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Introduction

Bose Einstein condensation (BEC) is a statistical phenomena which was �rst predicted
in 1925 by A.Einstein [1, 2] based on the work of S.N.Bose. Below a certain critical
temperature Tc, macroscopic number of atoms will occupy the ground state of the sys-
tem, leading to a macroscopic quantum state. This condensation caused directly by the
quantum statistics of Bosons, Bose-Einstein statistics, can happen even in the system
without inter-atomic interactions [3]. However, the extremely low critical temperature
Tc makes BEC very di�cult to realize. In 1980s, with the help of the techniques of laser
cooling, alkali atoms are �rst time cooled below milli-Kelvin, which makes a large step
towards BEC. S. Chu, C. Cohen-Tannoudji and W. D. Phillips are awarded Nobel Prize
for physics in 1997 for this contribution [4, 5, 6]. In 1995, combining the laser cooling
and the evaporative cooling techniques, BEC is realized in dilute gases of alkali atoms
in JILA [7] and MIT [8]. In 2001, E. Cornell, W. Ketterle and C. Wieman are awarded
Nobel Prize for physics for this achievement [9, 10].

The realization of the Bose-Einstein condensation in ultra-cold dilute gases not only
achieves the prediction by Bose and Einstein in 1905, more importantly, this new macro-
scopic quantum state opens a large area of research [11, 12]. Compare to the other
macroscopic quantum systems,e.g. 4He super
uid, the ultra-cold dilute gases have sev-
eral distinct features. First, ultra-cold dilute gas is a weakly-interacting system. The
inter-atomic interactions can be modelized by a single parameter, the scattering lengtha
[3, 12]. This weakly-interacting system can be well described by Bogoliubov mean-�eld
theory, which is proved to be very e�ective in describing many aspects of the condensate,
for instance, the density distribution, the excitation modes, and the vortices [3, 12]. Sec-
ond, the inter-atomic interactions can be tuned by Feshbach resonance [13, 14, 15]. This
allows one to reach the strongly correlated regime by increasing the scattering lengtha
[16, 17] or even change the nature of the interactions (repulsive or attractive) [16]. Finally,
various kinds of atoms are suitable for the formation of BEC [7, 8, 18, 19, 20, 21, 22, 23],
which gives many choices for the experiments. Besides the realization of the Bose-Einstein
condensation in ultra-cold Bose gases, ultra-cold Fermi gases [24] and molecule conden-
sation are also studied [25].

In this thesis, we focus on the so-called spinor condensate, which is a condensate with
multiple internal degrees of freedom, spin [26]. Early experimental work on the spinor
condensate in ultracold Bose gases started in 1998 [27, 28], followed by theoretical anal-
ysis on the spin-1 interacting Bose gases [29, 30]. Using an optical trap, all sub-Zeeman
levels of a certain hyper�ne state can be trapped, independent with the spin states. Be-
cause of this supplementary degree of freedom, the interaction with external magnetic
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�eld is important in the spinor condensate system. The interplay between the internal
interactions between atoms and the interaction with external �eld provides rich physics
to study, such as spin texture [28], coherent spin mixing dynamics [31],etc. In our ex-
periment, we work with 23Na atoms, total spin F = 1 in the hyper�ne ground states
with 3 Zeeman sub-levels,mF = (+1 ; 0; � 1). We concentrate mainly on two aspects: the
phase diagram of spin-1 condensate and collective spin 
uctuations. The later needs a
many-body quantum analysis, instead of the mean-�eld theory, which describes very well
most of the experiments.

Plan of thesis

This thesis consists of 4 chapters.

In chapter 1, we introduce the basic theory of the spinor Bose-Einstein condensate in
our experiment. We begin with the simple scalar case and then introduce the spinor
case. We concentrate, in this chapter, on the mean-�eld description of the condensate
which agrees well with most of the experiments [3] and a more detailed theory will be
discussed in chapter 4. Brie
y speaking, according to mean-�eld approach, the conden-
sate can be described by an order parameter �(r ) (in spin-1 case, the order parameter
is a 3 component vector (�+1 (r ); � 0(r ); � � 1(r ))), obeying the Gross-Pitaevskii equation,
which determines the properties of the condensate. Moreover, in our experiment, it is
reasonable to apply the single mode approximation, which decouples the spin and the
spatial degrees of freedom and supposes all spin components share the same spatial wave
function. We predict a phase transition for the condensate, which will be studied exper-
imentally in chapter 3. However, at �nite temperature, the thermal atoms are always
present. We use the so-called semi-ideal Hartree-Fock approximation [3], which neglects
the correlations between the condensate and the thermal cloud, to calculate the distribu-
tions of the condensate and the thermal cloud in each spin state (mF = +1 ; 0; � 1) with
the presence of the interactions between condensate and thermal cloud. In fact, in this
thesis, we always use this approximation to describe the system when both condensate
and thermal cloud are present.

In chapter 2, we introduce step by step how we realize, control, detect and analyze
our spin-1 Bose-Einstein condensate. The realization of BEC takes several steps, includ-
ing the cooling in the Magneto-Optical Trap (MOT), compression and evaporation in
dipole traps. At the end of the evaporation, we obtain an almost pure condensate with
about 5000 atoms in the trap. We explain how to use spin distillation and depolarization
process to control the magnetizationmz between 0 and 0.9 (mz = n+1 � n� 1)1, which is
important for the phase diagram experiment described in chapter 3. Finally, we introduce
several methods to reduce the noise of the absorption image and the model to analyze
the image, from which we can get important informations, including total atom number,
temperature, condensate fraction,etc.

1we denoteN i (i = +1 ; 0; � 1) the atom number in mF = i state, and ni = N i =N the relative atom
number in mF = i state, with N = N+1 + N0 + N � 1 the total atom number
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In chapter 3, we study the phase diagram of the spinor gas at very low temperatures,
where the atomic sample is purely condensed. We observe a phase transition between a
so-called antiferromagnetic phase, which is characterized by the absence of themF = 0
component, and a so-called broken-asymmetry phase, which is characterized by the pres-
ence of themF = 0 component. When comparing with the SMA theory of chapter 1,
we �nd a good agreement between the mean-�eld theory prediction in chapter 1 and
our experiment. We also remark abnormal large 
uctuations at low magnetic �elds and
low magnetizations. In fact, these large 
uctuations, which can not be explained by the
mean-�eld theory, is the subject in the next chapter.

In chapter 4, we study the large collective 
uctuations mentioned in chapter 3 both
in theory and in experiment. We �rst give a quantum analysis (replacing the mean-�eld
solution in chapter 1) of SMA Hamiltonian ĤSMA , which describes the condensate. We
develop a so-called \broken symmetry approach", precise enough compared with the ex-
act diagonalization and much faster. However, two major di�erences are noticed between
the SMA theory and the experimental measurements. Therefore, we generalize the SMA
theory by generalizing the distribution of magnetization and taking the thermal atoms
into account, which use the semi-ideal Hartree-Fock approximation introduced in chapter
1. We plot, as in chapter 1, 1� h n0i as a function ofq, additionally we also plot � n0 as a
function of q. These curves give many important information of the system, including the
temperature, the condensate fraction,etc. We use the theory developed above to �t the
1 � h n0i and � n0 curves measured in the experiment and obtain the temperatures and
condensate fraction of our system. We �nd that the \spin temperature" is much smaller
than the \kinetic temperature" and we discuss the possible reasons in the end.
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Chapter 1

Mean-�eld theory of spinor
Bose-Einstein Condensates

1.1 Introduction

Bose-Einstein condensation is a phase transition predicted by Einstein in 1924 [1, 2]. A
macroscopic number of atoms occupy the fundamental state of the system when they
are cooled down below certain critical temperature [32]. This phenomena is a perfect
illustration of quantum statistics: Bose-Einstein statistics in this case. After 71 years of
the prediction, in 1995, Bose-Einstein condensation was �rst time realized in dilute gases
by E. Cornell, C. Wieman, and W. Ketterle [7, 8, 18].

Ordinary Bose-Einstein condensate (BEC), or scalar BEC, is a BEC with only one compo-
nent. This kind of BEC can be described by a scalar wave function (order parameter)� (r )
[3]. In the �rst realizations of BEC experiments, magnetic traps are generally adopted
to cool down and conserve the cold atoms. In fact, the magnetic trap conserves only
the atoms in the so-called \weak �eld seeking" hyper�ne states [33, 34]. As a result, the
internal degree of freedom, spin, is frozen. This is an example of scalar BEC. A spinor
BEC is a condensate with multiple internal degrees of freedom, spin [26]. With the help
of far-o� resonance optical traps, which interact with atoms almost spin independently,
all spin states can be conserved in the trap [28]. Spinor BEC, can be described by a
vector wave function (order parameter) which consists of several components. In our
experiment, the atoms of sodium are inF = 1 mF = f +1; 0; � 1g hyper�ne spin state
[35]. As a result, the condensate is described by a three components vector (� +1 ; � 0; � � 1),
each component corresponds to one of the Zeeman sub-levels.

In this chapter, we focus on the theory of the BEC, especially the mean-�eld theory
which agrees very well with most of our experiments [3]. We begin with the theory of
the scalar BEC in section 1.2, �rst in ideal case then in the case with interactions. We
calculate the critical temperature and condensate fraction in both cases. At �nite tem-
perature, the thermal atoms are always present in addition to the BEC. We describe the
interactions between thermal atoms and the condensate by the \semi-ideal" Hartree-Fock
approximation [36, 37, 3]. This approximation will also be adopted for spinor gases as
well. In section 1.3, we turn to the spinor BEC at zero temperature. First, we give a brief
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introduction to the energy structure of the atom,23Na, which we use in the experiment,
and we write down explicitly the Hamiltonian of our system including the spin-dependent
interactions between atoms and the Zeeman e�ects in a magnetic �eldB . Then we use
the mean-�eld approach to calculate the behavior of the spinor condensate in response to
the magnetic �eld and predict the existence of a phase transition [38]. In the last section,
we use the \semi-ideal" Hartree-Fock method mentioned above to calculate the proper-
ties of the spinor gas at �nite temperatures. We will focus on the atom number in each
Zeeman states (mF = +1 ; 0; � 1) state as a function of the magnetic �eld, which is easy
to measure in the experiment, and reveals many informations of our spinor condensate
system.

1.2 Elements for scalar condensate

1.2.1 The ideal Bose gas

We begin with the ideal Bose gas, which means we neglect the interactions between
atoms. In the experiment, atoms are normally con�ned in a trap which can be magnetic
or optical. The trap can be well approximated by the harmonic potential nearby the
minimum of the trap [12]:

Vext (r ) =
1
2

m(! 2
xx2 + ! 2

yy2 + ! 2
zz2): (1.1)

Here m denotes the mass of the atom,! i with i = ( x; y; z) the pulsation in (x; y; z)
directions. Since we consider Bose gas without interactions, the many-body Hamiltonian
is simply the sum ofN harmonic oscillator Hamiltonian

Hsp(r ; p) =
p2

2m
+ Vext (r ); (1.2)

with single-particle eigenvalues

"nx ny nz = ( nx +
1
2

)~! x + ( ny +
1
2

)~! y + ( nz +
1
2

)~! z; (1.3)

Here (nx ; ny; nz) are non-negative integers. The ground state� (r 1; :::; r N ) for N nonin-
teracting bosons is the product wave function� (r 1; :::; r N ) =

Q
i ' 0(r i ) [12], where the

single-particle ground state' 0(r ) is given by

' 0(r ) =
� m�!

� ~

� 3=4
exp

�
�

x2

2� 2
x

�
y2

2� 2
y

�
z2

2� 2
z

�
: (1.4)

Here �! = ( ! x ! y! z)1=3, and � i =
p

~=m! i , with i = x; y; z.

If the temperature T is large compared with the level spacing (constant in the harmonic
trap case), kB T � ~! i (i = x; y; z), we can adopt the \semi-classical" approximation
which considers the atoms as classical particles possessing a positionr and a momentum
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p and evolving in the classical phase space. As a result, the phase space density function
for bosons is determined by the Bose-Einstein distribution [3]:

f BE (r ; p) =
1
h3

�
1

e� (" (r ;p )� � ) � 1
; (1.5)

evaluated at the classic energy"(r ; p) = p2=2m + Vext (r ), where � = 1=kB T, and � the
chemical potential.

Integrating the phase space density distribution (Eq. (1.5)) over momentum space, we
obtain the distribution only in the coordinate space which is the atom spatial density in
the con�ning potential Vext (r ):

nth (r ) =
1

� 3
db

g3=2(e� (� � Vext (r )) ): (1.6)

Integrating again the spatial densitynth (r ) over the coordinate space. We obtain the
total atom number:

N th =
Z

nth (r ) d3r =
� kB T

~�!

� 3
g3(e�� ): (1.7)

In Eq. (1.6) and (1.7),g� denotes the Bose function de�ned byg� (u) =
P 1

k=1 uk=k� , and
� dB = h=

p
2�mk B T the thermal De Broglie wavelength.

In Eq. (1.7), we remark that N th has a upper bound with (N th )max = g3(1)(kB T=~�! )3

(because the chemical potential� < 0). Once the temperatureT is below certain critical
temperature Tc, the exited states are saturated, which means a macroscopic number of
atoms have to be \condensed" to the single-particle ground state. This phenomena is
known as Bose-Einstein condensation, which is predicted originally by A. Einstein [2] base
on the work of S. N. Bose [1]. Essentially, it is a phase transition between the \normal"
phase and the \condensed" phase in which a macroscopic number of atoms occupy the
single-particle ground state.

According to the discussions above, the phase transition temperatureT id
c (\id" denotes

\ideal") is given by the condition N = ( N th )max , or :

kB T id
c = ~�!

� N
g3(1)

� 1=3
� ~�!

� N
1:202

� 1=3
: (1.8)

Below T id
c , atoms are condensed to the ground state. The condensate fractionf c, which

is the ratio between condensed atom number and the total atom number, is given by

f c =
Nc

N
= 1 �

� T
T id

c

� 3
: (1.9)

We estimate the spatial size of the condensate and of the thermal cloud as follows. The
size of the condensate is the size of the ground state (Eq. (1.4)):

Rid
c � aho �

p
~=(m�! ): (1.10)
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The size of the thermal cloud (Eq. (1.6)) is

Rid
th �

p
kB T=(m�! 2): (1.11)

As kB T � ~�! , the thermal cloud is much more extended than the condensate.

Another important parameter is the phase space density which is de�ned as the product
between thermal spatial densitynth (r ) and the cubic power of the thermal De Broglie
wavelength:

D(r ) = nth (r )� 3
dB : (1.12)

At the critical point, the phase space density at the center of the trap

Dc(0) = n(0)� 3
dB (T id

c ) = g3=2(1) � 2:612: (1.13)

It gives us a simple physical picture to better understand the Bose-Einstein condensation
[33]. When distances between atoms approach the thermal De Broglie wavelength, the
condensation begins, which also means strong statistical correlations between atoms. The
picture of individual atoms appropriate to a thermal gas begins to be replaced by the
picture of a macroscopic wave function which describes all the atoms in the condensate
as a whole. This will be discussed in detail in the next few sections.

1.2.2 Bose gas with interactions

1.2.2.1 De�nition, One-body density matrix

In section 1.2.1, we have discussed the ideal Bose gas. In a noninteracting system, the
ground state of the whole system is simply the product of single-particle wave functions
[12]. However, in the case of many interacting particles, the notion of a single-particle
ground state is ill de�ned. We should re-de�ne the Bose-Einstein condensation di�erently
by the one-body density matrix [34, 3]

� 1(r 0; r ; t) = h	̂ y(r 0; t)	̂( r ; t)i : (1.14)

Here, 	̂( r ; t), and 	̂ y(r ; t) denote �eld annihilation and creation operator respectively.

The one-body density matrix is Hermitian. Therefore, it can be diagonalized with real
eigenvalues as

� 1(r 0; r ; t) =
X

i

ni (t)� �
i (r 0; t)� i (r ; t): (1.15)

If one or more eigenvaluesni (t) is of the order of the total atom numberN , the system
undergoesBose-Einstein condensation. If only one eigenvalue is of orderN , it is a scalar
BEC. If several eigenvalues are of orderN , it is a fragmentedBEC [39], which is the main
subject of this thesis. There are many important aspects in the one-body density matrix
such as long range order [3], but we will not discuss in detail here.
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1.2.2.2 Interactions between atoms

Here, we recall brie
y how to modelize the interactions between atoms. The interactions
between atoms are in general very complicated. But for dilute cold atom gases, it can
be simpli�ed. Because of the low temperature of the gases, we can consider only the
s-wave scattering, which is described by a single parameter, thes-wave scattering length
a. Because of the diluteness of the gases, which satisfynjaj3 � 1, we can consider only
the pair-wise interactions. As a result, the interaction potential between two atoms inr 1

and r 2 can be modelized by a contact potentialVint , and irrelevant with the detail of the
interactions [40, 12].

Vint (r 1; r 2) = g� (r 1 � r 2); (1.16)

where g = 4� ~2a=m is obtained from the Born approximation, with � the Dirac distri-
bution. The interactions are repulsive ifa > 0 and attractive if a < 0. In this thesis, we
always considera > 0.

The condition of dilutenessnjaj3 � 1 means the inter-atomic distances are large compared
with scattering length. But it does not mean that the interactions are not important [12].
On the contrary, as we shall see later, the interactions change signi�cantly the properties
of the gas anddetermine the nature of the phase diagram for spinor gases.

1.2.2.3 Gross-Pitaevskii equation

The general Hamiltonian of interacting bosons con�ned by the external potentialVext in
second quantization representation is [3]:

Ĥ =
Z

d3r 	̂ y(r )
h

�
~2

2m
r 2 + Vext (r )

i
	̂( r )

+
1
2

Z
d3rd3r 0	̂ y(r )	̂ y(r 0)V̂int (r � r 0)	̂( r 0)	̂( r );

(1.17)

whereV̂int (r � r 0) is the interaction potential between two atoms.

The �eld operator 	̂( r ) obeys the Heisenberg equation of motion:

i~
@
@t

	̂( r ; t) = [ 	̂ ; Ĥ ]: (1.18)

Assuming a condensate is present in the system, we can decompose the �eld operator
	̂( r ; t) as [3]

	̂( r ; t) � �( r ; t) + � 	̂( r ; t); (1.19)

In Eq. (1.19), the �eld operator 	̂( r ; t) is decomposed into two parts. Thefunction
�( r ; t) is called the macroscopic wave function of the condensate and plays the role of an
order parameter. This complex function is characterized by its modulus and phase [3]

�( r ; t) = j�( r ; t)jeiS (r ;t ) : (1.20)

15



Its modulus �xes the condensate spatial densitync(r ; t) = j�( r ; t)j2. The other term
� 	̂( r ; t) describes the non-condensate component. For very low temperature, as a zero-
order approximation, we neglect the depletion term� 	̂( r ; t). This is a reasonable approx-
imation for small depletion of condensate (weak interactionnjaj3 � 1) [33]. Substituting
Eq. (1.19), (1.16) and (1.17) in Eq. (1.18), we have:

�
�

~2

2m
r 2 + Vext (r ) + gj�( r ; t)j2

�
�( r ; t) = i~

@
@t

�( r ; t); (1.21)

where� is the chemical potential. This equation, known as Gross-Pitaevskii (GP) equa-
tion [3], describes the behavior of condensate by a macroscopic wave function �(r ; t).
The GP equation is essentially a mean-�eld theory. The interactions between atoms are
considered as a mean �eld potentialgnc in the GP equation, neglecting all correlations.

In the stationary case, �( r ; t) = � (r ) e� i�t= ~, the GP equation becomes [3, 12]:
�
�

~2

2m
r 2 + Vext (r ) + gj� (r )j2

�
� (r ) = �� (r ; t): (1.22)

Here, we can de�ne an important dimensionless parameter [12]

� = Na=aho: (1.23)

This determines the ratio between the interaction and the kinetic energies [12],

E int =Ekin � �: (1.24)

This is thus the parameter expressing the importance of the interactions compared with
the kinetic energy. It can be much larger than 1 even ifnjaj3 � 1 (condition of diluteness).
As a result, dilute gases can also exhibit an important non-ideal behavior as we will see
in section 1.2.2.4.

1.2.2.4 Thomas-Fermi approximation

If � � 1, which means the interaction energy is much larger than the kinetic energy, we
can neglect the kinetic energy term� (~2=2m)r 2 to simplify the GP Eq. (1.22). The
density distribution is thus [12]:

n(r ) = j� (r )j2 =
1
g

max(� � Vext (r ); 0): (1.25)

According to Eq. (1.1), the density pro�le is a inverted parabola where� � Vext (r ) > 0,
and zero elsewhere. Integrating Eq. (1.25), we get the relation between the chemical
potential � and the total atom number N :

� =
~�!
2

� 15Na
aho

� 2=5
: (1.26)

As � � 1, we have� � ~�! .

From Eq. (1.25), the size of the condensate under Thomas-Fermi approximation is

RTF
c =

r
2�

m�! 2
: (1.27)
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Combining Eq. (1.27), (1.10) with condition � � ~�! , we haveRTF
c � Rid

c . Here, we
can see clearly that \strong" interactions dramatically change the form of the condensate
even if the gas is \dilute".

1.2.3 Calculation for scalar interacting Bose gas

In section 1.2.2, we get the GP equation for the condensed part. But the pure conden-
sate only exists whenT � 0. We should also consider the problem that condensate and
thermal cloud coexist atT < T c.

Solving the problem in general with both condensate and the thermal cloud is very
complicated. NearTc, � 	̂ is no longer small compared with �, making the expansion Eq.
(1.19) suspect. In principle, we should use Eq. (1.17), (1.18) to deal with the depletion
part � 	̂ and the order parameter � at the same time.

Here, we simplify the problem by separating the system into two parts, condensate and
thermal cloud, and solving them step by step. Both condensate and thermal cloud be-
have as con�ned in ae�ective potential V e� , which is composed by the trap potential
Vext and a mean-�eld interaction potential generated by condensate and thermal cloud.
This mean-�eld approach, known as Hartree-Fock approximation [36, 3], neglects the
correlations between the condensate and thermal cloud. This makes the calculation at
�nite temperature much more accessible.

In this section, we will calculate the condensate fraction and density pro�le belowTc

for the scalar gas. This method is subsequently adopted in the spinor case in section 1.4.

1.2.3.1 Semi-ideal Hartree-Fock approximation

According to the Hartree-Fock approximation, interactions are simpli�ed as a mean-�eld
e�ective potential. For thermal atoms, the e�ective potential V e�

th is the sum of the
trapping potential Vext and the mean-�eld potential of interactions with all the other
atoms 2gn(r ). Here n(r ) denotes the total spatial density :n(r ) = nc(r ) + nth (r ). So

V e�
th = Vext (r ) + 2 g[nc(r ) + nth (r )]: (1.28)

The factor of 2 in Eq. (1.28) is a consequence of quantum statistics. It arises from col-
lisions between thermal atoms, or a thermal atom and a condensate atom. It is however
absent for condensate-condensate interactions (in Eq. (1.29)), since the exchange term is
absent when the 2 particles wave function is directly symmetric [41].

For condensate, the e�ective potential is the sum of the trap potentialVext , the mean-�eld
potential of interactions by condensategnc, which is the interaction term in GP equation,
and the potential by thermal atoms 2gnth .

V e�
c = Vext (r ) + gnc(r ) + 2 gnth (r ): (1.29)
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As a result, the density distribution of condensed and thermal clouds are determined by
the two coupled equations below:

nc(r ) =
1
g

max
�

� � (Vext (r ) + 2 gnth (r )) ; 0
�

; (1.30)

nth (r ) =
1

� 3
dB

g3=2

�
e� � (Vext +2 gn(r )) =kB T

�
: (1.31)

We denote this method the \complete" Hartree-Fock approximation. Remember that Eq.
(1.30) is obtained under Thomas-Fermi approximation and Eq. (1.31) is obtained under
semi-classical approximation.

The \semi-ideal" Hartree-Fock approximation neglect also the in
uence of the thermal
cloud to the condensate [37], assuming that the spatial density of the condensate is much
larger than that of the thermal cloud, even if the condensate atoms number is less than
the number of thermal atoms. As a result, the Eq. (1.30) and (1.31) are simpli�ed as
follows:

nc(r ) =
1
g

max
�

� � Vext (r ); 0
�

; (1.32)

nth (r ) =
1

� 3
dB

g3=2

�
e� � (Vext +2 gnc (r )) =kB T

�
: (1.33)

In order to justify the validity of the \semi-ideal" approximation, we can always check
the spatial density for both thermal cloud and the condensatea posteriori. Here, a simple
estimation of the peak values of density pro�le for both components can give us some
con�dences. For the condensate, the peak densitync(0) � �=g . For thermal cloud, the
peak densitynth (0) � g3=2(e�� )=� 3

dB . If we useT � 0:9T id
c , N � 5000, we have

nc(0)
nth (0)

� 0:2 �
� aho

a

� 3=5
: (1.34)

Sinceaho � a, we havenc(0)=nth (0) � 1, which means the peak density of the conden-
sate is indeed much larger than that of the thermal cloud. It shows the validity of the
semi-ideal approximation in a broad temperature range. However, nearTc, the conden-
sate atom number will drop dramatically and the approximation fails.

Given a certain temperatureT and total atom number N t , we want to calculate the
condensate fraction and the spatial density pro�les for condensate and thermal cloud.
Using Eq. (1.32) and (1.33), the simulation is an iteration which consists of several steps

� We begin with certain chemical potential� 0, calculate the condensate density pro�le
nc(r ) by Eq. (1.32).

� Integrating nc(r ), we get the condensed atom number. In fact, for a given chemical
potential � , the condensed atom numberNc is given by Eq. (1.26)

Nc =
aho

15a

� 2�
~�!

� 5=2
; (1.35)
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� Calculate thermal spatial densitynth (r ) by Eq. (1.33) in usingnc(r ) obtained above.

� Integrating nth (r ), we get the total thermal atom numberN th .

� We adjust the chemical potential� so that the total atom number calculatedNc +
N th equals to the given total atom number within some precision (typically better
than 10� 3).

1.2.3.2 Simulation results

Here, we show in Fig. 1.1 an example of the simulation where total atom numberN =
5000. Atoms are con�ned in an isotropic harmonic trap �! = ! x = ! y = ! z = 2� � 1000 Hz.
We use the sodium atom massmNa = 3:82 � 10� 26 Kg [35], and a scattering length
a � 2:59 nm [42].
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Figure 1.1: (a) Condensate fractionf c as a function of T=Tid
c . Dash-dot line: Ideal

Bose gas by Eq. (1.9). Solid line: simulation by semi-ideal Hartree-Fock approximation.
Dashed line: simulation by complete Hartree-Fock approximation.
(b) Spatial density pro�le for thermal and condensed atoms as a function ofR=Rth , at
T=Tid

c = 0:9, with f c � 0:1. Blue solid and dased line: condensate density distribution
by complete and semi-ideal Hartree-Fock approximation, respectively. Red solid and
dashed line: thermal cloud density distribution by complete and semi-ideal Hartree-Fock
approximation, respectively. This plot show the validity of the semi-ideal Hartree-Fock
approximation, which neglect the in
uence of the thermal atoms on the condensate.

In Fig. 1.1a, we plot the condensate fraction as a function ofT=Tid
c by complete and

semi-ideal Hartree-Fock approximation and ideal Bose gas formula Eq. (1.8). At the
critical temperature, the spatial density distribution of the thermal cloud is not changed
compared with the ideal case because of the absence of the condensate. As a result, the
critical temperature predicted by semi-ideal Hartree-Fock approximation is not changed
compared with the ideal case. However, the critical temperature predicted by complete
Hartree-Fock approximation is slightly lower than that of the ideal case, because the in-

uence of the thermal cloud on the condensate is no longer neglected.
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In Fig. 1.1b, we plot the spatial density of the condensate and the thermal cloud as
a function of R=Rth by both complete and semi-ideal Hartree-Fock approximation, where
R is the radius coordinate,Rth is de�ned as Eq. (1.11). The temperature for this plot
is T=Tid

c = 0:9, where the condensate fractionf c � 0:1. Here we can verifya posteriori
that the size of the thermal cloud is much larger than that of the condensate and that
the amplitude of the condensate is much larger than that of the thermal cloud (even if
only 10% of atoms are in the condensate).

Finally, we compare the results obtained by the \semi-ideal" and the \complete" Hartree-
Fock methods [43]. The condensate fraction and the density pro�le of both components
calculated by semi-ideal and complete HF are close, if the condensate fraction is su�-
ciently large, typically above 10%. We conclude that the \semi-ideal" approximation is
a simple but very e�ective description of a mixed cloud.

1.3 Spinor BEC : Pure condensate at zero tempera-
ture

1.3.1 Hyper�ne structure of 23Na

In our experiment, we work with 23Na atoms. The energy structure is shown in Fig. 1.2
[35]. As the other alkali atoms, because of the spin-orbit coupling, the electronic 3P level
is split into 32P1=2 and 32P3=2 manifolds, which constitutes the �ne structure of Sodium.
The optical transition between the electronic ground state 32S1=2 and 32P1=2 is called the
D1 line, and the one between 32S1=2 and 32P3=2 is called theD2 line. In our experiment,
laser cooling operates on theD2 line. This will be discussed in details in the next chapter.

Moreover, because of the interactions between electronic angular momentum and the
nuclear spin, the energy levels of the �ne structure, 32S1=2, 32P1=2, 32P3=2, are all split
into several sub-levels by hyper�ne interaction, which is also shown in Fig. 1.2. The elec-
tronic ground state 32S1=2 is split into two hyper�ne levels, which are marked by the total
spin F , with F = 1 and F = 2. Altogether, the electronic ground state for23Na is 32S1=2,
F = 1, with three Zeeman sub-levels,mF = (+1 ; 0; � 1). This hyper�ne spin manifold
is used in our experiment to realize spinor condensate, which consists of three Zeeman
components and thus are described by a 3-component order parameter, ( ̂ +1 ;  ̂ 0;  ̂ � 1).

