
HAL Id: tel-01109438
https://theses.hal.science/tel-01109438

Submitted on 26 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Numerical simulation of depth-averaged flow models : a
class of Finite Volume and discontinuous Galerkin

approaches.
Arnaud Duran

To cite this version:
Arnaud Duran. Numerical simulation of depth-averaged flow models : a class of Finite Volume and
discontinuous Galerkin approaches.. Numerical Analysis [math.NA]. Université Montpellier II, 2014.
English. �NNT : �. �tel-01109438�

https://theses.hal.science/tel-01109438
https://hal.archives-ouvertes.fr


Délivré par l’Université Montpellier II

Préparée au sein de l’école doctorale I2S
Et de l’unité de recherche I3M - ACSIOM

Spécialité: Mathématiques Appliquées

Présentée par Arnaud Duran

Numerical simulation of

depth-averaged flow models : a

class of Finite Volume and

discontinuous Galerkin

approaches.

Soutenue le 17 octobre 2014 devant le jury composé de

M. Pascal AZERAD Maître de Conférences, Co-directeur de thèse

Université Montpellier II

M. Christophe BERTHON Professeur des Universités, Examinateur

Université de Nantes

M. Daniele DI-PIETRO Professeur des Universités, Examinateur

Université Montpellier II

M. Jean-Luc GUERMOND Professeur des Universités, Rapporteur

Texas A& M University

M. Fabien MARCHE Maître de Conférences, Co-directeur de thèse

Université Montpellier II

M. Nicolas SEGUIN Maître de Conférences, Rapporteur

Laboratoire J.-L. Lions

M. Jean-Paul VILA Professeur des Universités, Examinateur

INSA Toulouse



2



i

ABSTRACT

This work is devoted to the development of numerical schemes to approximate
solutions of depth averaged flow models.

We first detail the construction of Finite Volume approaches for the Shal-
low Water system with source terms on unstructured meshes. Based on a suitable
reformulation of the equations, we implement a well-balanced and positive-
preserving approach, and suggest adapted MUSCL extensions. The method
is shown to handle irregular topography variations and demonstrates strong
stabilities properties. The inclusion of friction terms is subject to a thorough
analysis, leading to the establishment of some Asymptotic Preserving property
through the enhancement of another recent Finite Volume scheme.

The second aspect of this study concerns discontinuous Galerkin Finite-
Element methods. Some of the ideas advanced in the Finite Volume context are
employed to broach the Shallow Water system on triangular meshes. Numerical
results are exposed and the method turns out to be well suited to describe a large
variety of flows. On these observations we finally propose to exploit its features
to extend the approach to a new family of Green-Nadghi equations. Numerical
experiments are also proposed to validate this numerical model.

Keywords : Shallow Water, Depth averaged models, Well balanced methods, Fi-
nite Volume methods, Discontinuous Galerkin methods, Source terms, High or-
der schemes.
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RESUME

Ce travail est consacré au développement de schémas numériques pour ap-
procher les solutions de modèles d’écoulement type “depth averaged”.

Dans un premier temps nous détaillons la construction d’approches Vol-
umes Finis pour le système Shallow Water avec termes sources sur maillages
non structurés. En se basant sur une reformulation appropriée des équations,
nous mettons en place un schéma équilibré et préservant la positivité de la
hauteur d’eau, et suggérons des extensions MUSCL adaptées. La méthode est
capable de gérer des topographies irrégulières et exhibe de fortes propriétés de
stabilité. L’inclusion des termes de friction fait l’objet d’une analyse poussée,
aboutissant à l’établissement d’une propriété type “Asymptotic Preserving” à
travers l’amélioration d’un autre récent schéma Volumes Finis.

La seconde composante de cette étude concerne les méthodes Elements
Finis type Galerkin discontinu. Certaines des idées avancées dans le contexte
Volumes Finis sont employées pour aborder le système Shallow Water sur
maillages triangulaires. Des résultats numériques sont exposés et la méthode se
révèle bien adaptée à la description d’une large variété d’écoulements. Partant
de ces observations nous proposons finalement d’exploiter ces caractéristiques
pour étendre l’approche à une nouvelle famille d’équations type Green-Nadghi.
Des validations numériques sont également proposées pour valider le modèle
numérique.

Mots clés : Shallow Water, Modèles type depth averaged, Schémas équilibrés,
Méthodes Volumes Finis, Méthodes Galerkin Discontinu, Termes source, Sché-
mas d’ordre élevé.
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Introduction Générale

L’étude des phénomènes d’évolution hydrodynamiques multidimensionnels
représente aujourd’hui un enjeu scientifique de grande importance à plusieurs
niveaux. L’étendue des applications possibles, couplée à la richesse des prob-
lématiques qui sont soulevées, suscite un intérêt croissant et mobilise ainsi
un grand nombre de chercheurs. De nos jours, la nécessité d’une description
précise et efficace de tels mécanismes est indissociable de domaines clés tels
que l’hydrodynamique côtière et l’ingénierie hydraulique, avec l’analyse de
rupture de barrages, de phénomènes de crues dans les lits de rivière, l’étude des
tsunamis, et leur impact possible sur les populations et les infrastructures. Sur un
plan scientifique, les difficultés posées par la modélisation et la simulation de tels
problèmes sont de taille. La complexité persistante des mécanismes mis en jeu
engendre une quantité de contraintes numériques qui, couplées aux éventuelles
astreintes directement liées au domaine d’étude (géométrie, dimensions, change-
ments d’échelle...), poussent à opter pour des équations simplifiées, permettant,
sous certaines hypothèses d’échelle, d’obtenir des résolutions réalistes tout en
allégeant les efforts d’implémentation. En particulier, c’est ici qu’interviennent
les modèles type “depth-averaged”, obtenus en intégrant les équations de
Navier-Stokes selon la verticale afin de se ramener à un problème d’écoulement
à surface libre bi-dimensionnel.

Parmi les équations appartenant à ce type de modèle, nous nous in-
téresserons majoritairement dans ces travaux aux équations de Saint Venant [87],
dont nous donnerons la formulation et étudierons les principales caractérisiques
dans le premier chapitre. Elles expriment la dynamique des eaux dites peu
profondes (la terminologie Shallow Water est d’ailleurs couramment employée),
c’est à dire sous l’hypothèse que la profondeur totale de la couche de fluide
est petite par rapport à la longueur d’onde caractéristique. Jouissant d’une
formulation simple et d’un domaine de validité relativement large, ces équations
sont très fréquemment utilisées pour étudier la circulation des masses d’eau
dans les océans et les rivières, et s’invitent de surcroît dans une multitude
d’autres secteurs, avec entre autres, des applications pratiques aux problèmes de
transport de polluant ou de sédiments, aux avalanches, ou encore à l’analyse du
ruissellement d’eau de pluie dans les bassins agricoles.

Parmi les objectifs principaux visés dans cette thèse figure la mise en place

xi
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de modèles numériques pour approcher de manière efficace les solutions de
ces équations. En vue d’applications à des situations réelles, nous choisissons
de profiter des atouts que peuvent présenter les maillages non structurés vis à
vis de géométries complexes, avec la possibilité d’affiner les résolutions dans
des zones d’intérêt bien précises. La contrepartie majeure de cette stratégie
réside sans doute dans un effort d’analyse et de conception plus important que
dans le cadre de grilles cartésiennes. En réalité, ces aspects canalisent presque
à eux seuls les motivations principales à l’origine de ces travaux, en ce sens
que la construction des schémas proposés visera majoritairement à étendre des
approches mono-dimensionnelles à des maillages généraux. Cet exercice s’avère
en effet plus délicat que sur maillages cartésiens, où le schéma 1d peut être
directement intégré dans les deux directions privilégiées.

S’agissant des méthodes numériques, il convient de mentionner que le
système de Saint-Venant est un système de loi de conservation hyperbolique,
que nous aborderons dans un premier temps par la voie classique des Volumes
Finis. Présentant des facilités de mise en oeuvre et un faible coût calculatoire,
cette approche est communément utilisée pour ce type d’EDP, car elle permet en
outre une gestion naturelle des chocs via la résolution de problèmes de Riemann
aux interfaces, et peut tolérer une certaine latitude par rapport à l’inclusion des
termes sources. A cet égard, la prise en compte des variations du fond et des
effets de friction fera l’objet d’une attention particulière.

En second lieu, et avec l’objectif de gagner en précision notamment, nous
présenterons une méthode Eléments-Finis type Galerkin discontinu (dG) pour
ce même système. Ce schéma s’inspire du contexte précédent mais l’on se trouve
confronté à de nouvelles difficultés numériques, inhérentes à la montée en ordre.
Ces différents points seront abordés en détail et des outils de résolution seront
proposés. Enfin, bien qu’il soit légèrement moins simple, dans ce cadre, de
satisfaire l’ensemble des propriétés demandées à un schéma type Shallow Water
moderne, l’exploration de telles méthodes numériques s’est révélée prometteuse
pour des problèmes obéissant à des lois plus complexes. Dans la pratique en
effet, l’approche dG s’est montrée adaptée pour intégrer les termes dispersifs
dans le modèle mathématique. Nous en arrivons ainsi à traiter un modèle
d’écoulement type Green Naghdi, plus riche, permettant d’étendre la portée des
applications à des eaux plus profondes.

La présentation de ces travaux s’articule autour de 5 chaptires. A
l’exception du premier, ayant une dimension introductive, chacun d’entre eux
détaillera la construction d’une méthode numérique destinée à répondre à des
objectifs spécifiques, et s’ouvrira sur une description précise des motivations et
enjeux liés à ces orientations. Les schémas obtenus seront systématiquement
évalués à travers une série de validations numériques. Une grande variété de cas
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tests seront ainsi proposés, permettant d’aborder une multitude de contextes.

CHAPITRE I

Cette partie préliminaire est destinée à une présentation des équations de
Saint-Venant. Nous partons d’une approche Volumes Finis classique sur un
maillage type vertex-centered pour étudier leur strucure et les spécificités liées
à ce type de support géométrique. La résolution se base en réalité sur la
considération de problèmes de Riemann 1d dans chacune des directions propres
aux arêtes et à cet effet nous donnons quelques rappels sur les solveurs de
Riemann. Nous abordons ensuite d’autres points clés tels que le problème des
conditions aux limites et la sélection du pas de temps. Enfin, nous énumérons les
principales contraintes spécifiques à ces équations, à savoir la préservation des
états d’équilibre, la préservation de la positivité de la hauteur d’eau et la gestion
des zones sèches, et dressons un inventaire des techniques ayant été introduites
pour les intégrer au sein d’un modèle numérique, notamment sur ce type de
maillage.

CHAPITRE II

Nous choisissons ici d’envisager les équations de Saint-Venant sous un angle
légèrement différent, en changeant de variable conservative. Sous leur forme
classique, la hauteur d’eau est liée au débit via les équations de conservation de
la masse et de la quantité de mouvement. Ici, nous faisons le choix de substituer
l’élévation totale de la surface libre à la hauteur d’eau. Cette option a pour
avantage de ne pas modifier la structure des équations et d’offir un cadre de
travail adapté au problème de la préservation des états d’équilibre. Ces aspects
pratiques sont exploités dans la conception d’un premier modèle numérique. La
seconde ligne de travail concerne l’introduction de méthodes d’ordre élevé. A
l’issue d’une brève présentation générale, nous proposons la mise en place de
deux méthodes MUSCL en veillant à ne pas détériorer les propriétés d’origine
du schéma de premier ordre. Nous présentons en particulier un résultat général
de stabilité pour ces reconstrutions.

CHAPITRE III

La popularité des équations de Saint-Venant est en partie expliquée par
l’amplitude de son champ d’applications, à travers l’inclusion de termes sources
additionnels notamment. S’il est parfois possible de les incorporer sans trop de
difficultés aux modèles numériques, la prise en compte des forces de résistance
se révèle plus compliquée. Il s’agit là d’un aspect important car les lois de friction
tiennent compte des caractéristiques physiques et mécaniques des domaines
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d’étude et jouent à ce titre un rôle de premier plan dans la majorité des config-
urations réalistes. Nous développons ainsi une méthode permettant d’inclure
ces termes de manière appropriée, en particulier sans altérer la stabilité de
l’approche Volumes Finis précédemment introduite. Dans un second temps nous
tentons d’apporter certains élements de réponse quant au problème de la prise
en compte du comportement en temps long observé par les équations continues.
Plus précisément, l’objectif est de développer une nouvelle approche Volumes
Finis permettant de respecter au niveau discret le régime asymptotique du
système soumis aux lois de résistance. Il en résulte un schéma type “Asymptotic
Preserving′′, dont nous étudions les caractéristiques et les différences avec les
approches traditionnelles. Dans des contextes précis, ces disparités peuvent
devenir réellement significatives. Notons qu’à l’heure actuelle, il semblerait
qu’une telle piste n’ait pas encore été explorée dans le contexte 2d non structuré.
Néanmoins, les premiers résultats numériques se montrent en accord avec
certains travaux menés en 1d.

CHAPITRE IV

Le reste de ces travaux est consacré aux méthodes Galerkin discontinu. Nos
premiers efforts se sont dirigés vers une approche du système sur maillages
triangulaires. Ici, nous proposons également de remplacer la hauteur d’eau par
la surface libre, de sorte que la stratégie développée peut s’interpréter comme
une extension du schéma Volumes Finis introduit dans le Chapitre II à un ordre
arbitraire. Le modèle est discrétisé en utilisant une base d’expansion nodale.
Bien que la préservation des équilibres statiques soit encore automatique, et ce
indépendamment du degré du polynôme d’approximation, des nouveaux enjeux
émergent avec le contrôle des effets déstabilisants des modes élevés, nécessitant
l’introduction de procédés de limitation adaptés, ou encore la préservation
de la positivité de la hauteur d’eau. Cette dernière propriété sera assurée en
s’inspirant de techniques récentes basées sur le principe du maximum et des
règles de quadratures adéquates. A l’occasion de la partie expérimentale, nous
explorons plusieurs situations d’intérêt permettant d’apprécier la robustesse et la
précision de cette approche, et évaluons entre autres les performances relatives
des méthodes Volumes Finis MUSCL et dG d’ordre 2.

CHAPITRE V

La qualité des résultats numériques obtenus atteste la capacité de la méthode à
gérer des géométries complexes et les contraintes numériques propres au système
de Saint-Venant. Ceci étant, les méthodes dG se montrent aussi efficaces dans
l’évaluation des dérivées d’ordre élevé. Exploitant ces caractéristiques, dans la
dernière partie nous décrivons une extension du schéma précédent pour approx-
imer les solutions d’une nouvelle famille de modèles Green-Naghdi. Nous visons
ainsi à augmenter l’applicabilité de la méthode aux équations dispersives, dans
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l’optique de décrire des écoulements de nature plus complexe. Les équations type
Green-Naghdi sont plus complètes et réquisitionnent naturellement plus d’efforts
en termes d’implémentation et de coût calculatoire. Gardant ceci à l’esprit, nous
entendons travailler sur des nouveaux modèles plus efficaces sur ces plans, tout
en étant asymptotiquement équivalents à la formulation initiale. La nouveauté
tient dans la formulation de l’opérateur elliptique agissant sur le système, pour
lequel la dépendance en temps est révoquée, offrant ainsi des gains importants
en terme de temps de calcul. Nous devons préciser ici qu’en dépit d’une plus
grande précision, ces équations en l’état ne peuvent être utilisées pour décrire le
déferlement des vagues, contrairement au modèle de Saint-Venant pour lequel
il est possible d’exploiter l’aptitude naturelle à la capture des chocs. Nous pro-
posons donc un procédé numérique simple pour la gestion du déferlement, basé
sur un détecteur de forts gradients pour délimiter des zones de transition entre
ces deux modèles.
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Chapter I

Focus on the Shallow Water system

1



2 CHAPTER I . FOCUS ON THE SHALLOW WATER SYSTEM

I.1 Introduction

The description of hydrodynamic processes is present in a wide variety of
scientific fields such as coastal oceanography, river modelling or hydraulic
engineering. From a practical point of view, the simulation of tsunami waves,
dam break problems or pollutant transport in high density population regions
for example has become a major concern in hydraulic urbanism. This motivates
the introduction of numerical tools providing accurate descriptions of these
phenomena, which are notably able to handle correctly partly dry domains,
irregular bottom variations and complicated geometries, and computationally
efficient in the perspective of large scale applications.

A quite simple and relevant model for such environmental flows is pro-
vided by the well known system of Non linear Shallow Water equations (NSW).
This system expresses the dynamic of a free surface shallow layer of homo-
geneous incompressible fluid. It is used to describe vertically averaged flows
in terms of horizontal velocity and depth variation. Historically, the physical
model was first proposed by de Saint Venant in 1871 ([87]), obtained from
asymptotic analysis and indeed depth-averaging the Navier-Stokes equations
(see also [122, 210]). In practice, the model is truly well-suited for the simulation
of geophysical phenomena, such as river and oceanic flows. It is also extensively
used in coastal engineering, for the study of nearshore flows involving run-up
and run-down on sloping beaches or coastal structures. Under its conservative
form, the NSW equations consist of a set of PDE’s involving the total water
height h and the discharge q = t(qx , qy) as vector variable. In a 2d context,
denoting z the bottom height and u = t(u, v) the velocity vector, these equations
are commonly written as follows :

∂U

∂t
+∇ · G(U) = B(U, z) , (I .1)

with

U =




h
qx
qy


 , G(U) =

(
G1(U),G2(U)

)
=




qx qy

uqx +
1
2
gh2 vqx

uqy vqy +
1
2
gh2


 , (I .2)

and the topography source term defined by :

B(U, z) =




0

−gh∂xz

−gh∂yz


 , (I .3)

A sketch of a 1d configuration is proposed in Fig. I .1, where we also define the
new variable η as the total free surface (i.e. η = h+ z). In what follows,

Θ := {(h,q) , h ≥ 0} . (I .4)
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will denote the convex set of admissible states.

h(x, t)

z(x)

η(x, t) = h(x, t) + z(x)u(x, t)

Figure I .1: Non conservative variables for NSW equations.

Note that in equations (I .1), some minor physical effects have been con-
sciously neglected, as the source terms related to the wind or rainfall contribution
for instance. Formulations taking such phenomena into account can be found
in [63, 73, 89], or even [91], where a new Shallow Water model is introduced,
including viscosity. In this work, we also choose to set the Coriolis force to zero ;
numerical investigations shown that their impact was insignificant within the
considered scales. The inclusion of such long scale physical effects is performed
in [5, 32, 41, 73, 144, 200] for instance. As for the inclusion of resistance terms, an
entire part will be devoted to this subject (Chapter III ).

More specifically, since years, a growing number of theoretical and nu-
merical investigations are run by the scientific community in order to develop
suitable approximations for weak solutions of the Shallow Water system. The
NSW equations being part of the wide family of hyperbolic systems of conserva-
tion laws, our work naturally follows the general orientations issuing from the
analysis and resolution of such class of problems (see [39, 128, 130, 131, 189, 188]
for some reference studies). These works generally emphasize on the perfor-
mances of Finite Volume Methods, often preferred for their natural ability in
capturing shocks, and an interesting latitude regarding the treatment of convec-
tive fluxes and source terms. In addition of the necessity of handling shocks
that may arise from their hyperbolic structure, several additional concerns have
to be taken into account when seeking approximations of these equations. In
this connexion, the central issues of steady states preservation, conservation of
positive water heights, and occurrence of dry cells will be addressed in detail.

In the same time, it is worth mentioning the recent interest of some ap-
plied scientists, in oceanography or hydraulic for instance, for the unstructured
meshes discretizations, allowing natural refinement possibilities and a great
versatility with respect to the geometry of the computational domain. One of
the major motivations of this work is driven by the challenging objective of
proposing efficient methods on general meshes in view of real life applications,
where such a capacity to adapt may be of broad interest.
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This preliminary chapter aims at giving an overall presentation of the
NSW equations, simultaneously oriented toward the specificities of unstructured
meshes and the well-established numerical concerns unique to the model.
Through the consideration of a trivial Finite Volume approach of the homoge-
neous equations, we first introduce general notations and propose some recalls
on the characteristics theory and Riemann problems. We then detail the set of
Riemann solvers employed in our numerical experiments. In Section §I.4 we
make an inventory of some techniques for the treatment of boundary conditions.
After having discussed about the time step criterion, we end by a survey on well
balanced and positive preserving Finite Volume Methods (FVM) for the NSW
equations.
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I.2 Finite VolumeMethod on unstructured meshes

We give here the general outlines relative to the Finite Volume formalism on
unstructured meshes. The notations introduced here will be reused throughout
the different chapters. Let T be a partition of the computational domain Ω. For
the sake of simplicity, it is assumed that Ω is a polygonal domain in two space
dimensions, so that T covers Ω exactly. To illustrate the problem, we consider
the dual cells (Ci)i∈Z issuing from T , but all the subsequent notations and de-
velopments can of course be adapted to the cell-centered mesh directly extracted
from the initial triangulation. We refer to Chapter IV for a construction based on
triangular meshes. Let x refer to the (x, y) coordinates in Ω. Denoting by (Mi)i∈Z

the nodes of T , we set (see Fig. I .2) :

• Λ(i) : number of triangles surrounding Mi.

• j(k) : the index of the cell Cj(k) neighboring Ci, for each k ∈ {1, . . . ,Λ(i)}.

• K(i) : set of subscripts k for which Cj(k) is adjacent to Ci (that is : K(i) =

{1 , · · · , Λ(i)}).

• |Ci| : area of Ci.

• Γij : boundary interface defined by Ci andCj.

• ℓij : length of Γij.

• ~nij : unit normal to Γij, pointing to Cj.

• di : diameter of Ci.

• pi : perimeter of Ci.

• Tij(k) : triangle defined by the edge Γij(k) and the node Mi.

The starting point of our investigations concerns the case of a flat bottom.
Denoting Ui a piecewise constant interpolation of the weak solution of (I .1) on
the cell Ci, we classically obtain a semi-discrete Finite Volume formulation by
integrating by part over a cell Ci :

|Ci|
d

dt
Ui +

Λ(i)

∑
k=1

∫

Γij(k)

G(U).~nij(k) ds = 0 . (I .5)

Written at time level tn, a numerical scheme associated with (I .5) takes the form :

|Ci|
d

dt
Ui +

Λ(i)

∑
k=1

ℓij(k)Gij(k) ds = 0 , (I .6)

where
Gij = G(Un

i ,U
n
j ,~nij) (I .7)
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Tij
Mi Mj~nij

ΓijCi Cj

b b

Figure I .2: Vertex centered formalism - focus on the interface Γij.

is a numerical flux function through the interface between cells Ci and Cj, so

that G(Un
i ,U

n
j ,~nij) approximates

1
ℓij

∫
Γij

G(U).~nij ds. Here the subscript “n” is

employed in the writing of U to refer to the approximate solution at time tn.

We are consequently left with the evaluation of Λ(i) numerical fluxes in
the normal direction of each boundary interface. Thus, on these aspects, the
principles of resolution in the context of polygonal meshes are not so distant
from the 1d case. Accordingly, our aim is to get a better understanding of the
structure of the problem at the level of each edge, before engaging in their
integration within a numerical model.

I.2.1 Structural considerations

Before delving into the matter of Riemann problems, we propose a brief re-
call regarding the general characteristics of the 2d Shallow Water system. In the
context of unstructured meshes, the computation of each numerical flux is accom-
panied by a change of coordinates, to pass from the original reference to the one
associated with the outward normal of the boundary interface. We first propose
to explore the behaviour of the system with regard to these induced rotations.
Let’s first rewrite the homogeneous system extracted from (I .1) as :

∂U

∂t
+ Ax(U)

∂U

∂x
+ Ay(U)

∂U

∂y
= 0 , (I .8)

where we have set :

Ax(U) =




0 1 0
c2 − u2 2u 0
−uv v u


 , Ay(U) =




0 0 1
−uv v u

c2 − u2 0 2v


 ,

and c =
√

gh the speed of gravity waves. For a given unit outward normal vector
~n = (nx , ny), the passing from the original reference to the (n, τ) coordinates
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system attached to ~n is governed by the classical relations (Fig. I .3) :

∂U

∂x
=

∂U

∂n

∂n

∂x
+

∂U

∂τ

∂τ

∂x
=

∂U

∂n
nx −

∂U

∂τ
ny ,

∂U

∂y
=

∂U

∂n

∂n

∂y
+

∂U

∂τ

∂τ

∂y
=

∂U

∂n
ny +

∂U

∂τ
nx .

Then, the projection of (I .8) in the direction ~n is :

∂U

∂t
+ An(U)

∂U

∂n
= 0 , (I .9)

where An(U) is the projection of the flux onto ~n :

An(U) := Ax(U)nx + Ay(U)ny =




0 nx ny
c2nx − uu.~n u.~n+ unx uny
c2ny − vu.~n vnx u.~n+ vny


 .

~n

τ

n x

y
Ci Cj•

•

Mi

Mj

Γij

Figure I .3: Numerical flux in the (n, τ) coordinates.

Lastly, the change of variables U




h
hu
hv


 → U




h
hu
hv


, where u = unx + vny

and v = −vnx + uny enables to express (I .9) in terms of normal and tangential
velocities in the (n, τ) reference :

∂U

∂t
+An(U)

∂U

∂n
= 0 , (I .10)

where :

An(U) :=




0 1 0
c2 − u2 2u 0
−uv v u


 . (I .11)

In consequence, the interface fluxes approximation in (I .7) rests upon the reso-
lution of 1d Riemann problems associated with equations under the form (I .10).
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Another way to formulate this is to say that the system is invariant by rotation.
Hence, without loss of generality, one can be exempted from studies in general
directions, focusing on the particular 1d case arising from the projection of (I .8)
onto the x-coordinates :

∂U

∂t
+ Ax(U)

∂U

∂x
= 0 . (I .12)

Regarding the structure of this system, the Jacobian matrix Ax(U) :=
∂(G1(U))

∂U
admits λ1(U) = u − c , λ2(U) = u , and λ3(U) = u + c as eigenvalues, all dis-
tinct if h 6= 0, in which case the system is strictly hyperbolic. The corresponding
eigenvectors are :

r1(U) =




1
u− 2c

v


 , r2(U) =



0
0
1


 , r3(U) =




1
u+ 2c

v


 . (I .13)

These quantities define three characteristics fields, corresponding to non linear
waves travelling at speeds λ1, λ2, λ3, generally called k-fields, k = 1, 2, 3 (the ter-
minology -waves or -characteristics is also employed). We can easily verify that the
1 and 3 - fields are genuinely non-linear, that is :

∇Uλ1(U).r1(U) 6= 0 , ∇Uλ3(U).r3(U) 6= 0 ,

while the 2-field is linearly degenerate :

∇Uλ2(U).r2(U) = 0 ,

meaning that λ2(U) = u is constant along the 2-wave, which corresponds to a
contact discontinuity. By the way, one can also establish that this is also the case
for h, so that the 2-wave only involves variations of the tangential velocity. As for
the 1-wave and the 3-wave, looking for quantities β(U) satisfying ∇Uβ(U).r(U),
we obtain :

u+ 2c = cte and hv = cte through the 1−wave .
u− 2c = cte and hv = cte through the 3−wave .

(I .14)

We effectively recover the Riemann invariants β− := u− 2c and β+ := u+ 2c of
the 1d case.

Remark I.2 .1. The sign of λ1 and λ3 is closely linked to the Froude number :

Fr =
|u|
c

, (I .15)

and we refer to Section §I.4 for applications of this ratio as regards the implementation
of boundary conditions.
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I.2.2 The Riemann problem

We restate here some fundamental results concerning the solution of Riemann
problems. Only the case of flat bottoms is investigated, the extension to varying
bottoms following the same lines. Actually, the goal of the coming section is
to get a better picture on the general structure of the system’s solutions in the
particular case of interface Riemann problems, and serves as support for the
introduction of Riemann solvers. The reader is referred to [39, 118, 138, 267, 209]
for some works introducing piecewise constant topography. The crucial issue
of inclusion of source terms is postponed to §I.5.3 and numerical methods are
presented in the next chapters.

According to the previous results, the computation of the exchanging
fluxes (I .7) at each boundary interface comes down to the analysis of “pseudo”
1d Riemann problems of the form :





∂U

∂t
+

∂G1(U)

∂x
= 0 ,

U(x, 0) =
{

U− = (h−, hu−, hv−) if x < 0 ,
U+ = (h+, hu+, hv+) if x > 0 ,

(I .16)

where we recall that G1 stands for the first component of the flux function G
(I .2). According to the structure of the system, the solution of (I .16) consists of
four constant states, separated by three non linear characteristic waves. As the 2-
wave only concerns variations on the tangential velocity, the connexion between
the states U− andU+ can be deduced from the 1d case. To connect a given inter-
mediate state (h, hu, hv) to the “left” state U− we thus have :

u =





u− + 2(
√

gh− −
√

gh) if h < h− ,

u− + (h− h−)

√
g

2

(1
h
+

1
h−

)
otherwise .

(I .17)

Similarly, an intermediate state (h, hu, hv) is linked toU+ through the 3-wave via :

u =





u+ − 2(
√

gh+ −
√

gh) if h < h+ ,

u+ − (h− h+)

√
g

2

(1
h
+

1
h+

)
otherwise .

(I .18)

In the resolution of (I .16), the value of h in the intermediate state is enforced by
compatibility conditions issuing from (I .17) and (I .18). Numerically, it can be
approached having recourse to iterative methods. As regards the 1-wave, the case
h < h− leads to a rarefaction wave, and the expression of u is furnished by the
1-Riemann invariant β−. On the other hand, increasing values of h will favour
appearance of shock waves. When h > h−, a shock occurs and u is given by the
so called Rankine-Hugoniot relations (Fig. I .4) :

s(hr − hl) = (hu)r − (hu)l ,

s ((hu)r − (hu)l ) =
(
hu2 + g

h2

2

)
r
−
(
hu2 + g

h2

2

)
l
,

(I .19)
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where s is the shock speed and the subscripts l, r denote the variable values at
each side of the discontinuity. Similar observations can be made on the u+ c −
wave, which gives rise to a rarefaction or a shock wave, depending on the value
of h.

Remark I.2 .2. In the sequel, in order to make easier jump manipulations, we will adopt
the standard notation [[w]] to refer to the difference between "exterior" and "interior"
values of the variable w. The Rankine Hugoniot conditions (I .19) hence simply take the
form :

s[[h]] = [[hu]] ,

s[[hu]] = [[hu2 + g
h2

2
]] .

(I .20)

Ul Ur

x(t)

Figure I .4: Rankine-Hugoniot conditions : Jump along the discontinuity x(t).

Variations on the tangential velocity v are exclusively handled by the 2-wave,
behaving exactly as in the case of a passive tracer [188]. The jump from v− to v+

hence occurs through the contact discontinuity, while h and u remains constant as
2 - Riemann invariants. To summarize, the possibilities for the state connexions
involved in the Riemann problem are illustrated by Fig. I .5, the 1-wave and 3-
wave being shocks or rarefaction waves.
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• • • •

1− wave
(rarefaction or shock)

2− wave
(contact discontinuity)

3−wave
(rarefaction or shock)

U−



h−

u−

v−


 U1




h

u

v−


 U2




h

u

v+


 U+



h+

u+

v+




Figure I .5: Connecting U− to U+.

I.3 Exchanging fluxes computation

It is commonly agreed that one of the first approaches that has been developed
to deal with Riemann problems in the context of Finite Volumes is due to Go-
dunov [129], in 1959. Without going into the technicalities, the method consists
of computing the exact solutions at each interface, and subsequently inject them
in the numerical fluxes. It’s worthwhile to mention that the resolution of such
problems is computationally demanding. Indeed, as mentioned previously, and
excepted from comfortable particular cases, the research of exact solutions for
systems (I .17 - I .18) requires the implementation of iterative root finders. Even
if the limitations in terms of computational cost are always being advanced,
it turns out to be a major constraint, especially in the case of large scale 2d
simulations or complex applications requiring a very high level of refinement
in some area of interest. Since this pioneering work, lots of numerical models
have been proposed to cure such a problem, and dramatic advances have been
achieved.

Nowadays, a classical solution to overcome this drawback is to employ
approximate Riemann solvers. The main idea is to consider a simplified problem
at each interface, which resolution is far less costly. Obviously, as it may not
always lead to the exact solution of the Riemann problem, the question arises of
finding a good compromise between accuracy and computational constraints.
In this section, we draw up a non exhaustive list of possible choice for the
numerical fluxes. All the following solvers have been employed in our numerical
simulations, and some of their properties will be further investigated in the next
chapters.

I.3.1 Lax-Friedrichs fluxes

A very simple way to approximate the interface contributions is to employ the
well-known Lax - Friedrichs fluxes. The method is based on the average flux at the



12 CHAPTER I . FOCUS ON THE SHALLOW WATER SYSTEM

boundary, supplemented as follows by an upwind term :

G(U−,U+,~n) =
G(U−).~n+ G(U+).~n

2
− a

U+ −U−

2
, (I .21)

where a stands for a positive parameter. A possible choice, usually encountered

in the literature, is to take a = max
(
|λ1(U)| , |λ3(U)|

)
, the maximum being

taken on the whole domain. This leads to the so called Global Lax Fredrichs (GLF)
fluxes. The value of a can also be locally optimized taking the maximum between
U− andU+ only, to obtain the Rusanov fluxes ([39]).

The additional term a
U+ −U−

2
is introduced to bring some numerical

diffusion in order to stabilize the method. The counterpart is that the result-
ing diffusive losses may slightly distort the structure of the flow, entailing
occasionally under estimations of the water height for instance. Nevertheless,
this drawback is not systematically considered as a discriminating criterion:
this scheme is usually chosen for its simplicity and generally provides quite
satisfying results. In addition, it’s worthwhile to note that the simple formulation
(I .21) enables the establishment of some fundamental properties at the discrete
level. As for the Shallow Water numerical models developed in this work, these
fluxes are systematically shown to preserve the positivity of the water height,
and play a central role as regards the inclusion of friction source terms. These
points will be discussed in the next chapters. Lastly, it should be mentioned that
this flux function is Lipschitz continuous, monotone increasing with respect to
U−, monotone decreasing with respect to U+, consistent with the exact flux in
the following sense :

G(U,U,~n) = G(U).~n , ∀U ∈ Θ , (I .22)

and satisfies the following conservation property :

G(U−,U+,−~n) = −G(U+,U−,~n) , ∀(U−,U+,−~n) ∈ Θ2 . (I .23)

I.3.2 HLL and HLLC solvers

I.3.2.a HLL Solver

A classical example of approximate Riemann solver is supplied by the HLL
solver, introduced by Harten, Lax, Van Leer in 1983 [143] in the context of gas
dynamics. Consider again the Riemann problem (I .16) in the x-direction, with
the same notations as previously :





∂U

∂t
+

∂G1(U)

∂x
= 0 ,

U(x, 0) =
{

U− if x < 0 ,
U+ if x > 0 .



I.3 . EXCHANGING FLUXES COMPUTATION 13

The method aims at introducing an intermediate state U∗ expected to establish
a relevant connexion between the interior and exterior states. For that purpose, a
two-waves configuration is assumed to separate the constant states U−, U∗, U+.
The corresponding wave speeds s− and s+ can be defined as follows ([39, 89]) :

s− = min(u− − c−, u+ − c+) , s+ = max(u− + c−, u+ + c+) , (I .24)

where we have set c± =
√

gh±. Then, involving the Rankine Hugoniot relations
(I .19) through these two waves :

s−(U∗ −U−) = G1(U∗)− G1(U−) ,

s+(U+ −U∗) = G1(U+)− G1(U∗) ,

we can easily determine U∗ :

U∗ =
s+U+ − s−U− −

(
G1(U+)− G1(U−)

)

s+ − s−
, (I .25)

as well as the numerical flux :

G1(U∗) = G1(U−)+ s−(U∗−U−) =
s+G1(U−)− s−G1(U+) + s−s+(U+ −U−)

s+ − s−
.

(I .26)
In summary, the HLL flux is defined as :

G(U−,U+) :=





G1(U−) if s− > 0 ,
G1(U∗) if s− < 0 < s+ ,
G1(U+) if s+ < 0 .

(I .27)

.

Remark I.3 .1. For an arbitrary direction~n, (I .27) is expressed as :

G(U−,U+,~n) :=





G(U−).~n if s− > 0 ,
s+G(U−).~n− s−G(U+).~n+ s−s+(U+ −U−)

s+ − s−
if s− < 0 < s+ ,

G(U+).~n if s+ < 0 .
(I .28)

From this, we can easily verify that the resulting flux function can be seen as
a generalization of the Lax Friedrichs fluxes, obtained setting s+ = −s− = a.
Also notice that this solver enjoys the consistency and conservativity properties
(I .22 - I .23) previously discussed. Although offering a better level of accuracy,
we point out that the construction (I .27) infringes the general structure of the
exact Riemann problem, which solution depends on three characteristic waves.
To enhance the solver’s accuracy, an intermediate wave speed can be introduced
to handle the contact discontinuity and overcome the limitations entailed by a
two wave assumption. The strategy is discussed the next section.
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Remark I.3 .2. It should be stressed that finest choice are possible for the wave speed
estimates s+ and s−. A first important result can be found in the works of Vila [279].
In the context of gas dynamics, the author derives rigorous upper and lower bounds that
ensure the consistency with entropy condition (see I.5.2 ) and the L∞ stability. When
applied to the NSW equations, this gives :

s− = min(u− − c−, u+ − c+ + 2c−) , s+ = min(u+ + c+, u− + c− − 2c+) ,
(I .29)

which guarantees the production of admissible solutions, both in the sense of entropy
conditions and positivity of the water height. One can also mention the so called HLLE
variant proposed by Einfeldt [102] for instance, where the definition of the wave speeds
is based on the Roe average states (see [121, 188]). This choice allows slight gains in
accuracy and a better stability when dealing with wet/dry transitions ([89]). The reader
is referred to [84, 250] for another example and Toro [272] for further details.

I.3.2.b HLLC solver

A possible improvement of the HLL solver has been proposed by Toro, Spruce
and Spears [273], leading to the so called HLLC scheme (where C stands for Con-
tact). Without getting into the specifics, let mention that the restoration of the
contact discontinuity in the HLL solver generates two intermediate states, that
will be denoted U−∗ and U+

∗ . Then, imposing the standard requirements :

h−∗ = h+∗ , u−∗ = u+∗ = s∗ ,

issuing from investigations carried on in §I.2.1 , algebraic manipulations based on
Rankine-Hugoniot jump conditions lead to the third wave speed (see also [100]) :

s∗ =
s−h+(u+ − s+)− s+h−(u− − s−)

h+(u+ − s+)− h−(u− − s−)
,

and the following values for the intermediate states :

U±∗ = h±
( s± − u±

s± − s∗

)



1
s∗
v±


 .

At last, the HLLC flux is given by :

G(U−,U+,~n) :=





G(U−).~n if s− > 0 ,
G(U−).~n+ s−(U−∗ −U−) if s− < 0 < s∗ ,
G(U+).~n+ s+(U+

∗ −U+) if s∗ < 0 < s+ ,
G(U+).~n if s+ < 0 .

(I .30)

This definition of the numerical fluxes induces a dependency cone similar to the
one resulting from the structure of the exact problem. In 1d, a summary of the
situation is given through the classical illustration proposed in Fig. I .6 :
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x

t

U− U+

U−∗ U+
∗

s−
s∗ s+

Figure I .6: Riemann fan for the HLLC solver.

I.3.3 VFRoe-ncv solver

The VFroe-ncv scheme has been introduced in the early 2000s, and is an exam-
ple of linearised Riemann solver. The VFroe-ncv formalism has been developed
by Gallouet and collaborators in the context of ShallowWater equations [50, 118],
in parallel with applications to gas dynamics [51, 212]. The class of VRoe-ncv
schemes is a derivation of the VFroe scheme, introduced in [119] as well as an
alternative for the Roe solver [245]. Indeed, although being quite commonly
used, the Roe solver is not well suited for such environmental applications since
it is notably not positive-preserving, which becomes a huge inconvenience when
low water depths are involved.

The method is based on the exact resolution of a linearised Riemann
problem, together with the introduction of a non conservative (ncv) change of
variables. As previously, we explore the case of a flat bottom, and refer to the
corresponding references for extensions to varying topography. The strategy
starts with the introduction of an arbitrary change of variables W = φ(U),
followed by the linearisation of the system (I .12) around the average value

W =
1
2
(W− +W+) :





∂W

∂t
+ Bx(W)

∂W

∂x
= 0 ,

W(x, 0) =
{

W− if x < 0 ,
W+ if x > 0 ,

(I .31)

where

Bx(W) = JAx(W)J−1 and J =
∂W

∂U
.

Among the possibilities for φ, we suggest to consider W = φ(U) = (2c, u, v),
known to provide a symmetric convection matrix and preserve the water depth
positivity ([117]). After straightforward computations, we indeed obtain :

Bx(W) =



u c 0
c u 0
0 0 u


 , (I .32)
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from which we easily extract the following eigenvalues :

λ1 = u− c , λ2 = u , λ3 = u+ c .

Afterwards, denoting W∗(
x

t
,W−,W+) the exact solution of the linear Riemann

problem (I .31), we call the general result :

W−∗
(
(
x

t
)−,W−,W+

)
= W− + ∑

x
t>λk

(tlk.[[W]])rk ,

W+
∗
(
(
x

t
)+,W−,W+

)
= W+ − ∑

x
t<λk

(tlk.[[W]])rk ,

to compute the left and right intermediate states. In the relations mentioned here-
inabove, lk and rk are respectively the left and right eigenvectors of the jacobian
matrix (I .32). In the current context, these vectors can be basically determined,
which leads to :

W−∗ = W− + ([[c]]− 1
2
[[u]])




1
−1
0


 , through the (u− c)−wave .

W+
∗ = W+ − ([[c]] +

1
2
[[u]])



1
1
0


 , through the (u+ c)−wave .

We deduce from the previous relations the following formula for each of the tran-
sitory states :

c−∗ = c− 1
4
[[u]] ,

u−∗ = u− [[c]] ,

v−∗ = v− .

c+∗ = c− 1
4
[[u]] ,

u+∗ = u− [[c]] ,

v+∗ = v+ .

(I .34)

This time, we are in the presence of three waves propagating at speeds u −
c, u, u+ c, separating four constant states. The nature of the solution is the same
as in the HLLC case (Fig. I .6) :

U∗(0,U−,U+) =





U− if λ1 > 0 ,
U−∗ if λ1 < 0 < λ2 ,
U+
∗ if λ2 < 0 < λ3 ,

U+ if λ3 < 0 .

(I .35)

For a given direction ~n, the resulting numerical fluxes can be written as :

G(U−,U+,~n) = G
(
U∗(0,U−,U+)

)
.~n . (I .36)
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I.3.4 Some complements

Another popular approach for the resolution of non linear systems is to
employ relaxation schemes [162]. This class of solvers is based on rescaled
(relaxed) equations and some analysis around appropriate equilibrium functions.
As stated in [39, 189] for instance, Lax Friedrichs, HLL and Roe schemes can
be derived from a such a viewpoint. In [26], authors shown that the VFRoe-
ncv scheme previously introduced also admits an interpretation in terms of
relaxation approach. Other schemes of this nature can be encountered in the
literature, among which [93, 160]. For further details on this topic, one can also
refer to the works carried out in [38, 80, 185, 197, 262, 263] for instance.

A second important class of methods deserving mention is obtained from a ki-
netic interpretation of the Shallow Water system. We refer to the reference works
of Perthame [231, 232] for a detailed presentation of kinetic solvers and attached
formalism. In addition of their entropy satisfying features, kinetic schemes
offer interesting possibilities regarding water height positivity preservation and
inclusion of bottom source term, and also appear as a reasonable compromise
between accuracy and efficiency. Notably due to this, they have been widely
validated as an efficient tool in the framework of NSW equations since the past
decade ([101, 11, 235, 265]).

I.4 Boundary conditions

I.4.1 Classical methods

The problem of boundary conditions stands for a fundamental issue when set-
ting up a numerical model for unsteady processes, since they principally dictate
the evolution of the solution. Their enforcement is generally governed by the
flow regime at the level of each boundary interface, relying on the Froude num-

ber Fr =
|u|
c

(I .15). This ratio evaluates the magnitude of the velocity u with

respect to the speed of gravity waves, and its physical interpretation determines
the flow regime :

• Fr ≤ 1: subcritical flow. This is the case corresponding to a fluvial regime.
The flow is dominated by gravitational forces, and controlled from down-
stream regions.

• Fr ≥ 1: supercritical flow. The flow is dominated by inertial forces, and
controlled from upstream. Such a regime is also referred to as torrential
regime.

If Fr = 1, the flow is called critical flow. This state is unstable, and corresponds
to a transitory case in which flows are moving from subcritical to critical, or
vice-versa. For instance we usually say that a hydraulic jump occurs in the
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particular case of a transition from an unstable flow (supercritical) to a stable
flow (subcritical). Actually, through these physical considerations, the problem
of boundary conditions can be simply interpreted in terms of information
exchanges with the exterior domain. In the following lines we propose some
examples of classical methods devoted to boundary conditions.

Taking this into account, numerical methods based on the characteristic
theory and the conservation of Riemann invariants are often proposed to
determine the variable value at the boundary (see [5, 89, 194, 227, 247], and
Bristeau et al [43] in the particular case of kinetic schemes). The resulting
state is subsequently employed in the physical fluxes, which gives the desired
contribution. Several cases have to be distinguished, depending if the flow
is torrential or fluvial. Consider a boundary cell Ci, with a boundary edge Γ

and its corresponding outward normal vector ~n (see Fig. (I .7)). We denote
λ1 = λ1(Ui) = u− c, λ3 = λ3(Ui) = u+ c the minimum and maximum velocity
waves.

∂Ω
Ci

•
Mi

Γ

~n

Figure I .7: Boundary fluxes computation.

If λ3 < 0, we are in the case of a supercritical inflow boundary condition.
Informations are coming from outside, and the value of the approximated vector
solution at the boundary (denoted UΓ) is prescribed by the physical constraints
relative to the exterior of the domain. The case λ1 > 0 corresponds to the super-
critical outflow case, and we have UΓ = Ui. In all remaining situations, the flow
is subcritical : one or two informations may come from outside, according to the
sign of u. The Riemann invariant β+ = u− 2c is constant through the outgoing
characteristic, allowing to prescribe the water depth or normal discharge. These
cases are gathered in the drawing I .8.
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u− c

u+ c

Supercritical inflow
x

t
u− c

u+ c

Supercritical outflow
x

t

u− c u+ c

Subcritical flow
x

t

Figure I .8: Possibilities for the flow regime at the boundary interface Γ.

As regards Dirichlet conditions for instance, where the water depth is im-
posed: hΓ = h0 > 0, the normal velocity is given by :

uΓ = ui − 2(
√

ghi −
√

gh0) . (I .37)

Similarly, solid wall boundary conditions are obtained setting uΓ = 0, and ex-
tracting the water height from the following relation :

2
√

ghΓ = ui − 2
√

ghi . (I .38)

In the case of a shock, the Hankine Hugoniot relations (I .19) are used to deter-
mine the unknowns, returning to (I .18). Other classical boundary conditions can
be addressed that way.

A second efficient method is inspired from the works of Ghidaglia and
Pascal [123, 124], where authors propose a general method aiming to directly
compute the numerical fluxes at the boundaries. We start with the following
system :

∂G1(U)

∂t
+ Ax(U)

∂G1(U)

∂x
= 0 , (I .39)

obtained using (I .12) and the relation Ax(U) =
∂G1(U)

∂U
. The key ideas are, in a

first time, to rewrite the system (I .39) employing the boundary cell value in the
convection matrix. Adopting the same notations as previously, let’s note that by
mean of an appropriate change of variables, (I .39) becomes a system of uncou-
pled advection equations :

∂Wk

∂t
+ λk

∂Wk

∂x
= 0 k = 1, 2, 3 , (I .40)

where W =



W1
W2
W3


 = P−1G1(U), and P is the matrix formed by the right eigen-

vectors of Ax(Ui) (see I .13). Subsequently, authors suggest to exploit the trans-
port relations arising from the linearised system, with the goal of providing direct
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informations on the boundary fluxes. If λ3 < 0, all informations transit from the
exterior to the interior, and we recover the supercritical inflow case previously dis-
cussed. Similarly λ1 > 0 gives G1(UΓ) = G1(Ui).
To further understand the procedure, let’s now analyse what happens with a

reflective-type condition (uΓ = 0) in the subcritical case. As we have λ3 > 0, the
third transport equation of (I .40) allows to impose a numerical boundary condi-
tion accounting for informations originating from Ω. In the current context, we
hence haveW3(UΓ) = W3(Ui), or under an equivalent form :

l3(Ui).
(
G1(UΓ)− G1(Ui)

)
= 0 , (I .41)

where l3(Ui) is the third left eigenvector of Ax(Ui). After straightforward com-
putations, (I .41) gives:

g

2
h2Γ = cihiui +

g

2
h2i , (I .42)

from which, taking uΓ = 0 into account, we deduce the numerical flux :

G1(UΓ) =




0
g

2
h2Γ
0


 . (I .43)

Note that this method is successfully applied in [100] in the Shallow Water
framework. Our numerical investigations confirmed that such a strategy may
also turn out to be a wise option in general, since the two methods discussed so
far share the same level of accuracy and are both quite easy to implement.

A very simple way to proceed when seeking to minimize efforts to han-
dle standard boundary conditions is to have recourse to ghost cells. This
technique is certainly the most economic in terms of implementation ef-
forts, and has been widely employed in the framework of NSW equations
([42, 151, 187, 209, 252, 305]). Dirichlet, Neumann and solid wall conditions for
instance can easily be enforced attributing appropriate values at the unknowns
in a fictitious cell Cg at the external boundary, according to the type of the flow.
Periodic boundary conditions can also be handled that way. Concerning solid
wall conditions for instance, a mirror state is generally imposed, that is :

Ug =




hi
−hui
hvi


 , (I .44)

to account for the reflection on the wall. Note that this case is particularly inter-
esting since it allow to establish connexions with the three methods discussed
in this section. For instance, we easily verify that the boundary values (I .42 -
I .43) can be recovered employing (I .44) in the Rusanov fluxes (I .21) in the case
where a = ui − ci. Also note that injecting (I .44) in the VFRoe-ncv solver yields
identical results to those obtained with the Riemann invariants (I .38).
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It’s important to notice that accounting for the presence of varying to-
pography at the boundaries is a complicated task. The subject is far from being
totally understood and still subject to intensive research. That being so, in the
set of numerical validations presented in this work, it has been systematically
possible to enforce proper conditions assuming a flat bottom (that is neglecting
the corresponding source term). All of the above methods have been imple-
mented and validated during our experimentations. Even if they have not been
extensively compared, they quite clearly demonstrated equivalent capacities in
terms of accuracy and had a very limited impact on the overall computational
cost.

I.4.2 Open sea boundary conditions

In the perspective of real-life simulations, we are in the necessity of imple-
menting boundary conditions able to reproduce possibly complex situations.
As for the description of nearshore hydrodynamics processes, where the com-
putational domain has generally to be limited to capture at best water motions
in some regions of interest, the consideration of open sea boundary conditions
is particularly important. It is useful to note that the generation of incident
waves is often accompanied with the production of outgoing waves issuing
from reflection at the shoreline. These reflected waves may interfere with the
generation process, and potentially bring some instabilities if they are unable to
exit correctly the domain. Thus, the complex mechanism of coming and going
water waves is rather difficult to reproduce, and implies a time evolving inflow
boundary which is locally able to demonstrate proper generating/absorbing
abilities. In the Shallow Water frame, some interesting ideas can be encountered
in [209], where the issues of generating and generating/absorbing boundary
conditions are addressed, with the use of fictitious cells. These ideas are inspired
from Kobayashi et al [218], and Cienfuegos et al [75] in the context of Boussinesq
equations, principally relying on the characteristic theory and Riemann invari-
ants conservation. We refer to these references for more details.

When dealing with absorbing/generating boundary conditions, the use
of relaxation techniques may stand as an efficient alternative to handle regular
waves. In the last part of this work, devoted to a numerical discretization of a
new Green Naghdi model, such tools are required to properly trig the generation
mechanism in deep waters, and handle absorption of outgoing waves. The basic
principle consists of extending the computational domain with relaxation zones
at the inflow (and sometimes outflow) boundaries, allowing to progressively
transit from a theoretical solution imposed at the boundary to the numerical
solution. Such a strategy enables to initiate the flowmotion and capture reflected
waves in a very stable way, and is frequently involved in numerical simulations
within dispersive models [70, 103, 184, 205]. In this work, following [155], the
relaxed solution along the domain will take the form :

Urelax = FaUnum + (1− Fa)FgR(t)Utheo , (I .45)
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where Fa , Fg stand for the absorption and generation profiles and R governs the
time evolution of the generation process. Unum and Utheo naturally stand for the
numerical and theoretical solutions. Among the quantity of different relaxation
functions available, we follow [283], taking the exponential forms :

Fa(x) = 1− exp ((xr)n − 1))
exp(1)− 1

, Fg(x) = 1− exp ((1− xr)n − 1))
exp(1)− 1

,

where xr =
x− xR

∆R
, n is a positive parameter, and xR, ∆R are respectively the

beginning and the width of the relaxation zone. Of course, lots of combinations
are possible when defining the set of parameters, leading to various behaviours.
In conformity with other works, it appears from our numerical investigations that
a reasonable initialization is given by ∆R equal to 2 wave lengths and n = 3. The
reader is referred to [155] for complementary studies on these relaxation profiles.

