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Abstract iv

Development of a reference method based on the fast multipolmundary
element method for sound propagation problems in urban environments:
formalism, optimizations & applications

Described as one of the best ten algorithms of the 20th cenbh#&yast multipole formalism applied to
the boundary element method allows to handle large problems which were inconceivable only a few years
ago. Thus, the motivation of the present work is to assess the ability, as well as the benefits in term of
computational resources provided by the application of this formalism to the boundary element method, for
solving sound propagation problems and providing reference solutions, in three dimensional dense urban
environments, in the aim of assessing or improving fast engineering tools.
We first introduce the mathematical background required for the derivation of the boundary integral equa-
tion, for solving sound propagation problems in unbounded domains. We discuss the conventional and
hyper-singular boundary integral equation to overcome the numerical artifact of fictitious eigen-frequencies,
when solving exterior problems. We then make a brief historical and technical overview of the fast multipole
principle and introduce the mathematical tools required to expand the elementary solution of the Helmholtz
eqguation and describe the main steps, from a numerical viewpoint, of fast multipole calculations.
A sound propagation problem in a city block made of 5 buildings allows us to highlight instabilities in the
recursive computation of translation matrices, resulting in discontinuities of the surface pressure and a no
convergence of the iterative solver. This observation leads us to consider the very recent workivG
& Duraiswamy, related to a “stable” recursive computation of rotation matricesfictents in the RCR
decomposition. This new improved algorithm has been subsequently assessed successfully on a multi scat-
tering problem up to a dimensionless domain size equal to 207 wavelengths.
We finally performed comparisons between a BEM algoritiiicado3D, the FMBEM algorithm and a
ray tracing algorithm, Icaf®, for the calculation of averaged pressure levels in an opened and closed court
yards. The fast multipole algorithm allowed to validate the results computed with Icare in the opened court
yard up to 300 Hz, (i.e. 100 wavelengths), while in the closed court yard, a very sensitive area without di-
rect or reflective fields, further investigations related to the preconditioning seem required to ensure reliable
solutions provided by iterative solver based algorithms.

Keywords: Boundary element method, fast multipole method, urban acoustics, wave propagation,
Helmholtz equation, computational acoustics.
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Développement d’'une méthode de référence basée sur la métleopar
éléments de frontieres multipolaires rapides pour la propagation sonore en
environnements urbains :
formalisme, optimisations & applications

Décrit comme I'un des algorithmes les plus prometteurs dum20giécle, le formalisme multipolaire
appliqué a la méthode des éléments de frontiere, permet de nos jours de traiter de larges problémes encore
inconcevables il y a quelques années. La motivation de ce travail de thése est d’évaluer la capacité, ainsi
que les avantages concernant les ressources numériques, de ce formalisme pour apporter une solution de
référence aux problémes de propagation sonore tri-dimensionnels en environnement urbain, dans I'objectif
d’améliorer les algorithmes plus rapides déja existants.

Nous présentons la théorie nécessaire a lI'obtention de I'équation intégrale de frontiere pour la résolution
de problémes non bornés. Nous discutons également de I'équation intégrale de frontiére conventionnelle
et hyper-singuliére pour traiter les artefacts numériques liés aux fréquences fictives, lorsque I'on résout des
problémes extérieurs. Nous présentons par la suite un bref apercu historique et technique du formalisme
multipolaire rapide et des outils mathématiques requis pour représenter la solution élémentaire de I'équation
de Helmholtz. Nous décrivons les principales étapes, d'un point de vue numérique, du calcul multipolaire.
Un probléme de propagation sonore dans un quartier, composé de 5 batiments, nous a permis de mettre en
évidence des problémes d'instabilités dans le calcul par récursion des matrices de translations, se traduisant
par des discontinuités sur le champ de pression de surface et une non convergence du solveur. Ceci nous
a conduit a considérer le travail trés récent deifkov et Duraiswamy en lien avec un processus récursif

stable pour le calcul des diieients des matrices de rotation. Cette version améliorée a ensuite été testée
avec succes sur un cas de mulffidiction jusqu’a une taille adimensionnelle de probléme de 207 longueur
d’ondes.

Nous dfectuons finalement une comparaison entre un algorithme d’élément de froMiéeglo3D, un
algorithme multipolaire et un algorithme basé sur le tir de rayons, %agveur le calcul de niveaux de
pression moyennés dans une cour ouverte et fermée. L'algorithme multipolaire permet de valider les ré-
sultats obtenus par tir de rayons dans la cour ouverte jusqu'a 300 Hz (i.e. 100 longueur d’ondes), tandis
que concernant la cour fermée, zone trés sensible par I'absence de contributions directes ou réfléchies, des
études complémentaires sur le préconditionnement de la matrice semblent requises afin de s’assurer de la
pertinence des résultats obtenus a I'aide de solveurs itératifs.

Mots-clés: Méthode des éléments de frontiere, méthode multipolaire rapide, acoustique urbaine, prop-
agation des ondes, Equation d’Helmholtz, acoustique numérique.






Résumé étendu

Avec l'augmentation de la population dans les zones urbaines, la réduction du bruit dans les villes est
devenue un enjeu majeur du 21éme siecle. Un individu sur trois se dit géné pendant la journée et une sur cing
a un sommeil perturbé (la nuit) a cause du bruit de circulation. En France, I'exposition au bruit représente
la principale perturbation dans les zones urbaines et la premiére cause de plaintes. Selon I'Organisation
Mondiale de la Santé (OMS), cette tendance va continuer a croitre, avec plus de 70% de la population
mondiale vivant en zone urbaine d’ici 2050. Le probléme du bruit est donc, plus que jamais d’actualité,
dans I'objectif d’'une ville durable.

L'exposition au bruit est reconnue comme un probléme de santé publique. Son impact sur les facultés
auditives, le stress, les maladies cardiovasculaires, les troubles du sommeil doit étre une question impor-
tante, car les dommages induits par le bruit peuvent étre irréversibles. L'exposition au bruit a également
une influence sur le comportement et les habitudes des riverains. Cela comprend, par exemple, I'ouverture
et la fermeture des fenétres, I'utilisation de somniféres, I'utilisation d’un balcon ou d’un jardin, ou de fuir
la ville pendant le week-end. Leffets économiques du bruit ont également été étudiés, en particulier son
impact sur la valeur d’'une propriété. Un indice de la dépréciation des prix des logements par rapport a
I'exposition au bruit a été développé. Basé sur une série d'études de cas, des relations ont été établies entre
augmentation du niveau d’exposition au bruit et diminution des prix des logements.

Le Journal fficiel des Communautés européennes reconnait un grand nombre de citoyens européens af-
fectés par le bruit, soutenu par le Comité des Régions qui souligne le besoin urgent d’une stratégie commune
de lutte contre le bruit. Le Parlement européen et le Conseil ont adopté la directive relative a I'évaluation et
a la gestion du bruit ambiant, le 25 Juin 2002. La directive sur le bruit ambiant s’applique au bruit auquel
sont exposés les humains, en particulier dans les zones baties, dans les parcs publics ou d'autres lieux
calmes d’'une agglomération, a proximité des écoles, des hopitaux et d’autres batiments et zones sensibles
au bruit (article 2.1), comme cela peut étre le cas pour d’autres facteurs environnementaux (pollution de
I'air / eau ou la gestion des déchets).

Ainsi, le bruit ambiant estfficiellement considéré comme un grave probleme, du point de vue de la
santé sociale, environnementale et publique. Limportance de I'environnement sonore ainsi que sa con-
ception a été largement reconnue, ce qui représente un grand pas en avant dans un objectif de limitation
du niveau de bruit en milieu urbain. En termes de politiques et de réglementations environnementales, la

Vii
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problématique de bruit a été I'objet d'une grande attentiaiff&rents niveaux, en particulier en Europe,
conduisant a une série de mesures importantes pour lutter contre le bruit. Toutefois, I'évaluation du bruit
est un probléme complexe, et est liée a un certain nombre de disciplines, dont I'acoustique, la physiologie,
la sociologie, la psychologie et les statistiques.

Les améliorations en termes de réduction du bruit, dans le cadre du paysage sonore urbain, impliquent
un contrble de la puissance sonore des sources, des protections appropriées au niveau des récepteurs (hu-
mains ou animaux) et une meilleure compréhension des voies de propagation dans un environnement donné.
Dans ce cadre, bien que les mesures in situ fournissent des preuves irréfutables d’'un niveau de pression
acoustique quantifiée, les simulations numériques sont encore la meilleure (et la seule) facon d’évaluer
I'influence d’un futur dispositif de réduction du bruit ou de l'influence, sur un immeuble résidentiel, d'une
future infrastructure de transport. L'évaluation du paysage sonore implique la prise en compte de la com-
plexité des sources sonores et du milieu de propagation. Les algorithmes de cartographie du bruit ont été
mis au point et largement appliqués dans la pratique avec I'augmentation des ressources informatigues.
Diverses méthodes de prévision pour la propagation du son dans les zones urbaines a I'échelle micro ou
macroscopigue ont également été explorées.

Il nest pas réaliste d’'imaginer un algorithme simple qui pourrait inclure tous les avantages des méth-
odes numériques utilisées en acoustique. fat,echaque algorithme de calcule posséde ses propres avan-
tages et domaine de validité. La théorie modale est attrayante a basse fréquence pour des géométries canon-
iques. Les méthodes basées sur I'approche asymptotique sont jugées fiables en haefpdiuvent faire
face a des propriétés de propagation complexes qui peuvent avoiffelssimportants sur la propagation
sonore en espace extérieur. Les méthodes numériques basées sur les équations aux dérivées partielles sont
reconnues comme extrémement fiable et peuvent gérer des géométries trés complexes, mais sont inutilis-
ables a des fréquences élevées en raison de temps de calcul prohibitifs. Cependant, la plupart des méthodes
numeériques utilisées en propagation extérieur doivent d'abord étre évalués et un algorithme de référence
est nécessaire. L'objectif de cette thése est de fournir un outil de référence, afin d’évaluer et d’améliorer les
algorithmes numériques plus rapides déja existants pour résoudre les problémes de propagation du son en
espace urbains denses et dans ce cadre, la méthode des éléments de frontiére semble appropriée.

Fondamentalement, la formulation intégrale de frontiére, sur laquelle la méthode des éléments de fron-
tiere est basée, est trés attrayante en espace extérieur puisque celle ci: (i) élimine la nécessité de considérer
le domaine infini normalement associé a des problémes de rayonnement; (ii) réduit la dimension du prob-
léme par une (par exemple, partant d’'une équatidfémintielle partielle en trois dimensions vers une
équation intégrale de surface a deux dimensions); (iii) peut facilement gérer des géométries arbitraires et
les conditions aux limites. Les deux premiéres propriétés réduisent considérablement les besoins de stock-
age informatique pour les problémes extérieurs de propagation d'ondes. Pour ces raisons, les algorithmes
basés sur la BEM sont couramment utilisés pour fournir des solutions de référence pour les problémes régis
par des équations linéaires aux dérivées partielles en milieux homogénes, comprenant un large éventail
d’application en physique : problémes de Laplace ou de Poisson, les équations d’ondes fréquentielles ou
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temporelles, équations élastostatique ou élastodynamiqukinconvénient majeur de ce formalisme est

le systeme d'équation dense généré, le conduisant a une forte dépendance en ressources de calcul (temps de
calcul et mémoire de stockage), qui, jusqu’ici, a limité I'application de la méthode des éléments de frontiére

a un faible nombre de degrés de liberté.

Néanmoins, la croissance exponentielle des capacités informatiques, selon les lois de Moore, double
tous les 18 mois. Enfeet, si une station de travail classique, au début des années 80, n’était capable que de
gérer des systemes matriciels denses ne comprenant seulement que quelques dizaines d'éléments, de nos
jours quelques minutes sontfBsantes pour inverser des systemes matriciels denses contenant plusieurs
dizaines de milliers d’éléments. En outre, une autre récente amélioration spectaculaire, a savoir la méthode
multipolaire rapide, provenant de travaux dee@carp et RokHLIN sera le sujet de ce manuscrit. Décrit
comme l'un des dix algorithmes les plus prometteurs dil'2€iecle, il permet d’accélérer la multiplication
de matrices diminuant ainsi la complexité des algorithmes basés sur les éléments de frontieére d’'un ordre
de grandeur. Ainsi, la manipulation de plusieurs centaines de milliers ou de millions de degrés de liberté
sur une station de travail commune est maintenant possible. Les développements récents sur un cluster de
calcul dans le domaine électromagnétiqgue ont méme permis de travailler sur des problémes contenant des
centaines de millions d’éléments.

L'application du formalisme multipolaire rapide sur la méthode des éléments de frontiére permet donc
de traiter des modéles encore impensables il y a quelques années. Ainsi, la motivation de ce travail est
d’évaluer la capacité, ainsi que les avantages en termes de ressources de calcul fournies par I'application
de ce formalisme, pour résoudre les problémes de propagation sonore et fournir une solution de référence,
dans les environnements urbains denses tri-dimensionels, dans le but d’évaluer ou d’améliorer les outils
numeériques existant plus rapides.

La premiere partie de ce travail de these est dédiée a I'élaboration de I'équation intégrale de frontiére
sur laquelle la méthode des éléments de frontiére est basée. Nous étudions, dans cette partie, la capacité de
la formulation intégrale de frontiére classique et hyper-singuliére a résoudre un problérffeadtah par
un corps sphérique, et ce méme aux fréquences propres fictives, pour des conditions aux limites rigides et
impédantes.

Cependant, le systeme matriciel obtenu par le formalisme BEM est dense, non-symétrique et peut
également étre mal conditionné. Il s’ensuit que la solution du systeme, par l'utilisation d’'un solveur direct
telle que la quadrature de Gauss nécessite un nombre d’opéetith), de par la forme générale du sys-
teme, avedN le nombre de degré de liberté. Méme avec I'aide d’un solveur itératif pour approcher la solu-
tion, le formalisme BEM requiert une quantité de mémoire de stocRglyé) et une dépendance temporelle
O(N?) pour calculer les données de la matrice. D’un point de vue pratique, cette dépendance implique un
temps de calcul élevé pour un modéle a grande échelle, puisque pour un critére de discrétisation spatial
donné en termes de fréquenteN « f2 et le temps de calcuD(f®) (ou O(f4) avec un solveur itératif).

Une telle dépendance conduit a des temps de calcul prohibitifs lorsque la fréquence augmente et met en év-
idence I'intérét de la recherche liée au développement de méthodes rapitfesees pour I'amélioration
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des algorithmes existants. Améliorer le co(t de calcul dgsrihmes BEM d’un ordre de grandeur a
travers le formalisme multipolaire rapide sera le sujet de la deuxieme partie (ll), I'algorithme d’éléments
de frontiére ayant été jugée fiable, dans une premiére partie, pour calculer les interactions proches dans le
cadre de I'algorithme multipolaire rapide des éléments de frontiere.

La méthode des éléments de frontiere (BEM), comme décrit dans la premiére partie, produit des ma-
trices denses et non-symétriques nécess§Nr) opérations pour calculer les dieients de la matrice
et O(N®) opérations pour la résolution du systéme par solveurs directs. En conséquence, I'application de
cette méthode sur de grands modéles conduit a des temps de calcul prohibitifs. Depuis quelques années, la
méthode des éléments de frontiére a profité d’'une optimisation majeure a travers le formalisme multipolaire
rapide, utilisé pour diminuer la complexité du temps de calcul des algorithmes basés sur des éléments de
frontiére. Ainsi, le but de la deuxiéme partie (Il) a été de présenter le principe multipolaire rapide ainsi que
les outils mathématiques nécessaires. En cohérence avec la premiére partie, nous avons évalué la capacité
et la précision de la méthode multipolaire rapide, pour résoudre un problemérdetidin par un corps
sphérique.

Dans le troisieme chapitre (3), nous donnons un apercu général du principe multipolaire rapide. Nous
présentons les séries de base sphérique requises pour le développement des noyaux. Nous avons égale-
ment introduit la décomposition RCR sur laquelle notre algorithme est basé ainsi que la formulation haute
fréquence. Nous décrivons plus précisément toutes les étapes du calcul, a savoir le développement multi-
polaire, I'étape Moment & Moment (M2M), I'étape Moment a Local (M2L), I'étape Local a Local (L2L)
et I'étape de sommation finale. Enfin, nous avons évalué la complexité théorique de calcul de 'algorithme
multipolaire rapide comme éta@(N) ~ O(p?). Le quatriéme chapitre (4) est consacré a I'évaluation du
formalisme multipolaire rapide pour résoudre des problemesfttaction par un corps sphérique. Ainsi,
nous prouvons l'exactitude du formalisme multipolaire pour deux conditions limites, rigides et impédants,
par comparaison avec la solution analytiqgue a des fréquences réguliéres. Nous avons également évalué
la formulation intégrale frontiére conventionnelle et hyper-singuliére pour lutter contre le probléme de
fréquence fictive. Nous montrons tout d’abord, comme pour I'algorithme BEM, que la formulation con-
ventionnelle et hyper-singuliére réduit considérablement le nombre d'itérations & mesure que la fréquence
augmente, quel que soit les conditions aux limites. Nous avons également démditekité de cette for-
mulation pour fournir des solutions fiables pour les conditions aux limites fortement absorbantes et rigides.
Elle conduit & une perte de précision avec I'augmentation du nombre de niveaux a basse fréquence. Ainsi,
cette formulation ne semble pas étre recommandée pour les modéles basses fréquences, et des études com-
plémentaires portées sur cette observation seraient souhaitables afin de garantir une fiabilité optimale de
l'algorithme. Nous remarquons cependant que la formulation de Burton & Miller sera appliqguée avec suc-
cés dans le cadre de modeéles de propagation a grande échelle dans la partie Ill. La présence d'un sol en
milieu urbain, par I'intermédiaire du principe de source image, implique la nécessité de considérer et de
mailler le domaine image, conduisant a un nombre deux fois plus important d’éléments. Cet inconvénient
peut étre résolu par la mise en oeuvre du probleme du demi espace grace a I'ajoutfitéurigide infini,
apportant un gain en termes de temps de calcul et de mémoire de stockage, par rapport a un probléme
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équivalent traité en espace libre. Ce formalisme de demcesgst utilisé dans la partie 11l de ce document
dans un contexte urbain.

Nous nous concentrons dans cette partie sur I'application de I'algorithme multipolaire rapide des élé-
ments de frontiére sur des cas concrets. La premiére application est un c&sadtiahi par une barriére
anti-bruit située en amont d’'une fagade de batiment. Nous atetdeé des comparaisons entre le niveau
de pression moyen calculé par un algorithme de référence BEM et I'algorithme FMBEM pour deux gammes
de fréquence. Il s’en suit que 98% des récepteurs qui se trouvent sur le sol onfférende inférieure a
3 dB dans la premiére plage de fréquences (90 a 100 Hz), tandis que 96% des récepteurs ont un écart in-
férieur a 3 dB dans la deuxiéme plage fréquentielle (170 a 190 Hz). Nous étudions également un probléme
de propagation dans un quartier de ville composé de 5 batiments. Une étude sur le paramétre de pondéra-
tion de la formulation CHBIE fournit une valeur adéquate pour minimiser le probléeme de fréquence propre
fictive ainsi que le nombre d'itérations. Nous étudions également l'influence de la valeur du résidu relatif
du solveur itératif par rapport a la précision de la solution. Une valeur égalé?asétble sffisante pour
une évaluation rapide du niveau de pression dans ce contexte, a I'exception de certaines zones sensibles
ol une valeur de 1§ semble nécessaire pour assurer une solution fiable. Ce probléme est résolu avec
une complexité en temps de calé@(NIlog(N)), alors qu’un algorithme BEM standard basé sur un solveur
itératif nécessite un temps de cal@(N?). Ce temps de calcul peut, en outre, étre amélioréfectaant les
calculs d’interactions directes de maniere paralléle, facilement réalisé a I'aide de la librairie OpenMP (Open
Multi-Processing). On observe un trés bon accord entre les deux calculs (c’est a dire de I'algorithme BEM
de référence et I'algorithme FMBEM) jusqu’a une taille de domaine adimensionnelle égale a 32 longueurs
d’'onde. Pour des tailles supérieures de domaine, nous mettons en évidence des discontinuités du champ de
pression de surface et une absence de convergence du solveur itératif provenant d'instabilités dans le pro-
cessus récursif de calcul des matrices de translation. Cette observation nous améne a envisager un processus
récursif «stable», présenté pan@rov & D uraiswamy, pour le calcul des cdicients des matrices de ro-
tation au sein de la décomposition RCR. Nous décrivons comment un schéma récursif «rapide et stable»
peut étre garanti pour le calcul des composants des matrices de rotation et montrons les bénéfices apportés
dans le cas d’'un probleme de propagation sonore en zone urbaine. Cet algorithme amélioré est ensuite
évalué avec succes sur un probléme diatition multiple par des cubes jusqu’a une taille adimensionnelle
de domaine égale a 207 longueurs d'onde. Ce probléme est résolu, pour 621 000 éléments, 750 fois plus
rapidement avec I'algorithme FMBEM que si il était résolu par un algorithme BEM de collocation standard
utilisant un solveur itératif, tout en réduisant la mémoire de stockage par 477. Enfin, nous fsonge
des comparaisons entre un algorithme BEM, Micado3D, prit comme référence, I'algorithme FMBEM et un
algorithme basé sur le tir de rayon, le logiciel I&y@our calculer des niveaux de pression moyens dans
des cours ouvertes et fermées. L'algorithme multipolaire rapide a permis de valider les résultats calculés
avec Icar® dans la cour ouvertes jusqu’a 300 Hz10Q1), tandis que dans la cour fermée, c’est a dire une
zone tres sensible, des études complémentaires portant sur le préconditionnement de la matrice semblent
nécessaires pour assurer une solution fiable obtenue par solveurs itératifs.
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General introduction

Noise issue in cities

With the increase of population in urban areas, noise abatement in cities has become a major challenge of
the 2% century. One in three individuals is annoyed during daytime and one in five has a disturbed sleep (at
night) because of the ftfizc noise WHO 2011]. In France, noise exposures represent the main disturbance

in urban areas and the first cause of complaints. According to the World Health Organi¥@kti@h 2014

(WHO), this trend will continue to grow, with over 70% of the world’s population living in cities by 2050.

The noise issue is therefore, more relevant than ever, in the objective of sustainable cities.

The noise exposure is recognized as a public health problem. Its impact on auditory faculties, stress,
cardiovascular diseases, sleep disturbangbe§-Pereira 200/must be a significant issue, since the dam-
ages induced by noise can be irreversible. Behavior and habit are another important aspects which can
be dfected by noise exposures. This includes, for instance, opening and closing wirkten| 1993
Lercher 1998 using sleeping pills, using balconies or gardens, havirsgund insulated home, or fre-
quently leaving the town during the weekendsinbert 1984 Economic éfects of noise have also been
studied, especially from the viewpoint of compensation payable on depreciation in property value that can
be attributed to noise. A noise sensitivity depreciation index in house prices with respect to dB noise has
been developedWalters 1975Nelson 1980Nelson 1982 Based on a series of case studies, some rela-
tionships have been established between dB increase and house price d&rstase 2009.

The Oficial Journal of the European Communiti@®Pl/C 14802 ] recognizes a large number of Eu-
ropean citizensféected by noise, supported by the Committee of the Regions which highlights the urgent
need for a common strategy against noise pollution. The European Parliament and Council adopted Di-
rective [Directive 200249/EC] * related to the assessment and management of environmeisialam25
June 2002. The Environmental Noise Directive applies to noise to which humans are exposed, particularly
in built-up areas, in public parks or other quiet areas in an agglomeration, near schools, hospitals and other
noise-sensitive buildings and areas (Article 2.1).

Ihttp://eur-lex.europa. eu/legal-content/EN/TXT/HTML/?uri=CELEX:32002L0049&from=EN
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The principles of the Directive are similar to those overarglenvironment policies (such as air or
waste), i.e.:

monitoring the environmental problem,

informing and consulting the public,

addressing local noise issues,

developing a long-term EU strategy.

Hence, environmental noise ifficially considered as a serious issue, from a social, environmental and
public health perspective. The importance of soundscape and sound environment design has been widely
recognized and represents a major step forward from reducing the urban noise level. In terms of environ-
mental policies and regulations, noise problems have been paid great attention at various levels, especially
in Europe, leading to a series of substantial actions in noise abatement. However, the evaluation of noise
is a complex problem, and is related to a number of disciplines including acoustics, physiology, sociology,
psychology and statisticdfarquis-Favre 2006

M otivation of the thesis

The improvements in term of noise abatement, within the scope of urban soundscape, involve a control of
source radiated powers, implying a better design of sound sources, suitable protections of receivers (humans
or animals) to noise exposure and a better understanding of propagation paths in a given environment. In this
framework, although full scale measurements provide irrefutable evidences of a quantified sound pressure
level, numerical simulations are still the better (and the only) way to assess the influence of an upcoming
noise abatement device or the influence of a future transport infrastructure, on a residential building. The
evaluation of soundscape involves accounting for the complexity of sound sources and propagation media.
Noise mapping algorithms have been extensively developed and applied in practice with the improvement
of computing resources. Various prediction methods for sound propagation in micro or macro scale urban
areas have also been explored. We try in the following section to give a brief overview of numerical tools
commonly used in engineering or research.

Numerical predictions of noise levels in urban environments

We do not claim to perform, in this section, a complete overview of the numerical methods used in acoustics,
but rather to briefly introduce the underlying theory as well as the benefits and the drawbacks of these
methods and the main motivations for our choice. For a more exhaustive overview of the numerical methods
commonly used in acoustics, we recommend the reader to turn to dedicated liteBsalomdgns 2001
[Attenborough 200K [Picaut 200§ [Kang 2007.
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Morse’'s work, carried during the 30’sMorse 1938 provided a complete mathematical solution for
sound behavior in a rectangular room. In contrast to all previous approaches, it was able to take into account
the wave nature of sound and provided the basis for the study of many aspects of room acoustics. Lying
on the decomposition of the acoustic field on an orthogonal basis of elementary solutions of the wave
equation, the analyticahodal theory [Morse 1968Berman 1975Markovic 199§ is therefore commonly
and only applied for enclosed media of simple geometries (spherical or rectangular). However, the density
of appearance of modes grows as the frequency increases and the modal theory is thus limited to low and
medium frequencies. Furthermore, the application of a prediction method based upon the modal theory
for sound propagation in urban environmerBsillen 1977 requires the knowledge of the averaged mode
number of the sound field in street turning out to be vefidilt to find in practice.

Asymptotic approaches

First developed for the study of radiant heat transfers in simple configuragiege] 200], the radiosity

model has then been adapted to three dimensional illumination rendering algorithms. The radiosity method
divides the propagation domain boundaries into a number of elements. The sound propagation in the domain
can then be simulated by an energy exchange between the nodes through form factors. This method assumes
that all scattered fields are perfectiyffdse, according to the heat radiation principle. The radiosity model

has also been applied in the field of room acoustiesvers 1993Kang 2002 and environmental acous-

tics in urban cases for cross stredtafig 2001 and urban squaresKpng 200%. A modified version of

this method allows to consider a geometrically reflecting groltahf 20023 through the image source
principle and comparison with measuremer®schut 200p appears to be very promising<éng 2007.

However, this method was only applied to ideal street shapes (canyons or squares) and the extension to
more usual geometries seems compromised by prohibitive computation times.

Beside all other methods commonly used in room acoustics or environmental acdhstfzarticular
approachis a probabilistic methodlpyce 197t based on sound particlete phonon The acoustic field
is decomposed on elementary particles, without mutual interaction, carrying an infinitesimal energy. The
energy distribution is deducted from the space repartition of sound particles. The sound particles travel in
straight lines, at the sound velocity and can be either absorbed or reflected, following a specified law, at
each collision. This approach appears to be very suited for the prediction of reverberation times and sound
attenuation for dfusely reflecting boundarie®icaut 1997. The particular approach can easily handle the
complexity of sound reflection on facadeBigaut 1998 or in diffuse rooms Picaut 1999 Furthermore
the difusion model may also deal with atmospheric absorption or meteorolodieate This approach
has also been compared with full scale model measurements in a narrow street and has supplied good
agreementlle Pollés 2003Picaut 200h Thus, through the numerical method of particles launchingan
be possible to consider complex behaviors of the propagation domain such as paffiadiglgireflecting
building facades, scattering by urban objects, atmospheric attenuation andfeirtd.e
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The ray tracing approach consists in emitting a large number of rays from the source and following
their propagation. Ray tracing algorithms are all based upon an analogy between optics and acoustics
where the propagation of sound is analyzed by the mean of acoustical rays. Most evolved algorithms can
account for reflections on curved surfaces, multiple reflections dfidctions Jean 200B One of the
problems with this method is the continuity of the solution and an artificial width is usually added to each
ray [Van Maercke 199B However, aliasing problems still remain. An alternatiséa employ beam tracing
where emitted rays are replaced by beams. Reflections on plane surfaces or elements can then be derived
analytically.

