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Chapter 1

Research Activities

1.1 Introduction

Algorithmics of motion is a fundamental part of robotics. It deals with the development
of methods to compute, simulate and analyze motions of physical systems such as articu-
lated mechanisms or mobile robots. Algorithmics of motion is my basic research domain,
and this is the reason why I carry out my research activities within a robotics group.
Nevertheless, my scientific interests go beyond robotics. Indeed, since the end of my PhD
thesis, my activities are focused on interdisciplinary research in the areas of structural
bioinformatics and materials science. In particular, I am interested in the development of
methods for modeling biological molecules and polymers, as well as in the applications of
these methods in biology, biotechnology and nanotechnology. Motivated by this scientific
interest, I have actively participated in the emergence of a new research axis at LAAS-
CNRS on “Molecular Motion Algorithms”. This interdisciplinary research topic involves
interactions and collaboration with experts in biochemistry, biophysics and biology. The
continuos contact with these other disciplines along the past ten years has been a very
rich experience that has allowed me to acquire knowledge in these areas, as well as the
ability to communicate with scientists from different background, which is essential in this
context.

The main problem addressed by my research concerns motion of complex systems.
Structural bioinformatics and materials science are very interesting areas for the devel-
opment of methods since they involve extremely challenging problems related to motion.
Doubtless, biological macromolecules (such as proteins or RNA) and polymers, at the
atomic scale, can be seen as extremely complex mobile systems. The development of
methods for modeling/simulating motions of such systems is essential to better under-
stand their physicochemical properties and biological functions. These methods are also
of key importance for advances in application areas such as health (e.g. drug design),
biotechnology (e.g. engineered enzymes for bio-catalysis) or nanotechnologies (e.g. nucleic
acid-based nano-devices). Nevertheless, whenever possible, methodological developments
motivated by the complexity of molecular systems are mostly carried out in a general, ab-
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stract manner, thus enabling their application in other domains, particularly in robotics.
Even if it correspond to a minor part in my research activities, I continue working on
robot motion and manipulation planning, mostly in the framework of European projects.

The next sections present a summary of my contributions. They are structured into
three categories : methodological advances, applications in robotics, and applications in
structural biology, biotechnology and materials science.

1.2 Methodological advances

My main methodological contributions concern motion planning algorithms for complex
systems. Complexity in this context mainly concerns high-dimensionality together with
multiple types of motion constraints, being kinematic loop closure an important class of
them. I have also investigated variants of motion planning algorithms able to provide good-
quality solutions when a cost-function is defined over the space being explored. Parallel
implementations of these algorithms have also beed studied.

Most algorithmic developments have been done in a general perspective, the underly-
ing principles being applicable to problems in robotics, in structural bioinformatics, and
possibly in other domains such as computer animation or computer-aided manufacturing.
Nevertheless, I have focused efforts on specific variants and implementations of these al-
gorithms to deal with molecular systems [4]. In the context of structural bioinformatics,
I have contributed with the development of approaches combining motion planning algo-
rithms and other computational techniques, as well as with geometric methods to filter
data and to analyze results provided by such techniques. In addition, I have worked on
basic methods associated with motion planning, such as collision detection, aiming to
enhance the overall performance of the algorithms. These various methodological contri-
butions are summarized below.

1.2.1 Algorithmic developments in a general framework

Motion planning for closed-chain mechanisms

Mobile systems with kinematic loop-closure constraints are challenging for motion plan-
ning. Indeed, such constraints imply changes in the topological properties of the config-
uration space, which require a reformulation of the problem with respect to the “basic”
motion planning problem for open-chain mechanisms [23]. Closed-chain mechanisms are,
however, frequent in robotics. Parallel robots are a clear example of this. Closed kine-
matic chains are also created when several manipulators grasp an object simultaneously.
Algorithms for computing motions of closed kinematic chains are also important for appli-
cations in structural bioinformatics. For instance, simulating motions of cyclic molecules or
flexible fragments of proteins (called loops) requires dealing with loop-closure constraints.
Figure 1.1 represents several closed-chain systems.
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Figure 1.1: Illustrations of closed kinematic chains in robotics and structural biology:
a) A parallel robot; b) Two manipulators grasping an object; c) A cyclic peptide;
d) A flexible protein fragment with fixed ends.

My thesis work [77, 23] proposed a framework for the extension of sampling-based
motion planning algorithms to deal with closed-chain mechanisms. In the following years,
I have continued with the improvement of algorithms in this direction, and I have in-
vestigated other approaches to closed-chain motion planning based on space-subdivision
techniques. The following paragraphs provide more detailed explanations on these works.
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Extending sampling-based algorithms: The configuration space of a closed-chain mecha-
nism is a lower-dimensional subset of the joint space (i.e. the space of all the variable
parameters describing the spatial configuration of the system). While the joint space
can be represented by an n-dimensional polytope, the configuration space is composed by
a set of manifolds, whose parameterization is not straightforward. Therefore, sampling
and connecting configurations cannot be done using simple techniques as for open-chain
mechanisms. Indeed, sampling-based motion planning algorithms, such as the Proba-
bilistic Roadmap (PRM) planner or the Rapidly-exploring Random Tree (RRT) planner,
require extensions to enable their applicability to closed-chain mechanisms. My thesis
work [77, 23] proposed a framework for such extensions, and provided algorithmic tools
for efficient configuration sampling. During the PhD thesis of Mokhtar Gharbi, we have
introduced an improvement that permits to compute paths involving the reconfiguration
of the system, which may be necessary to solve some classes of problems, particularly
when manipulating objects with several robotic arms. The proposed algorithm [39] ex-
terns the PRM planner by including a multi-layer structure of the configuration space, and
by considering an explicit treatment of singular configurations that connect these layers.

A resolution-complete, subdivision-based method: Sampling-based motion planning algo-
rithms are efficient and general methods, able to treat difficult problems in high-dimensional
spaces. However, they present a weak completeness guarantee, namely probabilistic com-
pleteness, which simply states that the method will find an existing solution if sufficient
computing time is provided. Although such a weak completeness property is not a real
drawback for most practical applications, some other applications may require stronger
guarantees. For instance, when using motion planning algorithms in virtual prototyp-
ing for product development, the capacity to determine if a design is incorrect because
motion between two configurations is impossible is of great importance. In the context
of structural biology, completeness may be important for an accurate analysis of transi-
tions between meta-stable states of molecular systems In collaboration with researchers
at IRI (CSIC-UPC, Barcelona), we have developed a resolution-complete motion planning
method for closed-chain mechanisms [40]. The approach is based on a branch and prune
subdivision algorithm, which was originally developed to solve inverse kinematics prob-
lems of serial mechanisms and direct kinematics of parallel robots. This algorithm is able
to provide a complete representation of the configuration space of a closed-chain mecha-
nism, with an arbitrary resolution. In the framework of a collaborative project, we have
extended this algorithm for considering collision detection, and we have combined it with
several motion planning techniques. This approach is currently applicable (in practice) to
systems involving a moderate number of degrees of freedom. Variants and extensions to
deal with a wider range of problems could be investigates in the future.
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Exploration of very-high-dimensional spaces

High-dimensionality is probably the main challenge for motion planning algorithms, as for
any method that performs exploration of a search/state space. Sampling-based motion
planning algorithms, such as PRM and RRT, are able to efficiently solve problems involv-
ing a moderately high number of variables (i.e. a few tens of degrees of freedom). This
is enough for most applications in robotics. In structural biology, however, most prob-
lems require to deal with a much higher number of variables. Indeed, models of biological
macromolecules may involve thousands of degrees of freedom. We have investigated two
directions to deal with very-high-dimensional spaces: One is based on a functional de-
composition of the degrees of freedom, and the other applies a dimensionality reduction
approach.