I.5 Numerical constraints

I.5.1 Stability issues

As far as time discretization is concerned, a first order explicit Euler scheme
will be employed to illustrate the construction process of our numerical ap-
proaches. In this work, only fully explicit methods will be experimented.
Unlike implicit methods, it’s not useless to recall that the use of explicit schemes
naturally induces stability conditions. Full consideration has to be given to the
way time step is selected, to avoid production of numerical noise resulting from
interacting waves or very low water depths. This is a very important concern,
since these instabilities can evolve as a function of time and rapidly deteriorate
the quality of the numerical approximation. In what follows, the classical Euler
scheme will be used for the sake of simplicity.

Following the lines of [21], first note that the homogeneous scheme (I .6)
can be recast under the following standard convex combination, provided the
use of a consistent flux function :

Un+1
i =

Λ(i)

∑
k=1

|Tij(k)|
|Ci|

Un+1
ij(k)

, (I .46)

with

Un+1
ij(k)

= Un
i −

∆t

δij(k)

(
Gij(k) − Gcij(k)

)
, (I .47)

where we have set δij(k) = |Tij(k)|/ℓij(k) and Gc
ij(k)

= G(Ui,Ui,~nij(k)) stand for
"ghost" fluxes, which are counterbalancing according to the discrete Green for-
mula. Considering this rewriting, in order to rule out some instabilities and based
on the classical stability analysis of the 1d schemes, the homogeneous scheme is
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endowed with a CFL condition given by :

ai
∆t

δij(k)
≤ τCFL , ∀Ci , k = 1, · · · ,Λ(i) , (I .48)

where τCFL ≤ 1, and

ai = max
k=1,··· ,Λ(i)

(
|λ−(Ui,Uj(k),~nij(k))| , |λ+(Ui,Uj(k),~nij(k))|

)
, (I .49)

λ±(Ui,Uj(k),~nij(k)) being the minimum and maximum velocity waves involved
in the Riemann solver at the edge Γij(k). In what follows, and when no confusion
is possible, these values will be noted λ±k for simplification purposes. Later, this
time constraint will have to be strengthened to ensure the stability of the method
in the case of high order reconstructions.

Of course, while being the most fast and simple method, the use of a ba-
sic first order explicit time scheme entails important limitations in practice. It
is indeed preferable to use more accurate supports for the advance in time,
especially not to spoil the possible gains brought by high order methods in space.
Thus, high order explicit Runge-Kutta algorithms are used in our numerical
examples. Bearing in mind that such time marching methods can be viewed
as combinations of Euler schemes, the time step (I .48) has to be evaluated
accordingly. Nevertheless, note that the second order Heun scheme [39] does not
imply any modification of the CFL (I .48). This is the choice made to validate

the future Finite Volume approaches. Denoting formally
d

dt
Un +A(Un) = 0 the

semi-discrete equations at time tn, the evolution to the next time level is given by
the following steps :





Un+1/2 = Un − ∆tA(Un) ,

Un+1 = Un − ∆t

2

[
A(Un) +A(Un+1/2)

]
.

(I .50)

Actually, this scheme belongs to the general class of Strong Stability Preserving
Runge-Kutta (SSP-RK) schemes. They were introduced by Shu and Tadmor in
[256],[255], with the objective of preserving the TVD (Total Variation Diminishing)
property while seeking for more accurate time discretizations (see also the collab-
orations with Gottlieb [135] on this topic). As a matter of fact, these schemes can
be interpreted as convex combinations of first order explicit Euler schemes, which
allows to simply deduce stability conditions, depending on the involved coeffi-
cients. In particular, the second order scheme (I .50) can be written as a two-stage
SSP-RK scheme, subject to the same CFL :





Un,1 = Un − ∆tA(Un) ,

Un,2 = Un,1− ∆tA(Un,1) ,

Un+1 =
1
2
Un +

1
2
Un,2 .

(I .51)

Higher order methods will be discussed during our investigations on dG ap-
proaches, together with their corresponding CFL.
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I.5.2 Entropy relations

Another difficulty generally linked to the concept of stability comes from the
non-uniqueness of weak solutions for the non-linear shallow water equations.
This implies the introduction of another criteria, allowing to select the solution of
the system that is physically admissible, and brings us to the notion of entropy
and admissibility conditions. In 1d, we first specify that the existence of an entropy
function n is linked to the existence of an entropy flux G via the relation :

∂x(n(U))Ax(U) = ∂x(G(U)) . (I .52)

The entropy n is generally asked to be a convex function of U, and it should be
noted that the existence of a strictly convex entropy is also linked to the notion of
hyperbolicity ([39]). An entropic solution U should satisfy the following inequal-
ity ([186, 188]) :

∂t(n(U)) + ∂x(G(U)) ≤ 0 , (I .53)

which can be interpreted by the fact that we force the total entropy to be
non-increasing with time. Note that for smooth solutions (I .53) actually comes
down to an equality. Based on (I .53), and under several regularity hypothesis on
the fluxes, existence and uniqueness results are provided by Kruz̆kov’s theory
[175]. Thus, admissible solutions of the NSW system are those who satisfy (I .53),
and usually called entropy satisfying.

In the case of the shallow water equations, and accounting for the bot-
tom elevation, a couple entropy/flux is given by :

n(U, z) = h
|u|
2

+
gh2

2
+ ghz ,

G(U, z) = u(n(U, z) +
gh2

2
) .

(I .54)

At the numerical level, we work with the discrete equivalent of (I .53). Thus, we
usually say that a numerical scheme satisfies a discrete entropy inequality associ-
ated with an entropy n if, under an appropriate CFL, we have :

n(Un+1
i , zi)− n(Un

i , zi) +
∆t

∆x

(
Gi+1/2 −Gi−1/2

)
≤ 0 , (I .55)

Gi+1/2 = G(Un
i ,U

n
i+1, zi, zi+1) being a numerical entropy flux function. As stated

in [188], and under some suitable assumptions, the condition (I .55) is sufficient
to guarantee that the weak solution obtained as the limit when the space step
tends to zero is entropy satisfying in the sense of (I .53).

In the context of NSW equations, only a few schemes take this notion of
stability under consideration. The kinetic approaches presented in [101, 240, 235]
are part of them. Also note that, if a fully discrete entropy inequality is not
verified, a semi-discrete inequality can be obtained with the hydrostatic recon-
struction scheme (see [10, 39] for details). Let us finally remark that, though
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generally hidden by other constraints in practically all the numerical works,
the problem of preserving entropy inequalities when implementing boundary
conditions should ideally be investigated. Some developments on this topic are
available in [14]. The issue of entropy inequalities is left out in this work.

I.5.3 Steady states and survey on well balanced methods

In the following part we give a particular focus on the class of time independant
solutions of Shallow Water equations . The solutions we are interested in obey to
the following balance law :

∇.G(U) = B(U, z) . (I .56)

In one dimension, seeking for smooth solutions on wet beds (h > 0) satisfying
this relation, one finds the following family of steady states :

hu = cst ,
u2

2
+ g(h+ z) = cst . (I .57)

Les us note in passing that based on these assumptions, one easily remarks that
an equality is satisfied in (I .53) with the couple enotropy/flux given by (I .54).
In many ways, the role played by these equilibrium states is fundamental, since
they actually correspond to long time solutions of the system and govern the
asymptotic behaviour of the flow. The inability in restoring such steady states
may have dramatic repercussions regarding the convergence of the numerical
solution, with appearance of noise and instabilities that can critically degrade
the approximation, even after a few iterations. It should be clarified that in (I .56)
the friction source term contribution is neglected. The long time behaviour of
solutions subjected to resistance laws will be discussed in Chapter III . Also
point out that a focus on the one dimensional case is sufficient to give a general
overview of the problematic. An extensive study of the 2d case would only bring
unnecessary complexity. For the sake of completeness, we refer to [242] for a
derivation of steady states in two space dimensions.

On these aspects, research on numerical methods for the solutions of the
Shallow Water system has attracted tremendous attention in the past years.
The Finite Volume numerical discretization of the convective flux in the NSW
equations has been extensively studied in many recent works. A useful result in
computing such solutions is proposed in [20] with the C-property, referring to
the ability of the scheme to exactly preserve the motionless steady state solution
(also called lake at rest solution) :

u = 0 , η = cte . (I .58)

which alone already represents a complex issue. After the works of Greenberg
and Leroux [138], such numerical methods are often calledwell-balancedmethods.
It is worthwhile to underline that generally, a basic approach does not lead to a
well balanced scheme, and the discretization of both fluxes and source terms has
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to be submitted to suitable adaptations in order to achieve this property. Indeed,
going back to (I .56), we need an appropriate discretization of the bed slope
source term, which exactly counteracts with the contribution of the numerical
fluxes. Note that the capability to preserve lake at rest-type configurations is
essential to obtain resolutions that make sense physically, in that it prevents from
perturbations that would inexorably initiate incoherent motion and propagate
along the domain. This phenomena can constitute a significant inconvenience in
situations bringing into play flows evolving around their rest states, or expected
to converge toward steady solutions.

Since the pioneering work of Bermudez and Vazquez [20], this need of
an adequate discretization of the topography source term in the Shallow Water
equations has been raised, and many researchers have developed well-balanced
methods for the Shallow Water equations. These first results were based on the
Q-schemes of Roe and Van Leer, with the introduction of appropriate upwind
of the source, evaluated in the same way as the fluxes. Such a strategy, also
encountered in the works of Glaister [126], is notably applied in [120]. Shortly
thereafter, Greenberg and Leroux [138] and Gosse and Leroux [132] resolved
this issue investigating the idea of accounting for the topography through the
Riemann problem. This approach raised great popularity since the past years,
and is used by Gallouët et al [118] for instance to include a varying topography
in the general class of VFRoe-ncv schemes introduced earlier. In this connexion,
one can also refer to the works of Bouchut [39], and complementary studies of
Gosse [130, 131] and Greenberg et al [139]. Another principle of resolution is
supplied by the so called Quasi-Steady Wave-Propagation algorithm introduced
by Leveque [187], with the use of an enhanced Godunov type Finite Volume
scheme allowing a simple centred discretization of the source. Mention can be
made of the centred approach proposed by Russo [248], and the interface method
of Jin [159], able to restore steady states in motion with second order accuracy
in the scalar case. Concerning kinetic approaches, Perthame and Simeoni [235]
suggested to reformulate their microscopic scheme taking into consideration
possible reflections on bottom jumps (see also Botchorishvili et al [240] for works
of a more general scope and convergence results).

Among the quantity of recent available techniques, one can mention the
hydrostatic reconstruction proposed by Audusse et al [10]. The method involves
the reconstruction of the bathymetry at the boundary interface, yielding a com-
mon value for the left and right states. Afterwards, water depth and discharge
are re-evaluated accordingly and employed in the solver as new Riemann
states. This modification allows the restoration of the C-property provided an
appropriate discretization of the source. While initially employed in a kinetic
scheme, such a method can be applied with any conservative solver for the
homogeneous ShallowWater system. Together with an easy implementation and
interesting positive preserving features, this partly explains its popularity, and
distinguishes from aforementioned works, most of them being solver dependent.
This method inspired many authors in a large variety of different contexts (see
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[26, 60, 91] for some 1d applications, and [211, 222, 288, 182] for 2d applications
on cartesian grids).

Of course, lots of other works are still regularly published to cure the
problem of steady states preservation, with the progressive willingness to
achieve better level of accuracy and handle more complex situations, while seek-
ing for simplicity. Some interesting ideas can be found in [116], with the so called
Modified Roe scheme (MRoe), allowing to handle wet/dry transitions. As for the
two dimensional case, it’s worthwhile to note that all the previous approaches
admit natural extensions on cartesian grids. Concerning the 2d unstructured
frame, the preservation of the lake at rest still stands for an ambitious challenge,
around which the community remains very active. The hydrostatic reconstruc-
tion has been extended on unstructured triangulations [12], and has a large range
of applications. Among them, we can mention the recent work of Dutykh et al
[100] devoted to tsunami modelling for example, or the discontinuous Galerkin
schemes proposed by Ern et al [96, 108]. Otherwise, various alternatives have
been validated. In [200], a suitable balance with the source is reached by the
mean of well balanced approximate evolution operators in the context of Finite
Volume Evolution Galerkin (FVEG) method. Another procedure is adopted by
Benkhaldoun et al [19], relying on an appropriate reconstruction of the source
with respect a relevant sub grid. We finally underline some adaptations of the
results of Bermudez and collaborators [20] available in [152, 151, 221]: the steady
states are preserved through the projection of the source term integral onto the
eigenvectors of the flux Jacobian, in the philosophy of the original work.

Remark I.5 .1. We notice that all the aforementioned schemes have in common the set of
equations (I .1) as starting point. There are, however, other convenient ways to formulate
these equations, offering interesting perspectives with the view to treat the well balanced
property. Two of these methods have been used in this work and will be described later on.

Remark I.5 .2. So far, we just have partially mentioned the preservation of the lake
at rest in the framework of discontinuous Galerkin schemes. Even if some numerical
techniques can be borrowed from Finite Volume Methods, this problem is far from being
obvious, as both approximate vector solution and topography are no longer assumed as
piecewise constant within the domain. This concern, especially pronounced when using
unstructured meshes, will be further examined in next chapters.

Although settling the problem of steady states preservation, we emphasize
that the use of well balanced methods is not sufficient to guarantee stable and
relevant approximations of Shallow Water flows. Indeed, the implementation
of a suitable numerical model for the NSW equations involves additional con-
straints such as the capacity of maintaining positive water heights, and handling
correctly dry interfaces. These points call for a deeper analysis of the schemes
under consideration, or at least compatibility conditions with other techniques
able to satisfy these supplementary requirements. The key ideas are restated in
what follows.
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I.5.4 Robustness and dry cells

A recurring problem in the numerical approximations of the NSW equations
concerns the so called robustness property, which signify that the approximate
solution stays in the set of admissible states (I .4) at each time step. The capacity
of preserving the positivity of the water height is fundamental to avoid again
the possible appearance of spurious oscillations or unbounded computations
entailed by the production of non physical solutions. A scheme enjoying this
property will be referred to as Θ - preserving in the next sections.

Another notable difficulty, closely related to robustness, is the ability to
guarantee stable computations in the vicinity of dry areas, especially if the
model pretends to deal with classical friction laws. Indeed, many Shallow Water
applications involve rapidly moving interfaces between wet and dry areas,
including dam break problems, flood waves and run-up phenomena at a coast
with tsunamis for instance. When vanishing water depths are involved, the
system losses hyperbolicity, and the classical methods based on characteristics
decomposition of the fluxes and source terms such as those based on Roe’s
scheme may demonstrate some weaknesses. More generally, these situations
require special attention, if only for the vector field reconstruction or the gravity
waves speed evaluation. Thus, an inappropriate evaluation of low water depths
states is very likely to cause instabilities, mostly characterized by spontaneous
apparitions of undesirable perturbations in the neighbourhood of the water
front. When attempting to remedy this problem, the most common practice is
to force these quantities to zero as soon as the water height falls under a certain
tolerance value ǫ, but this is generally not sufficient to provide totally satisfying
results.

As a whole, the difficulty stands in the dual objective of accounting for
these aspects within a well balanced approach. Shortly after the first proposi-
tions of well balanced schemes, this challenge has given one of the major research
guidelines in the construction of NSW approximations. Among the successful
attempts in the Finite Volume frame, the hydrostatic reconstruction method
[10] and the kinetic scheme introduced in [235] have been shown to offer this
possibility, as well as the central upwind scheme of Kurganov and Levy [181].
As for the Roe solver, we stress out the improvements brought by Castro et al [59]
concerning robustness property and the capture of wet/dry fronts (see also [97]
on these questions). In recent years, Berthon and Marche [26] proposed a novel
advancement, establishing the robustness of VFRoe-ncv schemes. The problem
of vanishing water height is addressed in Bollerman et al [34] who furnished an
enhanced version of the FVEG evolution operator technique [200] accounting
for dry cells. The success of the method lies in a particular reconstruction of the
vector field whenever h is lower than a threshold value. The problem of lake at
rest preservation in dry bed situations is also addressed. Also note that some
additional techniques are employed in [92] or [221] to deal specifically with
partly dry domains. This last work couples a traditional cut off technique to a
casual re-evaluation of the source term whose role is to preserve flows at rest in
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wet/dry configurations.

More elaborated works have been developed with a particular orienta-
tion toward nearshore hydrodynamics, to capture accurately more severe run
up phenomena or any other complex evolution problem in the vicinity of coasts.
An accurate description of moving shorelines is fundamental in practice since
most of simulations involving real life processes aim at evaluating their impact
on populations or targeted infrastructures. Among the class of approaches
available, Eulerian methods with fixed grids are commonly employed [198], as
well as Lagrangian and Eulerian methods with deformed grids whose role is
to track the position of the shoreline (see [145, 202, 227, 297] for some reference
works). Although being unavoidable in some cases, these methods have not been
required in our numerical simulations. Hence, we do not give supplementary
details, and refer to [209] for a more complete review.

Remark I.5 .3. It should be stressed that the problem of vanishing water heights is even
more present when the inclusion of friction terms is planned. According to the law under
consideration, divisions by h can be involved and threaten the stability of the model. This
issue is addressed in Chapter III .
Let us also mention that the problem of robustness is not addressed here for discontinuous
Galerkin schemes, and is postponed to Chapter IV .

I.6 Conclusion

In this chapter we proposed a succinct presentation of the 2d Shallow Water
system, in the perspective of future resolutions in the context of unstructured
meshes. On the basis of general Finite Volume methods, some Riemann solvers
are introduced and the problem of boundary conditions is addressed. The model
analysis also enables to broach some of the specific problems that are regularly
encountered while focusing on these equations, allowing to anticipate and
identify some of the future numerical difficulties.

Thus, this introductory part lays the groundwork for the construction of
an appropriate numerical model. To summarize, an efficient and modern scheme
for the NSW equations has to satisfy the following properties :

♯ 1 allow a simple and consistent discretization of the topography source term;

♯ 2 preserve the motionless steady states;

♯ 3 preserve the water height positivity;

♯ 4 allow the occurrence of dry states.

Taken together, these general conditions are undeniably a key issue, and should
be kept in mind as far as possible. They appear indeed as the common feature on
which is based the set of methods that will be presented.
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Chapter II

Finite Volume discretization of the
Pre Balanced system

31



32CHAPTER II . FINITE VOLUME DISCRETIZATION OF THE PBSW SYSTEM

II.1 Introduction

An interesting idea to minimize efforts in obtaining well-balanced and ro-
bustness properties, not mentioned so far, consists of considering the total free
surface η instead of h as a flow variable. This method finds certainly its roots
in the works of Zhou [302] with the so called Surface Gradient Methods, in
which the free surface is preferred to the water height in the evaluation of the
fluxes contributions within a Godunov type second order scheme. The strategy
provides a balanced scheme by mean of a simple centred approach of the source.
With the aim of preserving quiescent flows, the idea of exploiting the invariance
of η during lake at rest situations has been subsequently followed by several
authors, notably Xing and Shu [286] which suggested a modification of the
Lax Friedrichs flux splitting to eliminate the viscosity term, thus reaching the
C-property. In a 2d context, this substitution is performed by Bradford [42] for
the evaluation of surface integrals in some correction terms. Meanwhile, an
alternate formulation of NSW equations, using the free surface elevation ξ above
the still water depth, was introduced by Rogers et al [247] with the objective of
obtaining telescoping effects between fluxes and source contributions employing
a Roe solver. In a similar way, Kurganov and Levy [179] and Russo [248]
advanced the idea to directly replace h by η − z in the set of primitive equations.

Nowadays, in view of the efficiency of the approach, and based on these
pioneering works, many improvements and derivations have been proposed.
Kurganov and Petrova [181] improved the original scheme [179] enforcing si-
multaneously well balancing and robustness, and Bryson et al [46] worked on an
extension to unstructured triangulations. We also refer to [257] for another using
on 2d cartesian grids, and [44] for an implementation on GPU and additional
highlight of performances.

Contribution and objectives

In this work, we hence seek a discretization of the NSW model from such a
point of view, working with the so called pre-balanced formulation presented by
Liang and Borthwick in [194] to resolve the 1d equations. Following the authors,
we remark that :

−g

2
∇h2 − gh∇z = −g

2
∇(η2 − 2ηz)− gη∇z ,

and reformulate the NSW equations in an alternative way :

∂V

∂t
+∇ · H(V, z) = S(V, z) , (II .1)

where

V =




η
qx
qy


 , H(V, z) =




qx qy

uqx +
1
2
g(η2 − 2ηz) vqx

uqy vqy +
1
2
g(η2 − 2ηz)


 , (II .2)
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and the underlying relation u =
q

η − z
is kept in the writing of the equations for

the sake of simplicity. The bed slope source term is given by :

S(V, z) =




0
−gη∂xz
−gη∂yz


 , (II .3)

We have to specify that (II .1) is valid in the weak sense for continuous topogra-
phies, allowing to consider as well discontinuous solutions for the flow variable.
Also, this system is still hyperbolic, and has the same eigenstructure as (I .1).
The main advantage of (II .1) is that a very simple well-balanced scheme can be
built from any numerical flux and a trivial discretization of the bed-slope source
term. It should be noticed that the convenient aspects of this formulation have
been successfully exploited in several efficient well-balanced and robust FVM
(for example [195, 282] in 1d and 2d cartesian grids respectively). We aim at
extending these properties in the frame of unstructured meshes, preserving as
much as possible a reasonable level of complexity. In the sequel, the acronym
PBSW (standing for Pre Balanced Shallow Water) will be used to refer to these
equations.

Keeping in mind the objectives previously mentioned, one of the main
features of the approach is its great simplicity and unified formulation, for both
first order scheme and its MUSCL extensions: there is no need to introduce
some additional source terms discretizations to ensure the well-balancing and
consistency properties. Additionally, the C-property can be established inde-
pendently from the numerical flux used for the homogeneous equations. We
also investigate several ways to ensure the preservation of the positivity of the
water depth, with a particular focus on the HLL scheme. Provided the first order
scheme is Θ−preserving, the preservation of admissible states is equally ensured
for the MUSCL reconstructions. The development of the resulting code lead to
the publication [-1-].

This work is structured around the following points : after having resettled
some 1d results, we propose in a first time an extension of the pre balanced Finite
Volume approach on unstructured meshes, that naturally preserves the well bal-
anced and robustness properties of the original scheme. Some results are given
concerning the preservation of admissible states. The second component is de-
voted to high order extensions of themodel, presented in Section §II.3 . They help
maintaining an interesting degree of simplicity and respect the properties stated
in the first order case as well. The scheme’s abilities are finally solicited during
a fairly complete set of challenging applications, including dry cells, irregular
bottom variations, non trivial geometries with eventually local mesh refinement.
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II.2 Finite Volume approach

II.2.1 The 1d case

In a first time we need to remember a possible approach of the 1d pre-balanced
system related to (II .1). Let’s consider a regular partition of the computational
domain with a space step ∆x. In the present Godunov-type Finite Volume frame-
work, using a Euler scheme in time for the sake of simplicity, and denoting Vi the
flow variable approximation on the ith cell, the flow update from time tn to time
tn+1 = tn + ∆t is governed by the classical relation :

Vn+1
i = Vn

i −
∆t

∆x

(
Hi+ 1

2
−Hi− 1

2

)
+ ∆tSi , (II .4)

where Hi− 1
2
are Hi+ 1

2
are the numerical fluxes and Si stands for a discretization

of the bed slope. The evaluation of the exchanging fluxesHi− 1
2
andHi+ 1

2
is based

on the resolution of a local Riemann problem involving reconstructed states at
each side of the interfaces i− 1/2 and i+ 1/2. They take the form :

Hi− 1
2
= H(V̆−

i− 1
2
, V̆+

i− 1
2
, z̆i− 1

2
, z̆i− 1

2
) , Hi+ 1

2
= H(V̆−

i+ 1
2
, V̆+

i+ 1
2
, z̆i+ 1

2
, z̆i+ 1

2
) , (II .5)

where a double dependency with z is introduced, to account for the presence of
the topography in the convective fluxes. The evaluation of these intermediate
states is explained in the following lines.

Borrowing the pioneering ideas of [10], the reconstruction process starts
by the introduction of a new interface value for the bed elevation :

z̃ = max(z−, z+) , (II .6)

and the following positive reconstruction of the water depth component (see
[195]) :

h̆± = max(0, η± − z̃) . (II .7)

In the lines above, and in the sequel, the superscripts “−,+” will stand for the
interior and exterior values, to be consistent with the previous notations. In the
present first order context, and at the interface i+ 1/2, they explicitly correspond
to the variable value on the cells i and i + 1 respectively. On this basis, new
interface values for the free surface and discharge are defined by :

η̆− = h̆− + z̃ , q̆− =
h̆−

h−
q− .

η̆+ = h̆+ + z̃ , q̆+ =
h̆+

h+
q+ .

(II .8)

Remark II.2 .1. In (II .8) , we implicitly assumed that we have h± > 0 in the evaluation
of the discharge. The case h± = 0 (or numerically h± < ǫ) is classically handled by
setting the corresponding values of q± (and u± if needed) to 0.
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We follow the procedure at each interface problem involved in (II .4). As
stated in [195], these new values can be directly injected in the numerical fluxes,
leading to a well-balanced scheme that also ensures non-negative water depths,
provided the use of an appropriate Riemann solver. However, this strategy re-
quires the introduction of additional source terms in order to ensure the preser-
vation of motionless steady states (I .58) in wet/dry contexts. To avoid this, one
can consider the following parameter :

∆z− = max(0, z̃− η−) , (II .9)

specifically introduced to account for such particular configurations (see Fig.
II .1). Finally, a new intermediate state for the topography is defined as :

z̆ = z̃− ∆z−, (II .10)

and the free surface is obtained after subtraction from the original value :

η̆± = h̆± + z̃− ∆z− (II .11)

z−

•
η−

•

•

• •

η+ = z+
i i+ 1 i i+ 1

∆z−

η̆− η̆+

Figure II .1: Non-negative reconstruction : Case of a wet/dry interface.

Obviously, this additional step does not affect the flow variables in wet bed
applications. To obtain the C-property, this reconstruction step can be combined
with this simple centred discretization of the source :

Si =




0

−gη̂i

( z̆i+ 1
2
− z̆i− 1

2

∆x

)

 , (II .12)

where :

η̂i =
η̆+
i− 1

2
+ η̆−

i+ 1
2

2
, (II .13)

and the subscripts i ± 1/2 indicate the interface on which the reconstruction is
performed.

We give now a rapid recall concerning the C-property.
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Consider first the case of a “wet/wet” steady state, that is u = 0, η = ηc = cte
on the cell i and its neighbours. Involving steps (II .6 - II .11) and assum-
ing the consistency of the numerical fluxes (II .5) (in the sense of (I .22)), it’s
straightforward to verify that :

1
∆x

(
Hi+ 1

2
−Hi− 1

2

)
=

1
∆x

((
0

1
2
g(η2

c − 2ηcz̆i+ 1
2
)

)
−
(

0
1
2
g(η2

c − 2ηcz̆i− 1
2
)

))
= Si ,

(II .14)
so that (II .4) gives Vn+1

i = Vn
i .

In the situation where the interface i + 1/2 is supposed to be of type
“wet/dry” (Fig. II .1), the reconstruction also yields V̆i± 1

2
= (ηc, 0) and η̂i = ηc,

allowing to recover the wet case. The cases “dry/wet” and “dry/dry” can also
be easily treated (we refer to [282] for more details). A more detailed proof is
available in Proposition 3 in a purely 2d context to treat both first order scheme
and its high order extensions. We now actually intend to propose an extension of
this scheme in 2d and on unstructured meshes.

Remark II.2 .2. So far we did not evoked the robustness property. The problem of
preservation of water depth positivity will be simultaneously addressed for the 1d and
2d schemes in the next section.

II.2.2 Extension to the unstructured case

Let’s move on to the two dimensional case. Still working in a Godunov type
Finite Volume framework, we suggest to advance in time with the usual formula
(see §I.2 and Fig. I .2 for notations) :

Vn+1
i = Vn

i −
∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)Hij(k) + ∆tSi , (II .15)

whereHij(k) , k = 1, · · · ,Λ(i) are the exchanging fluxes between the cell Ci and its
neighbours Cj(k), and Si denotes the bottom source term discretization. Following
the 1d procedure, we write :

Hij(k) = H(V̆−k , V̆+
k , z̆k, z̆k,~nij(k)) , (II .16)

and aim at proposing a non-negative reconstruction for the Riemann states that
allow the restoration of the well-balanced property, even if dry zones are in-
volved. Therefore, for a given interface Γij(k), we define a single valued term
for the topography :

z̃k = max(z−k , z
+
k ) , (II .17)

where z−k , z
+
k refer to the interior and exterior values at the interface Γij(k). Using

similar notations for the other variables of interest, the water depth reconstruc-
tion is given by :

h̆−k = max(0, η−k − z̃k) , h̆
+
k = max(0, η+

k − z̃k) , (II .18)
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and, gathering steps (II .8 - II .11), we naturally set :

z̆k = z̃k −max(0, z̃k − η−k ) ,

η̆−k = h̆−k + z̆k , q̆−k =
h̆−k
h−k

q−k ,

η̆+
k = h̆+k + z̆k , q̆+

k =
h̆+k
h+k

q+
k ,

(II .19)

with the necessary caution mentioned in Remark II.2 .1 for the treatment of van-
ishing water depths. To complete the numerical scheme, we introduce the fol-
lowing discretization of the bottom source term :

Si =
1
|Ci|

Λ(i)

∑
k=1

ℓij(k)Sij(k) =
1
|Ci|

Λ(i)

∑
k=1

ℓij(k)

(
0

gη̂k(zi − z̆k)~nij(k)

)
, (II .20)

where

η̂k =
ηi + η̆−k

2
. (II .21)

The motivations for this choice of η̂k are twofold. The first point is linked to
the general problem of consistency, meaning that the set of contributions Sij(k)
actually has to provide a correct approximation of the physical source term is-
suing from the continuous equations. This property will be further discussed in
Proposition 3. The second, more specific, concerns the structure of the scheme.
Indeed, from such a point of view, this particular choice for η̂k has important
consequences, since the numerical approach can actually be seen as convex com-
binations of 1d schemes of the form (II .4). In the following lines, this feature is
detailed and exploited to obtain a proof of the robustness and C-properties in a
considerably simple way, with a straightforward stability criteria :

Proposition 1. We assume known a consistent numerical flux function for the 1d scheme
(II .4) associated with the reconstruction (II .6 - II .11), allowing to preserve the water
height positivity under a time constraint of the form :

a
∆t

∆x
≤ τCFL , (II .22)

where a = maxi∈Z

(
|λ−

i+ 1
2
|, |λ+

i+ 1
2
|
)
and λ±

i+ 1
2
are the maximum and minimum velocity

waves employed in the Riemann solver at the interface i+ 1/2. Then, the scheme (II .15
- II .19, II .20) preserves the water height positivity under the CFL condition (I .48), that
is :

ai
∆t

δij(k)
≤ τCFL , ∀Ci , k = 1, · · · ,Λ(i) ,

ai = max
k=1,··· ,Λ(i)

(
|λ−k | , |λ+

k |
)
,

(II .23)

and satisfies the C-property.
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Proof. The key idea is to rewrite (II .15) as a convex combination of 1d schemes.
To this end, we use the set of sub-triangles (Tij(k))k=1,··· ,Λ(i) introduced in the
previous Chapter (Fig. I .2). In the spirit of [24], the current scheme is recast
under the following form :

Vn+1
i =

Λ(i)

∑
k=1

|Tij(k)|
|Ci|

Vn+1
ij(k)

, (II .24)

where each convex component is defined as :

Vn+1
ij(k)

= Vn
i −

∆t

δij(k)

(
Hij(k) −Hc

ij(k)

)
+

∆t

δij(k)
Sij(k) , (II .25)

and we have set Hc
ij(k)

= H(Vn
i , zi).~nij(k). We also recall that δij(k) = |Tij(k)|/ℓij(k).

Involving the solver’s consistency and the steps (II .17, II .18, II .19), one can easily
verify that Hc

ij(k)
corresponds to the numerical flux in the direction ~nij(k) evalu-

ated with Vn
i as “left” and “right” Riemann states. It follows that relation (II .25)

is nothing but the 1d scheme (II .4) applied to the states Vn
i ,V

n
i ,V

n
j(k)

in the di-
rection ~nij(k), and with a space step δij(k) (Fig. II .2). Consequently, according to
(II .24), the preservation of the water height positivity is directly inherited from
the 1d numerical model, leading to the criteria (II .23).

V̌−
i− 1

2
V̌+
i− 1

2
V̌−
i+ 1

2
V̌+
i+ 1

2

i− 1 i i+ 1

∆x

Vi Vi V̌−k V̌+
k

Ci Ci
Cj(k)

δij(k)

Figure II .2: Left and right Riemann states for the 1d and 2d schemes.

The C-property can also be straightforwardly deduced from this construction,
arguing that formula (II .24) preserves the motionless steady states as soon as
(II .25) does. This also stands for the consistency with the Saint-Venant equations
with source term (II .3).

We now show that this general result of robustness can be applied to the
Lax-Friedrichs and HLL schemes. As a matter of fact, the proof can be straight-
forwardly derived from a strictly 2d analysis which itself provides a very close
time step limitation. As this more general result will be useful in the sequel, we
propose to detail the 2d case, and subsequently establish the links with the 1d
scheme.

Proposition 2. We consider the following first order scheme for the free surface :

ηn+1
i = ηn

i −
∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)H
η

ij(k)
, (II .26)
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where the numerical fluxes Hη

ij(k)
= Hη(V̆−k , V̆+

k , z̆k, z̆k,~nij(k)) are computed with the

HLL solver, and V̆−k , V̆+
k , z̆k are given by the reconstruction steps (II .17,II .18,II .19).

Assume that hni and h
n
j(k)

, k = 1, · · · ,Λ(i) are positive. Then, under the CFL condition :

max
i∈Z

ai
∆t

|Ci|
pi ≤ 1 , (II .27)

where

ai = max
k=1,··· ,Λ(i)

λk ,

λk = max
(
|u−k .~nij(k)|+

√
gh−k , |u+

k .~nij(k)|+
√

gh+k

)
,

(II .28)

we have hn+1
i ≥ 0 .

Proof. For a given interface Γij(k), let’s first denote the normal velocities as u±k =

u±k .~nij(k), and introduce the following notations for the HLL wave speeds (I .24) :

s−k = min(u−k − c−k , u
+
k − c+k ) ,

s+k = max(u−k + c−k , u
+
k + c+k ) ,

∆sk = s+k − s−k .

We now introduce the following notations :

s+k = max(0, s+k ) , s
−
k = min(0, s−k ) , ∆sk = s+k − s−k ,

so that the HLL flux (I .28) can be recast into :

Hη

ij(k)
=

s+k h̆
−
k u
−
k − s−k h̆

+
k u

+
k + s+k s

−
k (η̆

+
k − η̆−k )

∆sk
.

According to (II .19), we have η̆+
k − η̆−k = h̆+k − h̆−k , leading to :

Hη

ij(k)
=

s+k h̆
−
k (u

−
k − s−k )

∆sk
+

s−k h̆
+
k (s

+
k − u+k )

∆sk
.

Then, subtracting zi on both sides of (II .26) :

hn+1
i = hni

(
1− ∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)
h̆−k
hni

s+k (u
−
k − s−k )
∆sk

)
− ∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)
s−k h̆

+
k (s

+
k − u+k )

∆sk
.

(II .29)

Finally, arguing that
h̆−k
hni
∈ [0, 1], we have :

h̆−k
hni

s+k (u
−
k − s−k )
∆sk

≤ s+k (u
−
k − s−k )
∆sk

≤ s+k ∆sk

∆sk
≤ ai.

As a consequence, under (II .27), the secondmember in equality (II .29) is the sum
of two positive values. The proof is complete.
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Remark II.2 .3. This results also stands for the Lax - Friedrichs fluxes, as it can be seen
as a particular case of the HLL fluxes (see I.3.2.a ).

Remark II.2 .4. This proof can be straightforwardly adapted to the 1d case, giving a time
step constraint of the form :

a
∆t

∆x
≤ τCFL , (II .30)

where a = maxi∈Z(|ui ± ci|), with a CFL equal to τCFL =
1
2
, and the relaxed condition

τCFL = 1when using the Global Lax Friedrichs scheme (see [291] for instance). Note that
the resulting time constraint (II .23) is almost equivalent to (II .27) in practice, though
being slightly more stringent. This can be seen as the counterpart of the method based on
1d schemes for having a more general applicability.

II.3 Formal "Second order" reconstruction

From a general point of view, the diffusive losses entailed by the consideration
of first order schemes generally require the implementation of numerical tech-
niques devoted to increase the space accuracy. This problem arises notably in
the context of FVM with the use of cell-averaged approximations. To overcome
these limitations, lots of numerical methods have been developed within the
Computational Fluid Dynamics (CFD) community. In the spirit of the MUSCL
method of Van Leer [276], the desired gain in space accuracy can be reached by a
preliminary reconstruction of the flow variable at each interface, supplemented
by a limiting strategy, to avoid oscillations in the vicinity of discontinuities.
In this connexion, Harten [143] later introduced the concept of Total Variation
Diminishing (TVD) schemes, that preserves monotonicity and consequently
prevents from appearance of local extrema, to obtain approximations free from
unrealistic oscillations. Such class of schemes are robust, but only first order
accurate in the neighbourhood of discontinuities. This entails truncation errors
that may bring excessive numerical dissipation. To limit these disadvantages,
some alternatives were later proposed, with the apparition of Essentially Non
Oscillatory (ENO) schemes [142, 256], followed by the so called Weighted
Essentially Non Oscillatory WENO schemes [156, 199].

These pioneering works paved the way for amounts of complementary
studies, extensions or attempts of improvements, and multiple applications
to NSW equations have been proposed. It should be stressed that one of the
main difficulties often encountered when seeking high order resolutions of
NSW equations is not to break the well-balanced and robustness properties of
the first order scheme. This is a serious threat when reconstructed values are
proposed at each interface. In [10] for instance, the topography also needs to
be modified and an additional source term has to be introduced to preserve the
C-property. On that subject, we refer to [222] for higher order extensions of the
hydrostatic reconstruction, and to [54, 56, 163, 280, 286, 288] for other examples
of well-balanced high order schemes devoted to NSW equations. Also require
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emphasis the general success of high order central schemes [30, 178, 284, 236],
and attached applications to multidimensional problems [157, 180, 190]. These
approaches are also extended to the 2d NSW system in [179, 248], by mean of
cartesian grids. Let us finally mention the difficult issue of well-balancing for
general moving water steady states. Very few high-order accuracy methods are
able to maintain such general steady steady states, see for instance the recent
works [61, 223]. However, it is shown in [289] that moving-water well-balanced
schemes exhibit some advantages when compared to motionless steady states
preserving methods.

Naturally, carrying out high order methods on unstructured grids re-
quire supplementary effort. Amongst many others, some notable advances in
CFD concerning high order extensions on general meshes were proposed by
Abgrall [1], Barth and Jespersen [16], Barth and Fredericksson [15], Friedrich
[115], Ollivier-Gooch [225], Perthame and Qiu [233] and others. We can also
mention Arminjon et al [8] for an unstructured extension of the central scheme
proposed by Nessyahu and Tadmor [220], and Venkatakrishnan [278], where the
issue of convergence toward steady states is addressed. Nowadays, numbers
of efficient approaches issuing from CFD are available, based on least squares
methods, centred or upwind gradients, linear gradient approximations, and
combined with low diffusive limiting strategies. Based on these ideas, there are
many ways to increase the accuracy of the proposed first order scheme, keeping
in mind that careful attention has to be paid to the preservation of the properties
originally established. Note that in the context of unstructured meshes, in
addition of concerns around steady states, the question of preservation of water
height positivity is also far from trivial, see [21, 234].

We present here two possible strategies inspired from MUSCL methods.
Both have in common the double objective of improving the order of space
accuracy, while maintaining the features of the first order scheme. This is
achieved by substituting the primitive values in the numerical flux function
with better interpolations at the interface, and an additional coupling with
appropriate limiting procedures. We actually aim at providing piecewise linear
approximations of the variables V = (η, qx , qy) at each cell face. In the sequel, it
will be useful to work with an augmented vector variable that also includes the
water height V̂ = (h, η, qx , qy). Indeed, reconstructions on water depth are also
necessary in the perspective of well-balanced issues. As previously mentioned,
it actually allows to re-evaluate the topography appropriately so as to recover
the balance between fluxes and source terms provided by the first order scheme.
As regards robustness, we adapt the general strategy introduced in [21].

The two methods involve gradients obtained from P1 (continuous and
linear) interpolations of the solution on relevant triangular sub-grids. For a fixed
triangle T, such an approximation will be denoted ∇V̂T in the next sections. It
can be directly determined having knowledge of the approximate solution at
each of the three nodes. For a given element T, denoting (Ai)i=1,··· ,3 the nodes
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and (~ni)i=1,··· ,3 the corresponding outward normals (see Fig. II .3), the linear
approximation of the variable on T can be written as :

V̂T =
3

∑
i=1

V̂T,ili , (II .31)

where (li)i=1,··· ,3 refers to the Lagrangian basis associated to T. More explicitly,
one has, for a given point M(x, y) in T :

li(M) = 1−
−−→
AiM.~ni
‖−−→AiAj‖

, i = 1, 2, 3 , j 6= i , (II .32)

so that we have :

∇V̂T = −
3

∑
i=1

V̂T,i
~ni

‖−−→AiAj‖
. (II .33)

A1 A2

A3

~n3

~n1~n2

T

b b

b

Figure II .3: P1 gradient approximation for a given element T.

II.3.1 A first example

We present and adapt here the MUSCL method described in [12]. The carrying
out requires some manipulations involving the set of sub cells Tij(k) introduced
in the previous chapter (see Fig. II .4). We consider now the problem at an edge
Γij(k). Denoting its midpoint Pk, the piecewise linear reconstruction is expressed
as follows :

V̂∗(1) = V̂i +
−−→
MiPk.∇V̂k , (II .34)

where ∇V̂k denotes an appropriate limited gradient. The evaluation of ∇V̂k is
based on a gradient approximation on Ci, computed by the following weighted
average :

∇V̂i =
∑

Λ(i)
k=1 |Ck|∇V̂Tij(k)

∑
Λ(i)
k=1 |Ck|

,

and a second quantity, accounting for the variations of V̂ at the corresponding
edge :

∇V̂β = (1+ β)∇V̂i − β∇V̂Tij(k) 0 ≤ β ≤ 1 .
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~nij(k)

Γij(k)

Pk

Tij(k)Mi
Mj(k)

Ci

b b
b

Figure II .4: Second order reconstruction : Focus on the interface Γij(k).

These approximate gradients are then involved in a classical limitation step :

∇V̂k = minmod(∇V̂Tij(k),∇V̂β) , (II .35)

where the minmod limiter is defined as :

minmod(a, b) =
{

smin(|a|, |b|) if s = sgn(a) = sgn(b) ,
0 otherwise . (II .36)

Of course, concerning the limiter, many other choice are possible to enhance the
diffusive properties of the reconstruction. To finalize the procedure, a last step
is applied on the water height obtained from (II .34) to provide a conservative
reconstruction (see [12, 233]) :

h∗ = hi + β+(h∗(1) − hi)+ − β−(h∗(1) − hi)− , (II .37)

where

β± = min


1,

∑
Λ(i)
k=1 |Tij(k)|(h∗(1) − hi)∓

∑
Λ(i)
k=1 |Tij(k)|(h∗(1) − hi)±


 ,

and with the standard notations x− = max(0,−x) , x+ = max(0, x).

At each interface Γij(k), we deduce from (II .34, II .37) piecewise linear re-
constructed variable vectors V∗,±k = t(η∗,±k ,q∗,±k ) for the conservative variables,
together with new edges values for the topography :

z∗,±k = η∗,±k − h∗,±k . (II .38)

From this, the new Riemann states are now defined as follows :

z̃∗k = max(z∗,−k , z∗,+k ) , z̆∗k = z̃∗k −max(0, z̃∗k − η∗,−k ) , (II .39)
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and

h̆∗,−k = max(0, η∗,−k − z̃∗k ) , η̆∗,−k = h̆∗,−k + z̆∗k , q̆∗,−k =
h̆∗,−k
h∗,−k

q∗,−k , (II .40)

h̆∗,+k = max(0, η∗,+k − z̃∗k ) , η̆∗,+k = h̆∗,+k + z̆∗k , q̆∗,+k =
h̆∗,+k

h∗,+k

q∗,+k , (II .41)

leading to the new face values :

V̌∗,−k = (η̆∗,−k , q̆∗,−k ), V̌∗,+k = (η̆∗,+k , q̆∗,+k ) . (II .42)

At this point, only remains to be proposed an appropriate discretization of the
source term. Actually, as it will be established in the next lines, we can keep the
original formulation, without losing the properties of the first order scheme. We
thus take :

Si =
1
|Ci|

Λ(i)

∑
k=1

ℓij(k)Sij(k) =
1
|Ci|

Λ(i)

∑
k=1

ℓij(k)

(
0

gη̂k(zi − z̆∗k )~nij(k)

)
, (II .43)

where

η̂k =
ηi + η̆∗,+k

2
, (II .44)

and the MUSCL Finite Volume scheme becomes :

Vn+1
i = Vn

i −
∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)H(V̌∗,−k , V̌∗,+k , z̆∗k , z̆
∗
k ,~nij(k)) + ∆tSi . (II .45)

We now establish the consistency and well-balancing properties satisfied by the
current MUSCL scheme, summarized within the following result :

Proposition 3. We consider a numerical flux function H for the scheme (II .42, II .43,
II .45), consistent with the exact flux in the sense of (I .22) and high order MUSCL recon-
structions (II .34) for the face values. Then, the scheme satisfies the following properties :

1. well-balancing: the motionless steady states are preserved.

2. consistency with the Saint-Venant equations with source term (II .3).

Proof. The first part of the proof revolves around two typical cases :

i) We consider the classical situation where Ci and all the neighbouring cells
are wet, and suppose an initial static equilibrium, formulated as :

ηj(k) = ηi = ηc , ui = uj(k) = 0 , ∀ k = 1, · · · ,Λ(i) .

The piecewise linear reconstruction (II .34) directly gives η∗,±k = ηc, and
consequently :

z̃∗k = max(ηc − h∗,−k , ηc − h∗,+k ) ≤ ηc .
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We deduce from this :

h̆∗,−k = h̆∗,+k = ηc − z̃∗k and z̆∗k = z̃∗k ,

which leads to :

V̌∗,±k = V := t(ηc, 0, 0) , η̂k = ηc . (II .46)

Ci
Mi

b

Cj(1)
Cj(2)

ηj(1) = zj(1) > ηc

ηj(2) = zj(2) > ηc

η̆∗,−1

η̆∗,+1

η̆∗,−2

η̆∗,+2

Figure II .5: Steady state with Cj(1) and Cj(2) as dry cells.

ii) Let’s now consider the case of amotionless steady state involving awet/dry
interface. As a first remark, we can notice that, for a each surrounding cell
Cj(k), we have ηj(k) ≥ ηc, independently from whether the cell is wet or not.
As a result, the P1 approximation VTij(k) of V on Tij(k) satisfies ηTij(k) ≥ ηc on

the edge Γij(k), and we necessarily have
−−→
MiPk.∇V̂η

Tij(k)
≥ 0. The limitation

process (II .35) subsequently gives η∗
(1) ≥ ηc, for all k = 1, · · · ,Λ(i).

Consider now a k for which Cj(k) is a dry cell. At the discrete level,
the situation comes down to :

ηi = ηc , ηj(k) = zj(k) > ηi , ui = uj(k) = 0 .

If we now give a focus on the dry cell Cj(k), we can follow the previous lines
to obtain h∗

(1) ≥ 0 for each surrounding cell, arguing that hj(k) = 0 and that
the water height is positive for all the neighbours of Cj(k). Keeping this in
mind, we can easily verify that the correction step (II .37) yields h∗,+k = 0.
At this stage, we also need to apply this reconstruction for the free surface,
to obtain η∗,−k = ηc, according to the preliminary remark. We then write :

z̃∗k = max(ηc − h∗,−k , η∗,+k ) = η∗,+k ,
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from which we deduce :

z̆∗k = η∗,−k = ηc ,

h̆∗,−k = h̆∗,+k = 0 .

At last, we have :

V̌∗,±k = V = t(ηc, 0, 0) , η̂k = ηc . (II .47)

Gathering (II .46) and (II .47) we obtain for all k ∈ K(i), in the appropriate inter-
face reference :

H(V̌∗,−k , V̌∗,+k , z̆∗k , z̆
∗
k ,~nij(k) = H(V, z̆∗k) ·~nij(k)

=




0 0
1
2
g(η2

c − 2ηcz̆
∗
k) 0

0
1
2
g(η2

c − 2ηcz̆
∗
k)


 ·~nij(k).

As Green’s formula gives :
Λ(i)

∑
k=1

ℓij(k)~nij(k) = 0 ,

we have :

Λ(i)

∑
k=1

ℓij(k)H(V,V, z̆∗k , z̆
∗
k ,~nij(k) = −gηc

Λ(i)

∑
k=1

ℓij(k)z̆
∗
k

(
0

~nij(k)

)
.

In the same way (II .43) gives :

Λ(i)

∑
k=1

ℓij(k)Sij(k) = −gηc

Λ(i)

∑
k=1

ℓij(k)z̆
∗
k

(
0

~nij(k)

)
,

and consequently, Vn+1
i = Vn

i .

Note that here Ci is supposed to be a wet cell. However, the opposite
situation is trivial, since we just have to consider the set of well neighboring cells.
If Ci only admits dry neighbours, then nothing happens and Ci remains dry. If
there exists k ∈ K(i) such that hj(k) > 0, then we are in the wet/dry case of Fig.
II .5, inverting the subscripts “− ” and “+ ”.

For the consistency with the source, we adopt the notation :

Hs(Vi,Vj(k), zi, zj(k),~nij(k)) = H(V̌∗,−k , V̌∗,+k , z̆∗k , z̆
∗
k ,~nij(k))− Sij(k).~nij(k) .

We thus have :

Hs(Vi,Vj(k), zi, zj(k),~nij(k)) +Hs(Vj(k),Vi, zj(k), zi,−~nij(k))
= (Sj(k)i − Sij(k)).~nij(k) ,
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and therefore :

Hs(Vi,Vj(k), zi, zj(k),~nij(k)) +Hs(Vj(k),Vi, zj(k), zi,−~nij(k))

= −
(

0
gη~nij(k)

)
(zj(k) − zi) + (zj(k) − zi)ǫ(η̂k − η)

as Vi,Vj(k) −→ V =




η
qx
qy


 and zi, zj(k) −→ z.

Remark II.3 .1. Obviously, this proof can be reproduced for the first order scheme. We
also emphasize that, as it does not involve a rewriting in terms of convex combinations,
it allows a larger latitude regarding the choice of η̂k (II .21) in the discretization of the
source (II .20), and this is also the case for the present MUSCL reconstructions.

For instance, by setting η̂k = η̄i, where η̄i is an average of η̆−k for k ∈ K(i), one
has the following formulation of the source term :

Si =
1
|Ci|

Λ(i)

∑
k=1

gη̄iℓij(k)

(
0

(zi − z̆k)~nij(k)

)
= −gη̄i

Λ(i)

∑
k=1

ℓij(k)

|Ci|
z̆k

(
0

~nij(k)

)
,

using Green’s formula. This last formulation can be regarded as an extension of the source
term discretization in the 1d case (II .12), in accordance with the original proposition
[195] :

− gη
∂z

∂x
≈ −gη̂i

(z̆i+ 1
2
− z̆i− 1

2
)

∆x
, with η̂i =

η̆+
i− 1

2
+ η̆−

i+ 1
2

2
. (II .48)

It should be stressed that many other relevant approximations have been tested, such

as η̂k =
1
2
(η̆−k + η̆+

k ), which appeared as the most natural choice at the beginning of

our numerical investigations. They all lead to very close results. In particular, our
simulations shown that they provide the same level of accuracy and convergence rates,
even when MUSCL reconstructions are involved.

