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ABSTRACT

This thesis focuses on the issues related to the selfish behavior of the agents in the commu-

nication networks. We are particularly interested in two situations in which these issues

arise and we address game-theoretical framework to study them.

The first situation relates to communication networks using a distributed routing based

on autonomous agents. Compared to a centralized routing, this type of routing offers sig-

nificant advantages in terms of scalability, ease of deployment or robustness to failures and

environmental disturbances. We investigate the convergence properties of the sequential

best-response dynamics in a routing game over parallel links. The game involves a finite

number of routing agents each of which decides how much flow to route on each of the

links with the objective of minimizing its own costs. For some particular cases (e.g., two

players), the convergence of the best-response dynamics can be proved by showing that

this game has a potential function. For other cases, a potential function has remained elu-

sive. We propose the use of non-linear spectral radius of the Jacobian of the best-response

dynamics as an alternative approach to proving its convergence.

The second situation occurs in Delay Tolerant Networks (DTNs) that have been the sub-

ject of intensive research over the past decade. DTN has an idea to support communication

in environments where connectivity is intermittent and where communication delays can

be very long. We focus on game-theoretic models for DTNs. First, we propose an incen-

tive mechanism to persuade selfish mobile nodes to participate in relaying messages, and

investigate the influence of the information given by the source (number of existing copies

of the message, age of these copies) to the relays on the rewards proposed. For static in-

formation polices, that is the same type of information given to all the relays, it is shown

that the expected reward paid by the source is independent of the policy. However, the

source can reduce the reward by dynamically adapting the type of information based on

the meeting times with the relays. For the particular cases, we give some structural results

of the optimal adaptive policy. Next, we consider the model where the source proposes a

fixed reward. The mobile relays can decide to accept or not the packet and then to drop

the packet in the future. This game can be modelled as a partially-observable stochastic

game. For two relays, we have shown that the optimal policies for the relays relates to the

threshold type.
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RÉSUMÉ ÉTENDU

Cette thèse porte sur les problématiques liées au comportement égöıste des agents dans

les réseaux de communication. Nous étudions plus particulièrement deux situations dans

lesquelles ces problématiques apparaissent. La première concerne les réseaux de commu-

nication utilisant un routage décentralisé basé sur des agents autonomes. Par rapport

à un routage centralisé, ce type de routage offre des avantages significatifs en termes

d’évolutivité, de facilité de déploiement ou encore de robustesse aux pannes et aux pertur-

bations de l’environnement. La seconde situation apparâıt dans les réseaux tolérants aux

délais (en anglais: Delay Tolerant Network - DTN) qui ont fait l’objet d’intenses recherches

ces dix dernières années pour permettre la communication dans des environnements où

la connectivité n’est qu’intermittente et où les délais de communication peuvent être très

long.

Dans ces deux situations, on est confronté au comportement égöıste des participants.

En effet, dans un système de routage décentralisé non-coopératif, les agents autonomes

sont en concurrence pour les ressources du réseau, chacun cherchant à optimiser les perfor-

mances de son propre trafic. De même, dans les DTNs les nœuds mobiles qui sont censés

servir de relai pour la communication entre les autres nœuds, peuvent ne pas être disposés

à coopérer en raison de leurs objectifs individuels.

La théorie des jeux fournit un cadre théorique naturel pour ces environnements compétitifs

dans lesquels des agents égöıstes sont en interaction. Elle donne différents concepts d’équi-

libre et peut être utilisée pour concevoir des mécanismes d’incitation conduisant à des

résultats globaux efficaces et souhaitables en dépit du comportement égöıste des partici-

pants.
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1 Théorie des jeux non-coopératifs

La théorie des jeux formalise une situation interactive comme un jeu. L’étude de la thèse

concerne les jeux non-coopératifs, lorsque les participants ne sont pas autorisés à conclure

une entente pour former des coalitions.

Un modèle de jeu contient les éléments suivants :

•Joueurs. Un ensemble de joueurs, N = (1, 2, · · · , n).

•
Stratégies.

Pour chaque joueur i, un ensemble de stratégies Si. Une stratégie si ∈ Si est une

action que le joueur i peut prendre. Des stratégies, une pour chaque joueur dans le

jeu, forment un profil des stratégies s = (s1, s2, · · · , sn).

•
Rétributions.

Chaque profil possible de stratégies conduit à une issue bien définie du jeu à laquelle

on peut associer une rétribution (ou gain) pour chaque joueur. La rétribution du

joueur i est représentée par la fonction d’utilité, ui = ui(s1, s2, · · · , sn). La valeur

d’utilité indique comment le joueur apprécie le résultat.

1.1 Équilibre de Nash

Un concept clef de la théorie des jeux est l’équilibre de Nash. Pour des joueurs égöıstes qui

agissent en maximisant leur propre rétribution, l’équilibre de Nash reflète un état stable

à partir duquel aucun joueur ne peut améliorer son gain par une déviation unilatérale .

Équilibre de Nash

en stratégies

pures.

Formellement, un vecteur des stratégies s ∈
⊗n

k=1 Sk est un équilibre de Nash si pour tous

les joueurs i et tout autre stratégie s′i ∈ Si,

ui(si, s−i) ≥ ui(s′i, s−i).

Cet équilibre est appelé un équilibre de Nash en stratégies pures (PNE). L’équilibre de

Nash est stable en ce sens qu’une fois que les joueurs jouent une telle solution, il est dans

l’intérêt de tous les joueurs de garder la même stratégie (Nisan et al., 2007).

1.2 Trouver des équilibres via une dynamique de meilleure réponse

L’équilibre de Nash n’est intéressant que si les joueurs peuvent apprendre à jouer un

équilibre en interagisseant à plusieurs reprises. Un équilibre de Nash résulte alors de

l’adaptation rationnelle des joueurs dans le jeu. La faon sans doute la plus naturelle de

jouer à un jeu est de jouer sa meilleure réponse. Plus précisément, étant donné un profil

de stratégies s qui n’est pas un équilibre de Nash pur, considérons un joueur arbitraire

i. Son utilité sous le profil de stratégies s est ui(s). En supposant que tous les autres

joueurs respectent leurs stratégies dans s−i, le joueur i peut avantageusement changer son

utilité en déviant unilatéralement de sa stratégie si vers une autre stratégie s′i ∈ Si. Un
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déviation de la stratégie si pour s′i est dit être un meilleure réponse si s′i maximise l’utilité

du joueur i, maxs′i∈Si ui(s
′
i, s−i).

Prouver que cette dynamique naturelle converge rapidement vers un équilibre per-

met de valider l’existence et la faisabilité de l’équilibre de Nash. Dans certains jeux, la

dynamique de meilleure réponse conduit les joueurs à un équilibre de Nash en quelques

étapes. Il existe quelques jeux pour lesquels les joueurs ne seront pas certains d’atteindre

un équilibre en un nombre fini d’étapes, mais le vecteur des stratégies convergera vers

cet équilibre. Si une dynamique de meilleure réponse atteint un état stable, cet état est

clairement PNE. Cette dynamique est cyclique dans un jeu sans PNE. Elle peut également

être cyclique et ne pas converger dans des jeux qui ont un PNE.

2 Convergence de la dynamique de meilleure réponse dans

les jeux de routage sur des liens parallèles

Dans cette thèse, nous étudions des jeux de routage non coopératifs dans lesquels chaque

flux origine-destination est contrôlé par un agent autonome qui décide comment son pro-

pre trafic est routé dans le réseau. Nous étudions la convergence des agents de routage

autonomes vers un équilibre de Nash.

2.1 Jeux de routage non coopératif sur des liens parallèles

Nous étudions un jeu de routage non-coopératif dans un réseau de liens parallèles partagés

par un nombre fini d’agents de routage, vus comme les joueurs du jeu. Nous considérons

un ensemble C = {1, . . . ,K} d’agents de routage et un ensemble S = {1, . . . , S} de liens.

Chaque agent i ∈ C contrôle une partie non négligeable λi du trafic total, et cherche à

partager son flux sur les liens afin de minimiser ses frais. Ce jeu de routage est représenté

sur la Figure 3.1.

ts

λ1

λi

λK

r1, c1

rS, cS

rj , cj

xi,j

Figure 1: Un routage via des liens parallèles.

Le lien j ∈ S a la capacité rj et un coût de traitement cj par unité de temps est à payer

pour chaque paquet envoyé sur ce lien.
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xi = (xi,j)j∈S ∈ Xi est la stratégie de routage du joueur i, où xi,j est la quantité de

trafic qu’il envoie sur la lien j, avec 0 ≤ xi,j < rj pour toutes j ∈ S, et
∑

j∈S xi,j = λi. Xi
désigne l’ensemble des stratégies de routage pour le joueur i. Un profil de stratégies est un

vecteur x = (xi)i∈C de l’espace produit des stratégies X =
⊗

i∈C Xi tel que
∑

i∈C xi,j < rj
pour tout j ∈ S. Il est supposé que

∑
i∈C λi <

∑
j∈S rj . Le vecteur x−i donne les stratégies

de tous les joueurs sauf i.

Compte tenu des stratégies des autres, l’agent i vise à minimiser son coût total sous

des contraintes de conservation du flux et de capacité. Le problème d’optimisation résolu

par l’agent i dépend des décisions de routage des autres agents et est formulé comme suit

:

minimize Ti(zi,x−i) =
∑
j∈S

cj
rj
zi,j φ(ρj) (BR-i)

soumis à

zi ∈ Xi, (1)

yj = zi,j +
∑
k 6=i

xk,j , ∀j ∈ S, (2)

ρj = yj/rj , ∀j ∈ S, (3)

ρj < 1, ∀j ∈ S, (4)

où φ(ρ) est le coût d’un lien dont le taux d’utilisatin est ρ. Dans les réseaux de transport

ou de communication, φ modélise le délai sur une route ou sur un lien.

Nous faisons les postulats suivants sur la fonction φ:

(A1) φ : [0, 1)→ [0,∞),

(A2) limρ→1− φ(ρ) = +∞,

(A3) φ est continue, strictement croissante, convexe, et est deux fois continûment différen-

tiable.

L’équilibre de Nash

x∗ ∈ X est un point d’équilibre de Nash (NEP) si x∗i est une solution optimale du problème

(BR-i) pour tous les joueurs i ∈ C, si :

x∗i = arg minz∈Xi Ti(z,x
∗
−i), ∀i ∈ C,

où x∗−i est le vecteur des stratégies à l’équilibre de tous les joueurs autres que le joueur i.

Il résulte de nos hypothèses sur la fonction φ, que les fonctions de coût des liens sont

un cas particulier des fonctions de type-B, telles que définies dans (Orda et al., 1993).
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Comme montré dans le Théorème 2.1 de cette référence, cela implique l’existence d’un

équilibre de Nash unique pour notre jeu de routage.

2.2 Dynamique de meilleure réponse

La meilleure réponse du joueur est définie comme sa stratégie optimale étant donnée la

stratégie des autres. Soit x(u) : X → X , définie comme

x(u)(x) =

(
arg min

z∈Xu
Tu(z,x−u),x−u

)
, (5)

la meilleure réponse du joueur u à la stratégie x−u des autres joueurs.

La dynamique de meilleure réponse consiste ensuite à ce que les joueurs jouent dans

un certain ordre en optimisant leur propre stratégie en réponse à la stratégie des autres

la plus récente connue.

Définissons arbitrairement un ordre pour le premier round, 1, 2, . . ., K, et supposons

qu’il soit le même dans chaque round suivant. Définissons x̂(1) : X → X comme

x̂(1)(x) = x(K) ◦ x(K−1) ◦ . . . ◦ x(1)(x), (6)

le point atteint à partir du point x après un tour du jeu. Ensuite récursivement

x̂(n)(x) = x̂(1) ◦ x̂(n−1)(x), (7)

est le point atteint après n rounds.

La dynamique de meilleure réponse est représentée par la séquence {x̂(n)(x0)}n≥1, où

x0 est le profil de stratégies initial. Un équilibre de Nash a la propriété que la stratégie de

chaque joueur est une meilleure réponse aux stratégies des autres joueurs. Par conséquent,

si x0 est un équilibre alors la séquence restera au point x0. La principale question à laquelle

nous cherchons à répondre est la suivante: est-ce que la dynamique de meilleure réponse

pour le jeu de routage converge depuis n’importe quel point initial ?

2.3 Résultats de convergence connexes

Pour le jeu asymétrique (lorsque les volumes de trafic contrôlés par les agents sont différents),

les résultats de convergence disponibles sont très peu nombreux. Dans (Orda et al.,

1993), pour le jeu de routage à deux joueurs sur deux liens parallèles, la convergence

vers l’équilibre de Nash unique a été prouvée en se basant sur la propriété de monotonie

du flot d’un joueur sur chaque lien. Les auteurs soulignent eux-mêmes que ce type de

preuve ne peut être utilisé pour des cas plus généraux. Altman et al. étudient également

le cas de deux liens (Altman et al., 2001a). En supposant que les fonctions de latence pour

les liens sont linéaires, ils prouvent la convergence de la dynamique de meilleure réponse
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séquentielle pour un nombre arbitraire de joueurs en utilisant la condition de contrac-

tion. Plus récemment Mertzios, 2009 a prouvé la convergence pour le jeu de routage à

deux joueurs et pour la grande classe des fonctions de latence de liens introduites dans

(Orda et al., 1993). La preuve se fait sur un argument de type potentiel, à savoir, montrer

que la quantité de flux qui est réalloué dans le réseau dans chaque étape est strictement

décroissante. Cependant, cet argument ne parâıt pas s’étendre facilement à plus de deux

joueurs.

2.4 L’approche basée sur le rayon spectral non-linéaire

Nous proposons une approche différente pour l’étude de la convergence de la dynamique

de meilleure réponse. L’idée clé pour prouver la convergence est d’étudier les matrices

jacobiennes des fonctions de meilleure réponse, et d’analyser la faon dont les produits

longs de ces matrices grandissent en fonction du nombre de mises à jour de meilleur

réponse.

Une méthode habituelle pour prouver la convergence des itérations de l’opérateur x̂(1) :

X → X est de montrer que cet opérateur est une contraction. La condition de contraction

nécessite de trouver une norme appropriée dans laquelle la distance entre les itérations de

la fonction à partir de deux points différents diminue avec chaque itération. Trouver une

telle norme peut être très complexe. Notre idée, pour la fonction de meilleure réponse,

consiste à observer qu’il suffit de trouver une norme dans laquelle la distance diminue

asymptotiquement et non pas avec chaque itération. Cette condition plus faible peut être

formalisée en se basant sur la notion de rayon spectral non-linéaire.

Pour une fonction f : X → X , définissons l’ensemble des matrices jacobiennes

J (f) = {Df(x) : f est différentiable en x} (8)

Définition 1. Le rayon spectral non-linéaire d’une fonction f : X → X est défini comme

(Mak et al., 2007):

ρ̄(f) = lim sup
n→∞

sup
Ai∈J (f)

∥∥∥∥∥
n∏
i=1

Ai

∥∥∥∥∥
1/n

.

Le rayon spectral non-linéaire correspond au rayon spectral joint ρ̂(M) de l’ensemble M
de matrices, où M = J (f).

Pour les opérateurs non-linéaires, le critère de convergence suivant a été formulé.

Théorème 1 (Mak et al., 2007, Théorème 1). Si f : X → X est Lipschitz-continue et

a un rayon spectral non-linéaire strictement inférieur à 1, alors les itérations de f sont

globalement asymptotiquement stables. De plus, la rapport de décroissance exponentielle,

r, satisfait 0 < r ≤ − log(ρ̄(f)).
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Ainsi, au lieu d’exiger que l’opérateur de meilleure réponse soit une contraction, on

peut montrer la convergence de la dynamique de meilleure réponse en montrant que:

1. x̂(1) est Lipschitz-continu; et

2. ρ̄(x̂(1)) < 1.

Nous avons montré que la fonction de meilleure réponse x̂(1) satisfait à la première

condition, à savoir être Lipschitz continue. Pour la deuxième condition, nous avons établi

la structure des matrices jacobiennes de la fonction x̂(1).

Structure des matrices jacobiennes

La matrice jacobienne de x̂(1) est le produit de matrices jacobiennes des meilleures réponses

des joueurs individuels. Pour un joueur u et un point x ∈ X en lequel x(u) est différentiable,

la matrice jacobienne de cette fonction est la matrice bloc

Dx(u)(x) =


∂x

(u)
1

∂x1
(x) . . .

∂x
(u)
1

∂xK
(x)

...
...

∂x
(u)
K

∂x1
(x) . . .

∂x
(u)
K

∂xK
(x)

 ,

où (i, j)-bloc
∂x

(u)
i

∂xj
(x) mesure la sensibilité de la stratégie du joueur i obtenue après la

meilleure réponse du joueur u par rapport à un changement dans la stratégie du joueur j.

Définissons Su(x) = {j ∈ S : x
(u)
u,j (x) > 0} comme l’ensemble des liens utilisés par le

joueur u dans sa meilleure réponse aux stratégies x−u des autres joueurs. Basée sur la

forme particulière de la fonction de coût Tu dans (BR-i), la contrainte de la conservation

du flux, les conditions d’optimalité KKT, et les hypothèses sur la fonction φ(·), nous avons

établi la structure spécifique de la matrice jacobienne de la fonction x(u).

Théorème 2. La matrice jacobienne de la fonction de meilleure réponse x(u) du joueur

u ∈ C a la forme suivante

Dx(u)(x) =



I . . . 0 . . . 0
...

. . .
...

Mu (x) . . . 0 . . . Mu (x)
...

. . .
...

0 . . . 0 . . . I


,

et Mu (x) = Ψu (ΓuB − I) Θu, où

• B est la matrice S × S avec 1 dans chaque entrée, à savoir, B = 1T 1,
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• Γu = diag(γ(u)) et Θu = diag(θ(u)) où les vecteurs γ(u) = (γ
(u)
1 , · · · , γ(u)

S ) et θ(u) =

(θ
(u)
1 , · · · , θ(u)

S ) sont tels que

0 < γ
(u)
i < 1, ∀i ∈ S, et

∑S
i=1 γ

(u)
i = 1, et

1
2 ≤ θ

(u)
i < 1,

• Ψu une matrice diagonale positive telle que Ψ
(u)
i,i = 1 if i ∈ Su(x), et Ψ

(u)
i,i = 0 sinon.

Corollaire 1. La matrice jacobienne de x̂(1) a la forme

Dx̂(1)(x) =

1∏
u=K

Dx(u)(x).

2.5 Convergence de la dynamique de meilleure réponse

Nous avons formulé la conjecture suivante sur le rayon spectral non-linéaire de x̂(1).

Conjecture 1. Pour K and S fixés, tout ensemble Ĵ de matrices ayant la forme donnée

dans le Corollaire 3 a un rayon spectral joint strictement inférieure à 1.

Sur les nombreuses expériences numériques que nous avons menées, la conjecture ci-

dessus semble effectivement vraie.

Le principal résultat de cette étude est:

Théorème 3. Si la conjecture 1 est vraie, alors la dynamique de meilleure réponse (3.8)

pour le jeu de routage (BR-i) converge vers l’équilibre de Nash unique du jeu.

On a ainsi obtenu une condition suffisante purement structurelle qui permet de réduire

l’analyse de la convergence de la dynamique séquentielle de meilleure réponse à l’analyse

du rayon spectral joint de certaines matrices. Nous avons pu montrer que la conjecture

est valide et donc que le théorème s’applique dans deux cas non triviaux:

(a) les jeux de routage avec deux joueurs et pour un nombre arbitraire de liens;

(b) les jeux de routage avec K joueurs et un nombre arbitraire de liens pour des fonctions

linéaires de latence de liens, φ.

3 Incitations à la collaboration des nœuds mobiles dans les

DTN

Un autre champ d’application dans lequel on a des interactions concurrentielles est celui

des réseaux tolérants aux délais (DTN). Les DTN ont été proposés pour permettre la com-

munication dans des environnements où le chemin de bout-en-bout entre une source et
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une destination n’est disponible que sporadiquement. Les DTN utilisent l’approche store-

carry-forward, dans laquelle les paquets sont transmis par la source aux noeuds mobiles

qu’elle rencontre. Ces derniers servent de relais pour la transmission du message. Ils peu-

vent stocker le message et le transporter jusqu’à ce qu’une opportunité de communication

avec la destination ou un autre relai apparâısse.

Afin de minimiser le temps de livraison du message dans les réseaux mobiles, les

algorithmes de routage utilisés dans les DTN impliquent généralement un routage multi-

copies, dans lesquel le message est délivré si l’un des nœuds relais possédant une copie

rencontre la destination. Dans cette thèse, nous nous focalisons sur le schéma de routage

à deux sauts, qui est connu pour fournir un bon compromis entre le temps de livraison du

message et la consommation de ressources (Al-Hanbali et al., 2008). Dans un tel schéma,

la transmission d’une copie du message est autorisée en au plus deux étapes : un nœud

relais qui a reu le message de la source ne peut pas le transmettre à un autre nœud relais,

mais doit le délivrer directement à la destination s’il la rencontre.

Dans la pratique, les DTN sont composés de dispositifs mobiles comme des smart-

phones, des tablettes ou d’autres dispositifs mobiles disposant de multiples interfaces sans

fil. Lorsqu’un nœud mobile doit économiser son énergie, ou en raison d’autres objectifs

individuels, il peut ne pas être disposé à servir de relais pour la transmission de données

entre d’autres nœuds.

Le comportement égöıste des nœuds d’un DTN et la nature décentralisée de leur prise

de décision nécessite des mécanismes d’incitation appropriés pour que les nœuds acceptent

de servir de relais, au bénéfice du réseau dans son ensemble.

3.1 Travaux connexes sur les mécanismes d’incitation pour DTNs

Dans la littérature sur les DTN (El-Azouzi et al., 2012; Zhang et al., 2007), plusieurs

mécanismes d’incitation ont été récemment proposés. Shevade et al., 2008 utilise la tech-

nique Tit-for-Tat (TFT) pour concevoir un protocole de routage incitatif qui permet aux

nœuds égöıstes du DTN de maximiser leurs utilités individuelles tout en se conformant

aux contraintes du TFT. Mobicent (Chen et al., 2010) est un système d’incitation basé

sur le crédit, qui intègre des crédits et des techniques cryptographiques pour résoudre les

problèmes d’insertion d’arêtes et d’attaques cachées d’arêtes parmi des nœuds. PI (Lu

et al., 2010) attache une incitation sur le paquet envoyé pour stimuler les nœuds égöıstes

à coopérer dans la livraison du message. SMART (Zhu et al., 2009) est un système

d’incitation sécurisé multicouches à base de crédits pour DTNs. Dans SMART, des mon-

naies en couches sont utilisées pour fournir des incitations aux nœuds égöıstes du DTN

à transmettre un paquet. MobiGame (Wei et al., 2011) est un système d’incitation pour

DTN qui est centré utilisateur et basé sur la réputation. En outre, Li et al., 2010 propose

un routage égöıste dans les DTN, où un nœud exploite la volonté sociale pour déterminer

si oui ou non il doit relayer des paquets pour les autres. Ning et al., 2011 formule la
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communication entre nœuds comme un jeu coopératif de deux personnes dans un système

d’incitations basé sur le crédit pour promouvoir la collaboration. RELICS (Uddin et al.,

2010) est un autre mécanisme d’incitation coopératif basé sur la réduction de la con-

sommation d’énergie pour les DTN égöıstes, dans lequel une mesure de classement a été

définie pour caractériser le comportement de transit d’un nœud. Dans (Wang et al., 2012),

les auteurs ont proposé un système de diffusion qui encourage les nœuds à coopérer, et

qui choisit les chemins de livraison pouvant atteindre un maximum de nœuds avec un

minimum de transmissions. Un aspect fondamental qui est généralement ignoré dans

la littérature sur les DTN est la difficulté à acquitter la réception du message, l’envoi

du message d’acquittement pouvant nécessiter un délai important. En fait, l’échange de

récompenses entre les nœuds mobiles ne devrait pas exiger de messages de retour. Le

mécanisme que nous proposons prend en compte cette difficulté à acquitter la réception

du message.

Nous étudions le routage à deux sauts dans les DTN et nous introduisons un mécanisme

de récompense qui incite les nœuds à servir de relais. Dans ce mécanisme, un relais reoit

une récompense si et seulement s’il est le premier à livrer le message à la destination. Dans

notre mécanisme, nous évitons l’utilisation d’un message de retour avertissant la source

que le message a été livré avec succès.

3.2 Modèle du système

Nous considérons un réseau sans fil avec un nœud source, un nœud destination et N

nœuds relais. Nous supposons que la source et la destination sont fixes et ne sont pas à

portée radio l’une de l’autre, et que d’autres nœuds sont en mouvement selon un modèle

de mobilité donné.

Les mouvements des nœuds relais sont caractérisés par les processus de contact avec

la source et la destination. Notre principale hypoyhèse est que les temps inter-contacts

entre un relais et la source (resp. la destination) sont des variables aléatoires (i.i.d.)

de premier et second moments finis. Soit Ts (resp. Td ) le temps aléatoire entre deux

contacts consécutifs entre un relais et la source (resp. destination). Nous supposons

que Ts et Td sont indépendants. Plutôt que les temps inter-contacts eux-mêmes nous

considérons des temps inter-contacts résiduels. Ainsi, le temp inter-contact résiduel T̃s est

le temps aléatoire entre l’instant auquel le message est généré et l’instant auquel le relais

rencontrera la source. T̃d est le temps aléatoire entre l’instant auquel un relais donné reoit

le message de la source et l’instant auquel le relais rejoindra la destination.

A l’instant 0, la source génère un message pour la destination. La source veut que

ce message soit livré à la destination aussi rapidement que possible via des nœuds relais.

La source propose à chaque relais rencontré une récompense pour livrer le message1. Une

1Notons que puisque la source n’est pas informée quand le message atteint la destination, elle peut
encore proposer le message à un relais même si le message a déjà été livré par un autre relais.
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hypothèse importante que nous faisons est que les relais ne cherchent pas à faire de profit :

un relais accepte le message à condition que la récompense promise par la source compense

l’espérance du coût pour délivrer le message à la destination, tel qu’estimé par le relais

lorsqu’il rencontre la source.

L’espérance du coût a plusieurs composantes. Un relais qui accepte le message de

la source encourt toujours un coût de réception Cr. C’est un coût d’énergie fixe pour

recevoir le message de la source. Il y a également un coût de stockage Cs par unité

de temps relatif au stockage du message dans le buffer du relais. Une fois que le relais

rencontre la destination, il peut livrer le message. Ceci génère un coût de transmission

Cd qui est un coût d’énergie fixe pour transmettre le message à la destination. Ce coût

est encouru, si et seulement si le relais est le premier à livrer le message à la destination,

auquel cas le relais obtient la récompense. Si au contraire, le message a déjà été livré, le

relais ne reoit pas de récompense mais il n’aura pas de coût de transmission à payer.

3.3 Le rôle de l’information

La récompense moyenne à payer par la source dépend de l’information qu’elle donne aux

relais. Il existe plusieurs stratégies possibles pour la source. Nous distinguons les stratégies

statiques et les stratégies dynamiques. Dans les stratégies statiques, l’information donnée

aux relais est fixe et ne dépend pas des moments auxquels la source rencontre les relais.

Nous considérons trois stratégies statiques :

• information complète (en anglais: full - F): chaque relais est informé par la source

du nombre d’autres relais qui ont déjà reu le message, et à quels moments,

• information partielle (en anglais: partial - P): chaque relais est informé par la source

de combien de copies du messages sont en circulation, mais la source ne révèle pas

l’âge de ces copies,

• pas d’information (en anglais: no information - N): la source ne dit rien aux relais.

Chaque relai ne connâıt que le moment auquel il rencontre la source.

Dans les stratégies dynamiques, la source adapte les informations qu’elle transmet

à la volée en fonction des instants auxquels elle rencontre les relais. Dans une telle

stratégie, la décision de donner une information complète, une information partielle ou pas

d’information du tout à un relais dépend des temps de contact avec les relais précédents.

Nous adoptons le point de vue de la source et étudions la stratégie qu’elle devrait suivre

afin de minimiser le prix à payer pour délivrer un message.

3.4 La probabilité de succès estimée

Soit Si, i = 1, . . . , N , l’instant aléatoire où la source rencontre le relais i. Nous désignons

par S le vecteur (S1, . . . , SN ). Nous désignons aussi par s le vecteur (s1, s2, . . . , sN ) des
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temps de contact des relais avec la source.

Définissons pi(s) comme la (vraie) probabilité de succès du relais i étant donné le

vecteur s des instants de contact. C’est la probabilité pour ce relais d’être le premier à

livrer le message. Soit p
(k)
i (s) la probabilité de succès estimée sous le mode k ∈ {F, P,N}

par le relais i quand il rencontre la source.

3.5 Récompenses promises par la source aux relais individuels

Définissons V
(k)
i (s) comme le coût net pour le relais i sous le mode k, et soit R

(k)
i (s) la

récompense demandée par ce relais à la source dans ce mode. La récompense R
(k)
i (s)

proposée au relais i doit compenser l’espérance du coût E[V
(k)
i (s)], qui est donnée par

E[V
(k)
i (s)] = Cr + CsE[T̃d] + [Cd −R

(k)
i (s)]p

(k)
i (s). (9)

Le premier terme dans ce coût net est le coût de réception, qui est toujours engagé.

Le second terme représente le coût de stockage moyen. Le dernier terme est le coût de

transmission du message vers la destination qui donne alors la récompense au relais. Ce

terme entre en jeu seulement si le relais i est le premier à atteindre la destination, ce qui

explique le facteur p
(k)
i (s).

Le relais i acceptera le message à condition que la récompense proposée compense son

coût moyen de livraison du message, c’est à dire si R
(k)
i (s) est tel que E[V

(k)
i (s)] ≤ 0. La

récompense minimale que la source doit promettre au relais i est donc

R
(k)
i (s) = Cd +

(
Cr + CsE[T̃d]

) 1

p
(k)
i (s)

=: C1 + C2
1

p
(k)
i (s)

. (10)

Notons que la récompense demandée par le relais i dépend de l’information donnée

par la source uniquement au travers de la probabilité de succès estimée p
(k)
i .

Compte tenu de S1 = s1, · · · , SN = sN , la récompense moyenne payée par la source

dans le mode k est

R
(k)

(s) =

N∑
i=1

pi(s)R
(k)
i (s) = C1 + C2

N∑
i=1

pi(s)

p
(k)
i (s)

. (11)

3.6 Récompense moyenne payée par la source dans une stratégie sta-

tique

La récompense moyenne payée par la source lorsque l’espérance est prise sur tous les

temps de rencontre, peut être considérée comme la récompense moyenne à long terme
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par message que la source devra payer si elle envoie un grand nombre de messages (et en

supposant que la génération des messages se produit à une échelle de temps bien supérieure

à celle du processus de contact).

La récompense attendue payée par la source dans le mode k peut être obtenue en

déconditionnant (4.6) sur S1, · · · , SN ,

R
(k)

=

∫
s

R
(k)

(s)fS(s)ds, (12)

où fS(s) est la distribution conjointe de S1, · · · , SN . Nous avons prouvé le théorème

suivant :

Théorème 4. La récompense moyenne à payer par la source dans le mode k ∈ {F, P,N}
est

R
(k)

= C1 +NC2. (13)

Cela montre que si la source n’adapte pas l’information qu’elle donne, la récompense

moyenne qu’elle devra payer reste la même indépendamment de l’information qu’elle trans-

met. Nous notons également que la récompense moyenne augmente linéairement avec le

nombre de relais.

3.7 La stratégie adaptive

La source peut-elle faire mieux en adaptant le type d’information qu’elle donne à un

relais en fonction de l’instant auquel elle le rencontre ? Nous avons montré que la source

peut effectivement réduire la récompense attendue qu’elle paie si elle peut adapter le type

d’information dynamiquement.

Une hypothèse clé que nous faisons dans l’analyse de la stratégie adaptative est que

les relais sont näıfs: ils ne réagissent pas au fait que la source adapte sa stratégie. Un

relais va calculer sa probabilité de succès uniquement en fonction de l’instant auquel il

rencontre la source et de l’information supplémentaire qu’elle lui donne, s’il y en a une.

Stratégie adaptative par rapport statique

Soit R
(A)

la récompense moyenne payée par la source quand elle utilise une stratégie

adaptative. Quand elle rencontre un relais, la source peut calculer la récompense qu’elle

devrait promettre à ce relais dans chaque mode, et ensuite choisir le mode minimisant la

récompense à promettre à ce relais. Autrement dit,

R
(A)

=

∫
s

(
N∑
n=1

pn(s) min
k

(
R(k)
n

))
fS(s)ds. (14)
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Etant donnée la définition de la stratégie adaptative, la récompense moyenne de cette

stratégie ne peut être supérieure à celle d’une stratégie statique, qui donne donc une

borne supérieure. En outre, la source doit payer au minimum C1 + C2 parce que c’est le

coût moyen quand il y a un seul relai, et on a ainsi une borne inférieure. Il en résulte que

Proposition 1. C1 + C2 ≤ R
(A) ≤ R(k)

= C1 +NC2.