However, one must keep in mind that all asymptotic approaches make the assumption of incoherent
sources, and do not allow account for phase relations and are, in theory, only valid at high frequencies when
the acoustic wavelengths become smaller than geometrical details.

Partial differential equation based method

The Parabolic Equation (PE) [Gilbert 1989 White 1989 is a numerical method allowing to describe
sound propagation in inhomogeneous media. The solution is built, step by step, from the source to the
receiver and it is therefore possible to take into account the local physical properties of the computational
domain (sound velocity, ground impedance, atmospheric disturbance, etc). Indeed, the PE based methods
seem to be very attractive because of their ability to solve outdoor sound propagation problems above a
mixed ground with topographic irregularities in both refractive and turbulent atmosplidrakéa 2004
Furthermore, the application of the split-step Padé solutidwllins 1993 appears to be more convenient

in the framework of trilic noise propagation because of the good compromise between CPU time and
accuracy in heterogeneous medgalvreau 2002 ihoreau 2008 Thus, despite the fact that the PE based
methods allow to deal with the complexity of an outdoor sound propagation problem and seem to be very
suitable for solving long range propagation problems, it seems not specially recommended in a dense urban
medium, where the macro and micro scale perturbations can be, at first order, neglected. Furthermore its
application on arbitrary three dimensional shapes seems, so féicaltiask.

The Finite Difference Time Domain(FDTD), is a numerical method for solving the linearized form
of Euler equations in the time domaiBdgttledooren 1994Van Renterghem 2003 The FDTD is used
to deal with unsteady state problems and appears to be well-suited to take into account complex propa-
gations in outdoor inhomogeneous medsalomons 200R This model can account for combineffeet
of multiple reflections, multiple diractions, inhomogeneous absorbing and partffudely reflecting sur-
faces or wind fect [Heimann 200]. Some publications relate a cross FDTD-R&H Renterghem 2005
Van Renterghem 20Q6nethod where the FDTD is applied in the complex source regi@hthe PE for the
propagation to a distant receiver.

The well knownFinite Element Method (FEM) is commonly used in engineering problems to provide
reliable solutions in frequency or time domains. Based on a space discretization of the studied problem,
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this method proved to be aiffective tool for bounded domains. Regarding the outdoor sound propagation
problems, this method would require an infinite mesh which is unrealistic from a numerical viewpoint.
The coupled finitdnfinite element method or the use of absorbing layers methods have been developed
to tackle this latter drawbaclkAutrique 2006 but its dficiency on general geometry is still a purpose of
investigations.

It is unrealistic to imagine a simple algorithm that could include all benefits of the numerical methods
presented above. Indeed, they have all their own advantages and domain of validity. The modal theory is
attractive at low frequency for canonical geometries. The asymptotic approach based methods are found
to be reliable for incoherent sources and can deal with complex propagation properties which can have
significant éfects in outdoor sound propagation. The numerical methods based on the p&diaintial
equations appear to be extremely reliable and can handle very complex geometries but are useless at high
frequencies due to prohibitive computation times. However most of the numerical methods used in outdoor
sound propagation have first to be assessed and a reference algorithm is required. The aim of this thesis is
rather to provide a reference tool, to assess and improve faster numerical algorithms for sound propagation
in outdoor dense urban applications and, within this scope, the boundary element method seems suitable.

Why the Boundary Element Method?

Basically, the boundary integral formulation, which the boundary element method is based on, appears to
be very attractive in free space as it:

() eliminates the need to discretize the infinite domain usually associated with radiation problems;

(i) reduces the dimensionality of the problem by one (i.e., from a three dimensional pdifaédiial
equation to a two dimensional surface integral equation);

(i) can readily handle arbitrary geometries and boundary conditions.

All these three properties are very attractive from a computational viewpoint as the first two significantly
reduce the computer storage requirement for outdoor wave propagation problems. For these reasons, the
BEM based algorithms are commonly used to provide reference solutions for problems governed by partial
differential linear equations in homogeneous media including a broad scope in physics: Laplace’s or Pois-
son’s problems, frequency or time wave equations, elastostatics or elastodynamics. .. The major drawback
of this formalism is the dense system of equations generated, leading to a heavy computational resources
dependency (time and memory), which so far limited the application of the boundary element method to a
low number of degrees of freedom.

Nevertheless, the exponential growth of the capabilities of technology, accordingdee™ laws,
doubles every 18 months. Indeed, while a classical workstation, during the 80’s, could handle dense ma-
trix systems with several tens of elementefai 1980, nowadays few minutes appear to bdhsient to
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work out dense matrix systems containing several tens oktrals of elements. In addition, another re-
cent dramatic improvement, namely the fast multipole method, comes framn&Grp & RokaLIN'S work
[Greengard 198&nd will be the topic of this manuscript. Described as ond&efidest ten algorithms of the

20th century Dongarra 200]) it allows to accelerate the multiplication &f x N matrices and decreases

the complexity of boundary element based algorithms by an order of magnitude. So, handling several hun-
dreds of thousands or millions of degrees of freedom on a common workstation is now possible. Recent
applications on a cluster in the electromagnetic domain allowed even to work out problems consisting in
hundreds of millions of elementsin few hours Ergiil 2008.

The application of the fast multipole formalism to the boundary element algorithm allowed to handle
larger scale models which was inconceivable a few years ago. Thus the motivation of the present work is
to assess the ability, as well as the benefits in terms of computational resources provided by the applica-
tion of this formalism, for solving sound propagation problems and providing reference solutions, in three
dimensional dense urban environment, with the aim of assessing or improving faster numerical tools.

Organization of the document

The fast multipole formalism can be seen as an essential optimization of the boundary element method.
Although it is already used as a reference algorithm in other physical domains (as in electromagnetics),
this powerful improvement is not systematically applied in the acoustics. Thus, we intend, throughout this
manuscript, to evaluate and optimize the fast multipole boundary element method on urban acoustic issues.

The first part (1) of this manuscript is dedicated to the boundary element odetfrirst (chaptef),
we introduce the mathematical background required for the derivation of the boundary integral equation
for solving sound propagation problems in unbounded domains. We also talk about the conventional and
hyper-singular boundary integral equation (also known as the Burton & Miller formulation) to overcome
the numerical artifact of the fictitious eigen-frequencies, when solving problems at certain characteristic
frequencies. Problems related to the hyper-singularities will be circumvented thanks to the subtraction
technique. We finally consider the boundary element formalism from a numerical viewpoint, leading to the
boundary element method. In a second time (cha)tewe investigate a verification process of the accu-
racy of our boundary element algorithm to solve scattering problems by a spherical body, by comparison
with the analytical solution at regular frequencies. Both rigid and impedance boundary conditions will be
considered. We also check the accuracy of the conventional and hyper-singular boundary integral equation
to overcome the fictitious eigen-frequency problem and evaluate its influence in terms of iterations on the
iterative solver. All these verifications are required since the boundary element method will be subsequently
used to evaluate theear interactiondn the framework of the fast multipole method.

*http://abakus. computing.technology/world_record
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The second part(ll) of this manuscript is dedicated to the fast multipole boupa@dement method.
First of all (chapter3), we present a brief historical and technical overview of fam multipole princi-
ple. Afterwards, we detail the mathematical tools required to represent the acoustic field through the fast
multipole formalism. We also describe the RCR-decomposition principle, introducedmmr& & D u-
raiswamy, Which our fast multipole algorithm is based on, as well as details regarding the high frequency
formulation. We detail more precisely, step by step, how to perform fast multipole calculations. We also
provide a theoretical estimation of the complexity of the fast multipole method. Then, consistently with the
first part of this manuscript, we investigate (chaptea verification process to evidence the reliability and
the accuracy of a fast multipole algorithm for both rigid and impedance boundary conditions, by compar-
ison with the analytical solution. We also describe how to take into account the reflections on the ground
through the implementation of the infinite rigidffia in the framework of the fast multipole method, which
will be subsequently used in the cases of urban applications.

The third part (lll) of this manuscript represents, as far as the author knowsntst original work
of this PhD thesis. The purpose of this part is to deal with realistic cases such as encountered in urban
environments. The first considered realistic case (chapté a scattering problem by a sound barrier
located in front of a building. The second larger realistic case is a sound propagation problem in a city block
made of 5 buildings. This geometry implies sound propagation in streets as well as propagation in sensitive
areas, i.e. opened and closed court yards. Through this problem, we investigate parametric studies with
respect to (i) the weighting parameter of the conventional and hyper-singular boundary integral equation
and (i) the iterative solver relative residual. We subsequently focus on the computing requirements, i.e.
computation time and memory, of the fast multipole boundary element method for solving this problem
according to frequency and on the benefits provided by a parallelization processnefathimteractions
This study allows to highlight some instabilities which occur for expansion orders above a hundred, leading
to discontinuities on the surface pressure field and a failed convergence of the iterative solver. These issues
led us to consider (chapté) the very recent @verov & D urarswamy’s work, related to the stability of the
recursive process to compute the rotation matricefficamnts. A successful implementation of the “stable”
process allows then to consider higher scale models such as multi scattering problems by cubic bodies, the
largest scale model that we have considered in the scope of this thesis. Finally, in the last Ghapter
perform comparisons in the case of the city block inside an opened and a closed court yards, between
three diferent algorithms, for two dierent frequency ranges. In a low frequency range, we compare the
sound pressure levels computed with the BEM algorithm, the FMBEM algorithm and a ray tracing based
algorithm, Icar® software, while in a higher frequency range, only a comparison between the FMBEM
algorithm and Icar® is possible.

This manuscript will end with a synthesis on the applications of the fast multipole boundary element
method for solving sound propagation problems in dense urban environments and open the field on investi-
gations which have not been considered in the framework of this thesis.
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Part |: Introduction

The Boundary Element Method (BEM) is a numerical method for solving the discretized form of the Bound-
ary Integral Equation (BIE). This equation can be obtained after the reformulation to boundaries of a given
problem of a certain class of PartialfRirential Equations (PDE) and is hence not widely applicable when
compared to the adaptability of the Finite Element Method (FEM) or finftedince methods. Basically,

the BEM provides a numerical solution for problems governed by partiférdntial linear equations in
homogeneous media. The boundary element formulation has been first proposed duririg lilgel68on
[Jaswon 196Band Srmv [Symm 1963 to solve two dimensional potential problems. Some appboatin
elastostatic domain have subsequently been implemeRiedd 1967 Cruse 196P The BIE formulation

has then been applied more generally, during tHe @ solving stress problem€fuse 1974Rizzo 1977

Wilson 1978 Kupradze 197P and the name of the BEM is given by analogy with the FEM. Reigar

the application of the BEM in the framework of acoustics, first applied to solve two dimensional scattering
problems governed by the Helmholtz equation for an arbitrary b&wnaugh 1961 the application in

three dimensions came at the end of thés§&chenck 196/ Burron & MiLLer introduced a formula-

tion [Burton 1971 to overcome the fictitious eigenfrequency problem whichespp when solving exterior
propagation problems. This formulation has been implemented at the end of ¢ia [{deyer 197§ and

the static subtraction technique has been proposed in order to deal with the singularity problems of hyper-
singular integrals. Since then, the BEM has been extensively covered in dedicated books including several
domains in applied mechanicBrebbia 1978Banerjee 1981Chen 1992Bonnet 1999Kirkup 2007 pro-

viding a general insight of the application of the BEM in physics.

The purpose of this first part is to introduce the physical variables as well as deriving the Boundary
Integral Equation which the boundary element method is based on. We also assess the accuracy of the BEM
algorithm for solving scattering problems in free space. This validation step is a crucial aspect of the fast
multipole algorithm since the boundary element formalism will be subsequently used to perfaneathe
interactionsin the framework of the fast multipole boundary element method.

We recall, in the first chapterl), the mathematical background required to construct thendbemy
integral formulation. Starting from the wave equation, we first introduce the Helmholtz equation assuming
a harmonic time dependency (sectibrd). Then, we introduce the boundary conditions satisfied by the
Helmholtz equation (sectioh2) and the main theorems required to express and build the Boyhadegral
Equation (sectiori.3). We also describe theddron & M Ler (B&M) formulation used in outdoor sound

11
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propagation to overcome the fictitious eigenfrequency prok(sectior.4). Finally, we come to the BEM
by the discretization of the BIE.

In the second chapteB), by comparison with analytical solutions (sectd), we assess the accuracy
of the BEM for scattering problems by a spherical body (secfid). We also study the behavior of the
iterative solver in terms of boundary conditions and frequency. We emphasize the fictitious eigenfrequency
problem and assess the robustness of the B&M formulation to avoid fhutty in section 2.3) as well as
its influence on the iterative solver. Finally, as the use of constant elements allows the analytical integration
in polar coordinates of singular integrals (weakly or hyper-singular), we emphasize the influence of this
implementation on the number of iterations in sectiBm);



Chapter 1

Boundary Integral Equation formulation

1.1 From the wave equation to the Helmholtz equation

For a three dimensional propagation problem in a homogeneous isotropic d@r(fagare 1.1), the wave
eguation can be written as:

1 8%¢p(x,1)

2 Y
Vep(X,t) — 2 a2 - 0, VX € Q, (1.1)
in which ¢(x, t) is the acoustic pressure field at pokrt timet, V is the nabla operatoV2(.) = 6%(.)/0x? +
82(.)/0y? + 9%(.) /07 for Cartesian coordinates,is the sound velocity in the medium (e.g. 3431 the

air at 20°C). For one dimensional propagation along the x axis, the solution of this equation is the sum of

two arbitrary functions:
p(x 1) = f(x—ct) + g(x + ct) (1.2)

The former functionf describes a right-traveling wave (towards direction) and the latter functiog
describes a left-traveling wave (towards -x direction). Indeed the right-traveling wave phase can be charac-
terized by some constant valuefgfwhich is realized ax = ct+const and so the wavefronts travel towards

Ficure 1.1: Schema of an interior acoustic propagation problem within a donfainThe shaded area
represents the unexamined domain.

13



Partl, Chapterl. Boundary integral equation formulation 14

the +x direction ag grows. Inversely, the left-traveling wave phase is characterized by some constant value
of g, which is realized ax = —ct+constand so the wavefronts travel towards thedirection ad increases.

We also introduce some other useful quantities in wave analysis related to the freduency

2rf c
w = 27t (angular frequency); k= —~ (wave number); A= T (wave length)  (1.3)

Only time-harmonic solutions to the wave equation are considered, thus the solution to the wave equa-
tion can be written, assuming a time convention factéflep(x, t) = ¢(x)e !, ¥x € Q, with ¢ being the
complex acoustic pressure at poinin the frequency domain ariglthe unit imaginary numbeiq = —1).

Thus the acoustic wave equatidh) becomes, in steady state condition :

V2¢(x) + k%p(x) = 0, VX € Q (1.4)

This equation is the well known Helmholtz equation, it is a wave analog (in the frequency domain) of the
Poisson equation (the calse- 0), for a three dimensional propagation problem in a homogeneous isotropic
domainQ.

1.2 Boundary conditions

The Helmholtz equation is an equation for which it is usual to consider boundary value problems. The
Boundary conditions (BC) follow from particular physical laws (conservation equations) formulated on the
boundariesS of the domain for which a solution is required. There are two specific types of problems in
acoustic wave analysis. One corresponds to the case of imposed pessuttee boundary referred to as
Dirichlet’s problem:

(Dirichlet BC) B(X) = p(X), VX €S, (1.5)

the other corresponding to the case of an imposed normal velpcitythe boundary referred to as Neu-
mann’s problem:
9¢

(Neumann B qx) = o gx), VxeS (1.6)

and is thus proportional to the normal derivative of the surface pressure, according to the unitiyamal
the pointx. We can also define a mixed (impedance or Robin’s) boundary condition linking both previous
quantities with the specific acoustic impedance Z:

lwpair¢(X) = Z(X)q(X), ¥xeS (1.7)

with the air density,ir. We denote that the quantities with overbars indicate imposed values on the bound-
aryS.
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An additional boundary condition, which will be suitable fxterior acoustic propagation problems
(i.e. in an infinite or semi infinite domain) can be introduced. This is the Sommerfeld radiation condition,
resulting from the fact that all outgoing waves, scattered or radiated, vanish at infinity:

. op .
lim r{——ik¢|=0 1.8
m (52 - ko) 1.9

r—+o00

wherer is the distance from a fixed origin to a general field point arislthe total acoustic wave (velocity
potential or acoustic pressure).

1.3 Conventional Boundary Integral Equation (CBIE) formulation

We will see in this section the establishment of the Conventional Boundary Integral Equation (CBIE) ap-
plied in three dimensional outdoor sound propagation. We first have to introduce some fundamental identi-
ties required in the framework of the integral representation formalism.

The fundamental solution in infinite domain
Starting from the homogeneous Helmholtz equatibd)(

V2¢p(X) + K2p(X) = 0, VX € Q, (1.9)

we can introduce the Green'’s functi@as the free-space fundamental solution of the previous equation in
three dimensions: _
ekr .
G(X,y)=—, with r=x-yl |, (1.10)
Arcr
wherer is the distance between two arbitrary poirtandy. It follows from the previous definition tha&d
is a symmetrical function:

G(x,y) = G(Y, X). (1.112)

This impulse response of a free-space propagation problem, is the fundamental solution of the Helmholtz
equation {.9) for a point source of amplitud®, located aiq:

V2G + k*G = —Q8(X - Xq), VX € Q, (1.12)

whereé(x — y) refers to the Dirac delta function which is defined for an arbitrary functio as:

fy), foryeq,
f f)5(x—y)da = 1O forye (1.13)
Q 0, otherwise

The divergence theorem
The divergence theorem, coming from the Gauss theorem, relates an integral over a@aniairio the
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surface integral over the bounda®yof this domain:
f(V-A)dQ = (A-A)dS, (1.14)
Q oQ

whereni is the normal vector to the surfa@outgoing to the domai® andA a scalar or vector quantity
for which the operatoris defined.

Green’s integral theorem
Green’s first integral theorem states that for a donfaiwith boundaryS, given two functionsu(x) and
v(X), we can write:

f (UV?V + Vu - VW)dQ = f V- (Uvv)dQ, (1.15)
Q Q
and taking back the divergence theorehid) on the quantityuVv:
f (UV?V + Vu - VV)dQ = f fi- (Uvv)dS. (1.16)
Q 0Q

To obtain Green’s second identity theorem, we write equatiohg by exchangingi and v and subtract it
from (1.16), which yields:

f(quv—vVZU)szfﬁ-(qu—vVu)dS. (1.17)
Q s

The Green’s second integral theorem can also be written as:

LuvzvcmzLVVZUCK)+L(U(§—\F:,—VZ—I:)dS, (1.18)

where we usé(:)/on =ii- V(-).

Conventional Boundary Integral Equation (CBIE)
Let us consider a domai with its boundaryS. Using the property of the delta functioh.{3 for a given
functiong at a pointx € Q:

[ ooty -xd2 =009, xe (1.19)
(x) = - fg ) [V5G(x, y) + K*G(x,y)| d(y), (1.20)

whereVy is the nabla operator with respect to variapleUsing Green’s second integral theoreml@),
where we seti = ¢ andv = G, the above equation can be written:

_ aG(x.y) 9¢(y)
o9 =~ [ 1€otatyiny - [ e - [ oD - oy %2 as,, .2
_ 2 2 B IG(xy) 9¢(y)
o069 == [ [T3000 + Ko)] ctxyay - [ oo - ceeyhas,. @22
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Let us consider the case of a functigrin the domain which fulfills the Helmholtz equationl(9),
then the first integral in the above equation becomes:

fg [VZo(y) + KPa(y)| G(x. y)dQy = -Q fg 8%, XQ)G(x, y)dQy = ~QG(X, Xq)- (1.23)

Thus, relation 1.22) leads to:

009 [[|-25 2000+ Gy o, +oat0. wxeawyes. @29

with QG(X, Xg) = ¢in(X), the incident pressure atdue to a point source locatedas.

Equation (.24 is the integral representation of the solutiginside the domaif2 of the Helmholtz
Equation (.9. Regarding the case of an exterior propagation problempfip@site direction ofi, is
usually used since it is defined as the outward normal to the propagation domyathaitis to say turned
inward the scattering body. Furthermore, in order to determine the pressure pateawélwhere in the
domain using equationl(24), both ¢ and q are needed on the boundary. Even though this equation is
valid for both exterior or interior problems, it is not valid whgrcoincides with the boundary. Let the
collocation pointx approach the boundal§y, the previous equation leads to the following Conventional
Boundary Integral Equation (CBIE) for exterior propagation problems:

cooued = [ |2 s) -Gy |ds, + a0, vxyes @2

The codficient C(x) is related to the fraction of local volume determined by the solid apgiecluded in
the domain® at pointx,

1/2, X on a smooth part of the boundary,
C(x) =4 y/4n, xata corner of the boundary, (1.26)
1, X inside the domain.

For the sake of readability, we will use throughout the rest of the document, for both kéraatsF,
the following notations :

ikr
G(x,y) = j—m, (1.27)
Fixy) = BV _ 06XY) ot o o ik - 1) e ar (1.28)

on, ~  ar on, 4712 OR,”

In the case of a free space problem, all outgoing waves vanish at infinity which is implicitly satisfied
by the boundary integral formalism since it fulfills the Sommerfeld radiation condition 1&8)),(thus the
CBIE is valid at any poink in the domain and on the surfac8, allowing to determineg at any point in
Q, once the valueg andq are known on the boundary.



Partl, Chapterl. Boundary integral equation formulation 18

1.4 Conventional & Hypersingular Boundary Integral Equation (CHBIE)
formulation

Equation (.25 has a major drawback when applied to exterior acoustic gt problems. Indeed

it does not lead to a unique solution at certain characteristic frequencies corresponding to the eigenfre-
quencies of the corresponding interior problem. Thigidlilty is referred to as the fictitious eigenfre-
quency problemBonnet 1999 Several methods and formulations have been proposed lwdadt 3-4
decades for overcoming this non-uniqueness probleegp Silva 19940chmann 20020setrov 200h

The CHIEF method performs well at low frequencies, but a reliable solution can never be guaranteed.
The method of Rsen and al. Rosen 199phas already been tested and is not recommended since it per-
forms even less reliably than the conventional CHIEF. One of the nfestige, and recommended method
[Rosen 1995Marburg 2005, is the Burton & Miller (B&M) formulation. It consists in atiear combina-

tion of the CBIE formulation and its normal derivativeuiBon and MiLLer have proved inBurton 1971

that this formulation yields to unique solutions at all frequencies for exterior acoustic problems.

Let x approachS and let us take the derivative of equatidn2b with respect to the outward normal
to the domainQ at the collocation poink. It leads to the following Hyper-singular Boundary Integral
Equation (HBIE):

dG(x,y) o¢(y)
af  ony

a¢in(x)
ony

C(x)

dsy +

99(x) _ f [aZG(x, y) VX €S, (1.29)
S

o an,on, V)

according to the constafit(x) defined in {.26. Consistent with definitionsl(27) and (.28, the two new
kernelsK andH are defined as follows<irkup 2007:

AG(x,y) IG(x,y) or _ ek or
K = = —_— K = k —1 e 1
0¥ = =55, o o, Ky =Okr- D) o (1.30)
HOcY) = 8°G(X,Y) _ 9G(x.y) r  dG(x,y) or ar
YT oRan, © or omon . or2 on, ony
ekt 92 ek ar or
H(x,y) = (ikr — 1)—s ——— + (2 — 2ikr — K?r?)—— — —_
= Ry =0k =) e anan, @~ 2K KT 3 o, o,
(1.31)

According to the CBIE (equationl(29) and the HBIE (equation1(29), Burton and Mwiier have
introduced a linear combination of both equations with a non-zero imaginary part coupling canstant
leading to the following Conventional & Hyper-singular Boundary Integral Equation (CHBIE):

CBIE+a HBIE =0,

CX) [¢(X) + aq(¥)] = fs [(F(X.Y) + aH(X,y)) ¢(y) = (G(X,y) + aK(X,y)) A(y)] dSy + ¢in(X) + adlin(y).
(1.32)
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It has been proven inBurton 197] that the Conventional & Hypersingular Boundary Integrau&tipon
(CHBIE) Eqg. (.32 yields unique solutions fofi(a) # 0 at all frequencies when applied to exterior
acoustic problems. One possible, and subsequently used, value of the pakametgibea = i/k (cf.
[Meyer 1978). However, it has then been proven that such a value of thplicguparameter almost min-
imizes the condition number of the operators on the left and the right hand sides of equa&®nwhen
the boundary is a sphere (cArnini 19904), so we will prefer using the following expression:

(l—mCEE+niHmE:O with 0<p<1. (1.33)

Even if this equation is not the usual CHBIE, by choosing a proper value of the weighting factor,
allows a better control of the fictitious eigenfrequency problem and appears to be more suitable for urban
geometries. It is noteworthy that the CBIE is obtained:fot 0, the HBIE forp = 1 and the commonly

used CHBIE, i.e. the one introduced byfon and MLLer in [Burton 1971, corresponds tay = 0.5.
Furthermore, for impedance boundary conditions, even if this equation leads to a slower convergence for
low frequency problems (thus it is not recommended at low frequency), it will be shown in the following
(section2.3) that the CHBIE allows a stable convergence of the iteratirees as the frequency increases.
Yasupa and al. [Yasuda 200] provide very detailed information about the behavior ofegal iterative

solvers for both interior and exterior propagation cases. However, as far as the author knows, the behavior
of the CHBIE formulation with respect to the frequency seems to be still a topic of investigation and will
be studied in sectior2(3).

Weakly singular form of the Hypersingular Boundary Integral Equation

The major drawback of the CHBIE (equatioh.32), according to the definitions of kernels F, K and

H, equations 1.27), (1.28, (1.30 and (.31 respectively, is that singularity problems occur wheends
towards zero. Regarding the integration of the ke@aheO(1/r) dependency does not introducéhidul-

ties from a numerical point of view and can be readily handled with a standard Gaussian quadrature. We
will see in section 2.4) that this integral can even be computed analytically in theigular case of zero
interpolation order to discretize the boundary by using polar coordinates. Even though both keandls

K include a Jr? term, it can be proved that their integration behaves actually only as weakly singular inte-
grals and can also be readily handled by using standard numerical integration techniques such as the Gauss
quadrature. Furthermore, by using zero numerical interpolation ardecg¢nstant elements) to discretize

the boundary, the singular behavior, when two points are on top of each iogher% y), of the integration

of both kerneld= andK disappears. Indeed wharandy are in the same element, the dot prodéetj = 0

and it follows: e
or -y . or
— == h F = (ikr - 1)—— =0. 1.34
an, - 0 thus (x,y) = (ikr )47rr28ﬁy 0 (1.34)
Likewise for the singular kerné{ in the HBIE, wherx andy are in the same element:
- ikr
o Tk _g andthus  K(x,y) = (ikr — 1) e oy (1.35)

T Anr2 on,
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The HBIE, however, still introduces a hyper-singularity da¢he presence of the/f® term appearing
in the kerneH (eq. 1.31):
°G(x,y) 1
—_— x —. 1.36
an,on, 3 (1.36)
However it is possible to write a weakly singular form using a singularity subtraction technique, first re-

ported in a physical review ireyer 1978 and detailed inlLiu 1991] and [Li 2010]:

PG(XY) o 9°G(x,y)  9°Go(X,y) 8Go(x y)
JLoon a2 o n, 0 = |. ¢(y)[ o, o ]dsy+ | vooon, e es,
#Go(x, y)

= 37000 e+ [ [66) = 660 = T600(y =] ran, 0

(1.37)

with the static Green’s functio@o(x,y) = It has been proved that all integrals in the right-hand side

47rr
are at most weakly singular. Hence, the hyper-singular integral is reformulated into an improved form
involving boundary integrals that are only weakly singular. This weakly singular integral (&q.is valid

for an arbitrary interpolation order and can be readily handled by standard numerical integration techniques
such as the Gauss quadrature. Furthermore, when applied with constant elements, the gradient appearing
in equation .37 may reasonably be considered as nuth(x) = Vg(y) ~ 0, and the previous equation

yields:

*G(%.Y) (o 0°G(x.y)  8°Go(x.y) 9%Go(x. Y)
JonTebas, = Lo | FREA - TR s, + [ 1) - o09) oD, (1.0

This latter assumption could represent a rough approximation therefore, before being used in the framework
of the fast multipole formalism, has first to be validated. This point will be discussed in the next chapter
related to the validation of the boundary element algorithm.

1.5 Discretization of the boundary integral equation

We propose to focus in this section on the BIE from a numerical point of view. We first discretize the
boundarys into elementary constant elemeniS as displayed in figuré.2

Since we deal with 3 dimensional propagation problems and to ease the numerical implementation, the
boundary shape is approached with planar triangles. The functiamslq are then replaced by constant
values on each triangle, leading to a number of unknowns equal to the number of elénditts CBIE
(equation 1.295) becomes:

+ Pin(Xi), (1.39)

1 N
§¢<xi)—;[¢(y,-) S Fowyias-awp [ cti.ypas

vxi,y;jeS for 1j=12---,N.
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Ficure 1.2: Schema of discretization of the boundary S into constant elements dS. The shaded area repre-
sents the unexamined domain.

