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Title: Ferrite-based micro-inductors for Power Systems on Chip: from material elaboration to inductor 

optimisation 

 

Abstract: 

On-chip inductors are key passive elements for future power supplies on chip (PwrSoC), which are 

expected to be compact and show enhanced performance: high efficiency and high power density. The 

objective of this thesis work is to study the material and technology to realize small size (<4 mm²) and 

low profile (< 250 µm) ferrite-based on-chip inductor. This component is dedicated to low power 

conversion (≈ 1 W) and should provide high inductance density and high quality factor at medium 

frequency range (5-10 MHz). Fully sintered NiZn ferrites are selected as soft magnetic materials for 

the inductor core because of their high resistivity and moderate permeability stable in the frequencies 

range of interest. Two techniques are developed for the ferrite cores: screen printing of in-house made 

ferrite powder and cutting of commercial ferrite films, followed in each case by sintering and pick-and 

place assembling to form the rectangular toroid inductor. Test inductors were realized first so that the 

characterization could be carried out to study the magnetic properties of the ferrite core and the 

volumetric core losses. The core losses were fit from the measured curve with Steinmetz equation to 

obtain analytical expressions of losses versus frequency and induction. The second phase of the thesis 

is the design optimization for the on-chip ferrite based inductor, taking into account the expected 

losses. Genetic algorithm is employed to optimize the inductor design with the objective function as 

minimum losses and satisfying the specification on the inductance values under weak current-bias 

condition. Finite element method for magnetics FEMM is used as a tool to calculate inductance and 

losses. The second run of prototypes was done to validate the optimization method. In perspective, 

processes of thick-photoresist photolithography and electroplating are being developed to realize the 

completed thick copper windings surrounding ferrite cores.  

 

Résumé: 

Les composants passifs intégrés sont des éléments clés pour les futures alimentations sur puce, 

compactes et présentant des performances améliorées: haut rendement et forte densité de puissance. 

L'objectif de ce travail de thèse est d'étudier les matériaux et la technologie pour réaliser de bobines à 

base de ferrite, intégrées sur silicium, avec des faibles empreintes (<4 mm ²) et de faible épaisseur 

(<250 µm). Ces bobines, dédiées à la conversion de puissance (≈ 1 W) doivent présenter une forte 

inductance spécifique et un facteur de qualité élevé dans la gamme de fréquence visée (5-10 MHz). 

Des ferrites de NiZn ont été sélectionnées comme matériaux magnétiques pour le noyau des bobines 
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en raison de leur forte résistivité et de leur perméabilité stable dans la gamme de fréquence visée. 

Deux techniques sont développées pour les noyaux de ferrite: la sérigraphie d’une poudre synthétisée 

au laboratoire et la découpe automatique de films de ferrite commerciaux, suivi dans chaque cas du 

frittage et le placement sur les conducteurs pour former une bobine rectangulaire. Des bobines tests 

ont été réalisées dans un premier temps afin que la caractérisation puisse être effectuée : les propriétés 

magnétiques du noyau de ferrite notamment les pertes volumiques dans le noyau sont ainsi extraites. 

L’équation de Steinmetz a permis de corréler les courbes de pertes mesurées avec des expressions 

analytiques en fonction de la fréquence et de l'induction. La deuxième phase de la thèse est 

l'optimisation de la conception de la micro-bobine à base de ferrite, en tenant compte des pertes 

attendues. L’algorithme générique est utilisé pour optimiser les dimensions de la bobine avec pour 

objectif ; la minimisation des pertes et l’obtention de la valeur d'inductance spécifique souhaitée, sous 

faible polarisation en courant. La méthode des éléments finis pour le magnétisme FEMM est utilisée 

pour modéliser le comportement électromagnétique du composant. La deuxième série de prototypes a 

été réalisée afin de valider la méthode d'optimisation. En perspective, les procédés de 

photolithographie de résine épaisse et le dépôt électrolytique sont en cours de développement pour 

réaliser les enroulements de cuivre épais autour des noyaux de ferrite optimisés et ainsi former le 

composant complet.  
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General introduction  

Miniaturization of electronic devices has been attracting lots of research and development since the 

60’s. Power system is one of the important parts in electronic equipments including power source and 

power management. That refers to the generation and control of regulated voltages required to operate 

an electronic system. One major requirement for the power supply is high efficiency. Integrated circuit 

components such as DC/DC converters (step-down or step-up), voltage regulator and battery 

management are typical elements of power management. Figure 0-1 presents a generic distributed 

power management system in a mobile phone. In this general picture, this thesis will focus on the 

integrated inductor which is a part of a DC/DC converter.  

 

Figure 0-1: A generic distributed power management system in a cell phone 

Buck and Boost converters are switched-mode power supplies that provide respectively lower and 

higher output voltages than the input voltages. These converters use at least two electronic switches (a 

diode and a transistor) and at least two energy storage elements, an inductor and a capacitor. Figure 

0-1 shows a buck converter schematic and the two equivalent diagrams in the continuous mode 

operation. The inductor ensures the current filtering and the capacitor allows low output voltage 

ripples. The energy is stored in the inductor and capacitor at the “+.state”, and is released at the “-

.state”. Inductors store the magnetic energy while capacitors store electrical energy. Historically, the 

standard for supply voltage was about ± 15V for a great number of electronic equipment. In recent 

years, the trend is towards lower supply voltages with higher switching frequencies. This is partially 

due to the process used to manufacture integrated circuits and the technology which allows reducing 

the size of transistors. These smaller sizes imply lower breakdown voltages which drive supply 

voltages to lower values. Reducing the supply voltage has a desirable effect of reducing the power 

dissipation of digital circuits [1]. 
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a) 

b) 

Figure 0-1: a) Buck converter schematic and b) equivalent diagrams in the continuous mode[2] 

Non-isolated DC/DC converters are used in DC distributed power systems and directly built on the 

mother board next to the load. They are also called point-of-load (POL) converters. In order to achieve 

high efficiency, POL converters usually operate at a frequency lower than 1 MHz, in the range 100–

600 kHz. Nowadays, mobile electronic devices such as smart-phones and tablets continue to require 

smaller point-of-load converters while maintaining high power conversion efficiency and a high power 

density for their numerous functions like image processing, voice recognizing, etc… There are many 

groups and companies doing research for the power solutions and there is huge improvement in last 

decades as we can observe clearly and lively in smart phones.  

The passive components such as inductors in POL converters are bulky occupying a considerable 

footprint. In order to make POL converter smaller, it is necessary to: (i) increase significantly the 

switching frequency to reduce the size and weight of the inductors (ii) integrate the inductor 

effectively in a small footprint. The latest trend of POL converter is to integrate the inductor providing 

minimum footprint and profile; the operating frequency goes thus to higher range, typically few MHz 

to fulfill the high level of integration. So, the size of the POL converter becomes compatible with 

power Integrated Circuit (IC) dimensions in a new miniaturized product formats that can be referred to 

as power supply in package (PowerSiP) and power supply on chip (PowerSoC). In a power supply in 

package, the discrete passives and the IC are assembled side by side or stacked on each other beside 

other components in the converter. In an ultimate power supply on chip, the passives are 

monolithically integrated onto the power management IC. The development of high-frequency 

integrated power supply requires multidisciplinary researches combining the knowledge of different 

areas like semiconductor devices, converter design and magnetic materials. In this thesis, we are 

targeting inductors integrated on-chip, also called micro-inductors.  

From state of the art of commercial converters and commercial integrated inductors, see Table 0-1 and 

Table A1-1 in the Annexes, we can determine where we are today from a technological standpoint, 

what the trends are, and what will be necessary to achieve integrated inductor for POL converters in 

the future. At the moment, almost all power supplies are with bulky inductors embedded in the 

package, very few of them are on chip. EP5348UI Enpirion is a 400mA PowerSoC which integrates 

MOSFET switches, control, compensation, and the magnetics in a micro-QFN Package in a dimension 
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of 2.0mm x 1.75mm x 0.9mm, see Table 0-1 for more details. The EP5348UI offers a good 

compromise between the footprint and the efficiency to replace less efficient low-dropout regulators in 

space-constrained applications that require improved efficiency. For the power supply on chip, the 

power density is not very high, with low inductance density inductor.  In this thesis, we will focus on 

integration technology for inductors dedicated to low power (≈ 1 W) DC/DC converters with 

high power densities, high efficiencies (above 90%) and medium frequency (5-10 MHz). We 

choose the medium frequency range because in the overall power system, we believe that with higher 

frequencies, switching losses and consumption of control devices will be too large and that might 

degrade the overall system efficiency. Within these application specifications, we will focus 

specifically on high power density inductors and their integration technology. We try to find simple 

feasible solutions for manufacturing together with high performance of inductor. The analysis for 

integrated inductors is broken down into three main issues: (i) what magnetic material to choose for 

integrated inductors? (ii) what technology to fabricate? and (iii) how to design effectively?    

Table 0-1: Examples of commercial low-profile converters with embedded inductors 

Year 2012 2012 2012 2009 

-2011 

2012 

Institution/ Company Murata Altera’s 

Enpirion 

On Semi-

conductor 

Texas 

Instrument 

Texas 

Instrument 

Product LXDC2HL Enpirion 

EP5348UI 

NCP6332 LM8801 TPS81256 

Converter Buck Buck Buck Buck Boost 
Size (mm3) 

2.7x2.2x 

1.1 

2x1.75x 

0.9 

2x2x 

0.75 

1.07 x 1.27 x 

0.6 

< 7mm2 

2.9x2.6x1 

 

Output power (W) 1.25 2 6 1.7 5 

Power density 

approx. (W.cm-3) 
190  600 2000 - 660 

Vin (V) 2.3 to 5.5 2.5 to 5.5 2.3 to 5.5 2.3 to 5.5 2.5 to 4.85 

Vout (V) 0.8 to 4 0.6 to Vin- Vdrop 0.6 to Vin 1 to 2.9 4.85 to 5.2 

Iout (A) Max 0.6 0.4 1.2 Max 0.6 Max Iin 1.05 

Efficiency (%) Max 90% Max 90% Max 90% 90% 91% 

Frequency (MHz) 3 9 3 6 4 

Inductor    Not embedded   

Inductance - 120nH 1µH 0.47µH 1µH 

DC resistance (mΩ) - < 780 - - < 320 

Technology PowerSiP, Ferrite, 

inductor size 

2.7x2.2x 

0.7 mm3 

PowerSoC PowerSiP PowerSiP  PowerSiP 

References 

1. Analog Devices Inc. and H. Zumbahlen, Linear Circuit Design Handbook, 2011  Elsevier 

Science. 

2. N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications 

and Design, 3rd Edition, 2003  Wiley. 
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Chapter 1 State of the art of integrated inductor 

This chapter presents basic formula concerning inductors and the state of the art of integrated inductor 

in research considering different inductor structures, magnetic materials and processing technologies 

for cores. 

1. Basic formulas for micro-inductors with magnetic core  

1.1. Magnetic material 

 Static magnetic permeability of a material 

    𝜇 =  
𝐵

𝐻
=  𝜇0 ∗ 𝜇𝑟     (Eq. 1.1) 

B is magnetic induction (T), H is the external magnetic field (A/m), µ0 is vacuum permeability = 

4𝜋. 10−7 (H/m) and µr is the relative permeability of the material.  

 Complex permeability as function of frequency 

When the magnetic material is exposed in an external alternating field 𝐻 =  𝐻0 exp(𝑗𝜔𝑡), where 𝜔 =

2𝜋𝑓 the frequency of oscillations and t is the time, the magnetic losses of the material are expressed 

by the phase discrepancy between B and H. To explain this phenomenon, we write the initial 

permeability in the complex form: 

𝜇(𝜔) =  
𝐵(𝜔)

𝐻(𝜔)
=  

𝐵0𝑒𝑗(𝜔𝑡−𝛿)

𝐻0𝑒𝑗𝜔𝑡
=  

𝐵0

𝐻0
 𝑒−𝑗𝛿 

𝜇(𝜔) =  
𝐵0

𝐻0
 cos 𝛿 − 𝑗 

𝐵0

𝐻0
 sin 𝛿  

𝜇(𝜔) =  𝜇′(𝜔) − 𝑗𝜇"(𝜔) =  𝜇0[𝜇𝑟
′ (𝜔) −  𝑗𝜇𝑟

" (𝜔)]   (Eq. 1.2) 

𝜇′(𝜔)  represents the reactive part of the initial permeability,  𝜇"(𝜔)  is the dissipative part 

corresponding to magnetic losses. Magnetic losses are also represented by tan(𝛿) which is the ratio of 

the dissipative part and the reactive part of the permeability: 

  tan(𝛿) =  
𝜇"(𝜔)

𝜇′(𝜔)
=  

𝜇𝑟
" (𝜔)

𝜇𝑟
′ (𝜔)

   (Eq. 1.3) 

1.2. Micro-inductor 

A coil such as the one shown in Figure 1-1 has a self-inductance or inductance L, which is defined as: 

  𝐿 =  𝜇0𝜇𝑟
′ 𝑁2 𝐴𝑒

𝑙𝑒
  (H)     (Eq. 1.4) 

Where N is number of turns, Ae is magnetic cross section, le is mean magnetic length.  
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Figure 1-1: Schematic of a magnetic coil [1] 

When we excite the coil with an alternating current IAC, the alternating magnetic induction created in 

the magnetic core can be defined as  

     𝐵𝐴𝐶 =  
𝐿 𝐼𝐴𝐶

𝑁 𝐴𝑒
  (T)   (Eq. 1.5) 

When there is a continuous current IDC in the winding conductor, the DC pre-magnetized field present 

in the magnetic core can be expressed as 

     𝐻𝐷𝐶 =  
𝑁 𝐼𝐷𝐶

𝑙𝑒
  (𝐴/𝑚)   (Eq. 1.6) 

Magnetic energy stored in the inductor can be determined from the DC current as following 

    𝑊𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐(𝑡) =
𝐿𝑖(𝑡)

2

2
  (Eq. 1.7) 

Quality factor Q of an inductor gives an indication of its performance in the circuit. It is dimensionless 

and indicates the energy losses relative to the energy stored within the inductor. 

     𝑄 = 𝜔
𝐿

𝑅𝐴𝐶
   (Eq. 1.8) 

1.2.1. Copper losses in winding 

Copper losses are a considerable portion of the total losses of the inductor and can be calculated by 

multiplying the resistance by the square of the rms current. However, when a high frequency current 

flows in a conductor, eddy currents induced in the winding lead to an increase of the conductor 

resistance and consequently to an increase of copper losses. Skin and proximity effects are highly 

frequency-dependent and must be considered for accurate losses prediction.  

 Skin effect: when operating at high frequency, the current lines have the tendency to 

concentrate near the surface of the conductor with a thickness called skin depth δω expressed 

as 𝛿𝜔 =  √𝜌/𝜋𝑓𝜇 , in which  is resistivity of the conductor, f is excitation frequency, and 

𝜇 =  𝜇0𝜇𝑟 is permeability of the conductor material. 

 Proximity effect: a current flowing in adjacent conductors creates a magnetic field which 

modifies the current line distribution in the conductor. 

Permeabilityµr

Mean magnetic

length le

Magnetic cross 

section Ae
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The influence of both skin and proximity effects must be modeled by an equivalent resistance RAC of 

the conductor that causes losses proportional to RACIACrms
2, where IACrms is the rms value of the 

alternating current.  

Regarding analytical expression, the Dowell equation is a generalized form of the solution for the 

diffusion equation of rectangular conductors adapted and applied to round conductors [2]. In this 

equation, instead of calculating losses directly, the AC resistance of the conductor is calculated. The 

ratio of the AC resistance to the DC resistance FR can be calculated using the Dowel method.  

      𝐹𝑅 =
𝑅𝐴𝐶

𝑅𝐷𝐶
    (Eq. 1.9) 

     

The graph of FR vs. frequency shows us how quickly the resistance increases with the frequency [3]. A 

good design will obtain a small ratio FR (ideally about 1) at the operating frequency.  

1.2.2. Core losses in inductor 

The core losses are due to magnetic materials in the inductor. There are three mechanisms for core 

losses: 

 Hysteresis losses: when the excitation of magnetic field is alternating 𝐻 = 𝐻0exp (jωt) the 

magnetic material stores magnetic energy but does not return totally when H is reversed. The 

volumetric hysteresis losses correspond to energy dissipated in one hysteresis cycle and can be 

expressed as 

 

    𝑃ℎ𝑦𝑠 = ∫ 𝐻𝑑𝐵 
𝐵𝑚𝑎𝑥

0
(𝑊. 𝑚−3)  (Eq. 1.10) 

Total hysteresis losses depend on the operating frequency and are determined by the following 

expression 

     𝑃𝐻𝑌𝑆 = 𝐾𝐻𝑓𝛼𝐻𝐵𝐴𝐶𝑚
𝛽𝐻    (Eq. 1.11) 

 

Where H is the magnetic field generated by the electrical excitation and BACm is the maximal 

magnetic induction, KH and H, H are hysteresis losses coefficients. At low frequency, the 

hysteresis losses are sometime expressed as [4] 

𝑃𝐻𝑌𝑆 = 𝐾𝐻𝑓𝐵𝐴𝐶𝑚
2  

 Eddy current losses: are losses due to the current induced in the core by a magnetic field, 

which depend on frequency, magnetic induction and the resistivity of the core material. 

Analytical expression of eddy current losses is given in the following equation: 
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   𝑃𝑒𝑑𝑑𝑦 = 𝐶
𝑓𝛼𝐸𝐵𝐴𝐶𝑚

𝛽𝐸

𝜌
(𝑊. 𝑚−3)  (Eq. 1.12) 

Where C is a coefficient which depends on the size of material and the form of alternating 

signal, E, E are eddy current losses coefficients. 

 Resonance-relaxation losses/Residual losses: These losses are maximal when the functional 

frequency is close to resonance frequency of material identified by the maximum of µr”(). 

Concerning analytical expression, the Steinmetz equation is used to calculate core losses when the 

magnetic field is sinusoidal. The basic form of Steinmetz equation is 

    𝑃𝑐𝑜𝑟𝑒 = 𝐾𝑓𝛼𝐵𝐴𝐶𝑟𝑚𝑠
𝛽(𝑚𝑊. 𝑐𝑚−3)  (Eq. 1.13) 

Where Pcore is the volumetric core loss, f is frequency of sinusoidal waveform, BACrms is the flux 

density inside the core,,  and K are coefficients specific to each type of core and usually determined 

by curve fitting to the experimental curve. Once the Steinmetz parameters have been identified, it is 

straightforward to calculate core losses. Losses identified by Steinmetz equation include hysteresis, 

eddy current and residual losses. A limitation is that this equation is only good for sinusoidal 

excitation.  In order to work with other different wave forms, recent developments try to modify SE 

equation, for example Modified Steinmetz Equation, Generalized Steinmetz Equation and Improved 

Generalized SE [5].  

1.3. Micro-inductor in Buck converter 

In the continuous mode conduction, the current wave form in the inductor is triangular as depicted in 

Figure 1-2. 

 

Figure 1-2: Inductor current wave-form in a Buck converter [1] 
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The value of inductance is fixed by the ripple current by the relation 

     ∆𝐼𝐿 =  
𝐷(1−𝐷)∗𝑉𝑖𝑛

𝑓∗𝐿
  (Eq. 1.14) 

Where D is duty cycle 𝐷 =  
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
. Ripple current is the AC triangular current flowing through the 

inductor. 

The DC current is determined by the ratio of output power and voltage 

     𝐼𝐷𝐶 =  
𝑃𝑜𝑢𝑡

𝑉𝑜𝑢𝑡
   (Eq. 1.15) 

However, when the inductor contains a magnetic core, at high current values, saturation phenomenon 

can occur. The inductor can operate indeed at the maximum magnetic induction BACm with BACrms < 

Bsat, where Bsat is the saturation induction of the magnetic core. Above Bsat, the permeability of the 

magnetic core is asymptotic to zero; the inductance drops consequently to a value close to an air-core 

inductor. 

2. Literature review on integrated micro-inductors  

The evolution of micro-inductors and the development of magnetic thin films can be traced back to the 

early studies in the late 1960s. However, significant developments in the area were reported from the 

early 1990s. Different research teams have been working on the development of integrated power 

converters for the last 20 years, with particular emphasis on integrated planar magnetic components. 

They use different materials, processing methods, and structures to fabricate micro-magnetic devices 

which we will review hereafter [6].  

2.1. Micro-inductor structures 

The design of a micro-inductor includes the windings and the core with consideration to inductance, 

resistance, efficiency or losses, size or footprint, and fabrication processes. Power inductors typically 

employ a magnetic core to enhance the inductance. Depending on the arrangement of conductors with 

respect to the magnetic core, the construction of a micro-inductor can be categorized into two different 

approaches. The first approach is to enclose the planar coils with a magnetic material. The second 

approach is to wrap the conductor around a planar magnetic core using a multilayer metal scheme. The 

main structures using the first approach are spiral inductors, racetrack inductors. The typical structures 

using the second approach are solenoid inductors and toroidal inductors. Key output parameters of 

interest for design are high inductance densities, low DC and AC resistances, relatively high 

current withstanding, low core losses at the operating frequency. The input parameters like 

material properties of magnetic core and conductor, the dimension of the core and windings, and 
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excitation currents at operation frequency will determine the performance of the inductor. The state-

of-the-art integrated inductors are referenced in the Annex, Table A1-2a and b, Table A1-3, Table A1-

4 and Table A1-5a and b. Their performances in term of inductance, footprint, resistance, maximum 

current, maximum frequency are listed in the tables. Thereafter, we report some examples of the four 

possible structures extracted from the state-of-the-art, i.e. spiral, racetrack, solenoid and toroidal. 

The spiral type is a popular-researched structure to form a planar inductor. The copper windings are 

completely surrounded in magnetic material to achieve the required inductance. Spiral coils can be 

miniaturized more easily than other structures due to the ease of micro fabrication. In spiral inductor, 

the interconnection of multilevel conductor is not required and therefore, the micro fabrication is 

simpler. The shape of spiral inductor can be circular, square or hexagonal. The spiral inductor can 

stand a high DC current due to low concentrated magnetic flux. In 2013, Sugawa from Shinshu 

University presented carbonyl-iron powder (CIP)/epoxy based hybrid inductor on the glass substrate 

for large current application [7] (see Figure 1-3). The inductor is in 1-mm-square with 5.5nH of 

inductance and 18m DC resistance of coil, the superimposed current can be up to 5.5A. The main 

drawback is that the inductance density of spiral inductor is limited. For anisotropic magnetic material, 

it is difficult to induce anisotropy in the magnetic core during core deposition. Another disadvantage is 

that it requires a long copper winding to make a turn, i.e. the DC resistance of spiral inductor is typical 

high.  