Finally, as regards the present space accuracy improvement, it is worth men-
tioning that the source term discretization (II .20) does not need to be modified to
preserve well-balancing and consistency, unlike [12] or [221] in which additional
quadrature terms are needed. Similar observation can be made for the next MUSCL
reconstruction, attesting of the practical aspects of the approach.

II.3.2 A second example

The method comes from multidimensional CFD problems and the accuracy is
improved following the ideas of [57] (see also [81, 172]). Again, both reconstruc-
tion on h and η are necessary with the view of well-balanced issues. Following
[57], let us introduce the following notations :
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Figure II .6: Upstream and Downstream triangles TU and TD.

• TU and TD are, respectively, the upstream and downstream triangles, from
the initial triangulation T , with respect to the edge Γij(k) (triangles having
respectively Mi and Mj(k) as a vertex and such that edge Γij(k) intersects the
opposite edge, see Fig. II .6),

• ∇V̂T is the gradient obtained from a P1 interpolation of V̂ on the triangle T,

• ∇V̂−k = ∇V̂TD ·
−−−−→
MiMj(k) , ∇V̂+

k = ∇V̂TU ·
−−−−→
MiMj(k) ,

• ∇V̂c
k = V̂j(k) − V̂i is a centred gradient ,

• ∇V̂ho,±
k =

1
3
∇V̂±k +

2
3
∇V̂c

k is another way of evaluating the variation of

V̂ on both sides of the edge Γij(k), to increase the accuracy of the resulting
scheme ,

• L is a three entries continuous limiter, defined as follows :

L(a, b, c) =
{

0 if sgn(a) 6= sgn(b) ,
sgn(a)min(|2a|, |2b|, |c|) otherwise , (II .49)

• L−k (V̂) = L(∇V̂−k ,∇V̂c
k ,∇V̂

ho,−
k ) , L+k (V̂) = L(∇V̂+

k ,∇V̂c
k ,∇V̂

ho,+
k ) .

Thus, better interpolated values V̂∗,−k and V̂∗,+k at the edge Γij(k) are defined by :

V̂∗,−k = V̂i +
1
2
L−k (V̂), V̂∗,+k = V̂j(k) −

1
2
L+k (V̂) . (II .50)

As previously, we extract from (II .50) new face values at the corresponding edge,
and follow the reconstruction steps (II .38 - II .41) as in the previous method. The
source term has exactly the same form :

Si =
Λ(i)

∑
k=1

ℓij(k)Sij(k) =
Λ(i)

∑
k=1

ℓij(k)

(
0

gη̂k(zi − z̆∗k )~nij(k)

)
, (II .51)

and the MUSCL scheme is still given by (II .45).
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Remark II.3 .2. As stated in [81, 154], the gradient approximations ∇V̂−k and ∇V̂+
k

can be computed with :

∇V̂−k = ǫsi(V̂i − V̂s) + ǫri(V̂i − V̂r), (II .52)

∇V̂+
k = ǫjp(V̂p − V̂j) + ǫjq(V̂q − V̂j), (II .53)

where
−−−−→
Mj(k)Mi = ǫsi

−−−→
MiMs + ǫri

−−−→
MiMr, and

−−−−→
MiMj(k) = ǫjp

−−−−−→
Mj(k)Mp + ǫjq

−−−−−→
Mj(k)Mq

(see Fig.II .6).

Basic computations yields (see Fig. II .7) :

ǫsi =
lij(k)

lis

sin(θr)

sin(θ)
, ǫri =

lij(k)

lir

sin(θs)

sin(θ)
,

with the notation lij(k) = ‖
−−−−→
MiMj(k)‖. Additionally, using these classical relations :

sin(θ) =
2|TD|
lislir

, sin(θs) =
2|Ts|
lislid

, sin(θr) =
2|Tr|
lirlid

,

where D is the intersection of line MiMj(k) with the opposite edge of TD, it may be useful
to remark that (II.3 .2) can alternatively be expressed in terms of area ratios :

ǫsi =
lij(k)

lid

|Tr|
|TD|

, ǫsi =
lij(k)

lid

|Ts|
|TD|

, (II .54)
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b b

b

b

Ms

Mr

MiD Mj(k)
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Ts

Figure II .7: Evaluation of downstream coefficients.

Remark II.3 .3. Note that ∇V̂ho,−
k = 1

3∇V̂−k + ∇ 2
3V̂

c
k gives a third-order space-

accurate scheme for linear advection on cartesian triangular meshes. More generally,

the high-order gradient ∇V̂ho,−
k evaluation can involve extra data to increase accuracy.
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For instance, one can consider the following gradient, which gives a numerical dissipation
built as a sixth-order spatial derivative for linear advection, introduced in [57] :

∇V̂ho,−
ij =

1
3
∇V̂−k +

2
3
∇V̂c

k −
1
30

(∇V̂−k − 2∇V̂c
k +∇V̂−k ) (II .55)

− 2
15

(∇V̂D ·
−−−−→
MiMj(k) − 2∇V̂i ·

−−−−→
MiMj(k) +∇V̂j(k) ·

−−−−→
MiMj(k)),

where∇V̂i is an average of the P1 gradients on triangles having the node i as vertex, and
∇V̂D is the gradient at point D, interpolated between∇V̂s and ∇V̂r (see Fig. II .6).
In our numerical investigations, we observe that although this modification does not in-
crease the rate of convergence for our test cases, it helps to reduce the numerical error.

Again, one can establish that the source term discretization (II .51) is able to
preserve the C-property. More precisely :

Proposition 4. We consider a numerical flux function H for the scheme (II .42, II .43,
II .45), consistent with the exact flux in the sense of (I .22) and high order MUSCL recon-
structions (II .50) for the face values. Then, the motionless steady states are preserved.

Proof. Again, we consider two cases :

i) We begin by the wet case. Consider a cell Ci and one of its neighbours Cj(k),
and assume ηj(k) = ηi = ηc , ui = uj(k) = 0. The η-component of the centred
gradient ∇V̂c

k is zero, which immediately implies L±k (V̂)η = 0, and (II .50)
gives η∗,−k = η∗,+k = ηc. We consequently have :

z̃∗k = max(ηc − h∗,−k , ηc − h∗,+k ) ≤ ηc , (II .56)

leading to z̆∗k = z̃∗k . We subsequently deduce the reconstructed values for
the water height and free surface:

h̆∗,−k = h̆∗,+k = ηc − z̆∗k , η̆∗,−k = η̆∗,+k = ηc . (II .57)

This allows to conclude as in Proposition 3.

ii) Let’s now consider Cj(k) as a dry cell. In a motionless steady state configu-
ration, it is useful to underline that :

∀p = 1, · · · ,Λ(i) , ηj(p) ≥ ηi = ηc ,

∀p = 1, · · · ,Λ(j(k)) , hi(p) ≥ hj(k) = 0 .
(II .58)

According to (II .52), we have sgn(∇V̂−k ) 6= sgn(∇V̂c,−
k ) on the η-

component. Likewise, (II .53) entails sgn(∇V̂+
k ) 6= sgn(∇V̂c,+

k ) on the h-
component. Note that these arguments are quite similar to those advanced
in the dry case of Proposition 3.
Consequently, the limitation step provides h∗,+k = hj(k) = 0 and η∗,−k = ηc,
so that :

z∗,−k = ηc − h∗,−k and z∗,+k = η∗,+k . (II .59)
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Thus, since we have z̃∗k = η∗,+k ≥ ηc, we obtain the following intermediate
states :

z̆∗k = η∗,−k = ηc , h̆∗,−k = h̆∗,+k = 0 , η̆∗,−k = η̆∗,+k = ηc , (II .60)

and conclude as previously.

We now show that the Θ-preserving property is preserved by these two
MUSCL schemes.

II.3.3 Robustness issues

The following developments concern the class of solvers able to preserve the
positivity of the first order scheme for the free surface :

ηn+1
i = ηn

i −
∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)Hη(V̆−k , V̆+
k , z̆k, z̆k,~nij(k)) , (II .61)

under a CFL condition of the form (II .23), that is :

ai
∆t

δij(k)
≤ τCFL , ∀Ci , k = 1, · · · ,Λ(i) ,

ai = max
k=1,··· ,Λ(i)

(
|λ−k | , |λ+

k |
)
.

(II .62)

To study the robustness of the MUSCL scheme (II .42, II .43, II .45), let us first
introduce a relevant sub-grid. Considering a dual cell Ci and k = 1, · · · ,Λ(i), we
denote Rij(k)j(k+1) the mass center of the triangle MiMj(k)Mj(k+1) and mij(k)j(k+1)
the middle of the edge MiRj(k)j(k+1) (see Fig. II .8). Joining the vertexes
mi j(k) j(k+1), we split the dual cell Ci into a sub-cell C′i and Λ(i) sub-cells Qij(k) ob-
tained with joining the vertexes Rij(k−1)j(k), Rij(k)j(k+1),mij(k)j(k+1) and mij(k−1)j(k)
(Fig. II .8), leading to :

Ci = C′i ∪
(

Λ(i)
∪
k=1

Qij(k)

)
.

Let us also denote (see Fig. II .9) :

• Γ′
ij(k) the segment separating C′i and Qij(k),

• ℓ′
ij(k) the length of Γ′

ij(k)

• ~n′
ij(k)

the outer unit normal to Γ′
ij(k)

,

• Γ
p

ij(k)
, for p ∈ {1, . . . , 4}, the boundaries of Qij(k) (so that

4∪
p=1

Γ
p

ij(k)
= ∂Qij(k)),

• ℓ
p

ij(k)
the length of Γ

p

ij(k)
,
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Figure II .8: Sub-cell decomposition of the dual cell Ci

• ~np

ij(k)
the outer unit normal to Γ

p

ij(k)
,

• V
p
k , for p ∈ {1, . . . , 4}, the value of V in the neighboring cells of Qij(k).
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Rij(1)j(2)

mij(5)j(1)

mij(1)j(2)

Qij(1)

Γ′
ij(5)

Γ′
ij(3)

Γ′
ij(2)

Γ′
ij(4)

Γ′ij(1)

Γ1
ij(1)

Γ2
ij(1)

Γ4
ij(1)

T′
ij(2)

T′
ij(3)

T′
ij(4)

T′
ij(5)

T′
ij(1)
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T4
ij(1)
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ij(1)
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Figure II .9: Sub-grid as a disjoint union of triangles.

Let us finally assume that all the sub-cells described above are the disjoint union
of triangles (see Fig. II .9) :

Qij(k) =
4
∪
p=1

T
p

ij(k)
and C′i =

Λ(i)
∪
k=1

T′ij(k) . (II .63)

Proposition 5. We consider a numerical flux function H consistent with the exact flux
in the sense of (I .22), verifying the conservation property (I .23) and such that the asso-
ciated first order scheme (II .61) is Θ-preserving. We assume that (hni )i∈Z and (h′i)i∈Z
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(defined above by II .66) are positive and we consider the updated states (Vn+1
i )i∈Z ob-

tained with the scheme (II .42, II .43, II .45). Then, under the following CFL condition :

∆t
ℓ
p

ij(k)

|Tp

ij(k)
|
max

∣∣∣λ±(V∗,−k ,Vp
k ,~n

p

ij(k)
)
∣∣∣ ≤ τCFL, ∀Cij(k), T

p

ij(k)
, 1 ≤ p ≤ 4 , (II .64)

∆t
ℓ′
ij(k)

|T′
ij(k)
| max

∣∣∣λ±(V ′i ,V∗,−k ,~n′ij(k))
∣∣∣ ≤ τCFL, ∀C′i , T′ij(k), 1 ≤ k ≤ Λ(i) , (II .65)

we have hn+1
i ≥ 0, for all i ∈ Z.

Proof. Considering the cell Ci, let us associate the inner reconstructed vector state
V∗,−k to the cell Qij(k). Following [21], we introduce a new intermediate state V ′i ,
associated with the sub-cell C′i , deduced from a water height defined as follows :

|C′i |
|Ci|

h′i +
Λ(i)

∑
k=1

|Qij(k)|
|Ci|

h∗,−k = hni , (II .66)

and the same relations for both discharge and topography. Now, considering the
interpolated values of the water height h on the split-grid, let us evolve in time
these intermediate states using the scheme (II .61), to obtain :

(h′i)
n+1 = h′i −

∆t

|C′i |
Λ(i)

∑
k=1

ℓ′ij(k)Hη(V̌ ′i , V̌
∗,−
k ,~n′ij(k)) , (II .67)

(h∗,−k )n+1 = h∗,−k − ∆t

|Qij(k)|
4

∑
p=1

ℓ
p

ij(k)
Hη(V̌∗,−k , V̌p

k ,~n
p
k ) , (II .68)

where the subscript “ˇ” refers to the reconstruction (II .17,II .18,II .19). Above
we did not specify the reconstructed values for the topography in the writing
of the fluxes for the sake of simplicity. As the additional source terms (II .43)
have no contribution to the first component and using the conservativity property
(I .23), we obtain that hn+1

i , computed with the scheme (II .42, II .43, II .45), can be
regarded as the following convex combination :

hn+1
i =

|C′i |
|Ci|

(h′i)
n+1 +

Λ(i)

∑
k=1

|Qij(k)|
|Ci|

(h∗,−k )n+1 . (II .69)

Note that when the initial states on Ci and its neighbours admit positive water
depths, the two MUSCL reconstructions automatically give h∗,−k ≥ 0. Conse-
quently, considering a sub-cell Qij(k), recalling that h∗,−k is evolved by (II .68),
and that the scheme (II .61) preserves the positivity of h, then the CFL condition
(II .64) ensures that (h∗,−k )n+1 is positive, for all k ∈ {1, . . . ,Λ(i)}. In the same
way, if we are able to enforce h′i ≥ 0, the criterion (II .65) will guarantee that the
evolved state (h′i)

n+1 given by (II .67) is positive, allowing to conclude, using
(II .69).
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We thus have to ensure that h′i ≥ 0. Using (II .66) we have :

h′i =
|Ci|
|C′i |

hni −
Λ(i)

∑
k=1

|Qij(k)|
|C′i |

h∗,−k . (II .70)

Therefore, we only have to enforce :

hni −
Λ(i)

∑
k=1

|Qij(k)|
|Ci|

h∗,−k ≥ 0 .

This can be achieved with the linear approach suggested in [21]. Considering the
better interpolated value h∗,−k issued from either of the MUSCL reconstructions,
we define the corresponding reconstruction increment δhk with:

h∗,−k = hni + δhk.

We nowmodify this increment, considering a coefficient α and themodified value
of h∗,−k :

h∗,−k = hni + αδhk.

where α must satisfy :

hni −
Λ(i)

∑
k=1

|Qij(k)|
|Ci|

αδhk ≥ 0 .

Remark II.3 .4. We recall that, following Section I.5.1 , as the finite volume scheme
(II .61) can be regarded as a convex combination of one-dimensional schemes on the sub-
grid, it preserves the positivity of the water height as soon as the 1d associated scheme
does. An direct example of application is supplied by the HLL scheme previously dis-
cussed.

II.4 Numerical Validations

This last section is devoted to the numerical validation of the scheme and its
successive improvements. In the tests presented here we employed the HLL
scheme for the evaluation of the numerical fluxes. In addition of providing ro-
bustness, it exhibited interesting implementation amenities and offered a good
overall precision. Though this work is not devoted to an extensive compara-
tive study of different numerical solvers, we specify here that HLLC and VFRoe
schemes have also been tested. Although being slightly more precise, they pro-
vided very similar results in the vast majority of cases. The high order schemes
(II .42, II .43, II .45) obtained from reconstructions (II .34) and (II .50) will be re-
ferred to as M1-scheme and M2-scheme respectively. The time discretization re-
lies on the second-order Runge-Kutta scheme (I .50).
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Figure II .10: Well balancing validation : Meshed topography (left) and free sur-
face after 1000 iterations (right).

L1 L2 L∞

h qx qy h qx qy h qx qy
1st order 1.1E-16 3.4E-16 4.5E-16 1.1E-16 4.4E-16 1.8E-16 1.1E-16 2.4E-16 2.1E-16

M1 4.9E-18 3.8E-17 3.6E-17 4.3E-18 3.9E-17 2.3E-17 4.5E-18 2.2E-17 2.2E-17
M2 3.7E-17 5.8E-17 5.2E-17 3.6E-17 6.1E-17 3.2E-17 3.6E-17 3.2E-17 3.2E-17

Table II .1: Well balancing validation : Evaluation of the numerical error for the
conservative variables for several norms of interest.

II.4.1 Well balancing validation

The initial condition of this test is a flow at rest, with a varying topography, and
a dry area. We consider a rectangular domain [0, 2] × [0, 1] , with the following
topography :

z(x, y) =

{
0.5 exp

(
−(25(x− 1.2)2 + 50(y− 0.7)2)

)
if x > 0.68 ,

−0.5 exp
(
−(50(x− 0.45)2 + 100(y− 0.4)2)

)
elsewhere .

The domain is meshed with 13 000 nodes (see Fig. II .10 left) and we impose at
t = 0 η = max(z, 0.2) and q = 0 on the whole domain (see Fig. II .10 right). For
the sake of completeness, errors on the total free surface, normal and tangential
discharge have been computed after 1 000 time iterations, for the L1, L2 and L∞

norms. Results are reported in Tab. II .1. As expected, the first order scheme
(II .15 - II .19, II .20), as well as its high order extensions preserve the steady state
up to round-off error.

II.4.2 Subcritical flow over a bump

In this test, we study the ability in converging toward stationary steady states
and we perform some convergence studies. The computational domain consists
of a 20m × 5m channel, and the topography is defined as follows :

z(x, y) =
{

0.2− 0.05(x− 10) if 8 ≤ x ≤ 12 ,
0 otherwise .

Three main classes of solutions are available, namely the sub-critical case and
the transcritical cases (with or without shock), as described in [136]. Due to
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∆x

∆y

Figure II .11: Example of regular mesh.

the relative rarity of analytical solutions involving converging flows, these tests
are widely used in the literature (see [12, 24, 65, 108, 179, 243, 288, 302] and the
recent compilation [90] for further details). We consider here the subcritical case.
Hence, we enforce the inflow discharge at the left boundary with qx = 4, 42m/s,
qy = 0m/s and we impose η = h = 2m at the outflow boundary. A 3d view
of the initial configuration and topography is given in Fig. II .12 (top). We
first employ the high order M2 scheme and a regular mesh with space step
∆x = ∆y = 0.1 (see Fig. II .11). We rapidly obtain a stationary flow for which a
classical analytical solution is available. The convergence phenomena is properly
described here : the steady state clearly appears around t = 80s (Fig. II .12
(bottom)), with a strong alignment with the analytical solution (Fig. II .13).

We now consider several regular meshes, with a discretization step
∆x = 20/n and an increasing level of refinement: n = 20, 40, 80, 160. We compare
both first order and high order schemes with this exact solution, at time t = 80 s
and Fig. II .14 shows the L1-error versus ∆x in logarithm scale. Convergence
rate of 0.86 and 2.03 are obtained for η, respectively for the first order and
M2 schemes. Similar values are observed for the normal discharge. When
comparing the two high order reconstructions we remark that the M2 approach
(II .50) provides slightly better results. Though moderate, this superiority has
been confirmed throughout the other tests, and we consequently choose to
pursue our validations with the M2 scheme.

II.4.3 Flows over steps

It is well known that the NSW model is not theoretically valid in the frame of
discontinuous bottoms. The modelization problem posed by water waves over
irregular topographies is anything but simple, and is still subject to intensive
research (see the works of Cathala and Lannes [62, 182] for recent investigations
on this topic). Nevertheless, several authors proposed numerical models to
account for vertical steps in the classical context of NSW equations. As an
example, shortly thereafter the so called Surface Gradient Method, Zhou et al
[301] extended this approach to account for possible occurrence of discontinuities
in the topography. The method is based on an appropriate re-calculation of
the water height at each side of an interface having a discontinuity, together
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Figure II .12: Subcritical flow over a bump : Initial condition and topography (top)
and free surface profile at t = 80s (bottom).
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Figure II .13: Subcritical flow over a bump : Steady state : values of the free
surface and the normal discharge along the middle section. Analytic vs numeric.
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Figure II .14: Subcritical flow over a bump : Convergence curves in logarithm
scale, for the free surface η (left), and the normal discharge qx (right).

with the inclusion of a resistance term to account for a relevant head loss due
to the bottom jump. As done in [150], one can also plan to regard these jumps
as very steep gradients, provided the use of refined grids in the vicinity of the
discontinuities. Another strategy, less costly, consists of considering a continu-
ous piecewise bilinear reconstruction of the bottom in a pre-processing step [181].

Using the bed profile proposed by the working group on dam-break mod-
elling [136], the following tests involve a rectangular 1 500m long flume with a
central step characterized by :

z(x, y) =
{

8 if |x− 750| < 187.5 ,
0 otherwise ,

available in Fig. II .15. We actually aim at showing that the current scheme is
able to ensure stable computations in the case of irregular bottoms. No specific
treatment is required to handle vertical jumps: as in [195], they are simply ap-
proximated by very steep slopes defined by the ratio between the jump height
and the mesh size.

II.4.3.a Tidal wave over steps

For this simulation, the width of the channel is set to 150m, and an unstructured
mesh of 3 721 elements is used. Our assessments are based on the 1d asymptotic
analytical solution provided by Bermudez et Vazquez [20] :





h(x, y, t) = 20− z(x, y)− 4 sin
[

π

(
4t

86 400
+

1
2

)]
,

u(x, y, t) =
(x− L)π

5 400 h(x, y, t)
cos

[
π

(
4t

86 400
+

1
2

)]
.

(II .71)

The initial condition is supplied by the analytical solution at t = 0. The flow
evolution is mainly dictated by the inflow boundary condition, where h(0, 0, t)
is enforced, while solid wall is assumed at the other surrounding boundaries.
Comparisons are performed at several time intervals throughout the simulation,
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Figure II .15: Tidal wave over steps : Water depth profile at t=10 800s along the
x-direction centreline. Comparison with analytical water depth.

until T = 35 000s. On Fig. II .15 we propose a snapshot of the water height at
t = 10 800s. At this time, according to (II .71) the flow is expected to be planar.
Such a situation is perfectly replicated at the discrete level, and this in spite of
the presence of the bottom jump. We can observe on Fig. II .16 the x-velocity pro-
files at two reference times, corresponding to the maximum andminimum values
reached by the flow. They exhibit a very good agreement with the analytical so-
lution.

II.4.3.b Dam break problem

To further investigate this issue, one can consider a dam breaking problem over
the current topography, as proposed in [280]. To capture at best the characteristics
of the flow, the M2 scheme is used on a regular mesh of 20 000 elements, corre-
sponding to a 3m space step. Solid wall boundary conditions are considered at
each side of the domain. The initial condition is now given by :

h(x, y, t) =
{

20 if x < 750 ,
15 otherwise .

The resulting solution is free from oscillations, and, in a first time, is able to cor-
rectly reproduce the classical rarefaction/shock configuration of which are sub-
mitted classical dam break problems (see Fig. II .17). The situation becomes more
complicated once the front wave reaches the limits of the bed step. Note that, at
both sides, water height and bed slope are discontinuous while the free surface
elevation is smooth. Thus, the loss of energy due to the passing of the bottom
jump gives rise to a rapidly varying flow with complex characteristics, quite dif-
ficult to restore. To illustrate this, an insight of the wave evolution at t = 60s is
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Figure II .16: Tidal wave over steps : x-component of the velocity along the x-
direction centreline at t=10 800s and t=32 400s. Comparison with analytical ve-
locity.
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Figure II .17: Dam break over steps : Free surface profile at t=15s.
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Figure II .18: Dam break over steps : Free surface profile at t=60s.



II.4 . NUMERICAL VALIDATIONS 61

proposed on Fig. II .18. The results are in good agreement with those obtained
with high order ENO and WENO balanced schemes available in [280, 286]. It
should be mentioned that, as underlined in [6], concerns related to the treatment
of the bottom source term are primordial for this test. Resolutions issuing from
an unbalanced scheme for instance may entail important disturbances spreading
around each ends of the bottom step. Thus, as a whole, these observations tends
to confirm the ability of our numerical scheme to deal with critical slope values,
without implementing some additional algorithms.

II.4.4 Oscillatory flow in a parabolic basin

We consider a r = 4 300 m radius circular domain and we compute the peri-
odic fluid evolution described in [266]. In this test case, we want to assess the
accuracy of our scheme in a rather severe two dimensional framework, with an
unstructured mesh, involving dry cells and varying topography. Two classes of
exact solutions are available, namely the “planar” and “curved” cases, run for
example in [34, 116, 171, 221, 243] and [34, 108, 243] respectively. We consider
here the planar case, and use a 24 000 nodes unstructured triangulation. The bed
profile is defined as follows :

z(x, y) =
h0
L2

(x2 + y2),

and the exact solution is :




η(x, y, t) = h0 −
B2

2g
− B

g
s x cos(s t) +

B

g
s y sin(s t),

u(x, y, t) = B sin(s t),

v(x, y, t) = −B cos(s t),

(II .72)

with

h0 = 10, L = 3 000, p =

√
8gh0
L2

, s =

√
p2

2
and B = 5.

The initial condition is defined by evaluating (II .72) at t = 0. It provides a planar
flow put in motion in the tangential direction. The corresponding profile is given
in Fig. II .19, with an insight of the mesh and topography. The problem of bound-
ary conditions is anecdotal for this case since the flow in not expected to reach
the limits of the domain. When friction effects are neglected, the exact solution
describes an oscillatory flow with an half-period of 672s. Fig. II .20 shows free
surface profiles at times t = 672, 1 344, and 2 688 s, across the section y = 0. We
observe a good agreement between numerical results and analytic solution, even
after a long simulation time. The flow stays planar and the moving shoreline is
properly described. The point (-1000 , 0) is selected to follow the evolution of the
normal velocity (Fig. II .21). Here again, results attest of an appropriate treatment
of the bed slope and wet/dry transitions. No losses of amplitude are observed.
Similar conclusions can be derived from Fig. II .22, where we analyse the moving
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Figure II .19: Oscillatory flow in a parabolic basin : Mesh, geometry and initial
condition.
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Figure II .20: Oscillatory flow in a parabolic basin : Free surface profiles at several
times during the revolution process, and comparison with the analytic solution.
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Figure II .21: Oscillatory flow in a parabolic basin : Time evolution of the x-
direction velocity; analytic vs numeric.

shoreline location along the x-direction, the analytical solution being given by :

x(t) =
a2

2gh0

(
− Bs cos(st)

)
± a .

II.4.5 Small perturbation of a lake at rest

We investigate a flow propagation around a stationary steady state, based on
the test case proposed by LeVeque [187]. This test and several variants are widely
used to exhibit the efficiency of 2dwell-balancedmethods in the vicinity of steady
states, see for instance [152, 179, 194, 200, 243, 288]. This simulation involves a
rectangular channel of 2m× 1 m, and the topography variations are given by :

z(x, y) = 0.8e−5(x−0.9)
2−50(y−0.5)2 .

The domain is discretized with an unstructured triangulation involving 11 476
nodes. The initial steady state is perturbed with the following initial free surface :

η(x, y, t = 0) =

{
1.01 if 0.05 < x < 0.15,
1 elsewhere.

We can observe on Fig. II .23 some snapshots of the solutions obtained at
times t = 0.12 s, t = 0.24 s, t = 0.36 s and t = 0.48 s, with 3d free surface (left)
and vertical section profiles along the line y = 0.5 (right). The M2 high order
reconstruction employed in the computations is able to correctly reproduce the
expected behaviour of the flow. High gradients are not excessively smoothed, but
sufficiently controlled yet to avoid appearance of spurious oscillations. We obtain
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Figure II .22: Oscillatory flow in a parabolic basin : Time history of the wet/dry
interface.

comparable results to those obtained in the literature with high order schemes
([46, 194, 243, 286, 291]), indicating a good resolution. The small perturbation
seems to be accurately followed and the free surface profiles highlight the real
efficiency of the low diffusion “second order” reconstruction (II .50).

II.4.6 Dam break problems

II.4.6.a 1d dam break

We further investigate the stability of the scheme in the key sector of dry do-
mains through a series of dam break problems. Let’s first analyse an archetypal
example of 1d Riemann problem, with initial condition :

h(x) =

{
h0 if x < 0 ,
0 otherwise .

, u(x) = 0 .

The simulation involves a 20m long rectangular channel, centred in x = 0. A
regular mesh is used with a space step ∆x = 0.05 and we enforce h0 = 1m as
upstream water height. Setting c0 =

√
gh0, the analytical solution is (see [33] for

instance) :

h(x, t) =





1 if x < −c0t ,
1
9g

(
2c0 −

x

t

)2
if − c0t < x < 2c0t ,

0 otherwise .

u(x, t) =





0 if x < −c0t ,
2
3

(
c0 +

x

t

)
if − c0t < x < 2c0t ,

0 otherwise .

(II .73)
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Figure II .23: Perturbation of a steady state at rest : Free surface elevation at
several reference times: 3d surface and vertical section at y = 0.5m.
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Figure II .24: 1d dam break : Water height (left) and discharge (right) profiles at
t = 0.2, 0.4, 0.6 and 0.8s.

Computations are run with the M2 scheme, and the numerical data on water
height and discharge are stored for comparison at regular time intervals, up
to t = 1s. This idealized situation leads to a solution composed of a rarefac-
tion wave, propagating upstream and a travelling wet/dry front directed down-
stream. We can observe on Fig. II .24 that the numerical results follow closely
the analytical solution. In particular, a closer look on the water depth profiles
confirms that the initial discontinuity is correctly handled, with no excessive dif-
fusive losses. The advancing water front is also accurately described, validating
the stability of our numerical model when dealing with dry zones. In this con-
nexion, also note that we effectively validated the positivity of the water height
at each time step, in conformity with our theoretical expectations. As stated in
[93, 170] for instance, when focusing on the discharge, one can assess the diffi-
culties induced by the transition point of the water front. Note that comparable
results are also obtained with the recent high order scheme [291] on cartesian
grids. Naturally, as highlighted in [101], the space step can be decreased to re-
duce these discrepancies. As a whole, these results appear as totally satisfying,
and form a solid basis for assessing the current scheme’s accuracy during appli-
cations involving dry domains.

II.4.6.b Dam break over three mounds

This problem was initially proposed by Kawahara and Umetsu [164]. It in-
volves a rectangular domain with dimensions [0, 75]× [0, 30]. The bottom is com-
posed of three circular domes with constant slopes, which shape and emplace-
ment are given by (see [221]) :

z(x, y) = max
(
0 , 1− 0.1

√
(x− 30)2 + (y− 22.5)2,

1− 0.1
√
(x− 30)2 + (y− 7.5)2,

2.8− 0.28
√
(x− 47.5)2 + (y− 15)2

)
.

(II .74)
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Figure II .25: Dam break over three mounds : 3d view of the flow at times t=2.5s,
5.5s, 16s, 23s, 30s up to the rest state (t=300s).

The dam is situated at x = 16m, all along the y-direction. An upstream free
surface of 1.875m is prescribed, while the rest of the channel is supposed dry.
We consider a closed basin, enforcing solid wall conditions at the surrounding
boundaries. We lastly inform that the first order scheme has been employed,
on an unstructured mesh of 19 142 elements. According to the boundary condi-
tions, the quantity of water initially released has to be conserved throughout the
simulation, and one can reasonably expect that the flow evolution leads to a mo-
tionless steady state. The main steps of the flow propagation can be assessed on
Fig. II .25. The initial flood wave submerges the small mounds and propagates
towards the central dome, channelled by the intermediate slopes. Two reflected
waves are also generated and propagate in the opposite direction. Once the flow
reached the principal mount, the advancing front separates in two surrounding
waves. While following their progression downstream, we observe the appari-
tion of a second second series of reflections around the central dome, with more
complex features. This complicated behaviour results from multiple interactions
induced by the slide walls and the combination of various contributions supplied
by the successive passing of the three obstacles. After a certain time of evolution,
the motion progressively attenuates, and we finally reach the quiescent state il-
lustrated in the last picture. When compared against other results reported in
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the literature [19, 45, 116, 169, 194, 221], our approximation seems to correctly
describe the dynamics of the flow. All the steps previously mentioned are well
reproduced by the numerical solution, which is also able to respect the symme-
try of the problem. Again, robust computations are observed, without requiring
particular treatment of dry zones. Also note that the final steady state is perfectly
maintained at the discrete level, as we could expect.

II.4.7 Carrier and Greenspan transient solution

In this test case, we compare numerical results with one of the analytical so-
lutions provided in [58]. The initial water surface elevation is assumed to be de-
pressed near the frontier between the fluid domain and the dry area, and the fluid
held motionless. Then, the fluid is released at t = 0 and we mainly focus on the
interface evolution. During the evolution, the wet/dry interface rises above the
mean fluid level and then the water surface elevation asymptotically settles back
to it. The computational domain is a rectangular channel [−20, 6]× [0, 10], which

is discretized with a regular triangulation, denoted ∆x =
26
n

for the x direction,

and ∆y =
10
m

for the y direction, with n = 100 and m = 30. The topography is

given by :

z(x, y) = s x with s =
1
50

, (II .75)

and we denote Vex the analytic solution introduced in [58]. The initial condition
shown on Fig. II .27 (top) is defined with V(x, y, t = 0) = Vex(x, y, t = 0) and
the time-evolving boundary condition on the left side of the domain is enforced
with V(x = −20, y, t) = Vex(x = −20, y, t). Solid-wall boundary conditions
are set elsewhere. Reader is referred to [209] for practical issues regarding the
computation of the analytic solution. Fig. II .26 shows a comparison between
numerical results obtained with the M2 scheme and the exact solution for the
fluid free surface at several times, across the section y = 5m. Numerical results
are accurate: the whole run up mechanism is very well reproduced, up to the
steady state. The moving shoreline is properly described, as illustrate the 3d
snapshots available in Fig. II .27. Fig. II .28 provides an overall appreciation of
an additional convergence rate study, obtained with increasingly refined meshes

(∆x =
26

10× 2n
, n = 1, · · · , 4), for the L1-error for both first and formal second

order schemes, in logarithmic scale. We can again point out the benefits conferred
by the MUSCL reconstruction, in terms of accuracy and convergence rate.

II.5 Conclusion

In this chapter we have introduced a new two-dimensional well-balanced
scheme on unstructured meshes for the NSW equations with topography source
term, inspired from previous works in the 1d and 2d cartesian case. The
construction of this scheme relies on a modified set of equations, in which the



II.5 . CONCLUSION 69

 0

 0.01

 0.02

 0.03

 0.04

 0.05

-20 -15 -10 -5  0

h
+

z
(m

)

x(m)

t=3.5s

t=7s

t=14s

t=28s

exact
numerical

Figure II .26: Carrier and Greenspan transient solution : Evolution of the wa-
ter free surface at several times during the evolution, and comparison with the
analytic solution.

Figure II .27: Carrier and Greenspan transient solution : 3d views of the free
surface. Initial condition, intermediate time t=15s, and final steady state.
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∆x 1st order MUSCL M2
1.3 5.00e-4 1.84e-4
0.65 1.94e-4 4.61e-5
0.325 9.61e-5 2.04e-5
0.1625 5.02e-5 7.50e-6

Figure II .28: Carrier and Greenspan transient solution : Convergence rate study
for increasingly refined regular meshes.

free surface is used as a conservative variable instead of the water height. The
discretization of the topography is shown to be consistent with the source term
of the continuous equations, and provides a well-balanced scheme provided
the choice of consistent numerical fluxes. In addition, whenever the initial
one-dimensional solver satisfies some classical stability properties, we obtain a
simple two-dimensional scheme that preserves the positivity of the water height.
Two MUSCL reconstructions are proposed, allowing to significantly increase
accuracy and convergence rate. Without requiring the introduction of some
correction terms, they are theoretically and numerically shown to preserve the
features of the original scheme.

An extensive series of benchmark experiments has been proposed, attest-
ing of the efficiency of the numerical model in a wide variety of different
contexts. The model is tested against some severe test cases, involving complex
geometry, irregular topographies and dry cells. Strong stabilities properties
are exhibited. The scheme is naturally able to deal with vertical bottom steps
and dry areas without implementing additional algorithms. Well-balanced and
robustness properties have been validated throughout the numerical validations,
for both first order and MUSCL schemes, and the preservation of static equilibri-
ums is still observed in the presence of emerging slopes.

To summarize, the present Finite Volume scheme fulfils the standard nu-
merical requirements of a modern and efficient approach of the Shallow Water
system. The first order scheme and its high order extensions share a unified
formulation, with a basic discretization of the source. Moreover, in the absence of
supplementary treatment for bottom jumps or dry cells, one of its main features
is its great simplicity, together with an easy implementation. As a consequence,
it appears as a solid basis in view of realistic applications. This brings us to
the central question of the inclusion of resistance effects, that account for some
physical and mechanical specificities of the domain, and may play an important
role in many situations. In this perspective, an efficient way to treat these
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additional source terms remains to be proposed, and is discussed in the coming
chapter.
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III.1 Introduction

The orientation of numerical codes devoted to water waves toward realistic
situations requires the introduction of some additional source terms able to ac-
count for various physical phenomena, neglected so far. One of the most recur-
ring problems, because not straightforwardly handled via most of classical tech-
niques, concerns the treatment of resistance terms. The general objective of this
chapter is to propose some modern FVM which are able to correctly deal with
friction. To get a more practical idea of the difficulty, let’s first complete the cur-
rent PBSW system with a second source term :

∂V

∂t
+∇ · H(V, z) = S(V, z) + F(V, z) . (III .1)

Friction laws being traditionally expressed in terms of water height and dis-
charge, this friction term is first rewritten as: F(V, z) = E(U), using the relation
h = η− z. For the sake of generality, the present work will involve the three laws
most commonly used :

Manning : E(U) = −




0

n2
‖q‖
h10/3

qx

n2
‖q‖
h10/3

qy


 , (III .2a)

Darcy : E(U) = −




0
d

8
‖q‖
h2

qx

d

8
‖q‖
h2

qy


 , (III .2b)

Linear : E(U) = −




0
κqx
kqy


 , (III .2c)

where n, d and κ are positive parameters.

Among the quantity of available works on Shallow Water equations, the
problem of a suitable approach for the bed friction source term may deserve
investigations yet. The main reason stands in the fact that divisions by h can be
involved (III .2a, III .2b), and possibly generate instabilities in low water depths
areas. To circumvent this difficulty, in some appropriate circumstances, linear
terms [5, 302] or simplified friction laws [46, 181] may appear relevant as a first
approximation. However, this solution cannot be considered as totally satisfac-
tory since it does not allow to describe a large range of realistic situations. More
severe laws may be accounted for through straightforward pointwize methods
[151, 280, 293], provided again that the resistance parameters are moderate
enough. Such an explicit method is suggested in [221] in a 2d node-centred
unstructured FVM. In more general contexts, when attempting to reach better
level of stability, semi implicit or fully implicit treatments are often employed



III.1 . INTRODUCTION 75

[43, 54, 92]. This is also the case in [63], with a supplementary effort concerning
the balance between source and friction terms to exactly restore uniform channel
flows equilibriums.

However, calculations issuing from these methods are generally not ex-
empted from divisions by h either, and underlying stability issues still holds. As
stated in [42], numerical models turns out to be very sensitive to the calibration
of the tolerance value used to define the wet/dry transitions when friction terms
are included. This threshold has sometimes to be considerably increased to
avoid the perturbation mechanisms that threaten to be activated in very shallow
waters, which becomes a dilemma if an accurate description of moving interfaces
is simultaneously desired.

Although being generally overshadowed by other concerns in many works,
several propositions driven by this problematic started to emerge since the
last decade. Motivated by the necessity to have some control on these po-
tential instabilities, Liang and Marche [194] proposed to add an additional a
posteriori limiting stage to prevent an eventual reversing of the flow, which
is evidence that the resistance effects have been locally overestimated. This
method is successfully reused in [282] on cartesian grids, and more recently in
the frame of unstructured grids [147, 148]. Note that similar stability arguments
were also advanced by Murillo et al in the context of triangular meshes [217].
The method ensures that the sign of the discharge remains unchanged under
a suitable time step condition. Thereafter, some improvements have been
proposed by the authors in order to relax this time constraint [216], with the
use of an upwind explicit well-balanced method, combined with an implicit
discretization of the friction source term, specifically employed in critical areas
to prevent from instabilities. Based on these ideas, another strategy consists in
directly limiting the friction force to ensure relevant and stable computations [55].

Another way to proceed is borrowed from the recent headways made in
the context of Asymptotic Preserving schemes [28]. The key idea consists of
accounting for the source through a modified Riemann solver. The strategy is
successfully employed in 1d for the NSW equations [27], leading to a stable,
robust and well-balanced second order scheme. It should be stressed that similar
ideas can be encountered in [215], where the authors include the bed slope and
bottom friction terms within an augmented version of the HLL solver.

Contribution and objectives

The use of unstructured triangulations makes potentially complicated the
implementation of direct extensions of 1d approaches. However, keeping in
mind the first order scheme’s structure of the previous chapter, such an objective
is completely possible here. We hence first propose the extension of the 1d
scheme [27]. More precisely, inspired from this work, we give a 1d discretization
of the pre-balanced equations, allowing to deal with friction, and then re-valuate
each convex component of the 2d scheme accordingly. The strategy naturally
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extends the benefits of the method on unstructured meshes, and also preserves
the original features of the frictionless scheme previously proposed. These
improvements are detailed in the recent work [-3-].

Exploiting the practical aspects for which have been conceived these methods
(see [28]), some modification can be introduced to preserve the asymptotic
regime satisfied by the NSW equations, as done in [25] in the homogeneous 1d
frame. Still in the context of unstructured meshes, and in the presence of varying
topography, we propose a numerical scheme able to restore the diffusive limit
of the continuous equations perturbed by strong friction effects. This work is
intended to provide some initial responses about the conception and usefulness
of AP schemes in such a context. This is illustrated within another Finite Volume
approach, subject to an article under evaluation to date ([-4-]).

In point of fact, this analysis is organized on the basis of two numerical
schemes. The first section will complement the construction of our Finite Volume
pre balanced model. The strategy leading to the inclusion of friction is detailed in
1d first, and then straightforwardly extended on vertex-based geometries. The
properties of the enhanced scheme are illustrated in a series of numerical vali-
dations. In the second part the approach is implemented within another recent
FVM [24], with the objective of achieving some Asymptotic Preserving property.
A novel series of experiments is proposed, partly intended to show the impact of
such a property over several types of flows. According to the previous remarks, a
focus on stability issues will also be of interest throughout the experimental parts.
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III.2 Pre Balanced friction scheme

III.2.1 The 1d case

We first see how to integrate friction in the 1d pre balanced scheme. To address
the problem, let’s first assume that the friction law has the following form :

E(U) = −κ
|q|
hγ

(
0
q

)
, (III .3)

with κ, γ two positive constants. Note that Manning and Darcy friction laws
(III .2a, III .2b) falls within such a formalism, with κ = n2,γ = 10/3 and σ =
d/8,γ = 2 respectively. Following the general ideas introduced in [28] for such
class of source terms, the method relies on the use of a modified HLL scheme.
In this section, for the sake of simplicity, we indistinctly denote H the exact flux
function of the 1d or 2d continuous equations (III .1). Denoting s± the minimum
and maximum velocity waves involved in the approximate Riemann solver, the
inclusion of friction is accounted for through the following corrected states :

ṼR(
x

t
,V−,V+) =





V− if
x

t
≤ s− ,

αV∗ + (1− α)R(V−) if min(0, s−) <
x

t
≤ min(0, s+) ,

αV∗ + (1− α)R(V+) if max(0, s−) <
x

t
≤ max(0, s+) ,

V+ if
x

t
≥ s+ .

(III .4)
where V∗ is the classical HLL intermediate state (I .25) :

V∗ =
s+V+ − s−V− −

(
H(V+)− H(V−)

)

s+ − s−
, (III .5)

and we adopted the simplified notation :

R(V) =

(
Rη(V)
Rq(V)

)
=

(
η∗

q− |q|q

)
. (III .6)

Remark III.2 .1. As concerns the expression of R given just above, the choice of the first
component appears as natural, considering that, at the continuous level, the friction term
does not impact the mass equation. Thus, if we denote VR the usual HLL Riemann solver,
we have V

η
R = Ṽ

η
R, and we consequently have to focus on the evolution of the discharge

only.
Considering now the discharge, we first remark that the corresponding component of the
friction source term can be recast under the form:

Eq(U) = σ(h)
(
Rq(V)− q

)
, with σ(h) =

κ

hγ
. (III .7)

Historically, in the pioneering works mentioned above, modified HLL solvers are
precisely introduced to handle source terms under the general form (III .7). In several
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physical situations of interest indeed, the presence of a convex combination linking
V∗ to R (appearing here in the intermediate waves (III.3.2 )) allows both to recover
the classical solver in absence of source terms, and supplies a technical support for
the restoration of particular limit regimes at the discrete level (corresponding to the
situation where α tends to zero). Obviously, it requires a consistent calibration of
α, offering relevant approximations in both limits. In this work, and based on these
objectives, we actually show that this modification allows a proper evaluation of the fric-
tion source term, able to cover very low resistance values and extremely rough coefficients.

Before going further, some complements on the HLL solver might be useful.
Primarily, let’s remark that defining an approximate solution at time tn+1 = tn +
∆t as :

Vh(x) = VR
(x− xi+1/2

tn+1 ,Vi,Vi+1

)
, if x ∈ [xi, xi+1] , (III .8)

the HLL fluxes (I .27) can be rewritten under the classical form :

Hi− 1
2
= H(Vi−1,Vi, zi−i, zi) =

1
∆t

∫ xi

xi−1/2
Vh(x) dx−

∆x

2∆t
Vi + H(Vi, zi) ,

Hi+ 1
2
= H(Vi,Vi+1, zi, zi+1) = −

1
∆t

∫ xi+1/2

xi
Vh(x) dx+

∆x

2∆t
Vi + H(Vi, zi) .

(III .9)

It directly results that the 1d Finite Volume homogeneous HLL scheme :

Vn+1
i = Vn

i −
∆t

∆x

(
Hi+ 1

2
−Hi− 1

2

)
, (III .10)

can be expressed in terms on projection of the approximate solution (III .8) onto
the piecewise constant functions :

Vn+1
i =

1
∆x

∫ xi+1/2

xi−1/2
Vh(x) dx . (III .11)

In the current context, we can straightforwardly reproduce the analysis per-
formed in [28] for the present solver. For purposes of clarifications, we exhibit
the main steps of the reasoning. Invoking the modified solver (III .4) in (III .8),
we set :

Ṽh(x) = ṼR
(x− xi+1/2

tn+1 ,Vi,Vi+1

)
, if x ∈ [xi, xi+1] ,

and propose to advance to the next time level via :

Vn+1
i =

1
∆x

∫ xi+1/2

xi−1/2
Ṽh(x) dx . (III .12)

This integral is subsequently decomposed in two contributions. Setting x±i−1/2 =
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xi−1/2 + ∆t max(0, s±i−1/2), the first one is expanded as :

1
∆x

∫ xi

xi−1/2
Ṽh(x) dx =

αi−1/2
∆x

∫ xi

xi−1/2
Vh(x) dx+

1− αi−1/2
∆x

(∫ x−i−1/2

xi−1/2
Vi−1 dx+

∫ x+i−1/2

x−i−1/2
R(Vi) dx+

∫ xi

x+i−1/2
Vi dx

)

=
αi−1/2

∆x

∫ xi

xi−1/2
Vh(x) dx+

1− αi−1/2
2

Vi+

∆t

∆x

(
1− αi−1/2

) (
max(0, s−i−1/2)(Vi−1 − R(Vi)) +max(0, s+i−1/2)(R(Vi)−Vi)

)
.

Then, calling (III .9), one obtains :

1
∆x

∫ xi

xi−1/2
Ṽh(x) dx =

1
2
Vi+

∆t

∆x
αi−1/2Hi−1/2−

∆t

∆x
H(Vi)+

∆t

∆x
(1− αi−1/2)F

+
i−1/2 ,

(III .13)
where

F+i−1/2 = max(0, s−i−1/2)(Vi−1 − R(Vi)) +max(0, s+i−1/2)(R(Vi)−Vi) + H(Vi, zi) .

In a similar way, we also have :

1
∆x

∫ xi+1/2

xi
Ṽh(x) dx =

1
2
Vi−

∆t

∆x
αi+1/2Hi+1/2+

∆t

∆x
H(Vi)+

∆t

∆x
(1− αi+1/2)F

−
i+1/2 ,

(III .14)
with

F−i+1/2 = min(0, s−i+1/2)(Vi − R(Vi)) +min(0, s+i+1/2)(R(Vi)−Vi+1)− H(Vi, zi) .

At last, gathering (III .12, III .13, III .14), and proceeding to the reconstruction
steps (II .6 - II .11) before evaluating the numerical fluxes Hi±1/2, we reach the
following formula for the update of the discharge :

qn+1
i = qni −

∆t

∆x

(
αi+ 1

2
Hq

i+ 1
2
− αi− 1

2
Hq

i− 1
2

)
+

∆t

∆x

(
(1− αi− 1

2
)F

+,q
i− 1

2
+(1− αi+ 1

2
)F
−,q
i+ 1

2

))
.

(III .15)
The consideration of the modified solver hence induces the presence of weighted
fluxes and generates a numerical source term, designed to approximate the
friction forces. In the above formula, the fluxes Hi± 1

2
are provided by the usual

HLL scheme, applied to the reconstructed states (II .6,II .7,II .9,II .11) to guarantee
robustness and well-balancing properties.

We come now to the evaluation of the quantities αi± 1
2
, which are the dis-

crete equivalents of the parameter α ∈ [0, 1] introduced in (III .4). As stated in
Remark III.2 .1, this coefficient mainly controls friction and has to be appropri-
ately defined. One of the first requirements is driven by the fact that we ask the
modified solver to degenerate toward the usual HLL solver when the resistance
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effects tends to zero. On the other hand, the case of dominant friction terms
will correspond to the situation where α tends to zero. Another fundamental
requirement is related to consistency aspects, since we actually have to ensure
that the contribution:

Fi :=
(1− αi− 1

2

∆x

)
F
+,q
i− 1

2
+
(1− αi+ 1

2

∆x

)
F
−,q
i+ 1

2
(III .16)

furnishes a correct approximation of the corresponding term Eq(U) appearing
in the continuous equations. Lastly, keeping in mind the willingness to pre-
vent from computational difficulties in situations of vanishing water depths, the
expression of α should ideally remain relevant whenever h tends to (or even
reaches) zero. To summarize, the criteria that have to be satisfied are:

• α ∈ [0, 1] .

• lim
σ→∞

α = 0 .

• α = 1 in absence of friction.

• α is defined on dry cells.

• Consistency with the friction source term of the continuous equations.

Among the possible choices satisfying these properties, one can consider (see also
[27]) :

α =
h

γ(
s+ − s−

)

h
γ(

s+ − s−
)
+ κ∆x

, where h =
h− + h+

2
, (III .17)

from which are extracted the coefficients αi± 1
2
involved in (III .15), using the exte-

rior and interior values at the interfaces i± 1/2.

Remark III.2 .2. Thus, with this choice, it’s worth mentioning that the friction source
term discretization Fi proposed in (III .16) makes it possible to avoid divisions by h, which
traditionally threaten the stability of numerical models dealing with laws based on (III .3).
In this work, the consistency of Fi with the continuous equations will be established in the
2d frame, in the simplified case s+ = −s−. We refer to [28] for more general consistency
results in the 1d case.