Re-arranging each term, that is, moving the unknown terms to the left-hand side and known terms to the
right-hand side, leads to the following linear system of equations which can take the following matrix form

A1) = B)or-

Air A ... A1 by
. = (1.40)
Ant Anz .. Aun] AN bn
where:
A 1 —fdsj G(xi,yj)dS, (for Dirichlet BC)
=2 +fdsj F(x,y;)dS, (for Neumann BC)
i), (for Neumann BC
2= ¢(xi), ( U ) (1.41)
g(xi), (for Dirichlet BC)
] o0 -0(yi) f;s G(Xi.y;)dS (for Neumann BC)
= in (G _ |
= dnlx +8(yi) Jys, FO4,¥))dS, ~ (for Dirichlet BC)

Ajj are the components of the matrix, the vectas the unknown pressuig or velocity g on each node
i, and the vectob, the known right hand side consists of the incident pressure field and the product of the
imposed boundary pressure vattier imposed boundary velocity valugby the corresponding integral.

According to the previous definitions (equatiods39 and (L.41)), the HBIE leads to a similar linear
system of equations obtained by exchangidgndF with K andH respectively.

+ Pin(Xi), (1.42)

1 N
30000 = > ot [ _ HOGypas ) [ Ko ypas

=1
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VXi,ijS for i,j=12,---,N.

It is noteworthy that the use of the CBIE (equatiohs3@) only requires the evaluation of two integrals
while the weakly singular form of the B&M formulation (equatioris39 and (L.42), consistent with the
definition (1.38), is more time consuming since it requires the evaluationvef ifitegrals for impedance
boundary conditions. We have only described here the numerical features of the boundary integral equation
with constant elements; however the use of constant elements to discretized the surface usually requires
more elements to reach the same accuracy as compared with the use of linear or quadratic elements.

1.6 Insummary

This chapter has been dedicated to the underlying theory of the boundary integral formalism in order to de-
rive, from a numerical point of view, the Boundary Element Method (BEM). We introduce the Conventional
and Hyper-singular Boundary Integral Equation (CHBIE), also called therdd & M mrer formulation,

to tackle the drawback of the well-known fictitious eigen-frequency problem which occurs at resonance
frequencies of the adjoint interior problem. Using the static subtraction technique, we finally derive the
weakly singular form of the hyper-singular boundary integral equation which can be handled numerically
by standard Gauss quadrature. The following chapter is dedicated to the numerical validation of the formal-
ism we described in this chapter, a necessary step to ensure a reliable computatiameaf tihéeractions

in the framework of the subsequently fast multipole formalism.



Chapter 2

Verification of the boundary element
algorithm with a scattering problem by a
spherical body

The purpose of this section is the verification of the accuracy of the boundary element method through a
scattering problem by a spherical body. The verification of the reliability of the boundary element method
is an important step since it will subsequently be used in the framework of the fast multipole formalism
to compute the direct interactions (see chaft&. Thus, we study the case of a spherical incident wave
scattered by a spherical body with a radagqual to 1 m (see figur2.1). The analytical solution de-
scribed in the following section2(1) is taken as a reference solution throughout the validatidheoBEM
algorithm. First, we compare the surface potential pressure level for regular frequencies with rigid and
impedance boundary conditions as well as the number of iterations required to solve for the problem (sec-
tion 2.2). Then, we deal with the fictitious eigenfrequency problerthwvtiie use of the Burton & Miller

(B&M) formulation and the static subtraction technique (secfdd). Finally, since the mesh is made of
planar triangular elements, we will see how the singularity problem occurring on a singular element can be
solved by an angular analytical integration in polar coordinates (se2t#n

2.1 Analytical solution of the scattering problem by a spherical body

We consider the case of a spherical body of radiazcited by a spherical wave generated by a point source
of amplitudeQ located at a distanaof the sphere center (cf. figugel).

The acoustical surface potentials and its normal derivative corresponding to the normal velocity

% < in this case can be written as:

23
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90°
symmetric axis

10 AN l Ol
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Tzo"

scattering sphere point source

10a

Ficure 2.1: Schema of the studied problem: a sphere of radius a excited by a point source.

= (2n + Dh,(kd)P,, )
¢|S:_4ﬂ§a2;)( n + 1)hy(kd)Pr(co9) ¢ 2.1)

hy(ka) + oha(ka) anls =17 ?ls:

whereo is the complex admittance and the azimuthal amylis the angle between the radius vector of

the surface point and the direction of the incident wave. Note that the surface potential and its normal
derivative are only related #® which means that this problem is axi-symmetrical (see figuke implying

that only the solution fof € [0, 7] needs to be computed in order to know the solution on the whole surface.
Both equations bring into play Legendre polynomiBjg.) defined in the range-1, 1], spherical Hankel
functions of the first kinch, (often denotedﬁ]l)) and their derivatives$y,. Further information about the
relations between Bessel's functions can be found\brémowitz 1964

Note that equations2(1) can also be simplified into the limit solution of a rigid body & 0) and
the limit solution of a soft bodyd« = ) published previously inHanish 1981 We also notice that
the solution of the plane wave scattering by a rigid sphere was published by Lord Rayleigh a century ago
[Rayleigh 1904

2.2 Validation of the algorithm for regular frequencies

The linear system of equations is solved by using the Generalized Minimum RESidual m8thedi 198p
Iterative techniques have been investigated in quite a number of papersmayafd al. Amini 1987,
Amini 19908 who investigated the application offthrent iterative methods for exterior acoustic problems,
in particular for the Burton & Miller formulation. Since an iterative technique will be subsequently used in
the framework of the FMBEM, we first propose to check its accuracy and its reliability for solving exterior
acoustical problems through the boundary element method.
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Comparison of the surface sound pressure level

The verification tests are made for a sphere of radjushose surface is meshed with 31696 planar tri-
angular elements to keep a very good continuity on the curved surface since it corresponds to a space
discretization criterion equal to 10 elements pdor the highest considered frequency (see results in ap-
pendixB.2). 360 receivers are evenly distributed on the surface of pherg in a vertical plane. Figure

2.2 shows the comparisons of the sound pressure level in decibeétrms of azimuthal angle in degrees,
between the analytical solution (blue line) and the solution computed with BEM algorithm using a collo-
cation approach (dashed red line). The comparisons are performed for six dimensionless wave numbers:
2ka=kD=0.1, 1.0, 2.0, 5.0, 10 and 20, corresponding to frequencies equal to 5.4, 54, 108, 271, 541 and
1082 Hz respectively. In order to ensure that both ker@etdF are properly computed, we consider a

rigid case for which only the kernél is involved, and also an impedance case for which both ke@alsd

F are involved. The impedance has been chosen to study the limit cases of a rigid.boaty=0), and a

soft body with a normalized complex impedance (compared with th&@ &R = o-a/o- = 1.22 + 1.22i.

The source has a unit amplitude=€)1 and the reference pressure chosen igR28,i.e. reference

of the dB (SPL) (Sound Pressure Level). We have chosen to use the iterative solver GMRES with the
BEM algorithm even though it is not justified according to the expensive computation time. Indeed the
computation time involved by the iterative process with the BEM in this case leads to a more expensive
computation time than a direct solver such as Gauss elimination since the matrix vector product needs to
be computed at each iteration. However, since we will use the GMRES solver in our FMBEM code, it is
suitable to use this solver now. The GMRES solver stops when the residue is below the relative tolerance
1.10°2 without using a restart condition, since a small number of iterations is required in these verification
procedures.

We can see a very satisfactory consistency between the analytical (equid}iand the BEM solutions
(see figure2.2) for both cases, rigid and impedance (solid lines and dashes &re superposed), meaning
that the kernel$- andG are properly computed. Thus the BEM algorithm is relevant to subsequently be
used to take into account thmear interactionsfor regular frequencies in the framework of the FMBEM
formalism. We point out that the considered frequencies have been chosen in order to avoid the well known
fictitious eigenfrequency problems which will be treated in a following sec2oB).(

Number of iterations for a frequency range

Since we have checked the accuracy of the BEM for discrete frequencies, we focus on the behavior of the
iterative solver for a frequency range. We study a range of frequencies starting from the dimensionless
frequency Ra = kD = 0.09 or Q031 to 2ka = kD = 20.3 or 6521 corresponding to 5 and 1100 Hz
respectively with a 1 Hz step. We are still considering the case of the scattering sphere excited by a point
source (see figurg.l). Due to the large number of calculations involved by the fiegdiency stepi.g.

1 Hz) and in order to emphasize what happens for each frequency, we set the number of constant triangular
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element to 7932 (5 elements peat 1100 Hz, see results in appendixl). In figure2.3we can see the total
number of iterations required by the GMRES to approach the solution of the system under the prescribed
tolerance for every frequency.

We can see the behavior of the convergence for both keffn@lgid case in blue line) an@ (sound soft
case inred line), in figur2.3for zero velocity and zero pressure conditions on the boyn@sipectively. A
zero pressure boundary condition requires more iterations to converge than a zero velocity boundary condi-
tion, most likely because of the computation of the singular integral k&méhen the source point and the
collocation point are on top of each other. We emphasize through this section, the fluctuating increase of the
number of iterations with frequency. Indeed we can see sharp peaks occurring around specific frequencies.
These frequencies, the so-called eigenfrequencies, do actually correspond to the resonance frequencies of
the associated interior problem of the scattering sphere. Thiisullly is referred to as the fictitious eigen-
frequency problem and is a pure numerical artifact since it can be proved that the matrix system does not
possess a unique solution at these characteristic frequencies. As a result the exterior pressure field will be
disturbed even for rigid boundary condition which does not have physical meaning. The density of ap-
pearance of eigenfrequencies increases with the frequency and causes the instability of the iterative solver
(starting fromka = 5r) leading to an infficiency of the iterative solver at higher frequency. Some of these
frequencies are highlighted in dashed black lines in figuBe Resonances occur with a dimensionless
frequencyka o nr corresponding to pure radial modee( eigen modes of the pulsating sphere). We focus
more specifically in the following section on three eigenfrequenciekder zr, 6.98 and 154 (emphasized
in figure2.3).
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Ficure 2.2: Comparison between the analytical solution (blue lines) and the BEM solution (dashed red
lines) of the sound pressure level in dB (SPL) on the surface of the sphere excited by a point source of unit
amplitude Q= 1. The reference pressure is g®a. The source is located &0a from the sphere center (a

= radius).
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Ficure 2.3: Number of iterations required for GMRES to converge below the prescribed tolerant6@)e.
for zero pressure boundary condition in red line and zero velocity boundary condition in blue line. The
dashed black lines indicate some fictitious eigenfrequencies.

2.3 Treatment of the fictitious eigenfrequency problem

The pulsating sphere has been extensively used in the literature to shoffettteéirregular frequencies.
Often, the only irregular frequencies observed in this case correspond to zggdkadf that iska = nr,

with n = 1,2, 3,... corresponding to pure radial modes. The problem of the scattering sphere involves
in addition all ortho-radial and combined modes (see figuBe As the density of irregular frequencies
increases with increasing values of the wavenunkiemnd causes the instability of the iterative solver, an
effective solution to overcome this problem seems to be required.

We focus in this section on 3 eigenfrequencies, ka= n, 6.98 and 1594 denoted by the thick dashed
black lines in figure2.3. The number of constant elements is set to 31696 to keep a gotithuaity of
the pressure field on the mesh. To prove the resonant behavior, we draw an internal noise map at each
eigenfrequency (see figur@sd(a) 2.4(c) and 2.4(e) and distinctly see three eigenmodes of the sphere.
ka = = is the first radial mode, .88 is the third orthoradial mode and.08 corresponding to a complex
combined mode. It turns out that for these three resonances the BEM algorithm fails in properly computing
the correct solution as we can see in figuBed(b) 2.4(d) and2.4(f). This is a well-known conclusion
that the classical BEM does not possess a unique solution at certain characteristic frequencies for exterior
acoustic propagation problems.
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sphere on the left side and surface pressure in dB (SRL¥ (20 uPa) on the right side for 3 eigenfrequen-
cies. The BEM (dashed red lines) fails to properly computing the correct solution (blue lines).
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In the following section, we solve the scattering sphere lgratfor irregular frequencies with the Bur-
ton & Miller formulation (CHBIE). It has been proved{rton 197] that the linear combination with a
complex coupling constant of the BIE and its normal derivative yields a unique solution for all frequencies.
We remind that the hypersingularity problem occurring with the integration oHtternel will be over-
come through the static subtraction technique (seeleg8(in sectionl.4). We first focus on the iterative
solver behavior with the use of the B&M formulation for the same range of frequency as in s@c2on
(i.e. from ka = 0.09 toka = 20.3) and subsequently provide the proof of the robustness and accuracy of
the B&M formulation applied to the problem of the scattering sphere. The number of constant elements is
once again set to 7932 (see results in appeBdl) for the study of the iterations and 31696 (see results in
appendixB.2) for the study of the pressure field on the mesh.

Influence of the B&M formulation on the convergence of the iterative solver

We first focus in this section on the behavior of the iterative solver with the B&M formulation. We compare
the total number of iterations obtained for each frequency with the classical formulation of the BIE previ-
ously studied in sectiof.2, with the B&M formulation of the BIE i.e. equation .33 with a weighting
parametemn; = 0.5). We show the dierences for both formulations for the limit case of an imposed zero
pressure = 0) boundary condition in figur.5(a)and the limit case of an imposed zero velocEy-> o)
boundary condition in figurg.5(b) This study allows us to emphasize the influence of contobgtiof the
kernelK (Z = 0) and the kerneH (Z — o) of the B&M formulation.

Figure 2.5(a) shows the benefit for a zero pressure boundary condition oB& formulation for
the whole frequency range. Indeed, while the classical BIE has an unpredictable behavior, the B&M for-
mulation seems to provide a better conditioning of the matrix system and yields a very slow increase of
the number of iterations with respect to frequency. Thus we can say that the addition of the derivative of
the kernelG, K, which takes part in the B&M formulation stabilizes the number of iterations and allows
a decrease of computation time even though the evaluation of two additional integrals are required at each
iteration. Figure2.5(b)shows the decrease of the number of iterations with respdietdaency for a zero
velocity boundary condition. For a dimensionless frequency inferiotrtm8re iterations with the B&M
formulation are required than with the classical BIE, but less iterations starting framtBe end of the
range. Thus, the derivative of the kerelH, allows a decrease of the number of iterations as the frequency
increases.

We point out that the B&M formulation leads to a stable dependency of the number of iterations on
the whole frequency range regardless of the boundary conditiansapsence of peaks and fluctuating
behavior). In the next section, we will see if the B&M formulation is relevant to provide a satisfactory
accuracy specifically for several fictitious eigenfrequencies of the problem.
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Application of the B&M formulation at singular frequencies

In the previous section, thefiency of the B&M formulation has been shown through the convergence of
the iterative solver. We now focus on itffieiency to solve a scattering problem by a spherical body. We
compare, in figur.6, the surface pressure computed on the sphere for the sameesthemfrequencies as

in section 2.3), ka = x, 6.98 and 194 for rigid boundary conditionsZ(+ o) on the left hand side and
complex impedance boundary conditio@s={ 1.22 + 1.22i) on the right hand side. The analytical solution

is displayed in blue line and the BIE with the B&M formulation in dashed red line. The unsatisfactory
solutions obtained with the classical BEM are also recalled for the rigid case, on the right hand side (see
section2.2) and for impedance boundary conditions on the left hand side.

The very good agreement between the analytical solution and the solution obtained with the B&M for-
mulation, on the left side (figur.6), proves the iciency of the kerneH to overcome the eigenfrequency
problem for rigid boundary conditions. While the very good agreement between the analytical solution and
the solution obtained with the B&M formulation, on the right side (figr@, proves the iciency of both
kernelsH andK to overcome the eigenfrequency problems for impedance boundary conditions. It follows
that the derivated kerneld andK are properly computed and the B&M formulation is relevant to overcome
the fictitious eigenfrequency problems for mixed boundary conditions for the case of the scattering sphere.
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Ficure 2.5: Number of iterations required for GMRES to converge below the prescribed tolerant6@)e.
for zero pressure (a) and zero velocity (b) boundary condition. The dashed black lines indicate some ficti-
tious eigenfrequencies.
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2.4 Analytical angular integration on a singular element

The main dificulty occurring with the CHBIE formulation is related to the evaluation of singular integrals.
However, the singular integrals (weak or hyper singular) can be evaluated analytically in the sense of finite-
part [Dangla 2005Matsumoto 201pwhen the mesh is discretized with constant elements. T hesirodat
boundary integral expression includes neither the fundamental solution of Laplace’s equation nor the tan-
gential derivative of the sound pressure, which exist in the formulation based on regularization, and can be
easily implemented in the BEM. We proceed as follows: the integral of the surface in which the collocation
point is located is evaluated in polar coordinateg)(by dividing the element into three parts as shown in
figure R.7).

Ficure 2.7: Definition of variables used for the evaluation of singular integrals in polar coordinates.

According to the definition of the Green'’s functi@and assuming constant triangular elements, the
contribution of the integral of th& kernel leads to calculate the following expression:

_ o ikR(®)
| ctyaas - fs 1 SO + {1 Z f ¢ de} . @2

whereS/dS, denotes the boundaly excluding the boundary elemet8, in which the collocation point

x is located,mis related to the trianglen = 1,2 and 3. For a detailed calculation, the reader may refer
to [Matsumoto 201P A similar development can be carried out on the hyperseguitegral H kernel),
involving a double normal derivative of the fundamental solution which appears in the CHBIE formulation.
Its evaluation in polar coordinates leads to calculate the following expression:

i (k& (% RO
J Hoeywoos = [ Heymas- {5 2, wmw de} . @3
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The resulting CHBIE only consists of integrals of regulardiions of angular variables and can be evaluated
numerically directly by means of the standard Gaussian quadrature.

However, this latter expressio.8) has not been implemented successfully in the algorithm én th
framework of this thesis, thus the study of the influence on the convergence of the iterative solver of the
analytical integration on singular elements, will be only carried on the weakly singular integraitégral
of G kernel equationZ.2)).

Influence on the iterative solver

We study the same frequency range as studied in previous sections, starting from the dimensionless fre-
quency Xa = kD = 0.09 or Q031 to 2ka = kD = 20.3 or 651 corresponding to 5 and 1100 Hz respectively

with 1 Hz step. We are still considering the case of the scattering sphere excited by a point source (see
figure 2.1). Due to the large number of computations involved by the fiep §.e. 1 Hz) in order to
emphasize what happens for each frequency, we set the number of constant triangular elements to 7932
(5elmtg/A at 1100 Hz, see results in appendixl) . As mentioned above, we only focus on the integration

of the G kernel, that is to say for sound soft values on the bound@fy = o-a/0 = 1.22+ 1.22i. In figure

2.8, we can see the total number of iterations required by GMRE®pooach the solution of the system
under the prescribed tolerance 3dor every frequencies without the angular integration (in dotted blue
line) and with the angular integration described in this section (in red line). The discrepancy between both
integrations are displayed in cyan line.

The average deviation between both integration techniques is 0.64. This means that even if the number
of iterations of the analytical integration leads to the same fluctuating behavior than the integration with the
Gaussian quadrature, it seems nevertheless to improve the convergence at some discrete frequencies, while
keeping the same accuracy as shown in figuegor the two frequencies 5 Hz and 541 Hz, on the left and
right hand side respectively. For these reasons the analytical integrat®keohel on the singular element
will be used for the upcoming calculations.

2.5 Insummary

This chapter Z) has been dedicted to the validation of the reliability of BieM algorithm. Thus we

have checked the accuracy of the BEM algorithm to solve a scattering problem by a spherical body by
performing comparisons with the analytical solution for both rigid and impedance cases. We also ensure
the reliability of the weakly form of the conventional and hypersingular boundary integral equation to
overcome the fictitious eigenfrequency problems and investigate on the influence of this formulation on the
behavior of the iterative solver. Indeed, a prior assessement of the successful implementation of the BEM
is a crucial aspect of the fast multipole formalism since the BEM calculation will be subsequently used for
the evaluation of the direction interactions.
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tering sphere (ZZa = oa/o = 1.22+ 1.22i) excited by a spherical wave locaté@a away from the sphere
center.
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The boundary element method: (i) eliminates the need to consider the infinite domains usually associated
with radiation problems; (ii) reduces the dimensionality of the problem by one leading to a two dimensional
surface integral equation for three dimensional partidiedential equation and (iii) can readily handle arbi-

trary geometries and boundary conditions. However, the matrix system derived by the previously described
BEM formalism is fully-populated, non-symmetrical and can also be ill-conditioned. It follows that the
solution of the systeml(40), by the use of a direct solver such as Gauss elimination resG{N2) op-

erations because of the general form of the matrix system. Even with the help of an iterative solver to
approach the solution, the BEM formalism still requires an amount of storage médiNA) and a time
dependencyD(N?) for computing the matrix entries. From a practical viewpoint, this feature involves an
expensive computation time for a large scale model, since for a given space discretization criterion in terms
of frequencyf, N « f2 and the computation time dependencyOi& ©) (O(f#) with an iterative solver).

Such a dependency leads to prohibitive computation times as frequency increases and highlights the inter-
est of research related to the development of fast diiciemt methods for the improvement of existing
algorithms. Improving the computational cost of the BEM by an order of magnitude through the fast mul-
tipole formalism will be the scope of the following patt)( We investigated, in this part, the ability of the
conventional & hyper-singular boundary integral formulation to successfully solve a scattering problem by
a spherical body, even at fictitious eigen-frequencies, for both rigid and impedance boundary conditions.
As a result, the boundary element algorithm is found to be reliable to compute the direct interactions in the
framework of the fast multipole boundary element algorithm.
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Part Il : Introduction

The conventional Boundary Element Method (BEM), as described in the previous chapter, produces dense
and non-symmetric matrices which requdéN?) operations to compute the matrix ¢beients anddO(N?)
operations to solve for the system through direct solvidrieing the number of equations of the linear
system. Many methods have been proposed to counter this drawback. One of the most widely used is
the combination of the BEM with an iterative solver such as Generalized Minimal Residual (GMRES)
[Saad 198p The computation time is, in such a way, dictated by the tieguired to store the matrix
entries. This leads to a decrease of solution cost f@gh®) to O(N?). Regarding the storage memory, the
O(N?) dependency can be reduced to a linear dependency by storing only the matrix-vector product and
never explicitly built the entire dense matrix. However, this requires the evaluati®(N#) interactions

at each iterative solver step. However, through the fast multipole formalism the evaluations of interactions
can be performed at each step of the iterative process, vittiNa dependency. This point is the topic of

this part.

The purpose of this second part is to introduce the fast multipole principle as well as the mathematical
background required to perform calculations. Consistently with the previous part, we also assess the ability
and the accuracy of the fast multipole method for solving a scattering problem by a spherical body. This
validation will allow subsequently to solve more realistic propagation problems in the next part.

The third chapter3) is dedicated to the introduction of the fast multipole folisra applied to the
Boundary Element Method. After presenting a brief overview of the fast multipole principle, we introduce
the mathematical background required by a fast multipole algorithm. Thus, we detail the spherical harmonic
series, the RCR-decomposition and the high frequency formulation which the algorithm is based on. A more
precised description of the algorithm stages is also realized i.e. the multipole expansion step, the translation
of the multipole expansion céicient and the final summation step. Finally, we provided a rapid assessment
of the error bound as well as the theoretical computational complexity.

The fourth chapter4) is dedicated to the validation of the fast multipole bougdaement method.
We assess the fast multipole for solving three dimensional scattering problem for both rigid and impedance
boundary conditions by comparison with the analytical solution. We also focus on the infuence of the
conventional and hypersingular boundary integral equation on the iterative solver. Finally, we discuss how
ground reflections can be taken into account, from a fast multipole point of view, through the infinite rigid
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baffle. Indeed the half space propagation problem will be subsequently used in an urban context.



Chapter 3

The fast multipole formalism applied to the
boundary element method for acoustic
waves

3.1 A general overview of the fast multipole method principle

3.1.1 Brief review of the method

The Fast Multipole Method (FMM) comes fronoRaLin and Geencarp’s work [Rokhlin 1984,

[Greengard 1987 While it was first formulated for the rapid evaluation of thetential or gravitational

fields governed by Laplace equation including a large number of particles in two and three dimensions, it
was more generally extended later for the multiplicatioM&iN matrices. Thus, the FMM has subsequently

been applied to electromagnetism proble@sifman 1993Song 1997Chew 1997 Sylvand 2002, acous-

tical problems Gumerov 200} elastodynamics problem€haillat 2008 Chaillat 2013, Stokes flow

[Gomez 1997 Liu 2008, etc. For a complete overview of the FMBEM and its applicatia physics,

the reader may refer td.ju 2009]. Coupled with the advances in iterative methods for thedragpiution

of linear systems, the FMBEM carffigiently reduce complexity of the computational time and mem-

ory to a linear dependenc¥)(N) or O(NlogN). The term “iterative methods” refers to a wide range

of techniques using, at each step, more accurate successive approximation of the linear system solution.
Several of them are described iBdrrett 1994 and applications in the framework of the boundary el-
ement method for both external and internal acoustic problems have been investigatadirin 1987,

Amini 19901, [ Yasuda 200F Among them, the Generalized Minimum RESidual (GMRES3&d 1985

has become areliable tool for thfieient solution of large scale acoustic problems as shown in some papers
[Marburg 2003 Schneider 2003 For extremely large problems, the gain iffiéency and memory can be

very significant, and enables the use of more sophisticated modeling approaches that, while known to be
better, may have been discarded as computationally unfeasible so far.
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Since the early 1990’s, the FMM algorithm for solving Helntaaquation has been widely covered in
the literature. A very detailed description of the application of FMM to the Helmholtz equation was intro-
duced by Eronx & DEemBarT [Epton 1995 Because of th@(p°) nature of the standard formulation, with
p related to the precision of the method, using the Wigner 3-j symbols, the number of operations can be
reduced taD(p*) by the use of various recursive relations, but the computing time can still increase quickly
with the increase of the value of Based on @irect Rotation-Coaxial translation-inverse Rotatidacom-
position (RCR-decompositionJumerov 200 Gumerov & Duraiswamr have developed a formulation
using a set of cdécients which can be computed recursively and does not introduce the Wigner 3-j symbol
[Gumerov 2001Gumerov 200B This latterO(p?) formalism has been considered in the implementation
of our FMBEM algorithm and is described in the following.

Furthermore, to counter the instability problem of the FMM in its original version at high frequency,
Rokuuin developed a high frequency formulation using a diagonal translaiwkHlin 1993 and fast
spherical transformsgwarztrauber 2040 [Sakuma 2002Schneider 2008 This formulation has subse-
quently led to a broadbapgide-band FMBEM algorithm including both low and high frequency formu-
lations [Cheng 2006 [Gumerov 2009and has also been applied to a Galerkin boundary elemenboheth
[Fischer 2004

3.1.2 Overview of the method

The first key idea is the application of an iterative solver such as GMRES to approach the solution of the
matrix system and accelerate the matrix-vector product required at each iteration through the fast multipole
principle. This principle consists in grouping sources’ contributions around a common referential which
can be seen as a single source in order to subsequently calculate this unique influence to well separated
receivers. The simplest form of the FMM, also known under the name of the Middleman method can
only be applied when sources and receivers are located in well separated areas, actually useless in the
framework of the BEM since the nodes of the boundary can be seen as sources and receivers alternatively
and so are not well separated. To overcome this limitation, the Middleman principle can nevertheless
be applied with the use of a space partitioning. FigBukillustrates how computational savings appear
through this space partitioning. Instead of the evaluation of all pairwise interactions between the sources
and evaluation points (figu®1(a), as it is realized in the framework of the standard BEM, weaauate

the interactions between sources and expansion centers, between expansion centers and expansion centers
and finally between the expansion centers and evaluation points. This constitutes the Single Level Fast
Multipole Method SLFMM principle Coifman 1993 (figure 3.1(b). Following the development of the
previous idea, for the fast evaluation of a potential due to a large number of sources, it leads to the Multi
Levels Fast Multipole Method MLFMM and results in the organization of a hierarchical space partitioning
(figure3.1(c). In a such a way, the interactions will be then performed betwboxes and groups of boxes
allowing that the evaluation areas can now be next to each other.
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M M

N N
(a) straightforward method: number of inter- (b) Single Level FMMO(N + M) (c) Multi-Level FMM: number of interac-
actionsO(N x M). tionsO(N + M).

Ficure 3.1: Comparison of the number of interactions between N sources and M receivers for (a): the

straightforward method (classical BEM), (b): the Single Level FMM and (c): the Multi Level Fast Multipole

Method. The lines show the interactions for each method, the red circles symbolize the elements and the
black circles represent the expansion centers.

