N frames

τ0=0ms τ1=δ τ τ2=2δ τ

Figure 13.1: Motion estimation with STICS. Tracking of the correlation peak by Gaussian fitting
on correlation maps.

with Normalized Cross Correlation (that will be referred as NCC) measures between two
consecutive frames.

13.2 Variational approach

In this section, we describe the variational approach based on the principles stated in
Chapter 4. The dense flow field is estimated as the minimizer of a global energy functional
composed of two terms:

ŵ = arg min
w

Edata(w, I) + λEreg(w) (13.3)

Let us recall that Edata is a data term penalizing deviations from a data conservation
assumption over time, Ereg is a regularization term enforcing smoothness of the flow field
and λ > 0 serves as regularization parameter to balance the contributions of Edata and
Ereg. A high value of λ allows to retrieve only dominant motions of large structures by
smoothing the flow field, while a small value of λ allows to distinguish between close
spatial variations of small objects.
In our experiments we used the data term of [Zimmer et al., 2011] based on the

assumption of constancy of intensity and spatial gradient of the image. The spatial
gradient constraint is robust to additive illumination changes, which is necessary for
several biological applications. The resulting data energy is:

Edata(w, I) =
∫

Ω
(1− γ)φ(η0|∇ITw− It|2)

+γφ(ηx|∇ITx w− Ixt|2) + ηy|∇ITy w− Iyt|2))dx, (13.4)

where φ(z2) =
√
z2 + ε is the regularized L1 norm with ε = 0.001, ∇· denotes the spatial

gradient operator, the subscripts ·x, ·y and ·t are respectively the derivatives along the
x, y and t axis and γ ∈ [0, 1] balances the influence of intensity and gradient constancy
terms. Normalization coefficients η0, ηx, ηy prevent too strong data constraint in regions
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13 Analysis of correlation and variational approaches for motion estimation

of high image gradient [Zimmer et al., 2011], and are defined as

η0 = 1
Ix + Iy + a

, ηx = 1
Ixx + Ixy + a

, ηy = 1
Iyx + Iyy + a

, (13.5)

where a = 0.1 avoids division by 0.
The regularization term penalizes high gradients of the motion field w = (u, v)> with

the convex and discontinuity-preserving φ(·). We obtain the following energy term:

Ereg(w) =
∫

Ω
φ(‖∇u‖2 + ‖∇v‖2)dx. (13.6)

We follow the minimization method of [Zimmer et al., 2011] by successively solving the
Euler-Lagrange equations associated to the problem (13.3) at each level of a coarse-to-fine
decomposition. The non-linearity due to the penalization function φ(·) is removed by
fixed point iterations and the remaining linear system is solved with SOR (“Successive
Over Relaxation”) (see [Brox, 2005] for details).

To cope with the largest intensity changes occurring in fluorescence sequences, it turns
out that the gradient constancy constraint in (13.4) is insufficient. Accordingly, we found
beneficial to apply the Midway image equalization method of [Delon, 2004] to improve
the estimation.

13.3 Experimental comparison

In this section, we identify several classes of typical biological problems for which dense
motion estimation can bring useful information, and we compare the results obtained
with variational and correlation methods. We provide only qualitative visual results,
due to the absence of ground truth. Our objective is to give an intuitive overview of
the potential of the two approaches. Apart from the Cell deformation experiment, the
results of NCC are given for three patch sizes s = 15, 35, 75, and three values of the
regularization coefficient of the variational method are also compared, λ = 3, 5, 8.

Cell deformation
In this experiment, we evaluate the potential of the methods to accurately quantify

cell deformation. Figure 13.2 shows a fluorescent protein attached to a membrane protein
Clathrin in spinning-disk confocal microscopy. The sequence is acquired during chemical
fixation, causing a contraction of the cell. We need to estimate motion in this case in order
to compensate the cell deformation induced by the chemical fixation process. Furthermore,
the biological sample is analyzed in electron microscopy to quantify structures and details
but the bias due to the chemical fixation should be corrected if it can be estimated.
The fixation process is slow and the motion can be considered stationary, so we
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I1 I2

STICS STICS in transparency on I1

Variational Variational superimposed on
regions of high brightness of I1

Figure 13.2: Consequence of shrinking due to fixation of proteins Clathrin GFP. Top row:
two input images. Middle row: motion field obtained by STICS with arrow visualization, and
transparency of the first image. Bottom row: motion field obtained by the variational method on
the left, and restricted visualization in regions of high luminance on the right. Courtesy of V.
Fraisier (J. Salamero’s team), UMR 144 Institut Curie CNRS, PICT-IBiSA.
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took N = 100 for the STICS analysis and selected the frames #0 and #100 for
variational computation. Due to the large computational time required by STICS,
we only compute motion in a sub-sampled grid, and we display the results with
arrow visualization. Analysis of velocities obtained by STICS shows that the main
cell deformations are satisfyingly estimated. Due to the time integration performed
by the STICS method, we observe a regularization effect of the velocity map. The
dense map provided by the variational method recovers more accurately the complex
deformations in the membrane and nucleus regions. However, the motion estimated
in these moving regions is propagated in static regions around the cell, whereas
STICS is able to capture null motions. It is interesting to notice that the important
illumination change in the sequence does not affect the variational estimation. We
found in this particular case the Midway image equalization [Delon, 2004] applied in
pre-processing to improve substantially the results. For a deformation compensation
purpose, the accuracy of the motion estimation is of up-most importance, and is
better achieved with the variational method. Also note that STICS requires 5 hours
to produce the result of Fig. 13.2, whereas the variational method only requires 30 seconds.

Cell migration in phase contrast imaging
Cell migration is commonly studied in near in situ situation, such as collagen matrix.

This dynamical mechanism is a highly integrated, multi-step process that plays an
important role in the progression of various diseases including cancer and which is
extensively studied in biology. One of the protocols used to study cell migration is to
culture cells on a plate where some area (the empty space in Fig. 13.3) have been covered
with gel preventing cell migration. The protocol consists then in removing this gel and
retrieving the speed of migration by measuring the area progressively covered by the
cells. But this area information is very global and will not give any information about
the way cells migrate. Indeed, cells are very dense, which prevents individual tracking.
A question that can be answered by flow estimation is to discriminate collective and
individual motions of cells.
Figure 13.3 shows two phase-contrast images taken from a time lapse movie acquired

in video-microscopy. The displacements and deformations of the cell are changing at
each frame, so that temporal stationarity assumption is not valid. Therefore, the STICS
method cannot be applied here and we use block matching with NCC measure. The
same scale selection effect can be observed with the variation of the patch size s of NCC
and the regularization coefficient λ of the variational method. For small values, motion
of individual cells are detected, whereas for large values the dominant displacement of
the migrating front is recovered. A more accurate analysis shows that for small λ and s,
the variational method delineates very well every single cell, whereas NCC yields coarser
results. Moreover, small patch sizes involves a number of large errors of NCC due to the
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I1 I2

NCC - patches 15×15 NCC - patches 35×35 NCC - patches 75×75

Variational - λ = 3 Variational - λ = 5 Variational - λ = 8

Figure 13.3: Results on the “Cell migration in phase contrast imaging" sequence (courtesy of P.
Chavrier‚Äôs team, UMR 144 Institut Curie CNRS, PICT-IBiSA). 1st row: two input images.
2nd and 3rd rows: color and arrow visualizations of the results obtained with the NCC block
matching, for several patch sizes. 4th and 5th rows: color and arrow visualizations of the results
obtained with the variational method, for several regularization coefficients.
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lack of local information for matching.
It is interesting to notice that the variational result could not be achieved with a sparse

tracking method, due to the high density of cells and large deformations which makes
impossible a robust detection of each cell. Exploiting this result for cell tracking in dense
conditions could be the subject of a future work since a simple motion segmentation on a
single frame already gives good individual cell detection. This idea has been exploited
recently in [Liu et al., 2014].

Cell migration in fluorescence imaging Figure 13.4 also represents migrating cells,
but is acquired in different conditions. Three differences can be observed with the previous
cell migration example. First, the sequence is acquired in fluorescence imaging, which
implies strong intensity variations occurring when cells undergo large deformations while
keeping the same amount of fluorescence. Differently from phase contrast imaging of Fig.
13.3, the background is homogeneous and gives no information for motion estimation,
which produces large errors for the local NCC measurement. Secondly, the cells are not
dense, and most pixels of the image domain belong to the static background. Finally the
time step between two frames is much larger than in the previous example, resulting in
larger displacements and deformations.
The variational method is unable to retrieve the large displacements of small objects

and creates typical colorwheel artifacts for small values of the regularization coefficient λ,
but the smoothness constraint on the flow field allows for a good approximation of the null
motion of the background. Thus, this example shows the insufficiency of the variational
approach to capture large displacements of small objects. The NCC has an opposite
behaviour since it captures most of the displacements of the cell, but also produces
large errors in homogeneous regions, due to the lack of local information for matching.
Moreover motion fields produced by are globally very noisy. It is noticeable that NCC
is not affected by the strong local intensity changes. The tendency for the variational
method to produce null motion field when the regularization increases can also be observed.