Decoupling degrees of freedom: We have developed an extension of the RRT algorithm,
called Manhattan-like RRT (ML-RRT) [42, 16], to treat high-dimensional problems that
admit a particular structuring of the configuration space. The main idea is to decompose
degrees of freedom into groups depending on their relevance/role in the motion planning
problem. Active degrees of freedom are associated with the motion of objects/parts that
are essential for treating the problem, whereas passive parameters correspond to parts that
need to move only if they hinder the motions of other mobile parts (active or passive).
ML-RRT treats active parameters at each iteration, as in a basic RRT algorithm. The
subset of parts associated with passive parameters that may block the active parts motion
are then identified, and moved subsequently. Such a decoupled treatment of degrees of
freedom significantly improves the performance of the algorithm, enabling the solution of
classes of problems up to now intractable in practice.

The active/passive partition can be clearly illustrated in the case of molecular disas-
sembly problems, in which path planning algorithms can be used to simulate protein-ligand
unbinding. In this type of problems, the important parameters are those defining the rel-
ative pose (i.e. position and orientation) of the ligand with respect to the protein. These
parameters are considered to be active parameters within ML-RRT. The parameters cor-
responding to the internal flexibility of both molecules are considered to be passive, since
they only need to be modified if rigid-body disassembly is not possible. The idea is il-
lustrated in Figure 1.2. Section 1.4 will further explain the application of ML-RRT to
structural biology problems.

During the PhD thesis of Duc Thanh Le, we have developed several extensions of ML-
RTT. A first extension was aimed to enlarge the applicability of the algorithm. It involves
a hierarchical representation of the mobile system, with different degrees of mobility (also
called passiveness levels) associated to parts. The main interest of this extension was to
better deal with protein flexibility when simulating protein-ligand interactions [12], but
the idea could also be applied to disassembly problems in constrained workspaces involving
a large number of mobile parts. With respect to the basic ML-RRT, which was able to
treat the flexibility of the ligand and the protein side-chain, the extended version enables
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Figure 1.2: The image on the left illustrates an academic disassembly planning problem for
two articulated objects. An analogy can be made with the protein-ligand disassembly problem
represented in the right-hand image.

the introduction of flexible backbone fragments. This extension permits the simulation of
movements of parts of the protein structure (e.g. loops, helices) induced by interactions
with the ligand.

Another variant, called Iterative-ML-RRT (I-ML-RRT), was developed for simultane-
ously (dis)assembly sequencing and path planning [36]. Indeed, both are parts of a same
problem that can be formulated in a general path planning framework. The idea is to per-
form iterative calls to the ML-RRT algorithm, using different active/passive partitions,
until all the parts of a general assembly are extracted. Since the method does not rely
on any sophisticated geometric computations but only uses collision detection, it can be
applied to complex CAD models.

Finally mention that we have also applied the principle of functional decomposition
in a PRM framework [35], in the particular context of manipulation planning with multi-
arm robots, during the PhD Thesis of Mokhtar Gharbi (this application will be further
discussed in Section 1.3). In this case, the idea is to compute independent roadmaps for
different parts of the system, and then, to construct a super-graph for planning motions
of the whole system by the composition of elementary roadmaps.

Dimensionality reduction using collective degrees of freedom: Another approach to deal
with very-high-dimensions spaces applies dimensionality reduction techniques to enable the
tractability of problems. The underlying principle is to project the high-dimensional space
on a lower-dimensional one, which is sufficiently representative for solving the problem (or
a simplified instance of it). One of the most popular dimensionality reduction techniques
is Principal Component Analysis (PCA). Although PCA has been successfully applied in a



1.2. Methodological advances 11

few works in the context of motion planning, it presents two important drawbacks. First,
for performing the analysis, it requires a data set that can be difficult to obtain. Second,
it is based on a linear approximation, which can be unsuitable for many systems.

We have proposed a different approach, which can be applied to compute motions of
complex systems that move by the action of a set of forces represented by a potential
energy function. Our developments have been made in the context of molecular system,
but the approach could be applied to other types of complex systems. For instance, the
application to compute motions of self-organized multi-agent systems could be investi-
gated. The approach relies on the combination of Normal Mode Analysis (NMA) and
motion planning algorithms [17, 28, 1] . NMA is based on an harmonic approximation
of the potential energy. Several works have shown that low-frequency normal modes are
a good approximation of large-amplitude motions of molecules, in which atom motions
are highly correlated. Our method searches for paths in the (high-dimensional) conforma-
tional space of the molecule by performing an RRT-like exploration of linear combinations
of low-frequency normal modes. Since the harmonic approximation of NMA is valid only in
the vicinity of the initial structure used for the analysis, normal modes are recomputed at
intermediate states in order to enable an accurate simulation of large-amplitude motions.
More explanations on the interest of the approach will be provided in Section 1.4.

Exploration of continuous cost-spaces

Motion planning has traditionally aimed at finding feasible, collision-free paths for a mo-
bile system. However, beyond feasible solutions, in many applications it is important to
compute good-quality paths with respect to a given cost criterion. When a cost function is
defined on the configuration space of the system, motion planning becomes a path-finding
problem in a continuous cost-space. Figure 1.3 illustrates on simple examples the differ-
ence between a basic motion planning problem and a problem involving a cost-function.
In robotics, the cost function associated with robot configurations may be defined from
the distance to obstacles in order to find high-clearance solution paths. It may also be
related to controllability, to energy consumption, or to many other different criteria. In
molecular applications, the cost function is usually defined by the potential energy or the
free energy of the molecular system. Computing low energy paths is important since they
correspond to the most probable conformational transitions.

We have developed a variant of the RRT algorithm, called Transition-RRT (T-RRT) [13],
to compute good-quality paths in high-dimensional continuous cost-spaces. The idea is
to integrate a stochastic state-transition test, similarly to the Metropolis Monte Carlo
method, which makes the exploration get focused on low-cost regions of the space. The
algorithm involves a self-tuning mechanism that controls the difficulty of this transition
test depending on the evolution of the exploration process, and which significantly con-
tributes to the overall performance of the method. T-RRT is a simple and general algo-
rithm that can take into account any type of continuous, smooth cost function defined on
the configuration space. It has been successfully applied to diverse robot path-planning
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Figure 1.3: a) Illustration of a basic motion planning problem in 2D: All collision-free paths are
equally valid. Optimality may depend on the path length. b) Cost-based motion planning in 2D:
The quality of the solution depends on the cost values along the path.

problems [13, 33, 21] as well as structural biology problems [7]. Some of these applications
will be further discussed in next sections.

Recently, we have worked on variants and improvements of the basic T-RRT algorithm.
One of these variants involves its combination with the ML-RRT algorithm. This variant,
called MLT-RRT [30], is aimed to treat more efficiently classes of problems in which the
cost/energy function can be decomposed into elementary terms associated with different
groups of degrees of freedom. Other improvements of T-RRT are aimed to enhance the
efficiency of the the algorithm for treating problems in large-scale workspaces. We have
investigated different strategies building on improvements proposed in the literature for
the basic RRT [27]. The analysis of the performance of these variants on a set of problems
shows that devising a general strategy that performs well in all the scenarios is not easy.
Significant improvements were only obtained when using a bi-directional implementation of
the algorithm, which simultaneously constructs two trees rooted at the initial and the goal
configurations. The idea has been further developed with the Multi-T-RRT algorithm [25],
which constructs n trees from a set of configurations. These configurations may correspond
to waypoints defined by the user in the case or robotics applications [25], or can be a set of
low-energy conformations of a molecule obtained with energy minimization techniques [26].