We introduce in this chapter the formalism for the fast multipole method and assefiscikaey of our
algorithm to solve basic scattering problems. First, we make a general overview of the FMBEM formalism
and introduce the mathematical background related to the FMBEM and the RCR decomposition. We also
describe more practically each step required by a fast multipole algorithm. Then, we assess the algorithm
with the analytical solution of a scattering problem by a spherical body in order to prov@dterey. We
also study the behavior of the iterative solver in terms of boundary conditions and frequency. Next, we
describe how reflections on a rigid ground can be accounted for in the framework of the FMBEM, using
the image source principle. Finally, we deal with the half-space problem through the infinite fictitious rigid
baffle which will be subsequently used in the next part to take into account the reflection in a more realistic
urban acoustic application.

3.2 Field representation through the fast multipole formalism

The Boundary Integral Equation (BIE) coming from the 3 dimensional Helmholtz equdtia§ (vhich
has been established in the previous chapter can be written as:

C(X)g(x) = j; [F(x. Y)é(y) — G(x, y)a(y)] dS + ¢in(X), VxeQyes. (3.1)

It describes the pressure fiebdat any pointx in terms of the boundarg delimiting the domair2. The two
kernelsG andF correspond to the Green’s function and its outward normal derivative respectively, between
the source poiny and the receiver point. ¢i, is the incident pressure fielé(y) andq(y) are the pressure
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and velocity values at the boundary pojynt

(Dirichlet BCS ¢(y) = ¢(y), (Neumann BO(y) = q(y), Yy € S. (3.2)

Q.')|Q.‘>
<

The quantities with over bars indicate initial prescribed values on the bouBSdary

3.2.1 Spherical basis functions

The main idea of the Fast Multipole Method is the expansion of the fundamental solution of the Helmholtz
equation on spherical basis functions. We introduce a regular BRasid a singular basiS based upon the
spherical harmonics seri&§" of degreen and ordem, as:

RY(P) = jn(kn)YR'(6, ¢), SH(F) = ha(kr)YR'(6, ¢), (3.3)
n=0,12..., m=-n,...,+n,

with the wavenumbek andr, a translation vector in spherical coordinate®(¢). j» andh, denote the
spherical Bessel functions and Hankel functions of the first kind respectively. The spherical harmonic series

is defined by:
2n+1(n—|mj)! ;
Yaie.¢) = (-1)" \/ TWPW‘(eos@)ém (3.4)
n=012..., m=-n,...,+n

where PiY(u) are the associated Legendre functions consistent witliamowitz 1964 and Rodrigues’

formulas:
Ph(w) = (-1)™(1 - uz)"‘/2 (k). n>0, m> 0, (3.5)
with
PO 1 dn 2 n 0 3 6
n() = 2n|n|0|n(u—) n>0. (3.6)

The definition of these spherical harmonics 84, according to the definition of Gierov & al., coincides

with that of Erton & Demsart [Epton 199% except for a factory2n + 1/4x. This spherical harmonics

series define a complete orthonormal system over the unit sphere and can thus form a basis for expanding
other functions. Note that these spherical harmonics functions are even fon evanand odd for odd

n+m.
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3.2.2 Field decomposition by the multipole expansion cflicients

According to the previous definition of the spherical basis, the Green’s function (or the &3iinghe BIE
(3.2) can now be expanded under the following form:

Giy) =ik Y. > ST = yORM(y - yO). (3.7)
n=0 m=-n

This expansion is theoretically an infinite sum of spherical basis functions calculated between twa points
andy and an intermediate point, an expansion ceyitewhich fulfills the far field condition:

ly — Y < Ix = Y. (3.8)

The integral representation Gfcan now be evaluated with the following multipole expansion:

[ etyads, - K3 spix- v JL R - yaas, (3.9)
n=0 m=-n
JLeteyamas, - K33 ST YOMDo). (3.10)
n=0 m=-n

whereM[(y.) are the multipole expansion déieients of all the contributions coming from elements of the
boundarys, which fulfill the far field condition (equatior3(8)), centered around the expansion cemgter

MI(ye) = L Ry — yo)a(y)dsS,. (3.11)

Consistently with the definitions3(1) and @.7), the integral representation of the Green’s function
derivative (or the kernefF) which appears in the BIE can also be expanded in 3 dimensions as:

JLFeysmds, =ik Y > sToc-yauize). (3.12)
n=0 m=-n
with  MM(yo) = f R, (y y)¢(y)d8y, (3.13)

where they points fulfill the far field criteria (eq.3.8)). The theory of translation and rotation operators for
the Helmholtz equation presented Bymerov 200%is based on the €lierential properties of elementary
solutions. These properties presumably first reportedGiey 1992 and calculated independently by
[Gumerov 200]Lserve as a basis for recurrence relations which can be eetblimy the resolution of the
Helmholtz equation. It turns out that the normal derivaﬁﬁé{n;(ﬁ’;_—yc) can be computed recursively by the use

of properties of dferentiation theorems for the spherical basis functions in an arbitrary direction specified
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by the unit vector = (ny, Ny, N3):

OR™M 1 . - . _
aﬁﬁy = 5 [(na + ing) (BRI — BT ARIE) + (g — ing) (B R — B ERY 2+, (a R — all RY).
(3.14)
m=0,+1,+2,---, n=|m,m+1,---,

whereR'is equivalent tdR7\(y — y©) andayy' andb})' are the diferentiation cofficients computed as follows,

m  —m nN+1+mn+1-m

A= a :\/( (2n+1322n+3) ) for n>m, (3.15)

al'=hb"=0, for n<|m, (3.16)
n—-m-1)(n—-m

bl = \/((Zn—l)(;fwl))’ for 0<m<n, (3.17)

m_ (n-m-2(n-m)
(o _—\/ Zn-Deni D)’ for —-<m<O0. (3.18)

The infinite summation on spherical basis functions of expressiidsand 3.12 are only theoretical
and must be in fact, for obvious numerical reasons, truncated. The suitable truncation expansign order
will be determined thanks to an analysis of theoretical error bounds of Bessel and Hankel functions and will
be the purpose of a latter secti®, dedicated to the numerical aspects of the fast multipoleritgn. One
will see before, the mathematical tools required to perform the translations through the translation operators
as well as a detailed description of the fast multipole algorithm.

3.2.3 Translation of the multipole expansion cofficients

Once the expansion cfiwients are known around an expansion center, we need to transfer the information
toward another expansion center, that is to say change the origin of the reference center. These transla-
tions are performed through the translation operators. Basically two multipole translation techniques are
commonly used. The use of ttwigner 3j symbols adequate for low frequencies because of@p°)

nature of the formulation. Although the number of operations can be reducgtpby the use of various
recursive relations, the computation time can still increase quickly with the increase of the valaaaf

lead to a prohibitive storage memory if the translationfiioients are stored. The second one, coming from
Gumerov & D urarswamr's work, which is actually used in our fast multipole algorithm, is based on the de-
composition of the translation operators into rotation and coaxial translation parts, the RCR-decomposition:
rotation-coaxial translation-inverse rotation, summarized in figu2eEach of these operations can be per-
formed with a complexitD(p?) using a recursive computation of matrices componeatstjerov 200

(EIF®OMY = Rot(Q H)(EIF)coax(t) RO(QMY, E.F=SR (3.19)
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with Rot(Q), a rotation matrix transform which provides the expansionfments of a reference frame
rotated by some rotation matri®(«,S,y) specified by three angles of rotatieng,y. The operator
(EIF)coaxt) denotes an arbitrary (subsequently specified) coaxial translation along the wezttrans-

lation along the z-axis oriented towards the target expansion centéR@i(@ 1), the backward rotation
which brings the reference frame to its initial rotation. For an overview of numerical procedures to compute
the RCR-decomposition matrices, the reader can first refer to the appendix

Ficure 3.2: RCR decomposition principle.

There are three types of translation operators, the Moment to Moment (M2M), the Moment to Local
(M2L) and the Local to Local (L2L), directly related to the location of the new expansion center. The
coaxial translation matrixg|F)c0ax(t) can thus take the following forms:

M2M: (EIF)coax(t) = (RRY ™y - yel) for X-yel>lye—yd  (3.20)
M2L: (EIF)coax(t) = (SIRR(IXe — Yel) for IXe — Vel > X — X (3.21)
L2L: (EIF)coaxt) = (SIS)y m(1Xc — X¢]) for ly — X > [Xc — X4 (3.22)

The overall summary (figur8.3) provides a clearer overview of the translations princiglenalltipole
codficients through these translation operators (dotted black lines). The M2L translation leads to a set of
local expansion cdgcientsL]) including all the contributions of far sources translated at a local expansion
centerx. located close to the receiver poixit For the sake of brevity the computational procedures are
described in appendik.

However, the standard fast multipole formalism, as described in its original form, involves some insta-
bilities as the frequency increases as well as prohibitive memory storage requirements. In order to counter
this drawbacks at high frequency, the M2L translation operator can be replaced by its diagonal form, intro-
duced by RkuLiN in [Rokhlin 1993, which can be used in a higher frequency range. The so-cHligd
Frequency (HF) translation is detailed in the following section.
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3.2.4 High Frequency translation

The high frequency formulation of the M2L translation operator is basedenii’'s works [Rokhlin 1993
which introduces the following decomposition of the translation matrix :

(SR)OM = Sp T A4(H)Sp MY, (3.23)

which brings into play the forward discrete spherical transf&miand the backward transfor8p ), and
the diagonal form of the translation operatofs) which is defined as follows:

2p-2

Ay = i in(2n + l)hn(kt)Pn(Sj 't). (3.24)
= It]

The forward transfornSp is a projection on a unit spherical space @ expansion co@éicients. The

distribution of the sampling nodes on the unit sphere depends on the truncation ruaniokit is sdficient

to take (2 — 1) points on the elevation angle andx(4 3) points on the azimuthal angle. It implies thag

is a matrix of size (B — 1)(4p— 3)x (2p - 1)(4p— 3) and thusSp ! is a matrix of size (B — 1)(4p— 3)x p?

which provides a backward transform to the space offaents. The operatoBp can be decomposed

into the Legendre transform with respect to elevation angle (since it depends on the cosines of the angle)

followed by a Fourier transform with respect to the azimuthal angle (equispaced abscissas). Consistently

with the definition ofSp, Sp™* can be decomposed into a inverse Fourier transform followed by a inverse

Legendre transform. There exists a number of papers dedicated to the fast spherical tramsfosee(

referencesriscoll 1994, [Jakob-Chien 1997[Swarztrauber 2000 The fast spherical transform is used

to accelerate the translations for high frequenc&skma 2002Schneider 2008 This formulation has

subsequently led to a broadbanide-band FMBEM algorithm including both low and high frequency

formulations Cheng 200f [Gumerov 200Pand has also been applied to a Galerkin boundary element

method Fischer 2004

3.2.5 Field reconstruction by the multipole codficients reexpansion

The local expansion cdigcients can finally be translated from an expansion ceqtér a receiver poinx,
in blue in figure3.3, using an analogous formula as for the multipole expansion:

JLaFey do) s, =ik Y D’ Rix-xLT0), (3.25)

n=0 M=-n

regardless the kerneG or F, while the kerneld< or H lead to a local expansion:

. © N ORM(x — XC
[k e ds, =ik Y Y, T, (3.26)
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in agreement with the definitiorl29. We note that the kernédl, from a fast multipole point of view, is

not hyper-singular, as it was the case in the framework of the standard BEM and thus this expansion does
not introduce additional éliculties. However this assumption will be discussed in the paragraph dedicated
to the assessment of the Burton & Miller formulation (secto?).

The following drawing summarizes the usage of translation operators required to accelerate point to
point interactions. One can see the multipole expansions, expres3idfisand @.13, between red source
pointsy and the expansion centgy, the multipole cofficient translations through the translator operators,
expressions3.20 - (3.22 between the expansion centges Y., X'c and x. and the final reexpansion of
multipole codficients, expression825 and @.26), between the local expansion cenkgrand receiver
blue pointsx.

Ficure 3.3: General overview of interactions between well separated sources (red points) and receivers
(blue points) through the multipole expansion principle. The dotted lines is related to the multipgile coe
cients translations.

This section has described the mathematical background which the fast multipole method is based
upon. The following section will detail more precisely each step of the fast multipole algorithm we devel-
oped in this work.

3.3 Description of the fast multipole method algorithm

Even if all the numerical tools have their own specifications depending on the development langtrage (C
Fortran . ..) or computer programmer habits, basically the fast multipole formalism requires several impor-
tant steps which we intend to describe in this section. First of all, we need to include the whole discretized
geometry in a cubic box from which a hierarchical tree is constructed. Then all the multipdiicieots

are computed (multipole expansion) before being translated through the translation operators i.e. Moment
to Moment (M2M), Moment to Local (M2L) and Local to Local (L2L) often referred to as upward pass,
far translations and downward pass respectively. Finally, we evaluate the integrals of Keredis-

by the summation of direct contributions diose element$BEM contribution) with the local multipole
codficients coming fronfar elementgFMBEM contribution). All these steps are detailed below.
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3.3.1 Hierarchical tree construction

The discretized geometry is first embedded in a three dimensional cubic box for a three dimensional mesh
(two dimensional square on the illustratiBr) including all elements. This bounding cell corresponds to
the level 0, the highestevel of the hierarchical tree and has a lengith We subsequently start to divide
this parentcell into 8 identicalchildrencells (4 in two dimensions in figurg.4) of levell. Then we create
level 2 by splitting thecellslocated orlevel 1. This is the minimum number dévelsrequired in the fast
multipole formalism (we will see the reason thereafter). Starting fi@ral 2, we need to divide theells

and so add a nevevel if and only if at least oneell contains more elements than tellsizenumber, i.e.
the maximum number of elements allowed withicall at the lowestevel | Thus at the lowedevel

all cellsinclude a maximum of a prescribed number of elements determined melisezeparameter. It
follows that alevel | contains a maximum number oélls equal to 8 (4' in two dimensions) and have a
Lo/2 length. We denote that an element is considered to be inside a g@¥ehits center is inside this
cell and acell is removed (considered deag if it does not contain any element. We can see the building
process of the hierarchical tree for a two dimensional case aalisizecriterion equal to 2 (for the sake of
readability) in figure3.4.

|

P

T+

T
Ty

level 1

Ficure 3.4: Recursive process to construct the hierarchical tree. The dashed black line represents the
discretized geometry and the shaded cells, the leaves. All cells without elements are removed from the tree.

Thus this hierarchical space partitioning has introduced some definitions which will be used in the
following:
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leaf: Eachcell (not removed) located at the lowest leviglay is called aleaf (shaded in figure3.4).
For a specific problem, the theoretical, but hardly ever reached, maximum numleawvesis 8max in 3
dimensions.

parent, child Eachcell divided areparent cellsand produce a maximum of&ild cells Consistent
with this definition, theparent cellsare located between level 2 and leliglx — 1 and thechild cellsare
located between level 3 and levghx.

adjacent cell Eachcell has anadjacent celldist containingcells located at the samlevel sharing
at least a boundary point. According to this definitioredl has a maximum of 2@djacent cellsn 3
dimensions.

interaction list Eachcell at alevel > 2 has arinteraction celllist containingchildren of adjacent cells
to theparentof the consideredell, and which does not belong to thdjacent listof the consideredell.
As a result arinteraction listhas a maximum of 188ellsin 3 dimensions.

far cell: A far cellis acell on the saméevelof the consideredell belonging neither to itadjacent list
nor to itsinteraction list It is noteworthy that @ell located atevel 2 has ndar cellssince itsadjacent list
and itsinteraction listcover all the points of the boundary. For this reason we do not have to colesideyr
higher than 2. The active levels in the fast multipole formalism are thus located bdve&s? andlmax.

3.3.2 Multipole expansion stage

This stage will be executed for all the leaves of the hierarchical tree. Thus, all the contributions of elements
y belonging to the same leaf will be computed under the form of multipoléic@nts and subsequently
summed around the same expansion center détfe/.. Consistently with the definition8(7) and 38.12),

we can compute then, n multipole codficients for both kernel& andF respectively:

imax N imax a —m i — Ve
MR = ) R0 yda)  and MR = ) STy (37)
i=1 i

i=1

The subscript refers to each element within the considekeaf which contains a maximum af,ax ele-
ments. The partial derivative is computed recursively according to expressibd). (At the end of this
stage, each expansion center at the lovi@atl contains a set of multipole cfiwients coming from all the
contributions of elements included into its correspondedf. The principle of the multipole expansion
stage is summarized in figuB5.

3.3.3 Moment to Moment (M2M) stage : Upward pass

This stage will be performed for athildren cells i.e. for allcellsof level> 2. The multipole coficients
of child cell computed at the previous step are translated from their own expansion y‘ceatmt summed
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Ficure 3.5: The computation of the moment at the lowest levgl)lis performed for each leaves of the
hierarchical tree. The expansion gfieients of leaves are the sum of moments of each ganiuded into
it, expressed at the expansion ceryb‘rx .

at the expansion center of thgiarent cell ', according to the RCR-decompositich 19 and @.20:
(RIR)YE ™ - YOMP = Rot(Q D(RIR)coaxllys " — Ye)ROUQMJ Vinax2123  (3.28)

Obviously this process must startlavel ka5 in order to transfer the informations toward the higlesels
as described in figur8.6. In a such a way at the end of this stage ftent cellswill possess all the

contributions coming from their owchildren cells

L —

Ficure 3.6: During the Moment to Moment (M2M) step, the expansiorffimdents of children at a level |
are translated towards the expansion center of their pargfifsand summed. This step is performed until
the level I= 3.
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3.3.4 Moment to Local (M2L) stage : Transfer pass

This step will be applied to all theells of the hierarchical tree i.e. frorfevel 2 to level lyax included.
For a givencell located atlevel |, we translate and sum all the expansionfiioents coming from the
expansion centey'c of cellsbelonging to itsnteraction listthanks to the M2L translation operator according

to expression8.19and3.21for low frequencylevels
(SIR)(Xc — V)M = Rot(Q ) (SIR)coax(Xt — Ye)RO(QM]! 2<1<lmax  (329)

or the diagonal form of the M2L translation operator according to expresstohg @nd @.23 for high

frequencylevels
(SIR)(Xc ~ YOMR' = Sp " As(X; ~ Ye)SP M7y (3-30)

In figure 3.7, let us take the example of an element located inside theddbttesleaf. One can see the
interactions coming from expansion centers ofititeraction list cells corresponding téevel 2 (in gray),
3 (in red) and 4 (in blue) and translated to the expansion cerfess and x¢ respectively. At the end of
this stage all cells of the hierarchical tree include the contributions of itsimigraction list cells

y; y;! y;
& %
—@— \
IS Yol .
=
%,
K3
10y, o
g A | LT
.......... %) 0
s w, e
L & —&-
‘4"-__ ‘vv‘a ¥ J
=
2
2| Y ..:. 3
% Y ", P %
3
e a
K ™
Interaction area level 2 Interaction area level 3 Interaction area level 4, max

Ficure 3.7: The Moment to Local (M2L) transfer step. The dotted black lines correspond to an arbitrary

M2L transfer at level 2, the dotted red lines to an arbitrary M2L transfer at level 3, and the dotted blue lines

to an arbitrary M2L transfer at level 4 (the lowest level on this example). The target element is located in
the leaf emphasizes by the blue box.
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3.3.5 Localto Local (L2L) stage : Downward pass

This step is analogous to thépward step or M2M step. The Local to Local (L2L) step is executed for
eachparent cel i.e. cellslocated betweetevels2 andlnax— 1. Starting fromlevel 2 tolevel khax— 1, the
expansion caicients coming fronparent cellsare translated to the expansion center of thiildren cells
(see figured.8) by the mean of the L2L translation operator (equati®m23):

(RIR)(E — xH)M™ = Rot(Q H(RIR)coax(X ™t — XL )Rot(QYM™, 2<l<lmax—1 (3.31)

and summed up to the multipole d¢beients calculated at the previous step. At this point of the algorithm,
all the expansion centers contain the information from their ow@raction listand also the information
coming from the interaction list of their parent cell which contains itself the information coming from their
own parent celland so on... It follows that, at the lowdstel k,ax the expansion centers take into account
all the interactions of the boundary, except the elements containeddelthef its adjacent list(white area

figure3.7).

Ficure 3.8: During the Local to Local (L2L) step, the expansion foeents of parents at a level | are
translated towards the expansion centers of their childdghand summed up. This step is performed until
the level fhax— 1.
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3.3.6 Final summation : Multipole codficients reexpansion
The final summation on an elemenqtat the lowest level consists in the summation of:

e the contribution coming from the expansion cemjg'iix of its leaf (in blue line in figure3.9) thanks
to the local multipole ca@cients reexpansion, in analogy with the moment expansion step:
Pimax N

(G/F)X )@/ AWStar =k D > RIG —XLT(x), ¥ xi€S  (3.32)

Star n=0 m=-n

¢ with the direct contributions from near elements in the adjacent leaves (in red linesiguieectly

as in the conventional BEM:
f (G/F)(x, y)(@/9)(Y)dSy = f (G/F)(x,y)(@/9)(Y)dStar + f (G/F)(X, y)(a/9)(Y)dSnear
S Star S

Fast BEM part

classical BEM part

(3.33)

............

Ficure 3.9: The direct contributions of near elementsare summed with the multipole gfieients con-
tribution coming from the expansion center>. We execute this step for each leaf of the hierarchical
tree.

3.4 Numerical aspects

We intended in the previous section to describe more specifically each step of the fast multipole formalism
from a computational point of view. Due to the truncation of the spherical harmonics series, the multipole

expansion induces approximations of integral operators involving errors which can be controlled through the
expansion ordep. This section will describe how this foremost parameter will be properly chosen thanks
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to a theoretical error bound analysis. We also provide amasitn of the computational complexity of the
developed algorithm.

3.4.1 Level-dependent truncation number

The expansions of kernet (equation 8.7)) andF (equation 8.12) are theoretically an infinite sum based
upon the spherical basis function8.§). Obviously, from a numerical point of view, these summation
need to be truncated. Our algorithm includes both low and high frequency formulations and a switch
between low and high frequentgvels(whose expansion order apg,, and phign respectively) is performed.
Consistent with the definition ofumerov 2009 this is dictated by the estimation of the threshold at
which the magnitude of the smallest truncated term in the translation kernel starts growing exponentially.
An analysis of the theoretical error bound allows to validate these expressions of expansion orders for
eachlevel depending on a characteristic size of tlagel which is the radiusy of a cubic box atevel I.

The number ofevelsis determined by theellsizeparameter, defining the maximum number of elements
allowed in aleaf, acell at the lowestevel kyax It results that theellsatlax include a maximum o€ellsize
elements. Thus, the smaller this parameter is, the larger the numbevetswill be. It follows that the
cellsizecriterion determines the ratio between the contributions coming from the direct integrations (the
near ared and the fast multipole integrations (tfee area). The following expressions are used to estimate
the suitable expansions ordgr$or eachlevelcoming from an analysis of theoretical error bounds studied

in detail in [Gumerov 2004chapter 9]:

loge(1- 5‘1)3/2

logé

and P = (pliw + pﬁigh

(3 log 6_1)2/3 3
2 4 (3.34)

., Pnigh = ka +

Prow = 1-

)1/4

Thusp = p(ka, €, 5) with g being the largest radius of a celllatel |, ¢, the prescribed iterative stopping
criterion ands = 2. This expression3(34) combines both low and high frequencies approximationssThu

for low and high frequencies (&@), it coincides asymptotically with limiting cases, while in the transition
region, it is also acceptable for the estimation of the expansion order. We denote that the formalism intro-
duced by Gmerov & Duraiswamy leads to the computation of spherical basis functions at an order up to
2p — 2. This expansion order is a crucial parameter of the FMBEM formalism since it determines the error
bound Parve 2000 due to the truncation of the spherical basis series. Thuspbssible to reduce this
parameter in order to accelerate the computations but it leads to a loss of accuracy.
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3.4.2 Theoretical error bounds of the multipole expansion

We consider the errors associated with the expansion and translation of multipileieots. The repre-
sentation of the Green’s function is theoretically an infinite sum on the spherical basis functions:

fs G, V)aW)dS, =ik »° > ST(x - y) fs Ra™(y - yo)a(y)dSy,. (3.35)

n=0 m=—-n

However, from a numerical point of view, this series needs to be truncated up to thepdardeiving an
error on the truncated expansion

p n o n
L G Y)A)dS, =k > > ST(x-yc) fs R"Y-yo)aW)dSy+k > > ST(x-ye) fs Ra"(y-Ye)a(y)dSy.

n=0 m=-n n=p+1m=-n
(3.36)
The theoretical error boune(p) can thus be estimated by:
o] n
op) = [k Y D SPec-ye) [ R -y, (3.37)
n=p+1m=-n S

Based on the error obtained for the zero-order spherical Hankel function, the errors bound of the computa-
tion of Green'’s function corresponding to the low frequency region can be written:

1 o1

%< Tl o 7 339

and the errors bound of the computation of Green’s function corresponding to the high frequency region
can be written as:

3/2
1(2(p—ka)) ’ (3.39)

P Aro(ka)3 [_5 (ka)1/3

corresponding withpiow and prigh in expression .34 respectively. We do not claim to do here an ex-
haustive explanation of the derivation of both previous equations. We recommend the interested readers to
refer to [Gumerov 2004 chapter 9] for more details related to the geometrical patarsa, b ando re-

quired for the establishment of both previous relations. This reference also provides quantitative numerical
experiments showing that both previous expressions overestimate the actual errors which are in practical
much smaller than predicted theoretically for a givenGumerov & D uraiswamr have showed absolute

and uniform convergence of series for the three regions where the behavior of the expansion is qualitatively
different corresponding to the low, transition and high frequency regions.

3.4.3 Estimation of the computational complexity

The estimation of the complexity of such an algorithm is not so easily determined, because of the large
number of steps involved, as well as the large number of parameters in the numerical implementation of the
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fast multipole formalism. Nevertheless, we try here to estlidhe complexity of each step of the FMBEM,
in order to provide a general insight of the algorithm complexity.

The computational complexity of an algorithm is directly dictated by the number of operations to per-
form. The actual number of operations in the fast multipole formalism is related to the spatial distribution of
sources and evaluation points. The worst case in terms of computation time would be the case of a uniform
three dimensional distribution of sources and receivers. This hypothetical case would involve only non-
empty leaves, that is to say"® leaves at the lowest levihay including cellsizeelements. However in the
framework of the application of the fast multipole method to the boundary element, we reasonably assumed
a uniform distribution of elements over the surfaces and an identical number of sources and réteivers
Thus the theoretical maximum number of leatgg)s| at each level will be lnax, Below, we describe the
computational complexity of each step mentioned in the previous section. We assume the worst case which
could be encountered in the framework of the BEM, each leaf contailsizeelements.

Basically the computational cost will be dictated by the most consuming step among the following:

The tree construction This step only consists in reading the mesh file and can be considered as indepen-
dent of the number of elements or the expansion order:

Cos(TreeConstruction= O(1) (3.40)

Computation of direct contributions We compute and store all the contributions coming from adjacent
elements in the adjacent cells for a computational cost:

Cos{DirectContributior) = O(27 x cellsizex N) = O(N) (3.41)

We denote that this step actually has a linear dependencyNvithly if the cellsize criterion is small
enough. In practice, the linear dependency will only be reached with an increasing number of levels which
can be controlled through theellsizecriterion.

Computation of multipole codfficients The time required to compute all the expansionfiioients for
each element is directly related to the length,,,, of the representing vector Evel khax and leads to the
the following complexity:

Cos(MultipoleExpansioh= O(N x py,,..) = O(N) since Pl < N (3.42)

Upward pass The translation operatoRRot, (R|R) andRot™* which appear in the RCR-decomposition,
allow to translate the cdigcients from devel Ito alevel |- 1, leading respectively to a complexity@(plz),
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O(plz_l) andO(plz_l). Thus the total cost of this step which will be performed for each child cells is:

3
Cos(UpwardPasy= O Z Nienst X (PF + PPy + PPy | = O(N) x O(p3). (3.43)
|=|max
As a result, the complexity of this step depends\band the maximum required value pfwhich will be
reached alevel 2, pg. Assumingpg < N, the cost of this step is determined Ry

Transfer pass: low frequency region TheO(p®) translation complexity of the RCR decomposition (fig-
ure 3.2) is performed for eacmteraction list cellsof eachcell at eachevel |leading to:

2
Z NLgyqr X 189 p [ = O(N) x O(p3). (3.44)

|max

Cos(TransferfLF) = O

For moderate values qf, i.e. p3,, < N, the computational cost is mainly dictated by the numbezetit
atlevel |, i.e. 4, and so on byN through thecellsizecriterion. We denote that the number of cells in the
interactions list, 189, is only theoretical and practically never reached. As a result, becaus©githe
dependency of the complexity of the RCR-decomposition, the total complexity will be he&ébted by
the complexity of a single translation wh@é ~ N or higher. Finally, such a dependency is not accept-
able in an algorithm developed to circumvent i€ dependency of a BEM algorithm. This explains the
development of the diagonal form of the operator in the high frequency region.