Actin network Dynamical behaviors of actine networks are involved in several
fundamental biological processes [Pinot et al., 2012]. In Fig. 13.5, an F-actine network
is evolving in vitro in a confined droplet. The motion field of the filaments network is
dense and smooth, thus providing an opposite behaviour to the sparse and discontinuous
motion field of the cell migration example (Fig. 13.4). This case is typically well suited for
variational estimation, which retrieves well the complex deformation, if the regularization
coefficient is well chosen. NCC produces coarser results, with large errors for small patch
sizes.

HeLa cell The sequence of Fig. 13.6 is a real-time imaging of the synchronized trafficking
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Frame 1 Frame 2

NCC - patches 15×15 NCC - patches 35×35 NCC - patches 75×75

Variational - λ = 3 Variational - λ = 5 Variational - λ = 8

Figure 13.4: Results on the “Cell migration in fluorescence imaging" sequence (acquisition by P.
Chavrier’s group, UMR 144 Institut Curie, PICT-IBiSA ). 1st row: two input images. 2nd and
3rd rows: color and arrow visualizations of the results obtained with the NCC block matching, for
several patch sizes. 4th and 5th rows: color and arrow visualizations of the results obtained with
the variational method, for several regularization coefficients.
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Frame 1 Frame 2

NCC - patches 15×15 NCC - patches 35×35 NCC - patches 75×75

Variational - λ = 3 Variational - λ = 5 Variational - λ = 8

Figure 13.5: Results on the “Actin network" sequence Pinot et al. [2012]. 1st row: two input
images. 2nd and 3rd rows: color and arrow visualizations of the results obtained with the NCC
block matching, for several patch sizes. 4th and 5th rows: color and arrow visualizations of the
results obtained with the variational method, for several regularization coefficients.
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of protein tagged with GFP in HeLa cells and has been exploited in [Boncompain et al.,
2012]. The strong locals intensity changes occurring inside the cell correspond to the
recruitment of fluorescent proteins to the Golgi. The very large intensity change affecting
the cell, combined with the large displacement, cannot be handled by the variational
method. On the contrary, NCC captures the displacement of the cell, but, as in Fig. 13.4
a large number of matching errors also occurs in non informative regions, and a lack of
global smoothness of the motion field can be observed.

Collagen matrix The last example is issued from a protocol on plate trying to mimic
a multi-cell environment such as in tissue, but on a 2D plate. The field is evolving toward
placing the cells in much more realistic conditions, such as 3D collagen matrix, mimicking
the conditions if a 3D collagen network which is the physiologic environment of cells.
Then in addition to the cell movement it self, the interaction with the collagen matrix are
of interest, in particular because they may be interpreted as forces applied by the cells to
perform its locomotion. The sequence of Fig. 13.7 is taken from a 2D time lapse movie
in video microscopy: images are taken simultaneously in one plane imaging fluorescence
with two different filters: one would allow to see the cells stained (not shown), the other
channel is showing the collagen fibers. Usually when biologists have to measure this kind
of flow field, they will consider placing nano beads to be tracked or on which motion is
estimated by correlation-based approaches. Showing that the fibers itself can be used,
without adding any beads that may perturb the biological behavior, would be of great
interest.

In terms of motion field, similarly to the actin filaments case of Fig. 13.5, the deformation
field is dense, complex and smooth, without large intensity changes and large displacements
of small structures. These conditions perfectly fit with the modeling purposes of variational
methods. In practice the motion field obtained with the variational method is indeed
able to retrieve very accurately the most complex deformations. The result of the NCC
matching captures coarsely the main displacements, but delineates less accurately the
structures. Moreover, as already observed in the cell migration example, large errors occur
frequently in locally non-informative regions. The tendency of the variational approach
to under-estimate motion when the regularization increases can also be observed.

13.4 Conclusion

From the previous experiments on biological sequences, we are able to identify a wide
range of challenges for motion estimation in live cell imaging. The motion field can be
sparse or dense dense. The lack of information for motion estimation in static regions
occurs mostly in fluorescence imaging, producing homogeneous background. Complex
smooth deformations often coexist with motion discontinuities. Large local intensity
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Frame 1 Frame 2

NCC - patches 15×15 NCC - patches 35×35 NCC - patches 75×75

Variational - λ = 3 Variational - λ = 5 Variational - λ = 8

Figure 13.6: Results on the “HeLa cell" sequence (acquisition by Perez’ group, UMR 144 Institut
Curie, PICT-IBiSA). 1st row: two input images. 2nd and 3rd rows: color and arrow visualizations
of the results obtained with the NCC block matching, for several patch sizes. 4th and 5th rows:
color and arrow visualizations of the results obtained with the variational method, for several
regularization coefficients.
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I1 I2

NCC - patches 15×15 NCC - patches 35×35 NCC - patches 75×75

Variational - λ = 3 Variational - λ = 5 Variational - λ = 8

Figure 13.7: Results on the “Collagen" sequence (Courtesy of P. Chavrier’s team, UMR 144
Institut Curie CNRS, PICT-IBiSA). 1st row: two input images. 2nd and 3rd rows: color and arrow
visualizations of the results obtained with the NCC block matching, for several patch sizes. 4th
and 5th rows: color and arrow visualizations of the results obtained with the variational method,
for several regularization coefficients.
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changes occur frequently in fluorescence imaging. Large time steps in the acquisition
process can yield large displacements and large deformations.

Experimental comparison between representative variational and correlation approaches
lead us to several conclusions. In terms of accuracy, our visual comparisons clearly shows
the superiority of the variational approach. Indeed, the results of correlation approaches
are affected by a block effect, due to the patch-based extent of the measurements, which is
the only regularization constraint. Another consequence is the presence of frequent large
localized errors in uninformative regions. In contrast, complex deformations and motion
details are well recovered by the variational method in all our experiments. However,
correlation methods are less affected by intensity changes due to fluorescence variations
and are able to capture large displacements of small objects. We also emphasized the
analogous behaviours of the regularization parameter and the patch size, allowing to
capture several motion scales.

In the next chapter, we combine these two approaches with our aggregation framework
to take advantage of their complementarity, and we address the problem of large intensity
changes in fluorescence imaging.
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14 Aggregation framework for
fluorescence imaging

In this chapter we first evaluate the ability of the aggregation method presented in
Part II to deal with issues encountered in fluorescence imaging. This method can be
viewed as a combination of the correlation and global regularized approaches presented in
Chapter 13 for biological imaging. Secondly, we adapt the method to handle a particularly
prominent and challenging characteristic of fluorescenceng images, namely large intensity
changes. We evaluate the limits of traditional intensity change handling, and we propose
to integrate the estimation of the intensity change map into the aggregation framework,
yielding significant improvements.

14.1 Intensity correction model and related works

As mentioned in Chapter 13, pre-processing images of a sequence to reduce contrast
changes across frames [Delon, 2004; Delon and Desolneux, 2010] can be a way to reduce
the impact of intensity changes on motion estimation. When integrated in the motion
estimation process, handling intensity changes can be achieved in two ways (as already
explained in Chapter 2). The first one avoids brightness constancy violations by looking for
more robust descriptors, and the second one corrects the invalidity by explicitly estimating
the deviations. Illumination invariant descriptors as those discussed in Chapter 2 are able
to help the estimation up to a certain extent. However they also have their own restricted
validity domain and have thus to be combined with intensity to achieve robustness to a
reasonably large range of situations. The most appropriate combination of descriptors
is often application specific, or even possibly region specific in a single image, so that a
trade-off has to be made to find the best average solution. Some works addressed this
problem by spatial adaptivity of the combination [Heitz and Bouthemy, 1993; Xu et al.,
2012b; Kim et al., 2013].

The explicit estimation of intensity constancy deviations is conceptually more satisfying
because it is not dependent on the list of descriptors arbitrarily chosen or to the difficulty
to combine them. It rather relies on a single model of intensity correction which aims at
estimating any intensity change. Several correction models have been briefly discussed
in Section 2.2.2. We consider in this chapter the simple spatially varying offset model
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14 Aggregation framework for fluorescence imaging

leading to the data potential

ρd(x, I1, I2,w, ξ) = φ(I2(x+ w(x))− I1(x)− ξ(x)), (14.1)

where ξ : Ω→ R compensates local additive intensity changes. This model has already
been used in a few works [Chambolle and Pock, 2011; Kim et al., 2005; Teng et al., 2005;
Lai, 2000], and for a spatially constant offset in [Odobez and Bouthemy, 1995]. However,
the superiority of the explicit estimation over classical robust data terms has never really
been demonstrated. We believe that it is due to the difficulty of optimizing jointly w and
ξ. Indeed, most works perform alternate minimization steps between the two variables,
which is prone to fall into local minima. Other alternatives to be explored could be
high dimensional optimization methods like [Papadakis et al., 2013] or splitting schemes
[Ayvaci et al., 2012].

We propose to overcome the optimization problem coming from the minimization w.r.t.
to ξ owing to our aggregation framework. Local candidates for ξ are reliably estimated
jointly with motion candidates, so that every motion candidate is associated with an
intensity change candidate, and the minimization is performed on a single two-component
label set.

14.2 Computation of local candidates

We describe the computation of augmented candidates, adding intensity change
estimation to the motion estimation procedure described in Chapter 8. We work on the
patch distribution PS,α described in Section 8.1.1, which is composed of overlapping
square patches with several sizes of the set S and overlapping ratio α.