Parallel algorithms

The complexity of the problems we treat, both in robotics and in the molecular context,
tend to increase along the years. The mobile systems tend to have a higher number
of degrees of freedom, which generally implies that motion planning algorithms require
a higher number of iterations to solve problem. In addition, motion constraints and
cost functions tend to be more complex, which implies that additional computing time is
required to evaluate the feasibility or the quality of configurations of the system during the
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planning/exploration process. A possible way to face such an increasing computational
cost is to develop parallel algorithms, able to exploit multiprocessor architectures. We have
developed parallel versions of RRT-like algorithms, which are a type of methods we largely
apply in our works. More precisely, we have analyzed several parallelization paradigms,
and we have proposed implementation schemas on distributed-memory architectures, using
the Message Passing Interface (MPI) [31, 3].

1.2.2 Methods for molecular modeling and simulation

A new mechanistic approach to protein modeling

In the framework of our methodological developments in the molecular context, we have
proposed a new mechanistic approach to protein modeling. The main principle is to divide
long polypeptide chains into short fragments involving three amino acid residues, which
will be called tripeptides from now on. The idea is illustrated in Figure 1.4. Such a
subdivision enables a multi-scale treatment of the protein. At the coarse-grained scale,
each tripeptide is considered as a single (oriented) particle, to which a reference frame
is attached. The atomic-scale model can be efficiently reconstructed from the tripeptide-
based, coarse-grained model using methods from robot kinematics. Indeed, a tripeptide
can be modeled in a similar way as a robot manipulator with six revolute joints. Thus, a
semi-analytical inverse kinematics method (like the one explained below) can be applied
to obtain the coordinates of the all-atom model from the pose of the reference frames
associated with the particles of the coarse-grained model.

On the basis of this mechanistic model, we have proposed a unified approach to devise
move classes for a more efficient sampling of the conformational space of proteins using
Monte-Carlo-like methods [29] (an extended version of this work, including a more detailed
analysis of results, is in preparation). This new modeling approach has also allowed us to
improve the performance of a method to simulate conformational transitions of proteins [1]
(see Section 1.4.1), and other applications will be explored.

Geometric filtering for the prediction of molecular interactions

In addition to methods to sample or to explore the conformational space of molecular
systems, we have proposed a geometric filter to improve the performance of protein-protein
docking prediction techniques (see Section 1.4.2 for explanation about the problem). Some
of these techniques apply an exhaustive sampling of the relative pose of the two proteins in
a first stage of the docking prediction procedure. The methods we have developed is aimed
at filtering samples that will probably not lead to a stable, low-energy conformation of
the protein complex. The proposed filtering method, called Ray Casting Filter (RCF) [8],
is based on computer graphics techniques. It is able to efficiently identify conformations
presenting a weak complementarity between the surfaces of the two proteins, and which,
in principle, are unlikely starting points for a docking process. The integration of RCF
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b)a)

d)c)

Figure 1.4: Illustration of the protein subdivision approach. Fragments of three amino-acid
residues are treated as kinematic chains, similar to robot manipulators.

within ATTRACT, a popular protein-protein docking method, has provided very good
results, especially for enzyme-enzyme inhibitor complexes. In addition to a significant
speedup (results are obtained about 15 times faster in average compared with the basic
ATTRACT method), the filtering process removes some false positives, which improves
the quality of docking predictions.

It is interesting to mention here that the basic ideas of RCF have been subsequently
applied in robotics to devise a grasping method [32]. The method computes enveloping
grasps with a multi-fingered robotic hand, searching to maximize the contact surface
between the held object and the hand’s surface in a given pre-grasp configuration.

Improvements of basic methods

A very significant part of the computing time required by all the aforementioned algorithms
is spent in basic operations such as distance computation, nearest neighbor search, collision
checking, or forward/inverse kinematics calculations. Thus, the efficiency of these basic
methods is essential for the good performance of the overall algorithm. As a part of my
research, I have participated in the development of several such important “low-level”
methods.
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Distance computation and collision checking: In collaboration with colleagues at the In-
stitut de Robòtica i Informàtica Industrial (IRI, CSIC-UPC, Barcelona), we have devel-
oped several algorithms for distance computation and collision checking on atomic-scale
molecular models. A first algorithm, called BioCD [22], was specifically designed to be
used within sampling-based motion planning algorithms applied to proteins described as
kinematic chains. BioCD uses hierarchical data structures to approximate the shape of
the molecules at successive levels of detail, making the number of atom pairs tested for
collision to be significantly reduced.

The drawback of BioCD is that it strongly relies on implicit structural information
inherent in proteins, and thus requires reimplementation for other molecule types. To
circumvent this problem, we have developed another method for inter-atomic distance
computation and collision checking that can be applied to any molecule type. The method
is a variant of the Cell Linked-Lists (CLL) algorithm, which is widely used in molecular
simulations. CLL-like algorithms use a three-dimensional grid to reduce the computational
complexity of neighbor search. We have proposed a variant involving a reorganization of
the stages of the algorithm, and the insertion of the atom in the grid by rigid groups,
aiming to avoid distance computations between atom pairs that have a fixed relative
position. Results show that, in may cases, this improvement can reduce computing time
by more than one order of magnitude with respect to the standard algorithm.

Inverse kinematics: In collaboration with Marc Renaud (Professor at INSA, Toulouse),
we have improved and implemented a semi-analytical inverse kinematics method for 6R
mechanisms (i.e. serial mechanisms involving six revolute joints) with arbitrary geometry.
The method is based on algebraic elimination theory, and develops an ad-hoc resultant
formulation inspired by the seminal work of Lie and Liang. The elimination procedure
leads to a system of quadratic polynomial equations, which can be linearized and treated
as a generalized eigenvalue problem, for which efficient and robust numerical solutions
are available. This inverse kinematics method is a key component in our conformational
sampling and exploration algorithms for proteins, peptides and polymers [11, 29, 1]. A
publication of the method is in preparation.

Tools for the analysis of results

Methods to explore the conformational space of biological macromolecules, including
molecular dynamics simulations, Monte Carlo methods and robotics-inspired algorithms,
generate huge amounts of data that can be difficult to analyze. To facilitate this analysis,
one possibility is to project the results of the exploration of a high-dimensional space into a
lower dimensional data structure. We have developed such a projection technique using a
voxel map [10]. The voxel map representation has been chosen for different reasons: 1) It
is a simple and regular structure, which facilitates operations such as nearest-neighbor
search. 2) It is 3D, which permits a visual rendering of the information gathered during
the conformational search. The choice of the three dimensions of the voxel map depend on
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the application. They may be directly a subset of the conformational parameters, or other
variables that can be computed from the conformation. The voxel size also depends on the
application, and on the chosen coordinates. Indeed, the resolution is chosen depending on
the motion amplitude, and on the cost of the ulterior treatment (i.e. geometric and/or en-
ergetic analysis). In our works, we have applied this technique to analyze results provided
by RRT-based methods. Nevertheless, the voxel map representation is a general approach
that could be applied to analyze results obtained with other conformational exploration
methods such as molecular dynamics simulations.

Coupling methods for the understanding of molecular systems

The algorithms presented in Section 1.2.1, when applied to molecular models, can directly
provide very useful information about molecular motions and interactions [4]. Neverthe-
less, such robotics-inspired algorithms can be further more interesting when integrated in
a more global methodology, together with other computational and experimental methods,
for a better understanding of molecular systems.