Transfer pass: high frequency region The computation of the translation operatom equation 8.2.4
requiresO(p3) operations Cheng 2006 However, all these entries can be precomputed and stavet) s
computations are needed during the iterative process of the algorithm. The spherical transform requires
O(p?) operations due to the fast Fourier transform and it follows thaOp) complexity of the diagonal
translation is performed for eackll on each high frequendgvel |, leading to:

2
Z Niist X 189x p?| = O(N) x O(p3). (3.45)

|=|max

Cos(TransferfHF) = O

Downward step The complexity of this step is executed for egurent cellsof the tree and has an
identical complexity than thelpward passvhich can be estimated as:

Imax-1

Z bens) X (BF + B + pliy)
=

Cos{DownwardPass= O = O(N) x O(p3). (3.46)

We can make the same remark as for the upward pass that is to say that the computational complexity of
this step is mainly dictated by assumingo% < N.
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Multipole coefficient reexpansion The codficient reexpansion pass has an identical behavior than the
multipole expansion pass, which gives:

Cos{(Coef ficientReexpansipr= O(N x py,...) = O(N) since Pl < N (3.47)

Since the complexity described above will be executed for each step of the iterative process, we reason-
ably assumed that the number of iteration is small enough compared to the number of eleniergsults
in a competition between the number of eleméwtand the expansion order latel 2 pg. Actually, it can
be shown that these two parameters are linked. Indeed, the number of el®reats to a quadratic de-
pendency on frequendy = O(f?2), assuming a constant space discretization criterion, while the expansion
order leads to a linear dependency with the frequgneyO(kD). In practical, this optimun®(N) or O(p?)
complexity is hardly ever reached for a realistic study. Indeed as we will show in a latter section (chapter
5) related to the application of this algorithm for urban prggi#on problems, the more usual complexity
reached is actualliNlogN.

3.5 Insummary

This chapter has been dedidacted to the introduction of the fast multipole principle. We detailed the spheri-
cal harmonic series which the kernels are expanded on. We also present the rotation-coaxial translation-back
rotation decomposition coming fromuierov & D uraiswamy’s work as well as the high frequency formu-

lation based on the diagonal translation introduced byHrin. We detailed more precisely a common fast
mutlipole calculation that is to say the multipole expansion step, the translation of multipdicieoé

and the final summation of theear andfar interactionsand finally provide a theoretical estimation of the
complexity of such a fast multipole algorithm.



Chapter 4

Validation of the fast multipole BEM with a
scattering problem by a spherical body

We just had, in previous sections, a general insight of the fast multipole formalism applied to the boundary
element method, the flierent steps and the main related operators. The purpose of this section is the
verification of the éiciency of the fast multipole algorithm to solve scattering problems. We will focus,
throughout this verification stage, on the same problem than for the validation of the BEM algorithm, that
is to say, the case of a spherical incident wave scattered by a spherical body with aaradjual to

1 m (see figure2.1), for which an analytical solution exists, already desdlilie a previous sectio.l

After detailing some useful parameters required from a numerical point of view in the framework of the
FMBEM formalism, the analytical solution is taken as a reference solution to demonstrate the accuracy
of the FMBEM for both rigid and mixed boundary conditions (sectibf) at regular frequencies. We

aso emphasize the influence of the fast multipole formalism on the behavior of the iterative solver. Next,
we more precisely focus on fictitious eigenfrequencies of the scattering sphere to study the ability of the
B&M formalism to overcome this problem as well as its influence on the iterative solver (seécHpn

The algorithm is finally used as a reference method to validate the half-space formalism, starting from its
associated full-space problem, secti, half space propagation which will be subsequently usededn th
next chapter in a urban context to take into account the reflections on the ground.

4.1 Validation of the algorithm for regular frequencies

4.1.1 Algorithm parameters

The verification tests are made for a sphere of radiushose surface is meshed with 31694 constant
triangular elements representing a space discretization of almost 10 elements per wavelkagth2at
(see result in appendR.2). The maximum number of elements authorized at the loVesstis 50, which

63
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involves a tree consisting oflévels(4 usefullevelg. We supply overviews in appendicBs3 andB.4 of the

space partionning related to th&%2and the &' levelrespectively used in the framework of the fast multipole
formalism. The level-dependent truncation numpgused for the expansion of kernels, is chosen to keep

a very good accuracy, according to its definition (sec8chl). In order to validate the two formulations

(low and high frequency formulations), we have performed several tests with both formulations: pure LF
and HF tests in which only LF formalism or HF formalism are used and also tests witjiLdwitch,
occurring between twtevels Considering the GMRES solver, we do not use any preconditioner and the
stopping criterion (the relative residual) is set to30Since a small number of iterations is required in
these verification procedures, the memory storage related to the Krylov subspace is small and we do not
have to use the restart parameters (set to 200).

4.1.2 Comparison of the surface sound pressure levels

The analytical solution (see secti@rl) is taken as the reference solution for the verification oRREBEM
algorithm. We study the case of a spherical incident wave scattered by a spherical body with a egdiais

to 1 m (see figur@.1). We compare the surface pressure field levels. The sourcelrdsamplitudeQ = 1

and the reference pressure chosen ig P@. 360 receivers are evenly distributed on the surface of the
sphere. Figurd.1l shows the comparisons of the sound pressure level in decibdkrms of azimuth in
degrees, between the analytical solution (blue line) and the solution computed with the FMBEM algorithm
(dashed line). The comparison is performed for six dimensionless wave nurkber<.1, 1.0, 2.0, 5.0,

10.0 and 20, obtained for frequencies equal to 5.4, 54, 108, 271, 541 and 1082 Hz respectively. Since
the studied frequencies do not involve fictitious eigenfrequency problems, the CHBIE formulation is not
required in this study and the weighting parametar CHBIE formulation (equation1(33) can be set to

0 (pure CBIE formulation). In order to ensure that both ker@BndF are properly computed, we treat a
rigid case ¢ = 0) for which only the computation of the kernlis required, and also an impedance case
for which both kernel$s andF are required. The impedances have been chosen to study the limit cases of
a rigid body (i.e.o = 0), and a soft body with a normalized complex impedance (compared with the air)
Z/Zp = oplo = 1.22+ 1.22.

Each graph of figurd.1shows a comparison of both solutions (analitycal pressuld=MBEM pres-
sure) for both boundary conditions (rigid and impedance). One can see a very satisfactory agreement be-
tween both solutions (see figudel), the two curves (blue line and red dotted line) are actualpesposed,
meaning that the FMBEM algorithm succeeds in working out the solution for the consikiarddence,
the expansion of the kern€@l (equation 8.7)) and its normal derivativé (equation 8.12) on the spherical
basis functions are relevant to keep a satisfactory accuracy. The considered frequencies have been chosen
in order to avoid the fictitious eigenfrequency problems which will be covered later in sdcBiowe also
provide in table4.1some useful data in the framework of the fast multipole forsmalobtained for solving
this scattering problem.
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TasLe 4.1: Computation data related to the FMBEM : dimensionless domain size ka, number of levels in
the tree structureplax, maximum expansion order usegaR levels in LF and HF formulation, iteration
number, total memory and computation time required.

ka | Imax | P2 | LF levels| HF levels| iterations| Memory (MB) | Time (s)

0.1 5 5 all none 3 212 18
1.0 5 5 3-4-5 2 4 206 21
2.0 5 6 4-5 2-3 5 301 23
5.0 5 |10 none all 8 332 30
10.0|| 5 |15 none all 13 523 52
200l 5 |24 none all 21 1112 145

4.1.3 Number of iterations for a frequency sweep

We focus in this section on the behavior of the iterative solver as function of frequency. We study a range
of frequencies starting from the dimensionless frequehey=2kD = 0.09 or Q031 to 2ka = kD = 20.3 or

6.51 corresponding to 5 and 1100 Hz respectively with a 1 Hz step. We are still considering the case of the
scattering sphere excited by a point source (see figdxeThis study is similar to the one performed with

the BEM algorithm in the previous chapter. This will allow us to emphasize more precisely the behavior of
the iterative solver with the fast multipole formalism. Due to the large number of calculations involved by
the fine frequency resolution.€. 1 Hz) and, in order to emphasize what happens for each frequency, we
set the number of elements to 7932 (see results in app&nit)ix

In figure 4.2, one can see the number of iterations required by GMRES toecgevbelow the pre-
scribed tolerance for a zero pressure (in red line) and a zero velocity (in blue line) boundary condition.
As for the case of the BEM algorithm, the iterative solver has a fluctuating behavior meaning a close de-
pendency on the frequency. In figute3, we also provide the fierence between the number of iterations
required for GMRES with the BEM and the FMBEM algorithm for a zero pressure (left hand side), and
a zero velocity (right hand side), boundary conditions. A positive value denotes that the FMBEM algo-
rithm requires more iterations than the BEM algorithm. It seems that the FMBEM algorithm would require
slightly more iterations than a similar problem solved with the BEM algorithm. Obviously the convergence
of the iterative solver to solve problems through the FMBEM algorithm is slightly related to the expansion
orderp. Furthermore, the fictitious eigenfrequencies (highlighted in figu2én dashed black lines) seems
aso to impact the convergence of the FMBEM algorithm. Thus the following section is dedicated to the
application of the B&M formulation on the fast multipole formalism to tackle the fictitious eigenfrequency
problem.
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Ficure 4.1: Comparison between the analytical solution (blue lines) and the FMBEM solution (dashed red
lines) of the sound pressure level in dB (SPL) on the surface of the sphere excited by a spherical source
of unit amplitude Q= 1. The reference pressure is 20Pa. The source is located &0a from the sphere

center (a= radius).
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Ficure 4.2: Number of iterations required for GMRES to converge below the prescribed tolerant6@)e.
for a zero pressure boundary condition in red line and a zero velocity boundary condition in blue line. The
dashed black lines correspond to fictitious eigenfrequencies.
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Ficure 4.3: Difference between the number of iterations required for GMRES to converge below the pre-

scribed tolerance (i.&¢0-%) with the BEM and the FMBEM algorithms for a zero pressure (a) and a zero

velocity (b) boundary conditions. A positive value denotes that the FMBEM algorithm requires more itera-
tions than the BEM algorithm.
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4.2 Treatment of the fictitious eigenfrequency problem

The fast multipole method applied to the BEM appears to be also sensitive to fictitious eigenfrequency
problems (see sectidn4and sectior?.3). Indeed, this sensitivity, which can be emphasized by drgitie

sound pressure level on interior receivers’ maps (see figué€a) 2.4(c) 2.4(e), results in the disturbance

of the exterior pressure field, as it has been emphasized for the BEM. Since in the previous chapter, the
B&M formulation has been found to be relevant to overcome this drawback in the framework of the BEM,
one will see, in this section, the influence of the B&M formulation when applied to the FMBEM since,
theoretically, it does not involve numericalffitulties (see sectioB.2.5. Consistently with sectiof.3,

one will first see the influence of the B&M formulation on the convergence of the iterative solver for both
sound soft and rigid boundary conditions and thenfiiciency to overcome the fictitious eigenfrequency
problem.

4.2.1 Convergence of the iterative solver

The sectior2.3in chapter2 has been dedicated to the influence of the B&M formulation &&qa (1.32)
applied to the BEM, we now focus on the influence of this formulation applied to the FMBEM. This study
is still carried out on the same range of frequency, fian= 0.09 toka = 20.3. The number of elements,
7932, is kept constant for the whole range involvirggndts' A at 1100 Hz (see results in appendixt). On

the one hand we study the number of iterations required to converge below the relative residuat 10
sound soft boundary conditio@gZa = 1072 + 1073i (figure4.4(a) to assess the computation of kern@ls

and K and on the other hand for rigid boundary conditiahs> o (figure4.4(b) to assess the computation

of kernelsF andH.

We can make the same conclusion as for the case of the application of the B&M formulation to the
boundary element method (see figurd): the B&M formulation provides a better convergence of the
iterative solver than in the absence of this formalism as frequency increases for both sound soft and rigid
boundary conditions. It results in a stable dependency of the number of iterations in the whole frequency
range and the B&M formulation also seems to bring a better conditioning when applied to the fast multipole
formalism. However, regarding the convergence of the iterative solver for rigid boundary conditions (figure
4.4(b), the use of the B&M formalism leads to a larger number of tteres, at low frequencies, than
without it, as it was also emphasized for the standard BEM in the previous chapter (s&8jiorit is
noteworthy that the red and blue curves intersect around the same absejssaid the boundary element
method. For this reason the use of the B&M could not be recommendedkahigioo small ka < 3r, i.e.

510 Hz in this scattering sphere problem), since the eigenfrequency density is low.



Partll, Chapterd. Validation of the fast multipole boundary element algorithm 69

4.2.2 Comparison of the surface sound pressure level

Regarding the sound soft boundary conditions (right hand side in figgByethe discrepancy between the
reference solution (blue lines), i.e. the BEM with the B&M formulation already validated in the previous
chapter sectio.3and the FMBEM with the B&M formulation, (red dashed lines)pidy of several tenth

of decibels (blue lines and red dashed lines are on top of each other). Thus, the B&M formulation applied
to the FMM seems to provide a much better consistency with the reference solution than results obtained
without the use of the B&M formulation (green dashed line). Thus the B&M formulation appears to be
efficient to properly solve a scattering problem by a spherical body for sound soft boundary conditions
regardless the frequency. From a numerical point of view, this means that the Kemigich appears

in the B&M formalism is properly computed in the framework of the FMBEM. We point out that the
B&M formalism was only assessed in this section for fictitious eigenfrequencies but we ensure that the
B&M formalism has the same reliability for all the frequency range for sound soft boundary condition. It
results that the B&M formulation (i.e. weighting parameter in equali®3 n = 0.5) succeeds in properly
computing both kernel& andK and is found to be relevant in this case of the scattering sphere problem.

Regarding the rigid boundary conditions, left hand side figurdsSnwe highlight the behavior of the
surface pressure level for twoftierent numbers devels 2 (red dashed lines) and 4 (black dashed lines).
Compared to the reference solution (in blue line), already validated in the previous chapter @&tibn
is regrettable that the use of the B&M formalism leads to a unreliable solution in the low frequency range,
for instanceka = x (figure 4.5(a) for 4 levels than when it is not applied (green dashed line), while the
use of this formulation provided a good agreement when the FMBEM is only carriedle@rel2 This
means that additiondévelsin the framework of the fast multipole formalism lead to a loss of accuracy
as the number develsincreases in the low frequency range. However as frequency increases, even for 4
levels the application of the B&M formulation seems to provide a much better agreement with the reference
solution than without it, as for instance fka = 15.04 (i.e. 810 Hz), figure&t.5(e) Since the computation
of kernelsF andH has been validated in the previous chapter for the BEM as well as the computation of
the kernelF has been validated in the framework of the fast multipole formalism in the previous section,
this loss of accuracy may only be due to the computation of keétné&lrom a theoretical point of view the
use of the B&M formulation in the framework of the fast multipole method should not introduce numerical
difficulties since the singularity problems of tHekernel only occurs in the BEM part. Thus, this inaccuracy
may result from an implementation problem and the relevance of the application of the B&M formulation
will be discussed in the following.

As already emphasized when applied to the BEM, the B&M formulation dramatically reduces the
number of iterations to a stable dependency for the whole frequency range, when applied to the FMBEM,
regardless of the boundary conditions. However the accuracy of the B&M formulation through the fast
multipole formalism to solve scattering problems by a spherical body has not been evidenced. Since both
efficiency and accuracy of the B&M formulation applied to the BEM have been validated in the previous
chapter, these discrepancies seem to be due to the application of the B&M formulation in the framework



Partll, Chapterd. Validation of the fast multipole boundary element algorithm 70

of the fast multipole formalism. More precisely since thegmocomputation of the kernéd has been
previously evidenced, this loss of accuracy seems to be due to the computation of thetkerfikls
observation is not in agreement with the theoretical results (see s&8dh and the B&M formulation
should not introduce numericalfiiculties in the framework of the fast multipole formalism. We will see in

the following section, dedicated to the application of the FMBEM for sound propagation problems in urban
environments, that the inaccuracy of the B&M formulation allows nevertheless to compute noise maps with
a stfficient precision, while providing a better conditioning. However, further research is needed to work
out this problem in order to guarantee an optimum reliability of the algorithm. We nevertheless notice that
other investigations which can been found in the literature report a slight loss of accuracy when solving
problem at interior eigenfrequencidsi 010, Li 20114 and certain authors advise against the use of the
B&M formulation except at fictitious eigenfrequencidsaptBEM software 2014
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(a) number of iterations required for zero pressure bouncamgition without B&M formulation (red line) and with B&M formulation (blue line).
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(b) number of iterations required for zero velocity boundaspdition without B&M formulation (red line) and with B&M formulation (blue line).

Ficure 4.4: Number of iterations required for GMRES to converge below the prescribed tolerant6@)e.
for zero pressure (a) and zero velocity (b) boundary condition. The dashed black lines correspond to
fictitious eigenfrequencies.
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Ficure 4.5: Comparison between the BEM solution (blue lines) and the FMBEM solution for 2 levels

(dashed red lines) and 4 levels (dashed black lines) of the surface sound pressure level in dB (SPL) for

a spherical source located 4i0a from the sphere center (aradius) of unit amplitude Q= 1. We also

provide the unsatisfactory results obtained by the FMBEM without the application ofétive fBrmalism

(in green dotted lines). The reference pressure ig:R8 for the rigid cases, left side and the reference
velocity is50.1071° ms™ for the soft cases, right side.
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4.3 Validation of a half-space propagation problem

The full-space acoustic problem studied in the previous section is actually unusable in urban acoustic.
Indeed, due to the presence of the ground, the problems encountered in urban acoustic can be seen as semi-
infinite problems. Thus, a half-space problem can be solved either by meshing the geometry in the mirror
domain (for a rigid plane ground) or by taking into account the acoustic reflection on the ground thanks to a
fictitious rigid bdfle. One will see in this section how to deal with a half-space problem in the framework of
the FMBEM, starting from its corresponding full-space problem. The half-space formalism introduced in
this section has already been the purpose of previous dedicated publications in two dimeng0mhak

and in three dimensions, first inv@suda 200pand then in Bapat 200Q Even though it is possible to

deal with an impedance plane as introduced@thimann 2004Sarabandi 2004and in [Ochmann 2008

chapter 17], we only consider here the case of a rigid symmetrical plane. The problem of a whole rigid
sphere, studied in the previous section, corresponding to the full-space problem, will be used as a reference
solution. We will compare it to the half-space problem in which only a half-sphere, lying on a fictitious
infinite rigid plane, needs to be meshed. The contributions of the image domain, which corresponds to the
ground reflections, will be added through the fictitious rigidflea The half-space problem is depicted in
figure4.6(b)and its corresponding full-space problem in figdré(a)

90° 90° fictitious rigid baffle
T ... Symmetrical axis LT (ground)

T :' 5
180°4 JU 102 ))) N 180°+

10a

------ "X _ receivers' line

10a

------ vL receivers' line

scattering sphere point source scattering half sphere point source

(a) Full-space problem (b) Corresponding half-space problem

Ficure 4.6: A sphere of radius a excited by a point source, full-space and half-space cases.

4.3.1 The half-space principle

We introduce in this section the method to deal with a half-space problem starting from its associated full-
space problem and we describe its implementation in the FMBEM algorithm. Since the urban ground can
be considered in a first approach as a rigid plane, the implementation offftesiactually based upon the
image source principle. As for the full-space problem, for each cell, the oct-tree structure is divided in two
areas. The first area corresponds torthar elements and the second area corresponds tatheements.

The contribution of thaeear elements is computed directly using the boundary integral equation. For
each contribution from aear source elemeny, towards a receiver elemerf we add the contribution
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coming from the image source elemghtand thus the free space soluti@hbecomes:

ikr eikr’

.
G(x.y) =G(X,Y.y)=—+

= 4.1
Aar - dar”’ (4.1)

with r andr’ being the distance fromandy to y’ respectively.

The contribution of the far elements is computed using the fast multipole principle, described in a
previous chapteB. Each time that a translation is made in the moment step orimibment to moment
(M2M) step in the real space, from an expansion center to another one, a symmetric translation is also made
in the image domain (se&i[2011g Bapat 2009. This involves two translation matrices, which will be
added at the same expansion center in the moment to local (M2L) step. Afterwards, there is no distinction
between these two translation matrices and the local to local (L2L) step and the final summation remain
unchanged. The influence of the fictitious rigidib@mon the fast multipole principle is depicted in figure
4.7.

2 L2L

e

e S A e e e e e e

N

Real domain M2L

Ground

-~ M2L —» Real translation

. T R — » Image translation
Mirror domain

Ficure 4.7: Half-space problem: definition of the real and virtual objects by the FMBEM.

Finally, for the calculation of acoustic pressure levels at a receiver point away from the boundaries (in
the post-processing step), the contribution coming from the ground is taken into account through the image
source principle (equatior (1)) and added to the contribution of elements located in thied@aain.

4.3.2 Comparison with the full-space problem

The solution of the full-space with its corresponding half-space problem is compared in this section. For
the half-space problem, we only have to mesh a half sphere involving twice as less elements as for the
full-space problem, 15846-316942) against 31694 elements respectively (or 10 elements per wavelength
atka = 20, see results in appendB2). As for the full-space problem, the studied frequencies @b n
involve fictitious eigenfrequency problems, and so the CHBIE formulation is not required in this study and
the parameten can be set to 0 (pure CBIE formulation). Solutions are both computed with the FMBEM
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TasLe 4.2: Numerical data for the half-space FMBEM and in parenthesis for the full-space FMBEM: di-
mensionless domain size ka, number of levels in tree strugfrgenhaximum expansion order usegap
levels in LF and HF formulation, iteration number, total memory and computation time required.

ka | Imax | P2 | LF levels| HF levels| iterations| Memory (MB) | Time (s)

0.1 5 5 all none 3(3) 177(212) 16(18)
2.0 516 5 2-3-4 5(5) 232(301) 20 (23)
5.0 5 |10 none all 8 (8) 249(332) 25(30)
20.0| 5 |24 none all 21(21) 969(1112) | 123(145)

algorithm in order to only highlight the fierences due to the rigid tie. We compare the potential pressure

level taken on 360 receivers, evenly distributed on a circle of radiisSa from the sphere center. The
computations are done for two frequencies, which correspond to the dimensionless wave tamatis

and 20.0. Note that we have halved the amplitude of the source for the half-space problem since it is taken
into account twice, once in the real domain and also in the image domain. Higdsbkows the potential
pressure in dB(SPL) taken on the receivers for the full-space problem (blue line) and for the half-space
problem (red crosses). Tablle2 summarizes some useful data, obtained at fofferdint frequencies for

the rigid case, related to the half-space computation and also data previously obtained for the full-space
problem (in brackets). We keep the numbetesfel |,ax constant for all frequencies and both formulations

(LF and HF) are assessed in these verification tests. Indeka~=ad.1 only the LF formulation is required

while a pure HF formulation is used starting frdea = 5. We point out a switch foka = 2 between the

level5 and thdevel4.

20 90

+ +Half-space pressure + +Half-space pressure
— Full-space pressure — Full-space pressure|

180 | bbb bbb 0 480 [ b e LR 0

270 270
(a) ka=0.1 (b) ka =20

Ficure 4.8: Spherical wave of unit amplitude @ 1 scattered by a rigid spherer(= 0). Comparison
between the full-space solution (blue line) and the half-space solution (red crosses) of the sound pressure
level in dB (SPL) on a curved line of radius—5a. The reference pressure is 2®a. The source is located

at 10a from the sphere center aradius).
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Since one cannot see significanffeiences (maximum discrepancy of 0.02 dB) between the full-space
and the half-space solutions, the half-space problem with the addition of the fictitious infinite rifi@ ba
is relevant to #iciently solve acoustic problems including the specular ground reflections without having
to mesh the mirror object. We also notice that the half-space problem brings improvements in terms of
computation time and required memory mainly due to the fact that the half-space problem requires only
twice less elements as for its corresponding full-space probiértaple4.2). Even if these improvements
appear to be rather small for these simple verification cases, the benefit will become more significant as
the complexity of the studied geometry increases. We note thabX & al. introduced a moref&cient
technique for plane-symmetric acoustic problem dividing by 2 both computation time and required memory
by planes of symmetryMasuda 201p

4.4 In summary

We investigate in this chapter comparisons, for the scattering problem by a spherical body, between the an-
alytical solution and the solution computed with the FMBEM algorithm. Thus the fast multipole algorithm

is found to be relevant to properly compute the surface pressure of the studied case at regular frequencies,
while at singular frequencies we noted a loss of accuracy for increasing nunibeelsfor rigid boundary
condition only. Finally, we detail how to deal with a half space problem to take into account the reflections
on the ground starting from the full-space problem with the addition of the infinite riglteba



Part Il : Conclusion

The conventional Boundary Element Method (BEM), as described in the firstlpgotgduces dense and
non-symmetric matrices which requi@(N?) operations for computing the matrix déeients andO(N3)
operations for solving the system by using direct solvirdeing the number of equations of the linear
system. As a consequence, applying this method on large scale models leads to prohibitive computation
times. Since few years, the boundary element method profited from a major improvement through the
fast multipole formalism, used to decrease the computation time complexity of boundary element based
algorithms. Thus the purpose of this second pamas been to introduce the fast multipole principle as well

as the mathematical background required to perform calculations. Consistently with the previous part, we
also assessed the ability and the accuracy of the fast multipole method, for solving a scattering problem by
a spherical body.

In the third chapter, we first provided a general overview of the fast multipole principle. We introduced
the spherical basis series required for the kernel expansions. We also introduced the RCR decomposition
which our algorithm is based on as well as the high frequency formulation. We described more precisely
all steps of the calculation, i.e the multipole expansion, the Moment to Moment (M2M) step, the Moment
to Local (M2L) step, the Local to Local (L2L) step and the final summation step. Finally, we have assessed
the theoretical computational complexity of the fast multipole algorith®@$) ~ O(p?).

The fourth chapter is dedicated to the assessment of the fast multipole formalism for solving a scatter-
ing problem by a spherical body. Thus, we proved the accuracy of the fast multipole formalism for both
rigid and impedance boundary conditions by comparison with the analytical solution at regular frequencies.
We also assessed the conventional & hyper-singular boundary integral formulation to tackle the fictitious
eigenfrequency problem. We first emphasized, as for the BEM algorithm, that the B&M formulation dra-
matically reduces the number of iteration as the frequency increases, regardless the boundary conditions.
We have also proved théfeiency of this formulation to provide reliable solutions for soft boundary condi-
tions while for rigid cases, it leads to a loss of accuracy with increasing numbevedéat low frequency.

Thus this formulation seems not to be recommended for small scale models, and further investigations may
be desirable to work out this problem in order to guarantee an optimum reliability of the algorithm. We
however notice that the B&M formulation will be successfully applied in the framework of large scale
propagation models in the next pdlit. Because of the presence of the ground in urban context, the fu
space problem requires to mesh the symmetrical geometry to simulate the reflections on the ground. This
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drawback can be tackled by the implementation of the halfespagblem with the addition of the infinite
rigid bafle, which provides improvements in terms of computation time and storage memory, compared to
its equivalent problem in full space. This half space problem is subsequently used in an urban context in

the next partll .
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Part Ill : Introduction

In the previous section, we have checked both theiency and accuracy of the half-space FMBEM for
solving scattering problems by a spherical body. We now focus on more realistic geometries such as en-
countered in urban environments. Although the fast multipole formalism applied to the Boundary Element
Method has been the topic of many publications, its application in the framework of realistic sound propa-
gation problems in dense urban environments has only been seldom studied and this part constitutes, as far
as the author knows, an original work. We can, nevertheless, find some studies carried out, for instance, on
a scattering problem by a noise barri8hgn 200For in environmental acoustic8hpat 2009 A source-

receiver transfer function for predicting pass by noise levels of automotive vehicles has also being evaluate
numerically with the FMBEM Huijssen 2012, however FMBEM algorithms in the domain of outdoor
sound propagation are not systematically used for providing reference solutions of a specific problem. We
attach importance, in this part, to show the applicability of the FMBEM algorithm on realistic geometries
encountered in urban environment for the computation of reliable solutions, as well as improvements, in
terms of both computation time and memory.

In the following chaptels, the first application is a scattering case by a noise bamier front of
building (section5.1). The second one will be a sound propagation problem withiityabtock made of
5 buildings (sectiorb.2). We emphasized the benefits provided by the fast multipat@dbsm in terms
of computational requirementse. the computation time and storage memory. This latter application
will highlight some instabilities which occur for expansion orders above around a hundred, leading to
discontinuities on the surface pressure field and a no convergence of the iterative solver. We finally discuss
(chapters.3) about the current limitations of the algorithm which ledaisonsider the very recentf&erov
& D uraiswamy's work (section5.4), related to the stability of the recursive process to compug rotation
matrices cofficients.