Corollaire 2. R
(A)

R
(k) ≥ C1+C2

C1+NC2
≥ 1

N .

Ainsi, en utilisant une stratégie adaptative la source peut réduire ses dépenses d’au plus

un facteur 1/N .

Bien que l’expression analytique exacte de la récompense moyenne de la politique adap-

tative soit difficile à obtenir, nous avons pu en constater numériquement tout l’intérêt de

cette stratégie dans le cas de temps inter-contact exponentiellement distribués. En effet,

en supposant des temps inter-contact exponentiels entre un relais et la source (destination

resp.) de taux λ (µ resp.), nous avons obtenu des expressions explicites pour les proba-

bilités de succès estimées par les relais dans chaque mode. Pour minimiser la récompense

promise à un relais, la source choisit le mode d’information maximisant la probabilité de

succès estimée par le relais.

Sur la figure 4.1, R
(A)

est tracée en une fonction de λ pour N = 5, µ = 1, C1 = 1, et

C2 = 5. Nous observons que R
(A)

crôıt avec λ et devient proche de R
(F )

quand λ → ∞.

D’autre part, pour de petites valeurs de λ, R
(A)

est proche de la récompense minimale

C1 + C2. Il semble que R
(A)

ait la forme (C1 + C2) + C2(1 − e−λγ), pour une certaine

constante γ, mais nous n’avons pas pu prouver ce résultat.

Nous avons également donné quelques propriétés structurelles de la stratégie adaptative

dans le cas de N = 2 relais.

Deux relais, densité décroissante des temps inter-contact

Supposons que les densités de probabilités des temps inter-contacts résiduels, f̃s et f̃d,

sont des fonctions décroissantes.

Pour établir la structure de la stratégie adaptative, il faut déterminer quel mode

d’information a la récompense la plus basse à un instant donné. La récompense d’un

mode donné dépend à son tour de la probabilité du succès estimée par le relais basé sur

l’information communiquée par la source (voir (4.5)).

Notre premier résultat montre qu’il est toujours bénéfique pour la source de donner

l’information au premier relais quel que soit s1.

Proposition 2.

R
(F )
1 (s) = R

(P )
1 (s) ≤ R(N)

1 (s) (15)

Le résultat suivant concerne la récompense que la source devrait proposer au deuxième

relais.
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Figure 2: Récompense moyenne payée par la source dans la stratégie adaptive.

Proposition 3.

R
(N)
2 (s) ≤ R(P )

2 (s). (16)

La proposition 11 dit qu’entre le choix d’informer un relais qu’il est second, et celui de

ne pas donner cette information, il est préférable pour la source de ne pas donner cette

information.

Le Théorème 9 compare le mode sans information avec celui correspondant à l’information

complète.

Définissons la différence entre les probabilités de succès en fonction de s1 and s2,

g(s1, s2) = p
(N)
2 (s1, s2)− p(F )

2 (s1, s2), (17)

Pour la source, il sera préférable de donner l’information quand g(s1, s2) < 0.

Théorème 5. Il existe 0 ≤ θ1 <∞ tel que

1. si 0 ≤ s1 < θ1, alors g(s1, s2) ≥ 0, ∀s2 ≥ s1;

2. si θ1 < s1 <∞, alors
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(a) g(s1, s2) < 0, ∀s2 ∈ [s1, s1 + ω(s1)),

(b) g(s1, s2) > 0, ∀s2 ∈ (s1 + ω(s1),∞),

où θ1 est une solution de l’équation g(s1, s1) = 0 et ω(s1) est une solution de g(s1, s1+v) =

0 en ce qui concerne v quand g(s1, s1) < 0.

Donc, si la source a rencontré le premier relai à s1 ≤ θ1, alors, indépendamment de

l’instant auquel elle rencontre le second relai, elle ne doit pas donner l’information à ce

deuxième relai. D’autre part, si s1 ≥ θ1, alors la stratégie de la source doit être du

type seuil: si elle rencontre le second relais avant s1 + ω(s1), alors elle devrait donner

l’information complète, sinon elle ne devrait donner aucune information.

4 Récompense fixe pour inciter les noeuds mobiles à la

coopération

Le mécanisme d’incitation introduit dans le modèle précédent assure une totale coopération

des nœuds mobiles dans la transmission du message en promettant de couvrir le coût

moyen estimé par chaque nœud relai. Cependant, un mécanisme d’incitation qui peut

compenser toutes les dépenses d’un relais peut être très coûteux pour la source. Nous

avons développé une stratégie adaptative pour la source qui lui permet de réduire le coût

à payer pour transmettre un message. Néanmoins, la récompense qu’elle aura à payer peut

être encore très élevée, à cause des paramètres de mobilité des nœuds et de la consomma-

tion d’énergie des relais. Il peut alors être intéressant de fixer une limite à la récompense

que la source peut payer. Pour construire une récompense optimale, nous avons besoin de

savoir comment les nœuds mobiles sont disposés à participer à la transmission du message

en réponse à la récompense fixe proposée par la source, et ce qui pourrait être les stratégies

de meilleure réponse des relais.

4.1 Description du problème

Nous considérons un réseau sans fil avec un nœud source fixe, un nœud destination fixe et

N relais mobiles. Nous supposons un schéma de routage à deux sauts pour le DTN. Un

relais qui accepte le message a un coût du réception fixe Cr, ensuite un coût de stockage

Cs par unité de temps encourue pour stocker le message, et un coût fixe de livraison Cd
de transmission du message à la destination.

Nous étudions un processus de décision à temps discret pour les relais. La source génère

le message à l’instant 0 avec une date limite à l’instant τ + 1. Les contacts des relais avec

la source et la destination sont supposés intervenir à des instants i.i.d., p (resp. q) étant

la probabilité qu’un relai rencontre la destination (resp. source) à l’instant suivant.

Une fois qu’un message est généré, la source le propose à chaque relais qu’elle rencontre.

Lorsqu’un relais rencontre la source, il peut décider d’accepter le message ou le rejeter.
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Une fois que le relais accepte le message, il peut choisir de le garder ou de le l’abandonner

à chaque pas de temps ultérieur. En tant qu’incitation à la coopération, la source offre

une récompense fixe, R, à chaque relai rencontré, mais la récompense est payée seulement

au premier relais qui délivre le message. Un relai qui rencontre la source n’est pas informé

de l’existence d’autres copies du message.

L’état de chaque relai prend l’une des cinq valeurs possibles:

Valeur Signification Ensemble d’actions

0 le relai n’a pas le paquet ∅
ms le relai rencontre la source (accepter, rejeter)
1 le relai a le paquet (jeter, garder)
md le relai rencontre la destination ∅
2 le relai quitte le jeu ∅

Chaque relai prend ses décisions afin de minimiser son coût moyen. Le coût de chaque

relai dépend de ses propres actions ainsi que de celles des autres relais. Cette interaction

stratégique entre les relais s’inscrit dans le cadre des jeux stochastiques introduits par

Shapley, 1953. Dans notre modèle, chaque relais est conscient de son propre état, mais

ne connâıt pas ceux des autres. En outre, il ne sait pas si le paquet a déjà été livré à la

destination ou non. Nous formulons donc ce jeu comme un jeu stochastique à information

partielle (Goush et al., 2004).

4.2 Le cas d’un seul joueur

Pour le cas d’un seul joueur, nous avons d’abord obtenu la condition nécessaire suiv-

ante pour qu’un relai ayant accepté le message le conserve jusqu’à ce qu’il rencontre la

destination

R >
Cs
αp

+ Cd, (18)

où α est le facteur d’actualisation (0 ≤ α < 1). En fait, cette condition nous indique la

valeur minimale que doit avoir la récompense pour garantir que le relai ne va pas jeter le

message.

Ensuite, la stratégie du relai en ce qui concerne le fait d’accepter ou non le message

de la source est du type seuil. A savoir, il existe un seuil t∗ tel que le relais acceptera le

message s’il rencontre la source avant t∗, et il le rejettera s’il la rencontre après t∗. Ce

seuil est défini par :

t∗ = τ − 1−
ln
(

1 + Cr(1−pα)
Cs+αp(Cd−R)

)
ln(pα)

. (19)
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4.3 Jeu avec deux joueurs

Etant donné la compléxité du problème, nous nous concentrons sur les politiques de type

seuil. Dans ce type de politique, un relai accepte le message s’il rencontre la source à un

instant n ≤ θ1 et le rejete systématiquement après θ1. De même, un relai ayant accepté

le message le conserve au plus tard jusqu’à l’instant θ2, et le jette passé cet instant.

En utilisant la formulation de la programmation dynamique, le coût optimal à venir à

partir de l’état x ∈ {0,ms, 1,md, 2} à l’instant n peut être exprimé comme,

V 1
n (1) = min(0, Un,1, Un,2, . . . , Un,τ−n), (20)

où

Un,i =

i∑
j=1

(αp)j−1
[
Cs + αpV 1

n+j(md)
]
, (21)

Nous supposons qu’un des deux relais (par exemple le relais 2) suit’une politique de

type seuil avec θ2
1 et θ2

2. La proposition suivante montre qu’une fois que le relais 1 a le

message, il utilise également une stratégie de type seuil pour décider de le garder ou de le

jetter.

Proposition 4. Si Uθ22 ,1 ≥ 0 alors il existe un seuil θ1
2 ≤ θ2

2 tel que le relai 1 garde le

message jusqu’à θ1
2 et le jette à l’instant θ1

2 + 1. Sinon, si Uθ22 ,1 < 0, alors le relai 1 garde

le message jusqu’à ce qu’il rencontre la destination ou jusqu’à l’expiration du délai.

La Proposition 15 combinée avec la Proposition 16 montre que si un relais suit une

politique de type seuil, alors l’autre utilisera également une stratégie similaire.

Proposition 5. Il existe θ1
1 tel que le relais 1 rejette le message s’il rencontre la source à

n > θ1
1.

Nous arrivons donc à la question suivante: existe-t-il un équilibre du jeu dans lequel

chaque joueur utilise une stratégie de seuil ? Une réponse positive à cette question n’est

pas évidente, mais dans l’affirmative cela donne une impulsion forte de recherche et ouvre

la possibilité d’affiner notre mécanisme de récompense.

5 Conclusion et perspectives

5.1 Une approche différente pour l’étude de la convergence

Notre approche pour prouver la convergence de la dynamique de meilleure réponse est

basée sur la notion de rayon spectral non-linéaire. Pour appliquer cette approche il faut

montrer que l’opérateur de meilleure réponse est continu au sens de Lipschitz, et que



5 CONCLUSION ET PERSPECTIVES 19

son rayon spectral non linéaire est strictement inférieur à l’unité. Le rayon spectral non

linéaire est en relation avec le rayon spectral joint d’un ensemble de matrices jacobiennes

de l’opérateur. Pour notre jeu de routage, nous avons montré que la fonction de meilleure

réponse est Lipschitz, et nous avons établi la structure spécifique des matrices jacobiennes.

Nous avons ainsi obtenu une condition suffisante purement structurelle qui permet de

réduire l’analyse de la convergence de la dynamique séquentielle de meilleure réponse à

l’analyse du rayon spectral joint de certaines matrices. Nous avons montré que cette

condition est respectée dans deux cas: (a) le jeu à deux joueurs pour un nombre arbitraire

de liens et pour une large classe de fonctions de coût, et (b) pour un nombre arbitraire de

joueurs et des liens dans le cas des fonctions de latence linéaires.

Pour les fonctions de latence satisfaisant des hypothèses de convexité raisonnables, nous

conjecturons que la condition suffisante proposée est valable pour un nombre arbitraire de

joueurs et des liens. Nous espérons pouvoir prouver cette conjecture. Il serait également

intéressant d’envisager l’utilisation de l’approche basée sur le rayon spectral non-linéaire

pour étudier la convergence des dynamiques de mailleure réponse dans des topologies de

réseaux plus complexes.

5.2 Mécanisme d’incitation pour DTNs

Un problème central dans les DTN est de persuader les nœuds mobiles de participer à la

transmission des messages. Dans cette thèse, nous avons proposé un mécanisme basé sur

une récompense pour inciter les nœuds mobiles à sacrifier leur mémoire et leur énergie pour

relayer les messages. Le mécanisme d’incitation est conu pour assurer la participation des

relais dans le processus de livraison en proposant une récompense qui prend en compte les

frais encourus par les relais. Cette récompense est le montant minimum qui compense le

coût de livraison moyen estimé par le relais à partir des informations communiquées par la

source (nombre de copies existantes du message, âge de ces copies). Nous avons d’abord

montré que la récompense moyenne payée par la source reste la même indépendamment de

l’information qu’elle donne, allant de l’information complète sur l’état à pas d’information

du tout. Nous avons également étudié le cas dynamique dans lequel la source peut modifier

les informations qu’elle transmet à la volée en fonction de quand elle rencontre le relais.

Sous certaines hypothèses supplémentaires, la source peut gagner en adoptant la stratégie

dynamique. Ensuite, nous avons abordé le processus de décision à temps discret pour les

relais, quand le message a une durée de vie. Pour le mode ”pas d’information”, dans le

cas d’un seul relai et en supposant une récompense fixe, nous avons étudié la politique

optimale du relais. Nous avons établi jusqu’à quand il doit accepter le message de la source,

et une fois le message accepté, jusqu’à quand le relais doit le garder. Nous avons ensuite

considéré le cas de deux relais et démontré que si un relai suit une politique optimale du

type seuil, alors l’autre se comporte de manière similaire.

Dans notre modèle, nous nous sommes limités à une paire de source-destination qui
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génère des paquets. Pour plusieurs paires source-destination, les buffers des nœuds peu-

vent déborder si aucune politique de rejet des messages n’est adoptée. Dans ce scénario,

les politiques efficaces d’abandon au niveau des nœuds relais décident quels messages

doivent être prioritisés sous des contraintes de capacité, indépendamment de l’algorithme

de routage spécifique utilisé. Dans le futur, nous proposons de travailler sur les poli-

tiques d’Abandon/Ordonnacement intentionnelles dans les DTN en ce qui concerne notre

mécanisme. Cette étude incite des sources à développer une conception du mécanisme

afin de connâıtre les informations sur les messages qu’un relais stocke dans son buffer.

Ensuite, nous proposerons un mécanisme qui peut permettre à la source de susciter des

informations privées pour chaque nœud relais qu’elle rencontre.



1
INTRODUCTION

Design and management of large-scale communication networks are central problems for

the research community. One of the most studied directions deals with the analysis of

decentralized routing mechanisms in networks. In contrast to a centralized scheme, a

decentralized routing scheme offers wide-ranging advantages including scalability, ease of

deployment and robustness to failures and environmental disturbances. In the last ten

years, a substantial research effort has also been devoted to Delay tolerant networking due

its progressive ideas of a network architecture that can cope with intermittent connectivity

and long delays in communication.

However, several challenges arise when seeking to implement decentralized routing schemes

and to design mechanisms for DTNs. They are related to the selfish behaviour of par-

ticipants. Decentralized routing involves autonomous agents that compete for network

resources to route their own traffic through the network. In DTNs, mobile nodes that are

expected to support communication between other nodes, may not be willing to do so due

to their individual objectives.

Game theory provides effective tools to design and analyze such competitive environments.

Game theory has already proven to be a powerful theoretical framework for understand-

ing, controlling and designing complex dynamic networks with many agents. Game theory

gives various concepts of equilibria and allows to offer mechanisms to achieve efficient and

desirable global outcomes in spite of the selfish behavior of the agents. Motivated by

wholesome influences of game theory, we apply its techniques to model and analyze the

selfish behaviour in both decentralized routing and DTNs.
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1.1 Scope of Game Theory

The birth of Game theory is usually associated with the publication of the monograph

of Neumann et al., 1944, ”Theory of Games and Economic Behavior”. Before this, von

Neumann developed an idea of a game as of a general model of abstract conflicts, and the

monograph presented a mathematical approach to games as a systematic theory. In fact,

in this book a complicated, important and, moreover, highly unconventional mathematical

discipline was created.

Essentially, game theory attempted to mathematically describe some unsolved prob-

lems of economic behaviour. The basic premise of the theory consists in the idea that each

individual seeks to maximize its gain and minimize its loss, like in chess or poker. How-

ever, game theory encompasses much more than the usual idea of maximizing, because

without this new element, it would be little different from the old approaches. According

to the new theory, an outcome depends not only on what one player wants to achieve,

but on the intentions of other players. Thus, game theory studies the abstract model of

conflict, i.e. a situation which involves at least two sides, represented by persons, groups

or control systems, whose activities are purposefully directed, and interests of the parties

are partially or completely opposite. Conflicting nature of such problems does not imply

hostility between the parties, but attests to various interests.

In the cases where there is a clash of interests, formalization of the decision-making

process and finding an optimal solution are impossible with traditional methods of opti-

mization for decision-making. In conventional extremal problems, the matter concerns one

person who makes decisions, and the result of these decisions depends on the choice that

is determined by the actions of only one person. Such schemes do not apply to situations

where decisions optimal for one side, are not optimal for another one and where the result

of a decision depends on all the conflicting parties.

Quite significantly problems dealing with conflict situations cannot be properly for-

mulated and fully solved without the mathematical theory of games. Similarly to how

the problem of random events cannot be properly solved only by methods of classical

analysis and find a solution only by a new mathematical instrument, probability theory

and mathematical statistics, conflicts cannot be studied only with probability theory and

require a new mathematical discipline, game theory.

The subject matter of game theory is thus interactions of individuals in a group where

the actions of each individual have an effect on the outcome that is of interest to all. Game

theory aims to understand and predict the behaviour of selfish individuals in a competitive

environment. It thus can be applied in any field with selfish nature of interactions, where

decision made by an individual influences outcomes of all participants. Such interactions

are typical not only for the area of business and economics, but also arise in political and

military affairs, biological systems and communication networks etc.

However, the distinctive feature of the game compared to the real conflict situation
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is that the first is carried out under predefined rules. This is the main limitation in the

application of game theory. The main importance of game theory is that it gives the

orientation when the use of another mathematical approach is not possible due to lack of

information about the actions of the opponent.

Not surprisingly, game theory has been applied to networking, in most cases to solve

routing and resource allocation problems in competitive environments. A subset of refer-

ences is included in a survey on networking games by Altman et al., 2006. Recently, game

theory was also applied to wireless communication (see book by Han et al., 2012) and

mobile networks.

1.2 Steady-State in Decentralized Routing

In the management of large-scale communication networks routing traffic is a core problem.

Router, or routing agent, uses routing algorithm to find a best route, or set of routes, to

a destination. The best route can be defined according to some performance criterion,

e.g. number of hops 1, distance, speed, time delay or communication costs of packet

transmission.

A centralized approach to design a routing algorithm is based on a global network

optimization. Such an approach requires full information about the traffic status of the

network and implies that the routers are obedient units that follow a global optimal

algorithm for traffic routing. Centralized routing thus may be represented by a scheme

(Figure 1.1) where there is a single routing agent who controls allocation of all incoming

traffic over the routes of the network.

However, the central control is inadequate in the conditions of scalability and grow-

ing complexity of networks. Distributed nature of a large-scale network implies a lack

of coordination among its users. Instead, each user attempts to obtain maximum per-

formance according to his own parameters and objectives. The management of such a

network cannot be thus seen as a single control objective. The inability to use a central

regulation raises the need for a decentralized control paradigm, where network control

functions are entrusted to individual users. A user thus acts as an autonomous routing

agent and independently seeks to optimize the allocation of his own traffic. Figure 1.2

depicts decentralized routing scheme with multiple agents.

An indispensable component of the design of a decentralized system is the steady state

analysis. If a dynamic system achieves a steady state it will retain its properties unchanged

in time. Steady state determination is important for estimating a core characteristic when

shifting to a decentralized network architecture, namely the loss in the overall performance.

The performance degradation is the consequence of the fact that in decentralized routing

scheme, each agent performs an individual optimization without regard to the overall costs

1A hop is a trip a packet takes from one router or intermediate point to another in the network.
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Routing Agent

Set of Routes

Single

Figure 1.1: Centralized Routing Scheme: a single routing agent controls allocation of all
incoming traffic over the routes of the network.

or delay of the system.

Game-theoretic modelling of a decentralized routing scenario allows to perform steady

state analysis due to different equilibrium concepts and to make quantitative character-

istic of the performance degradation in terms of Price of Anarchy (Koutsoupias et al.,

1999). Assuming rational behavior of selfish network users that aim to optimize their own

individual performance, network routing scenario can be modeled as a non-cooperative

multi-player game. The resulting steady state of the traffic allocation in the selfish rout-

ing corresponds to the Nash equilibrium notion of game-theoretic scenario that is the

situation when no individual deviation of an agent can improve its performance. The

Price of Anarchy is a standard measure of the inefficiency of decentralized algorithms. Its

small value indicates that, in the worst case, the gap between a Nash Equilibrium and the

optimal solution is not significant, and thus that good performances can be achieved even

without a centralized control.

A key property of the equilibrium is that once it is reached, the users will continue to

use the same policy, and the system will remain in that equilibrium. Nevertheless, a main

difficulty with the notion of equilibrium is that in realistic scenarios there is no justification

to expect that the system is initially in equilibrium. Moreover, the users may be unable to

compute the equilibrium individually, since a user is generally unaware of some parameters

private to others that can influence his own benefit. A natural assumption to be made is

that the users are likely to stick with greedy way in their behavior, meaning that each user

would occasionally update his own decisions so as to optimize his individual performance,
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Autonomous Routing Agents Set of Routes

Figure 1.2: Decentralized Routing Scheme: autonomous routing agents control allocation
of their own traffic over the routes of the network.

without any coordination with other users.

This thesis addresses a central question when reasoning about steady state of the

decentralized routing: do uncoordinated routing agents converge to a Nash equilibrium?

In our study, we shall be concerned with the convergence of autonomous routing agents to a

Nash equilibrium under some ”natural” dynamics. More precisely, we address this question

assuming the well-known (myopic) best-response dynamics. Best-response dynamics play

a central role in game theory (Berger et al., 2011) since the Nash equilibrium concept is

implicitly based on the assumption that players follow best-response dynamics until they

reach a state from which no player can improve his utility. In a game, the best-response of

a player is defined as its optimal strategy conditioned on the strategies of the other players.

It is, as the name suggests, the best response that the player can give for a given strategy

of the others. Best-response dynamics then consists of players taking turns in some order

to adapt their strategy based on the most recent known strategy of the others (without

considering the effect on future play in the game). We shall consider the sequential (or

round robin) best-response dynamics, where players play in a cyclic manner according to

a pre-defined order.

The focus of our study is the convergence of sequential best-response dynamics in a

network of parallel links, shared by a finite number of selfish users. Each user controls a

non-negligible portion of the total traffic, and seeks to split his flow over the links of the

network so as to minimize his own cost. This model was introduced in the seminal article

of Orda et al., 1993, where it is shown that for the users that may have different traffic

demands, there exists a unique Nash equilibrium under reasonable convexity assumptions
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on the edge latency functions. Since this publication, obtaining convergence results of

best-response dynamics for routing games has remained a challenging problem for general

cases with non-linear link latency functions. Development of a more tractable, feasible

method to prove convergence of a dynamics is therefore an important goal in this area (in

practical sense). In this thesis we construct such an approach for best-response dynamics

in routing games and obtain a sufficient condition for convergence. We then use this

approach to establish convergence results for some special cases.

1.3 Cooperation in Delay-Tolerant Networks

Delay- and Disruption-Tolerant Networking (DTN) was proposed as a communication

paradigm to support connectivity in environments where end-to-end paths between sources

and destinations may not be available at all time. In particular, DTN provides an archi-

tecture that can span across multiple networks coping with deficiencies of TCP/IP based

Internet. It is capable of acting as an overlay on top of a heterogeneous environment con-

sisting of different communication segments, such as wired Internet, wireless sensor/ad-hoc

networks, satellite links, wireless local area networks, etc.

For reliable data transmission, the communication model based on TCP/IP and other

standard Internet transport protocols assumes continuous connectivity. This requires links

to be connected by end-to-end, low-delay paths between source and destination. However,

in communication environments such as satellite communications, wireless networks, that

are characterized by long delays, packet losses and link disruptions, TCP/IP protocol

becomes ineffective. Due to intermittent connectivity it is likely that contemporaneous

source-destination path may not exists from time to time, and implementation of TCP/IP

protocol in this case will lead to that a packet whose destination cannot be found will be

dropped (1.3).

DTN architecture bypasses the requirement for contemporaneous end-to-end connec-

tivity (Figure 1.4). DTN offer an alternative for realizing communications by implement-

ing a store-carry-forward approach, where information fragments, packets, are transiently

stored in network devices to be then forwarded to the destination. In other words, DTN

divides the end-to-end path into multiple DTN hops. Intermediate nodes receive packets

and temporarily store them until next hop, i.e. until an opportunity to send the packet to

the destination or to another intermediate node. Figure 1.5 illustrates store-carry-forward

communication in DTNs: there is no direct connection between the source and the des-

tination in a considered time period, and the packet, or message, can be forwarded from

the source to the destination through intermediate mobile nodes.

The assumption that mobile nodes may serve as relays with a premise that they can

store information for a long time before forwarding it reflects a main idea of DTN archi-

tecture. Due to random node mobility and uncertainty in connectivity, DTN algorithms

commonly imply multi-copy routing for message delivery, when the message is delivered
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DESTINATION

SOURCE

Figure 1.3: If the end-to-end connection is not perfect, a standard Internet protocol dis-
cards any packet that cannot be forwarded because a link is down.

DESTINATION

SOURCE

RELAY

Figure 1.4: DTN nodes serve as relays supporting communication even when end-to-end
paths between source and destination may not be available in a given time.

if one of the relay nodes with a copy encounters the destination. Replication of the orig-

inal message by the so-called epidemic routing protocol ensures that at least some copy

will reach the destination node with high probability and with a minimum delivery delay.

Flooding the network with messages, Epidemic routing leads, however, significant resource

consumption. To avoid the overload of the network with messages while retaining a high

delivery performance, the two-hop routing scheme provides simple and more efficient vari-

ant of the epidemic-style routing. Under this scheme, forwarding of a message copy is

allowed in at most two steps, when a relay received the message from the source can not

transmit it to another relay node but only if it encounters the destination.

However, in DTN applications, readiness to participate in forwarding is rather uncom-

mon. In practice, DTNs are composed of mobile devices, including smartphones, tablets

or other mobile devices having multiple wireless interfaces. They constantly move and can

contact with each other when they enter each others’ communication range. DTN nodes

are controlled by rational entities, such as people or organizations that can be expected to

behave selfishly. When a mobile node needs to conserve its power or due to other individ-

ual objectives, it may not be willing to serve as a relay in data transmitting, a link may
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Figure 1.5: Store-Carry-Forward Approach in Delay Tolerant Networking.

then not be established and the packet will be terminated by the node. Selfish behaviour

of DTN nodes and corresponding decentralized nature of their decision making requires

mechanisms that should offer appropriate incentives for the nodes to behave in ways that

are favourable for the network as a whole.

Game theory allows to model various interactions among selfish DTN nodes and to

design equilibrium-inducing mechanisms that provide incentives for individual users to

behave in socially-constructive ways. In essence, a question of interest is that of how to

provide suitable incentives to discourage selfish behavior. In this thesis, we address the

two-hope routing scheme in DTN and introduce a rewarding mechanism that promotes

full nodal cooperation to serve as relays. This scheme mandates that a relay will receive

a reward if and only if it is the first one to deliver the message to the destination. In

our scheme we avoid the use of feedbacks that allow relays to know whether the message

has been successfully delivered or not. This is an important technical issue in DTNs since

large delays the feedback messages may incur.

The source thus has to decide the amount of reward it proposes to each potential relay

that it meets, and the relays have to decide whether to accept the message or not. The

success of a given relay depends on the number of relays that have already accepted the

message: the bigger the number of nodes relaying the message, the higher the delivery

probability for the message, but indeed the less the chance for the given relay to receive a

reward from the system.

In addition to the incentive mechanism itself, a key objective of our study is to un-

derstand which information setting raises the lowest expected reward the source has to

pay for message delivery and how the source would reduce this expected reward. We

investigate different information settings the source may employ to inform a relay node

it meets about its state: full information in which the source informs the meeting relay
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about the number of relays that have already accepted the message and at which time;

partial information in which the source gives to each relay it meets only the information

on the number of existing message copies, and no information where the relays do not

have any information. Further, incentivising mobile nodes by a fixed reward, we aim to

predict their behavior by investigating an optimal policy for a relay by which the relay

has to decide whether to accept the message or not and once the message is accepted to

drop or to retain it.

1.4 Thesis Organization and Overview of Results

This thesis is structured into three parts. We begin with theoretical foundations of game-

theory (Chapter 2). Chapter 3 is entirely devoted to the problem we investigate in the

context of decentralized routing. Chapters 4 and 5 are game-theoretic investigation for

Delay tolerant networking. An overview below presents more detailed descriptions for

each chapter.

Preliminaries on

Game Theory.

Chapter 2 offers a game-theoretic framework necessary for applying the theory to the

problems we are interested in. We concentrate on non-cooperative game theory and de-

scribe various type of games with corresponding solution concepts. We give particular

attention to the basic concept of Nash equilibrium and best-response dynamics of a game.

We present a definition of a stochastic game and its equilibrium concept, that provides a

basis for modeling node competition in DTNs.

Convergence of

the Best-Response

Dynamics.

Chapter 3 opens our research part. This chapter contains convergence analysis for

decentralized routing over parallel links. The chapter begins with a discussion about

different models of selfish routing. Then it presents an overview of related convergence

results. After an accurate description of our non-cooperative game for the model of atomic

splittable routing, we introduce the sequential best-response dynamics for the game and

emphasize that for this game, there exists a unique Nash equilibrium. We then present

our approach to prove convergence of the best-response dynamics that is based on the

concept of non-linear spectral radius of an operator. We proceed with the construction

of one-round function for sequential best-response and investigate some properties of this

function. We establish the specific structure of the Jacobian matrices of the best-response

operator and derive a sufficient condition for the convergence. Using this structure and

sufficient condition, we obtain convergence results for two-player games with general cost

functions and for the game with an arbitrary number of players with linear cost functions.
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Reward-Based

Incentives for

DTNs.

Chapter 4 directs the focus of the thesis to the study of DTN models. The beginning

is a brief excursion into Delay tolerant networking. Next, an overview of research work

is given with respect to DTN routing mechanisms and incentive design for DTNs. Then

we give the system model of a DTN we investigate. The DTN includes a finite number of

relay nodes by means of which a single source intends to send a message to its destination.

We consider this model assuming the two-hop routing scheme described previously. We

describe our assumptions on contact process of a relay with the source and the destination

and then define different settings depending on the information the source conveys to a

relay when meets, that are a full information setting, a partial information setting and a

setting with no information. We investigate the impact of information the source shares

with relays on the reward that it has to propose to them in a static scenario, i.e. following

a fixed information setting. After that the extension to the dynamic scenario is provided

and the analysis of an adaptive strategy is given for the network of two relays and general

inter-contact time of a relay with the source (destination) and with an arbitrary number

of relays assuming exponential inter-contact time distribution.

Threshold Type

Policy of DTN

Nodes in No

Information

Setting.

Chapter 5 continues studies for DTNs. We modify DTN model of the previous chapter

and consider a discrete time decision process for the relays for a given lifetime of the

message. A i.i.d. distribution is assumed for contact times between a relay and the source

(destination).

Under the two-hop routing scheme and no information setting, we investigate the be-

haviour of the relays as a response to the fixed reward the source offers to a relay for

successful delivery of the message. After model description we give structural elements

necessary for defining a stochastic game and then formalize our DTN model in terms of

stochastic game with partial information. The chapter proceeds by studying the behaviour

of the relays in equilibrium, focusing on the optimal policy of a relay to accept the message

from the source or not and if the message is accepted to retain or to drop it. We then

establish that if one of the relays use a threshold type policy, then the other one will also

use a similar policy.

Chapter 6 gives the conclusion. It contains the summary of research contributions

presented in this thesis and identify interesting avenues for further research.