 
 

Figure 1-3 : Typical spiral structure with a planar coil and two layers of magnetic material, Shinshu 

University, in 2013 [7] 

A racetrack inductor can be formed by stretching a circular spiral inductor. The magnetic core will 

typically be used to wrap the straight part of coils, hence take advantage of the uniaxial anisotropy of 

the magnetic material. A magnetic easy axis and hard axis can be generated during or after the 

deposition of cores in rectangular shape using an external magnetic field.  Racetrack micro-inductors 

have been demonstrated in various Buck converters at high frequencies up to 100 MHz [6]. Compared 

to the square or circular shaped spiral inductors, the racetrack micro-inductors are more suited for 

power converters because its shape is long and rectangular and so, the easy axis orientation is not 

difficult. The losses due to the easy-axis hysteresis loop are smaller for racetrack inductors. In 2013, 
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Harburg presented a CoZrO-based racetrack inductor [8], see Figure 1-4. The magnetic layer is 20 µm 

thick and deposited by sputtering using shadow masks. The inductor offered an inductance of 1.1 µH 

and a DC resistance of 0.84  at 8.3 MHz in a footprint of about 25 mm2. 

 

Figure 1-4 : Racetrack inductor fabricated on silicon with a 20-µm-thick Co-Zr-O magnetic core 

surrounding SU-8 insulated copper winding, Thayer school of engineering Dartmouth, USA , in 

2013[8] 

The toroidal structure is a widely used structure to fabricate micro-inductors, using multilevel metal 

schemes to wrap around a magnetic core. The toroidal structure has a closed magnetic path; therefore, 

the magnetic flux is concentrated in the magnetic core. As a consequence, the inductance density of 

the toroidal inductor is high. The closed magnetic path helps also reducing magnetic interference to 

neighbouring component. The length of conductor for one turn of winding is relatively short for 

toroidal structure; hence it is an advantage for toroidal inductors concerning DC resistance. However, 

with high concentrated magnetic flux, the rated current for toroidal inductors is often small unless the 

magnetic core has a high saturation induction (Bsat) or a low permeability to avoid saturation.  In the 

toroidal-core design, connecting the bottom and top layers of conductor to encircle the core is difficult. 

This requires a proper interconnection between copper layers i.e. low-resistance contact and a 

connection over a vertical distance equal to the thickness of the core. Low-resistance contacts over a 

large vertical distance around the core are achieved by electroplated vias with carefully cleaned 

contact surfaces. It was demonstrated by Flynn et al. that flip-chip bonding could successfully bond 

the bottom and top copper winding to form toroidal inductor with small DC resistance: 100m for an 

air-core inductor [9]. The copper windings were 90 µm-thick and 200 µm-wide. A similar inductor 

with electroplated Ni-Fe core is shown in Figure 1-5. The inductors showed high inductance values 

0.3-1.7µH; however, the saturation current was smaller than 0.14 A and the cut-off frequency was 

smaller than 1 MHz. More details of the inductor performance are presented in Table A1-5a.   
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Figure 1-5 : Fabricated Ni-Fe based micro-inductor of approximately 5 mmx2 mmx0.25 mm, Herriot 

Watt University, Scotland, in 2009 [9] 

The solenoid structure uses a bar shape magnetic core as opposed to a toroidal core. A bar of magnetic 

material is placed in the centre of the device, and the windings surround it. The solenoid structure 

doesn’t have a closed magnetic path and hence the inductance density is limited. The leakage flux at 

the two ends of the solenoid is considerable and losses are high. In 2008, Lee presented a solenoid 

inductor (see Figure 1-6) with an inductance of about 70 nH, a device area of 0.88 mm2. The 

inductance density was not very high: about 80nH.mm-2 [10]. 

 

 

Figure 1-6 : (a) Solenoid inductor with 8.5 turns (b) Cross-section of solenoid inductor, Stanford 

University, in 2008 [10] 

In 2008, 2011, Shen’s group proposed a simple approach to form solenoid inductors in which existing 

bond wires are encapsulated in a ferrite filled epoxy core [11, 12]. Bond-wire inductors fabricated on 

PCB are shown in Figure 1-7. This approach can be easily adapted for realizing inductors on PCB, on-

chip or in-package using aluminum or gold bond wire of 25– 280 μm diameter. This technology has 

been demonstrated in a 5-MHz Buck converter. However, the reported measured efficiency is low, 

only 52% i.e. losses are very high which may be due to the magnetic core itself or the inductor 

structure. The drawback of this technology is the low resolutions of the magnetic core fabrication.  
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Figure 1-7 : Concept of multi-turn bond-wire inductor with ferrite epoxy globe core (image on the 

left), top view of the PSiP buck converter before (image at the middle) and after (image on the right) 

the ferrite globe cores were applied [11, 12] 

Recently, the air-core inductors have been studied with multiple winding stacks by Christophe 

Meyer’s group [13, 14]. These spiral air-core inductors have inductance of 100-130nH up to 100 MHz, 

see Figure 1-8. Their DC resistance is relatively high about 0.8, and the resistance is about 50 at 

100MHz. It is a disadvantage considering the losses, especially at high frequency.  

 

 

Figure 1-8 : Air-core micro-inductor realized in four and three layers of electroplated copper, USA 

army laboratory, in 2012 and 2014[13, 14] 

An alternative approach for developing micro inductors with low profile and increased packaging 

densities, is to embed the inductors into the substrate i.e. the printed circuit board or the silicon. In 

2013, Fang proposed a MnZn ferrite-composite-based toroidal inductor embedded in silicon [15], see 

Figure 1-9 . Due to the low permeability of the MnZn composite core the inductance of the inductor 

was limited to 43.6 nH within the inductor footprint of 2.9 mm2. The DC resistance of the inductor 

was 280 m. With the saturation current of 10 A, this inductor is suitable for high current application. 

More details of the inductor can be found in Table A1-5b. 
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Figure 1-9: Silicon-embedded toroidal inductor with magnetic composite core and electroplated 

winding, Hong Kong University of science and technology, in 2013[15] 

Sullivan and Sanders compared two micro-inductor structures, solenoid/toroidal and racetrack, in 

terms of distribution of external magnetic fields [16]. The racetrack inductor was shown to be the 

better design because the core encloses and shields the windings, resulting in low external fields, i.e. 

low losses and low electromagnetic interference. Robert Hahn et al. from Fraunhofer, in 2006, gave 

the comparison of planar toroidal and spiral coil ferrite inductor designs [17]. The magnetic flux 

distribution in toroidal coils is shown to be more homogeneous compared to planar spiral coils. Q-

factor of toroidal coils is much higher than that of spirals at 1 MHz. 

From previous discussion, it is clear that the choice of structure is critical in the design of a power 

micro-inductor in order to achieve a high inductance enhancement, minimize resistive losses at high 

frequency, and carry a current as high as possible without saturating the magnetic core. For 

comparison, the graph of L/RDC ratio versus maximal operational frequency is given in Figure 1-10, 

this comparison misses the size and maximum current of the micro-inductor. The spiral inductors 

seem to have better performances at higher frequencies around 100 MHz while the toroidal inductors 

are better at the medium range about 10 MHz. Micro-inductors developed in research still have lower 

L/RDC ratio than commercial discrete inductors. Thus, this graph shows the difficulty in integrating 

efficiently inductors onto a chip with microfabrication technologies.   
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Figure 1-10 : The figure of merit L/RDC versus maximal operational frequency 

The previous discussion has reviewed and compared micro-inductors in terms of structures. However, 

the magnetic core material also plays a very important role in determining the performance of a thin-

film micro-inductor. In the following section, magnetic materials and their processing technology, for 

usage in integrated micromagnetics, are discussed.  
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2.2. Materials and processing technology for magnetic cores 

With further demands of miniaturization in power converters, magnetic core materials for power 

inductors must have low energy losses at high functional frequency and at the excitation of functional 

mode. The magnetic core material is expected to exhibit high resistivity and small coercive field to 

avoid the eddy current and hysteresis losses respectively.  For applications with high current, the 

magnetic materials have to stand a high magnetic flux without saturation i.e. having a stable 

inductance with current and frequency. Table 1-1 lists the magnetic materials used for integrated 

inductors in the literature including ferromagnetic metal alloys, ferromagnetic metal oxides, 

nanogranular magnetics (nanoparticles of magnetic metal in ceramic matrix e.g. CoZrO), ferrites and 

ferrite composites. Amorphous metal alloys are also used for inductors although they are not listed in 

the table. The ferromagnetic metal alloys have advantages of high saturation induction, high 

permeability, low coercivity, but they have low resistivity (< 200 µ.cm). The ferromagnetic metal 

oxides have higher resistivity (several hundred µ.cm) with moderate permeability. Ferrites and 

ferrite composites have very high resistivity (> 106 µ.cm). Ferrite composites have limited 

permeability while ferrites have moderate to high permeability. Besides commercial materials, there 

are many researched and developed magnetic materials for high-frequency integration applications 

including granular films (CoZrO), thin-film alloys (CoNiFe), amorphous FeCo alloys, polymer-

bonded materials and low temperature co-fired ceramic (LTCC) ferrites. These emerging materials can 

obtain stable permeabilities at higher frequencies than conventional materials. Based on the literature 

review, we reported in Figure 1-11 and Figure 1-12 respectively the permeability versus maximal 

frequency i.e. ferromagnetic resonance frequency and losses versus frequency for different magnetic 

materials. 
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Table 1-1 : Magnetic materials for integrated inductor’s core in literature 

 Bsat 

(T) 

Hc 

(Oe) 
µi 

 

(µcm) 
Fres* 

(GHz) 

Thickness 

(µm) 
Ref 

Ferromagnetic metal alloys 

Ni80Fe20 (Electroplating) 0.8 0.4 2200 20 <0.001 10-20 D Flynn 2009 [9], J Park 1998 [18] 

Ni45Fe55 (Electroplating) 1.5 0.5 280-1000 45 >0.1 3.5-10 T O’Donnell 2010 [19], Wang 

2007 [20], R Meere 2009 [21] 

 CoNiFe (Electroplating) 2.2 10 250 30 - - T. El Mastouli 2008 (LAAS) [22] 

CoFeCu (Electroplating) 1.4 1 300 18 - 10 D Flynn 2009 [9] 

Sandwich 

NiFe/(FeCo)N/NiFe 
2.4 0.6 1000-

1400 

50 1.2 
5nm/100nm/

5nm 
S X Wang 2000 [23] 

CoZrTa (Sputtering) 1.44 0.4 600 100 0.5 2.2 D W Lee 2008 [10] 

CoZrTa (Sputtering) 1.52 0.015 850-1100 100 1.4 4 D S Gardner 2009 [24] 

Ni80Fe20 (Sputtering) 1.3  2000 20 0.64 4 D S Gardner 2009 [24] 

FeBN (Sputtering) 1.95 30 4600 100 - 3 K H Kim 2002 [25] 

CoHfTaPd (Sputtering) 1 0.5 - 170 - 9 Katayama 2000 [26] 

FeCo based amorphous FCA 

(Electroplating) 
1.5 1 300-700 120 - - L Trifon 2012, Enpirion [27] 

Ferromagnetic metal oxides 

CoZrO (nanogranular) 

(Sputtering) 
0.9 3 80 2000 3 20 

S. Ohnuma 2001 [28], Daniel 

Harburg 2013 [8] 

Sandwich CoZrO/ZrO2 

(Sputtering) 
1 1 100 300 - 

19nm/4nm 

multilayer 10 
D Yao 2011, Darthmouth [29] 

FeAlO (nanogranular) 

(Sputtering) 
1.6 1 100 300 - 1 Y. Shimada 2003, Japan [30] 

CoFeB-SiO2 (hetero-

amorpohous) (Sputtering) 
0.8 5.6 50 104 3 0.5 M. Munakata 2002, Japan [31] 

Ferrite 

NiZnCuFe2O3 (Screen 

printing) 
0.46 4.1 120 108 - 40-100 Y. Fukuda 2003 [32] 

NiZnCuFe2O3 (Sputtering) 0.22 42.8 28 - >0.01 1-2.5 
Seok Bae 2009 [33], Jaejin Lee 

2011 [34] 

NiZnCuFe2O3 (bulk) - - 272 - 0.022 - Lucas 2012 [35] 

ESL 40011 NiZnCuFe2O3 

(LTCC tape) 

 

0.33 1.7 192 - 0.01 - Zhang 2013 [36] 

Ferrite composite 

MnZnFe2O3 (Screen printing) 0.43 6-18 12-16 106 >0.01 200-1000 

Lu 2008 [11], Park 1998 [18], 

Brandon 2003 [37],Kowase 

2005[38] 

MnZnFe2O3(Screen printing) 0.26 42 5 - - 300 Fang 2013 [15] 

NiZnCuFe2O3              

(Screen printing) 

0.23-

0.25 
17.6 25 108  100 

Y. Fukuda 2003 [32], J Park 1997 

[39], J Park 1998 [18] 

NiZnFe2O3 (Screen printing) 0.2 15 6 - >0.01 200 Wang 2011 [40] 

NiZnFe2O3 (Screen printing) 0.27 20.7 7.2 - >0.01 200 Bang 2009 [41] 

*Fres = Self resonance frequency 
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Figure 1-11 : Permeability versus maximal frequency for different magnetic materials  

 

Figure 1-12 : Losses versus frequency for different magnetic materials [42] 

Beside magnetic materials, it is also important to develop processing techniques that are cost-effective 

and compatible with high volume micro-fabrication for the incorporation of the magnetic materials in 

the micro-magnetic devices. Various approaches to deposit the magnetic core layer have been 

investigated and demonstrated over the last 20 years [6]. The most commonly used techniques are 

sputtering, electro-deposition and screen printing. The advantages and disadvantages of each 

deposition methods with corresponding magnetic materials will be discussed in this section. 
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Table 1-2 : Deposition technology and typical thickness 

Deposition technology Typical thickness 

Screen printing Hundreds µm 

Sputter deposition Hundreds nm to few µm 

Electro deposition Tens of µm 

Sputter deposition is a popular approach for deposition of magnetic thin film cores. This technique has 

the advantage of depositing a wide range of magnetic materials, including ferromagnetic metal alloys 

and oxides. Sputtering has been investigated since 1990s for different types of magnetic materials for 

micro-inductors including CoZrNb[43], FeCoBC[44], FeHfO and CoFeHfO[45], FeZrO[46], FeCoBN 

and FeBN [25]. Since 2000, sputtering has been widely employed for depositing magnetic alloys with 

higher resistivity including CoHfTaPd thin film [26] and multilayer CoZrTa/SiO2 [10]. The sputtered 

ferromagnetic materials have advantages of high saturation flux density, high resistivity and 

permeability. An anisotropy magnetization can be induced in magnetic materials during their 

deposition by application of an external magnetic field. Sputter deposition is compatible with low-

temperature CMOS processing technology. Sullivan and his group in Dartmouth College have focused 

on developing granular nanocrystalline films as core materials for micro-inductors using sputter 

deposition. They investigated and reported the use of a variety of different core materials including 

Co-MgF2 [47] and CoZrO [48]. Recently, in 2011, they reported laminated CoZrO thin films with 

ZrO2 insulation in order to reduce the eddy current losses [29]. In recent work from Intel, Morrow et 

al. used sputtering to deposit laminated cores of permalloy in the demonstration of a fully integrated 

DC–DC converter with the micro-inductor fabricated on top of the power management IC [49]. 

Sputtering is an advanced technique with a uniform and well-controlled deposition process. This 

technique is suitable for depositing thin films up to a thickness of a few hundred nanometers to few 

micrometers. When the film is thicker than several micro-meters, stress can develop in the layer and 

etching of thick metallic films is an issue. Dry etching of thick films usually involves long etching 

times resulting in heating of the substrate and degradation of the magnetic film properties while wet 

etching of thick films results in severe undercutting. For thick films, sputtering is an expensive and 

slow process. Alternatively, sputtered films have been deposited through shadow masks up to tens of 

microns (20 µm); however, the problem of delamination and cracking still happened for the second 

layer of deposition due to an unfortunate issue of over-heating within the chamber [8].   

Electroplating is a less costly method than sputter deposition techniques and more suitable for micro-

inductor cores with large cross-sectional areas. The process is relatively inexpensive and compatible 

with standard microfabrication. The films deposited by electroplating have thickness of several micro-

meters to several tens of micro-meter including alloys of NiFe with different composition such as 
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Ni80Fe20, Ni45Fe55, Ni50Fe50 [9, 20, 50] and others like CoPFe [51], CoNiFe [22], CoFeCu [9], NiFeMo 

[18, 52]. At LAAS, thin film ferromagnetic NiFe and CoFeNi metal alloys were developed with 

electrolytic deposition [22]. Ni80Fe20 is largely investigated as electrodeposited magnetic material due 

to its well-developed technologies in the recording-head industry. In fact, NiFe alloys have relatively 

low resistivity and they are not the ideal materials for inductors operating at high frequencies. With 

electroplating technique, only conductive materials can be electroplated; so, at high frequency 

operation eddy currents can be considerable and should be controlled by lamination. Recently, 

laminated thick films of electroplated metallic alloys were demonstrated for CoNiFe with about 40 

layers, 1 μm thick for each layer separated by copper layers and SU-8 support [53]. The test inductor 

demonstrated a constant inductance of 1.6 μH up to 10 MHz, indicating suppressed eddy current 

losses. But one can argue that this rather complicated process with large number of steps (40 layers), 

could be difficult and costly to transfer to the industry for large scale manufacturing. 

Screen printing is typically suitable for deposition of thin films with thickness in the range of several 

micrometers to hundreds of micrometer. The magnetic materials are typically suspended in a polymer 

matrix for deposition. NiZn and MnZn are the most popular soft ferrites which were deposited as 

magnetic cores for micro-fabricated inductors using screen printing since 1998 [18, 32, 38, 54]. This 

technique presents a good compromise between deposition of magnetic material with high resistivity 

(>103 Ω·m), low core losses and the simplicity of processing the polymer. Although screen printing 

offers a comparatively simple process, the requirement of a high-temperature sintering for realizing 

the magnetic phase in ferrite materials makes this process incompatible with standard silicon-based 

MEMS fabrication technology.  

Considering the proposed magnetic materials in the literature, we see that although ferromagnetic 

metal alloys have big advantages of high saturation induction and low coercivity, they mostly show 

limited resistivity (< 200 μΩ·cm) which can result in high eddy current losses. In fact, they can be 

laminated to reduce eddy current but lamination is complicated and costly for very thick layers. 

Ferromagnetic metal oxides including nanogranular materials have higher resistivity but their 

fabrication technology is expensive for the core thickness higher than several micrometers.  

On the other hand, ferrites and ferrite composites have high resistivity (> 106-108 μΩ·cm) and good 

compromise between permeability and losses. Their saturation induction is rather low (0.25-0.3T). 

Ferrites need to be sintered at high temperature (about 900° C) to realize the magnetic phase in order 

to get these optimum magnetic properties. In commercial products, thin film polymer-bonded ferrite is 

available as ceramic tape for LTCC technology in which ferrite powder is distributed in a polymer 

matrix. This thin ferrite tapes can be stacked together and sintered in a furnace to create a ferrite-
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crystallized structure. They can be milled for building different designs of integrated magnetic 

components.  

For on-chip integration, thin film ferrites can be deposited by different techniques including sputter 

deposition and screen printing. In Bae and Jaejin’s work, thin film layers of NiZnCu ferrite were 

deposited by sputtering layer by layer of NiO, Fe2O3, ZnO and CuO metal oxides [33, 34]. The 

deposited multilayer oxide films were crystallized to give 1 or 2.5µm thick ferrite by post annealing at 

800°C for 1 hour or 4 hours. This sputtered ferrites’ thickness is most probably not sufficient to reach 

high inductance density and avoid saturation. 

 Alternatively, thin film layer of ferrite composite can be deposited by screen printing with thickness 

up to several hundred micrometers. This simple and low-cost technique has been investigated in many 

researches recently [15, 18, 32, 37, 38, 40, 41]. The ferrite powder is distributed in a polymer matrix 

and screen printed in a mold to form different shaped magnetic cores. However, ferrite composite is 

usually non-sintered, resulting in low performance of the inductor in terms of inductance. As 

mentioned, sintering means high temperatures (about 900°C) and regarding CMOS compatibility, such 

high temperatures can be a problem for most materials already present on the substrate but there are 

some ways to tackle this issue. For integrated ferrite-based micro-inductors, some authors have done 

sintering of the bottom and top ferrite layer in-situ [33]. Others have developed hybrid solutions where 

the core is fabricated off-chip [55]. 

3. Objectives for PhD thesis  

An important criteria for the design and fabrication development of micro-inductors with high 

performance is to have a clear idea about the system integration, i.e. how/where the inductor is to be 

placed on a IPD (Integrated Passive Die) containing other passive components and in the total power 

system (with active components and drivers). The context of this PhD thesis is the project PRIIM1, 

with IPDiA company as a leader, in which integrated passive components for DC-DC converters are to 

be developed Target specifications for integrated inductors are defined according to requests from 

clients using low-power DC-DC converters and are typically the followings: an inductance in the 

range of 200-2000 nH at bias current of 0.6 A, an equivalent series resistance in the range of 

0.1Ω - 0.2 Ω and operating at medium frequency 5-10 MHz. Eventually, the footprint has to remain 

around 3 mm2 (below commercial product size). The thickness of the micro-inductor should be less 

than 250 µm to constitute a competitive solution in comparison to current commercial inductors, for 

                                                           
1. 1  PRIIM "Projet de Réalisation et d'Innovation Industrielle dédié aux Microsystèmes 

hétérogènes" (10/2009 – 10/2013) – funded by OSEO 
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example LPS3010 inductor by Coilcraft [56]. To be competitive with commercial power converters, 

total profile of the system should be lower than 1 mm. Interposers carrying passive components are a 

good solution to reduce the profile of the system [57]: this solution is exploited by IPDiAs under the 

name PICS for Passive Integration Connecting Substrate, illustrated in Figure 1-13. In this solution, 

micro-inductors (for power converter solutions) could be placed on top of other passive components, 

such as 3D capacitors.  

Within this project, beside the target specifications defined above, the additional constraints are: 

- The technology of the power inductor has to be developed for enabling a future transfer into 

IPDiA’s production line, which means compatibility with PICS substrates: no electromagnetic 

interference (EMI) if 3D capacitors are placed below the inductor, the use of existing 

interconnection technologies for metal windings, a maximum thickness for the component to 

fit in the package. With interposer technology, two dies with copper tracks may be stacked on 

top of each other and the inductor core will be put in between. The copper pillar with metal 

bump in the die is around 70 µm and the inductor core should not thicker than two copper 

pillars, i.e. 140 µm. 

- Low cost fabrication process, which in general is achieved thanks to simplicity (minimum 

number of processing steps).  

 

Figure 1-13 : Schematic of IPDiA 2.5D interposer with PICS Integrated passive devices (IPD) and 

external active dies in flip-chip or chip-on-silicon technologies[58] 

** Choice of material and technology 

Considering the constraints of limited thickness, minimum losses and high inductance, fully sintered 

ferrite from ferrite tapes and ferrite composites appear as a promising solution. Both of them can 

achieve high thickness up to hundreds of micrometer with fast and low cost manufacturing. Since they 

are sintered in a furnace to obtain crystallized ferrite structure, they offer pre-eminent permeability 

stable up to more than 10 MHz. Their losses are acceptable according to literature [42]. They are 

flexible for building the integrated inductor in terms of deposited thickness and different shaped 

design. The monolithic and hybrid solution may be developed for the integration. In our project, 

toroidal structure is chosen for inductor design in order to obtain high inductance density. Moreover, it 
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is easier to form the inductor by wrapping the windings around one layer of magnetic material rather 

than wrapping magnetic layers around the windings. 