We explain, (chapte8), how a “fast and stable” recursive scheme can be guaranteddef compu-
tation of the rotational matrices entries of large expansion orders (se&tihpnThen we apply this new
improved version of the algorithm on the previous case of the sound propagation problem in the city block
(section6.2). Finally, we try to emphasize the new limitation of the algon through multi scattering
problems by cubic scatterers (sect@).

In the last chapter (chapté&), after having briefly introduced the outline of the ray tracibased
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algorithms (sectiof7.1), we compare the pressure levels averaged within the opemkda@sed court yards
through three dferent algorithms. In a first frequency range (1 - 150 Hz), secti@nwe confront a BEM
algorithm, the FMBEM algorithm and a ray tracing based algorithm [Raseftware, while in a second
frequency range (150 - 300 Hz), sectiod, the comparison will be performed only between the FMBEM
agorithm and the Icarf@.



Chapter 5

Applications of the FMBEM for acoustic
wave problems in urban environments

5.1 Scattering problem by a noise barrier in front of a building

We first deal, in this section, with the case of a quarter-circle impedance sound barrier located in front of a
building. More precisely, we introduce the geometry of the problem and the numerical results are presented
for two frequency bands centered on 100 Hz and 180 Hz, a regular and a singular frequency respectively.

5.1.1 Description of the studied geometry

We consider the case of a quarter-circle impedance sound barrier located between a point source with a unit
amplitude and an impedance building. The sound barrier has a radius of 201 (at a frequency of

180 Hz, A being the wavelength) and is 6 m high. The building has a squared base of dimensBoms 8

and is 16 m high. Both normalized impedances are sé:tg = 38, corresponding to an absorption
codficient of approximately 0.1. This absorption €ogent is tuned to real valueHjprnikx 2014 and

[ISO 9613-2: 199pand accounts for scattering by surface irregularities. Whele geometry (barries
building) is discretized with 13182 constant triangular elements (see figlrecorresponding to a space
discretization criteria equal to/5 at 180 Hz (see figure.1). We perform (sectiob.1.2.] averaged pressure
computations centered, in a first time, on 100 Hz (corresponding to a non-dimensional domain size of 11.8
), for a frequency range between 80 and 120 Hz with a 1 Hz step and in a second time (sdcfdh

around a singular frequency of the building, i.e. 180 Hz (corresponding to a non-dimensional domain size
of 21.3 1), from 170 Hz to 190 Hz with a 1 Hz step. We finally average the sound pressure levels for
each frequency on a receivers’ grid D m i.e. 23 x 231 at 180 Hz). The point source is located at
coordinates (0,0,1).
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Ficure 5.1: Overview of the studied geometry: a sound barrier located in front of a building (13182 ele-
ments, in blue) excited by a point source and the receivers’ map (40000 receivers, in green).

Because of the high computation time involved by the standard BEM formalism, the comparison will
be performed with an internal optimized BEM softwalicado3D (see Pean 199B. It is a 3 dimen-
sional boundary element algorithm, using a direct approach, for the study of acoustical problems. It uses
linear interpolation functions and is based on a variational apprddamgi 1982. Since the variational
approach does not fiier from the major drawback of the fictitious eigenfrequency problem, this algorithm
will be taken as a reference. Indeed, even if the solution computed on the mesh could indicate a ficti-
tious eigenfrequency behavior at certain characteristic frequencies, the solution does not radiate outside
[Terrasse 20Q7Thierry 201]. It results that this inconvenience does néfeet the pressure field on the
receivers’ grid. All the computations related to thiécado3D software run on a desktop PC with an Intel
Xeor® E5645 processor at 2.40 GHz and 24 GB of memory storage.

5.1.2 Sound pressure level on a receivers’ map
5.1.2.1 Around a regular frequency: 100Hz

The whole geometry (barrier building) is discretized with 13162 constant triangular elements. The max-
imum number of elements allowed at the lowest level is set to 50 which involves 4 kxtalsfrom level

2 to 5. We supply an overview in appendix1 of the space partionning related to tH8 ievel. We per-

form the computations for frequencies ranging between 80 Hz and 120 Hz with a 1 Hz step and finally
average the pressure values obtained for each frequency, on a receivers’ gd@ (0 In figure5.2 we
display the sound pressure levels obtained at a single frequency of 100 Hz fivlisettto3Dand FMBEM
computations.
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Ficure 5.2: Intermediate results for a single frequency of 100 Hz: on left with classical BEM (Micado3D),
on right with the FMBEM algorithm.

One can hardly see theftirences between both computations on these views. To compare more
precisely the dierences between both computations, we display, in figLgehe diferences between the
map obtained with the BEM algorithilicado3D and the map obtained with FMBEM algorithm. The
discrepancies are ranging between 0 and 3.6 dB with an average of 0.72 dB. We however denote that the
maximum discrepancy is located on the destructive interference area, where the absolute pressure level is
around 60 dB below the sound pressure level observed right in front of the sound barrier. We also note that
73% of pressure levels on the receivers are inferior to 1 dB, 93224B and 98%x 3 dB. Thus we can say
that both computations are in very good agreement meaning that the FMBEM can be relevant for solving
urban acoustic propagation problems such as scattering problems.

5.1.2.2 Around a singular frequency: 180Hz

The whole geometry (barrier building) is still discretized with 13162 constant triangular elements. The
maximum number of elements allowed at the lowest level is set to 200 which involves 3 active levels. In
order to overcome the fictitious eigenfrequency problem occurring around this frequency (i.e. 180 Hz), we
assess the CHBIE formulation and set the weighting paramgte).98 (cf. eq. 1.33), optimum value to
overcome the fictitious eigenfrequency problem in this study.

We show the averaged sound pressure level obtained on both mesh and receivers map with the reference
variational BEM solutioni(e. with Micado3D software) in figures.4 and the diference between the noise
maps computed witMicado3Dand our FMBEM algorithm including the CHBIE formulation (eG-33),
in figure5.5. On the 40000 receivers belonging to the map, 53 % of recedlns a discrepancy lower than
1 dB, 82 %< 2 dB and 96%x< 3 dB. Thus, we can see that the CHBIE formulation proposed (83)(
n = 0.98) succeeds in overcoming the fictitious eigenfrequency problem with an acceptable accuracy.
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Ficure 5.3: Differences (in dB) between noise maps obtained with Micado3D and FMBEM (top view) for
the frequency range (80 - 120 Hz). The pressure values obtained for each frequency are averaged. The
sound barrier and the building are displayed in black.

40
20 35 50

Ficure 5.4: Sound pressure level in dB(SPL) averaged on the studied frequency range (170-190 Hz) com-
puted with our reference variational BEM algorithm for the mesh and on the receivers’ map.
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Obviously this formulation requires the evaluation of fiveegrals for impedance boundary conditions and
is more time-consuming than the CBIE (e§.1)).

m

40

30

Ficure 5.5: Differences (in dB) between the noise maps obtained with Micado3D and the FMBEM for the
frequency range (170-190 Hz). The sound barrier and the building are displayed in black (top view).

Regarding the computing requirements, a standard BEM collocation approach would have needed
2700 Mo and around 1000 s (iterative solver) to solve this problem while the variational apprgiach, (
cado3D), requires almost 700 Mo and 560 s (direct solver). The FMBEM algorithm needs 2800 Mo and
480 s to solve this same problem but it is noteworthy that the resources are mainly used by GMRES since it
requires 1300 Mo to store the Krylov subspace and 320 s to converge. So, reducing the number of iterations
with a suitable preconditioner seems to be an attractive solution to reduce both memory storage and CPU
time [Chaillat 2012.

As a result, the fast multipole formalism applied to the BEM is found to be relevant for solving this
scattering problem by a sound barrier. We performed investigations for a regular and a singular frequency
and proved the accuracy of the algorithm by comparison with a reference algdvitbado3D already
validated in previous studies. Although the computational time benefits have not been emphasized in this
studies due to the low number of elements, the next section will specifically bring to light the benefits in
terms of CPU time as well as storage memory as the number of elements increases.



Partlll, Chapters. Applications of the FMBEM for acoustic wave problems in urban environment88

5.2 Sound propagation in a city block

We now deal with a larger scale model in order to emphasize the benefits of the FMBEM as the number
of elements increases. We study the case of sound propagation in a city block made of 5 buildings. We
first introduce the geometry characteristics of the studied mesh, we analyze the influence of the formulation
(CBIE or CHBIE) on the convergence of the iterative solver by performing a parametric study on the
weighting parametey. This study allows us determining a suitable valuey @fhich minimizes the CPU

time by reducing the number of iterations as well as mitigating the fictitious eigenfrequencies problem. We
subsequently focus on the influence of the iterative solver relative residual on the accuracy of the solution
on a receivers’ map. Then, we assess the accuracy of the FMBEM algorithm by comparison of the sound
pressure levels on the receivers’ map computed between the FMBEM algorithm and the reference software
Micadd3D. We also analyze the computational resources, as the CPU time or the memory storage, required
to solve such an exterior sound propagation problem in an urban environment and the benefits provided
by parallelized calculation of direct interactions. This study will allow us, in a last section, to discuss the
current restrictions of the FMBEM algorithm due to unstable recursive properties and its influence on the
accuracy of the solution. This discussion will lead us to focus, in the next chapter, on a recent investigation
of a stable recursive calculation of the rotational operators.

Due to the unstable recursive calculations of the rotational matrices, we chose to truncate the multipole
expansion series up to the ordee 98, since higher expansion orders involve instabilities in the recursive
process. Obviously, such a choice implies a loss of accuracy, specifically in the more sensitive areas.
According to sectiorb.l, the variational BEM solution will be taken as a referenceisoh and compared
to the solution obtained with our FMBEM algorithm.

5.2.1 Description of the studied geometry

This larger scale model represents a city block, made of five, 15 meters high, buildings and a total length of
110x 60 meters (i.e~321 x 181 at 100 Hz 1 being the wavelength). As for the case of the sound barrier,

we set the normalized impedanceZg,; = 38 according tollornikx 2019 and ISO 9613-2: 199band

perform the computation for a frequency range between 90 and 100 Hz with a 1 Hz step, involving 66306
elements at 100 Hz with a space discretization criterion/df The mesh as well as the receivers’ map is
shown in figures.6. The point source is located at coordinates, 4620) denoted by the red point on the

map.

5.2.2 Influence of the weighting parameter on the iterative solver

The purpose of this section is the investigation of the influence of the weighting parameter on the conver-
gence of the iterative solver. This study allows to determine a proper valgeoomitigate the fictitious
eigenfrequency problem as well as a reduction of the computation time. Since a fast computation time will
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Ficure 5.6: Overview of the studied geometry: A city block made of 5 buildings excited by a point source
(red point) of unitamplitude G 1. This overview contains 66306 mesh elements in red and 41600 receivers
in green lying on the ground.

be reached for a minimal number of iterations, we try to minimize the number of iterations with a suitable
choice of the parameter. The study frequency range is 30 and 100 Hz or in non-dimensional value be-
tween around 10 and 32 wavelengths. We set the iterative solver relative residuaf tauf Precise that

this criterion will be the subject of the following section. In Fig&&, one can see the influence of the
parameter; on the number of iterations in terms of frequency. One can see th&@ 0 (i.e. corresponding

to a pure CBIE formulation) leads to a very large number of iterations meaning a very bad conditioning
rending the iterative solver basically ffieient, whilen = 0.6 leads to an optimum convergence rate. We
reasonably assume that this value allows to mitigate the fictitious eigenfrequency problem and will be kept
in the remainder of this section. Due to huge computational times involved by the pure CBIE formulation,
the studied frequency range has been limited to 50 Hz fo10.0.

5.2.3 Influence of the relative residual on the noise map

One now see the influence of the relative residual on the reliability of the solution. We recall that this
parameter is the iteration stopping criterion which needs to be reached by the approximate solution of the
iterative solver. The mesh contains 33357 elements for a studied frequency of 100 Hz involving a space
discretization criterion of 3.5 elements per wavelength. The aim of this parametric study is to determine

a suitable value of the relative residual based on a compromise between speed of the iterative process and
accuracy of the solution.
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Ficure 5.7: Influence of the weighting parameter on the behavior of the iterative solver for a frequency
range (30 - 100 Hz) with a 1 Hz step.

Thus we analyze in figurB.8 the relative residual obtained at each step of the iterativegss for
a relative residual stopping criterion equal to~40 We also indicate the computation time required to
converge below the values 19 1072, 1073, 1074, emphasized in red dotted lines.

In addition, we also carry on our study on the estimation of errors on the receiver map provided by
relative residuals equal to 1§ 21072, 1072, 2102 102 and 210*. The comparison is performed with
a receiver map obtained for a relative residuat*l@eference), assuming that the solution has converged
(see figureb.9). One can see that the more sensitive areas, as the openagsed clourt yards required
more iterations to ensure a reliable solution (see figre@). A value equal to 16> seems nevertheless
suficient for a rapid evaluation of the sound pressure on the receiver maps at the price of a slight loss of
accuracy. For a converged and more precise solution (see figa@), one will prefer to set the relative
residual to 1102 which however requires a more important computation time (as emphasized in figures
5.8).
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Ficure 5.8: Convergence of the approximation of the solution for a relative resi@i0e for the city block
at 100 Hz. We highlight in red dotted lines the computation time to converge below the relative residuals
101,210,102, 21073, 103, 2104 and104, our reference in this study.
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(b) residuak= 2.1072

(d) residual= 1.102 (e) residuak 2.10-2

(9) residual= 1.103 (h) residuak= 2.10°4

Ficure 5.9: Influence of the relative residual on the solution on the receivers’ magerBinces in dB on the
receivers’ map between several tested residuals and the refetet@é.
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5.2.4 Sound pressure level in the city block

In figure5.1Q the sound pressure level in dB (SPL) calculated on the recgimap (total length: 70 m

130 m, (i.e.~201 x 401) for both variational BEM and the FMBEM algorithms is displayed. The reference
pressure iy = 20u Pa. These two maps seem to be in good agreement. We provide, irbiabbaly

the details of the computing resources required by the FMBEM algorithm. Indeed, a comparison of the
computing requirements between both algorithms would be meaningless since these computations have not
been performed on the same computers and are not, furthermore, based on the same formalism. The benefit
in terms of computation time brought by the fast multipole formalism will be specifically the topic of the

next section.

33.2dB 40.6 dB

44.3 dB 44.9 dB

Ficure 5.10: Sound pressure level on the receivers’ map computed with the Micado3D software (reference)
on the left side and the FMBEM on the right side. The three receivers’ lines and the two receivers’ areas
are displayed in red dotted lines.

TasLe 5.1: Computing resources related to the main computation stages for the FastBEM calculations for a
frequency equal to 100 Hz.

Direct integrations || Translation matrice Solver Total
Tlme(s)| Mem(MB) || Time | Mem Time | Mem || Time | Mem
Fast BEM (collocation)| 84 510 | 136 | 806 | 1023 5171 | 1243 | 6487
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It is noteworthy that the iterative solver appears to be thetragpensive process in terms of compu-
tation time as well as for the required memory. We notice that no preconditioning has been used, thus a
suitable preconditioner would reduce both computation time and memory storage.

In addition to these general results, we analyze more precisely the results for two sub-regions (two
areas) of the map. We performed a logarithmic summation on receivers within the red dotted square (cf.
figure 5.10 for the area 1 (an opened court yard) aradea 2(a closed court yard). The averaged sound
pressure level calculated with the variational BEM and the FMBEM algorithm is 44.3 against 44.9 dB(SPL)
in area 1respectively. In therea 2 the variational BEM calculates 33.2 dB(SPL), against 40.6 dB(SPL)
with the FMBEM algorithm. This discrepancy is in fact mainly due to the truncated expansion order. The
accuracy can nevertheless be improved with a stable recursive calculation of the translation matrices as it
will be proven in the next chapter. It points out the fact that the computations in this area are very sensitive.
Indeed, the pressure values only depend on the scattered field above the building and neither direct nor
reflected field contribute.

We also compare, in figurg.11, the sound pressure levels along the red dotted lines lodateg:
middle of streets (cf. figur&.10. There is a very good agreement on receivers under the icueha
direct contribution coming from the source (figusel1(c) and an acceptable agreement in shaded areas
(see figure$.11(a)and5.11(b).

5.2.5 Computational resources

This section details more precisely the computational requirements needed to solve the previous studied
case. We compare the computation times required with a standard collocation BEM algorithm with the one
required through the Fast Multipole algorithm. We also show the requirements in terms of memory and
finally focus on the improvement provided by parallelizing the process of direct interaction computations.

5.2.5.1 Computation time

We focus in this section on the computation times (CPU time) required by our FMBEM algorithm to solve
the engineering problem of the sound propagation in the city block introduced in the previous section. In
figure5.12 we display the CPU time (blue line) obtained for each fregydretween 30 and 100 Hz or as
dimensionless values between 12 and 32 wavelengths. We use a meshing space ttidfiom elements

per wavelength) for whole the frequency range involving around 7000 elements at a frequency of 30 Hz and
around 78000 elements at 100 Hz. The cell-size criteliienthe maximum number of elements allowed at

the lowest level) is set to 100. We supply an overview in appeBRdbof the space partitioning related to the

6" level. Thus, when this cell-size criterion will be exceeded a supplementary level will be automatically
added, decreasing the number of direct interactions.
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line # 1

— Micado3D
-— FMBEM

Pressure level (dB)

30 40
Lateral position (m)

line #2

— Micado3D
- - FMBEM

Pressure level (dB)

335 20 30 a0 50 60
Lateral position (m)

line #3

— Micado3D
-— FMBEM

Pressure level (dB)

(o] 20 100 120

40 60 80
Longitudinal position (m)

Ficure 5.11: Pressure level in dB taken along the 3 red dotted lines (cf. fi§ut€) with the variational
BEM (reference) in blue lines and the FMBEM in red dotted lines.

The benefit provided by an additional level, in terms of reduction of the CPU time, can be seen in
figure5.12 This reduction can be estimated to be around 33% of the totapatation time. Besides, we
can highlight the behavior of the computation time which seems to follow the theoretical IwdgN).
For comparison, we also provide the CPU time required by the BEM to solve for this problem. We assume
a standard boundary element algorithm and a matrix system solved with an iterative process. Thus the
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CPU time is directly dictated by the time to compute and stheecomponents of the matrix system. We
notice that beyond almost 60000 elements, the CPU time seems to remain stable mainly due to the fact
that the maximum allowed expansion order, to ensure stable recursive properties of rotation operators, is
reached and kept constant beyond. However, a stable recursive computation process, recently introduced
by Gumerov & al., allows to deal with higher expansion orders which are limited in this study to 98. We
can also highlight a fluctuating CPU time according to the number of iterations required for solving the
problem. Indeed the convergence of the iterative solver is closely related to the frequency. A method to
tackle this drawback could be the use of a preconditioner. Indeed, botlffitierey and robustness of
iterative techniques can be improved by using a preconditid@leaillat 2012. Several options in the case

of the GMRES are available (see chapter 9%a@d 200p.
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Ficure 5.12: Computation times required for the FMBEM algorithm in blue line and for the classical BEM
in red points in terms of the number of elements with a space discretizatiofbob is equal to 110 m.
Theoretical laws are displayed as red lines.

As a conclusion on the results of the application of a FMBEM algorithm to a sound propagation prob-
lem in the city block, we can say that the fast multipole algorithm provides substantial benefits regarding
the computational time compared to a standard BEM approach and becomes an essential optimization tech-
nique to calculate noise maps as the scale (frequency or dimension) of the model increases.

5.2.5.2 Memory storage

According to the previous section related to the benefits in terms of computation time, we now focus on
the benefits regarding the memory storage required. This study is still carried out in a range of frequencies
between 30 and 100 Hz or in terms of dimensionless values between 12 and 32 wavelengths. The cell-size
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as well as the meshing space criteria are still set to 100#@Bdespectively. From a numerical point of

view, the most consuming steps, regarding the memory storage in the fast multipole formalism, are the
storage of direct contributions coming fromear areas the construction of the translation operators used

for the contributions coming frorimteraction list cells and the storage of Krylov’s subspaces used by the
iterative solver. We display in figurg 13the total memory (blue line) used by the algorithm including t
required memory to store the direct contributions (red line), the translation operators (green line) and the
Krylov's subspaces used by the iterative solver (cyan line). We also mention the memory used by the BEM
for solving this problem. We assume a standard unsymmetrical boundary element formalism and a matrix
system solved with an iterative process. Thus, the memory storage is mainly used to store the components
of the matrix system.

We can highlight a fluctuating memory storage required by the iterative solver directly dictated by the
number of iterations. The memory needed, with the increase of the frequency to store the direct interactions,
is dictated by a quadratic law, in agreement with the boundary element formalism, while the memory
required to set the translation operators seems to follow a linear law.

So, we have seen that the fast multipole formalism brought significant benefits regarding the required
memory storage. The memory related to the direct interactions can be controlled through the number of
levels. The weak point seems to appear in the use of an iterative solver as a "black box" and a suitable
preconditioner seems to be recommended to avoid the close dependency with the frequency and thus the
fluctuating number of iterations.

Number of wavelength (D/X\)
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4 Levels 15 Level FMM total
1
1 +—+ FMM lterative solver
8000l ! +— FMM direct interactions |
: +~—+ FMM translation operators
g 1 e—e Unsymmetrical BEM
= 1 T
= | 1 ]
5 6000 .
IS 1
D
c 1
=] 1
L aoo00} -
=
o
D [
o [
1
2000 ]
o W

! L L L L i | L
[¢) 10000 20000 30000 40000 50000 60000 70000 80000
Number of degrees of freedom N

Ficure 5.13: Total memory storage required for the FMBEM algorithm (blue line) in terms of the number

of elements. We also mention the memory allocated for the iterative solver (green line), for the direct

contributions (red line) and for the translation matrices. For comparison, the memory storage required for

a classical BEM using an unsymmetrical collocation formalism is also mentioned in purple. D is equal to
110 m.
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5.2.5.3 Benefit of multi-cores parallelization

All the fast multipole calculations performed in this manuscript have been realized without parallelization
procedures on a desktop PC with a single Intel Y&2%5675 processor at 3.07 GHz and 12 GB memory
storage. However, the fast multipole method allows the parallelization of many process that can be realized
simultaneously $ylvand 2002 With increasing power of computation clusters, it seentsrésting to
assess the benefits of the fast multipole algorithm through a parallelization procedure. Indeed, even if
a suitable and fécient implementation of a parallel algorithm is not trivial because of the complicated
structure of this algorithm, it can nevertheless dramatically improve its performances. A very detailed
discussion can be found in the electromagnetic waves domakrgii] 200§ and [Ergul 2009. The two

most consuming steps, regarding the CPU time, are the computation of direct contributions coming from
the near areasand the time required to solve the matrix system through the iterative solver. We propose,
here, to assess the benefit of a parallelization procedure carried only on the computation of the direct
interactions. Indeed, this step includes independent computations and does not require exchanges between
the cores, which is suitable for parallel calculations. This parallelization is realized thanks to the OpenMP
(Open Multi-Processing) library, enabling the creation of shared-memory parallel programs. The benefits
provided by a parallelization procedure carrying out on the direct interactions can be seen ih.figuvde
represent, in solid lines, the total CPU time and, in dotted lines, the CPU time allocated for the calculations
of direct contributions. The colors represent the number of cores used to perform the calcilatibns

2 and 6 (the maximum number of physical cores available) in blue, red and green lines respectively. We
provide, in complement (appendk.1), the evolution of the gain factor with respect to the numbfer o
cores which the parallelization is carried out on. We note that the parallelization process has also been
implemented for the calculation of the sound pressure level on the receivers’ map.

Thus, we can observe a decrease of the CPU time according to the number of cores available to perform
the calculations. This parallelization has been realized on the direct interactions which are independent
calculations and then can be handled using the OpenMP library, a shared memory library which does not
require deep knowledge in parallel programming.

5.3 Consequence of unstable recursive computations

Previous calculations in the case of sound propagation in the city block have been realized with a truncated
expansion ordepmax = 98, to ensure stable properties of the recursive process. This truncated expansion
order allowed to perform calculations up to a non-dimensional domain size equal to almost 32 wavelengths
with a satisfactory accuracy except in the closed court yard. We explain in this section the reasons of such a
choice regarding the truncated expansion order and the impact on the convergence (irbsgdjiaa well

as on the loss of accuracy on the solution vector (in sedi@m) if the expansion order is not limited. We

finally discuss (in sectiof.3.3 a stabilized recursive calculation to compute rotationalrioes co#icients

which will be the topic of the following chapter.
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Ficure 5.14: Total CPU time required (solid lines) and CPU time allocated to calculate the direct interac-
tions (dotted lines) in terms of the number of cores used to perform the calculations. D is equal to 110 m.

5.3.1 Influence on the convergence of the solver

Consistently with the previous studied frequency range in the case of the sound propagation in the city
block, we investigate in this section the behavior of the iterative solver with the unstable recursive scheme
without limiting the maximum value of the expansion orgerin figure5.15 one can see the number of
iterations required to converge below the relative residual errgridh the non truncated expansion order

(red line) and with the truncated expansion orpigsx = 98 which has been used so farfierences in terms

of the number of iterations occur starting from around 85 Hz, when the truncated expansion order is reached
and an increased number of iterations is observed beyond 90 Hz leading to a very slow convergence of the
solver around 100 Hz. This slow convergence justifies the choice of a truncated expansion order in the
previous section since it nevertheless allows to keep an acceptable reliability on the receivers’ map except
in the more sensitive areas as in the close court yard.

5.3.2 Impact on the accuracy of the solution

As it has been previously emphasized in the previous section, instabilities in the recursive process lead
to a dfficult convergence of the iterative solver if the expansion order is not limited. The consequence
of the numerical instability can also be emphasized by considering the sound presure level on the mesh.
Indeed, as shown in figuig 16in red dotted circles, this generates a non physical solwatiothe surface
pressure field and one can see discontinuities between two adjacent cells appearing. This discontinuity
will obviously have an influence on the solution on a receiver map and an accurate solution will not be
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Ficure 5.15: Number of iterations to converge below the relative residugaf with a truncated expansion
order (black line) and with a non truncated expansion order previously defined (red line).

guaranteed, specifically in the more sensitive area. This loss of accuracy has already led to discrepancies
between our reference softwavécado3Dand the solution computed with the fast multipole algorithm in

the closed court yard (see figusel(. Thus a stable recursive scheme is required to ensurelestialution

in a higher frequency range.

5.3.3 Improvement of the stability of recursive calculations

As a conclusion, it seems that our algorithm, and more generally algorithms based on the RCR decom-
position, stfter from numerical instabilities for expansion orders up to a hundred, involving numerical
inaccuracies, resulting in pressure field discontinuities between two adjacent cells. Indeed, it appears that
the recursive process for the computation of rotatiorffa@ents in the RCR decomposition becomes unsta-

ble for largep (around a hundred) if implemented without specific care. Thus, these recursive calculations
have to be handled with care and a stable process is required to ensure stable recursion properties as de-
scribed in [Gimbutas 200Pp Gumerov & al. provide an improved process iGimerov 201P, which they

found to be stable even for large(several thousandsumerov 2013 This stable recursive computation

has been recently implemented successfully in our algorithm and allows to deal with larger scale models.
A study using a stable recursive process applied to urban acoustic propagation will be the purpose of the
upcoming chapter. There also exists several publications devoted to the combination of the fast multipole
formalism with other methods such as the Source Clustering Method (SBWMjgchweiger 2073or the

Fast Directional Algorithm (FDA) Engquist 200 which allow to deal with slightly larger scale models

[Cao 2013 but are beyond the scope of the fast multipole method. Thewioig chapter will be dedicated
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Ficure 5.16: Influence of unstable recursive scheme on the solution. Discontinuity of pressure field appears
between two adjacent cells.

to an explanation and application of a stable process to compute the rotational matidiestte required
to perform the translations through the RCR decomposition.

5.4 Discussion about the current limitations

We investigated, throughout this chapter, the behavior of the fast multipole method applied to the boundary
element method to deal with acoustic propagation problems for realistic urban geometries. It results that the
fast multipole algorithm provides substantial benefits regarding the computation time as well as in terms of
memory when compared to a standard BEM approach while keepinfj@est accuracy to calculate noise

maps and becomes an essential optimization as the scale (frequency or dimension) of the model increases.
A parallelization process of the calculations of direct contributions has shown benefits, with respect to the
number of calculation cores, in terms of computation times. Because of the very large cost in terms of
memory requirement for the storage of Krylov subspaces for a large number of iterations, an appropriate
preconditioner seems to be recommended but this point has not been investigated in the framework of this
thesis. Thus the fast multipole formalism allowed us, so far, to perform calculations on domain sizes up to
around 32 wavelengths.

However, from a numerical point of view, due to the high level of computational complexity of fast
multipole algorithms, the recursive calculations must be handled with care, as for instance, the recursive
computations of rotational matrices entries which should not be performed carelessly. Indeed, the recursive



Partlll, Chapters. Applications of the FMBEM for acoustic wave problems in urban environment2

process for the computation of rotation Gbg@ents in the RCR decomposition formalism becomes unstable

for large expansion orders (i.e. a hundred). A stable recursive scheme to compute the components of the
rotational matrices required in the framework of the RCR decomposition has recently been the subject of
Gumerov's & al. work [Gumerov 2013 This stable recursive scheme has been successfully inepiet

in our fast multipole algorithm and allows to deal with larger scale models which will be the purpose of the
next chapter.