1.3.2 Hamiltonian of the interacting spin-1 Bose gas

1.3.2.1 Interaction of collision

In section 1.2.2.2, we have discussed the interaction between atoms in scalar case. In
spinor case, the interactions between atoms depend on the spin. We begin with two
atoms with spin s = 1. Suppose as in Eq. (1.16) a contact potential for the spatial part.

V̂ (r 1; r 2) = V̂s � � (r 1 � r 2): (1.36)
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Figure 1.2: SodiumD2 line hyper�ne structure.

Here, V̂s denotes the spin-dependent interaction. The interaction potential mainly comes
from the electrostatic interactions between the electron clouds repulsion, which are in-
variant by spin rotation. The two spins combine to a total angular momentumS = 0; 1; 2,
with projection mS = � S; :::; S. Due to the rotational invariance in spin space,S is a
conserved quantity in the collision.V̂s can thus be written as [29, 30, 26]:

V̂s =
X

S:mS

gSP̂S: (1.37)

Here, P̂S =
P

mS
jS; mSihS; mSj projects onto the subspace with total spinS, gs =

4� ~2aS=m, and aS is the S-channel scattering length.

In addition, when the spatial wave function is symmetric in the s-wave scattering regime,
only even values forS are allowed for bosons. So the interaction

V̂ (r 1; r 2) = ( a0P0 + a2P2) 
 � (r 1 � r 2):

= (�g1 + gss1 � s2) 
 � (r 1 � r 2):
(1.38)

Here, s1 and s2 are the spin operators for each atom, �g the spin-independent coupling
constant:

�g =
4� ~2

m
a0 + 2a2

3
; (1.39)

and gs the spin-dependent coupling constant:

gs =
4� ~2

m
a2 � a0

3
: (1.40)
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The spin-dependent interaction is called \anti-ferromagnetic" ifgs > 0, and \ferromag-
netic" if gs < 0 [29, 30, 26]. It means two interacting spins lower their energy by forming
the anti-aligned (aligned) con�guration if the interaction is anti-ferromagnetic (ferro-
magnetic). This coe�cient is crucial for the nature of the quantum gas. For sodium,
a2 = 2:89 nm, and a0 = 2:69 nm [42], thereforegs > 0. Sodium atoms present anti-
ferromagnetic interactions in the electronic ground state, one of the reasons why we work
with sodium in our experiment [44].

From Eq. (1.38), we can write the Hamiltonian forN interacting atoms in second
quantization representation. The total interaction Hamiltonian consists of two parts:
spin-dependent and spin-independent part,̂H int = �H + Ĥs, where

�H =
�g
2

Z
d3r n̂2(r ); (1.41)

and
Ĥs =

gs

2

Z
d3r Ŝ2(r ): (1.42)

In Eq. (1.41), (1.42), n̂(r ) is the density operator, andŜ2(r ) is the total spin operator.

n̂(r ) = n̂+1 (r ) + n̂0(r ) + n̂� 1(r )

= 	̂ y
+1 (r )	̂ +1 (r ) + 	̂ y

0(r )	̂ 0(r ) + 	̂ y
� 1(r )	̂ � 1(r ):

(1.43)

where (	̂ +1 (r ); 	̂ 0(r ); 	̂ � 1(r )) are the annihilation operators formF = +1 ; 0; � 1 Zeeman
sub-levels at positionr respectively.

The total spin operator Ŝ(r )2 = Ŝx (r )2 + Ŝy(r )2 + Ŝz(r )2 is obtained from

Ŝx (r ) =
1

p
2

(	̂ y
+1 (r )	̂ 0(r ) + 	̂ y

� 1(r )	̂ 0(r ) + 	̂ y
0(r )	̂ +1 (r ) + 	̂ y

0(r )	̂ � 1(r )) (1.44)

Ŝy(r ) = �
i

p
2

(	̂ y
+1 (r )	̂ 0(r ) + 	̂ y

� 1(r )	̂ 0(r ) � 	̂ y
0(r )	̂ +1 (r ) � 	̂ y

0(r )	̂ � 1(r )) (1.45)

Ŝz(r ) =
1

p
2

(	̂ y
+1 (r )	̂ +1 (r ) � 	̂ y

� 1(r )	̂ � 1(r )) = n̂+1 (r ) � n̂� 1(r ): (1.46)

As a result:

Ŝ(r )2 = n̂(r ) + n̂0(r ) + 2 n̂0(r )( n̂+1 + n̂� 1) + ( n̂+1 (r ) � n̂� 1(r ))2+

2(	̂ y
+1 (r )	̂ y

� 1(r )	̂ 0(r )	̂ 0(r ) + 	̂ y
0(r )	̂ y

0(r )	̂ +1 (r )	̂ � 1(r )) :
(1.47)

In Eq. (1.47), we divide the terms into two lines. The �rst line lists the terms describing
the spin-preservingcollisions which do not change the internal Zeeman sub-levels of the
atoms involved in the collisional process. The second line lists the terms describingspin-

ip collisions which change the internal states. As shown in Fig. 1.3, there are two terms
in the spin-
ip process. A pair ofm = 0 states are converted tom = +1 and m = � 1
or inversely. As a result, the magnetization (mz = ( N+1 � N � 1)=N) is conserved during
the atom collisions described by the HamiltonianH int .
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mF = +1 mF = � 1

mF = 0 mF = 0

Figure 1.3: Spin-
ip collisions processes in Eq. (1.47). The magnetizationmz is con-
served.

1.3.2.2 Magnetic �eld e�ects

The Hamiltonian of one alkali atom in a magnetic �eld is given by Breit-Rabi formula
[45, 41]. For Zeeman splittings small compared to the hyper�ne energy, it reduces to the
magnetic Hamiltonian

ĥmag = pŝz + q(ŝ2
z � 4): (1.48)

Here,ŝz is the spin operator inz direction, p and q the coe�cients of linear and quadratic
Zeeman e�ect respectively:

p = gF � B � B; (1.49)

q =
(gF � B )2

~! hf
� B 2; (1.50)

where gF is the Land�e factor, � B the Bohr magneton, and! hf the hyper�ne splitting
betweenF = 1 and F = 2 of the electronic ground state 32S1=2 (see Fig. 1.2). For
sodium, 32S1=2, F = 1 hyper�ne level, gF = � 1=2, and ! hf = 2� � 1:77 GHz [35],
therefore

p = � 700 kHz=G � B and q = 276:4 Hz=G2 � B 2: (1.51)

In Fig. 1.4, we illustrate the linear and quadratic Zeeman e�ect. The linear Zeeman e�ect
shifts the mF = +1 and mF = � 1 energy level by +p and � p respectively relative to
mF = 0 sub-level. The quadratic Zeeman e�ect shifts both themF = +1 and mF = � 1
energy level by +q relative to mF = 0 sub-level.

The Hamiltonian for N atoms in the magnetic �eld B can be rewritten as

Ĥmag = p(N̂+1 � N̂ � 1) + q(N̂+1 + N̂ � 1 � 4N̂ )

= � qN̂0 � 3qN̂ + p(N̂+1 � N̂ � 1)
(1.52)

Here, N̂+1 ; N̂0; N̂ � 1 are the number operator ofmF = +1 ; 0; � 1 respectively.

There are three terms in Eq. (1.52). The �rst term is the quadratic Zeeman e�ect
which plays a crucial role in the following discussions. The second term depends only
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Figure 1.4: Linear and quadratic Zeeman e�ects

on total atom number, and normally we can simply omit it. Last term is the linear
Zeeman e�ect proportional to magnetization which is conserved, so the last term is also
a constant. Up to an overall energy shift, we thus have

Ĥmag = � qN̂0: (1.53)

1.3.2.3 Total Hamiltonian of the spin-1 Bose gas

According to sections above, the total Hamiltonian of our system consists of several
parts: the kinetic energy, potential energy, the interactions between atoms, and quadratic
Zeeman e�ect.

Ĥ tot =
Z

d3r 	̂ y
i (r )

�
�

~2

2m
r 2 + Vext (r )

�
	̂ i (r ) + �H + Ĥs + Ĥmag: (1.54)

1.3.2.4 Single Mode Approximation (SMA)

In order to �nd the properties of a spinor BEC at T = 0, we introduce �rst the single
mode approximation (SMA) which supposes that all the spin components share the same
spatial wave function. This approximation was �rst introduced in [29, 46, 30], and studied
in [47]. The SMA is valid mainly because the spin-dependent interaction is much smaller
than the spin-independent interactiongs � �g. As a result, the vector order parameter
can be decomposed by a spin part which is still a vector and a spatial part which is a
scalar function

f 	̂ +1 (r ); 	̂ 0(r ); 	̂ � 1(r )g = � SMA (r ) � f â+1 ; â0; â� 1g: (1.55)

Hereâ+1 ; â0; â� 1 denote the annihilation operator formF = +1 ; 0; � 1 respectively. �SMA (r )
is the common spatial mode which is described by the Gross-Pitaevskii equation:

�
�

~2

2m
r 2 + Vext (r ) + �gNj� SMA (r )j2

�
� SMA (r ) = � � SMA (r ); (1.56)

and is normalized to unity,
R

d3r j� SMA (r )j2 = 1.

The Hamiltonian for the spin part j� i is:

ĤSMA =
Us

2N
Ŝ2 � qN̂0; (1.57)
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with

Us = gsN
Z

d3r j� SMA (r )j4: (1.58)

and

Ŝ2 = N̂ + N̂0 + 2N̂0(N̂+1 + N̂ � 1) + ( N̂+1 � N̂ � 1)2 + 2( ây
+1 ây

� 1â2
0 + ây2

0 â+1 â� 1): (1.59)

In next subsection, we will adopt the mean-�eld approach to solve theHSMA .

1.3.3 Mean-�eld approach to the spinor Hamiltonian - HSMA

The �rst level of approximation is to try a mean-�eld many-body wave function of the
form / (ay

~�
)N j0i where the condensate operatoray

~�
creates an atom in the single-particle

spin state ~� which is a normalized vector. In the mean-�eld approach, the operator is
approximated by a C-number as Eq. (1.19). So the normalized spin-dependent wave
function is:

j� i N =
1

p
N

0

@

p
N+1 ei� +1

p
N0 ei� 0

p
N � 1 ei� � 1

1

A =
1

p
2

0

@

p
x + mz ei� +1

p
2(1 � x) ei� 0

p
x � mz ei� � 1

1

A (1.60)

where N+1 ;0;� 1 are the atom number inmF = +1 ; 0; � 1 respectively,� +1 ;0;� 1 the phase
of the three spin components,mz the magnetization mz = ( N+1 � N � 1)=N and x =
(1 � N0=N).

Substituting Eq. (1.60) to the SMA Hamiltonian Eq. (1.57), we have:

Espin

Us
=

hm2
z

2
+ x(1 � x) + cos(� m )(1 � x)

p
x2 � m2

z

i
+ ( q=Us) � x: (1.61)

where� m = � +1 + � � 1 � 2� 0. In this equation, the �rst term at the right side describes the
anti-ferromagnetic interaction and the second term describes the quadratic Zeeman e�ect.

We have to minimize the energy in order to solve the ground state of the Hamiltonian
Eq. (1.57) under mean-�eld approximation, we have �rst cos(� m ) = � 1, which means

� m = � +1 + � � 1 � 2� 0 = �: (1.62)

In our experiment, the magnetizationmz is �xed once the sample is prepared. So, we
minimize the Eq. (1.61) as follows: for a �xedmz, we search for thexmin to minimize
the energy Eq. (1.61) for eachq value (magnetic �eld).

We plot the results for this calculation in Fig. 1.5. For each magnetization, we re-
mark that there exists a critical magnetic �eld qc below which N0 = 0. Only if q > qc

atoms begin to occupy themz = 0 state. The critical magnetic �eld is given by:

qc=Us = 1 �
p

1 � m2
z: (1.63)
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Figure 1.5: phase transition atqc between anti-ferromagnetic and broken axisymmetry
state.

� if q < qc, Espin is minimized at x = 1, which meansN0 = 0. The spin ground state
is

j� i =
1

p
2

ei� 0

0

@

p
1 + mz ei�

0
�

p
1 � mz e� i�

1

A (1.64)

where� = � +1 � � 0. This state is known as \anti-ferromagnetic" state [29].

� if q > qc, Espin is minimized at x = x0, with x0 the solution to the equation:

(1 � 2x0)(
q

x2
0 � m2

z � x0) + ( q=Us)
q

x2
0 � m2

z = m2
z: (1.65)

And the spin ground state is

j� i =
1

p
2

ei� 0

0

@

p
x0 + mz ei�

p
2 �

p
1 � x0

�
p

x0 � mze� i�

1

A : (1.66)

This state is known as \broken axisymmetry" state.

From the physical point of view, this phase transition originates from the competition be-
tween the anti-ferromagnetic interactions and the quadratic Zeeman e�ect. In considering
Eq. (1.62), the anti-ferromagnetic interaction part in Eq. (1.61) is

E int
spin

Us
=

m2
z

2
+ (1 � x)(x �

p
x2 � m2

z): (1.67)
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If mz 6= 0, the minimum of E int
spin is at x = 1, which means N0 = 0. Therefore, the

anti-ferromagnetic interaction prefers the atoms inmF = +1 and mF = � 1 states (for
mz 6= 0). However the quadratic Zeeman e�ect prefers the atoms in themF = 0 state. If
the magnetic �eld is not su�ciently large, the anti-ferromagnetic interactions dominate,
thus we haveN0 = 0. But when magnetic �eld is comparable or large enough compared
with the anti-ferromagnetic interactions, atoms begin to occupy themF = 0 state. This
is a phase transition between the anti-ferromagnetic phase to the broken axisymmetry
phase which are mentioned above. The casemz = 0 is special. At q = 0, all states in the
family of Eq. (1.66) are degenerate. This means going from one to another will be easy
and 
uctuations can be expected. We will study this situation in detail in chapter 4.

In chapter 3, we will compare the experiment results with the mean-�eld theory pre-
diction calculated in this section.

1.4 Spinor BEC : Condensate with thermal cloud at
�nite temperature

In this section, we combine the two aspects seen previously and consider the case: spinor
condensate at �nite temperatures. We adopt here the same idea in section 1.2.3, sepa-
rating the condensate and the thermal part and neglecting the in
uence of the thermal
part on the condensate. This approximation, as mentioned in section 1.2.3, is called
the semi-ideal Hartree-Fock approximation. Here, in the spinor case, the condensate is
described by the mean-�eld solution discussed in section 1.3.

Several phenomena can be discussed by this method including the di�erent critical tem-
peratures for di�erent spin components in di�erent magnetic �elds [48]. However, we
will focus here onN0, the occupation number in themF = 0 state. More precisely, we
calculate N0 as a function of magnetic �eld (or quadratic Zeeman energyq) for a given
magnetization mz. The reason for this calculation is that the atom number in each spin
component is the simplest quantity to measure in the experiment and as we will see in
this section, theN0(q) curve can reveal several important informations of the spin system,
including the temperature T, characterizing the thermal cloud at equilibrium, and the
condensate fractionf c. This calculation can also be extended to describe condensate spin

uctuations which will be discussed in detail in chapter 4.

We focus in this part on the special case where the magnetizationmz = 0. As we
will see in chapter 3, at small magnetization and low magnetic �eld, the 
uctuations of
N0 are \abnormally" large. However, the mean-�eld theory in section 1.3.3 indicate that
the phase transition happens atB = 0 for mz = 0, which also means an in�nitesimal
small magnetic �eld can always force all the atoms tomF = 0 state. In order to explain
this inconsistency, we will develop in chapter 4 a full quantum solution forHSMA . In fact,
the deviation between the mean-�eld approach and the full quantum solution becomes
large at small magnetization, which makes it interesting for us to focus onmz = 0 case.

We divide this section into two parts. In the �rst part, we will write down explicitly
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the formalism of the semi-ideal Hartree-Fock approximation for the spinor BEC at �nite
temperatures. In the second part, we will focus on themz = 0 case and calculate how
N0 and condensate fractionf c depend on the magnetic �eldB .

1.4.1 Semi-ideal HF approximation for spinor BEC

In section 1.2.3, we have introduced the semi-ideal Hartree-Fock approximation for the
case of a single-component BEC. Here, we will generalize it to spinor BEC.

We assume that the density distribution of condensate is not in
uenced by the ther-
mal distribution and determined by the ground state calculated in section 1.3.3. This
leads to

nc
+1 (r ) = N c

+1 � j � SMA (r )j2; (1.68)

nc
0(r ) = N c

0 � j � SMA (r )j2; (1.69)

nc
� 1(r ) = N c

� 1 � j � SMA (r )j2: (1.70)

wherenc
+1 (r ), nc

0(r ), nc
� 1(r ) are the density pro�le for mF = +1 ; 0; � 1 respectively,N c

+1 ,
N c

0, N c
� 1 are condensed atom number inmF = +1 ; 0; � 1 respectively, and �SMA (r ) is

the SMA function de�ned by Eq. (1.56). Here, in accordance with the SMA, we also
neglected spin-dependent interactions between the condensate and the thermal cloud,
becausegs � �g. We solve this equation using the Thomas-Fermi approximation,

� SMA (r ) =
1
�g

max(� � Vext (r ); 0): (1.71)

The free energyG of the ideal spin 1 Bose gas with magnetic �eld and magnetization
�xed can be written as

G = H0 � �N � �M z � qN0

= ( H0 � qN) � (� + � � q)N+1 � �N 0 � (� � � � q)N � 1:
(1.72)

As a result, the \e�ective" chemical potentials for each component are given by

� +1 = � + � � q; (1.73)

� 0 = �; (1.74)

� � 1 = � � � � q: (1.75)

Compared to Eq. (1.33), the density pro�les of the thermal cloudsnth
i (r ) (with i =

+1; 0; � 1) are:

nth
i (r ) =

1
� 3

dB

g3=2(e(� i � V e� ; th
i (r )) =kB T ); (1.76)

with
V e� ;th

i (r ) = Vext (r ) + �gj� SMA (r )j2(N c + N c
i ): (1.77)

Here, � is the chemical potential which serves to �x the total atom number, and� is the
Lagrangian multiplier to �x the magnetization mz. The interaction terms are obtained
as follows. Takenth

+1 (r ) for example. The thermal cloud inmF = +1 interacts with all
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condensed spin components, but di�erently. The thermal atoms inmF = +1 and the
condensed atoms inmF = +1 are in principle indistinguishable. As a result, the e�ective
potential for nth

+1 (r ) is

V e� ;th
+1 (r ) = Vext (r ) + �gj� SMA (r )j2(2N c

+1 + N c
0 + N c

� 1)

= Vext (r ) + �gj� SMA (r )j2(N c + N c
+1 );

(1.78)

with N c = N c
+1 + N c

0 + N c
� 1, total condensed atom number.nth

0 (r ) and nth
� 1(r ) can be

obtained by the same way.

The simulation is similar to the one performed in section 1.2.3. Given a certain tem-
perature T, total atom number N t , and magnetizationmz, the simulation is an iteration
which consists of several steps.

1. We begin with certain chemical potential� 0 and a certain � 0,

2. we calculate the SMA function �SMA (r ) by Eq. (1.71),

3. we calculateN c
+1 , N c

0, N c
� 1 by minimizing the mean-�eld energy Eq. (1.61) in the

same way as in section 1.3.3,

4. we calculate thenth
+1 (r ), nth

0 (r ), nth
� 1(r ) by Eq (1.76),

5. we integratenth
+1 (r ), nth

0 (r ), nth
� 1(r ), we get the thermal atom numbers inmF =

+1; 0; � 1, which we denoteN th
+1 , N th

0 , N th
� 1,

6. we calculate the total atom numberN = N c + N th and total magnetization mz =
(N c

+1 + N th
+1 � N c

� 1 � N th
� 1)=N,

7. we adjust� and � respectively so that the total atom number (resp. magnetization)
calculated above equals to the given total atom number (resp. magnetization)
within certain precision (typically better than 10� 3).

In the next subsection, we focus on the situation wheremz = 0 which means the Lagrange
multiplier � = 0. The simulation steps are simpli�ed without � adaptation. We will show
some results and discuss their physical meanings.

1.4.2 Simulation results for mz = 0

We show in Fig. 1.6 an example of the calculatedN0. Here, the total atom number
N = 5000. Sodium atoms are con�ned in an isotopic harmonic trap �! = ! x = ! y =
! z = 2� � 1000 Hz. We plot in each �gure withT = 200, 300, 500 nK andB varied. We
denoteni = N i =N the relative atom number in themF = i Zeeman sub-level.

In Fig. 1.6, we plot 1� n0 as a function ofq (see Eq. (1.51)) for three di�erent temper-
atures, T = 200; 300; 500 nK. There are several important features in this �gure.

First, for each temperature, as the magnetic �eldB increase, 1� n0 decreases because
of the quadratic Zeeman e�ect. Forq > 0, all the condensed atoms occupy themF = 0
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Figure 1.6: 1� n0 as a function of q.

state, which means asq increase, morethermal atoms occupy the mF = 0 state. As a
result, the 1� n0 curve will decrease drastically when quadratic Zeeman e�ect is compa-
rable with the thermal energy, which meansq1=2 � kB T. Hereq1=2 means the Half width
at Half Maximum of 1 � n0. As shown in Fig. 1.6,q1=2 is larger for higher temperatures.
At extremely high q, the quadratic Zeeman e�ect forces all the atoms to themF = 0
state, therefore, (1� n0) ! 0.

Second, the 1� n0 value at low q decreases as temperatureT decreases. To explain
this, we suppose the spin isotropy of the thermal clouds, which meansN th

+1 = N th
0 = N th

� 1.
We will test this hypothesisa posteriori. In contrast, the condensed atoms always occupy
the mF = 0 state for q > 0 (mz = 0). As a result, as the atom number of the condensate
increases for lower temperatures, the value of 1� n0 at low q decreases.

In Fig. 1.7, we show the deviation of the spin isotropy of the thermal clouds as a function
of q. We de�ne the deviation parameter

Q =
N th

+1 + N th
� 1 � 2N th

0

N
: (1.79)

If Q = 0, the spin isotropy of the thermal clouds is perfectly satis�ed, which means
N th

+1 = N th
0 = N th

� 1. As shown in Fig. 1.7, at lowq, the spin isotropy for di�erent tem-
peratures is well satis�ed. At extremely highq, as almost all the atoms, thermal and
condensed, occupy themF = 0 state, the spin isotropy is completely destroyed. Note
that this is di�erent from the case of the condensate, where both spin interactions and
quadratic Zeeman energy concur to maximize the population inmF = 0. For thermal
atoms and in our Hartree-Fock model, spin isotropy breaks down due to a \paramagnetic"
e�ect of alignment in the external �eld. In chapter 4, we will see that at lowq, collective
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spin 
uctuation of the condensate will completely restore the spin isotropy asq ! 0.
Here, because we work within the mean-�eld framework, the condensate is anisotropic
(all atoms are in mF = 0 state). Even then, the spin anisotropy of the thermal cloud is
small at low q.

We conclude that despite the complete spin anisotropy of the condensate and the in-
teractions with condensate, the spin isotropy of the thermal clouds are well satis�ed in a
relatively large interval of q.
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Figure 1.7: Deviation of the thermal clouds from spin isotropy.Q = ( N th
+1 + N th

� 1� 2N th
0 )=N

quanti�es this deviation. Q = 0 means perfect spin isotropy. At lowq, the spin isotropy
for di�erent temperatures is well satis�ed. However, whenq is su�ciently large, the spin
isotropy will be broken.

Third, if the spin isotropy of the thermal atoms is satis�ed, the condensate fractionf c is
related directly to the 1� n0 value at low q, which we denotec.

f iso
c =

N c
0

N
= 1 � 3c=2: (1.80)

with c = 1 � (N c
0 + N th =3)=N.

We show in Fig. 1.8, the \calculated" condensate fractionf cal
c as a function ofq. We

also compare in Fig. 1.9, the \calculated"f cal
c at low q with the f iso

c = 1 � 3c=2 which
suppose the spin isotropy of the thermal clouds. We �nd a good agreement within 5%.

In conclusion, the 1� n0 curve reveals many useful informations about the spin system,
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Figure 1.8: Condensate fractionf c as a function ofq.
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including the temperatureT and the condensate fractionf c. In the experiment, the mea-
surement of 1� n0 curve does notrequire to distinguish the condensate from the thermal
clouds. We only need to count the total atom number inmF = 0 state. We will discuss
the experimental realization in chapter 2.

We must remind here again that this is a mean-�eld calculation, which neglect com-
pletely the 
uctuations. In fact, as we will see in chapter 4, 
uctuation will change the
behavior of 1� n0 curve at low q. But the qualitative conclusions in this section are still
valid, and the semi-ideal Hartree-Fock approximation will be also adopted.

1.5 Conclusion

In this chapter, we have discussed the basic theory of the spinor Bose-Einstein condensate.
We begin with the simple scalar case, and introduce the semi-ideal Hartree-Fock method
to describe the interactions between condensate and thermal clouds. This method, proven
to be simple but e�ective, is also used in the simulation of spinor BEC.

Because of the supplementary degree of freedom, spin, the spinor BEC shows rich physics
even near zero temperature. In section 1.3, we deal with the ground state of the conden-
sate by mean-�eld approach. Essentially, this approach replaces the �eld operator of each
spin component directly by a complex number, which neglect the quantum 
uctuations
of the system. Under this approximation, we �nd out a phase transition at some critical
magnetic �eld Bc(mz). Below Bc the system is in the \anti-ferromagnetic" state with
N0 = 0, and aboveBc the system is in the \broken-axisymmetry" state withN0 > 0. This
phase transition has been already observed in the experiment [38], and will be discussed
in detail in chapter 3. A full quantum solution at T = 0 will be developed in chapter 4.

In section 1.4, we combine the results about the ground state of the condensate in section
1.3 and the semi-ideal Hartree-Fock approximation used in section 1.2.3 to calculate the
behavior of the spinor BEC at �nite temperatures. We still focus onN0 as a function of
magnetic �eld B , although now it is given by a condensate contribution plus a thermal
contribution, N0 = N c

0 + N th
0 . We plot 1 � n0 as a function ofB and �nd out

� the value of 1� n0 at low q is related to the condensate fractionf c.

� the HWHM q1=2 is related to the temperatureT.

This quantity is easy to measure in the experiment, because we do not need to distinguish
the condensed and thermal component in each Zeeman sub-level, which can be di�cult
to do especially for small atom numbers and tight traps [49, 43]. In chapter 4, we will
�rst complement this calculation by adopting the full quantum solution of the HSMA

mentioned above and realize the measurements.
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Chapter 2

Experimental realization and
diagnosis of spinor Bose-Einstein
Condensates

2.1 Introduction

Achieving the Bose-Einstein condensation (BEC) requires several important techniques
in the experiment [33], including laser cooling and trapping, evaporative cooling,etc.
Laser cooling was developed in 1980s [5, 4, 6], and allows one to decrease the tempera-
ture of an atomic sample from the room temperature directly to mK regime [33]. Laser
cooling inside a magnetic �eld gradient, forms a so-called Magneto-Optical Trap (MOT)
[50] which proved to be ideal as the pre-cooling technique to reach BEC. Evaporative
cooling, which is the second crucial technique to reach BEC, was �rst developed in 1990s
[51]. It can dramatically improve the phase space density of the pre-cooled sample after
the MOT and �nally reach the BEC regime [10, 9]. Brie
y speaking, our experiment
will adopt this \MOT and Evaporative cooling" process. Because we focus on the spinor
condensate, we will also talk about the techniques to prepare and diagnose the spinor
condensate. The detail of each step will be discussed in the following sections.

In this chapter, we will explain how we achieve Bose-Einstein condensation in our exper-
iments, and the techniques related to the control and diagnosis of the spinor condensate.
We begin with a brief introduction of our vacuum system and experimental control system
in section 2.2. The �rst step to the Bose-Einstein condensation is the Magneto-optical
trap (MOT). After the MOT stage, we load the atoms from the MOT to the far-o�
resonance dipole trap. These two steps were extensively discussed in the PHD thesis of
Emmanuel Mimoun [44] and David Jacob [43], and we defer a detailed discussion to the
appendix A and B, including how to load the MOT, how to load the trap and how to
force the atoms to the trap center. In section 2.3, we will talk about the evaporative
cooling which is the last step to reach the Bose-Einstein condensation. At the end of
the evaporation stage, we obtain the almost pure condensate with about 5000 atoms. In
section 2.4, we discuss the experimental techniques related to spinor condensates control
and diagnosis. In section 2.5, we will focus on the imaging system. At the end of this
chapter in the section 2.6, we will talk about the image analysis, �rst discussing how
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to extract useful informations from the �tting, and then how to reduce the noise in the
image to improve its quality.

2.2 Vacuum system and experimental control

In Fig. 2.1, we show an overall view of the setup around the science chamber. Six crossed
beams of 589 nm laser combined with the anti-Helmholtz coils form the Magneto-Optical
Trap, which will be discussed in section A. Two crossed beams of 1064 nm infrared laser
form the Large-Crossed dipole trap, which will be discuss in section B. Pumps (not shown
in Fig. 2.1) are used to maintain the vacuum inside the science chamber. A Bose-Einstein
condensation experiment requires very high vacuum in the science chamber. The colli-
sions between trapped cold atoms and atoms of the residual gas at room temperature
will immediately \kick" the cold atoms out of the trap. Such collisions thus decrease
the life time of the trapped cloud and must be avoided. Normally, in our experiment,
the background pressure in the science chamber is about 10� 11 mbar [52, 43], which is
maintained by two sets of pumps, a getter pump and an ion pump.