2
THEORETICAL PRELIMINARIES ON GAME

THEORY

This chapter defines the main concepts of game theory and simultaneously introduce some

key ideas from the theory related to our study. After an illustrative example of a situation

to be considered as a game, theoretical foundations are presented with focus on the non-

cooperative game theory. We discuss difference between games depending on a movement

order of players and information available to a player, and define corresponding solution

concepts such as dominant strategy solution, Nash equilibrium etc. A description of a

natural best-response play for finding Nash equilibrium ends this chapter to move then to

the next one with our study of the convergence of the best-response dynamics.

A Classical Example of a Game-theoretical Situation

Prisoner’s

Dilemma.

Game theory is best exemplified by a famous illustration of conflict situation called the

Prisoner’s Dilemma that was originally proposed by Merrill Flood and Melvin Dresher

working at the RAND Corporation in 1950, and endowed with its name in 1992 by Albert

William Tucker who has formalized this situation with prison sentence rewards. This

example shows how the behaviour of rational participants in a conflict situation can affect

each other’s outcomes.

In the scenario of this situation, two criminals are arrested for committing a crime and

imprisoned separately without means of communicating with each other. Due to lack of

sufficient evidence for a conviction, the authorities offer to each suspect to make a deal.



32 THEORETICAL PRELIMINARIES ON GAME THEORY

If one of the prisoners provides convicting evidence against another one then the first one

goes free, while the latter gets 3 years in prison. If both betray each other, then each of

them will serve 2 years in prison. If both use the right to remain silent, then they will

serve one year. The essence of the dilemma is how criminals will overcome this difficult

situation.

This scenario, with choices and resulting outcomes for the two prisoners is summarized

in the table below,

Prisoner’s Dilemma Prisoner B

remains silent betrays

Prisoner A
remains silent −1, −1 −3, 0

betrays 0, −3 −2, −2

where the number with negative sign symbolizes the length of prison sentence, the first

number in each pair is for prisoner A and the second one for the another. Based on this

table, it is obviously, the higher the number the better for a prisoner.

Each prisoner will rationally attempt to minimize his jail sentence, and, thus, each

prisoner being a self-interested and distrusting his partner, will not be inclined to remain

silent, because, in any case, he could get more benefits from betraying his partner even

hoping that the partner will keep silence. In other words, each prisoner surmising about

a betrayal by his partner, would prefer to serve not three but two years, opting for the

betrayal from his own side, or hoping that his partner will keep silent, the prisoner would

prefer to be released, again opting for the betrayal. Therefore, the pursuit of personal

benefit by each of the suspects, leads the situation to the only possible outcome forcing

the prisoners to betray each other, while they would benefit more if they both cooperate.

This ”Trust Game” (Kartik, 2009) analyzed in game theory shows why two purely

”rational” individuals might not cooperate, even if it appears that the best solution in

their interests would be to do so.

Hereinafter, we will focus on non-cooperative game theory. Further sections will give the

formal description of a game, present various types of games and explain basic solution

concepts for each type.

2.1 Non-cooperative Game Theory

Non-cooperative

and cooperative

games.

Game theory formalises an interactive situation as a game. According to the nature of

interaction among participants, the games can be non-cooperative, when the participants

are not allowed to enter into an agreement, to form coalitions, or cooperative, when the

participants are allowed to and will form coalitions. In non-cooperative games, all choices

are made by self-interested individuals. Cooperative games, in contrast, represent a com-

petition between coalitions of participants, rather than between individuals. Game theory
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can thus be classified into two respective branches. Our study will be concerned with the

individualistic approach and further consideration will be concentrated on non-cooperative

game theory, also called strategic games.

A simple example of a non-cooperative game has just been shown by the Prisoner’s

Dilemma. Next, we proceed to the conceptual basis of the theory, and we will start with

description of the basic game elements with Prisoner’s Dilemma illustration and other

examples.

2.1.1 Basic Elements and Assumptions

To be fully defined, a game model must contain the following elements.

•
Players.

The players (also called agents) that form the player set, denoted N = (1, 2, · · · , n).

Game-theoretic situation usually involves several players. In case, when there is only

one decision-maker, the related problem reduces to an optimization problem.

•
Actions and

strategies.

The information and actions available to each player at each decision point.

In a game model, each player has available to him two or more well-specified actions

or sequences of actions.

A player’s strategy, si, is a complete plan of actions, that specifies an action the

player takes at every point in the game in which the player is called on to act.

The strategy space, Si, is the set of strategies available to a player. A strategy

combination, or strategy profile, is a set of strategies, one for each player in the

game, denoted by s = (s1, s2, · · · , sn).

A strategy consisting of selecting and playing a single action is called a pure strategy,

and a choice of pure strategy for each player is called pure-strategy profile.

•
Payoffs.

The payoffs for each outcome.

Every possible combination of strategies available to the players leads to a well-

defined outcome that terminates the game. Each possible outcome specifies an

associated payoff for each player.

The payoff can be in any quantifiable form. It can be represented as an abstract

concept, utility (Neumann et al., 1944). Such a utility corresponds to a preference of a

player and is perceived as a magnitude of subjective welfare or change in subjective

welfare that a player derives from an event. The utility value shows how much

the player likes the outcome. The payoff must thus reflect the motivation of the

particular player.

The player i’s payoff is represented by the payoff function, or utility function, ui =

ui(s1, s2, · · · , sn).
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Finite and

continuous games.

A finite game consists of a finite number of players each with a finite strategy set (i.e.,

Si is a finite set for each i ∈ N , and N is a finite set). A game is continuous if Si is a

continuous set.

Thus, Prisoner’s Dilemma described above, is a finite two-player game. Each prisoner

has choice from two actions. The prisoners make their decisions simultaneously in one

step. Therefore each strategy of a player corresponds to an available action: Betray or

Remain silent. The table constructed above for the Dilemma, contains players’ payoffs for

each possible outcome: If one betrays, he goes free, and the other gets 3 years in jail. If

both betray, both get 2 years in jail. If neither betrays. both get one year in jail.

We call attention to the fact that the perverse outcome in the Prisoner’s Dilemma

is the result of the prisoners have no means of committing to cooperate. The Prisoner’s

Dilemma is thus the case of a non-cooperative game.

Assumptions of

game theory.

Some remarks on this example related to the prisoners’ behavior reveal crucial assump-

tions of the game theory. The prisoners act rationally, meaning that each prisoner strives

to maximize his own benefit, i.e. his payoff according to the payoff table constructed above

for the Dilemma. Players’ rationality is the basic premise in game theory. It also implies

that the players take into account that the other players act rationally. In other words,

since the payoff of each player depends not only on his own decision but also on the other

players’ decisions, he must reason about how the other players would prefer to act ac-

cording to their rational behaviour. The latter is related with the assumption of players’

intelligence, that implies that each player of the game knows everything about the game

that a game theorist knows and, thus, any inference that a game theorist can make about

the game may be drawn by the players as well. An important implication of intelligence is

the common knowledge. Aumann, 1976 gave a formal definition of ”common knowledge”

and an informal description of it. According to the latter, a fact is common knowledge

among the players if every player knows it, every player knows that every player knows

it, and so on... In this regard, a natural assumption for the game is that the rules of the

game are common knowledge, and, summing up, the model of the game with the rules

and assumption of players’ rationality is the common knowledge for the players.

2.1.2 Order of Moves

Static and

dynamic games.

A game is called simultaneous, or static game, if all players in the game move simultane-

ously, or if the later players are unaware of the earlier players’ movements. If the later

players have some knowledge about the earlier players’ movements, the game in such case

is called sequential, or dynamic game.

2.1.3 Types of Information

Common

knowledge.

The information available to a player can be of different types. A piece of information is

common knowledge in the sense just described.
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Complete and

incomplete

information.

In a complete information game, every player is aware of all other players, the timing

of the game, and the set of strategies and payoffs for each player. In an incomplete in-

formation game, at least one player is uncertain about some relevant information about

another player. In particular, a player may be uncertain about another’s payoff function.

The nature of the uncertainty is usually assumed to be common knowledge.

Perfect and

imperfect

information.

Furthermore, in dynamic games, the information may be one of two particular types,

perfect or imperfect. In a perfect information game, at each point in the game, the players

who are to move know the entire history of the game to that point. In an imperfect

information game, some player is uncertain about the history of the game when it is his

turn to move.

It should be noted the importance of difference between complete and perfect infor-

mation. In a game of complete information, the structure of the game and the payoff

functions of the players are commonly known but players may not see all of the moves

made by other players, while in games of perfect information, each player observes other

players’ moves, but may lack some information on others’ payoffs, or on the structure of

the game.

The games are analyzed regarding the movement order and the information type. Further,

we shall focus on some important game types relevant to our study and reveal correspond-

ing solution concepts. Before this, the following section will describe representation forms

for static and dynamic games.

2.1.4 Game Representation

Extensive form of

a game.

There are two distinct but related ways of describing a non-cooperative game mathemati-

cally. The extensive form is the most detailed game representation, it is used to formalize

games with some important order. The extensive form is often applied for dynamic games.

It describes play by means of a game tree that explicitly indicates when players move, which

moves are available, and what they know about the moves of other players and nature

when they move. Most importantly it specifies the payoffs that players receive at the end

of the game.

Normal form of a

game.

An alternative to the extensive form is the normal form, that is also known as the

strategic form, the most fundamental in game theory. This is less detailed than the

extensive one, and it specifies only the list of strategies available to each player. It is

presumed that the players act simultaneously or, at least, that an acting player is unaware

of the movements of the others. Since the players’ strategies determine how each player

is to play in each circumstance, a strategy profile can be associated with payoffs received

by each player under their strategies of this profile. This map from strategy profiles to

payoffs is called the normal or strategic form.
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More formally, the normal, or strategic form of a finite n-player game is the set of the

players’ strategy spaces, (S1, · · · ,Sn) and their payoff functions (u1, · · · , un). Such a game

is denoted as a tuple, G = (N,S,u), with N being a finite set of n players, S = S1×· · ·×Sn
and u = (u1, · · · , un), where ui : S 7→ R is a real-valued utility function for player i ∈ N .

Notation: For any x = (x1, x2, · · · , xn), x−i denotes the vector obtained from x by ex-

cluding xi, i.e. x−i = x \ (xi) = (x1, x2, · · · , xi−1, xi+1, · · · , xn).

The strategic form of a game is frequently represented by a game matrix. An example

of a strategic form game was already met before, the Prisoner’s Dilemma described at the

beginning of this chapter.

2.2 Static Games of Complete Information. Basic Solution

Concepts

This section presents basic solution concepts for study of strategic form games with com-

plete information, introducing the notions of dominant strategies, pure strategy Nash

equilibrium and Nash equilibrium in mixed strategies. The narration of this section fol-

lows the book by Nisan et al., 2007.

2.2.1 Dominant Strategy Solution

The Prisoner’s Dilemma has a very special property: it is obvious how each prisoner should

play, since each of them has a unique best strategy, independent of the strategy played by

the other player. This game has a so called dominant strategy solution.

More formally, a strategy vector s ∈ S is a dominant strategy solution
Dominant

strategy solution.

, if for each

player i, and alternate strategy vector s′ ∈ S,

ui(si, s
′
−i) ≥ ui(s′i, s′−i).

Furthermore, a strategy available to a player is strictly dominated if there is another

available strategy that is better for every combination of the other players’ strategies.

Formally, a strategy s′′i ∈ Si is strictly dominated by another strategy s′i ∈ Si if

ui(s
′
i, s−i) > ui(s

′′
i , s−i), ∀s−i ∈ S−i.

A rational player would not play a strictly dominated strategy, since he can obtain a

higher payoff by switching to a strategy that dominates it. The other players know that

he is rational and will not play his dominated strategy. In the smaller game without this

strategy there might be a player who also has a strictly dominated strategy and thus will

not play it. This process of elimination is called iterated elimination of strictly dominated

strategies and it provides a method to find a game solution best for each player, a dominant
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strategy solution.

However, existence of a dominant strategy solution is valid only for very few games.

Most often, there are no strictly dominated strategies in a game, and in such cases the

elimination method described above becomes inappropriate for finding an outcome that

satisfy all players, this process will not identify such outcome.

2.2.2 Pure Strategy Nash Equilibria

A less stringent than a dominant strategy solution and more widely applicable solution

concept provided by game theory is a Nash equilibrium, the central solution concept in

game theory. For individual players that act maximizing their own payoffs, the Nash

equilibrium reflects a steady state from which no single player can individually improve

his benefit by deviating.

Pure strategy

Nash equilibrium.

Formally, a strategy vector s ∈ S is said to be a Nash equilibrium if for all players i

and each alternate strategy s′i ∈ Si,

ui(si, s−i) ≥ ui(s′i, s−i).

In other words, strategies in s represent choices of all players such that no player i can

improve his payoff by changing his strategy from si to s′i assuming that all other players

adhere to their strategies in s. Such equilibrium is called pure strategy Nash equilibrium,

since each player deterministically plays his chosen strategy. Nash equilibrium is self-

enforcing in the sense that once the players are playing such a solution, it is in every player’s

best interest to stick to his strategy (Nisan et al., 2007). However, Nash equilibrium may

not be unique.

Consider the game with the following payoff matrix,

Battle Boy

of the Sexes Baseball Softball

Girl
Baseball 5, 6 1, 1

Softball 2, 2 6, 5

that corresponds to the game ”Battle of the Sexes”, an example of a so-called ”coordination

game”, where two players ought to choose the same option between two. The matrix

expresses the player’s preferences via payoffs. The solutions where the players choose

different events are not stable since in each case, either of the two players can improve his

payoff by switching his action. The two remaining options, where both players choose the

same event, are stable solutions; the girl prefers the first and the boy prefers the second.

Thus, coordination game have multiple equilibria.
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2.2.3 Mixed Strategy Nash Equilibria

A game, however, need not possess any pure strategy Nash equilibrium. Consider the

game ”Matching Pennies” with the following payoff matrix,

Matching Payer 2

Pennies Head Tail

Payer 1
Head 1, −1 −1, 1

Tail −1, 1 1, −1

Here, two payers, each having a penny, are asked to choose from among two strategies

heads (H) and tails (T). The row payer wins if the two pennies match, while the column

payer wins if they do not match, and the number −1 indicates win and −1 indicates loss.

It is easy to see that this game has no stable solution.

A three-strategy generalization of the ”Matching Pennies” game is the popular chil-

dren’s game of Rock, Paper, Scissors, also known as ”Rochambeau”. The payoff matrix

of the game is shown below.

Rock-Paper-Scissors Player 2

Rock Paper Scissors

Player 1

Rock 0, 0 −1, 1 1, −1

Paper 1, −1 0, 0 −1, 1

Scissors −1, 1 1, −1 0, 0

In this game, each of the two players can play by one of the tree strategies. If both players

choose the same action, there is no winner. Otherwise, each of the actions wins over one

of the other actions and loses to the remaining action, i.e. Rock wins against Scissors,

Scissors wins against Paper, Paper wins over Rock. The strategies cyclically dominate

each other, and anyone who has played Rock-Paper-Scissors knows that the best way is

to use a random choice. Indeed, if the players are allowed to randomize and each player

picks each of his actions with probability 1/3 (1/2 for the Matching Pennies game), then

the game will obtain a stable solution, since the expected payoff of each player will be

equal 0 and neither player can improve on this by choosing a different randomization.

The expected payoff, or expected utility, of a player that he maximizes by randomizing his

choice, is the basic notion of decision theory.

Mixed strategies.
A choice of a player by randomizing over the set of available actions according to some

probability distribution is called mixed strategy. In other words, ”A mixed strategy of

player i will be a collection of non-negative numbers which have unit sum and are in one

to one correspondence with his pure strategies” (Nash, 1951). It is assumed that play-

ers independently choose strategies using the probability distribution. The independent

random choices of players leads to a probability distribution of strategy vectors s.
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Mixed strategy

Nash equilibrium.

Nash, 1951 proved that under this extension, every game with a finite number of

players, each having a finite set of strategies, has a Nash equilibrium of mixed strategies.

2.3 Dynamic Games of Complete Information

Many interactive situations involve agents choosing actions over time. The natural way to

translate a (finite) dynamic interactive decision situation (of complete information) in a

game is the extensive-form representation, using a game tree. In addition to the players,

actions, outcomes, and payoffs, the game tree will provide a history of play or a path of

play. In a dynamic game, a strategy of a player is a complete plan of actions that specifies

a feasible action for the player in every contingency in which the player might be called

on to act.

A game tree consists of an initial node (the starting point of the game), from which

there are branches (the actions that the first mover can take) and at the end of each branch

is a node. The end node of a branch is a terminal node if no more actions can be taken,

otherwise it is a decision node. The game tree extends until all the nodes are terminal

nodes, and at the terminal nodes, the payoffs to the players are listed. An important aspect

of the game tree is the information set. It is a set that for a particular player, establishes

all the possible moves that could have made in the game so far, given what that player

has observed. It is possible that a game is being played and a player is uncertain as to

which of a few decision nodes the player is at. In this case, the collection of decision nodes

is that player’s information set.

One way to make a prediction on what path in the extensive-form representation of

a dynamic game will be played is first to translate the extensive-form in the associated

normal-form and then to apply the concept of Nash equilibrium.

The set of Nash equilibria in a dynamic game of complete information is the set of

Nash equilibria of its normal-form. Thus, the finding of the Nash equilibria in a dynamic

game of complete information consists in constructing the normal-form of the dynamic

game and calculating the Nash equilibria of the normal-form game.

However, two difficulties arise with this approach. First, dynamic games of complete

information typically have many Nash equilibria. Secondly, many Nash equilibria in dy-

namic games involve players choosing non-credible strategies, i.e. when a player adopts

his choice of strategy at his stage in order to manipulate the behaviour of other player in

the next move in a dynamic game and to generate a different Nash equilibrium.

A stronger solution concept, named Subgame Perfect Nash Equilibrium, allows to

eliminate non-credible strategies. The central idea underlying the concept of subgame

perfect Nash equilibrium is the principle of sequential rationality: equilibrium strategies

should specify optimal behaviour from any (reached or not reached) point in the game

onward, not only along the equilibrium path.
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Subgame.
To formally define this solution concept, first we define a notion of subgame. A sub-

game of an extensive-form game is a subset of the game with the following properties: it

begins with an information set containing a single decision node; it contains all decision

nodes and terminal nodes that are successors (both immediate and later) of this node, and

contains only these nodes; and it does not cut any information sets (Nisan et al., 2007).

A subgame considered in isolation, is a game in its own right, and the concept of a

Nash equilibrium can therefore be applied to subgames.

Subgame Perfect

Nash Equilibrium.

A Nash equilibrium of a dynamic game is subgame perfect if the strategies of the

Nash equilibrium constitute or induce a Nash equilibrium in every subgame of the game.

Subgame perfect Nash equilibrium is a Nash equilibrium since the game as a whole is a

subgame of itself, but not every Nash equilibrium is subgame perfect.

Every finite dynamic game of complete information (i.e., any dynamic game in which

each of a finite number of players has a finite set of feasible strategies) has a subgame

perfect Nash equilibrium, possibly involving mixed strategies.

A special class of dynamic games of complete information is that of perfect information.

Thus, an extensive-form game is a game of perfect information if each information set

contains a single decision node. Otherwise, it is a game of imperfect information.

2.3.1 Dynamic Games of Complete and Perfect Information

In a (finite) game of perfect information, when it is a player’s turn to move, he observes

previous moves of all players. A player is aware about previous moves of all other players.

In a (finite) game of perfect information, every decision node initiates a subgame, and

the smallest subgames are always single-player decision problems.

Every finite dynamic game of complete and perfect information has a pure strategy

subgame-perfect Nash equilibrium that can be derived through Backward induction. More-

over, if no player has the same payoffs at any two terminal nodes, then there is a unique

subgame perfect Nash equilibrium. The proof of these two statements can be found, for

example, in (Mas-Colell et al., 1995, p.272).

2.3.2 Dynamic Games of Complete and Imperfect Information

In a game with imperfect information, some player does not know the action taken by at

least one of the other players. To identify the set of subgame perfect Nash equilibria in

more general (finite) dynamic games with incomplete information, the generalisation of

the backward induction procedure is used.

While the original backward induction procedure (when applied to finite games of

perfect information) always yields at least one pure strategy subgame perfect Nash equi-

librium this is no longer true for the generalised backward induction procedure (when

applied to games of imperfect information).
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However, as was already mentioned before, every finite game of complete information

has a (sub)game perfect Nash equilibrium, possibly involving mixed strategies. Moreover,

if no (sub)game encountered in any step of the Generalised Backward Induction Procedure

has multiple Nash equilibria, then there is a unique subgame perfect Nash equilibrium.

The proof of these statements can be also found in (Mas-Colell et al., 1995).

2.4 Stochastic Games

Repeated game.
A special class of extensive form games is repeated games. When players interact by play-

ing a similar stage game numerous times, the game is called a repeated game. A stochastic

game is a repeated game with probabilistic transitions. Stochastic games were introduced

by Shapley, 1953: ”In a stochastic game the play proceeds by steps from position to posi-

tion, according to transition probabilities controlled jointly by the two players”. In other

words, a stochastic game is a collection of normal-form games that the players play re-

peatedly, and a particular game played at any given iteration depends probabilistically on

the previous game played and on the actions taken by all players in that game.

The game is played in a sequence of stages. At the beginning of each stage the game is

in some state. A payoff of a player depends on the current state and the actions chosen by

the players. In the next stage, the game moves to a new random state, whose distribution

depends on the previous state and the actions chosen by the players. The procedure may

be continued for a finite or infinite number of stages. The total payoff of a player is often

represented by the discounted sum of the stage payoffs or the limit inferior of the averages

of the stage payoffs.

Stochastic games generalize both Markov decision processes (MDPs) and repeated

games. An MDP can be considered as a stochastic game with only one player, while a

repeated game can be seen as a stochastic game with only one state.

Stochastic, or

Markov, game.

Formally, a stochastic game, also known as a Markov game, is defined by the following

elements:

• A finite set of players, N .

• A state space, Q.

• For each player i ∈ N , an action set Ai. An action profile, a, of the game is the

element of the action space A = ×i∈NAi.

• A transition probability P : Q × A × Q → [0, 1], where P (q,a, q′) is a probability

of transitioning to the state q′ if the action profile a is used in state q. Transition

probabilities thus depend upon current state of the game and actions of players.

• For each player i ∈ N , a payoff ri(q,a) is a real-valued function of the state q and

the action profile a ∈ A. The vector r(q,a) = (ri(q,a))i is composed of payoffs to
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each player.

The game starts at some initial state q1. At stage t, players observe state qt and then

choose simultaneously their actions, ai,t ∈ Ai forming the action profile at = (ai,t)i. A

next state qt+1 occurs according to the probabilities P (qt,at, · ). The play sequence of the

stochastic game, q1,a1, · · · , qt,at, · · · , defines a sequence of payoffs, r1, · · · , rt, · · · , where

rt = r(qt,at). The sequence ht = (q0,a0, q1,a1, · · · ,at−1, qt) forms a history up to the

stage t, and Ht is the set of all possible histories of this length.

In a stochastic game, for a player i, a pure strategy specifies a choice of action for i at

every stage of every possible history, and a mixed strategy of i is a probability distribution

over his pure strategies. There are several restricted classes of strategies. A behavioral

strategy is a mixed strategy in which the mixing takes place at each history independently.

A Markov strategy is a behavioral strategy such that for each time t, the distribution

over actions depends only on the current state, but the distribution may be different at

time t than at time t′ 6= t. Next, a stationary strategy is a Markov strategy in which the

distribution over actions depends only on the current state and not on the time t.

A player chooses his strategy to maximize his overall payoff. The most common method

to aggregate payoffs into an overall payoff are average reward and future discounted re-

ward. The case of average rewards is more complicated since the limit average may not

exist, however under some conditions on strategy profile, average reward stochastic game

has a Nash equilibrium for the two-player case (see Shoham et al., 2008, Th.6.2.6). For

the discounted-reward case, a strategy profile is a Markov-perfect equilibrium (MPE) if

it consists of only Markov strategies and it is a Nash equilibrium regardless of the start-

ing state. Every n-player, general-sum, discounted-reward stochastic game has a MPE

(Shoham et al., 2008, Th.6.2.5). Markov perfect equilibria can be obtained using back-

ward induction, whose advantage is that instead of searching for equilibrium in the (large)

space of strategies, one only need to find Nash equilibrium in a succession of static games

of complete information.

2.5 Games of Incomplete Information

The game types considered so far, the games of complete information, have an important

assumption that the game played is common knowledge. Particularly, the players in a game

of complete information are aware about order of playing the game, possible actions of

each other and how outcomes of the game translate into payoffs. This knowledge of a game

has been assumed to be itself common knowledge that allowed to develop such solution

method and concepts as iterated elimination of dominated strategies, Nash equilibrium

and Subgame Perfect Nash equilibrium.

In contrast, in a game of incomplete information, or Bayesian game, not all players

possess full information about their opponents. Namely, in a game of incomplete infor-
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mation, initially at least one player does not know the payoff function of another one,

meaning that for the player, some information that influences an opponent’s payoff is

unavailable. For example, a firm may not know the cost of production of its competitor,

insurance companies may not be sure how careful a driver is etc. Games of incomplete

information are called Bayesian games (see Zamir, 2012 and references therein).

A player who does not know the private information of an opponent, may, however,

have some beliefs about this information. These beliefs are assumed to be common knowl-

edge.

There are several ways to define a Bayesian game. Harsanyi, 1967; Harsanyi, 1968a;

Harsanyi, 1968b proposed to transform a game of incomplete information by introducing

Nature as a new player of the game. Nature does not have a payoff function, or its payoff

function can be viewed as a constant, and Nature has the unique strategy of randomizing

in a commonly known way. The Harsanyi transformation involves introducing a prior

move by Nature that determines players’ types. Namely, Nature randomly sets the state

of the world and then reveals some information regarding the state of the world to each

player, but not the same information. Some or all players can have private information.

Harsanyi suggested to characterize the different states of the world and a players private

information by defining player types. Nature thus in its move determines a player’s type

and reveals this type to the player, but not to his opponents. It is assumed that the

probability according to which Nature moves is common knowledge. A player’s payoff

function depends on his type.

A static game of incomplete information is then described by the following elements.

• Player set, N = {1, 2, · · · , n}.

• For player i ∈ N , Ti is the set of all his possible types. The state of the world is

defined as a vector of types, t = (t1, t2, · · · , tn), ti ∈ Ti. The set of all possible states

of the world is T = ×i∈NTi. Excluding the player i’s type, the state of the world

is defined as t−i = (t1, · · · , ti−1, ti+1, · · · , tn), and all possible states of the world as

T−i = ×i 6=j∈NTj .

• The probability of any given state of the world, p = p(t), p(t) > 0,
∑

t∈T p(t) = 1.

The probability that i’s type is ti is defined as pi(ti) =
∑

t−i∈T−i p(ti, t−i), and

the conditional probability of the state of the world given i’s type is ti is p(t|ti) =

p(t)/pi(ti). P = {p(t)|t ∈ T} represent the probability distribution over all states

of the world.

• For player i ∈ N , si(ti) is a pure strategy given ti, and Si is the set of possible pure

strategies given type ti. The strategy profile conditional on the state of the world

is s(t) = (s1(t1), s2(t2), · · · , sn(tn)). A pure strategy for player i is a collection of

strategies, one for each type, si = {s(ti)|ti ∈ Ti}.
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• For player i ∈ N , the utility ui(s) =
∑

t∈T ui(s(t), ti)p(t) is the expected utility,

or expected payoff conditional on the state of the world and player i’s type. U =

{u1(s), u1(s), · · · , un(s)} represents the payoff space.

A static game of incomplete information is thus defined as G = {N,S, U, T, P}. Such a

description transforms a game of incomplete information into a game of imperfect infor-

mation since the move of Nature is not observed perfectly by each player and hence the

players are not aware about whole history of the game when they have to move.

In a Bayesian game G = {N,S, U, T, P}, a strategy profile s∗ = (s∗1, · · · , s∗n) is a

pure-strategy Bayesian Nash equilibrium if for each player i ∈ N and for each i’s types

ti ∈ Ti,
s∗i (ti) = arg max

si∈Si

∑
t−i

p(t−i|ti)ui(s∗1(t1), · · · , si, · · · , s∗n(tn); ti).

In other words, the Bayesian Nash equilibrium requires that no type of an individual

player can do better by unilaterally changing its strategy. Harsanyi, 1967; Harsanyi,

1968a; Harsanyi, 1968b proved that in a game with incomplete information in which the

number of types of each player is finite, each Bayesian equilibrium is a Nash equilibrium,

and conversely every Nash equilibrium is a Bayesian equilibrium.

The concept of a Bayesian Nash equilibrium can be applied to analyze dynamic games

of incomplete information, where players take turns sequentially. However, Bayesian Nash

equilibria in dynamic games of incomplete information suffer from the same flaw as Nash

equilibria in dynamic games of complete information, such as incredible strategies. In

dynamic games of complete and perfect information, such implausible equilibria might

be eliminated by applying subgame perfect Nash equilibrium, where subgame contains

complete information set. However, dynamic games of incomplete information contain

non-singleton information sets, and usually do not have any subgames other than the

game as a whole, and subgame perfection becomes unfeasible.

To refine the equilibria generated by the Bayesian Nash solution concept or subgame

perfection, one can extend the concept of subgame perfection and apply the Perfect

Bayesian equilibrium solution concept. Specifically, the idea of a subgame is replaced

by the more general idea of a continuation game, a game that can begin at any informa-

tion set rather than only at a singleton information set. The players strategies are then

required not only to constitute a Bayesian Nash equilibrium for the entire game, but also

a Bayesian Nash equilibrium in every continuation game. In order to behave rationally at

an information set that contains more than one node, the player who moves at that set has

to form a belief on the relative likelihoods of being at each of various decision nodes in the

the information set he is at, conditional upon play having reached that information set.

The belief is a probability, and the probabilities (beliefs) for all decision nodes within an

information set sum to 1. A Perfect Bayesian equilibrium consists therefore of a strategy

profile and also of a belief profile. It requires, that strategies are optimal given beliefs
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and that beliefs are consistent with the strategies being played. A detailed description of

dynamic Bayesian games and corresponding solution concepts may be found in the book

by Gibbons, 1992 and references therein.

2.6 Finding Equilibria via Natural Game Play: Best Re-

sponse Dynamics

Feasibility of Nash equilibrium concept to an interaction circumstance is based on the

conjecture that players will learn to play an equilibrium if they interact repeatedly. A

Nash equilibrium is thus expected as a result of rational adaptation of players in the

game. The most natural strategy for playing a game is the ”best response”. In general,

the best response dynamics proceeds as follows. At each stage, every player chooses the

best-response to the actions of all the other players in the previous round, ignoring all

history before this round.

More formally, the procedure is performed as described below. While the current

strategy profile s is not a pure Nash equilibrium, consider an arbitrary player i . Its

utility under the strategy profile s is ui(s). Assuming that all other players adhere to

their strategies in s−i, player i can beneficially change his utility by unilateral deviation

from his strategy si to some other strategy s′i ∈ Si. A deviation from the strategy si to s′i
is said to be an improving response for player i if ui(s

′
i, s−i) > ui(s) and it is said to be a

best response if s′i maximizes the player i’s utility, maxs′i∈Si ui(s
′
i, s−i).

Proving that natural dynamics converge quickly to an equilibrium lends plausibility

to the predictive power of an equilibrium concept. Best-response dynamics provides a

straightforward procedure by which players search for a pure Nash equilibrium (PNE) of

a game. In some games, such as the Prisoners Dilemma or the Coordination Game, best-

response dynamics leads the players to a Nash equilibrium in a few steps. There are some

games, where the players will not reach the equilibrium in a finite number of steps, but

the strategy vector will converge to the equilibrium. If best-response dynamics reaches a

steady state, it is clearly a PNE. It cycles in any game without one. It can also cycle and

not converge in games that have a PNE. A simple example when best-response dynamics

does not converge, is matching pennies, where the players will cycle through the 4 possible

strategy vectors if they alternate in making best responses.





3
CONVERGENCE OF THE BEST-RESPONSE

DYNAMICS IN ROUTING GAMES OVER

PARALLEL LINKS

This chapter focuses on the convergence of sequential best-response dynamics in a network

of parallel links, shared by a finite number of selfish users, where each user controls a non-

negligible portion of the total traffic, and seeks to split his flow over the links of the

network so as to minimize his own cost.

The chapter begins by considering the notion of selfish routing and describing different

types of routing games with corresponding equilibrium concepts. Then, in Section 3.2,

focusing on the routing problems that interest us and on the convergence issue to an

equilibrium in selfish routing, we trace the earlier convergence results for some special

cases. Section 3.3 gives the statement of our routing problem. Formalizing it as a non-

cooperative game, we define equilibrium concept for the game and the best response

dynamic for it. Section 3.4 explains the Non-Linear Spectral Radius Approach for our

convergence problem. Sections 3.5 shows our convergence results.