The motivation of this thesis is to study the soft ferrite materials and processing technologies to 

integrate the fully sintered ferrite core into the toroidal micro-inductor in a small footprint for 

working at frequency 5-10 MHz, with small AC/DC resistance and high inductance density 

according the target specifications. Design optimization is to be done to obtain the best performance 

for the integrated inductor.  

The objectives of my thesis are:  

 To develop a technology to fabricate fully sintered toroidal ferrite cores in small size, ideally 

below 3mm2  with adequate thickness and integrate in electroplated copper winding to form 

micro-inductors with low-profile < 250 µm.  

 To characterize, compare and choose the most suitable ferrite for the best performance of 

cores in terms of permeability and losses in the range 5-10 MHz.  

 To find out the toroidal inductor design which will allow obtaining the targeted specifications 

or the best performance of inductor in terms of inductance density and losses in the range 5-10 

MHz.  

In Chapter 2, we will describe the material synthesis and technology development to produce ferrite 

rectangular cores for micro-inductors. Then, Chapter 3 will detail the results of ferrite cores 

characterization including microstructure, composition, permeability and losses. Once the main 

properties of the ferrite cores are identified, we will focus, in Chapter 4, on the design optimization for 

micro-inductors. The experimental approaches and development of processing technology to realize 

the final micro-inductor are presented in Chapter 5. Finally, some conclusions on the work are given, 

and perspectives are proposed for future work. 
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Chapter 2 Development of ferrite cores for toroidal inductors 

Introduction 

As argued in chapter 1, we have chosen to develop a ferrite based micro-inductor with a rectangular 

toroidal geometry. From the literature study, soft ferrites are chosen as magnetic material for our 

micro-inductor core with respect to the target specification in the frequency range 5-10 MHz. We 

decided to study these soft ferrites coming from two sources: (i) one is the commercial thin film LTCC 

ferrite (ii) the second one is the in-house made ferrite powder. In this chapter, after providing the 

general physics of soft ferrite materials and selecting appropriate materials, the geometry of proposed 

inductor design will be described. Then, details of the NiZn ferrite synthesis and deposition/shaping 

are presented in the last part of this chapter. For the purpose of characterization, the free-standing 

ferrite cores were realized from the commercial thin film ferrite and from the in-house made ferrite 

powder. These cores will be also used to integrate into the micro-inductor according to the hybrid 

integration approach described in Chapter 5.  

1. Ferrite materials 

1.1. General introduction 

In general, ferrites are polycrystalline compounds of trivalent iron oxide Fe2O3 with bivalent transition 

metals such as FeO, NiO, ZnO, MnO, CuO, BaO, CoO, and MgO. Ferrites are classified by crystal 

structure or by magnetic behavior. According to crystal structure criteria, ferrites consist of spinel, 

garnet, perovskite, orthoferrite, and magnetoplumbite ferrites [1]. Soft ferrites include only spinel 

ferrites what have cubic close-packed crystal structure of oxygen with metal ion Me2+ and Fe3+ in 

tetrahedral and octahedral coordinations. Spinel ferrites also have high resistivity that satisfies our 

requirement to suppress the eddy current loss. Due to all that, spinel ferrites are our choice for the core 

of inductor. 

The spinel ferrites (for simplification, we call “ferrites” hereinafter ) have the general composition as 

MeFe2O4 which have cubic close-packed crystallized arrangement of oxygen atoms and metal ions 

Me2+, Fe3+ into two different crystallographic sites, tetrahedral and octahedral. These sites have 

tetrahedral and octahedral oxygen coordination termed as A and B-sites respectively, see Figure 2-1. If 

A-sites, tetrahedral sites, are completely occupied by Fe3+ cations and B-sites are randomly occupied 

by Me2+ and Fe3+ cations, the structure is referred to as an inverse spinel. When A-sites are occupied 

by Me2+ cations and B-sites are occupied by Fe3+ cations, the structure is referred as a normal spinel. 

The intermediate case exists in which both sites contain a fraction of Me2+ and Fe3+ cations. The 

magnetic moments of cations in the A and B-sites are aligned parallel with respect to one another. The 
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arrangement between A-sites and B-sites is anti-parallel. Because the number of octahedral position is 

double that of tetrahedral position, there is a positive net of magnetic moment yielding a ferrimagnetic 

ordering for the crystal. The choice of metal cations and the distribution of ions between A-sites and 

B-sites offer a tunable magnetic system.  

 

Figure 2-1 : Scheme of a unit cell and ferrimagnetic ordering of spinel ferrite structure  [2] 

In the spinel ferrite, the metal ions are separated by paramagnetic oxygen; they can’t interact directly. 

The interaction among them is super exchange. The notion of “super exchange” was introduced by 

Kramer and Anderson [3] to explain the coupling between two sub-networks which takes place 

through electron of O2- ions. The electronic configuration of oxygen atom is (1s) 2 (2s) 2 (2p) 4. 

Kramers proposed that an electron of 3d layer of a transition metal passes over the 2p – layer of 

oxygen. The same phenomenon occurs with the second metal ion to complete the 2p – layer of 

oxygen, resulting a coupling between two magnetic ions. Concerning the explanation of antiparallel 

coupling, it is supposed that the first metal M1 has a spin +1/2, it prefers interacting with the spin -1/2 

of oxygen. The electron in the oxygen atom which possesses a spin +1/2 will interact with a metal ion 

M2 possessing a spin -1/2 for a reason of stability. So, we have an antiparallel coupling between two 

magnetic ions. The magnitude of this coupling is influenced by the distance and angle between ions 

M1-Oxygen-M2. The strongest interaction takes place at an angle of 180°. The interaction A-O-B is 

predominant. 

 

Figure 2-2 : Angle between different ion pairs in interaction [4, 5] 
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To minimize energy, a magnetic object is not uniformly magnetized but divided into magnetic 

domains called Weiss domains. In each domain, all magnetic moments are oriented in the same 

direction. These areas are separated by a Bloch wall within which the magnetization changes gradually 

to make the connection between two magnetic domains. 

 

Figure 2-3 : Distribution of magnetic domain in the demagnetized state (left) and distribution of spin 

in Bloch/domain wall [5-7] 

Basically, there are two magnetization mechanisms: (i) Magnetization mechanism by displacement of 

walls and (ii) magnetization mechanism by rotation of magnetic moments. The first one is also known 

as Globus-Guyot mechanism which was established in the year of 60s. He described a model in which 

static permeability of ferrite is directly proportional to grain size of ceramic/ferrite. The second one is 

known as Snoek mechanism. It assumes that the magnetization is established by the rotation of the 

magnetic moments. Literature has shown that the mechanism of the movement of walls dominates at 

low frequency and the magnetic rotation becomes predominant at high frequency. 

 

 

Figure 2-4 : Grains in Globus model 

Regarding magnetic losses, the external magnetic field displaces the magnetic moments from its easy 

axis which will establish a restore force in order to return the original position. This movement can be 

damped due to defects present in the sample and that explains the magnetic losses. There are several 

types of losses: (i) Losses due to the reverse between easy and hard axis (probably at small induction) 

(ii) hysteresis losses, (iii) eddy current losses and supplementary losses due to the resonance/relaxation 

of walls and anomalous losses.  

When the magnetic sample is put under an alternating magnetic field, it stores magnetic energy but 

does not return completely when remove this magnetic field. These energy losses can be explained by 

the presence of impurities in the material or defects in the crystal lattice that prevent the normal 
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movement of domain walls. Apart from the magnetic flux density, the magnetostriction also exhibits 

hysteresis versus the magnetic field, which creates hysteresis losses as well. To reduce the contribution 

of hysteresis losses, the most favorable condition is low magneto-crystalline anisotropy, no defects in 

materials i.e. no magnetic inclusions and no crystal defect, large grain size and low magnetostriction 

i.e. low magnetoelastic anisotropy. Concerning losses by eddy currents, the application of an 

alternating magnetic field will result in an induced current in the material. The circulation of these 

currents causes the heating in materials and that are losses, called eddy current losses. This loss 

depends on operational frequency and resistivity of material. The loss caused by eddy currents is 

generally negligible for ferrite thanks to their very high resistivity. The resonance/relaxation losses 

arise when the operating frequency approaches the resonance frequency of material. It is preferable to 

work at frequency far below the peak of µr” (f) to avoid these losses. 

1.2. Choice of ferrite materials 

The MnZn and NiZn ferrites are two representatives of spinel ferrites that have attracted a lot of 

research effort in last decades. The MnZn ferrites have high permeability; however, they are limited to 

the average frequencies. The maximum functional frequency of MnZn ferrites is around 1 to 2 MHz. 

Beyond these frequencies, the real permeability (μ ') drops and magnetic losses (μ'') become very high, 

which results in increased power losses. Permeability of NiZn ferrites is moderately high and their 

resistivity is as high as 106 to 108 µΩ.cm. The maximal functional frequency of NiZn is medium high 

up to 10 MHz. Their coercivity is normally small. Therefore, NiZn ferrites were suitable and chosen 

for our magnetic cores. It is emphasized to look at permeability and magnetic losses for different NiZn 

ferrites in the family.   

In 2010, Anthony Lucas studied and optimized NiZn bulk ferrites for high frequency applications with 

variation of Ni/Zn ratio, and the inclusion of Cu and Co [5]. We based our work on his study for 

choosing ferrites for our magnetic cores. According to his work, the role of Cu is to facilitate the 

phenomenon of diffusion which is the origin of calcining and sintering process. The presence of Cu in 

the NiZn ferrite helps to reduce the sintering temperature down to 800-900°C that will make NiZnCu 

ferrite more compatible with other micromachining processes such as LTCC technology. The 

introduction of Cu also helps to improve the densification during sintering. Moreover, according to his 

results, the addition of Co into NiZnCu ferrites proved to reduce the total loss at high frequency [5]. 

The introduced Co2+ ions block the movement of magnetic domain walls and therefore, reduce the 

losses associated with that movement i.e. reduce the total magnetic losses. However, the side effect of 

blocking the movement of domain walls is to decrease the permeability of the material and increase 

the cut-off frequency. We need a good compromise between permeability and cut-off functional 

frequency and also the total magnetic loss. With the same Co doping rate, the lower Ni/Zn ratio, the 

higher permeability and the lower magnetic resonance frequency.  
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We wanted to evaluate ferrite materials with two levels of permeabilities: 70 and 200 and with the 

lowest losses as possible i.e. high resistivity, low coercive field, high saturation induction and an 

operation frequency > 5 MHz. From Lucas’ thesis report, we chose two composition of ferrites 

Ni0.30Zn0.55Cu0.15Co0.035Fe2O4 (named U70 with Ni/Zn = 0.54 and Co = 0.035%wt) and 

(Ni0.24Zn0.56Cu0.20)0.965Co0.035Fe2O4 (named U200 with Ni/Zn = 0.43, Co = 0.035%wt) based on these 

criteria. These two materials can give us a good view of the tradeoff of between inductance and 

functional frequency range and total magnetic losses. The Co doping rate in the Ni-Zn-Cu ferrite, 

which is 0.035%wt for both ferrites, has a very important role. U200 losses were reported as 

200mW.cm-3 at 1.5 MHz under 25 mT [5].  

As a back-up solution, we have looked at the commercial thin-film ferrite tape provided by ESL 

ElectroScience. From the literature review, we chose ESL 40010 and ESL 40011 (named 40010 

and 40011 in this thesis) with the expected permeabilities of 60 and 200 respectively. These materials 

were characterized at macro-scale by Mu et al [8]. At 1.5 MHz and 20 mT, losses of 1000 mW.cm-3 

and 2000 mW.cm-3 were measured for 40010 and 40011.  

In this work, in-house made ferrites (U70 and U200) and commercial thin-film ferrites (40010 and 

40011) will be characterized in thin film form. From the characterization results (reported in chapter 

3), the extracted properties will be implemented in a design routine including modeling simulation 

(detailed in chapter 4). 

2. Design of toroidal rectangular micro-inductor 

The schematic design of the toroidal rectangular micro-inductor is presented in Figure 2-5 with the top 

view and cross section. The copper windings are constituted by the bottom copper tracks and top 

copper tracks connected through vias. The ferrite core is wrapped inside the copper windings.  

  

 

Figure 2-5: Schematic design of micro-inductors with top view and cross section 

The width and length of the ferrite core are signed as X and Y. The magnetic core width is noted as W; 

t is thickness of the ferrite core. For copper tracks, tc is the thickness, Wc is the width, S is the spacing 

between two tracks. Regarding vias, x_via and y_via are the width and length of cross-section; h_via is 

the height of the via. 
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Figure 2-6 : Dimension of copper tracks and vias 

The total thickness of the micro-inductor should be less than 250 µm to constitute a competitive 

solution in comparison to current commercial inductors and compatible with IPDiA’s current 

technology as mentioned in chapter 1. To avoid difficulties in fabrication, the thickness of copper 

windings is set around 50 µm and the width of copper tracks is around 100 µm; the spacing between 

copper tracks is around 50 µm. With such copper tracks thickness, the magnetic core is limited to a 

thickness of 150 µm. For test inductors, ground-signal-ground contact pads and a ground ring are 

created around the inductor in order to test the device under RF probes.  

Based on the target specifications of the inductor, the design was made by adjusting parameters of the 

core and winding dimensions. The geometrical input parameters are: core width, core length, magnetic 

core width, magnetic core thickness, thickness and width of copper wire and number of turns N. The 

output parameters are the DC and AC resistance, the total inductance and maximum magnetic 

induction. The first design was done with analytical expressions, given in Chapter 1. From analytical 

analysis, it is noticed that the larger the magnetic core width and core thickness (i.e. higher magnetic 

cross section) the higher the inductance of the inductor. In contrary, smaller magnetic length l (l = 2X 

+ 2Y – 4w) is more favorable for high inductance. In the constrained dimension, the combination of X, 

Y, w, t and N that give the best output of total inductances, DC and AC resistances was selected for the 

test inductor. At the first place, only one preliminary design will be realized with four selected ferrites 

with which the pre-estimated inductances will be in the targeted range 200-1000 nH. A comparison 

will be made in order to find out the best magnetic core material for the inductor that can obtain high 

inductance at 5-10 MHz and generate smallest losses. This design is only preliminary due to lacks of 

information on material properties (losses vs. frequency, losses vs. BAC, permeability vs. frequency, 

permeability vs. HDC) but this design is necessary to define realistic core dimensions, i.e. close to 

optimized version. In the first run of experiment, the magnetic core width is 350 µm; these cores will 

be integrated in the micro-inductor with 21 turns of winding. Permeability and core losses density 

characterization of the developed ferrite materials shaped in the chosen dimensions will be carried out.  

tc
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Eventually, we plan to include the extracted magnetic properties from these realized cores into future 

design optimization (see chapter 4).   

The first geometrical inductor design is given in Table 2-1. 

Table 2-1 : First geometrical inductor design 

X 1 mm Wc 100 µm 

Y 2.6 mm tc 50 µm 

W 350 µm S 50 µm 

t/h_via 110-140 µm x_via 50µm 

N 21 y_via 50 µm 

For the purpose of process development and characterization, the version x2 and x3 of the designed 

inductor will be realized beside the original one. The original one is the x1 version with dimension 

stated in Table 2-1. For x2 and x3 version, the core and windings are double and triple in X and Y 

dimension, the thickness is kept the same. 

3. Core realization 

In order to serve characterization purposes, fully sintered ferrite cores were realized by two methods 

from two kinds of ferrite formation, thin film ferrite tape and in-house made ferrite powder. The 

details are given as followed. 

3.1. Core realization from commercial thin film ferrite 
 

The commercial thin film ferrites were supplied by ESL ElectroScience including 40010 and 40011. 

Each thin film layer is 70 µm thick. For adequate thickness, two thin film layers are bonded together. 

Then, they are cut by milling machine. The cut cores are then sintered at high temperature in order to 

form the ferrite phase and obtain optimum magnetic properties. The details of process are as follows:  

 Step1: Thermo-compression of thin film ferrites 

Two layers of thin film ferrites, 1cm x1cm in size are stacked up. They are put in 

between a silicon wafer and a square silicon piece. This configuration is pressed under 

800 N/cm2 for 10 minutes at 90°C under vacuum of 10-3 mbar in a wafer bonding 

machine AML AWB04. More details of bonding procedure are given in the Annex. 

 Step 2: Cutting core by micro-milling machine 

The double-layer films (about 140 µm thick) were then cut by a micro-milling machine 

Réalméca RV2 SP (200 µm end mill); the cutting dimensions were adjusted for 

shrinkage occurring during the sintering phase of these materials. Details of equipment 

and procedure for collecting cores are described in the Annex. 

 Step 3: Sintering ferrite-based cut cores 

In order to determine the sintering temperature and duration, the thermomechanical 

analysis (TMA) was carried out for each type of ferrite using Setsys Evolution TMA. 
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The principle of TMA analysis is described in the Annex. The result of TMA analysis 

for thin film ferrite 40010 and 40011 is shown in Figure 2-7.  

 

Figure 2-7 : Thermomechanical  analysis of thin film commercial ferrites; DEPL is the 

deplacement of the sample, dDEPL is derivative of the deplacement. 

The plateau regions of the derivative of displacement for 40010 and 40011 are from 

850°C to 950°C; the solid state reactions happen in this range. Based on these TMA 

curves, the milled cores were sintered at 885°C and 950°C under flux of oxygen 

during 3 and 2 hours respectively. The porous ceramic plates and aluminum oxide 

powder sheet were used to protect cut cores from warping during sintering. The 

microscope image of thin film milled cores after sintering is shown in Figure 2-8. The 

footprint of cut cores after sintering is 1.0 x 2.6 mm2 and the magnetic core width is 

350 µm for the first design inductor (the standard deviations for the width and length 

of the cores are 24 µm for x and 49 µm for y; the standard deviation for magnetic 

core width w is 26 µm). Core thicknesses were measured after sintering: for milled 

cores, thickness ranges between 108 – 110 µm.  

 

Figure 2-8 : Microscope image of ESL thin-film milled cores after sintering 
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3.2. Core realization with in-house made ferrite powder by screen printing 

technology 

The second method to realize cores is from in-house made ferrite powder namely U70 and U200 

synthesized in CIRIMAT and LAPLACE laboratories, and deposited by screen printing technology in 

LAAS clean room.  

Screen printing is a technique to fabricate thick films with high deposition rate in which the small 

particles of magnetic materials are suspended in a non-magnetic matrix. In screen printing, the ferrite 

powder is mixed with organics to form slurry. The ferrite powder is the main component of the slurry 

and the combination of other elements is called the vehicle. The point is that we try to load as much 

magnetic material as possible inside the slurry. The vehicle can be temporary or permanent. The 

temporary vehicle will decompose and disappear from the paste in the firing process.  

NiZn ferrite powders were synthesized from metal oxides by ceramic conventional method or solid 

state reaction method. The ferrite powder is then mixed with organics including binders, plasticizers 

and dispersants provided by ESL to form magnetic slurry. Dry film photo-resists were used to form 

thick photoresist molds on Kapton polyimide substrates by photolithography technique. The ferrite 

paste was then filled into the mold by screen printing technique using DEK Horizon 01i equipment, 

followed by thirty minutes of vacuum treatment to degas the paste via a mechanical rotary pump. The 

ferrite composite was dried at 110°C for ten minutes and then collected manually after the photo-resist 

was removed. The procedure in schematic is shown in Figure 2-9. The details of processes in steps for 

printed cores are presented as follows:   

 

Figure 2-9 : Process for printing and collecting ferrite-based cores 

 Step 1: In-house made ferrite powder 

The Ni0.30Zn0.55Cu0.15Co0.035Fe2O4 ferrite powder (U70) is made from NiO, ZnO, 

Fe2O3, Cu2O and Co3O4 metal oxides by conventional ceramic processing method 
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according to a procedure developed in Lucas’ thesis [5]. NiO, ZnO, Fe2O3, Cu2O and 

Co3O4 with the molar ratio 0.3:0.55:1:0.075:0.01166 are mixed to form the original 

powder (U70). The original powder and 750 gram of zirconium balls (Φ = 1.2 – 1.7 

mm) and 150 ml distilled water are mixed together using the attritor mixer during 30 

minutes at the speed of 500 turns/minute. The slurry is taken out of the attritor and put 

into the furnace at 80°C until dry. The ground dried powder is put into the furnace and 

annealed at 800°C during 2 hours in air (with temperature rate of 200°C/hour). The 

annealed powder, 750 grams of zirconium balls (1.2 – 1.7 mm) and 150 ml distilled 

water are mixed again using the attritor mixer during 30 minutes and at the speed of 

500 turns/minute. The slurry is taken out of the attritor and put into the furnace at 

80°C until dry. These powders are ready to be pressed to form a ferrite pellet or mixed 

with organic liquids to form the ferrite paste. Problems can come from the 

contamination of the grinding media and the temperature of sintering. The U200 

powder with the composition (Ni0.24Zn0.56Cu0.20)0.965Co0.035Fe2O4 (U200) was made 

using the same method. The composition of each fabricated powder is shown in the 

following table. More details on the equipments of ferrite powder fabrication are given 

in the Annex.  

Table 2-2 : Synthesized ferrite powder (not sintered yet) 

Powder Composition Size of particles 

U70 ( Ni/Zn = 0.54, Co = 0.035) Ni0.30Zn0.55Cu0.15Co0.035Fe2O4 100-500nm 

U200 (Ni/Zn = 0.43, Co = 0.035 ) (Ni0.24Zn0.56Cu0.20)0.965Co0.035Fe2O4 100-500nm 

 Step 2: Making ferrite slurry 

According to ESL recommendations, the content of ferrite powder should be around 

60%-70% of the total weight when mixed with the organics. The ferrites, which have 

been used, are U70 and U200. The organic part includes a solvent (ESL 400A), a 

binder (ESL 401) and a dispersant (ESL 809) in which the solvent occupies 90%wt, 

binder 10%wt. Dispersant amount can be adjusted from one to some drops. The 

viscosity depends considerably on the amount of dispersant. The more dispersant 

added, the thinner the paste. Concerning the order of mixing, the ferrite powder is 

weighed first; then, the solvent is added into the ferrite, the combination is mixed well. 

A drop or some drops of dispersant are added into the mixture, and they are well 

mixed. Finally, the binder is weighed and added to the mixture. All are well mixed 

with mortar and pestle during 20 minutes to have a homogenous paste without 

aggregation. The viscosity of paste is very important for the success of screen-printed 

core. Therefore, three pastes were made varying the viscosity range: their 

compositions are given in the following table: 
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Table 2-3 : The composition of fabricated pastes 

Paste P1 

 

%m Powder %m Organic Part 

60%wt 40%wt 

6g 

4g 

Solvant 400A Dispersant 809 Binder 401 

90%wt Some drops 10%wt 

3,6g Some drops 0,4g 

 

Paste P2 

%m Powder %m Organic Part 

70%wt  30%wt 

7g 

3g 

Solvent 400A Dispersant 809 Binder 401 

90%wt Some drops 10%wt 

2.7g Some drops 0.3g 

 

Paste P3 

%m Powder %m Organic Part 

75%wt 25%wt 

15g 

5g 

Solvent 400A Dispersant 809 Binder 401 

90%wt Some drops 10%wt 

4.5g Some drops 0.5g 

 

 Step 3: Screen printing and collecting printed cores 

Kapton polyimide 500N substrate was used and photolithography was performed 

with PH2050 dry photoresist film to form the core molds. Thickness of photoresist 

mold achieved is about 189 µm with four layers of dry films. The basic procedure for 

printing and collecting ferrite-based core is shown in Figure 2-9. The screen printing 

was carried out with P1, P2 and P3 paste. 