Chapter 6

Stable recursive computation of translation
matrices

The previous chapter was dedicated to the application of the fast multipole boundary element method
on realistic geometries. These applications allowed us to bring into light some computational instabili-
ties which restrict the current version of the algorithm to problems of maximum dimensionless domain
sizes up to around 32 wavelengths. These numerical instabilities already highlightedibyoG& D u-
rarswaMy [Gumerov 201D result in a discontinuity of the sound pressure field betwadjacent cells for
expansion orders above around one hundred. The very recemk@ & D uraiswamy’s research shows

that this limitation comes actually from numerical instabilities if the recursive process of the computa-
tion of the rotational matrices entries is performed carelesslynjerov 201} To tackle this limitation,

they proposed a recursive algorithm denoted as “fast and stable”, based on an analysis of the Courant-
Friedrichs-Lewy (CFL) criterion, tested for the computation of rotational matrix entries up to qreet€*
[Gumerov 2014

In the present chapter, we detail how a “fast and stable” recursive scheme can be guaranteed for the
computation of the rotational matrix entries of large expansion orderg(ize100), which is numerically
more “stable” than the one used in the previous chapters. This study is based on very reeaatvG
& Duraiswamy’s research@Gumerov 201 We first detail (in sectiorb.1) the numerical implementation
which allows us to ensure “stable” recursion properties in the computation of the rotational matrices entries.
Then we apply this improved version of the algorithm on the previous case of the sound propagation in the
city block and deal with higher frequency problems than it has been discussed in the previous chapter (see
section6.2). Finally, we try to emphasize the new limitation of the altfon through multi scattering
problems by cubic scatterers (sect@).

103
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6.1 Stable recursion for large expansion orders

The recursive process which we use in this chapter comes frame@v & D uraiswamy’s research
[Gumerov 201 We describe how stable computations of the rotational inegtrcodficients H,’ﬁ ‘M can

be guaranteed. Analysis of the Courant-Friedrichs-Lewy (CFL) condition shows that, if the recursion is

Hm’,m tO H:]Tf,m+l

performed fromHp, , then the recursion will be absolutely unstable while the computation

H;]TY,m H;]TY+l,m

from value to satisfies the necessary CFL stability condition. We however point out that
some care may be needed for negative values ofear the valuen = 0. Figure6.1shows the “stable” and
“unstable” directions of propagation of the absolute errors. By “stableie&v & D uraiswamy mean that

this recursive scheme leads to an absolute error equaltalddve the numerical precision for expansion
orders up top = 10*. This corresponds to an error equal to ¥owhen a numerical double precision is

used to store the numerical data which is an acceptable accuracy for many practical problems.
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Ficure 6.1: Stable recursive process for the construction of rotational matrices. An orget @ leads to
an absolute error ol 0? above the numerical precision.

Thus, the rotational matrices entries must be handled towards the high valoégoofm’ > 0 and
towards the low values oft for ' < 0 since an important error growth occurs when the recursive relation
is applied horizontally i.e. towards the increasing valuesiof 0. We explicit below all the steps required
to perform the “stable” recursive process of the rotational matriceficieats in the sense of the CFL
criterion.
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1st step: Computation ofHY°
The recursive process starts with the value for an arbitrary rotational angle

HY%(B) = 1, forn=n' =m=0. (6.1)

2nd step: Computation of H™

For the other values af (n # 0), we computeH2™ for 0 < m < n up to the orden = pmax+ 1 thanks
to a stable standard routine for computing the normalized associated Legendre fuRgtiossally based
on the recursion:

(n—mp!

T |m|)l PM (cosp), for0<m<n1<n< Pmax+ 1. (6.2)

Ha () = (~1)"

3rd step: Computation of HX™

Use the following recursive relation, in which the valuesp to pmax + 1 are required, to compute the
HY™ values for I< m< n:

HA"(6) =

n+1 n+1 n+1 n+1 n+1

o {1[b‘”Fl (1-cosB) HYT™ — bt (Lcosp) HYY * |-allsin@)HRY} . (6.3)

n+1

for 1 < n < pmax and l1<m<n.

with the values of ca@icientsa andb consistent with definitions3(15 and @.17) respectively.

4th step: Computation of H>1M

Hrﬂ+1m

Recursively comput using the following relation for k m <n—-1andm <m<n:

1 —
Hi+1m _ T {dm’ ty-im_ gm 1H,’1“"m‘1+d,THHf’m+l} (6.4)

according to the definition afy":

g _ S0

1/2
5 .

[(N=m)(n+m+ 1)]

We note that = 0.

5th step: Computation of HI' <M

terﬂ—l,m

In a similar way, recursively computé, codficients forO< n’ < —-n+land lI<m<n:

) 1 _
= L G g Y ©5)

with the previous definition of cdicientsd.
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6th step: Symmetry properties

At this point of the recursive process all the fim@ents in the gray area (see figurd) are computed and
stored. The other cdBcients—n < m’ < nand-n < m < n are computed using the following symmetry
properties of rotational matrices:

HY M = g and H M = em (6.6)

Thus at the end of this step, all th{é,”’m entries are known for all valuesh < n’ < nand-n<m< n. We
see in the next section the benefits provided by this recursive computation in the case of sound propagation
in the city block .

6.2 Improvements in the case of the sound propagation in the city block

The improved recursive process described in the previous section is applied to the sound propagation in the
city block studied in the sectidh.2 The previous calculations were carried out with a truncatgzhnsion

order (pmax = 98) to ensure stability of the computation of rotational matrices entries. One has also seen
that higher expansion orders involved, when the recursive process is computed carelessly, sound pressure
discontinuities on the mesh between two adjagails In figure 6.2, we compare the solution on the

mesh previously computed with the unstable recursive scheme (left hand side) with the solution on the
mesh computed with the new “stable” recursive scheme (right hand side). This comparison highlights the
improvement provided by such an implementation on the solution computed on the mesh. Thus it seems
that this recursive “stable” process has been implemented successfully in the fast multipole algorithm.

(a) with the unstable recursive scheme (b) with the stable recursive scheme

Ficure 6.2: A part of the solution on the mesh computed with (a) the unstable recursive scheme and (b) the
stable recursive scheme.
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Thus it seems that the problems emphasized in the previopserh{aee figur®.16 of sound pressure
discontinuities between two adjacestlls disappear, resulting in a “more physical” solution of the sound
pressure level (see figu&2). Furthermore, one can also see that this implementatiomsée provide
a more reliable sound pressure level on the mesh in the very sensitive areas as for instance within the
court yards 1 and 2 (areas in red dotted line in fighi®. This observation is confirmed by computing
the averaged sound pressure levels within the court yards (see @igurebtained from the logarithmic
summation of the contribution of frequencies between 90 - 100 Hz (1 Hz step). Indeed we notice a reduction
of 4.7 dB in the closed court yard while a decrease of 0.6 dB is observed in the opened court yard. With
the “stable” recursive technique, the discrepancies with the refeMieglo3Dsoftware are of 0.0 dB and
2.7 dB in the opened and closed court yards respectively.

40.6dB 35.9dB

44.9dB

70
—

(a) with the unstable recursive scheme (b) with the stable recursive scheme

Ficure 6.3: Logarithmic summation of the sound pressure level on the receivers’ map computed between
90 - 100 Hz (1 Hz step) with the unstable recursive scheme (same as in the previous section) on the left side
and with the “stable” scheme on the right side.

We can also assess the influence of the “stable” recursive computation on the number of iterations
required to solve this sound propagation problem starting from a dimensionless domain size equial to 9.7
(30 Hz). We set the iterative solver relative residual to1@nd compare, in figuré.4, the number of
iterations required with the unstable recursive scheme without truncating the expansion order with the
number of iterations required with the “stable” scheme. The discrepancies between the unstable (red line)
and the stable (blue line) recursive schemes appear above an expansion order around a hundred. While
the unstable scheme leads to a non converging solution startingsfrd@ (i.e. 98 - 99 Hz), leading to
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Ficure 6.4: Number of iterations required with the unstable recursive scheme (red line) and the stable
recursive scheme (blue line) in terms of frequency.

an indficient convergence of the iterative solver at higher frequency, the “stable” scheme shows a steady
number of iterations as frequency increases. As a conclusion, the analysis of the sound pressure levels on the
receivers’ map on one hand and the analysis of the behavior of the convergence of the iterative solver on the
other hand seem to indicate a successful implementation of the “stable” recursive processféniacye

of this latter scheme to tackle instabilities in the recursive calculation of rotational matridésieats. The
calculations have been performed up to a dimensionless domain size value around 100 wavelengths due to
memory limitations. Indeed for a calculation performed at aroundt108. 300 Hz), GMRES requires

around 26 GB to store the Krylov’s subspaces for 36 iterative steps. This result emphasizes once again
the interest of a suitable preconditioner to deal with well conditioned matrix systems which can reduce the
number of iterative steps, hence reducing the computation time and, at the same time, the memory storage.
In the next section, we focus on a multi scattering problem by cubic bodies. The main idea is to deal with
well conditioned problems to decrease the number of iterative steps and circumvent the problem of the
prohibitive memory required by the iterative solver.

6.3 The new limitations of the algorithm: A multi scattering problem

The main idea of this section is to deal with problems which require a low number of iterations as well as
to avoid the fictitious eigenfrequency problem. It allows us to focus only on problems related to expansion
orders. Figuré.5provides a schematic overview in two dimensions of the studeometry. It concerns a

multi scattering problem by cubic scatterers distributed according to a square frame. The main geometrical
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parameters are the length of the cubic scatteré&510the distance between two successive scatteters

and the maximal length of the problemi. All the computations are performed at the same frequency of
60 Hz (i.e. 2 = 5.67 m), chosen to avoid the fictitious eigenfrequency problem allowing to solve for the
problem only with the CBIE formulatiom(= 0.0 in the CHBIE formulation). The first studied network is a
square network and the second one a rectangular network used to increase the larger dimension of the prob-
lem nA while keeping a low number of elements allowing comparisons with the reference BEM algorithm
Micado3D Indeed the largest dimension of the problem will determine the highest expansion order in the
framework of the fast multipole formalism. We note the symmetric properties of the geometry, for a point
source located at the center of the network, which will be taken into account in our reference calculation
while the whole geometry will be handled by the FMBEM algorithm, although planes of symmetry could
nevertheless be considered.

P P P P P P P P

| | [ |
receivers' line

i ] ] ] ] ] [ |
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P
; n n m o om / n n ;
S P A i}
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Ficure 6.5: Sketch of a part of the array used to bring into light the limitation of the new FMM algorithm.
All the geometrical values depend on the wavelength at 6Q BZ5.67m.

6.3.1 Bi-dimensional array of cubic scatterers: square frame

The mesh used to perform calculations is displayed in fi§uelt consists in 30< 30 cubic scatterers for a

total length equal to 300 m 300 m. The studied geometry in this section has the following dimensionless
parameters for calculations performed at 60 Mz (5.67 m): length of cubic scatterers of3&1, d = 1.75

andn = 52. The infinite rigid béfle is used to take into account the reflections on the ground. We compare
the sound pressure level taken along the red receivers’ line. The location of the point source (black point)
involves two planes of symmetry which are taken into account to reduce the computing requirements of the



Partlll, Chapter6. Sable recursive computation of translation matrices 110

reference BEM algorithmMicado3D, while the whole geometry, involving 621000 elements, is handled
by the FMBEM algorithm.

Ficure 6.6: Overview of the mesh (in green) of the multi scattering problem in the squared array mz@e of

x 30 cubes of basi2m x 2m, consisting each of 690 elements, for a total of 621000 elements. The planes

of symmetry which are used in the BEM calculation are displayed in dashed black lines. The red dotted line
indicates the receivers.

The pressure level in dBpfes = 1 Pa) taken along the receivers’ line (red dotted line in figuG}
is displayed in figuré.7. We compare the solution computed by t&eado3D software (blue line) and
the fast multipole algorithm (red line). We observe a very good agreement between the reference algorithm
Micado3Dand the FMBEM algorithm. We also provide in taliel the expansion orders used with respect
to thelevel in the hierarchical tree We denote that this mesh is the biggest we have considered in the
framework of this PhD thesis (621000 elements). Regarding the computing resources, the FMBEM algo-
rithm solved this problem in about 20 minutes for 14 iterative steps and around 13 GB of memory has been
required. If we had solved this problem with a classical collocation BEM algorithm, the calculation would
have required almost 250 hours with an iterative solver and 6200 GB to store the matrix system (estimation)
unavailable nowadays on classical workstations. It highlights the interest of the fast multipole method when
few iterative steps are required.

Tasce 6.1: Cubic frame: Expansion orders with respect to level for a hierarchical tree consisting of 8 active
levels and number of iterations for a dimensionless domain size equalto 52

level# | 2 | 3|4]5]|6]| 7] 8]9]itratons
expansion ordef| 214 | 116 | 66 | 38| 22| 14| 10| 8| 14

6.3.2 Bi-dimensional array of cubic scatterers: rectangular frame

Since the largest dimension of the problem determines the maximum expansion order of kernels on the
spherical basis series, we chose now to deal with a rectangular frame. We wanted to reduce the number
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Ficure 6.7: Sound pressure level in dB along the receivers’ line within the squared array computed with
Micado3D software (blue line) and the FMM algorithm red line. The reference pressure levgl is pPa
for a unit source amplitude.

of elements and to kedydicado3Das the reference algorithm while increasing the problem dimensibns

and so the maximum expansion order. The mesh used to perform calculations is displayed B 8igtire
contains 40x 20 cubic scatterers of a size of 0.3%and 5.251 apart for a studied frequency equal to 60 Hz

(4 = 5.67m). This problem has a total length of 2Q7or 1200 m. The infinite rigid ke is used to deal

with a half space problem. We compare the sound pressure levels taken along the red receivers’ line shown
in figure 6.8. The location of the point source (black point) involves twarngs of symmetry which are

taken into account by the reference BEM algoritMitado3Dthus reducing the computing requirements
while the whole geometry is considered (without planes of symmetry) by the FMBEM algorithm involving
around 108000 elements.

The pressure level in dBpfes = 1 Pa), taken along the receivers’ line, is compared in figuge
The comparison is performed between the reference algohtfuado3D (blue line) and the fast multipole
algorithm (red line). We observe a very good agreement between both computations. The computing
requirements by the FMBEM algorithm are 25 minutes to solve the matrix system and around 12 GB of
memory. We also provide in tab&2the expansion orders used with respect tdévelin the hierarchical
tree We note that this calculation is the highest we performed successfully during this PhD thesis in terms
of expansion orders up fomax = 726.

An additional calculation has been performed for a larger scale model for a dimensionless domain size
equal to 273. This geometry is obtained with the following geometrical parameters, previously defined:
length of the cubic scatterers3®1, the distance between two successive scatterersand the maximum
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Ficure 6.8: Overview of the mesh (in green) of the multi scattering problem in the rectangular array made

of 40 x 10 cubes of basi2m x 2m consisting each of 270 elements, for a total of 108000 elements. The

planes of symmetry which are used in the BEM calculation are displayed in dashed black lines. The red line
indicates the receivers.
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Ficure 6.9: Sound pressure level in dB along the receivers’ line within the rectangular array computed with
Micado3D software (blue line) and the fast multipole algorithm (red line). The reference pressure level is
p = 1 Pa for a unit source amplitude.

length of the problem is 1600 m (276 We detail below in tabl&.3 the expansion orders with respect to
thelevel However this calculation does not lead to a convergence of the iterative solver most likely owing to
the expansion order #vel 2 (i.e. 956) involving instabilities in the recursive computation. Nevertheless,
Gumerov & Durarswamy proved the “stable” properties of the recursive scheme of the computation of
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TasLe 6.2: Rectangular frame: Expansion orders with respect to the level for a hierarchical tree consisting
of 9 active levels and number of iterations for a dimensionless domain size equalito 207

level# | 2 ] 3] 4] 5 |6]7]8]9]10]| iterations
expansion ordef| 726 | 378 | 200 | 108 62 | 36 | 22 | 14 | 10 | 8

rotational matrix cofficients up 16, thus this problem seems to be due to other instability sources. Because
of the lack of time, this point has not been solved in the framework of this thesis and could be the topic of
further research.

TascLe 6.3: Rectangular frame: Expansion orders with respect to level for a hierarchical tree consisting of 9
active levels and number of iterations for a dimensionless domain size equalto 275

level# | 2 ] 3] 4] 5 |6]7]8]9]10] iterations
expansion ordef| 956 | 496 | 260 [ 140 | 78 [ 44 26 | 16 | 12| oo

6.4 Conclusion on the stable recursive computations of the rotational ma-

trices

The stable recursive computation described in this section comes framr@G & D uraiswamy’s works
[Gumerov 2011t After a brief overview of the numerical implementation whiallows to ensure “stable”
properties of the recursive computations of the rotational matricef@eats, we evidence that the limita-

tions emphasized in the previous chafiean be solved by the implementation we discuss in this chapter
Indeed, it leads to a more reliable solution of the sound pressure field on the mesh in the case of the sound
propagation problem in the city block while providing a stable number of iterations for a dimensionless
domain size above 32 The average sound pressure levels in the sensitive areas are also improved by
0.6 dB and 4.7 dB in the opened and closed court yards respectively. The multi scattering problem by cubic
bodies is solved successfully for 621000 elements 750 times faster with the FMBEM algorithm than if it
was solved by a standard collocation BEM algorithm while reducing the required storage memory by 477.
The multi scattering calculations are carried out successfully up to a dimensionless domain size of 207






Chapter 7

Comparison between a BEM, a FMBEM
and a beam tracing algorithm

Generally speaking, three dimensional BEM based algorithms are mostly used to provide reference solu-
tions for wave propagation problems in homogeneous media. As it has been highlighted previously, the
BEM formalism leads to prohibitive computation times as the number of elements increases, which limits
the application of this numerical method to low frequencies, small scale models or two dimensional prob-
lems. Thus, with the development of the fast multipole formalism in others scientific domains, it seemed
important to assess the applicability of this formalism to the BEM in the framework of urban acoustics.
We recall that the first key idea of this thesis was to check the ability of FMBEM algorithms to deal with
exterior sound propagation problems with the aim of providing reference solutions to assess or improve
faster engineering algorithms.

An important class of algorithms commonly used in acoustics is based on asymptotic approaches, as-
suming high frequency approximations (ray tracing, beam tracing, particles launching ...). We seek, in this
chapter, to apply the FMBEM algorithm in a larger frequency range than what can nowadays be reached
through classical BEM based algorithms. Thus, this last chapter is dedicated to the confrontation of dif-
ferent formalisms which possess their own advantages and domain of validity. We performed comparisons
between a BEM algorithm (i.eMicado3D), a fast multipole BEM algorithm and an asymptotic approach
based software, IcaP, a ray tracing algorithm.

In afirst sectionq.1), we detail the main features of the IcBreoftware. Then (sectiof.2), we check
the reliability of the FMBEM algorithm and of the Icéfesoftware to compute pressure levels in sensitive
areas. To this end, we perform comparisons between the BEM algorithcado3D, our reference in
the first studied range of frequencies (1 - 150 Hz), the fast multipole algorithm anflsafevare. We
discuss, sectiofi.3, the potential sources of inaccuracies through a study oteedative solver used with
our reference BEM algorithmilicado3D We highlight the particular attention necessary when solving

http://www.cstb.fr/dae/en/nos-produits/logiciels/icare.html
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problems in the more sensitive areas with an iterative solwirally, (section7.4), in the second studied
range of frequencies (150 - 300 Hz), the fast multipole algorithm is taken as reference algorithm to assess
the reliability of Icar® software for computing the pressure level in the opened court yard.

7.1 Brief overview of the beam tracing algorithm principle

The mathematical background of the ray tracing algorithm has been developed during the first part of the
20" century mainly in order to understand sound propagation in underwater acoustics. The wave prop-
agation can be seen as a geometric construction of wave fronts, from which line flux can be obtained.
The principles in geometrical acoustics have been developed by analogy with the light propagation, Snell-
Descartes’s law, Huygens principle, Fermat princifléefce 198 1Glassner 1989.. The computing soft-

ware, Icar®, can also account for reflections on curved surfaces, multiple reflectionsfinadtitin éfects

on edgesJean 200Bas well as radiating surfaces.

The acoustic calculations are divided into two well-separated steps:

e The geometric calculation step:The aim of this step is to determine the geometrical paths between
a source and a receiver, performed with a beam tracing, which take into account specular reflections
and edges dliractions. The geometric calculation complexity will be determined by the number of
reflections, as well as the number offdactions allowed on edges during the path of each ray. Ob-
viously, the larger these two parameters are, the higher the computation time will be fiTéetidn
edges must be chosen by the user. Succesdfiraations can be defined. In practice, more than two
successive dliractions are not recommended due to a very significant computation time. Thus, for
reliable calculations, a compromise has to be found between accuracy of the results and computation
time which can be diicult to determine for complex sound propagation problems.

e The acoustic calculation step:Once all the geometrical paths between a source and a receiver are
known, the acoustic pressure associated to each ray is computed following the geometrical diver-
gence, the impedance surface conditions and the acoustic phase. This step is generally much faster
than the geometric calculation, and informations for a large frequency range can be obtained in a
negligible computation time. This consists in the major strong point of the method.

The major drawback of the method is that these two steps must be performed for each pair of source and
receiver and for a large number of sources or receivers, which can lead to prohibitive computation times.
Thus the ray tracing method does not appear to be suitable to draw noise maps with a large number of
receivers. For this reason, we only restrict the number of receivers in the next section to 3619)1A

more detailed description of the underlying theory of this approach can be fouNdéZ01].
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7.2 Comparison between algorithms: BEM, FMBEM, beam tracing

7.2.1 Description of calculation parameters

We seek to compare, in this section, the reliability dfafient algorithms to deal with the half space sound
propagation problem in the city block, already described in the previous chapters. The comparison will
be performed between the BEM approabdiqado3D software), the FMBEM algorithm and the ray trac-

ing method (Icar® software). As a reminder, the geometry is displayed in figufe The computa-

tion of pressure levels will be compared in the more sensitive areas, that is to say within the opened and
closed court yards (green areas in figidr®. The receivers’ grids on each area contains<19 receivers,

1.5 meters above the ground. The source point is located on the plane of the ground. The normalized
impedances of building facades are set to 38 which corresponds to an absorpftiecbequal to 0.1

[1ISO 9613-2: 199p

_«— Diffraction edges

Point source

15 m

a7
_— Receivers' areas
110 m

55

Infinite rigid baffle

70 10

Ficure 7.1: Overview of the studied geometry: A city block made of 5 buildings excited by a point source
(red point). This overview contains 66306 mesh elements in brown and the two receivers’ areas, 1.5 m
above the ground, contains each 299 receivers. The blue lines indicate the edges on whigfadiions

is allowed in the Icar® calculations.

7.2.1.1 Ray tracing calculation

Regarding the geometrical calculation step in the Baseftware, the main parameters are the maximal
number of reflections allowed during one ray path, including the numberfiohctions on edges. These

two latter parameters must be low to ensure acceptable computation time. Thus the maximum number of
reflections is set to 8, including a maximum number of 2rdctions on edges. The edges on which a
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diffraction is authorized are displayed as blue lines in fiJute These edges have been chosen to allow an
energy difusion in the streets and inside the court yards. We note that the additiofirattibn €fect on

edges (i.e. above the buildings) is necessary to perform a calculation of the pressure level in the close court
yard.

We describe in this section the details of the computation carried by thélsafevare. We show in
figure 7.2 an overview of the total number of paths found between thecgsoposition and two arbitrary
receiver points, located in the closed and opened court yards. We recall that the maximal number of re-
flections is set to 8, including a maximal number of 2 successiffeadiions on edges. As expected, the
number of paths for a receiver located in the opened court yard is higher (1069 paths) than the number of
paths found for a receiver located in the closed court yard (34 paths), within which ditpctid fields
contribute. Regarding the source point, since this latter is located on the ground, we perform calculations
with a hemispheric source and double its contribution to simulate the specular reflections on the ground.

Arbitrary
receiver point

Arbitrary
receiver point

@)

Ficure 7.2: Paths taken into account for a ray tracing calculation, from the source position (red points) to
an arbitrary receiver point (black points) locatéd2(a)in the opened court yard (1069 paths) an@(b)
in the closed court yard (34 paths).

7.2.1.2 FMBEM algorithm calculation

The fast multipole calculations are performed with the improved “stable” version of the algorithm as de-
scribed in the previous chapter. The space discretization criterion is equal to 5 elements per wavelength for
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the frequency range 1 - 245 Hz (467434 elements at 245 H2.31) and equal to 4 elements per wave-
length above 245 Hz, because of limited memory storage. The cell size criterion is set to 100, involving a
maximum of 7 levels in the hierarchical tree (i.e. 5 active levels). We solve the CHBIE formulation with
a weighting parametej = 0.6, which leads to an optimum convergence in this case (see the parametric
study on the weighting parameter in chagier The boundary normalized impedantgoa Cair) is set to

38, according tol5O 9613-2: 199p

7.2.2 Comparison of pressure levels

The first frequency range studied in this section is (1 - 150 Hz). In this frequency range the comparison
between the three algorithms is performed even if we have limited the computation with the BEM algorithm
to 138 Hz (42), owing to memory limitations. We can see in figuré8 and 7.4, the pressure level,
averaged on the 1% 19 receivers inside each court yards, normalized with the free field pressure level
computed withMicado3Dsoftware (blue lines), the FMBEM algorithm (red lines) and the Baseftware

(green lines).

Regarding the pressure level within the opened court yard (see figdrelespite local discrepancies,
we note a good agreement between both BEM and FMBEM computations. The discrepancies between the
Icare® software and BEM based algorithms seem to be reduced as the frequency increases, which is in
agreement with the asymptotic approach which the ray tracing algorithn®lésutsased on. We will see
in a latter sectiond.4), a comparison performed in a higher frequency range (15@+8&) between the
FMBEM algorithm, taken as reference and the 1€aseftware.
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Ficure 7.3: Pressure levels averaged on thex 99 receivers between 1 - 150 Hz in the opened court yard
computed by Micado3D (blue line), the fast BEM (red line) and [Baseftware (green line). The pressure
levels are normalized by the free field pressure levels.
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Regarding the pressure level within the closed court yard (ssults figurer.4), the quality of the
FMBEM computation is not as good as for the case of the opened court yard. Indeed, the discrepancy seems
to increase with respect to frequency between the three tested algorithms. Furthermore, the ray tracing based
algorithm, Icar® software, seems to provide more consistent results with the reference BEM algorithm than
the FMBEM algorithm. We can also say that, the ray tracing method appears to underestimate the energy

arriving in this sensitive area.
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Ficure 7.4: Pressure levels averaged on the 299 receivers with respect to frequency between 1 - 150
Hz in the closed court yard computed by Micado3D (blue line), the fast BEM (red line) an®|tgueen
line). The pressure levels are normalized by the free field pressure levels.

Hence, the FMBEM does not show a good agreement with the reference BEM algorithm in the close
court yard, while the results obtained in the opened court yard are satisfactory. In order to try to emphasize
the possible sources of discrepancies between the BEM and the FMBEM calculations, an assessment of
errors coming from the iterative solver, GMRes, seems to be required.

7.3 Influence of the iterative solver in sensitive areas

Several sources of errors may be responsible for discrepancies between the Micado3D and the FMBEM
results. Indeed, Micado3D is based on a variational approach while our fast multipole algorithm is based

on the collocation approach. The iterative solvers may also be a possible source of errors if used as a
“black box”. The iterative solver coming from a free software, the Petsc lib&ajay 2014aBalay 2014b

Balay 1997, used without preconditioner. In order to highlight theoesrwhich may be due to the use of

the iterative solver GMRes, we investigate comparisons with the BEM algoiiwado3D for pressure

levels obtained, on one hand by the direct solver, and on other hand by the iterative solver. Through the
computations of pressure levels obtained with the BEM algorithm (direct solver in blue line and iterative
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solver in cyan line) within the opened and within the closedrtgard (figure7.5), we can conclude that

the iterative solver may be a possible source of errors if used as “a black box”. Indeed, while we can only
highlight some slight discrepancies between both solvers (blue and cyan lines) in the case of the opened
court yard7.5(a) ensuring a reliable solution in the case of the closed cand goes not seem so trivial

7.5(b) since both solvers (direct and iterative) do not lead to #mes solution and this, even after a
stabilization of the relative residual. Thus, the accuracy of solutions is closely related to the observation
area (as already emphasized in chapjemd guarantying accurate results in the more sensitive apgabe

a very dificult task. We also recall the averaged pressure levels computed with the fast multipole algorithm
(and so GMRes solver).