3.1 Routing Games

Routing problems arising in a transportation or communication network, where self- in-

terested users share network resources to send their flows and each user aims to get his

own flow to the destination in minimal delay or with minimal cost, can be modeled as
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non-cooperative games. The mathematical model of selfish routing has been extensively

studied in Transportation Science literature (Pigou, 1920; Wardrop, 1952; Beckmann et

al., 1956; Yang et al., 2004; Boyce et al., 2005; Yang et al., 2008) and widely explored in

Computer Sciences (Cantor et al., 1974; Gallager, 1977; Orda et al., 1993; Bertsekas et al.,

1997; Qiu et al., 2003; Friedman, 2004), with a large number of works on routing games

(e.g. Fleischer et al., 2004; Roughgarden et al., 2002; Roughgarden, 2005a; Nisan et al.,

2007).

Selfish routing models assume usually the flow to be time-invariant, or static (Rough-

garden, 2005a). A dynamic flow implies that the state of a network is conditioned by the

time when the users employ the network, and a user choosing his best route does not

consider the congestion on any link based on the total number of users that traverse it,

but the user considers the congestion on the link that will be experienced on it when the

user reaches this link. Dynamic selfish routing has been investigated by Anshelevich et al.,

2009. In our study, we are concerned with a static flow in selfish routing.

A routing game is generally described via a directed graph representing the underlying

network. Each player, or network user, has a volume of traffic to be routed from its source

node to its destination node in the graph through available paths consisting of network

links, the edges of the graph. The flow on a link of the network faces a delay, and the delay

is characterized by a latency function, or cost function. The link latency function, in the

static flow context, depends on the total amount of flow this link contains, it is usually

non-decreasing and convex. Each user is able to choose how to route his traffic flow over

the network so as to minimize his own incurred cost. User’s cost function corresponds

to the latencies of the links the user employs for his flow and is specified for a particular

game model.

There are different models of routing games depending on the amount of flow the play-

ers control. In a network routing game with nonatomic players, there is a continuum of

players each controlling a negligible amount of the overall traffic flow. This type of games

were first studied by Wardrop, 1952 in the road traffic context. Exemplified by trans-

portation network, such a game involves a large number of players representing drivers.

Each player is insignificant in that it cannot individually influence the congestion level of

any road in the network. The Wardrop equilibrium notion is concerned with this type of

games.

Another type of routing games is that with atomic players. In contrast to non-atomic

case, atomic games describe situations in which players have significant influence since

each player controls a non-infinitesimal amount of flow. Moreover, in the context of atomic

routing, players may or may not be able to split their flow along several paths. There are

non-atomic (Wardrop, 1952; Aumann et al., 1969; Roughgarden et al., 2002; Roughgarden,

2005a; Awerbuch et al., 2009), atomic unsplittable (Fotakis et al., 2004; Awerbuch et al.,

2004) and atomic splittable (Orda et al., 1993; Roughgarden, 2005b; Cominetti et al., 2009)

routing games, respectively. Our investigations is devoted to atomic splittable games.
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In an atomic splittable routing game, each player is given a non-negligible amount of

flow that the player can route fragmenting over available paths. Each player routes his

flow to minimize his own average delay, or own total costs, that is the sum over links of

the product of his flow on the link and the delay on the link. The challenge with atomic

splittable routing model is that each player has an infinite strategy space consisting of all

possible ways of routing his flow. Another challenge is that the players, unlike in non-

atomic routing games, are commonly asymmetric since each of them is given a different

flow value.

In a routing game, an equilibrium flow is characterized by a traffic allocation at steady

state, wherein no user may change his flow assignment to reduce his total incurred cost of

routing his flow. In atomic splittable routing games, equilibria exist under some moderate

assumptions on the delay functions (Rosen, 1965). Equilibria in atomic splittable games

will be refered as Nash equilibria.

Our study will focus on the convergence issue of uncoordinated users in selfish routing

to a Nash equilibrium, when the users implement an asynchronous best-response dynamics.

The next section gives a survey of the convergence results relevant to our work.

3.2 Review on Related Convergence Results

The model we shall study was introduced in the seminal article of Orda et al., 1993 in the

communication network context. They have addressed the routing problem in networks

from a game theoretical viewpoint. Namely, the article starts with consideration of the

network of parallel links interconnecting a common source to a common destination. The

set of links shared by the finite number of selfish users each of which has a nonnegligible

portions of flow to ship by splitting through the links and seeks to minimize own incurred

cost. The cost of each user is described by cost function that is the sum of the costs

the user incurred on each link. The authors formalized the problem as a non-cooperative

game, and under the special assumption on user’s link cost function, such as continuity,

convexity and continuous differentiability whenever the function is finite, the considered

routing game is shown to be a convex game (Rosen, 1965) and to have thus a Nash

equilibrium point according to the theorem in (Rosen, 1965, Th.1, p.522). Further, user’s

link cost function is endowed with additional assumptions. Particularly, user’s link cost

is taken to be dependent on user’s flow on the link as also on the total flow on that link

and increasing in these two arguments. A link’s marginal cost for a user is thus a function

of two arguments and it is assumed to be strictly increasing in each of its two arguments.

With these additional assumptions, the user’s link cost functions were referred to as type-

A functions, and the uniqueness of the Nash equilibrium point has been established for

type-A functions using Kuhn-Tucker conditions for cost minimization and based on the

monotonicity and increasing properties of the user’s marginal link cost functions.

The special case of two users in a network of two parallel links was investigated for the
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stability of the Nash equilibrium point, i.e. for the convergence of adjustments dynamics

to this point. Assuming the players make best response in turns, Orda et al., 1993 referred

this dynamics to the Elementary Stepwise System. First, for the flow configuration, that

is the flow of each user over each link, they proved that each component of the flow con-

figuration increases or decreases monotonically with each step of the dynamics. With this

and due to that the flows are bounded, convergence of the dynamics has been established.

The authors point out however that this convergence result is not readily extendible to

more general cases. Indeed, in (Altman et al., 2001b), for the two-link case and more than

two users, some asynchronous as well as synchronous best response schemes have been

shown not to converge to the equilibrium.

However, Altman et al., 2001b, studying the two-link case and assuming linear latency

functions for the links, prove that a round robin adjustment scheme, or sequential best-

response dynamics, converges for any number of players. To do so, they began by showing

that for the case of several users and a network of several parallel links with linear costs,

there exists a unique Nash equilibrium. Moreover, an explicit expression for the Nash

equilibrium was obtained. Then, for the two-link case, they focused on the best response

of one user. They take the equilibrium solution for the user and introduce a deviation

of the optimal flow over each link in the best-response of this user from that in the

equilibrium solution. Expressing updates of the user in round-robin best-response through

these deviations, the authors obtained a recursive updating formula for the deviation of

the best-response policies from their equilibrium values. In this formula, analyzing the

matrix coefficient of transition to the subsequent round, they have shown that all its

eigenvalues are in the interior of the unit disk, i.e. spectral radius of the matrix is lower

than unity, which implies convergence of the Round Robin update scheme to the unique

Nash equilibrium.

Following a similar analysis, Altman et al., 2001b also showed convergence result for

the Round Robin in blocks of two that is a Round Robin scheme in which the users (of

even number) update their policies in pairs, i.e., first players 1 and 2 update, then players

3 and 4, and so on.

The type of formulation of a routing game used by Orda et al., 1993 and Altman

et al., 2001b, assumed that the users may have different traffic demands. For routing

games with several players when the players have the same amount of traffic to route

through the network from the same source to the same destination and when the players

use the same type-A cost functions, Orda et al., 1993 showed that there exists a unique

Nash equilibrium. In this case, the convergence of the best-response dynamics to the

Nash equilibrium follows from the fact that the symmetric game is a potential game

(Monderer et al., 1996). A fascinating property of a potential game is that the incentive

of all players to change their strategies can be expressed using a single global function

called the potential function (Han, 2007, p.235). First, this concept was proposed by

Rosenthal, 1973, and then Monderer et al., 1996 made a characterization of games that
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have a potential function. In a potential game, the Nash equilibrium corresponds to the

minimum of a convex optimization problem. Specifically, if one consider the first order

optimality conditions (Karush-Kuhn-Tucker (KKT) conditions, Kuhn et al., 1951; Karush,

1939) of each of the player problems under an equilibrium and sum them up, one gets the

KKT conditions of the problem expressed by a potential function of the game. Reasoning

so, Cominetti et al., 2009 have provided a potential function for symmetric game with

atomic players and shown that the game is a potential one (Monderer et al., 1996).

Meanwhile, Orda et al., 1993 provide counterexamples for non- uniqueness of the equi-

librium. The routing problems formulated by Orda et al., 1993 are therefore not pliable in

general, and they may not always enjoy the structure of a potential games. The powerful

properties of a potential game motivates to define conditions on the structure of a player’s

cost function that allow one to construct a potential function of the game. Altman et al.,

2007 have shown that such conditions are provided by the case of linear link costs. By

identifying a potential structure for the game they obtained convergence of the Asyn-

chronous Best-Response Update to the unique Nash equilibrium. Under this update rule,

at each time one player updates its strategy to be the best response against the current

strategy of the other players, and the set of times at which a player updates its strategy

is infinite.

More recently, Mertzios has proven that, for the large class of edge latency functions

introduced in (Orda et al., 1993), the two-player splittable routing game converges to the

unique Nash equilibrium in a logarithmic number of steps (Mertzios, 2009). His proof of

convergence also relies on a potential-based argument. Namely, he shows that the amount

of flow that is reallocated in the network at each step is strictly decreasing. Unfortunately,

this argument does not seem to readily extend to more than two players. We also refer to

Goemans et al., 2005; Fabrikant et al., 2004; Even-Dar et al., 2003 for convergence results

on related, but different, problems.

We propose a different approach to study the convergence of best-response dynamics.

The oncoming sections describe the model and explain the Non-Linear Spectral Radius

Approach for the convergence problem. Then the convergence results are presented with

use of this approach.

3.3 Problem Statement

3.3.1 Notations

In the following, IR+ denotes the set of non-negative real numbers. Recall that the 1-norm

of a vector x ∈ IRS is ‖x‖1 =
∑S

i=1 |xi|. For x ∈ X , Bo(x, r) will denote the open ball

of radius r centered at point x, i.e., Bo(x, r) = {z ∈ X : ‖x− z‖1 < r}. Let 1 denote the

column vector (1, 1, . . . , 1)T .

We let I and 0 denote the identity and the zero matrices, respectively (their sizes will
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be clear from the context). A matrix A is positive, and we write A ≥ 0, if and only if

ai,j ≥ 0, ∀i, j, and that it is negative if −A is positive. We recall that the 1-norm of a

matrix A is ‖A‖1 = max
j

∑
i |aij |. Denote by σ(A) the spectrum of the matrix A, i.e.,

σ(A) = {λ ∈ IR : ∃x 6= 0, Ax = λx}, by ρ(A) = max
λ∈σ(A)

|λ| its spectral radius, and we recall

that ρ(A) ≤ ‖A‖1. If A1, . . . , An is a collection of matrices, we denote by
∏n
i=1Ai the

product AnAn−1 . . . A1.

For any function f that is differentiable at point x, we denote by Df(x) its Jacobian

matrix at x.

3.3.2 Non-cooperative routing game

We investigate a non-cooperative routing game with K routing agents and S links in which

each routing agent can control how its own traffic is routed over the parallel links. This

routing game is depicted on Figure 3.1.

ts

λ1

λi

λK

r1, c1

rS, cS

rj , cj

xi,j

Figure 3.1: Traffic classes route their packets over parallel links.

Denote by S = {1, . . . , S} the set of links. Link j ∈ S has capacity rj and a holding

cost cj per unit time is incurred for each packet sent on this link. We let πj = cj/rj denote

the cost per unit capacity for link j.

We let C = {1, . . . ,K} be the set of routing agents and λi be the traffic intensity of

routing agent i. We shall also refer to routing agent i as traffic class i, or user i. Each class

can control how its own traffic is splitted over the parallel links and seeks to minimize

its own cost. Let xi = (xi,j)j∈S denote the routing strategy of class i, with xi,j being

the amount of traffic it sends over link j. We let Xi denote the set of routing strategies

for class i, i.e., the set of vectors xi ∈ IRS such that 0 ≤ xi,j < rj for all j ∈ S, and∑
j∈S xi,j = λi.

A strategy profile is a choice of a routing strategy for each user such that the stability

condition
∑

i∈C xi,j < rj is satisfied for all links j ∈ S. It is thus a vector x = (xi)i∈C
belonging to the product strategy space X =

⊗
i∈C Xi such that

∑
i∈C xi,j < rj , for all

j ∈ S. It will be assumed that
∑

i∈C λi <
∑

j∈S rj , so that X 6= ∅.
Finally, let x−i denote the vector (x1, . . . ,xi−1,xi+1, . . . ,xK). This vector gives the
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strategies of all players other than player i, and belongs to the set X−i of vectors x such

that x ∈
⊗

k 6=iXk and
∑

k 6=i xk,j < rj for all j ∈ S.

The optimization problem solved by class i, which depends on the routing decisions of

the other classes, can be formulated as follows:

minimize Ti(x,x−i) =
∑
j∈S

πj xi,j φ(ρj) (BR-i)

subject to

x ∈ Xi, (3.1)

yj = xi,j +
∑
k 6=i

xk,j , ∀j ∈ S, (3.2)

ρj = yj/rj , ∀j ∈ S, (3.3)

ρj < 1, ∀j ∈ S, (3.4)

(3.5)

In the above formulation, yj represents the total traffic offered to link j, ρj is the

utilization rate of this link, and φ is the cost associated to the link when there is a traffic

of yj flowing through it. In transportation or communication networks, φ models the

delay on the road or the link. The total cost incurred by user i is then the sum of the cost

of individual links weighted by the amount of traffic the user sends on each of the links.

Thus, given the strategies of the others, user i seeks to minimize its total cost subject to

flow conservation and stability constraints.

Assumption 1. We shall make the following assumptions on the cost function φ:

(A1) φ : [0, 1)→ [0,∞),

(A2) limρ→1− φ(ρ) = +∞,

(A3) continuous, strictly increasing, convex function, and is twice continuously differen-

tiable.

Remark 1. At first glance, it appears that the assumptions are not loose enough to include

polynomial cost functions, which are widely used in transportation networks. However, it

will be shown in that any function satisfying

(B1) φ : [0,∞)→ [0,∞),

(B2) limρ→∞ φ(ρ) = +∞, and

(B3) (A3),
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has an equivalent function which satisfies assumptions (A1)–(A3). Two functions are said

to be equivalent if the solution of (BR-i) with one function is also the solution of (BR-i)

with the other. Thus, results obtained for functions satisfying (A1)–(A3) will be applicable

to functions that satisfy (B1)–(B3).

We note that ∀x−i ∈ X−i, there exists a non-empty subset of Xi on which Problem

(BR-i) is well-defined. It follows from the assumption that
∑

i∈C λi <
∑

j∈S rj .

3.3.3 Nash equilibrium

A Nash equilibrium of the routing game is a strategy profile from which no class finds it

beneficial to deviate unilaterally. Hence, x∗ ∈ X is a Nash Equilibrium Point (NEP) if x∗i
is an optimal solution of problem (BR-i) for all classes i ∈ C, that is, if

x∗i = arg minz∈Xi Ti(z,x
∗
−i), ∀i ∈ C,

where x∗−i is the vector of strategies of all players other than player i at the NEP.

It follows from our assumptions on the function φ, that the link cost functions are a

special case of type-B functions, as defined in (Orda et al., 1993). As proved in Theorem

2.1 of this reference, this implies the existence of a unique NEP for our routing game. In

the following, we shall denote by x∗ this Nash equilibrium point.

3.3.4 Best response dynamics

The best-response of player is defined as its optimal strategy conditioned on the strategies

of the other players. It is, as the name suggests, the best response that the player can

give for a given strategy of the others. Let x(u) : X → X , defined as

x(u)(x) =

(
arg min

z∈Xu
Tu(z,x−u),x−u

)
, (3.6)

be the best-response of user u to the strategy x−u of the other players. From the definition

of Tu, it can be shown that for each x ∈ X , there is a unique x(u)(x). Given a point x ∈ X ,

the strategy profile x(u)(x) describes the strategies of all the players after the best response

of user u.

Best-response dynamics then consists of players taking turns in some order to adapt

their strategy based on the most recent known strategy of the others (without considering

the effect on future play in the game).

Define a round to be a sequence of best-responses in which each player plays exactly

once. Once an order is fixed in the first round, it is assumed to be the same in each

subsequent round. The order in which the players best-respond in the first-round can be

arbitrary. Let us fix this order to be 1, 2, . . ., K.
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Define x̂(1) : X → X as

x̂(1)(x) = x(K) ◦ x(K−1) ◦ . . . ◦ x(1)(x), (3.7)

be the point reached from x after one round of play. One can recursively define

x̂(n)(x) = x̂(1) ◦ x̂(n−1)(x), (3.8)

which is the point reached after n rounds.

The best-response dynamics can then be defined as the sequence {x̂(n)(x0)}n≥1 cor-

responding to the strategy of players after each round of best-response when x0 is the

initial strategy. A NEP has the property that each player’s strategy is a best-response to

strategies of the other players. Therefore if x0 is a NEP then sequence will remain at x0.

The main question we seek to answer is: do the best-response dynamics for the routing

game converge from any starting point? If it converges, then it converges to the Nash

equilibrium point.

3.4 The Non-linear Spectral Radius Approach

A usual method to prove the convergence of iterates of an operator x̂(1) : X → X is to

show that this operator is a contraction. For this, one needs to find a suitable norm, say

‖·‖, for which there exists a constant c ∈ [0, 1) such that

‖x̂(1)(x)− x̂(1)(y)‖ ≤ c‖x− y‖,

for every pair of points x and y in the set X . The contraction condition says that the

distance between iterates of the function starting from two different points decreases with

each iteration. The constant c depends on the norm, and for a continuously differentiable

operator, it can be computed as supx‖Dx̂(1)(x)‖, which is the supremum of the Jacobian

over all points in the domain of the operator. It is then sufficient to find a norm in which

the above condition is satisfied.

For the best-response function, it turns out that it is non-trivial to find such a norm,

independently of the starting point, in which the distance decreases with every iteration.

Instead, as will be seen later it will be sufficient to find a norm in which the distance

decreases asymptotically and not with every iteration. This weaker condition can be

formalized using the notion of the non-linear spectral radius described below.

For a function f : X → X , define the set

J (f) = {Df(x) : f is differentiable at x} . (3.9)

which is the set of Jacobian matrices of the function f evaluated at all points at which f
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is differentiable.

Definition 1. The non-linear spectral radius of a function f : X → X is defined as (Mak

et al., 2007):

ρ̄(f) = lim sup
n→∞

sup
Ai∈J (f)

∥∥∥∥∥
n∏
i=1

Ai

∥∥∥∥∥
1/n

.

The non-linear spectral radius of f is related to the notion of joint spectral radius of a

set M of matrices which is defined as:

ρ̂(M) = lim sup
n→∞

sup
Mi∈M

∥∥∥∥∥
n∏
i=1

Mi

∥∥∥∥∥
1/n

, (3.10)

and is independent of the induced matrix norm. It measures the worst case growth rate

of a sequence of linear transformations that are taken from the set M. It can been seen

that the non-linear spectral radius of f is in fact the joint spectral radius of the set of

Jacobian matrices of f , J (f).

When there is only one matrix in M, from Gelfand’s formula it follows that the joint

spectral radius is equal to the spectral radius of that matrix. For a set with several

matrices, there is an equivalent result in terms of the generalized spectral radius of M
which is defined as:

ρ (M) = lim sup
n→∞

sup
Mi∈M

ρ

(
n∏
i=1

Mi

) 1
n

, (3.11)

where ρ(A) is the spectral radius of the matrix A. If M is bounded then the generalized

spectral radius and the joint spectral radius of M are equal (Berger et al., 1992).

Consider a linear dynamical system of the form

xn+1 = Ai(n)xn,

where the matrices Ai ∈ M can be chosen differently in each step. Such a system is

called a switched linear system. When all the matrices are the same, one can determine

the stability of such a system by checking whether the spectral radius of this matrix is

less than 1 or not. In case of switched linear systems, the same condition with the joint

spectral radius in place of the spectral radius can be used to ascertain the stability of the

system, see for example (Theys, 2005).

For non-linear operators, the following convergence criterion was stated in (Mak et al.,

2007).

Theorem 1 (Mak et al., 2007, Theorem 1). If f : X → X is Lipschitz-continuous and has

a non-linear spectral radius smaller than 1, then the iterates of f are globally asymptotically

stable. Moreover, the rate of exponential decay, r, satisfies 0 < r ≤ − log(ρ̄(f)).
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Thus, instead of requiring the best-response to be a contraction, one can show the

convergence of the best-response dynamics by showing that:

1. x̂(1) is Lipschitz-continuous; and

2. ρ̄(x̂(1)) < 1.

In the rest of this section, first we shall show a few properties of the best-response function,

and then compute the structure of its Jacobian matrices, before arriving at our main result.

3.4.1 Properties of the best-response function

The purpose of this section is to establish various properties of best-response function,

mainly related to its continuity and differentiability. Let us define

Su(x) = {j ∈ S : x
(u)
u,j (x) > 0} (3.12)

as the set of links used by player u in its best-response to the strategies x−u of other

players. We have the following result.

Theorem 2. The best-response function x(u) of player u is Lipschitz-continuous on X
with

‖x(u)(z)− x(u)(w)‖1 < 2 ‖z−w‖1, ∀z,w ∈ X . (3.13)

Proof. Consider two points z and w in X . Let the vectors a,b ∈ IRS
+ be such that

aj =
∑

i 6=u zi,j and bj =
∑

i 6=uwi,j for all j ∈ S. In other words, aj and bj are the total

traffic sent on link j by users other than u in configurations z and w, respectively. To

simplify notations, we denote by xzu,j and xwu,j the traffic sent on link j by player u after his

best-response at points z and w, respectively, that is xzu,j = x
(u)
u,j (z) and xwu,j = x

(u)
u,j (w).

For the purpose of the proof, we also define

fj(x, y) = πj

(
φ

(
x+ y

rj

)
+
x

rj
φ′
(
x+ y

rj

))
,

for all links j ∈ S. Then the marginal costs of player u on link j after the best-

response of that player at points z and w can be written as gu,j(x
(u)(z)) = fj(x

z
u,j , aj)

and gu,j(x
(u)(w)) = fj(x

w
u,j , bj). From the KKT conditions, there exist µz and µw such

that fj(x
z
u,j , aj) ≥ µz, with equality if j ∈ Su(z), and fj(x

w
u,j , bj) ≥ µw, with equality if

j ∈ Su(w). Without loss of generality, we assume that µz ≥ µw. As a consequence, we

have

fj(x
z
u,j , aj) ≥ fj(xwu,j , bj), ∀j ∈ Su(w). (3.14)
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Consider now the sets

S− =
{
j ∈ S : xzu,j < xwu,j

}
, (3.15)

and

S+ =
{
j ∈ S : xzu,j ≥ xwu,j

}
. (3.16)

Assume first that S− = ∅. Then xzu,j ≥ xwu,j for all j ∈ S. However, since∑
j∈S

xzu,j =
∑
j∈S

xwu,j = λu, (3.17)

this implies that xzu,j = xwu,j for all j ∈ S. It yields∑
j∈S

∣∣xzu,j − xwu,j∣∣ = 0 (3.18)

Assume now that S− 6= ∅. Since S = S−
⋃
S+, we obtain from (3.17) that∑

j∈S+

(
xzu,j − xwu,j

)
= −

∑
j∈S−

(
xzu,j − xwu,j

)
, (3.19)

which leads to ∑
j∈S

∣∣xzu,j − xwu,j∣∣ = 2
∑
j∈S−

∣∣xzu,j − xwu,j∣∣. (3.20)

For j ∈ S−, we have by definiton 0 ≤ xzu,j < xwu,j , and hence j ∈ Su(w). Thus,

S− ⊂ Su(w). With (3.14), it yields fj(x
z
u,j , aj) ≥ fj(xwu,j , bj), and thus

φ

(
xzu,j + aj

rj

)
+
xzu,j
rj

φ′
(
xzu,j + aj

rj

)
≥φ

(
xwu,j + bj

rj

)
+
xwu,j
rj

φ′
(
xwu,j + bj

rj

)
,

for all j ∈ S−. However, since for j ∈ S− we have xzu,j < xwu,j and since φ and φ′ are

strictly increasing, this implies that xzu,j + aj > xwu,j + bj , from which we deduce that

0 < xwu,j − xzu,j < aj − bj ∀j ∈ S−. (3.21)

It yields ∑
j∈S−

∣∣xzu,j − xwu,j∣∣ < ∑
j∈S−

|aj − bj | (3.22)

With (3.20), we thus obtain∑
j∈S

∣∣xzu,j − xwu,j∣∣ < 2
∑
j∈S−

|aj − bj | ≤ 2
∑
j∈S
|aj − bj | (3.23)
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From (3.18) and (3.23), we obtain that, whether S− be empty or not, we have

∑
j∈S

∣∣xzu,j − xwu,j∣∣ < 2
∑
j∈S

∣∣∣∣∣∣
∑
i 6=u

zi,j −
∑
i 6=u

wi,j

∣∣∣∣∣∣
< 2

∑
j∈S

∑
i 6=u
|zi,j − wi,j |

< 2
∑
i∈C

∑
j∈S
|zi,j − wi,j | (3.24)

Since x
(u)
i,j (z) = x

(u)
i,j (w) for all j ∈ S and all i 6= u, we also have∑

i 6=u

∑
j∈S

∣∣∣x(u)
i,j (z)− x(u)

i,j (w)
∣∣∣ = 0 (3.25)

Finally, from (3.24) and (3.25), we conclude that∑
i∈C

∑
j∈S

∣∣∣x(u)
i,j (z)− x(u)

i,j (w)
∣∣∣ < 2

∑
i∈C

∑
j∈S
|zi,j − wi,j |, (3.26)

that is,

‖x(u)(z)− x(u)(w)‖1 < 2 ‖z−w‖1, (3.27)

as claimed.

Corollary 1. Since the best-response over one round, x̂(1), is a composition of best-

responses of each of the players (cf. (3.6)), it then follows that x̂(1) is Lipschitz continuous.

Remark 2. The continuity of the best-response functions is a direct consequence of Berge’s

Theorem on the continuity of correspondences (Berge, 1959, see also page 64 of Border,

1985). However, Lipschitz continuity requires some more work than that.

Once the Lipschitz continuity of x̂(1) has been established, it remains to be shown that

its non-linear spectral radius is smaller than 1. For this, we shall investigate the points at

which the x̂(1) is differentiable and compute the structure of its Jacobian.

We note that, according to Rademacher’s theorem (Evans et al., 1992), a consequence

of Theorem 2 is that the best-response function x(u) is Fréchet-differentiable almost ev-

erywhere in X ; that is, the points in X at which x(u) is not differentiable form a set of

Lebesgue measure zero. To compute the points at which the derivative is defined, we shall

need the following definitions:

• Let

gi,j(x) =
∂Ti
∂xi,j

(x) = πj

(
φ

(
yj
rj

)
+
xi,j
rj
φ′
(
yj
rj

))
, (3.28)
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where yj =
∑

k xk,j , be the marginal cost of player i on link j under strategy profile

x.

We say that link j is marginally used by user u at point x whenever the flow of user u

on that link is 0 although the marginal cost of that player on that link is minimum,

that is

xu,j = 0 and gu,j(x) = min
k∈S

gu,k(x). (3.29)

• we say that the set Su(x) is locally stable at point x if it does not change for an

infinitesimal variation on the strategies of the other players, that is

∃ε > 0,∀z ∈ Bo(x, ε),Su(x) = Su(z). (3.30)

From our assumptions on the function φ, the continuity of the best-response functions

imply that of the marginal costs gi,j defined in (3.28) under the best-response dynamics.

In the following, we say that no link is marginally used by user u in its best-response at

point x if there is no link that is marginally used by user u at point x(u)(x). The two

notions introduced above are related through the following result.

Lemma 1. if there is no link that is marginally used by player u in its best-response at

point x, then the set of links Su(x) is locally stable at point x.

Proof. Let Ωu be the set of points x ∈ X where Su(x) is locally stable. Let us define

fj(x, y) = πj

(
φ(
x+ y

rj
) +

x

rj
φ′(

x+ y

rj
)

)
,

for all links j ∈ S. Note that fj(x, y) is continuous and strictly increasing in both x and y.

Then the marginal cost of player u on link j after the best-response of that player can be

written as gu,j(x
(u)(x)) = fj(x

(u)
u,j (x),

∑
k 6=u xk,j). From the KKT conditions, the function

µ : X−u → IR defined by

µ(x−u) = min
j∈S

gu,j(x
(u)(x))

is such that

j ∈ Su(x) ⇐⇒ fj(0,
∑
k 6=u

xk,j) < µ(x−u). (3.31)

Note that the continuity of the best-response function x(u) on X (cf. Theorem 2)

implies that of the marginal costs, and therefore the continuity of µ on X−u.

Let x be a point such that no link is marginally used by player u in its best-response

at point x. Let us first consider j ∈ Su(x). From (3.31), there exists δ > 0 such that
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fj(0,
∑

k 6=u xk,j) ≤ µ(x−u)− δ. Since fj(x, y) is continuous in y and µ(x−u) is continuous

on X−u, there exists ε1 > 0 such that, for all z ∈ Bo(x, ε1),

fj(0,
∑
k 6=u

zk,j) < fj(0,
∑
k 6=u

xk,j) +
δ

2
< µ(x−u)− δ

2
,

and µ(z−u) > µ(x−u)− δ
2 . It yields

fj(0,
∑
k 6=u

zk,j) < µ(x−u)− δ

2
< µ(z−u), ∀z ∈ Bo(x, ε1),

and thus, according to (3.31), we have j ∈ Su(z) for all z ∈ Bo(x, ε1) if j ∈ Su(x). As

a consequence, if Su(x) = S, then Su(z) = S for all z sufficiently close to x, and thus

x ∈ Ωu.

Otherwise we can find j ∈ S \ Su(x). Since no link is marginally used by player u in

its best-response at point x, there exists β > 0 such that

fj(0,
∑
k 6=u

xk,j) ≥ µ(x−u) + β, ∀j ∈ S \ Su(x). (3.32)

Proceeding as above, we can show that there exists ε2 > 0 such that, for all z ∈
Bo(x, ε2), µ(z−u) < µ(x−u) + β

2 and

fj(0,
∑
k 6=u

zk,j) > fj(0,
∑
k 6=u

xk,j)−
β

2
> µ(x−u) +

β

2
,

from which we conclude that fj(0,
∑

k 6=u zk,j) > µ(z−u), for all z ∈ Bo(x, ε2). This implies

that if j 6∈ Su(x), then j 6∈ Su(z) for all z ∈ Bo(x, ε2).

Choosing ε = min(ε1, ε2), we thus conclude that for all z ∈ Bo(x, ε), Su(x) ⊂ Su(z)

and S \ Su(x) ⊂ S \ Su(z), which is equivalent to Su(x) = Su(z). This shows that if no

link is marginally used by player u in its best-response at point x, then Su(x) is locally

stable.

Our first result regarding the differentiability of best-response functions is the following.

Proposition 1. The best-response function x(u) is differentiable at every point x ∈ X
such that no link is marginally used by player u in its best-response at point x.

Proof. From Lemma 1, we know that if x is such that no link is marginally used by user

u in its best-response at point x, then the set of links Su(x) is locally stable at x. As

shown in Theorem 3, this condition is sufficient to compute the partial derivatives of x(u)

at point x. It can be seen from (3.60) and (3.61) that the partial derivatives
∂x

(u)
i

∂xv
(x),

i 6= u, v ∈ C, and ∂x
(u)
u

∂xu
(x) are contiuous at x. According to Lemma 2, the continuity of
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the partial derivatives
∂x

(u)
u,i

∂xv
(x) at x for i /∈ Su(x) follows from the local stability of Su(x)

at x. Finally, a closed-form formula is given in (3.35) for the partial derivatives
∂x

(u)
u,i

∂xv,k
for

v 6= u and for i ∈ Su(x), k ∈ S. In view of equations (3.43)-(3.47), the continuity of these

partial derivatives follows from our assumptions on φ and from the continuity of x(u) at

x. Thus, all partial derivatives of x(u) exist and are continuous at x, and therefore x(u) is

continuously differentiable at x.

3.4.2 Structure of the Jacobian matrices

The Jacobian matrix of x̂(1) is the product of Jacobian matrices of best-responses of

individual players. So, we shall start by computing the Jacobian of the best-response

functions of individual players.