The science chamber is made of Titanium which is paramagnetic with a low magnetic
susceptibility. This is crucial for the spinor condensate experiment because of the sensi-
tivity to magnetic �eld. The science chamber is equipped with several viewports allowing
wide optical access, antire
ection coated for 589 nm (MOT and imaging) and 1064 nm
(optical dipole trap). Lateral viewports (CF25) gives access for the six MOT beams and
optical dipole trap beams. Two larger viewports (CF63) along the vertical axis allow us
to install a large numerical aperture (NA) objective for high resolution imaging [52].

A Bose-Einstein condensation experiment requires also very precise response timing of
each optical and electronic elements, for example, the timing of the switch on/o� of cur-
rent in the coil for the magnetic �eld. We use the input/output cards made by National
Instrument to communicate between a computer, giving the commands, and the instru-
ments. The precise sequence of instructions is managed by a software from MIT (Cicero,
Atticus) which also handles the communication with the National Instrument cards [53].
These cards, analog or digital, are all synchronized with a precision better than 1� s
which guarantees the response timing.

2.3 Evaporative cooling to BEC

The �rst step to the Bose-Einstein condensation is the Magneto-Optical Trap (MOT),
which is summarized in appendix A. After the MOT, we have about 2� 107 atoms with
temperatureT � 200� K. After the MOT, we load the atoms into the large crossed dipole
trap and do the compression, which is summarized in appendix B. After the compression,
we have about 1:4 � 105 atoms with temperatureT � 100 � K.

After the compression in the Large-CDT, we start evaporative cooling. Evaporative
cooling is proved to be very e�cient for many kinds of atoms [54, 55, 22]. During the
evaporation, we will reach the regime of Bose-Einstein condensation. The most crucial
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Figure 2.1: Sketch by CATIA illustrating the experimental con�guration around the
science chamber, showing the six beams of the 589 nm cooling laser, the pair of anti-
Helmholtz coils for the MOT, and the Large Crossed Dipole Trap.

point in the evaporative cooling is to keep the elastic collision rate high which helps us
to evaporate the hot atoms out of the trap [33]. In our experiment, as the evaporation
goes on, the Large-CDT can not keep the e�ciency always high. This is the reason why
we introduce the second evaporation in the more con�ned, deeper composite dipole trap,
Small Crossed Dipole Trap (Small-CDT), which is composed by a Small Vertical Dipole
Trap (Small-VDT) and a Small Horizontal Dipole Trap (Small-HDT). At the end of the
evaporation in the Small-CDT, we realize an almost pure Bose-Einstein Condensate with
about 5000 atoms.

In this section, we begin with the introduction of the basic ideas of the evaporative
cooling. In the second part, we introduce our experimental con�guration of the Small-
CDT, which is composed by Small-VDT and Small-HDT. In the third part, we introduce
our two steps evaporation. In the �rst step, the evaporation carries out mainly in the
Large-CDT in order to �ll the atoms to the Small-CDT. It helps to increase the phase
space densityD (detail in section 2.3.1), and in the second step, the evaporation is realized
purely in the Small-CDT until we reach the BEC regime.
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2.3.1 Elements of evaporative cooling

We consider here an equilibrium gas withN atoms and temperatureT con�ned in the
harmonic potential with trap frequency! . During evaporative cooling, the system evapo-
rates the \hotter" atoms and reaches the new equilibrium state. The crucial point is that
whether the system can reach the new equilibrium su�ciently quickly. Elastic collisions
play the central role to drive the system towards equilibrium. The elastic collision rate
� e can be expressed as follows [56]

� e =

r
2
�

n0� �v =
m! 3�
2� 2kB

�
N
T

: (2.1)

with n0 the spatial density, � the cross section, �v the mean velocity andm the mass
of the atom. In order to keep the evaporative cooling e�ective, we must �rst ensure a
su�ciently large � e in order to let the system reach the new equilibrium quickly enough.

The total energy of a non-degenerate gas in a harmonic trap, including kinetic and po-
tential energy, is given by

E = 3NkB T: (2.2)

If we evaporate dN atoms with energy larger than the trap depthU = �k B T, atom
evaporated having energy (� + � )kB T on average, the lost energy of the system is

dE = d N (U + �k B T) = d N kB T(� + � ) !
dE
E

=
� + �

3
dN
N

: (2.3)

As a result,N � dN atoms continue to re-thermalize in the trap in the help of the elastic
collisions. They reach a new equilibrium state with temperatureT � dT which can be
determined by Eq. (2.2).

E � dE = 3( N � dN )kB (T � dT) !
dT
T

=
� + � � 3

3
dN
N

: (2.4)

According to Eq. (2.4), the temperature will decrease if� + � > 3.

The phase space densityD scales asN=T3 [33], thus we have

dD
D

=
dN
N

� 3
dT
T

= � (� + � � 4)
dN
N

: (2.5)

According to Eq. (2.5), the phase space density will increase if� + � > 4, which imposes
a higher condition if we want to increase the phase space density during the evaporation.
A more complete study based on kinetic theory [51] indicates that� � 1 under typical
conditions.

Special di�culty for the optical trap In magnetic traps, the depth and the fre-
quency of the trap are two independent parameters. We can control one of them without
changing the other. A typical evaporation experiment in a magnetic trap starts with low
� e, increasing in time as the cloud gets colder and colder [51]. However, the situation is
di�erent for optical traps, because there is only one control parameter in the experiment:
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the laser power. The trap frequency and the trap depth are both related to the beam
power. If we decrease the power, the depth of the trap will decrease, but at the same time
the trap frequency will also decrease (! �

p
U) which will decrease the elastic collision

rate (Eq.(2.1)) and decrease the e�ciency of the evaporative cooling.

In fact, in our experiment, we have tried to evaporate only in the Large-CDT. We realize
a power ramp from 36 W to 200 mW exponentially. At the end of the evaporation, the
phase space densityD � 10� 3 which is still far from the BEC threshold (DBEC � 2:6).
We also observed that the elastic collision rate decrease rapidly during the evaporation,
which accords with the analysis above.

Therefore, in order to overcome this di�culty, we introduce a Small-Crossed Dipole Trap
(Small-CDT) composed by a 1064 nm and a 1070 nm laser. These two traps are more
con�ned, with the waist about 10 � m. We realize the evaporation in two steps, �rst,
evaporate in the Large-CDT, at the same time, this will �ll the Small-CDT, second,
evaporate in the Small-CDT. This will solve the problem of the low collision rate, be-
cause the frequency of the Small-CDT is much larger than that of the Large-CDT, which
make the evaporative cooling always e�cient.

2.3.2 Experimental setup of the Small-CDT

In Fig. 2.2, we illustrate the con�guration of the Small-CDT together with the Large-
CDT by a view from the top. The Small-VDT propagates in the +z direction, and
the Small-HDT propagates in the +u direction. Both Small-VDT and Small-HDT are
focused and crossed at the waist of each beams at the center of the science chamber, the
same as the Large-CDT.

2.3.2.1 Small Vertical Dipole Trap (Small-VDT)

The dipole trap \Small-VDT" is generated by a 500 mW laser with wavelength� D = 1064
nm, the same wavelength as the �ber laser for the Large-CDT. The laser is focused by
a large numerical aperture (NA) objective into the science chamber. This objective also
serves for imaging system, which will be discussed in section 2.5.2. The trap can be
switched o� rapidly by a Acousto-Optical Modulator (AOM) within several � s. In order
to stabilize the power of the Small-VDT, we realize a power feedback system, which
is similar to that of the Large-CDT, by measuring the power by a photo-diode (before
the laser enters the science chamber) as the feedback signal. We measure the waist of
the Small-VDT trap by parametric oscillation [57], which gives the size of the waist of
Small-VDT

wSV � 9:05� 0:02 � m: (2.6)

2.3.2.2 Small Horizontal Dipole Trap (Small-HDT)

The dipole trap \Small-HDT" is generated by a 20 W �ber laser with wavelength� SH =
1070 nm. The laser is focused by af = 200 mm lens as illustrated in Fig. 2.2. As
the Small-VDT trap, the Small-HDT is also controlled by a AOM and a power feedback
system (feedback signal is measured after the laser passing the science chamber). The
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Figure 2.2: Large-CDT, Small-VDT and Small-HDT with the science chamber. (top
view)

waist of Small-HDT trap is measured together with the Small-VDT trap by parametric
oscillation [57], which gives the size of the waist of Small-HDT

wSH � 11:00� 0:01 � m: (2.7)

2.3.3 Two-step evaporation

As discussed in section 2.3.1, our evaporative cooling is realized by two steps. We illustrate
in Fig. 2.3 the global view of the laser powers of the three dipole traps as a function oft
(t=0 means the beginning of the evaporation) during the experiment, including the Large-
CDT loading, compression, the �rst and the second evaporation. The sub-�gure (a), (b),
(c) represent the power of the Large-CDT, Small-VDT and Small-HDT, respectively.

2.3.3.1 First evaporation

The �rst evaporation lasts 2 seconds. The main purpose of this process is to �ll the atoms
from the Large-CDT to the Small-CDT. In Fig. 2.4, we plot the composed potential of
the Small-VDT+Large-CDT (blue line) and the potential of the Large-CDT only (red
line). We suppose the power of the Large-CDTPCDT = 1:5 W and the power of the
Small-VDT PD = 250 mW, which corresponds to the powers around the middle of the
�rst evaporation ( t = 1:5 s in Fig. 2.3). We can see clearly from Fig. 2.4 that when we
decrease the power of the Large-CDT, the trap depth of the Small-VDT is much larger
than that of the Large-CDT. As the temperature decreases during the evaporative cool-
ing, atoms will gradually �ll in the more con�ned, deeper trap, the Small-VDT.

The �rst evaporation is composed by two stages. During the �rst second, as shown in
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Figure 2.3: Schema of the laser powers of the three dipole traps during the experiment
(Large-CDT Loading, Compression, First and Second Evaporation). Fig. (a), (b), (c)
represent the Large-CDT, Small-VDT and Small-HDT, respectively.
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Figure 2.4: Potential of the Small-VDT and the Large-CDT. The blue line represents
the Large-CDT only, the red line represents the Small-VDT+large-CDT. During the �rst
evaporation, atoms will �ll the more con�ned, smaller trap.
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Fig. 2.3, the power of the Large-CDT decreases exponentially from 35 W to about 1.5
W with � = 300 ms, the powers of the Small-VDT and Small-HDT keep constant, 250
mW and 100 mW respectively. The atoms loading from the Large-CDT to Small-CDT
is mainly during this stage. We keep the powers of Small-VDT and Small-HDT always
at high level in order to make the loading process more e�cient. After this \Small-CDT
loading" process, we have about 4� 104 atoms with temperatureT � 6 mK. But the most
important is that the phase space density reachD � 0:25, which can not be achieved
without the help of the Small-CDT. In section 2.3.1, we have mentioned that with only
Large-CDT, we can only reachD � 10� 3.

In the next second, the power of the Large-CDT continues to decrease. We switch o�
completely the Large-CDT 200 ms before the beginning of the second evaporation, in or-
der to eliminate the in
uence of the Large-CDT. The power of the Small-VDT decrease
exponentially from 250 mW to 100 mW with� = 600 ms. The power of the Small-HDT
decrease exponentially from 100 mW to 70 mW with� = 600 ms. After the switch-o�
of the Large-CDT, the Small-HDT serves to hold the atoms counter the gravity. In fact,
the powers shown above are chosen empirically, in order to have more atoms and make
the shape of the atom cloud as isotropic as possible.

After the 2 seconds �rst evaporation, we have about 1:4 � 104 atoms with temperature
T � 4 � K, phase space densityD � 0:8, very close to the threshold for Bose-Einstein
condensation.

2.3.3.2 Second evaporation

The second evaporation follows immediately after the �rst evaporation. It is the �nal
step to the Bose-Einstein condensation. The second evaporation lasts 1s. As illustrated
in Fig. 2.3, the power of Small-VDT decreases linearly from 100 mW to 2 mW and
the power of the Small-HDT decreases linearly from 70 mW to 2mW. In this stage, the
Large-CDT is already switched o�. The atoms are evaporated purely in the Small-CDT
composed by Small-VDT and Small-HDT.

We show in Fig. 2.5 the atom numberN , temperature T, and the condensate frac-
tion f c as a function of the second evaporation timet0 (t0 = t � 2). We also show the
condensate fractionf c as a function of the temperature. We �nd that at about t0 = 0:2 s,
we reach the threshold of BEC wheref c is no longer zero. Finally, at the end of the second
evaporation, we have a almost pure condensate with about 5000 atoms. We remark that
in Fig. 2.5, f c is only about 0.6 at the end of the evaporation. In fact, this condensate
fraction is �tted by Eq. (2.27), which is not reliable for large f c. We will return to this
point in section 2.6.1.

In conclusion, after MOT cooling, Large-CDT loading, compression, �rst and second
evaporation, �nally, we have a almost pure condensate with about 5000 atoms. This is
the ultra-cold atom sample for our future experiments.
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Figure 2.5: Atom number, condensate fraction, phase space density, as a function of the
second evaporation timet0.

2.4 Spinor condensate preparation and diagnosis

We have reached the Bose-Einstein condensation after the two steps evaporative cooling.
Finally, we obtain the spinor condensate of sodium onF = 1 hyper�ne state, with three
Zeeman sub-levels,mF = +1 ; 0; � 1. In our experiment, we need both to control and
to diagonalize the magnetizationmz = ( N+1 � N � 1)=N of the spinor condensate sam-
ple. As we have pointed out in chapter 1, the magnetizationmz is conserved, and do
not change during the evaporation. However, there are several techniques to change the
magnetization. We adopt here the spin distillation and Radio-Frequency (RF) magnetic
�eld oscillation to increase and decrease the magnetization respectively [58, 59].

In this section, we begin with the introduction of the coils which serve to control the
magnetic �eld. In the second part, we introduce the methods to control the magnetiza-
tion of the sample. In the last part, we talk about the diagnosis of the spinor gas, which
means how to measure the magnetizationmz.

2.4.1 Magnetic �eld control

We show in Fig. 2.6 the con�guration of the coils we use to generate magnetic �eld in
our experiment. The currents in the coils are alimented byHigh Finessepower supplies.
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The ensemble of the coils in Fig. 2.6 can be divided into 4 groups.
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Figure 2.6: Illustration of the coils with dipole traps in the experiment

The �rst group consists of three Helmholtz pairs, which are illustrated in Fig. 2.6 by
black squares. These three pairs of coils are along 3 axis,x, y, z, creating approximately
uniform magnetic �eld in the science chamber in three directions.

In order to well control the value of the magnetic �eld at the position of the conden-
sate, we should calibrate these coils, relating directly the current in each coilI x , I y, I z

with the magnetic �eld at condensateBx , By, Bz. We have

B tot =
q

(� x I x + B0x )2 + ( � yI y + B0y)2 + ( � zI z + B0z)2 (2.8)

Here,B tot is the total magnetic �eld. In Eq. (2.8), we have assumed that the coils for one
axis create only the magnetic �eld in the corresponding axis in neglecting the magnetic
�eld created perpendicular to the axis of the coil.. The calibration of the coils is to
determine the coe�cient � x , � y, � z and the bias �eld B0x , B0y, B0z, which are external
bias �elds present in the lab (e.g. Earth magnetic �eld). We adopt the Rabi oscillation
to calibrate the magnetic �eld. With a given magnetic �eld B tot , the three sub-levels
(mF = +1 ; 0; � 1) split because of the linear Zeeman e�ect. We measure the resonant
frequencyf res of the Rabi oscillation among these sub-levels. We have

f res = gF � B � B tot � 700 kHz=G � B tot : (2.9)
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A systematic series of measurements varyingI x , I y, I z gives

� � x = 0:29 G/A, B0x = � 107:4 mG;

� � y = 0:51 G/A, B0y = � 70:9 mG;

� � z = 1:79 G/A, B0z = � 346:9 mG;

The vertical bias is the largest, presumably due to the contribution of Earth magnetic
�eld.

The second group is a pair of anti-Helmholtz MOT coils, illustrated in Fig. 2.6 in blue
circle. They can generate a magnetic �eld gradient (up to about 15 G/cm) for MOT and
spin distillation and diagnosis which will be discussed in section 2.4.2.1 and section 2.4.3.

The third group is the RF coil, illustrated in Fig. 2.6 in yellow circle. It is used to
create a magnetic �eld oscillation at Radio-Frequencies (RF), typically at 100 kHz which
can excite the Rabi-oscillation mentioned above and can depolarize magnetization of the
condensate. This depolarization process will be discussed later in section 2.4.2.2

The last group is the imaging coil, illustrated in Fig. 2.6 in green circle. It is used
to generate the magnetic �eld to �x the quantization axis on z for the facility of the
imaging. We will return to this point later in section 2.5.

2.4.2 Magnetization controlled spinor gas preparation

In our experiment, the \natural" magnetization after laser cooling ismz � 0:5 which
is kept constant during the evaporation. In the next chapter, we will study the phase
diagram at low temperature for di�erent magnetizations. Therefore, we need to control
the magnetization in our experiment. In this part, we discuss two methods to change the
magnetization. The spin distillation [58, 59] is used to increase the magnetization and
the RF �eld oscillation is used to decrease the magnetization.

2.4.2.1 Polarization by magnetic �eld gradient

In order to increase the magnetization of the condensate, we adopt the so-called \spin
distillation" during the compression stage. As the normal distillation which separates
mixtures based on di�erences in volatility of components in a boiling liquid mixture, the
spin distillation separates di�erent spin components based on di�erences in the energy
shift by the magnetic �eld. In order to increase the magnetization, we should distill more
atoms in mF = � 1 compared with atoms inmF = +1. We apply a constant �eld B0 in
vertical direction z by the Helmholtz pair in z axis, and use the anti-Helmholtz pair (axis
along y) to generate a strong magnetic �eld gradientr B , leading to a spin dependent
potential in + z direction given by

Ur B =
� B mF b0

4
; (2.10)
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whereb0 is the �eld gradient de�ned by Eq. (A.4). In addition, atoms are in
uenced also
by the gravity potential which is independent ofmF ,

UG = mNag: (2.11)

with g the gravitational acceleration,mNa the mass of sodium atom.

In order to distill more atoms in mF = � 1 and remains as many as possiblemF = +1.
The potential by magnetic �eld gradient Ur B should be compensated by the gravity po-
tential UG for mF = +1, as illustrated in Fig. 2.7, the net potential for mF = +1 is
almost not inclined, whereas the potentials formF = 0; � 1 are both inclined. The slope
for mF = � 1 is larger than that for mF = 0 and mF = +1, more atoms in mF = � 1 are
distilled. The condition of the compensation betweenUr B and UG is give by

b0 =
4gmNa

� B
� 16:2 G=cm: (2.12)

In our experiment, the vertical bias �eld is about 0.5 G. We vary theb0 to get di�erent
magnetization larger than 0.5. We illustrate in Fig. 2.8, the magnetizationmz as a
function of � B b0=4gmNa for mz > 0:5. We �nd that with stronger magnetic �eld gradient,
mz is larger and for� B b0=4gmNa � 1, we havemz � 0:9.
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Figure 2.7: Illustration of the potential for di�erent spin component for the distillation.
(mF = +1 ; 0; � 1)

2.4.2.2 Depolarization by radio frequency (RF) magnetic �eld oscillation

In order to get lower magnetization (mz � 0 � 0:5), we apply a horizontal bias magnetic
�eld about 250 mG and apply a Radio-Frequency (RF) oscillating magnetic �eld resonant
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Figure 2.8: Spin distillation for high magnetization preparation (mz > 0:5).

at the Rabi frequency for a variable duration during the compression stage. According to
Eq. (2.9), the resonant frequencyf res = 700 kHz=G � 0:25 G = 175 kHz. With the help
of the RF, as the atoms move and collide in the Large-CDT, their spin quickly decohere,
and produce a spin-isotropic mixture. By adjusting the RF �eld depolarization time,
we can adjust the �nal magnetization as will, as shown in Fig. 2.9. The RF resonance
is about 2kHz wide, presumably limited by inhomogeneous broadening (introduced by
the magnetic �eld gradient b0). To ensure that small frequency drifts do not perturb
signi�cantly the preparation, the frequency of the oscillating �eld is swept over 20 kHz
at a slow rate during the whole depolarization sequence.

2.4.3 Spin diagnosis

In this part, we will discuss the spin diagnosis, which means how to measure the magneti-
zation mz [38]. In order to count the population in each Zeeman sub-levels, we should �rst
separate di�erent spin component by a magnetic �eld gradient, as in the Stern-Gerlach
experiment. The gradient of the magnetic �eld is set tob0 � 15 G/cm, which is almost
the maximum value we can reach with the MOT coils. We apply an additional bias �eld
in x direction with Bx � 2 G, this produces a force along the horizontalx axis that
separate the atoms inmF = � 1 states from the atoms inmF = 0 by a distancedSG after
a period of timet. We have

dSG =
� B �b0t2

4mNa
; (2.13)

with � B the Bohr magneton andt the expansion time. The factor� takes into account
the temporal pro�le of the gradient, which rises in a few ms after the beginning of the
expansion. In Fig. 2.10, we show the vertical trajectory of the atoms measured in the
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Figure 2.9: Depolarization to prepare samples with low magnetizations (mz < 0:5). The
time shown corresponds to the length of a radio-frequency pulse at the Larmor frequency.

experiment, and we compare it with the result calculated form the measured gradient
variations b0(t). The good agreement indicates that the gradient behavior is well under-
stood.

After a given expansion time (typically t � 3:5 ms), we take an absorption image of the
clouds and count the atom number in each Zeeman component. In order to obtain reli-
able images, the separation distancedSG must be much larger than the cloud sizeRt after
expansion to clearly separate each Zeeman component. In our experiment, when the trap
is switched o� instantaneously, we typically achievedSG=Rt � 1 only. This is due to the
tight trap frequencies and the resulting fast expansion. Therefore, we can not distinguish
clearly each Zeeman component when they are overlapped over each other. The magnetic
�eld gradient can not be increased further due to technical limitations, and the expansion
time is also limited by the necessity to keep a su�ciently large signal-to-noise ratio to
detect atoms in each component.

As a result, we adopt a so-called slow attenuation technique during the Stern-Gelarch
separation. We slowly ramp down the laser intensity to approximately 1/10th of its initial
value within 5.5 ms before switching it o� abruptly. In fact, if we switch o� the trap
at the beginning, the interaction energy will all convert to kinetic energy for the atoms
[60], therefore, the atom cloud expand very quickly. If we switch o� the trap at 1/10th
of its initial value, the initial interaction energy is lowered. As a result, the expansion
speed will be much less. At the same time, this slow attenuation also leaves time for the
magnetic gradient to increase to its maximum value, leading �nally todSG=Rt � 10 for
an expansion timet � 3:5 ms. We show in Fig. 2.11, the sizes of the expanding clouds
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Figure 2.10: Trajectory of atoms inmF = +1 along the vertical direction z. The red
point is the measured results, the solid line shows the calculated trajectory taking the
measured magnetic �eld gradient and gravity into account.

after an expansion time both for an instantaneous release and a smooth release. We �nd
the expanding speed is slower after the attenuation by a factor� 2. In Fig. 2.12, we
illustrate the atom number counted for instantaneous release and smooth release, we �nd
that the atoms are not lost during this slow attenuation process (This is no longer true
for very hot clouds nearTc, but holds for the experiments described in this thesis).

2.5 Imaging

In this section, we will introduce the imaging system in our experiment. In order to
study the physics of the Bose-Einstein condensate, we should have method to diagnose
the sample. The normal probe which contact the sample to diagnose can not be adopted.
Simply because the atom sample has much less atoms than the smallest material probe,
this will cause the atoms to equilibrate with the probe rather than the opposite. As a
result, the optical diagnosis is the only choice [33].

There are many kinds of imaging methods, 
uorescent or absorption,in-situ or Time-Of-
Flight (TOF) [33]. In this section, we will focus on the imaging method which use most
frequently in our experiment, the absorption image after a period of TOF. In fact, in our
\micro-condensate" experiment, we realize the BEC sample with relatively small atom
number (3000� 5000). The size of the sample is around the resolution of our imaging
system (several� m). As a result, we take the image after a period of TOF.
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Figure 2.11: Sizes of the expanding clouds after an expansion time for an instantaneous
release (blue squares) or a smooth release (red circles).
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Figure 2.12: Atom number measured for instantaneous (blue squares) and smooth (red
circles) releases, for various evaporation times.
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In this section, we begin with the basic ideas of the absorption imaging. In the sec-
ond part, we will introduce our imaging system in detail. In the last part, we will talk
about a special method to take absorption image, the \Kinetics mode".

2.5.1 Absorption imaging

The purpose of the absorption imaging is to measure the column space density distribution
of the atom samplenc(x; y) which is the normal space density distributionn(x; y; z)
integrated along the direction of the probe light, in our case, in directionz,

nc(x; y) =
Z

n(x; y; z) dz: (2.14)

We denoteI the light intensity, according to the Beer-Lambert law, in the presence of
the saturation e�ect and for a resonant incident light, we model the probe absorption by
[61]

dI
dz

= � n(x; y; z)
� 0

� �

1
1 + I=I sat

e�

� I � � n� (I )I; (2.15)

where� 0 = 3� 2=2� is the resonant cross section for a two-level atom,I sat
e� is the e�ective

saturation intensity, with I sat
e� = � � I sat

0 (I sat
0 is the saturation intensity for a two-level

atom). I sat
e� , together with � � describe the deviation from the two-level atom model,

where we have� � = 1, thus I sat
e� = I sat

0 .

Integrating Eq. (2.15) overz, we have

nc(x; y) = �
� �

� 0
ln

� I t (x; y)
I i (x; y)

�
+

1
� 0

I i (x; y) � I t (x; y)
I sat

0
; (2.16)

with I t (x; y) the transmitted light intensity and I i (x; y) the incident light intensity.

If we work at low intensity, which meansI � I sat
e� , the Beer-Lambert law (Eq. (2.15))

can be simpli�ed as
dI
dz

= � n(x; y; z)
� 0

� �
; (2.17)

which leads to

nc(x; y) = �
� �

� 0
ln

� I t (x; y)
I i (x; y)

�
: (2.18)

In the absorption imaging, we take three images.I atom (x; y), which denote the intensity
with atoms, I no, which denote the intensity without atoms as a reference, andI dark , which
denote the intensity without probe light (background signal). Therefore, we have

I t = I atom � I dark ; (2.19)

I i = I no � I dark : (2.20)

For the simplicity of our later discussion, we introduce OD the optical depth, de�ned as

OD = � 0 � nc(x; y): (2.21)
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2.5.2 Imaging systems

In Fig. 2.13, we show the con�guration of the imaging system in our experiment. The
resonant probe light is from the 589 nm laser system introduced in section A.2 (probe
2), the probe light illuminate the atoms at the center of the science chamber from the
CF63 viewport upside. The intensity of the probe lightI i � 1 mW/cm � 2, the saturation
intensity I sat

0 � 6:26 mW/cm� 2 for sodium D2 line with polarization � + . Therefore the
saturation parameters = I i =I sat

0 � 0:16. For each image, the pulse of probe light lasts
10 � s.

g

LEDs

Probe light

Atoms

Large NA 
objective

Dispenser

Achromatic lens

Microscope

Camera

Vacuum
Chamber

Razor
Dimple

Figure 2.13: The optical imaging system of the absorption imaging

The scattered light is accumulated by a large numerical aperture (NA) objective designed
for our experiment. This objective is mounted very close to the CF63 viewport downside
in order to be as close as possible to the atoms to get larger NA. In our experiment,
NA � 0:33, for a di�raction limited optical system, the resolution is limited by this
objective, therefore, the resolution limited by this objective can be calculated by the
Rayleigh criterion [62],

r =
0:61�
NA

=
0:61� 589 nm

0:33
� 1:1 � m: (2.22)

We have measured directly the resolution of the objective by the test chart USAF 1951,
we haverm � 1:4 � m which is close to the result calculated by the di�raction limit [43].
In addition, this objective is also served to focus the Small-VDT mentioned in section
2.3.2.
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The beam is then focused by a achromatic lens system and collimated by a microscope, at
last focused to a Charge-Coupled Device (CCD) camera (Pixis, Princeton Instruments,
USA), as illustrated in Fig. 2.13. The overall magni�cation of this imaging system about
7.8.

2.5.3 Kinetics mode

During the absorption imaging process, we have to take 3 images, with atoms, without
atoms and the dark image. The time interval between images is limited by the reading
and re-initializing speed of the CCD camera which lasts about several hundred ms. This
duration is long compared to typical mechanical and acoustic vibration frequencies in
the range 1 Hz� 1kHz. As a result, during the time that the image is read and all the
pixels of the CCD are re-initialized, the vibrations can change slightly the position or
orientation of the probe beam, whose pro�le, in fact, is far from the Gaussian, possibly
because of the speckle or multiple re
ection of the windows. This will cause a noise
(usually fringes) in the �nal absorption image. The fringes in the �nal image come from
imperfect division between the \atoms" and \reference" images. To minimize them, it is
advantageous to take the two images with as little delay as possible. In the next section,
we will introduce an algorithm to reduce the noise in the division process, but here we
explain how to reduce the noise experimentally for each separate image.

In order to reduce the time interval between two images, we adopt a \Kinetics mode" (or
sometimes referred as the \frame transfer mode") for absorption imaging. In the normal
imaging mode, we use all the pixels of the camera to get a image, then read the image,
re-initialize all the pixels of the CCD. This takes a substantial time (several 100 ms) so
that the \atoms" and \reference" images are su�ering from fringes with di�erent pat-
terns, as explained before. In the kinetics mode, we divided the CCD into several parts.
Each time, we only use a �xed part of CCD to get the image, then transfer the data of
this part to another part of CCD, preparing for the next imaging. We repeat this process
until all the images are taken. The bene�t of this new mode is that, the transfer time
lasts much less than the reading and re-initializing time. Therefore, this kinetics mode
can save much time between two images and reduce the noise of the absorption image.