 Screen printing with P1 paste (60% of ferrite powder) 

The P1 paste is too thin; hence, printed core is too thin and fragile. It was not 

possible to collect printed cores from P1 paste without breaking them. 

 Screen printing with P2 paste (70% of ferrite powder) 

The screen printing condition is pressure of 3 Kg, speed of 20 mm/s, 2 passes parallel. 

A layer of Kapton polyimide substrate 500N was used to create a space between the 

squeegee and the substrate (see the Annex). The paste sticks on the squeegee after the 

first pass, then, in the second pass, there isn’t enough paste in the wanted area. The 

printed core is degassed by vacuum in 30 minutes right after printing. It is verified that 

the problem of bubbles is eliminated by vacuum degas.  The wafer is then slowly 

heated from 110°C (with a step at this temperature until the paste becomes dry) then 

120°C, 130°C, 140°C and 160°C, for 1 minute at each temperature and finally, the dry 

photoresist film was peeled off and printed cores were collected by bending the 

polyimide substrate.  The good point of screen printing with P2 paste is that the paste 
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is well thixotropic i.e. the paste has its viscosity which decreases when the force is 

applied on it and it returns to thicker upon standing. The printed core with P2 is quite 

homogenous at the center. However, the paste is thin and the printed core is thin as 

well. The paste can’t be fully filled inside the mold at some places. Near the edge, a 

much thicker ring is formed and in the center the layer is much thinner (see Figure 

2-10). It was only possible to collect without breaking x3 cores, not x2 and x1 cores. 

The x1 core is the one as designed for the first micro-inductor with the dimension 

stated in Table 2-1. The x2 and x3 cores are the ones with double and triple dimension 

in X and Y, the thickness t is the same as the x1 core. 

 

 

Figure 2-10 : Topology of x3 core printed from P2 (70% of ferrite powder) 

 Screen printing with P3 paste (75% of ferrite powder) 

In another try, P3 paste was used to print with screen printing machine without stencil 

mask using Kapton polyimide support. Print condition is pressure of 3 Kg, speed of 

20 mm/s and 2 passes parallel. Vacuum degas is 30 minutes right after printing. 

Problem of bubbles is eliminated by vacuum degas. Heat treatment process for P3 

paste is similar to the treatment procedure applied for P2 paste. Then, the dry film was 

peeled off and printed cores were collected. With P3 paste, the pressure of 3 Kg gives 

good results. A thick layer can be printed and we succeeded collecting x1 cores (see 

Figure 2-13). Yet, because of the high ratio of powder and the small ratio of binder 

and dispersant, the paste is thick and difficult to deform during vacuum and heat 

treatment. The top topology of the x1 printed core is not totally flat (see Figure 2-13). 

The cores, especially the big ones, should be removed right after heat treatment for 

higher efficiency of collecting cores. Bending wafer is good for removing big cores. 

The small x1 cores were easily collected.   

In this thesis, P3 paste was selected to fabricate printed cores. In next step, printed 

cores will be sintered. 
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 Step 4: Sintering ferrite-based printed cores 

The results of TMA analysis for printed U70 and U200 ferrites are shown in Figure 

2-11. Based on these results, the printed U70 and U200 cores were sintered at 980°C 

during 2 hours under flux of oxygen. The porous ceramic plates and aluminum oxide 

powder sheet were used to protect printed cores from warping during sintering (see 

Figure 2-12). Low magnification SEM images of the printed core after sintering are 

shown in Figure 2-13. About one hundred cores were fabricated and ten samples were 

measured for dimensions. The footprint of the printed cores after sintering is 1.0 x 2.6 

mm2 with the standard deviations x of 15 µm and y of 30 µm; the magnetic core 

width is 350 µm with the standard deviation w of 10 µm. The thickness of printed 

cores after sintering is in the range 90-105 µm.  

 

 

Figure 2-11: Thermomechanical  analysis of in-house made ferrites 

 

Figure 2-12: Printed cores were placed on the porous ceramic plates and aluminum 

oxide powder sheet (another aluminum oxide powder sheet and porous plate were 

placed on top of that before putting into the furnace) in order to avoid the warping of 

cores during sintering 
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Figure 2-13: Microscope image of printed ferrite cores after sintering (top and bottom 

view), the small white particles on top of the core are made of  aluminum oxide 

powder coming from the sintering process 

Conclusion 

Fully sintered ferrite cores were successfully realized from commercial thin film ferrite tapes and in-

house made ferrite powders. Both cut cores and printed cores are reproducible in size, thickness and 

composition. The cut cores from commercial thin film ferrite have a more homogenous topology in the 

surface than screen printed ferrite cores. However, the dimension of cut cores is less precise than the 

printed ones due to the error deviation of cutting machine. Further development may be needed to 

improve the surface topology of printed cores, for example by using the stencil mask for the process of 

printing or applying a pressure on the printed core surface before the heat treatment process. 

In the next chapter, both cut cores and printed cores will be fully characterized. 
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Chapter 3 Soft ferrite core characterization 

1. Introduction 

The ferrite cores were successfully fabricated by milling and screen-printing techniques as presented 

in chapter 2. The ferrite core plays an important role in the inductor’s performance;  i.e. the properties 

of cores are necessary to design an inductor and magnetic properties of Ni-Zn ferrite core are sensitive 

to the chemical composition (Ni/Zn ratio, Co rate), and microstructure of cores (grain size, porosity). 

In particular, permeability is an indispensable parameter when designing inductors: high values of 

permeability are needed to reach high inductance density. Besides, it is important to extract losses in 

the magnetic core. Core losses are expected to be low in order to achieve high efficiency. All those 

properties should be evaluated before inductor fabrication. Four ferrites including two commercial 

ferrites: ESL 40010, ESL 40011 (named 40010 and 40011 for this thesis) and two in-house made 

ferrite: U70 and U200 were selected as magnetic materials for inductor’s cores. They are good 

candidates with high resistivity to minimize eddy current losses. Their permeabilities are high and 

stable to frequencies higher than 6 MHz. In this chapter, the results from magnetic and electrical 

characterizations for the four materials are compared and the most suitable ferrite will be chosen for 

future micro-inductor fabrication.  

The ferrite cores will be characterized for micro-structure, chemical composition, B-H curve, complex 

permeability, inductance versus frequency and bias current, and volumetric core losses. Micro-

structure of cores was observed by scanning electron microscopy Hitachi S4800 after sintering. 

Compositions of different ferrites were estimated by energy dispersive analysis (EDS). The principles 

of SEM and EDX analysis are described in the Annex. The magnetic properties or static B-H curves of 

thin film ferrites were characterized by a vibrating sample magnetometer (VSM) VersalabTM - 3 Tesla 

Cryogen-free from Quantum Design. The principle of VSM is given in the Annex. To extract the 

complex permeability of the ferrite materials, toroid shape samples were also prepared and measured 

in a magnetic material test fixture Agilent 16454A on an impedance analyzer Agilent 4294A. The 

dimension of tore samples was selected according to the sizes of the fixture holders in the test kit. 

Eventually, in order to extract magnetic properties such as inductance and core losses of fabricated 

rectangular cores, specific test inductors were fabricated. 

2. Microstructure and composition analysis 

Magnetization processes in the material are dependant not only on the composition but are also 

structure sensitive. It is known that there are two magnetization mechanisms: (i) magnetization by 

domain wall motion (ii) magnetization by spin rotation [1]. In the first mechanism, the intragranular 

porosity disturbs the domain wall motion.  The domain wall of each grain is pinned to the grain 
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boundary. It means that the domain wall size corresponds to the grain size which is accessible via 

microstructure. It is important that the grains present no inclusion or pore which would pin the wall. 

Hence, it is interesting to study the microstructure of the material beside the composition. 

Figure 3-1 shows the microstructure of different ferrites. The grains of thin-film 40010 and 40011 

have a bimodal distribution, with large grains of 5-8 µm, covering around 50% of the volume, and 

small grains of 2-3 µm in diameter. Grain sizes of printed ferrite U70 and U200 are in the range of 1.5-

6 µm. For all cores, the shrinkage was measured to be 15-20% with no cracks.  

  

  

Figure 3-1.  SEM images of ferrite microstructure for (a) 40010 sintered at 950°C/2hours and (b) 

40011 sintered at 885°C/3hours, (c) (d) U70 and U200 sintered at 980°C/2hours 

Grains formed with clear boundary means full sintering which enables optimum permeability. The 

initial permeability of ferrite depends on composition, but for a given composition it depends on 

microstructure and density of the material [2]. The porosity acts as a gap between grains which reduce 

permeability. Similarly, total losses of ferrites strongly depend on density and microstructure. Inter-

granular porosity does not ensure a good continuity of magnetic field lines and hence, result in losses. 

In the case where ferrites are over sintered, with too high temperature or for too long period, grains are 

over grown; the defects will be created as pores inside the grains, or so-called intra-granular pores. 

These defects can trap the magnetization movement and degrade the magnetic properties. Hence, in 

order to have good magnetic properties in terms of initial permeability and losses, it is important to 

have fine and homogeneous microstructure and the best densification with less porosity, especially 

without intra-porosity.  

The compositions of ferrites in the study are listed in Table 3-1. Ni/Zn ratio is higher for 40010 than 

for 40011. It is reported that higher Ni/Zn ratio brings lower permeability for Ni-Zn ferrite because the 

(a) 10 µm (b) 10 µm

(c) 10 µm (d) 10 µm
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increase of Ni will result in increasing of magneto-crystalline anisotropy which manifest itself by a 

decrease of permeability [2]. The higher magnetic anisotropy energy blocks the rotation movement of 

domain walls which will reduce the losses associated with this phenomenon.  

Table 3-1. Composition of different ferrites estimated by SEM-EDS 

Ferrite Composition 

 40010 (Ni/Zn = 1.49) Ni0.49Zn0.33Cu0.18Fe2O4 

 40011 (Ni/Zn = 0.47) Ni0.28Zn0.60Cu0.12Fe2O4 

U70 ( Ni/Zn = 0.55, Co = 0.035) (Ni0.30Zn0.55Cu0.15)0.965Co0.035Fe2O4 

U200 ( Ni/Zn = 0.43, Co = 0.035 ) (Ni0.24Zn0.56Cu0.20)0.965Co0.035Fe2O4 

3. Magnetic characterization 

3.1. Static B-H curves  

When the ferrites are placed in a magnetic field, the magnetization induction appears in the material. 

This reaction/behavior is expressed in the B-H curve, in which H is external magnetic field and B is the 

magnetization induction inside the ferrite. In here, the measurement is carried out with vibration 

frequency of 40 Hz and room temperature. The B-H characteristics of four ferrites are presented in 

Figure 3-2. The measured samples are free-standing, about 110 µm thick in a square dimension of 2x2 

mm2. The saturation induction obtained is in the range of 0.25-0.30 T, with a coercive field of 0.8-5.8 

Oe (or 53-462 A/m). 40010 exhibits the highest coercive field which is due to the highest amount of 

magnetic phase (Ni and Fe) in 40010 ferrite compared to other ferrites ; a similar effect was observed 

when doing some copper substitution into Ni-Zn ferrites [3]. Magnetic remanences are 0.8-8% of the 

saturation magnetization. 

  

 

Figure 3-2. B-H curves of thin film ferrite measured by VSM, f = 40 Hz 

It has to be noted that the slope of this static B-H curve doesn’t reflect the dynamic value of 

permeability. At the functional mode of the applications, like integrated inductor in power converter, 

the ferrite is placed under much higher alternating magnetic field and the slope of the dynamic curve is 
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different from that of the static one. Beside, biasing a magnetic material with DC current will shift the 

minor alternating B-H loop (see Figure 3-3) and also have an effect on the effective permeability and 

the core losses. However, these static B-H curves are still necessary for us to study the saturation 

induction and coercivity and also to compare different materials. 

 

 

Figure 3-3: Novel dynamic B-H curve of ferrite in the integrated inductor under functional mode of 

the voltage converter[4] 

3.2. Complex permeability 

To extract the complex permeability (µr
* = µr’ - j µr’’) of the ferrite materials, toroid shape samples 

were prepared and measured in a magnetic material test fixture Agilent 16454A on an impedance 

analyzer Agilent 4294A. The principle of this measurement is given in the Annex. The dimension of 

tore samples was selected according to the sizes of the fixture holders in the test kit. 

 

 

 

Figure 3-4: Complex permeability measurement set-up; b and c: respectively internal and external 

diameter of the tore; h: thickness of the tore  
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The complex permeability of each material (40010, 40011, U70 and U200) was extracted as a function 

of frequency (as shown in Figure 3-5) from impedance measurements of ferrite tores mounted on the 

magnetic test fixture using the following equation:  

   (Eq. 3.1) 

in which Z*
m is the impedance of the test fixture with the tore and Z*

sm is the impedance of the test 

fixture without the tore;  is measurement oscillation frequency  = 2f, µ0 is permeability of free 

space, h is thickness of the tore; b and c are internal and external diameter of the tore respectively.  

  
Figure 3-5: Measured complex permeability: ESL 40010  and 40011  ferrites sintered at 950°C/2h 

and 885°C/3h (b=4 mm, c=6 mm and h= 108 µm), U70 and U200 home-made ferrites sintered at 

980°/2h (b=5 mm, c=14 mm and h=1.5 mm) 

40011 ferrite presents a permeability of 200 stable up-to 10 MHz while for 40010; it is 60 and stable 

until 70 MHz. These measured values correspond to values provided by ESL. The secondary 

permeability of 40010 at zero DC bias and small AC signal is small up-to 50 MHz, whereas that of 

40011 increases quickly from 1-3 MHz. Since, higher secondary permeability (µr”) means higher losses, 

we expect higher losses from 40011 compared to 40010.  

U70 and U200 have permeabilities of 86 and 190 stable up to 50 MHz and 10 MHz respectively. From 

the comparison of µr”, it is expected that U200 exhibits higher losses than U70. 

When comparing U200 with 40011 films at 6 MHz, which is the frequency of interest: both show high 

primary permeability. However, secondary permeability for 40011 films is much higher than U200 film. 

We thus expect higher core losses density for 40011 than for U200 under the same operating conditions. 

Losses of U200 ferrite are small thanks to the cobalt contribution, as reported by Lucas [2]. Table 3-2 

summarizes magnetic properties of selected ferrites. 

These values of permeability will be used for inductor design. However, in these measurements, the 

excitation current is small (< 20 mA rms), i.e. small induction (< 0.4 mT); hence, these values of 

permeability can only be considered for the case of zero DC bias and small alternating excitation 

current. 
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Table 3-2: Magnetic properties of different ferrites 

  40011  40010 U200 U70 

Permeability r’ 200 60 190 86 

Saturation induction 

Bs (T) 

0.25 0.30 0.25 0.25 

Coercive field Hc (Oe) 0.8 5.8 1.5 1.9 

Resonance frequency 

fres (MHz) 

30 >100 30 100 

In order to characterize the core performance while it is integrated in the inductor, test inductors are 

made with rectangular ferrite cores wounded by electroplated copper tracks and bonded gold micro-

wires. The following section reports on the electrical characterization of these test inductors which 

lead to the extraction of magnetic properties (complex permeability, losses) of the ferrite cores.  

4. Electrical characterization of test inductors with rectangular cores  

The inductor design was made by adjusting parameters of the core and winding dimensions based on 

the target specifications as reported in section 2 of the previous chapter. At the beginning, only one 

preliminary design will be realized with four selected ferrites with the pre-estimated inductances in the 

targeted range. The best magnetic core material for the inductor with smallest losses at 6 MHz will be 

chosen after the comparison. In the first run of experiment, the magnetic core width is 350 µm; the 

footprint of cut and printed cores after sintering is 1.0x2.6 mm2.  These cores will be integrated in the 

micro test inductor with 21 turns of winding. Test inductors are fabricated on Si/SiO2 substrate:  50 

µm thick copper bottom tracks are deposited on Si/SiO2/Ti/Au wafer by electroplating through thick 

photoresist mold. At the end of this step, the seed layer is removed by wet etching in potassium iodide 

solution KI+I2 for the gold layer and in a diluted HF acid solution for the titanium layer. Sintered 

ferrite cores are placed manually on Cu tracks. The ball-bonding 25µm-diameter gold wires are 

completing the winding. For test inductors, ground-signal-ground contact pads and a ground ring 

around the inductor are created in order to test the device under RF probes. Defined dimensions for 

test inductors are 1.54x2.64 mm2 including the area occupied by the ferrite core and the copper tracks 

but not the ground-signal-ground contact pad and the ground ring i.e. the region inside the dash 

boundary in Figure 3-6.  These test inductors were characterized by impedance analyzer to extract 

inductance and core losses. The inductances versus frequency and versus DC bias were characterized 

in this part using the impedance analyzer Agilent 4294A and the DC bias adapter 16200B with the 

current generator Keithley. The details of these apparatus are given in the Annex.  
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Figure 3-6: Test inductor for inductance characterization 

4.1. Inductance versus frequency 

Electrical characterizations were performed for different magnetic cores with 21-turn coil. Figure 3-7 

shows the inductance of test inductors as a function of frequency. An inductance as high as 860 nH 

corresponding to 215 nH.mm-2 was obtained for the test inductor with 40011 core and 287 nH 

corresponding to 72 nH.mm-2 obtained for the test inductor with 40010 cores at 6 MHz while the air 

core inductor has only an inductance of 18 nH. The inductance of the test inductor with U200 core is 

760 nH corresponding to 187 nH.mm-2. An inductance of 560 nH corresponding to 138 nH.mm-2 was 

obtained for the test inductor with U70 core. 

 

Figure 3-7: Measured inductance of the test inductors made of different cores versus frequency (IACrms 

= 10 mA) 

These fully sintered ferrite cores can produce high values of inductance density as demonstrated. Thus, 

it is a real advantage for realizing small rectangular micro-inductors on chips compared to other 

reported non-sintered ferrite inductors [5-7]. For our target of high inductance density, 40011 and 

U200 are potential candidates. 

4.2. Inductance versus DC bias current   

Figure 3-8 shows the inductance versus superimposing DC bias current for the four test inductors. The 
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inductance drops quite rapidly, especially for 40011 and U200 ferrites. This is due to the non-linearity 

of the permeability versus DC magnetic field. The decrease of µr’ versus pre-magnetization field was 

already observed by Mu et al [8].  The higher the initial permeability, the more severe is the drop. This 

behavior is a major drawback and it will have to be taken into account in the design optimization of 

micro-inductors.  Meanwhile, 40010 cores have permeability more stable with DC bias current, yet they 

have lower permeability (see Figure 3-5 and Figure 3-8). To improve these performance, several 

solutions can be investigated in the future: on the material side, there are actually efforts to improve the 

performance by mixing the low-µ ferrite, e.g. 40010, together with the high-µ ferrite, e.g. 40011, so that 

they can operate at higher DC current [9]. Concerning the design, another solution might be to increase 

the size of the inductor: both the magnetic cross section and the magnetic length will be increased. The 

inductance remains at the expected value; however, the magnetic field inside the inductor under a 

certain DC current will become smaller due to larger magnetic length i.e. the inductor can operate at 

higher level of DC bias. For the latter solution, the parasitic problem caused by the larger copper tracks 

need to be considered.  

 

Figure 3-8: Measured inductance of the test inductors made of different cores versus DC bias current 

at 6 MHz (IACrms = 10 mA) 

To summarize, the inductances of test inductors with different rectangular ferrite cores in footprint of 

1.5x2.6 mm2 were measured. The values are in the range 287-860 nH and stable up to 6-30 MHz at 

zero bias and small AC signal. DC current dependences of the inductance were characterized for four 

test inductors and it is shown that the ferrite with small permeability (like 40010) is more stable with 

DC bias current.  

5. Electrical characterization for losses 

Beside electrical characterizations providing expected inductance for inductors having ferrite cores, it 

is necessary to evaluate losses including winding losses i.e. copper losses and core losses i.e. iron 

losses. Electroplated copper windings are not realized at this stage, half of the test inductors’windings 

is done with wire-bonds: we only characterize the core losses in this part. In this part, for each ferrite 
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materials shaped in the chosen dimension, permeability and loss tangent are measured and then, core 

losses are extracted.   

5.1. Requirements 

The measurement method for losses must be adapted for the inductor configuration and its functional 

regime. 

5.1.1. Test inductors 

We use two types of test inductor: test inductor with magnetic core and test inductor without core i.e. 

air-core inductor. Triple bonding is made to reduce the resistance of test inductor. In order to make 

triple bonding, the size of test inductors for losses characterization is expanded three times. It is 

expected to minimize the influence of electrical resistance on the magnetic losses. Dimension of test 

inductors is shown in Figure 3-9. The number of winding is 21. 

 

 

 

Figure 3-9: Top view of magnetic core test inductor and air-core test inductor 

5.1.2. Functional regime 

The objective is to determine magnetic losses of developed ferrite cores under the functional regime. 

Specifications defined in chapter 1 for the power DC-DC converter provide guidelines for 

measurements range: 

 Frequency range:  1-10 MHz 

 Current ripple of the inductor: in the converter, this signal is triangular with peak to peak 

amplitude about 200 mA. Hence, losses need to be characterized with AC signal up to 200 mA 

at least sinusoidal and better triangular. 

 Average current in the inductor (IDC): the specification indicates a converter output current of 

about 0.6 A.  It is necessary that the losses calculation method takes into account this DC 

value. 
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All the losses will be given in mW.cm-3.  

5.2. Literature of different methods for measuring and calculating core 

losses 

Calorimetric is generally used to extract energy losses of magnetic core in the macroscopic size [10, 

11]. This method converts the difference of temperature into dissipated energy. Although the most 

direct, this method is not suitable for small size magnetic cores (micrometric size) such as the ones 

developed in this work: with losses in the order of mW, which are levels of power too difficult to 

detect by this technique. 

The classical method to measure magnetic losses can be described as follows. The magnetic core has 

two windings: excitation winding and sensing winding. The voltage on the sensing winding and the 

current through the excitation winding are measured by oscilloscope. Then, the integral of the product 

of current and voltage waveforms gives the losses dissipated by the magnetic material. The advantage 

of this method is to exclude the winding losses from the measured core losses. One disadvantage is 

phase discrepancy, which will result in large error in losses calculation at high frequency. To handle 

this problem, one solution proposed in [12] is to add a serial resonant capacitor in the excitation 

winding. Similarly, one can extract losses as the product of current and voltage. But this method is not 

adaptable with our inductor and our measurement equipment because it requires a specific capacitor 

for one measured frequency with each test inductor and it is too complicated to gather all these 

devices. Another technique to measure losses inspired from the principle of resonance is proposed in 

[13]. The idea is to measure quality factor of the inductor as a function of alternating current, and then 

calculate indirectly the magnetic losses. The inductor is connected in series with a capacitor which will 

resonate at expected frequency, and then losses are obtained by approximation. However, this method 

only allows to measure losses at one frequency with the use of three or four circuits.  

The chosen method to study losses in our project is adapted to our inductor and easy to set up for 

measuring at the frequency range 1-10 MHz. 