III.2.2 The 2d case

Now, let us take advantage of the formulation (II .24 - II .25) to include the fric-
tion source term. We propose to carry out the update of each convex component
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by the mean of (III .15). For any edge Γij(k), we consequently set :

hun+1
ij(k)

= huni − ∆t
ℓij(k)

|Tij(k)|
(

αkHhu
ij(k)
− αc

kH
c,hu
ij(k)

)
+

∆t
ℓij(k)

|Tij(k)|
(
(1− αc

k)F
c,hu
k + (1− αk)F

hu
k

)
,

hvn+1
ij(k)

= hvni − ∆t
ℓij(k)

|Tij(k)|
(

αkHhv
ij(k) − αc

kH
c,hv
ij(k)

)
+

∆t
ℓij(k)

|Tij(k)|
(
(1− αc

k)F
c,hv
k + (1− αk)F

hv
k

)
,

(III .18)

where the friction parameters are straightly derived from those given in the 1d
formulation. In the sequel, we denote Rq(V) = t

(
Rhu(V), Rhv(V)

)
= q− ‖q‖q,

and employ similar notations to gather the discharge components of the friction
terms F

q
k , F

c,q
k involved in (III .18). In the continuity of the previous develop-

ments, let us employ the notations sc,±k , s±k for the velocity waves involved in the
computation ofHc

ij(k)
andHij(k) respectively, and set hk = (hi + hj(k))/2. Thus, in

the reference associated with ~nij(k), each contribution relative to friction is evalu-
ated that way :

αc
k =

h
γ
i

(
sc,+k − sc,−k

)

h
γ
i

(
sc,+k − sc,−k

)
+ κδij(k)

, αk =
h

γ
k

(
s+k − s−k

)

h
γ
k

(
s+k − s−k

)
+ κδij(k)

,

F
c,q
k = max(0, sc,−k )

(
qi − Rq(Vi)

)
+max(0, sc,+k )

(
Rq(Vi)− qi

)
+ Hq(Vi, zi).~nij(k) ,

F
q
k = min(0, s−k )

(
qi − Rq(Vi)

)
+min(0, s+k )

(
Rq(Vi)− qj(k)

)
− Hq(Vi, zi).~nij(k) ,

(III .19)
Now, keeping inmind that the evolution of the free surface is still governed by the
original scheme, and including the bed slope source term introduced in (II .20),
formula (II .24 - II .25) gives, integrating modifications (III .18) :

ηn+1
i = ηn

i −
∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)H
η

ij(k)
,

hun+1
i = huni −

∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)
(
αkHhu

ij(k)
− αc

kH
c,hu
ij(k)

)
+

∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)F hu
k + ∆tShui ,

hvn+1
i = hvni −

∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)
(
αkHhv

ij(k)
− αc

kH
c,hv
ij(k)

)
+

∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)F hv
k + ∆tShvi ,

(III .20)
where

Fq
k = t(F hu

k ,F hv
k ) = (1− αc

k)F
c,q
k + (1− αk)F

q
k . (III .21)

It is useful to note that, invoking the consistency relation Hc
ij(k)

=

H(Vi, zi).~nij(k), the discharge evolution in the previous set of equations can
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equally be written as :

hun+1
i = huni −

∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)
(
αkHhu

ij(k)
− αkHc,hu

ij(k)

)
+

∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)E huk + ∆tShui ,

hvn+1
i = hvni −

∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)
(
αkHhv

ij(k)
− αkHc,hv

ij(k)

)
+

∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)E hvk + ∆tShvi ,

(III .22)
where

Eqk = t(E huk , E hvk ) = (1− αc
k)E

c,q
k + (1− αk)E

q
k ,

E
c,q
k = max(0, sc,−k )

(
qi − Rq(Vi)

)
+max(0, sc,+k )

(
Rq(Vi)− qi

)
,

E
q
k = min(0, s−k )

(
qi − Rq(Vi)

)
+min(0, s+k )

(
Rq(Vi)− qj(k)

)
.

(III .23)

Thanks to the use of convex combinations, the consistency results issuing from
the 1d analysis ensure a relevant estimation of the source term appearing in the
continuous equations. More precisely, we have the following result :

Proposition 6. Assume that the numerical fluxes are computed using the Rusanov fluxes
(I.3.1 ). In other words, we define the maximum and minimum characteristic speeds in
the HLL Riemann solver as :

s±k = ±ak , ak = max
(
|ui.~nij(k)|+

√
ghi, |uj(k).~nij(k)|+

√
ghj(k)

)
. (III .24)

Then, the contribution
∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)E
q
k is consistent with the friction source term present

in the momentum equations of (III .1).

Proof. We first notice that in these conditions, (III .23) becomes :

Eqk = ack(1− αc
k)(R

q(Vi)− qi) + ak(1− αk)(R
q(Vi)− qi) .

We then write :

ℓij(k)

|Ci|
(1− αc

k) =
|Tij(k)|
|Ci|

κ

2ackh
γ
i + κδij(k)

,

ℓij(k)

|Ci|
(1− αk) =

|Tij(k)|
|Ci|

κ

2akh
γ
k + κδij(k)

,

and study the behaviour of the source term
Λ(i)

∑
k=1

ℓij(k)

|Ci|
Eqk as di = diam(Ci) tends to

zero. We can easily check that we have :

lim
di→0

ℓij(k)

|Ci|
ack(1− αc

k)(R
q(Vi)− qi) = lim

di→0

ℓij(k)

|Ci|
ak(1− αk)(R

q(Vi)− qi)

=
|Tij(k)|
|Ci|

κ

2hγ
i

(Rq(Vi)− qi) .
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Consequently :

lim
di→0

1
|Ci|

Λ(i)

∑
k=1

ℓij(k)Eqk =
Λ(i)

∑
k=1

|Tij(k)|
|Ci|

κ

h
γ
i

(Rq(Vi)− qi) .

= Eq(Ui) .

Remark III.2 .3. This strategy can be adapted to other resistance laws. In the context
of linear friction (III .2c) for example, an appropriate discretization of the source can be
deduced from :

α =
s+ − s−

s+ − s− + k∆x
, R(V) =

(
η∗

0

)
.

Remark III.2 .4. Recalling that no additional time constraint has been introduced, that
the evolution of the total free surface is not modified, and that the friction terms vanish in
absence of motion, robustness and C-property results still holds, even when applying the
MUSCL extensions previously introduced.
Again, note that the friction terms evaluation (III .19) is not problematic when the water
depth tends to zero.

III.2.3 Numerical validations

III.2.3.a Dam break with friction

We consider a classical 1d dam break problem with friction on a flat bottom,
and focus on the treatment of dominant resistance effects in the neighbourhood
of the wet/dry front. In a 2d framework, the test involves a rectangular flume
with dimensions [−10, 10]× [0, 4]. The initial water depth is set to 1m at the left
of the dam (x ≤ 0), and 0 elsewhere. For this test, we employ a Darcy friction law
(III .2b) with d = 0.05, and use a 8 241 nodes regular grid, with ∆x = ∆y = 0.1m.

One can build a relevant approximation of the exact solution decompos-
ing the domain in two regions behind the wave front location : in the first
area, friction effects are neglected and the analytical solution is provided by
an ideal fluid flow model, while in the wave tip region bed the resistance
phenomena are considered as dominant compared to acceleration and inertial
effects. Physical and mathematical aspects of such construction are detailed in
[68]. Fig. III .1 (top) shows some profiles of the water depth along the x-direction
centreline, until t = 2.4s. We can observe a good agreement with the analytical
solution, for both first order and MUSCL schemes. If the benefits of the MUSCL
reconstruction principally appear during the handling of the shock for the water
depth, we also remark a more accurate evaluation of the front speed on Fig. III .1
(bottom). The flood wave front location seems to be accurately computed, which
tends to validate the ability of the current scheme to deal with friction when
vanishing water heights and dry cells are involved. We can also point out the
good concordance with the predictions provided by the approach of Céa et al in
[63] for the water depth.
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Figure III .1: Dam break with friction : Water depth (top) and velocity (bottom)
profiles at t=0.6, 1.2, 1.8 and 2.4s. Analytical solution compared with first order
and MUSCL approximations.
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Figure III .2: Moving boundary over a parabolic bottom : Initial condition.

III.2.3.b Moving boundary over a parabolic bottom

The following test is adapted from a 1d version [195] of the experiments ini-
tially set up by Thacker [266]. Recently, several authors proposed some enhance-
ments on the family of Thacker’s test cases, introducing some friction terms in
the exact solutions. Sampson et al [249] proposed a first advancing for the pla-
nar case over a parabolic bottom in 1d, considering a linear friction law (III .2c).
Since then, this test is regularly employed [170, 171, 195], and more recently, a
2d extrapolation has been proposed by Wang et al [282]. We refer to test case
(III.3.4.d ) for a complete 2d simulation with friction. Here, computations are
run on a 8 640m × 500m channel, regularly meshed with a discretisation step
∆x = ∆y = 24m, until T = 10 000s. The topography is the following :

z(x, y) = h0
(
(
x

a
)2 − 1

)
.

We are accordingly working with a bed friction source term of the form (III .2c),
setting κ = 0.001. Enforcing the y-component of the velocity to zero for the 2d
derivation, we consider the following exact solution of the NSW equations :

η(x, y, t) = h0 +
a2B2e−κt

8g2h0

(
− sκ sin(2st) + (

κ2

4
− s2)cos(2st)

)

−B2e−κt

4g
− e−κt/2

g

(
Bs cos(st) +

κB

2
sin(st)

)
x ,

u(t) = Be−κt/2sin(st),

(III .25)

where s =
√

p2 − κ2 and p =
√

8gh0/a2. The coefficients are a = 3 000, B = 5
and the still water level h0 is fixed to 10m. Straightforward computations give
∂xη(0, x, y) = cte and q(0, x, y) = 0, so that the initial condition consists of a
motionless planar flow (Fig. III .2). According to the exact solution, the free
surface is supposed to remain planar along the channel, and oscillate with a de-
creasing amplitude, under the effects of the resistance. As t → ∞, the velocity
vanishes and the free surface asymptotically settles back to the water level at rest
h0. Considering the relative poor number of analytical solutions involving fric-
tion flows, we dispose of an interesting test case to assess the capacity of dealing
simultaneously with complex topography, friction and dry states. We first focus
on the evolution of the water height during a half period (Fig. III .3), and ob-
serve a very good agreement with the exact solution. Having knowledge of the
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Figure III .3: Moving boundary over a parabolic bottom : Time history of the
water height during a half period : analytical vs numerical.

theoretical location of the moving water interface :

x =
a2e−κt/2

2gh0

(
− Bs cos(st) − κB

2
sin(st)

)
± a ,

comparisons are also run on the time history of the wet/dry front evolution
(Fig. III .4), and exhibit the capacity in correctly handling flooding and dry-
ing. In conformity with theoretical predictions, the numerical approximation is
progressively damped by friction up to the apparition of the motionless steady
state. As far as accuracy is concerned, we proceed to quantifications of the L1

error in a series of simulations involving coarser regular triangulations (∆x =
24, 48, 96, 192). We can observe the significant improvements provided by the
MUSCL M2 scheme in terms of convergence rate on Fig. III .5. The numerical
error is plotted with respect to ∆x, in a log-log scale for both water height and
normal discharge hu. Slopes around 1 and 1.55 are respectively observed for the
first order andMUSCL schemes. Numerical results are available in Tab. III .6, and
clearly confirm the efficiency of the MUSCL reconstruction discussed in §II.3.2 ,
even when combined with the friction approach.

III.2.3.c Periodic subcritical flow

An important step in the validation of a numerical model for shallow water
flows is to confirm the ability to converge toward steady states. Some classical
test cases involving converging frictionless flows can be found in the literature
(see for instance [12, 195] and test cases II.4.2 II.4.6.b II.4.7 of the previous chap-
ter), but far less involving resistance. In [91], in a one dimensional framework, an
approach able to generate new steady states solutions for a ShallowWater model
with viscous and friction terms is developed. Returning to a Manning formula-
tion (III .2a), we choose to derive one of them for a 2d experiment, considering a
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Figure III .4: Moving boundary over a parabolic bottom : Time history of the
wet/dry interface.
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Figure III .5: Moving boundary over a parabolic bottom : Convergence rate anal-
ysis for the water height and the discharge.

h hu
∆x 1st order MUSCL M2 1st order MUSCL M2
192 3.0e-2 9.0e-3 8.0e-2 7.0e-3
96 1.6e-2 2.7e-3 4.1e-2 2.2e-3
48 7.5e-3 1.0e-3 2.1e-2 7.5e-3
24 4.0e-3 3.9e-4 1.1e-2 2.6e-4

Figure III .6: Moving boundary over a parabolic bottom : Convergence analysis -
L1 numerical error quantification.



88 CHAPTER III . FRICTION TREATMENT

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0  1000  2000  3000  4000  5000

h
+

z
(m

)

x(m)

t=100s
t=750s

t=1250s
t=2400s
t=3000s
analytic

topography

Figure III .7: Periodic subcritical flow : Free surface profile evolution - Conver-
gence toward hre f .

5 000m × 500m channel, in which we study a converging subsonic flow. Numer-
ical predictions are compared to the reference solution provided by the steady
state for the free surface :

hre f (x) =
9
8
+

1
4
sin(

πx

500
) . (III .26)

The topography computation is run following the 1d iterative method described
in [91]. The discharge is enforced at the left boundary, prescribing 2m.s−1, as well
as the water height, set to hre f (0). Neumann conditions are set a the outflow
boundary. The Manning coefficient set to n = 0.03, and we run computations
on a regular mesh with a space step ∆x = ∆y = 100/3. Fig. III .7 shows the
evolution of the total water height at several times during the transient part; the
convergence toward the steady state is clear. The absence of instabilities despite
the possible hazards resulting from dry areas and resistance terms confirms the
efficiency of the friction approach. The results are very close to the ones provided
by the 1d scheme [27]. Note that when equilibrium is reached, the flow is not
static and friction effects are still present. As a consequence, these results are of
interest since they actually show that the current scheme may be able to restore a
larger class of steady states than those involved by the C-property.

III.2.4 Two dimensional steady flow with friction

In this test, extracted from [217], we study now the convergence toward a truly
2d steady state in the presence of non trivial topography and friction effects. The
computational domain is the square [0, 10]× [0, 10], and we use an unstructured
mesh made of 3054 vertices. A constant discharge is assumed on the whole do-
main :

qx = qy = 0.1 ,
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Figure III .8: Two dimensional steady flowwith friction : 3d view of the exact free
surface for n = 0.03.

and the water height at steady state is defined as follows :

h(x, y) = d+ qxx+ qyy ,

with d = 0.5. The analytical function for the associated topography can bewritten
as :

z(x, y) = − 1
2g

(
q2x + q2y

)

h2
− h+

3
7
qxn

2
√
2

h7/3
.

The total free surface elevation is set to zero at the beginning of the simulation,
the final time being t=300s.
In a first time the case of a Manning roughness coefficient n = 0.03 is inves-
tigated. This leads to the configuration available on Fig. III .8, toward which
is expected to converge the solution. A comparison between the first order
approximation and the analytical solution is available on Fig. III .9 at the end of
the simulation, exhibiting a good correspondence. Similar results are obtained
with the MUSCL extension of the scheme. As done in [217], we propose to focus
on the evolution of the L1 numerical error to evaluate the relative performances
of the first order and MUSCL approaches. In accordance with the observations
made by the authors, Fig III .10 shows that in the presence of slight perturbations
induced by friction, the high order scheme fails in reaching a perfect equilibrium,
while the first order solution is able to restore the steady state with a better level
of precision.

We consider now the case where the flow is strongly dominated by the
resistance terms, taking n = 0.3. A 3d view of the corresponding steady state is
proposed in Fig. III .11. Again, we initially consider a still water configuration,
and run the simulation until t=300s. An overview of the free surface extracted
from the first order solution is proposed on Fig III .12, together with the exact
profile. In spite of the steepness of the friction effects, particularly pronounced
in this case, the scheme is able to give stable and accurate results. Note here
that, probably tempered by friction, the behaviour of the numerical error rapidly
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Figure III .9: Two dimensional steady flowwith friction : Predicted (left) and exact
(right) free surface for n = 0.03.
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Figure III .10: Two dimensional steady flow with friction : Evolution of the nu-
merical error for first order and MUSCL schemes for n = 0.03.
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Figure III .11: Two dimensional steady flow with friction : 3d view of the exact
free surface for n = 0.3.

Figure III .12: Two dimensional steady flow with friction : Predicted (left) and
exact (right) free surface for n = 0.3.

tends to stabilize, even for the MUSCL scheme, still slightly less accurate in this
case (see Fig. III .13).

III.2.4.a Tsunami wave on a sloping beach

Now, let us focus on a 2d case, with the study of a wave surge over a beachwith
complex topography. This test has initially been performed by Zelt to validate a
Lagrangian model for shallow flows [295]. The dimensions of the coastal area are
set to [−10, 15] × [−10, 10]. The computational domain is meshed with a 8 413
nodes unstructured triangulation, deliberately refined in the neighbourhood of
threatened dry areas (Fig. III .14). The high order MUSCL M2 reconstruction is
chosen here. Denoting L the half-width of the bay, the bed slope source term is
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Figure III .13: Two dimensional steady flow with friction : Evolution of the nu-
merical error for first order and MUSCL schemes for n = 0.3.

Figure III .14: Tsunami wave on a sloping beach : Mesh of the computational
domain.

expressed as follows :

z(x, y) =





H
(
1+

x− xp

L cos(πy/L)/π + xp

)
if x ≥ xp ,

1 elsewhere.
(III .27)

Considering a cross-shore section, we observe that the slope of the topography
slowly decreases from the lateral boundaries to the x-direction centreline. The
water depth at rest is initially set to H = 1.273m, and we set xp = 3 L/π. At the
left side of the domain, an impulse for the generation of the wave is furnished by
the following offshore boundary condition :

h(t) = H + αHsech2
(
{
√

gH

L
χ t}

)
, (III .28)



III.2 . PRE BALANCED FRICTION SCHEME 93

Figure III .15: Tsunami wave on a sloping beach : 3d surface profiles at t=11, 14
and 17s (frictionless flow).

where χ =

√
3α

4β
(1 + α), β = (H/L)2 and α = 0.02. We can observe on Fig.

III .15 some 3d snapshots of the propagation wave after the arrival time at the
initial shoreline. According to the bottom profile, steeper at the upper and lower
boundaries, part of the energy is gradually transferred into the center of the
basin. This preferential direction of the propagation is also supplemented by a
precocious run-down issuing from the reflection at the lateral emerging bound-
aries. Our numerical model is able to correctly describe the flooding phenomena
involved in this test, as well as the entire development of the reflected wave
until it goes down to the open sea. To illustrate this, we propose on Fig. III .16
the time series of the run up along five cross sections, until T = 60s. These
results can be compared with other observations available in the literature, as
[151, 209, 227] for instance. We do not notice any significant discrepancies with
these works, or even when compared against the model of Zelt, which attests of
a good reproduction of the two-dimensional process.

Now, we study the impact of a supplemented physical resistance over
the evolution of the water front. To do so, we observe the results obtained with
a Manning friction law (III .2a) for increasing values of κ = n2. Middle sections
of the total free surface along the x-direction are available at several stages of the
propagation on Fig. III .17, for increasing friction coefficients (κ = 0, 0.1, 0.25, 0.5
and 1), and clearly highlight the loss of amplitude resulting from the considera-
tion of friction. The reduction of the flooded area can be observed on Fig. III .18,
offering an overview of the rectangular domain and pointing all the wet cells at
the level of the beach for the different values of κ involved in the simulations. It
is noteworthy that the same CFL has been used for all these computations, with
the same tolerance value as in the frictionless case to identify dry areas, precisely
ǫ = 1.e − 7. In all cases, in accordance with the objectives sought, we did not
have to face any instability problem.
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Figure III .16: Tsunami wave on a sloping beach : Time series of the run up along
several cross sections.

Figure III .17: Tsunami wave on a sloping beach : Water depth profiles at t=2, 6
and 14s for increasing Manning coefficients.
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Figure III .18: Tsunami wave on a sloping beach : Sketch of flooded areas.

III.2.5 Malpasset dam break

As a final experiment, we perform the classical simulation of the Malpasset
dam break. A 3d view of the narrow gorge of the Reyran River Valley (South of
France) is available in Fig. III .19, locating the dam and its upstream and down-
stream regions. In December 1 959, the left side of the dam collapsed under the
effects of pressure, after a heavy rain fall; more than 55 000m3 of water started to
pour in the valley, and the generated flood wave reached the city of Frejus, lo-
cated 12km downstream. The context of this benchmark test for dam break mod-
els involves complex bathymetry and geometry, and is de facto supplemented
by occurrence of dry areas. As we also have to consider friction effects, this real
life application is particularly appropriate to assess the performances of the cur-
rent scheme. Reconstruction of the disaster during laboratory studies furnished
reference data for the arrival time of the water front at several gauges located
in the floodplain. Concerning the implementation, we set an upstream total wa-
ter height of 100m, and assume the bed river initially dry. We make use of the
first order scheme on a vertex-centred mesh of 13 541 nodes, and the Manning
roughness coefficient is fixed to n = 0.03. We follow the evolution of the flood
wave on Fig. III .20, where snapshots of the free surface are available as the flood
wave reaches gauges 8, 10 and 14. Numerical results are compared with some
data issuing from the experiment on Fig. III .21a and III .21b, where the arrival
time of the flood wave is available at gauges 6 to 14, as well as the maximum
elevation. We also propose a comparison on the maximum elevation with the
police measurements at some survey points on Fig. III .21c, that also exhibits a
good agreement. Note that significant discrepancies are observed on Fig. III .21a
in absence of friction, highlighting the important role played by these terms in
this test. From a qualitative point of view, numerical predictions are in the same
order of precision than other studies reported in the literature (see [44, 257, 282]).
Again we can conclude on the good accuracy and stability properties provided
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Figure III .19: Malpasset dam break : Initial configuration.

by our friction approach in the context of real life applications.

III.3 Asymptotic Preserving scheme

It results from the previous investigations a simple and well-balanced scheme,
able to account for general friction laws and guarantee stable computations in
the context of dry terrains. The time step limitation ensuring the water depth
positivity preservation is not impacted. It has to be specified here that in practice,
even in the more severe real life applications that have been performed, the
consideration of strong friction laws such as Manning or Darcy did not entail a
significant decrease of the time step, while we used the same threshold value as
in the frictionless case to differentiate wet cells from dry cells. Remembering the
efforts needed to achieve proper resolutions of the NSW system on unstructured
meshes, these strong stability properties, readily obtained, may prove to be
interesting for a large range of practical applications. This being so, the inclusion
of friction can be subject to a deeper analysis, in relation to the long time
behaviour of the scheme. This leads to the concept of Asymptotic Preserving
property, referring to the capacity to restore the late-time regime satisfied by
the continuous equations. In a variety of physical domains, this property may
be of major importance, notably to recover particular equilibriums or handle
multiscale problems.

Indeed, many theoretical and numerical studies devoted to the asymp-
totic behaviour of 1d conservation laws appeared in the last decades. A lot
of numerical schemes are now designed to restore the asymptotic regime of
the corresponding equations. Such numerical methods are commonly called
“Asymptotic Preserving” (AP). We canmention for instance the works of Berthon
et al [22, 23, 25] and Buet et al [48, 47] on the M1 model for radiative transfer,
or the schemes developed by Bouchut et al [40], Chalons et al [66], or Marcati
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Figure III .20: Malpasset dam break : Mesh and evolution of the flow at gauges 8,
10 and 14.

 0

 200

 400

 600

 800

 1000

 1200

 6  7  8  9  10  11  12  13  14

t(
s
)

gauge

 Without friction
 Numerical
 Reference

(a) Arrival time at gauges 6 to 14.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 6  7  8  9  10  11  12  13  14

η(
m

)

gauge

 Numerical
 Reference

(b) Maximum elevation at gauges 6 to 14.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17

η(
m

)

Survey point

 Numerical
 Reference

(c) Maximum elevation at survey points.

Figure III .21: Malpasset dam break : Comparison with experimental data.
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et al [208] for the discretization of Euler equations. Several other systems have
been treated, such as the Boltzmann kinetic model [133, 196], or Euler-Poisson
system [83, 158] for instance. The reader is also referred to [7, 29, 80, 134, 158] for
additional studies. In the 2d case, the quantity of published results is definitively
less abundant. On cartesian grids, in addition of [23], we can highlight the
scheme introduced by Degond et al [88] for the Euler-Lorentz system. In an
unstructured context, the extrapolation technique developed by Franck for the
Friedrichs systems [114] is, to our knowledge, the only method available to date
(see also [49]). In this connexion, although the issue of the 1d NSW equations
has been considered is some studies [25, 71, 161, 158], no Asymptotic Preserving
scheme has already been developed in the framework of unstructured meshes.

Thus, in what follows, we propose the construction and validation of an
Asymptotic Preserving numerical scheme for the 2d Shallow Water model,
accounting for topography and friction source terms. To achieve this, following
the lines of [28] for the Telegraph Equations, Euler equations with high friction,
or the M1 model developed by Dubroca et al ([98]), we introduce a relevant
correction of some friction parameters in order to recover a discrete version
of the diffusive limit observed by the governing equations. The efficiency
of Asymptotic Preserving schemes has been highly pointed out in the above
references and we also aim at highlighting its benefits for the NSW equations.

We first approximate solutions of frictionless flows considering a suitable
formulation of the conservation laws, involving the water free surface and some
fractions of water to integrate topography variations [24]. As previously, the
discretization of the friction term relies on the use of a modified Riemann solver
used for the flux computation. The resulting scheme is then corrected to preserve
the late-time regime derived from the continuous equations. The numerical
approach is shown to be consistent, Θ-preserving, satisfies the C-property and
tolerates dry areas well. Additionally, the MUSCL reconstructions introduced
in II.3 can be easily adapted. These results are widely assessed with several
benchmark tests appropriately selected. In the presence of dry areas, special
attention will be paid to the wave front computation to evaluate the relevancy
and stability of the asymptotic preserving correction.

III.3.1 Frictionless scheme

In this section, for the sake of completeness, we expose the broad lines of
the well-balanced hydrostatic upwind scheme developed in [24] that will consti-
tute the basis of our future developments. Let us introduce the new variable
W = (η, ηu, ηv) and the following formulation of the NSW equations :

∂U

∂t
+∇.


χG(W)−




0 0
ghz

2
0

0
ghz

2





 = −gh




0
∂xz
∂yz


 , (III .29)
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=⇒ =⇒Ui−1 Ui Ui+1

∆x

=⇒ =⇒Ui Ui Uj(k)

δij(k) = |Tij(k)|/ℓij(k)
Figure III .22: Left and right Riemann states for the 1d and 2d schemes.

where χ =
h

η
and G, U are given by the set of primitive equations (I .1, I .2). We

consider again the dual mesh issuing from a triangulation T of the computational
domain. Same geometry and notations are used (Fig. I .2). As was the case for its
predecessor, the scheme’s conception relies on the use of a convex combination :

Un+1
i =

Λ(i)

∑
k=1

|Tij(k)|
|Ci|

Un+1
ij(k)

, (III .30)

where each contribution can be interpreted as coming from a 1d-like scheme (see
Fig. III .22) :

Un+1
ij(k)

= Un
i − ∆t

ℓij(k)

|Tij(k)|
[
φ(Ui,Uj(k),~nij(k))− φ(Ui,Ui,~nij(k))

]
+ ∆t

ℓij(k)

|Tij(k)|
Bij(k) ,

(III .31)
where:

• φ(Ui,Uj(k),~nij(k)) = Xij(k)G(Wi ,Wj(k),~nij(k)) .

• G = G(U−,U+,~n) denotes a numerical flux function for the approximation
of G.~n .

• Bij(k) is the discretization of the bed slope :

Bij(k) =
g

2

(
0

HiiHij(k)(Xij(k) − Xii)~nij(k)

)
. (III .32)

• Xij and Hij are given by the following transport relations :

Xij =

{
χn
i if Gh(Wi,Wj,~nij) ≥ 0 ,

χn
j otherwise. (III .33)

Hij =

{
ηi if Gh(Wi,Wj,~nij) ≥ 0 ,
ηj otherwise.

(III .34)

Remark III.3 .1. We recall that, as highlighted in [24], the NSW system (I .1) only
involves variations of the bed slope. The ground level can consequently be defined from
any reasonable reference. Thus, we suppose that the minimum value of z is positive
within the computational domain, giving sense to the definition of χ. For this we may be
compelled to introduce some vertical bottom translation in the experimental part.
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Remark III.3 .2. The evaluation of the numerical flux function G is classically based
on the use of an approximate Riemann solver in the normal reference associated with
the interface. Still observing the classical principles, such a function is supposed to be
consistent with the exact flux H and satisfy the conservativity property in the sense
of (I .22), (I .23). To be consistent with the precedent study, we will also denote λ±k
the maximum and minimum wave speeds involved in the Riemann solver during the
evaluation of the exchanging fluxes G(Ui,Uj(k),~nij(k)).

Using formula (III .30), we obtain, after straightforward computations involv-
ing discrete Green formula :

Un+1
i = Un

i −
∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)φ(Ui,Uj(k),~nij(k)) + ∆tBi , (III .35)

where

Bi =
Λ(i)

∑
k=1

ℓij(k)

|Ci|
Bij(k) . (III .36)

We can already emphasize that robustness and well-balancing properties are
straightly inherited from the 1d scheme. More precisely :

Proposition 7. We consider a numerical flux function G consistent with the exact flux
in the sense of (I .22), verifying the conservativity property (I .23). Assume that (Un

i )i∈Z

belongs to Θ. We consider the updated states (Un+1
i )i∈Z obtained with the scheme

(III .35). The following properties holds :

1 Robustness : under the following CFL condition :

∆t max
i∈Z , k∈Ki

ℓij(k)

|Tij(k)|
|λ±k | ≤

1
2
, (III .37)

supplemented by the following CFL restriction :

∆t max
i∈Z , k∈Ki

[ ℓij(k)

|Tij(k)|
(
max

(
0,Gh(Wi,Wj(k),~nij(k))

)
−min

(
0,Gh(Wi).~nij(k)

))]
< ηi ,

(III .38)

we have hn+1
i ≥ 0, for all i ∈ Z.

2 Well Balancing : assume uni = un
j(k)

= 0 and ηn
i = ηn

j(k)
= ηc for all k ∈ Ki. Then

un+1
i = 0 and ηn+1

i = ηc.

Proof. We consider the formulation (III .30, III .31), together with the robustness
and well balancing properties of the 1d scheme. See [24] for details. A complete
analysis will be conducted later, with the inclusion of friction.

Remark III.3 .3. Note that the time step limitation (III .38) can be interpreted as result-
ing from an analysis of the outflow and inflow parts of the numerical fluxes appearing in
the 1D scheme. Such a separation between outflow and inflow contributions is also per-
formed in [34], allowing to obtain the preservation of the water height positivity under
the so called "draining time" CFL.
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III.3.2 Friction scheme

We presently face the question of friction treatment. For the sake of clarity, we
consider theManning formulation (III .2a), whilemaking clear that the other ones
can be addressed that way. We consequently enrich the set of equations (III .29)
with the corresponding source term, recast under the following form :

E(U) = σ(R(U) −U) , (III .39)

where :

σ = σ(h) =
n2

hγ
, R(U) = t(h, qx − ‖q‖qx, qy − ‖q‖qy) . (III .40)

We follow again the ideas introduced in [28], modifying the wave structure of the
HLL Riemann solver, now expressed as follows :

ŨR(
x

t
,U−,U+) =





U− if
x

t
≤ s− ,

αU∗ + (1− α)R(U−) if min(0, s−) ≤ x

t
≤ min(0, s+) ,

αU∗ + (1− α)R(U+) if max(0, s−) ≤ x

t
≤ max(0, s+) ,

U+ if
x

t
≥ s+ ,

Here too, U∗ and s± stand respectively for the intermediate state and upper and
lower extremities of the dependency cone involved by the approximate Riemann
solver. Directly inspired from the strategy previously described, each convex
component (III .31) is now updated as follows :

Un+1
ij(k)

= Un
i −∆t

ℓij(k)

|Tij(k)|
(

αkφ(Ui,Uj(k),~nij(k))− αc
kφ(Ui,Ui,~nij(k))

)

+ ∆t
ℓij(k)

|Tij(k)|
(
(1− αc

k)F
c
k + (1− αk)Fk

)
+ ∆t

ℓij(k)

|Tij(k)|
Bij(k) ,

(III .41)

where we have set :

Fck = max(0, sc,−k )
(
Ui − R(Ui)

)
+max(0, sc,+k )

(
R(Ui)−Ui

)
+ φ(Ui,Ui,~nij(k)) ,

Fk = min(0, s−k )
(
Ui − R(Ui)

)
+min(0, s+k )

(
R(Ui)−Uj(k)

)
− φ(Ui,Ui,~nij(k)) ,

(III .42)
Then, getting back to the convex combination (III .30), and gathering the bed
slope contributions (III .36), we obtain :

Un+1
i = Un

i −
∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)

(
αkφ(Ui,Uj(k),~nij(k))− αc

kφ(Ui,Ui,~nij(k))
)

+
∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)Fk + ∆tBi ,

(III .43)
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with
Fk = (1− αc

k)F
c
k + (1− αk)Fk . (III .44)

Equivalently, for consistency reasons we have the alternate writing of (III .41) :

Un+1
ij(k)

= Un
i −∆t

ℓij(k)

|Tij(k)|
(

αkφ(Ui,Uj(k),~nij(k))− αkφ(Ui,Ui,~nij(k))
)

+ ∆t
ℓij(k)

|Tij(k)|
(
(1− αc

k)E
c
k + (1− αk)Ek

)
+ ∆t

ℓij(k)

|Tij(k)|
Bij(k) ,

(III .45)

with

Ec
k = max(0, sc,−k )

(
Ui − R(Ui)

)
+max(0, sc,+k )

(
R(Ui)−Ui

)
,

Ek = min(0, s−k )
(
Ui − R(Ui)

)
+min(0, s+k )

(
R(Ui)−Uj(k)

)
,

(III .46)

leading to :

Un+1
i = Un

i −
∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)

(
αkφ(Ui,Uj(k),~nij(k))− αkφ(Ui,Ui,~nij(k))

)

+
∆t

|Ci|
Λ(i)

∑
k=1

ℓij(k)Ek + ∆tBi ,

(III .47)

where we have set :
Ek = (1− αc

k)E
c
k + (1− αk)Ek .

Note that formulations (III .43) and (III .47) may both be useful in practice.
Schemes of the form (III .43) are in general designed for asymptotic preserving
methods [22, 28, 48, 47]. Its features will be effectively exploited later to derive
matching conditions with regard to the diffusive limit of the NSW equations. On
the other hand, (III .47) is more easy to implement and is intended to serve as a
simple support to illustrate the main properties.

We now state that this use of weighted fluxes does not compromise the
properties previously established :

Proposition 8. We consider a numerical flux function G consistent with the exact flux
in the sense of (I .22), verifying the conservativity property (I .23). Assume that (Un

i )i∈Z

belongs to Θ. We consider the updated states (Un+1
i )i∈Z obtained with the scheme

(III .47).

1 Under the CFL condition (III .37), supplemented by the following CFL restriction :

∆t max
i∈Z , k∈Ki

[ℓij(k)αk

|Tij(k)|
(
max

(
0,Gh(Wi,Wj(k),~nij(k))

)
−min

(
0,Gh(Wi).~nij(k)

))]
< ηi ,

(III .48)

we have hn+1
i ≥ 0, for all i ∈ Z.
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2 Well Balancing : assume un
i = un

j(k)
= 0 and ηn

i = ηn
j(k)

= ηc for all k ∈ Ki. Then

un+1
i = 0 and ηn+1

i = ηc.

Proof. Concerning the well balancedness result, starting from Wi = Wj(k) =
t(ηc, 0, 0), it can be readily appreciated that φ(Ui,Ui,~nij(k)) = φ(Ui,Uj(k),~nij(k))
and Bij(k) = 0 for all k = 1, · · · ,Λ(i), returning to formulation (III .30, III .45). It
results Un+1

ij(k)
= Un

i for all k and at last the preservation of the initial static state.

Let’s now focus on the robustness property. For the sake of simplicity, we
denote Ghk := Gh(Wi,Wj(k),~nij(k)). According to the definition (III .33) and the
consistency relation (I .22), we write :

φh
k := φh(Ui,Uj(k),~nij(k)) = Xij(k)Ghk =

1
2
(χi + χj(k))Ghk −

1
2
(χj(k) − χi)|Ghk |

= χi
1
2
(Ghk + |Ghk |) + χj(k)

1
2
(Ghk − |Ghk |) ,

φc,h
k := φh(Ui,Ui,~nij(k)) = Xiiηiui = hui .

Thereafter, remembering that the current scheme is built on formulas (III .30,
III .45) :

hn+1
ij(k)

= hni −
∆t

δij(k)

[
αkφ

h
k − αkφ

c,h
k

]

= χj(k)
∆tαk

2δij(k)
(|Ghk | − Ghk ) +

[
hni − χi

∆tαk

2δij(k)
(Ghk + |Ghk |) +

∆tαk

δij(k)
hui

]
.

The first term of the right member being positive, we focus on the positivity of
the second one, equivalent to the following condition, after factorization by χi =
hni /ηn

i ≥ 0 :

ηn
i −

∆tαk

δij(k)

(1
2
(Ghk + |Ghk |)− ηiui

)
≥ 0 . (III .49)

Under (III .48), we have (III .49). The proof is complete.

We investigate now the question of a relevant choice for the parameters αk,
αc
k. As previously it is mainly governed by consistency relations. From this per-

spective, and to simplify the subsequent developments, we consider once again
the Rusanov approximate flux function (I.3.1 ), that can be written, for the primal
variables :

G(Ui,Uj(k),~nij(k)) =
1
2

(
G(Ui).~nij(k) + G(Uj(k)).~nij(k)

)
− ak

2

(
Uj(k) −Ui

)
,

where ak = max
(
|ui.~nij(k)|+

√
ghi, |uj(k).~nij(k)|+

√
ghj(k)

)
.

(III .50)
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Since from now on s+k = −s−k = ak, we have the following simplifications in
(III .42, III .46) :

{
Fck = ack

(
R(Ui)−Ui

)
+ φ(Ui,Ui,~nij(k))

Fk = ak
(
R(Ui)−Ui)

)
− φ(Ui,Ui,~nij(k))

,
{

Ec
k = ack

(
R(Ui)−Ui

)

Ek = ak
(
R(Ui)−Ui

) .

(III .51)
As stated in the following lines, a possible choice for the friction parameters is
then given by :

αc
k =

2Λ(i)ack

2Λ(i)ack + σc
k

|Ci|
ℓij(k)

, σc
k = σ(Ui) ,

αk =
2Λ(i)ak

2Λ(i)ak + σk
|Ci|
ℓij(k)

, σk =
n2

(hγ
i + h

γ
j(k)

)/2
.

(III .52)

Proposition 9. The term
1
|Ci|

Λ(i)

∑
k=1

ℓij(k)Ek appearing in the scheme (III .47) is consistent

with the exact friction source term σ(R(U) −U).

Proof. Thee proof is almost the same as in Proposition 6. Basic calculations yield :

ℓij(k)

|Ci|
(1− αc

k) =
σc
k

2Λ(i)ack + σc
k

|Ci|
ℓij(k)

,

ℓij(k)

|Ci|
(1− αk) =

σk

2Λ(i)ak + σk
|Ci|
ℓij(k)

.

According to (III .51), we hence have :

lim
di→0

ℓij(k)

|Ci|
(1− αc

k)E
c
k = lim

di→0

ℓij(k)

|Ci|
(1− αk)Ek =

σ(Ui)

2Λ(i)
(R(Ui)−Ui) ,

to finally obtain :

lim
di→0

1
|Ci|

Λ(i)

∑
k=1

ℓij(k)Ek =
Λ(i)

∑
k=1

[σ(Ui)

2Λ(i)
(R(Ui)−Ui) +

σ(Ui)

2Λ(i)
(R(Ui)−Ui)

]

= σ(Ui)(R(Ui)−Ui) .

Let us remark that this consistency result also stands for
1
|Ci|

Λ(i)

∑
k=1

ℓij(k)Fk in

(III .43). We also point out that the numerical constraints entailed by the pos-
sible divisions by h brought by friction can be avoided in the scheme (III .43) (or
equivalently (III .47 )) provided an appropriate rewriting of (III .52).
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III.3.3 Asymptotic Preserving issues

In this section we bring the asymptotic preserving correction announced in the
introduction. It should be useful to note that most of theoretical and numerical
studies have been developed in a 1d framework and marginal consideration has
been given to the particular context of unstructured triangulations. For that pur-
pose, the novelty lies in the construction of a numerical scheme which is able to
degenerate toward an appropriate discrete version of the diffusive regime sat-
isfied by the late-time solutions of the 2d Shallow Water system. We highlight
that numerical schemes taking these aspects under consideration can possibly
demonstrate very different behaviours compared to traditional approaches. In
the current context, this may take an important dimension in several contexts
of interest, notably when dry areas are involved, in which case the asymptotic
regime is immediately reached. Such particular situations will be explored in the
experimental part (Section III.3.4 ).

III.3.3.a Asymptotic regime for NSW

Firstly, we identify the late-time behaviour satisfied by the solutions of the
NSW equations. Formally, we introduce a rescaling parameter ǫ, intended to van-
ish, in the set of equations (I .1), leading to the following set of relaxed equations
(see also [28, 25]) :

ǫ∂th
ǫ + ∂xq

ǫ
x + ∂yq

ǫ
y = 0 , (III .53)

ǫ∂tq
ǫ
x
+ ∂x

(
(qǫ

x)
2/hǫ +

1
2
g(hǫ)2

)
+ ∂y

(
qǫ
xq

ǫ
y/h

ǫ
)
= −ghǫ∂xz− g

̺2(hǫ)

ǫ2
‖q‖qǫ

x ,

(III .54)

ǫ∂tq
ǫ
y + ∂x

(
qǫ
xq

ǫ
y/h

ǫ
)
+ ∂y

(
(qǫ

y)
2/hǫ +

1
2
g(hǫ)2

)
= −ghǫ∂yz− g

̺2(hǫ)

ǫ2
‖q‖qǫ

y .

(III .55)

Herein, we rewrite the friction term setting g̺2(h) =
n2

hγ
. We highlight that

the stiff relaxation source term involved in (III .54)-(III .55) introduces an addi-
tional scale in the problem, defined in accordance with the specific nonlinear-
ity of the friction source term (quadratic function of q). This system enters the
framework of the generalized analysis proposed in [25], that encompasses mod-
els with strong nonlinearities in the relaxation and in the following, we focus on
its asymptotic behavior in the singular regime ǫ → 0. In the spirit of Chapman-
Enskog expansions of the kinetic theory [64], we perform a formal expansion of
each component of the variable vector :

Uǫ = U0 + ǫU1 +O(ǫ2) . (III .56)

Considering that equations (III .54) and (III .55) have to be relevant whenever
ǫ tends to zero, we necessarily have q0x = q0y = 0, and the following relations
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satisfied by the discharge components :

gh0∂x(h
0 + z) = −g̺2(hǫ)‖q‖q1x ,

gh0∂y(h
0 + z) = −g̺2(hǫ)‖q‖q1y .

After some algebraic manipulations, we obtain :

q1x = −
√
h0

̺(hǫ)

∂x(h0 + z)√
‖∇(h0 + z)‖

,

q1y = −
√
h0

̺(hǫ)

∂y(h0 + z)√
‖∇(h0 + z)‖

,

so that the Chapman-Enskog expansion in (III .53) yields the following diffusive
regime :

∂th− div
( √

h

̺(h)
√
‖∇η‖

∇η
)
= 0 , (III .57)

which is nothing but the 2d version of the equations obtained in [25], including
bathymetry.

III.3.3.b Asymptotic Preserving Correction

We recall that we aim at building a friction scheme designed to restore the
asymptotic diffusive regime satisfied by the system (III .1,III .2a), that is (III .57).
To access such an issue, we slightly modify the formulation of the source pro-
posed in (III .39), writing :

E(U) = σ̂(R(U)−U) , (III .58)

where

σ̂ = σ + σ , R(U) =

(
σ

σ̂
R(U) +

σ

σ̂
U

)
, (III .59)

and σ, R are given by (III .40). The free parameter σ is introduced to reach the
desired asymptotic property, and its choice will be discussed later on. Still em-
ploying the fluxes (III .50), the friction parameters in the scheme (III .43) are this
time expressed as follows :

αc
k =

2Λ(i)ack

2Λ(i)ack + σ̂c
k

|Ci|
ℓij(k)

, αk =
2Λ(i)ak

2Λ(i)ak + σ̂k
|Ci|
ℓij(k)

, (III .60)

and

Fck = ack
(
R(Ui)−Ui

)
+ φ(Ui,Ui,~nij(k)) , Fk = ak

(
R(Ui)−Ui)

)
− φ(Ui,Ui,~nij(k)) .

(III .61)
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Noting that we have R(U) −U =

(
0

−σ
σ̂‖q‖q

)
, we obtain from (III .44) the fol-

lowing expression for the components of Fk =
t(F h

k ,F
q
k ) :

F h
k = (αk − αc

k)φ
h(Ui,Ui,~nij(k)) , (III .62)

Fq
k = − |Ci|

ℓij(k)

[
ack σc

k

2Λ(i) ack + σ̂c
k |Ci|/ℓij(k)

+
ak σk

2Λ(i) ak + σ̂k|Ci|/ℓij(k)

]
‖qi‖qi +

(αk − αc
k) φq(Ui,Ui,~nij(k)) . (III .63)

Considering the rescaling ∆t ←− ∆t/ǫ , σk ←− σk/ǫ , σk ←− σk/ǫ, where ǫ is
devoted to tend to zero, a brief study of the term (III .63) gives qi = 0. Denoting
αǫ
k the corresponding rescaled friction parameters (III .60), we also have :

∆t

ǫ
αǫ
k −→

ǫ→0
∆t

2Λ(i) ak
σ̂k|Ci|/ℓij(k)

.

Consequently, at the fully discrete level, the asymptotic behaviour of the water
height issuing from (III .41) reads :

hn+1
ij(k)

= hni −
∆t

δij(k)

ℓij(k)

|Ci|
[2Λ(i) ak

σ̂k
φh(Ui,Uj(k),~nij(k))−

2Λ(i) ack
σ̂c
k

φh(Ui,Ui,~nij(k))
]
|q=0

.

(III .64)
We point out that this formula also holds for varying bathymetry profiles. Since
the discharge vanishes as ǫ tends to zero (and so does the velocity), the choice of
Lax Friedrichs-type fluxes yields :

φh(Ui,Uj(k),~nij(k))|u=0 = Xij(k)Gh(Wi,Wj(k),~nij(k))|u=0 = −
ak
2
Xij(k)(ηj(k) − ηi) ,

φh(Ui,Ui,~nij(k))|u=0 = 0 ,

and we reach the following limit equation satisfied by the water height :

hn+1
i =

Λ(i)

∑
k=1

|Tij(k)|
|Ci|

hn+1
ij(k)

,

hn+1
ij(k)

= hni +
∆t

δij(k)

ℓij(k)

|Ci|
Xij(k) Λ(i) (ak)

2

σ̂k
(ηj(k) − ηi) ,

that is :

hn+1
i = hni +

∆t

|Ci|
Λ(i)

∑
k=1

(ℓij(k))
2

|Ci|
Xij(k) Λ(i) (ak)

2

σ̂k
(ηj(k) − ηi) . (III .65)

Now, given an appropriate scheme for the diffusive limit (III .57), one can extract
from (III .65) matching conditions on σ̂k so that the current approach degenerates
toward a discrete version of the asymptotic regime.
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Remark III.3 .4. Provided the modifications (III .60, III .61), the new friction scheme
with asymptotic preserving abilities is still given by (III .43).
From now, the crucial underlying matter concerns the Finite Volume discretization

of the diffusive limit (III .57). Given the complex nature of the continuous equations,
many numerical constraints have to be taken into account, and the design of a suitable
approximation appears as a complex problem. Amongst others, this discretization should
yield σ̂k > 0 to give sense to the previous lines, satisfy the maximum principle, and fulfil
the requirements attached to the definition of α (see III .17). This is indeed an important
and rather difficult problematic, deviating from the original purposes and competences
mobilized in the present study. In this work, though such an objective has not been
rigorously achieved, we made our possible to make this approximation relevant, with
the use of an upwind scheme enabling to deduce from (III .65) positive values for σ̂k in
practice. Our first numerical results seems to fit well with the observations arising from
the 1d AP numerical studies.

Remark III.3 .5. The MUSCL extensions exposed earlier can equally be employed here
to reach better level accuracy. For any edge Γij(k), the preliminary reconstruction is per-
formed between the states Ui and Uj(k), providing new values for water height, free sur-
face and discharge. They are subsequently used for the evaluation of the additional vari-
ables Xij(k), Hij(k) and injected in the convective fluxes and source terms. The arguments
put forward to conclude on the C-property of the pre-balanced FVM can easily be reused
in this context. As far as the the preservation of the water height positivity is concerned,
note that the technique introduced by Berthon in [21] and used in the previous part can
successfully be applied in the frictionless case. Again, the technical aspects are very sim-
ilar and we do not give further details. We acknowledge here that the presence of friction
makes difficult the proof of robustness for MUSCL schemes, since the water height is
also affected here. This points may probably be technic-dependant and require further
investigations. They are left for future works.

III.3.4 Numerical validations

In this section we present some numerical benchmark tests expected to show
the abilities of this new friction scheme. Keeping in mind one of the objectives
for which it has been originally designed, full consideration will be given to the
stability performances, particularly in the neighbourhood of dry cells. Also we
will pay special attention to applications involving dominant resistance effects,
considering run-up on dry beds and/or strong friction laws with high roughness
parameter for instance. In these contexts, the scheme tends to reach its limit
behaviour, and the characteristics of the asymptotic correction are expected
to emerge over time. All the computations are performed using an explicit
RK2 scheme for the time discretization (I .50). We distinguish corrected and
uncorrected schemes by U-HY AP scheme and U-HY NAP scheme respectively
(U-HY standing for Upwind Hydrostatic, in reference to the original work [24]).
Finally, when nothing else is mentioned, we consider a Manning formulation for
the resistance term.

Concerning comparisons against the pre balanced friction scheme (simply
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Gauge Ref PB U-HY AP U-HY NAP
6 10 10 11 10
7 102 80 91 90
8 182 192 188 184
9 263 260 279 274
10 404 428 440 436
11 600 578 608 602
12 845 847 810 806
13 972 969 928 924
14 1139 1174 1176 1167

Table III .1: Malpasset dam break : Arrival time of the flood wave front at gauges
6 to 14 for our different friction schemes.

denoted PB in what follows), all the tests previously run have been performed
again. The schemes appears are very close, regardless of whether it is assessed
in terms of computational cost, accuracy or even implementation efforts. We
consequently do not reproduce the whole set of experiments. We just stress out
that the most significant discrepancies appeared throughout the Malpasset test
case, for which we have reported some numerical results in Tab. III .1. That said,
these data can be considered as satisfying when compared with other numerical
predictions that can be found in the literature. Note that while the differences
are small on the total time scale, we observe that carrying out the AP correction
tends to slow down the evolution of the wave front in the floodplain. This typical
behaviour will be clearly confirmed throughout a relevant selection of numerical
tests.

As the previous tests were not intended to exhibit the possible advan-
tages of the asymptotic preserving property, part of the following validations
are built in this perspective. We also propose another series of numerical
experiments to validate the general features of the hydrostatic upwind friction
scheme.

III.3.4.a Accuracy validation

We perform this test to study the accuracy of the first andMUSCLM2 schemes,
as well as their behaviour for increasing values of n. Initially, 1d and 2d versions
have been proposed by Xing et al [286]. This test case has also been adapted to
evaluate the scheme developed in [27] for flows with friction, and we choose a 2d
extrapolation. The channel dimensions are fixed to 1× 0.2, and we use a regular
mesh with ∆x = ∆y = (1/60)m. Periodic boundary conditions are set both on
left and right side regions. The topography is defined by the following function :

z(x, y) = sin2(πx),
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Figure III .23: Accuracy validation : Time series of the L∞ norm of the discharge
for increasing values of κ = n2. AP scheme (blue) and NAP scheme (red).

and the initial flow vector is :

h(x, y, 0) = 5+ exp(cos(2πx)) ,
qx(x, y, 0) = sin(cos(2πx)) ,
qy(x, y, 0) = 0 .

The time evolution of the L∞ norm of the x-direction discharge for several
values of n is shown in Fig. III .23. We can note a very good agreement with
the numerical predictions provided by the 1d scheme [27] for both AP and
NAP scheme, even considering high values of n. The current friction approach
exhibits good stability properties and, in particular, is able to account for varying
bottoms whenever the friction terms are dominant.

As for the convergence rate analysis, several tests are performed with
different values of the roughness coefficient. For a given n, a reference solution is
computed with the MUSCL scheme on a 20 865 nodes regular mesh until t=0.1s,
avoiding this way appearance of shocks, and then run simulations on a mesh se-
ries with increasingly refined triangulations: ∆x = ∆y = 1/20, 1/40, 1/80, 1/160
and 1/320m. Our numerical results are compared with the reference, which
stands for an exact solution. Fig. III .24 shows the evolution of the L1 error on
h and normal discharge qx with respect to the mesh refinement for first and
high order approaches in the case n=1, in a log-log scale. As shown in Tab.
III .2, slopes of 0.9 and 2 are respectively reached up to n=10, which is very
respectable for the description of a flow mainly controlled by friction effects,
notably on unstructured grids (see [34, 91]). Note that similar convergence rates
can also be observed in [181] in the frictionless case. If the order of convergence
is significantly improved up to n=50 here, we observe that the benefits of the
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Figure III .24: Accuracy validation : L1 error for h (left) and qx (right) for increasing
values of ∆x (log-log scale).

MUSCL reconstruction tend to attenuate with very stiff perturbations.