Consider a player u and a point x ∈ X at which x(u) is differentiable. The Jacobian

matrix of this function is then the block matrix

Dx(u)(x) =


∂x

(u)
1

∂x1
(x) . . .

∂x
(u)
1

∂xK
(x)

...
...

∂x
(u)
K

∂x1
(x) . . .

∂x
(u)
K

∂xK
(x)

 ,

where the (i, j)-block
∂x

(u)
i

∂xj
(x) measures the sensitivity of the strategy of player i obtained

after the best response of player u with respect to a change in the strategy of player j.

The best-response of a player u is sensitive only to the strategies of the other players

v 6= u, and these sensitivities are reflected by the block matrices ∂x
(u)
u

∂xv
which appear in the

uth row of the Jacobian matrix. Recalling that

∂x
(u)
u

∂xv
(x) =

(
∂x

(u)
u,i

∂xv,j
(x)

)
i∈S,j∈S

, (3.33)

we shall distinguish between links i /∈ Su(x) and links i′ ∈ Su(x). We assume in the

following that the set Su(x) is locally stable (cf. Section 3.4.1), and thus that it does not

change for an infinitesimal variation on the strategy xv of player v ∈ C.

Lemma 2. For all links i /∈ Su(x),

∂x
(u)
u,i

∂xv
(x) = 0, ∀v ∈ C, (3.34)

Proof. The proof follows from the assumption that Su(x) is locally stable at x. We have

x
(u)
u,i (x + hy) = x

(u)
u,i (x) = 0 for any vector y and h > 0 sufficiently small. This implies
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that the directional derivatives of x
(u)
u,i , and thus its partial derivatives, are 0.

For links i ∈ Su(x), we have:

Lemma 3. There exist a vector θ ∈ IRS
+ and a vector γ ∈ IRS

+ satisfying γi = 0 for all

i 6∈ Su(x) and
∑

i∈S γi = 1 such that

∂x
(u)
u,i

∂xv,k
=

{
θi (γi − 1) if k = i,

θkγi otherwise,
(3.35)

for all players v 6= u and all links i ∈ Su(x) and k ∈ S.

Proof. The proof is based on two observations: (i) at a best-response strategy, the change

in marginal cost of player u due to a change in the strategy of player v is the same in

every link that is used at the best-response strategy; and (ii) the total flow is conserved

for player u irrespective of the change in the strategy of player 1.

Recall that

gu,i(x
(u)(x)) :=

∂Tu
∂xu,i

(x(u)(x)).

is the marginal cost of player u at link i under strategy profile x(u)(x), i.e., after the

best-response of player u.

For i ∈ Su(x), from the KKT conditions, the best-response strategy of player u, x
(u)
u ,

is such that the marginal cost is the same in all the links that receive a positive traffic at

this strategy. That is,

gu,i(x
(u)(x)) = µ(x−u) ∀i ∈ Su(x), (3.36)

where the constant µ depends upon the strategies of the players but not on the index of

the link. The local stability of Su(x) implies that the set of links used by user u does

not change for an infinitesimal variation on the strategies of the other players. This leads

to our first observation which is that the change in the marginal cost of player u at its

best-response strategy due to the change in the strategy of player v 6= u at link k is the

same at all links that receive a positive flow of player u. Thus,

∂gu,i
∂xv,k

(x(u)(x)) = µ2, ∀i ∈ Su(x), (3.37)

where µ2 depends upon the strategies of the players. We have not made this dependence

explicit in order to simplify the notation.

For a function of the form h(f(x), x), its derivative with respect to x is given by

dh(f(x), x)

dx
=
dh(f, x)

df

df

dx
+
dh(f, x)

dx
,
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where in the first term on the RHS, h is treated to as a function of f only, whereas in the

second term it is treated as a function of x only.

Since x
(u)
u,i is a function of xv,k, we can use the above formula to rewrite (3.37) as

dgu,i
dxu,i

∂x
(u)
u,i

∂xv,k
+
dgu,i
dxv,k

= µ2, ∀i ∈ Su(x), (3.38)

where the partial derivates are replaced by full derivates in order to indicate that the

function is differentied in one variable while treating the other as constant.

The particular form of the cost function given in problem ((BR-i)) permits a simplifi-

cation of the LHS of the above equation by noting that the marginal cost in a link depends

only on the traffic that is routed to that link. Thus,

dgu,i
dxu,i

∂x
(u)
u,i

∂xv,k
+ δk(i)

dgu,i
dxv,k

= µ2, ∀i ∈ Su(x), (3.39)

where δk(i) is unity if i = k, and is zero otherwise.

The value of µ2 can be computed using the second observation that the total flow of

player u is conserved irrespective of the strategy of player v. That is,

∑
i∈Su(x)

∂x
(u)
u,i

∂xv,k
= 0 (3.40)

We thus obtain

µ2 =

 ∑
l∈Su(x)

δk(l)
dgu,l
dxv,k

(
dgu,l
dxu,l

)−1
 ∑

l∈Su(x)

(
dgu,l
dxu,l

)−1
−1

=

(
dgu,k
dxv,k

(
dgu,k
dxu,k

)−1
) ∑

l∈Su(x)

(
dgu,l
dxu,l

)−1
−1

, (3.41)

and

∂x
(u)
u,i

∂xv,k
= θk (γi − δk(i)) , ∀i ∈ Su(x), (3.42)

where

θk =
dgu,k
dxv,k

(
dgu,k
dxu,k

)−1

, (3.43)
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and

γi =

 ∑
l∈Su(x)

(
dgu,l
dxu,l

)−1
−1(

dgu,i
dxu,i

)−1

. (3.44)

We will now show that 0 < θk < 1 and 0 < γi < 1. We have

gu,k = πk

(
φ(ρk) +

xu,k
rk

φ′(ρk)

)
. (3.45)

Thus, since φ is an increasing and convex function,

dgu,k
dxv,k

=
πk
rk

(
φ′(ρk) +

xu,k
rk

φ′′(ρk)

)
> 0, (3.46)

independently of the player v 6= u, and

dgu,k
dxu,k

=
πk
rk

(
2φ′(ρk) +

xu,k
rk

φ′′(ρk)

)
> 0. (3.47)

Thus, from (3.43), θk > 0 and

θk =
φ′(ρk) +

xu,k
rk
φ′′(ρk)

2φ′(ρk) +
xu,k
rk
φ′′(ρk)

< 1. (3.48)

We thus obtain that θk is independent of v and that 0 < θk < 1. Similarly, we note

that γi is positive and smaller than unity due to the fact that
dg0,l

dx
(1)
0,k

is positive for all l.

To conclude the proof, we note that
∑

i∈Su(x) γi = 1 from the definition of the vector γ in

(3.44). Thus, letting γi = 0 for i 6∈ Su(x), we obtain
∑

i∈S γi = 1.

Remark 3. The vectors θ and γ depend upon the strategy profile x and upon the player u

that updates its strategy. We have not made this dependence explicit in order to simplify

the notation.

Further, the vector θ has the following important property which will be helpful in

establishing the desired inequality on the non-linear spectral radius of x̂(1).

Lemma 4. There exists a constant q < 1 such that

1

2
≤ θk ≤ q, ∀k ∈ S, ∀x ∈ X , ∀u ∈ C. (3.49)

In order to prove Lemma 4, we need the following result.

Lemma 5. There exists a strictly positive constant ρmax < 1, independant of u and x,

such that the utilization rate of each and every link j ∈ Su(x) is upper bounded by ρmax
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after the best-response of user u at point x, that is

ρ
(u)
j (x) ≤ ρmax, ∀j ∈ Su(x), ∀x ∈ X , ∀u ∈ C, (3.50)

where ρ
(u)
j (x) = 1

rj

∑
i∈C x

(u)
i,j (x).

Proof of Lemma 5. Observe that x ∈ X implies that
∑

k 6=u xk,j < rj for all links j, and

thus that the optimization problem for player u is well-defined. Let z = x(u)(x) be the

point reached after the best response of player u. To simplify notations, we let ρj = ρ
(u)
j (x).

From the KKT conditions, there exists µu(x−u) such that

πj

[
φ(ρj) +

zu,j
rj
φ′(ρj)

]
= µu(x−u), ∀j ∈ Su(x) (3.51)

πjφ(ρj) ≥ µu(x−u), ∀j /∈ Su(x) (3.52)

Since 0 ≤ zu,j/rj ≤ ρj , ∀j ∈ Su(x), (3.51) leads to the inequalities

πjφ(ρj) ≤ µu(x−u), (3.53)

µu(x−u) ≤ πj(ρjφ′(ρj) + φ(ρj)). (3.54)

Moreover, ρj and φ′(ρj) are non-negative. Thus, (3.52) leads to

µu(x−u) ≤ πj(ρjφ′(ρj) + φ(ρj)), ∀j /∈ Su(x),

which combined with (3.54) gives the inequality

µu(x−u) ≤ πj(ρjφ′(ρj) + φ(ρj)), ∀j ∈ S. (3.55)

Let fj : [0, 1) → [cj ,∞) be defined by fj(x) := πj(xφ
′(x) + φ(x)). Note that f is

increasing and non-negative, and hence invertible. The inverse on fj is defined on [cj ,∞).

Let us define hj : [0,∞)→ [0, 1) in the following way :

hj(x) =

{
f−1
J (x) if x ∈ [cj ,∞);

0 if x ∈ [0, cj).

The function hj is continuous and non-decreasing. Further, from (3.55),

hj(µu(x−u)) ≤ ρj =

∑
k zk,j
rj

.
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Summing over all the links, we obtain the following functional inequality on µu(x−u) :

h̄(µu(x−u)) :=
∑
j

rjhj(µu(x−u)) ≤
∑
k

∑
j

zk,j =
∑
i

λi, (3.56)

that is µu(x−u) is such that the above inequality is satisfied. A bound on µu(x−u) itself

can now be obtained by making use of the following observations. Since hj is continuous

and non-decreasing for all j ∈ S, h̄ is continuous and non-decreasing. It has [0,∞)

as its domain and [0,
∑

j rj) as its image. Further, limx→∞ h̄(x) =
∑

j rj . From the

stability condition,
∑

i λi <
∑

j rj . Using these properties and (3.56), we can conclude

that µu(x−u) ≤ µmax <∞.

It then follows from (3.53) that

ρj ≤ βj = φ−1

(
µmax
πj

)
, ∀j ∈ Su(x),

and the upper bound βj depends neither upon u nor upon x. Moreover, φ is such that

x <∞⇔ φ−1(x) < 1, and hence βj < 1. By definition of Su(x), we also have ρj > 0 and

thus βj > 0. Taking ρmax = max
j∈Su(x)

βj yields the proof.

Proof of Lemma 4. We note from (3.48) that, since
xu,k
rk
φ′′(ρk) ≥ 0, we have θk ≥ (φ′(ρk)+

xu,k
rk
φ′′(ρk))/(2φ

′(ρk) + 2
xu,k
rk
φ′′(ρk)), implying that

θk ≥
1

2
. (3.57)

Since φ is increasing and convex , θk is an increasing function of xu,k (considering

ρk = ρ
(u)
k (x) as fixed), and since xu,k/rk ≤ ρk, we also have the following inequality:

θk ≤ φ′(ρk) + ρkφ
′′(ρk)

2φ′(ρk) + ρkφ′′(ρk)

≤ 1− φ′(ρk)

2φ′(ρk) + ρkφ′′(ρk)
. (3.58)

Since the numerator and the denominator of the fraction appearing on the right-hand side

of (3.58) are strictly increasing in ρk, Lemma 5 implies that

θk ≤ q = 1− φ′(0)

2φ′(ρmax) + ρmaxφ′′(ρmax)
< 1. (3.59)

The structure of the Jacobian matrices of the best-response functions is summarized

in the following result.
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Theorem 3. The Jacobian matrix of the best response function x(u) of player u ∈ C has

the following form

Dx(u)(x) =



I . . . 0 . . . 0
...

. . .
...

Mu (x) . . . 0 . . . Mu (x)
...

. . .
...

0 . . . 0 . . . I


,

and Mu (x) = Ψ (ΓB − I) Θ, where

• B is the S × S matrix with 1 in every entry, i.e., B = 1T 1,

• Γ = diag(γ) and Θ = diag(θ), the vectors γ and θ being those defined in Lemma 3,

• Ψ a positive diagonal matrix such that Ψi,i = 1 if i ∈ Su(x), and Ψi,i = 0 otherwise.

Proof. The proof is broken down in three steps. Firstly, the uth row follows directly from

Lemma 3. Secondly, the strategies of all players except player u do not change following

the best response of player i. Therefore, for all i 6= u and all v ∈ C, we have

∂x
(u)
i

∂xv
(x) =

{
I if v = i,

0 otherwise.
(3.60)

This explains the appearance of the identity matrix on the diagonal and the 0 matrix in

other columns of each row except the row corresponding to the player doing the best-

response (that is, row u).

Finally, since the best response of player u at point x is insensitive to her strategy at

that point and depends only on the strategies of the other player, we can conclude that,

for all u ∈ C,
∂x

(u)
u

∂xu
(x) = 0. (3.61)

This explains why the diagonal block in the uth row is 0.

A consequence of Theorem 3 and Lemma 4.

Proposition 2. The set Ji of Jacobian matrices is bounded.

Proof of Proposition 2. Consider a player u ∈ C and a point x where the best-response

function x(u) is differentiable. Theorem 3 implies that∥∥∥Dx(u)(x)
∥∥∥

1
≤ ‖I‖1 + ‖Mu(x)‖1

≤ 1 + max
m∈S

∑
n∈Su(x)

|θm(γn − δm(n))| (3.62)
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For m 6∈ Su(x), we have ∑
n∈Su(x)

|θm(γn − δm(n))| = θm < 1, (3.63)

while for m ∈ Su(x), we have

∑
n∈Su(x)

|θm(γn − δm(n))| = θm

 ∑
n∈Su(x),n 6=m

γn + |γm − 1|


= 2θm(1− γm)

< 2. (3.64)

With (3.62), (3.63) and (3.64), we obtain that
∥∥Dx(u)(x)

∥∥
1
< 3 for all players u ∈ C

and all points x where x(u) is differentiable. From its definition in (3.9), we thus conclude

that the set J is bounded.

From the submultiplicativity of norms and relation (3.7), it follows that

Corollary 2. The set J is bounded.

Corollary 3. The Jacobian matrix of x̂(1) has the form

Dx̂(1)(x) =
1∏

u=K

Dx(u)(x),

where the index u goes down from K to 1.

3.5 Convergence of best-response dynamics

In this section, we shall first formulate a conjecture on the non-linear spectral radius of

x̂(1) on which the main result of this study hinges. Then, this conjecture will be shown

to be true for two particular cases : (a) two-player routing games; (b) K player routing

games with linear link cost function, φ.

Conjecture 1. For a fixed K and S, let Ĵ be the set of matrices of the form given in

Corollary 3. Then, the joint spectral radius of Ĵ is strictly less than 1.

On the extensive numerical experiments that we conducted, the above conjecture was

indeed true.

The main result of this study is then:

Theorem 4. If Conjecture 1 is true, then the best-response dynamics (3.8) for the routing

game (BR-i) converges to the unique Nash equilibrium of the game.
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While we were unable to prove the conjecture, and hence the convergence of best-

response dynamics, in its generality, we can show its validity for two non-trivial cases –

the two player game, and the K player game with linear link cost function, which we show

below.

3.5.1 Two-player routing game

First, we shall prove a general result related to the Joint spectral radius of a certain class

of matrices. The claimed result on the convergence of the best-response for the two-player

game will then follow directly from that result.

Let D+ be the set of positive diagonal matrices, and G be the set of diagonal matrices

Γ ∈ D+ whose diagonal entries satisfy in addition

S∑
i=1

γi = 1. (3.65)

For any natural number k ≥ 0, the above two types of diagonal matrices are used to define

the set M of S × S matrices as follows. M is the set of matrices M that can be written

as M = (ΓB − I) Θ for some matrices Γ ∈ G and Θ ∈ D+. We also define M(k) for k ≥ 0

as the set of matrices that can be written as the product of k matrices belonging to M,

where by convention M(0) contains only the identity matrix.

For q ∈ (0, 1), we say that a matrix M is in the set Mq if M = (ΓB − I) Θ ∈ M and

in addition ‖Θ‖1 ≤ q. We similarly defineM(k)
q as the set of matrices that can be written

as the product of k matrices belonging to Mq. We note that the set Mq is obviously

bounded.

According to Theorem 3 and Lemma 4, the Jacobian matrices of the best-response

functions of players 1 and 2 have the following simple form:

Dx(1)(x) =

(
0 Ψ1M1

0 I

)
, and Dx(2)(x) =

(
I 0

Ψ2M2 0

)
, (3.66)

where M1,M2 ∈ Mq for some q < 1 and where Ψ1,Ψ2 are diagonal matrices with 0-1

entries on the diagonal. Using Corollary 3, the Jacobian of the best-response function

over one round has the form

Dx̂(1) =

(
0 Ψ1M1

0 Ψ2M2M1

)
,

where M1,M2 ∈ Mq. It then follows that the structure of the product of n Jacobian

matrices has the following form.
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Lemma 6. If J1, J2, . . . , Jn ∈ J , then

n∏
i=1

Ji =

(
0 Ψ1X

(2n−1)
1

0 Ψ2X
(2n)
2

)
, (3.67)

where Ψ1,Ψ2 are positive diagonal matrices with 0-1 entries on the diagonal, X
(2n−1)
1 ∈

M(2n−1)
q , and X

(2n)
2 ∈M(2n)

q .

Proof. The proof is by induction. The claim is true for n = 1. Given that the form is true

for some n, it will be shown that the form holds for n+ 1. By definition,

n+1∏
i=1

Ji = Jn+1

n∏
i=1

Ji

=

(
0 Ψ1M1

0 Ψ2M2M1

)
·

(
0 Ψ3X

(2n−1)
1

0 Ψ4X
(2n)
2

)

=

(
0 Ψ1M1Ψ3X

(2n)
2

0 Ψ2M2M1Ψ4X
(2n)
2

)

Since M1 ∈ Mq and Ψ4 is a 0-1 diagonal matrix, it follows that M1Ψ4 ∈ Mq. Using the

previous fact and the definition M(2n)
q and the fact that X

(2n)
2 ∈ M(2n)

q , one can deduce

that (M1Ψ3)X
(2n)
2 ∈M(2(n+1)−1)

q , and M2M1Ψ4X
(2n)
2 ∈M(2(n+1))

q .

Lemma 6 shows that the behaviour of a large product of Jacobian matrices is governed

by the asymptotic behaviour of the matrices X
(n)
1 , X

(n)
2 . These matrices are themselves the

product of matrices that belong toMq. This suggests to first characterize the asymptotic

growth rate of products of matrices inMq. Our key result regarding this characterization

is stated in theorem 5.

Theorem 5. For any k ≥ 1 and any matrix M =
∏k
i=1 (Γ(i)B − I) Θ(i) in M(k), it holds

that

ρ(M) ≤
k∏
i=1

θimax, (3.68)

where θimax = max
1≤j≤S

θ
(i)
j for all i = 1, . . . , k.

The main difficulty in proving Theorem 5 is that the matrices M of M(k) are neither

positive nor negative. To circumvent this difficulty, we shall construct a positive or negative

matrix A such that ρ(M) ≤ ρ(A) and ‖A‖1 ≤
∏k
i=1 θ

i
max. Before showing how to construct

such a matrix, we state two basic properties of the matrices inM(k) in the following lemma.
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Lemma 7. For any matrix M ∈M(k), the following two assertions hold:

(a) for each and every column j,
∑S

i=1mi,j = 0,

(b) if λ 6= 0 is an eigenvalue of M and if x is the associated eigenvector, then
∑S

i=1 xi =

0.

Proof. Let us first prove assertion (a). Consider M ∈ M(k) and write M as M = (ΓB −
I) ΘY with Y ∈M(k−1). Then,(∑

i

mi,1, . . . ,
∑
i

mi,S

)
= 1T M = 1T (ΓB − I) ΘY

=

(∑
i

γi − 1, . . . ,
∑
i

γi − 1

)
Y

= 0T ,

which proves the result. Let us now prove assertion (b). Let M ∈M(k) be written in the

form M = (ΓB − I)ΘY and consider λ ∈ σ(M), λ 6= 0 and x 6= 0 such that λx = Mx.

Multiplying on both sides by 1T , we obtain

λ
S∑
i=1

xi = 0 = 1T x = 1T M x = 0,

where the last equality follows from assertion (a). Since λ 6= 0, this implies that
∑S

i=1 xi =

0.

We will now use property (b) of Lemma 7 to show that, for any matrix M ∈ M(k), if

we choose the matrix A to be of the form A = DB +M , where D is any diagonal matrix,

then ρ(M) ≤ ρ(A).

Lemma 8. For any matrix M ∈ M(k) and for any diagonal matrix D, ρ(M) ≤ ρ(DB +

M).

Proof. Let λ 6= 0 be an eigenvalue of M and x be the associated eigenvector. We have

(DB +M)x = DBx + λx =

(∑
i

xi

)
D1 + λx = λx, (3.69)

where the last equality is obtained using property (b) of Lemma 7. Since this can be done

for all non-zero eigenvalues of M , we conclude that σ(M) − {0} ⊂ σ(DB + M). This

clearly implies that

max
λ∈σ(M)

|λ| ≤ max
λ∈σ(DB+M)

|λ| ,
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i.e., ρ(M) ≤ ρ(DB +M).

Given a matrix M ∈ M(k), we shall now consider two specific choices of the diagonal

matrix D : the first choice allows to obtain a matrix A ≥ 0 such that ρ(M) ≤ ρ(A),

while the second one produces a matrix A ≤ 0 with the same property. Since the two

choices lead to a positive or negative matrix A, the evaluation of ‖A‖1 is greatly simplified,

allowing to obtain useful upper bounds on ρ(M). These bounds are proven in the following

proposition.

Proposition 3. For any matrix M ∈ M(k), the two following inequalities on ρ(M) are

valid:

ρ(M) ≤ −
S∑
i=1

min
1≤k≤S

(mi,k) , (3.70)

ρ(M) ≤
S∑
i=1

max
1≤k≤S

(mi,k) , (3.71)

Proof. Let us first consider the diagonal matrix D defined as

D = −diag
(

min
k

(m1,k) ,min
k

(m2,k) , . . . ,min
k

(mS,k)

)
,

and consider the matrix A = DB+M . Since ai,j = mi,j−min
k

(mi,k), ∀i, j, we have A ≥ 0.

We know from Lemma 8 that ρ(M) ≤ ρ(A) ≤ ‖A‖1. Hence

ρ(M) ≤ max
1≤j≤S

(∑
i

ai,j

)
,

≤ max
1≤j≤S

(∑
i

mi,j −
∑
i

min
k

(mi,k)

)
,

≤ −
∑
i

min
k

(mi,k) ,

where the last inequality is obtained using property (a) of Lemma 7.

To prove the second inequality, we now define the matrix D as follows

D = −diag
(

max
k

(m1,k) ,max
k

(m2,k) , . . . ,max
k

(mS,k)

)
,

and obtain a matrix A = DB +M ≤ 0 since ai,j = mi,j −max
k

(mi,k), ∀i, j. Again, using
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ρ(M) ≤ ρ(A) ≤ ‖A‖1, we obtain

ρ(M) ≤ max
1≤j≤S

(
−
∑
i

ai,j

)
,

≤ max
1≤j≤S

(∑
i

max
k

(mi,k)−
∑
i

mi,j

)
,

≤
∑
i

max
k

(mi,k) ,

and both inequalities on ρ(M) are proved.

We will now prove that we can recursively obtain upper bounds on the terms appearing

on the right-hand sides of (3.70) and (3.71).

Lemma 9. Let the matrix M be in M(k) and let X ∈ M(k−1), Θ ∈ D+ and Γ ∈ G be

such that M = X(ΓB − I) Θ. Then

−
S∑
i=1

min
1≤j≤S

(mi,j) ≤ θmax

S∑
i=1

max
1≤j≤S

(xi,j) , (3.72)

S∑
i=1

max
1≤j≤S

(mi,j) ≤ −θmax
S∑
i=1

min
1≤j≤S

(xi,j) , (3.73)

where θmax = max
i
θi.

Proof. We have mi,j = θj (
∑

k xi,kγk − xi,j), ∀i, j. Since max
j

(xi,j) ≥
∑

k xi,kγk for all i,

we have

mi,j ≥ θj

(∑
k

xi,kγk −max
j

(xi,j)

)
≥ θmax

(∑
k

xi,kγk −max
j

(xi,j)

)
, (3.74)

for all i, j = 1, . . . , S, and thus min
j

(mi,j) ≥ θmax

(∑
k xi,kγk −max

j
(xi,j)

)
. As a conse-

quence

∑
i

min
j

(mi,j) ≥ θmax

(∑
i

∑
k

xi,kγk −
∑
i

max
j

(xi,j)

)
,

≥ θmax

(∑
k

(∑
i

xi,k

)
γk −

∑
i

max
j

(xi,j)

)
,
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and since
∑

i xi,k = 0 for all k according to property (a) of Lemma 7, it yields∑
i

min
j

(mi,j) ≥ −θmax
∑
i

max
j

(xi,j) (3.75)

which proves that −
∑

i min
j

(mi,j) ≤ θmax
∑

i max
j

(xi,j), as claimed.

The proof of the second inequality is similar. We observe that

mi,j ≤ θj

(∑
k

xi,kγk −min
j

(xi,j)

)
≤ θmax

(∑
k

xi,kγk −min
j

(xi,j)

)
, (3.76)

for all i, j = 1, . . . , S, and thus max
j

(mi,j) ≤ θmax
(∑

k xi,kγk −min
j

(xi,j)

)
. It yields

∑
i

max
j

(mi,j) ≤ θmax

(∑
i

∑
k

xi,kγk −
∑
i

min
j

(xi,j)

)
,

≤ θmax

(∑
k

(∑
i

xi,k

)
γk −

∑
i

min
j

(xi,j)

)
,

≤ −θmax
∑
i

min
j

(xi,j),

as claimed.

We are now in position to prove Theorem 5.

Proof of Theorem 5. Consider a matrix M =
∏k
i=1 (Γ(i)B − I) Θ(i) in M(k). Define the

matrices X(n) =
∏n
i=1 (Γ(i)B − I) Θ(i) for n = 1, 2, . . . , k. Note that X(n) ∈ M(n), that

M = X(k) and that X(n) = X(n−1)(Γ(n)B − I)Θ(n) for 1 < n ≤ k.

We have X(1) = (Γ(1)B − I) Θ(1). With (3.71) we have ρ(X(1)) ≤
∑S

i=1 max
1≤k≤S

(
x

(1)
i,k

)
.

However

S∑
i=1

max
1≤k≤S

(
x

(1)
i,k

)
≤

S∑
i=1

max

(
(γ

(1)
i − 1)θ

(1)
i ,max

k 6=i

(
γ

(1)
i θ

(1)
k

))
,

≤ θ(1)
max

S∑
i=1

γ
(1)
i = θ(1)

max, (3.77)

from wich we conclude that ρ(X(1)) ≤ θ
(1)
max. If k = 1, we have M = X(1) and thus

ρ(M) ≤ θ
(1)
max. For k > 1, we consider separately the case when it is even and the case
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when it is odd. If k is even, Proposition 3 states that

ρ(M) ≤ −
S∑
i=1

min
1≤k≤S

(mi,k) , (3.78)

and the repeated application of Lemma 9 yields

ρ(M) ≤ θ(k)
max

S∑
i=1

max
1≤j≤S

(
x

(k−1)
i,j

)
≤ −θ(k)

max θ
(k−1)
max

S∑
i=1

min
1≤j≤S

(
x

(k−2)
i,j

)
...

≤
k∏
i=2

θ(i)
max

S∑
i=1

max
1≤k≤S

(
x

(1)
i,k

)
,

and we conclude with (3.77) that ρ(M) ≤
∏k
i=1 θ

(i)
max. If on the contrary k is odd, we use

the second inequality in Proposition 3 to obtain

ρ(M) ≤
S∑
i=1

max
1≤k≤S

(mi,k) . (3.79)

Applying again repeatedly Lemma 9 yields

ρ(M) ≤ −θ(k)
max

S∑
i=1

min
1≤j≤S

(
x

(k−1)
i,j

)
≤ θ(k)

max θ
(k−1)
max

S∑
i=1

max
1≤j≤S

(
x

(k−2)
i,j

)
...

≤
k∏
i=2

θ(i)
max

S∑
i=1

max
1≤k≤S

(
x

(1)
i,k

)
,

and with (3.77) it proves that ρ(M) ≤
∏k
i=1 θ

(i)
max. We therefore conclude that ρ(M) ≤∏k

i=1 θ
(i)
max for all matrices M(k), and for all k ≥ 1.

We prove below that there exist some matrices inM(k) for which the upper bound on

the spectral radius of Theorem 5 is tight.

Lemma 10. For any k ≥ 1, there exists M ∈M(k) such that ρ(M) =
∏k
i=1 θ

(i)
max.
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Proof. Consider a matrix M =
∏k
i=1 (Γ(i)B − I) Θ(i) ∈ M(k) such that Θ(i) = θ

(i)
maxI for

all 1 ≤ i ≤ k. Obviously, M =
(∏k

i=1 θ
(i)
max

) ∏k
i=1 (Γ(i)B − I). Observe now that for all

m,n

Γ(m)BΓ(n)B =

(∑
i

γ
(n)
i

)
Γ(m)B = Γ(m)B,

which implies that(
Γ(m)B − I

)(
Γ(n)B − I

)
= Γ(m)BΓ(n)B − Γ(m)B − Γ(n)B + I

= Γ(m)B − Γ(m)B − Γ(n)B + I

= −
(

Γ(n)B − I
)
. (3.80)

Hence
k∏
i=1

(Γ(i)B − I) = (−1)k
(

Γ(k)B − I
)
, (3.81)

and thus we obtain M = (−1)k
(∏k

i=1 θ
(i)
max

) (
Γ(k)B − I

)
, which implies that ρ(M) =(∏k

i=1 θ
(i)
max

)
ρ
(
Γ(k)B − I

)
. We note that Γ(k)B is a matrix of rank 1, since all its

columns are the same. Moreover, the sum of each column is 1. Thus, the spectrum

of Γ(k)B is {1, 0, 0 . . . , 0}, which implies that the spectrum of Γ(k)B− I is σ
(
Γ(k)B − I

)
=

{0,−1,−1 . . . − 1}. We conclude that ρ
(
Γ(k)B − I

)
= 1, which implies that ρ(M) =(∏k

i=1 θ
(i)
max

)
.

The above theorem holds for any product of matrices belonging to M. If we now

restrict our attention to matrices belonging to Mq, we obtain the following immediate

corollary.

Corollary 4. For any product MnMn−1 . . .M1 of matrices belonging to Mq, we have

ρ(MnMn−1 . . .M1) ≤ qn, implying that ρ(Mq) ≤ q.

Proof. Consider M1,M2 . . .Mn ∈ Mq. Each matrix Mi can be written as Mi = (Γ(i)B −
I) Θ(i), where θimax = ‖Θ(i)‖1 ≤ q. From theorem 5, we thus obtain ρ(MnMn−1 . . .M1)

1
n ≤

q. As a consequence,

sup
M1,...,Mn∈Mq

ρ

(
n∏
i=1

Mi

) 1
n

≤ q

Since Mq is bounded, its joint spectral radius and its generalized spectral radius

coincide. From the definition in (3.11), we immediately obtain that ρ(Mq) ≤ q.

We are now in position to prove that sequential best-response dynamics converges to

the unique Nash equilibrium x∗.
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Theorem 6. For the two player routing game over parallel links, the sequential best-

response dynamics converges to the unique Nash equilibrium for any initial point x0 ∈ X .

Proof. Since J is bounded (see Corollary 2), and the Generalized spectral radius is equal

to the Joint spectral radius of a bounded set of matrices, it suffices to prove that ρ(J ) < 1.

From Lemma 6, we have

det

(
n∏
i=1

Ji − λI

)
= det (−λI) det

(
Ψ2X

(2n)
2 − λI

)
= (−λ)S det

(
Ψ2X

(2n)
2 − λI

)
,

implying that λ 6= 0 is an eigenvalue of
∏n
i=1 Ji if and only if it is an eigenvalue of Ψ2X

(2n)
2 .

Thus, ρ (
∏n
i=1 Ji) = ρ

(
Ψ2X

(2n)
2

)
. Further,

ρ
(

Ψ2X
(2n)
2

)
≤
∥∥∥Ψ2X

(2n)
2

∥∥∥
1
≤ ‖Ψ2‖1

∥∥∥X(2n)
2

∥∥∥
1

=
∥∥∥X(2n)

2

∥∥∥
1
,

and thus, since X
(2n)
2 ∈M(2n)

q ,

ρ

(
n∏
i=1

Ji

)
≤ sup

M∈M(2n)
q

‖M‖1 = ρ2n (Mq) ,

where the last equality is obtained using the definition of the Joint spectral radius (3.10).