In practice, only a 1024� 271 pixels region at the top of the CCD chip is imaged.
We use a razor blade (see Fig. 2.13) to hide the rest of the CCD.

We show in Fig. 2.14 the experimental sequence for the kinetics mode. After the expo-
sure which lasts about 10� s, we shift the pixels. The time required to shift each line is
12:2 � s. We have 170 lines for each frame, therefore the time interval for the frame shift
is � t = 170 � 12:2 � s = 2:072 ms, as shown in Fig. 2.14.

We show in Fig. 2.15 an image taken by the kinetics mode. We list below the usage
for each CCD regions.

� FRAME 1: The �rst region from line 1 to 178 are exposed from the end of a
imaging process to the beginning of the next imaging process, which lasts more
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than 10 seconds. This part is just over-exposed and useless.

� FRAME 2: The second region from line 179 to 348 is the image with atoms, corre-
spondingI atom (x; y).

� FRAME 3: The third region from line 349 to 518 is the separation region. In fact,
even if we have hidden the rest of the CCD by a razor, there is still di�racted light
leaking to other frames. Therefore, in order to prevent the signal of the image
2 (image with atoms) in
uence the image without atoms, we add this region of
separation.

� FRAME 4: The fourth region from line 519 to 688 is the image without atoms,
corresponding toI no(x; y).

� FRAME 5: The �fth region from line 689 to 858 is the dark image, corresponding
to I dark .
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Figure 2.14: Sequence of the kinetics mode. The time interval between two images is
4.148 ms, which is the time required to shift 170 lines of pixels.
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Figure 2.15: Kinetics mode with all frames.

With I atom , I no and I dark , we can calculate the column density distributionnc by using
Eq. (2.19), (2.20), (2.16). (see example in Fig. 2.16)

In this section, we have introduced our imaging system and �nally get the column space
density distribution. In the next section, we will talk about how to analyze the image to
get useful informations and how to reduce the noise of the image.
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2.6 Image analysis

After we have got the absorption images, the next step is to get useful informations
from them. Besides, the noises in the images due to various reasons will introduce an
uncertainty in the atom number counting.
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Figure 2.16: An example of absorption image showing three spin components after Stern-
Gelarch expansion (see section 2.4.3). The colormap shows the optical depth by Eq.
(2.21))

In this section, we will �rst introduce brie
y how to do the �tting to understand the
system. A more detailed discussion is in [33]. Then we will focus on the algorithms
which aim to reduce the noises of the images. We analyze di�erent kinds of noises
and introduce di�erent algorithms to reduce, including the so-called \eigen-face" method
which is widely used in other research area [63, 64].

2.6.1 Fitting

In the sections above, we have sometimes mentioned important features of the atom sam-
ple, including the temperatures, atom number, or even condensate fraction. But we have
not yet discussed how we obtain these parameters. The absorption image re
ects the
density distribution after TOF, more precisely, the column density in the direction of the
probe light. We �t the density pro�le by a function with several parameters. The �tting
function is based on some physical model. Therefore, from the �tting parameters, we will
extract important characteristic quantities of the system.

For T � Tc, the density distribution of atoms trapped in the harmonic trap is described
by the Bose function,

nth (r ) =
1

� 3
dB

g3=2

�
e(� � V (r )) =kB T

�
; (2.23)
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with
V(r ) =

1
2

m(! 2
xx2 + ! 2

yy2 + ! 2
zz2): (2.24)

For T ! 0, under Thomas-Fermi approximation, the density distribution of the pure
condensate can be well described as

nc(r ) =
1
g

max(� � V(r ); 0) (2.25)

Therefore, as the simplest model adopted, in the intermediate temperature regime, the
mixture of the condensate and the thermal cloud can be described as the sum of the
density distribution of the condensate (Eq. (2.23)) and the thermal cloud (Eq. (2.25)),

n(r ) = nc(r ) + nth (r ): (2.26)

In our experiment, we realize the imaging after a period of Time-Of-Flight (TOF). In
fact, after TOF without the trap, the density distribution Eq. (2.23) and (2.25) are just
rescaledalong each axis [60]. Besides, the image re
ects the column density distribution
which is the integration along the probe direction of the density distribution in space. As
a result, in our experiment, the images are �tted by the function below

F (c1 : : : c9) = c1 + c2 g2

�
exp

�
�

(x � c5)2

c2
3

�
(y � c6)2

c2
4

��
+

c7 max
�

0;
�

1 �
(x � c5)2

c2
8

�
(y � c6)2

c2
9

� 3=2�
: (2.27)

In this �tting function, c1 is the global o�set of the image. The second term, which begin
with c2, is g2 Bose function obtained by integration of Eq. (2.23) along the imaging axis,
which describes the thermal cloud. The third term, which begins withc7, is obtained
by integration of Eq. (2.25) which describes the condensate. We adjust (c1 � � � c9) to
minimize the least mean squares,

X

pixel

(F (c) � I )2: (2.28)

Here I is the value of each pixel in absorption image. With all these parameters �tted
(c1 � � � c9), we can count the atom number of condensate and thermal cloud, thus calculate
the condensate fractionf c. We can also calculate the temperature of the sample by the
size of the Bose function.

In fact, as pointed out in [33], the condensate fraction obtained here is not always reliable.
First, for high condensate fraction, the assumption of non-interacting thermal, conden-
sate is not reasonable. Second, the condensate fraction depends on the assumed shape
of the bimodal distribution. In our experiment, we are not very deep in Thomas-Fermi
limit ( � = Na=aho � 10 at most). Therefore, the condensate wavefunction, although
reasonably close to a Thomas-Fermi distribution around the center region, develops sub-
stantial wings near the edges. Although small, these wings can be confusing for the �tting
routine which expects a sharp drop near the Thomas-Fermi distribution radius. In Fig.
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2.17, we show the numerical simulation of the expansion of the density distribution of
a condensate after a TOF = 5 ms (condensate with 1000 atoms in a isotropic harmonic
trap with ! = 2� � 1000 Hz,� � N jaj=aho � 3:9). In the same �gure, we also �t the
density distribution by Eq. (2.27). The real condensate fractionf real

c = 1, but the con-
densate fraction �tted f �t

c � 0:41. The �tting function attribute the tail of the density
distribution to the thermal cloud, which under-estimate the condensate fraction.

0 20 40 60 80 100

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

X cut

n 0

 

 

GP solution
Fit: TF+Thermal
Fit: Thermal
Fit: TF

Figure 2.17: Pure condensate (� � N jaj=aho � 3:9) simulated by the Gross-Pitaevskii
equation, �tted by bimodal model (Eq. (2.27)). The black solid line shows the density
distribution solved by Gross-Pitaevskii equation. The blue dashed line and the red dash-
dotted line is the condensate and the thermal distribution respectively �tted by Eq.
(2.27). The black dotted line is �tted total density distribution, which is the sum of the
blue dashed line and the red dash-dotted line.

In fact, in order to calculate seriously the condensate fraction, we should solve, or �t, the
Gross-Pitaevskii equation for each image, which requires too much time. We conclude
that this �tting is only suitable for low condensate fraction f c < 0:5 because for low
f c, all the problems above are mitigated, because the thermal cloud is much larger than
the condensate. However, whenf c & 0:5, both have similar sizes, and the algorithm
tends to �t the wings of the condensate distribution by apseudo-thermal distribution.
In chapter 4, we will introduce a new method to measure the reliable condensate fraction
by measuring the 
uctuation of the atom number inmF = 0 state, which is free of these
drawbacks.
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2.6.2 Counting spin populations

So far, we discussed images taken without Stern-Gerlach procedure, atoms are counted
without distinguishing their spin states. Now, we count atom number in each spin com-
ponent. We show in Fig. 2.19 how to count the atom number in the absorption image.
The atom number in each spin component is given by

N i =
S

� e�

X

B i

ni ; (2.29)

where i = +1 ; 0; � 1 denote the 3 Zeeman sub-levels,S is the size in the atom plan
represented by each pixel of the camera and� e� is the e�ective scattering cross section.
The sum is done in the region ofB+1 ; B0; B � 1 for mF = +1 ; 0; � 1 respectively.

2.6.3 Imaging noises

Noise in the absorption image (see for example Fig. 2.16) can be classi�ed in several cate-
gories. In this part, we will �rst introduce the di�erent kinds of noises in our experiment,
and then the algorithms to reduce them.

2.6.3.1 Shot Noise

In Fig. 2.16 we can see clearly the noises in the background. The origin of the noise is
mainly contributed by the shot noise, which is originated from the particle nature of the
light. For a given pixel on the CCD, during a �xed time interval, the photon number
received from the probe light follows the Poisson distribution [65], which means the in-
tensity I follows also the Poisson distribution, with � I /

p
I . At large photon number,

the distribution of I will converge to the Gaussian distribution [66].

In order to identify the nature of the noise in our experiment, we take 100 images with-
out atoms. We realize this by canceling the gradient during the MOT sequence or by
switching o� the MOT beams. We note n(x; y) the absorption image,I (x; y) the probe
light intensity signal. Because there are no atoms, the �rst and the second image of the
absorption imaging are the same except the shot noise. We denoteG1(x; y) and G2(x; y)
the noise of the �rst and second image respectively which are random variables from pixel
to another.

Therefore, we have,

n(x; y) = ln
� I (x; y) + G1(x; y)

I (x; y) + G2(x; y)

�
�

G1(x; y) � G2(x; y)
I (x; y)

G1; G2 � I (2.30)

We note G0(x; y) = G1(x; y) � G2(x; y), thus

n(x; y) �
G0(x; y)
I (x; y)

: (2.31)

For large photon number,G1(x; y) and G2(x; y) will follow the Gaussian distribution,
with hG1i = hG2i = 0 and � G1 = � G2 /

p
I . It can be proved that if G1 and G2 both
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follow the Gaussian distribution, G0 = G1 � G2 also follows the Gaussian distribution
[66], with hG0i = 0 and � G0 =

p
2� G1 /

p
I .

Therefore, according to Eq. (2.31), we have

hn(x; y)i = 0; (2.32)

and
� n(x; y) / 1=

p
I (x; y): (2.33)

Shot noise will in
uence the atom number counting. From Eq. (2.29), the atom number
uncertainty � N i in the region B i is

� N i =
S

� e�

X

B i

� ni =
S

� e�

p
N h� ni i ; (2.34)

where N is the pixel number in the counting region. In our experiment,S=� � 29,
N � 900 andh� ni i � 0:04. Therefore, the atom number uncertainty �N i � 36 for each
spin component. To simplify our discussion, we suppose here that each pixel is indepen-
dent, which is not the case if there are some noise structure in the image, which will be
discussed in the next section.

This uncertainty will transfer to the magnetization mz measurement. Normally, we have
in total N � 3000 atoms. Consider for exampleN+1 = N0 = N � 1 = 1000, thus mz = 0.
If we have N+1 = 1000 + 30, N0 = 1000, N � 1 = 1000 � 30, thus m0

z � 0:02. In our
experiment, the measurement of the atom number for each spin component and magne-
tization is very crucial. Reducing this uncertainty by suppressing the noise is therefore
an important goal.

2.6.3.2 Structural Noise

Shot noise shows no special spatial structure and will only introduce anuncertainty in
the atom number counted. If we watch and analyze the images carefully, we will observe
other kinds of noise, which are structural, such as background slope and fringes. These
kinds of noise are more annoying than the shot noise, because they introduce abias in
the atom number counted.

a. Background Slope In Fig. 2.18, we show the background slope. First, we average
the 100 images without atoms, and then average another time iny (or x) direction of the
image to get Fig. 2.18a (or 2.18b) respectively.

Fig. 2.18 �rst shows clearly a slope in the image as a function ofx and y in Fig. 2.18a
and 2.18b, respectively, as well as fringes. Remark that the slope in they direction is
larger than the x direction. The three spin components are separated in thex direction
in the absorption image, as a result, the slope in thex direction will in
uence the atom
number counted in each spin component. In Fig. 2.18a, the slope is negative, thus we
will over-estimate atom number in mF = +1 state and under-estimate atom number
in mF = � 1 state. In practice, we �t locally the three spin component, which means
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Figure 2.18: Show the Background slope in x and y direction. This �gure show also
fringes, especially in (b).

attribute independently three background o�set (c1 in Eq. (2.27)) for the three spin
component, this will mitigate the bias. We have tried to �t the slope in excluding the
atom region, but the procedure was not found to be stable. We will return to this point
in the next section.

b. Fringes Fig. 2.18 also shows fringes, especially in Fig. 2.18b. These fringes will
also be harmful in atom number counting. Because the background level oscillates in a
larger scale compared with the background slope shown in Fig. 2.18a, the local �t can
not solve the problem.

The structural noises, as background slope and fringes shown in Fig. 2.18 may origi-
nate from small vibrations of the probe beam, or index 
uctuations, as mentioned in
section 2.5.3. Etalon e�ects caused by the windows of the vacuum chamber can also
contribute.

2.6.4 Methods to reduce structural noise

2.6.4.1 Slope removal

In order to remove the background slope, we have tried a simple method shown in Fig.
2.19. We choose a region markedB i in which atoms occupy themF = i Zeeman sub-level.
A i and Ci are two regions with the same size asB i which locate approximately above
and below theB i region. In the A i and Ci regions, there are no atoms. The modi�ed
absorption image in theB i region is corrected by the average of theA i and Ci region,

n0
B i

= nB i �
nA i + nCi

2
: (2.35)

This method can correct the linear background slope and facilitate the Fringe-removal
algorithm in the next step. We have also tried to �t the background slope directly in the
background region (excluding the atom region, see Fig. 2.20). But the �tting result does
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not seem stable. It is possibly because of the fringe structure shown above, but most
likely also because the slope itself seems to change on a slow time scale (several minutes)
and the background is sometimes not very well described by the model linear inx � y for
the background.

We conclude that this slope removal method is simple and e�ective for linear background
slope, but not optimal. This method is used for the analysis of the phase diagram exper-
iment data in chapter 3.
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Figure 2.19: Di�erent regions for slope removal algorithm.

2.6.4.2 Fringe-removal

We will introduce here an very e�ective fringe-removal algorithm, which is closely related
to the so-called \Eigen-face algorithm" [67, 68]. The Eigen-face algorithm was �rst used
in the face recognition application. In our experiment, we will use a simpler version of
this algorithm. The basic idea is to use a linear combination of a set of reference images
to calculate the "best" reference image in order to reduce the noise.
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Figure 2.20: Di�erent regions for fringe removal algorithm.
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We denoteAx the atom image,Rx the reference image. We need to calculate the "best"
reference image, which is a linear combination of a set of reference images, thus, we have

Qx =
X

k

ckRx;k : (2.36)

Here we sum over di�erent reference images, withck the coe�cient. Qx is the optimal
reference image which minimize the least square di�erence between the atom and reference
images, within a speci�ed background region (mx = 1) excluding the atom region (mx =
0) shown in Fig. 2.20. Therefore we have to minimize

X

x

mx (Ax � Qx )2: (2.37)

In minimizing Eq. (2.37), we obtain a linear system of equation
X

k

ckB j;k =
X

x

mxRx;j Ax (2.38)

with
B j;k =

X

x

Rx;j Rx;k (2.39)

For each atom imageAx , the algorithm gives the optimal group ofck to construct the
optimal reference imageQx by Eq. (2.36). In our experiment, we save both atom images
and reference images. We calculateB j;k in using all the reference images during the day
(typically several hundreds of images).

In order to estimate the improvement of the fringe-removal algorithm, we use 100 images
without atoms to test. We note

nR
x = � ln(Ax=Rx ); (2.40)

absorption image calculated by original reference image, and

nQ
x = � ln(Ax=Qx ); (2.41)

absorption image calculated by the optimal reference image.

We calculate hvar(nR
x )i and hvar(nQ

x )) i . The \var" is the variance for di�erent pixel
for a given image, and the averageh�i is over di�erent images. This quantity represent
the average amplitude of the noise in the 100 images. We have

hvar(nR
x )i

hvar(nQ
x )i

= 1:8 � 0:1: (2.42)

It means the algorithm improves the image quality by reducing the noise. According to
Eq. (2.34), after the fringe removal algorithm, the atom number uncertainty for each spin
component � N i � 26 compared with � N i � 36 before the fringe removal algorithm.
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In Fig. 2.21, we compare the noise before and after the algorithm. The fringe men-
tioned above in Fig. 2.18b is mitigated. The amplitude of the fringe is decreased. This
algorithm is used on the analysis of the spin 
uctuation experiments in chapter 4 (The
data analysis of the experiment of chapter 3 is done using the simple counting procedure
explained in section 2.6.2).
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Figure 2.21: Optical denpth (OD) averaged inx as a function ofy. The red and blue lines
show the OD before and after the fringe removal algorithm, respectively, corresponding
to a factor of 2 improvement on atom number determination.

2.7 Conclusion

In this chapter, we have discussed step by step how to reach the Bose-Einstein condensa-
tion in our experiment. The �rst step is the Magneto-Optical trap (MOT), which serves
as the pre-cooling stage. We load the MOT directely from the background gas with the
help of Light Induced Atomic Desorption (LIAD). Next, we transfer the atoms from the
MOT to the Large-Crossed Dipole Trap (Large-CDT). After loading the atoms from the
MOT to the Large-CDT, we increase the power of the Large-CDT to compress the atom
along the arm of the trap to the crossed region in order to increase the elastic collision
rate and to facilitate the evaporative cooling in the next stage.

In our experiment, the evaporative cooling is realized in two steps. First evaporation
is mainly in the Large-CDT and at the same time, �ll the Small-VDT. It helps to over-
come the decrease of the evaporation e�ciency caused by the decrease of the frequency
of the Large-CDT during the evaporation. Second evaporation is in the more con�ned
Small-CDT composed by Small-VDT and Small-HDT. During the second evaporation,
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we reach the regime of the BEC and at the end of the evaporation, we have an almost
pure condensate.

We introduce in section 2.4 the method to control and diagnose the spinor condensate.
With the magnetic �eld gradient and the Radio-Frequency (RF) pulse, we can polarize
and depolarize the spinor condensate respectively. At the end of the evaporation, with
the help of the magnetic �eld gradient and attenuation ramp of Small-CDT, we can sep-
arate the 3 Zeeman sub-levels for imaging.

Optical diagnosis is the only way to study the property of the BEC. We introduced
our imaging system, and the kinetics mode of absorption imaging to reduce the noise
caused by the mechanical vibration. After we get the absorption image, we use a �tting
model to extract physical informations in the images. Finally we introduce several al-
gorithms to reduce the noise of the image in order to reduce the atom number counting
uncertainty.
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Chapter 3

Phase diagram of spin 1
antiferromagnetic Bose-Einstein
condensates

The study of the phase diagram of spin-1 Bose-Einstein condensates with antiferromag-
netic interactions is well summarized in [38]. The content of this chapter is directly
extracted from that article, with titles of section added. TheSupplementary Informations
referred in the main text have been partly discussed in chapter 2 and are reproduced in
appendix C.

3.1 Introduction

We study experimentally the equilibrium phase diagram of a spin 1 Bose-Einstein con-
densate with antiferromagnetic interactions, in a regime where spin and spatial degrees
of freedom are decoupled. For a given total magnetizationmz, we observe for low mag-
netic �elds an \antiferromagnetic" phase where atoms condense in them = � 1 Zeeman
states, and occupation of them = 0 state is suppressed. Conversely, for large enough
magnetic �elds, a phase transition to a \broken axisymmetry" phase takes place: The
m = 0 component becomes populated and rises sharply above a critical �eldBc(mz). This
behavior results from the competition between antiferromagnetic spin-dependent inter-
actions (dominant at low �elds) and the quadratic Zeeman energy (dominant at large
�elds). We compare the measuredBc as well as the global shape of the phase diagram
with mean-�eld theory, and �nd good quantitative agreement.

One of the most active topics in the �eld of ultra cold quantum gases is the study of
interacting many-body systems with spin [29, 30, 69, 26]. Atoms with arbitrary Zeeman
structure can be trapped using far-detuned optical traps. Quantum gases of bosons with
spin 1 [69, 26], 2 [70, 71], or 3 [72] and fermions with spin larger than 1=2 [73, 74] have
been demonstrated experimentally. This opens a whole class of new experiments with
spinful many-body systems, such as coherent spin mixing dynamics analogous to an in-
ternal Josephson e�ect [70, 71, 31, 75, 76, 77, 78], squeezing among the di�erent spin
components [79, 80, 81], or the study of sudden quenches across magnetic phase transi-
tions [82, 83].

65



The simplest example is the spin-1 Bose gas. The spin-dependent interaction between
two atoms with spinss1 and s2 can be written asV12 = gss1 � s2. Depending on the sign
of the coupling constantgs, this interaction leads to either ferromagnetic (gs < 0, the
case of atomic87Rb [31]) or antiferromagnetic (gs > 0, the case of atomic23Na [28]) be-
havior. This naturally leads to di�erent equilibrium phases. An additional but essential
feature in experiments with gases of alkali atoms is the conservation of the longitudinal
magnetization mz = n+1 � n� 1, which follows from the spin rotational symmetry ofV12.
Here nm denotes the relative populations of the Zeeman state labeled by the magnetic
quantum number m = 0; � 1. The only possible spin-changing two-body process is

m = 0 + m = 0 ! m = +1 + m = � 1; (3.1)

where two m = 0 atoms collide to yield one atom in each statem = � 1 (or vice-versa),
leaving mz unchanged. In most physical systems, the magnetization would relax by
coupling to an external environment. In contrast, quantum gases are almost perfectly
isolated and the conservation of magnetization plays a major role1.

In spite of intense theoretical activity [26], the equilibrium properties of spinor gases re-
main relatively unexplored experimentally. Most experimental work so far have focused
on dynamical properties. For ferromagnetic Rubidium condensates, a recent experimen-
tal study concluded that the time needed to reach an equilibrium state, typically several
seconds or tens of seconds, could easily exceed the condensate lifetime [84]. For antiferro-
magnetic 23Na, the stationary regime after damping of spin-mixing oscillations has been
studied for relatively high magnetization (mz . 0:5) [78]. Here also, long equilibration
times on the order of 10 s were observed. Both experiments worked with condensates with
large atom numbers, well in the Thomas-Fermi regime, where spin domains are expected
and observed in transient regimes.

In this Rapid Communication, we present an experimental study of the phase diagram of
spin 1 Sodium Bose-Einstein condensates with antiferromagnetic interactions. We work
with small atomic samples containing a few thousands atoms held in a tightly focused
optical trap. In this regime, spin domains are energetically costly, and spatial and spin
degrees of freedom are largely decoupled. We prepare the sample well above the conden-
sation temperature with a well-de�ned longitudinal magnetization and no spin coherence.
At the end of the cooling stage, equilibration times of 3 s are used to ensure that thermal
equilibrium is reached. We �nd, in agreement with theoretical predictions, a phase tran-
sition from an \antiferromagnetic" phase where only them = � 1 Zeeman components
are populated to a mixed \broken axisymmetry" phase where all three Zeeman states can
coexist. We determine the phase boundary and the shape of the phase diagram versus
applied magnetic �eld and magnetization by measuring the population of them = 0
state. Our measurements can be explained quantitatively by mean-�eld theory in the
single-mode regime, where the atoms condense in the same spatial wave function irre-

1This statement holds when magnetic dipole-dipole interactions are negligible, which is the case for
alkali atoms. For some atomic species with large magnetic moments, such as Chromium [72], dipolar
relaxation can be dominant.
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spective of their internal state.
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Figure 3.1: (Color online)a: Absorption image of a spin 1 BEC after expansion in a
magnetic gradient. b: Horizontal cuts through the images in (a). The same function
(shown by straight lines), only recentered and reweighted, is used to �t the density pro�le
of each Zeeman state.

3.2 Experimental con�guration

We work with Sodium atoms cooled deeply in the quantum degenerate regime using
an all-optical cooling sequence [52, 49]. In order to prepare the sample with a well-
de�ned longitudinal magnetization and no spin coherences, we start from a cold cloud in
a crossed optical dipole trap loaded from a magneto-optical trap [49], with a magnetiza-
tion mz � 0:6 resulting from the laser cooling process. To obtain higher degrees of spin
polarization, we perform evaporative cooling in the presence of a vertical magnetic �eld
gradient for about 1 s. Each Zeeman state sees a slightly di�erent potential depth. Be-
cause of the combined action of gravity and of the magnetic gradient, evaporative cooling
in this con�guration favors the Zeeman state with the higher trap depth [59, 85]. This
results in partially or almost fully polarized samples with magnetization up tomz � 0:85.
To obtain lesser degrees of polarization than the initial valuemz � 0:6, we remove the gra-
dient and apply instead an additional oscillating �eld resonant at the Larmor frequency.
The two procedures together allow to prepare well-de�ned magnetizations ranging from
0 to � 0:85 with good reproducibility and keeping the same evaporative cooling ramp in
all cases. After spin preparation, we transfer the cloud in the �nal crossed dipole trap
and resume evaporative cooling (see section 1 in the Supplementary Informations).

After the evaporation ramp, we obtain quasi-pure spin 1 Bose-Einstein condensates
(BEC) containing N � 5000 atoms in a trap with average frequency! � 2� � 0:7 kHz.
To ensure that the cloud has reached a steady state, we allow for an additional hold time
of 3 s after the evaporation ramp. We have investigated the dynamics of the spin popula-
tions as this hold time is varied for several values of magnetization and applied magnetic
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�eld. We found that the populations relaxed to steady-state values with a characteristic
(1=e) time smaller than 1 s, much less than the �nite lifetime of our sample, around 10 s.

The populations of the Zeeman statesm = 0; � 1 are analyzed after expansion in a mag-
netic �eld gradient producing a Stern-Gerlach force that accelerates atoms inm = � 1
in opposite directions. After a given expansion time (typicallyt � 3:5 ms), we take an
absorption picture of the clouds (see Fig. 3.1a), and count the normalized populations
nm of the Zeeman statem = 0; � 1. Note that the condensate is in a regime intermediate
between the ideal gas and the Thomas-Fermi limits (we estimate a chemical potential
� � 4~! from a numerical solution of the Gross-Pitaevskii equation).

3.3 Experimental results and interpretation

For a Bose-Einstein condensate held in a tight trap as in our experiment, the energetic
cost of spin domains is large (comparable to~! per atom, much larger than the spin-
dependent interaction energy). In this limit, it is reasonable to make the single mode
approximation (SMA) for the condensate wavefunction [46, 47], which amounts to con-
sider that all atoms share the same spatial wavefunction independently of their internal
state; The condensate spin remains as degree of freedom. To support this approxima-
tion, we note that absorption images as in Fig. 3.1a do not reveal any spatial structures
or spin domains during the 3 s hold time. Furthermore, we compare in Fig. 3.1b the
observed distributions with a common mode distribution. This common mode function
is extracted from a Gaussian �t to the most populated cloud (m = +1 in this example),
and then recentered and reweighed to match the populations of the other Zeeman states.
We �nd very good agreement between the three spatial distributions in the whole range
of parameters explored, and conclude that the SMA is indeed a good approximation in
our case.

Because the longitudinal magnetizationmz = n+1 � n� 1 is conserved, the relevant mag-
netic energy in an applied magnetic �eld is the second-order (quadratic) Zeeman shift
of magnitude q = qB B 2, with B the applied magnetic �eld and qB � 277 Hz/G2. The
larger (�rst-order) linear Zeeman shift has no in
uence (it can be absorbed in the La-
grange multiplier associated to the �xed magnetization [26]). As other spin-changing
mechanisms than collisions are possible, this conservation law is only approximate. For
example, it no longer holds when spin-
ips are induced on purpose by applying oscillating
�elds as described above, or for systems with magnetic dipole-dipole interactions [72]. In
the absence of such applied �elds, we �nd no evidence for violation of this conservation
law within our experimental limit of a few percents.

We show in Fig. 3.2 the measured values ofn0 for a range of applied magnetic �eldsB and
mz � 0:4. The population in m = 0 is small at low applied �elds and rises sharply above
a critical value Bc before settling at an asymptotic value. We have repeated these mea-
surements for a wide range ofB and mz, and generically observed this behavior. We show
the results in a reconstructed contour plot in Fig. 3.3a. The phase diagram shows unam-
biguously the presence of two di�erent phases which di�er in their spin composition, or
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Figure 3.2: (Color online) Sample data showing the populationn0 of the m = 0 Zeeman
state versus applied magnetic �eldB , for a magnetizationmz � 0:4. The solid line is a
�t to the data using Eq. (3.5). Vertical error bars show statistical uncertainties on the
measured values (one standard deviation).

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

m
z

B
 [G

]

 

 

 (a)

0

0.5

1

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

m
z

B
 [G

]

 

 

 (b)

0

0.5

1

Figure 3.3: (Color online)a: Experimental phase diagram showing the populationn0

of the m = 0 Zeeman state versus magnetizationmz and applied magnetic �eld B . The
plot shows a contour interpolation through all data points, with magnetization ranging
from 0 to 0:8. The white line is the predicted critical �eld Bc separating the two phases,
deduced from Eq. (3.4) byqc = qB B 2

c . b: Theoretical prediction for n0 at T = 0 K.
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more precisely are characterized by the absence or presence of condensed atoms inm = 0.