Patch correspondences For each patch P1 ∈ PS,α, the setMN (P1) was created by
computing N patch correspondences to P1 (Section 8.1.2). The distance used for the
matching was the sum of point-to-point L1 distances in the saturation and value channels
of the HSV space. The saturation channel is invariant to local multiplicative intensity
changes and the value channel has no invariance. To satisfy our additive model (14.1)
we replace this measure by a Normalized Cross Correlation distance defined in Section
2.1.2, invariant to additive intensity changes. For each pair of corresponding patches
P1,2 = (P1, P2) with P2 ∈ MN (P1), we can then estimate a coarse intensity change
candidate ξP1,2 defined as the difference between the intensity means computed over
respectively P2 and P1. It is coupled with the coarse motion candidate wP1,2 ∈ Z2 defined
as in Section 8.1.2 as the location difference between the centers of P2 and P1.

Affine estimations For each pair of corresponding patches, denoted P1,2, the intensity
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change candidates are refined jointly with motion. We recall the notations ΩP1 for the
pixel domain of P1, δwP1,2 : ΩP1 → R2 for the affine motion field between P1 and P2,
defined at a pixel x = (x1, x2)> with δwP1,2(x) = (a1 + a2x1 + a3x2, a4 + a5x1 + a6x2)>,
and θP1,2 = (a1, a2, a3, a4, a5, a6)> for the affine model parameter vector.
Parametric motion estimation usually relies on brightness constancy constraint.

However, to refine the previous intensity change estimates ξP1,2 , we compute a constant
intensity change increment δξP1,2 between P1 and P2, integrated in the modified brightness
conservation constraint:

P2(x+ δwP1,2(x))− P1(x) = ξP1,2 + δξP1,2 . (14.2)

Hence, we estimate the extended parameter vector Θ = (θ>, δξ)> (we drop subscripts
·P1,2 for the sake of clarity) as follows:

Θ̂ = arg min
Θ

∫
ΩP1

ρdata(x, δw, δξ, P1,2)dx, (14.3)

where ρdata(·) is the data potential penalizing deviations from the data constancy
assumption (14.2) and is defined by:

ρdata(x, δw, δξ, P1,2) = ψ(P2(x+ w(x) + δw(x))− P1(x)− ξ − δξ). (14.4)

The penalty function φ(·) is chosen as the robust Tukey’s function. The minimization
problem (14.3) is solved as in Section 8.1.3 with the Motion2D software1 [Odobez and
Bouthemy, 1995].

Final set of candidates The above described estimation is repeated for every pair of
patches and generates a set of candidate motion vectors and intensity change parameters
C(x) at each pixel x ∈ Ω defined as follows:

C(x) =
{(

wc
P1,2(x), ξcP1,2

)
: P1 ∈ PS,α(x), P2 ∈MN (P1)

}
(14.5)

with wc
P1,2

(x) = wP1,2(x) + δwP1,2(x), ξcP1,2
= ξP1,2 + δξP1,2 and PS,α(x) =

{P ∈ PS,α : x ∈ P}.

14.3 Global aggregation

We conceive the aggregation step similarly to Chapter 9 as a discrete optimization problem
where the set C(x) of candidates forms the finite label space considered at pixel x. The

1http://www.irisa.fr/vista/Motion2D/
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global flow field w : Ω→ R2 and the global intensity change field ξ : Ω→ R are recovered
by:

(ŵ, ξ̂) = arg min
w,ξ

E(w, ξ, I1, I2), s.t.(w(x), ξ(x)) ∈ C(x), x ∈ Ω.

The global energy is defined by:

E(w, ξ, I1, I2) =
∑
x∈Ω

ψ(I2(x+ w(x))− I1(x)− ξ(x)) (14.6)

+ λ1
∑
<x,y>

φ(‖w(x)−w(y)‖) + λ2
∑
<x,y>

φ(|ξ(x)− ξ(y)|),

where ψ(·) is the L1 norm, < x, y > is a two-site clique and λ1, λ2 are balance coefficients
between data and regularization terms. The data term is the same as the one used for
affine estimation in the first step. The second term is a classical regularization on the
motion field. We expect intensity variations to vary piecewise smoothly as the flow field,
so we impose regularization on ξ as expressed in the third term.
Energy (14.6) is minimized with the fusion-move algorithm described in Chapter 9.

The important point is that we do not have two distinct label sets for w and ξ, but a
single set of candidates C(x). Each motion candidate is coupled with an intensity change
candidate under a common label, which avoids minimization on the two variables. Motion
and intensity change candidates are estimated locally coherently with the additive model
(14.1), so that the coupling is by construction appropriate and there is no need to look
for other possible combinations of w and ξ.
It is interesting to notice the link between our global occlusion handling model (9.2)

and our global intensity change handling model (14.6). The two problems are similar
since they try to deal with the invalidity of data conservation. The first difference is the
nature of the invalidity, which is a binary violation in occlusion areas, and a continuous
deviation in the case of an intensity change. The second difference is in the a priori form
of the two fields, which is sparse (and possibly smooth) for the occlusion field, and smooth
for the intensity change field. These observations are reflected in the energy terms (9.2)
and (14.6).

14.4 Results

We have evaluated our method on three sequences presented in Section 13, representative
of the diversity of challenges previously identified. As explained in Section 13, in the
absence of available ground truth, we provide visual results and we emphasize on visually
clear differences. The design of sequences with ground truth is a major objective for
future work. We compare our method with public implementations of state-of-the-art

142



14.4 Results

Figure 14.1: Equivalence between color and arrow visualizations.

optical flow methods [Brox and Malik, 2011; Sun et al., 2010a]. The method of [Sun et al.,
2010a] is a typical efficient implementation and combination of best performing elements
of variational methods. In [Brox and Malik, 2011], block matching is integrated in a
variational regularized approach [Brox et al., 2004] as an additional constraint to deal with
large displacements of small objects and get rid of the limitations of coarse-to-fine-schemes.
We use the same color-code for dense and accurate visualization and arrow visualization
for intuition of the physical displacement (Fig. 1.1). We also display the estimated
intensity change map ξ. Low negative values of ξ correspond to a decreasing of intensity
and are represented by dark regions, and high positive values correspond to increasing
intensity and are represented by bright regions. The parameters are set to S = {15, 35, 75},
α = 0.75, N = 3 and for the aggregation, λ1 = 1, λ2 = 0.5. We point out that the three
patch sizes of S correspond to the patch sizes used for our block matching experiments in
Section 13.

Cell migration in fluorescence imaging The specificities of this sequence are the
sparsity of the motion field, the large displacements and deformations of the cells, and
the local large intensity change (Fig. 14.2). Variational methods [Brox and Malik, 2011;
Sun et al., 2010a] fail to recover null displacement of the background and do not always
retrieve correctly the motion of cells, as shown in Fig. 14.2. In contrast, our method
successfully detects the static background and recovers the motion of the cells, even
when they undergo large displacements, large deformations or intensity changes. In
particular, large displacements of small cells are captured owing to NCC correspondences,
and are selected in the aggregation stage thanks to the non linearization of the data
term in (14.6). Our usage of patch correspondences is thus more efficient than the
variational integration of [Brox and Malik, 2011]. The intensity change map is also
visually coherent with the observed fluorescence variations between the two frames. In
addition to providing accurate cell deformation, these results could be used to create cell
correspondences for tracking applications. Unlike most cell tracking methods, we do not
need any prior cell segmentation step.
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I1 I2 Intensity change ξ

Our method [Brox and Malik, 2011] [Sun et al., 2010a]

Figure 14.2: Results on the “Cell migration” sequence with zooms on regions of interest
overlapping the images (acquisition by P. Chavrier’s group, UMR 144 Institut Curie, PICT-IBiSA).
Top row: the two input images and the reconstructed intensity change by our method. Middle
and bottom rows: motion field respectively estimated by our method [Brox and Malik, 2011] and
[Sun et al., 2010a].

Actin network This sequence exhibits complex, smooth and small deformations,
which is a typical favourable case for variational estimation (Fig. 14.3). Our method
successfully estimates this smooth deformation with the same parameters as for the
case of cell migration. The method [Brox and Malik, 2011] gives similar results but
propagates the flow to static regions. The method [Sun et al., 2010a] creates artificial
motion clusters and high errors in sta tic regions. This example shows that our method
is able to be competitive variational approaches in “simple” cases of small displacements
and smooth motion field.

HeLa cell The main challenge of this sequence is the large intensity change due to the
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I1 I2 Intensity change ξ

Our method [Brox and Malik, 2011] [Sun et al., 2010a]

Figure 14.3: Results on the “Actin network” sequence [Pinot et al., 2012]. Top row: the two
input images and the reconstructed intensity change by our method. Middle and bottom rows:
motion field respectively estimated by our method [Brox and Malik, 2011] and [Sun et al., 2010a].

recruitment of fluorescent proteins to the Golgi, combined with the large displacement
of the cell (Fig. 14.4). It is visually clear that the motion field estimated with our
method captures more accurately the real cell deformation than the results of [Brox and
Malik, 2011; Sun et al., 2010a]. The method [Brox and Malik, 2011] handles intensity
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I1 I2 Intensity change ξ

Our method [Brox and Malik, 2011] [Sun et al., 2010a]

Figure 14.4: Results on the “HeLa cells” sequence (acquisition by Perez’ group, UMR 144
Institut Curie, PICT-IBiSA). Top row: the two input images and the reconstructed intensity
change by our method. Middle and bottom rows: motion field respectively estimated by our
method [Brox and Malik, 2011] and [Sun et al., 2010a].

variations by the addition of an intensity gradient constancy constraint in the data term,
and the method of Sun et al. [2010a] performs a structure/texture decomposition, which
is insufficient to handle strong local intensity variations. As shown in Fig. 14.4, NCC is
robust to intensity changes in the cell. Our method successfully exploits this invariance
of NCC and the regularization effect of global models. The accuracy of the estimation is
made possible by the efficiency of our explicit estimation of local intensity changes, as
confirmed by the intensity change map shown in Fig. 14.4.
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15 Variational approach for diffusion
estimation

In the previous chapters, we focused on motion fields representing structure deformations
or directed coherent motion of biological objects. At the protein level some motion
behaviour also correspond to active transport, but the main mode of transport is often
diffusive, i.e. proteins undergo Brownian motion. This type of motion is adequately
modeled by its corresponding diffusion coefficient, representative of local change of the
medium, or of the protein complex under study. In this section, we address the problem
of diffusion coefficient estimation in time-lapse fluorescence microscopy, by first reviewing
the standard Image Correlation Spectroscopy (ICS) method, and then proposing a new
variational approach.