Let ε = 1−q
2 > 0. Since ρn (Mq)

1
n → ρ (Mq) as n → ∞, there exists N such that for all

n ≥ N ,

ρ

(
n∏
i=1

Ji

) 1
n

≤ ρ (Mq) + ε ≤ q +
1− q

2
=

1 + q

2
,

where the last inequality follows from Corollary 4. Since the right hand-side is independant

of J1, . . . , Jn, we deduce that

sup
J1,...,Jn∈J

ρ

(
n∏
i=1

Ji

) 1
n

≤ 1 + q

2
, ∀n ≥ N,

and, according to 3.11, it yields ρ (J ) ≤ 1+q
2 < 1.

3.5.2 K player games with linear link cost functions

Consider φ(x) = x, a delay function which is often used in congestion games to model

delays in road networks. From (3.48), it follows that θk = 1/2. Thus, the matrix Mu in

Theorem 3 is of the form 1
2(ΓB − I) for some Γ ∈ G.
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Theorem 7. For the K player routing game over parallel links and linear delay function,

the sequential best-response dynamics converges to the unique Nash equilibrium for any

initial point x0 ∈ X .

Proof. We shall show that the product of Jacobian matrices over n rounds goes to 0 as

n→∞. This shows that their JSR is less than 1, and hence best-response converges.

First we shall show this for the three player game as the proof follows the same steps

for any number of players. Omitting the multiplier Ψ, the one-round Jacobian matrix for

three players has the form :

J (1) = J3J2J1 =

0 M1 M1

0 M2M1 M2 +M2M1

0 M3(M2M1 +M1) M3(M2 +M2M1 +M1)

 .

Note that MvMu = (ΓvB − I)Θv(ΓuB − I)Θu = θ2(ΓvB − I)(ΓuB − I) where θ = 1/2.

Denote ΓuB− I = Hu, then MvMu = −θ2Hu, and the Jacobian matrix for one round,
is as follows

J(1) =

0 H
(1)
1 θ H

(1)
1 θ

0 −H(1)
1 θ2 H

(1)
2 θ −H

(1)
1 θ2

0 H
(1)
1 θ3 −H

(1)
1 θ2 −H(1)

2 θ2 +H
(1)
1 θ3 −H

(1)
1 θ2



=

0 H
(1)
1 θ H

(1)
1 θ

0 −H(1)
1 θ2 −H(1)

1 θ2 +H
(1)
2 θ

0 −H(1)
1 θ2 +H

(1)
1 θ3 H

(1)
1 θ3 −H

(1)
1 θ2 −H

(1)
2 θ2

 .

Note here that for any round n,
(
H

(n)
u

)2
= −H(n)

u and for different rounds n, m,

H
(m)
v H

(n)
u = −H(n)

u . With notation p
(n)
i,j (θ) and q

(n)
i,j (θ), or more simply p

(n)
i,j and q

(n)
i,j , for

polynomial coefficients of H
(n)
1 and H

(n)
2 , respectively, the Jacobian matrix J (n) after n

rounds, it will take the following form

J(n) =

0 H
(1)
1 p

(n)
1,2 +H

(1)
2 q

(n)
1,2 H

(1)
1 p

(n)
1,3 +H

(1)
2 q

(n)
1,3

0 H
(1)
1 p

(n)
2,2 +H

(1)
2 q

(n)
2,2 H

(1)
1 p

(n)
2,3 +H

(1)
2 q

(n)
2,3

0 H
(1)
1 p

(n)
3,2 +H

(1)
2 q

(n)
3,2 H

(1)
1 p

(n)
3,3 +H

(1)
2 q

(n)
3,3

 .

To find recurrence relation between the polynomial coefficients in successive rounds,
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write

J(n+1) =

0 H
(n+1)
1 θ H

(n+1)
1 θ

0 −H(n+1)
1 θ2 −H(n+1)

1 θ2 +H
(n+1)
2 θ

0 H
(n+1)
1 θ3 −H

(n+1)
1 θ2 H

(n+1)
1 θ3 −H

(n+1)
1 θ2 −H

(n+1)
2 θ2

 J(n)

=

0 H
(n+1)
1 θ H

(n+1)
1 θ

0 −H(n+1)
1 θ2 −H(n+1)

1 θ2 +H
(n+1)
2 θ

0 H
(n+1)
1 θ3 −H

(n+1)
1 θ2 H

(n+1)
1 θ3 −H

(n+1)
1 θ2 −H

(n+1)
2 θ2

×

×

0 H
(1)
1 p

(n)
1,2 +H

(1)
2 q

(n)
1,2 H

(1)
1 p

(n)
1,3 +H

(1)
2 q

(n)
1,3

0 H
(1)
1 p

(n)
2,2 +H

(1)
2 q

(n)
2,2 H

(1)
1 p

(n)
2,3 +H

(1)
2 q

(n)
2,3

0 H
(1)
1 p

(n)
3,2 +H

(1)
2 q

(n)
3,2 H

(1)
1 p

(n)
3,3 +H

(1)
2 q

(n)
3,3

 .

One can then deduce the following recursive expressions for the vectors of polynomial
coefficients in the second column.

p
(n+1)
1,j

p
(n+1)
2,j

p
(n+1)
3,j

 =

0 −θ −θ
0 θ2 θ2 − θ
0 −θ3 + θ2 −θ3 + 2θ2



p
(n)
1,j

p
(n)
2,j

p
(n)
3,j

 ,

and 
q
(n+1)
1,j

q
(n+1)
2,j

q
(n+1)
3,j

 =

0 −θ −θ
0 θ2 θ2 − θ
0 −θ3 + θ2 −θ3 + 2θ2



q
(n)
1,j

q
(n)
2,j

q
(n)
3,j

 .

A similar relation can be deduced for the vector of polynomials in the third column.

If it can be shown that the spectral radius of the matrix

A3 =

0 −θ −θ
0 θ2 θ2 − θ
0 −θ3 + θ2 −θ3 + 2θ2


is less than 1, then we can conclude that the any product of Jacobian matrices will go to

0 in any norm as n→∞, and thus conclude that the JSR of J is smaller than 1.

For a K player game, it turns out that the matrix AK has the form

[AK ]i,j =

{
(1− θ)i−1 for j > i,

(1− θ)i−1 − (1− θ)i−j for j ≤ i.
(3.82)
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which is expanded form is

AK



0 −θ −θ · · · −θ

0 −θ(1− θ) + θ −θ(1− θ) · · · −θ(1− θ)

0 −θ(1− θ)2 + θ(1− θ) −θ(1− θ)2 + θ · · · −θ(1− θ)2

0 −θ(1− θ)3 + θ(1− θ)2 −θ(1− θ)3 + θ(1− θ) · · · −θ(1− θ)3

0 −θ(1− θ)4 + θ(1− θ)3 −θ(1− θ)4 + θ(1− θ)2 · · · −θ(1− θ)4

.

.

.

0 −θ(1− θ)k−1 + θ(1− θ)k−2 −θ(1− θ)k−1 + θ(1− θ)k−3 · · · −θ(1− θ)k−1 + θ



.

In Proposition 4 stated just after this proof, it is shown that the spectral radius of AK
is less than θ which is less than 1. We can thus conclude that the product of Jacobians

will tend to 0 as n→∞, and hence the best-response will converge.

Proposition 4. The spectral radius of the matrix AK defined in (3.82) is less than θ.

Proof. We shall show that the zeros of det(AK −λI) are in the unit circle. The expanded
form of AK − λI is as follows,



0− λ −θ −θ · · · −θ

0 −θ(1− θ) + θ − λ −θ(1− θ) · · · −θ(1− θ)

0 −θ(1− θ)2 + θ(1− θ) −θ(1− θ)2 + θ − λ · · · −θ(1− θ)2

0 −θ(1− θ)3 + θ(1− θ)2 −θ(1− θ)3 + θ(1− θ) · · · −θ(1− θ)3

0 −θ(1− θ)4 + θ(1− θ)3 −θ(1− θ)4 + θ(1− θ)2 · · · −θ(1− θ)4

.

.

.

0 −θ(1− θ)k−1 + θ(1− θ)k−2 −θ(1− θ)k−1 + θ(1− θ)k−3 · · · −θ(1− θ)k−1 + θ − λ



.

Transform the AK −λI by multiplying each row i by −(1− θ) and adding it to row i+ 1,
for i = K − 1,K − 2, . . . , 1, to get

det (AK − λI) = det



−λ −θ −θ −θ · · · −θ −θ

λ(1− θ) θ − λ 0 0 · · · 0 0

0 λ(1− θ) θ − λ 0 · · · 0 0

0 0 λ(1− θ) θ − λ · · · 0 0

0 0 0 λ(1− θ) · · · 0 0

.

.

.

0 0 0 0 · · · λ(1− θ) θ − λ



.

Computing the determinant along the last column, one obtains the polynomial

det (AK − λI) = (−1)k

[
(λ− θ)k + θ

k−1∑
i=0

(λ− θ)k−1−iλi(1− θ)i
]
.
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Denote the expression in the square brackets by P(λ), i.e.

P(λ) =
(1− θ)k

1− λ

[
(λ− θ)k + θ

k−1∑
i=0

(λ− θ)k−1−iλi(1− θ)i
]
.

For λ 6= 1, after some algebra, we obtain

P(λ) =
(1− θ)k

1− λ

[
λk − λ(λ− θ)k

(1− θ)k

]
.

Since 0 < θ < 1, for λ < 0, P(λ) is positive for even k and negative for odd k.

For λ > 1, the denominator (1− λ) is negative. Note that for λ > 1, θ < θλ < λ and

then 0 < λ− θλ < λ− θ. Then for the expression in the numerator the following holds,

λk(1−θ)k−λ(λ−θ)k = (λ−θλ)k−λ(λ−θ)k < (λ−θλ)k− (λ−θ)k < 0. Hence P(λ) > 0.

For θ < λ < 1, the denominator (1 − λ) is positive. Note that for θ < λ < 1,

0 < θλ < θ < λ < 1 and then 0 < λ − θ < λ − θλ. Then for the expression in the

numerator,

λk(1 − θ)k − λ(λ − θ)k = (λ − θλ)k − λ(λ − θ)k > (λ − θλ)k − (λ − θ)k > 0. Hence for

θ < λ < 1, P(λ) > 0.

Moreover, P(1) > 0.

Thus, the zeros of the function P(λ) are in [0, θ].

3.6 Conclusion

We have proposed a different approach to study the convergence of the best-response

dynamics based on the notion of non-linear spectral radius. By following this approach

we established a sufficient condition for the convergence.

The key idea to prove the convergence is to study the Jacobian matrices of best-

response functions, and to analyze how long products of such matrices grow as a function of

the number of best-response updates. The growth rate of matrix products is characterized

by the so-called joint or generalized spectral radius.

For sequential best-response dynamics in a routing game over parallel links, we have

constructed a best-response operator as a function for one-round of play and shown that

it is Lipschitz-continuous. We have established the specific structure of Jacobian matrix

of the best-response function. Then we have obtained a sufficient condition for the con-

vergence of the best-response dynamics as that the joint spectral radius of matrices of

this form be strictly less than unity. We thus obtain a purely structural sufficient condi-

tion that allows to reduce the analysis of the convergence of the sequential best-response

dynamics to the analysis of the joint spectral radius of certain matrices.

Based on the specific structure of the Jacobian matrices in our game and the sufficient
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condition we prove the convergence for two non-trivial cases: the two-player game for an

arbitrary number of links, and with arbitrary number of players and links in the case of

linear latency functions. Furthermore, although we were not able to prove it, we conjecture

that the proposed sufficient condition is valid for any numbers of players and links with

general latency functions.

The results of these studies are published in the proceedings of the 7th International

Conference on Performance Evaluation Methodologies and Tools, ValueTools-2013 (Brun

et al., 2013).





4
REWARD-BASED INCENTIVES FOR NODAL

COLLABORATION IN DELAY TOLERANT

NETWORKS

This chapter is concerned with another important area of competitive interaction cru-

cial in nowadays communications, Delay/Disruption Tolerant Networking. We focus on

mechanism design principles arising from the need to provide communications within en-

vironments where continuous end-to-end connectivity cannot be assumed and connection

between a source and destination is performed through mobile nodes serving as relays.

The beginning of the chapter is devoted to the description of the Delay-Tolerant com-

munication paradigm and routing in DTNs. Section 4.3 discusses related work on incentive

mechanisms for DTNs. Section 4.4 introduces the system model and the assumptions used

in our study. In section 4.5 we investigate the impact of information that the source share

with relays on the reward that it has to propose to them as composition in static scenario.

The extension to the dynamic scenario is provided in section 4.6.

4.1 Delay Tolerant Networking

Delay-tolerant networking (DTN) (Fall, 2003; Farrell et al., 2005; Cerf et al., 2007; MacMa-

hon et al., 2009) is an approach to network architecture that aims to support connection

in environments characterised by very long latencies due to extreme distances or frequent

interference in connectivity. Examples of such environments are sparse mobile networks,
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extreme terrestrial areas, or space communications.

Prior to the emergence of the delay-tolerant communication paradigm most studies

were concerned with developing technology of wireless connection between non-fixed lo-

cations of computers. In 1990s studies in the field of wireless communications proposed

the area of mobile ad hoc networking (MANET) and vehicular ad hoc networking. Inves-

tigations for the realization of an InterPlaNetary (IPN) Internet (Travis, 2001; Akyildiz

et al., 2003) related to the necessity of networking technologies that can cope with the

significant delays and packet corruption of deep-space communications, gave ideas for de-

sign of terrestrial networks. In 2002, Kevin Fall generalized challenged interplanetary and

terrestrial networks by introducing the notion of Delay-Tolerant Networks (DTNs) (see

publication, Fall, 2003).

4.2 DTN Routing Schemes

Communication support and message delivery in DTN is performed through routing pro-

tocols that are based on store, carry, and forward paradigm (Cerf et al., 2007), where a

mobile node carries the message until it encounters the destination node or any other node

that has high probability of meeting the destination node. Based on this paradigm various

DTN routing schemes have been proposed. Some of them seeking to minimize the message

delivery time by replicating many copies of the message (Vahdat et al., 2000), whereas

for other ones the emphasis is more on resource and energy consumption. Based on the

number of created copies of the same message, DTN routing protocols can be of the fol-

lowing types: forwarding, quota-replication, and flooding (Lo et al., 2011). In a forwarding

scheme, such as MEED (Jones et al., 2007), a single-copy message is forwarded through

successive path of intermediate nodes to the destination. A quota-replication scheme,

such as Spray&Wait (Spyropoulos et al., 2005), involves creation of a specific number of

message copies called message quota. Under a flooding scheme, such as Epidemic routing

(Vahdat et al., 2000), a network is flooded with an extremely large number of message

copies.

In our work, we focus on the so-called two-hop routing scheme, which is known to

provide a good tradeoff between message delivery time and resource consumption (Al-

Hanbali et al., 2008). With two-hop routing, the communication is basically in 3 phases:

• First, the source gives the message to each and every mobile nodes it meets. These

nodes act as relays for delivering the message to its destination.

• A relay cannot forward the message to another relay, so it will store and carry the

message until it is in radio range of the destination.

• Once this happens, the relay delivers the message to the destination.
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4.3 Review on Related Work on Incentive Mechanisms for

DTNs

The core objective for the design of DTNs is to support communications even when end-

to-end connectivity fails. In most studies for DTNs, it is assumed that relays are willing

to cooperate with the source node. In practice, DTNs are composed of mobile devices,

including smartphones, tablets or other mobile devices having multiple wireless interfaces.

The delivery of a message thus can incur a certain number of costs for a relay. First,

there are energy costs for receiving the message from the source and transmitting it to the

destination. It is also natural to assume that there is some cost per unit time for storing

the message in the buffer of the relay. A central question is whether owners of relay

devices are willing to have battery depleted to sustain DTNs communications. The selfish

behavior of relays becomes a core threat which hinders any possible attempt to optimize

network performance. In different contexts, user participation in network operations is

assured by means of appropriate incentive mechanisms.

In the literature on DTNs (El-Azouzi et al., 2012; Zhang et al., 2007), several incentive

schemes have been recently proposed. For example, Shevade et al., 2008 uses Tit-for-Tat

(TFT) to design an incentive-aware routing protocol that allows selfish DTN nodes to

maximize their individual utilities while conforming to TFT constraints. Mobicent (Chen

et al., 2010) is a credit-based incentive system which integrates credit and cryptographic

technique to solve the edge insertion and edge hiding attacks among nodes. PI (Lu et al.,

2010) attaches an incentive on the sending bundle to stimulate the selfish nodes to coop-

erate in message delivery. SMART (Zhu et al., 2009) is a secure multilayer credit-based

incentive scheme for DTNs. In SMART, layered coins are used to provide incentives to

selfish DTN nodes for bundle forwarding. MobiGame (Wei et al., 2011) is a user-centric

and social-aware reputation based incentive scheme for DTNs. In addition, Li et al.,

2010 proposes socially selfish routing in DTNs, where a node exploits social willingness to

determine whether or not to relay packets for others. Authors in (Ning et al., 2011) formu-

late nodal communication as a two-person cooperative game for a credit-based incentive

scheme to promote nodal collaboration. RELICS (Uddin et al., 2010) is another cooper-

ative based energy-aware incentive mechanism for selfish DTNs, in which a rank metric

was defined to measure the transit behavior of a node. In (Wang et al., 2012), authors

proposed an incentive driven dissemination scheme that encourages nodes to cooperate

and chooses delivery paths that can reach as many nodes as possible with fewest trans-

missions. A fundamental aspect that is usually ignored in DTN literature is the feedback

message, which may incur into a large delay. In fact, the exchange of rewards between

relays should not require feedback messages. In order to overcome lack of feedback, our

mechanism assumes that a relay receives a positive reward if and only if it is the first

one to deliver the message to the corresponding destination. (Chahin et al., 2013) is a

credit-based incentive system using the theory of Minority Games (Moro, 2004) in order
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to attain coordination in distributed fashion. This mechanism considers the realistic case

when the cost for taking part in the forwarding process varies with the devices technology

or the users habits.

The mechanism we shall propose relates to the field of mechanism design that concerns

itself with how to develop incentive mechanism that will lead to a desirable solution from

a system-wide point of view. In recent years mechanism design has found many important

applications in the computer sciences; e.g., in security design problems (Feigenbaum et al.,

2002), in distributed scheduling resource allocation (Johari, 2004) and cooperation routing

in ad-hoc networks (P. Michiardi, 2002).

4.4 System Model and Objectives

We consider a wireless network with one source node, one destination node and N relays.

We shall assume that the source and the destination nodes are fixed and not in radio range

of each other, whereas other nodes are moving according to a given mobility model.

At time 0, the source generates a message for the destination. The source wants

this message to be delivered to the destination as fast as possible. However, it cannot

transmit it directly to the destination since both nodes are not in radio range of each

other. Instead, the source proposes to each relay it meets a reward for delivering the

message1. It is assumed that the network is two-hop, that is a relay has to deliver the

message by itself to the destination (it cannot forward the message to another relay). An

important assumption we shall make is that relays are not seeking to make profit: a relay

accepts the message provided the reward promised to it by the source offsets its expected

cost for delivering the message to the destination, as estimated by the relay when it meets

the source.

This expected cost has several components. A relay that accepts the message from

the source always incurs a reception cost Cr. This is a fixed energy cost for receiving the

message from the source. The relay will then store the message into its buffer and carry

it until it is in radio range of the destination. We assume here that there is an incurred

storage cost Cs per unit time the message is stored in the buffer of the relay. Hence, the

expected storage cost depends on the expected time it takes to reach the destination. Once

the relay meets the destination, it can deliver the message. This incurs an additionnal

transmission cost Cd which is a fixed energy cost for transmitting the message to the

destination. This cost is incured if and only if the relay is the first one to deliver the

message to the destination, in which case the relay gets the reward. If on the contrary,

the message has already been delivered, the relay gets nothing but save the transmission

cost.

1Note that since the source is not informed when the message reaches the destination, it can still propose
the message to a relay even if the message has already been delivered by another relay.
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4.4.1 The Role of Information

As should be apparent from the above discussion, the reward asked by a relay to the source

depends both on the expected time it will take for the relay to reach the destination and

on the probability of success it estimates at the time it meets the source. The latter

represents the probability of this relay to be the first one to deliver the message. The

crucial observation here is that this probability notably depends on the information given

by the source to the relay. Intuitively, if a relay is told by the source that there are already

many message copies in circulation, it will correctly infer that it has a higher risk of failure

than if it was the first one to meet the source, and it will naturally ask for a higher reward.

The source can of course choose not to disclose the information on the number of existing

message copies, in which case relays estimate their success probabilities based solely on

the time at which they meet the source and on the number of competitors. In that case,

the first relay to meet the source will certainly underestimate its success probability, and

again ask for a higher reward than if it was told it was the first one.

It is thus clear that the expected reward to be paid by the source depends on the

information it gives to the relays. There are several feasible strategies for the source. We

shall distinguish between static strategies and dynamic strategies. In static strategies, the

information given to the relays is fixed in that it does not depend on the times at which

the source meets the relays. We shall consider three static strategies:

• full information: each relay is told by the source how many other relays have already

received the message, and at what times,

• partial information: each relay is told by the source how many message copies there

are in circulation, but the source does not reveal the age of these copies,

• no information: each relay is told nothing by the source; it only knows at what time

it meets the source.

In dynamic strategies, the source adapts the information it conveys on the fly as and

when it meets the relays. In such a strategy, the decision to give full information, only

partial information or no information at all to a relay depends on the contact times with

previous relays.

4.4.2 Assumptions on Contact Processes

As mentionned before, the N relays are moving according to a given mobility model. This

model represents the movement of relays, and how their location, velocity and acceleration

change over time. However, rather than assuming a specific mobility model, we instead

characterize the movements of relays solely through their contact processes with the source

and the destination. Our main assumption here is that inter-contact times between a relay
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and the source (resp. destination) are independent and identically distributed (i.i.d.)

random variables with finite first and second moments. In the following, we let Ts (resp.

Td) be the random time between any two consecutive contacts between a relay and the

source (resp. destination). We shall moreover assume that the random variables Ts and Td
are independent. In addition, we shall assume that contacts between relays and any of the

fixed nodes are instantaneous, i.e., that the duration of these contacts can be neglected.

At this point, we make two important observations:

• For a given relay, the time instant at which the message is generated by the source

can be seen as a random point in time with respect to the contact process of this relay

with the source. Hence, the random time between the instant at which the message

is generated and the instant at which the relay will meet the source corresponds to

what is called the residual life of the inter-contact times distribution with the source

in the language of renewal theory. In the sequel, we shall refer to this time as the

residual inter-contact time with the source.

• Similarly, the time instant at which a given relay receives the message from the

source can be considered as a random point in time with respect to the contact

process of this relay with the destination. Hence, residual inter-contact time with

the destination is given by the residual life of the inter-contact times distribution

with the destination.

Let Fs(x) = P(Ts > x) (resp. Fd(x) = P(Td > x)) be the complementary cumulative

distribution function of Ts (resp. Td). As a consequence of the above, the density functions

of the residual inter-contact times with the source and the destination are given by

f̃s(x) =
Fs(x)

E[Ts]
and f̃d(x) =

Fd(x)

E[Td]
, (4.1)

respectively. We also note that the mean residual inter-contact times with the source

and the destination are given by E[T̃s] = E[T 2
s ]/(2E[Td]) and E[T̃d] = E[T 2

d ]/(2E[Td]),

respectively.

4.4.3 Objectives

In the following, we adopt the point of view of the source and investigate the strategy it

should follows in order to minimize the price to be paid for delivering a message. We first

analyze the case of static strategies in Section 4.5, and then consider dynamic strategies

in Section 4.6.
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4.5 Expected Reward Under a Static Strategy

In this section, we assume that the source follows a static strategy, i.e., it does not adapt

the information it conveys to as and when it meets the relays. More precisely, we consider

the three following settings: (a) the source always gives full information to the relays, (b)

it always gives only partial information to the relays or (c) it always gives no information

at all to the relays. In the sequel, the superscript F (resp. P , N) will be used to denote

quantities related to the full information (resp. partial information, no information) set-

ting. Also, we shall use relay i and the ith relay interchangeably to refer to the relay that

is the ith one to meet the source in chronological order.

4.5.1 Estimated Probability of Success

Let Si, i = 1, . . . , N , be the random time at which the source meets the ith relay. We

denote by S the vector (S1, . . . , SN ). In order to simplify notations, we shall write S−n to

denote the vector (S1, . . . , Sn−1, Sn+1, . . . , SN ) and Sm:n to denote the vector (Sm, . . . , Sn).

Similarly, for fixed s1, s2, . . . , sN , we denote by s the vector (s1, s2, . . . , sN ). We shall also

use the notations s−n and sm:n with the same interpretation as for vectors of random

variables.

Define pi(s) as the (real) probability of success of the ith relay for the given vector

s of contact times, that is the probability of this relay to be the first one to deliver the

message. Let also p
(k)
i (s) be the probability of success estimated under setting k by relay i

when it meets the source2. Note that in general p
(k)
i (s) and pi(s) are different. Indeed, the

probability of success pi(s) depends on all contact times. On the contrary, it is obvious

that for i < N , p
(k)
i (s) does not depend on si+1, · · · , sN , since, when it meets the source,

relay i does not know at what time the source will meet relays i+ 1, . . . , N . Similarly, for

i > 1, p
(k)
i (s) depends on s1, . . . , si−1 only in the full information setting. Besides, we also

note that

p
(P )
1 (s) = p

(F )
1 (s), (4.2)

since the first relay obtains exactly the same information from the source in the partial

information and in the full information settings. Finally, we note that

p
(F )
N (s) = pN (s), (4.3)

since in the full information setting, the last relay knows the contact times of all relays

with the source.

2We remind the reader that relay i refers to the ith relay in chronological order of meeting times with
the source.
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4.5.2 Expected Cost for a Relay

Define V
(k)
i (s) as the net cost for relay i under setting k, and let R

(k)
i (s) be the reward

asked by this relay to the source under this setting. The reward R
(k)
i (s) proposed to relay

i has to offset its expected cost E[V
(k)
i (s)], which is given by

E[V
(k)
i (s)] = Cr + CsE[T̃d] + [Cd −R

(k)
i (s)]p

(k)
i (s). (4.4)

The first term in the net expected cost is the reception cost, which is always incurred.

The second term represents the expected storage cost. It is directly proportional to the

mean of the residual inter-contact time with the destination. The last term is the cost

of transmitting the message to the destination which then gives the reward to the relay.

This term enters into play only if relay i is the first one to reach the destination, which

explains the factor p
(k)
i (s).

4.5.3 Rewards Promised by the Source to Individual Relays: General

Inter-Contact Times

Relay i will accept the message provided the proposed reward offsets its expected cost,

that is, if R
(k)
i (s) is such that E[V

(k)
i (s)] ≤ 0. Thus, the minimum reward that the source

has to promise relay i is

R
(k)
i (s) = Cd +

(
Cr + CsE[T̃d]

) 1

p
(k)
i (s)

=: C1 + C2
1

p
(k)
i (s)

. (4.5)

Note that the reward asked by relay i depends on the information given by the source

only through the estimated probability of success p
(k)
i .

Given S1 = s1, · · · , SN = sN , the expected reward paid by the source under setting k

is

R
(k)

(s) =

N∑
i=1

pi(s)R
(k)
i (s). (4.6)

With (4.5), it yields

R
(k)

(s) = C1 + C2

N∑
i=1

pi(s)

p
(k)
i (s)

. (4.7)

While the reward promised to the relays in different information settings can be com-

puted using the above equations, we now give explicit expressions for these rewards for

exponential inter-contact times which are observed in certain mobility models.
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4.5.4 Rewards Promised by the Source to Individual Relays: Exponen-

tial Inter-Contact Times

Let us assume that the inter-contact times between a relay and the source (resp. destina-

tion) follows an exponential distribution with rate λ (resp. µ)

We shall first compute the probability of success of each of relays given all the contact

times, and then use this expression to compute the probability of success of each of relays

in the three information settings. The rewards to be promised to relays can then be

computed using (4.5).

Proposition 5. For a given vector s = (s1, · · · , sN ), the success probability of nth relay

is,

pn(s) =
N∑
i=n

1−
(
e−µ(si+1−si)

)i
i

i∏
j=1

e−µ(si−sj). (4.8)

Proof. Consider relay n that met the source at time sn and first compute its probability

to deliver the message to the destination for each time interval (si, si+1], n ≤ i < N . The

probability that a relay does not meet the destination in (si, si+1] is e−µ(si+1−si), and the

probability that the nth relay will be the first one to meet the destination in (si, si+1]

among i relays that have the message at time si, is
1−
(
e−µ(si+1−si)

)i
i .

Next, take into account the probability that none of the relays that received the mes-

sage before time si have not yet meet the destination, which is
∏i
j=1 e

−µ(si−sj).

The probability of success of the nth relay is then the sum of success probabilities in

each interval (si, si+1], i ≥ n,

pn(s) =
N∑
i=n

1−
(
e−µ(si+1−si)

)i
i

i∏
j=1

e−µ(si−sj). (4.9)

Next, for each setting k ∈ {F, P,N}, write the success probability, p
(k)
i , estimated by

relay i when it receives the message from the source.

Full Information Case

Proposition 6. For given times s = (s1, · · · , sn), nth relay computes its probability of

success as

p
(F )
n (s) = µ

n−1∏
k=1

e−µ(sn−sk)
N∑
i=n

(N−n)!
(N−i)! λ

i−n
i∏

j=n

1
(N−j)λ+jµ . (4.10)
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Proof. In order to derive the formula for success probability, p
(F )
n , estimated by a relay in

the full information setting, we shall use the expression of its real success probability given

all the contact times with the source, which is given in Proposition 5, and uncondition

future meeting-times of the relays with the source. That is,

p(F )
n (s) =

∫
pn(s)fS

n+1:N
|S

1:n
(s

n+1:N
)ds

n+1:N
, n = 1, 2, . . . , N − 1, (4.11)

and p
(F )
N (s) = pN (s).

From (4.8), one can infer that pn(s) satisfies the following recursion on n:

pn(s) = pn+1(s) +
1− e−µ(sn+1−sn)n

n

n∏
j=1

e−µ(sn−sj). (4.12)

Also, since the inter-contact times with the source are i.i.d., the order statistics of the

future meeting-times with the source has the product form

fS
n+1:N

|S
1:n

(s
n+1:N

) = (N − n)!

N∏
j=n+1

f̃s(sj)

F̃s(sn)
, (4.13)

where f̃s in the residual inter-contact time density function and F̃ is the corresponding

complementary cumulative distribution function. For exponentially distributed random

variables with parameter λ, the order statistics takes the form

fS
n+1:N

|S
1:n

(s
n+1:N

) = (N − n)!
N−1∏
j=n

λe−(N−j)λ(sj+1−sj), (4.14)

from which it follows that

fS
n+1:N

|S
1:n

(s
n+1:N

) = (N − n)λe−(N−n)λ(sn+1−sn)fS
n+2:N

|S
1:n+1

(s
n+2:N

) (4.15)

Substituting (4.15) and (4.12) in (4.11), we

p(F )
n (s) =

∫
s
n+1:N

pn+1(s) +
1− e−µ(sn+1−sn)n

n

n∏
j=1

e−µ(sn−sj)

 (4.16)

(N − n)λe−(N−n)λ(sn+1−sn)fS
n+2:N

|S
1:n+1

(s
n+2:N

) ds
n+1:N

Note that the second term in the above sum does not depend upon sn+2, sn+3, . . . , sN ,
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and the first term can be rewritten in terms of p
(F )
n+1(s) using (4.11), which gives

p(F )
n (s) =

∫
sn+1

p
(F )
n+1(s)(N − n)λe−(N−n)λ(sn+1−sn)dsn+1

+

∫
sn+1

1− e−µ(sn+1−sn)n

n

n∏
j=1

e−µ(sn−sj)(N − n)λe−(N−n)λ(sn+1−sn)dsn+1

(4.17)

Equation (4.17) gives a recursion for p
(F )
n in terms of p

(F )
n+1. The proof of the claimed

result will follow if we show that (4.10) satisfies this recursion. The base case is n = N ,

for which we note that p
(F )
N (s) given in (4.10) is equal to pN (s) given in 4.8. Now, assume

that for all j = n+ 1, . . . , N , p
(F )
j is given by (4.10).