5.3. Methods for losses calculation 

5.3.1. Principle  

The calculation of losses is effective when one of the following parameters is fixed: frequency f, 

amplitude of alternating current IAC, and amplitude of continuous component IDC. 

An inductor can be considered in a parallel model or serial model, Figure 3-10. In two cases, we have 

resistance RCU which is the resistance of conductor representing the copper losses. The other resistance 

RS or RP of the model represent core losses. We can choose serial model to work with constant current 
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or parallel model to work with constant potential. However, in the parallel model, the applied voltage 

to the resistance RP can’t be obtained precisely. Therefore, we choose the serial model for the method. 

 

 

Figure 3-10: a) Serial model of the inductor and b) Parallel model of the inductor 

The second step of the method is to measure the complex impedance of the air-core inductor with 

identical dimension of the ferrite-core inductor. We measure the resistance of the copper RCU and we 

can define the copper losses of our inductor. We call the real part of the impedance for air-core 

inductor as Re(Z)_Cu and the imaginary part as Im(Z)_Cu. The complex impedance of ferrite-core 

inductor is measured at the same condition with the real part as Re(Z)_ferrite and the imaginary part as 

Im(Z)_ferrite. We subtract the impedance of the air-core inductor from the one of the ferrite-core 

inductor to obtain Re(Z)_final and Im(Z)_final. 

Re(Z)_final = Re(Z)_ferrite – Re(Z)_Cu 

Im(Z)_final = Im(Z)_ferrite – Im(Z)_Cu 

We can extract the resistance RS and inductance LS from the serial model 

Rs = Re(Z)_final 

Ls=Im(Z)_final/(2f) 

The volumetric core losses Pv is expressed as 

     𝑃𝑉 =
𝑅𝑆∗𝐼𝐴𝐶𝑟𝑚𝑠

2

𝐴𝑒∗𝑙𝑒
     (Eq. 3.2) 

With Ae is the magnetic cross-section (m2), le is the magnetic length (m). 

It is sometimes necessary to interpret the losses as function of magnetic field B. We can extract the 

induction BAC from the current IAC as followed: 

𝐵𝐴𝐶 =
𝐿𝑠𝐼𝐴𝐶

𝑁𝐴𝑒
 

We will use these calculations to observe core losses with different parameters varying (f, IAC, IDC). 

RCU RS

LS
IAC

VAC

a)

VAC

RCU

RP

LP

IAC

b)



Chapter 3 Soft ferrite core chacterization 

 

68 
 

5.3.2. Analytical model of core losses 

From the experimental curves of core losses, the curve fitting is done with the Steinmetz equation to 

identify the coefficients,  and K for core loss model at different conditions (f, IAC, IDC). 

𝑃𝑣 = 𝐾𝑓𝛼𝐵𝐴𝐶𝑟𝑚𝑠
𝛽 

 The least mean square method is used for fitting. The principle of least mean square method is to give 

,  and K initial values and then, use the solver in Excel to find the combination of (K, , ) that 

gives the minimum value to 𝑀𝑖𝑛𝑒𝑟𝑟(𝑘, 𝛼, 𝛽) 

   𝑀𝑖𝑛𝑒𝑟𝑟(𝑘, 𝛼, 𝛽) = 𝑠𝑢𝑚((𝑃𝑣 − 𝑃𝑣𝑚𝑜𝑑𝑒𝑙
)

2
, 𝑓)   (Eq. 3.3) 

5.3.3. Measurement terminal  

This method is carried out with an impedance analyzer that provides the excitation terminals (f, 

current) for measurement and calculation. It measures complex impedance of the inductor as function 

of frequency, with different levels of sinusoidal current IAC and allows to add a bias current IDC during 

measurement. The impedance analyzer is connected with a computer to obtain data files. Two 

impedance analyzers are in fact used.  

 Agilent 4284A for measuring losses without continuous component IDC. The frequency 

range is 100 Hz to 1 MHz. Sinusoidal current can be as high as 200 mA (rms). 

 Agilent 4294A for measuring losses with continuous component IDC. DC current adapter 

Agilent 16200B is used with an external current generator. RF probe is used for 

measurement in the frequency range 1 MHz – 110 MHz. The alternating current IACrms 

cannot be higher than 20 mA. 

5.4. Electrical measurements and results 

In this part, for the sake of simplicity, we use two expressions to describe two electric measurement 

set-ups. It is called “IAC losses” for the losses measured with IAC and frequency as parameters by 

Agilent 4284A and Agilent 4294  and “IDC losses” for the losses measured by Agilent 4294A (IDC and 

frequency as parameters). The details of electric measurement set-up for IAC and IDC losses are given in 

the Annex. Test inductors with triple bonding, are measured. Their shape and dimension are described 

in 5.1.1.  

5.4.1. Core losses versus IAC sinusoidal oscillation 

5.4.1.1. Complex permeability 

Three parameters are interesting to understand core losses of the inductor: imaginary part of complex 

permeability µr’’(f), the real part of complex permeability µr’ (f), and the loss factor tan(f) which is 
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the ratio of the imaginary part and the real part of the complex permeability. The results of four test 

inductors are presented Figure 3-11 and Figure 3-12. Generally, it is shown that µr’’(f) increases with 

the rms value of IAC oscillation. This represents the losses of magnetic material, hence, it is expected 

that the losses increase as a function of IAC. This hypothesis is confirmed by the increasing of loss 

tangent tan(f). This characteristic is quite pronounced for 40010.  For 40011, the increase of µr” with 

IAC is smaller. The increase of µr” is due to the coercive field and residual losses ; as it is shown in the 

B-H curve, although at low frequency, 40010 has a larger coercivity than 40011 which could explain 

this difference.  However, with IAC of 100 mA, 150 mA and 200 mA the complex permeability stays at 

the same level.   

For real part of permeability, as IAC increases from 10 mA to 200 mA, µr’ of 40010 increases from 90 

to 200 respectively. When we compare these values of µr’ with the value measured by the Agilent 

magnetic test fixture we can see differences. That can be explained by the dependence of permeability 

on the current excitation and the magnetic core shape. For 40011, when IAC increases from 10 mA to 

50 mA, µ’ increases from 250 to 300. An explanation for this could be that the increase of µr’ is due to 

the increase of the slope of B-H curve with higher excitation currents. 

U70 and U200 have the same characteristics as 40010 and 40011 respectively when IAC increases from 

10 mA to 50 mA. There is a difference with IAC equal to 100mA, 150 mA and 200 mA: µr’ increases 

slightly for U70 and it almost stays at the same level for U200. A peculiar phenomenon is observed for 

µr’’ and tan() : their value are lower for IAC equal to 150mA and 200mA, than for IAC equal to 

100mA. Although we don’t have an explanation for this particularity, Wesseling et al [14]  also 

reported  a local peak in the IAC range of 0-50 mA when measuring the AC current dependence of the 

on-chip inductor.  
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Figure 3-11: Magnetic characteristics for different value of IACrms for commercial ferrites 
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Figure 3-12: Magnetic characteristics for different value of IACrms for in-house made ferrite 
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5.4.1.2. Core losses as a function of frequency  

5.4.1.2.1. Core losses in 100 Hz - 1 MHz range  

Magnetic losses were extracted versus frequency for four ferrites as given in Figure 3-13.Measurements 

were carried out at different levels of sinewave signal IACrms from 10mA to 200mA with apparatus 

Agilent 4284A. The induction variation is referred from AC current.  For 40010 and U70, the losses 

increase slightly with frequency for IACrms smaller than 50mA. For alternating current higher than 

100mA, the losses of all ferrites increase rapidly with frequency. From the above results, it is confirmed 

that the magnetic losses increase with AC signal and, of course, magnetic induction BAC. Losses for 

40010 are smaller than 40011: for instance, at 1 MHz and magnetic induction of 11-15mT, losses for 

40010 are about 100-150 mW.cm-3 while losses for 40011 at 12 mT are about 200 mW.cm-3. The higher 

Ni/Zn ratio and Cu rate in 40010 compositions can explain its lower losses compared to 40011. The 

higher amount of Ni and Cu increase the magneto-crystalline anisotropy or magnetic anisotropy energy 

in the ferrite. That will block the rotation movement of the domain walls and hence, reduce the losses 

associated with this phenomenon.  

Regarding to U70 and U200, at 1 MHz and magnetic induction of 15 mT, losses for U70 are about 150 

mW.cm-3 while losses for U200 at 23 mT are about 300 mW.cm-3. It is not easy to compare losses of 

U70 and U200 in these graphs. As considering the chemical compositions of these two ferrites, the 

Ni/Zn ratio is higher for U70, however, the Cu rate is higher for U200. Hence, the effect of magnetic 

anisotropy on the losses is a compromise in this case. A full comparison of losses will be given in the 

following section.  

40010

 

40011
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Figure 3-13: Core losses versus frequency up to 1 MHz with different values of IACrms 

5.4.1.2.2. Core losses in 1-10 MHz range and model 

Figure 3-14 shows extracted core losses versus frequency for four ferrites. Measurements were carried 

out at zero bias condition with different levels of sinewave signal IACrms: from 1 mA to 20 mA. Actually, 

the measurement station can’t always excite this value of IACrms strictly. The actual value of excitation is 

recorded and used to calculate magnetic induction and losses. The induction variation is referred from 

AC current. As expected, losses increase with frequency and with sine wave level. Analytical models of 

core losses were generated by fitting the datasheet curve Pv in the range of 1-10MHz using Steinmetz 

equation with least squares method.  Steinmetz equation works well for ferrite losses with sine-wave 

signal (see fitting in Figure 3-14). Table 3-3 summarizes the parameters K,  and  of the four 

materials for the frequency range of 1-10 MHz with zero DC bias. 
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Figure 3-14: Measured and analytical core losses versus frequency  

 As shown in Figure 3-14, 40011 core exhibits losses about 300 mW.cm-3 at 4 mT and 5 MHz, 

comparable with the reported value of 400 mW.cm-3 for the same conditions by Mu et al. [8]. At 6 MHz 

and 2 mT, losses of 40010 are small: about 40 mW.cm-3. For printed ferrites, at 6 MHz, losses for U200 

at 4 mT are about 120 mW.cm-3 and losses for U70 at 3 mT are about 60 mW.cm-3. 

Table 3-3: Values of parameters K,  and  obtained for four materials at zero DC bias, apply for 

frequency 1-10 MHz (*) and BAC = 0.1-10mT  

Ferrites K   

40011  5.84E-09 2.263 1.879 

40010    1.199E-09 2.356 1.969 

U200  2.457E-08 2.071 

 

1.790 

 
U70  6.049E-10 2.345 1.869 

(*) Except for U200 for which the fitting is only applicable at frequencies between 2.5 and 10 MHz 

because of instabilities in measurement below 2.5 MHz with BAC = 0.1-10mT. 

5.4.1.3. Core losses as a function of AC oscillation 

5.4.1.3.1. Core losses with high AC oscillation level 

In order to compare our value of losses with other publication, it is essential to observe core losses as 

function of magnetic flux inside the inductor.  Figure 3.14 shows the losses for induction varying from 

1 to 200 mT at 1 MHz. Losses of four ferrites seem very different at the same level of IAC (see Figure 

3-13). However, as comparing with reference of BAC, the difference of losses for four ferrites at 1 MHz 

is not obvious for high induction level, as shown in Figure 3-15.  
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Figure 3-15: Core losses of four ferrites as a function of induction variation at 1 MHz 

5.4.1.3.2. Core losses with low AC oscillation level 

We observe the losses as function of BAC oscillation, from 0.1 to 10 mT, at three frequencies: 1 MHz, 3 

MHz and 6 MHz. Losses increase with BAC and frequency. The results are presented in Figure 3-16. 

The solid lines are extrapolated from the loss models of four ferrites as given in Table 3-3. 

40010

 

40011

 

U70

 

U200

 

Figure 3-16: Core losses as a function of induction variation at 1 MHz, 3MHz and 6 MHz, at zero DC 

bias  

BACrms (mT) BACrms (mT)

BACrms (mT) BACrms (mT)



Chapter 3 Soft ferrite core chacterization 

 

76 
 

5.4.2. Core losses versus DC current 

At the working condition in our application, there’s a continuous current imposed on the component. 

Therefore, it is interesting to observe the properties of ferrite cores under DC bias condition. Magnetic 

properties and losses of four ferrites are measured with bias current IDC (from 0A to 1.4A) and 

frequency as parameters. 

5.4.2.1. Complex permeability 

The complex permeability of test inductors as function of frequency and amplitude of continuous 

current IDC are shown in Figure 3-17 and Figure 3-18. As opposed to the case of IAC, the continuous 

bias current IDC causes µr’ to decrease quite drastically. It can be seen that the higher the amplitude of 

continuous component IDC the lower the complex permeability. The ferrite cores of test inductors 

gradually saturate with DC bias currents as we can see in Figure 3-8. µr’ of 40010 is more stable with 

DC bias current than that of 40011. From 0 to 0.2 A of bias current, the value of µr’ for 40010 

decreases just a little; but for 40011 it decreases from 260 to 130. µr’’ also decreases when increasing 

IDC. However, tan  increases with frequencies up to 10 MHz for 40010 and 40011. Indeed, the big 

decrease in µr’ reflects on the tan and it only happens at low frequencies (< 10 MHz). Above 10 

MHz, tan  has the same behavior as µr”, i.e it decreases with IDC. For U70 and U200, the 

phenomenon is similar. The tan increases with frequencies up to about 15 MHz with the increase of 

DC bias. µr’ decreases considerably with DC bias current. With 1.4A of bias current, µ’ of U70 is 

almost close to that value of U200, about 10.  
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Figure 3-17: Magnetic characteristic for different amplitude of IDC for commercial ferrites, IACrms 

=10mA 
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Figure 3-18: Magnetic characteristic for different amplitude of IDC for in-house made ferrite, IACrms 

=10mA 
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5.4.2.2. Core losses as a function of pre-magnetized field HDC 

Continuous current IDC causes a DC pre-magnetized field in the core, which shifts the minor 

alternating B-H loop on the B-H curve. This DC field may have an effect on the magnetic losses.  

The losses are extracted for four ferrites at different DC bias current (from 0.2 A to 1.4 A). At certain 

IDC, losses are characterized for different IAC (from 1 mA to 20 mA). Similar curves and fitting like the 

ones in Figure 3-14 were produced. The losses models are given in Table 3-4. To express the magnetic 

losses versus pre-magnetized field, the DC magnetic field is referred from DC bias current. The 

extracted losses from measurement are given in Figure 3-19 together with the extrapolated losses 

curves from the losses models in Table 3-4. 

Table 3-4: Values of parameters K,  and  obtained for four materials at different pre-magnetization 

DC field, apply for frequency 1-10 MHz and BAC = 0.1-10mT 

40011 40010 

HDC (A/m) K   HDC (A/m) K   

0 5.84E-09 2.263 1.879 0 1.199E-09 2.356 1.969 

260 2.159E-10 2.506 1.973 268 2.633E-09 2.324 1.985 

518 1.301E-9 2.417 2.021 535 2.553E-09 2.339 1.991 

777 1.272E-8 2.282 2 802 2.493E-08 2.206 1.984 

1037 6.223E-08 2.205 2.014 1336 1.031E-08 2.302 2.006 

1555 4.58E-06 2.023 2.068 1871 1.112E-08 2.326 1.999 

2074 681.4E-06 1.825 2.12     

 

U200 U70 

HDC (A/m) K   HDC (A/m) K   

0 2.457E-08 2.071 1.79 0 6.049E-10 2.345 1.869 

244 4.936E-10 2.384 1.917 240 6.162E-10 2.361 1.88 

488 9.72E-9 2.227 1.95 478 2.01E-08 2.19 1.939 

732 4.913E-8 2.161 1.989 718 5.134E-08 2.16 1.96 

1212 7.801E-7 2.015 1.972 1196 1.407E-3 1.608 2.024 

1708 1.81E-6 1.984 1.959 1674 1.854 1.387 2.338 
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Figure 3-19: Core losses versus DC pre-magnetized field at 6 MHz; the curves are extrapolated from 

the loss models, the dots are extracted from measurements. 

In Figure 3-19, the graphs show that the losses of ferrites increase with HDC in general. At low value, 

however, for 40011, there is a drop of losses from 0 to 300 A/m. This phenomenon has been seen by 

Mu et al [8]. To give an example, at 0.6 A, corresponding to 700 – 800 A/m and 10 mT, expected 

losses for 40010, 40011, U70 and U200 are 2400, 3800, 2700 and 3100 mW.cm-3. 

5.4.3. Losses comparison and material selection 

In order to compare performance of different magnetic materials, losses of four ferrites at three 

frequencies 1 MHz, 3 MHz and 6 MHz are given in the same graphs, see Figure 3-20. For the purpose 

of comparison, losses of commercial magnetic materials [15, 16]  and losses from literature [17, 18]  

are also given. Losses of the four ferrites 40010, 40011, U70 and U200 are small at 1 MHz. At 1mT-

10mT, losses are below 100mW.cm-3. Losses shift to higher level for higher frequencies of 3 MHz and 

6 MHz. At 6 MHz and 10mT, U200 has the lowest losses of 0.7W.cm-3 while 40011 has the highest 

losses of 2.5W.cm-3. At 10 mT, U200 core presents the lowest losses from 4 MHz. U200 was chosen 

for the fabrication of final inductors thanks to its high permeability and low losses at the frequency of 

interest.  
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Figure 3-20: Losses comparison for different ferrites 

Conclusions  

To wrap up, magnetic properties of different ferrites were measured by magnetic material test fixture 

Agilent and impedance analyzer at different AC excitation current and different DC bias current.  

Permeability, inductance density and losses of the material were characterized under DC bias 0-1.4 A 

and different AC excitation current from 0 to 200 mA. However, the characterization is only 

performed at small sinusoidal AC signal when the DC bias current is applied. U200 with permeability 

of about 200 under zero DC bias and small AC current (10mA) with small losses (120 mW.cm-3 at 6 

MHz and 4 mT) was chosen for the fabrication of final inductors. The measured values of permeability 

and losses, and losses model will be used for the next step of modeling and design optimization in 

FEMM and Matlab. At the moment, the core losses were characterized for the test inductor of tripled 

dimension (version x3). That takes the advantages of small winding resistance with triple bond-wire so 

that the influence of winding resistance on the measured core losses is limited i.e. the measured core 

losses are more precise. At the end, when the winding is fully realized with electroplated copper, the 

losses should be measured directly on the original x1 version of test inductors. For perspective, the 

BACrms (mT) BACrms (mT)

BACrms (mT)
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characterization of magnetic properties should be carried out at large AC excitation signal under DC 

bias current and with the real current wave-form i.e. triangular signal.  
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Chapter 4 Design optimization for integrated inductors 

Introduction  

Design optimization for integrated inductors has been the subject of numerous studies for last decades. 

Computer aided design and optimization for integrated on-chip inductors present a great interest for 

RF circuits and power converters designers. It allows the improvement in the fabrication of passive 

components in which inductors are the most critical. According to the application, the expected 

characteristics for micro-inductors results in a trade-off: high inductance or energy density, low losses, 

high current capability and high resonance frequency. The properties of inductor are determined by its 

geometrical and technological parameters. Basically, there are three major losses mechanisms: losses 

due to the winding resistance, core losses and losses due to the induced eddy current flowing in the 

substrate. Magnetic coupling to the substrate is practically eliminated by technically solutions with the 

substrate beneath the inductor [1], for example by inserting a patterned ground shield between the 

inductor and the substrate [2]. Losses due to the series resistance of the inductor can only be reduced 

by optimizing the geometrical parameters of the conductors. 

The optimization technique searches for the optimal point by calculating an objective function 

repeatedly, moving from one candidate design point to the other. In power electronics design 

optimization, modeling usually comes down to one or a set of algebric, differential or integral 

equations. Designer should choose the accurate model for the optimization of their designs. The 

criteria for choosing models may be based on the nature of the objective function or the complexity of 

the models.  

In this chapter, after reviewing the state-of-the-art on modeling and design optimization, we will 

present our approach to optimize the inductor’s geometry. Results of the optimization are shown in the 

last part of the chapter.     

1. State-of-the-art of inductor optimization  

1.1. Problem definition of design optimization 

The inductor optimization problem can be defined mathematically in a general form as: 

Minimize  f(x), f(x)   

Subject to  gi(x)  0, i = 1…n 

Where f(x) is the objective function defined in the space  and gi(x) i = 1 … n are number of 

constraints. Objective function f(x) creates a mapping between design variables and design objective. 
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This mapping is created using models of inductors. The optimization problem is then solved using 

either a deterministic or stochastic method: deterministic methods like enumeration method [3], 

geometry programming method [4], space-mapping [5, 6] or sequential quadratic programming [7, 8]; 

stochastic methods like evolutionary algorithm [9, 10], particle swarm optimization [11, 12] and 

genetic algorithm [13-16]. These methods search for an optimal point by means of an iterative 

approach, involving calculation of the objective function one or more times for each iteration. There is 

usually a tradeoff between the accuracy of the model and the number of variables considered. 

Dynamics of the system are usually simplified in order to develop a reduced-order and faster way of 

modeling. A wide variety of techniques might be used in order to find a reduced-order model for the 

optimization. For example, the Steinmetz equation is derived from curve fitting to a data series given 

by test measurements of core losses. Dowell equation is derived from solving diffusion equation in 

one dimensional used for estimating winding losses. Some authors use physical model of an inductor 

like lumped physical model or equivalent circuit model [11]. Some others use two port model/inductor 

modeling for parameter extraction method [17]. 

A typical inductor design problem involves two steps: (i) to provide a model to compute the objectives 

as functions of optimization variables and the system parameters and (ii) the optimization phase: 

identify the combination that results in the highest quality factor at desired functional condition 

including frequency and/or current. 

1.2. Literature review of inductor optimization 

Various methods have been proposed for inductor design and optimization. They can be classified in 

two groups, deterministic methods and stochastic methods. In this section, each method will be 

reviewed basically with their pros and cons. 

1.2.1. Deterministic methods 

For deterministic type, there are several methodologies as follows: 

 Response surface methodology  

In 2004, Kenichi Okada described the inductor characteristics by response surface functions of 

scattering parameters (S-parameter) [18]. The response surface function is an equation involving 

physical layer-out parameters. It is usually polynomial of the structural parameter.  The proposed 

model is constructed entirely in the S-parameter domain and independent of equivalent circuit models 

and geometry. Hence, this method can be applied to any type of inductor geometry. The value of each 

component in the equivalent circuit can be calculated from S-parameters. The analytical model 

expresses the quality factor Q in terms of component values L, R of the equivalent circuit. The 

inductor structure is optimized using the derived polynomial functions of S-parameters. 

 Enumeration method 
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In 2007, Genemala used enumeration method for inductor optimization [3]. The boundaries on the 

design parameter with maximum and minimum values were decided for a design space of interest. 

Then, it discretizes the geometrical parameters within this area. The quality factor was computed for 

each combination of design parameters. The maximum quality factor is the optimum solution and its 

corresponding layout parameters are the optimum layout parameters and recommended for fabrication. 

This method is simple but inefficient, especially when the number of adjustable parameters becomes 

large because the time complexity of the enumeration method is exponential to the number of 

optimization variables. Such an approach can be viewed as a “trial-and-error” approach. 

Electromagnetic effects are neglected for simplifying inductor optimization. As a consequent, the 

resulting design can miss the critical high- frequency effects.  