15.1 Image Correlation Spectroscopy

Image Correlation Spectroscopy techniques have been developed in the continuation of
the signal-based Fluorescence Correlation Spectroscopy (FCS), as its extension to images.
The principle of FCS is to measure the fluorescence fluctuations by photons counting
in a small volume excited by a laser beam, as illustrated in Fig. 15.1. The recorded
fluorescence variations can be caused diverse phenomena, which can be characterized
by the analysis of its autocorrelation. The typical form of the autocorrelation function
and the diverse physical process it expresses is shown in Fig. 15.1. Among these, we
are interested in the characterization of diffusion (blue curve) occurring when fluorescent
particles undergo Brownian motion. In this case, the density of particles can be retrieved
from the value of the autocorrelation at time 0, and the diffusion coefficient D0, which is
the parameter of interest in this chapter, can be easily derived from the characteristic
decay time τd of the correlation function with the following expression (see Schwille [2006]
for a physical derivation of this expression):

D0 = ω2
0

4τd
(15.1)

where ω0, is the laser beam size.
The idea of ICS is to extend this temporal analysis of a point-wise signal to the
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Autocorrelation

Figure 15.1: Principle of Fluorescence Correlation Spectroscopy (FCS).

spatial dimension. The basic ICS works with a a single image and replaces the temporal
autocorrelation of the signal by the spatial autocorrelation of the image, which gives
only access to the density of particles. The diffusion coefficient can be retrieved when
considering image sequences, leading to the Temporal ICS (TICS). The computation of
the spatio-temporal correlation function, illustrated in Fig. 15.2, yields a similar function
to the FCS case of Fig. 15.1. More precisely, the theoretical function can be derived from
the diffusion equation

It = D0 ∆I, (15.2)

originally obtained for particles concentration in a diffusive scenario. This equation is
also valid when applied to the images when image resolution is superior enough to size of
the particles to be considered as a concentration measure. The closed-form solution of
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correlation

τ2=2δ τ τN=N δ τ

C (I ,w 0, τ1)

Σ

ττ1=δ τ

t=1

t=N

N frames

C (I ,w 0, τ2 ) C (I ,w 0, τn)

C (I ,w 0, τ)

Figure 15.2: Illustration of the Temporal Image Correlation Spectroscopy (TICS) method.

(15.2) is inserted in the correlation expression (13.1) and leads to the following theoretical
correlation function (see [Sergeev, 2004] for derivation):

C(I,w0, τ) = C(I,w0, 0)
(

1 + τ

τd

)−1
+ C∞(τ) (15.3)

where w0 is the null motion field, since no motion field is estimated, C∞(τ) is an offset,
and τd is the characteristic time decay, from which diffusion can be obtained from the
same expression as for FCS (15.1). Each pixel can be considered as a FCS measurement,
so that considering TICS as a the average of as many FCS as number of pixels in the
image is expected to yield more robust estimation.
TICS is designed for spatially constant diffusion. To retrieve inhomogeneous diffusion

maps, it must be applied locally in image patches. The local constancy assumption is
however violated at diffusion discontinuities, which tends to over-smooth the estimated
diffusion field. Moreover the patches must be large enough to validate the model, which
implies, on one hand a loss of resolution, and on the other hand a large computational
cost.

15.2 Variational diffusion coefficient estimation

The diffusion estimation problem has not been addressed yet in a variational framework.
In the next section, we propose to fill this gap with a global regularized model of diffusion,
optimized by variational techniques, and overcoming the above mentioned limitations of
TICS.

Rather than estimating a constant diffusion coefficient over patches as performed with
the TICS method, we consider a dense diffusion field D : Ω→ R. The estimation problem
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is then formulated as

D̂ = arg min
D
{Edata(I,D) + λEreg(D)} s.t. D(x) ≥ 0. (15.4)

The data fidelity is given by the diffusion equation (15.2). A data term penalizing
pixel-wise deviations from this constraint is of the form

Edata(I,D) =
∫

Ω
φ((It −D∆I)2)dx. (15.5)

However, point-wise measurements are insufficient because of the random nature of the
diffusion process. Therefore we design a neighborhood-wise data penalization by assuming
a constant diffusion coefficient D(x) over a neighborhood of a pixel x. This approach is
similar to the CLG method for optical flow [Bruhn et al., 2005] (see Chapter 6). The
data term is defined as

Edata(I,D) =
∫

Ω
φ(D>JρD)dx (15.6)

with D =
(
D

1

)
and Jρ = Kρ ∗

(
∆I2 −It ∆I
−It∆I I2

t

)
.

The regularization term imposes smoothness of D :

Ereg(D) =
∫

Ω
φ(‖∇D‖2)dx. (15.7)

The constraint D(x) ≥ 0 is achieved by adding a logarithmic barrier to the energy of
(15.4), such that the final energy writes

E(D) =
∫

Ω
φ(DTJρD)dx+ λ

∫
Ω
φ(‖∇D‖2)dx− µ

∫
Ω

log(D)dx. (15.8)

The minimization procedure is the same as for motion estimation in Chapter 13. Up to
our knowledge, it is the first time a diffusion field is estimated by variational minimization
of a global regularized energy.

Contrary to the TICS method, this variational approach produces dense diffusion fields.
Spatial variations of diffusion can thus be recovered more accurately, in particular at
diffusion discontinuities usually occurring across membranes. Another difference is that
the variational method exploits only two frames for the diffusion estimation whereas TICS
uses extended sub-sequences. This choice sharpens the detection of temporal diffusion
changes. However taking more frames into consideration can also improve the robustness
of the estimation inside constant diffusion phases, therefore the estimations are averaged
in practice over each phase.
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Image sequence

STICS

Variational

Flux 1 Diffusion Flux 2 Color code

Figure 15.3: Analysis of TICS and variational method on synthetic image time series with
three phases. First row: first frame of the sequence and temporal description of the 3 phases: F:
Flux, D: Diffusion. Second row: TICS motion estimation for each phase. Third and fourth rows:
Variational motion estimation for a selection of image pairs of each phase with λ = 5 (third row)
and λ = 11 (fourth row) (we set γ = 0.75)

.

15.3 Experimental results

In this section, we present three different biological problems which necessitate motion or
diffusion estimation. We compare the variational and TICS approaches and demonstrate
their potential.

Temporally varying diffusion We simulated an image time sequence shown in
Fig.15.3-a and composed of three phases: pure directional flow (North-East translation,
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Flux 1 Flux 2
TICS 0.744 / 0.0125 0.733 / 0.0126
Variational, λ = 5 0.728 / 0.0124 0.782 / 0.0133
Variational, λ = 11 2.20 / 0.0372 1.67 / 0.0281

Table 15.1: Error of estimated translational motion of the Flux phases obtained with TICS and
variational method for two values of λ (each cell of the table reports “Angular Error / Endpoint
Error”).

Flux1 Trans. Diffusion Trans. Flux2
Ground truth 1/20 - 21/50 - 51/90
TICS 1/10 11/17 18/39 40/48 49/90
Variational 1/18 - 19/48 - 49/90

Table 15.2: Detection of the three phases of the simulated sequence with TICS and variational
method (each cell of the table reports “begin frame / end frame” of the phase).

0.28µm/s), pure diffusion (D = 0.01µm2/s), and pure directional flow (North-East
translation, 0.28µm/s), respectively referred as Flux 1, Diffusion and Flux 2. This
artificial example mimics a possible scenario observed in biological experiments with
molecules in cells or beads in solutions. This simulation is used to demonstrate the ability
of both methods to compute the dynamic parameters and to identify the three phases.
Figure 15.3 shows visual results obtained with TICS and variational methods. Two

regularization parameters λ are compared in the variational case. We adopt two different
motion visualizations : the motion vectors estimated every 16 pixels by TICS are
represented by arrows, whereas the dense motion field of the variational method is more
accurately visualized with the standard color-code presented in Fig. 15.3-e. The TICS
exploits sub-sequences of 12 images.
The directional flow of Flux phases is well captured by the two methods. In the

variational approach, small values for λ result in a detection of small moving structures.
Higher values for λ allow us to recover the global flux, which is almost null during the
diffusion phase and constant (“North-East” direction) during the two Flux phases.
In Table 15.1, we have reported the Angular Error and Endpoint Error of motion

estimations in the two flux phases (see [Baker et al., 2011] for definitions). The results
show the high accuracy of TICS for estimating the Flux translation. With the variational
approach, the translation is obtained by averaging the estimations at each pixel and
for each frame of the Flux phases. We have reported the results in Table 15.1 for two
regularization parameters. We notice that, in contradiction with the visual impression
of Fig. 15.3, the estimated motion for λ = 11 corresponds to a high error, whereas for
λ = 5, the error is consistent with the TICS method. This is due to the fact that large
regularization coefficient favors smoothness against accuracy and tends to under-estimate
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the motion magnitude.