Consider the first term in the RHS of (4.17). From (4.10),

p
(F )
n+1(s) = µθn+1

n∏
k=1

e−µ(sn+1−sk)

= µθn+1

(
n∏
k=1

e−µ(sn−sk)

)
e−nµ(sn+1−sn),

where

θn+1 =

N∑
i=n+1

(N − (n+ 1))!

(N − i)!
λi−(n+1)

i∏
j=n+1

1

(N − j)λ+ jµ
. (4.18)

Therefore,

(N − n)

∫ ∞
sn+1=sn

p
(F )
n+1(s)λe−λ(N−n)(sn+1−sn)dsn+1 =

µθn+1

(
n∏
k=1

e−µ(sn−sk)

)
λ(N − n)

λ(N − n) + µn
.

Similarly, the second term becomes

µ

(
n∏
k=1

e−µ(sn−sk)

)
1

λ(N − n) + µn
.

Thus we can rewrite (4.17) as

p(F )
n (s) = µ

(
n∏
k=1

e−µ(sn−sk)

)(
θn+1

λ(N − n)

λ(N − n) + µn
+

1

λ(N − n) + µn

)
. (4.19)
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We can verify from (4.18) that θn follows the recursion

θn = θn+1
λ(N − n)

λ(N − n) + µn
+

1

λ(N − n) + µn
,

which allows to conclude that, as claimed,

p(F )
n (s) = µθn

n−1∏
k=1

e−µ(sn−sk),

where the term corresponding to k = n in the product in (4.19) is just 1 and can be

omitted.

Partial Information Case

Proposition 7. Given the time sn with the number, n, of already existing copies, the nth

relay computes its success probability as

p(P )
n (s) =

(
λ

λ−µ
e−µsn−e−λsn

1−e−λsn

)n−1

×µ
N∑
i=n

(N−n)!
(N−i)! λ

i−n
i∏

j=n

1
(N−j)λ+jµ , if λ 6= µ,

(4.20)

and

p(P )
n (s) =

(
λsn

e−λsn

1−e−λsn

)n−1 N∑
i=n

(N−n)!
(N−i)!N i−n+1 , if λ = µ. (4.21)

Proof. The probability that after time sn, the nth relay is the first one to deliver the

message to the destination is given by

N∑
i=n

(N − n)!

(N − i)!
µ

λ

i∏
j=n

λ

(N − j)λ+ jµ
. (4.22)

Consider a relay that received the copy of the message before time sn. For λ 6= µ, the

probability that the relay does not meet the destination before sn is∫ sn

0

λe−λse−µ(sn−s)

1− e−λsn
ds =

λ

λ− µ
e−µsn − e−λsn

1− e−λsn
. (4.23)

Then the probability that none of the n− 1 relays that received the message before time

sn did not deliver it to the destination before sn is(
λ

λ− µ
e−µsn − e−λsn

1− e−λsn

)n−1

, for λ 6= µ. (4.24)
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The product of this probability with the probability (4.22) that after time sn, nth relay is

the first one to deliver the message to the destination, gives the claimed result.

Similarly reasoning, the claimed result for λ = µ is obtained after substituting λ

instead of µ in (4.22) and with that the integral in (4.23) gives λsn
e−λsn

1−e−λsn .

Corollary 5. For the given times s = (s1, · · · , sn), the success probability of the nth relay

in the full information setting, p
(F )
n , can be represented through p

(P )
n as follows,

p(F )
n (s1, · · · , sn) =

n−1∏
k=1

e−µ(sn−sk)(
λ

λ−µ
e−µsn−e−λsn

1−e−λsn

)n−1 p
(P )
n (s), if λ 6= µ. (4.25)

No Information Case

Proposition 8. Given only the time sn, the nth relay computes its success probability as

p
(N)
n (s) =

=
N∑
m=1

(N−1)!
(N−m)!(m−1)!

(
1− e−λsn

)m−1 (
e−λsn

)N−m
p

(P )
m .

(4.26)

Proof. Consider the relay n that meets the source at time sn and informed only this

meeting time and not the number of already existing copies of the message. The probability

that any relay does not meet the source before time sn is e−λsn and that it meets the source

is 1− e−λsn . Then the nth relay can compute its probability of success as

p
(N)
n (s) =

=
N∑
m=1

Cm−1
N−1

(
1− e−λsn

)m−1 (
e−λsn

)N−m
p

(P )
m (s)

=
N∑
m=1

(N−1)!
(N−m)!(m−1)!

(
1− e−λsn

)m−1 (
e−λsn

)N−m
p

(P )
m (s).

(4.27)

Thus, the source when it meets a relay can compute the reward it should promise to

this relay within each setting based on the corresponding success probability estimated by

the relay.

4.5.5 Expected Reward Paid by the Source

Until now, we have computed the reward the source should offer to each of the relays as

a function of the time it meets them and the information offered to them. We now turn

our attention to the expected reward paid by the source when the expectation is taken

over all possible meeting times. This quantity can be thought of as the long-run average
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reward per message the source will have to pay if it sends a large number of messages

(and assuming that message generation occurs at a much slower time scale than that of

the contact process).

The expected reward paid by the source under setting k can be obtained by uncondi-

tioning (4.6) on S1, · · · , SN ,

R
(k)

=
∫
s
R

(k)
(s)fS(s)ds

=
∞∫

s1=0

∞∫
s2=s1

· · ·
∞∫

sN=sN−1

R
(k)

(s)fS(s)dsN · · · ds2ds1,

(4.28)

where fS(s) is the joint distribution of S1, · · · , SN . Since the residual inter-contact times

between the relays and the source are i.i.d. random variables, fS(s) is the joint distribution

of the order statistics of the N random variables S1, · · · , SN . That is,

fS(s) = N ! f̃s(s1) . . . f̃s(sN ). (4.29)

With (4.7), (4.28) and (4.29), we obtain the expected reward paid by the source in

terms of the probabilities of success estimated by the relays,

R
(k)

= C1 + C2N !

N∑
n=1

∫
s

pn(s)

p
(k)
n (s)

f̃s(s1) . . . f̃s(sN )ds. (4.30)

From the probability of success estimated by the relays in the three settings, we can

prove that the expected reward to be paid by the source for delivering its message is the

same in all three settings, as stated in Theorem 8.

Theorem 8. The expected reward to be paid by the source under setting k ∈ {F, P,N} is

R
(k)

= C1 +NC2. (4.31)

Proof. Since p
(k)
n does not depend on sn+1, · · · , sN , we can rewrite (4.30) as follows

R
(k)

= C1 + C2×

×
N∑
n=1

∫
s1:n

fS1:n
(s1:n)

p
(k)
n (s1:n)∫

sn+1:N

pn(s)fSn+1:N |S1:n
(sn+1:N |s1:n)dsN :n+1

dsn:1,

(4.32)

where dsN :n+1 is to be read as dsNdsN−1 · · · dsn+1, and

fSn+1:N |S1:n
(sn+1:N |s1:n) =

fS1:N
(s1:N )

fS1:n
(s1:n) . (4.33)
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We now proceed to the analysis of the success probabilities estimated by the relays in

each of the three settings.

Full Information Setting The success probability of the nth relay in the full informa-

tion setting can be expressed as

p(F )
n (s1:n) =

∫
sn+1:N

pn(s)fSn+1:N |S1:n
(sn+1:N |s1:n)dsN :n+1. (4.34)

With (4.32), it yields

R
(k)

= C1 + C2

N∑
n=1

∫
s1:n

fS1:n
(s1:n)

p(F )(s1:n)
p(F )(s1:n)dsn:1

= C1 + C2

N∑
n=1

1 = C1 +NC2.

Partial Information Setting With (4.32) and (4.34), we can write the expected reward

under the partial information setting as follows

R
(P )

= C1 + C2

N∑
n=1

∫
s1:n

fS1:n(s1:n)p
(F )
n (s)

p
(P )
n (s)

dsn:1. (4.35)

Since p
(P )
n depends only on sn, we can change the integration order in (4.35) to obtain

R
(P )

= C1 + C2×

×
N∑
n=1

∞∫
sn=0

fSn|S1:n−1
(sn|s1:n−1)

p
(P )
n (s)∫

sn−1:1

p
(F )
n fS1:n−1(s1:n−1)ds1:n−1dsn.

(4.36)

Now, observe that the success probability of the nth relay can be expressed as

p(P )
n (s) =

∫
sn−1:1

p
(F )
n (s)fS1:n−1

(s1:n−1)ds1:n−1∫
sn−1:1

fS1:n−1
(s1:n−1)ds1···dsn−1

, (4.37)

where the integral
∫

sn−1:1

is to be read
sn∫

sn−1=0

· · ·
s2∫

s1=0

.

With (4.36), it yields
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R
(P )

= C1 + C2×

×
N∑
n=1

∞∫
sn=0

fSn|S1:n−1
(sn|s1:n−1)∫

sn−1:1

fS1:n−1(s1:n−1)ds1:n−1dsn

= C1 + C2

N∑
n=1

∫
sn:1

fS1:n(s1:n)ds1:n

= C1 + C2

N∑
n=1

1 = C1 +NC2. (4.38)

No Information Case Since the success probability of the nth relay in the no infor-

mation setting depends only on sn, we can rewrite the expression for the expected reward

paid by the source as

R
(N)

= C1 + C2×

×
N∑
n=1

∞∫
sn=0

1

p
(N)
n (sn)

∫
s1:n−1≤sn

sn+1:N

pn(s)fS1:N
(s1:N )ds−ndsn

(4.39)

where the integral
∫

s1:n−1≤sn
sn+1:N

is to be read as

sn∫
s1=0

· · ·
sn∫

sn−1=sn−2

∞∫
sn+1=sn

· · ·
∞∫

sN=sN−1

.

Observe that the joint distribution fS1:N
(s1:N ) can be eqivalently written as follows

fS1:N
(s1:N )

= (N − 1)!f̃s(s1) · · · f̃s(sn−1)f̃s(sn+1) · · · f̃s(sN )Nf̃s(sn)

= fS−n(s−n)Nf̃s(sn).

(4.40)

Note that the outer summation in (4.39) specifies only the ordinal position of the time

sn for each member of summation, and thus can be put under the integral by removing

the ordinal dependence as follows,

R
(N)

= C1 + C2×

× N
∞∫

sn=0

f̃s(sn)

p
(N)
n (sn)

N∑
m=1

∫
s1:m−1≤sn

sm+1:N

pm(s)fS−m(s−m)ds−mdsn.

(4.41)
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Now the sum represents the success probability of the nth relay in the no information

setting, namely,

p(N)
n (sn) =

N∑
m=1

∫
s1:m−1≤sn

sm+1:N

pm(s)fS−m(s−m)ds−m. (4.42)

Thus,

R
(N)

= C1 +NC2

∞∫
sn=0

p
(N)
n (sn)

p
(N)
n (sn)

f̃s(sn)dsn

= C1 +NC2.

(4.43)

Theorem 8 shows that if the source does not adapt the information it gives, the ex-

pected reward it will have to pay remains the same irrespective of the information it

conveys. We also note that the expected reward grows linearly with the number of relays.

The result in Theorem 8 has the following intuitive explanation. It says that the

expected reward paid by the source is equal to expected total cost incurred by all the

relays in the process of delivering the message. Each relay accepts and stores the message

until it meets the destination, and a cost of C2 = Cr +CsE[T̃d] in the process. Since there

are N relays which carry the message, the expected total cost for carrying the message

is NC2. Of these N , one relay will be successful in delivering the message and will incur

an additional delivery cost of C1 = Cd. Thus, the expected total cost incurred by the

relays is C1 + NC2. Since on the long run the relays make neither a profit nor a loss,

the expected total costs incurred by the relays should be offset by the reward paid by the

source, which explains the result in Theorem 8. What is less intuitive though is that the

expected reward paid does not depend on the type of information given to the relays.

4.6 Adaptive Strategy

The analysis in the previous section shows that as long as the information given to all the

relays is of the same type, the source has to pay the same reward. Could the source do

better by changing the type of information it gives to relays based on and when it meets

them? We show in this section that the source can indeed reduce the expected reward it

pays if it can adapt the type of information dynamically. Consider the following situation

in which the source encounters the second relay a long time after it encountered the first

one. If the source discloses the time when it met the first relay to the second one, then

the second relay will correctly compute its probability of success to be small and will ask

for a high reward. If instead the source were not to disclose this information, then the

probability of success computed by the relay would be higher and the source could propose
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a lower reward. Thus, source stands to gain by changing the type of information based

on the time instants it encounters the relays.

In this we shall investigate the benefits that an adaptive strategy can procure for the

source, and bring to light certain structural properties concerning of the optimal adaptive

strategy for some particular cases of the model.

A key assumption we shall make in the analysis of the adaptive strategy is that the

relays do not react to the fact that the source is adapting its strategy. A relay will compute

its success probability based only on its contact time with the source and additional

information, if any, received from the source. In practice, if the relay knows that the source

will adapt its strategy as a function of time, then the relay will also react accordingly, to

which the source will react, and so on ad infinitum. As a first approximation, we shall

restrict the analysis of the adaptive strategy assuming that the relays are naive.

4.6.1 Adaptive Versus Static Strategies

We shall first give bounds on the expected reward paid by the source when it uses the

adaptive strategy.

Let R
(A)

denote the expected reward paid by the source when it uses the adaptive

strategy. The decision of the source to either give or not information to a relay it meets

will depend upon the reward it has to propose in each of the three settings. Thus, the

source when it meets a relay can compute the reward it should promise to this relay within

each setting based on the corresponding success probability estimated by the relay and

then to choose the setting of least reward to be paid to this relay. That is,

R
(A)

=

∫
s

(
N∑
n=1

pn(s) min
k

(
R(k)
n

))
fS(s)ds. (4.44)

From the definition of the adaptive strategy, it can do no worse than any static strategy

which gives an upper bound. Also, the source has to pay at least C1 + C2 because this is

the average cost when there is only one relay, which gives a lower bound. It follows that

Proposition 9. C1 + C2 ≤ R
(A) ≤ R(k)

= C1 +NC2.

Corollary 6. R
(A)

R
(k) ≥ C1+C2

C1+NC2
≥ 1

N .

By using an adaptive strategy the source can reduce its expenses at most by a factor

of 1/N .

Although the exact analytical expressions for an adaptive policy is difficult to compute,

an advantage of the adaptive strategy can be seen from the numerical results. In Figures

4.1 and 4.2, R
(A)

is plotted as a function of λ for N = 5, µ = 1, C1 = 1, and C2 = 5

(C2 = 0.5 in Figure 4.2). It is observed that R
(A)

increases with λ and is gets close to

R
(F )

when λ→∞. On the other hand, for small values of λ, R
(A)

is close to the minimal
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Figure 4.1: Expected reward paid by the source for the adaptive strategy. N = 5, µ = 1,
C1 = 1, C2 = 5.

reward C1 + C2. It appears that R
(A)

has the form (C1 + C2) + C2(1 − e−λγ), for some

constant γ, but we are unable to prove this result.

The exact analytical expression of R
(A)

is difficult to compute unlike the expression

for R
(k)

. Nonetheless, we shall give some structural properties of the adaptive strategy.

In particular, for N = 2, it will be shown that the adaptive strategy is of threshold type

in which the second relay is given either full information or no information depending on

how late it meets the source after the first one.

4.6.2 Two Relays, Decreasing Density Function of Inter-Contact Times

Let us consider a network of a fixed single source, a fixed single destination, and two

relays with an underlying mobility model described in the Section 4.4.2. Futher assume

that densities of residual inter-contact times, f̃s and f̃d, are decreasing functions.

In order to establish the structure of the adaptive strategy, one needs to determine

which information setting has the lowest reward at any given instant. The reward of a

given setting depends in turn on the probability of success estimated by the relay based
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Figure 4.2: Expected reward paid by the source for the adaptive strategy. N = 5, µ = 1,
C1 = 1, C2 = 0.5.

on the information given by source (see (4.5)). For the comparison of the rewards, we

shall need a few results on the probabilities of success, which we give now.

Lemma 11. 1.

p2(s) ≤ 1

2
≤ p1(s), (4.45)

2. for fixed s2, p1(s1, s2) decreases (p2(s1, s2) increases) with s1.

Proof. Prove the first inequality in the first part of the lemma. Then the second inequality

will follow from the fact that p1(s) + p2(s) = 1.

The probability of success of the second relay given vector of meeting times with the

source, s,

p2(s) =
∞∫

y2=s2

f̃d(y2 − s2)
∞∫

y1=y2

f̃d(y1 − s1)dy1dy2. (4.46)

Change the variables and using the properties of the integration of non-negative functions
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obtain,

p2(s) =
∞∫

y2=0

f̃d(y2)
∞∫

y1=y2+s2−s1
f̃d(y1)dy1dy2

≤
∞∫

y2=0

f̃d(y2)
∞∫

y1=y2

f̃d(y1)dy1dy2.

(4.47)

The last expression gives 1/2. Show it thoroughly.

Consider probability density function f(·). Thus, for the function f , by the changing

of integration order obtain,

∞∫
u=0

f(u)
∞∫

v=u
f(v)dvdu =

∞∫
v=0

f(v)
v∫

u=0

f(u)dudv. (4.48)

Note also, that the integration in the left hand side does not depend of the choice of

the integration variables and thus can be rewritten as

∞∫
u=0

f(u)
∞∫

v=u
f(v)dvdu =

∞∫
v=0

f(v)
∞∫

u=v
f(u)dudv. (4.49)

Summation of this two equalities gives one in the right hand side due to the properties

of the probability density function and thus,

∞∫
u=0

f(u)
∞∫

v=u
f(v)dvdu = 1

2 . (4.50)

Since p1(s) + p2(s) = 1, then for the second statement of the lemma to hold, show

only that for fixed s2, the probability p2(s1, s2) is increasing function of s1. This directly

follows from (4.46) due to the decreasing property of the function f̃d.

The above result states that the real probability of success of the first relay decreases

when its meeting time with the source gets closer to that of the second relay. It gives a sim-

ilar monotonicity result for the probability of success of the second relay. The assumption

of decreasing density function comes into play in the proof of these results.

The next lemmas shows the similar inequalities for the success probabilities in the full

information setting and the partial information setting.

Lemma 12.

p
(F )
2 (s) ≤ 1

2
≤ p(F )

1 (s). (4.51)

Proof. The first inequality follows from Lemma 11 and equality (4.3).

For the second inequality, note that the probability of success of the first relay in the

full information setting can be represented as follows,

p
(F )
1 (s) =

∞∫
s2=s1

p1(s)f̃s(s2 − s1)ds2. (4.52)
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Using Lemma 11 for p1(s), we obtain

p
(F )
1 (s) ≥ 1

2

∞∫
s2=s1

f̃s(s2 − s1)ds2 = 1
2 , (4.53)

since
∫∞
s2=s1

f̃s(s2 − s1)ds2 = 1 due to the property of probability density function.

Lemma 13.

p
(P )
2 (s) ≤ 1

2
≤ p(P )

1 (s). (4.54)

Proof. From Lemma 12 for p
(F )
1 , along with equation (4.2), it follows that p

(P )
1 (s) ≥ 1/2.

It is now sufficient to show that p
(P )
2 (s) ≤ 1/2.

The success probability of the second relay in the partial information setting satisfies

p
(P )
2 (s) =

s2∫
s1=0

p
(F )
2 (s)f̃s(s1)ds1

s2∫
s1=0

f̃s(s1)ds1

(4.55)

≤

1
2

s2∫
s1=0

f̃s(s1)ds1

s2∫
s1=0

f̃s(s1)ds1

=
1

2
. (4.56)

where the inequality follows from Lemma 12 according to which p
(F )
2 ≤ 1/2.

We now proceed to the main results on the comparison of the rewards in various

information settings. The first results shows that it is always beneficial for the source to

give information to the first relay independently of s1.

Proposition 10.

R
(F )
1 (s) = R

(P )
1 (s) ≤ R(N)

1 (s) (4.57)

Proof. The equality R
(F )
1 = R

(P )
1 follows from (4.5) and (4.2). For the inequality, from

(4.5), it is sufficient to establish that

p
(N)
1 (s) ≤ p(P )

1 (s), ∀s1 ≥ 0.

The probability,

p
(N)
1 (s) = p

(P )
2 (s1)P(S2 < s1) + p

(P )
1 (s1)(1− P(S2 < s1))

= P(S2 < s1)
[
p

(P )
2 (s1)− p(P )

1 (s1)
]

+ p
(P )
1 (s1)

≤ p(P )
1 (s1),

(4.58)
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where the last inequality follows from (4.54).

The next result in favour of an adaptive strategy pertains to the reward the source

should propose to the second relay.

Proposition 11.

R
(N)
2 (s) ≤ R(P )

2 (s). (4.59)

Proof. The success probability of the second relay in the no information setting, p
(N)
2 (s),

can be expressed as

p
(N)
2 (s) = p

(P )
2 (s)P(S1 < s2) + p

(P )
1 (s)(1− P(S1 < s2)), (4.60)

with S1 being the random time when the source gives the copy of the message to the first

relay it meets.

With (4.54), the following inequality holds,

p
(N)
2 (s) ≥ p(P )

2 (s)P(S1 < s2) + p
(P )
2 (s)(1− P(S1 < s2))

= p
(P )
2 (s), (4.61)

and the statement of the proposition follows.

Proposition 11 says that between the choice of informing a relay that it is the second

one and not giving this information, it is better for the source not to give this information.

Before proceeding to the next result, we prove another lemma.

Lemma 14. p(N)(s) decreases with s.

Proof. The probability,

p(N)(s) = p
(P )
2 (s)P(Ŝ < s) + p

(P )
1 (s)(1− P(Ŝ < s)).

Find its derivative on s,

dp(N)(s)

ds
= p

(P )
2 (s)f̃s(s) +

dp
(P )
2 (s)
ds P(Ŝ < s)

−p(P )
1 (s)f̃s(s) +

dp
(P )
1 (s)
ds (1− P(Ŝ < s)).

=
[
p

(P )
2 (s)− p(P )

1 (s)
]
f̃s(s) +

dp
(P )
2 (s)
ds P(Ŝ < s)

+
dp

(P )
1 (s)
ds (1− P(Ŝ < s)).

The first term of the last sum is negative due to (4.54). To complete the proof, we show

the negativity of two last terms of this sum.
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From (4.55), find the derivative,

dp
(P )
2 (s)

ds
=

p
(F )
2 (s,s)f̃s(s)

s∫
ŝ=0

f̃s(ŝ)dŝ−
s∫

ŝ=0

p
(F )
2 (ŝ,s)f̃s(ŝ)dŝf̃s(s)(

s∫
ŝ=0

f̃s(ŝ)dŝ

)2

=
f̃s(s)

s∫
ŝ=0

[
p
(F )
2 (s,s)−p(F )

2 (ŝ,s)
]
f̃s(ŝ)dŝ(

s∫
ŝ=0

f̃s(ŝ)dŝ

)2 ≤ 0,

since p
(F )
2 (s, s) − p(F )

2 (ŝ, s) ≤ 0 due to the second statement of the Lemma 11 and the

equation (4.3).

With (4.2) and from (4.52), the derivative,

dp
(P )
1 (s)

ds
= −p1(s, s)f̃s(s) < 0.

Thus, the derivative dp(N)(s)
ds is negative and the claimed result follows.

Until now we have shown that it is optimal to give the full information to the first relay,

and for the second relay it is giving no information is always better that giving partial

information. We now compare the settings of no information with that of full information.

Our main result for this section, stated in Theorem 9 shows that there is a threshold,

which depends on the meeting time with the first relay, before which it is optimal to give

full information to the second relay and beyond which it is optimal to give no information.

Once, the source meets the first relay, it can compute this threshold, and based on when

it meets the second relay decide to give or not the information.

Define the difference of the success probabilities as a function of s1 and s2,

g(s1, s2) = p
(N)
2 (s1, s2)− p(F )

2 (s1, s2), (4.62)

then for the source, it will be better to give information when g(s1, s2) < 0.

Theorem 9. There exists 0 ≤ θ1 <∞ such that

1. if 0 ≤ s1 < θ1, then g(s1, s2) ≥ 0, ∀s2 ≥ s1;

2. if θ1 < s1 <∞, then

(a) g(s1, s2) < 0, ∀s2 ∈ [s1, s1 + ω(s1)),

(b) g(s1, s2) > 0, ∀s2 ∈ (s1 + ω(s1),∞),

where θ1 is a solution of the equation g(s1, s1) = 0 and ω(s1) is a solution of g(s1, s1+v) =

0 with respect to v when g(s1, s1) < 0.
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Before going to the proof of the above result, we give some consequences. If the source

met the first relay at s1 ≤ θ1, then irrespective of the time instant at which it meets the

second relay, it should not give any information to the second relay. On the other hand, if

s1 ≥ θ1, then the strategy of the source should be of threshold type: if it meets the second

relay before s1 + ω(s1), then it should give full information, otherwise it should not give

any information.

Proof of Theorem 9. First, note that for fixed s2, g(s1, s2) decreases with s1, since in this

case p
(F )
2 (s1, s2) increases with s1 (Lemma 11 with equality 4.3), whereas p

(N)
2 (s) does not

depend on s1.

Thus, the closer s1 is to s2 the smaller g(s1, s2) is. This also implies that for fixed s1,

g(s1, s1 + v) will increase with v, for v ≥ 0.

Let us show that g(0, s2) = p
(N)
2 (0, s2)− p(F )

2 (0, s2) is non-negative. Using the expres-

sion

p
(N)
2 (s1, s2) = p

(P )
2 (s1, s2)P(S1 < s2)

+ p
(P )
1 (s2, s2)(1− P(S1 < s2)), (4.63)

we obtain,

g(0, s2) = [p
(P )
1 (s2, s2)− p(F )

2 (0, s2)]

−[p
(P )
1 (s2, s2)− p(P )

2 (0, s2)]P(S1 < s2).

(4.64)

With (4.2), and that p
(F )
2 (s1, s2) increases with s1 (Lemma 11 with equality 4.3), the

difference,

p
(P )
1 (s2, s2)− p(F )

2 (0, s2) ≥ p(F )
1 (s2, s2)− p(F )

2 (s2, s2) ≥ 0, (4.65)

where the last inequality follows from the Lemma 12.

Now due to the non-negativity of the first difference in (4.64) the following inequality

can be obtained,

g(0, s2) ≥ [p
(P )
1 (s2, s2)− p(F )

2 (0, s2)]P(S1 < s2)

−[p
(P )
1 (s2, s2)− p(P )

2 (0, s2)]P(S1 < s2)

= P(S1 < s2)[p
(P )
2 (0, s2)− p(F )

2 (0, s2)].

(4.66)

The success probability, p
(P )
2 (s1, s2), can be represented as

p
(P )
2 (s1, s2) =

∫ s2
ŝ1=0 p

(F )
2 (ŝ1, s2)f̃s(ŝ1)dŝ1∫ s2
ŝ1=0 f̃s(ŝ1)dŝ1

. (4.67)

Again, due to the increasing property of p
(F )
2 (s1, s2) on s1, p

(F )
2 (ŝ1, s2) ≥ p(F )

2 (0, s2). Then,
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since p
(F )
2 (0, s2) does not depend on s1, we obtain,

p
(P )
2 (0, s2) ≥

p
(F )
2 (0, s2)

∫ s2
ŝ1=0 f̃s(ŝ1)dŝ1∫ s2

s1=0 f̃s(s1)ds1

= p
(F )
2 (0, s2), (4.68)

and hence, g(0, s2) ≥ 0. Since, for fixed s2, the function g(s1, s2) is non-negative at s1 = 0

and decreases in s1, we can conclude that the equation g(s1, s2) = 0 has at most one real

solution with respect to s1.

Thus, if for s1 and s2 close to each other, g(s1, s2) < 0, i.e. if g(s1, s1) < 0 then

there exists ω(s1) such that g(s1, s2) < 0 if s2 ∈ [s1, s1 + ω(s1)) and g(s1, s2) > 0 for

s2 ∈ (s1 +ω(s1),∞) since g(s1, s1 + v) increases with v as was seen before. Meanwhile, in

case g(s1, s1) ≥ 0, the difference g(s1, s1 + v) will be positive ∀v ≥ 0.

Now let us find out when the condition g(s1, s1) < 0 holds. As was shown before, for

fixed s2, g(0, s2) ≥ 0, and hence, g(0, 0) ≥ 0. Consider the behaviour of g(s1, s1) with

increasing of s1.

Note that p
(F )
2 (s1, s1) = 1/2, since,

p
(F )
2 (s1, s1) =

∞∫
y2=0

f̃d(y2)
∞∫

y1=y2

f̃d(y1)dy1dy2 = 1/2, (4.69)

proof of which can be found in the proof of Lemma 11. Thus,

g(s1, s1) = p
(N)
2 (s1, s1)− 1

2 , (4.70)

and it decreases with s1 since p
(N)
2 decreases with time (Lemma 14).

Thus, the equation g(s1, s1) = 0 has at most one real solution θ with respect to s1,

such that if 0 ≤ s1 ≤ θ then g(s1, s1) > 0. If s1 > θ then g(s1, s1) < 0 and the threshold

ω(s1) for the meeting time s2 holds.

4.6.3 Two relays, exponentially distributed inter-contact times

Let us illustrate the result in Theorem 9 for exponentially distributed inter-contact times.

The difference in (4.62)) can be written as

g(s1, s1 + v) = a(s1)e−µv − b(s1)e−λv,

where

a(s1) =
1

2

(
λ

λ− µ
e−µs1 − 1

)
, and

b(s1) =
µ2

λ2 − µ2
e−λs1 .
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First, consider the case λ > µ.

Proposition 12. For λ > µ, there exist 0 ≤ θ1 ≤ θ2 <∞ such that

1. if 0 ≤ s1 ≤ θ1, then g(s1, s1 + v) ≥ 0, ∀v ≥ 0;

2. if s1 ≥ θ2, then g(s1, s1 + v) < 0, ∀v ≥ 0;

3. if θ1 < s1 < θ2, then

(a) g(s1, s2) < 0, ∀s2 ∈ [s1, s1 + ω(s1));

(b) g(s1, s2) > 0, ∀s2 ∈ (s1 + ω(s1),∞);

where

θ2 = − 1

µ
log
(

1− µ

λ

)
,

ω(s1) =
1

λ− µ
log

(
b(s1)

a(s1)

)
,

and θ1 is the solution of a(θ1) = b(θ1). Moreover, ω is an increasing and convex function.

For this case, the threshold ω(s1) becomes infinity for s1 ≥ θ2. So, the adaptive

strategy is of following form: if s1 < θ1, then give no information to the second relay

irrespective of when it meets the source. On the other hand, if s1 > θ2, then give full

information to the second relay irrespective of s2. For θ1 < s1 < θ2, give full information

if s2 < s1 + ω(s1), otherwise do not give any information. The adaptive strategy in

Proposition 12 is illustrated in Figure 4.3.

The other case λ ≤ µ is similar with the difference that θ2 =∞. For any s1 there will

always be some values of s2 when the source will not give information to the second relay.

The formal result is as follows.

Proposition 13. For λ ≤ µ, there exist 0 ≤ θ1 <∞ such that

1. if 0 ≤ s1 ≤ θ1, then g(s1, s1 + v) ≥ 0, ∀v ≥ 0;

2. if θ1 < s1 <∞, then

(a) g(s1, s1 + v) < 0, ∀s2 ∈ [s1, s1 + ω(s1));

(b) g(s1, s1 + v) > 0, ∀s2 ∈ (s1 + ω(s1),∞);

where θ1 and ω(s1) are as defined in Proposition 12.
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s1

s2

θ1

s 2
=
s 1

+
ω
(s

1
)

θ2

s1 = s2

NO INFORMATION

FULL
INFORMATION

Figure 4.3: Optimal strategy for the source for λ > µ.

The adaptive strategy for λ < µ for the source is illustrated in Figure 4.4. As a special

case, for λ = µ,

θ1 =
−LW (−e−1.5)− 1.5

λ
,

ω(s1) =
2eλs1 − (3 + 2λs1)

2λ
,

where LW is the LambertW function.
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s2 = s1 + ω(s1)

s1

s2

θ1

s1 = s2
FULL

NO INFORMATION

INFORMATION

Figure 4.4: Optimal strategy for the source for λ < µ.

4.7 Conclusion

We proposed a reward mechanism to incentive relays in message forwarding in DTNs.

Furthermore we argue that such a coordination scheme should not rely on end to end

control message exchange. To this respect, we have provided a novel key contribution:

the reward mechanism in fact is designed to secure the participation of relays in the

delivery process by proposing a reward that takes into account the costs incurred by the

relays and the risk they are exposed to during the delivery process. This reward is the

minimum amount that offsets the expected delivery cost, as estimated by the relay from

the information given by the source (number of existing copies of the message, age of

these copies). We first showed that the expected reward paid by the source remains the

same irrespective of the information it conveys, provided that the type of information

does not vary dynamically over time. On the other hand, the source can gain by adapting

the information it conveys to a meeting relay, and we gave the structural results of the

optimal adaptive policy for the source in cases of two relays or exponentially distributed

inter-contact times.