III.3.4.b Dam break with friction

This test is destined to highlight the possible influence of the asymptotic cor-
rection as the effects of the physical resistance becomes dominant. We pro-
ceed to a series of simulations of dam break problems in a rectangular channel
Ω = [−10, 10]× [−2, 2], on a flat bottom. The computational domain is initially
meshed with a regular triangulation of 5 884 nodes. The dam is supposed to be
located at x=0 along the y direction. the initial condition is :

h(x) =

{
hg if x < 0 ,
hd otherwise ,

with hg > hd . (III .66)

The first test consists of a non physical case : we deliberately choose an excessive
friction parameter n, and study the results given by the AP and NAP schemes.
As the AP scheme is precisely designed to degenerate toward the discrete version
of the asymptotic regime (III .57), the corresponding approximations should get
closer as the time and the friction parameter increase. We set n = 25, hg = 2m,
hd = 1m, and study the evolution of the flow until t = 9s. Fig. III .25 shows a
middle section of the water height for both corrected and uncorrected schemes
at the end of the simulation, put in comparison with the scheme used for the
diffusive limit. We can clearly observe the impact of the modification on the limit
behavior. Taking the limit regime as a reference, L1 and L∞ errors are quantified
and plotted in Fig. III .26. The trends emerging from this complementary error
study clearly corresponds to the intended outcomes, confirming the pertinence
of the correction.

We consider now more moderate values of the friction parameter, with
the intention to identify the AP scheme’s specificities in contexts more in line
with real situations. First, we enforce the same left and right initial values for
the water elevation, with this time n = 0.1. Considering the downstream water
depth involved in this test, the asymptotic regime is far from being reached
during the simulation, and the effects of the asymptotic correction are expected
to be insignificant. Sections of the water surface profile along the x-direction are
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∆x 1/20 1/40 1/80 1/160 1/320 order

n=0 1st order
h 1.9e-2 9.7e-3 5.3e-3 2.8e-3 1.5e-3 0.9
q 2.6e-1 1.5e-1 8.8e-2 4.7e-2 2.4e-2 0.9

MUSCL
h 3.5e-3 8.7e-4 1.9e-4 4.6e-5 1.0e-5 2.1
q 5.9e-2 1.4e-2 3.2e-3 8.2e-4 2.3e-4 2.0

n=1 1st order
h 1.9e-2 9.7e-3 5.3e-3 2.8e-3 1.5e-3 0.9
q 2.6e-1 1.5e-1 8.8e-2 4.7e-2 2.4e-2 0.9

MUSCL

h 3.5e-3 8.7e-4 1.9e-4 4.6e-5 1.0e-5 2.1
q 5.9e-2 1.4e-2 3.2e-3 8.2e-4 2.3e-4 2.0

n=10 1st order
h 1.8e-2 9.1e-3 4.9e-3 2.6e-3 1.4e-3 0.9
q 2.4e-1 1.5e-1 8.3e-2 4.4e-2 2.3e-2 0.8

MUSCL

h 3.2e-3 7.9e-4 1.8e-4 4.4e-5 1.0e-5 2.1
q 5.5e-2 1.3e-2 3.0e-3 8.1e-4 2.4e-4 2.0

n=25 1st order
h 1.3e-2 7.0e-3 3.6e-3 1.9e-3 9.8e-4 0.9
q 2.1e-1 1.3e-1 6.8e-2 3.6e-2 1.9e-2 0.9

MUSCL

h 1.9e-3 6.3e-4 1.9e-4 6.0e-5 1.7e-5 1.7
q 4.1e-2 1.1e-2 3.9e-3 1.3e-3 3.6e-4 1.7

n=50 1st order
h 7.9e-3 4.8e-3 2.4e-3 1.2e-3 6.5e-4 0.9
q 1.6e-1 1.0e-1 5.5e-2 3.0e-2 1.6e-2 0.8

MUSCL

h 1.4e-3 6.4e-4 2.7e-4 1.1e-4 3.7e-5 1.3
q 3.7e-2 1.6e-2 7.4e-3 2.8e-3 8.9e-4 1.4

n=100 1st order
h 6.7e-3 4.6e-3 2.8e-3 1.5e-3 8.3e-4 0.8
q 1.2e-1 1.0e-1 5.5e-2 3.1e-2 1.7e-2 0.7

MUSCL

h 2.1e-3 9.8e-4 5.3e-4 2.4e-4 8.3e-5 1.2
q 1.0e-1 3.9e-2 1.8e-2 7.5e-3 2.5e-3 1.3

Table III .2: Accuracy validation : Convergence analysis - L1 numerical error
quantification and corresponding convergence rates for increasing Manning co-
efficients.
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Figure III .25: Dam break with friction - test 1 : n = 25, hg = 2m, hd = 1m. Mid-
dle section of the water depth profiles at t=9s - Comparison with the asymptotic
regime.
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Figure III .27: Dam break with friction - test 2 : n = 0.1, hg = 2m, hd = 1m. Middle
section of the water depth profiles for both AP and NAP schemes at times t=0.5,
1, 1.5 and 2 s.

available on Fig. III .27 at several times of the simulation. And indeed, AP and
NAP schemes provide very close results. The curves are almost undistinguish-
able at this level of zoom. These observations tend to confirm the worthlessness
of the correction when the water height levels involved in the simulation are
relatively high, or when the friction term is not particularly stiff.

Before observing the impact in a dry bed context, we suggest an inter-
mediate test, keeping hg = 2m and n = 0.1, and enforcing hd = 0.1m. As
previously, we follow the evolution of the predicted flood wave elevation given
by the two schemes. Results are plotted in Fig. III .28, highlighting some
discrepancies. We reach a difference of 15cm between the two predicted fronts at
time t = 2s. This time, considering the low value of hd, both schemes get closer
to their asymptotic behaviour in the vicinity of the front location : the use of an
asymptotic preserving scheme seems to be necessary to have a better evaluation
of the flood wave velocity.

For the last configuration, we set hd = 0m. In this dry context, the
asymptotic regime is immediately reached in the right side of the domain. We
observe similar results than those provided by test 3 (Fig. III .29), with a stronger
impact of the correction : the location of the two fronts differs this time from
almost Dx = 30cm at the end of the simulation.

We finally study the behaviour of the AP and NAP schemes for different
values of hg : 1, 2, 3, 4 and 5m. We also improve the quality of the mesh, working
with a 20 890 nodes regular triangulation. On Fig. III .30 we can follow the
evolution of the wet/dry interface location (left) for both AP and NAP schemes,
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Figure III .28: Dam break with friction - test 3 : n = 0.1, hg = 2m, hd = 0.1m.
Middle section of the water depth profiles for AP and NAP schemes at times
t=0.5, 1, 1.5 and 2 s.
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supplemented by a visualization of the resulting gap Dx with respect to time
(right) until t = 2s. Numerical results clearly show that the impact of the
correction is all the more pronounced since the initial jump is important. We
also emphasize that the amplitude of the gap Dx does not decrease as the mesh
is refined : the loss of accuracy related to the non consideration of the limit
regime restoration can definitively not be offset by an increase of the number of
nodes. Note that employing the pre balanced friction scheme instead of the NAP
approach we obtained similar observations. The use of an asymptotic preserving
scheme seems to describe slightly different behaviours when compared to
traditional approaches in such a context.

III.3.4.c Dam break in a double-slope basin

In the subsequent application we consider a domain with closed boundaries
formed by a rectangular retention basin and two parallel sloping channels, sep-
arated by a central ridge line, as represented on Fig. III .31. The topography is
given by the following formula :

z(x, y) =





c(x, y) + 0.5 exp
(
− 9

(
(x− xA)

2 + (y− yA)
2
) )

if x < xA ,

c(x, y) + 0.5 exp
(
− 9

(
(y− yA)

2
) )

otherwise ,

where

c(x, y) = cm(x) + 0.5 (cM(x)− cm(x))
(
tanh (5(y− yA)) + 1

)
,

cm(x) = min(z0, z0 − s (x− d)) , cM(x) = max(z0, z0 + s (x− d)) .
(III .67)

The constants are taken to z0 = 0.5, d = 1.5m, the slope s is fixed to 1/20,
and the critical point A announcing the channels separation is located at
(xA, yA) = (2.5, 1.5). This test is conceived to express the possible nuances that
might be brought by the AP correction in a more difficult context, introducing
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Figure III .31: Dam break in a double-slope basin : Details on the topography and
dimensions of the computational domain.

rapidly varying bottom in a 2d frame. We hence consider a water retention of
0.5m total height on the platform 0 ≤ x ≤ 1.5, and assume dry the rest of the
basin. We then imagine a sudden failure in the dam structure, modelized by an
initial discontinuity along the cross section y = 1.5m. We make consecutive uses
of the PB scheme, Upwind Hydrostatic AP and NAP approaches, for different
values of Manning roughness parameter n. An unstructured triangulation
composed of 15 120 elements is used. We underscore that the access to pertinent
comparisons for our friction approaches is a very challenging objective here,
conditioned by the capacity to describe the whole complexity of the propagation.
The flow definitely mobilises all the typical difficulties encountered in the
description of hydrodynamic processes, with dry areas, presence of sophisticated
mechanisms such as hydraulic jumps or multiple reflections of different origins,
stiff source terms and at last convergence toward a motionless steady state
with emerging slopes. For the first simulation we are opting for a moderate
perturbation, taking n = 0.002.

We can observe on Fig. III .32 some free surface profiles taken at regu-
lar time intervals along the two cross sections y = 0.75 and y = 2.25 (left), as
well as the corresponding 3d views (right). The initial discontinuity is correctly
captured on the platform. The resulting advancing front of water subsequently
splits itself in two parts after reaching the separating point (t=0.5s), giving
rise to a circular reflected wave, observable on the second picture (t=1s), and
swiftly partially returned by the lateral walls. As a result, the evolution on
the upward and downward dry slopes is perturbed by secondary waves that
significantly enrich the flow structure, and give an additional impulse to the
motion. In spite of this tricky context, no spurious oscillations and instabilities
were identified throughout the simulation. As expected according to the timid
calibration of the friction terms, the three schemes under consideration provide
very similar results, particularly as far as concerns the advancing water front
position. These numerical data validate a good overall reproduction of the flow
structure, and strongly value the general capacities of the different approaches
that are implicated. After reaching the external boundaries, the two wave fronts
are abruptly pushed in the opposite direction, and it follows a staggered arrival
of the water fronts at the platform, due to the opposite slopes. The flow acquires
then even more complicated characteristics. During all the simulation, we
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Figure III .32: Dam break in a double-slope basin : Free surface profiles at several
times for n = 0.002. Blue profiles correspond to the positive slope (section y
=2.25m), and red ones to the negative slope (section y=0.75).
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Figure III .33: Dam break in a double-slope basin. Motionless steady state.

hence are in presence of convoluted processes, made of multiple interactions
with the slopes, complex exchanges on the left sector, and reflections on the
walls. Therefore, damped by friction, the motion progressively decays up to the
apparition of a rest state. This equilibrium, depicted in Fig. III .33 has always
been numerically restored, confirming that the presence of friction in now way
alters the C-property. Using the same mesh and CFL, we now increase the
roughness coefficient, setting n = 0.02, corresponding to the order of magnitude
of realistic applications. Here, friction terms tend to take a pronounced role in
the flow behaviour. Thus, more noticeable divergences between corrected and
uncorrected approaches are expected. These discrepancies indeed principally
appear on the moving boundary interface for both up and down slopes, after
a sufficient time of observation (Fig. III .34). While the other schemes produce
again very similar approximations, the asymptotic correction inhibits somewhat
more the flow progression. These results are in good accordance with those
previously obtained for the other dam break problems on flat bottom. If we
now double the roughness coefficient, one can note that the impact of the AP
correction may not only provide a re-adjustment of the water front location, but
also possibly entail light modifications on the overall flow structure (Fig. III .35).
Again, the numerical approaches demonstrate strong stability abilities, and the
convergence toward the static equilibrium is observed.

III.3.4.d Oscillatory flow with friction in a parabolic basin

We propose now to work on the 2d extrapolation of Thacker’s parabolic test
case introduced in [282]. There are very few analytic solutions for 2d fric-
tion flows in the literature and for this, since their enhancements mentioned in
§III.2.3.b , the Thacker’s cases are attracting even higher interest. As a matter of
fact, we can assess the capacity of our scheme in describing perturbed flows in a
real two dimensional framework, involving at the same time unstructured mesh,



120 CHAPTER III . FRICTION TREATMENT

Figure III .34: Dam break in a double-slope basin. Free surface profiles at several
times for n = 0.02.
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Figure III .35: Dam break in a double-slope basin. Free surface profiles at several
times for n = 0.04.
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Figure III .36: Oscillatory flow with friction in a parabolic basin : Free surface
profiles at several times during the revolution process, and comparison with the
analytic solution.

dry cells and non trivial topography. The extended solutions are :




η(x, y, t) = h0 −
B2

2g
e−κt − B

g
e−κt/2

(κ

2
sin(st) + s cos(st)

)
x

−B

g
e−κt/2

(κ

2
cos(st) − s sin(st)

)
y ,

u(t) = Be−κt/2sin(st) ,

v(t) = −Be−κt/2cos(st) ,

(III .68)

and the shoreline location is :

x(t) =
a2

2gh0
e−κt/2

(
− B s cos(s t)− 1

2
κBsin(s t)

)
± a . (III .69)

In this test, the constants are the same as in the frictionless case (see test II.4.4 ),
for which we recall that the solution consists of a planar free surface revolving
within the basin with an half-period of 672s. The linear friction coefficient is set to
κ = 0.002. Considering here resistance effects, the energy dissipation is obviously
expected to have an impact on the amplitude of the periodic regime. We show on
Fig. III .36 some 2d views of the free surface along the middle section at half, one
an two periods, supplemented by a comparison with the exact solution. We can
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Figure III .37: Oscillatory flow with friction in a parabolic basin : Time evolu-
tion of the x-direction velocity (left) and shoreline location (right) - Analytic vs
numeric.

observe an accurate description of the flow evolution, and a clear difference with
the profiles depicted at the same moments in absence of resistance (Fig. II .20).
After four periods, the flow is almost at rest, as evidenced by the time history
of wet/dry front location (Fig. III .37) (right), also properly tracked. Again, in
accordance with the theoretical solution, the free surface stays perfectly planar
during the entire simulation time, notably in the neighbourhood of dry areas.
Numerical and theoretical values for the x−velocity component at point (1 000,0)
are taken over a four period simulation and depicted on Fig. III .37 (left), allowing
to follow the decay of the flow motion over time. Once again we can observe a
reasonable correspondence between predicted and exact values.

III.3.4.e Dam-break flow over two frictional humps

We continue the exploration of the friction scheme’s abilities considering the 1d
dam break experiment presented in [13]. The basin is 7m length and its width is
fixed to 1m for purpose of a 2d application. Details on the topography are given in
Fig. III .38. In the physical model the base of the reservoir is located in the middle
of the first plane area, that is x = 2.25m, and the initial upstream free surface is set
to 0.5m. AManning roughness coefficient n = 0.01 is imposed. Computations are
run on a regular triangulation made of 5 901 vertices, corresponding to a space
step ∆x = ∆y = 0.025. Reflective conditions are set at the lateral and upstream
boundaries, and free outflow is assumed downstream.

Though stemming from a 1d problem, this test deals with quite subtle issues
that are not obvious. It should be noted, indeed, the abrupt topography variations
and entailed reflections, put together with the presence of dry bed, as well as the
relative high roughness value that controls the flow. These different matters req-
uisition all the capabilities of the numerical model, making this test particularly
interesting to evaluate a friction approach.

On Fig. III .39 we can focus on the first steps of the propagation. It transpires
that the first set of reflections is properly described. Computations on dry areas
are very well handled in spite of being perturbed by resistance terms. Approx-
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Figure III .40: Dam-break flow over two frictional humps : Time history of the
free surface.

imatively around t=300, a lake at rest steady state is reached within the left por-
tion of the domain. Very similar results are obtained with the high order RKDG
schemes of Kesserwani and Liang presented in [171], based on the same set of pre
balanced equations. We finally plot on Fig. III .40 the evolution of the water height
up to t = 15s at three reference points along the basin, for which experimental
data are known. Our simulations are satisfying and follow the ones reported on
the reference above. Note that, in the current context, where friction dominates
the flow, the use of the AP scheme perceptibly helps to obtain a more adequate
matching with the results from the physical model.

III.3.4.f Toce River dam break

As a final experiment we propose to study a dam break flow in a realistic river,
employing the benchmark test of the Toce river valley (Northern Alps, Italy). To-
pographic data and reference results are provided by a 1:100 scale physical model,
allowing comparisons with our numerical observations. In the same way, inflow
boundary conditions are calibrated on the discharge hydrograph used to initiate
the motion in the laboratory studies. Opened boundary conditions are set down-
stream. This benchmark test was used within the CADAM project [259], and is
also performed in [45, 67, 92, 282, 294, 293]. Computations are run with the first
order U-HYNAP scheme on an unstructured mesh composed of 30 529 elements,
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and a Manning roughness coefficient equal to n = 0.0162. We stress out the diffi-
culties represented by this test, since it is expected to describe the evolution of an
advancing front dragged in a complicated bed river, and submitted to resistance
laws. The geometry of the floodplain is indeed not trivial, and induces a flow
with a complex structure, subject to multiple variations of regime throughout its
propagation. Some 3d views of the free surface are available in Fig. III .41, de-
scribing the overall propagation of the flood wave. These indications on flooded
areas can be put in comparison with some of the reference previously mentioned
to corroborate our results. The main steps of the flow evolution and correspond-
ing times seems to be respected, from the inundation of the central reservoir to
the arrival at the downstream basin. The relevance of our predictions can be
further assessed analysing the arrival time of the flood wave at several gauges
disposed along the bed river, for which we have reference data (Fig. III .42). We
report a good concordance with the data of the physical model, in the same order
of quality with the studies above mentioned. We lastly remark that similar results
have been raised with the PB and the U-HY AP schemes. We again conclude on
the good accuracy and stability properties provided by our friction approaches
in the context of real life applications.
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Figure III .41: Toce River dam break. 3d views of the free surface at t=20, 40, 50
and 60s.



128 CHAPTER III . FRICTION TREATMENT

 6.8

 6.9

 7

 7.1

 7.2

 7.3

 7.4

 7.5

 7.6

 0  20  40  60  80  100  120  140  160  180

fr
e

e
 s

u
rf

a
c
e

(m
)

t(s)

P1

P4

P18

P21

P26
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III.4 Conclusion

The main object of this chapter concerns the introduction of a new way to
account for friction effects in the context of the 2d Shallow Water equations,
on unstructured meshes, with the general purpose to cure the typical problem
of vanishing water heights encountered during most of real life applications
notably. To accomplish this, the prevalent idea was to extend the properties of
the 1d approaches proposed in [28, 27], based on the use of modified HLL solvers.

That way, in a first time, we proposed an improvement of the pre bal-
anced scheme introduced in the previous chapter, allowing to account for such
perturbed flows, and without deteriorating its features. Indeed, thanks to an
appropriate re-interpretation of the HLL solver’s wave structure, the friction
terms are incorporated within the numerical model through a modification of
the momentum equations only. Thus, one easily obtains the C-property, the
preservation of the water height positivity is also straightforwardly maintained
without additional time limitation, and this also stands for the MUSCL recon-
structions. The stability of the method has been assessed considering some
severe test cases, justifying the effectiveness of the method.

Secondly, a similar construction has been implemented on the very recent
Upwind Hydrostatic scheme [24], leading again to strong stability properties.
This time, the mass equation is also modified, but this does not preclude
the establishment of well-balanced and robustness properties. Exploiting the
entailed latitude as regards the evaluation of the water height, an asymptotic
preserving correction is subsequently performed, which stands for a novelty in
the context of unstructured triangulations. We proposed some tests to exhibit the
potential benefits of the AP property for the NSW equations. If similar results
are obtained in standard situations, very different behaviours can be observed
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when friction terms tends to control the flow. A flagrant illustration of such
a phenomena is given by the propagation of flood waves on dry areas, which
velocity may actually appear as over-estimated by the classical approaches.
Concerning real - life applications, it is difficult to determine the real impact
of the AP correction in terms of accuracy, since these nuances are generally
swallowed by approximations of various origins linked to the physical models
from which reference data are extracted.

As a whole, with or without correction, numerical results clearly high-
light the capabilities of the U-HY friction scheme in handling in parallel dry
areas and friction, in a large variety of configurations. To summarize, at the
outcome of the investigations carried out so far, we dispose of two efficient
numerical approaches enabling to approximate efficiently the NSW equations.
Both PB and U-HY schemes have been conceived to deal with all the classical
constraints that apply to a Shallow Water model : in addition of satisfying the
usual well-balanced and robustness properties, they are able to account for
irregular bottoms, friction, dry cells, and offer interesting stability properties.
Both admits simple formulations and an interesting ease of implementation.
These points are a notable feature in the context of unstructured triangulations,
and are particularly important in the perspective of practical applications to
environmental flows.
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IV.1 Introduction

Nowadays, a large variety of numerical models are able to produce accurate
approximations of weak solutions of NSW equations. As illustrated previously,
Finite Volume methods are known to be very efficient, notably for their low
computational cost, their capability in capturing shocks, and may enjoy a certain
freedom in the discretization of source terms. However, basic FVM usually offer
low accuracy and one generally needs to use some reconstruction methods to
offset the low order of convergence and the diffusive losses, as was the case in
the FVM that have been introduced. Alternatively, other general methods have
been envisaged to augment the quality of the resolutions.

Discontinuous Galerkin (dG in the following) methods have raised great
interest during the past twenty years. They combine the background of the
Finite Element methods, Finite Volume methods and Riemann solvers, taking
into account the physic of the problem. An arbitrary order of accuracy can be
obtained with the use of high-order polynomials within elements and they are
able to handle complex geometries with the use of unstructured meshes. They
are highly parallelizable, and exhibit nice strong stability properties. The reader
is referred to the following pioneering works [78, 79] for the general background.

It is only recently that the dG approach has been applied to the Shallow
Water equations and we can find a growing number of studies, including flows
with shocks, such as dam-break and oblique hydraulic jumps ([192, 251, 265]).
Several approaches involving arbitrary orders methods on unstructured trian-
gulations have been developed for the NSW system [110, 177], possibly with
dynamic p-adaptivity [176], adaptive refinement [153], discretizations of the
viscous equations relying on a Local Discontinuous Galerkin (LDG) treatment
of the second order derivatives [2, 86], discretizations of the equations on the
sphere [228, 125, 203, 219], or even space-time dG methods [4]. The list is of
course non-exhaustive.

More recently, several authors have focused on the two fundamental issues
that are the preservation of the motionless steady states, and the preservation of
the water height positivity, to properly handle flooding and drying events. It is
all the more difficult to cope with these concerns at the discrete level, given the
introduction of arbitrary degrees of freedom within elements. This represents
a major difference with the Finite Volume background where the states are
supposed to be constant at both sides of the exchanging interfaces. Additional
efforts are consequently required. Here again, an upstream use of the pre balanced
system is going to be helpful.

Contribution and objectives

In this part, we illustrate the efficiency of a particular combination of selected
ingredients, leading to a simple well-balanced and robust dG 2d discretization
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on unstructured triangulations. Motivated by our previous works, we make a
slightly different choice compared to [108, 291, 290], as we use the PBSW equa-
tions (II .1, II .2) instead of the classical model (I .1). Again, the use of this for-
mulation is expected to facilitate the preservation of motionless steady states.
As shown in §IV.3.6 , this is achieved for polynomial expansions of arbitrary or-
ders, providing that the interface fluxes are slightly modified, adapting some of
the ideas advanced earlier. A limiting strategy is introduced to handle discon-
tinuities and prevent the generation of spurious oscillations. While the TVB-
generalized limiter [78] is widely used, we choose to combine the discontinuity
detector [174] and the moment limiting approach of [53]. Some comparison with
the TVB-generalized limiter [78] are performed in the next section. The robust-
ness of the resulting scheme is ensured, adapting the recent approach of [291, 290]
to the pre-balanced formulation. This work is now available in [99].

The outlines of the present study are the following : in Section §IV.2 , we pro-
pose a review of some of the existing methods recently introduced to satisfy
well-balanced and robustness properties, and recall some of the main limiting
technics. In §IV.3 , we gather some of these ideas and propose an arbitrary or-
der robust and well-balanced nodal discontinuous-Galerkin discretization of the
Shallow Water system on unstructured meshes, relying on the PBSW model, and
the recent method introduced in [291, 299] to ensure the preservation of the wa-
ter depth positivity. The local limiting process, allowing the possible occurrence
of shocks and contact discontinuities is described in §IV.3.3 . In §IV.3.6 , we es-
tablish the main well-balancing and robustness properties of this combination.
§IV.4 is devoted to extensive numerical validations in the case of second and
third order schemes, including convergence and accuracy analysis, comparisons
with analytical solutions and experimental data for cases involving steady states
preservation and occurrence of dry areas. Some comparisons with the M2 pre
balanced FVM are also performed.
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IV.2 A survey of existing methods

IV.2.1 Well-balancing

In the introductory part (I.5.3 ), and throughout the section devoted to MUSCL
extensions II.3 , we mentioned a large number of Finite Volume approaches able
to offer the C-property, for first and higher order schemes. By contrast, the de-
velopment of well-balanced dG schemes for the NSW system is recent, and there
is very few existing works, especially when considering the case of unstructured
grids.
In [241], general space and space-time dG formulations are introduced for hy-

perbolic nonconservative partial differential equations, and applications are per-
formed for the one-dimensional equations with topography, regarding the topog-
raphy as an additional variable in the spirit of [138]. The resulting space method
is shown to preserve the C-property.
A well-balanced method is developed for second order accuracy in [170, 169,

171], for the 1d and 2d case on rectangular meshes, using the PBSW equations and
borrowing some ideas coming from the hydrostatic reconstruction [10] and [195].
In [108], the well-balancing is ensured for polynomial expansions of arbitrary

orders and on unstructured meshes, using again the ideas of the hydrostatic re-
construction. Non-negative reconstructions of the water height are introduced
element-wise, for each edge, together with an additional flux modification term
directly accounted for in the weak formulation.
Recently, a more general approach has been introduced in [287] for a gen-

eral class of conservation law with separable source terms, leading to a class of
high-order dG methods with the well-balanced property. The key ingredient is a
suitable decomposition of the integral of the source terms into a sum of several
terms, each of which is discretized independently in a consistent way with the
discretization of the corresponding flux derivative terms. This ensures the well-
balancing and preserves the high-accuracy of the method. However, the overall
algorithm is quite complex both to understand and implement.
An easier and less computationally expensive approach is subsequently intro-

duced by the same authors in [288], based on a generalization of the methods
introduced in [10, 222].
To conclude this section, let us mention the positivity-preserving high-order

well-balanced dG approach for the NSW system developed in [285] in the 1d
case, enabling the preservation of moving water steady states. This is, to the au-
thor’s knowledge, the first dG method that addresses this issue.

IV.2.2 Robustness

Again, some of the ideas developed for the FVM have been adapted to the dG
approach. A popular approach, adapted for P1 polynomial expansions basically
consists of locally modifying the slope of the linear expansions if negative val-
ues of the water height appear. The local gradients are moderated element-wise
until such negative values are avoided, and usually until the water height values
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are above a tolerance. Provided that the whole Runge-Kutta dG scheme pre-
serves the positivity of the average water height, this approach leads to a robust
scheme. This strategy can of course be applied to higher order dG schemes, pro-
viding that the discrete solution is first locally projected onto linear polynomials,
entailing some loss of accuracy. In [169, 171] such ideas are used in combination
with some positive reconstructions of the water height, inspired from the hydro-
static reconstruction [10], for 1d and 2d case on rectangular meshes, and for the
second order accuracy dG scheme (linear polynomial expansion of the solution).
In [108], this strategy is adapted to the unstructured meshes framework. Con-

sidering a P1 expansion of the water height, the idea is to locally post-process the
gradients of h in elements such that a positive mean value is observed, but with
occurrences of negative values at one or two vertices. The gradients are modi-
fied in such a way that the water height vanishes at such vertices. However, the
resulting scheme can possibly lead to negative mean water height values, which
are arbitrarily set to zero.
A similar strategy is introduced in [52], but with a posteriori modifications of

the water height that preserve the overall accuracy and the mass and momentum
conservation properties. Additionally, a sufficient condition ensuring the positiv-
ity of the mean water depth in each element is provided.
Alternatively, a strategy for a robust treatment of wetting and drying is intro-

duced in [33], allowing to identify and accurately discriminate the wet and dry
areas and moving the mesh accordingly. The reader is also referred to [251, 274]
for some other recent studies.
More generally, the preservation of the water height positivity for an arbitrary

order dG method is not a simple problem and a general method was recently
introduced in [298]. This method ensures an accuracy preserving maximum-
principle property for dG schemes of arbitrary order, in a general scalar con-
servation laws framework, under a suitable CFL-like condition. This method
is extended to triangular meshes in [299], to the NSW equations in 1d and 2d on
rectangular meshes in [291], and very recently on triangular meshes in [290]. The
method, based on the positivity of the associated first order scheme and a sim-
ple positivity and accuracy preserving limiter, is detailed in §IV.3 . Note that the
method introduced in [290] also preserves the C-property.

IV.2.3 Limiting strategies

In the context of hyperbolic conservation laws, special interest has to be given
to the way discontinuities are handled. High-order numerical schemes pro-
duce spurious oscillations near discontinuities, which may, indeed, lead to non-
physical solutions (like negative water heights), numerical instabilities and un-
bounded computational solutions.
A very popular approach is to use a limiting procedure which is capable to de-

tect and control the high variations of the approximation, leading to local modi-
fications of the solution at each time step. A very popular approach is the TVB-
generalized slope-limiter technic introduced in [78], which is used in many stud-
ies, see [52, 108, 169, 192, 241] for instance. This approach, relying on a modified
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minmod function, maintains the conservation of mass element by element, does
not degrade the accuracy of the method for piecewise linear approximations and
does not flatten smooth extrema. The higher order modes are set to zero when
limiting is needed.
An interesting approach is proposed in [239] to the case of higher-order slope

limiting, which consists of adaptively and successively differentiating the numer-
ical solution. The derivations raise linear terms that can be limited as in the case
of a linear approximation. An efficient parameter-free (and consequently prob-
lem independent) alternative, relying on the maxmod function is proposed in [53]
and is detailed in §IV.3.3 . Of course, many slope limiters usedwithin FVM can be
adapted to the needs of the dGmethod, like the van Albada type limiting method
[275] in which the gradient in an element is limited using the weighted average
of face gradients. Let us also mention [69, 146] for some extensions of van Leer’s
slope limiter for two-dimensional dG method and relying on the solution of a
least squares problem.
To deal with spurious oscillations around discontinuities, an alternative ap-

proach is to introduce a dissipation operator, see for instance [277]. This can be
done by adding the operator into the weak formulation, see [4, 265].
However, the main drawback of these approaches is that they can decrease the

high order of accuracy of the method, when used in smooth regions of the solu-
tion. To avoid this, an important issue is to determine the area of application of
the limiting procedure (or the smoothing operator) to avoid a possible loss of ac-
curacy. A popular method, widely used in CFD, is to use a discontinuity detector.
Using such a detector, it is possible to limit spurious oscillations only near steep
gradients and the high order of accuracy can be preserved away from troubled
elements. This has been investigated in [238], where several discontinuity detec-
tors are reviewed and compared. In the framework of dGmethod, a very popular
approach is the one introduced in [174, 173]. They developed a discontinuity de-
tector based on a strong super-convergence properties at the outflow boundaries
of each element in smooth regions. This method has been proved to be efficient
and is used in several studies, see for instance [4, 108, 171, 153, 265, 304].
In [238, 303], an alternative approach is proposed, which uses traditional ENO

or WENO methodology as limiters for the dG methods, maintaining the high-
order of accuracy. The key ideas are first to identify cells which might need some
limiting procedure and then to replace the solution polynomials in those cells
with reconstructed polynomials, maintaining the original cells mean values and
preserving orders of accuracy as before while being less oscillatory. However, this
approach relies on a wide stencil, especially for high order of accuracy, even with
the use of Hermite-WENO based limiters [201, 237]. To overcome these draw-
backs, a new WENO limiting procedure on structured and unstructured meshes
is recently introduced in [300, 304]. The main idea is to reconstruct the entire
polynomial, instead of reconstructing point values or moments in the classical
WENO reconstructions. A smaller stencil is needed, without extensive usage of
meshes geometric informations, leading to a simpler implementation and very
efficient results.
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IV.3 Pre-Balanced RKDG scheme

IV.3.1 Discrete formulation

We consider a triangulation T of the computational domain Ω, and employ
the notations introduced in §I.2 . We aim at computing an approximate vector
solution on this triangulation. We define :

V := {v ∈ L2(Ω) | ∀ T ∈ T , v|T ∈ P
N(T)}, (IV .1)

where PN(T) denotes the space of 2-variables polynomials in T of degree at most
N.

A weak formulation of the problem is obtained by multiplying (II .1) by
a test function φ ∈ V . The result is integrated on a given element Ti and the flux
term is integrated by part to obtain :
∫

Ti

∂

∂t
V(x, t)φ(x)dx−

∫

Ti
H(V, z).∇φ(x)dx+
∫

∂Ti
H(V, z) ·~n∂Ti φ(s)ds =

∫

Ti
S(V, z)φ(x)dx , (IV .2)

where ∂Ti is the boundary of Ti and ~n∂Ti its unit outward normal. The local ap-
proximated vector solution Vh ∈ V3 is expressed as a polynomial of order N on
each element Ti :

Vh(x, t) =
Nd

∑
l=1

V l
i (t)θ

l
i (x), ∀x ∈ Ti, ∀t ∈ [0, tmax] , (IV .3)

where {θli}
Nd
l=1 is a polynomial expansion basis for PN(Ti), and {V l

i (t)}
Nd
l=1 are the

local expansion coefficient vectors with V l
i (t) = t(ηl

i , (qx)
l
i , (qy)

l
i). Many choices

are possible for the expansion basis, and we opt in the following for a nodal ap-
proach: {θli}

Nd
l=1 will refer to the interpolant Lagrangian expansion basis, with

Nd = (N + 1)(N + 2)/2. Let also consider a polynomial expansion of the topog-
raphy parameterization z :

zh(x) =
Nd

∑
l=1

zliθ
l
i (x) , ∀x ∈ Ti . (IV .4)

Thus, a discrete formulation of (IV .2) is obtained by replacing the exact solution
V(x, t) by the approximation Vh(x, t) and the test function φ by each element of
the expansion basis, successively :

∫

Ti

( Nd

∑
l=1

d

dt
V l
i (t)θ

l
i (x)

)
θ
p
i (x)dx−

∫

Ti
H(Vh, zh).∇θ

p
i (x)dx+

∫

∂Ti
H(Vh, zh) ·~n∂Ti θ

p
i (s)ds =

∫

Ti
S(Vh, zh)θ

p
i (x)dx , 1 ≤ p ≤ Nd .

(IV .5)
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Noting that we have :

∫

∂Ti
H(Vh, zh) ·~n∂Ti θ

p
i (s)ds =

3

∑
k=1

∫

Γij(k)

Hij(k) θ
p
i (s)ds ,

where we have set :
Hij(k) = H(Vh, zh) ·~nij(k) ,

we obtain the following semi-discrete formulation, where the space dependency
of the basis functions is omitted, for the sake of simplicity :

Nd

∑
l=1

( d

dt
V l
i (t)

∫

Ti
θliθ

p
i dx

)
−
∫

Ti
H(Vh, zh) · ∇θ

p
i dx+

3

∑
k=1

∫

Γij(k)

Hij(k) θ
p
i ds =

∫

Ti
S(Vh, zh)θ

p
i dx , 1 ≤ p ≤ Nd .

(IV .6)

Remark IV.3 .1. As we use the Lagrangian expansion basis, the expansion coefficients
in (IV .3) and (IV .4) can be regarded as the nodal values at the corresponding Np nodes.
Consequently, the topography parameterization expansion coefficients in (IV .4) are ob-
tained by "reading" the value of the topography at these nodes, for each element.

IV.3.2 Numerical flux

Classically, since matching conditions are not enforced on the approximated
vector solution Vh(x, t) at element interfaces, the boundary flux H(Vh, zh).~n∂Ti
is not uniquely defined. We propose in the following a simple choice for the
interfaces numerical fluxesHij(k), inspired from the Finite-Volume well-balanced
discretization explained in preceding sections. This modified flux can also be
seen as the adaptation of the ideas of [291] to the pre-balanced formulation (II .1).

In accordance with the notations in place, let us define, for a given inter-
face Γij(k), V

−
k and V+

k respectively the restrictions of Vh|Ti and Vh|Tj(k) to Γij(k)

(the interior and exterior traces, with respect to the element Ti). Similarly, z−k and
z+k stand for the interior and exterior values of zh on Γij(k). For each interface
Γij(k), k = 1, .., 3, we follow exactly the same procedure as in the Finite Volume
frame :

z̃k = max(z−k , z
+
k ) , žk = z̃k −max(0, z̃k − η−k ) , (IV .7)

and

ȟ−k = max(0, η−k − z̃k) , ȟ+k = max(0, η+
k − z̃k) , (IV .8)

η̌−k = ȟ−k + žk , η̌+
k = ȟ+k + žk , (IV .9)

leading to the new interior and exterior values :

V̆−k = t(η̌−k ,
ȟ−k
h−k

q−k ) , V̆+
k = t(η̌+

k ,
ȟ+k
h+k

q+
k ) . (IV .10)
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Now we set :
Hij(k) = H(V̆−k , V̆+

k , žk, žk,~nij(k)) + Ȟij(k) , (IV .11)

as the numerical flux function through the interface between Ti and Tj(k) , where :

i) H(V−,V+, z−, z+,~n) is a consistent numerical flux function, as usually com-
puted from some 1d scheme.

ii) Ȟij(k) is a correction term needed to ensure flux balancing at motionless
steady states, defined as follows :

Ȟij(k) =




0 0
gη̌−k (žk − z−k ) 0

0 gη̌−k (žk − z−k )


 ·~nij(k). (IV .12)

Note that the modified interface fluxes (IV .11) induce perturbations of order N+
1 when compared to the traditional interface fluxes. In the following, we choose
to use the global Lax-Friedrichs flux (I.3.1 ) :

H(V−,V+, z−, z+,~n) =
1
2

(
H(V−, z−) ·~n+ H(V+, z+) ·~n

)
− a

2
(V+ −V−) ,

(IV .13)
with a = max

i∈Z

λi and λi = max
∂Ti

(
|ui ·~nij(k)|+

√
ghi

)
.

Above, and in the forthcoming developments, we adopt the simplified notation
Vi to refer to the restriction of Vh on the element Ti. This also stands stand for z
and each scalar component of Vh.

IV.3.3 Limiting procedure

Denoting Vh ← ΠVh the limitation operator, acting on the approximated vector
solution Vh, the main steps of the limiting process are the following :

i) detect the shocks using the criterion proposed in [174]. This criteria is based
on a strong superconvergence property of the dG method at the outflow
boundary of each element in smooth regions of the flow. More precisely, for
a given element Ti, let us denote ∂Tin

i the inflow part of ∂Ti and identify Kin
i

the set of superscripts k of the neighboring elements such that Γij(k) is a part
of ∂Tin

i . Afterwards, once recovered the water heights by h = η− z, we use
the following quantity :

Ii =

∑
k∈Kin

i

∫

Γij(k)

(hi − hj(k)) ds

d
(N+1)/2
i

(
∑

σ∈Kin
i

ℓij(k)
)
‖hi‖∞

. (IV .14)

If Ii ≥ 1 then we apply a slope limiter on each scalar component wi of
Vi = Vh|Ti . This limiting strategy is described in the next step.
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Ti
Tj(1)

Tj(2)

Tj(3)

b

b

b

m3

m2

m1

b

b

b

b

c3

c2

c1

c

Figure IV .1: Limitation step : geometric configuration.

ii) restrict the polynomial order to N = 1 in the element Ti such that Ii ≥ 1
(called troubled elements, following [238]) and limit the slope of the resulting
P1 approximation following the simple and efficient procedure introduced
in [53]. Furthermore, this limiting procedure is free of problem dependence
and there is no parameters needed to be calibrated unlike in the widely used
TVB limiter [78]. Let us quickly recall this procedure with some simplified
notations. Considering the four elements patch neighborhood described in
Fig. IV .1, let us denote c and (ck)k=1..3 the respective barycenters of ele-
ments Ti and its three neighbors (Tj(k))k=1..3. We also denote by (mk)k=1..3,
the midpoints of the shared edges between Ti and Tj(k) respectively. Fol-
lowing [78], for each neighboring element Tj(k), we can find Tj(l) and two
positive parameters αk and βk such that :

~cmk = αk~cck + βk~ccl .

Then, for any linear function w we can write :

w(mk)− w(c) = αk(w(ck)− w(c)) + βk(w(cl)− w(c)).

Considering that the value of the function wi at the element barycenter is
nothing but the cell average wi, and coming back to the general case of
piecewise linear functions w, the limiting procedure consists of replacing
the values (wi(mk) − wi)k=1,..,3 by limited values, denoted (∆k)k=1,..,3, and
defined as follows :

∆k = maxmod
(
∆in
k ,∆

out
k

)
, (IV .15)

∆in
k = minmod

(
wi(mk)−wi, ν

(
αk(wk − wi) + βk(wl −wi)

))
,

∆out
k = minmod

(
wi(mk)−wi,wj(k)(mk)− wi

)
,

where

maxmod(a, b) =
{

smax(|a|, |b|) if s = sgn(a) = sgn(b) ,
0 otherwise ,

(IV .16)
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ν > 1 and the minmod function is available in (II .36). Note that this modifi-

cation may not be mass conserving. Consequently, if
3
∑
k=1

∆k 6= 0, we replace

(∆k)k=1,..,3 with (∆̂k)k=1,..,3, defined as follows (the principle is the same as
II .37) :

∆̂k = min(1,
s−
s+

)max(0,∆k)−min(1,
s+

s−
)max(0,−∆k) ,

with : s+ =
3
∑
k=1

max(0,∆k), s− =
3
∑
k=1

max(0,−∆k) .

IV.3.4 Additional limiting for robustness

We briefly recall the main ideas of the strategy introduced in [291, 290, 299]
to enforce a strict maximum principle that ensures the robustness property. The
ideas are developed for an explicit first order Euler scheme in time for the sake of
clarity. As shown in §IV.3.6 , these ideas can be extended to the PBSW equations.

We first need to compute the new quadrature points for every element
Ti. Considering the scheme (IV .6) for the update of ηh, with polynomial
expansions of order N, we assume that the line integrals are computed using a
α-point Gauss quadrature. The Zhang and Shu quadrature rules are obtained by
a transformation of the tensor product of a β-point Gauss-Lobatto quadrature,
where β is the smallest integer such that 2β − 3 ≥ N, and the α-point Gauss
quadrature. This special quadrature includes all α-point Gauss quadrature
nodes for each edge Γij(k), k = 1, 2, 3, involves positive weights and its degree
is chosen such that it is exact for the integration of ηi over Ti. In the following,
let us denote SN

i the set of points of this new quadrature rule and ω̂1 the weight
associated with the first node of the β-point Gauss-Lobatto quadrature. We
do not give further details and the reader is referred to [299] for explicit nodes
coordinates and weights. In §IV.4 , we focus on P1 and P2 approximations of the
weak solutions of PBSW equations, and we show in Fig. IV .2 the quadrature
nodes used for these two orders of approximation on a reference element. The
robustness property is then enforced in 2 steps :

Figure IV .2: Nodes locations for the Zhang and Shu quadrature - P
1 and P

2

cases.
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i) First, for each element Ti, we compute the polynomial expansions for the
water height hni (x) from ηn

i (x) and zi(x) (this is achieved straightforwardly,
as we are working with the nodal basis). We then extract the quantities

mTi = min
x∈SN

i

hni (x) . (IV .17)

ii) Next, we need to ensure that hni (x) ≥ 0, ∀x ∈ SN
i , which is a sufficient

condition to ensure a robustness property for the dG scheme (IV .6), under
a suitable CFL-like condition, as shown in §IV.3.6 . In practice, we ensure
that hni (x) ≥ ǫ, ∀x ∈ SN

i , where ǫ is a small positive threshold value.
This can be enforced using the accuracy preserving limiter introduced in

[299]. Denoting h
n
i =

1
|Ti|

∫
Ti
hi dx the mean value of the water height at

time tn on the element Ti, and assuming that h
n
i ≥ 0, we replace hni by a

conservative linear scaling around the cell average :

ĥni = θTi(h
n
i − h

n
i ) + h

n
i , (IV .18)

where

θTi = min

(
ǫ− h

n
i

mTi − h
n
i

, 1

)
.

Remark IV.3 .2. Following steps i), ii) at each time step (or eventually substep if a

higher order time-discretization is used), and assuming that h
0
i ≥ ǫ, we ensure that h

n
i

remains positive at every time step n. Additionally, the scaling (IV .18) ensures that the
values of ĥi remain positive at the (N+1)-point Gauss quadrature nodes used to compute
the line integrals of (IV .6), the eigenvalues used in the Lax-Friedrichs flux (IV .13) and
the CFL condition (IV .28). In practice, the parameter ǫ is the threshold introduced to
identify what is numerically called a dry cell and arbitrarily set the velocity to zero.

Remark IV.3 .3. The Zhang and Shu quadrature rules are not used to compute the sur-
face integrals, as we prefer to use more efficient cubature rules on triangles. Practically,
its only purpose is to allow the computation of the quantities mTi and therefore enables to
enforce the robustness sufficient condition introduced in [299].

IV.3.5 Time discretization

The time stepping is carried out making use of the method of lines, based

on SSP-RK schemes (see §I.5.1 ). Writing the semi-discrete equations as
d

dt
Vh +

Ah(Vh) = 0, advancing from time level n to n+ 1 is computed as follow for the
second-order scheme :





Vn,1
h = Vn

h − ∆tÃh(V
n
h ) ,

Vn+1
h = 1

2(V
n
h +Vn,1

h )− 1
2∆tÃh(V

n,1
h ) ,

(IV .19)
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and for the third-order scheme :




Vn,1
h = Vn

h − ∆tÃh(V
n
h ) ,

Vn,2
h = 1

4(3V
n
h +Vn,1

h )− 1
4∆tÃh(V

n,1
h ) ,

Vn+1
h = 1

3(V
n
h + 2Vn,2

h )− 2
3∆tÃh(V

n,2
h ) .

(IV .20)

with the formal notation Ãh = Ah ◦Π, and ∆t being the time discretization step,
obtained from the following CFL condition [79] :

max
i∈Z

(
λi

pi

|Ti|

)
∆t ≤ 1

2N + 1
. (IV .21)

IV.3.6 Main properties

We focus here on two suitable properties verified by the scheme (IV .6). We first
show that the well-balancing property is inherited from the particular interface
fluxes discretization (IV .11) for polynomial expansions of arbitrary orders. Next,
we show that the method of [291, 290] can be adapted to the PBSW equations
(II .1) to ensure the robustness.

Proposition 10. The scheme (IV .6), with the interface fluxes discretization (IV .11),
preserves the motionless steady states.

Proof. We adapt the ideas of [291] to the reconstruction introduced in §IV.3.2 . We
consider Ti an element of T , together with his neighbors (Tj(k))k=1,..,3. Denoting
that (I .58) is equivalent to the following local formulation of the well-balancing
property, for all n ∈ N :

({ ηn
i ≡ ηn

j(k)
≡ ηc

qn
i ≡ qn

j(k)
≡ 0 , k = 1, 2, 3

)
⇒

({ ηn+1
i ≡ ηc

qn+1
i ≡ 0

)
, (IV .22)

let’s assume that the left brace of (IV .22) holds. Let’s also assume that a first order
Euler time discretization is used to compute Vn+1

h from Vn
h . Considering (IV .6),

we have to show that the residues

Rp = −
∫

Ti
H(Vn

h , zh) · ∇θ
p
i dx+

3

∑
k=1

∫

Γij(k)

Hij(k) θ
p
i ds−

∫

Ti
S(Vn

h , zh)θ
p
i dx ,

(IV .23)

vanishes for 1 ≤ p ≤ Nd, when a motionless steady state is reached. We assume
that the integrals in (IV .23) are computed exactly, and we notice that we have for
Vn
h at steady state :

∇ · H(Vn
h , zh) = S(Vn

h , zh).

Looking at (IV .11), and highlighting that, for each interface Γij(k), we have η̌−k =

η̌+
k = ηc, it is easy to check that Hij(k) = H(V−k , z−k ) ·~nij(k), with the notations
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introduced in §IV.3.2 . Consequently, we have :

−
∫

Ti
H(Vn

h , zh) · ∇θ
p
i dx +

3

∑
k=1

∫

Γij(k)

Hij(k) θ
p
i ds =

∫

Ti
∇ · H(Vn

h , zh)θ
p
i dx ,

(IV .24)

and Rp = 0.

Now, let us consider the robustness property. At first order in time, the scheme
satisfied by the cell averaged values of the free surface in the dG approximation
(IV .6) is :

ηn+1
i = ηn

i −
∆t

|Ti|
3

∑
k=1

∫

Γij(k)

Hη

ij(k)
ds , (IV .25)

withHη

ij(k)
the first component of the numerical flux, written as :

Hη

ij(k)
= Hη(V̆−k , V̆+

k , žk, žk,~nij(k)). (IV .26)

To apply the strategy of [291, 290], we first have to specify that the first order
scheme associated with (IV .25) preserves the positivity of the water height. This
property has actually been established in the Finite Volume context for the current
Lax Friedrichs fluxes (Proposition 2), leading to the following CFL :

max
i∈Z

λi
pi

|Ti|
∆t ≤ 1 . (IV .27)

We can now state the robustness result :

Proposition 11. We consider the (N+1)-th order scheme (IV .6), together with the in-

terface fluxes (IV .11) and a first order Euler time discretization. We assume that h
n
i ≥ 0

and that the quantities
(
hni (x)

)
x∈SN

i
are modified according to (IV .18), for all Ti. Then

we have h
n+1
i ≥ 0 under the condition :

max
i∈Z

λi
pi

|Ti|
∆t ≤ 2

3
ω̂1 . (IV .28)

Proof. Noting that the scheme (IV .25) can be written as follows, subtracting zi on
both sides :

h
n+1
i = h

n
i −

∆t

|Ti|
3

∑
k=1

∫

Γij(k)

Hη

ij(k)
ds, (IV .29)

we adapt the proof of [290], using the positivity preserving features of the
scheme (IV .25). In what follows, keeping in mind that the interface value for
the topography is given by (IV .7), the flux function (IV .26) will be denoted
Hη(V̆−k , V̆+

k ,~nij(k)) for reasons of simplicity. Using the α-point Gauss quadrature
rule, supposed to be exact for polynomials of order N, (IV .29) is re-written as :

h
n+1
i = h

n
i −

∆t

|Ti|
3

∑
k=1

(
ℓij(k)

α

∑
a=1

ωaHη(V̆−k,a, V̆
+
k,a,~nij(k))

)
, (IV .30)
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where V̆−k,a, V̆
+
k,a stand for the interior and exterior values at the ath quadrature point

of the edge Γij(k), and ωa are the associated weights. After a straightforward
rearrangement, we write :

h
n+1
i = h

n
i −

∆t

|Ti|
α

∑
a=1

ωa Ia , (IV .31)

with

Ia =
3

∑
k=1

ℓij(k)Hη(V̆−k,a, V̆
+
k,a,~nij(k)) .

These terms are subsequently fragmented as follows, thanks to the conservativity
property (I .23) :

Ia =Hη(V̆−1,a, V̆
+
1,a,~nij(1))ℓij(1) +Hη(V̆−1,a, V̆

−
2,a,−~nij(1))ℓij(1)+

Hη(V̆−2,a, V̆
−
1,a,~nij(1))ℓij(1) +Hη(V̆−2,a, V̆

+
2,a,~nij(2))ℓij(2) +Hη(V̆−2,a, V̆

−
3,a,~nij(3))ℓij(3)+

Hη(V̆−3,a, V̆
−
2,a,−~nij(3))ℓij(3) +Hη(V̆−3,a, V̆

+
3,a,~nij(3))ℓij(3) .

By setting S
N
i the subset of quadrature points lying in the interior of Ti, formula

(IV .30) becomes :

h
n+1
i =

3

∑
k=1

α

∑
a=1

2
3

ωaω̂1h
−
k,a + ∑

x∈SN
i

hni (x)−
∆t

|Ti|
α

∑
a=1

ωa Ia

= ∑
x∈SNi

hni (x) +
α

∑
a=1

2
3

ωaω̂1

[
H1,a + H2,a + H3,a

]
,

where :

H1,a = h−1,a −
3∆t

2ω̂1|Ti|
[
Hη(V̆−1,a, V̆

+
1,a,~nij(1)) +Hη(V̆−1,a, V̆

−
2,a,−~nij(1))

]
ℓij(1) ,

H2,a = h−2,a −
3∆t

2ω̂1|Ti|
[
Hη(V̆−2,a, V̆

+
1,a,~nij(1))ℓij(1)+

Hη(V̆−2,a, V̆
+
2,a,~nij(2))ℓij(2) +Hη(V̆−2,a, V̆

−
3,a,~nij(3))ℓij(3)

]
,

H3,a = h−3,a −
3∆t

2ω̂1|Ti|
[
Hη(V̆−3,a, V̆

+
3,a,~nij(3)) +Hη(V̆−3,a, V̆

−
2,a,−~nij(3))

]
ℓij(3) .