Based on this motion estimation, we identify the three phases. With the TICS method,
we use backward and forward hidden Markov model on three states : Flux, Diffusion
and Transition. With the variational method, a threshold is applied on the magnitude
of the spatially averaged motion vectors of each frame to classify Flux and Diffusion
phases. The classification results presented in Table 15.2 are consistent with the ground
truth. Nevertheless, the TICS approach necessitates to consider a temporal analysis of a
significant number of frames to produce satisfying diffusion estimation results. In our
experiments, we processed 12 frames at each time point, which introduce a transition
phase making the detection of transitions less accurate. The use of only two frames by
the variational method allows to detect abrupt transitions.

Furthermore, the diffusion phase was analyzed separately to estimate the biophysical
parameter related to diffusion rate. The diffusion coefficient of the diffusion phase was
set to D = 0.01µm2/s. The TICS estimates a coefficient D̂ = 0.013µm2/s, and the
variational methods estimates in average D̂ = 0.016µm2/s. Thus, in this case of spatially
constant diffusion, TICS achieves highest accuracy in the diffusion coefficient estimation.

Spatially varying diffusion To evaluate the ability of the variational approach to
produce dense diffusion field and thus to accurately recover spatial diffusion changes, we
simulated a spatially varying diffusion sequence. The particles density is the same in the
whole image domain, as shown in Fig. 15.4-a, but the diffusion coefficient is higher inside
the circle represented in Fig. 15.4-b (D1 = 0.1µm2/s) than outside (D2 = 0.01µm2/s).
The parameters of the variational method are set to ρ = 5 and λ = 500.

The estimated diffusion field shown in Fig. 15.4-c is visually very close the ground
truth. The two regions are clearly delimited by the circle, despite an over-smoothing
of the transition. The histogram of the diffusion field (Fig. 15.4-d) shows two modes
corresponding to the two diffusion regions, but it also indicates that the diffusion inside
the circle is under-estimated. Figure 15.4-e shows the result of the mean-shift algorithm
[Comaniciu and Meer, 2002] applied to the diffusion field in order to delineate the two
regions. Finally, 2D profiles of a line crossing the circle are represented in Fig. 15.4-d
for ground truth, estimated and segmented diffusion fields. We observe that spatial
discontinuities are accurately recovered, but D̂1 = 0.082µm2/s is slightly under-estimated,
while D̂2 = 0.017µm2/s is slightly over-estimated.

The TICS method is enable to produce such dense diffusion segmentation map because
of the spatial lag between the patches used to estimate diffusion. Besides, the large patch
size leads to erroneous estimations near diffusion boundaries.
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D2=0.01μm
2 . s−1

D1=0.1

μm2 . s−1

D

(a) Frame 1 (b) Ground truth diffusion field

(c) Estimated diffusion field D (d) Histogram of D

D̂2=0.017μm
2 . s−1

D̂1=0.082

μm2 . s−1

(e) Segmented diffusion field (f) Profiles

Figure 15.4: Variational diffusion estimation on a simulated sequence with spatially variant
diffusion. The curves of (f) are profiles of the dashed lines in (b),(c) and (e)
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15.4 Conclusion

In this chapter, we have proposed a new variational diffusion estimation method able to
recover spatially varying diffusion coefficients. The standard ICS approach is block-based
and takes advantages of a fitting model to recover the physical parameters. Our method
achieves similar results to ICS for the estimation of spatially constant diffusion coefficient.
When diffusion is spatially varying, ICS is unable to recover discontinuities of the diffusion
field, whereas our variational method yields accurate discontinuous diffusion maps.

An interesting future research direction would be to combine these two approaches, to
take advantage of both the physical modeling of TICS and the regularization properties
of the variational approach. It could be naturally carried out by using the aggregation
framework described in Part II. Indeed, the patch-based TICS diffusion estimations could
serve to generate candidates and the global energy model in Section 15.2 can be used as
objective energy involved in the aggregation stage. Similarly to the case of optical flow,
the aggregation scheme would implicitly select the most appropriate local support for the
estimation of spatially constant diffusion produced by TICS at each pixel.

155



15 Variational approach for diffusion estimation

156



16 Conclusion

In this part we have first performed a comparative evaluation of correlation-based and
variational approaches for motion estimation in live cell imaging. We identified a wide
range of situations where dense motion estimation can bring important information to
answer biological questions. The advantages and limitations of correlation and variational
approaches have been pointed out from these experiments, and we emphasized on the
complementarity of their performances, in particular for fluorescence imaging.

In a second time, we have adapted the the two-step aggregation framework introduced
in Part II to overcome limitations of state-of-the-art variational approaches in fluorescence
imaging. Our approach is designed as a combination of correlation and variational
methods, and we address the problem of large local fluorescence variations by explicitely
estimating the intensity change map. We have demonstrated the performance of our
method in various biological contexts of dense and smooth motion fields as well as sparse
and discontinuous ones. We successfully handle frequent and challenging situations arising
from live cell imaging sequences like large displacements of small structures (e.g. cell
migration) or local fluorescence intensity changes (e.g fluorescent protein recruitment).
Finally, we have proposed a new variational diffusion estimation method, as an

alternative to traditional TICS method. In simple cases of spatially constant diffusion,
our method is as accurate as TICS. For spatially discontinuous diffusion maps TICS is
limited by its block-based approach preventing from retrieving discontinuities, whereas
our method generates accurate discontinuous diffusion fields. An integration of the TICS
and our global model in the aggregation framework is an appealing approach which would
allow to combine the local physical modelling of TICS with global energy models.

Finally, more quantitative analysis are required to evaluate the performance of proposed
methods in biological imaging. We plan to calibrate the proposed methodology from
sequences showing molecules undergoing Brownian motion with a known diffusion
coefficient.

157



16 Conclusion

158



General conclusion

Contributions

We have addressed throughout this thesis several issues related to optical flow estimation,
which we identified as the main limiting points of modern methods. Our general approach
is to combine local and global models to overcome these issues.

We first proposed a method based on the work of [Bruhn et al., 2005] integrating local
energy as a data term of a global model. Our method spatially adapts the Gaussian
kernel used to filter standard data potential. Preliminary results have demonstrated
the relevance of the approach. We also investigated a modified version integrating the
stochastic uncertainty model of [Corpetti and Mémin, 2012].
Secondly, we have designed an original aggregation framework exploring another

way to combine local and global models. The main idea is to revisit local parametric
estimations in patches, especially the selection of appropriate patch sizes and positions.
Our aggregation framework is conceived as a two-step procedure, beginning with local
parametric computations repeated in a general patch distribution, followed by an
aggregation step selecting among the motion candidates generated by the first local
step. We investigated two versions of the aggregation problem, using discrete and
continuous optimization. The discrete aggregation method yields more accurate results.
The continuous optimization alternative is still interesting from a practical point of view,
for its reduced computational time and robustness to lower quality of the candidates.
We introduce a generic exemplar-based approach for occlusion handling to overcome
limitations of traditional diffusion-based techniques.

Our AggregFlow method has brought significant contributions to open problems related
to optical flow. We list hereafter the main features investigated and problems solved:

• We have demonstrated that simple local parametric estimations can potentially
outperform any existing methods when patches are appropriately chosen.

• The aggregation framework combines originally local and global models. Considering
local estimations in various spatial supports to produce candidates, the selection
of one candidate in the global aggregation step amounts to select the best spatial
support for estimation at each pixel, without segmentation step.
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• The aggregation allows an original and efficient integration of feature matching
in the optical flow estimation process, as coarse initialization of local parametric
estimation. The main advantages of our integration scheme are: 1) we keep the N
best matches and not the single best one, which reduces the risk of matching errors;
2) We do not incorporate matches as additional constraints in a global energy, as
done by most methods, which also reduces the sensitivity to matching errors; 3)
We do not resort to global variational optimization in the refinement process, as
other methods do.

• An occlusion detection process is designed cooperatively on both steps, under the
form of local confidence measure in the first step and used to guide a sparsity
constraint in the aggregation step. Estimation of motion in those detected occluded
regions is performed in both steps with an exemplar-based approach, outperforming
traditional diffusion-based methods. The occlusion filling model is generic and could
be integrated in other global methods as well.

• To deal with large intensity changes, we propose a joint modeling of motion and
intensity changes at the two steps of the method. The first estimates intensity
change candidates along with motion candidates, producing a single label space
for these two variables. The global optimization of the aggregation therefore does
not need to alternate between optimizations w.r.t. the two variables, but directly
operates in the two-component label space, which makes optimization easier.