It may be concluded that using an iterative solver as “a black box” can be a possible source of inac-
curacies, and further research may be needed to control the errors in the more sensitive areas to guarantee
an optimum reliability of iterative solvers in the framework of the fast multipole formalism. Méfie e
cient convergence and so more reliable solutions in these sensitive areas could only be obtained with a
preconditioning based on the elements located in these sensitive areas.

7.4 Comparisons between the FMBEM algorithm and ray tracing method

In the previous section, the accuracy of the FMBEM algorithm has been proved for the calculation of
pressure levels within the opened court yard. We would like, in this section, to use this algorithm as a
reference in a frequency range for which the BEM algoritiimado3D can not provide solutions because

of the prohibitive computational resources required (CPU and memory). Thus, the second frequency range
studied in this section is (150 - 300 Hz). We can see in figuéethe pressure level, averaged on the 19

x 19 receivers of the opened court yard, normalized with the free field pressure level computed with: the
FMBEM algorithm (red line), and Icafesoftware (green line). A good agreement may be noticed between
both algorithms and the ray tracing method (I&s®aftware) seems suitable to compute the pressure level

in this opened court yard with an acceptable accuracy in the framework of urban acoustics.

7.5 Conclusion

We investigated in this last chapter comparisons between a BEM based algbtithoo3D, the FMBEM
algorithm and a ray tracing based method, 18ar® compute averaged pressure levels in the opened and
closed court yards. In the first frequency range (1 - 150 Myado3Dis taken as the reference algorithm.

It allows us to prove the accuracy of the FMBEM algorithm in the opened court yard but reveals, in the
same time, a loss of accuracy with increasing frequency in the closed court yard. However the use of
an iterative solver to perform calculations in very sensitive areas, such as the close court yard, requires
further investigations to ensure reliable solutions. A preconditioning based on the elements located in the
closed court yard could enhance the convergence and improve the accuracy. The FMBEM algorithm is
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Ficure 7.5: Pressure levels averaged on all the 99 receivers with respect to frequency for both studied
areas computed by Micado3D with direct solver (blue lines), Micado3D with the GMRes solver (cyan lines)
and the FMBEM with the GMRes solver (red lines). The pressure levels are normalized by the free field

pressure levels.

subsequently chosen as a reference in a higher frequency range (150 - 300 Hz) to assess the accuracy of the

ray tracing method in the opened court yard. It appears that this method is capable to compute the pressure

levels in this area with an acceptable accuracy.
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Ficure 7.6: Pressure levels averaged on the %919 receivers with respect to frequency between 150 -
300 Hz in the opened court yard computed by the fast BEM (red lines) and®lsafévare (green lines).
The pressure levels are normalized by the free field pressure levels.
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We focus in this part on the application of the fast multipole boundary element algorithm on realistic cases.
The first application is a scattering case by a noise barrier located in a front of a building (€ed}ion

We performed comparisons of the average pressure level computed with a BEM reference algorithm and
the FMBEM algorithm for two frequency ranges. As a result, 98 % of the receivers located on the ground
have a discrepancy lower than 3 dB in the first frequency range (90-100 Hz), while 96% of the receivers
have a discrepancy lower than 3 dB in the second frequency range (170-190 Hz). We also study a sound
propagation problem in a city block made of 5 buildings. Investigation on the weighting parameter in the
CHBIE formulation provides a suitable value to minimize the fictitious eigenfrequency problem as well
as the number of iterations. We also study the influence of the relative residual on the accuracy of the
solution. A value equal to 18 seems sflicient for a rapid evaluation of the pressure level in this context,
except in the sensitive area where 365 required to ensure a reliable solution. This problem is solved
with a computational time complexi®(Nlog(N)), while a standard BEM algorithm based on an iterative
solver requires a computation time complex@¢N?). The computation time can furthermore be improved

by performing the direct interactions calculations through a parallel process which can be realized easily
thanks to the OpenMP (Open Multi-Processing) library. One can observe a very good agreement between
both calculations (i.e. reference BEM algorithm and FMBEM algorithm) up to a dimensionless domain
size equal to 32 wavelengths. For higher dimensionless domain sizes, we highlight discontinuities of the
surface pressure field and a no convergence of the iterative solver coming from instabilities in the recursive
process of the computation of translation matrices. This observation lead us to consider a “stable” recursive
process, introduced by @ierov & Duraiswamy for the computation of rotation matrices ¢heients in

the RCR decomposition. We describe how a “fast and stable” recursive scheme can be guaranteed for the
computation of the rotational matrices entries of large expansion orders and the benefits provided in the case
the sound propagation in city blocks. This new improved algorithm is subsequently assessed successfully
on a multi scattering problem up to a dimensionless domain size equal to 207 wavelengths. This problem
is solved, for 621000 elements, 750 times faster with the FMBEM algorithm than if it was solved with
an iterative solver by a standard collocation BEM algorithm, while reducing the required storage memory
by 477. Finally, we performed comparisons between a BEM based algokitisado3D, the FMBEM
algorithm and a ray tracing based method, IBaseftware, to compute averaged pressure levels in the
opened and closed court yards. The fast multipole algorithm allowed to validate the results computed with
Icare® in the opened court yards up to 300 Hz10Q1), while in the closed court yards, i.e. a very sensitive

125
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area, further investigations related to the preconditigisieem required to ensure reliable solutions provided
by iterative solver based algorithms.



Conclusion of this work

Summary of results

Basically, the boundary integral formulation, basis of the boundary element method, appears to be very at-
tractive in free space as it: (i) eliminates the need to consider the infinite domains normally associated with
radiation problems; (ii) reduces the dimensionality of the problem by one (i.e., from a three dimensional
partial diferential equation, to a two dimensional surface integral equation); (iii) can readily handle arbi-
trary geometries and boundary conditions. All these properties are very advantageous from a computational
viewpoint, as the first two significantly reduce the computer storage requirement for outdoor wave propa-
gation problems. For these reasons, the BEM based algorithms are commonly used to provide reference
solutions for problems governed by linear partidfeliential equations in homogeneous media including a
broad scope of applications in physics: Laplace’s or Poisson’s problems, frequency or time wave equation,
elastostatics or elastodynamics. .. The major drawback of this formalism is the dense system of equations
generated, leading to a heavy computational resources dependency (time and memory), which so far limit
the application of the boundary element method to a few number of degrees of freedom.

Described as one of the best ten algorithms of the 20th century, the fast Multipole formalism allows to
accelerate the multiplication & x N matrices and decreases the complexity of boundary element based
algorithms by an order of magnitude. Handling several hundreds of thousands or millions of degrees of
freedom through the boundary elements method on a common workstation is now possible. It allows to
handle larger scale models which was unconceivable few years ago. Thus the motivation of the present
work was to assess the ability of this formalism for solving sound propagation problems and providing
reference results, as well as the benefits in terms of computational resources, in a three dimensional dense
urban environments, with the aim of assessing or improving faster numerical tools.

Since the boundary element algorithm represents a crucial aspect of the fast multipole formalism,
a prior assessment, by comparison with the analytical solution, of a successful implementation of the
BEM was required. Thus, we investigated, in the first part, the robustness of the conventional & hyper-
singular boundary integral formulation when solving scattering problems by a spherical body, even at fic-
titious eigen-frequencies, for both rigid and impedant boundary conditions. Problems related to the hyper-
singularities have been overcame through the subtraction technique. As a result, the boundary element
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algorithm was found to be reliable to compute tigar interactionsin the framework of the fast multipole
boundary element algorithm.

We have introduced, in the second part of this manuscript, the fast multipole formalism. The ele-
mentary solution of the Helmholtz equation is expanded on spherical basis, derived from Bessel functions,
Hankel functions and spherical harmonic series. We have discussed about the RCR-decomposition prin-
ciple, coming from Gmerov & Duraiswamy’s work and the high-frequency formulation, coming from
RoxkuLin's work, as well as the main stages from a numerical viewpoint required to perform calculations,
including the moment to moment step, the moment to local step and the local to local step. We have es-
timated the theoretical computational complexity of the fast multipole algorith@(B§ ~ O(p?). We
have proven the accuracy of the fast multipole formalism for both rigid and impedant boundary conditions,
by comparison with the analytical solution at regular frequencies. We have also assessed the conventional
& hyper-singular boundary integral formulation to tackle the fictitious eigenfrequency problem. We have
first emphasized, as for the BEM algorithm, that the B&M formulation dramatically reduces the number
of iterations as the frequency increases, regardless of the boundary conditions. We have also proven the
efficiency of this formulation to provide reliable results for soft boundary conditions, while for rigid cases,
it leads to a loss of accuracy with increasing number of levels at low frequency. Thus this formulation does
not seem to be recommended for small scale models, and further investigations may be needed to work out
this problem in order to guarantee an optimum reliability of the algorithm. Because of the presence of the
ground in urban context, the full space problem requires to mesh the symmetrical geometry to simulate the
reflections on the ground. This drawback has been tackled by the implementation of the half space problem
with the addition of the infinite rigid e, which provides improvements in terms of computation time and
memory, compared to its equivalent problem in full space. This half space problem has been subsequently
used in an urban context in the remainder of the document.

The third part of this manuscript represents, as far as the author knows, the original work of this PhD
thesis. We have intended to assess the ability of the fast multipole algorithm to provide reference solutions
of sound propagation problems when applied to realistic urban geometries. The first realistic application
is a scattering case by a noise barrier located in front of a building. We have performed comparisons of
the average pressure level computed with a BEM reference algorithm and the FMBEM algorithm for two
frequency ranges. As a result, 98 % of the value on the receivers located on the ground are lower than 3 dB
in the first frequency range (90-100 Hz) while 96 % of the value on the receivers are lower than 3 dB in the
second frequency range (170-190 Hz). We have also studied a sound propagation problem in a city block
made of 5 buildings. An investigation on the influence of the weighting parameter in the CHBIE formulation
has provided a suitable value to minimize the fictitious eigenfrequency problem as well as the number of
iterations. We have also studied the influence of the relative residual on the accuracy of the solution. A
value equal to 1 seems sflicient for a rapid evaluation of the pressure level in this context, except in the
sensitive areas where 1is required to ensure a reliable solution. This problem has been solved with a
computational time dependen®(Nlog(N)), while a standard BEM algorithm based on an iterative solver
requires a computation time depende@fiN?). We have also reduced the computation time, by performing
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the direct interactions calculations through a parallekpss, which can be realized easily thanks to the
OpenMP (Open Multi-Processing) library. One has observed a very good agreement between the BEM
reference calculation and the FMBEM algorithm up to a dimensionless domain size of 32 wavelengths.
For higher dimensionless domain sizes, we have highlighted discontinuities of the surface pressure field
and a failed convergence of the iterative solver coming from instabilities in the recursive computation of
translation matrices. This observation led us to consider a “stable” recursive process, introduced very
recently by Gmerov & Durarswamy, for the computation of rotation matrices ¢eents in the RCR
decomposition. Thus, we have explained how a “stable” recursive computation of the rotational matrices
entries can be guaranteed for an absolute error equaf @ab¥e the numerical precision up to an expansion
orderp = 10*. This corresponds to an error equal to¥owhen a double precision is used to store the
numerical data, which is an acceptable accuracy for many practical problems. This new improved algorithm
has subsequently been assessed on a multi scattering problem up to a dimensionless domain size equal to
207 wavelengths. This problem has been solved, for 621000 elements, 750 times faster with the FMBEM
algorithm than if it had been solved with an iterative solver by a standard collocation BEM algorithm, while
reducing the required memory by 477. We have finally performed comparisons between a BEM algorithm,
Micado3D, the FMBEM algorithm and a ray tracing algorithm, IcBreoftware, to compute averaged
pressure levels in an opened and a closed court yards. The fast multipole algorithm allowed to validate the
results computed with Icafein the opened court yard up to 300 Hz (0Q1), while in the closed court

yards, i.e. a very sensitive area, further investigations related to the preconditioning seem required to ensure
reliable solutions provided by iterative solver based algorithms.

Perspectives of this work

We have pointed out, through this manuscript, some important issues which could require further research
in order to guarantee an optimum reliability of the algorithm. It is nevertheless important to underline
that, besides numerical instability previously emphasized, these issues are not directly related to the fast
multipole formalism, but are however crucial for afi@ent fast multipole boundary element algorithm.
Thus, even if the fictitious eigen-frequency problem has been overcame for a spherical geometry, thanks to
the CHBIE formulation, its fiiciency on an arbitrary geometry or for a large range of frequency is not so
obvious. Another crucial point, which fast multipole algorithms are based on, concerns the use of iterative
solvers. Indeed, the computation time, as well as the required memory to solve a given scattering problem,
are closely related to the convergence of the iterative solver. Thus, as already highlighted in the manuscript,
the numerical resources could be dramatically reduced through the usefb€emepreconditioner. These
transformations of the matrix system have not been considered in the framework of this thesis and, even
if preconditioners have been the purpose of a large number of papers, they seem to still be a subject of
investigations. We have furthermore pointed out that consistent results, between a problem solved by a
direct solver and an iterative solver, can be féiclilt task in the more sensitive areas, and it would be im-
portant to check that the preconditioners can lead to reliable solutions, even inside sensitive areas. We have
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only implemented in the framework of this thesis, a paraldlon process carried on thear interactions

through the OpenMP library. It is noteworthy that savings, regarding the computation time, can be obtained,
through a parallelization process of the iterative steps, thanks to a Message Passing Interface (MPI) but this
improvement requires deep knowledge in programming.

Regarding the fast multipole formalism, the fast adaptive multipole algorithm can be several times
faster than the classical algorithr@leng 1999Shen 2006 This improvement suggests not dividing a
cell which respect the cell-size criterion. This method, involving leaves on several levels, has a significant
influence only for a large number of degrees of freedom and brings a significant advantage in terms of
computation time as the number of levels (i.e. elements) increases. Fast multipole algorithms may also be
coupled with others numerical methods such as the FEM, already implemented in the seismic waves domain
[Grasso 201R The computation of noise maps can be an expensive task@sefiey increases. Indeed,
the calculation of interactions betwe&helements andv receivers require®(N x M) operations. It is
however possible to realize this task through the fast multipole principle. Tierelt hierarchical trees
would be required and two successive fast multipole calculations as well, one for the solution vector on the
mesh and another one to radiate this solution on the receivers’ maps. As a result, this radiation step could
be realized withO(N + M) operations. Several geometries have been considered in this thesis, a spherical
body, a noise barrier located in a front of a building, a city block made of 5 buildings or a square array of
cubic scatterers, and further studies on realistic geometries must be investigated to generalize, in years to
come, the application of the fast multipole formalism to the boundary element method in acoustics.



Appendix A

RCR decomposition

A.1 Rotation Matrices codficients

The first step consists in the commutation of rotational matrices, by computing the set of expangien coe
cients expressed over basis functions, oriented towards the new target expansion center. The new compo-
nentsC,T of translation matrice€ can be performed according to the following formula:

C' = Rot(Q(a. A Y))CYl = &7 )" HI""(g)é™C, (A1)

m=-n
n=01---,p-1, m=-n,---n (A.2)
where for each subspace of degneeomponents of denser(2 1) x (2n+ 1) matrix H,ﬂ” ‘M(3) are computed

recursively using:

H"™(B) = b_; {%[ by’ (1 - cosp) Hy ™™ — by~ (1 cosp) Hy ™ [-ay_y sing)Hy™} (A.3)

n=23,---, v=-n+1--- ,n+1 m=0,---,n-2,

with the initial values
(n— !

T P! (cosB) (A.4)

HR%) = (-1)

n=01---, y=-n---,N

We note that the rotation matrices can be performed witHfimdinty angles and it turns out thagtcan be
taken to zero.
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A.2 Coaxial translation codficients

Now z-axis is oriented toward the next expansion center, the second step is to translate the expansion
coeﬁicientsé,’}“. We can determine the new components of the translated ma(ﬁﬂbla;z using the following

formula: .
. B p-
Cl' = EIF)coad®CR = > (EIF)T A(OCH! (A5)
n=|m|
m=0,+1,---,+(min(p, p’) - 1) n=01---,p -1 E,F=SR (A.6)

All the entries(E|F)mn of the matrix E|F)c0ax(t) can be computed recursively with a complex@yp?)
using the following recursion property:

an (EIF) ne1 = s (BIF)Y nq — &y (BIF)Y 10 + 891 (EIF)g 4 (A.7)

n=mm+1,---, E.F=S R (A.8)

with the codficientsa given in3.15 where for each subspanérecursive procedure start with the following
values for the two kinds of translations :

e Moment to moment (M2M) and Local to local (L2L) translations: In the case of the Helmholtz
eqguation, we have identical moment to momeRiR)c0ax and local to local $S)c0ax COoaxial trans-
lation. For these operators (e§.200r eq. 3.22), the recursive computations start with the initial
values:

(RR)S o) = (-1)" V2 + Ljy (kt). (A.9)

e Moment to local translations. For this operator (eB.21), the recursive computation starts with the
initial values:

(IR ot) = ()" V2 + 1hy (kt). (A.10)

A.3 Inverse rotation Matrices codficients

Finally, we need to rotate the expansion ffi@éents backward. Since the direct rotation ma@ik, 8,7v) is
an orthogonal rotation matrix, it satisfi€s(a,8,7)) = Q' (a,8,7)) = Q(y.5, @) (the reader can refer to
chapter 3 in{Gumerov 200). So, we can obtain the final expansion ﬁfmientsé,’}“ using:

&M = Rot(Q.B.))CT = ™™ 3 HI' (g™ ED, (A11)

m=-n
n=01---,p-1, m=-n,---n (A.12)

with the same recursive methods (293 and eq.A.4) as for the direct rotation transform.



Appendix B

Appendixes related to the spherical body

Ficure B.1: Sound pressure level obtained on the mesh at a frequency equal to 1100 Hz for spherical body
discretized with 7932 constant planar triangular elements.

Ficure B.2: Sound pressure level obtained on the mesh at a frequency equal to 1082 Hz for spherical body
discretized with 31696 constant planar triangular elements.
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Ficure B.4: Space partitionning for a spherical body at th level.



Appendix C

Appendixes related to the sound barrier

Ficure C.1: Space partitionning for the sound barrier at t4# level.
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Appendix D

Appendixes related to the city block
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Ficure D.1: Space partitionning for the city block at tié&' level.
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Appendix E

Benefits provided by a parallelization
process

Computational gain factor
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Ficure E.1: Benefits of the computational time provided by a parallelization process of direct interactions
with respect to the number of cores which the computation is carried on.
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Appendix F

Multi scattering problem by cubic bodies

We provide here complementary information related to additional calculations which have been performed
for the multi scattering problem by cubic bodies. We can see in figarkthe meshes used to perform
these calculations. The meshes are obtained for geometric parameters related.6m (60 Hz):

e figureF.1(a) length of the cubic scatterers384, the distance between two successive scatterkers 7
and the maximal length of the problem 92 m (18;5

e figureF.1(b} length of the cubic scatterers384, the distance between two successive scatterkers 7
and the maximal length of the problem 192 m (33;9

e figureF.1(c}) length of the cubic scatterers384, the distance between two successive scatterkers 7
and the maximal length of the problem 292 m {r2

The comparison of the pressure level between the reference alga¥itago3Dand the fast multipole
method taken along the receivers’ line (red lines figldyis display figure.2for three cases: 1645igure
F.2(a) 33.91 figureF.2(b)and 52 figureF.2(c)
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Ficure F.1: Multi scattering problem meshes for a dimensionless domain size equal tbA6(8), 33.91
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Résumé

Décrit comme I'un des algorithmes les plus prometteurs du 20éme siécle, le formalisme multipolaire appliqué a la
méthode des éléments de frontiére, permet de nos jours de traiter de larges problemes encore inconcevables il y a
quelques années. La motivation de ce travail de thése est d’évaluer la capacité, ainsi que les avantages concernant
les ressources numeériques, de ce formalisme pour apporter une solution de référence aux problémes de propagation
sonore tri-dimensionnels en environnement urbain, dans I'objectif d’'améliorer les algorithmes plus rapides déja exis-
tants.

Nous présentons la théorie nécessaire a I'obtention de I'équation intégrale de frontiére pour la résolution de prob-
lemes non bornés. Nous discutons également de I'équation intégrale de frontiére conventionnelle et hyper-singuliere
pour traiter les artefacts numériques liés aux fréquences fictives, lorsque I'on résout des problémes extérieurs. Nous
présentons par la suite un bref apercu historique et technique du formalisme multipolaire rapide et des outils mathé-
matiques requis pour représenter la solution élémentaire de I'équation de Helmholtz. Nous décrivons les principales
étapes, d’'un point de vue numérique, du calcul multipolaire.

Un probléme de propagation sonore dans un quartier, composé de 5 batiments, nous a permis de mettre en évidence
des problémes d'instabilités dans le calcul par récursion des matrices de translations, se traduisant par des discontinu-
ités sur le champ de pression de surface et une non convergence du solveur. Ceci nous a conduit a considérer le travail
trés récent de Guerov et Duraiswamy €n lien avec un processus récursif stable pour le calcul dé¢Baests des

matrices de rotation. Cette version améliorée a ensuite été testée avec succes sur un cas teactidin gisqu’a

une taille adimensionnelle de probléeme de 207 longueur d’ondes.

Nous dfectuons finalement une comparaison entre un algorithme d’élément de froktiéadp3D, un algorithme
multipolaire et un algorithme basé sur le tir de rayons, Bapsur le calcul de niveaux de pression moyennés dans

une cour ouverte et fermée. L'algorithme multipolaire permet de valider les résultats obtenus par tir de rayons dans la
cour ouverte jusqu’a 300 Hz (i.e. 100 longueur d’'ondes), tandis que concernant la cour fermée, zone trés sensible par
I'absence de contributions directes ou réfléchies, des études complémentaires sur le préconditionnement de la matrice
semblent requises afin de s’assurer de la pertinence des résultats obtenus a 'aide de solveurs itératifs.

Mots-clés: Méthode des éléments de frontiére, méthode multipolaire rapide, acoustique urbaine, propagation
des ondes, Equation d’Helmholtz, acoustique numérique.

Abstract

Described as one of the best ten algorithms of the 20th century, the fast multipole formalism applied to the boundary
element method allows to handle large problems which were inconceivable only a few years ago. Thus, the motiva-
tion of the present work is to assess the ability, as well as the benefits in term of computational resources provided
by the application of this formalism to the boundary element method, for solving sound propagation problems and
providing reference solutions, in three dimensional dense urban environments, in the aim of assessing or improving
fast engineering tools.

We first introduce the mathematical background required for the derivation of the boundary integral equation, for solv-
ing sound propagation problems in unbounded domains. We discuss the conventional and hyper-singular boundary
integral equation to overcome the numerical artifact of fictitious eigen-frequencies, when solving exterior problems.
We then make a brief historical and technical overview of the fast multipole principle and introduce the mathematical
tools required to expand the elementary solution of the Helmholtz equation and describe the main steps, from a nu-
merical viewpoint, of fast multipole calculations.

A sound propagation problem in a city block made of 5 buildings allows us to highlight instabilities in the recursive
computation of translation matrices, resulting in discontinuities of the surface pressure and a no convergence of the
iterative solver. This observation leads us to consider the very recent worknafk@ & D uraiswamy, related to

a “stable” recursive computation of rotation matricesfioents in the RCR decomposition. This new improved
algorithm has been subsequently assessed successfully on a multi scattering problem up to a dimensionless domain
size equal to 207 wavelengths.

We finally performed comparisons between a BEM algoritMitado3D the FMBEM algorithm and a ray tracing
algorithm, Icar@, for the calculation of averaged pressure levels in an opened and closed court yards. The fast mul-
tipole algorithm allowed to validate the results computed with Icare in the opened court yard up to 300 Hz, (i.e. 100
wavelengths), while in the closed court yard, a very sensitive area without direct or reflective fields, further inves-
tigations related to the preconditioning seem required to ensure reliable solutions provided by iterative solver based
algorithms.

Keywords: Boundary element method, fast multipole method, urban acoustics, wave propagation, Helmholtz
equation, computational acoustics.



	Remerciements
	Abstract / Résumé
	Résumé étendu
	Table of contents
	List of Figures
	List of Tables
	General introduction
	Noise issue in cities
	Motivation of the thesis
	Organization of the document

	I Boundary Element Method for solving three dimensional acoustic waves propagation problems: Theory & verification
	Part I: Introduction
	1 Boundary Integral Equation formulation
	1.1 From the wave equation to the Helmholtz equation
	1.2 Boundary conditions
	1.3 Conventional Boundary Integral Equation (CBIE) formulation
	1.4 Conventional & Hypersingular Boundary Integral Equation (CHBIE) formulation
	1.5 Discretization of the boundary integral equation
	1.6 In summary

	2 Verification of the boundary element algorithm with a scattering problem by a spherical body
	2.1 Analytical solution of the scattering problem by a spherical body
	2.2 Validation of the algorithm for regular frequencies
	2.3 Treatment of the fictitious eigenfrequency problem
	2.4 Analytical angular integration on a singular element
	2.5 In summary

	Part I: Conclusion

	II Fast Multipole formalism for acoustic waves: Theory & verification
	Part II: Introduction
	3 The fast multipole formalism applied to the boundary element method for acoustic waves
	3.1 A general overview of the fast multipole method principle
	3.1.1 Brief review of the method
	3.1.2 Overview of the method

	3.2 Field representation through the fast multipole formalism
	3.2.1 Spherical basis functions
	3.2.2 Field decomposition by the multipole expansion coefficients
	3.2.3 Translation of the multipole expansion coefficients
	3.2.4 High Frequency translation
	3.2.5 Field reconstruction by the multipole coefficients reexpansion

	3.3 Description of the fast multipole method algorithm
	3.3.1 Hierarchical tree construction
	3.3.2 Multipole expansion stage
	3.3.3 Moment to Moment (M2M) stage : Upward pass
	3.3.4 Moment to Local (M2L) stage : Transfer pass
	3.3.5 Local to Local (L2L) stage : Downward pass
	3.3.6 Final summation : Multipole coefficients reexpansion

	3.4 Numerical aspects
	3.4.1 Level-dependent truncation number
	3.4.2 Theoretical error bounds of the multipole expansion
	3.4.3 Estimation of the computational complexity

	3.5 In summary

	4 Validation of the fast multipole BEM with a scattering problem by a spherical body
	4.1 Validation of the algorithm for regular frequencies
	4.1.1 Algorithm parameters
	4.1.2 Comparison of the surface sound pressure levels
	4.1.3 Number of iterations for a frequency sweep

	4.2 Treatment of the fictitious eigenfrequency problem
	4.2.1 Convergence of the iterative solver
	4.2.2 Comparison of the surface sound pressure level

	4.3 Validation of a half-space propagation problem
	4.3.1 The half-space principle
	4.3.2 Comparison with the full-space problem

	4.4 In summary

	Part II: Conclusion

	III Application on realistic cases & improvements of the fast multipole algorithm
	Part III: Introduction
	5 Applications of the FMBEM for acoustic wave problems in urban environments
	5.1 Scattering problem by a noise barrier in front of a building
	5.1.1 Description of the studied geometry
	5.1.2 Sound pressure level on a receivers' map

	5.2 Sound propagation in a city block
	5.2.1 Description of the studied geometry
	5.2.2 Influence of the weighting parameter on the iterative solver
	5.2.3 Influence of the relative residual on the noise map
	5.2.4 Sound pressure level in the city block
	5.2.5 Computational resources

	5.3 Consequence of unstable recursive computations
	5.3.1 Influence on the convergence of the solver
	5.3.2 Impact on the accuracy of the solution
	5.3.3 Improvement of the stability of recursive calculations

	5.4 Discussion about the current limitations

	6 Stable recursive computation of translation matrices
	6.1 Stable recursion for large expansion orders
	6.2 Improvements in the case of the sound propagation in the city block
	6.3 The new limitations of the algorithm: A multi scattering problem
	6.3.1 Bi-dimensional array of cubic scatterers: square frame
	6.3.2 Bi-dimensional array of cubic scatterers: rectangular frame

	6.4 Conclusion on the stable recursive computations of the rotational matrices

	7 Comparison between a BEM, a FMBEM and a beam tracing algorithm
	7.1 Brief overview of the beam tracing algorithm principle
	7.2 Comparison between algorithms: BEM, FMBEM, beam tracing
	7.2.1 Description of calculation parameters
	7.2.2 Comparison of pressure levels

	7.3 Influence of the iterative solver in sensitive areas
	7.4 Comparisons between the FMBEM algorithm and ray tracing method
	7.5 Conclusion

	Part III: Conclusion

	Conclusion of this work
	Summary of results
	Perspectives of this work
	A RCR decomposition
	A.1 Rotation Matrices coefficients
	A.2 Coaxial translation coefficients
	A.3 Inverse rotation Matrices coefficients

	B Appendixes related to the spherical body
	C Appendixes related to the sound barrier
	D Appendixes related to the city block
	E Benefits provided by a parallelization process
	F Multi scattering problem by cubic bodies
	Bibliography
	Publication lists
	Résumé/Abstract