We now explain the observed behavior ofn0 in terms of the competition between the spin-
dependent interactions and the applied magnetic �eld (entering quadratically through the
second order Zeeman e�ect). The mean-�eld energy functional in the single-mode ap-
proximation is given by [26]

Es

N
=

Us

2
jSj2 � qn0: (3.2)

Here,S = h� jŜj� i is the expectation value of the spin operator̂S taken in the normalized
spinor � describing the condensate spin wavefunction, andUs denotes the spin-spin inter-
action energy (see section 3 in the Supplementary Informations). For antiferromagnetic
interactions (Us > 0), no applied �eld (q = 0) and zero magnetization, the spin 1 BEC
realizes a polar, or \spin-nematic", phase according to mean-�eld theory [29, 30]. The
spin wave function � belongs to the family of eigenstates of̂S � n with zero eigenvalue
(and zero average spin), withn a headless vector called \nematic director" in analogy
with the analogous order parameter characterizing nematic liquid crystals. Whenq = 0,
any direction n is a possible solution, while any positiveq favors occupation of them = 0
state (alongz) and pins the nematic director in thez direction.

When mz is non zero, there is a competition between the spin-dependent interactions
and the quadratic Zeeman energy. The constraint of a �xed magnetization is essential to
understand the spin structure of the condensate [86]. The BEC spin wavefunction can
be parameterized generically as [29, 30, 86]

� =

0

B
B
@

q
1
2 (1 � n0 + mz) ei� +1

p
n0 ei� 0

q
1
2 (1 � n0 � mz) ei� � 1

1

C
C
A : (3.3)

We introduced the phases� m of the components of� in the standard basis. The e�ect of
antiferromagnetic spin-dependent interactions (Us > 0) is two-fold: First, they lock the
relative phase� +1 + � � 1 � 2� 0 to � in the minimal energy state. Second, they favor the
coexistence of them = � 1 component and disfavor mixing them with them = 0 compo-
nent [28]. As the quadratic Zeeman energy favor the latter, the competition between the
two results in two distinct phases as observed experimentally.

The equilibrium population n0 is found by minimizing the mean-�eld energy functional
[86]. For low q and non-zero magnetizationmz, spin-dependent interactions are domi-
nant, and result in a two-component condensate where the Zeeman statesm = � 1 are
populated (n0 = 0). Following [69], we will call this phase \antiferromagnetic" (AF).
When mz ! 0, this gives an \easy-plane" polar phase where the nematic director is
con�ned to the x � y plane. Above a critical valueqc given by

qc = Us

�
1 �

p
1 � m2

z

�
; (3.4)

n0 increases continuously from zero, indicating a second-order quantum phase transition.
Again following [69], we call this phase\broken axisymetry" (BA). For largeq, the energy
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is minimized by increasingn0 as much as possible given the constraint of a givenmz: The
spin populations therefore tend ton+1 = mz, n0 = 1 � mz, n� 1 = 0 for mz > 0. When
mz ! 0, one recovers the easy-axis polar phase with all atoms in them = 0 state along
z. More generally, the BA state with n0 6= 0 has non-zero longitudinal and transverse
magnetization (both vanish whenmz goes to zero), and a nematic director orthogonal to
the direction of the magnetization vector [87].

We measured the critical line separating the AF and BA phases using the following
procedure. We bin the data according to the measured magnetization, in bins of width
0:1 around an average magnetization frommz � 0 to mz � 0:8, with residual 
uctuations
around �m z � 0:02. Each dataset with given magnetization is �tted with a function of
the form

n0 =
�

A0; q < qc

A0 + A1
q� qc

q� qc+� q; q � qc:
(3.5)

This form ensures the existence of a sharp boundary determined byqc, a constant back-
ground value for lowq and a well-de�ned asymptotic value for largeq, and reproduces the
observed data fairly well, as shown in Fig. 3.2 for a speci�c example withmz � 0:4. At
low �elds, n0 is not strictly zero but takes values of a few percents, which can be explained
by the presence of a small non-condensed fraction (f 0 � 2 � 3 % per component). As
such small populations are near our detection limit (� 3 % for the fractional populations,
limited by the optical shot noise associated with the imaging process), we do not attempt
to determine them and consider in the following that the condensate is essentially at zero
temperature. At high �elds, n0 is very close to the expected value 1� mz (see Fig. 3.4a),
again within a few percents.

We show in Fig. 3.4b the measured boundaryBc =
p

qc=qB between the two phases,
which we �nd in good agreement with the prediction of Eq. (3.4) in the whole range
investigated. The comparison is made with the valueUs=h � 65:6 Hz, obtained from
a numerical solution of the Gross-Pitaevskii equation using the scattering lengths given
in [42] and the measured trapping parameters and average atom number, and thus does
not require any �tting parameter. Our results are in line with previous measurements in
[78], which were restricted to the rangemz > 0:5 and B > 0:2 G and performed with
much larger samples well in the Thomas-Fermi regime. Here, we are able to characterize
this transition down to zero magnetization and zero applied �eld, in a system where spin
domains (as observed in [78] during the relaxation towards equilibrium) are not expected
to form.

Mean-�eld theory also quantitatively describes our data above the critical line. We com-
pare the calculatedn0 directly to the data in Fig. 3.3a and b. There is no adjustable
parameters in this comparison, since the parameters used in the theory are either mea-
sured or computed independently. The shape and magnitude of the calculated phase
diagrams matches the measured one within 10 % at worst, except very close to the origin
B � 0 and mz � 0. In this corner of the phase diagram, we observe larger deviations
from the mean �eld prediction and correspondingly higher 
uctuations inn0. We will
present detailed study on these �ndings in another publication.
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Figure 3.4: (Color online) a: Asymptotic value of n0 for large q (determined from
A0 + A1 in Eq. 3.5). The solid line shows the value 1� mz expected at zero temperature.
b: Measured critical �eld Bc versus magnetization. The solid line shows the values
expected from Eq. (3.4) andqc = qB B 2

c , using Us=h � 65:6 Hz. The gray area show the
uncertainty on the theoretical value ofBc, dominated by the 15 % uncertainty on the
spin-dependent scattering lengthas. For both plots, vertical error bars show statistical
uncertainties on the measured values (one standard deviation).

3.4 Conclusion and perspectives

In conclusion, we have explored experimentally the phase diagram of spin 1 BECs with
antiferromagnetic interactions. Two phases are found, re
ecting the competition between
the spin-dependent interactions and the quadratic Zeeman energy. The measurements are
in quantitative agreement with mean-�eld theory, which quantitatively predicts the phase
boundary but also the observed spin populations above the transition. In this paper, the
population of non-condensed atoms was small (a few percents, below our detection level).
Although interesting e�ects beyond mean-�eld are predicted at very low temperatures
[88], they would require much better sensitivity and lower temperatures to be addressed.
On the other hand, at higher temperatures he thermodynamics should di�er substantially
from the scalar case [72, 48]. Both paths provide interesting directions for future work.

We summarize all the experimental results for di�erent magnetizations in Fig. 3.5.
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Figure 3.5: Individual datasets (binned by magnetization).
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Chapter 4

Collective 
uctuations of spin-1
antiferromagnetic Bose-Einstein
condensates

4.1 Introduction

At the end of the chapter 3, we have remarked the abnormally large 
uctuation ofn0 at
mz = 0 and small magnetic �eld B . These 
uctuations, which, in principle, can not be
explained by the mean-�eld approach in chapter 1 section 1.3, are the main subject of
this chapter.

In chapter 1, section 1.4, we have studied the behavior of the spinor BEC in the Hartree-
Fock approximation. However, we have also pointed out that this description is not
complete because we have used a mean-�eld approach to analyzeĤSMA , the single-mode
approximation Hamiltonian of the spin-dependent part. This mean-�eld approach ne-
glects completely the 
uctuations. Whenmz = 0, the mean-�eld approach predicts that
an arbitrary small magnetic �eld will break the symmetry and force all the atoms to ac-
cumulate in the mF = 0 state. However, in the experiment, we observe large 
uctuations
of n0 at low q in mz = 0 case, the average ofn0 is also smaller than 1. We use the
spin depolarization process (introduced in chapter 2, section 2.4.2.2) to prepare a spinor
condensate sample withmz = 0. After the second evaporation, we keep the power of
Small-HDT and small-VDT (see chapter 2, section 2.3) during a period of \hold time",
typically several seconds, to give the system su�cient time to reach equilibrium. We
apply a bias magnetic �eld alongx direction during the evaporation and the hold time
Thold . The imaging is done just after the \hold time". For a given magnetic �eldB ,
we repeat the same experimental sequence many times, typically 100 times, in order to
measure the expected value of the relative atom number inmF = 0 state, the depletion
hn0i , and the standard deviation � n0, which are used to characterize the 
uctuation. We
show in Fig. 4.1 and 4.2, two examples of our experimental measurements in di�erent
evaporation time Tevap in the second evaporation (thus in di�erent trap depth). We plot
1 � h n0i and � n0 as a function ofq (quadratic Zeeman energy) forTevap = 900 and 975
ms (Thold = 6 s in both case). We observe large 
uctuations (�n0 is unity order) and
hn0i 6= 1 for small q, which cannot be explained by the mean-�eld theory introduced in
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chapter 1. The main subject of this chapter is to study theoretically and experimentally
the behavior of 1� h n0i and � n0.
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Figure 4.1: Second evaporationTevap = 900 ms, trap depth � 6:76 � K, hold time 6 s.
The point closet to q = 0 (the solid blue circle) corresponds to zero applied �eld, and bas
been set arbitrarily at q = 10� 3 Hz.

In fact, what we observed in the experiment is an example of a so-calledfragmented
condensate, which means atoms condense simultaneously inseveralsingle-particle states,
instead of one state for the \normal" condensate. The fragmentation has been studied
in several kinds of systems, including fragmentation due to orbital or to internal degen-
eracies [39, 89]. The spin 1 Bose gas, which is studied in our experiment, is a good
example of a fragmented condensate [90]. In absence of the magnetic �eld, the rotational
symmetry of the anti-ferromagnetic interactionV1;2 = gss1 � s2 between two atoms leads
to a many-body spin singlet ground state [89, 46], where all three Zeeman sub-levels
mF = +1 ; 0; � 1 are equally populated (see Eq. (4.23)). As pointed out in [46, 91, 89],
the signature of fragmentation is the appearance of the anomalously large 
uctuations
of the atom number in each Zeeman sub-levels (see Eq. (4.24)) with super-Poissonian

uctuation (� N 2

0 � h N0i 2), which deviate strongly from the value expected for a single
condensate or any ensemble without correlations where �N 2

0 � h N0i , as we observe in
Fig. 4.1 and 4.2. These two �rst moments ofn0 are clear signatures to illustrate whether
the system is fragmented or not. It was also pointed out by [91] that such state was likely
not realized in typical experiments, due to its fragility toward any perturbation breaking
spin rotational symmetry [92, 93, 94, 95, 96, 97]. In the thermodynamic limitN ! 1 , an
arbitrary small symmetry-breaking perturbation, for example a small magnetic �eld, is
enough to favor a regular condensed state, where all atoms occupy the same (spinor) wave
function and � N0 � N . In our situation, spin rotational symmetry is broken explicitly
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Figure 4.2: Second evaporationTevap = 975 ms, trap depth � 2:70 � K, hold time 6 s.The
point closet to q = 0 (the solid blue circle) corresponds to zero applied �eld, and bas
been set arbitrarily at q = 10� 3 Hz.

by the quadratic Zeeman e�ect, characterized by an energyq. For �nite N , a �nite q is
required to suppress the 
uctuations ofn0.

This chapter is organized as follows: in section 4.2, we focus on the quantum solution of
the single mode HamiltonianĤSMA (see chapter 1, Eq. (1.57)), which describes the spin-1
Bose-Einstein condensate with antiferromagnetic interactions. Previous work analyzed
theoretically how the ground state evolved with quadratic Zeeman energy [93, 94, 95, 96].
Experiments are of course performed at �nite temperature, and the �rst goal in this chap-
ter is to generalize the theory to such �nite temperature. We adopt two approaches to
solve this problem. First, we directly diagonalize the HamiltonianHSMA and compute
the moments ofn0 from this diagonalization. Second, we introduce a so-called \broken
symmetry" approach, where the spinor condensate is described as a statistical mixture
of mean-�eld states with 
uctuating \direction" in spin space. This approach is shown
to reproduce the exact results very well, with two additional advantages: accelerate the
calculation and better physical picture. After this basic theory is developed, we note
that in order to describe the experiment results in details, it needs to be extended in
two ways. In section 4.3, we generalize the distribution ofM (de�nition in section 4.2)
and in section 4.4, we take the thermal atoms that surround the condensate into account
using semi-ideal Hartree-Fock approximation, introduced in chapter 1. In section 4.5,
we use the extended theory to �t the experimental results. Finally, we give an detailed
interpretation to these results in section 4.6.
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4.2 Quantum analysis of a spin-1 antiferromagnetic
BEC

As mentioned in section 4.1, in our experiment, we measurehn0i and � n0 as a function
of the quadratic Zeeman energyq. Our purpose is to develop a theory to understand
this behavior. We adopt the same strategy as in chapter 1. We analyze separately the
condensate and the thermal cloud. The condensate is described byĤSMA which will be
analyzed in this section, and the thermal cloud will be discussed later.

In order to understand the behavior of thehn0i and � n0 caused by the condensate,
the most natural way is to study the spectrum of the HamiltonianĤSMA , calculatehn0i
and hn2

0i for each eigenstate, then average in the canonical ensemble (we assume here a
constant total atom number N ) with a certain temperature. We remind here the SMA
Hamiltonian,

ĤSMA =
Us

2N
Ŝ2 � qN̂0; (4.1)

whereUs is the spin interaction energy per atom,N the total atom number, Ŝ the total
spin operator,q > 0 the quadratic Zeeman energy withq = 276:434 Hz=G2 � B 2, and N̂ �

the atom number operator of the Zeeman sub-level� (� = +1 ; 0; � 1).

We denote the temperature of the canonical ensemble \spin temperature"Ts, which
determines the distribution in the eigenstates of̂HSMA . Therefore, we have for example

hN m
0 i Ts =

1
Z

X

k

hN m
0 i k � e� � s Ek ; (4.2)

for integer m, with Ek the energy of eigenstatek, � s = 1=kB Ts and the partition function
Z =

P
k e� � s Ek . We denote

hn0i =
hN0i
N

; � n0 =
� N0

N
; (4.3)

whereN is the total atom number, with � N0 the standard deviation ofN0.

In this section, we begin with the introduction to the total spin basisjN; S; M i , which
is the eigenstate ofĤSMA at q = 0. Here, S is the eigenvalue of the total spin operator
Ŝ2, and M is the eigenvalue ofŜz. This basis is used to develop most of our theory. In
the second part of this section, we diagonalize directly the Hamiltonian to calculatehn0i
and � n0 for genericq. In the third part, we introduce a so-called \broken symmetry"
approach to calculate the moments ofn0, by which the calculation is faster and precise
enough.

4.2.1 Formulation in the basis of total spin eigenstates jN; S; M i

4.2.1.1 Represention of ĤSMA in the jN; S; M i basis

We begin with the simplest case,q = 0. In this case, ĤSMA can be solved analytically.
The eigenstates ofĤSMA (Eq. (4.1)) are given by the total spin statesjN; S; M i with
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energyE(S) = ( Us=2N )S(S + 1). We assume that the number of atomsN is even for
simplicity. Odd values of N could be treated in a similar way, without modifying the
�nal results to order 1=N.

The degeneracy of energy levelS is 2S + 1. We plot in Fig. 4.3 the illustration of
the energy levels forq = 0. Remark that S can only be even, because the spatial wave
function is symmetric in thes-wave scattering regime, as mentioned in chapter 1, section
1.3.2.1.

(N + 1) Us=2

3Us=N

7Us=N

S = 0

S = 2

S = 4

S = N

M = � 4 M = � 3 M = � 2 M = � 1 M = 0 M = +1 M = +2 M = +3 M = +4M = � N M = + N

Figure 4.3: Energy level ofĤSMA for q = 0

The total spin eigenstatesjN; S; M i can be constructed as follows [89, 46, 91],

jN; S; M i =
1

p
N (N; S; M )

�
Ŝ�

� P �
Ây

� Q
(ây

+1 )Sjvaci ; (4.4)

with
P = S � M; (4.5)

2Q = N � S: (4.6)

and with the normalization factor

N (N; S; M ) =
S!(N � S)!!(N + S + 1)!!( S � M )!(2S)!

(2S + 1)!!( S + M )!
: (4.7)

Here we introduce the operators

Ŝ� =
p

2(ây
� 1â0 + ây

0â+1 ); (4.8)

Ây = ây
0 � 2ây

� 1ây
+1 ; (4.9)

with [ Ŝ� ; Ây] = 0.

The operator Ŝ� is the total spin lowering operator. The operatorÂy creates a pair
of atoms in the singlet state which can be described by Fock basisjN+1 ; N0; N � 1i Fock as

 singlet =

r
1
3

j0; 2; 0i Fock �

r
2
3

j1; 0; 1i Fock ; (4.10)
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or directly by the total spin basis jN; S; M i NSM as

 singlet = j2; 0; 0i NSM : (4.11)

In the following discussion, we use only the total spin eigenstates, therefore, we neglect
the subscript for indicating the basis.

For q 6= 0, the total spin eigenstates are no longer the eigenstates of thêHSMA , since
[Ŝ2; N̂0] 6= 0. However, since [̂Sz; N̂0] = 0, M , which is the eigenvalue of̂Sz, is still a good
quantum number. As a result, we can diagonalizêHSMA by block for eachM . For each
M , the energy eigenstates can be expressed in the total spin basis,

j� M i =
NX

S= jM j

cS;M jN; S; M i : (4.12)

In order to diagonalize theĤSMA in the jN; S; M i basis, we have to calculate the matrix
elements of theĤSMA in this basis,

hN; S0; M 0jĤSMA jN; S; M i =
Us

2N
S(S + 1) � S;S0� M;M 0 � qhN; S0; M 0jN̂0jN; S; M i : (4.13)

According to Eq. (4.13), we have to calculate the matrix elements of̂N0 in jM; S; M i
basis, we use the following relation

â0 jN; S; M i =
p

A � (N; S; M )jN � 1; S� 1; M i +
p

A+ (N; S; M )jN � 1; S+1; M i ; (4.14)

with coe�cients

A � (N; S; M ) =
(S2 � M 2)(N + S + 1)

(2S � 1)(2S + 1)
; (4.15)

A+ (N; S; M ) =
((S + 1) 2 � M 2)(N � S)

(2S + 1)(2 S + 3)
: (4.16)

This gives the matrix elements ofĤSMA in the jN; S; M i basis as

hM
S;S =

Us

2N
S(S+1) � qhSjN̂0jSi =

Us

2N
S(S+1) � q[A+ (N; S; M )+ A � (N; S; M )]; (4.17)

hM
S;S+2 = � qhS + 2jN̂0jSi = � q

p
A � (N; S + 2; M ) � A+ (N; S; M ); (4.18)

hM
S;S� 2 = � qhS � 2jN̂0jSi = � q

p
A+ (N; S � 2; M ) � A � (N; S; M ): (4.19)

where we abbreviatejN; S; M i as jSi to simplify the notation of the states.

The Schr•odinger equation then takes the form of a tridiagonal matrix equation,

hM
S;S+2 cS+2 ;M + hM

S;S� 2 cS� 2;M + hM
S;S cS;M = E cS;M ; (4.20)

with E the energy eigenvalue. After the diagonalization, we get the spectrum of̂HSMA .
In principle, we can calculate the spectrum by this method, however, the dimension of the
matrix of Hamiltonian D increases whenN increases (see in Fig. 4.3,S = 0; 2; 4; : : : ; N ,
we remind that S should be even). The time complexity of the diagonalization isO(D 3),
which makes the direct diagonalization in general hard to access for atom number� 5000
1.

1In fact, during the Hartree-Fock simulation (see section 4.4), we have to diagonalize many times the
matrix, which makes it important to reduce the time complexity.
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4.2.1.2 Calculation of hn0i and � n0 for jN; S; M i

According to Eq. (4.14), we can calculate the expected value and standard deviation of
N0 for a given total spin eigenstatejN; S; M i :

hN̂0i S;M = hN; S; M jây
0â0jN; S; M i = A � (N; S; M ) + A+ (N; S; M ): (4.21)

For the 
uctuation, we should �rst calculate hN; S; M j(ây
0)2(â0)2jN; S; M i in using Eq.

(4.14) twice. The variance ofN̂0 is then given by

(� N̂ 2
0 )S;M = hN; S; M jây

0â0ây
0â0jN; S; M i � h N; S; M jây

0â0jN; S; M i 2

= hN; S; M j(ây
0)2(â0)2jN; S; M i + hN; S; M jây

0â0jN; S; M i � h N; S; M jây
0â0jN; S; M i 2:

(4.22)

As a example, we apply Eq. (4.21), (4.22) to theground statejN; 0; 0i . We have

hn0i 00 =
1
3

; (4.23)

(� n0)00 =

r
4N 2 + 12N

45N 2
�

r
4
45

: (4.24)

Numerically, the leading term in the expression for the standard deviation ofn0 isp
4=45 � 0:298. We remark that the ground state display a super-Poissonian 
uctu-

ation, which means � N 2
0 / N 2, di�erent from the thermal atom number 
uctuations

� N 2
th / N th .

Eq. (4.23) and (4.24) give only the expected value and standard deviation for the ground
state (q = 0). In the following discussion, we mainly focus on the temperature regime
where the thermal weight will favor states with 1� S � N . For q = 0, the eigenvalues
of ĤSMA are E(S) = ( Us=2N )S(S + 1). Therefore, the temperature regime in which we
are interested is

Us

N
� kB Ts � NUs: (4.25)

In our experiment [38], at the end of the evaporation,Us � 66 Hz,N � 5000, therefore

0:64 pK � Ts � 16 � K: (4.26)

SinceTs � 10� 100 nK (as we will see in the experiment part of this chapter), we work
well in the temperature regime in Eq. (4.25).

In fact, in the case 1� S � N , we can simplify the diagonalization ofĤSMA (Eq.
(4.20)) just by reducing the dimension of the matrix. For example, forN = 5000, in
principle, we have to diagonalize a 2501� 2501 matrix. However, sinceS � N , we can
neglect matrix elements with largeS. if we chooseSmax = 1000, we only have to diago-
nalize a 501� 501 matrix, which accelerates a lot the calculation.

For the states with 1� S � N , we can also approximate the coe�cientsA � by keeping
the leading order inS and jN � Sj:

A � (N; S; M ) �
N � S

4S2
(S2 � M 2); (4.27)
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This leads to

hN̂0i S;M �
N (S2 � M 2)

2S2
; (4.28)

hN̂ 2
0 i S;M �

(S2 � M 2)2(3N 2 � S2)
8S4

: (4.29)

(� N̂ 2
0 )S;M = hN̂ 2

0 i S;M � h N̂0i 2
S;M �

(S2 � M 2)2(N 2 � S2)
8S4

: (4.30)

We note that the low-energy eigenstates withS � N; jM j � S display super-Poissonian

uctuations as found in the ground state ((� N 2

0 )S0 / N 2), whereas eigenstates with
M = S display no 
uctuations in this approximation. This is the origin of the \abnormal"

uctuations at low B around the critical �eld Bc (see Fig. 3.5) in chapter 3.

4.2.2 Thermal equilibrium for hŜzi = 0

In this subsection, we use the total spin basis to calculate the �rst two moments ofn0 at
�nite temperature Ts. We suppose that all the sectors ofM are populated withhŜzi = 0,
i.e., the magnetization vanishes in average but 
uctuations around zero are possible. In
this case, we should diagonalize thêHSMA block by block for di�erent M (see Fig. 4.3).
In [98] (see in g E, published articles 2), we consider a simpler case, in which we suppose
only M = 0 sector is populated. All the approximation methods used in that article (e.g.
tight-binding model) can be applied inhŜzi = 0 case and most of the results in [98] are
qualitatively the same as in this subsection.

4.2.2.1 Depletion and 
uctuation at q = 0

We begin with the system withq = 0 at �nite temperature Ts. The eigenstates in this
case is thus total spin basisjN; S; M i , with E(S) = ( Us=2N )S(S + 1). If kB Ts � Us=N,
only the ground statejN; 0; 0i is populated, as a result, the depletion and the 
uctuation
of n0 is given by Eq. (4.23) and (4.24), which display a super-Poissonian 
uctuation.

Calculation for Us=N � kB Ts � NUs :

In this temperature regime, the partition function Z is given by

Z =
X

S;M

e� � 0S(S+1) �
Z + 1

0
e� � 0S2

dS
Z + S

� S
dM =

1
� 0

; (4.31)

with � 0 = Us=(2NkB Ts). This replacement from discrete sum to an integer is valid as
long as 1� S � N . The thermal average ofhN0i Ts and hN 2

0 i Ts in the canonical ensemble
is given by (using Eq. (4.28) and (4.29))

hN0i Ts =
1
Z

X

S;M

e� � 0S(S+1) hN0i S;M �
N
3

; (4.32)

and to leading order

(� N 2
0 )Ts = hN 2

0 i Ts � h N0i 2
Ts

�
4N 2

45
: (4.33)

82



Calculation for kB Ts � NUs :

For the temperaturekB Ts � NUs, the calculations above arenot valid (the upper bound
of the integer, e.g. in Eq. (4.31), cannot be extended to +1 ). In this regime, the
temperature is even large compared with the largest eigenvalue of spectrum (see Fig.
4.3), all the eigenstates are essentially equally populated. We can therefore replace the
Boltzmann factor by 1, and thusZ � N 2. We have

hN0i Ts �
N
3

: (4.34)

(� N 2
0 )Ts = hN 2

0 i Ts � h N0i 2
Ts

�
N 2

18
: (4.35)

In conclusion, we have calculated the depletion and the 
uctuation atq = 0. First, for
any temperatureTs, the 
uctuation � N 2

0 is always super-Poissonian. The temperature
will not degrade the large quantum 
uctuation at q = 0, simply because the temperature
will not break the symmetry of the system. Second, the values of the depletion is alway
1/3, almost independent of temperatureTs, from zero, where the system is in the ground
state, until very large temperature kB Ts � NUs. The value of 
uctuation is alway
2=3

p
5 � 0:298 fromTs � 0 until kB Ts � NUs, and decreases to 1=3

p
2 � 0:236 at very

large temperaturekB Ts � NUs. We remind that the typical level spacingUs=N � pK,
and the upper boundNUs � 10� K. As a result, for our experiment, the intermediate
temperature limit Us=N � kB Ts � NUs is always the relevant one. The values forhn0i
and � n0 at q = 0 are summarized in Tab. 4.1, including theM = 0 case, which is
discussed in detail in [98].

kB T � Us=N Us=N � kB T � NUs kB T � NUs

M = 0
1=3 1=2 1=2 hn0i

2=3
p

5 � 0:298 1=2
p

2 � 0:354 1=2
p

3 � 0:289 � n0

hŜzi = 0
1=3 1=3 1=3 hn0i

2=3
p

5 � 0:298 2=3
p

5 � 0:298 1=3
p

2 � 0:236 � n0

Table 4.1: Summary of the value ofhn0i and � n0 for di�erent situations : a system
prepared in the eigenstates of̂Sz with M = 0, and a system prepared in a mixture of
di�erent M , with hŜzi = 0.

4.2.2.2 Calculation for generic q

For generic q, we diagonalize directly the SMA HamiltonianĤSMA in total spin basis
jN; S; M i . We summarize in Fig. 4.4, �n0 in the q � T plane, which is calculated by
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exactly diagonalizing the SMA Hamiltonian for relatively small atom numberN = 300
(Eq. (4.1)). Large 
uctuations and depletion of themF = 0 state are observed for small
q. We can distinguish three di�erent regimes. For low magnetic �eldq � Us=N2 and
low temperatureskB Ts � Us=N the system is close to the ground state in a regime we
call \quantum spin fragmented" [89, 46, 91, 95]. We also observe a thermal regime for
kB Ts � Nq; Us=N dominated by thermally populated excited states. We call this second
regime \thermal spin fragmented". Finally, for q large enough and temperature low
enough, the bosons condense into the single-particle statemF = 0, forming a so-called
\polar" condensate [29, 30]. In this limit, hn0i � 1 and � n0 � 1. We indicate this third
regime as \BEC m = 0" in Fig. 4.4 2.

4.2.3 Broken-symmetry approach

We have treated until now the problem by the most natural method, by studying the
spectrum of the SMA Hamiltonian Eq. (4.1). There is another approach to the problem
of the spin 1 bosons with antiferromagnetic interactions [89, 39], which relies on the set
of so-called \polar" or \spin-nematic" states, de�ned as

jN : 
 i =
1

p
N !

(
 � ây)N jvaci ; (4.36)

where in the standard basis, the vector
 is expressed as


 = e i


0

@

1p
2

sin(� )ei�

cos(� )
� 1p

2
sin(� )e� i�

1

A ; (4.37)

These states arise in the mean-�eld approach in chapter 1, section 1.3.3 whenq =
0, they minimize the mean-�eld energy. For a single particle, the statej1 : 
 i =P

i =+1 ;0;� 1 
 i jmF = i i form a family of spin 1 wave functions with

h1 : 
 j ŝ j1 : 
 i = 0: (4.38)

In fact, j
 i is the eigenvector with zero eigenvalue of the operator
 � ŝ, with ŝ the spin 1
operator. The statesjN : 
 i correspond to a many-body wave function where all particle
occupy the single particle statej
 i . As a result, we havehN : 
 j Ŝ jN : 
 i = 0.