We have experimentally evaluated the improvements yielded by our approach on
reference computer vision benchmarks. On small displacement sequences, where occlusions
and illumination changes are not essential and the main challenges lies in the fine structures
and motion discontinuities, our method gives satisfying results, competitive with most
current methods. When larger displacements occur, our occlusion handling framework
and patch correspondences strategy allows us to outperform existing methods. The
improvements in occluded regions are particularly important. Examples of very large
intensity changes occurring in fluorescence imaging situations also attest for the superiority
of our method compared to other approaches.
Motion in biological imaging sequences often significantly differs from standard

challenges in other computer vision application domains. We have proposed solutions
to deal with two kind of situations, namely large intensity changes due to fluorescence
variations, and diffusion coefficient estimation in the frequent case of Brownian motion of
particles. The first problem was treated in the aggregation framework and qualitative
experiments confirmed the efficiency of our method. To overcome the limitations of
existing correlation-based methods for diffusion coefficient estimation, we have designed
a variational approach retrieving accurately space-varying diffusion discontinuities.
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Perspectives

Several research directions remain opened at the end of this work:

• Our study on adaptation of Gaussian kernel for combined local-global methods
(Chapter 6) opened the way to several extensions: anisotropic Gaussian filtering
should improve current results; variations on the regularization terms are also
possible; optimization difficulties for integrating stochastic models in the adaptive
framework should be addressed.

• The label space composed by the candidates exhibits several unusual properties
to be dealt with by the discrete optimization involved in the aggregation. Indeed,
traditional graph-cut move-making methods are used to deal with either small
label sets, or fusion of global proposals [Lempitsky et al., 2010]. In our case, the
candidates locality, and their redundancy could be exploited to generate adapted
proposals in the move-making optimization process.

• The computation time of the method could be dramatically reduced by GPU
implementation. Indeed, the candidates computation is a naturally parallelizable
process.

• An important cause of errors in AggregFlow is due to matching errors in the
exemplar-based occlusion handling process. We used a straightforward sum of
point-to-point L1 distance as a similarity measures of patches. More efficient feature
matching could be used. In particular, since we are not looking for exact matches
but for pixels belonging to the same object, texture comparison could be more
appropriate.

• The patch correspondences used to produce motion candidates could also be
improved by recently proposed matching methods [Weinzaepfel et al., 2013;
Leordeanu et al., 2013].

• While we have proposed a version of the method adapted to the wide variety
of challenges proposed by computer vision benchmarks, other more dedicated
applications could adapt each feature of the framework to its own needs. We
have opened this perspective with our adaptation of the aggregation framework to
large fluorescence variations in light microscopy image sequences. Other biological
problems could be addressed more specifically.

• We are also looking for biologically relevant applications of our variational diffusion
coefficient estimation method.
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• A unifying approach of regularized models and Temporal Image Correlation
Spectroscopy techniques (TICS) for diffusion estimation could be investigated
in the aggregation framework. The patch-based nature of TICS makes it well suited
to produce candidates, and our regularized model of diffusion estimation can be
used as a global aggregation model

• Specific quantitative protocols must be designed to evaluate the precision of motion
estimation methods in biological imaging. This is challenging in live cell imaging
since microscopy serves as an investigation tool. Reference frames cannot be
controlled and ground truth is only available for simple dynamics not representative
of the complexity observed in real data.

162



Part IV

Appendices

163





A Semi-local variational optical flow
estimation

Published paper:
D. Fortun and C. Kervrann. Semi-local variational optical flow estimation. In International
Conference on Image Processing (ICIP), pages 77–80, 2012.

Global variational methods for optical flow estimation usually suffer from an
over-smoothing effect. We propose a semi-local estimation framework designed to integrate
and improve any variational method. The idea is to implicitly segment the minimization
domain into coherently moving windows. In a first time, local variational estimations are
performed in overlapping candidate square regions. Then, a global discrete optimization,
non subject to the over-smoothing introduced by variational approaches, selects the
optimal window for each pixel. Experimental results show an increasing of the sharpness
of discontinuities and a significant improvement of global registration errors compared to
the results of the baseline global variational method.

A.1 Introduction

The optical flow approximates the projection of the motion of a 3D scene on the image
plane. Any optical flow estimation have thus to be based on a conservation assumption of
some optical properties of the image able to capture the real motion (intensity, gradient,
image descriptor . . . ). This data conservation constraint provides in general a single
equation and is consequently insufficient to recover the two components of the motion
field (aperture problem). The typical way to overcome this under-determination is to add
to the data conservation constraint a spatial coherency constraint. Existing methods can
be classified regarding their local or global strategy to impose such a constraint.
The spatial coherency of local approaches is ensured at a pixel x ∈ Ω ⊂ R2 by the

assumption of common parametric motion (translational in [Lucas and Kanade, 1981]) in
a neighborhood V (x) ⊂ Ω, where Ω is the image domain. The global approach allows
to compute a dense motion field and expliciteply adds to a data potential ρdata(·) which
penalizes deviations from the data conservation constraint, a regularization potential
ρreg(·) which penalizes high values of the norm of the gradient ∇w of the velocity field
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A Semi-local variational optical flow estimation

w : Ω → R2. A global energy combining these two potentials is minimized [Horn and
Schunck, 1981]:

Eglobal(w) =
∫

Ω
ρdata(x, I,w) + λ ρreg(x,∇w)dx (A.1)

where I : Ω× [0, T ]→ R is an image sequence and λ is a balance parameter between data
fitting and regularization.

The best results of the state-of-the-art are achieved by global variational motion
estimation methods. However, this kind of methods still suffer from an over-smoothing
effect. This phenomenon is particularly visible in the seminal work of [Horn and Schunck,
1981] which uses quadratic penalty function for the regularization potential. This
shortcoming has been greatly reduced by the introduction of robust penalty functions
[Black and Anandan, 1996; Mémin and Pérez, 1998], adaptation of the regularization
along image discontinuities [Wedel et al., 2009a] or non-local regularization strategies
[Werlberger et al., 2010], but it still remains. Indeed these methods are limited by the
coarse-to-fine scheme [Mémin and Pérez, 1998; Brox et al., 2004], necessary to cope with
large displacements. This approach avoids most local minima due to the non-convexity
induced by the non-linearized data potential, at the price of an over-smoothing of the
discontinuities.

We mention two non-variational approaches related to our method that have
been investigated to reduce the over-smoothing effect of global variational methods:
(i) parametric motion estimation based on motion field segmentation; (ii) discrete
optimization of the energy (A.1). In the first case, a parametric model of the flow
field is estimated inside coherently moving regions. The estimation of the discontinuities
is thus transfered to the segmentation step [Sun et al., 2010b]. In the second case, discrete
optimization of the energy (A.1) is able to find strong minima for non-convex functionals
without coarse-to-fine schemes, but is limited by the quantization of the flow field range
[Boykov et al., 2001].

In this paper, we present a method combining local estimations and discrete optimization
to sharpen the discontinuities of a global variational method by implicitly segmenting the
flow field. It is composed of two stages: first, local variational estimations are performed
on a regular grid of overlapping windows; second, the resulting local motion vectors
are used as candidates for a global discrete optimization. In this scheme, the discrete
optimization module selects of the optimal spatial minimization domains, yielding an
implicit segmentation of the flow field. It is worth noting that our framework is general
and can be used to improve any baseline variational method. The results with the popular
and representative method [Brox et al., 2004] show significant improvements over the
global variational approach when applied on several sequences of the Middlebury database
[Baker et al., 2011].
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A.2 Variational optical flow estimation

A.2.1 Global variational approach

All global variational optical flow estimation methods are based on the minimization of
the energy (A.1). The method described in [Brox et al., 2004] contains most of the basis
concepts still used in the most recent methods. Therefore we used this method to evaluate
our semi-local framework, which can integrate any other variational optical flow estimation
methods. The main features of the method [Brox et al., 2004] are described in this section.

Global energy functional The data potential penalizes deviations from intensity and
gradient conservation constraints with a L1 penalty function:

ρdata(x, I,w) = φ
(
|I(x+ w(x), t+ 1)− I(x, t)|2

)
(A.2)

+ γφ
(
‖∇I(x+ w(x), t+ 1)−∇I(x, t)‖2

)
where γ > 0 is a balance parameter and φ

(
z2) =

√
z2 + ε2 is a regularized form of the L1

norm with ε a small constant.
The regularization potential penalizes high gradients with the same convex and

discontinuity-preserving L1 norm:

ρreg(x,∇w) = φ
(
‖∇u(x)‖2 + ‖∇v(x)‖2

)
(A.3)

Energy minimization The minimization of (A.1) is performed by solving the
Euler-Lagrange equations. To make these equations tractable, the data potential (A.2)
must be linearized, which limits the estimation to small displacements. Therefore all
recent variational methods adopted a coarse-to-fine scheme to handle large displacements
[Mémin and Pérez, 1998; Brox et al., 2004]. The coarse-to-fine levels are interpreted
in [Brox et al., 2004] as fixed point iterations enabling the minimization of the initial
non-linear energy. At each level, a second fixed point allows to cope with the remaining
non-linearity of the Euler-Lagrange equations due to the L1 norm. The resulting linear
system is then solved with Successive Over Relaxation (SOR).

A.2.2 Restriction to local domains

The minimum reached by global variational methods is usually suboptimal. Indeed,
variational optimization is proved to find the global minimum only for convex energies,
which is not the case of (A.1) with the non-linearized data potential (A.2). Actually, the
coarse-to-fine scheme transforms the problem into successive minimizations of convex
approximations of (A.1) which tend to smooth the discontinuities of the flow field.
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Figure A.1: Influence of the spatial minimization domain. 1st row: two frames and ground
truth of the motion field with a zoom on a region of interest (green square). 2nd and 3d rows:
variational estimations over windows of different sizes centered on the same green square.