From our first works on the study of protein flexibility [18], we have investigated an
interdisciplinary approach, coupling robotics-inspired methods and molecular modeling
techniques. We have mainly developed a two-stage approach: 1) In a first stage, path-
planning algorithms are applied to explore the conformational space of a mechanistic model
of the molecular system. 2) In a second stage, results of the previous explorations are re-
fined and analyzed using more accurate models and state-of-the-art molecular moldering
techniques, such as energy minimization. This approach enables the simulation of large-
amplitude conformationals transitions with very few computation resources. As will be
discussed in Section 1.4, such molecular motions are essential for protein function, espe-
cially in the case of enzymes [10, 9, 5].

First results provided by such a combination of methods are very promising. As will
be explained in Chapter 3, I expect to go further in this direction by the combination of
computational end experimental methods within integrative structural biology approaches.
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1.3 Applications in robotics

The methodological developments presented in Section 1.2 can be applied to solve several
types of problems related to robotics such as motion planning, manipulation planning and
assembly planning. These applications have been briefly mentioned in that section. This
section focuses on two applications that I have further investigated, mainly in the context
of European projects.

1.3.1 Manipulation and Grasping

Since the origins of robotics, manipulation is probably the topic that has attracted more
research attention. Indeed, object manipulation is the most important action a robot can
perform. Object manipulation with a robot involves planning at several levels: First, given
the models of there robot gripper and of the object to be manipulated, possible grasping
configurations have to be identified. Then, the manipulation task itself has to be planned,
possibly requiring decomposition into subtasks due to object re-grasping requirements.
Finally, motions to achieve all these subtasks (e.g. go to grasp, transport, reconfigure for
re-grasping, etc) have to be computed before execution. The overall problem is even more
complex when several manipulators are involved in a manipulation task. In this case,
additional sub-problems, such as coordinated manipulation planning, have to be solved.

Manipulation has been the main focus of my work applied to robotics since my arrival
at LAAS-CNRS. During my thesis, I worked on coordinated manipulation planning [45,
23], which requires closed-chain motion planning, and on a continuous instance of the
manipulation task planning problem, simultaneously involving task decomposition and
motion planning [44, 24, 20]. In the following years, I have continued working on algorithms
for these applications, aiming to solve more complex problems, or to improve the capacity
of the methods to provide good-quality solutions.

A method based on the composition of a “meta”-graph from a set of probabilistic
roadmaps constructed for parts of the system [35] enables the solution of constrained
motion planning problems for multi-arm robot systems in very short computing times
(between one and two orders of magnitude faster) compared with a standard approach.
Other improvements were aimed to enhance the capacities of algorithms for coordinated
manipulation planning for such type of robot systems. The multi-layer approach devel-
oped during the PhD thesis of Mokhtar Gharbi [39] enables the reconfiguration of the
manipulators during the execution of the manipulation task, which increases the volume
of the workspace that can be reached. Also related to manipulation with multi-arm sys-
tems, a method that extends previous work on pick and place planning was developed for
this type of robot systems [34]. This method is able to automatically identify and plan for
re-grasping operations involving two hands. when required for solving some manipulation
queries. In addition, we have developed an original approach to identify suitable multi-
fingered arm configurations to grasp objects defined as continuous surfaces [32], which
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Figure 1.5: Left: Two-arm manipulation with the DLR’s Justin robot.
Right: Mobile manipulator interacting with a human.

can be applied in conjunction with the aforementioned algorithms. These methods were
implemented and successfully tested on real systems in the framework of the European
project DEXMART, as illustrated in Figure 1.5.

A current trend in the manufacturing industry is to bring robots out of their cages.
This involves the development of a new generation of manipulators able to safely interact
with humans. In addition to the mechatronic design and to control methods, the motion
planning problem also needs to be revisited. Indeed, motion planning in this context
is not only aimed at computing paths that minimize execution time, as is usually the
case for industrial robots. In addition, and most importantly, motions must be human-
aware. This means that the algorithms need to take into account the presence of humans
in the robot workspace in order to compute safe motions, whose intention should be
easily interpreted by the human co-worker. Such criteria can be considered to devise a
cost function associated with the robot configurations, and then the T-RRT algorithm
presented in Section 1.2 can be used to compute good-quality motions with respect to
it [33]. For instance, in the example presented in the right-hand image in Figure 1.5, the
robot will not execute a direct, straight-line motion to bring the object to the human;
instead, it will approach the object following a path that the human can easily see and
interpret. We have investigated this type of approach in the context of the European
project PHRIENDS, and work in this direction is being continued in the framework of a
new project: SAPHARI.
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1.3.2 Motion planning for aerial robots

Aerial robots are challenging systems for roboticists, and are interesting for diverse ap-
plications (in addition to military applications) such as transport and rescue operations,
or inspection and supervision in industrial, agricultural and forest environments. Mo-
tion planning for aerial robots involves additional difficulties compared to other classes
or robots such as simple wheeled robots or manipulators. The main issues are related to
controllability. Whereas a purely geometric approach is suitable for planning motions of
other types of systems that are more easily controllable, aerial robots require to consider
dynamics in order to ensure flyability, and to satisfy constraints such as maximum veloc-
ity and acceleration along a planned trajectory. In addition, planned motions should be
robust with respect to uncertainties in the position and orientation of the robot, which
are the effect of control and sensing errors. These errors can be particularly significant in
outdoor environments (especially under variable wind conditions).

We are currently developing motion planning methods for aerial robots in the frame-
work of the European project ARCAS. In this context, we investigate the use of simplified
dynamic models of quadrotors and helicopters for motion planning. The idea is to com-
pute realistic and easily controllable motions, while avoiding the use of computationally
expensive kino-dynamic planning algorithms. For this, we are developing a local method to
connect nearby configuration sampled by the planner, in a similar way to sampling-based
motion planning methods for non-holonomic car-like robots. The method (a publication
is in preparation), based on polynomial interpolation, guarantees position, velocity and
acceleration continuity along the trajectory, and is aimed to minimize flying time, while
respecting physical limits of the system. First results obtained (in simulation) with a
preliminary implementation of the method are very encouraging.

We are also investigating the application of the T-RRT algorithm for the computation
of good-quality paths with respect to safety and controllability metrics in this context.
First results, considering a cost function that takes into account the distance between
the robot and the obstacles, show the ability of the method to compute high-clearance
solution paths in cluttered environments [27, 25]. The Multi-T-RRT algorithm [25] is
particularly efficient when solving problems in large-scale workspaces. This is of interest
for industrial inspection applications. Given a set of points to be inspected, the algorithm
is able to find high-clearance paths to move between them, and automatically determines
the passage order that optimizes a criterion defined by the operator, which can be the
length of the overall solution path or the integral of a cost function along the path, for
instance. Even in very large and geometrically complex workspaces, the algorithm is able
to provide good-quality solutions within a few seconds of CPU time.