We conclude remarking that quantities H1,a,H2,a,H3,a are positive under the CFL
condition (IV .28), ant that the positivity of hni (x) at the quadrature points is en-
sured according to the reconstruction (IV .18).

Remark IV.3 .4. Even if the limiter (IV .18) does not modify the (N+1)-th order accuracy
of the polynomial expansion Vh, it is necessary to use a (N+1)-th order time SSP-RK
discretization to achieve an overall (N+1)-th order accuracy in space and time. Therefore,
steps i), ii) should be applied at every intermediate step of the RK algorithms (IV .19) and
(IV .20). To fulfill the CFL restriction (IV .28) rigorously, we have to provide an accurate
estimation ofmax

i∈Z

λi for all the stages of the SSP-RK method. As suggested in [290], this

can be achieved with applying a more stringent CFL condition only when a preliminary
computation to the next intermediate time step produces negative water height.
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IV.4 Numerical validations

In this section, we highlight the good behavior of the combination suggested
above. The Lagrangian interpolant P1 and P2 basis functions are used, together
with the global Lax-Friedrichs flux (IV .13). We will refer to the limiter of Cock-
burn and Shu [78] as CS-limiter and to the limiter of Burbeau et al [53] described
in §IV.3.3 as BSB-limiter. In the following computations, the parameter ν is set
to 2 and the threshold value ǫ for the robustness limiter is set to 10−7. In the
two dimensional case on unstructured meshes, the CFL condition (IV .28) is al-
ways more stringent than the usual CFL (IV .21), and therefore only condition
(IV .28) is applied. For the P

1 expansion, we use a 3-point Gauss quadrature rule
(i.e. α = 3 with the notations of §IV.3.4 ) to compute the line integrals of the first
equation of (IV .6). For the P2 expansion, we use a 4-point Gauss quadrature rule.
In both case a 3-point Gauss-Lobatto rule is enough to build the required Zhang
and Shu quadratures (see Fig. IV .2), leading to the value ω̂1 =

1
6 .

IV.4.1 Collapsing of a Gaussian profile

The following test is commonly used in order to evaluate the diffusive prop-
erties of first and higher order schemes, see [12, 290] for instance. We study the
evolution of the flow resulting from a water drop in a center of a square basin
with dimensions [0, 20] × [0, 20]. The computational domain is meshed with a
regular triangulation, with a discretization step fixed to ∆x = ∆y = 0.4. Solid
wall conditions are enforced at the boundaries. The bottom is assumed to be flat,
and the initial conditions are given by :

h(x, y) = 2.4
(
1+ e

1
4 ((x−10)2+(y−10)2)

)
, q = 0 . (IV .32)

Free surface profiles along the section y=0 provided by the P1 approximation are
shown on Fig. IV .3 (left) at several times during the simulation between t = 0 s
and t = 2 s. They appear together with a P2 highly resolved solution standing for
a reference, and their corresponding overall 3d views (right). Numerical results
obtained with the pre balanced MUSCL M2 Finite Volume scheme are also dis-
played. Note that dG and FV computations involve the same number of freedom
degrees. There is a slight improvement provided by the current dG approach.
These results, put in comparison against other high order models as those above
mentioned, attest of the low diffusive properties of the MUSCL and dGmethods.

IV.4.2 Dam break problems

This second test case aims at validating the shock capturing abilities of the
scheme (IV .6), together with the efficiency of the limiting strategies in the vicinity
of a dry area.
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Figure IV .3: Collapsing of a Gaussian profile : Free surface profiles for the
MUSCL M2 FVM and P1 approaches at t = 0.48, 0.96, 1.44 s along the middle
section - Comparison with the reference solution (left). Corresponding 3d cap-
tures coming from the P1 scheme (right).
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Figure IV .4: Dam break on a dry bed : Water depth profiles at t=0.1, 0.6, 1.2 and
1.8s. (left) - Zoom on the top at t=0.6s (right).

IV.4.2.a Dam break on a dry bed

Here, the computational domain is a [−10, 10]× [0, 4] rectangular basin, regu-
larly meshed with 5 200 nodes. The initial condition is given by h = 1 and q = 0
on the left part of the domain and h = 0 on the right part. We can observe on
Fig. IV .4 (left) some water depth profiles during the evolution: they exhibit an
excellent agreement with the analytical solution. The evolution of the wet/dry
interface is accurately computed. For the records, the results are compared with
those provided by the CS limiter. The discrepancies are almost indistinguishable
at this level of zoom. We show zoom on Fig. IV .4 (right), focusing on the top
part of the free surface profile at t = 0.6 s. Although the discontinuity sensor is
no longer active at this time, the limiting process engaged during the first steps
to handle the initial discontinuity impacts the evolution of the flow. We observe
a slight advantage of the BSB limiter.

IV.4.2.b Two-dimensional dam-break

We study now the ability of the scheme in dealing with discontinuities in a real
2d context. In this simulation, the computational domain is a square basin with
dimensions 200× 200, and the bottom is flat. The dam is located along the y-
direction centreline, and the initial flow is supplied by a 75m breach on the dam
wall, centred at y = 125. We consider an upstream water height of 10m, while
the initial downstream water level is fixed to hd = 5. We run the simulation on
an unstructured triangulation involving 13 000 nodes, until t = 8 s. As shown in
Fig. IV .5 (left), the propagation of the flood wave is properly described, and the
stiffness of thewater front profile is correctly handled by the limitation procedure.
The numerical predictions are in good agreement with other results reported in
the literature ([101, 141]), notably those provided in [281]. Lastly, we run again
the simulation setting hd = 0. We can observe on Fig IV .5 (right) a 3d view of the
free surface at t = 6.5 s and highlight that the wet/dry interface is handled in a
very robust way.
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Figure IV .5: Two-dimensional dam break : Free surface profile at t=7.5s for hd =
5m (left), and at t=6.5s for hd = 0m (right).

L1 L∞

eη 0.264E-14 0.133E-14
eqx 0.101E-13 0.710E-14
eqy 0.813E-14 0.712E-14

Table IV .1: Preservation of a motionless steady state - Numerical errors at t =
10 s.

IV.4.3 On steady states

We assess here the well-balanced property, together with the ability of the
scheme to accurately describe the evolution of a small disturbance of a motionless
steady state, with a varying topography. We conclude by the classical subcritical
flow over a bump to study steady states in motion and perform some accuracy
analysis.

IV.4.3.a Preservation of a motionless steady state

We first revisit the classical test case II.4.5 , considering a lake at rest configu-
ration with a 1m total free surface on the whole computational domain. After
a simulation time of 10 s, the motionless steady state is preserved up to the ma-
chine accuracy. We show the resulting numerical errors in Tab. IV .1 computed
with the P1 scheme at t = 10 s for η and q in L1 and L∞ norms. Similar results
are obtained with the third order scheme.

IV.4.3.b Perturbation of a motionless steady state

Second, as done in II.4.5 , we enforce an initial water height of 1.01 in the rect-
angular band 0.05 < x < 0.15, and follow the motion of the flow until t = 0.5 s.
In this test we use a 3 321 elements mesh. We can observe on Fig. IV .6 a 3d view
of the free surface as the flow reaches the top of the bump in the center of the
basin. The whole propagation is not entirely depicted here since the profiles are
very similar to those available in II.4.5 . Here again, we indeed obtain comparable
results to those obtained in the literature with high order schemes ([46, 243, 288]),
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Figure IV .6: Perturbation of a motionless steady state : Snapshot of the free sur-
face at t = 0.3 s.
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Figure IV .7: Perturbation of a motionless steady state : Zoom on the discontinu-
ity at t = 0.015 s.

assessing an accurate computation of the propagation. Focusing on the way the
initial discontinuity is handled, Fig. IV .7 shows the influences of both CS and
BSB limiters. Like in IV.4.2.a , there is a small discrepancy arising from the choice
of the limiting process used to handle the initial discontinuity. A slight improve-
ment is observable with the use of BSB approach.
In a second time, we can observe on Fig. IV .8 some middle sections of the

free surface profiles obtained with the P1 scheme as the flow is evolving over
the bump. These results are compared with a reference solution, computed with
the P2 scheme on a 20 000 nodes mesh, and those issued from the high order M2
FV scheme. The number of freedom degrees for the Finite Volume test is set to
10 000, so that a relevant comparison can be performed between the FV and dG
approaches; the efficiency of the P1 dG approximation is similar to the MUSCL
reconstruction method of the FV scheme for this test. The reader is referred to
test cases IV.4.3.c and IV.4.4 for a more detailed comparison of the two methods.
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Figure IV .9: Subcritical flow over a bump : Convergence analysis : L1 numerical
error for the free surface and the discharge.

IV.4.3.c Subcritical flow over a bump

We re-employ the test case already presented in II.4.2 . We thus intend to
study the ability in converging toward a non trivial stationary state and propose
additional convergence studies. Comparing numerical results with the analytical
solution, we observe an excellent agreement for both free surface and normal
discharge. The resulting figure is identical to the one obtained in the Finite
Volume context (Fig. II .13). These results are provided by the P1 scheme on
a mesh involving 800 elements. Concerning well balancing issues, this test
also highlights the satisfying performance of the numerical scheme for the
preservation of steady states involving flows in motion.

Afterwards we perform an accuracy analysis for the P1 and P2 schemes,
considering regular meshes, with a discretization step ∆x = 20/n and an
increasing level of refinement: n = 20, 40, 80, 160. At the end of the simulation,
numerical results are compared to the analytical steady state allowing to com-
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Figure IV .10: Subcritical flow over a bump : Comparison between P1 dG and
MUSCL FV schemes : numerical error for an increasing number of DoF.

pute numerical errors for the free surface and the normal discharge. Fig. IV .9
shows the L1-error with respect to the value of ∆x in logarithmic scale. Optimal
convergence is reached for both schemes.

To further investigate the comparison between the P1 dG scheme and
the MUSCL M2 FV scheme, additional investigations are performed involving
the total number of freedom degrees (DoF) and numerical errors. At t = 150 s,
we compute the L1-error for an increasing number of DoF. Results are reported
in Fig. IV .10 (right) and plotted on Fig. IV .10 (left) in a log-log scale. We focus
on the water height, as similar observations stands for the discharge. We point
out the performances of the P

1 scheme, clearly more accurate for comparable
DoF.

IV.4.4 Carrier and Greenspan transient solution

We use again the Carrier and Greenspan test case presented in II.4.7 to exhibit
the ability of the scheme in describing complex flooding and drying phenomena.
Computations involve the P1 scheme and numerical results are compared with
the analytical solution. We use a regular triangulation with a space step fixed
initially to ∆x = 0.5. The flooding mechanism is still controlled by the offshore
boundary condition given by Vex(−20, y, t), and we observe again an asymptotic
convergence towards the steady state with a planar free surface, observed at
approximately t = 40 s, see Fig. II .27 (bottom).

We show on Fig. IV .11 the evolution of the analytical and predicted free
surface profiles along the middle section during the simulation; we can see an
excellent description of the moving interface location. These results are in the
same order of quality than those provided by the M2 Finite Volume approach
(Fig. II .26). The 3d profiles are not reproduced here, being indistinct from Fig.
II .27.

To evaluate accuracy performances, several computations are subsequently
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Figure IV .12: Carrier and Greenspan transient solution : Convergence analysis :
L1 error for the free surface and the normal discharge.

run on a set of regular meshes with space step ∆x = 2/2n, n = 0, · · · , 4, and
the L1 error is computed at t = 0.1 s. As shown in Fig. IV .12, we reach rates of
2 and 2.8 respectively in the P

1 and P
2 case, for free surface and normal discharge.

As before, we further investigate the comparison between P1 dG and
MUSCL FV schemes. The same analysis are performed, at t = 0.5 s, and results
are reported in Fig. IV .13. It is interesting to notice that even with the occurrence
of the wet/dry fronts, the dG scheme provides the expected rates of convergence,
whereas the MUSCL FV scheme only provides a convergence rate of 1.6 (see
II.4.7 ). This clearly highlights the accuracy preserving feature of the strategy of
[299]. However, unlike the previous test case, numerical errors are smaller for
the MUSCL FV scheme, for comparable number of DoF.
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IV.4.5 Tsunami wave on a conical island

We now consider a true two-dimensional case and study the propagation of a
solitary wave over a conical island, based on laboratory experiments [198]. Sev-
eral authors have used this test as a benchmark to study the run up phenomena
[34, 151, 221, 243]. The basin dimensions are [0, 25]× [0, 30], and we use an un-
structured triangulation involving 23 000 nodes. Denoting r the distance from the
center of the domain, we consider an ideal island defined as follows :

z(r) =

{
max

(
0.625, 0.9− 1/

(
4 r
))

if r < 3.6 ,

0 elsewhere .

We enforce an initial motionless configuration with a mean water depth h0 =
0.32. The tsunami wave generation is supplied by a time dependent offshore
boundary condition, as described in (III .28) :





h(t) = h0 + αh0sech
2
(√gh0

L
χ t
)
,

χ =

√
3α

4β
(1 + α) , β = (h0/L)2 , L = 15 , α = 0.3 .

(IV .33)

We follow the evolution of the solitary wave after the impact at the front side
of the island, and observe that all the features of the propagation are properly
reproduced, according to the data from the experiment. We can clearly observe
on Fig. IV .14 the run up issuing from the reflection at the front of the island ;
then, Fig. IV .15 shows that the separation in two secondary waves surrounding
the island, and finally colliding at the rear side, is also accurately reproduced.

Lastly, we display in Fig. IV .16 time series of the free surface at several lo-
cations along the basin and the comparison between our numerical results and
the data obtained from wave gauges shows reasonable agreement, qualitatively
similar to the numerical results found in the references mentioned hereinabove.
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Figure IV .14: Tsunamiwave over a conical island : Lateral view of the free surface
at times t=5, 6 and 7s.

Figure IV .15: Tsunami wave over a conical island : Rear view of the free surface
at times t=8, 9 and 10s.
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IV.4.6 Cox experience

In this test we compare our numerical results with experimental data issuing
from the study carried out by Cox [82]. Our goal is to highlight the efficiency of
the discontinuity sensor (IV .14) and the subsequent limitation process described
in §IV.3.3 . This experiment was carried out in a wave flume of 33m long. Waves
were generated on a horizontal bottom at a depth h0 = 0.40, shoaled and broke
on a 1/35 sloping beach. The wave height at the wave-maker is a = 0.115 and
the period is T = 2.2 s. Measurements of the surface elevation and velocity were
taken at four locations along the basin. The simulation involves a domain with
dimensions [0, 8]× [0, 1], regularly meshed with a space step ∆x = 0.01. The first
set of data is used as a time evolving inflow boundary condition at the left side of
the domain, to simulate the wave-maker. In order to reproduce at best physical
conditions, friction terms are considered through a Darcy law (III .2b), with a
coefficient d calibrated at 0.01. According to the law under consideration and
the value of d, this can be done straightforwardly by a direct approach, without
particular fear of troubling wet/dry transitions with numerical noise. After 200 s
of simulation approximatively, we obtain a regular sequence of breaking waves.
We can observe a very good description of the wave distortion in the vicinity of
the shoreline, with the expected sharped wave profiles. In order to demonstrate
the good numerical description of the periodic process, time history of the free
surface profiles at gauges x = 1.2, x = 2.4 and x = 3.6 are available on Fig. IV .17.
We observe a good agreement with the data provided by Cox. In particular, it is
worth emphasizing that the shock detector (IV .14) perfectly allows to capture the
discontinuities generated during the breaking of the waves, activating the local
limitation only in the steep wave front areas (see Fig. IV .18).

IV.4.7 Solitary wave on a sloping beach

We finally consider the two-dimensional problem of moving shoreline of Zelt
[295] used in III.2.4.a . The basin is meshed with an unstructured triangulation of
15 000 elements. We mainly focus on the description of the run up and run down
phenomena occurring when the wave reaches the shore. In Fig. IV .19, free sur-
face snapshots are exhibited at several times during the flooding process. They
follow closely the ones provided by the MUSCL Finite Volume approach (Fig.
III .15). Again, due the lateral slopes, more pronounced, the flooding and drying
process tends to concentrate the flow’s energy in the center of the domain. Its
evolution can be assessed on Fig. IV .20 through a focus at several cross sections
regularly spaced, for both FV and dG pre balanced methods. Although each ap-
proach let express its own characteristics, we remark an good overall coherence
with other published results. Maximum run-up and minimum run-down com-
puted during the propagation are available on Fig. IV .21; these results highlight
the robustness of the model and are in agreement with those observed in other
works, see [151, 209, 227] for instance.
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Figure IV .17: Cox experience : Time history of the water level at x=1.2, 2.4 and
3.6m.
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Figure IV .18: Cox experience : Snapshot of the water depth profile during the
breaking process. Areas in need of limiting are specified along the dotted line.
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Figure IV .19: Solitary wave on a sloping beach : Free surface profiles at t=0, 11,
14 and 17s.

-4

-2

 0

 2

 4

 0  10  20  30  40

η/
H

(m
)

t(s)

y/L = 0

 FV MUSCL
P1 -4

-2

 0

 2

 4

 0  10  20  30  40

η/
H

(m
)

t(s)

y/L = 0.25

 FV MUSCL
P1

-4

-2

 0

 2

 4

 0  10  20  30  40

η/
H

(m
)

t(s)

y/L = 0.50

 FV MUSCL
P1 -4

-2

 0

 2

 4

 0  10  20  30  40

η/
H

(m
)

t(s)

y/L = 0.75

 FV MUSCL
P1

-4

-2

 0

 2

 4

 0  10  20  30  40

η/
H

(m
)

t(s)

y/L = 1y/L = 1

 FV MUSCL
P1

Figure IV .20: Solitary wave on a sloping beach : Time series of the run up along
five cross sections.
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IV.5 Conclusion

In this part, we perform a review of the existing dG methods for the Shallow
Water equations and we focus on the issues of limiting, well-balancing and
robustness. We then introduce a combination of ingredients leading to a robust
and well-balanced discretization of the two dimensional NSW system with
topography source term, on unstructured triangular grids. This well-balancing
property is reached adapting the pre balanced Finite Volume method to the dG
framework and the robustness is achieved adapting the ideas of [290] to the
PBSW equations. An efficient shock detecting and local limitation process are
implemented. The resulting scheme is shown to be accurate, stable and very
efficient for the simulation of a large variety of flows involving flooding and
drying phenomena.

The overall performances of the second order pre balanced dG scheme are
shown to be slightly better than those offered by the MUSCL reconstructions.
A more comprehensive study incorporating CPU time to the evaluation of
relative error and DoF would be helpful to get a better idea of their relative
effectiveness. This problem has to be broached carefully, since it mostly depends
on implementing choices. Some additional works have been carried out to this
end yet. Even if we did not clearly identify tendencies allowing to prefer one
or other of the two methods in the general case, the P1 dG scheme seems to
systematically provide better results for purely wet-type applications.

The objective now is to integrate these convenient features within a nu-
merical approach for a more complex flow model, where higher order space
derivatives are involved. Notably with the consideration of dispersive terms,
we thus intend to extend the range of validity of our applications. These
investigations are carried out in the 1d framework, and exposed in a last chapter.



Chapter V

The dGM applied to Green Naghdi
equations

V.1 Introduction

Depth-averaged equations are widely used in coastal engineering for the sim-
ulation of nonlinear waves propagation and transformations in nearshore areas.
The full description of surface water waves in an incompressible, homogeneous,
inviscid fluid, is provided by the free surface Euler (or water waves) equations
but this problem remains mathematically and numerically challenging. As a
consequence, the use of depth averaged equations helps to reduce the three-
dimensional problem to a two-dimensional problem, while keeping a good level
of accuracy in many configurations.

As we already seen, the NSW equations belong this category, and are in-
deed of particular interest in many contexts, in that they avoid the complexity of
the water waves equations and in the mean time offer a very respectable level
of accuracy. In the light of their increasing interest within the scientific com-
munity, lots of numerical methods have been developed since the last decades
to provide suitable approximations of NSW equations. Finite Volume Methods
are generally preferred for their natural ability to handle the discontinuities
that may arise from the hyperbolic structure of the model, but nowadays a
large variety of different approaches can be found, based on Finite Differences
Methods (FDM) or Finite Elements Methods (FEM) and we just illustrated the
interest of discontinuous Galerkin Methods. Numerical challenges of paramount
importance such as the problem of vanishing water heights, steady states
preservation, or preservation of the water height positivity have been widely
investigated. For all these reasons, the NSW model appears to be particularly
well suited to reproduce a large class of unsteady processes connected to these
numerical issues, notably wave breaking or free surface displacements with
moving boundaries. In counterpart of their simple formulation, these equations
do not include the dispersive terms of the full water waves equations. Such
derivatives can be really important, in particular if we aim at giving a complete
description of a shoaling process. Indeed, until initiation of wave breaking,

161



162 CHAPTER V . THE DGM APPLIED TO GN EQUATIONS

non-linear terms are playing an important role, and such a situation oversteps
the range of validity of the NSW equations.

As an alternative, one can consider a more precise class of equations, of-
ten referred to as Boussinesq models in the literature. These models result
from a more accurate derivation of the full water waves equations, in which
high order non-linear and dispersion terms have not been neglected. Many
Boussinesq like models are used nowadays and a detailed review can be found
in [183] and the recent monograph [182]. Denoting by λ the typical horizontal
scale of the flow and h0 the typical depth, the shallow water regime usually

corresponds to the configuration where µ :=
h20
λ2 ≪ 1. If approximations of order

O(µ2) of the free surface Euler equations are furnished by the Boussinesq-Type
(BT equations in the following) equations, see [207, 224, 230] for instance, an
additional smallness amplitude assumption on the typical wave amplitude a

is classically performed: ǫ :=
a

h0
= O(µ). This assumption often appears as

too restrictive for many applications in coastal oceanography. Removing the
small amplitude assumption while still keeping all the O(µ) terms, we obtain
the so-called Green Naghdi equations (GN equations in the following) [137], also
referred to as Serre equations [253] or fully non-linear Boussinesq equations [283].
Since these pioneering works, a large variety of models has been developed. One
can now find lots of approaches with improved dispersive properties, such as
[207, 224], or the recent enhancements [31, 70, 127, 204], allowing to significantly
extend the domain of validity of the mathematical model.

It results from these works models asymptotically more accurate than
the NSW equations, but their resolution is undeniably much more demanding.
Regarding the methods classically employed to integrate GN equations, it is
worthwhile to recall that in spite of their low computational cost and shock-
capturing abilities, the FVM are not well-suited in the evaluation of high order
derivatives, unlike more versatile methods such as FDM or FEM for instance.
Some gradient reconstructions can be found in the literature to evaluate properly
the dispersive components yet (see the FVM for 1d equations [100]), even
on unstructured meshes, with the purely 2d FVM proposed in [94], or [165],
allowing for mesh refinement and flexibility for large scale simulations. An
alternative point of view is to combine the benefits of FDM and FVM in an
hybrid method, such as those suggested in [168, 105, 258, 269, 226]: it allows
a practical computation of the high order derivatives, enjoying in parallel the
advantages of FVM in the integration of the conservative part. This being so,
although appearing as a natural choice, incorporating a Finite Volume scheme at
this stage is not an absolute necessity. Let us mention for instance some purely
FDM [204, 224, 260, 283] and FEM [193, 244, 261].

As far as flexibility is concerned, the use of discontinuous-Galerkin methods
would appear as a natural choice. Indeed, it is useful to recall that this class
of method provides several appealing features, like compact discretization
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stencils and hp-adaptivity, flexibility with a natural handling of unstructured
meshes, easy parallel computation and local conservation properties in the
approximation of conservation laws. This is a considerable asset when dealing
with the challenging numerical problem we are interested in. Concerning the
approximation of general problems, involving higher-order derivatives, several
methods and important developments have been proposed in recent years,
following [17] on Navier-Stokes equations and [77] on convection-diffusion
systems. A recent review is performed in [292] and a unified analysis can be
found in [9], and [106, 107], respectively for elliptic problems and both 1st and
2nd order problems in the framework of Friedrichs’ systems.

The application of dG methods to the NSW equations has recently lead
to several improvements. However, dG methods for BT equations have been
under-investigated. In [109], a hp/spectral element model is introduced for the
1d enhanced equations of Nwogu [224], while the 2d equations of Peregrine [230]
are studied in [111], in the flat bottom case, relying on a scalar reformulation that
allowed some computational savings. This formulation is further investigated
in [112], accounting for variable depth, and in [113] with the study of the
enhanced equations of Madsen and Sorensen [206]. In [103, 104], an arbitrary
order nodal dG-FEM method is developed for the set of highly-dispersive
BT equations introduced in [205], respectively in 1d and 2d on unstructured
meshes. These equations have a larger range of validity and can theoretically
model fully nonlinear waves transformation, but they are also more complex,
introducing a dependence in the vertical velocity, and consequently additional
degrees of freedoms in the discrete approximations. As stated by the authors
themselves, the bottleneck of their approach lies in the need of reconstruction
and resolution of the large associated linear systems: this process can rapidly
become a drawback for large-scale simulations.

Surprisingly, the GN equations have received far less attention. In the
1d framework and formulated in terms of free-surface elevation above the still
water depth ζ and horizontal velocity u, these equations read as follows (see
[3, 37] for the derivation of this particular formulation) :

{
∂tζ + ∂x(hu) = 0 ,[
1+ αT[z, h]

](
∂t(hu) + ∂x(hu2) +

α− 1
α

gh∂xζ
)
+

1
α
gh∂xζ + hQ1(u) = 0 ,

(V .1)
with the differential operators

Q1(u) = 2h∂xh(∂xu)
2+

4
3
h2∂xu∂2xu + h∂xz(∂xu)

2+ h∂2xz u∂xu+
(
∂xζ∂2xz+

h

2
∂3xz
)
u2,

(V .2)

and T[z, h] = hT [z, h]1
h
, with for any scalar valued function w :

T [z, h]w = −h2

3
∂2xw− h∂xh∂xw+

(
∂xζ∂xz+

h

2
∂2xz
)
w , (V .3)
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Here, z still stands for the parametrization of the bottom variations, and
h = ζ + h0 − z refers to the water height (see Fig. V .1). In fact, the family of
equations (V .1) indexed by the optimization parameter α ≥ 1 is derived from
the original formulation, available in [183, 182] for instance, issuing from aO(µ2)
approximation of the full water waves equations. The parameter α is introduced
to reach more adequate dispersion relations, entailing the introduction of addi-
tional terms of order O(µ2) to the momentum equations, which consequently
does not affect the precision of the model. In the continuity of this work, the three
parameters model developed by Chazel et al [70] provides another advancement
of the dispersive properties.

As regards numerical studies on GN equations, a compact FVM approach
is proposed for the 1d case in [74] and a FVM for a particular 2d flat bottom
system in [213]. A pseudo-spectral approach is introduced in [229] and FEM
discretization in [214] for the 1d case on flat bottom. To the authors knowledge,
the only dG method for GN equations has been recently proposed in [191],
for the 1d equations with uneven bottom, relying on a centered dG approach
and applications with second-order polynomial approximations. The issue of
robustness is however not addressed. In [37, 70, 268], a high-order accurate
hybrid FVM-FDM model is introduced, embedded in a splitting approach. A
robust treatment of moving shoreline and well-balancing for motionless steady
states are ensured. The 2d extension on cartesian meshes has recently been
performed in [184]. Let us also mention [72] and more recently [254] for a 2d
cartesian numerical model based on fully non-linear BT equations of [283].
However, it would appear that no arbitrary order dG discretization of the GN
equations has been proposed yet, and this is one of the goals of this work.

Although GN equations provide a good description before the breaking
point, they are unable to correctly describe some phenomena of central interest
in wave modelling such as breaking waves notably. As a consequence, they
cannot be considered either as an entirely satisfactory model for nearshore flows
simulation. To amend this limitation, several approaches have been proposed.
An interesting idea is to introduce artificial viscosity in the momentum equations
[72, 167, 296] to modelize the energy dissipation caused by wave breaking. This
is also the method chosen in [104], embedded in the nodal-dG method. Although
being generally satisfactory, the weakness of the aforementioned ad hoc methods
stands in the necessity of an appropriate scaling of several physical constants.
Now, most of these parameters revolve around well established reference values,
but the persisting complexity of wave breaking processes makes the elaboration
of a universal calibration far from being obvious yet. As mentioned by Cienfue-
gos et al [76], the resolution remains sensitive to the way dissipation parameters
are fixed, and can lead to incongruous results in some cases.

Considering the general features assigned to NSW and GN equations, an
alternative approach to handle broken waves, which is gaining popularity,
consists of proposing a way to unify the benefits of the two mathematical models
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in their respective domain of physical validity. From a schematic point of view,
the objective is to use the GN equations in the shoaling zone up to the initiation
of wave breaking, and handle propagation of shocks with the NSW equations.
Indeed, NSW equations actually provide a good description of broken waves
[35], which are regarded as shock waves, and can therefore be accurately com-
puted using shock-capturing methods. To achieve this, one can naturally plan to
skip the dispersive terms in the vicinity of shocks, keeping in mind that the GN
system naturally degenerates into Shallow Water equations when these terms
are neglected. This switching strategy can be performed in a very simple fashion,
provided the dispersive BT or GN equations are written in conservative forms.
This strategy is employed in [37, 226, 271] for instance. Naturally, the method
requires the introduction of a system of numerical criteria devoted to identify the
general characteristics of wave breaking, and eventually follow broken waves to
detect if a "switch-back" to dispersive equations is needed. In [269] a criterium
relying on the wave height to water depth ratio is introduced and subsequently
used in [270] and [254] for instance. Another criterium based on the momentum
gradient is successfully used in [246]. In [268], the problem of breaking waves
is handled through a relevant combination of three criteria involving the local
energy dissipation, front slope and Froude number. Here again, the method
requires some critical values to be calibrated, but their choice is governed by
specific physical considerations, and is not particularly problematic. Actually,
the main drawback is the potential appearance of oscillations in the transition
areas, especially when high order methods or refined meshes are used. Let
us also mention the recent 2d approach of [166] for some applications and
additional studies regarding wave breaking.

Among the tools available in shock detection, one can mention the strong
super-convergence criteria (IV .14) introduced by Krivodonova [174], and suc-
cessfully involved in the preliminary step of the limiting procedure to detect
occurrence of discontinuities in our 2d pre balanced dG scheme (see also [108]).
According to its efficiency in discriminating areas in need of limiting, it may
appear relevant to handle wave breaking by the mean of this criteria. Such an
objective is reached here. As in [258, 271], the dispersive part of the system is
written as an additional source term of the NSW equations; it results from this
decomposition a very convenient way to shift from GN to NSW equations, and
motivates the use of a switching strategy rather than an ad hoc technique. The
shock indicator is used to detect steep wave fronts and locally suppress the dis-
persive effects, and the corresponding shock waves are subsequently computed
using the natural shock-capturing abilities of the dG approach, combined with
an efficient local limiting process. Note that the hybrid FDM/FVM approaches
proposed in [37, 70, 268] have been developed in this spirit : the solution operator
associated with the dispersive part is straightforwardly exhibited, and locally
switched off depending if the breaking criteria is activated or not. The proposed
work follows a similar methodology, avoiding the possible limitations of a
splitting algorithm.



166 CHAPTER V . THE DGM APPLIED TO GN EQUATIONS

Contribution and objectives

In the present work, we describe a strategy to compute discontinuous-Galerkin
approximations of the solutions of some one-dimensional GN equations, includ-
ing an efficient wave-breaking method. Indeed, the use of such fully nonlinear
equations appear as a reasonable compromise between the weakly non-linear
equations studied in [111, 112] and the highly-dispersive (and computationally
costly) three-variables equations investigated in [103, 104]. Additionally, it is
easily possible to extend the range of validity of the GN equations to moderately
deep water by the introduction of some optimization parameters, as shown in
[70, 184]. A closer look to equations (V .1) highlights that, if this formulation
has real advantages (i.e. it does not involve any third order derivatives, and the
presence of the second-order operator 1+ αT[z, h] makes the model very stable
with respect to high frequency perturbations, see [37]), its main drawback is the
time-dependency of this operator, through the water height h. Indeed, on compu-
tational aspects, the dG discretization of 1+ αT[z, h] with a Local Discontinuous
Galerkin approach [77] for higher order derivatives, and the associated linear
system resolution, implies a global assembly process, for gathering the local
discrete operators into the global one. And this should be done at each time step,
or even sub step if high order time marching algorithms are used, together with
the corresponding algebraic system resolution.

To overcome this, the strategy recently proposed in [184], and also ap-
plied here, consists of using a new class of GN equations, asymptotically
equivalent to the formulation (V .1) but for which the time dependency of the
operator I + αT[z, h] is removed. The resulting model shares the same level of
accuracy with the original GN equations, with respect to the approximation of
the full water waves equations, but allows to build the global discrete operator in
a pre-processing step. This operator is then used throughout all the computation,
leading to dramatic computational savings. As a consequence, the computational
effort can be oriented towards a high order of accuracy in space and time, and
the enforcement of some essential robustness properties. An arbitrary order
of accuracy in space is obtained through the use of the Legendre polynomials
hierarchical basis, and low storage SSP-RK schemes (IV.3.5 ) are used for the time
discretization. The whole model is shown to exactly preserve the motionless
steady states, thanks to the pre-balanced reformulation of the surface gradient
term and suitable interface fluxes, and a robust treatment is implemented for the
moving shoreline, based on the enforcement of an element-wise water height
positivity preservation property, borrowing again the recent accuracy-preserving
method introduced for the dGM in [291, 298].

To summarize, the main features of the 1d dG-based GN numerical model
described in this work are :

♯ 1 an improved computational efficiency when compared to the original
equations (V .1), due to the time-independency of the involved regularizing
second order dispersive operator,
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♯ 2 an arbitrary order of spatial accuracy,

♯ 3 a well-balanced property for the motionless steady states,

♯ 4 a robust treatment of the shorelinemotions,

♯ 5 an efficient and simple way of handling broken waves, based on a GN/NSW
equations switching strategy.

This work lead to the recent article [-5-].

The study is organized as follows: in a first part we introduce the new family
of 1d GN models with time-independent dispersive operator. The second part is
devoted to the description of a robust arbitrary order of accuracy nodal dG ap-
proach for this family of model. The emphasize is put on the discretization of
the higher order derivatives. Based on the 2d dG scheme, we then rapidly treat
the well-balanced and robustness properties, and detail the switching strategy.
Finally, the performances of the resulting numerical model are assessed through
extensive 1d numerical validations. Two-dimensional validations are left for fu-
ture works.
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V.2 Governing equations

In this section, we detail the simplified new class of GN equations for which the
time dependency of the second-order differential operator 1+ αT[z, h] is amended.
Choosing h0 a reference water depth, we recall that ζ(x, t) stands for the free
surface elevation, z(x) the variation of the bottom with respect to the rest state,
u(x, t) the horizontal velocity, and h(x, t) = ζ(x, t) + h0 − z(x) the water height
(see Fig. V .1).

h0

ζ(x, t)

η(x, t)

z(x)

h(x, t) = ζ(x, t) + h0 − z(x)

0

Figure V .1: 1d configuration

These equations have recently been derived in [184] in the 2d frame and their
1d formulation reads as follows (see also [-5-]) :




∂tζ + ∂x(hu) = 0 ,
[
1+ αT[hb]

](
∂thu+ ∂x(hu

2) +
α− 1

α
gh∂xζ

)
+

1
α
gh∂xζ

+ h
(
Q1(u) + gQ2(ζ)

)
+ gQ3

([
1+ αT[hb]

]−1
(gh∂xζ)

)
= 0 .

(V .4)

The operator Q1 is obtained from (V .2), and :

Q2(ζ) = −
(
∂xζ∂xz+

h

2
∂2xz
)
∂xζ . (V .5)

For a given scalar function w, the operator T is defined as follows :

T[h]w = −h3

3
∂2x

(w
h

)
− h2∂xh∂x

(w
h

)
, (V .6)

andQ3 admits the simplified notation :

Q3(w) = Q3[h
2 − h2b]w =

1
6

∂x(h
2 − h2b)∂xw+

h2 − h2b
3

∂2xw−
1
6

∂2x(h
2 − h2b)w ,

(V .7)
where hb corresponds to the initial state :

hb = max(h− ζ, ǫb) . (V .8)
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Remark V.2 .1. The use of ǫb in (V .8) is only to ensure that the new quantity hb re-
mains positive in dry areas and preserves the regularization properties of 1+ αT[hb]. It
obviously does not modify the consistency of the model, and our numerical investigations
did not show any dependency of the results with respect to the (reasonable) value of ǫb.
In the validations of §V.4 we use ǫb = 0.1.

Before describing in details the dG discretization of (V .4), let us reformu-
late the model under the pre-balanced formulation, to adapt the dG well-balanced
scheme previously introduced. In 1d, the splitting relying on the use of the total
free surface elevation η = h+ z can be written as (see Fig. V .1) :

gh∂xη =
1
2
g∂x(η

2 − 2ηz) + gη∂xz , (V .9)

leading to the following formulation of the NSW system :

∂tV + ∂xH(V, z) = S(V, z) , (V .10)

with V = t(η, q), q = hu and

H(V, z) =
(

Hη(V)
Hq(V, z)

)
=

(
q

uq+ p(η, z)

)
, S(V, z) =

(
Sη(V)
Sq(V, z)

)
=

(
0

−gη∂xz

)
,

(V .11)
and the hydrostatic pressure term now expressed as :

p(η, z) =
1
2
gη(η − 2z) .

We recall that the velocity is computed from u =
q

η−z in the above relations. Using
dG approximations for NSW equations, we can reproduce the strategy presented
in the 2d frame, to obtain the balance between fluxes and topography source
term, provided that the corresponding integral terms are computed exactly. To
benefit from this property for the GN equations, we notice that using (V .9), the
second equation of (V .4) can be equivalently written as follows :

∂tq+ ∂x
(
uq+ p

)
+Dc(η, u) = −gη∂xz , (V .12)

with

Dc(η, u) =
[
1+ αT[hb]

]−1(1
α
gh∂xη + h

(
Q1(u) + gQ2(η)

)

+ gQ3
([
1+ αT[hb]

]−1
(gh∂xη)

))
− 1

α
gh∂xη ,

(V .13)

Remark V.2 .2. The original system (V .1) can of course also be written as follows :

∂tq+ ∂x(uq+ p
)
+Do(η, u) = −gη∂xz , (V .14)

with

Do(η, u) =
[
1+ αT[z, h]

]−1(1
α
gh∂xη + hQ1(u)

)
− 1

α
gh∂xη . (V .15)
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From this, equations (V .1) and (V .4) are nothing but the pre-balanced NSW
equations (V .10) supplemented by a dispersive source term :

∂tV + ∂xH(V, z) = S(V, z) +D(V) , (V .16)

with

model (V .1) : D(V) =

(
0

−Do(η, u)

)
, (V .17a)

model (V .4) : D(V) =

(
0

−Dc(η, u)

)
. (V .17b)

V.3 Discontinuous Galerkin discretization

To implement a discontinuous Galerkin scheme, let P be a partition of the
computational domain Ω = [L, R] into Ne non-overlapping elements, denoted
Ci, 1 ≤ i ≤ Ne. The element Ci = [xli , x

r
i ] has a length |Ci| and a boundary ∂Ci

(reduced to the 2 boundary nodes xli and xri ). Let x be the coordinate in Ω and we
denote h = max

1≤i≤Ne

|Ci|. We aim at computing an approximated solution, denoted

Vh = (ηh, qh), on this partition. Let us define :

V := {v ∈ L2(Ω) | ∀C ∈ P , v|C ∈ P
N(C)} , (V .18)

where PN(C) denotes the space of polynomials in C of degree at most N. We
consider only the new model (V .4) but the subsequent weak formulation and
discretization can of course be straightforwardly applied to the original model
(V .1).

V.3.1 Weak formulation

Due to the number of terms and derivatives (up to 3rd order) involved in the
dispersive source term Dc(η, u), trying to write equation (V .12) as a first-order
system, with the use of several auxiliary variables, would only bring up some un-
necessary complexity in the formulation. Instead, we reformulate (V .16, V .17b)
as follows :

∂tη + ∂xq = 0 , (V .19a)

∂tq+ ∂x
(
uq+ p

)
+A = −gη∂xz , (V .19b)

with A is an auxiliary scalar valued variable, obtained as the solution of the fol-
lowing auxiliary problem :

[
1+ αT[hb]

]
(A+

1
α
gh∂xη) = K , (V .20a)

K =
1
α
gh∂xη + h

(
Q1(u) + gQ2(η)

)
+ gQ3(X ) , (V .20b)

[
1+ αT[hb]

]
X = gh∂xη . (V .20c)
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From this, a weak formulation of the problem (V .19) is obtained by multiply-
ing by test functions (φ,π) ∈ (V)2 and integrating over a given element Ci. The
flux term is integrated by parts and the problem becomes :

Find Vh = (ηh, qh) ∈ (V)2 such that, ∀(φ,π) ∈ (V)2, and ∀Ci ∈ P we
have :

∫

Ci

∂tηhφdx−
∫

Ci

Hη(Vh, zh)
d

dx
φ dx+

[
Hη(Vh, zh)φ

]xri
xli
= 0, (V .21)

∫

Ci

∂tqhπdx−
∫

Ci

Hq(Vh, zh)
d

dx
π dx+

[
Hq(Vh, zh)π

]xri
xli
=

∫

Ci

Sq(Vh, zh)πdx−
∫

Ci

Aπdx .
(V .22)

V.3.2 Semi-discrete formulation

On each element Ci, we write ∀x ∈ Ci, ∀t ∈ [0, tmax] :

ηi := ηh|Ci
(x, t) =

Nd

∑
l=1

ηl
i (t)θ

l
i (x) , and qi := qh|Ci

(x, t) =
Nd

∑
l=1

qli(t)θ
l
i (x) ,

(V .23)
where Nd = N + 1 is the number of freedom degrees per element, {θli}l=1...Nd

is a
polynomial expansion basis for PN(Ci), and

η̃i =
t(η1

i (t), . . . , η
Nd
i (t)), q̃i =

t(q1i (t), . . . , q
Nd
i (t)),

are the local expansion coefficients vectors. In the following, {θli}l=1,...,Nd
refers to

the local Lagrange interpolating polynomial basis on the element Ci, defined on
the Legendre-Gauss-Lobatto (LGL) set of Nd nodes (a nodal-element basis).

Remark V.3 .1. It should be stressed that one can also consider a modal decomposition
basis :

ηi =
Nd

∑
n=1

η̊n
i (t)Pn−1(x) , qi =

Nd

∑
n=1

q̊ni (t)Pn−1(x)

where, {P0, · · · , PNd−1} is the basis associated with the Legendre polynomials. For
a generic scalar component w the connexion between the freedom degrees coefficients

stocked in the vectors w̃i =
t(w1

i (t), . . . ,w
Nd
i (t)) and ẘi := t(ẘ1

i (t), . . . , ẘ
Nd
i (t)) is

governed by the following relation :

w̃i = Viẘi ,

where the coefficients of the Vandermonde matrix Vi are defined via :

V
l p
i = Pp−1(g

l
i) , 1 ≤ l ≤ Nd , 1 ≤ p ≤ Nd , (V .24)

{gli}l=1,...,Nd
being the LGL nodes on Ci.

This correspondence is useful in practice since high order modes are generally source
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of instabilities, and need to be appropriately controlled; thus, modal formulations are
naturally adapted to limiting procedures and de-aliasing techniques, as those exposed
later.

We consider now the local polynomial expansion for the topography
parametrization :

zi := zh|Ci
(x) =

Nd

∑
l=1

zliθ
l
i (x),

and we assume that a local expansion is available for A, given by :

Ãi =
t(A1

i (t), . . . ,A
Nd
i (t)). (V .25)

Injecting these expansions into the weak formulation (V .21)-(V .22), replacing
the test functions (φ,π) by the local basis functions and classically substituting
numerical flux functions q̂ and Ĥ to the discontinuous intercell flux functions
arising in the interface terms, we obtain the semi-discrete formulation of our dG
approximation :

Nd

∑
l=1

d

dt
ηl
i (t)M

l p
i −

Nd

∑
l=1

qli(t)S
l p
i +

[
q̂θ

p
i

]xri
xli
= 0, (V .26)

Nd

∑
l=1

d

dt
qli(t)M

l p
i −

∫

Ci

Hq(Vh, zh)
d

dx
θ
p
i dx+

[
Ĥθ

p
i

]xri
xli
=

∫

Ci

Sq(Vh, zh)θ
p
i dx−

Nd

∑
l=1
Al

i(t)M
l p
i ,

(V .27)

for 1 ≤ p ≤ Nd, and 1 ≤ i ≤ Ne, where

M
l p
i =

∫ xri

xli

θli (x)θ
p
i (x)dx and S

l p
i =

∫ xri

xli

θli (x)
d

dx
θ
p
i (x)dx

are respectively the local mass and stiffnessmatrix coefficients on Ci.

Remark V.3 .2. In (V .27), the integrals
∫
Ci
Hη(Vh, zh)

d

dx
θ
p
i dx and

∫
Ci
Sq(Vh, zh)θ

p
i dx

have to be computed exactly when motionless steady states are reached, with a suitable
quadrature formula, in order to obtain a well-balanced scheme, as shown in §V.3.5 . On
the other hand, the computation of Ãi, which involves higher order derivatives, is done
directly, in a collocation way. This is temporarily postponed to §V.3.3 .

Remark V.3 .3. At a given interface, the computation of the exchanging flux term q̂

and Ĥ is classically performed with appropriate numerical flux functions, as done in
the previous 2d works. To ensure the positivity of the water height, we also need to use
a water height positivity preserving flux (see §V.3.6 ). As in the 2d case, we use the
global Lax-Friedrichs flux in the numerical validations of §V.4 . These interface fluxes
computations, carefully chosen to ensure the preservation of motionless steady-states, are
detailed in §V.3.5 .
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V.3.3 High-order derivatives and dispersive terms computation

We are now left with the resolution of systems (V .20a - V .20c), to compute the
expansion A. Although the semi-discrete formulation (V .26), (V .27) could ap-
pear purely local, the computation of the dispersive term expansions A requires
a global assembly process, for gathering the local discrete operators into a global
one, in the computation of the inverse of the operator 1+ αT[hb]. Additionally,
this computation involves the discrete approximation of space derivatives up to
3rd order. We use the Local Discontinuous Galerkin (LDG) approach [77] to compute
these derivatives.
To illustrate this procedure, let consider the following 2nd order equation, for an
arbitrary scalar valued function w :

ℓ− ∂2xw = 0 , (V .28)

reformulated as a set of two coupled 1st order equations using an auxiliary vari-
able b :

b+ ∂xw = 0 , ℓ+ ∂xb = 0 . (V .29)

Then, multiplying by a test function φ ∈ V and integrating over an element Ci,
we have the associated weak formulation :

∫ xri

xli

bφ−
∫ xri

xli

w
d

dx
φ + ŵrφ(x

r
i )− ŵlφ(x

l
i) = 0 ,

∫ xri

xli

ℓφ−
∫ xri

xli

b
d

dx
φ + b̂rφ(x

r
i )− b̂lφ(x

l
i) = 0 .

(V .30)

To define the exchanging terms ŵ and b̂ at a given interface, we use the following
fluxes [79] :

ŵ = w− ξ{w} ,

b̂ = b+ ν{b}+ λ

h
{w} , (V .31)

with the interface average w = (w+ +w−)/2 and jump {w} = (w+ −w−)/2, w+

and w− respectively the right and left interface values of w (and similar notations
for b). Taking ξ = ν = λ = 0 gives the centered Bassi and Rebay (BR) fluxes
[17], initially introduced for compressible Navier Stokes equations. The method
is simple, but unstable and usually provides sub-optimal convergence rates for
odd values of N, while the choice ξ = ν = 1, corresponding to the Cockburn and
Shu alternate upwind discretization (refers to as LDG flux in the following), may
have stabilizing effects and increase the order of convergence.

Remark V.3 .4. Note that λ
h
{w} is a penalization term, with a O(h−1) scaling. Taking

for instance ξ = ν = 0 and λ 6= 0 gives the stabilized centered fluxes (sBR), sometimes
helping to recover optimal convergence rates. In the numerical validation of §V.4 , we
only investigate and compare the BR and LDG choices. Note that extensive comparisons
of fluxes including their stabilized versions and the impact of the coefficient λ are
performed in [112] for weakly non-linear BT equations.
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Let us now come back to (V .30). At the discrete level, starting from the Ne

expansion coefficients vectors {w̃i}i=1..Ne
, which are gathered in a Nd × Ne vector

W = t(w̃1, . . . , w̃Ne), we aim at computing the Nd × Ne vector L = t(ℓ̃, . . . , ℓ̃Ne) of
expansion coefficients for the 2nd order derivative ∂2xw.
This is done globally, using (V .31) to build the differentiation matrices, that also
account for exchanging interface fluxes. Injecting wh into (V .30) and replacing
φ by the local basis functions {θli}

Nd
l=1, for all elements {Ci}i=1..Ne

, we obtain the
global discrete formulation :

MB = SW − (E− ξF)W ,

ML = SB − (E + νF)B − λ

h
FW ,

(V .32)

where the square Nd × Ne global mass and stiffness matrices M and S have a
block-diagonal structure :

M =




M1
. . .

MNe


 , S =




S1
. . .

SNe


 , (V .33)

and thematrices E and F accounting for the inter-element exchanging fluxes have
the following structure :

E =




Nd

1

1

1/2 1/2
−1/2 −1/2

1/2 1/2
−1/2 −1/2

. . .

(0)

(0)



, F =




Nd

1

1

−1/2 1/2
1/2 −1/2

−1/2 1/2
1/2 −1/2

. . .

(0)

(0)



(V .34)
Note that the issue of boundary conditions is postponed to §V.3.8 . We obtain

a global discrete formulation of the first and second order derivative operators,
based on the LDG approach (V .31) :

B = −DxW , L = D
2
xW , (V .35)

with

Dx = −M
−1 (S−E + ξF) , (V .36)

D
2
x = M

−1
(
− (S−E− νF)Dx −

λ

h
F

)
. (V .37)
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K
Fluxes N 20 40 80 160 320 640 order
BR 1 1.99e-3 1.08e-3 5.56e-4 2.82e-4 1.42e-4 7.09e-5 1.4

2 3.46e-4 4.87e-5 6.18e-6 7.80e-7 9.79e-8 1.22e-8 2.8
3 1.70e-5 2.15e-6 2.69e-7 3.24e-8 3.90e-9 5.33e-10 2.8
4 2.91e-7 1.03e-8 2.39e-9 1.34e-9 4.06e-10 8.22e-11 2.5

LDG 1 6.11e-3 2.02e-3 5.07e-4 1.27e-4 3.18e-5 7.95e-6 2
2 3.62e-4 6.95e-5 8.99e-6 1.13e-6 1.42e-7 1.78e-8 2.9
3 1.27e-5 9.54e-7 5.99e-8 3.75e-9 2.34e-10 1.46e-11 3.9
4 4.22e-7 1.42e-8 4.53e-10 1.43e-10 4.53e-13 9.58e-14 4.8

Table V .1: Heat equation : Comparative study between BR and LDG fluxes.

A similar construction can be performed for the 3rd order derivatives. Using
these global differentiation matrices, we are now able to approximate all the
derivatives occurring in (V .20a - V .20c). The nonlinear products are treated
directly, in a collocation manner, inspired from [103].

The influence of the upwind/downwind strategy of Cockburn and Shu
can already be simply highlighted by a brief study around the heat equation :

∂tu− ∂2xu = 0 . (V .38)

Numerical solutions provided by the BR and LDG fluxes are compared with the
exact solution for a given set of initial conditions. Results are reported in Tab.
V .1 (numerical errors are in L1 norm). They confirm that making use of the BR
fluxes provide sub optimal convergence for N = 1 and N = 3, with sometimes
even a more anarchic behaviour (see N=4 on Fig. V .2 and corresponding
reported errors), while the LDG choice effectively helps recovering optimal
convergence rates.