To reduce this over-smoothing effect we propose to minimize several energies of the
form (A.1) over local regions, inspired by the localization of Total Variation for denoising
[C. and L., 2011]. The local motion field
wV : V ⊂ Ω→ R2 is the minimizer of

E(wV ) =
∫
V
ρdata(x, I, wV ) + λ ρreg(x,∇wV )dx (A.4)

obtained with the method described in the previous section. If V is a coherently moving
region without strong discontinuities, the over-smoothing does not occur. We emphasize
that contrary to other approaches computing optical flow in local regions [Sun et al.,
2010b; Zitnick et al., 2005], where the motion is restricted to a parametric model, we prefer
to compute a regularized flow field. Thus we overcome the difficulty of local parametric
approaches to handle complex motion fields, where the region V must be small enough to
ensure the validity of the parametric assumption, and large enough to avoid the aperture
problem. Figure 1 shows how the localization of variational methods can improve the
accuracy of the global approach when the region is suitably chosen: as the window size
increases, the details of the flow tends to disappear. Our strategy to select the optimal
region of each pixel is presented in the next section.
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A.3 Semi-local framework

Our aim is to estimate the motion at each pixel with a local variational model (A.4)
in coherently moving regions. Existing similar approaches are restricted to parametric
motion and are based either on an image gradient segmentation [Zitnick et al., 2005],
subject to over-segmentation of the flow field, or on global variational minimization of
non-convex functionals [Sun et al., 2010b] for joint estimation of regions and motion,
suffering from the drawbacks described in the previous section. Our semi-local framework
performs an implicit segmentation of the flow field, without global variational estimation
or image segmentation.

Local estimations Local variational estimations are performed on overlapping square
windows of different sizes. For a fixed size s, let Vs,α be a set of regularly spaced windows
covering the whole image, with an amount of overlap α between neighbors (see Fig. 2).
For a set of varying sizes S = {s0, . . . , sn}, we define VS,α = ⋃

s∈S
Vs,α. For each window

V ∈ VS,α, a local motion field wV is estimated by minimization of (A.4).
One pixel is contained in several overlapping windows with different locations

and sizes. We denote NV (x) the set of windows containing the pixel x (see Fig. 2,
NV (x) = V1, .., V4}). The computed flow fields over these windows provide a set
{wV (x)}V ∈NV (x) of candidate motion vectors at each pixel x.

Global aggregation The aggregation step aims at combining the locally estimated flow
fields to compute an optimal global flow field. The goal is to select at each pixel the most
appropriate window. To this end, we consider the aggregation as a multi-label assignment
problem, where local candidates {wV (x)}V ∈NV (x) constitute the discrete label space at
pixel x. The global flow field wΩ resulting from the aggregation is then the minimizer of
a global objective energy:

wΩ = arg min
w

EΩ(w) s.t. w(x) ∈ {wV (x)}V ∈NV (x). (A.5)

Thus, the solution is found by selecting the best motion vector among the small set of
candidates {w(x)}V ∈NV (x). We define EΩ as:

EΩ(w) =
∑
x∈Ω

ρdata(x, I,w) + λψreg(x,w) (A.6)

where ψreg(·) is a Markov Random Field prior:

ψreg(x,w) =
∑

y∈∆(x)
φ
(
|u(x)− u(y)|2 + |v(x)− v(y)|2

)
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Figure A.2: Illustration of the patches distribution for a given size s and overlapping ratio
α = 0.3. The pixel x is contained in four patches V1, . . . , V4 providing four candidates for x:
wV1(x), . . . , wV4(x).

where ∆(x) is a 4 or 8 pixel neighborhood. The energy EΩ is actually a discrete version of
the energy (A.1). The difference with global variational minmization of (A.1) is that we
impose the solution to belong to the set of local variational estimations {wV (x)}V ∈NV (x).
Our discrete optimization scheme does not suffer from the over-smoothing effect of
the global variational approach. Consequently, it selects the candidates coming from
coherently moving regions, which are not affected by this over-smoothing (see the
smallest window in Fig. 1). This selection of the optimal window at each pixel can be
seen as an implicit segmentation of the spatial minimization domain used for the baseline
variational method.

Discrete optimization In this subsection we detail our approach for the discrete
optimization problem (A.5). The formulation of (A.5) differs from the classical multi-label
assignment scheme because the regularization is not applied to the discrete labels but
to the continuous-valued motion vectors assigned to the labels. This problem has been
addressed in the context of optical flow estimation in [Lempitsky et al., 2010] with
candidates estimated by several global methods. The authors achieved the multi-label
optimization with the fusion-move algorithm, which operates by successive fusions of
proposal labellings (see [Lempitsky et al., 2010] for more details about fusion-move and
its applications). We apply this technique for solving (A.5).
The fusion-move algorithm requires a set of global flow fields {wΩ1 , . . . , wΩN } to be

fused. Let us consider that the set of candidates at each pixel {wV (x)}V ∈NV (x) is
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A.4 Results and discussion

composed by a maximum number of N candidates. Then for i ∈ {1 . . . N}, we assign
to wΩi(x) one arbitrarily chosen candidate in {wV (x)}V ∈NV (x), so that each candidate
is assigned to at least one global flow field wΩi(x). Our experiments showed that the
assignment strategy of the local candidates in the global flow fields has negligible influence
on the final result.

A.4 Results and discussion

We use the Average Angular Error (AAE) to evaluate the performance of our method on
sequences of the Middlebury benchmark [Baker et al., 2011]. Two aggregation procedures
are considered: SL-fusion performs the discrete optimization described in Section 3.2
and 3.3; SL-Mean performs a weighted mean of the local candidates, favoring central
pixels with a gaussian filter centered on each window. In all our experiments we fix the
parameters of [Brox et al., 2004] λ = 40 and γ = 5.

Table 1 compares the AAE of the baseline variational method [Brox et al., 2004] with
SL-fusion and SL-Mean, for several sets of window sizes S. The superior performance
of SL-fusion over SL-Mean highlights that the selection of the best window is crucial to
prevent the global flow field from being influenced by outliers coming from inappropriate
regions. For SL-fusion, the errors obtained with single sizes are always higher than those
obtained with their combination. This result shows that a single window size is not able
to capture all types of coherently moving regions and that the aggregation procedure
successfully combines the advantages of each size by selecting the best region. The results
of SL-fusion with S = {15, 49, 129} are significantly better than those of the baseline
variational method for the sequences Grove3, Rubberwhale and Grove2. This is due to
the better preservation of the discontinuities illustrated in Fig. 3. We mention that even
for very smooth sequences like Dimetrodon, large window sizes (here 129) ensure that the
result cannot be worse than the global variational method, and is even slightly improved.
The influence of the amount of overlap α is shown in Fig. 4. As it can be intuitively

expected, the error decreases when the overlap increase. Indeed, the overlap determines
the number of candidate regions, and thus the probability that the windows fall in
appropriate regions.

A.5 Conclusion and future work

We proposed a new approach for optical flow estimation, combining global methods
with local minimization regions. Our experiments showed that our semi-local framework
improves the estimation accuracy of a baseline variational method along discontinuities
of the motion field, by performing an implicit segmentation of the spatial minimization
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Grove2 Grove3 RubberWhale Dimetrodon
Variational [Brox et al., 2004] 2.38 5.97 3.92 1.83

SL-Mean
S = {15} 4.91 17.7 5.42 4.40
S = {49} 2.43 6.11 4.04 1.91
S = {129} 2.38 6.01 3.98 1.83

S = {15, 49, 129} 4.21 16.2 5.05 3.54
SL-fusion
S = {15} 2.95 12.8 4.47 3.30
S = {49} 2.27 5.85 3.69 1.87
S = {129} 2.30 5.83 3.71 1.81

S = {15, 49, 129} 2.10 5.60 3.34 1.79

Table A.1: Comparison of the results (AAE) obtained with our implementation of [Brox et al.,
2004], SL-Mean and SL-fusion for α = 0.75.

domain. In the future we plan to extend this general framework to non-variational baseline
methods and adaptive region shapes.
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Figure A.3: Visual comparison between global variational estimation (1st column) and its
integration in SL-fusion with S = {15, 49, 129} and α = 0.75 (2nd column) on Grove3 and
Rubberwhale.
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B Differentiation of (6.12)

We want to compute ∂E/∂σ(x), where

E(w, σ) =
∑
x∈Ω

φd
(
αT

w,σ(x)J0
σ(x)αw,σ(x)

)
+ φd

(
αT

w,σ(x)J
x1x2
σ(x) αw,σ(x)

)
+ β

∑
z∈N (x)

φr((σ(x)− σ(z))2)

where we denote x1, x2 the vertical and horizontal axes, and

αw(x) =

 u(x)
v(x)

1

 , w =
(
u

v

)
, J0

σ(x) = Kσ(x) ∗

 η0I
2
x1 η0Ix1Ix2 η0Ix1It

“ η0I
2
x2 η0Ix2It

“ “ η0I
2
t

 ,

Jx1x2
σ(x) = Kσ(x) ∗

(
ηx1I

2
x1x1 + ηx2I

2
x1x2 ηx1Ix1x1Ix1x2 + ηx2Ix1x2Ix2x2 ηx1Ix1x1Ix1t + ηx1Ix1x2Ix2t

“ ηx1I
2
x1x2 + ηx2I

2
x2x2 ηx1Ix1x2Ix1t + ηx2Ix2x2Ix2t

“ “ ηx1I
2
x1t

+ ηx2I
2
x2t

)
.