 Geometric programming 

Geometric programming is another method to solve the inductor optimization problem [4]. It is a 

powerful mathematical programming method based on the assumption that both the objective function 

and the constraints are polynomial functions by extracting with approximate formula. The limitation of 

this method is that several high frequency effects like proximity effect, skin effect cannot be taken into 

account by the simple closed form formulas or polynomial functions. Electromagnetic effects are 

neglected for simplifying inductor optimization; consequently, the resulting design can miss the 

critical high- frequency effects. Another limitation is that this technique demands the coarse model in 

a specific format e.g. polynomial functions but the inductor may not always follow polynomial input-

output relationships. 

 Sequential quadratic programming  

Sequential quadratic programming (SQP) is a method for optimizing the quality factor of integrated 

inductor [7] [8]. It is an iterative mathematical programming technique based on the observation that 

almost any smooth continuous function can be locally approximated by a quadratic function. SQP 

algorithm is at least an order of magnitude speedup compared to enumeration. SQP can be used with 

any physical model to optimize the device operating at any frequency, which makes it suitable to a 

broader range of applications.  

 Pareto optimization 

In 2011, 2013, Toke Andersen used finite element method (FEM) simulator to calculate the inductor 

parameter L, RDC, RAC from geometrical models and/or analytical model of racetrack inductor to 

predict the inductance, copper losses and core losses [19, 20]. Optimization procedure maps the 

calculated performances of a large number of different racetrack inductor designs to the - plane, 

where  is the efficiency and  the power density. The envelop resulting from the highest efficiency at 

each power density value in the - Pareto front is the outcome of the optimization procedure. 
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1.2.2. Stochastic methods 

Stochastic methods for optimization are connected with random probability. There are several 

methodologies in this group as follows: 

 Evolutionary algorithm 

Evolutionary algorithm is a stochastic global optimization method. It operates through a simple cycle 

with four stages: (i) initialize population: The initial population is generated randomly over the search 

space, (ii) evaluate fitness: the fitness functions correlate with the constrained conditions, (iii) keep the 

best individual found: if one feasible solution is better than the best solution found, the best solution 

should be replaced with the new feasible solution, (iv) the procedure of evolutionary algorithm: 

according to the stochastic ranking scheme, the evaluated fitness and penalty functions for each 

individual are used to rank the individuals in a population, and the best individuals are selected for the 

next generation. Then, crossover and mutation are performed [9]. 

 In 2010, Kota Watanabe used evolutionary algorithm for parameter and topology optimization of 

inductor [10]. The goal of optimization is to reduce the size of inductors satisfying the specifications 

on inductance values under weak and strong bias-current conditions. The inductance values are 

computed from the finite-element FE method. Immune algorithm and micro-genetic algorithm are 

used for optimization in which very small populations are used comparing to the conventional genetic 

algorithm.  

 Particle swarm optimization 

Particle swarm optimization (PSO) is a stochastic algorithm. In PSO method, the potential solutions 

are called particles and are flown through the design space by learning from the current best particle 

and its own experience. Particle swarm uses the implicit rules of bird flocks. The bird flocks move in a 

synchronized way without colliding each other. PSO uses the swarm intelligence method to solve the 

global optimization problem. PSO algorithm uses swarm of particles and each particle represents a 

potential solution. Each particle is represented by a position and a velocity vector. Like other 

evolutionary algorithm, PSO uses a fitness function to search for the best position. The fitness function 

is defined by the parameters to be optimized. At each run of simulation, the fitness function is 

evaluated by taking the position of the particle in the solution space. Each particle keeps track of its 

obtained highest value and the position of this value which is termed as the personal best. The location 

of the highest fitness value in a whole swarm is called global best. At each run there is only one global 

best and all the particles are attracted towards it. After each iteration the position and velocity of every 

particle is updated [11, 12]. 

In 2012, Daniel V. Harburg used particle swarm multi-object and Pareto front method for inductor 

optimization [21].  He presented two-dimensional AC winding loss model. The model considers skin 

effects, eddy currents and the unequal balance of the magnetic field within windings to determine over 

all AC losses in the conductor. The loss model is implemented in a multi-object optimization routine 
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to discover geometry and parameters that minimize losses and volume of inductor within a DC-DC 

converter. A particle swarm multi-objective optimization algorithm is employed to find designs that 

maximize inductor power density while minimizing losses of inductor in the converter. The Pareto 

front illustrates the overall best optimized designs. 

 Genetic algorithm 

Genetic algorithm (GA) is an evolutionary based global optimization technique which is efficiently 

used for inductor optimization. GA is a stochastic search method that mimics the natural biological 

evolution, operating on a population of potential solutions, applying the principle of survival of the 

fittest to produce better approximations to the optimized solution. Genetic algorithm is based on 

natural genetics, and is a particular class of evolutionary algorithm that uses technique inspired by 

evolution biology. Genetic operations including reproduction, crossover and mutation are used to 

guide a global search of a space for the solution. A genetic algorithm can search a complex space to 

explore a set of layer-out parameters for desired electrical performance. GA can be applied to any 

problem that can be formulated as an optimization function. As a result, they are applicable to non-

linear problems, defined on discrete, continuous or mixed search spaces, constrained or unconstrained.  

The main advantage of GA is that they search a population of points in parallel instead of a single 

point; hence, making results less sensitive to the initial point chosen. GA is resistant to becoming 

trapped in local optima [13]. GA operates through a simple cycle: (i) the creation of a population of 

strings (ii) the evaluation of each string (iii) the selection of “most-fit” string and (iv) genetic 

manipulation to create a new population [14-16].  

In 2004, Rana J Pratap combined neural network and genetic algorithm [14]. He presented a neural 

network based modeling scheme for inductor. A genetic algorithm based optimizer is coupled with the 

neural network model obtained for design and optimization of inductor. The basic components of the 

network are processing elements (neurons) and weights (connections). Genetic algorithm becomes 

efficient tools for non linear search and optimization. The neuro-genetic optimization approach has 

two stages. First, an accurate neural network model is developed. The neural network is coupled with 

genetic optimization in the next stage. The desired electrical characteristics are provided to the genetic 

optimizer, which starts with an initial population of layout parameters. It will compute the response of 

this population using the neural network model and selects the best samples and performs genetic 

manipulations to obtain results from the best samples. 

In 2013, T Sato used strength Pareto evolutionary algorithm [22]. It can effectively find the Pareto 

solution sets without transforming multi-objective to single-objective problems. The real-coded 

genetic algorithm is employed [23]. In this optimization, the model is generated from the chromosome 

of each individual. In his work, the population size is set to 150. The optimization is performed over 

200 generations. It takes about one week for an optimization with 200 generations when using a Xeon 
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processor (2.8 GHz). The resultant Pareto solutions show the optimized solutions. It is confirmed that 

all solutions satisfy the constraint conditions.  

2. Introduction of inductor optimization in this work  

In the previous part, we have reviewed the methodologies for inductor optimization proposed in the 

literature. In this section, the inductor optimization in our project will be introduced. This work was 

done in collaboration with Pierre Lefranc from G2Elab Grenoble [24].  So as to optimize the device, 

the first question is to choose a local or a global optimization method. As mentioned above, the 

deterministic methodologies are local optimization while the stochastic methodologies are global 

optimization. Global optimization gives the optimized solution in the whole range of interest. 

Depending on the complexity of the inductor that we want to design, global optimization often 

requires huge data calculation and need longer time to get the optimized solution. Our inductor has 

quite simple geometric design; so, to model the electromagnetic properties, we decided to choose the 

global optimization by genetic algorithm.  

In our design optimization problem, with the selected ferrite from the previous part, the objective is to 

design the inductor geometrical shapes with the highest inductance and minimum losses including 

winding losses and core losses. Several constraints as inductance higher than 100 nH at frequency of 6 

MHz and DC current of 0.6 A, the footprint being limited in the 3-6 mm2 range must be considered. 

The constraint of dimension may be downgraded to 6 mm2 in order to obtain the target specification of 

inductance. The inductor has a rectangular shape with windings in the two sides. 

To compute losses and the inductance value from simulation, we use the Finite Element Method 

Magnetics (FEMM) tool. FEMM is a 2D finite element simulator, with fast computation, and can 

easily run with Matlab software (http://www.femm.info). From the material properties and geometric 

dimensions, we can compute the values of induction B and magnetic field H in the structure. The 

computation of core losses, RDC, RAC and inductance are deduced from B and H. The procedure for 

design optimization is summarized in Figure 4-1. 

 

Figure 4-1 : Procedure for inductor design optimization  

Input data: dimension, 
material properties

Electromagnetic 
simulation : modelling
L, core losses, winding 

losses

Genetic algorithm: 
varying  dimensions 

and select best 
combination

Output: optimized 
geometry 

http://www.femm.info/
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3. Input data for optimization 

The design optimization tool needs the material properties of magnetic core and conductor, and also 

their dimension to evaluate the fitness functions like inductance L, and losses due to DC and AC 

resistance. The properties of copper conductor are taken from the material library while the magnetic 

properties of ferrite are obtained from the real characterizations as fully presented in chapter 3. 

Regarding the magnetic core, the design optimization tool takes the permeability and volumetric losses 

as input data. In the case of non-linear permeability, the non-linear dynamic B-H curve is required. 

This B-H curve is not the static one measured by vibrating sample magnetometer VSM as presented in 

chapter 3. Actually, the dynamic B-H curve can be obtained from the measurement curve of L vs. IDC. 

The procedure for extraction is described in the following section.  

3.1. Extrapolated dynamic B-H curve 

The first design inductor was simulated by Maxwell Ansoft 3D with magneto-static solver. The 

magneto-static solver computes static (DC) magnetic field (H) generated by the DC current in 

conductors. The current density and magnetic flux density (B) are automatically calculated from the 

magnetic field. Derived quantities such as energy and inductances can be calculated from these basic 

field quantities. For magneto-static solver, material permeability can be non-linear or anisotropic. The 

applied boundary condition is default i.e. the magnetic field is tangential to the boundary and flux 

cannot cross it. The mesh operation is done with adaptive mesh solution. 

 

Figure 4-2: Model of micro-inductor simulated in Maxwell Ansoft 3D  

Based on the experimental curve of L as a function of IDC, the simulation was done at each measured 

point i.e each point of (Li, IDCi) i=1…n. The permeability of the magnetic core is µi corresponding to 

the point (Li, IDCi) and the combination (Bi, Hi) is recorded for each measured point. The combination 

of all the points (Bi, Hi) i=1…n can be considered as raw non-linear B-H curve (see Figure 4-3). 
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Figure 4-3 : Raw non-linear B-H curve extracted from the measured curve of L vs. IDC 

In order to get a fine non-linear B-H curve for a better modeling in the next step, another simulation 

was carried out. The raw non-linear B-H curve is fed in for the non-linear permeability. After the run 

of Maxwell magneto-static solver, the extrapolated non-linear B-H curve is exported and we save this 

B-H curve for the upcoming modeling and simulation in the design optimization (see Figure 4-4). The 

simulation of electromagnetic behaviors will be more accurate with this new B-H curve. 

 

Figure 4-4 : Extrapolated non-linear B-H curve extracted from Maxwell Ansoft 3D solution 

3.2. Analytical losses model  

As presented in chapter 3, the losses of ferrite core were extracted from impedance measurements of 

the ferrite-based micro-inductor. The Steinmetz formula was used to fit the core losses with analytical 

models which will be used straight away in the simulation tool. The losses models were generated for 

different DC pre-magnetized field as listed in the table. For the present, the inductor model doesn’t 

include the contribution of HDC. 
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Table 4-1 : Analytical loss models of ferrite core 

HDC (A/m) K   

HDC<244 2.457E-8 2.071 1.79 

244< HDC<488 4.936E-10 2.384 1.917 

488< HDC<732 9.72E-9 2.227 1.95 

732< HDC<1212 4.913E-8 2.161 1.989 

1212< HDC<1708 7.801E-7 2.015 1.972 

HDC >1708 1.81E-6 1.984 1.959 

4. Electromagnetic model of micro-inductor 

In this part, we will present the model to simulate the electromagnetic behavior of inductor in FEMM: 

we will begin with the geometry construction and assign the material properties and then specify the 

mesh generation to finally simulate by finite elements.  

4.1. Geometric construction 

With some known variables like number of turns N, geometrical dimensions, material properties and 

the excitation current, the electromagnetic model in FEMM is built as shown in Figure 4-5. The 

electromagnetic model in FEMM is 2D, the 3D essence of inductor will be compensated by the depth 

of the model; the thickness of the core was considered as the profound of the model. Different 

materials are assigned for corresponding blocks of the model. All this construction was coded in 

Matlab. With specified materials of coil and core, we calculated the skin depth of the core and 

conductor. The skin depth of copper is about 27 µm at frequency of 6 MHz.  Based on the length and 

width of core, we created the mesh with the mesh element dimension smaller than the skin depth of 

copper conductor. One can note that we only simulate the winding losses in FEMM, the core losses 

are calculated from simulated result with the help of a post-processing step. 

We have to simulate DC and AC behaviors. In the DC simulation, the current excitation is DC. Non-

linear B-H curve is used. This simulation gives the value of inductance L according to IDC to insure the 

constraint of inductance >= 100nH at the specified condition IDC = 0.6 A. To estimate AC losses in the 

winding and in the core, we perform an AC simulation running at 6 MHz with a 20 mA AC current. 

That is the objective of the function of optimization.  
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Figure 4-5: FEMM inductor model with mesh a) full view, b) zoom on copper tracks 

4.2. Post-simulation data processing  

The FEMM simulation calculates the B-H values of all mesh points and parameters like magnetic 

energy, winding losses. The others parameters like inductance value and core losses have to be 

calculated from values of B-H obtained by simulation for each mesh point. Figure 4-6 shows the 

magnetic field distribution inside the magnetic core with the excitation of 0.6 A (DC). The magnetic 

induction is in the range 0.002 – 0.04 T. 

To calculate the value of inductance as a function of DC current, we set to zero the frequency of the 

solution in the DC simulation. As FEMM gives the magnetic flux in the inductor, the inductance can 

be calculated from the following expression:  

    𝐿𝑓𝑙𝑢𝑥 =
𝜙𝑡𝑜𝑡𝑎𝑙

𝐼𝐷𝐶
=  

𝑁𝜙𝑐𝑜𝑟𝑒

𝐼𝐷𝐶
   (Eq. 4.1)  

The inductance can be calculated by other method based on the magnetic energy by the following 

equation: 

𝐿𝑒𝑛𝑒𝑟𝑔𝑦 =
2𝑊𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐

𝐼𝐷𝐶
2    (Eq. 4.2) 

In order to verify the two methods, we have simulated a real inductor (the 1st run inductor with U200). 

The inductance calculated by two above methods are compared with the measured values. That gives a 

relatively good accuracy (see Figure 4-7). At the moment, the different results obtained from two 
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methods can’t be explained clearly. The result is better with flux method than energy method. 

Therefore, flux method is selected for optimization.  

 

 

Figure 4-6: Magnetic field (DC simulation, IDC=0.6A, 1st run inductor with U200) 

 

Figure 4-7: Inductance as function of DC current simulated by two methods vs. measurements 

In our AC simulation model, there are no losses in the core and the total simulated losses are 

corresponding to winding losses. We can represent them by an AC resistance using the following 

expression:  

    𝑅𝐴𝐶 =  
𝑃𝑤𝑖𝑛𝑑𝑖𝑛𝑔

𝐼𝐴𝐶_𝑟𝑚𝑠
2     (Eq. 4.3) 
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The current density in the conductor and the magnetic field distribution in the magnetic core are 

shown in Figure 4-8 and Figure 4-9 for the excitation of 20 mA (AC) at 6 MHz. The skin and 

proximity effect may be observed in Figure 4-8. The magnetic induction is in the range 0.001–0.012 T. 

  

Figure 4-8: Current density in the winding (AC simulation, 6 MHz, IAC = 20mA)  

 

Figure 4-9: Magnetic field (AC simulation, 6 MHz, IAC = 20mA) 

The next step is to evaluate the core loss. It can be calculated by analytical loss model that we obtained 

in the previous parts with Steinmetz equation.  

The following expression is used to calculate the core losses, in which f is frequency, BACrms is the 

induction inside the core, V is the volume of the core, K,  and  are coefficients of the Steinmetz 

equation. 

    𝑃𝑐𝑜𝑟𝑒 = 𝐾𝑓𝛼 ∫ 𝐵𝐴𝐶𝑟𝑚𝑠
𝛽𝑑𝑉

𝑐𝑜𝑟𝑒
   (Eq. 4.4)  
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5. Optimization by genetic algorithm and results 

The genetic algorithm is used to solve the optimization problem in this work. At the first stage, an 

initial population is randomly generated. Each element of the population, called individual, is encoded 

into string to be manipulated by genetic operator. In the next stage, the performance or fitness of each 

individual of the population is evaluated. A selection mechanism chooses “mates” for the genetic 

manipulation. The selection policy is to assure the survival of the most “fit” individual. Genetic 

operators including reproduction, crossover and mutation are respectively used to create a new 

population of “offspring” by manipulating the genetic code of members of the current population. 

Reproduction is the process by which string with high fitness values are selected to have large number 

of copies in the new population. After reproduction, the survived elements are stored for mutation and 

crossover operations. The crossover operation takes two parents and interchange part of their genetic 

code to produce new elements. The mutation operation is implemented by randomly changing a fixed 

number of bits every generation based on a specific mutation probability. The mutation operation is 

needed to account for the possibility that initial population may not contain all the genetic information 

needed to solve the problem. The genetic algorithm in steps is presented Figure 4-10. 

In this inductor optimization, the genetic algorithm parameters are as followed: 

 Number of individuals in population:   nb_ind = 30 

 Mutation coefficient:    nb_mut = 10 

 Number of iterations:    imax = 30 

The objective function in this optimization problem is the losses minimization including core and 

copper losses, with the main constraint L  100nH and others like core width 0.9 mm  X  2 mm, 

number of turns 10  N  30, conductor thickness 30 µm  tc  80 µm and conductor width 50 µm  

Wc  120 µm . The total time of the optimization process is 48 hours. The evolution of the total losses 

is obvious through twenty generations of offspring (see Figure 4-11). Results are given in  
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Table 4-2. It is not possible to reach the target specification in the footprint of 3 mm2 (an inductance 

higher than 100 nH at 0.6 A DC bias and 6 MHz). To obtain these specifications, the optimized 

solution of 6 mm2 was determined. 

 

 

Figure 4-10 : Flow chart of genetic algorithm [15] 

 

Figure 4-11 : Evolution of the objective function as a function of number of generation  

Choose initial population

Individual fitness evaluation

Select best individuals to reproduce

Breed new generation through crossover and 

mutation

Individual fitness evaluation of offspring

Replace worst part of population with offspring

Reach the criterion
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Table 4-2 : Optimization result for our micro-inductor 

Parameter  First run (not optimized) Second run (optimized) 

Number of turns N 21 27 

Length Y (mm) 2.6 3.6 

Width X (mm) 1.14 1.7 

Depth H (mm) 0.11 0.11 

Footprint (mm2) 3  6  

Magnetic core width Wmag (mm) 0.43 0.65 

Conductor thickness tc (µm) 50 55 

Conductor width Wc (µm) 100 105 

 

Parameter  
First run (not optimized) Second run (optimized) 

Measure Calculation Measure Calculation 

Inductance at 0.6A DC  (nH)  

(6MHz, 20mA AC) 
38 35 107 105 

DC resistance (mΩ) - 93 - 140 

AC resistance at 6MHz (mΩ) - 128 - 180 

Core losses (mW) at zero DC 

bias, 20 mA AC, 6 MHz 

0.033(101 

mW.cm-3) 

 

0.012 (37 

mW.cm-3) 

 

0.067 (99 

mW.cm-3) 

 

0.033 (49 

mW.cm-3) 

 
Energy density (nJ.mm-3) - 21.0 - 28.6 

Quality factor  (2f L/RAC)  - 11 - 22 

The test inductors of the 1st and 2nd design were realized with the electroplated bottom copper 

tracks and the top windings as gold bond-wire (see Figure 4-12). Both test inductors were 

characterized for inductance values and losses. The inductances as a function of DC bias 

current and frequency are shown in Figure 4-13 and Figure 4-14. 

  

Figure 4-12 : SEM images of the 1st run and 2nd run test micro-inductor 
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Figure 4-13 : Measured inductance versus DC bias current for the 1st and 2nd run  

  
Figure 4-14 : Measured inductance versus frequency at zero DC bias (left) and 0.6 A DC bias (right), 

with IAC = 20 mA, for the 1st and 2nd run  

The curves in Figure 4-14 show an improvement of the inductance value for the 2nd run. At 0.6 DC 

bias, the value of inductance for the 2nd run test inductor is about 107 nH stable up to 10 MHz and 

satisfies the optimization criteria. The optimization has proved better performance and leads to an 

increase of the energy density (1.4) and of the quality factor (2). However, the decrease of the 

resonance frequency is probably due to higher parasitic capacitance for the 2nd run because of thicker, 

wider and longer copper tracks. This point is a key issue for future designs and optimization tool. The 

measured core losses at 6 MHz with zero DC current bias and 20 mA AC current (see Table 4-2) are 

much higher than the core losses calculated by the design optimization tool at the same condition.  The 

measurement method of core losses is not fully accurate because the differences between air-core 

inductors and magnetic core inductors may result in errors in the analytical losses model fit with 

Steinmetz equation. We may need a better analytical losses model in order to have an accurate 

simulation tool for core losses. The air-core inductors are maybe not the best way to remove the 

contribution of copper: finite elements (FE) simulation with an infinite resistivity for the core material 

could give more accurate results. However, in this particular case, the AC winding losses are much 

higher than the core losses, so that it doesn’t affect the result of the optimization process. The AC 
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winding losses are more important in optimization calculation. The DC and AC resistance couldn’t be 

measured for comparison because the final top copper and via haven’t been accomplished yet.  

Conclusion 

The inductor design optimization problem was studied and we have proposed a design methodology 

based on genetic algorithm. The micro-inductor was simulated with finite element methods using 

FEMM to compute its electromagnetic properties and the optimization process runs on a Matlab 

software. The design optimization tool was successful to offer a solution which satisfied all the 

constraints of inductance value and dimensions. The overall method needs to be improved to reduce 

errors in calculation of core losses. In perspective, the top copper tracks and via need to be finished 

with electro-deposition so that DC and AC resistances can be measured for the final micro-inductor. 

The issue of final micro-inductor realization with electroplated copper winding will be presented in the 

next chapter. 
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Chapter 5 Integrated inductor realization 

In the previous chapters, the test inductors were realized and characterized to extract the magnetic 

properties of soft ferrite cores, and then the design of the micro-inductor was optimized. This chapter 

will present the experimental approaches and technological process in order to realize the final micro-

inductor. 

1. Proposed experimental approaches 

The objective of experiments is to develop a technology for fabricating integrated micro-inductors 

on/in silicon based on ferrite as magnetic cores. Two experimental approaches are proposed:  

monolithic integration and hybrid integration. In both cases, copper is chosen for the winding as top 

tracks, bottom tracks and vias. Electro-deposition technology is used for copper deposition. Copper via 

is also electroplated to connect different levels of Cu wires to form close windings (see the schematic 

in Figure 2-5). 