Some results of this study have been published in the proceedings of the IEEE In-

ternational Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless

Networks, WiOpt-2014 (Brun et al., 2014).





5
A THRESHOLD TYPE POLICY OF A DTN

NODE UNDER REWARD INCENTIVE

MECHANISM

This chapter is also devoted to studying of DTN model with the same structure of the costs

for the relay nodes and the reward mechanism introduced in the previous chapter. We focus

on the optimal policies of the relays as best-response on the fixed reward promoted by the

source that is to participate in message forwarding or not and if so then to drop the message

or to retain it. First, we give a description of the new model and highlight differences with

the previously considered one. Next, we describe the structure of stochastic games to

be used later in formalization of our DTN model. Then the case with only one relay

is considered in order to understand the form of relay’s optimal policy, after which we

examine the network assuming two relays.

5.1 On the Reward Configuration

The store-carry-forward approach by which DTN maintains connectivity, is based on the

assumption that a transient node can store a message for relatively long periods of time be-

fore forwarding it to the destination or other transient node. In addition to this approach,

the probability of message delivery is increased due to the implementation of multi-copy

routing. However, plenty of message copies may cause a large resource consumption for

DTN nodes even for a single message to be delivered. The situation is aggravated due
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to a technical problem with feedbacks so that the source may continue to generate copies

within a message lifetime and the DTN nodes to accept them, even if the message has

already been delivered. A reward mechanism that can compensate all expenses of a relay

may however be very costly for the source. Indeed, the one we introduced in the previous

chapter ensures full cooperation of the mobile nodes in message forwarding by promising

to cover the expected cost estimated by a relay node. We have developed an adaptive

strategy for the source that allows it to reduce the expected cost. Nevertheless, the ex-

pected reward may be still quite costly for the source depending on the parameters of

the node mobility and energy consumption of relays’ batteries. To construct an optimal

reward, first we need to know how willing the mobile nodes are to participate in message

forwarding in response to the fixed reward, and what could be the best-response strategies

of the relays. We address these questions in our study assuming DTN model with two-hop

routing scheme.

In the next section, we give a full description of the model and proceed then to analysis.

5.2 Problem description

Consider a set of nodes in which there is one source, one destination, and N relays. The

relays are mobile and meet the source or the destination every once in a while. It shall be

assumed that the inter-meeting time between a relay and the source (resp., destination) is

a sequence of i.i.d. random variables with distribution function Fs (resp., Fd). Two nodes

can exchange data only when they meet. It is assumed that the source and the destination

are fixed, and thus cannot communicate directly.

After a message is generated, the source proposes it to every relay that it meets. A

relay can choose to either accept the message or reject it. As an incentive, the source

offers a fixed reward, say R, to be claimed by the first relay that delivers the message to

the destination. We emphasize that only the first relay to deliver the message gets the

reward, R. The other relays are not entitled to any share of the proposed reward. A relay

that accepts the message incurs certain costs:

1. cost related to the energy spent in receiving the message from the source. This is

fixed cost and will be denoted by Cr;

2. energy cost of transmitting the message to the destination in case this relay is the

first one to do so. This cost is also fixed, and will be denoted by Cd.

3. and the cost of storing the message while the relay is searching for the destination.

We denote by Cs the cost per unit time incurred for storing the message.

Associated with each message is a deadline before which the message remains useful to

the destination. Once the deadline has passed, the destination will no longer accept the

message from the relays.
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The decision problem for a relay, when it meets the source, is whether to accept the

message or not. In case it accepts the message, the relay can drop the message at any

time if it has not yet delivered it to the destination, and if it is no longer profitable to

keep the message. The precise optimization problem for the relays is described next.

5.3 Stochastic game with partial information

We shall study a discrete-time model of this game. The source generates the message at

time instant 0 with a deadline at instant τ + 1. It is assumed that the reception of the

message from the source and its transmission to the destination each takes one time slot,

so that a relay has to meet the destination before time τ in order to get the reward. When

a relay meets the source it can decide whether to accept or reject the message (assuming

it does not already have it). Once the relay accepts the message it can choose to retain

or to drop it in each subsequent time slot until it meets the destination or the deadline

of the message expires. Thus, the potential decision epochs for every relay are in the set

{0, 1, . . . , τ−1}. Each relay has to make decision over multiple stages and its cost depends

upon its own actions as well as those of the other relays. The objective of each relay is to

minimize expected cost it incurs for participating in the game. This strategic interaction

between the relays falls within the framework of stochastic games introduced by Shapley,

1953. In our model, each relay is aware of its own state but does not know that of the

others. Furthermore, it does not know whether the packet has already been delivered

to the destination or not. Our game is thus a stochastic game with partial information

(Goush et al., 2004). We now give some background on this type of games. These games

are defined by:

• τ : time horizon (message deadline, in our case)

• R = {1, 2, . . . , N} set of players (relays)

• Ej , j ∈ R : state space of relay j. We denote by Xj
n the state of player j at time n.

• Aj , j ∈ R : action space of relay j. We denote by Ajn the action taken by player j

at time n.

• E :=
⊗
j∈R
Ej .

• A :=
⊗
j∈R
Aj .

• Bj : Ej × {0, 1, . . . , τ − 1} → D(Aj), where D(A) is the set of probability measures

on A. The set Bj(t) is the set of mixed strategies available to relay j at every time

instants. In other words, an element σjn(x) is the probability distribution over the
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set of actions Aj used by player j to choose its action when it is in state x at time

n.

• Pj , j ∈ R : transition probability matrix of relay j on the space of its state-action

pairs.

• E0 : state space of the packet. This can be 0 or 1 which indicates whether the packet

has been delivered or not. We denote by X0
n the state of the packet at time n.

• gj : Ej ×Aj × E0 → R, j ∈ R : cost function for relay j.

Fix σ :=
(
σj
)
j∈R ∈

⊗
j∈R
Bj . Let

{
Zσn := (Xj

n, A
j
n)

(σ)
j∈R

}
n=0,...,τ−1

be the stochastic

process of state-action pairs generated by σ. And, assume that the process X0
n, n ≥ 1 is

adapted to the natural filtration of Zσn. By this we mean that, at every time instant, X0
n

is measurable with respect to the history of the state-action pairs.

Let b−j ∈ D(E−j) be the distribution of the initial state of the relays other than j.

The expected cost of relay j for σ can then be defined as:

Vj(σ
j , σ−j ;x0

0, x
j
0,b−j) = Ex0,b−j

τ−1∑
n=0

αngj(X
j
n, A

j
n, X

0
n), (5.1)

where α is the discount factor. The terminal cost is assumed to be 0 in every state.

The objective of relay j is to minimize its cost given the strategy of the others. That

is,

Wj(σ
−j ;x0

0, x
j
0,b−j) = min

s∈Bj
Vj(s, σ

−j ;x0
0, x

j
0,b−j), (5.2)

and compute

βj(σ
−j ;x0

0,b−j) = arg min
s∈Bj

Vj(s, σ
−j ;x0

0, x
j
0,b−j), (5.3)

which is the best-response of relay to σ−j given the intial conditions.

This is a partially observable stochastic game (see for example, Goush et al., 2004)

since each relay knows only its state but not that of the others. A consequence of the

lack of information is that the concept of Markov strategies and Markov equilibrium is

not applicable to this setting. The optimal action of a relay in a given state depends on

the state of the other relays which is not known to this relay. The probability distribution

over the states of the other relays will depend upon the actions they have been taking in

the past. This means that a relay will have to keep track of the past actions of the others

in order to compute its own action in a given state. The probability of arriving in a given

state depends on the actions taken in the past because the action in the current state will

depend upon the state of the other relays which is not known.
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A policy σ is said to be an equilibrium if

βj(σ
−j ;x0

0,b−j) = σj , ∀j. (5.4)

The values of different parameters for our model are as follows.

State and action spaces

The state of each relay takes one of the five possible values:

Value Significance Action set

0 relay does not have the packet ∅
ms relay meets the source (accept, reject)
1 relay has the packet (drop, keep)
md relay meets the destination ∅
2 relay quits the game ∅

In states 0 and 2 the relay does not have a non-trivial action. In state 0 it is waiting

to meet the source, while in state 2 it has already quit the game.

Transition matrix

Regarding the contact process that keeps track of the contacts of the relay with the source

and the destination, we shall assume i.i.d. contact times. As a consequence, a relay needs

to know only the current state of the contact process, and not its entire history to take its

decision. In the following, we let p be the probability that a relay meets the destination

at the next time step, and q be the probability that it meets the source. The state of each

relay evolves according to a time-homogeneous Markov chain whose transition probabilities

depend on the action chosen in each state, and is given by:

Pj =



0 ms 1 md 2

0 1− q q 0 0 0

ms 1reject 0 1accept 0 0

1 1drop 0 (1− p)1keep p1keep 0

md 0 0 0 0 1

2 0 0 0 0 1


The transition diagram of the Markov chain is shown in Figure 5.1.

State of the packet

The state of the packet can take two values: 0 (it has not been delivered) or 1 (it has been

delivered). The transition probabilities between these two states depends upon the state
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Figure 5.1: Transition diagram for the Markov chain governing the state of each relay.

of the relays.

P (X0
n+1 = 1|X0

n = 0,Xn) = P ((∪j∈R{Xj
n = 2} = ∅) ∩ (∪j∈R{Xj

n = md} 6= ∅)),
P (X0

n+1 = 1|X0
n = 1,Xn) = 1.

Cost function

The one-step cost incurred by the relay depends on its current state and the action it takes

(whether it accepts the packet or not, whether it drops the packet or not). Further, when

it meets the destination (that is, in state md) the cost incurred depends upon whether

any other relay has already delivered the packet or not. Hence

g(ms, accept, ·) = Cr,

g(1, keep, ·) = Cs,

g(md, ·, 0) = R− Cd,

and is 0 for all other arguments.

5.4 The Single Player Case

In order to get some insights into the structure of the best-response policy of a relay, we

shall first consider the case of a single player. In order to simplify notations, we drop the

index j of the relay. Since no other relay can deliver the message, the state of the packet

is X0
n = 0 until the relay meets the destination, and thus we can further simplify notations

by writing g(x, a) instead of g(x, a, 0).
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5.4.1 Dynamic Programming Formulation

Assume that the relay meets the source at instant t ∈ [0, τ ]. For epochs 0, . . . , t− 1, thus,

there are no decisions to be made. For the remaining epochs, the optimal policy can be

computed using Dynamic Programming.

Let Vn(x) be the optimal cost-to-go starting in state x ∈ {0,ms, 1,md, 2} at instant n.

From the dynamic programming equation,

Vn(Xn) = min
a∈A(Xn)

g(Xn, a) + αEVn+1(Xn+1), (5.5)

where α is the discount factor (0 ≤ α < 1).

At time n, if the relay is in contact with the destination, its terminal cost is

Vn(md) = Cd −R, n = 1, 2, . . . , τ. (5.6)

In particular, we have Vτ (md) = Cd − R at time τ . If at that time the relay has the

message and is not in contact with the destination, then it is optimal to drop the message

since it is no longer useful, so that Vτ (1) = 0. On the other hand, if the relay does not

have the message at instant τ , then it incurs no costs, so that Vτ (0) = Vτ (ms) = 0. To

summarize, the terminal costs at the instant n = τ are:

Vτ (md) = Cd −R. (5.7)

Vτ (x) = 0, ∀x 6= md. (5.8)

The optimal policy at different decision epochs and states can be computed recursively

by rolling back (5.5). If the contact process is history dependent, then the optimal policy

is usually computed numerically. However, as we shall see below, the assumption of an

i.i.d. contact process enables the derivation of structural properties of the optimal policy.

5.4.2 To Drop or to Retain

Assume that the relay is in state 1 at instant τ − 1, that is it has the message and it is

not in contact with the destination. The relay has to decide whether to drop the message

or not. Taking n = τ − 1 in (5.5), we obtain

Vτ−1(1) = min
a∈{keep,drop}

[g(1, a) + αEVτ (Xτ )]

= min (0, Cs + α(pVτ (md) + pVτ (1))) ,

= min (0, Cs + pα(Cd −R)) , (5.9)
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where we have used the short-hand notation p = 1− p, and the last equality follows from

(5.7)–(5.8). Thus, if the first term is the minimum, then it is optimal to drop the message

at τ − 1, otherwise it is optimal to keep it.

One can recursively develop (5.9) to compute the optimal policy at step n given that

the relay has the message and has not yet encountered the destination. For n = τ − 2, we

obtain

Vτ−2(1) = min {0, Cs + α(pVτ−1(md) + pVτ−1(1))} ,
= min { 0, Cs + pα(Cd −R),

Cs(1 + pα) + (Cd −R)α(p+ ppα)} . (5.10)

Here, the second and the third terms in the minimum correspond to the cost of retaining

the message at instant τ − 2. Thus, if either term is negative, then it is optimal to retain

the message. Otherwise, it is optimal to drop the message at instant τ − 2.

More generally, the ith component in the min corresponds to the cost obtained if the

action keep is played i consecutive times starting from the current decision epoch n, until

the relay meets the destination or decides to drop the message. This ith component can

be represented as follows,

Un,i =
i∑

j=1

(αp)j−1 (Cs + (Cd −R)αp) , (5.11)

= (Cs + αp(Cd −R))
1− (pα)i

1− pα
. (5.12)

The recursion (5.9) can be developed in terms of Un,i as:

Vn(1) = min(0, Un,1, Un,2, . . . , Un,τ−n). (5.13)

The optimal policy at instant n is to retain the message if either of Un,i is negative.

Otherwise it is optimal to drop the message at time n. Note from (5.12) that if Cs +

αp(Cd − R) < 0, then Un,i < 0, ∀n and ∀i, and the sequence decreases with i. From

(5.13), one can conlude that if Cs+αp(Cd−R) < 0, then the relay will retain the message

until it is delivered to the destination or the deadline expires. Otherwise, the relay will

drop the message immediately. Thus,

R >
Cs
αp

+ Cd, (5.14)

is a necessary condition for the relay to attempt the delivery of the message.
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5.4.3 To Accept or to Reject

Assume that the relay is in state ms at instant t, that is it in contact with the source and

has not the message. The relay has to decide whether to accept the message or not. The

optimal cost at t is:

Vt(ms) = min(0, g(ms, accept) + αVt+1(1))

= min(0, Cr + αVt+1(1)), (5.15)

where Vt+1(1) can be computed from (5.13). Thus, if at time t the second term is negative,

then it is optimal to accept the message from the source. Otherwise, it is optimal to reject

it. In particular, if condition (5.14) is satisfied, Un,i is a decreasing function of i and

equation (5.13) yields

Vn(1) = Un,τ−n = (Cs + αp(Cd −R))
1− (pα)τ−n

1− pα
. (5.16)

We thus obtain that the expected cost for the relay if it accepts the message is

g(ms, accept) + αVt+1(1) = Cr + Ut+1,τ−t−1. (5.17)

We conclude from (5.15) and (5.17) that if the relay meets the source at time t, it will

accept the message provided that

Cr + Ut+1,τ−t−1 < 0. (5.18)

Note that (5.16) implies that Ut+1,τ−t−1 increases with t. Since Ut+1,τ−t−1 is negative

and increases with t, there exists a threshold t∗ such that for t ≤ t∗, the relay will accept

the message, and it will reject the message after t∗. The threshold can be easily computed

using the above inequality,

t∗ = τ − 1−
ln
(

1 + Cr(1−pα)
Cs+αp(Cd−R)

)
ln(pα)

. (5.19)

5.5 Game with two relays

We now consider the newtork with two relays. We shall restrict our attention to threshold

type policies, that is policies such σjn(ms) = accept if n ≤ θ1 and reject otherwise, and

σjn(1) = drop if n ≥ θ2, and keep otherwise. The threshold θ2 could depend on the meeting

time with the source. We shall show that if one relay follows a threshold type policy then

the best-response of the other relay is also a policy of threshold type.

We shall thus assume that one of the two relays – say relay 2, follows a threshold type

policy. That is, there exist θ2
1 and θ2

2 > θ2
1 such that
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σ2
n(ms) =

{
accept if n ≤ θ2

1,

reject if n > θ2
1,

(5.20)

and

σ2
n(1) =

{
keep if n ≤ θ2

2,

drop if n > θ2
2.

(5.21)

As in Section 5.4, we shall use dynamic programming to derive the best-response policy

of the first player to the above policy of relay 2. We let V 1
n (x) be the optimal cost-to-go

starting in state x ∈ {0,ms, 1,md, 2} at instant n. As we shall see below, the optimal

cost-to-go starting in states ms and 1 can be expressed in terms of the expected costs

when the destination is reached.

5.5.1 Expected costs when the destination is reached

If at time n relay 1 has the message and is in contact with the destination, then its

expected cost is

V 1
n (md) =

1

2
(Cd −R)P

(
X2
n = md

)
+ (Cd −R)P

(
X0
n = 0, X2

n 6= md

)
, (5.22)

for all n ∈ {1, 2, . . . , τ}, where it is assumed that if both relays meet the destination at

the same time, then each one wins the reward with probability 1
2 .

Define 1 − δn as the probability that relay 2 delivers the message at a time t ≤ n, as

estimated by relay 1 . Note that δn−1 − δn is the probability that the second relay meets

the destination with the message precisely at time n. The expected cost V 1
n (md) can be

written as follows

V 1
n (md) =

1

2
(Cd −R) (δn−1 − δn) + (Cd −R) δn,

=
δn−1 + δn

2
(Cd −R). (5.23)

Lemma 15 proves two fundamental properties of the sequence V 1
1 (md), V

1
2 (md), . . . that

will be required to establish the structure of the optimal policy of relay 1.

Lemma 15. The sequence V 1
1 (md), V

1
2 (md), . . . is such that

(a) it is non-decreasing with n, and

(b) it is constant for all n ≥ θ2
2 + 1.
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Proof. To prove assertion (a), observe that since δn−1 − δn is the probability was defined

before, we have δn−1 ≥ δn. Hence the sequence δ1, δ2, . . . is non-increasing. With (5.23),

it yields V 1
n+1(md)− V 1

n (md) = 1
2(Cd −R)(δn+1 − δn−1) ≥ 0, which concludes the proof.

Let us now prove assertion (b). Since at time θ2
2 +1 the second relay drops the message

if it has it, the probability that it delivers the message after that time is 0, implying that

δn = δθ22+1 for all n > θ2
2. For k > θ2

2 + 1, it yields

V 1
k (md) =

δk−1 + δk
2

(Cd −R) = δθ22+1 (Cd −R) = V 1
θ22+1(md), (5.24)

which concludes the proof.

5.5.2 To drop or to retain

Let us assume that relay 1 is in state 1, that is it has the message but it is not in contact

with the destination. It has to decide whether to retain it or to drop it. Proceeding

backward in time, we have

V 1
τ−1(1) = min

a∈{keep,drop}
[g(1, a) + αEV 1

τ (X1
τ )],

= min
(
0, Cs + αpV 1

τ (md) + αpV 1
τ (1)

)
,

= min
(
0, Cs + αpV 1

τ (md)
)
, (5.25)

and

V 1
τ−2(1) = min

a∈{keep,drop}
[g(1, a) + αEV 1

τ−1(X1
τ−1)],

= min
(
0, Cs + α

[
pV 1

τ−1(md) + pV 1
τ−1(1)

])
,

= min
(
0, Cs + αpV 1

τ−1(md) ,

Cs + αpV 1
τ−1(md) + αp

[
Cs + αpV 1

τ (md)
])
. (5.26)

More generally, we have

V 1
n (1) = min(0, Un,1, Un,2, . . . , Un,τ−n), (5.27)

where

Un,i =
i∑

j=1

(αp)j−1
[
Cs + αpV 1

n+j(md)
]
. (5.28)

The optimal policy at instant n is to retain the message if min
i=1,...,τ−n

Un,i < 0. Otherwise
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it is optimal to drop the message at n.

We establish below two properties of the Un,i.

Lemma 16. The sequence {Un,1}n=1,2,··· is a non-decreasing sequence, which is constant

starting from n = θ2
2.

Proof. We first show that the sequence is non-decreasing. With (5.28) we have

Un+1,1 − Un,1 = Cs + αpV 1
n+2(md)− Cs − αpV 1

n+1(md),

= αp
(
V 1
n+2(md)− V 1

n+1(md)
)
,

and with Lemma 15 we can conclude that Un+1,1 ≥ Un,1 that corresponds to the first

assertion of the lemma. In order to show that Un,1 = Uθ22 ,1 for all n ≥ θ2
2, we use Lemma

15.(b) to obtain

Un,1 = Cs + αpV 1
n+1(md)

= Cs + αpV 1
θ22+1(md)

= Uθ22 ,1

Lemma 17. For all n ∈ {1, 2, . . . , τ}, if Un,1 ≥ 0, then min
i=1,...,τ−n

Un,i = Un,1.

Proof. Fix n ∈ {1, 2, . . . , τ} and assume Un,1 ≥ 0. It is enough to prove that the sequence

Un,1, Un,2, . . . is a non-decreasing sequence. Observing from (5.28) that Un,i can also be

written as follows

Un,i =

i−1∑
j=0

(αp)jUn+j,1, (5.29)

we obtain with Lemma 16 that Un,i+1−Un,i = (αp)iUn+i,1 ≥ (αp)iUn,1. We thus conclude

that Un,1 ≥ 0 implies that Un,1, Un,2, . . . is a non-decreasing sequence, which yields the

proof.

We now show the following result.

Proposition 14. At time n, V 1
n (1) < 0 if and only if Un,1 < 0.

Proof. From (5.27), it is obvious that Un,1 < 0 implies that V 1
n (1) < 0. By contraposition,

in order to show that the converse is true, it is enough to show that Un,1 ≥ 0 implies that

V 1
n (1) ≥ 0, which is a direct consequence of Lemma 17.
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According to Lemma 16, the Un,1 are non-decreasing with n. Thus, Proposition 14

implies that relay 1 will retain the message as long as Un,1 < 0, and will drop it once Un,1
becomes positive. We are now in position to show that once relay 1 has the message, it

uses a threshold type strategy to decide whether to retain it or to drop it.

Proposition 15. If Uθ22 ,1 ≥ 0 then there exists threshold θ1
2 ≤ θ2

2 such that relay 1 retains

the message until θ1
2 and drops it at time θ1

2 + 1. Otherwise, if Uθ22 ,1 < 0, relay 1 retains

the message until it meets the destination or the deadline expires.

Proof. Let us first consider the case Uθ22 ,1 ≥ 0. Let t be the time at which relay 1 accepts

the message from the source. Since

V 1
t (ms) = min

(
0, Cr + V 1

t+1(1)
)
,

has to be negative for relay 1 to accept the message, this implies that V 1
t+1(1) < −Cr.

According to Proposition 14, V 1
t+1(1) < 0 in turn implies that Ut+1,1 < 0. Since from

Lemma 16 the sequence U1,1, U2,1, . . . is non-decreasing, Ut+1,1 < 0 and Uθ22 ,1 ≥ 0 imply

that there exists θ1
2 ∈ [t+1, θ2

2] such that Un,1 < 0 for all n ≤ θ1
2 and Uθ12+1,1 ≥ 0. We thus

conclude that V 1
n (1) < 0 for all n ≤ θ1

2 and V 1
θ12+1

(1) ≥ 0. In other words, relay 1 retains

the message until time θ1
2, and drops it at time θ1

2 + 1.

Let us now consider the case Uθ22 ,1 < 0. According to Lemma 16, the sequence

U1,1, U2,1, . . . is non-decreasing and constant starting from n = θ2
2. We thus conclude

that Un,1 < 0 for all n ∈ {1, 2, . . . , τ}. With Proposition 14, it yields V 1
n (1) < 0 for all

n ∈ {1, 2, . . . , τ}, implying that the optimal strategy for relay 1 is to retain the message

until it meet the destination or the deadline expires.

According to Proposition 15, the best-response policy of player 1 to the strategy of

player 2 is therefore as follows:

σ1
n(1) =

{
keep if n ≤ θ1

2,

drop if n > θ1
2,

(5.30)

where the threshold θ1
2 can be greater than τ .

5.5.3 To Accept or to Reject

Let t be the time at which relay 1 meets the source. The optimal expected cost at t is:

V 1
t (ms) = min(0, g(ms, accept) + αV 1

t+1(1)),

= min(0, Cr + αV 1
t+1(1)), (5.31)
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where V 1
t+1(1) can be computed from (5.27). Thus, if at time t the second term is negative,

then it is optimal to accept the message from the source. Otherwise, it is optimal to reject

it.

Proposition 16. There exists θ1
1 such that relay 1 rejects the message if it meets the

source at a time n > θ1
1.

Proof. Observe that (5.31) can be written as follows

V 1
t (ms) = min(0, Cr + min

i=1,...,τ−t−1
Ut+1,i).

Since Lemma 16 implies that min
i=1,...,τ−t−1

Ut+1,i increases with t, we can assert that if

at time θ1
1 the relay rejects the message, i.e., if min

i=1,...,τ−θ11
Uθ11 ,i ≥ 0, then it will also reject

it at all subsequent contact times k > θ1
1 with the source.

We note that the threshold θ1
1 can be larger than τ , in which case relay 1 always accepts

the message when it meets the source. Similarly, the threshold θ1
1 can be smaller than 1,

in which case relay 1 never accepts the message when it meets the source.

5.6 Conclusion

We studied the selfish behaviour of DTN nodes incentivised by a reward for participating

in message forwarding. The reward is proposed by the source to every relay it meets,

but is paid only to the first one that delivers the message. A relay meeting the source

is not informed of the existence of other message copies. Assuming a given lifetime for

the message, we considered the (discrete-time) decision problem faced by a relay. When

it meets the source, a relay has to decide whether to accept the message or not, and

once the relay has the message it has to choose to retain or to drop it at subsequent

decision epochs. Each relay makes its decisions in order to minimize the expected cost it

incurs for participating. We modelled the interaction between mobile nodes as a stochastic

game with partial information. For the single player case, we first obtained a necessary

condition for the relay to attempt the delivery of the message that reflects a minimal value

of the reward. In fact it implies the minimal reward sufficient to ensure that the player

will not drop the message. We then saw that the relay’s strategy to accept the message

from the source is of a threshold type. Extending the model to the case of two players,

we established that if one of the players follows a threshold type policy then the other

one will also use a similar strategy. We thereby have come to the question whether such

threshold strategies are an equilibrium of the game. A positive answer to these question

is not obvious, however if so it gives strong research impetus and opens up a possibility

to fine-tune our reward mechanism.



6
SUMMARY AND DISCUSSIONS

Communication networks is an actively researched area, and a number of studies is related

to network environments where multiple self-interested parties interact. For analytical in-

vestigations of such competitive interactions, a conceptual framework is provided by game

theory. Game-theoretic approach is widely used for analysis of decentralized network set-

tings and has found applications in as diverse areas as load-balancing in server farms,

power control and spectrum allocation in wireless networks, or congestion control in the

Internet. In our study, we have focused on two leading research directions in commu-

nication networking that are decentralized routing and Delay tolerant networking, and

investigated game scenarios therein. Primarily, we have addressed to the problem of un-

coordinated routing and proposed a different approach for establishing its convergence

property. For DTNs, we have modelled selfish behaviour of DTN nodes and developed a

mechanism for nodal cooperation.

6.1 A Different Approach to Study of the Convergence

Convergence to invariant traffic allocation is an important property for uncoordinated

routing in multi-agent networks that reflects stability of steady state. In a non- cooperative

game model of competitive routing, best-response dynamics provides a natural play to

reach an equilibrium distribution of traffic. A commonly used potential-based method is

powerful to prove the convergence of uncoordinated dynamics in non-cooperative games.

However, it faces significant technical difficulties in the construction of a suitable potential

function. We aimed to develop a universal approach to establish the convergence of best-
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response dynamics in routing games. Our focus was on a network of parallel links shared

by a finite number of selfish users, where each user controls a non-negligible portion of

the total traffic, and seeks to split his flow over the links of the network so as to minimize

his own cost. We have investigated convergence assuming the well-known (myopic) best-

response dynamics. We have analysed the sequential (or round robin) variant of it, where

players play in a cyclic manner according to a pre-defined order.

Our approach to prove the convergence of the best-response dynamics is based on

the notion of non-linear spectral radius. To apply this approach one has to construct an

operator for the dynamics, then show Lipschitz continuity of the operator and that its

non-linear spectral radius is lower than unity. The non-linear spectral radius is related to

the joint spectral radius of a set of Jacobian matrices of the operator. For our routing

game, we have shown that the best-response function is Lipschitz, and established the

specific structure of their Jacobian matrices. We have thus obtained a purely structural

sufficient condition that allows to reduce the analysis of the convergence of the sequential

best-response dynamics to the analysis of the joint spectral radius of certain matrices.

We have shown that this condition is met in two cases: two-player game for an arbitrary

number of links and for a wide class of cost functions; and for arbitrary numbers of players

and links in the case of linear latency functions. For latency functions satisfying reasonable

convexity assumptions, we conjecture that the proposed sufficient condition is valid for

arbitrary numbers of players and links.

Proposed approach sheds light on convergence issues of best-response dynamics in

other settings where Potential-based reasoning is not effective. We expect successful use

of non-linear spectral-radius approach along with matrix analysis in studying stability

of the equilibrium in the settings more complex than parallel link network topologies,

starting from the cases when existence of equilibria is known.

6.2 Reward-Based Intensive Mechanism for DTNs

A central problem in Delay Tolerant Networks (DTNs) is to persuade mobile nodes to

participate in relaying messages. In this thesis we have proposed a reward mechanism

to incentive relays to sacrifice their memory and battery on DTNs relaying operation.

The reward mechanism in fact is designed to secure the participation of relays in the

delivery process by proposing a reward that takes into account the costs incurred by

the relays and the risk they are exposed to during the delivery process. This reward is

the minimum amount that offsets the expected delivery cost, as estimated by the relay

from the information given by the source (number of existing copies of the message, age

of these copies). We first showed that the expected reward paid by the source remains

the same irrespective of the information it conveys, ranging from full state information

to no information. We also studied the dynamic case in which the source can change

the information that it conveys on the fly as and when meets the relay. Under some



6.2 REWARD-BASED INTENSIVE MECHANISM FOR DTNS 131

additional assumptions, the source can gain by adopting the dynamic strategy. Next,

we have addressed to the discrete time decision process for the relays, when the message

is endowed with a lifetime. For the no information setting in case of two relays and

assuming a fixed incentive reward, we have studied an optimal policy for a relay that is

when it should accept the message from the source and if it has accepted it when the relay

should drop it. We then have shown that if a relay follows a threshold type optimal policy

then another relay will behave in similar way.

A key challenge in developing our results has been to make general assumptions about

the mobility of DTN nodes. In particular, the properties derived for our incentive mech-

anism hold under any homogeneous mobility pattern. Indeed, the large majority of an-

alytical studies are typically assumed that the cumulative distribution function of inter

contact time decays exponentially over time such as in random waypoint models. But

many extensive empirical mobility traces have been showed that cumulative distribution

function of inter contact time follows approximately a power law over large time range

with exponent less than unit (Chaintreau et al., 2007). By investigating a general as-

sumption about the mobility, in future works, we plan to evaluate our scheme on realistic

traces (RAWDAD: A Community Resource for Archiving Wireless Data At Dartmouth)

in order to evaluate the robustness of our proposed mechanism. Another aspect that we

want to take into account is the heterogeneous models. Existing analytical studies in the

literature strongly rely on the assumption that nodes identical and uniformly visit the

entire network space. Experimental data, however, have shown that mobility patterns of

individuals are typically restricted to a given area, and the overall node density is often

largely inhomogeneous. Such models allow studying how DTN routing mechanisms are

affected by highly inhomogeneous node density and differences in mobility patterns and

transmission technologies.

In our model we have restricted consideration only for one source-destination pair

that generates packet into DTN. For several source-destination pairs, node buffers may

well overflow if no message discarding policy is adopted. In this scenario, efficient drop

policies at relay nodes decide which messages should prioritised under capacity constraints

regardless of the specific routing algorithm used. In the future, we propose to work on

intentional DTN Drop/Scheduling policies with respect to our mechanism. Such study

engenders sources to develop a mechanism design in order to know the information about

the messages that relay stores in his buffer. Then we will propose a mechanism that can

allow the source to truthfully elicit private information from each and every relay nodes it

meet. However, information elicitation is most challenging when it is most useful: when

there is no ground truth available to evaluate answers.
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