4.2.3.1 Zero temperature

We begin with considering the simplest case: the system at zero temperature. We can
connect the spin nematic states (Eq. (4.36)) to the total spin statesjN; S; M i discussed
in the previous section. In fact, spin nematic states form an over-complete basis of the

2This phase diagram is calculated inM = 0 case [98]. The numerical values are not the same as
hŜz i = 0 case, however, the conclusion holds.
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Figure 4.4: Standard deviation � n0 in the q� T plane. We mark three di�erent regimes
in the q � T plane. \Spin fragmentation" refers to a fragmented spin state with large
population 
uctuations, where � n0 � 1. In the quantum regime (Nq=Us � 1=N and
kB Ts=Us � 1=N ), this is due to quantum 
uctuations: the system is then close to the
singlet ground state. In the thermal regime (kB Ts � Nq; Us=N), on the other hand,
thermal 
uctuations dominate over the quantum one and over the e�ect of the quadratic
Zeeman energy. Conversely, \BEC m=0" refers to atoms forming a regular polar conden-
sate with almost all atoms inmF = 0, and � n0 � 1. The plot was drawn by numerically
diagonalizing the SMA Hamiltonian (Eq. (4.1)) and computing thermodynamic averages
from the spectrum and eigenstates, usingN = 300. Note the logarithmic scales on both
the horizontal and the vertical axis.
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bosonic Hilbert space. Expressing the total spin states in this basis, we have3 [89, 39, 95]

jN; S; M i =
Z

d
 YS;M (
 )jN : 
 i ; (4.39)

where YS;M (
 ) is the spherical harmonics and d
 = sin( � )d� d� . For example, at zero
magnetic �eld and zero temperature, the system is in the singlet statejN; 0; 0i . According
to Eq. (4.39), the singlet ground state and be expressed as a coherent superposition of
the spin nematic states with equal weights.

jN; 0; 0i =
1

p
4�

Z
d
 jN : 
 i : (4.40)

Consider now the average value in the singlet state of ak-body operatorÔk

hÔk i singlet = hN; 0; 0jÔk jN; 0; 0i =
1

4�

Z
d
 d
 0hN : 
 0jÔk jN : 
 i : (4.41)

As shown in [89], for few-body operators withk � N , this average value can be approx-
imated to order 1=N by a much simpler expression

hÔk i singlet �
1

4�

Z
d
 hN : 
 jÔk jN : 
 i + O(1=N): (4.42)

In fact, according to Eq. (4.40), the density matrix of the singlet state is

�̂ singlet =
1

4�

Z
d
 d
 0jN : 
 0ihN : 
 j: (4.43)

We can also de�ne a \Broken symmetry" density matrix which is the statistical mixture
of the spin-nematic states

�̂ BS =
1

4�

Z
d
 jN : 
 ihN : 
 j: (4.44)

Therefore, the approximation Eq. (4.42) means that the average value in the singlet state
can be approximated by the average value in the \Broken symmetry" state [89],

hÔk i singlet � h Ôk i BS + O(1=N): (4.45)

and the spin singlet state can be approximated by the \Broken symmetry" density matrix
[89]

�̂ singlet � �̂ BS + O(1=N): (4.46)

This approach (Eq. (4.45) and (4.46)) is known as the \Broken symmetry" picture.
To the leading order of 1=N, the exact and the broken symmetry approaches will give

3In fact, jN; S; M i de�ned by Eq. (4.39) is normalized to N , which meanshN; S; M jN; S; M i = N .
This factor is compensated in all calculations we do by the same factorN in the scalar product
hN : 
 jN : 
 0i = 2 �N [� (
 � 
 0) + � (
 + 
 0)]. We write the the scalar product as hN : 
 jN : 
 0i =
4�� (
 � 
 0) for simplicity in the rest of the thesis.
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the same results after averaging over the ensemble. The di�erence between the two ap-
proaches vanish in the thermodynamic limit as 1=N. Brie
y speaking, the validity of the
approximation Eq. (4.45) rely on that the overlap integralhN : 
 jN : 
 0i between two
spin-nematic states vanishes very fast with the distancej
 � 
 0j. This allows us to use
the approximation 4�� (
 � 
 0) + O(1=N).

We can thus calculate the moments ofN0 in the singlet state by the \Broken sym-
metry" approach. We begin with calculating the moments ofN0 in the spin-nematic
states jN : 
 i . In using Eq. (D.2) in appendix D.1, we have

hN : 
 jN̂0jN : 
 i = hN : 
 jay
0a0jN : 
 i = N cos2(� ): (4.47)

and the variance ofN0 reads

hN : 
 jN̂ 2
0 jN : 
 i = hN : 
 jay

0a0ay
0a0jN : 
 i = N (N � 1) cos4(� ) + N cos2(� ): (4.48)

Therefore, the moments ofN0 averaged over ^� BS is

hN0i =
1

4�

Z 2�

0
d�

Z �

0
d� sin(� ) cos2(� ) =

N
3

; (4.49)

� N 2
0 = hN 2

0 i � h N0i 2 =
4N 2 + 6N

45
: (4.50)

The moments calculated in \Broken symmetry" picture thus only di�er from the results
(Eq. (4.23) and (4.24)) in the exact ground state (spin singlet statejN; 0; 0i ) by the
sub-leading term/ N . This is in agreement with the general statement made above.

4.2.3.2 Moments of N0 at �nite temperatures

In the previous part, we have calculated the moments for the spin singlet statejN; 0; 0i
which is the ground state at zero temperature and zero magnetic �eld. In this part, we
generalize the broken symmetry approach to the �nite temperature and non-zero �eld.
The broken symmetry density matrix should include the Boltzmann factor e� � Ĥ SMA . To
leading order in 1=N, the spin nematic states have zero interaction energy and a mean
quadratic Zeeman energy� Nq cos2(� ). In the spirit of the mean-�eld approximation, we
replace the Boltzmann factor by its mean value, and the broken symmetry density matrix
is given by

�̂ BS �
1
Z

Z
d
 jN : 
 ihN : 
 jeN�q j
 z j2 ; (4.51)

with � = 1=kB Ts. The partition function can be expressed as

Z =
Z 2�

0
d�

Z �

0
d� sin(� )eN�q cos2 (� ) = 2�F � 1=2(N�q ): (4.52)

Here we introduce the family of functions

F� (� ) =
Z 1

0
x � e�x dx; (4.53)
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which are related to the lower incomplete gamma functions. As a result, the moments of
N0 is

hN m
0 i =

1
Z

Z
d
 hN : 
 jN̂ m

0 jN : 
 i eN�q cos2 (� ) : (4.54)

In using Eq. (D.2), to leading order ofN

hnm
0 i =

Fm� 1=2(N�q )
F� 1=2(N�q )

: (4.55)

From Eq. (4.55), we can calculate easily the expected value and the standard deviation
of n0, not necessary to diagonalize the large matrix of̂HSMA . According to Eq. (4.55),
the moments ofN0 depend only on a dimensionless parameterNq=kB Ts.

We compare in Fig. 4.5, the expected value and the standard deviation calculated by
broken symmetry approach and by the exact diagonalization. We �nd a good agreement
between the two.
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Figure 4.5: Comparison between the broken symmetry approach and exact diagonaliza-
tion for N = 1000, T = 10Us. The black dots are calculated by exact diagonalization,
the blue dashed line is calculated by the broken symmetry approach.

4.3 Generalization to arbitrary distribution of M

In section 4.2, we have discussed the quantum solution of SMA Hamiltonian̂HSMA , which
describes the condensate. However, in comparing Fig. 4.5 with the experiment results,
Fig. 4.1, 4.2, we �nd two major discrepancies. First, at largeq, the theory predicts
1 � h n0i ! 0, however, there is a o�set in the experimental results, especially in Fig.
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4.1. This can be explained by taking the thermal atoms surrounding the condensate
into account. We will discuss this in the next section. Second, atq ! 0, the theory
predicts 1� h n0i = 2=3, however, we measure experimentally 1� h n0i � 0:6. Moreover,
the theory which restricts atoms onM = 0 sector predicts 1� h n0i = 0:5 at q = 0 (see
Tab. 4.1). Therefore, a possible explanation is that the real distribution ofM is between
these two cases. Indeed, since [ĤSMA ; Ŝz] = 0, the distribution of M is expected to be
non-thermal as it cannot relax to the equilibrium distribution predicted by statistical
mechanics. In this section, we use the broken symmetry description to generalize to an
arbitrary distribution of M , more precisely, we suppose that the density matrix of the
spin 1 system can be described by

�̂ =
1
Z

X

�;M

wM e� �E �;M j�; M ih�; M j: (4.56)

with Ĥ j�; M i = E �;M j�; M i , Z =
P

�;M wM e� �E �;M . This amounts to introducing a \gen-
eralized statistical ensemble" where the energy is �xed on average, while the population
of eachM z sector and the total atom number are �xed exactly. Forq > 0, S is no
longer a good quantum number, we indicate� as the quantum number for marking the
eigenstates. Comparing to Eq. (4.2), the additional termwM in Eq. (4.56) describes a
\prior" distribution of M . As we will see, depending on how narrowwM is, the value of
1 � h n0i at q = 0 can lie anywhere between 1=2 and 2=3.

We denoteP̂M , the projector on the subspace ofM

P̂M =
X

�

j�; M ih�; M j: (4.57)

Because [̂HSMA ; Ŝz] = 0, we have e� � Ĥ SMA P̂M = e � � Ĥ SMA P̂2
M = P̂M e� � Ĥ SMA P̂M . As a

result, the density matrix Eq. (4.56) can also be expressed as

�̂ =
1
Z

X

M

wM P̂M e� � Ĥ SMA P̂M : (4.58)

Using the results in appendix D.2, we �nally get the expression of ^� and Z for the
arbitrary distribution wM

hN : 
 j�̂ jN : 
 i '
1
Z

f (
 ) e�Nq 
 2
z ; (4.59)

Z '
Z

d
 f (
 ) e�Nq 
 2
z ; (4.60)

with

f (
 ) =
NX

M = � N

NX

S= jM j

wM jYSM (
 )j2 =
NX

S=0

SX

M = � S

wM jYSM (
 )j2: (4.61)

Here, we use Eq. (4.59), (4.60), (4.61) to verify whether we can reproduce the results
obtained before by assumingwM = 1 and wM = � M; 0, which correspond to the magne-
tization unconstrained (hŜzi = 0) and to the magnetization constrained (M = 0) cases,
respectively.
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� wM = 1 :

f (
 ) =
NX

S=0

SX

M = � S

jYSM (
 )j2 =
(N + 1) 2

4�
: (4.62)

In this case, Eq. (4.59) is the same as Eq. (4.51). Therefore, usingwM = 1, we
recover all previous results calculated in thehŜzi = 0 case.

� wM = � M; 0 :

f (
 ) =
NX

S=0

jPS(cos(� )) j2 �
2S + 1

4�
�

N
2� 2 sin(� )

: (4.63)

Therefore, we �nd

hn0i =

R�
0 d� e� cos2 (� ) cos2(� )

R�
0 d� e� cos2 (� )

=
1
2

�
1 �

I 1(�=2)
I 0(�=2)

�
; (4.64)

hn2
0i =

R�
0 d� e� cos2 (� ) cos4(� )

R�
0 d� e� cos2 (� )

=
1
2

+
a � 1

2a
I 1(�=2)
I 0(�=2)

: (4.65)

with � = N�q and I n (x) the n-order �rst kind modi�ed Bessel function.

Eq. (4.64) and (4.65) reproduce very well the results ofM = 0 case, calculated by
exact diagonalization.

In the following sections, we always assume a Gaussian distribution forwM

wM = e � M 2

2( N� ) 2 ; (4.66)

with � the parameter describing the width of the distribution ofM . Therefore,wM = � M; 0

and wM = 1 correspond to� = 0 and � ! + 1 , respectively. In Fig. 4.6, we plot 1�h n0i
and � n0 as a function ofNq=Ts for � = 0; 0:3; + 1 . We see clearly that as� increases,
the value of 1� h n0i (� n0) at q � 0 increases (decreases). In Fig. 4.7, we plot directly
1 � h n0i and � n0 value at q = 0 as a function of � .

4.4 Hartree-Fock Approach

In section 4.2 and 4.3, we have studied the theory for the condensate. In the experiment,
there is always a thermal fraction, which is detectable. In this section, we start to consider
this thermal part. Like in chapter 1, we separate the system into two parts, condensate
and thermal cloud, and solve them separately. We adapt the semi-ideal Hartree-Fock
approximation introduced in chapter 1, in which we neglect the in
uence of the thermal
part on the condensate, to describe a 
uctuating spinor BEC. Like in chapter 1, section
4, we focus onmz = 0. We calculate hn0i as a function ofB as well as the 
uctuations
� n0 as a function ofB .

In principle, the same temperature should characterize at equilibrium the 
uctuation
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of the spinor condensate and of the thermal components. We found that this does not
describe the experimental data well, and that we need to introduce two di�erent tem-
peratures, the so-called \spin temperature"Ts, introduced in section 4.2 and the kinetic
temperature Tk to characterize the spinor condensate and the thermal cloud, respec-
tively. Therefore, the temperature used in the semi-ideal Hartree-Fock approximation is
the kinetic temperature Tk , which determines the population of the various modes that
compose the condensed component (one \phonon" mode, and two \spin waves" modes
[29]). However the temperature used in the solution of the SMA Hamiltonian̂HSMA , is
the spin temperatureTs, which determines the excitations of theĤSMA . We �nd in the
experiment (see next section) that the spin temperatureTs is much lower than the kinetic
temperature Tk

Ts � Tk : (4.67)

In this section, we �rst discuss how we adapt the semi-ideal Hartree-Fock approximation
to fragmented spinor condensates. Next, we show the results of the simulation and in
the end, we discuss the informations we can obtain from these simulations and how to
use them in the experiment. For de�niteness, all the simulations in this section assume
that apart from hŜzi = 0, the magnetization is not constrained (� ! + 1 in the prior-
distribution in Eq. (4.66)).

4.4.1 Semi-ideal Hartree Fock approximation for spinor BEC

The process of the HF simulation is almost the same as introduced in chapter 1, section
1.4. The density distribution is calculated by using Thomas-Fermi approximation and
Single Mode Approximation (SMA), where we neglect the in
uence of the thermal cloud.
The density distribution of the thermal cloud is calculated by the Bose distribution with
an e�ective chemical potential and an e�ective external potential.

We follow the same iteration in chapter 1, section 1.4.1 which consists of 7 steps for
the simulation, except that in step 3, N c

+1 ; N c
0; N c

� 1, the condensate atom number in
mF = +1 ; 0; � 1 respectively, are calculated by Eq. (4.55) instead of the mean-�eld ap-
proach. Additionally, we calculate also the 
uctuation � N0. In fact, the 
uctuation � N0

is composed of two parts, the condensate and the thermal cloud. As we have discussed in
the previous sections, the 
uctuation of condensate is super-Poissonian (�N 2

0 � N 2)
which is much larger than the normal atom number 
uctuation which is Poissonian
(� N 2

0 � N ). The 
uctuation of the thermal component are expected to be Poisso-
nian, � N 2

th � N th . As a result, the 
uctuation is determined only by the condensate to
a good approximation,

� n2
0 � f 2

c � (� n2
0)SMA : (4.68)

The mean population inmF = 0 is, however, a�ected by the thermal component,

hn0i = f c � hn0i SMA + hn0i th : (4.69)

This approximation is possibly challenged for the highest temperature we study, where
f c � 0:3.
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4.4.2 Simulation results and analysis

In the following simulations, we always take the total atom numberN = 5000, and an
isotropic harmonic trap with �! = ! x = ! y = ! z = 2� � 1000 Hz. We show in Fig. 4.8,
the plots of 1�h n0i and � n0 as a function ofq. We plot for di�erent kinetic temperatures
Tk = 200; 300; 400 nK with the same spin temperatureTs = 30 nK.
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Figure 4.8: Plot of 1-hn0i and � n0 as a function of q, with �xed spin temperature
Ts = 30 nK. The kinetic temperature Tk = 200; 300; 400 nK for the blue dashed line, the
black dash-dotted line and the red solid line, respectively.

In Fig. 4.8a, we plot 1� h n0i as a function ofq. We �nd for each kinetic temperature,
there are three plateaux regions in 1� h n0i curve, which means during an interval ofq,
1 � h n0i stays almost constant. We take the curve withTk = 400 nK an example and
mark the three plateau regions in the �gure.

The �rst plateau region is at low q. For q ! 0, we �nd 1 � h n0i ! 2=3, which is
independent of the kinetic temperatureTk . This is expected because of the spin rota-
tional invariance for both condensate and thermal cloud. In the �rst plateau region, the
magnetic �eld is not yet strong enough to break this spin rotational invariance, therefore,
1 � h n0i is almost unchanged.

Between the �rst and the second plateau region, asq increases, 1� h n0i decreases until
the value of the second plateau, which we denotec. As we will show later in Fig. 4.11,
the spin isotropy of the thermal part is valid until the second plateau region, which also
means the decrease of the 1�h n0i is mainly caused by the condensate. The magnetic �eld
depletes the condensate atoms frommF = +1 and mF = � 1 to mF = 0 state because of
the quadratic Zeeman e�ect.
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In fact, the plateau value c in the second plateau region is the same as the plateau
at low q in chapter 1, Fig. 1.6. Because we did not use the quantum solution of̂HSMA ,
in chapter 1, the plateau will extend until q ! 0. In this plateau region, almost all
the condensate atoms occupy themF = 0 state. Together with the spin isotropy of the
thermal cloud, we can connect this plateau valuec directly with the condensate fraction
f c, as in chapter 1, section 1.4.2. We have

f iso
c = 1 �

3c
2

: (4.70)

This explains why c depends on the kinetic temperatureTk (larger Tk means smallerf c

thus larger c).

Further, we denoteqs
1=2, the Half width of q at Half Maximum (HWHM), with the half

maximum here de�ne as the mean value of the �rst and the second plateau. Therefore
1 � h n0i (qs

1=2) = 1 =3 + c=2. In fact, qs
1=2 re
ects the spin temperatureTs of the system,

as we have discussed in the last section. We can verify thatqs
1=2 for di�erent Tk in Fig.

4.8 are almost the same, with
kB Ts � Nqs

1=2: (4.71)

Between the second and the third plateau region, magnetic �eld begins to deplete thermal
atoms from mF = +1 and mF = � 1 to mF = 0 state. The decrease of 1� h n0i value is
thus caused by the thermal atoms. We denoteqk

1=2, the Half width of q at Half Maximum
(HWHM), with the half maximum here de�ne as the mean value ofc and 0 (the second
and the third plateau value), 1� h n0i (qk

1=2) = c=2. Because 1� h n0i value in this region
corresponds to removing thermal atoms frommF = � 1 states, we have

kB Tk � qk
1=2 (4.72)

Finally, in the third plateau region with very large q, all the atoms are inmF = 0 state,
because of the quadratic Zeeman e�ect.

In Fig. 4.8b, we plot � n0 as a function of q. The value of � n0 at q ! 0 depends
on the kinetic temperature Tk (Eq. (4.68)). Higher Tk means smallerf c thus smaller
� n0. We show in Fig. 4.9, the plots of 1� h n0i and � n0 as a function ofq. We plot
for di�erent spin temperatures Ts = 10; 50; 200 nK with the same kinetic temperature
Tk = 200 nK. In Fig. 4.9a, we plot 1� h n0i as a function ofq. Most of the characters of
1 � h n0i curve are explained above. Here, we just remark two points. First, the plateau
value c is almost independent of the spin temperatureTs. Second,qs

1=2 is larger for larger
spin temperatureTs (Eq. (4.71)). In Fig. 4.9b, we plot � n0 as a function ofq. We �nd
for the di�erent spin temperatures, � n0 takes the same value atq ! 0 (Eq. 4.68). And
the HWHM of q for � n0 is larger for largerTs. All these features con�rm that the con-
densate fractionf c depends only on kinetic temperatureTk and not on spin temperature
Ts.

We illustrate in Fig. 4.10, the condensate fractionf c as a function ofq for di�erent spin
temperatures and kinetic temperatures. We �nd that, in Fig. 4.10a,f c is almost indepen-
dent of Ts. In Fig. 4.10b, we �nd that the condensate fractionf c is almost independent
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Figure 4.9: Plot of 1� h n0i and � n0 as a function ofq, with �xed kinetic temperature
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of q until the second plateau region.

In Fig. 4.11, we illustrate the deviation (of the spin isotropy) parameterQ as a function
of q for di�erent spin and kinetic temperatures. We remind here the de�nition ofQ

Q =
N th

+1 + N th
� 1 � 2N th

0

N
: (4.73)

which is zero if the spin isotropy is perfectly satis�ed. In Fig. 4.11(a), (b), we �nd
that until the second plateau region,Q is small, indicating that the spin isotropy of the
thermal clouds is not broken. Whenq increases slightly from 0, Q increases slightly.
This is because asq increases, there are more condensed atoms inmF = 0, which prefer
more thermal atoms inmF = � 1. For largeq � kB Tk , thermal atoms are depleted from
mF = � 1 to mF = 0 state, because of the quadratic Zeeman energy, breaking the spin
isotropy of the thermal clouds.

In conclusion, in this section, we have used the semi-ideal Hartree-Fock approximation to
study our spin-1 system with the presence of the thermal cloud. Comparing to chapter 1,
section 1.4, we used the quantum solution developed in the previous section in this chapter
to describe the condensate. We focused as usual on 1� h n0i and � n0 as a function ofq.
We found that, these plots reveals several important characters of our system, as pointed
out in chapter 1, section 1.4, including the spin temperatureTs, the kinetic temperature
Tk , and the condensate fractionf c. In the end, we pointed out that the spin isotropy of
the thermal cloud is well satis�ed until the second plateau region, as a result, it allows us
to connect directly the plateau valuec in the 1 � h n0i plot with the condensate fraction
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f c, shown in Eq. (4.70). In the next section, we will introduce our experiment to study
the large collective 
uctuation, and we will use the model introduced in this section to
analyze the data from the experiments.

4.5 Analysis of experimental results

In the previous sections, we introduced the theory of spin-1 antiferromagnetic conden-
sate. In combining the quantum solution of SMA HamiltonianĤSMA (Eq. (4.1)) for
the condensate and the semi-ideal Hartree Fock approach, we calculated the behavior of
1 � h n0i and � n0 as a function ofq. In comparing with the results in chapter 1, section
1.4, in which mean-�eld theory is used to describe the condensate, we �nd that the dif-
ference is mainly in lowq regime. In this section, we show our experimental study of this
collective 
uctuation and use the theory developed in section 4.2 to 4.4 to analyze the
experimental data. We begin this section by introducing the data analysis methods. We
show, in the next two parts, the results measured during evaporation and during hold
time, respectively. In the last part of this section, we concentrate on another aspect of
the spin-1 BEC, the 
uctuation of magnetization � mz at q = 0. The interpretation and
discussion of the results will be discussed in the next section.

4.5.1 Data analysis

In Fig. 4.12 and 4.13, we show our �tting results of Fig. 4.1 and 4.2 by the model
introduced in the previous sections. In fact, for a given total atom numberN tot and trap
frequencyf trap , we have 3 parameters to �t:

� kinetic temperature Tk ,

� spin temperatureTs,

� � , the width of the prior-distribution of M (see chapter 4, section 4.3).

The � 2 function of the �t is given by

� 2 =
X

qm

(hn0i HF � h n0i m )2 + ((� n0)HF � (� n0)m )2; (4.74)

whereqm is the measuredq value in the experiment, the subscript \HF" and \m" of hn0

and � n0 indicate \calculated by Hartree-Fock simulation" and \measured", respectively.
In these two �gures, we can see features in the 1� h n0i and � n0 curves discussed in the
previous section. For example, in 1� h n0i plot, the plateau value at intermediateq in
Fig 4.12 is larger than that in Fig. 4.13, indicating that the condensate fractionf c at
Tevap = 900 ms is smaller than that atTevap = 975 ms (Eq. (4.70)).

We use Eq. (4.74) as the� 2 function to minimize. This �tting, considering both 1 � h n0i
and � n0 curve together, is denoted \global �t" (temperatures �tted are marked by a
superscript G). Besides, we can obtain temperatures from 1� h n0i or � n0 curve indi-
vidually (marked by a superscripthn0i , � n0, respectively). In comparing temperatures
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�tted by these three methods, we �nd that the TG
k=s is normally betweenThn0 i

k=s and T � n0
k=s

and in general, they are in good agreement except at high temperature, suggesting that
the Hartree-Fock model, introduced in chapter 4, is valid at low temperature and reaches
its limit at high temperature (low condensate fraction). We should also point out that
the parameter� is essentially used to adjust the 1� h n0i value at q ! 0. We also realize
the Hartree-Fock simulation with � ! + 1 and �nd the same kinetic temperatureTk and
spin temperatureTs for all the trap depths and hold times within the error bars. This
shows that the temperatures �tted are not a�ected by � .
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Figure 4.12: Second evaporationTevap = 900 ms, trap depth � 6:76 � K. The point
closet to q = 0 (the solid blue circle) corresponds to zero applied �eld, and bas been set
arbitrarily at q = 10� 3 Hz.

In our experiment, we realize two kinds of experiment sequences.

� hold time �xed at 6 seconds, we vary the evaporation timeTevap from 750 ms to
1000 ms, which is shown in section 4.5.2,

� evaporation time �xed at 1000 ms (end of the second evaporation), we vary the
hold time from 1 second to 15 seconds, which is shown in section 4.5.3.

4.5.2 Experimental results of temperature during evaporation

We illustrate in Fig 4.14 and 4.15 the analysis results of temperature with error bars
(con�dence interval with 68% [99]) during evaporation (with �xed hold time 6 s). The
�tting results of � will be shown in section 4.5.4. We illustrate, in Fig. 4.14, the ki-
netic and spin temperature (Tk , Ts) as a function of trap depth Vtrap (with �xed hold
time 6 seconds). During the second evaporation, since the trap depth decreases linearly
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Figure 4.13: Second evaporationTevap = 975 ms, trap depth � 2:70 � K. The point
closet to q = 0 (the solid blue circle) corresponds to zero applied �eld, and bas been set
arbitrarily at q = 10� 3 Hz.

(chapter 2, section 2.3.3), the kinetic temperatureTk also decreases linearly (chapter 2,
section 2.3.1). However, the spin temperatureTs behaves quasi-independent of the trap
depth and remains almost unchanged for a wide range of trap depth (4� K � 12 � K).
Moreover, spin temperatureTs is always much less than the kinetic temperatureTk , even
after a hold time during 6 seconds, which indicates that the system seems not reach the
\equilibrium". We will discuss in detail the reason in the next section.

We plot, in Fig 4.15a, kinetic temperatureTk measured by two methods, Hartree-Fock
approach mentioned above (blue triangle) and TOF expansion (red circle). In measur-
ing the expansion of the thermal distribution during the Time-Of-Flight (TOF), we can
calculate the kinetic temperatureTk [33]. However, at very low temperature, since the
condensate fraction is near 1, it is very di�cult to distinguish thermal distribution from
the dominant condensate (chapter 2, section 2.6.1), whose expansion is caused by both
quantum pressure and interaction [12]. This is the reason why kinetic temperatureTk

by TOF expansion method is only reliable for relatively large trap depth. However, in
the overlapping region, the kinetic temperatures obtained by both methods accord well
with each other. Moreover, the slopes of bothTk curves accord also well with each other,
indicating that the kinetic temperature Tk calculated by Hartree-Fock method is reliable.
We plot, in Fig. 4.15b, the condensate fractionf c as a function of trap depth (with
�xed hold time 6 seconds). At the end of the second evaporation, we reach to a almost
pure condensate. Condensate fractionf c, calculated by Hartree-Fock simulation, is more
reliable than that �tted directly by Eq. (2.27), (see Fig. 2.5 and discussion in chapter 2,
section 2.6.1).
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Figure 4.14: (a). Kinetic temperatureTk and spin temperatureTs as a function of trap
depth (with hold time 6 seconds). (b). Zoom on the spin temperatureTs.
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Figure 4.15: (a). Kinetic temperatureTk calculated by HF approach (blue triangle) and
by TOF expansion (red circle). (b). Condensate fractionf c as a function of trap depth
(with hold time 6 s).

4.5.3 Experimental results of temperature during hold time

We illustrate in Fig. 4.16, the analysis results of temperature during hold time (with
�xed Tevap = 1000 ms, trap depthVtrap � 1:35 � K, at the end of the second evaporation).
The �tting results of � will be shown in section 4.5.4. We illustrate in Fig 4.16a, (Tk , Ts)
as a function of hold time, with �xed trap depth (at the end of the second evaporation).
The kinetic temperature Tk continues to decrease slowly during the hold time, since the
evaporation continues in the trap. The spin temperatureTs keeps almost unchanged, and
always smaller than the kinetic temperatureTk . In Fig. 4.16b, we show the condensate
fraction f c as a function of hold time. The condensate fraction increases during the hold
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time, since the evaporation continues during the hold.
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Figure 4.16: (a). Kinetic temperatureTk and spin temperatureTs as a function of hold
time (with Tevap = 1000 ms, trap depth � 1:35 � K). (b). Condensate fraction f c as a
function of hold time (with Tevap = 1000 ms).

4.5.4 Fluctuation of magnetization � mz at q = 0

All discussions above concentrate on the moments ofn0 (1 � h n0i and � n0). In this
part, we discuss the 
uctuation of magnetization � mz as a supplement. In fact, because
hm2

zi � 1=N, it cannot be calculated by the broken symmetry approach, according to
Eq. (4.45). Therefore, in this part, we consider only a simple case,q = 0, where the
eigenstates ofĤSMA are known analytically.