The first strategy for fabrication is screen printing the ferrite paste inside cavities in silicon wafer and 

sintering them with Cu tracks underneath: this is monolithic integration. The second strategy is pick-

and-place technique in which, the ferrite core is fabricated and sintered individually and then placed 

on Cu wires. That is hybrid integration. The feasibility of each proposed methods will be evaluated by 

testing and developing critical process steps. In final micro-devices, it is envisaged either to bond the 

two levels of windings by flip chip with the core in between or to finish copper windings with photo-

resist mold technology. These technologies and possible alternative solutions are discussed in this 

chapter. At the end, the most feasible technology will be used for final fabrication of the micro-

inductor. 

1.1. Monolithic integration 

In this approach, the micro-inductor will be embedded into silicon wafer via a cavity. The envisaged 

steps of fabrication are shown in Figure 5-1. The cavity is created by KOH etching. Then, the bottom 

copper is deposited and the ferrite paste will be printed into the cavity to create cores by screen-

printing technique. The top Cu tracks are either electroplated in a different wafer and joined by flip-

chip technique, as shown in the schematics, or directly electroplated onto planarized ferrite cores. The 

advantage is that all steps are done with micro-fabrication which allows large-scale fabrication. 

Moreover, this integration saves the space by integrating the micro-inductor into the silicon substrate. 

The disadvantage is that high sintering temperature may be a problem of inter-diffusion and not 

CMOS compatible. In the case of the two wafers assembled by flip-chip bonding, through silicon vias 

(TSV) might be needed in order to reach the inductor’s connection pads and these TSVs are 

sometimes already fabricated for other components on the board. 
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a) 

 
 

 

b) 

 
 

c) 

 
 

d) 

 
 

e) 

 
 

f) 

 
 

g) 

 

Figure 5-1 : Schematic of inductor fabrication steps in monolithic integration approach a) Deposition 

of Si3N4 on Si wafer b) Photolithography and KOH etching to create cavities c) Remove Si3N4 and 

deposit an insulation layer of SiO2 d) Sputtering of a seed layer Ti/Au on the wafer e) Deposition of 

bottom copper tracks by electro-deposition and photolithography f) Screen printing of ferrite paste 

inside the mold and co-sintering g) Flip-chip to bond the top copper track wafer to the bottom one. 

1.2. Hybrid integration 

For hybrid integration, the ferrite cores are made separately by cutting from commercial ferrite film or 

printed by screen printing, then fully sintered. The bottom copper tracks are electroplated in silicon 

wafer and then planarized by a layer of SU8 photoresist. Then, the core is stuck on bottom copper 

tracks. The conductor windings can be completed by flip-chip bonding of two wafers with copper 

tracks or can be completed by the vias and top copper tracks electro-deposited by thick photoresist 

mold technology with BPN photoresist [1]. The estimated fabrication steps are given in Figure 5-2 

for the case using thick photo-resist mold technology to complete windings. 
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The advantage of this approach is that the number of fabrication steps is minimized. The disadvantage 

is that it is necessary to stick the cores by pick-and-place method. At the moment, in this work, this 

step can only be done manually. For an efficient transfer into an industrial manufacturing process, it 

requires efforts to make it automatic, fast and reliable (with high yield). 

 a) 

 
 

b) 

 

 

 

c) 

 
 

d) 

 
 

e) 

 
 

f) 

 
 

g) 

 
 

h) 

 
 

Figure 5-2 : Schematic of inductor fabrication steps in hybrid integration approach a) Electroplating 

of bottom Cu  tracks on Si/SiO2 wafer  b) Planarization of Cu tracks and open vias c) Adjunction of 

thin film ferrite core on Cu tracks with photo-sensitive glue d) Covering of ferrite cores with SU8 and 

open vias e) Sputtering of a seed layer Ti/Au on the wafer f) Photolithography of BPN molds for vias 

and top Cu tracks  g) Electroplating of top Cu tracks and vias h) Removal of BPN residues and Ti/Au 

seed layer 

The tests and developed processes for realizing the monolithic and hybrid integration will be fully 

presented in the next section. 

2. Process development for monolithic approach 

Processes and technology were developed in the clean room at LAAS to realize the monolithic 

integration including the process of etching cavity in silicon wafer and the tests of co-sintering printed 

ferrites with the silicon wafer. 

2.1. KOH etching and compensation for rectangular cavity 

The idea to fabricate magnetic core in the first strategy is to print ferrite slurry inside the cavity in the 

silicon wafer where copper tracks are preliminary deposited and then sinter them. Regarding the 
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design, the shape of ferrite core is rectangular with a hole in the middle and hence, the rectangular 

cavities need to be created in the silicon wafer. Heated potassium hydroxide (KOH) solutions can be 

used for preferential crystallographic etching of silicon. The etch rate depends on crystallographic 

orientation of the silicon and the concentration of KOH solution used; the temperature of KOH 

solution is 90°C. Normal etch rates are about 1µm/minute. However, due to the different etch rates of 

silicon on different crystal direction, with the normal mask of Si3N4 (see Figure 5-3 a) the cavities after 

etching are not exactly rectangular; the inner corners are over etched (see Figure 5-3 b). This is not a 

good shape for the rectangular core. By applying the compensation method proposed by Yu [2], the 

suitable compensation was made to avoid the over etching; the well-shaped rectangular cavities are 

formed on silicon wafer, see Figure 5-4. To note in Figure 5-4, D is the depth of etching which is 200 

µm in our cases (150 µm for the core and 50 µm for the bottom copper tracks). This compensation 

also helps avoiding a problem arising during copper tracks electroplating which is the diffraction of 

UV light at the over-etched corners during the process of photolithography. The angle slope is 54.7° 

between the surface and the plane <111> which is similar for the length direction and the width 

direction. 

The 50 µm -thick bottom copper tracks were successfully electro-deposited on the rectangular cavities 

in silicon wafer, see Figure 5-5. The next step is to test co-sintering of silicon and printed ferrites. 

 

 

Figure 5-3 : a) Rectangular mask of Si3N4 on silicon wafer b)KOH over-etched cavity in silicon wafer 

 

 

 

Figure 5-4 : a) Compensated mask of Si3N4 on silicon wafer and b) KOH-etched rectangular cavity in 

silicon wafer 

L = 3.2 D
W = 2 D
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Figure 5-5 : Electro-deposited bottom copper tracks on rectangular KOH-etched cavity in silicon 

2.2. Co-sintering Si/Si3N4 wafer with printed ferrites  

In order to obtain the magnetic phase of ferrite, the printed ferrite needs to be sintered at high 

temperature (about 900°C). In the monolithic approach, printed ferrites inside the rectangular cavities 

need to be sintered in the presence of silicon wafer underneath. Hence, the test was carried out to 

sinter the printed in-house ferrites inside the rectangular cavities in silicon wafer at 980°C during 2 

hours under oxygen. After sintering, the cracks appeared at the corners and on the sides of the cores. 

The shrinkage is roughly 27%. However, grain size is 100 - 500 nm, no big grain is formed, and this 

means that the ferrite is not fully sintered at 980°C like the free-standing printed in-house ferrite. In 

order to estimate the temperature at which ferrite is fully densified inside the cavity, we carried out 

TMA analysis, and the result showed a densification peak at 1030°C i.e the ferrite should be sintered 

at temperature about 1030°C .   

  
 

Figure 5-6 : SEM images of in-house printed ferrite in rectangular cavities after sintering at 980° 

during 2 hours 

As the sintering step involves high temperature, the issue that could arise is inter-diffusion of elements 

between the ferrite layer and the substrate. A barrier layer (silicon nitride Si3N4) was grown by low 

pressure chemical vapor deposition method (LPCVD) on the substrate to avoid metal elements to 

diffuse into the silicon. The final stack is Si/SiOxNy (150 nm) / Si3N4 (40 nm)/ferrite U70 (24-66 µm). 

Interfaces were observed and analyzed with EDS SEM at LAAS and TEMSCAN service at Toulouse 
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Paul Sabatier University, see Figure 5-7. It can be seen that there is no silicon diffusing into the ferrite 

part and there is neither metal atom diffusing into the silicon substrate. No diffusion was observed for 

two times of examining. However, the oxidation and diffusion problems appeared when we co-

sintered the copper tracks with silicon substrate underneath at 980°C during 2 hours under air 

condition. The copper tracks were oxidized and diffused over the surface of silicon wafer (see Figure 

5-8). 

  

 

Figure 5-7 :  EDS SEM image at the interface between silicon and ferrite after sintering. (Note: The 

vertical axis is the number of counted atoms) 

 

 

Figure 5-8 : EDS SEM image at the interface of silicon, copper and ferrite after sintering 

From these experiments, we see that it is unfeasible to sinter ferrite directly on silicon, with the 

presence of copper windings, at that high temperature due to the problems of delamination and 

cracking and the problem of oxidation and diffusion. The monolithic approach confronted with these 

problems, it was put aside. The hybrid approach was then considered. 

silicon
ferrite

silicon
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3. Process development for hybrid approach 

In hybrid approach, the free-standing core is made from commercial thin-film ferrite tapes as cut cores 

and from in-house ferrites as printed cores (details as given in chapter 2). The conductor windings can 

be completed by either flip-chip technology or photoresist mold technology.  

3.1. Flip-chip bonding 

Two silicon wafers with electroplated copper tracks and copper vias were prepared for bonding by 

flip-chip bonding machine. The results showed that it is difficult to form a close winding circuit for the 

micro-inductor. It is due to the in-homogeneity of the electrodeposited copper vias. The thickness of 

all vias on each silicon wafer is not perfectly similar; hence, the copper connection through via is not 

established at some places. In order to solve this problem, carefully polishing is required. It is not 

possible for us to do a long-time polishing process at this stage in my thesis; hence, we left the 

solution with flip-chip bonding aside.  

At the end, the thick photoresist mold technology was developed to complete the electro-deposited 

copper windings. This approach was proposed with SU8 and Bump Plating Negative (BPN) photo-

resist [1] which will be presented in the next section. 

3.2. Micro-inductor realization with photo-resist mold technology 

The final micro-inductor was realized with U200 ferrite according to the hybrid approach. The 

schematic of process is presented in Figure 5-2. 

 Step 1: Deposit 50µm-thick bottom copper tracks on Si/SiO2 (500nm) wafer.  

The layer of SiO2 helps insulating the integrated inductor electrically from the silicon wafer 

substrate.  In order to deposit bottom copper tracks, seed layers of Ti (500Å)/Au (1000Å) are 

deposited on the Si/SiO2 wafer by physical vapor deposition technique. Then, 50µm-thick photo-

resist patterned layer is created on the wafer by photolithography technology. Copper tracks are 

electro-deposited with thickness of about 50 µm and the seed layer of Au is removed by KI + I2 

solution, the seed layer of Ti is removed by HF solution. 

 Step 2: Planarization of bottom copper tracks and open vias 

A layer of SU8 was sprayed to cover the 50 µm-thick copper tracks with the spray machine 

AltaSpray. The thickness of the SU8 layer is kept just small enough; this thickness will be 

characterized with the cross-section of the final micro-inductor. Then, the vias openings are 

created with photolithography, see Figure 5-9. 
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Figure 5-9 : Opened vias on the bottom copper tracks planarized by SU8 photo-resist 

 Step 3: Stick ferrite cores on the planarized bottom copper tracks with Epoteck® 353NDT 

glue by the bonder machine Tresky 3000. 

 

Figure 5-10 : Fixed ferrite cores (both printed and cut) on bottom copper tracks  

 Step 4: Cover ferrite cores with SU8 and open vias 

A thin layer of SU8 is sprayed over the stuck ferrite cores; the thickness of this layer will be 

characterized with the cross section of the final micro-inductor. And then, the position of vias is 

opened with the photolithography technology.  

 Step 5: Deposit a seed layer of Ti/Au and photoresist mold formed by photolithography 

A seed layer of Ti (500Å)/Au (1000Å) is then deposited. A problem of bubbles arose at this step, 

Figure 5-11 and Figure 5-12. We can see the residue of photoresist after the bubble was broken. 

This problem is due to the air present under the layer of stuck ferrite cores, during the process of 

metallization, the heat generated in the wafer, the air expanded and was evacuated to the surface in 

the vacuum deposition chamber, creating bubbles in the photoresist. This problem happened at 

some places and more likely near the stuck cores. The BPN photo-resist is then used with 

photolithography technology to create photo-resist mold layer upon the seed layer of Ti/Au;the 

details of lithographic processes can be found in the article [1]. The wafer is ready for the step of 

electro-deposition. 
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Figure 5-11 : Air-core inductor before the top copper tracks deposition (a) without problem of 

bubbles and (b) with problem of bubbles 

  

Figure 5-12 : Ferrite-core inductor before the top copper tracks deposition with problem of bubbles 

 Step 6: Deposit top copper tracks and vias 

Simultaneously, the top copper tracks and vias are electro-deposited in the photoresist mold. Then, 

the residue of BPN photoresist is removed. The seed layer of Ti/Au is removed. The final micro-

inductor is completed as shown in Figure 5-13. 

 

Figure 5-13 : Optical image of final micro-inductor  

In order to characterize the layers of electro-deposited copper tracks, copper vias and also the ferrite 

layers with the SU8 layers, the final micro-inductor was cut with the guide lines A-A’, B-B’ and C-C’. 

The cross sections corresponding to the A-A’, B-B’ and C-C’ cut lines were observed by SEM. The 

A A’

B

B’

1 mm 

C C’
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electro-deposited copper vias can be observed in the Figure 5-14. In this figure, we see some good 

established Cu-via-Cu connections and some bad ones. This can cause the problem of open circuit for 

the inductor device. The topology of the ferrite core is shown clearly in Figure 5-15. The printed core 

is thicker at the border and thinner at the center. The thickness of electroplated bottom copper track is 

about 60 µm and the top copper track is about 50 µm thick. The thickness of ferrite core is about 156 

µm at this position. The thickness of the first SU8 layer is about 70 µm and the second layer is about 

35 µm (see Figure 5-16). The total thickness of the final inductor is about 370 µm which is higher than 

250 µm. This is due to the additional thickness of SU8 photoresist for planarization. 

  

Figure 5-14 : SEM image of inductor’s cross section corresponding to A-A’ cut line 

 

Figure 5-15 : SEM image of inductor’s cross section corresponding to B-B’ cut line 

175 µm 133 µm
166 µm

165µm
113 µm

175µm
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Figure 5-16 : SEM image of inductor’s cross section corresponding to C-C’ cut line 

The electrical characterization was carried out for all air-core and ferrite core inductors. Almost all of 

them have open circuit; only one air-core has close circuit with resistance of 125 m up to 90 MHz 

and inductance of 1 nH. The curve of inductance and resistance versus frequency are presented in 

Figure 5-17. 

  

Figure 5-17 : Inductance and resistance of final air-core micro-inductor 

Conclusion  

Final air-core and ferrite-core inductors were realized with photoresist mold method in the hybrid 

approach. The DC resistance obtained for an air-core inductor was 125 m up to 90 MHz and this is 

well in the range of 0.1-0.2  defined in our specifications. However, ferrite inductors were not 

showing similar range of resistance due to poor electrical contacts. The problem of bubbles degrading 

the process is to be solved by developing the process of core adhesion with suitable glue and 

procedure. Fine polishing of copper tracks will certainly improve the process. We believe that it can 

also be the key to make flip-chip bonding a successful alternative process.   

156 µm

70 µm

35 µm

60 µm

50 µm

Ferrite

Silicon

Top Cu

Bottom Cu



Chapter 5 Integrated inductor realization 

 

112 
 

References 

 

 

1. D. Bourrier, M. Dilhan, A. Ghannam, and H. Granier, "Comparisons of the new thick negative 

resist to Su8 resist", in Conference on Micromachining and Microfabrication Process 

Technology XIII, San Jose, CA, 2011, 7972   

2. J.-C. Yu, "Convex corner compensation for a compact seismic mass with high aspect ratio 

using anisotropic wet etching of (100) silicon", Design, Test, Integration and Packaging of 

MEMS/MOEMS Symposium (DTIP 2011) IEEE, 197 - 199, 2011 

 



 

113 
 

General conclusions and perspectives 

In this thesis, we presented the development of integrated inductors based on soft ferrite materials 

dedicated to low power (1 W) DC/DC converters with high power densities, high efficiencies and 

medium frequencies. 

In the first chapter, we gave the overall context of the work, i.e. DC/DC converter or POL converters 

and reviewed existing technologies and materials developed for small size and integrated inductors in 

commercial products and in research laboratories over the world. From this literature study and from 

constraints defined by the project: maximum size of 3 - 6 mm2, inductance range of 200-2000 nH, 

frequency range of 5 – 10 MHz, DC current of 0.6 A and the ease and cost of fabrication, we chose to 

develop the micro-inductors of toroidal type and based on soft ferrite materials for the core.  

The overall methodology was as following: (i) firstly, develop the magnetic cores with feasible 

dimensions, (ii) extract the magnetic properties of the core especially losses, (iii) implement the 

properties in a design optimization program to obtain an optimized inductor design and (iv) finally, 

realize the micro-inductor with the simple and inexpensive processes.   

In chapter 2, we selected ferrites in two forms: ferrite tapes and ferrite powders. We chose two 

permeabilities for each form of materials. The ferrite powders were synthesized. The associated 

technology with each type of material was developed, including screen printing with different pastes 

i.e. different viscosity. Fully sintered ferrite cores were successfully realized from commercial thin 

film ferrite tapes and in-house made ferrite powders. Both cut cores and printed cores are reproducible 

in size (3 mm2) and thickness (110 µm) and composition. The cut cores from commercial thin film 

ferrite have a more homogenous topology in the surface than screen printed ferrite cores. It was shown 

that the inhomogeneity of the printed cores was a problem during the inductor’s fabrication in chapter 

5. However, the dimension of cut cores is less precise than the printed ones due to the error deviation 

of cutting machine. Further development is needed to improve the surface topology of printed cores, 

for example by using the stencil mask for the process of printing or applying a pressure on the printed 

core surface before the heat treatment process. However, those tests and developments will take a 

considerable period of time and effort and at that stage of my thesis I couldn’t accomplish them. 

In chapter 3, magnetic properties of different selected ferrites were measured by magnetic material test 

fixture Agilent and impedance analyzer at different AC excitation current and different DC bias 

current.  Permeability and losses of the material were characterized under DC bias 0-1.4 A and 

different AC excitation current from 0 to 200 mA. At zero DC bias and small induction (< 0.4 mT), 

the permeabilities of selected commercial ferrites are 200 and 60 stably up to 30 and  > 100 MHz 

while that of in-house made ferrites are 190 and 86 stably up to 30 and > 100 MHz. The dynamic 

permeability of ferrites changes considerably according to the excitation: DC and AC level. In general, 
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it decreases with the DC bias current and increases with AC sinusoidal excitation. The inductance 

densities of 187 nH.mm-2 and 138 nH.mm-2 could be possibly reached with U200 and U70 ferrites 

respectively. For commercial ferrites, 215 nH.mm-2 and 72 nH.mm-2 coud be reached for inductance 

densities with 40011 and 40010 ferrite cores respectively. Losses of the four ferrites 40010, 40011, 

U70 and U200 are small at 1 MHz. At 1 – 10 mT, losses are below 100 mW.cm-3. Losses shift to 

higher level for higher frequencies. At 6 MHz and 10 mT, U200 has the lowest losses of 0.7 W.cm-3 

while 40011 has the highest losses of 2.5 W.cm-3. At 10 mT, U200 core presents the lowest losses 

from 4 MHz. However, the characterization is only performed at small sinusoidal AC signal when the 

DC bias current is applied due to the limitation of the measurement apparatus. U200 with permeability 

of about 200 under zero DC bias and small AC current (10mA) with small losses (120 mW.cm-3 at 6 

MHz and 4 mT) was chosen for the fabrication of final inductors. Losses of U200 are still higher than 

that of commercial ferrite 4F1 at 10 mT, 3 – 10 MHz. The measured values of permeability and losses, 

and losses model will be used for the modeling and design optimization in FEMM and Matlab. For 

perspectives, the characterization of magnetic properties should be carried out at large AC excitation 

signal under DC bias current and with the real current waveform i.e. triangular signal.  

In chapter 4, the inductor design optimization was studied and we have proposed a design 

methodology based on genetic algorithm. The micro-inductor was simulated with the finite element 

method using FEMM to compute its electromagnetic properties and the optimization process runs on 

Matlab software. The design optimization tool was successful to offer a solution which satisfied all the 

constraints of inductance value and dimensions. The overall method needs to be improved for the 

accuracy in core losses calculation i.e the analytical losses models and the inductor modeling. The 

modeling tool should implement the simulation with AC and DC excitation at once.  

Two experimental approaches, monolithic and hybrid were considered for the micro-inductor 

fabrication. But the monolithic method is not possible at the moment due to the problem of cracking, 

oxidation and diffusion. Final air-core and ferrite-core inductors were realized with photoresist mold 

method in the hybrid approach. The DC resistance obtained for an air-core inductor was 125 m up to 

90 MHz and this is well in the range of 0.1-0.2  defined in our specifications. However, ferrite 

inductors were not showing similar range of resistance due to poor electrical contacts. The optimized 

test micro-inductor has an inductance of 107 nH at 0.6 A DC and 20 mA AC with the cut-off 

frequency of 40 MHz. The problem of bubbles degrading the process is to be solved by developing the 

process of core adhesion with suitable glue and procedure. Fine polishing of copper tracks will 

certainly improve the process.   

We believe that improving the topology of cores and copper vias can also be the key to make flip-chip 

bonding a successful alternative process.   
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For long-term perspectives, the magnetic materials should be improved further for lower losses and 

higher DC current. The developed processes (screen printing and milling) are ready to apply for other 

types of magnetic materials. An important perspective is to implement the final micro-inductor in a 

circuit (DC/DC converter) and measure losses (under real triangular waveform signal) to compare with 

the actual losses measurement method (under sinusoidal waveform signal). The flip chip bonding 

technology is to be developed and tested with better topology of copper vias and cores. 
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Annexes 

A.1. Table of state-of-the-art of integrated inductor 

Table A1-1: Examples of commercial inductors for DC-DC converters  

Year - - - 2013 - - - 

Institution/co

mpany 

TDK TDK TDK Coilcraft Murata Murata FDK 

Product VLS20161

2ET series 

MHQ 

0402P 

series 

MHQ 

1005P 

series 

LPS3010 

series 

LQH32P 

series 

LQH44P 

series 

MIPSZ201

2 series 

Structure Wire 

wound 

SMD  SMD  - Wire 

wound 

- - 

Size (mm3) 2x1.6x1.2 0.44x0.24x

0.24 

1x0.6x0.6 3x3x1  3.2x2.7x1.