In addition to the aforementioned works on motion planning, we have developed an
original approach to 6-dimensional (6-D) manipulation of objects using flying robots and
cables [21]. Aerial towed-cable systems have been mostly applied to transportation, only
monitoring the position of the carried load. However, little work has been done on trying
to govern the load in both position and orientation, and existing approaches require a
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Figure 1.6: Top: A version of the FlyCrane. Bottom: Example of possible application of the
system to install a platform in a rescue operation.

given sequence of load poses along the trajectory, which may be too restrictive, especially
in constrained workspaces. In contrast, the approach we have developed for 6-D quasi-
static manipulation with an aerial towed-cable system only requires a start and a goal
configurations and provides a feasible path to achieve the desired manipulation task. In
addition to being feasible, all intermediate configurations along the path fulfill adequate
physical properties related to the forces applied to the system and to the cable tensions.
Such a quality associated with configurations is measured by a formal criterion derived
from the static analysis of the system, based on a similar formulation as that used for cable-
driven manipulators. Given this quality measure, a cost-based motion planner such as T-
RRT can be applied to compute good-quality paths. In addition to the methodology, we
have devised a system to perform 6- D manipulation tasks, that we have called FlyCrane.
This system consists of a moving platform attached to three flying robots by means of six
fixed-length cables linked by pairs to each robot. An version of this system is illustrated
in Figure 1.6. The approach has been validated in simulation on several 6-dimensional
quasi-static manipulation problems.
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1.4 Applications in structural biology, biotechnology and
materials science

1.4.1 Modeling conformational transitions of proteins and peptides

Protein loop and domain motions: Proteins are long polypeptide chains that use to fold
(at least partially) into a relatively stable, functional shape. Nevertheless, proteins are not
completely rigid molecules. Furthermore, protein flexibility and conformational transitions
are generally related to their capacity to recognize and interact with other molecules. The
study of protein motions is therefore essential for the understanding of protein functions.
Unfortunately, it is very difficult to obtain this type of dynamic information at the atomic
scale using available experimental techniques. Modeling protein conformational transitions
with conventional computational methods is also challenging because, in many cases, these
transitions are rare, slow events. Standard molecular dynamics (MD) simulations with
current computational resources cannot be applied in practice to model large-amplitude
(slow time-scale) conformational transitions. Such simulations require variants of MD
methods that enhance sampling of rare events or that bias the exploration in a given
direction, or, alternatively, to have access to outstanding computational power. Modeling
conformational transitions in proteins has motivated the development of specific methods,
computationally more efficient than MD simulations. Many of these methods are based on
the deformation of a trivial initial path between the two given conformations toward the
minimum energy path connecting them. These methods use to suffer from local minima
problems, which makes them unreliable when applied to complex systems.

As described in Section 1.2, we have developed methods to compute motions of com-
plex systems that can be applied to simulate molecular motion [4]. We have particularly
investigated their application to model conformational transitions in proteins, both at a
local level (e.g. loop motions) [19, 18], and at a global level [17, 1] (Figure 1.7). These
robotics-inspired methods are aimed at providing qualitative information about the confor-
mational transition using few computational resources. For this, they exploit the efficiency
of sampling-based exploration algorithms applied to simplified molecular models. Despite
the simplifications, the results provided by this type of methods can be very useful to
help undemanding molecular mechanisms at the atomic scale. They can also be used as
input for other classes of methods to perform a more accurate analysis of conformational
transitions.

The first application of an RRT-based algorithm for computing protein loop motions
was described in our seminal work in this domain [19]. Results obtained with this ini-
tial work served to demonstrate the effectiveness of motion-planning-based methods for
studying the mobility of long protein loops. An improved version of the method, which in-
tegrates ideas of ML-RRT, was applied subsequent to investigate loop and domain motions
in several enzymes in collaborations with researchers at the Laboratoire d’Ingénierie des
Systèmes Biologiques et des Procédés (LISBP, UMR CNRS-INRA-INSA, Toulouse) and
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Figure 1.7: Cartoon representations of local and global conformational transitions in proteins.

the Unité Fonctionnalité et Ingénierie des Protéines (UFIP, CNRS-Université de Nantes).
Some of our joint works [56, 9] were aimed to validate the computational approach, and
showed that conformational transition paths computed with robotics-inspired methods are
globally similar to those obtained with molecular dynamics simulations, which are orders
of magnitude more computationally expensive. These results highlight the ability of our
robotics approach to provide satisfying estimations of molecular motions at a very low
computational cost. Most importantly, applied together with site-directed mutagenesis
experiments, our methods have helped to understand the functional role of a protein loop
motion [5].

We have also applied RRT-based algorithms to analyze protein domain motions. In
particular, we investigated conformational changes of a DNA binding protein in collabo-
ration with researchers at the Institut de Pharmacologie et de Biologie Structurale (IPBS,
UMR CNRS-UPS, Toulouse). Results provided by a combination of robotics-inspired al-
gorithms and molecular modeling techniques helped to reinforce the hypothesis about the
existence of a continuous running from free to pre-bound conformations of the protein,
which are recognized by regulatory DNA regions [10]. We are currently applying the most
recent variant of our algorithm [1] to investigate other functional motions of proteins in
collaboration with researchers in structural biology at IPBS.

Peptide conformational transitons: From a purely chemical point of view, peptides can
be seen as small proteins. Indeed, proteins and peptides are polymers formed from amino
acids. From the structural point of view, however, a significant difference in addition
to size is that, unlike proteins, peptides do not fold into a stable shape. They use to
fluctuate between multiple energy minima that correspond to very different conformations.
Although peptides may be of less biological significance compared to proteins, they also
have important roles in biology, and are of interest for applications in pharmacology and
biotechnologies.
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Figure 1.8: Results provided by T-RRT on the energy landscape exploration of a small peptide.
Left: Identification of the 6 local minima. Right: Ensemble of conformational transition paths
between the 6 minima, through 4 transition states.

Because of the intrinsic flexibility, the structural characterization of peptides with ex-
perimental methods remains extremely difficult. Several computation techniques, manly
derived from molecular dynamics simulation and Monte Carlo methods, have been devel-
oped over the years to determine low energy conformations of peptides and the transitions
between them. Nevertheless, none of these techniques is fully satisfactory.

In the framework of a collaboration with researchers at the Laboratori d’Enginyeria
Molecular (UPC, Barcelona) we have shown that the T-RRT algorithm is an interesting
method to explore the conformational energy landscape of small peptides [7]. Figure 1.8
presents some results that show the ability of the method to find the local energy minima
and a variety of of low-energy paths connecting them, which also enables the identifica-
tion of transition states. Encouraged by these first results, we have continued working
on improvements of the method [26], and we envisage its combination with other com-
putational methods aiming to provide a meaningful representation of the conformational
energy landscape, which would help to understand structural and dynamic properties of
these molecules.
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1.4.2 Analyzing and predicting molecular interactions

Protein-ligand interactions: A significant part of my work in molecular modeling and
simulation has been focused on the analysis of protein-ligand interactions. In particular, I
have studied interactions taking place along the access/exit pathway between the surface
of the protein and the active site, which can be deep inside the protein, especially in
the case of enzymes. The activity and the specificity of a protein can be conditioned by
these interaction, and not only by the interaction with the ligand bound in the active
site. Despite their importance, protein-ligand interactions along the access/exit pathway
have been rarely studied, mainly because of the difficulty to obtain accurate information
about them with current experiential methods. Computational methods may help to
better understand such interactions. However, simulating ligand (un)binding, particularly
when the active site is deeply buried into the protein, is also a challenging problem for
computational approaches (Figure 1.9 illustrates the problem).

We have shown that the application of motion planning algorithms using a mecha-
nistic representation of molecules is an interesting approach that enables the simulation
of protein-ligand (un)binding at a very low computational cost [18, 12]. Such a robotics
inspired approach can directly provide qualitative information about protein-ligand inter-
actions taking place far away from the active site, which is very useful for applications in
biotechnology and pharmacology as explained below. When more accurate information is
required, the solutions provided by these simplified simulations are a suitable first approx-
imation that can be further refined using state-of-the-art energy models and molecular
modeling techniques.