We now return to the problem under study. Using these differentiation
matrices, we can also build the global square Nd × Ne matrix of the discrete
version of 1+ αT[hb]. For instance, considering the simplified flat bottom case
(hb = h0), we approximate the corresponding operator as follows :

1+ αT[h0] = 1− α
h20
3

∂2x −→ I − α
h20
3

D
2
x ,

where I is the Nd × Ne identity matrix. The locality of the LDG approach
results in a sparse block-structure matrix which is stored in a sparse format and
LU-factorized at the beginning of the computation, in a pre-processing step.
For the validations of §V.4 , the factorization and the resolution of the resulting
triangular linear systems are performed using the unsymmetric multi-frontal
method [85].
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Figure V .2: Heat equation : Convergence rate study for BR (red) and LDG (blue)
methods. Reference slopes corresponding to LDG appear in dotted lines.

Remark V.3 .5. The same approach can of course also be used for the original model
(V .1), the only difference being that the 1+ αT[z, h]matrix has to be build and factorized
at each time step (or substep).

V.3.4 Stabilisation procedure

The use of direct interpolation/collocation methods for the computation of the
nonlinear products in the dispersive source terms reduces the computational cost
but can generate some aliasing which deteriorates the solution quality and can
lead to instabilities. Indeed, these quantities may be Nth order approximations of
higher order polynomials. The situation is even more complicated in the case of
general functions such as those involved by the dispersive term A, which evalu-
ation will consistently introduce aliasing error. To amend this, we use the stabi-
lization filtering method (mild nodal filter), as suggested in [103]. We introduce
artificial dissipation to reduce (or even switch off) the influence of higher order
coefficients in the modal expansion. The method relies in the introduction of a
filter defined by :

σ(τ) =





1 if 0 ≤ τ ≤ τc =
Nc

N
,

exp
(
−A

(
τ − τc
1− τc

)s)
otherwise ,

(V .39)

where s, A are real parameters and Nc is a threshold defining the impacted
modes. At each time step the filter is applied locally to the approximated vec-
tor solution Vh by multiplication with the following matrix :

F = VDV−1 , (V .40)
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Figure V .3: De-aliasing procedure : Free surface profiles without filter (top) and
with filter (bottom) at t=0, 1.2 and 2.4s .

where V is given by (V .24) and D is a diagonal matrix with coefficients :

Dll = σ(
l − 1
N

) , l = 1, · · · ,Nd . (V .41)

To illustrate the efficiency of the procedure, we propose to lightly pre-empt the
experimental part, studying the propagation of a solitary wave (see test V.4.3 ).
In this test, we set h0 = 1 and the non linearity parameter is a = 0.27. The order
of approximation is N = 3, and the space step is equal to 0.25. The parameters
involved in the filter are s = 8, α = 0.1 and Nc = 0. A glance towards the
water profiles available in Fig. V .3 helps convincing about the necessity of the
stabilisation procedure.

V.3.5 Preservation of motionless steady states

In this section, we detail the computation of the interface fluxes
[
q̂θ

p
i

]xri
xli

and
[
Ĥθ

p
i

]xri
xli

appearing in the semi-discrete local discretization (V .27). To ensure

the preservation of motionless steady states, we adapt to the 1d framework the
method previously employed, relying on the PBSW equations. At a given bound-
ary interface (say between cells i and i + 1), the interior and exterior values are
recovered as follows :

V− = Vh(x
r
i ) , z− = zh(x

r
i ) , V+ = Vh(x

l
i+1) , z+ = zh(x

l
i+1) . (V .42)

At this point, we follow exactly the same protocol as in the 1d FV context. We
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hence define at each boundary :

z∗ = max(z−, z+) , z̆ = z∗ −max(0, z∗ − η−) , (V .43)

h̆± = max(0, η± − z∗) , η̆± = h̆± + z̆ , (V .44)

leading to new interior and exterior values :

V̆− = (η̆−,
h̆−

h−
q−) and V̆+ = (η̆+,

h̆+

h+
q+) , (V .45)

with h± = η± − z±. Then, the interface fluxes in (V .26)-(V .27) are computed as
follows :

q̂ = Hη(V̆−, V̆+) , (V .46)

Ĥ = Hq(V̆−, V̆+, z̆, z̆)− gη̆−(z− − z̆) (V .47)

whereH = t(Hη ,Hq) is the Lax-Friedrich flux function (I .21).

Proposition 12. The dG scheme (V .26)-(V .27), with the interface fluxes defined in
(V .46)-(V .47), preserves the motionless steady states.

Proof. We adapt the ideas of [288] to the pre-balanced formulation (V .16). We want
to show that :

d

dt
η̃i(t) = 0 and

d

dt
q̃i(t) = 0 , for 1 ≤ i ≤ Ne .

If a motionless steady state is reached, that is :

Vh =
t(ηc, 0) , (V .48)

we have q̃i(t) = 0 on each element and using (V .26),
d

dt
η̃i(t) = 0 obviously holds.

For the second equation (V .27), we this time need the residue

Rp = −
∫

Ci

Hq(Vh, zh)
d

dx
θ
p
i dx+

[
Ĥθ

p
i

]xri
xli
+ g

∫

Ci

ηh
d

dx
zhθ

p
i dx+

Nd

∑
l=1
Al

i(t)M
l p
i

to vanish when a motionless steady state is reached, for 1 ≤ p ≤ Nd and
1 ≤ i ≤ Ne. We first notice that the definition of the differential operators
{Qk}1≤k≤3, combined with (V .48), directly leads to A(Vh) = 0 at the discrete
level, as a solution of (V .20a)-(V .20b)-(V .20c).
When (V .48) holds, (V .43)-(V .44)-(V .45) leads to η̆− = η̆+ = ηc for both inter-
faces, and using (V .47), the interface flux Ĥ(xri ) reduces to :

Ĥ(xri ) =
g

2
(η2

c − 2ηcz̆r)− gηc(z
−
r − z̆r) =

g

2
(η2

c − 2ηcz
−
r ) = Hq(V−, z−).

We show in a similar way that such a relation also stands at the left boundary. As

Vh is a steady state solution, we have ∂x(Hq(Vh, zh)) = −gηc
d

dx
zh, and provided

the integral terms are computed exactly, we obtain :

Rp =
∫

Ci

∂x(H
q(Vh, zh))θ

p
i dx+ g

∫

Ci

ηc
d

dx
zh θ

p
i dx = 0
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V.3.6 Robustness

The problem of robustness property is addressed in an equivalent manner to
the 2d approach, that is adapting the ideas developed in [291, 298] to the pre-
balanced formulation. We first note that the scheme satisfied by the cell average of

the free surface ηn
i =

1
|Ci|

∫
Ci

ηi dx in the dG approximation (V .26) is :

ηn+1
i = ηn

i −
∆t

|Ci|
[
q̂
]xri
xli
, (V .49)

with the interface fluxes q̂ given by (V .46). Again, as we work with η instead of
h, we have to ensure that the first order scheme associated with (V .49) preserves
the positivity of the water height, and such a result has been stated at the
outcome of Proposition 2 for the Global Lax Friedrichs fluxes (see Remark II.2 .4).

Based on this, the ideas of [291] can be directly applied. Following the
steps detailed in §IV.3.4 , assuming that h̄ni ≥ 0, we define SN

i = {rki }k=1,..,β the
set of β LGL points on the element Ci, where β is chosen such that the associated
quadrature rule is exact for polynomials of degree N (i.e. 2β− 3 ≥ N). We then
compute the minimum water height mCi

over SN
i (IV .17) and apply the limiter

(IV .18). We deduce a modified Nth order polynomial η̌i, which is injected into
(V .26)-(V .27) instead of (V .23). Thus, following [291, 298], the positivity of the
mean water height h̄n+1

i is ensured under the condition :

max
1≤i≤Ne

λi
∆t

|Ci|
≤ ŵ1 ,

where λi =
(
max

∂Ci

(|u| +
√

gh)
)
. In practice, we have ŵ1 =

1
6
for N = 2, 3 and

1
12

for N = 4, 5.

V.3.7 Handling broken waves and limiting strategy

We now broach the issue of broken waves detection and give further details on
the switching strategy adopted in this work. As stated in the introductory lines,
we can find several methods in the literature, since the last few years, that allow
to handle broken waves in BT equations. They all rely on an accurate detection of
potential instability regions, near the breaking point, in which the limit of validity
of the BT equations is reached. We propose in this work to use a purely numerical
criteria to detect such area, based on the strong superconvergence phenomena
exhibited at element’s outflow boundaries [174], and previously used in 2d. In
1d, for a given element Ci, (IV .14) becomes :

Ii =
∆−|h1i − h

Nd
i−1|+ ∆+|hNd

i − h1i+1|
|Ci|(N+1)/2‖hi‖∞

, (V .50)

where

∆− =

{
1 if q1i ≥ 0 ,
0 otherwise .

, ∆+ =

{
1 if q

Nd
i ≤ 0 ,

0 otherwise .
(V .51)
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Waves about to break are identified in elements such that Ii ≥ 1 and we locally
suppress the dispersive term in such elements (i.e. we locally switch to the NSW
equations). After breaking, the wave fronts are handled as shocks by the NSW
equations and only the hyperbolic part of the equations is solved for the wave
fronts. The breaking wave dissipation is represented by shock local energy
dissipation [35].
Practically, our numerical investigations have shown that, for a given breaking
wave, the switching areas need to be slightly enlarged to prevent the possible
occurrence of spurious oscillations. Consequently some neighboring cells are
added to the switching area to include the steepening shore facing side of the
wave, and a part of the offshore facing side. This can be simply done with the
help of a mask, defining the switching area as a band of length 2r centred to the
elements verifying Ii ≥ 1 (see Fig. V .4).

Additionally, the use of a local limitation procedure Vh ← ΠVh is classically
required in troubled elements. In this work, we use again the improved moment
limiting strategy of [53], which implementation has been detailed in the 2d case
(see §IV.3.3 ).

2r

Ii ≥ 1

Figure V .4: Example of breaking area.

V.3.8 Boundary conditions

The boundary conditions are classically imposed weakly, by enforcing suit-
able reflecting relations at virtual exterior nodes, at each boundaries, through the
boundary interface fluxes. Periodic, Neumann and Dirichlet conditions can be en-
forced following this simple process. For the approximation of second order
derivatives with the LDG strategy, we classically enforce Neumann boundary
conditions for the auxiliary variable. We also use Neumann boundary conditions
for the derivatives involved in the discrete version of the operator 1+ αT[hb]. The
first and last rows of (V .34) should be adapted for Dirichlet conditions. As far as
generation and absorption of waves are concerned, we use relaxation techniques,
as described in §I.4.2 . The computational domain is slightly extended to include
the sponge layers, which length has to be calibrated from the incoming waves.
We enforce periodic waves generation with the use of a generation/relaxation
zone, following [205]. We have implemented the relaxation functions proposed
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in [283] and at the inlet boundary, we progressively impose on a two-wavelength
long generation layer the targeted wave train.

V.4 Numerical examples

In this section, we assess the ability of our dG approach to compute waves
propagation and transformations. The two models/schemes given by (V .26)-
(V .27) involving (V .17a) or (V .17b) will be referred to as GNO (for original)
and GNC (for constant) respectively. Unless stated otherwise, we use Neumann
boundary conditions at both boundaries, the optimized value α = 1.159 is used
and we set ǫb = 0.1. As regards the time scheme, we use again explicit SSP-RK
schemes [135]. Up to N = 3, SSP-RK schemes of order N + 1 are considered, to
ensure equal orders of convergence in space and time. A 4th order SSP-RK scheme
is used for N ≥ 3. We highlight that our numerical investigations have shown
that the value of ǫb does not influence the numerical results. Accordingly with
the robustness result, we do not suppress the dispersive effects in the vicinity of
dry areas.

V.4.1 Motionless steady states preservation

We consider a 100 m channel and start from an initial steady state at rest η = 0
and q = 0, over the following topography (see Fig. V .5) :

z(x) = −h0 exp
(
−
(
(x− d)/l

)2)
+ 0.8 . (V .52)

d is the center of the channel and we take l = 10, h0 = 1. After 10 s of simulation,
the steady state is still preserved up to the machine accuracy, regardless of the
polynomials’ order in the expansion basis or the refinement of the mesh. As an
example, for N = 3 and Ne = 300, the computations give an L1-error of 1.56 e−16

for the free surface and 7.13 e−15 for the discharge.

V.4.2 Accuracy analysis in the presence of non-flat bottom

We now focus on the evolution of a smooth gaussian profile over the previous
non flat and smooth topography, to highlight the convergence properties of our
approach. The initial water height is defined as h(x) = az(x), where a/h0 = 0.2
and z defined in the previous test case (V .52). No exact solution is available, so
a reference solution is computed at t = 0.15s with N = 7, Ne = 1280. Computa-
tions for both models (V .16)-(V .17a) and (V .16)-(V .17b) are run on a sequence
of regular meshes with increasing refinement and polynomial expansions of in-
creasing orders, from 1 to 5. For the approximation of high order derivatives,
we use successively LDG and BR fluxes. The numerical L1-errors computed us-
ing the reference solution at t = 0.15 s are reported in Tab. V .2 for the water
height and plotted on Fig. V .6 for both water height and discharge, in log-log
scale. As expected, we obtain similar orders of accuracy for both GNO and GNC
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Figure V .5: Topography and initial conditions for test cases V.4.1 and V.4.2 .
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Figure V .6: Accuracy analysis in the presence of non-flat bottom : Convergence
rates for the water height (left) and the discharge (right) - Reference slopes 1.6, 3.2,
4, 5 and 6 are plotted in dotted lines.
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Ne

Model Fluxes N 20 40 80 160 320 640 order
GNO BR 1 0.4 0.13 5.6e-2 2.2e-2 7.6e-3 2.2e-3 1.5

2 4.4e-2 3.2e-3 2.9e-4 3.2e-5 3.9e-6 4.9e-7 3.3
3 4.1e-3 5.4e-4 6.1e-5 6.7e-6 6.6e-7 5.6e-8 3.2
4 7.7e-4 6.1e-6 2.2e-7 6.9e-9 2.1e-10 6.7e-12 5.3
5 3.6e-5 1.1e-6 3.1e-8 8.7e-10 2.3e-11 / 5.1

LDG 1 0.25 4.3e-2 1.0e-3 2.9e-3 9.7e-4 3.8e-4 1.9
2 7.3e-2 7.3e-3 6.2e-4 6.6e-5 7.9e-6 9.8e-7 3.2
3 4.3e-3 2.9e-4 1.6e-5 9.0e-7 5.5e-8 3.4e-9 4.0
4 6.6e-4 1.5e-5 4.4e-7 1.4e-8 4.2e-10 1.3e-11 5.1
5 5.2e-5 7.0e-7 9.6e-9 1.5e-10 2.8e-12 / 6.0

GNC BR 1 0.4 0.14 5.7e-2 2.3e-2 7.7e-3 2.2e-3 1.5
2 4.7e-2 3.3e-3 2.9e-4 3.2e-5 3.8e-6 4.7e-7 3.3
3 4.2e-3 5.8e-4 6.5e-5 7.2e-6 7.1e-7 6.0e-8 3.2
4 9.3e-4 6.2e-6 2.2e-7 7.0e-9 2.2e-10 6.4e-12 5.4
5 4.1e-5 1.2e-6 3.4e-8 9.6e-10 2.6e-11 / 5.1

LDG 1 0.25 4.2e-2 1.0e-3 2.8e-3 9.6e-4 3.9e-4 1.9
2 7.5e-2 7.5e-3 6.2e-4 6.5e-5 7.7e-6 9.5e-7 3.2
3 4.5e-3 3.0e-4 1.7e-5 9.4e-7 5.7e-8 3.6e-9 4.0
4 7.0e-4 1.6e-5 4.6e-7 1.4e-8 4.4e-10 1.3e-11 5.1
5 6.1e-5 7.6e-7 1.0e-8 1.6e-10 3.1e-12 / 6.1

Table V .2: Accuracy analysis in the presence of non-flat bottom : L1 error for the
water height.

models. Concerning the impact of the numerical flux choice on the convergence
rates, we can observe on Tab. V .2 that, for both models and as mentioned in
previous studies [77, 103, 111, 112], the use of BR fluxes may lead to sub-optimal
convergence rates for odd values of N, while the LDG fluxes lead to optimal con-
vergence rates. The corresponding convergence orders are reported on the last
column of Tab. V .2.

Let us now investigate the computational improvements obtained with the
new GNC model. To this purpose, an averaged cpu-time per time-step is mea-
sured for both models, for increasing values of polynomials’ order and number
of elements. These cpu times are denoted respectively ρo and ρc for the original
and constant models. We focus on the ratio τ := ρo/ρc and the corresponding
values are reported in Tab. V .3. They confirm the computational savings pro-
vided by the GNC model, clearly more efficient for all given couple (N,Ne). We
observe that the ratio increases with respect to the polynomial’s order, confirm-
ing the benefit of this new approach for high order simulations. For polynomial
expansions of order 6 the speed-up can reach 7.15. Based on these investigations,
all the following computations are performed with the GNC model.
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Ne

N 1000 2000 3000 4000 5000 6000
1 3.23 3.21 3.04 2.96 2.94 2.90
2 4.09 4.27 4.14 4.01 3.90 3.84
3 5.32 5.11 5.03 4.97 4.91 4.87
4 6.01 5.77 5.67 5.63 5.51 5.55
5 6.66 6.38 6.32 6.30 6.26 6.16
6 7.15 6.99 7.05 6.97 6.86 6.54

Table V .3: Accuracy analysis in the presence of non-flat bottom : Time ratio τ =
ρo/ρc for increasing values of N and Ne.
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Figure V .7: Propagation of a solitary wave : Water surface profiles at t=0.4, 0.8,
1.2, 1.6 and 2s.

V.4.3 Propagation of a solitary wave

In this test, we investigate the propagation of a solitary wave over a flat bot-
tom. We recall that the original model (V .1) admits the following class of solitary
waves solution : 




h(x, t) = h0 + a sech2 (κ(x− ct)) ,

u(x, t) = c(1− h0
h(x, t)

) ,
(V .53)

where κ =

√
3a

4h20(h0 + a)
, and c =

√
g(h0 + a). We also recall that these

solitary waves are only solutions up to O(µ2) of the new GNC family of mod-
els. For this test, the reference water height is fixed at h0 = 1m and we use the
new model (V .4), with α = 1 to compute the propagation of a solitary wave
initially centred at x0 = 50m, with a relative amplitude set to a = 0.2h0. The
computational domain is a 200m long channel, regularly meshed with 400 ele-
ments. We investigate several orders of polynomial expansions and follow the
flow motion along the channel until t = 2.2s. We show on Fig. V .7 some free
surface profiles at several times obtained with 3rd order expansions and a fourth
order SSP-RK time-marching scheme. We can observe an excellent agreement be-
tween numerical solutions provided by the newmodel (V .4) and formula (V .53),
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Figure V .8: Propagation of a solitary wave : Convergence rate analysis for the
free surface (left) and discharge (right). L1-error is plotted against ∆x in a loga-
rithmic scale. Reference slopes for the LDG fluxes are in dotted lines. They are
equal to 1.4, 2.2, 3.3, 4.4 and 5.3 for the discharge. Similar data are observed for
the free surface.

showing the negligible discrepancies introduced by the O(µ2) approximation in
the new family of models. The free surface profile is accurately preserved during
the propagation. However, let us mention that some convergence studies have
been performed for this particular test case (using the scheme based on the orig-

inal model), and we obtain sub-optimal N +
1
2
convergence rates for the LDG

fluxes (see Fig V .8).
To complete this test, and have a deeper assessment regarding the influ-

ence of non linearities and dispersive terms, we study the interaction of two
counter-propagating waves of equal amplitudes, initially located at x=1500m and
x=2500m. Same mesh and order of polynomials are used. The overall behaviour
of the propagation can be assessed through the series of snapshots proposed in
Fig. V .9. As we can observe in the last pictures, the head-on collision gener-
ates dispersive tails of small amplitude. A zoom on these non-linear interac-
tions is lastly proposed at t=200s, exhibiting a very proper description of the phe-
nomenon. Indeed, this typical behaviour is also studied in [214], leading to very
similar observations. The propagation and transformations of solitary waves of
increased non-linearity are studied in the next test.

V.4.4 Shoaling of solitary waves

We now investigate the dispersive properties of the model and study the non-
linear shoaling, using the data issued from a laboratory study performed at the
LEGI (Grenoble, France). In this test, we consider a 36m channel with constant
bed slope and a train of solitary waves generated at the inflow boundary. Mea-
surements of the free surface are available at several wave gages in the vicinity of
the breaking point during the simulation. We consider 4 series of experiments, in-
volving an increasing relative amplitude, starting from a/h0 = 0.096 and ending
with a/h0 = 0.534.
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Figure V .9: Propagation of a solitary wave : Head on collision : water surface
profiles at several times during the propagation.
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Figure V .11: Periodic waves over a submerged bar : Sketch of the basin and
gauges location.

Numerical results are obtained with (N,Ne) = (3, 400) and displayed on Fig.
V .10, together with the experimental data available from [140]. We can observe a
very good behavior of the numerical model, and even for large wave’s amplitude.
These results assess the good accuracy of our model in the reproduction of the
shoaling process.

V.4.5 Periodic waves over a submerged bar

Going ahead in the assessment of the dispersive properties of the GNC model,
we investigate now the propagation of periodic waves over a submerged bar,
following the test proposed in [95]. The topography set-up and wave gauges
locations are shown in Fig. V .11. We choose here to perform test A, in which
the amplitude of the input waves is set to a = 0.01m. The time period T is 2.02 s
and the initial depth h0 is 0.4m. When the incident waves encounters the upward
part of the bar, it shoals and steepens, which generates higher-harmonics as the
nonlinearity increases. These higher-harmonics are then freely released on the
downward slope, and become deep-water waves behind the bar. The domain
is regularly meshed with Ne = 800 elements, and computations are run with
increasing orders of polynomial expansions. Incident waves do not encounter
breaking during the propagation, so that the switching/limiting process is not
activated in this test.

We show on Fig. V .12 some time series of the free surface elevation at
several wave gauges located along the channel, compared with the experimental
data. These results are obtained with 3rd order polynomials. We obtain a very
good agreement at the first gauges. Some discrepancies are noticed at the last
gauge, mostly explained by the high non-linear interactions generated as the
waves reaches the top of the bump. As exhibited in Fig. V .13, these effects are
not correctly reproduced up to N = 3 at the reference point x = 19m for this
choice of space step and we tried to locally increase the model accuracy, leading
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Figure V .12: Propagation of highly dispersive waves : Free surface evolution at
the four first gauges. Experimental data are denoted by plain lines.

to sensible improvements. However, in the area of the last three gauges, the
dispersion properties of the current model are no more satisfactory enough to
accurately reproduce the complete release of the higher-harmonics, which can
be regarded as highly dispersive waves. These results can be improved with the
use of some optimized GN models, as for instance the 3 parameters optimized
Green-Naghdi models proposed in [70] and in the 2d case in [184]. The dG
approximations of such enhanced GN equations are left for future works.

Using the same mesh and topography, the initial non linearity is increased
and the time period T is set to 2.5s. This corresponds to the long wave plunging
case described by Beji and Batjes in [18]. This time, the steepening of which is
subject the train of waves is more pronounced and wave breaking is observed
on the top part of the bar. Experimental data are also available in this case, al-
lowing to assess the capacity in handling wave breaking in parallel with complex
transformations due to dispersion. Time series of the free surface are plotted on
Fig. V .14 at several reference points located along the channel. They exhibit a
good correspondence with the data coming from the experimental model, in the
same order of quality than the results obtained with the hybrid scheme [268] for
example. In Fig. V .15 we also propose to follow the breaking process during
a period, indicating areas where dispersive terms are suppressed and only the
NSW equations are solved. These results attest of the relevancy of the numerical
criteria used to initiate the switching strategy. The scheme is truly able to de-
tect and follow breaking waves in this case, and switch-back to the GN equations
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creasing N at the last gauge.

once breaking is ended. The strategy allows a proper and accurate description of
the flow dynamics.
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Figure V .15: Propagation of highly dispersive waves : Plunging breaking case :
focus on the breaking process during a period. The NSW equations are used in
areas delimited by the red bands to describe wave breaking.

V.4.6 Solitary wave breaking over a sloping beach

Let us now assess the ability of our numerical model to deal with breaking
waves and dry areas. In this test, we study the propagation, shoaling, break-
ing and run-up processes of a solitary wave over a beach with constant slope
s=1/19.85, following the experiments of [264]. The incident wave is supplied
by formula (V .53), with a water level at rest h0 = 1m and an amplitude set to
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Figure V .14: Propagation of highly dispersive waves : Plunging breaking case
: free surface evolution at gauge x=6m and seven gauges regularly spaced from
x=11m to x=17m . Experimental data appear in plain lines.

a = 0.28m. The couple (N,Ne) is fixed to (3, 600) for the computation and our
numerical results are compared with the experimental data. We observe that the
breaking wave method described in (§V.3.7 ) is able to identify the wave steep-
ening, occurring approximatively around t∗ = 17s. We emphasize the very sat-
isfying agreement between the numerical results and the data, as shown on Fig.
V .16, in the same order than other dispersive models ([37, 36, 268]).

V.4.7 Cox’s experiment

To further investigate the breaking waves / switching strategy, we study in
this test the evolution of an incoming train of regular waves over a beach with
constant bed slope 1/35. The area of applicability of the physical model allows
to extend test case IV.4.6 with a generation process in deeper waters. Waves of
relative amplitude a/h0 = 0.29 and period T = 2.2s are generated at the inflow
boundary. We set N = 1 and use two mesh sizes for this test: |Ci| = 0.0575 for
x < 11.5m and |Ci| = 0.028 for x ≥ 11.5m. A sketch of the computational domain
is available in Fig. V .17, with the location of the wave gauges. In this picture, we
also point out the areas where the dispersive effects are turned off (in red) and
the NSW equations are used, following the switching strategy detailed in §V.3.7 .
In agreement with experimental observations, the first wave to break is detected
between gauges ♯2 and ♯3. Note that, for this particular test case, the dispersive
terms are switched off in the vicinity of the shoreline because the switching crite-
ria I is larger than 1 in this area. We can observe on Fig. V .18 the time series of the
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Figure V .16: Solitary wave breaking over a sloping beach : Free surface profiles
comparison between numerical results (solid lines) and experimental data (dots) at
several times during the breaking ; t∗ = t(g/h0)1/2.
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Figure V .18: Cox’s experiment : Comparison between computed and experi-
mental time series of total free surface at the gauges. Experimental data appear
in solid lines.

free surface elevation at the six wave gauges along the domain and the compari-
son with the data taken from the experiment. We observe a very good matching.
A similar level of agreement can be obtained by reducing the number of elements
and increasing the polynomials order, for instance N = 2 and |Ci| = 0.1. Note
also that the limiter [53] is not applied in the whole switching (red) areas but only
on the few troubled elements in the vicinity of the discontinuities.

V.4.8 Wave overtopping a seawall

We aim at demonstrating that our numerical model appear as a promising tool
for more complex simulations. The following test is based on the experiments car-
ried on at the Tainan Hydraulics Laboratory (THL), National Cheng Kung Uni-
versity. It implies a tsunami-like solitary wave collapsing on a seawall located on
a 1:20 sloping beach. A cross-section of the 22m flume is described in Fig. V .19,
together with the location of several gauges where measurements of the free sur-
face are available (see [149] for more details). We consider an initial water depth
of 0.2m, and an incoming wave with a relative amplitude a/h0 = 0.35. For this
simulation we set N = 2 and we use two mesh sizes: |Ci| = 0.03 for 9 < x < 12
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Figure V .19: Overtopping over a seawall : Sketch of the basin and gauge loca-
tions.

and |Ci| = 0.09 elsewhere, giving a total number of Ne = 300 elements. In
this case, the solitary wave encounters breaking before reaching the seawall. It
follows an overtopping flow supplemented by a train of reflected waves gener-
ated by the impact on the wall. The main steps of the propagation are available
on Fig. V .20. Time series of the free surface were recorded at several gauges
along the computational domain, and are compared with experimental data (see
Fig. V .21). We can note a very good agreement, similar to those exhibited in
[149] obtained with a Volume Of Fluid (VOF) method for the Reynolds averaged
Navier-Stokes equations and [268] with a hybrid FVM discretization of the origi-
nal GN equations. Note that a similar level of agreement can be obtained with a
regular mesh of 500 elements.

V.4.9 Overtopping over fringing reefs

For our last validation we follow the test case issued from the database of hy-
draulic overtopping processes performed in [246]. We consider a 83.7m long
wave flume, the mean water depth is h0 = 2.5m. The reef slope is 1/12 with a
crest 0.065m above the mean water level. We study the propagation and transfor-
mations of a solitary wave of relative amplitude a/h0 = 0.3. This is a discriminat-
ing test case, as the model has to simultaneously handle shoaling, wave-breaking,
hydraulic jumps and wetting and drying processes, over a complex topography.
Indeed, the wave shoals, encounters breaking on the crest of the reef, and propa-
gates as a hydraulic jump towards the right side wall before being reflected.
A sketch of the computational domain is available on Fig. V .22, where the bot-
tom variations can also be assessed. The location of the 14 wave gauges providing
measurements of the free surface is also reported.

The computation is performed with N = 2 and Ne = 500. We enforce a solid-
wall boundary condition at two boundaries. We show on Fig. V .23 some snap-
shots of the non-dimensionalized free surface η/h0 at several times during the
wave propagation (with the non-dimensionalized time t∗ = t

√
g/h), and com-

pare with the experimental data. We can observe very satisfying results during



194 CHAPTER V . THE DGM APPLIED TO GN EQUATIONS

0
0.5 t=0.73

0
0.5 t=1.46

0
0.5 t=2.21

0
0.5 t=2.98

0
0.5 t=3.76

0
0.5

fr
e

e
 s

u
rf

a
c
e

 (
m

)

t=4.64

0
0.5 t=5.05

0
0.5 t=6.07

0
0.5 t=7.08

0
0.5 t=7.97

0
0.5

0.0 2.5 5.0 7.5 10.0 12.5

x(m)

t=8.88

Figure V .20: Overtopping over a seawall : Free surface profiles at several times
during the propagation.



V.4 . NUMERICAL EXAMPLES 195

-0.05
 0

 0.05
 0.1

-1.0 -0.5 0.0 0.5 1.0

η/
h WG1

-0.05
 0

 0.05
 0.1

0 2 4 6 8 10

η/
h WG3

-0.05
 0

 0.05
 0.1

2 4 6 8 10

η/
h WG10

-0.05
 0

 0.05
 0.1

2 4 6 8 10

η/
h WG22

-0.05
 0

 0.05
 0.1

2 4 6 8 10

η/
h WG28

-0.05

 0

 0.05

 0.1

2 4 6 8 10

η/
h

WG37

-0.05
 0

 0.05
 0.1

2 4 6 8 10

η/
h

t(s)

WG40

Figure V .21: Overtopping over a seawall : Comparison between computed and
experimental data of total free surface at several times during the propagation.
Circles denote numerical data.

-1

-0.5

 0

 0.5

 0  10  20  30  40  50  60  70  80

η/
h

0

x(m)

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14

Figure V .22: Overtopping over fringing reefs : Sketch of the basin.



196 CHAPTER V . THE DGM APPLIED TO GN EQUATIONS

 0
 0.2
 0.4

η/
h

0 t*=54.87

 0
 0.2
 0.4

η/
h

0 t*=64.26

 0
 0.2
 0.4

η/
h

0 t*=66.75

 0
 0.2
 0.4

η/
h

0 t*=68.93

 0
 0.2
 0.4

η/
h

0 t*=71.11

 0
 0.2
 0.4

η/
h

0 t*=72.30

 0
 0.2
 0.4

η/
h

0 t*=77.70

 0
 0.2
 0.4

η/
h

0 t*=86.56

 0
 0.2
 0.4

η/
h

0 t*=93.10

 0
 0.2
 0.4

η/
h

0 t*=95.56

 0
 0.2
 0.4

0 10 20 30 40 50 60 70 80

η/
h

0

x(m)

t*=108.75

Figure V .23: Overtopping over fringing reefs : Comparison between computed
and experimental data for the free surface elevation, at several times during the
propagation. Circles denote experimental data.

all the propagation but there appear to be an under-prediction of the water level
at the left of the crest, starting at approximatively t∗ = 95, which may be due to
the switching strategy. Indeed, we were not able to correctly stabilize the compu-
tation without suppressing the dispersive effects in a large area at the right of the
crest.

Conclusion

In this work, an arbitrary order dG discretization is proposed for a new family
of 1d Green-Naghdi equations for the simulation of fully non-linear and weakly
dispersive waves propagation and transformation over uneven bottom. Based
on the previous 2d works, this approach provides robustness and preservation
of motionless steady states. These new models are shown to be more compu-
tationally efficient than the original ones, especially for high order polynomial
expansions. We also propose a simple way to handle broken waves, which gives
satisfying results. The proposed methodology can be straightforwardly extended
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to the 2d framework, with the use of unstructured meshes. The 2d models with
time-independent operator are already derived in [184] and the extension of the
present dG method is studied in an on-going work. This appears as a promising
tool in terms of possible decreasing of the degrees of freedom and local adaptivity
in complex geometries.
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Conclusion et perspectives

Au cours de ces travaux nous avons développé des outils numériques capables
de fournir des approximations précises de plusieurs modèles d’écoulements.
Les schémas proposés ont tous été conçus sur la base des contraintes identifiées
au cours de la partie préliminaire, et sont donc capables de préserver les états
d’équilibre au repos, produire systématiquement des hauteurs d’eau positives
et tolérer la présence de fond sec. Le contexte dominant des maillages non
structurés permet en outre une gestion très robuste et efficace de géométries
complexes et topographies irrégulières, voire même discontinues.

Les premiers résultats présentés concernent des méthodes Volumes Finis,
développées au cours des Chapitres II et III. Nous avons dans un premier temps
étendu l’approche 1d pre balanced [194, 195] à des maillages non structurés, en
déduisant de manière directe des resultats de well-balancing et robustesse. La
méthode présente l’avantage d’une formulation simple et admet des extensions
d’ordre élevé qui préservent naturellement ses caractéristiques. En particulier,
le simple choix d’un flux consistant permet d’obtenir la C-propriété, même dans
des configurations type “sec/mouillé”. En outre, au cours de nos investigations
sur les schémas MUSCL, nous avons été en mesure d’exhiber une CFL garan-
tissant la préservation des états admissibles sous la condition que le schéma
1d d’ordre 1 préserve la positivité de la hauteur d’eau. Il en résulte un modèle
stable, facile d’implémentation et potentiellement compatible avec plusieurs
autres solveurs numériques que ceux proposés.

Nous nous sommes ensuite intéressés aux problèmes posés par l’inclusion
des termes de friction, en particulier lorsqu’il s’expriment à travers des lois
de type Manning ou Darcy, qui menacent la stabilité des calculs impliquant
des profondeurs d’eau evanescentes. Nous avons apporté des éléments de
réponse en procédant une fois encore à l’extension de schémas 1d, basés sur une
modification des états intermédiaires dans le cône de dépendance du solveur
HLL. La stratégie génère un terme source permettant d’approcher de manière
consistante la loi de friction tout en s’affranchissant du problème des divisions
par h. Nous avons pu incorporer cette méthode dans notre approche Volumes
Finis et il en résulte un schéma bénéficiant d’un domaine d’application étendu
à des situations réalistes et conservant de bonnes propriétés de stablilité. Deux-
ièmement, nous nous sommes aventurés dans les problématiques des schémas
Asymptotic Preserving, en tentant d’assurer au niveau discret la préservation du
régime diffusif obtenu à partir des équations relaxées. Nous avons pu identifier
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quelques contextes dans lesquels ce nouveau schéma semble se distinguer des
approches classiques. Sans surprise, ces disparités apparaissent assez clairement
lorsque l’on s’approche du régime asymptotique. C’est typiquement le cas
pour des simulations faisant intervenir de faibles hauteur d’eau et où les termes
de résistance vont avoir tendance à contrôler l’évolution de l’écoulement. En
l’absence de solution exacte dans ce contexte, de cas tests expérimentaux suff-
isamment discriminants et autres résultats de référence, il est toutefois difficile
d’évaluer les bénéfices réels apportés par un telle propriété. Ce travail constitue
une première proposition d’amélioration à laquelle d’autres modèles de même
nature pourraient être comparés.

Se détachant du cadre des Volumes Finis, nous avons ensuite envisagé la
discrétisation des équations Shallow Water pre balanced via les méthodes dG.
Moyennant l’introduction d’un terme de correction induit par la présence
d’intégrales de surface, la méthode de reconstruction proposée dans le contexte
des Volumes Finis s’est naturellement étendue à ce cadre, assurant ainsi la
préservation de configurations type “lac au repos” à tout ordre. Des méthodes
de limitation ont dû être introduites pour prévenir l’apparition d’oscillations
provoquées par les modes élevés au voisinage des forts gradients. La mise en
place d’un détecteur de choc permet d’activer ces procédés uniquement dans les
zones nécessitant leur application, maintenant ainsi un bon niveau de précision
dans le reste du domaine. Une partie importante des travaux est consacrée à la
robustesse du modèle, considérée à travers la hauteur d’eau moyenne. Le résul-
tat s’établit grâce à un choix pertinent de règles de quadrature, qui nous amène
à invoquer les propriétés de positivité du schéma Volumes Finis. Les résultats
numériques obtenus témoignent de l’efficacité de la méthode, qui se montre
stable dans un grand nombre de contextes relativement délicats. L’utilisation
de polynômes d’ordre arbitraire au sein des éléments permet véritablement
d’apporter un meilleur degré de précision. A première vue, il semblerait que
le schéma dG d’ordre 2 se montre légèrement plus efficace que les méthodes
MUSCL du schéma Volumes Finis.

Dans un dernier chapitre nous avons exploité la versatilité des méthodes
dG pour étendre la méthode précédente aux équations dispersives. Nous y
proposons un schéma numérique 1d pour une nouvelle classe de modèles Green
Naghdi, présentant des caractérisitques très intéressantes dans la perspective de
la résolution numérique. L’approche se base sur les principes de résolution déjà
introduits, et aboutit à un schéma well balanced et robuste. Ce travail s’est vu
considérablement facilité des lors que les termes dispersifs ont pu être interprétés
comme un terme source additionnel dans les équations de Saint-Venant. Deux
problématiques nouvelles sont apparues: la prise en compte du déferlement ainsi
que l’évaluation des dérivées d’ordre élevé. Concernant le premier point, l’outil
de détection des chocs précédemment utilisé pour marquer les forts gradients
s’est révélé efficace, permettant la suppression du terme source dispersif dans
les zones appropriées, et la mise en place d’une stratégie hybride. Les dérivées
d’ordre élevé ont été traitées avec les méthodes LDG, dont on a pu apprécier la
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supériorité par rapport aux flux centrés BR. Dans le cas de résolutions d’ordre
élevé, l’introduction d’un filtre a été nécessaire pour tempérer l’impact des
modes les plus élevés et stabiliser les calculs. Les simulations numériques ont
confirmé les gains de temps apportés par ce nouveau modèle ainsi que l’efficacité
de l’approche numérique, capable de gérer convenablement le déferlement dans
des situations difficiles.

Perspectives

Les problématiques soulevées au cours de ces travaux sont nombreuses et de
nature très variée.

Tout d’abord, l’introduction du concept de schéma AP dans le cadre des
équations Shallow Water laisse un grand nombre de questions ouvertes. Il appa-
rait que cette propriété pourrait avoir, même dans certains contextes réalistes,
une influencemajeure sur le comportement des approximations numériques. Ces
résultats préliminaires semblent s’aligner avec ceux obtenus en 1d et appellent
à être confirmés par une batterie d’expériences et validations supplémentaires.
Des investigations plus poussées sont toutefois nécessaires pour s’assurer d’une
discrétisation plus conforme du régime diffusif et une évaluation rigoureuse
des termes de correction. Il s’agit là d’un objectif ambitieux car l’évaluation
de la hauteur d’eau s’en voit affectée, avec des répercussions possibles sur les
propriétés de well balancing et robustesse. Ces aspects ouvrent donc la voie à
plusieurs pistes de travail et pourraient motiver des études supplémentaires.

Comme nous l’avons évoqué, la préservation des états d’équilibre con-
stitue un enjeu de taille dans l’élaboration d’un modèle numérique. Dans la
construction de nos schémas nous nous sommes uniquement focalisés sur la
préservation des états d’équilibre au repos, mais il semblerait, d’après nos
investigations numériques, que le schéma présente un bon comportement vis à
vis d’autres types d’états stationnaires, et ce pour les approches Volumes Finis et
Galerkin discontinu. Une analyse plus profonde des schémas dans cette optique
pourrait s’avérer fructueuse. L’instauration de nouveaux résultats concernant la
préservation d’états d’équilibre en mouvement paraît envisageable et permettrait
d’améliorer la qualité de nos modèles.

Même si en pratique le solveur VFRoe a produit des hauteurs d’eau pos-
itives sous des CFL appropriées, les propriétés de robustesse restent à établir
pour ce solveur, et plus généralement pour d’autres méthodes d’approximation
des flux. Dans la continuité, des travaux additionnels sont nécessaires pour
adapter les approches proposées pour intégrer la friction, présentement basées
sur le schéma de Rusanov, à d’autres types de flux numériques. Des résultats
de robustesse concernant les reconstructions MUSCL appliquées au schéma AP
sont aussi à étudier.
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Malgré le léger avantage que laisse apparaître la méthode dG d’ordre 2
sur les méthodes MUSCL pour les exemples traités, il est à ce stade toujours
difficile de donner des éléments d’appréciation précis permettant de choisir une
méthode plutôt qu’une autre. La composante temps de calcul doit être intégrée
à cette évaluation et rend l’analyse très dépendante des choix d’implémentation,
qui sont particulièrement larges pour les méthodes dG (base d’expansion, méth-
odes de quadrature, évaluation des flux numériques...). Un important travail
d’optimisation doit être mené sur un plan informatique pour les deux méthodes
afin d’apporter des réponses. Comme sujet connexe, des études en termes d’
“h/p" adaptativité restent à être effectuées sur le schéma dG, dont l’extension à
des polynômes d’ordre arbitraire est plus récente.

L’approche numérique du modèle Green-Naghdi par les méthodes dG
offre à elle seule des perspectives de travail très nombreuses.

L’étude 1d a permis de soulever toute l’importance et la difficulté du
problème des conditions limites. La mise en place de zones de relaxation
nécessite la calibration d’un jeu de constantes pouvant présenter des profils
totalement différents selon le type de simulation considéré, et ne suffit pas
toujours à assurer la stabilité des calculs. A ceci s’ajoutent les difficultés propres
à la méthode comme la prise en compte des conditions de bord dans les matrices
de différentiation. Des travaux supplémentaires sembleraient donc nécessaires
dans cette direction.

Ensuite, la gestion du déferlement doit faire l’objet d’investigations plus
complètes. Le réel r fixant la largeur de la zone dans laquelle les effets dis-
persifs sont supprimés doit lui aussi être ajusté en fonction du problème. De
plus, la considération d’ordres polynomiaux élevés peut favoriser l’apparition
d’instabilités au niveau des zones de transition GN/NSW, pouvant rapidement
se propager et s’amplifier, et à terme entraînter l’activation du limiteur sur
l’ensemble du domaine. Il se pose donc à ce niveau un problème de couplage
relativement complexe. Il conviendrait donc de travailler à une amélioration
de cette stratégie, en envisageant par exemple d’enrichir le critère de détection
et/ou d’assurer une meilleure communication entre les deux modèles.

A terme, l’objectif réside naturellement dans l’extension du schéma pro-
posé sur maillages non structurés, avec l’intégration éventuelle du modèle
à 3 paramètres [70] pour améliorer le domaine de validité du système. Une
discrétisation Volumes Finis a récemment été proposée [184], et une version dG
actuellement à l’étude.



Publications

Ces travaux on fait l’objet des publications suivantes :

[-1-] A. Duran, F. Marche, Q. Liang. On the well-balanced numerical discretiza-
tion of shallow water equations on unstructured meshes. J. Comput. Phys.
235:565-586 - 2013.

[-2-] A. Duran, F. Marche. Recent advances on the discontinuous Galerkin
method for shallow water equations with topography source terms. In
press,
http://www.sciencedirect.com/science/article/pii/S0045793014002369

- 2014.

Les papiers ci-dessous sont en cours de révision :

[-3-] A. Duran. A robust andwell-balanced scheme for the ShallowWater system
with friction source term on unstructured meshes - Février 2014.

[-4-] C. Berthon, A. Duran, F. Marche, R. Turpault. Asymptotic Preserving
scheme for the Shallow Water equations with source terms on unstructured
meshes - Décembre 2013.

[-5-] A. Duran, F. Marche. Discontinuous-Galerkin discretization of a new class
of Green-Naghdi equations - Mars 2014.

203

http://www.sciencedirect.com/science/article/pii/S0045793014002369


204 PUBLICATIONS



Bibliography

[1] R. Abgrall. On essentially non-oscillatory schemes on unstructured meshes: Analysis and imple-
mentation. J. Comp. Phy., 114:45–58, 1994.

[2] V. Aizinger and C. Dawson. A discontinuous galerkin method for two-dimensional flow and
transport in shallow water. Adv. Wat. Res., 25:67–84, 2002.

[3] B. Alvarez and D. Lannes. A nash-moser theorem for singular evolution equations. application to
the serre and green-naghdi equations. Indiana Univ. Math. J., 57:97–131, 2008.

[4] V.R. Ambati. Flooding and drying in discontinuous Galerkin discretizations of shallow water
equations. In European Conference on Computational Fluid Dynamics, 2006.

[5] K. Anastasiou and C.T. Chan. Solution of the 2d shallow water equations using the finite volume
method on unstructured triangular meshes. Int. J. Numer. Meth. Fluids, 24:1225–1245, 1997.

[6] N. Crnjaric-Zic ans S. Vukovic and L. Sopta. Balanced finite volume weno and central weno
schemes for the shallow water and the open-channel flow equations. J. Comp. Phys., 200:512–548,
2004.

[7] D. Aregba-Driollet, M. Briani, and R. Natalini. Asymptotic high order preserving schemes for 2
× 2 dissipative hyperbolic systems. SIAM J. Numer. Anal., 46:869–894, 2008.

[8] P. Arminjon, M.C. Viallon, and A. Madrane. A finite volume extension of the lax-friedrichs and
nessyahu-tadmor schemes for conservation laws on unstructured grids. Int. J. Comp. Fluid Dyn.,
9:1–22, 1998.

[9] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini. Unified analysis of discontinuous Galerkin
methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2002.

[10] E. Audusse, F. Bouchut, M.O. Bristeau, R. Klein, and B. Perthame. A fast and stable well-balanced
scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput., 25:2050–
2065, 2004.

[11] E. Audusse and M.O. Bristeau. Transport of pollutant in shallow water - a two time steps kinetic
method. Math. Mod. and Num. Anal., 37:389–416, 2003.

[12] E. Audusse and M.O. Bristeau. A well balanced positivity preserving "second-order" scheme for
shallow water flows on unstructured meshes. J. Comput. Phys., 206:311–333, 2005.

[13] F. Aureli, P. Mignosa, andM. Tomirotti. Dam-break flows in presence of abrupt bottom variations.
In In: Proc. XXVIII IAHR Congr., Graz, Austria, pages 163–171, 1999.

205



206 BIBLIOGRAPHY

[14] C. Bardos, A.Y. Le Roux, and J-C. N’ed’elec. First order quasilinear equations with boundary
conditions. Comm. Part. Diff. Eq., 4:1017–1034, 1979.

[15] T. Barth and P.O. Fredericksson. Higher order solution of the euler equations on unstructured
grids using quadratic reconstruction. In Proceedings of the AIAA 28th Aerospace Sciences Meeting

90-0013, 1990.

[16] T. Barth and D. Jespersen. The design and application of upwind schemes on unstructured
meshes. In Proceedings of the AIAA 27th Aerospace Sciences Meeting 89-0366, 1989.

[17] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the numeri-
cal solution of the compressible Navier−Stokes equations. J. Comput. Phys., 131:267–279, 1997.

[18] S. Beji and J.A. Battjes. Experimental investigation of wave propagation over a bar. Coast. Engrg.,
19:151–162, 1993.

[19] F. Benkhaldoun, I. Elmahi, and M. Seaid. A new finite volume method for flux-gradient and
source-term balancing in shallow water equations. Comp. Meth. App. Mech. Eng., 199:3324–3335,
2010.

[20] A. Bermudez and M.-E. Vazquez. Upwind methods for hyperbolic conservation laws with source
terms. Comput. & Fluids, 23:1049–1071, 1994.

[21] C. Berthon. Robustness ofMUSCL schemes for 2D unstructuredmeshes. J. Comput. Phys., 218:495–
509, 2006.

[22] C. Berthon, P. Charrier, and B. Dubroca. An hllc scheme to solve them1model of radiative transfer
in two space dimensions. J. Sci. Comput., 31:347–389, 2007.

[23] C. Berthon, J. Dubois, B. Dubroca, T.-H. Nguyen-Bui, and R. Turpault. A free streaming contact
preserving scheme for the m1 model. Adv. App. Math. Mech., 2:259–285, 2010.

[24] C. Berthon and F. Foucher. Efficient well balanced hydrostatic upwind schemes for shallow water
equations. J. Comput. Phys., 231:4993–5015, 2012.

[25] C. Berthon, P. LeFloch, and R. Turpault. Late-time/stiff-relaxation asymptotic-preserving approx-
imations of hyperbolic equations. Math. Comp., 82:831–860, 2013.

[26] C. Berthon and F. Marche. A positive preserving high order VFRoe scheme for shallow water
equations: a class of relaxation schemes. SIAM J. Sci. Comput., 30:2587–2612, 2008.

[27] C. Berthon, F. Marche, and R. Turpault. An efficient scheme on wet/dry transitions for shallow
water equations with friction. Comput. & Fluids, 48:192–201, 2011.

[28] C. Berthon and R. Turpault. Asymptotic preserving hll schemes. Num. Meth. Part. Diff. Eq.,
27:1396–1422, 2011.

[29] S. Bianchini, B. Hanouzet, and R. Natalini. Asymptotic behavior of smooth solutions for partially
dissipative hyperbolic systems with a convex entropy. Commun. Pure Appl. Math., 60:1559–1622,
2007.

[30] F. Bianco, G. Puppo, and G. Russo. High-order central schemes for hyperbolic systems of conser-
vation laws. SIAM J. Sci. Comput., 21:294–322, 1999.



BIBLIOGRAPHY 207

[31] H.B. Bingham, P.A.Madsen, andD.R. Fuhrman. Velocity potential formulations of highly accurate
Boussinesq-type models. Coast. Eng., 56:467–478, 2009.

[32] O. Bokhove. Flooding and drying in finite-element discretizations of shallow-water equations.
part 2: Two dimensions, 2003. Imported from MEMORANDA.

[33] O. Bokhove. Flooding and drying in discontinuous galerkin finite-element discretizations of
shallow-water equations. J. Sci. Comput., 22:47–82, 2005.

[34] A. Bollermann, S. Noelle, and M. Lukacova-Medvidova. Finite volume evolution Galerkin meth-
ods for the shallow water equations with dry beds. Commun. Comput. Phys., 10:371–404, 2011.

[35] P. Bonneton. Modelling of periodic wave transformation in the inner surf zone. Ocean Engrg.,
34(10):1459–1471, 2007.

[36] P. Bonneton, E. Barthélemy, F. Chazel, R. Cienfuegos, D. Lannes, F. Marche, and M. Tissier. Recent
advances in Serre / Green - Naghdi modelling for wave transformation, breaking and runup
processes. Eur. J. Mech. B/Fluids, 30:589–597, 2011.

[37] P. Bonneton, F. Chazel, D. Lannes, F. Marche, and M. Tissier. A splitting approach for the fully
nonlinear and weakly dispersive Green - Naghdi model. J. Comput. Phys., 230:1479–1498, 2011.

[38] F. Bouchut. Entropy satisfying flux vector splittings and kinetic bgkmodels. Numer. Math., 94:623–
672, 2003.

[39] F. Bouchut. Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-

balanced schemes for sources. Frontiers in Mathematics. Birkhauser, 2004.

[40] F. Bouchut, H. Ounaissa, and B. Perthame. Upwinding of the source term at interfaces for euler
equations with high friction. Comput. Math. App., 53:361–375, 2007.

[41] F. Bouchut, J. Le Sommer, and V. Zeitlin. Frontal geostrophic adjustment and nonlinear wave phe-
nomena in one-dimensional rotating shallowwater. part 2. high-resolution numerical simulations.
J. Fluid Mech., 514:35–63, 2004.

[42] S.F. Bradford and B.F. Sanders. Finite-volume model for shallow-water flooding of arbitrary to-
pography. J. Hydr. Engrg., 128:289–298, 2002.

[43] M.-O. Bristeau and B. Coussin. Boundary conditions for the shallow water equations solved by
kinetic schemes. INRIA Report RR-4282, 2001. http://www.inria.fr/RRRT/RR-4282.html.