4.5.4.1 Theoretical analysis of � mz at q = 0

In this section, we consider a pure condensatef c = 1 described byĤSMA . We suppose a
Gaussian prior-distribution for wM (see section 4.3). The partition function is4

Z =
NX

S=0

SX

M = � S

e� � Us
2N S(S+1) e� M 2

2( N� ) 2 �
NX

S=0

SX

M = � S

e� � 0S2
e� 
M 2

; (4.75)

with � 0 = Us=(2NkB Ts) and 
 = 1=(2(N� )2). The sum can be replaced by an integral if
� 0; 
 � 1, which meanskB T � Us=N and � � 1=N. These two conditions are satis�ed
for our experimental parameters. We get directlyhM i = 0, and after some algebra (see
appendix D.3) we �nd the 
uctuation of mz at q = 0 is given by

� mz =

r
� M 2

N 2
= �

s

1 �
p

�
(1 + � ) arctan(1=

p
� )

: (4.76)

4It should be aware that N in this subsubsection is the condensate atom number, not the total atom
number.
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with � the width of the prior-distribution of M , � = NUs� 2=kB Ts. According to Eq.
(4.78), � can also be expressed as

� = NUs� 2=kB Ts =
2
3

� �
� mz;1

� 2
: (4.77)

We calculate � mz in two extreme cases,� ! 0 and � ! + 1 :

� if � ! 0, � ! 0, � mz ! 0. This is natural, since� ! 0 corresponds toM = 0
case.

� if � ! + 1 , � ! + 1 ,

� mz !

r
2
3

kB Ts

NUs
� � mz;1 ; (4.78)

corresponding tohŜzi = 0 case in section 4.2.2.

Finally, we can connect directly the spin temperatureTs with spin interaction energy (at
q = 0). We calculate hS2i in appendix D.3. As a result, we �nd

hEsi =
Us

2N
hS2i = g(� ) � kB Ts (4.79)

with

g(� ) =
1
2

�
�

1 +
p

�
(1 + � ) arctan(1=

p
� )

�
: (4.80)

when � ! 0, g(� ) ! 1=2; when� ! + 1 , g(� ) ! 1, as illustrated in Fig. D.1. In fact,
Eq. (4.78), (4.79) connects directly the averaged spin interaction energyhEsi and spin
temperatureTs, which is very important to explain the origin of the spin temperatureTs

in our system. We will return to this point in the last section in this chapter.

4.5.4.2 Experimental results of � mz at q = 0

The discussion in section 4.5.4.1 concentrates on the 
uctuation of the magnetization of
the condensate. The atom number 
uctuations of the thermal atoms in each compo-
nent (normally Poissonian) are small compared with those of the condensates (normally
super-Poissonian). As a result, we suppose that only condensates contribute to the total

uctuation of the magnetization. We have

� m2
z;tot = � m2

z;c � f 2
c : (4.81)

Here, � mz;tot is the total 
uctuation of magnetization, � mz;c is 
uctuation of the mag-
netization of the condensate, expressed in Eq. (4.76). In the following discussion, we
denote � mz;tot directly by � mz for simplicity.

We illustrate, in Fig. 4.17a, the width � of the prior-distribution of M as a function
of trap depth (with �xed hold time 6 seconds), which is used to calculate �mz. We ne-
glect the contribution of the 
uctuation of thermal atoms (see section 4.4.1, Eq. (4.68))
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and plot in Fig. 4.17b, the measured (red circle) and calculated (blue square) 
uctu-
ation of magnetization � mz at q = 0 as a function of trap depth (with hold time 6
s). We �nd good agreement except forTevap = 700; 750; 800 ms, corresponding to trap
depth Vtrap � 17:6; 14:9; 12:2 � K (high trap depth, high temperature and low condensate
fraction), indicating that the Hartree-Fock model describes well our spin-1 system for
low enough temperatures. For highest temperatures, it becomes suspicious, indicating a
possible failure of our Hartree-Fock model.

We plot in Fig. 4.17c, the width � of the prior-distribution of M as a function of hold
time, which is used to calculate �mz in Eq. (4.76). We compare in Fig. 4.17d the
measured (red circle) and calculated (blue square) 
uctuation of magnetization �mz at
q = 0 as a function of hold time and �nd a good agreement within a precision of 15%.
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Figure 4.17: (a). � as a function of trap depth (with hold time 6 s). (b). Measured and
calculated 
uctuation of magnetization � mz at q = 0 as a function of trap depth (with
hold time 6 s). (c). � as a function of hold time (with Tevap = 1000 ms). (d). Measured
and calculated 
uctuation of magnetization � mz at q = 0 as a function of hold time
(with Tevap = 1000 ms).

We list in Tab. 4.2 and 4.3,�= � mz;1 during evaporation and during hold time, respec-
tively. We remind that � mz;1 is calculated in making� ! + 1 (Eq. (4.78)). In fact,
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�= � mz;1 re
ects the in
uence of � on the real-distribution of M . If � � � mz;1 , system

is only slightly in
uenced by the prior-distribution factor e � M 2

2( N� ) 2 (see Eq. (4.75)), which
is almost valid for the low trap depths.

Tevap (ms) 700 750 800 850 900 950 975 1000
Vtrap (� K) 17.6 14.9 12.2 9.47 6.76 4.05 2.70 1.35
�= � mz;1 < 0:05 < 0:05 1.07 1.68 2.51 2.55 8.41 6.24

Table 4.2: �= � mz;1 during evaporation with �xed hold time 6 s.

Hold (s) 1 3 6 8 15
�= � mz;1 5.54 7.31 6.24 12.25 3.96

Table 4.3: �= � mz;1 during hold time with �xed trap depth ( Tevap = 1000 ms, Vtrap �
1:35 � K, end of evaporation).

4.6 Discussion of the results

In this chapter, we show the experiment results and data analysis concerning the large
collective 
uctuations of our spin-1 BEC system. We plot the kinetic temperatureTk ,
spin temperatureTs and condensate fractionf c as a function of trap depthVtrap and hold
time. We �nd that the measurement of the 
uctuation behavior of the spinor condensate
can not only serve as a thermometry to measure both the kinetic temperatureTk , which
can hardly measured at very low temperature (because of high condensate fraction), and
spin temperatureTs of our system, but also o�ers a method to get reliable condensate
fraction f c of our system.

We noticed that the spin temperatureTs is in general lower than the kinetic temper-
ature Tk . More precisely, the kinetic temperatureTk depends directly on the trap depth
Vtrap , because of the mechanism of evaporative cooling. However, the spin temperature
Ts is almost independent (sometimes keeps constant for a wide range) of trap depth and
hold time, indicating very weak coupling between spin and kinetic degree of freedom.
We show in Fig. 4.18 an illustrative energy structure with both SMA modes and the
�rst \spin wave" mode. The spin wave modes are quantized due to the �nite size of our
system. The energy spacing of SMA modes is typicallyUs=N � 1 pK, however, the �rst
spin wave mode is in~! � 8 nK. This vast di�erence in energy scale means coupling
between SMA modes and spin wave modes is realized by multi-level process and thus very
ine�cient. We therefore expect a very weak coupling between the SMA modes, which
relate to the spin temperatureTs and other collective modes (phonons and spin waves,
which relate to the kinetic temperature).

In fact, kinetic and spin degree of freedom have independent mechanism to reach equi-
librium. The kinetic degree of freedom (phonons and spin waves) reaches equilibrium by
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the evaporative cooling with standard thermalization process, whereas the spin degree of
freedom reaches equilibrium by dephasing of single-mode collective spin excitations [100]
(or in other words, collective oscillations of the condensate that eventually relax to a
steady state [77]). In conclusion, the independent mechanisms to reach equilibrium and
the weak coupling between di�erent modes lead to di�erent kinetic and spin temperatures
and this di�erence can hold for very long time, forming a quasi-equilibrium state [101],
as Bose-Einstein condensate in alkali gases [3].

One more question is what energy scale determines the spin temperature. In an isolated
system (here, the condensate spin degree of freedom), the temperature after thermaliza-
tion is determined by the available energy, which is given by Eq. (4.79):hEsi � kB Ts.
Let us �rst discuss a \quench" scenario, where the gas is brutally cooled from above
critical temperature Tc to well below, then the reaches the equilibrium after a period of
time. Because the condensate forms from the thermal cloud, it seems to be reasonable to
assume that the condensate inherit the same 
uctuation of magnetization as the thermal
gas from which it forms,i.e. hS2

z i � 2N=3. 5 As a result, we have

hEsi =
Us

2N
hS2i �

Us

2N
� 3hS2

z i � Us: (4.82)

In our experiment, Us is typically 2 � 6 nK, leading to a spin temperature lower than
measured. However, a number of other factors are important. First, the evaporative
cooling and the thermalization are two simultaneous process and they are gradual, not
sudden. Therefore, the discussion above, assuming that the atom \�rst" emerge from
the thermal cloud and \then" reach equilibrium, is not directly applicable. Second, the
atoms lose during the evaporation. Third, the 
uctuation of magnetization can also be
limited by the imperfections in the preparation of the sample. Therefore, we propose a
quench experiment for our future work. We �rst apply a su�cient large magnetic �eld
in order to force all the atoms tomF = 0 state, then switch o� abruptly the �eld to
zero. By this way, we prepare at the beginning a well de�ned state with zero 
uctuation
of magnetization and can observe how this state evolves and reaches the equilibrium.
We can measure the spin temperature during this process, which will help us to better
understand the origin of the spin temperature.

4.7 Conclusion

In this chapter, we studied theoretically and experimentally the collective 
uctuations of
the spin-1 Bose-Einstein condensate with antiferromagnetic interactions. More precisely,
we focused on the behaviors of 1� h n0i and � n0 as a function ofq, and the 
uctuation
of magnetization � mz at q = 0.

In section 4.2, we focused on the quantum analysis of the SMA Hamiltonian̂HSMA , which
describes the behavior of the condensate. We began with the direct diagonalization of the

5Here, we suppose the isotropy of the thermal cloud (N th
+1 = N th

+1 = N th
+1 ), which is valid if q is not

very large (see chapter 4, section 4.4.2).
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Figure 4.18: Sketch of the energy ladder showing SMA modes and spin wave modes.
Other excitation branches lie higher in energy (> 50 nK).

SMA Hamiltonian ĤSMA in total spin basis jN; S; M i . We introduced later the so-called
\broken symmetry" approach, which is a very powerful method to calculate the �rst two
moments ofn0 to a good approximation, and much faster than the direct diagonalization.

We noticed two major discrepencies between the experimental results and the SMA the-
ory. Therefore, we developed in the next two sections the extensions of the theory. In
section 4.3, we generalized to arbitrary distribution ofM , which changes the 1� h n0i
value at q = 0. In section 4.4, we used the semi-ideal Hartree-Fock approximation, which
is discussed in detail in chapter 1, section 1.4, to take the thermal atoms into account.
As in chapter 1, we plot 1� h n0i and � n0 as a function of q. From these plots, we
could extract many physical informations of our system. For example, the two di�erent
HWHM of q (qs

1=2, qk
1=2) re
ect two di�erent temperatures, spin temperature Ts and ki-

netic temperature Tk , respectively. The second plateau valuec re
ects the condensate
fraction (Eq. (4.70)). We also identi�ed two crossover regions between the three plateau
regions, in which condensate and thermal cloud behaves individually in each.

In section 4.5, we introduced our experiment of the collective spin 
uctuation. We used
the model introduced in the previous two sections to �t the 1� h n0i and � n0 curves
measured in the experiments. We found that the spin temperatureTs is much lower than
the kinetic temperature Tk and is not quite a�ected by the evaporation process. Finally
in section 4.6, we gave an detailed analysis and explanation to our experiment results.
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Conclusion

In this thesis, we focused on the spin-1 Bose Einstein condensate with antiferromagnetic
interactions both in theory and in experiment.

In chapter 1, we introduced the basic mean-�eld theory of the spin-1 Bose-Einstein con-
densate, both at zero temperature, in which a pure condensate is formed, and at non-zero
temperature, in which both condensate and thermal cloud are present. We began this
chapter with a discussion of the scalar condensate, which is a condensate described by a
scalar order parameter. We discussed the condensate with or without interactions, and
introduced the so-called \semi-ideal Hartree Fock approximation", which was used to
solve the problem at non-zero temperature where both condensate and thermal atoms
are present and interact between each other. In this method, we neglect the in
uence of
the thermal atoms on the condensate, which is proven to be e�cient and precise enough.
This approximation was also adopted in the spinor case in this chapter and in chapter 4.
Next, we discussed the pure spin-1 condensate at zero temperature, which is described
by a three components order parameter. In studying the Hamiltonian of interaction, we
found that the magnetizationmz is conserved, which is important for the discussion in the
following chapters. We gave a mean-�eld solution of̂HSMA , the Hamiltonian describing
the spin-1 condensate in using the Single Mode Approximation (SMA). This mean-�eld
solution predicted a phase transition as magnetic �eld changes, which was studied ex-
perimentally in chapter 3. Finally, in using the semi-ideal Hartree Fock approximation,
we studied the spinor condensate at non-zero temperature. We focused on the plots of
1 � n0 as a function ofq, which contains many physical information about the system,
such as temperature, condensate fraction,etc.

In chapter 2, we introduced step by step how we realize, control, detect and analyze the
spin-1 Bose-Einstein condensate in our experiment. We discussed particularly compres-
sion and evaporation in a Large Crossed Dipole Trap (Large-CDT), then evaporation in
a Small Crossed Dipole Trap (Small-CDT). We �nally obtain an almost pure condensate
with about 5000 atoms in the trap. We then discussed how to control the condensate,
especially the magnetization. We use spin distillation and depolarization process and
achieve a control over the magnetizationmz from about 0 to 0:9. Finally, we introduced
how to detect and analyze the condensate. In our experiment, we use absorption imaging
after a period of Time Of Flight (TOF) to diagnose the condensate, which re
ects the
column spatial density distribution of the atoms in the trap. For the analysis of the
image, we constructed a model to �t the absorption images, by which we can get physical
information of the system, such as atom number, temperature, condensate fraction,etc.
We also introduced several methods to reduce the noise of the images, including fringe-
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removal method, which is based on the eigen-face algorithm. In reducing the noise of
the image, we can reduce also the atom number uncertainty counted from the absorption
images.

In chapter 3, we introduced the experimental study of the phase diagram of the spin-1 con-
densate with antiferromagnetic interactions at very low temperature, which was discussed
in theory in chapter 1. We found experimentally a phase transition from the antiferro-
magnetic phase to the broken axisymmetry phase as magnetic �eldB increases. This
phase transition is caused by the competition between antiferromagnetic spin-dependent
interactions, which is dominant at low �elds, and the quadratic Zeeman energy, which is
dominant at high �elds. We found that the measurements were in quantitative agreement
with mean-�eld theory, which predicts very well the phase boundary and the observed
spin population above the transition. We observed also that at small �eld and small
magnetization, large 
uctuation of n0 which could not be explained by the mean-�eld
theory.

In chapter 4, we studied both in theory and in experiment the large collective 
uctu-
ations of spin-1 condensate. First, we gave a detailed quantum many-body analysis on
ĤSMA , the single mode approximation Hamiltonian describing the spin-1 condensate. We
�rst diagonalized directly the Hamiltonian in total spin basis jN; S; M i , and then de-
veloped a so-called \broken-symmetry approach", an alternative method to analyze the
SMA Hamiltonian. In this approach, the spinor condensate is described as a statistical
mixture of mean-�eld states with 
uctuating \direction" in spin space. This approach
reproduced very well the results by exact diagonalization. According to the quantum
solution of the SMA Hamiltonian, two major di�erences between theory and experiment
were noticed, which led to two theoretical extensions. First, we generalized the distribu-
tion of M in order to change the value of 1�h n0i at q = 0. Second, we use the semi-ideal
Hartree-Fock method to take the thermal atoms into account. We distinguished two kinds
of temperatures, the spin temperatureTs, which characterizes the statistical behavior of
the collective spin of the condensate, and the kinetic temperatureTk , which re
ects the
thermodynamical behavior of the non-condensed component. We plot 1� h n0i and � n0

as a function ofq. Compared with the results in chapter 1, the quantum description of
the condensate changed the behavior of 1� h n0i vs q curve especially at lowq, where
the deviations from the mean-�eld solution are large and where large 
uctuations are
observed. We used the theory developed in this chapter to �t the experimental data.
From the �tting, we obtained the kinetic and spin temperatures and condensate fraction.
We found that the spin temperature is always much smaller than the kinetic temperature
(Ts � Tk) and is not in
uenced much during the evaporation and the hold time. The
reason is possibly because of the large di�erence between the energy scale of the SMA
modes, which is related to the spin temperatureTs and that of the other modes (e.g. spin
wave mode), which is related to the kinetic temperatureTk . In fact, our observations
indicate that the condensate spin acts as an almost isolated system which thermalizes
\on its own", almost independent of the regular thermalization occurring via collisions
inside the thermal cloud. We can thus see this system as being in a \pseudo-equilibrium"
state that is reached even without dissipation or an external reservoir.
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For the work in the next step, we have proposed a quench experiment in chapter 4,
section 4.6, in order to clarify the origin of the spin temperature. For the far future work,
we have constructed a micro trap which is much smaller compared with the Vertical
dipole trap and the Horizontal dipole trap mentioned in chapter 2, in which we hope to
control the atom number of condensate, with only about hundreds of atoms. This micro
dipole trap allows us to produce the strong correlated spin states, such as schr•odinger's
cat state [102] or Fork twin state [103].
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Appendix A

Magneto-Optical Trap (MOT)

The �rst step to the Bose-Einstein condensation is the Magneto-Optical Trap (MOT). In
our experiment, we load the MOT directly from the background gas with the help of the
Light Induced Atomic Desorption(LIAD) [52]. The MOT can cool down sodium atoms
from the room temperature (� 300 K) down to � 50 � K [52]. However, the e�ciency of
the evaporative cooling makes the \�rst step" laser cooling a preliminary cooling which
do not serve to cool as much as possible but to load the conservative trap more e�ciently
[33]. This pre-cooled sample will be transferred to the "large crossed dipole trap" which
will be discussed in the next section.

In this appendix, we begin with a brief introduction to the principle of Doppler cool-
ing, and illustrate the energy structure of the sodium atom to explain how to realize
a MOT. In the second part, we present the 589 nm laser used in our group [104, 105].
Finally, we will discuss the application of the LIAD technique in our experiment [52].
Most of the information is contained in the PHD thesis of Emmanuel Mimoun [44] and
is included here for completeness.

A.1 Elements of Doppler cooling and MOT

The interactions between atoms and light are in general complex. Here we consider a
simple model: two-level system which is illustrated in Fig A.1a. The energy structure of
the atom consists of only two levels with the energy gap~! A . We note the ground state
jgi which is stable, and the excited statejei which is unstable. The natural width of the
exited state is �. The atom interacts with the light of the frequency! L . Here we suppose
the quasi-resonant condition is satis�ed which means the detuning � =! L � ! A � ! A ; ! L .

This quasi-resonant light can be absorbed by the atoms, and re-emitted in cycles. Because
the photons carry momentum, after many cycles, the average atomic momentum changes.
The atom thus \feel" a force exerted by the laser beams. The force from the laser to
the atom can be divided into two parts [5], the radiative part which originates from the
gradient of the phase of the light and the dipole part which originates from the gradient
of the intensity of the light. If the atom is at rest, the radiative force

Frad = ~kL
�
2

s
1 + s

; (A.1)
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Figure A.1: (a). Two level system. Atom with two energy levels interacts with light. (b).
Doppler cooling: two counter-propagating laser beams with! L < ! A induce a viscous
cooling force on the atoms.

with

s =
I=I sat

1 + 4(� =�) 2
: (A.2)

Here s denotes the saturation parameter,I sat the saturation intensity.

Considering here the 1-D situation illustrated in Fig. A.1b, the atom moves in +x
direction with the velocity v. Two laser beams counter-propagate with the detuning
�. According to the Doppler e�ect, the detuning \felt" by the atom will be changed
compared with the detuning at rest, � � � � � kL v. The combined radiative force then
becomes (for smallv and small light intensity) equivalent to a viscous force,

F = F+ � F� � � �v; (A.3)

with a damping coe�cient � / � �. The combined radiative force is frictional if the
detuning � < 0 (� > 0). As a result, this force can decelerate the atoms and thus
decrease the temperature of the sample. This is the so-called \Doppler cooling". At the
region of the crossed laser beams, the atoms are decelerated by the frictional force but
also di�use randomly because of the spontaneous emission. This \recoil heating" e�ect
counter balances Doppler cooling and leads to a minimal temperatureTD � ~� =2.

In order to trap the atoms in the region, we have to add a magnetic gradient. As a
result, the energy shifts of the sub-levels are inhomogeneous because of the magnetic
�eld gradient. Laser cooling forces in the magnetic gradient can be reduced to a friction
force, as before, plus a restoring force that ensures trapping. This is known as \Magneto-
optical trap" (MOT).

We illustrate in Fig. A.2, the real energy structure of sodium and all the lasers we
use for the MOT. For cooling, we choose the transition betweenj32S1=2; F = 2i and
j32P3=2; F 0 = 3 with the detuning � c = � 20 MHz. Once atoms are excited to the
j32P3=2; F 0 = 3i state, they can easily decay to the ground state 32S1=2; F = 1 because of
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the spontaneous emission. The atoms in the ground state are no longer resonant with the
cooling beam because of the 1.77 GHz gap between 32S1=2; F = 1 and 32S1=2; F = 2. As
a result, we need additional (\Repumper") beams to \re-pump" the atoms from 32S1=2

to 32P3=2. This repumper laser is tuned on the 32S1=2; F = 1 to 32P3=2; F = 2 transition
with detuning � R = 0.
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Figure A.2: Sodium energy structure with cooling and re-pumping lasers, with respective
detunings � c and � R with respect to the 2! 3 and 1! 2 transitions.

A.2 589 nm laser system

As described in the section above, to perform the laser cooling, one needs quasi-resonant
light, around 589 nm in our case. At the beginning of the experiment, the group designed
and built a 589 nm laser system using a non-linear optics approach [104, 105, 44].

The basic ideas is to sum up the frequencies of two infrared lasers. We illustrate in Fig.
A.3 the main setup of the 589 nm laser system. The 589 nm yellow laser comes from
two commercial solid lasers with� 1 = 1064 nm and � 2 = 1319 nm. These two lasers
are both commercial YAG laser, with output powerP1 � 1:2 W and P2 � 0:5 W. The
sum-frequency is generated in the non-linear optical material, ppKTP (periodically po-
larised KTP). Normally, the e�ciency of the non-linear process is very low if the light
passes once through the crystal. As a result, an optical cavity is used to enhance the e�-
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Figure A.3: Schematic layout of the 589nm laser system in our experiment.

ciency. In our experiment, we can maintain a output powerPout � 650 mW of the 589 nm
laser, slightly less than the maximum value obtained in [104, 105, 44] for technical reasons.

The feedback system of 589 nm laser is also shown in Fig. A.3. The feedback system
consists of two main parts, the intensity stabilization and frequency stabilization. The
\intensity stabilization" system ensures that both pump lasers are maintained resonant
with the cavity at all times. The frequency feedback system use the saturated absorption
spectrum to lock the laser frequency exactly to the 32S1=2 to 32P3=2 transition, which is
589:159 nm. In our experiment, we lock the 589 nm laser frequency to one of the iodine
molecule transition instead of the normally used sodium vapor. The bene�t is that the
iodine can work at room temperature, whereas sodium vapor should be heated to 120� C.
The transition frequency of the iodine molecule shift about 467 MHz below the cooling
transition, so we have to use an Acoustic-Optical Modulator (AOM) to shift back this
di�erence.

As shown in Fig. A.3, the output of the 589 nm laser from cavity is divided into three
parts. The �rst part is the cooling beam (Fig. A.2) which is detuned by 20 MHz using
an AOM. The second part is the repumper beam (Fig. A.2) which is detuned by AOM
about 1.7 GHz. The third part is further divided into two probe beams used for imaging
(detail in section 2.5). All these beams are controlled by a AOM and a shutter. The
AOM can switch o� the beam within several � s. But in order to maintain the thermal
stability of the AOM, we should switch o� the AOM as shortly as possible. The shutter
can continue to cut the beams if we need.

The cooling beam and the re-pumper beam are transmitted via the optical �bers to
a �ber cluster in which they are mixed and re-distributed into 6 identical beams. These
beams are transmitted also by optical �bers to the vacuum chamber. In Fig. 2.1, we
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illustrate the con�guration of the 6 laser beams around the science chamber. The waist
of the beams are about 11 mm. The powerP � 1:8 mW for each (of 6) cooling beam
and P � 450� W for each re-pump beam. The two probe beams are also transmitted by
optical �ber to the science chamber.

A.3 Sodium MOT

The anti-Helmholtz coils pair shown in Fig. 2.1 creates a magnetic �eld around the center
of the science chamber given by

B(x; y; z) �
b0x
2

ex � b0y ey +
b0z
2

ez: (A.4)

In our experiment, the current in the coil I � 120 A andb0 � 12 G/cm. They are made
from hollow copper tubes, and water cooled to prevent damage.

In most sodium experiments, a Zeeman slower [106] is adopted to load the MOT. How-
ever, the large magnetic �eld generated by the magnets in the Zeeman slower prevent us
to adopt this option. In our experiment, we load the MOT directly from the background
pressure in the vacuum chamber. The background pressure, or the density of the atoms
of sodium can be controlled by thedispenser. The dispenser is formed by a powder of
sodium oxide, which can release the sodium by heating current. Unfortunately, the re-
sponse time constant of the pressure in the vacuum chamber to the current is too long,
typically seconds. This will decrease the life time in the optical dipole trap because of
the collisions with background \hot" atoms. Normally, we heat the dispenser once every
several months just to compensate the atoms absorbed by the pumps.

In order to control \instantly" the density, we adopt the Light Induced Atomic Des-
orption (LIAD). In fact, after we switch o� the dispenser, many atoms are absorbed on
the wall and especially on the windows of the vacuum chamber. We use the ultraviolet
LED ( � � 370 nm) to release the atoms back to the vacuum chamber, which will increase
abruptly the pressure of the chamber. When we switch o� the ultraviolet light, the atoms
will be re-absorbed again very fast. The pressure decreases very fast (within less than
100 ms), and is thus not harmful for the loading of the optical dipole trap. In using the
LIAD, we can control almost \instantly" the pressure of the vacuum chamber. In our
experiment, the LED current is I LED � 0:7A.

We show in Fig. A.4 the loading behavior of the MOT with the help of the LIAD
[52]. We load the MOT until 12 s with the LED on, and at 12 s, we shut o� the LED.
The MOT loading time constant � � 6 s, and saturate atN � 2 � 107 atoms. After
we shut o� the LED, the atom number decrease because of the atom absorption by the
science chamber. The life time constant� � 27 s. In the experiment, after� 10 s MOT
loading, we obtain about 2� 107 atoms with temperatureT � 200� K. This loading pro-
cess is fast, and the atom number and temperature is suitable for the next step optical
dipole trap loading.
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Figure A.4: MOT loading before and after switching o� the LED. Figure from [52].
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Appendix B

Loading the Large Crossed Dipole
Trap (Large-CDT)

The phase space densityD can reach 10� 5 � 10� 6 in a Magneto-optical trap [33]. This
is still far from the threshold of the Bose-Einstein condensationD � 1. There are sev-
eral factors which limit the temperature and the density of the atoms in the MOT, and
thus the phase space density [107, 108]. Because of the high e�ciency of the evaporative
cooling on the enhancement of the phase space density, the MOT sequence is now served
as a pre-cooling step [33].

Evaporative cooling can be realized in several kinds of traps. We adopt the optical dipole
trap in which all the Zeeman sub-levels can be conserved for the spinor BEC study. The
typical depth of the optical dipole trap is only several mK, this is the reason why we
need the MOT pre-cooling [109]. Before the realization of the evaporative cooling, we
should �rst transfer the atoms pre-cooled in the MOT to the optical dipole trap. The
loading process will be explained in this section. In fact, in our experiment, we transfer
the atoms from the MOT to the Large Crossed Dipole Trap (Large-CDT) with the size
of the waist about 40� m [49]. We call it "Large", because in the following evaporation,
we will use a smaller crossed dipole trap with the size of the waist only about several� m
which will be discussed in section 2.3.

This appendix is organized as follows. In the �rst part, we will introduce the basic
ideas of the optical dipole trap. In the second part, we will show the con�guration of
the Large-CDT in our experiment, including the characteristic parameters of our trap
and the feedback system. In the third part, we will explain how we load the Large-CDT
from the MOT. And in the last part, we will show that by increasing the power of the
Large-CDT, we can accumulate the atom to the crossed region (central region) in order to
obtain good conditions for evaporative cooling in the next step. Most of the information
is contained in the PHD thesis of David Jacob [43] and is included here for completeness.
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B.1 Elements of optical dipole traps

The basic idea of the far-o� resonant optical dipole trap is to use the interactions between
the induced dipole moment of a neutral atom and the electrical �eld of the light [109].
Consider an atom described by the two-level system in section A.1 interacts with a linear
polarized laserE(r ) = E0(r )e� i! L t + c:c:, with E0(r ) = E0(r )eq. ! L is the frequency of
the laser andeq is the polarization axis. Under the condition that � � � and saturation
parameter s � 1, the potential of the optical dipole trap which originate from this
interaction is [109]:

Udip =
3�c 2�
2! 3

A
(

1
! L � ! A

�
1

! L + ! A
) � I (r ): (B.1)

where I (r ) = � 0cjE0(r )j2 is the intensity of the beam at position r , � 0 the vacuum
permittivity and � the natural width of the excited state. The dipole force is thus:
Fdip (r ) = �r U(r ). Remark that the dipole trap potential Udip is proportional to the
local intensity of the laser beam, as a result, we should use high-power laser in order to
get a deeper dipole trap.

According to the sign of the detuning � = ! L � ! A , we can classify the dipole potential
by two kinds:

� if � < 0, the trap is calledred detuned, the atoms are trapped around the maxima
of the intensity.

� if � > 0, the trap is calledblue detuned, the atoms are trapped around the minima
of the intensity.

In this thesis, all the optical dipole traps are red detunedi.e � < 0.