The majority of my research on protein ligand-interactions has been conducted in
collaboration with researches at the Laboratoire d’Ingénierie des Systèmes Biologiques et
des Procédés (LISBP, UMR CNRS-INRA-INSA, Toulouse), in the framework of several
interdisciplinary research projects, of which ALMA (ITAV) and the GlucoDesign (ANR)
are the most representative ones (see Section 2.3 for the list of collaborative projects).
Together, we have investigated the application of the aforementioned method to rational
enzyme engineering [15, 14]. Experimental results have shown the ability of our methods to
identify interesting positions for site-directed mutagenesis, leading to new enzymes with
improved activity and enhanced selectivity. Such an interesting research direction will
be continued in the framework of the ProtiCAD project (ANR), whose objective is the
development of novel methods and computational tools for protein design (see Chapter 3
for additional explanations).

We are also collaborating with researchers at the drug design department of SANOFI
(pharmaceutical company). The objective is to develop improved computational meth-
ods to estimate the affinity between protein targets and small molecules, which could be
promising candidates for drug development. We are investigating a two-stage approach
consisting of the application of motion planning algorithms to provide an approximate
reaction path that is then used as input for meta-dynamics simulations. First results ob-
tained with this combined approach are very promising. The computing time and the need
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Figure 1.9: Illustration of a protein-ligand (un)binding problem. The figure shows a transversal
cut of a protein with a ligand (represented with spherical atoms) occupying different locations:
in the active site (orange) and on the surface (red). Some intermediate conformations of the
ligand along the exit path are represented with red lines, and some side-chains that change their
conformation during the ligand exit are represented with blue sticks.

of user intervention are significantly reduced compared to the previous method applied by
the researchers at SANOFI. In addition, the method seems to converge more rapidly to
an accurate estimation of the free energy variation. Further tests are being conducted to
confirm the interest of the approach, which would be the object of a joint publication.

Aiming to enable easy access to our methods for this type of applications to a larger
scientific community, we have developed a web application called MoMA-LigPath [2],
which is freely available at : http://moma.laas.fr/ . Starting from the model of a protein-
ligand complex, MoMA-LigPath computes the ligand unbinding path from the active site
to the surface of the protein. The application provides a set of solution paths, together
with information about protein-ligand interactions identified along these paths. In only
a few months, more than 300 jobs have been submitted to the web server, and we have
received positive feedback, which encourages us to develop other web applications in the
future.
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Protein-protein interactions: In addition to protein-ligand interactions, although in a
less extent, we have also addressed the protein-protein interaction prediction problem.
Protein-protein interactions are extremely important in biology, since they are at the basis
of most molecular processes in the cell. Furthermore, some of these important processes,
such as RNA transcription or DNA replication, are carried out by molecular machines
that are mainly built from a set of self-assembled proteins. Protein-protein interactions
are also important in other domains such as bio-nanotechnology, for the conception of
nano-sensors. Many questions remains about the mechanisms of protein recognition and
complex formation. This is mainly due to the relatively small number of structures of
protein complexes that have been determined experimentally. Computational methods are
therefore essential to gain insight into protein-protein interactions. Significant efforts have
been done in the last decades to develop methods able to predict the structure of protein
complexes given the structure of the individual proteins. We have contributed in this
domain with the introduction of the a filtering technique, called RCF (see Section 1.2.2),
to improve the performance of a class of protein-ligand interaction prediction methods.
Nevertheless, available methods are still inaccurate and unreliable, mainly when dealing
with very flexible proteins. I expect to participate in future advances in this application
domain, through the development of methods to better deal with molecular flexibility in
protein-protein interaction prediction.

1.4.3 Polymer modeling

Atomic scale simulation of polymer materials is a topic of interest since it permits to re-
duce costly experiments to determine their physicochemical properties. In this context,
modeling heterogeneously ordered multi-chain systems such as amorphous polymers re-
mains a challenging problem. During my stay in Barcelona in 2008-2009, I initiated a
collaboration with Carlos Alemán’s group at the Innovation in Materials and Molecular
Engineering Laboratory (IMEM, UPC), aiming to develop new approaches in this domain.

Our first joint work concerned the development of an improved version of a method
to model amorphous polymers recently proposed by Carlos Alemán’s group. The method
consists of iteratively generating polymer structures using a simplified energy model, and
subsequently relaxing the system, considering a more accurate model, in order to reduce
its potential energy. We improved this method by integrating a novel relaxation technique,
which applies analytical rebridging moves inspired by robotics [11]. A comparative analysis
using models of amorphous polyethylene with different sizes and densities showed the effi-
ciency of the improved version, which provides a significant performance gain with respect
to the original method. We expect to continue this fruitful interdisciplinary collaboration
in the framework of future projects.
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Other Activities

2.1 Teaching and Advising Activities

2.1.1 Teaching

Many of today’s scientific and technological advances are the result of interdisciplinary
research. Researchers from different domains have to share their knowledge and specific
background for working together on challenging problems. This requires some basic knowl-
edge in the other domains, as well as the capacity of communicating with people from other
disciplines. Unfortunately, few students hold such an interdisciplinary profile, particularly
in the context of my research activities. For this reason, I am devoting more and more
time to teaching, trying to promote interdisciplinary education in several departments and
at different levels. My teaching activities are summarized next:

• I am co-organizer of the international interdisciplinary school Algorithms in Structural
Bioinformatics, supported by the CNRS and Inria. This one-week school aims to bring
together people from different disciplines interested in advanced methods in structural
bioinformatics. The specific subjects being addressed variate each year. In 2012, the
first edition of the school was focused on computational methods to model/predict in-
teractions between biomolecules (http://www-sop.inria.fr/manifestations/algoSB/). In
2013, the focus was on protein flexibility (http://algosb.sciencesconf.org/).

• I am member of the pedagogical team of the Master School Ingénierie de la Matière:
Modélisation des Processus Physiques (IM2P2) at the University of Toulouse since 2008.
Since 2009, I also give a 10-hour lecture entitled “Molecular robotics” on robotics-inpired
methods for molecular modeling.

• In 2011, I was invited to give a 15-hour lecture on “Robotics algorithms for molecular
modeling and simulation” at the Master School Simulación de Poĺımeros y Biopoĺımeros
of the Universidad Politècnica de Catalunya (Barcelona, Spain).

• In 2008 and 2009, I gave a short lecture (3 hours) on the application of motion planning
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algorithms to solve some problems in structural biology at the Master School Systèmes
Automatiques, Informatiques et Décisionnels (M2R SAID), University of Toulouse.

• In 2008, I gave a 10-hour lecture series on “Motion Planning Algorithms” in the Master
School Robotica of the Universidad Politécnica de Valencia (Spain). A part of this
lecture was dedicated to structural bioinformatics.

• In 2007, I gave a 4-hour lecture at the French-Mexican Summer School on Image &
Robotics on sampling-based motion planning algorithms and their applications in struc-
tural bioinformatics.

• I have also taken some actions to introduce interdisciplinary education at the undergrad-
uate level. In particular, I propose project subjects on molecular modeling for 4-year
and 5-year students in the department Génie Mathématique et Modélisation of INSA-
Toulouse. The possibility of creating a “Module d’ouverture” in this interdisciplinary
topic is under study.

2.1.2 Advising

• Advisor or co-advisor of 8 PhD students:

– Duc Thanh Le. PhD thesis defended in 2010.
∗ Subject: (Dis)assembly path planning for complex objects in robotics and biology.

∗ Main advisor, co-directed with Thierry Siméon (LAAS-CNRS).

– Mokhtar Gharbi. PhD thesis defended in 2010.
∗ Subject: Motion and manipulation planning for multi-arm robot systems.

∗ Co-advisor, co-directed with Thierry Siméon (LAAS-CNRS).

– Ibrahim Al-Bluwi. PhD thesis defended in 2012.
∗ Subject: Robotics-inspired methods to model conformational changes in proteins.

∗ Main advisor, co-directed with Thierry Siméon (LAAS-CNRS).