[44] A.R. Brodtkorb, M.L. Sætra, and M. Altinakar. Efficient shallow water simulations on GPUs :
Implementation, visualization, verification and validation. Comput. & Fluids, 55:1–12, 2012.

[45] P. Brufau, M.E. Vazquez-Cendon, and P. Garcia-Navarro. A numerical model for the flooding and
drying of irregular domains. Int. J. Numer. Meth. Fluids., 39:247–275, 2002.

[46] S. Bryson, Y. Epshteyn, A. Kurganov, and G. Petrova. Well-balanced positivity preserving central-
upwind scheme on triangular grids for the Saint-Venant system. ESAIM Math. Model. Numer.

Anal., 45:423–446, 2011.

[47] C. Buet and S. Cordier. An asymptotic preserving scheme for hydrodynamics radiative transfer
models: numerical scheme for radiative transfer. Numer. Math., 108:199–221, 2007.



208 BIBLIOGRAPHY

[48] C. Buet and B. Després. Asymptotic preserving and positive schemes for radiation hydrodynam-
ics. J. Comput. Phys., 215:717–740, 2006.

[49] C. Buet, B. Després, and E. Franck. Design of asymptotic preserving finite volume schemes for
the hyperbolic heat equation on unstructured meshes. Numer. Math., 122:227–278, 2012.

[50] T. Buffard, T. Gallouet, and J.M. Hérard. A naive godunov scheme to solve the shallow water
equations. CR Acad. Sci. Paris, 326:385–390, 1998.

[51] T. Buffard, T. Gallouet, and J.M. Hérard. A sequel to a rough godunov scheme: application to real
gases. Comput. & Fluids, 29:813–847, 2000.

[52] S. Bunya, E.J. Kubatko, J.J. Westerink, and C. Dawson. A wetting and drying treatment for the
runge–kutta discontinuous galerkin solution to the shallow water equations. Comput. Meth. Appl.

Mech. Engrg., 198:1548–1562, 2009.

[53] A. Burbeau, P. Sagaut, and Ch.-H. Bruneau. A problem-independent limiter for high-order runge–
kutta discontinuous Galerkin methods. J. Comput. Phys., 169:111–150, 2001.

[54] J. Burguete and P. Garcia-Navarro. Efficient construction of high-resolution tvd conservative
schemes for equations with source terms : application to shallow water flows. Int. J. Numer. Meth.

Fluids, 37:209–248, 2001.

[55] J. Burguete, P. Garcia-Navarro, and J. Murillo. Friction term discretization and limitation to pre-
serve stability and conservation in the 1d shallow-water model: Application to unsteady irriga-
tion and river flow. Int. J. Numer. Meth. Fluids, 58:403–425, 2008.

[56] V. Caleffi, A. Valiani, and A. Bernini. Fourth-order balanced source term treatment in central
WENO schemes for shallow water equations. J. Comput. Phys., 218:228–245, 2006.

[57] S. Camarri, M.V. Salvetti, B. Koobus, and A. Dervieux. A low-diffusion muscl scheme for les on
unstructured grids. Comput. & Fluids, 33:1101–1129, 2004.

[58] G. Carrier and H. Greenspan. Water waves of finite amplitude on a sloping beach. J. Fluid Mech.,
2:97–109, 1958.

[59] M. Castro, J. Gonzales, and C. Pares. Numerical treatment of wet/dry fronts in shallow flows
with a modified roe scheme. Math. Mod. Meth. Appl. Sci., 16:897–931, 2006.

[60] M. Castro, A. Milanes, and C Pares. Well-balanced numerical schemes based on a generalized
hydrostatic reconstruction technique. Math. Mod. Meth. Appl. Sci., 17:2055–2113, 2007.

[61] M.J. Castro, J.A. Lopez-Garcia, and C. Pares. High order exactly well-balanced numerical methods
for shallow water systems. J. Comput. Phys., 246:242–264, 2013.

[62] M. Cathala. Asymptotic shallow water models with non smooth topographies. http://hal.archives-
ouvertes.fr/hal-00804047, 2013.

[63] L. Cea and M.E. Vázquez-Cendón. Unstructured finite volume discretization of bed friction and
convective flux in solute transport models linked to the shallow water equations. J. Comput. Phys.,
231:3317–3339, 2012.



BIBLIOGRAPHY 209

[64] C. Cercignani. The Boltzmann equation and its applications. Applied Mathematical Sciences 67. New
York. Springer-Verlag, 1988.

[65] E.M. Chaabelasri, N. Salhi, I. Elmahi, and F. Benkhaldoun. High order well balanced scheme for
treatment of transcritical flow with topography on adaptive triangular mesh. Phys. Chem. News,
53:119–128, 2010.

[66] C. Chalons, F. Coquel, E. Godlewski, P.-A. Raviart, and N. Seguin. N. seguin Godunov-type
schemes for hyperbolic systems with parameter dependent source. the case of euler system with
friction. Math. Model. Methods Appl. Sci., 20:2109–2166, 2010.

[67] T.-J. Chang, K.-H. Chang H.-M. Kao, andM.-H. Hsu. Numerical simulation of shallow-water dam
break flows in open channels using smoothed particle hydrodynamics. J. Hydro., 408:78–90, 2011.

[68] H. Chanson. Analytical solution of dam break wave with flow resistance. application to tsunami
surges. XXXI Congress, IHAR, pages 3341–3353, 2005.

[69] G. Chavent and J. Jaffré. Mathematical models and finite elements for reservoir simulation. Studies
in Mathematics and its applications, North Holland, Amsterdam, 1986.

[70] F. Chazel, D. Lannes, and F. Marche. Numerical simulation of strongly nonlinear and dispersive
waves using a Green - Naghdi model. J. Sci. Comput., pages 105–116, 2011.

[71] G.Q. Chen, C.D. Levermore, and T.P. Liu. Hyperbolic conservation lawswith stiff-relaxation terms
and entropy. Comm. Pure Appl. Math., 47:787–830, 1995.

[72] Q. Chen, J.T. Kirby, R.A. Dalrymple A.B. Kennedy, and A. Chawla. Boussinesq modeling of wave
transformation, breaking, and runup. I: 2D. J. Waterway Port Coast. Ocean Eng., 126:48–56, 2000.

[73] S. Chippada, C.N. Dawson, M.L. Martinez, and M.F. Wheeler. A Godunov-type finite volume
method for the system of shallow water equations. Comput. Meth. App. Mech. Engrg., 151:105–129,
1998.

[74] R. Cienfuegos, E. Barthélemy, and P. Bonneton. A fourth-order compact finite volume scheme
for fully nonlinear and weakly dispersive Boussinesq-type equations. I: Model development and
analysis. Int. J. Numer. Meth. Fluids, 51(11):1217–1253, 2006.

[75] R. Cienfuegos, E. Barthélemy, and P. Bonneton. A fourth-order compact finite volume scheme for
fully nonlinear and weakly dispersive Boussinesq-type equations. Part II: Boundary conditions
and validation. Int. J. Numer. Meth. Fluids, 53:1423–1455, 2007.

[76] R. Cienfuegos, E. Barthélemy, and P. Bonneton. Wave-breaking model for Boussinesq type equa-
tions including roller effects in the mass conservation equation. J. Water. Port. Coast. Oc. Eng.,
136:10–26, 2010.

[77] B. Cockburn and C.-W. Shu. The Local Discontinuous Galerkin method for time-dependent
convection-diffusion systems. SIAM J. Numer. Anal., 141:2440–2463, 1998.

[78] B. Cockburn and C.-W. Shu. The Runge-Kutta discontinuous Galerkin method for conservation
laws V. J. Comput. Phys., 141:199–224, 1998.

[79] B. Cockburn and C.-W. Shu. Runge-Kutta discontinuous Galerkin methods for convection-
dominated problems. J. Sci. Comput., 16:173–261, 2001.



210 BIBLIOGRAPHY

[80] F. Coquel and B. Perthame. Relaxation of energy and approximate riemann solvers for general
pressure laws in fluid dynamics. SIAM J. Numer. Anal., 35:2223–2249, 1998.

[81] P.H. Cournède, C. Debiez, and A. Dervieux. A Positive MUSCL Scheme for Triangulations. Tech-
nical Report RR-3465, INRIA, 1998.

[82] D.T. Cox. Experimental and numerical modelling of surf zone hydrodynamics. Univ. of Delaware,

Newark, 1995.

[83] P. Crispel, P. Degond, andM.-H. Vignal. An asymptotic preserving scheme for the two-fluid euler-
poisson model in the quasi-neutral limit. J. Comput. Phys., 223:208–234, 2007.

[84] S.F. Davis. Simplified second-order godunov-type methods. SIAM J. Sci. Stat. Comput, 9:445–473,
1988.

[85] T.A. Davis and I.S. Duff. An unsymmetric-pattern multifrontal method for sparse LU factoriza-
tion. SIAM J. Matrix Anal. and App., 18:140–158, 1997.

[86] C. Dawson and V. Aizinger. A discontinuous Galerkin method for three-dimensional shallow
water equations. J. Sci. Comput., 22-23:245–267, 2005.

[87] A.J.C. de Saint Venant. Théorie du mouvement non-permanent des eaux, avec application aux
crues des rivières et à l’introduction des marées dans leur lit. C.R. Acad. Sc. Paris, 73:147–154.

[88] P. Degond, F. Deluzet, A. Sangam, and M.-H. Vignal. A numerical scheme for a viscous shallow
water model with friction. J. Comput. Phys., 228:3540–3558, 2009.

[89] O. Delestre. Simulation du ruissellement d’eau de pluie sur des surfaces agricoles. PhD thesis, 2010.

[90] O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre, T.N.T. Vo, F. James, and S. Cordier.
A compilation of shallow water analytic solutions for hydraulic and environmental studies. Int.
J. Num. Meth. Fluids., 72:269–300, 2013.

[91] O. Delestre and F. Marche. A numerical scheme for a viscous shallow water model with friction.
J. Sci. Comput., 48:41–51, 2011.

[92] A.I. Delis and N.A. Kampanis. Numerical flood simulation by depth averaged free surface flow
models. In Environmental Systems - Encyclopedia of Life Support Systems (EOLSS), 2009.

[93] A.I. Delis and T. Katsaounis. Relaxation schemes for the shallow water equations. Int. J. Num.

Meth. Fluids, 41:695–719, 2003.

[94] A.I. Delis and M. Kazolea. A well-balanced finite volume scheme for extended Boussinesq equa-
tions on unstructured meshes. In Fifth International Conference on Advanced Computational Methods

in Engineering (ACOMEN 2011), 2011.

[95] M.W. Dingemans. Comparison of computationswith Boussinesq-likemodels and laboratorymea-
surements. Delft Hydr., Report H-1684.12, 32, 1994.

[96] K. Djadel, A. Ern, and S. Piperno. A discontinuous Galerkin method for the shallow water equa-
tion with bathymetric source terms and dry areas. In European Conference on Computational Fluid

Dynamics, 2006.



BIBLIOGRAPHY 211

[97] N. Dodd. Numerical model of wave run-up, overtopping, and regeneration. J. Waterw., Port,

Coast. Ocean Eng., 124:73–81, 1998.

[98] B. Dubroca and J.-L. Feugeas. Entropic moment closure hierarchy for the radiative transfer equa-
tion. C. R. Acad. Sci. Paris, 329:915–920, 1999.

[99] A. Duran. A robust and well balanced scheme for the 2d saint-venant system on unstructured
meshes with friction source term. Submitted, 2014.

[100] D. Dutykh, R. Poncet, and F. Dias. The VOLNA code for the numerical modelling of tsunami
waves: generation, propagation and inundation. Eur. J. Mech. - B/Fluids, 30:598–615, 2011.

[101] E.Audusse, M.-O. Bristeau, and B. Perthame. Kinetic Schemes for Saint-Venant Equations with
Source Terms on Unstructured Grids. Rapport de recherche RR-3989, INRIA, 2000. Projet M3N.

[102] B. Einfeldt. On godunov type methods for gas dynamics. SIAM J. Numer. Anal., 25:294–318, 1988.

[103] A.P. Engsig-Karup, J.S. Hesthaven, H.B. Bingham, and P.A. Madsen. Nodal DG-FEM solution of
high-order Boussinesq-type equations. J. Engrg. Math., 56:351–370, 2006.

[104] A.P. Engsig-Karup, J.S. Hesthaven, H.B. Bingham, and T. Warburton. DG-FEM solution for non-
linear wave-structure interaction using Boussinesq-type equations. Coast. Eng., 55:197–208, 2008.

[105] K. Erduran. Further application of hybrid solution to another form of Boussinesq equations and
comparisons. Int. J. Numer. Meth. Fluids, 53:827–849, 2007.

[106] A. Ern and J.-L. Guermond. Discontinuous Galerkin methods for Friedrichs’ systems. i. general
theory. SIAM J. Numer. Anal., 44(2):753–778, 2006.

[107] A. Ern and J.-L. Guermond. Discontinuous Galerkin methods for Friedrichs’ systems. ii. second-
order elliptic pdes. SIAM J. Numer. Anal., 44(6):2363–2388, 2006.

[108] A. Ern, S. Piperno, and K. Djadel. A well- balanced Runge-Kutta discontinuous Galerkin method
for the shallow-water equations with flooding and drying. Int. J. Numer. Meth. Fluids, 58:1–25,
2008.

[109] C. Eskilsson and S.J. Sherwin. An hp/spectral element model for efficient long-time integration
of Boussinesq-type equations. Coast. Engrg., 45:295 – 320, 2003.

[110] C. Eskilsson and S.J. Sherwin. A triangular spectral/hp discontinuous Galerkin method for mod-
elling 2D shallow water equations. Int. J. Numer. Meth. Fluids, 45:605–623, 2004.

[111] C. Eskilsson and S.J. Sherwin. Discontinuous Galerkin spectral/hp element modelling of disper-
sive shallow water systems. J. Sci. Comp., 22 - 23:269–288, 2005.

[112] C. Eskilsson and S.J. Sherwin. Spectral/hp discontinuous Galerkin method for modelling 2D
Boussinesq equations. J. Comput. Phys., 212:566–589, 2006.

[113] C. Eskilsson, S.J. Sherwin, and L. Bergdahl. An unstructured spectral/hp element model for en-
hanced Boussinesq-type equations. Coast. Engrg, 53(947–963), 2006.

[114] E. Franck. Construction et analyse numérique de schémas “asymptotic preserving" sur maillages non

structurés. Application à l’équation de transport et aux systèmes de Friedrichs. PhD thesis, 2012.



212 BIBLIOGRAPHY

[115] O. Friedrich. Weighted essentially non-oscillatory schemes for the interpolation of mean values
on unstructured grids. J. Comput. Phys., 144:194–212, 1998.

[116] J.M. Gallardo, C. Parés, and M Castro. On a well-balanced high-order finite volume scheme for
shallow water equations with topography and dry areas. J. Comput. Phys., 227:574–601, 2007.

[117] T. Gallouët, J.M. Hérard, and N. Seguin. On the use of some symetrizing variables to deal with
vacuum. Calcolo, 40:163–194, 2003.

[118] T. Gallouët, J.M. Hérard, and N. Seguin. Some approximate godunov schemes to compute
shallow-water equations with topography. Comput. & Fluids, 32:479–513, 2003.

[119] T. Gallouët and T. Masella. A rough godunov scheme. C. R., Math., Acad. Sci. Paris, 323:77–83,
1996.

[120] P. Garcia-Navarro and M.E. Vazquez-Cendon. Some considerations and improvements on the
performance of Roe’s scheme for 1d irregular geometries. Internal Report 23, Departamento de

Matematica Aplicada, Universidade de Santiago do Compostela, 1997.

[121] D.L. George. Finite Volume methods and adaptative refinement for tsunami propagation and inundation.
PhD thesis, 2006.

[122] J.-F. Gerbeau and B. Perthame. Derivation of viscous saint-venant system for laminar shallow
water numerical validation. Disc. Contin. Dyn. Syst. Ser. B, 1:89–102, 2001.

[123] J.-M. Ghidaglia and F. Pascal. On boundary conditions for multidimensional hyperbolic systems
of conservation laws in the finite volume framework. Technical report, CMLA, ENS Cachan, 2002.

[124] J.-M. Ghidaglia and F. Pascal. The normal flux method at the boundary for multidimensional
finite volume approximations in cfd. Eur. J. Mech. B/Fluids, 24:1–17, 2005.

[125] F.X. Giraldo, J.S. Hesthaven, and T. Warburton. Nodal high-order discontinuous Galerkin meth-
ods for the spherical shallow water equations. J. Comput. Phys., 181:499–525, 2002.

[126] P. Glaister. Prediction of supercritical flow in open channels. Comput. Math. Appl., 24:69–75, 1992.

[127] M.F. Gobbi, J.T. Kirby, and G. Wei. A fully nonlinear Boussinesq model for surface waves. Part 2.
Extension to O(kh)4. J. Fluid Mech., 405:181–210, 2000.

[128] E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation laws.
Applied Mathematical Sciences, vol.118, Springer-Verlag, 1996.

[129] S.K. Godunov. A difference method for numerical calculation of discontinuous equations of hy-
drodynamics. Mat. Sb., pages 271–300, 1959.

[130] L. Gosse. A well-balanced flux-vector splitting scheme designed for hyperbolic systems of con-
servation laws with source terms. Comput. Math. Appl., 39:135–159, 2000.

[131] L. Gosse. A well-balanced scheme using non-conservative products designed for hyperbolic sys-
tems of conservation laws with source terms. Math. Mod. Meth. Appl. Sci., 11:339–365, 2001.

[132] L. Gosse and A.-Y. LeRoux. A well balanced scheme designed for inhomogeneous scalar conser-
vation laws. C.R. Acad. Sci. Paris Sér. I Math., 323:543–546, 1996.



BIBLIOGRAPHY 213

[133] L. Gosse and G. Toscani. An asymptotic-preserving well-balanced scheme for the hyperbolic heat
equations. C. R. Acad. Sci. Paris, 334:337–342, 2002.

[134] L. Gosse and G. Toscani. Space localization and well-balanced schemes for discrete kinetic models
in diffusive regimes. SIAM J. Numer. Anal., 41:641–658, 2003.

[135] S. Gottlieb, C.-W. Shu, and E. Tadmor. Strong stability preserving high order time discretization
methods. SIAM Review, 43:89–112, 2001.

[136] N. Goutal and F. Maurel. Dam-break wave simulation. In Proceedings of the 2nd workshop, HE-

43/97/016/B, France, 1997.

[137] A.E. Green and P.M. Naghdi. A derivation of equations for wave propagation in water of variable
depth. J. Fluid Mech., 78:237–246, 1976.

[138] J.M. Greenberg and A.Y. Leroux. A well-balanced scheme for the numerical processing of source
terms in hyperbolic equations. SIAM J. Numer. Anal., 33:1–16, 1996.

[139] J.M. Greenberg, A.Y. Leroux, R. Bataille, and A. Noussair. Analysis and approximation of conser-
vation laws with source terms. SIAM J. Numer. Anal., 34:1980–2007, 1997.

[140] S. Guibourg. Modélisation numérique et expérimentale des houles bidimensionnelles en zone
cotière, phd thesis. Université Joseph Fourier-Grenoble I, France, 1994.

[141] Y. Guo, R. Liu, Y. Duan, and Y. Li. A characteristic-based finite volume scheme for shallow water
equations. J. Hydro., Ser. B, 21:531–540, 2009.

[142] A. Harten, B. Engquist, S. Osher, and S.R.Chakravarthy. Uniformly high order accurate essentially
non-oscillatory schemes iii. J. Comp. Phys., 71:231–303, 1987.

[143] A. Harten, P.D. Lax, and B. Van Leer. On upstream differencing and godunov-type schemes for
hyperbolic conservation laws. SIAM Review, 25:35–61, 1983.

[144] H. Hassan, K. Ramadan, and S.N. Hanna. Numerical solution of the rotating shallow water flows
with topography using the fractional steps method. App. Math., 1:104–117, 2010.

[145] S. Hibberd and D.H. Peregrine. Surf and run-up on a beach: a uniform bore. J. Fluid. Mech.,
95:323–345, 1979.

[146] H. Hoteit, P. Ackerer, R. Mosé, J. Erhel, and B. Philippe. New two-dimensional slope limiters for
discontinuous Galerkin methods on arbitrary meshes. Int. J. Numer. Meth. Fluids, 61:2566–2593,
2004.

[147] J. Hou, F.Simons, M. Mahgoub, and R. Hinkelmann. A robust well-balanced model on unstruc-
tured grids for shallow water flows with wetting and drying over complex topography. Comput.

Meth. Appl. Mech. Engrg., 257:126–149, 2013.

[148] J. Hou, Q. Liang, F. Simons, and R. Hinkelmann. A stable 2d unstructured shallow flowmodel for
simulations of wetting and drying over rough terrains. Comput. & Fluids, 82:132–147, 2013.

[149] S-C. Hsiao and T-C. Lin. Tsunami-like solitary waves impinging and overtopping an impermeable
seawall: Experiment and rans modeling. Coast. Eng., 57:1–18, 2010.



214 BIBLIOGRAPHY

[150] K. Hu, C.G. Mingham, and D.M. Causon. Numerical simulation of wave overtopping of coastal
structures using the non-linear shallow water equations. Coast. Eng., 41:433–465, 2000.

[151] M.E. Hubbard and N. Dodd. A 2d numerical model of wave run-up and overtopping. Coast. Eng.,
47:1–26, 2002.

[152] M.E. Hubbard and P. Garcia-Navarro. Flux difference splitting and the balancing of source terms
and flux gradients. J. Comput. Phys., 165:89–125, 2000.

[153] X. Li J.-F. Remacle, S. Soares-Frazão and M.S. Shephard. An adaptive discretization of shallow-
water equations based on discontinuous Galerkin methods. Int. J. Numer. Meth. Fluids, 52:903–923,
2006.

[154] A. Jameson. Analysis and design of numerical schemes for gas dynamics, 1: artificial diffusion,
upwind biasing, limiters and their effect on accuracy and multigrid convergence. Int. J. Comp.

Fluid Dyn., 4:171–218, 1985.

[155] E. Jamois. Interaction houle-structure en zone côtière. PhD thesis, 2005.

[156] G. Jiang and C.W. Shu. Efficient implementation of weighted eno schemes. J. Comput. Phys.,
126:202–228, 1996.

[157] G. Jiang and E. Tadmor. Nonoscillatory central schemes for multidimensional hyperbolic conser-
vation laws. SIAM J. Sci. Comput, 19:1892–1917, 1998.

[158] S. Jin. Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations. SIAM
J. Sci. Comput., 21:441–454, 1999.

[159] S. Jin. A steady-state capturing method for hyperbolic systems with geometrical source terms.
M2AN, 35:631–645, 2001.

[160] S. Jin and M. A. Katsoulakis. Relaxation approximations to front propagation. J. Diff. Equations,
138:380–387, 1997.

[161] S. Jin and D. Levermore. Numerical schemes for hyperbolic conservation laws with stiff relaxation
terms. J. Comput. Phys., 126:449–467, 1996.

[162] S. Jin and Z. Xin. The relaxation scheme for systems of conservation laws in arbitrary space
dimension. Comm. Pure Appl. Math., 45:235–276, 1995.

[163] T. Katsaounis, B. Perthame, and C. Simeoni. Upwinding sources at interfaces in conservation
laws. Appl. Math. Lett., 17:309–316, 2004.

[164] M. Kawahara and T. Umetsu. Finite element method for moving boundary problems in river flow.
Int. J. Numer. Meth. Fluids, 6:365–386, 1986.

[165] M. Kazolea, A.I. Delis, I.K. Nikolos, and C.E. Synolakis. An unstructured finite volume numerical
scheme for extended 2DBoussinesq-type equations. Coast. Eng., 69:42–66, 2012.

[166] M. Kazolea, A.I. Delis, and C.E. Synolakis. Numerical treatment of wave breaking on unstructured
finite volume approximations for extended Boussinesq-type equations. J. Comput. Phys., in press,
2014.



BIBLIOGRAPHY 215

[167] A.B. Kennedy, Q. Chen, J.T. Kirby, and R.A. Dalrymple. Boussinesq modeling of wave transfor-
mation, breaking, and runup. I: 1 D. J. Waterway Port Coast. Ocean Eng., 126:39–47, 1999.

[168] K.Erduran, S. Ilic, and V. Kutija. Hybrid finite-volume finite-difference scheme for the solution of
Boussinesq equations. Int. J. Numer. Meth. Fluids, 49:1213–1232, 2005.

[169] G. Kesserwani and Q. Liang. A discontinuous Galerkin algorithm for the two-dimensional shal-
low water equations. Comput. Meth. Appl. Mech. Engrg., 199:3356–3368, 2010.

[170] G. Kesserwani and Q. Liang. Well-balanced RKDG2 solutions to the shallow water equations over
irregular domains with wetting and drying. Comput. & Fluids, 39:2040–2050, 2010.

[171] G. Kesserwani and Q. Liang. Locally limited and fully conserved RKDG2 shallow water solutions
with wetting and drying. J. Sci. Comput., 50:120–144, 2012.

[172] B. Koobus, S.F. Wornom, S. Camarri, M.V. Salvetti, and A. Dervieux. Nonlinear V6 schemes for
compressible flow. Rapport de recherche, 2008.

[173] L. Krivodonova. Limiters for high-order discontinuous galerkin methods. J. Comput. Phys.,
226:879–896, 2007.

[174] L. Krivodonova, J. Xin, J.-F. Remacle, N. Chevaugeon, and J.E. Flaherty. Shock detection and
limiting with discontinuousGalerkinmethods for hyperbolic conservation laws. App. Num.Math.,
48:323–338, 2004.

[175] S. N. Kruz̆kov. First order quasilinear equations in several independent variables. Math. USSR

Sb., 10:217–243, 1970.

[176] E.J. Kubatko, S. Bunya, C. Dawson, and J.J. Westerink. Dynamic p-adaptive runge–kutta discon-
tinuous galerkinmethods for the shallowwater equations. Comp.Meth. App. Mech. Eng., 198:1766–
1774, 2009.

[177] E.J. Kubatko, J.J. Westerink, and C. Dawson. hp discontinuous galerkin methods for advection
dominated problems in shallow water flow. Comp. Meth. App. Mech. Eng., 196:437–451, 2006.

[178] A. Kurganov and D. Levy. A third-order semidiscrete central scheme for conservation laws and
convection-diffusion equations. SIAM J. Sci. Comput., 22:1461–1488, 2000.

[179] A. Kurganov and D. Levy. Central-upwind schemes for the saint-venant system. Math. Mod. Num.

Anal., 36:397–425, 2002.

[180] A. Kurganov and G. Petrova. A third-order semi-discrete genuinely multidimensional central
scheme for hyperbolic conservation laws and related problems. Numer. Math., 88:683–729, 2001.

[181] A. Kurganov and G. Petrova. A second-order well-balanced positivity preserving central-upwind
scheme for the saint-venant system. Commun. Math. Sci., 5:133–160, 2007.

[182] D. Lannes. Water waves: mathematical analysis and asymptotics. Amer. Mathematical Society, 2013.

[183] D. Lannes and P. Bonneton. Derivation of asymptotic two-dimensional time-dependent equations
for surface water wave propagation. Phys. Fluids, 21:016601, 2009.

[184] D. Lannes and F. Marche. A new class of fully nonlinear and weakly dispersive green-naghdi
models for efficient 2d simulations. Programme LEFE MANU, January 2014.



216 BIBLIOGRAPHY

[185] C. Lattanzio and D. Serre. Convergence of a relaxation scheme for hyperbolic systems of conser-
vation laws. Numer. Math., 88:121–134, 2001.

[186] P. D. Lax. Hyperbolic systems of conservation laws and the mathematical theory of shock waves.
Conference Board of the Mathematical Sciences Regional Conference Series in AppliedMathematics. SIAM,

Philadelphia, 11, 1973.

[187] R.J. Leveque. Balancing source terms and flux gradients in high-resolution godunovmethods: the
quasi-steady wave-propagation algorithm. J. Comput. Phys., 146:346–365, 1998.

[188] R.J. Leveque. Finite-Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathe-
matics, 2002.

[189] R.J. Leveque and M. Pelanti. A class of approximate riemann solvers and their relation to relax-
ation schemes. J. Comput. Phys., 172:572–591, 2001.

[190] D. Levy, G. Puppo, and G. Russo. Compact central weno schemes for multidimensional conser-
vation laws. SIAM J. Sci. Comput., 22:656–672, 2000.

[191] M. Li, P. Guyenne, F. Li, and F. Xu. High order well-balanced CDG-FE methods for shallow water
waves by a Green-Naghdi model. J. Comput. Phys., 257:169–192, 2014.

[192] Y.S. Li and R. Liu. The discontinuous Galerkin finite element method for the 2d shallow water
equations. Math. Comput. Sim., 56:223–233, 2001.

[193] Y.S. Li, S.X. Liu, Y.X. Yu, and G.Z. Lai. Numerical modeling of Boussinesq equations by finite
element method. Coast. Eng., 37:97–122, 1999.

[194] Q. Liang and A.G.L. Borthwick. Adaptive quadtree simulation of shallow flows with wet–dry
fronts over complex topography. Comput. & Fluids, 38:221–234, 2009.

[195] Q. Liang and F. Marche. Numerical resolution of well-balanced shallow water equations with
complex source terms. Adv. Water Res., 32:873–884, 2009.

[196] P.L. Lions and G. Toscani. Diffusive limit for finite velocity Boltzmann kinetic models. Rev. Mat.

Iberoamericana, 13:473–513, 1997.

[197] H.L. Liu and G.Warnecke. Convergence rates for relaxation schemes approximating conservation
laws. SIAM J. Numer. Anal., 37:1316–1337, 2000.

[198] P.L.-F. Liu, Y.-S. Cho, M.J. Briggs, U. Kanoglu, and C.E. Synolakis. Runup of solitary waves on a
circular island. J. Fluid Mech., 320:259–285, 1995.

[199] X. Liu, D. Osher, and S. Chan. Weighted essentially non-oscillatory schemes. J. Comp. Phys.,
115:200–212, 1994.

[200] M. Lukacova-Medvidova, S. Noelle, andM. Kraft. Well-balanced finite volume evolutionGalerkin
methods for the shallow water equations. J. Comput. Phys., 1:122–147, 2007.

[201] H. Luo, J.D. Baum, and R. Lohner. A hermite weno-based limiter for discontinuous galerkin
method on unstructured grids. J. Comput. Phys., 225:686–713, 2007.

[202] D.R. Lynch and W.G. Gray. Finite element simulation of flow in deforming regions. J. Comput.

Phys., 36:135–153, 1980.



BIBLIOGRAPHY 217

[203] D. Handorf M. Lauter, F.X. Giraldo and K. Dethloff. A discontinuous galerkin method for the
shallow water equations in spherical triangular coordinates. J. Comput. Phys., 227:10226–10242,
2008.

[204] P.A. Madsen, H.B. Bingham, and H. Liu. A new Boussinesq method for fully nonlinear waves
from shallow to deep water. J. Fluid Mech., 462:1–30, 2002.

[205] P.A. Madsen, H.B. Bingham, and H.A. Schaffer. Boussinesq-type formulations for fully nonlinear
and extremely dispersive water waves: derivation and analysis. Proc. R. Soc. A, 459:1075–1104,
2003.

[206] P.A. Madsen, R. Murray, and O.R. Sørensen. A new form of the Boussinesq equations with im-
proved linear dispersion characteristics. Coast. Eng., 15(4):371–388, 1991.

[207] P.A. Madsen and O.R. Sørensen. A new form of the Boussinesq equations with improved linear
dispersion characteristics. Part 2: A slowing varying bathymetry. Coast. Eng., 18:183–204, 1992.

[208] P. Marcati and A. Milani. The one-dimensional Darcy’s law as the limit of a compressible Euler
flow. J. Diff. Eq., 84:129–146, 1990.

[209] F. Marche. Theoretical and numerical study of shallow water models. Applications to nearshore hydrody-

namics. PhD thesis, 2005.

[210] F. Marche. Derivation of a new two-dimensional viscous shallow water model with varying to-
pography, bottom friction and capillary effects. Eur. J. Mech./B-Fluid, 26:49–63, 2007.

[211] F. Marche, P. Bonneton, P. Fabrie, and N. Seguin. Evaluation of well-balanced bore-capturing
schemes for 2D wetting and drying processes. Int. J. Numer. Meth. Fluids, 53:867–894, 2007.

[212] J.M. Masella, I. Faille, and T. Gallouet. On an approximate godunov scheme. Int. J. Comput. Fluid.

Dyn., 12:133–149, 1999.

[213] O. Le Métayer, S. Gavrilyuk, and S. Hank. A numerical scheme for the Green-Naghdi model. J.
Comput. Phys., (229):2034–2045, 2010.

[214] D. Mitsotakis, B. Ilan, and D. Dutykh. On the Galerkin/finite-element method for the Serre equa-
tions. J. Sci. Comput., 2014.

[215] J. Murillo and P. Garcia-Navarro. Augmented versions of the hll and hllc riemann solvers in-
cluding source terms in one and two dimensions for shallow flow applications. J. Comput. Phys.,
231:6861–6906, 2012.

[216] J. Murillo, P. Garcia-Navarro, and J. Burguete. Time step restrictions for well-balanced shallow
water solutions in non-zero velocity steady states. Int. J. Numer. Meth. Fluids, 60:1351–1377, 2009.

[217] J. Murillo, P. Garcia-Navarro, J. Burguete, and P. Brufau. The influence of source terms on stability,
accuracy and conservation in two-dimensional shallow flow simulation using triangular finite
volumes. Int. J. Numer. Meth. Fluids, 54:543–590, 2007.

[218] K.D. Watson N. Kobayashi, G.S. Desilva. Wave transformation and swash oscillation on gentle
and steep slopes. J. Comput. Res., 94:951–966, 1989.



218 BIBLIOGRAPHY

[219] R.D. Nair, S.J. Thomas, and R.D. Loft. A discontinuous galerkin global shallow water model.
Mont. Weather Rev., 133:876–888, 2004.

[220] H. Nessyahu and E. Tadmor. Non-oscillatory central differencing for hyperbolic conservation
laws. J. Comput. Phys., 87:408–463, 1990.

[221] I.K. Nikolos and A.I. Delis. An unstructured node-centered finite volume scheme for shallow
water flows with wet/dry fronts over complex topography. Comput. Meth. Appl. Mech. Engrg.,
198:3723–3750, 2009.

[222] S. Noelle, N. Pankratz, G. Puppo, and J.R. Natvig. Well-balanced finite volume schemes of arbi-
trary order of accuracy for shallow water flows. J. Comput. Phys., 213:474–499, 2006.

[223] S. Noelle, Y. Xing, and C.-W. Shu. High-order well-balanced finite volume weno schemes for
shallow water equation with moving water. J. Comput. Phys., 226:29–58, 2007.

[224] O. Nwogu. Alternative form of Boussinesq equations for nearshore wave propagation. J. Water-

way. Port. Coastal. Ocean Eng., 119:618–638, 1993.

[225] C.F. Ollivier-Gooch. High-order eno schemes for unstructured meshes based on least-squares
reconstruction. In AIAA, paper 97-0540, 1997.

[226] J. Orszaghova, A.G.L. Borthwick, and P.H. Taylor. From the paddle to the beach − A Boussinesq
shallow water numerical wave tank based on Madsen and Sørensen’s equations. J. Comp. Phys.,
231:328–344, 2012.

[227] H.T. Özkan-Haller and J.T. Kirby. A Fourier-Chebyshev collocation method for the shallow water
equations including shoreline runup. App. Oc. Rch., 19:21–34, 1997.

[228] R. Comblen V. Legat P.-E. Bernard, J.-F. Remacle and K. Hillewaert. High-order discontinuous
galerkin schemes on general 2d manifolds applied to the shallow water equations. J. Comput.

Phys., 228:6514–6535, 2009.

[229] J.D. Pearce and J.G. Esler. A pseudo-spectral algorithm and test cases for the numerical solution of
the two-dimensional rotating Green-Naghdi shallow water equations. J. Comput. Phys., 229:7594–
7608, 2010.

[230] D.H. Peregrine. Long waves on a beach. J. Fluid Mech., 27:815–827, 1967.

[231] B. Perthame. An introduction to kinetic schemes for gas dynamics. An introduction torecent develop-

ments in theory and numerics for conservation laws. L.N. in Comput. Sc. and. Eng., 5, D.Kroner, M.
Ohlberger and C. Rohde eds, Springer, 1998.

[232] B. Perthame. Kinetic formulations of conservation laws. Oxford University Press, 2002.

[233] B. Perthame and Y. Qiu. A variant of van leer’s method for multidimensional systems of conser-
vation laws. J. Comput. Phys., 112:370–381, 1994.

[234] B. Perthame and C.W. Shu. On positivity preserving finite volume schemes for Euler equations.
Numer. Math., 73:119–130, 1996.

[235] B. Perthame and C. Simeoni. A kinetic scheme for the Saint-Venant system with a source term.
Calcolo, 38:201–231, 2001.



BIBLIOGRAPHY 219

[236] J. Qiu and C.W. Shu. On the construction, comparison, and local characteristic decomposition for
high-order central weno schemes. J. Comp. Phys., 183:187–209, 2002.

[237] J. Qiu and C.W. Shu. Hermite weno schemes and their application as limiters for runge–kutta
discontinuous galerkin method: one dimensional case. SIAM J. Sci. Comp., 193:115–135, 2003.

[238] J. Qiu and C.W. Shu. A comparison of troubled-cell indicators for runge–kutta discontinuous
galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comp., 27:995–
1013, 2005.

[239] K. D. Devine R. Biswas and J. E. Flaherty. Parallel, adaptive finite element methods for conserva-
tion laws. App. Num. Math., 14:255–283, 1994.

[240] B. Perhame R. Botchorishvili and A. Vasseur. Equilibrium schemes for scalar conservation laws
with stiff sources. Math. Comp., 72:131–157, 2003.

[241] S. Rhebergen, O. Bokhove, and J.J.W. Van Der Vegt. Discontinuous galerkin finite element meth-
ods for hyperbolic nonconservative partial differential equations. J. Comput. Phys., 227:1887–1922,
2008.

[242] M. Ricchiuto, R. Abgrall, and H. Deconinck. Application of conservative residual distribution
schemes to the solution of the shallow water equations on unstructured meshes. J. Comput. Phys.,
222:287–331, 2007.

[243] M. Ricchiuto and A. Bollermann. Stabilized residual distribution for shallow water simulations.
J. Comput. Phys., 228:1071–1115, 2009.

[244] M. Ricchiuto and A.G. Filippini. Upwind residual discretization of enhanced Boussinesq equa-
tions for wave propagation over complex bathymetries. J. Comput. Phys., in press, 2014.

[245] P.L. Roe. Approximate riemann solvers, parameter vectors and difference schemes. J. Comp. Phys.,
43:357–372, 1981.

[246] V. Roeber and K.F. Cheung. Boussinesq-type model for energetic breaking waves in fringing reef
environments. Coast. Eng., 70(0):1 – 20, 2012.

[247] B. Rogers, M. Fujihara, and A. Borthwick. Adaptive Q-tree Godunov-type scheme for shallow
water equations. Int. J. Numer. Meth. Fluids, 35:247–280, 2001.

[248] G. Russo. Central schemes for conservation laws with application to shallow water equations. in
Trends and applications of mathematics to mechanics : STAMM2002, S. Rionero and G. Romano (Editors),

Springer-Verlag Italia SRL, pages 225–246, 2005.

[249] J. Sampson, A. Easton, and M. Singh. Moving boundary shallow water flow above parabolic
bottom topography. ANZIAM J (EMAC 2005), 21:373–387, 2006.

[250] R. Saurel and R. Abgrall. A simplemethod for compressible multifluid flows. SIAM J. Sci. Comput.,
21:1115–1145, 1999.

[251] D. Schwanenberg and M. Harms. Discontinuous Galerkin finite-element method for transcritical
two- dimensional shallow water flows. J. Hydr. Engrg., 130:412–421, 2004.

[252] N. Seguin. Modélisation et simulation numérique des écoulements diphasiques. PhD thesis, 2002.



220 BIBLIOGRAPHY

[253] F. Serre. Contribution à l’étude des écoulements permanents et variables dans les canaux. Houille

Blanche, 6:830–872, 1953.

[254] F. Shi, J.T. Kirby, J.C. Harris, J.D. Geiman, and S.T. Grilli. A high-order adaptive time-stepping tvd
solver for Boussinesq modeling of breaking waves and coastal inundation. Oc. Mod., 43-44:36–51,
2012.

[255] C.W. Shu. Total-variation-diminishing time discretizations. SIAM J.Sci.Statist.Comput., 9:1073–
1084, 1988.

[256] C.W. Shu and S. Osher. Efficient implementation of essentially non oscillatory shock capturing
schemes. J. Comp. Phys., 77:439–471, 1988.

[257] J. Singh, M.S. Altinakar, and Y. Ding. Two-dimensional numerical modeling of dam-break flows
over natural terrain using a central explicit scheme. Adv. Wat. Res., 34:1366–1375, 2011.

[258] S. Soares-Frazão and V. Guinot. A second-order semi-implicit hybrid scheme for one-dimensional
Boussinesq-type waves in rectangular channels. Int. J. Num. Meth. Fluids, 58:237–261, 2008.

[259] S. Soares-Frazão and G. Testa. In Proceedings of the 3rd CADAMWorkshop, Milan, Italy.

[260] O. Sørensen, H.A. Schäffer, and P. Madsen. Surf zone dynamics simulated by a Boussinesq type
model. III. Wave-induced horizontal nearshore circulation. Coast. Engrg., 33:155–176, 1998.

[261] O.R. Sørensen, H.A. Schaffer, and L.S. Sørensen. Boussinesq-type modelling using an unstruc-
tured finite element technique. Coast. Engrg., 50:181–198, 2004.

[262] I. Suliciu. On modelling phase transitions by means of rate-type constitutive equations, shock
wave structure. Int. J. Engrg. Sci., 28:829–841, 1990.

[263] I. Suliciu. Some stability-instability problems in phase transitions modelled by piecewise linear
elastic or viscoelastic constitutive equations. Int. J. Engrg. Sci., 30:483–494, 1992.

[264] C.E. Synolakis. The runup of solitary waves. J. Fluid Mech., 185:523–545, 1981.

[265] P.A. Tassi, O. Bokhove, and C.A. Vionnet. Space discontinuous galerkin method for shallow water
flows kinetic and hllc flux, and potential vorticity generation. Adv. Wat. Res., 30:998–1015, 2007.

[266] W.C. Thacker. Some exact solutions to the nonlinear shallow water wave equations. J. Fluid Mech.,
107:499–508, 1981.

[267] P.G. LeFloch M.D. Thanh. The riemann problem for the shallow water equations with discontin-
uous topography. Commum. Math. Sci., 5:865–885, 2007.

[268] M. Tissier, P. Bonneton, F. Marche, F. Chazel, and D. Lannes. A new approach to handle wave
breaking in fully non-linear Boussinesq models. Coast. Engrg., 67:54–66, 2012.

[269] M. Tonelli and M. Petti. Hybrid finite volume- finite difference scheme for 2dh improved Boussi-
nesq equations. Coast Engrg., 56(5-6):609–620, 2009.

[270] M. Tonelli and M. Petti. Finite volume scheme for the solution of 2d extended Boussinesq equa-
tions in the surf zone. Oc. Engrg., 37:567–582, 2010.



BIBLIOGRAPHY 221

[271] M. Tonelli andM. Petti. Shock-capturing Boussinesqmodel for irregular wave propagation. Coast.
Engrg., 61:8–19, 2012.

[272] E.F. Toro. Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin, 1997.

[273] E.F. Toro, M. Spruce, andW. Speare. Restoration of the contact surface in the HLL Riemann solver.
Shock waves, 4:25–34, 1994.

[274] C.J. Trahan and C. Dawson. Local time stepping in Runge Kutta discontinuous Galerkin finite
element methods applied to the shallow-water equations. Comp.Meth. App. Mech. Engrg., 217:139–
152, 2012.

[275] S. Tu and S. Aliabadi. A slope limiting procedure in discontinuous galerkin finite element method
for gasdynamic applications. Int. J. Numer. Anal. Model., 2:163–178, 2005.

[276] B. Van-Leer. Towards the ultimate conservative difference scheme. V - A second-order sequel to
Godunov’s method. J. Comput. Phys., 135:227–248, 1997.

[277] J.J.W. Van Der Vegt and H. Van Der Ven. Space-time discontinuous galerkin finite element method
with dynamic grid motion for inviscid compressible flows. J. Comput. Phys., 182:546–585, 2002.

[278] V. Venkatakrishnan. On the accuracy of limiters and convergence to steady state solutions. In
AIAA, paper 93-0668, 1993.

[279] J.P. Vila. Simplified godunov schemes for 2 × 2 systems of conservation laws. SIAM J. Numer.

Anal., 23:1173–1192, 1986.

[280] S. Vukovic and L. Sopta. Eno and weno schemes with the exact conservation property for one-
dimensional shallow water equations. J. Comput. Phys., 179:593–621, 2002.

[281] J.-W. Wang and R.-X. Liu. A comparative study of finite volume methods on unstructuredmeshes
for simulation of 2D shallow water wave problems. Math. Comput. Sim., 53:171–184, 2000.

[282] Y.Wang, Q. Liang, G. Kesserwani, and J.W.Hall. A 2d shallow flowmodel for practical dam-break
simulations. J. Hydr. Res., 49:307–316, 2011.

[283] G. Wei and J. Kirby. Time-dependant numerical code for extended boussinesq equations. J. Wa-

terway, 121:251–261, 1995.

[284] E. Tadmor X.-D. Liu. Third order nonoscillatory central scheme for hyperbolic conservation laws.
Num. Math., 79:397–425, 1998.

[285] Y. Xing. Exactly well-balanced discontinuous galerkin methods for the shallow water equations
with moving water equilibrium. J. Comput. Phys., 257:536–553, 2014.

[286] Y. Xing and C.-W. Shu. High order finite difference WENO schemes with the exact conservation
property for the shallow water equations. J. Comput. Phys., 208:206–227, 2005.

[287] Y. Xing and C.-W. Shu. High order well-balanced finite volume weno schemes and discontinuous
galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys., 214:567–
598, 2006.



222 BIBLIOGRAPHY

[288] Y. Xing and C.-W. Shu. A new approach of high order well-balanced finite volume WENO
schemes and discontinuous Galerkin methods for a class of hyperbolic systemswith source terms.
Commun. Comput. Phys., 1:100–134, 2006.

[289] Y. Xing, C.-W. Shu, and S. Noelle. On the advantage of well-balanced schemes for moving-water
equilibria of the shallow water equations. J. Sci. Comp., 48:339–349, 2011.

[290] Y. Xing and X. Zhang. Positivity-preserving well-balanced discontinuous Galerkin methods for
the shallow water equations on unstructured triangular meshes. J. Sci. Comp., 57:19–41, 2013.

[291] Y. Xing, X. Zhang, and C.-W. Shu. Positivity-preserving high order well-balanced discontinuous
Galerkin methods for the shallow water equations. Adv. Wat. Res., 33:1476–1493, 2010.

[292] Y. Xu and C.-W. Shu. Local Discontinuous Galerkin methods for high-order time-dependent par-
tial differential equations. Commun. Comput. Phys., 7(1):1–46, 2010.

[293] X. Ying and S. Wang. Improved hll scheme for 1d dam-break flows over complex topography.
Archives of Hydro-Engineering and Environmental Mechanics, 57:31–41, 2010.

[294] X. Ying, S. Wang, and A. Khan. Numerical simulation of flood inundation due to dam and levee
breach. In World Water and Environmental Resources Congress, 2003, pages 1–9.

[295] J.A. Zelt. Tsunamis: the response of harbors with sloping boundaries to long wave exitation. Tech. Rep.
KH-R-47 1986; California Institute of Technology, 1986.

[296] J.A. Zelt. The run up of nonbreaking and breaking solitary waves. Coast. Eng., 15:205–246, 1991.

[297] J.A. Zelt and F.A. Raichlen. A lagrangian model for waveinduced harbour oscillations. Coast.

Eng., 213:203–225, 1990.

[298] X. Zhang and C.-W. Shu. On maximum-principle-satisfying high order schemes for scalar conser-
vation laws. J. Comput. Phys., 229(9):3091 – 3120, 2010.

[299] X. Zhang, Y. Xia, and C.-W. Shu. Maximum-principle-satisfying and positivity-preserving high
order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comp.,
50:29–62, 2012.

[300] X. Zhong and C.-W. Shu. A simple weighted essentially nonoscillatory limiter for runge–kutta
discontinuous galerkin methods. J. Comput. Phys., 232:397–415, 2013.

[301] J. G. Zhou, D. M. Causon, D. M. Ingram, and C. G. Mingham. Numerical solutions of the shallow
water equations with discontinuous bed topography. Int. J. Numer. Meth. Fluids., 38:769–788, 2002.

[302] J.G. Zhou, D.M. Causon, and C. G. Mingham. The surface gradient method for the treatment of
source terms in the shallow-water equations. J. Comput. Phys., 168:1–25, 2001.

[303] J. Zhu, J. Qiu, C.-W. Shu, and M. Dumbser. Runge–kutta discontinuous galerkin method using
weno limiters ii: Unstructured meshes. J. Comput. Phys., 227:4330–4353, 2008.

[304] J. Zhu, J. Zhong, J. Qiu, and C.-W. Shu. Runge–kutta discontinuous galerkin method using a new
type of weno limiters on unstructured meshes. J. Comput. Phys., 248:200–220, 2013.

[305] C. Zoppou and S. Roberts. Numerical solution of the two dimensional unsteady dam break. App.
Math. Mod., 24:457–475, 2000.


	Remerciements
	Introduction Générale
	Focus on the Shallow Water system
	Introduction
	Finite Volume Method on unstructured meshes
	Structural considerations
	The Riemann problem

	Exchanging fluxes computation
	Lax-Friedrichs fluxes
	HLL and HLLC solvers
	HLL Solver
	HLLC solver

	VFRoe-ncv solver
	Some complements

	Boundary conditions
	Classical methods
	Open sea boundary conditions

	Numerical constraints
	Stability issues
	Entropy relations
	Steady states and survey on well balanced methods
	Robustness and dry cells

	Conclusion

	Finite Volume discretization of the Pre Balanced system
	Introduction
	Finite Volume approach
	The 1d case
	Extension to the unstructured case

	Formal "Second order" reconstruction
	A first example
	A Second example
	Robustness issues

	Numerical Validations
	Well balancing validation
	Subcritical flow over a bump
	Flows over steps
	Tidal wave over steps
	Dam break problem

	Oscillatory flow in a parabolic basin
	Small perturbation of a lake at rest
	Dam break problems
	1d dam break
	Dam break over three mounds

	Carrier and Greenspan transient solution

	Conclusion

	Friction treatment
	Introduction
	Pre Balanced friction scheme
	The 1d case
	The 2d case
	Numerical validations
	Dam break with friction
	Moving boundary over a parabolic bottom
	Periodic subcritical flow

	Two dimensional steady flow with friction
	Tsunami wave on a sloping beach

	Malpasset dam break

	Asymptotic Preserving scheme
	Frictionless scheme
	Friction scheme
	Asymptotic Preserving issues
	Asymptotic regime for NSW
	Asymptotic Preserving Correction

	Numerical validations
	Accuracy validation
	Dam break with friction
	Dam break in a double-slope basin
	Oscillatory flow with friction in a parabolic basin
	Dam-break flow over two frictional humps
	Toce River dam break


	Conclusion

	Discontinuous Galerkin Method
	Introduction
	A survey of existing methods
	Well-balancing
	Robustness
	Limiting strategies

	Pre-Balanced RKDG scheme
	Discrete formulation
	Numerical flux
	Limiting procedure
	Additional limiting for robustness
	Time discretization
	Main properties

	Numerical validations
	Collapsing of a Gaussian profile
	Dam break problems
	Dam break on a dry bed
	Two-dimensional dam-break

	On steady states
	Preservation of a motionless steady state
	Perturbation of a motionless steady state
	Subcritical flow over a bump

	Carrier and Greenspan transient solution
	Tsunami wave on a conical island
	Cox experience
	Solitary wave on a sloping beach

	Conclusion

	The dGM applied to Green Naghdi equations
	Introduction
	Governing equations
	Discontinuous Galerkin discretization
	Weak formulation
	Semi-discrete formulation
	High-order derivatives and dispersive terms computation
	Stabilisation procedure
	Preservation of motionless steady states
	Robustness
	Handling broken waves and limiting strategy
	Boundary conditions

	Numerical examples
	Motionless steady states preservation
	Accuracy analysis in the presence of non-flat bottom
	Propagation of a solitary wave
	Shoaling of solitary waves
	Periodic waves over a submerged bar
	Solitary wave breaking over a sloping beach
	Cox's experiment
	Wave overtopping a seawall
	Overtopping over fringing reefs


	Conclusion et perspectives
	Publications
	Bibliography