Even though the trapping laser is far-detuned, the atoms can still have the possibil-
ity to be scattered by the non-resonant light because of the high power of the trapping
laser [109]. The life time of atom is thus limited by the scattering rate of the atoms by
the laser, � sc,

~� sc =
�
�

Udip : (B.2)

According to Eq. (B.2), the scattering rate �sc is proportional to the trapping depth
Udip (r ) and inversely proportional to the detuning �. This means we can not increase
the laser power and decrease the detuning as we wish to increase the depth of the trap,
because it will also increase the scattering rate, and leads to the heating of the cloud.
We should compromise between the trap depth and the heating to choose our laser pa-
rameters including the power and detuning.

Another important feature of the optical dipole trap is that the trapping potential is
almost spin-independent [109], which is very helpful for our spinor BEC experiment. All
our optical dipole trap satisfy the spin-independent condition and thereby can trap all
the spin states by the same way.
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B.2 Experimental setup

B.2.1 Con�guration of the Large-CDT

The basic con�guration of the Large-CDT in our experiment is shown in Fig. B.1. The
trap is composed by two linear polarized laser beams crossed at the center of the vacuum
chamber. Each beam comes from the same laser folded onto itself [49].

These two beams are in the horizontal plane. The �rst beam is along thex direction
and the second along thex + y = 0 direction as illustrated in Fig. B.1. The angle
between the two beams is about 45� . Between the two beams, there is a�= 2 wave plate
in order to turn the polarization of the �rst beam by �= 2. As a result, the polarization
of the two beams are orthogonal in order to minimize residual interference which could
heat the atoms.

Both beams cross at the position of each waistw0 = 42 � m. The laser beams are
generated by a high power �ber laser (IPG) of which the output power is about 40 W
and the wavelength� CDT = 1064 nm which is far-o� resonant with the sodiumD line
transition approximately 589 nm [35].

Figure B.1: Large crossed dipole trap con�guration with science chamber

According to Eq. (B.1), the potential of the trap is proportional to intensity of the beam.
As a result, the trapping potential of the Large-CDT is proportional to the total inten-
sity which is directly the sum of the individual Gaussian beam intensities because of no
interference between the two beams (orthogonal polarizations). The trapping potential
can thus be described as follows [49]

VCDT (x; y; z) =
V0

2

� e� 2(y2+ z2 )=w(x)2

(w(x)=w0)2
+

e� 2(u2+ z2 )=w(v)2

(w(v)=w0)2

�
: (B.3)
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with
w(x) = w0

q
1 + x2=l2R ; (B.4)

w(v) = w0

q
1 + v2=l2R ; (B.5)

with lR = �w 2
0=� CDT � 5:2 mm the Rayleigh length, and withV0 is the potential depth

at the center, given by

V0 =
3�c 2�
2! 2

A

� 1
! L � ! A

+
1

! L + ! A

�
I 0 (B.6)

We have introduced here the (u; v) coordinate system which is the 45� counter-clockwise
rotation of the (x; y) system.

(u; v) = ( x cos(� ) + y sin(� ); � x sin(� ) + y cos(� )) ; (B.7)

with � = 45� . In this coordinate system, the second beam is along thev direction.

At the end of the compression stage, which will be discussed in section B.4, atoms are
accumulated mainly at the central region of the intersection of the two beams, prepared
for the consequent evaporative cooling. The Gaussian trap Eq. (B.3) can then be ap-
proximated safely to a harmonic form which is much more easier for theoretical analysis.

In Tab. B.1 we list the parameters of the Large-CDT with laser powerP = 36 W,
including the trap frequencies (! x ; ! y; ! z)=2� , the trap depth V0, and the scattering rate
� sc.

wCDT (� m) (! x ; ! y; ! z)=2� (kHz) V0=kB (mK) � sc (s� 1)
42 (2.5,4.5,5.1) 1.2 9

Table B.1: Parameters of the Large-CDT withP = 36 W. ( ! x ; ! y; ! z)=2� is trap frequen-
cies,V0 is the trap depth, and � sc is the scattering rate at the center of the Large-CDT.
Table from [43].

B.2.2 Feedback system of the Large-CDT

During the experiment, we need, in several cases, to control or to modulate the depth of
the trapping potential, for example, during the compression and the evaporative cooling
stages. Therefore, we need to control very well the laser intensity which is proportional
to the trapping depth. We adopt a intensity feedback system to control the Large-CDT.
We illustrate in Fig. B.2 the feedback system and the optical system adapted in order
to generate the intensity controlled, linear polarized, collimated laser beam. The laser
beams are drawn in red color, and the electrical signals are drawn in blue. The whole
system is enclosed in a metal box for the security reason (high power laser beam).
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Figure B.2: IPG with feedback con�guration

The output laser intensity is mainly controlled by two di�erent elements. The �rst is the
current of the pump diode of IPG �ber laseri p which can be controlled by an analog input
voltagevp. The second is a rotatable�= 2 waveplate controlled by a motor with feedback.
The �= 2 waveplate is followed by a Glan-Taylor polarizer. In fact, the output beam of the
40 W IPG laser is not completely linear but with some ellipticity. The�= 4 waveplate with
appropriate main axis direction is to eliminate this ellipticity. Followed by a rotatable
�= 2 waveplate combined with the polarizer, we can control the power of the laser beam
behind. The minimal power that can be reached is about 0:5% of the maximum available.

By measuring by a photo-diode the residual light intensity behind a high-re
ectivity
mirror in the optical path of the high power laser beam, we get a signalVsignal propor-
tional to the real beam intensity. Comparing to a command valueVcom, we get an error
signal Verr = Vcom � Vsignal. This error signal is sent to a controller unit, which is adapted
to the motor, in order to get a control current i c. The speed of the motor is proportional
to the control current i c, thus the angular velocity of the rotatable�= 2 waveplate is also
proportional to i c, _� / i c.

The bandwidth of the waveplate feedback system is about 10 Hz which is slow com-
pared to some process during the realization of the BEC. As a result, we modulate, at
the same time, the output power of the IPG laser directly via the injection current in the
pump diodei p. The bandwidth of this modulation can be up to 50 kHz which is su�cient
to our experiment. However, if we decrease too much the injection currenti p to about
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10% of its maximum, we come close to the laser threshold and the laser noise dramatically
increases. Therefore, we limit the control voltage to stay away from this value above 30%.

During the experiment, we sometimes need to shut down abruptly the Large-CDT. We
can cut o� the injection current i p in less than 10� s with laser intensity drop to 10%,
using an additional TTL input on the laser controller.

B.3 Loading the Large Crossed Dipole Trap

After we have pre-cooled and trapped atoms in the MOT, the next step is to transfer the
atoms from the MOT to the Large Crossed Dipole Trap, whose features are discussed in
section B.2. The loading process from MOT to Large-CDT is in general complex. The
presence of the Large-CDT perturbs the dynamics of laser cooling [110]. The loading
e�ciency depends on the loading power of the Large-CDT and the density and temper-
ature of the MOT. With lower temperature, the atoms are more easily trapped by the
Large-CDT, and with higher density, the loading e�ciency will be obviously higher.

At the end of the MOT stage, we realize two short stages, \Dark MOT" and \Cold
MOT". During these two stages, the power and the frequency of the cooling and re-
pumper beams are adjusted for several purposes. First, to increase loading e�ciency by
increasing the density and decrease the temperature of the MOT, second, because the
high power Large-CDT beams can modify the atom energy level by light shift, we should
adjust the laser in order to make the MOT cooling still e�cient, and third, transfer atoms
to the electronic ground statej32S1=2; F = 1i , in which the atoms will be trapped in the
optical dipole trap.

In our experiment, the optimal loading power of the Large-CDT is not the highest avail-
able [49]. We optimize the loading power and explain the reason.

B.3.1 Optimization of the MOT lasers

B.3.1.1 Dark MOT

The Dark MOT [111] starts right after the MOT stage and lasts 100� s. We decrease
the power of the repumper beam from 300� W/cm 2 down to 10 � W/cm 2, and change
the detuning of the cooling laser from -20 MHz to -18 MHz. As a consequence of the
reduced power of repumper, large population of atoms will accumulate in the electronic
ground state 32S1=2 F = 1 which will not take part in the cooling cycle (j32S1=2; F = 2i $
j32P3=2; F = 3i ). As a result, the light-induced collisions [40] (leading to trap loss) and
the reabsorption of scattered laser light (weakening the trapping potential and limiting
the density) are both suppressed [107, 108]. In this stage, MOT appears much less bright
because of much less resonant cooling cycles.
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B.3.1.2 Cold MOT

The Cold MOT start just after the Dark MOT stage and lasts 30� s. We change the
detuning of the cooling laser from� 2� to � 3:8� (� is the natural line width, � =
2� � 9:795(11) MHz). During this stage, sub-Doppler cooling continues to decrease the
temperature down to 50� K. At the end of the Dark MOT, cooling laser lasts 300� s
longer than the repumper laser in order to transfer all the atoms to thej32S1=2; F = 1i
ground state. The values for the detuning and the power of the cooling and repumper
lasers during these 2 phases are optimized to obtain the maximum atom number in the
Large-CDT.

B.3.2 Optimization of the Large-CDT power

We search for the optimum power of Large-CDT beams for loading. We maintain the
power of the beams for 100� s to see the atom number loaded in the two arms. We
illustrate in Fig. B.3 the image of the atoms loaded in the arms of crossed dipole trap.
During this short time, the thermalization process, which makes the atoms trapped in
the Large-CDT to equilibrium, has not yet been important. In the following section, we
will see the time scale of the thermalization is order of seconds.

Figure B.3: Atoms loaded in the arms of the Large Optical Dipole Trap. (The colormap
shows the optical depth by Eq. (2.21))

In Fig. B.4, we illustrate the optimization of the loading process. In Fig. B.4a, we plot
the loaded atom number as a function of the loading power. The optimum power is about
16 W, corresponding to the light intensity about 5:4� 105 W/cm 2. In this loading power,
we plot in Fig. B.4b the loaded atom number as a function of the detuning of the cooling
laser during Cold MOT stage. The optimum detuning is about� 3:8�.
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(a) (b)

Figure B.4: (a) The loaded atom number as a function of the loading power of the Large-
CDT. The optimum power is about 16 W, corresponding to the light intensity about
5:4 � 105 W/cm 2. (b) In the optimum loading power 16 W, the loaded atom number as
a function of the detuning of the cooling laser during Cold MOT stage. The optimum
detuning is about � 3:8�. Figure from [43]

We found that for very high power, the loading process is not as e�cient as we naively
expected. There are two main reasons. First, the high loading power makes the induced
light shift large and di�cult to compensate. Because of the inhomogeneity of the inten-
sity of the beams, if we compensate the light shift at central region, the atoms farther
will not be e�ectively cooled, andvice versa. Second, when the light shift is su�ciently
large, the frequency of the cooling laser will approach the transition ofj32S1=2; F = 2i
and j32P3=2; F = 2i . This will depump the atoms to 32S1=2; F = 1i stage.

In conclusion, because of the light shift induced by the Large-CDT, both the loading
power and the cooling laser parameters should be adjusted in order to make the loading
process e�cient. At the end of the loading process, we obtain 5� 105 atoms distributed
along the arms of the Large-CDT with the temperature about 50� K [49].

B.4 Compression in the Large-CDT

At the end of the loading process, the atoms are distributed along the arms of the Large-
CDT (Fig. B.3). We wish to \compress" the atoms to the center region of the Large-CDT
for two reasons. First, increase the space density in the center region in order to increase
the collision rate, which is important for the evaporation. Second, we will evaporate in a
smaller crossed dipole trap which cross at the center of the Large-CDT. In this part, we
will optimize this compression process for the next evaporation step.

In Fig. B.5, we show the di�erent results of the threes di�erent compression process.
First, we hold on the power of the Large-CDT at 13.7 W and let the atoms sponta-
neously accumulate to the center of the Large-CDT. Second, we increase the power of the
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Large-CDT within 50 ms from the loading power to the maximum power 36 W. Third,
we increase the power of the Large-CDT within 50 ms from the loading power to the
maximum power 36 W. In Fig. B.5a, we plot the atom number at the center of the
Large-CDT Nc as a function of the compression duration. In Fig. B.5b, we plot the
� CDT = Nc=Ntot as a function of the compression duration.� CDT is the proportion of the
Nc to the total atom number N tot (N tot = Nc + Narm ).

From the two �gures, we conclude that, the optimum compression is the 2 seconds power
ramp from loading power to the maximum power [49]. We increase the power of the
Large-CDT to increase the depth of the center region of the Large-CDT, which will make
the center region more attractive to the atoms trapped in the arms of the Large-CDT.
After 2 seconds of compression, about 60% of atoms are in the center region. After that
the trap loss will surpass the accumulation process. As a result� PDC still increases, but
both the atom number in the center regionNc and the total atom numberN tot decrease.

Figure B.5: (a). Atom number at the center region of the Large-CDTNc as a function of
the compression duration. (b). � CDT = Nc=Ntot as a function of compression duration.
(Figures from [49])

In conclusion, we adopt the 2 s ramp compression from 13.7 W to 36 W. At the end of
the compression, we have 1:4 � 105 atoms with the temperature about 100� K, and the
phase space densityD � 5:6 � 10� 4, prepared for the evaporation stage.

125



126



Appendix C

Supplementary Material : Phase
diagram of spin 1 antiferromagnetic
Bose-Einstein condensates

The content of this appendix is directly extracted from theSupplementary Informations
of [38].

C.1 Sample preparation

In this section, we give a more comprehensive account of the preparation sequence used
in the experiment. Evaporative cooling is done in two steps as explained in [49], starting
from a large-volume optical trap that is subsequently transferred to a smaller trap with
tighter con�nement (which is used for the experiments described in the main text). This
sequence allows one to maintain a high collision rate throughout the whole evaporation
ramp. We start from atoms loaded in the large-volume trap from a magneto-optical trap
(MOT). The loading is done at a reduced trap laser power, which was found in [49] to
optimize the loading. After all MOT lasers are switched o�, the large-volume trap is
compressed by ramping up the laser power in 2 s. This increases the collision rate in the
arms of the trap, helps �lling the crossing region and overall provides a better starting
point for the subsequent evaporative cooling ramp. The laser cooling sequence before the
compression is found to result in a mixed spin state, with spin populations in the Zeeman
statesm = +1 ; 0; � 1 in a ratio 0:7 : 0:2 : 0:1, approximately.

To increase the degree of spin polarization, the compression ramp is done with an addi-
tional vertical bias �eld ( � 0:5 G) and magnetic �eld gradient (20 G/cm). As shown in
[59, 85], this results in a spin distillation which polarizes the sample into them = +1
state. The reason is that the trapping potential in the vertical direction are now slightly
di�erent for each Zeeman state, due to the potential drop caused by the gradient (see
inset of Fig. C.1). One can choose a value such that the magnetic potential almost com-
pensates gravity for them = +1 state. The m = 0 state still feels the gravitational
potential, and the m = � 1 state then feels a potential drop twice as strong asm = 0. As
a result, the e�ective potential depths form = 0; � 1 are slightly reduced compared to the
m = +1 state, and evaporative cooling removes the former atoms preferentially. After the
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spin distillation is complete, we obtain a partially polarized cloud withmz ranging from
� 0:6 to � 0:85 depending on the strength of the magnetic �eld gradient (see Fig. C.1a).
We found that keeping the gradient for longer times was no longer e�ective to increase
the polarization further. Our interpretation is that as the cloud size becomes too small,
the magnetic potential drop becomes almost unnoticeable.

To obtain lesser degrees of polarization, we apply a horizontal bias �eld� 0:25 G and
apply an additional radio-frequency (rf) �eld resonant at the Larmor frequency for a vari-
able amount of time. As the atoms move and collide in the dipole trap, their spins quickly
decohere, and produce a spin-isotropic mixture. By adjusting the strength of the rf �eld,
we can adjust the �nal magnetization at will, as shown in Fig. C.1b. The radio-frequency
resonance is about 2 kHz wide, presumably limited by inhomogeneous broadening and
stray magnetic �elds (which are estimated to a few mG due to environmental noise).
To ensure that small frequency drifts do not perturb signi�cantly the preparation, the
frequency of the oscillating �eld is swept over 20 kHz at a slow rate during the whole
depolarization sequence.

After this preparation stage, the magnetic �eld is set at its �nal value, and we perform
evaporative cooling by reducing the depth of the crossed dipole trap until a tempera-
ture � 10 � K is reached, at which point the cloud is transferred to the �nal trap with
tighter focus to boost the spatial density [49]. This �nal trap is formed by two red-
detuned laser beams, one propagating vertically with a waist (1=e2 radius) of � 8 � m
and the other propagating horizontally with a waist� 11 � m. At the end of the evap-
oration ramp, where the experiments are performed, the trap frequencies aref ! x;y;z g =
2� � (910; 1000; 425) Hz.

C.2 Stern-Gerlach expansion

The populations of the Zeeman states are analyzed after expansion in a magnetic �eld
gradient b0 = 15 G/cm, which is switched on at the start of the expansion sequence
together with an additional bias �eld Bx � 2 G. This produces a force along the hor-
izontal x axis that separates them = � 1 clouds from them = 0 one by a distance
dSG = � B �b0t2=4MNa , with � B the Bohr magneton andt the expansion time. The factor
� takes into account the temporal pro�le of the gradient, which rises in a few ms after
the beginning of the expansion. Fig. C.2a shows the vertical trajectory of the atoms,
and compares it with the one calculated from the measured gradient variations. The ex-
cellent agreement indicates that the gradient behavior is well understood. After a given
expansion time (typically t � 3:5 ms), we take an absorption picture of the clouds, and
count the relative populations. The image is taken in a vertical magnetic �eldBz � 1 G
applied 1 ms before the image is taken. The horizontal bias �eldBx is switched o� at
the same time thatBz is switched on. In order to obtain reliable images, the separation
dSG must be much larger than the cloud sizesRt after expansion to clearly separate each
Zeeman component. In our experiment, when the trap is switched o� instantaneously,
we typically achievedSG=Rt � 1 only. This is due to the tight trap frequencies, and
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Figure C.1: Supplementary Material- (Color online) (a): Spin distillation to prepare
samples with high magnetization (mz > 0:5). The plot shows the magnetization measured
for cold clouds, as a function of the magnetic gradientb0 in units of mNa g=� B , with g
the acceleration of gravity and� B the Bohr magneton. The inset shows a sketch of the
potential energies for each Zeeman state along the vertical axisz. The potential drop
is exaggerated for clarity, and is smaller than depicted in the actual experiment.(b):
Depolarization to prepare samples with low magnetizations (mz < 0:5). The time shown
corresponds to the length of a radio-frequency pulse at the Larmor frequency.

the resulting fast expansion. The gradient strength cannot be increased further due to
technical limitations, and the expansion time is also limited by the necessity to keep a
su�ciently large signal-to-noise ratio to detect atoms in each component.

We thus resort to a slow opening of the trap, by ramping down the laser intensity to
approximately 1=10th of its initial value in 5:5 ms before switching it o� abruptly. As
shown in Fig. C.2b, this reduces the expansion speed (of both the condensate and the
thermal gas). At the same time, this leaves time for the gradient to settle to its maximum
value, leading �nally to dSG=Rt � 10 for an expansion timet = 3:5 ms. We have checked
that this procedure do not a�ect the measured atom number (see Fig. C.2c) or condensed
fraction.

C.3 Spin interaction energy

The spin-spin interaction energy (positive for antiferromagnetic interactions) is given in
the SMA by

Us =
4� ~2Nas

mNa

Z
j� (r )j4 d3r ; (C.1)

with mNa the mass of a Sodium atom,as � 0:1 nm the spin-dependent scattering length
[42] and � the single-mode wave function. In terms of the commonly used singlet and
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Figure C.2: Supplementary Material- (Color online) Free expansion after trap open-
ing. (a): Center-of-mass trajectory along the vertical directionz for the m = +1 state;
The solid line shows the calculated trajectory taking the measured magnetic gradient and
gravity into account. (b): Sizes of the expanding clouds after an expansion time for an
instantaneous release (blue squares) or a smooth release (red circles).(c): Atom number
measured for instantaneous (blue squares) and smooth (red circles) releases, for various
evaporation times.

quintet scattering lengthsa0 and a2 [26], one hasas = ( a2 � a0)=3. We obtain the latter
by solving numerically the Gross-Pitaevskii equation [47]

�
~2

2mNa
� � (r ) +

1
2

mNa! 2� + N gj� j2� = � �: (C.2)

We assumed the real, slight anisotropic trap potential could be approximated by an
isotropic harmonic potential, with != 2� � 0:7 kHz the geometric average of the three
trap frequencies. The spin-independent interaction strength isg = 4� ~2a=mNa, with
a � 2:79 nm [42], and in accordance with the single-mode assumption we have neglected
spin-dependent interaction terms of order� as=a.

C.4 Conservation of magnetization

We discuss in this section the key assumption behind this work, the conservation of longi-
tudinal magnetization. As already discussed, this is true as far as short-range interactions
are concerned. However, there are other weak e�ects that could in principle relax the
magnetization. Two main e�ects come to mind. First, a dipole-dipole interaction exists
in principle between atoms with non-zero spin. These e�ects are very weak compared to
short-range spin-dependent interactions. A typical relaxation rate due to dipole-dipole
interactions is less than 0:02 Hz for a fully polarized gas for our parameters, assuming the
dipolar loss constant is given by the upper boundL2 � 5 � 10� 16 at.cm2/s given in [112].
Dipolar relaxation can therefore be neglected for the experiments reported here. Second,
the cloud held in the optical trap is subject to permanent evaporative cooling, leading
to a 1=e lifetime around 10 s. If the potential depends on the internal state, in general
magnetization is not conserved (this is the principle behind spin distillation [59, 85]).
However, even in this case the remaining trapped atoms will relax to a new equilibrium
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state through magnetization-conserving collisions, and thus to the equilibrium state ex-
pected with �xed magnetization. In other words, assuming the spin degrees of freedom
equilibrate faster than the magnetization relaxes, the system should adiabatically follow
the slow relaxation of magnetization due to evaporation. We note that if the potential
is spin-independent, and the thermal gas isotropic the magnetization will not change on
average, although one can expect 
uctuations to increase in time. Experimentally, we
found no evidence for these e�ects, which we believe to exist but lie beyond our sensitivity
(a few percent, limited by the optical shot noise in the detection process).
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Appendix D

Calculation details for Broken
symmetry picture

D.1 Spin nematic states jN : 
 i

According to Eq. (4.36), the spin nematic states can be expressed as

jN : 
 i =
1

p
N !

(
 � ây)N jvaci

=
1

p
N !

(
 +1 ay
+1 + 
 0ay

0 + 
 � 1ay
� 1)N jvaci

=
X

k;l;m
k+ l+ m= N

r
N !

k!l !m!

 k

+1 
 l
0
 m

� 1 jk; l; mi Fock :

(D.1)

The N -order moment ofN0 in this state is given by

hN : 
 jN̂ m
0 jN : 
 i = Pm

N cos2m (� ) + c2Pm� 1
N cos2m� 2(� ) + � � � + cmP1

N cos2(� ): (D.2)

where the coe�cients c2; � � � ; cm are de�ned such as

lm = l(l � 1) � � � (l � m + 1) + c2 � l (l � 1) � � � (l � m + 2) + � � � + cm � l: (D.3)

D.2 Calculation of �̂ in section 4.3

The density matrix in the generalized ensemble where the distribution ofM is constrained
can be expressed as

�̂ =
1
Z

X

M

wM P̂M e� � Ĥ SMA P̂M : (D.4)

In order to calculate the average of ak-body observableÔ(k) for the density matrix �̂ ,
we have

hÔ(k) i = Tr( Ô(k) �̂ )

=
Z

d

Z

d
 0hN : 
 jÔ(k) jN : 
 0ihN : 
 0j �̂ jN : 
 i ;
(D.5)
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with
hN : 
 j�̂ jN : 
 0i =

1
Z

X

M

wM hN : 
 jP̂M e� � Ĥ SMA P̂M jN : 
 0i : (D.6)

In using Eq. (D.1), the action of annihilation operatorâ� on jN : 
 i leads to

â� jN : 
 i =
p

N 
 � jN � 1 : 
 i ; (D.7)

with � = +1 ; 0; � 1, thus

â� 1 â� 2 � � � â� k jN : 
 i =
p

N (N � 1) � � � (N � k + 1) 
 � 1 
 � 2 � � � 
 � k jN � k : 
 i : (D.8)

Therefore, the average of a normally orderedk-body observableÔ(k) = ay
� 1

ay
� 2

� � � ay
� k

a� 1 a� 2 � � � a� k

for jN : 
 i leads to

hN : 
 jÔ(k) jN : 
 0i = N (N � 1) � � � (N � k + 1)
 �
� 1


 0
� 1


 �
� 2


 0
� 2

� � � 
 �
� k


 0
� k

� h N � k : 
 jN � k : 
 0i : (D.9)

As we have pointed out in section 4.2.3,hN : 
 jN : 
 0i � 4�� (
 � 
 0) + O(1=N). As a
result, in Eq. (D.6), only the diagonal elements of ^� counts. According to the discussion
in section 4.2.3, we have

ĤSMA jN : 
 i = � Nq cos2(� )jN : 
 i + O(1): (D.10)

Therefore,

e� � Ĥ SMA jN : 
 i =
1X

m=0

1
m!

(� � ĤSMA )m jN : 
 i

� e�Nq cos2 (� ) jN : 
 i :

(D.11)

As a result, Eq. (D.6) leads to

hN : 
 j�̂ jN : 
 i '
1
Z

X

M

wM e�Nq cos2 (� )hN : 
 jP̂M jN : 
 i : (D.12)

In order to calculate hN : 
 jP̂M jN : 
 i , we note that the eigenstatesjN; S; M i (for
S = jM j � � � N ) form a basis for each subspace of givenM . From Eq. (4.39), we have

PM =
NX

S= jM j

jN; S; M ihN; S; M j =
NX

S= jM j

Z
d
 d
 0Y �

SM (
 )YSM (
 0)jN : 
 ihN : 
 0j:

(D.13)
Therefore, using the quasi-orthogonality of thejN : 
 i states, we have (to an error
� 1=N)

hN : 
 jPM jN : 
 i �
NX

S= jM j

jYSM (
 )j2: (D.14)

Finally, we get the expression of ^� and Z for the arbitrary distribution wM

hN : 
 j�̂ jN : 
 i '
1
Z

f (
 ) e�Nq 
 2
z ; (D.15)
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Z '
Z

d
 f (
 ) e�Nq 
 2
z ; (D.16)

with

f (
 ) =
NX

M = � N

NX

S= jM j

wM jYSM (
 )j2 =
NX

S=0

SX

M = � S

wM jYSM (
 )j2: (D.17)

D.3 Fluctuation of magnetization � mz at q = 0

We begin with the 
uctuation of M ,

� M 2 = hM 2i

=

R+ 1
0 e� � 0S2

dS �
RS

� S M 2e� 
M 2
dM

R+ 1
0 e� � 0S2 dS �

RS
� S e� 
M 2 dM

=
1

2

�

1

2(� 0+ 
 )
p

�
R+ 1

0 e� �x 2 erf(x) dx
:

(D.18)

with erf(x) = 2p
�

Rx
0 e� t2

dt, � 0 = �U s=(2N ), 
 = 1=(2N 2� 2), � = � 0=
 = N�U s� 2.
Moreover, we have

p
�

Z + 1

0
e� �x 2

erf(x) dx =
1

p
�

arctan(
1

p
�

): (D.19)

Finally, the 
uctuation of mz at q = 0 is

� mz =

r
� M 2

N 2
= �

s

1 �
p

�
(1 + � ) arctan( 1p

� )
: (D.20)

We can also calculatehS2i ,

hS2i =

R+ 1
0 dS S2e� � 0S2 R+ S

� S dM e� 
M 2

R+ 1
0 dS e� � 0S2

R+ S
� S dM e� 
M 2

=
1

2


� 1
�

+
1

p
� (1 + � ) arctan(1=

p
� )

�
:

(D.21)

Z + 1

0
dx x 2e� �x 2

erf(x) =
1

2
p

�

� 1
� + � 2

+
arctan(1=

p
� )

� 3=2

�
: (D.22)

As a result, the spin interaction energyhEsi at q = 0 is

hEsi =
Us

2N
hS2i = kB Ts � g(� ): (D.23)

with

g(� ) =
1
2

�
�

1 +
p

�
(1 + � ) arctan(1=

p
� )

�
: (D.24)
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Moreover, according to Eq. (D.20), we have

Us

2N
� 3hS2

z i = f (� ) � kB Ts: (D.25)

with

f (� ) =
3
2

� �
�

1 �
p

�
(1 + � ) arctan(1=

p
� )

�
: (D.26)

We plot in Fig. D.1, function f (� ) and g(� ) in Eq. (D.26) and (D.24), respectively.

Figure D.1: Function f (� ) and g(� ) in Eq. (D.26) and (D.24), respectively.
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Appendix E

Published articles

� Phase diagram of spin-1 antiferromagnetic Bose-Einstein condensates

David Jacob, Lingxuan Shao, Vincent Corre, Tilman Zibold, Luigi De Sarlo, Em-
manuel Mimoun, Jean Dalibard, and Fabrice Gerbier.Phys. Rev. A86, 061601(R)
(2012)

This article is cited in chapter 3 (main text) and in appendix C (supplementary
material), and will not be included in this appendix.

� Spin fragmentation of Bose-Einstein condensates with antiferromagnetic
interactions

Luigi De Sarlo, Lingxuan Shao, Vincent Corre, Tilman Zibold, David Jacob, Jean
Dalibard and Fabrice Gerbier.New Journal of Physics15 (2013) 113039 (18pp)
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