– Romain Iehl. Last-year PhD student.
∗ Suject: Path-planning-based algorithms applied to the rational design of enzymes.

∗ Co-advisor, co-directed with Thierry Siméon (LAAS-CNRS).

– Didier Devaurs. Third-year PhD student.
∗ Suject: Algorithms to explore high-dimensional (continuous) cost-spaces.

∗ Main advisor, co-directed with Thierry Siméon (LAAS-CNRS).

– Victor Gil. Third-year PhD student.
∗ Suject: Coupling physical-chemistry and robotics approaches to model protein flexibility.

∗ Co-advisor, directed by Victor Guallar (BSC, Barcelona).

– Alexandre Boeuf. Second-year PhD student.
∗ Suject: Motion planning for aerial manipulators.

∗ Co-advisor, co-directed with Thierry Siméon (LAAS-CNRS).

– Laurent Denarie. First-year PhD student.
∗ Suject: Robotics-inspired methods for computational protein design.

∗ Main advisor, co-directed with Thierry Siméon (LAAS-CNRS).
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• Advisor or co-advisor of 6 post-docs:

– Svetlana Kirillova, from the National Academy of Sciences of Belarus. 2005-2006.
Subject: Development of a novel method combining Normal Mode Analysis and path planning

algorithms to compute conformational transitions of proteins.

– Léonard Jaillet, former PhD student at LAAS-CNRS. 2007-2009.
Subject: Motion planning algorithms with applications to structural biology.

– Sophie Barbe, from the ENS Cachan. 2006-2009.
Subject: Interfacing robotics-inspired algorithms and molecular modeling techniques.

– Yi Li, from Simon Fraser University. 2008-2009.
Subject: A geometric filtering technique to enhance protein-protein docking methods.

– Montserrat Manubens, visiting postdoc from IRI (CSIC-UPC, Barcelone). 2012.
Subject: Motion planning methods for manipulation with aerial robots and cables.

• Advisor of 12 undergraduate students at different levels, from 2nd year university degree
to Master. I have proposed and supervised small projects (from 2 to 6 months) on
different topics related to robot motion planning and molecular modeling.

• Scientific advisor of a CNRS Research Engineer: Marc Vaisset.

2.2 Organizational and Editorial Activities

2.2.1 Chairing activities, organization de conferences et workshops

• Since 2009, I am co-chair of the l’IEEE RAS Technical Committee on Algorithms for
Planning and Control of Robot Motion (http://www.robotmotion.org/). The goals of
this international committee are: to be a reference point for researchers on motion
planning and control in robotics (and other domains), to coordinate and to support
the organization of workshops and tutorials, and to promote scientific exchanges in this
community.

• Co-organizer of the Workshop on “Artificial Intelligence and Robotics Methods in Com-
putational Biology”, during the international conference of the Association for the Ad-
vancement of Artificial Intelligence (AAAI), 2013.

• Co-organizer of the Tutorial “From Robot Motion Planning to Modeling Structures and
Motions of Biological Molecules”, at the ACM Conference on Bioinformatics, Compu-
tational Biology and Biomedical Informatics (ACM BCB), 2013.

• Co-organizer of the Workshop “Motion Planning: From Theory to Practice”, during the
international conference Robotics Science and Systems (RSS), 2010.

• Program Committee member of the Computational Structural Bioinformatics Workshop
(CSBW), 2011-2013.

• Program Committee member of the European Conference on Artificial Intelligence
(ECAI), 2008, 2010.
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2.2.2 Editorial activities

• Associate Editor of the IEEE Robotics and Automation Society conferences: ICRA
2009-2012 ; IROS 2010-2013.

• Reviewer of journals and conferences of robotics: IEEE Transactions on Robotics, In-
ternational Journal of Robotics Research, IEEE Transactions on Automation Science
and Engineering, Workshop on the Algorithmic Foundations of Robotics, ...

• Reviewer of journals of bioinformatics, computational biology and physical chemistry:
Journal of Chemical Theory and Computation, Bioinformatics, Archives of Chemistry
and Biophysics, Journal of Computational Chemistry, ...

2.2.3 Other organizational and evaluation duties

• Member of the Jury de recrutement des CR2 d’Inria Sophia Antipolis, 2013.

• Since 2011, member of the Commision de recrutement du Département Génie Electrique
et Informatique (DGEI) of INSA-Toulouse.

• Between 2007 and 2009, member of the Commision de Projets LAAS, in charge of the
evaluation of interdisciplinary projets between groups of the laboratory.

2.3 Projects and collaborations

2.3.1 Contractual projects

• ProtiCAD - National Project ANR Modèles Numèriques (2013-2016)

– Subject: Methodological advances and novel tools for computational protein design.
– Partners: LAAS-CNRS, BIOS-Ecole Polytechnique, LISBP-INSA, Kineo-Siemens.

– Responsibilities: Coordinator.

• ARCAS - European Project FP7-ICT (2011-2015)

– Subject: A first multi-robot aerial system for the assembly and construction of structures.
– Partners: CATEC (ES), DLR (DE), UNINA (IT), LAAS-CNRS (FR), USE (ES), UPC (ES),

STI (DE), AIR (CH).

– Responsibilities: Co-leader of one work-package.

• SAPHARI - European Project FP7-ICT (2011-2015)

– Subject: New paradigms for the design of robots interacting with humans.

– Partners: UNIHB (DE), UNIPI (IT), UNINA (IT), TUM (DE), LAAS-CNRS (FR), IOSB

(DE), IIT (IT), EADS (FR), DLR (DE), UNIROMA1 (IT), KUKA (DE).

• OTIMASU - LAAS-CNRS Project (2009-2012)

– Subject: Methods to model interactions between biological molecules and inorganic surfaces.
– Partners: RIS and N2IS groups of LAAS-CNRS.

– Responsibilities: Coordinator.
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• GlucoDesign - National Project ANR Biologie-Santé (2009-2012)

– Subject: Low-cost chemo-enzymatic routes to produce glycovaccines against Shigella flexneri.

– Partners: Institut Pasteur, LISBP-INSA, LAAS-CNRS.

• DEXMART - European Project FP7-ICT (2008-2012)

– Subject: Service robots with dexterous and autonomous dual-hand manipulation capabilities.

– Partners: UNINA (IT), LAAS-CNRS (FR), Univ. Bologna (IT), DLR (DE), Univ. Karlsruhe

(DE), Univ. Saarlandes (DE), OMG plc (UK).

• AMYLO -Regional Project Midi-Pyrénées (2007-2010)

– Subject: Coupling simulation and haptic devices for modeling functional dynamics of proteins.

– Partners: LAAS-CNRS, LGP-ENIT, LISBP-INSA, Kineo-CAM.

• AMOBIO - Transregional Projetc Communauté de Travail des Pyrénées (2007 - 2009)

– Subject: Motion of structures with kinematic loops in robotics and biochemistry.
– Partners: LAAS-CNRS, UPC-CSIC (ES), Crystax Pharmaceuticals (ES), Kineo-CAM.

– Responsibilities: Coordinator in Midi-Pyrénées.

• PHRIENDS - European Project STReP IST (2006-2009)

– Subject: Developing robots that can co-exist and safely co-operate with humans.

– Partners: Univ. Pisa (IT), DLR (DE), LAAS-CNRS (FR), KUKA (DE), UNIROMA1 (IT),

UNINA (IT).

• ALMA - Regional Project ITAV (2006 - 2009)

– Subject: New approaches, combining robotics methods and molecular modeling techniques
for in silico analysis and prediction of interactions between biological molecules.

– Partners: LAAS-CNRS, LISBP-INSA, IPBS-CNRS, Inst. Claudius Regaud-INSERM.