We rewrite E(w, σ) by expliciting the convolution:

E(w, σ)) =
∑
x∈Ω

φd
(
kσ ∗

(
η0 (It + Ix1u(x) + Ix2v(x))2

))
+ γφd

(
kσ ∗

(
ηx1 (Ix1t + Ix1x1u(x) + Ix1x2v(x))2

+ηx2 (Ix2t + Ix2x1u(x) + Ix2x2v(x))2
))

+ β
∑

z∈N (x)
φr((σ(x)− σ(z))2)

=
∑
x∈Ω

φd

∑
y∈Ω

kσ(x)(x, y)
(
η0 (It + Ix1u(x) + Ix2v(x))2

)
+ γφd

(∑
y∈Ω

kσ(x)(x, y)
(
ηx1 (Ix1t + Ix1x1u(x) + Ix1x2v(x))2

+ ηx2 (Ix2t + Ix2x1u(x) + Ix2x2v(x))2
))

+ β
∑

z∈N (x)
φr((σ(x)− σ(z))2)
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Case of φd(z2) = z2:

∂E(w, σ)
∂σ(x) =

(∑
y∈Ω

∂kσ(x)(x, y)
∂σ(x)

(
η0 (It + Ix1u(x) + Ix2v(x))2

)
(B.1)

+
∂kσ(x)(x, y)
∂σ(x)

(
ηx1 (Ix1t + Ix1x1u(x) + Ix1x2v(x))2 (B.2)

+ ηx2 (Ix2t + Ix2x1u(x) + Ix2x2v(x))2
))

(B.3)

−2β
∑

z∈N (x)
(σ(x)− σ(z))φ′r((σ(x)− σ(z))2) (B.4)

From (6.11), we have:

∂kσ(x)(x, y)
∂σ(x) =

kσ(x)(x, y)
σ(x)

(
‖x− y‖2

σ2(x) − 1
)

(B.5)

Replacing (B.5) in (B.1), we obtain:

∂E(w, σ)
∂σ(x) =

(∑
y∈Ω

kσ(x)(x, y)
σ(x)

(
‖x− y‖2

σ2(x) − 1
)(

η0 (It + Ix1u(x) + Ix2v(x))2
)

(B.6)

+
kσ(x)(x, y)
σ(x)

(
‖x− y‖2

σ2(x) − 1
)(

ηx1 (Ix1t + Ix1x1u(x) + Ix1x2v(x))2

+ ηx2 (Ix2t + Ix2x1u(x) + Ix2x2v(x))2
))

−2β
∑

z∈N (x)
(σ(x)− σ(z))φ′r((σ(x)− σ(z))2).

We introduce the filter hσ(x) defined by:

hσ(x) ∗ I =
∑
y∈Ω

kσ(x)(x, y)
σ(x)

(
‖x− y‖2

σ2(x) − 1
)
I(y).

(B.7) can then be rewritten:
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∂E(w, σ)
∂σ(x) = hσ(x) ∗

(
η0 (It + Ix1u(x) + Ix2v(x))2

)
+ hσ(x) ∗

(
(Ix1t + Ix1x1u(x) + Ix1x2v(x))2

+ ηx2 (Ix2t + Ix2x1u(x) + Ix2x2v(x))2
)

−2β
∑

z∈N (x)
(σ(x)− σ(z))φ′r((σ(x)− σ(z))2)

Arbitrary φd:

∂E(w, σ)
∂σ(x) = hσ(x) ∗

(
η0 (It + Ix1u(x) + Ix2v(x))2

)
φ′d

(
kσ ∗

(
η0 (It + Ix1u(x) + Ix2v(x))2

))
+ hσ(x) ∗

(
(Ix1t + Ix1x1u(x) + Ix1x2v(x))2

+ ηx2 (Ix2t + Ix2x1u(x) + Ix2x2v(x))2
)

φ′d

(
kσ ∗

(
(Ix1t + Ix1x1u(x) + Ix1x2v(x))2

+ ηx2 (Ix2t + Ix2x1u(x) + Ix2x2v(x))2
))

−2β
∑

z∈N (x)
(σ(x)− σ(z))φ′r((σ(x)− σ(z))2)
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C Differentation of (6.19)

We want to compute ∂E/∂σ(x), where

E(w, σ) =
∑
x∈Ω

φ
(
αT

w,σ(x)Jσ(x)αw,σ(x)
)
dx+ β

∑
z∈N (x)

φr((σ(x)− σ(z))2)

with

αw,σ(x) =


u(x)
v(x)
σ2(x)

1

 , Jσ(x) = kσ(x) ∗


I2
x1 Ix1Ix2 Ix1

∆I
2 Ix1It

“ I2
x2 Ix2

∆I
2 Ix2It

“ “
(

∆I
2

)2 ∆I
2 It

“ “ “ I2
t


We rewrite E(w, σ) to simplify calculations:

σ̂ = arg min
σ

∑
x∈Ω

φ
(
σT (x)J2,σ(x)σ(x)

)
+ β

∑
z∈N (x)

φr((σ(x)− σ(z))2) dx

with

σw,σ(x) =
(
σ2(x)

1

)
, J2,σ(x) = kσ(x) ∗

 (
∆I
2

)2 (
∆I
2

)
(It + Ix1 û(x) + Ix2 v̂(x))

“ (It + Ix1 û(x) + Ix2 v̂(x))2


= kσ(x) ∗

(
J11

2 J12
2

“ J22
2

)

We rewrite E(w, σ) by expliciting the Gaussian convolution weights k:

E(w, σ) =
∑
x∈Ω

φ
(
kσ(x) ∗

(
J11

2 σ
4(x) + 2J12

2 σ
2(x) + J22

2

))
dx+ β

∑
z∈N (x)

φr((σ(x)− σ(z))2)

=
∑
x∈Ω

φ

∑
y∈Ω

kσ(x)(x, y)
(
J11

2 (y)σ4(x) + 2J12
2 (y)σ2(x) + J22

2 (y)
)

+ β
∑

z∈N (x)
φr((σ(x)− σ(z))2)
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C Differentation of (6.19)

Case of φ(z2) = z2:

∂E(w, σ)
∂σ(x) =

(∑
y∈Ω

∂kσ(x)(x, y)
∂σ(x)

(
J11

2 (y)σ4(x) + 2J12
2 (y))σ2(x) + J22

2 (y)
)

(C.1)

+kσ(x)(x, y)
(
4J11

2 (y)σ3(x) + 4J12
2 (y)σ(x))

))
−2β

∑
z∈N (x)

(σ(x)− σ(z))φ′r((σ(x)− σ(z))2)

From (6.11), we have:

∂kσ(x)(x, y)
∂σ(x) =

kσ(x)(x, y)
σ(x)

(
‖x− y‖2

σ2(x) − 1
)

(C.2)

Replacing (C.2) in (C.1), we obtain:

∂E(w, σ)
∂σ(x) =

(∑
y∈Ω

kσ(x)(x, y)
(
‖x− y‖2

σ2(x) − 1
)(

J11
2 (y)σ3(x) + 2J12

2 (y)σ(x)) + J22
2 (y)
σ(x)

)

+ kσ(x)(x, y)
(
4J11

2 (y)σ3(x) + 4J12
2 (y)σ(x))

))
− 2β div(∇σφ′(|∇σ(x)|2))

=
(∑
y∈Ω

kσ(x)(x, y)‖x− y‖2
(
J11

2 (y)σ(x) + 2J12
2 (y)σ−1(x)) + J22

2 (y)σ−3(x)
)

+ kσ(x)(x, y)
(
3J11

2 (y)σ3(x) + 2J12
2 (y)σ(x)− J22

2 (y)σ−1(x)
))

−2β
∑

z∈N (x)
(σ(x)− σ(z))φ′r((σ(x)− σ(z))2)

We introduce the filter h2σ(x) defined by:

h2σ(x) ∗ I =
∑
y∈Ω

kσ(x)(x, y)
(
‖x− y‖2

)
I(y).

(B.7) can then be rewritten:

180



∂E(w, σ)
∂σ(x) = h2σ(x) ∗

(
J11

2 σ(x) + 2J12
2 σ
−1(x)) + J22

2 σ
−3(x)

)
+ kσ(x) ∗

(
3J11

2 σ
3(x) + 2J12

2 σ(x))− J22
2 σ
−1(x)

)
−2β

∑
z∈N (x)

(σ(x)− σ(z))φ′r((σ(x)− σ(z))2)

Arbitraryφ:

∂E(w, σ)
∂σ(x) =

(
h2σ(x) ∗

(
J11

2 σ(x) + 2J12
2 σ
−1(x)) + J22

2 σ
−3(x)

)

+ kσ(x) ∗
(
3J11

2 σ
3(x) + 2J12

2 σ(x))− J22
2 σ
−1(x)

))
·

φ′
(
kσ(x) ∗

(
J11

2 σ
4(x) + 2J12

2 σ
2(x) + J22

2

))
−2β

∑
z∈N (x)

(σ(x)− σ(z))φ′r((σ(x)− σ(z))2)
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