55 

4x4x1.65 2x1.2x1 

Inductance 0.47uH-

10uH at 

1MHz 

0.2nH-

33nH at 

500MHz 

0.7nH-

150nH at 

500MHz 

0.47µH-

330µH 

0.47uH-

120uH 

1uH-22uH 

at 1MHz 

0.5-4.7µH 

at 1MHz 

Self-

resonance 

frequency 

- 10GHz-

1.5GHz 

15GHz-  

0.8 GHz 

370MHz-

7MHz 

100MHz-

8MHz 

90MHz-

17MHz 

100MHz-

35MHz 

Rated current  1.9A- 

0.47A 

0.32A- 

0.13A  

1.2A-

0.11A 

2.3A-

0.11A  

 

2.55A-

0.2A  

 

2.45A-

0.79A  

 

1.3A-0.7A 

DC 

resistance 
0.063-

1.026 

0.2-3.5 0.03-3 0.07-

18.5 

0.03-

4.38 

0.03-

0.37 

0.06-

0.23 

Technology Ferrite 

Multi-

layer 

ceramic 

Multi-

layer 

ceramic 

Ferrite - - - Multi-

layer 

CAE 

 

Table A1-2a: Proposed integrated inductors with spiral structure  

Year 2009 2009 2011 2011 

Institution Dong H. Bang, 

Kwangwoon Univ. [1] 

Seok Bae,  

Alabama Uni. [2] 

Jaejin Lee, 

Alabama Uni. [3] 

Mingliang Wang, 

Qualcomm Inc. [4] 

Structure Spiral Sprial Spiral Spiral pot core 

Size (mm3) 5.2x4.7x0.5 5x5 5x5 3x3x0.6 

Number of 

turns 

9 4.5 4.5 10 

Inductance 0.81µH at 10MHz 48.5nH at 10MHz 50nH at 10MHz 390nH at 6MHz 

Max frequency - 30MHz - 6 MHz 

DC current  0.47A - 2.5A 5% 

inductance drop at 

10MHz 

Isat > 7A 

DC resistance - - - 0.12 and 1.15 at 

6MHz 

M
at

er
ia

l Magnetic NiZn ferrite composite 

screen printed 

NiZnCu ferrite 

2x1µm sputter and 

heat treatment 

800°C 

Ferrite film 2.5µm 

thick sputtering 

NiZn ferrite 

composite 

200 µm  

µ=6 
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Conductor Cu 85µm wide 150µm 

thick metal foil 

Cu 90µm 

electroplated 

Cu 65µm thick Cu electroplated 

200µm 

heightx60µm wide 

Isolator -  - - 

Technology PCB substrate On silicon On silicon In silicon 

 

Table A1-2b: Proposed integrated inductors with spiral structure  

Year 2012 2013 2013 2014 

Institution Christopher D. 

Meyer, US 

army lab [5] 

Yuichiro Sugawa, 

Shinshu Uni. [6] 

S. Bharadwaj, Osmania 

Uni. [7] 

Elias Haddad 

Ampere lab, France 

[8] 

Structure Spiral Spiral  Spiral Spiral 

Size (mm3) 1x1x0.09 1x1 5x5 

>1mm thick 

9 mm2 

>2.6mm thick 

Number of turns 10 2 3 6 

Inductance 109nH up to 

100 MHz 

5.5nH at 100 MHz 75nH at 1MHz 500nH 

Max frequency Q=Qmax at 

28MHz 

Resonance frequency 

600MHz 

100 MHz 100MHz 

DC current  - Isat = 5.5A - - 

DC resistance 0.85 DC and 

50 at 100MHz 

18m 0.16 140m at < 

0.5MHz 

100 at 100MHz 

M
at

er
ia

l 

Magnetic Air Carbonyl-iron 

composite 97.8%Fe 

1%C screen printed 

2x30µm 

µ=7.5 

NiZnCu ferrite 

microwave sinter and 

screen printing co-

firing 

  

Yittrium Iron 

Garnet YIG µ=25 at 

100MHz 

Conductor Cu electroplated Cu electroplated 35µm 

thickx140 µm wide 

Cu screen printed 1µm 

thickx 80µm wide 

Cu 50µm 

electroplated 

Isolator - - - Bismaleimide 

Technology On silicon Glass substrate Microwave sintering 

900°C/30min 

Thick film YIG 

 

Table A1-3: Proposed integrated inductors with solenoid structure  

Year 2006  2008 2011 2013 

Institution Xiao-Yu Gao, 

Micro_nao Tech Inst. 

China [9] 

Dok Won Lee, Stanford 

Uni. [10] 

Hongwei Jia, 

Florida Uni. 

[11] 

Ryan P. Davies, 

Columbia Uni. USA 

[12]  

Structure Solenoid Solenoid Solenoid Solenoid 

Size (mm3) - 0.88mm2 20mm2  

Number of 

turns 

- 17.5 3 4 

Inductance 5.4µH at 1 MHz and 

2µH at 10 MHz 

70nH at 10MHz 450nH 7.4nH at 100 MHz 

Max frequency 7 MHz 

Q = Qmax 

< 30MHz >5MHz - 

DC current  - - - - 
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DC resistance - 0.67  20m 0.48 and 1.7 at 

100MHz 
M

at
er

ia
l 

Magnetic NiFe magnetic film 

electroplated 

Amorphous CoTaZr 

2.2µm sputter and wet-

etched 

µr=300 for processed 

core and µr=600 for 

blanket film 

Ferrite epoxy 

glob core 

Ta 5nm/ CoZrTa 

200nm/ SiO2 7nm  

20 laminations 

Conductor Cu electroplated Cu electroplate 6.6µm 

thick top and 4.4µm 

thick bottom  

Wire bonding Cu 5µm electroplated 

Isolator Polyimide Polyimide - SU8 

Technology On glass On silicon Bond wire 

inductors 

On silicon 

 

Table A1-4: Proposed integrated inductors with racetrack structure  

Year 2007 2011 2012 2013 

Institution Ningning Wang, 

Tyndall Inst. Ireland 

[13] 

Ronan Meere, Athlone Ints. and 

Tyndall Inst. [14] 

Naigang Wang, 

IBM research 

USA [15] 

Daniel V. 

H., 

Darthmouth 

USA [16] 

Structure Racetrack A1 Racetrack Spiral  Racetrack Racetrack 

Size (mm3) - 4.62x1.6x0.16 2.7x2.7x0.09 1mm long 25-50mm2 

0.17mm 

Number of 

turns 

3 5 12 6 7 

Inductance 220nH up to 3 MHz 230nH 220nH 125nH at  

<10 MHz 

1.1-1.2µH 

Max frequency 3 MHz <10 MHz 50 MHz 200 MHz 8.3-

11.8MHz 

DC current  Isat = 0.6A - - - - 

DC resistance 0.21  0.32 0.54 0.16  

(2 turns) DC 

0.84-1.1 

M
at

er
ia

l 

Magnetic Ni45Fe55 electroplated 

10µm bottom, 5µm 

top, 4mm long 

Ni45Fe55 alloy 

electroplated 

with resistivity 

45µ.cm 

Air Ni45Fe55 1.5 µm 

electroplated  

CoZrO 

sputtered 

35µm 

Conductor Cu 64 µm wide x 

46µm thickness 

electroplated 

50µm thick 

x50µm wide 

50 µm thick 

x50µm wide 

Cu 40µm wide 

electroplated  

Cu 40µm 

electroplated 

Isolator SU8 photoresit - - - SU-8 25µm 

Technology On silicon On silicon On silicon On silicon  In silicon 

 

 

Table A1-5a: Proposed integrated inductors with toroidal structure 

Year 2006 2006 2009 2012 

Institution Hahn R., Fraunhofer, Germany 

[17]  

Orlando, Limoges, 

ST Microelectronic, 

France [18] 

Flynn D., 

Herriot Watt, 

UK [19] 

Peter Kamby, 

Technical 

Uni. Denmark 

[20]  

Structure Toroidal RK1 Spiral SP5 Toroidal Toroidal Toroidal 

Size (mm3) 3.2x3.2x0.4 5.2x5.2X0.4 5.6x5.6x0.2 2x5x0.25 8.4x8.4x1.6 
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Number of 

turns 

15 5 12 33 8 

Inductance 1 µH 4.7µH 0.5µH  0.3-1.7µH 52nH 

Max frequency < 1 MHz < 1 MHz 10MHz <1 MHz 200 MHz 

DC current  0.1 A 30% 

inductance 

decrease 

0.1 A 20% 

inductance 

decrease  

Isat = 0.18A Isat< 0.14A - 

DC resistance 40m 260m 95m 100m 0.22 

M
at

er
ia

l 

Magnetic Ferromagnetic Ferromagnetic laminated 

SiO2/Ni80Fe20  

physical vapor 

deposition 16 x 1 

µm  

µ=900 

Ni80Fe20 

permalloy 

10-20µm 

electroplated 

- 

Conductor Au or Ag Au or Ag Cu electro-

deposited 20µm 

Cu or Ni 

90µmx200µm 

Cu 10µm  

Isolator - - - Photoresist 

5µm 

- 

Technology Ferromagnetic 

LTCC 

Ferromagnetic 

LTCC 

In silicon Electro-

deposition 

Flip chip 

Printed circuit 

board toroid 

 

Table A1-5b: Proposed integrated inductors with toroidal structure 

Year 2012 2012 2013 2013 2014 

Institution Jiping Li, Uni 

Florida USA 

[21]  

Jizheng Qiu, 

Darthmouth 

USA [22] 

Jooncheol Kim, 

Georgia Inst. [23] 

X. Fang, Hong 

Kong Uni. 

[24] 

Xuehong Yu 

Georgia Inst. 

[25] 

Structure Toroidal Toroidal Toroidal Toroidal Toroidal 

Size (mm3) 13x13x0.32 5.6x5.6 

- 

10x10x1 1.4x2.1x0.4 6x6x0.3 

Number of turns 36 3 36 11 25 

Inductance 0.16µH 8.9nH 1.6µH at 

10 MHz 

43.6nH 0.14-0.17µH 

Max frequency >14MHz 50MHz - 65MHz >10 MHz 

DC current  - - - Isat = 10A - 

DC resistance 0.27 DC 

and  

1.38 at 

14MHz 

- - 280m 

and 1.09 at 

65MHz 

0.58-0.75 at 

10 MHz 

M
at

er
ia

l 

Magnetic NiZn 

magnetic 

composite 

200µm 

µ=6-25 

CoZrO 40µm 

Sputtering 4 

times 

CoNiFe 40x1µm 

laminated 

electrodeposited 

MnZn ferrite 

composite 

µ=5 

Iron powder 

0.25mm 

lapping 

Conductor Cu 40-60µm 

electroplated 

Cu 50µm Cu electroplated Cu  

electroplated 

Cu 30µm 

electroplated 

Isolator - - - - Parylene and 

SU8 

Technology Embedded in 

silicon 

- Electro-

deposition 

In silicon Embedded in 

silicon 
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A.2. Process of realizing cut cores from commercial thin film ferrite 

Procedure to realize cut cores from commercial thin film ferrite:  

– Stack two layers of thin film ferrite upon each other. 

– Start: open N2 and O2 valves, turn on computer and AML machine (see Figure A), 

turn on alignment sensor. 

– Place two layers of ESL film in between 5” silicon wafer and 1x1 cm2 silicon plate 

(see Figure) and between the two load plates of AML machine. Then, close the load 

cover. 

– Start AML interface in the computer, choose the manual option and start the process. 

– Open valve, start pump, wait until the vacuum reach 10-3 mbar, during that time turn 

on heating 90°C for upper and lower plate. When pressure reached 10-3, apply 

pressure 800N on the plate by screw the wheel, in 10 minutes. 

– Turn off heating, release the pressure between two plate to 0, turn off pump, close 

valve. Open N2 valve to cool down system. 

– Collect the bonded sample. 

– Load new sample or close the system. Turn off machine and computer, close all the 

valves. 

– Bring sample for cutting by micro-milling machine Réalméca RV2 SP (Figure A2-). 

Collecting the cut core by dipping the ferrite sample inside the acetone (Error! 

Reference source not found.). Then, measure the dimension of cut cores. 

 

 

Figure A2-1: Aligner wafer bonder AML AWB04 
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Figure A2-2: Two layers 1cmx1cm of thin film commercial ferrite and 1cmx1cm 

silicon plate on the silicon wafer 

 
 

Figure A2-3: Micro-milling machine Réalméca RV2 SP (left) and 200 µm end mill (right) 

A.3. Equipments for fabricating in-house made ferrite and realizing printed 

cores  

 

Figure A3-1: The attritor mixer 
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Figure A3-2: The zirconia balls (left) and the slurry after mixing 

 

 

Figure A3-3: Ferrite paste preparation 

 

Figure A3-4: Screen printing machine DEK Horizon 01i 
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Figure A3-5 : Kapton polyimide support and the wafer on the stencil substrate (left) and 

metal squeegees for screen printing (right) 

A.4. Principle of thermomechanical analysis  

Thermomechanical analysis (TMA) can measure the sample displacement, e.g. growth or shrinkage, as 

a function of temperature, time, and applied force. TMA analysis can help to understand sintering 

behavior and phase change position. A schematic diagram of TMA analysis apparatus is given in 

Figure A4-.  A probe rests on the sample on a stage with minimal downward pressure. The probe is 

integrated with an inductive position sensor. The easily accessible chamber is located in the center of 

the furnace. Both temperature and atmosphere can be controlled. In addition, an optional mass flow 

controller is available for purge gas regulation. The gas can be evacuated and allows to measure under 

a defined atmosphere. In our analysis for ferrites, the measurement is carried out under air. The system 

is heated at a slow rate. If the specimen expands or contracts, it moves the probe. The inductive 

position sensor records this movement. A thermocouple close to the specimen measures the 

temperature. The TMA analysis helps us determining the temperature and duration for sintering 

ferrites. 

 

Figure A4-1: SERATAM SETSYS evolution apparatus for TMA analysis 
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A.5. Principle of scanning electron microscopy and energy dispersive 

spectroscopy  

Scanning electron microscopy (SEM) allows us to observe the microstructure of the ferrites. Samples 

must have a nearly perfect flat surface for observation. The principle of observation by electron 

microscopy is to bombard the sample with an electron beam. Different responses are emitted 

according to the nature of the collision between the electrons and the incident surface of the sample, 

see Figure A5-. Different signals are received by the appropriate detectors, synchronized with the 

scanning of the imaging surface, and then, to reconstitute a two-dimensional electronic image of the 

surface. The secondary electrons and backscattered electrons are used for topographical 

characterization. The secondary electrons are the result of inelastic collisions in which the incident 

electron beam transfers part of their energy to the atoms of the specimen by exciting the ejection of 

another electron in the specimen, called secondary electrons; they have low energy of a few hundred 

eV. The backscattered electrons are the result of the elastic collisions in which the electrons of the 

incident beam have the direction changed and their kinetic energy remained due to the large difference 

between the mass of electron and nuclear. These two species, backscattered electrons and secondary 

electrons are collected by scintillation detectors which absorb the emitted light and reemit it in the 

form of electrons via the photoelectric effect. The signal is then amplified by a photomultiplier for the 

image.  

 

Figure A5-1: Interaction of incident electron beam with the sample specimen 

 

Figure A5-2: Scanning electron microscope Hitachi 4800 for microstructure observation 
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Energy dispersive spectrometry (EDS) uses the emitted X-ray spectrum, and/or Auger spectrum to 

obtain a localized chemical analysis. In principle, all elements from atomic number 4 (Be) to 92 (U) 

can be detected. This analytical technique equipped with SEM determines the chemicals present and 

their concentrations in the sample specimen. Following the ejection of a secondary electron, a hole is 

created in the shell of the atom. This hole is subsequently filled by an electron from an outer shell and 

the superfluous energy is emitted as a characteristic X-ray photon or the superfluous energy is 

transferred to another electron which is subsequently ejected as Auger electron. These X-ray or Auger 

photons correspond to the transition energy between the outer layer and inner layer and are 

characteristic to the atoms and help identify the chemical of atoms at the surface. Detection and 

analysis of X-ray and/or Auger photons allow the identification and the quantification of chemical 

elements in the surface of sample. 

A.6. Principle of vibrating sample magnetometer measurement 

 

Figure A6-1: Simplified form of vibrating sample magnetometer (Simon Foner). (1) loud-speaker 

transducer, (2) conical paper cup support, (3) Rod, (4) reference sample, (5) sample, (6) reference 

coils, (7) sample coils, (8) magnet poles, (9) metal container. 

A vibrating sample magnetometer or VSM is a scientific instrument that measures magnetic 

properties, invented in 1955 by Simon Foner at Lincoln Laboratory MIT. The magnetic induction 

measurement involves observation of the voltage induced in a detection coil by a flux change when the 

sample position is changed. A sample is placed inside a uniform magnetic field to magnetize the 
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sample. The sample is then physically vibrated sinusoidally, typically through the use of a 

piezoelectric material. In vibrating sample magnetometer, the sample motion is perpendicular to the 

applied field. The basic instrument is briefly described in figure 1. The sample (5) is vibrated 

perpendicularly to the applied field. The oscillating magnetic field of the vibrating sample induces a 

voltage in the stationary detection coils or pickup coil (7), and from measurements of this voltage the 

magnetic properties of the sample are deduced. A second voltage is induced in a similar stationary set 

of reference coils (6) by a reference sample (4), which may be a small permanent magnet or an 

electromagnet. Since the sample and the reference are driven synchronously by a common member, 

the phase and amplitude of the resulting voltages are directly related. The known portion of the 

voltage from (6), phased to balance the voltage from (7), is then proportional to the magnetic moment 

of the sample. In a typical setup, the induced voltage is measured through the use of a lock-in 

amplifier using the piezoelectric signal as its reference signal. By measuring in the field of an external 

electromagnet, it is possible to obtain the hysteresis curve of the material.  

 

A.7. Principle of complex permeability measurement by magnetic test 

fixture Agilent 16454A 

In this method, a toroidal core is coiled with a wire and relative permeability is calculated from the 

measured inductance values. This value is measured by impedance analyzer Agilent 4294A. The 

principle of complex permeability measurement using the test fixture 16451A is explained in this part. 

 

Figure A7-1: Relationship among current I, magnetic flux  and magnetic flux density B 

Magnetic flux density induced by current flowing in an infinitely long straight wire is expressed by the 

followed equation 

      𝐵 =  
𝜇𝐼

2𝜋𝑟
    (Eq. A7.1) 

Magnetic flux induced by current in closed loop is 

       𝜙 = 𝐿𝐼    (Eq. A7.2) 

in which L is self-inductance of the closed loop. 
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Furthermore, this magnetic flux can be expressed by integrating the magnetic flux density B 

throughout the enclosed surface 

𝜙 = ∫ 𝐵𝑑𝑠 

When the toroidal coil is mounted in 16454A, an ideal one turn inductor is formed as shown in the 

followed figure 

 

Figure A7-2: Measurement principle using test fixture 16454A (Agilent document) 

We have, 

𝐿 =
1

𝐼
∫ 𝐵𝑑𝑠 =  ∫ ∫

𝜇

2𝜋𝑟
𝑑𝑟𝑑𝑧

ℎ𝑜

0

𝑒

𝑎

 

By several mathematical transformations we get, 

    𝐿 =  
𝜇0

2𝜋
((𝜇𝑟 − 1)ℎ ln

𝑐

𝑏
 + ℎ0 ln

𝑒

𝑎
)  (Eq. A7.3) 

When the toroidal magnetic core is not mounted, the self inductance is 

𝐿𝑆𝑆 =  
𝜇0

2𝜋
ℎ0 ln

𝑒

𝑎
 

Then, 

     𝜇𝑟 =
2𝜋(𝐿−𝐿𝑆𝑆)

𝜇0ℎ ln
𝑐

𝑏

+ 1   (Eq. A7.4) 

 

As alternating current causes inductance loss, the self-inductance L of the measurement circuit is 

expressed as complex impedance 
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𝐿 =  
𝑍∗

𝑗𝜔
 

Denoted 𝑍𝑠𝑚
∗  as the impedance of the 16454A test fixture with no magnetic core mounted and 𝑍𝑚

∗  as 

the impedance of the test fixture with the magnetic core mounted, we get the complex permeability of 

the magnetic material 

     𝜇𝑟
∗ =

2𝜋(𝑍𝑚
∗ −𝑍𝑠𝑚

∗ )

𝑗𝜔𝜇0ℎ ln
𝑐

𝑏

+ 1   (Eq. A7.5) 

 

A.8. Description of electric set-up for losses measurement 

For the sake of simplicity, two expressions were used to describe two electric measurement set-ups. It 

is called “IAC losses” for the losses measured by Agilent 4284A (IAC and frequency as parameters) and 

“IDC losses” for the losses measured by Agilent 4294A (IDC and frequency as parameters). 

A.8.1. Electric set-up for IAC losses measurement 

A.8.1.1. Measurement set-up 

The measurement set-up for measuring IAC losses is depicted in Figure A8-. A SIGNATOR station is 

used for electrical characterization of integrated components, and the Kelvin probes are connected. 

These four points are connected to the impedance analyzer by four coaxial cables.  

 

Figure A8-1: Measurement set-up to measure IAC losses 

A.8.1.2. Kelvin probes 

To minimize the influence of electrical resistance of the inductor on the magnetic losses, we used 

Kelvin probe. 
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Figure A8-2: Kelvin probe 

The principle of Kelvin probe is “four point method” which separates the injection of current (Hc and 

Lc of impedance analyzer) and the measurement of potential (Hp and Lp of impedance analyzer). The 

electrical resistance of cables and the metallic contact of inductor is not included in the voltage drop of 

the terminal of inductor.  

  

Figure A8-3: a) Phenomenon of coupling inducing a voltage and b) Cancel the voltage by the ground 

wire 

The phenomenon of magnetic coupling between two cables (for example Hp and Hc) will result in an 

induced voltage and introduce errors of measurements. The solution is to connect the ground wire to 

create a current in the reverse direction to allow another magnetic coupling to cancel each other [26]. 

A.8.1.3. Impedance analyzer Agilent 4284A 

The length of four coaxial cables, about 1m, influences the measurement under the form of parasitic 

inductance. To eliminate this error, three calibrations are done on the impedance analyzer before each 

series of measurement: (i) “phase compensation” to compensate the phase discrepancy between 

voltage and current, (ii) “fixture compensation SHORT” to compensate the parasitic inductance and 

(iii) “fixture compensation OPEN” to compensate the parasitic capacitance. 

A.8.2. Electric set-up for losses measurement with IDC bias 

A.8.2.1. Measurement set-up 

The measurement set-up for measuring losses with IDC  bias is depicted in Figure A8-. In this set-up, 

the measurement station is equipped with RF probe which is connected to the impedance analyzer 
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with a RF coaxial cable. To inject a continuous current during measurement, adapter Agilent 16200B 

is connected to Agilent 4294A station. 

 

 

Figure A8-4: measurement set-up to measure IDC losses 

A.8.2.2. RF probe 

Above 1 MHz, the phenomenon of electric wave reflection can appear and introduce large error to the 

measurement. Due to that, the RF probe made of ceramic is necessarily used in this frequency range: 

two points are connected to the ground of the circuit and the central point injects excitation signal. 

 

Figure A8-5: RF probe and ‘ground-signal-ground’ configuration (on top left) 

A.8.2.3. Impedance analyzer Agilent 4294A 

For the same reason of eliminating the problem of parasitic inductance, capacitance, the calibrations 

are necessary as “phase compensation”, “fixture compensation: OPEN”, “fixture compensation: 

SHORT”. However, the measurement at high frequency needs another calibration which is “Fixture 

compensation: LOAD”. All steps of calibration are done when the adapter and current generator are 

connected to the measurement set-up (with IDC = 0A). When the calibration is done and saved, the 

measurement can be carried out and the results of the measurement are analyzed. 
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