• NanoBioMod - National Project ANR Jeunes Chercheurs (2006-2008)

– Subject: Multi-model approaches for the simulation of molecular systems in biotechnology.

– Partners: LAAS-CNRS, IPBS-CNRS, Rutgers Univ. (USA).

• Xylanase - National Projet ADEME 02-01051 (2004-2006)

– Subject: Optimizing the production process of bio-fuel from cereal co-products using the
catalytic properties of a xylanase.

– Partners: UFIP (Nantes), INRA (Reims).

• AMORO - LAAS-CNRS Project (2003-2005)

– Subject: Developming new methodologies for modeling and predictings protein-ligand and
protein-protein interactions.

– Partners: MIS and RIA groups of LAAS-CNRS.

• IRASIS - National Projet Robea (2003-2005)

– Subject: Developing a robot system for tumor destruction using an image-guided percutaneous
procedure.

– Partners: LSIIT (Strasbourg), IRCAD (Strasbourg), LAAS-CNRS.
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• MOVIE - European Project IST-2001-39250 (2003-2005)

– Subject: Development of techniques able to compute realistic motions of several virtual entities
in complex environments.

– Partners: Universiteit Utrecht (NL), LAAS-CNRS (FR), Tel Aviv University (IL), Kineo-

CAM (FR).

• BioMove3D - PIR CNRS (2002-2004)

– Subject: Development of methods to simulate protein-ligand access/exit paths based on recent
robot motion planning algorithms.

– Partners: LAAS-CNRS, INSA (Toulouse), INRA (Nantes).

• MOLOG - European Project Esprit 28226 (2000-2002)

– Subject: Extend the range of CAD systems applications to help the operator in decicion
making via the integration of new techniques of geometric reasoning, including motion and
task planning.

– Partners: LAAS-CNRS (FR), Universiteit Utrecht (NL), CADCENTRE (UK), EDF-DER

(FR), Kineo-CAM (FR).

2.3.2 Other collaborations

• Collaborations with several members of the Institut de Robòtica i Informàtica
Industrial (IRI, CSIC-UPC, Barcelona), before, during, and after my stay in this
laboratory in 2008-2009. We have collaborated on the development of improved mo-
tion planning algorithms for closed-chain mechanism, and on distance computation and
collision detection methods for molecular models. In addition, the mobility of people
between the two laboratories is very active. Léonard Jaillet moved to the IRI as a
postdoc after his PhD at LAAS. Montserrat Manubens, postdoc at IRI, did a 8-month
stay at LAAS in 2012. I was also external participant in the Spanish National project
CUIK++, coordinated by Llúıs Ros, between 2011 and 2013.

• Collaboration with Vinh Tran, molecular modeling expert at the Unité Fonctionnalité
et Ingénierie des Protéines (UFIP, CNRS-Université de Nantes). After the end of
the ADEME project between 2004 and 2006, which funded joint research, we have
continued an informal collaboration on the combination of robotics-inspired algorithms
and molecular modeling techniques for understanding functional dynamics of proteins.
With the recent arrival of Yves-Henri Sanejouand (expert on methods to model the
flexibility of proteins) at the UFIP, we expect to extend and reinforce our collaboration.

• Collaboration with the group of Carlos Alemán at the Innovation in Materials and
Molecular Engineering Laboratory (IMEM, UPC, Barcelona) on the development
of polymer modeling methods. I have co-advised the work of a master student (Ser-
gio Carrión) and a PhD student (Esther Córdoba) in this group. We are currently
planning to extend the collaboration with the participation of Ian W. Hamley (Dept.
of Chemistry, University of Reading) for treating new problems involving modeling of
polymer-peptide conjugates. The elaboration of a European project is under discussion.
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• Collaboration with Marc Bianciotto and Jean-Philippe Rameau of the Drug Design
team of SANOFI R&D. We develop improved computational methods to estimate the
affinity between druggable compounds and protein targets. We have co-advised a master
student in 2013, Fabien Contaut, who has worked on this topic. First promising results
have been obtained, and more experiments are being conducted in order to collect data
for a joint publication. We expect to continue this fruitful collaboration in the near
future.

• Informal collaboration with Victor Guallar, leader of the Electronic and Atomic Protein
Modelling Group at the Barcelona Supercomputing Center (BSC, UPC, Barcelona).
We exchange ideas on the combination of methods for modeling protein flexibility, and
we promote the mobility of students between our groups. I co-advise the work of Vic-
tor Gil, PhD students at the BSC. In 2011, he did a one-month stay at LAAS. Didier
Devaurs, PhD student at LAAS, visited the BSC during two months in 2011.

• Project of collaboration with Lionel Perrin, researcher at the Laboratoire de Physique
et Chimie de Nano-Objets (LPCNO, UMR INSA-CNRS-UPS, Toulouse), on pep-
tide self-assembly modeling. We would like to co-advise a PhD student for working
on a multi-scale multi-physics approach. Unfortunately, funding applications to the
University of Toulouse have been unsuccessful. We are looking for alternatives.

• Project of collaboration with Pau Bernadó, researcher at the Centre de Biologie
Structurale (CBS, UMR CNRS-INSERM-UM1, Montpellier), on modeling of intrinsi-
cally disordered proteins. Our first attempt to get funding through a proposal of Pro-
jets Exploratoires Pluridisciplinaires (PEPS) in 2012 was unsuccessful. Nevertheless, we
think that the approach we have in mind, combining experimental and computational
methods, would provide very interesting results. We are planning to propose a larger
project on this topic in the short future.

• Project of collaboration with the groups of Lionel Mourey et Alain Milon at the Institut
de Pharmacologie et de Biologie Structurale (IPBS, UMR CNRS-UPS, Toulouse).
These groups are experts in experimental structural biology methods, such as X-ray
crystallography, small-angle X-ray scattering (SAXS), and nuclear magnetic resonance
(NMR). In April 2013, we organized a brainstorming meeting on the combination of
experimental and computational method in structural biology. Several joint research
directions raised from this meeting. We have initiated informal collaborations on some
topics, and we are planning to apply for funding for collaborative projects to develop
integrative structural biology approaches coupling experiment and simulation.
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2.4 Mobility

2.4.1 Disciplinary mobility

In 2002, when I was still a PhD student in the robotics group of the LAAS-CNRS, I
started to be interested in problems related to protein modeling. This interest has been
reinforced along the years. My postdoctoral stay in a laboratory of biochemistry at the
Université de Nantes in 2004 was an important stage that strengthened my motivation
to carry out interdisciplinary research. Since 2004, when I was recruited as permanent
researcher at LAAS-CNRS, a notable part of my research activities is focused on the
development of methods to model proteins and their interactions with other molecules.
These method have been applied to several problems in structural biology, biotechnology
and materials science in collaboration with experts in these domains. At present, I am
envisaging the development of methods for modeling hybrid molecular systems, involving
biomolecules and synthetic/inorganic molecules. Such systems have potential applications
in bio-nanotechnologies, which is a domain of increasing interest at LAAS-CNRS. This
point is further developed in my research project (Chapte 3).

2.4.2 Geographic mobility

Between November 2008 and November 2009, I moved to Barcelona (Spain) for a one-year
stay as Invited Professor at the Universidad Politécnica de Catalunya (UPC), funded by
international mobility programs of the CNRS and the INPT. This stay allowed me to re-
inforce the relationship with colleagues at the Institut de Robòtica i Informàtica Industrial
(IRI, CSIC-UPC). I also had the opportunity to meet researchers in neighboring laborato-
ries with the aim of establishing future collaborations. In particular, I met Carlos Alemán
(Innovation in Materials and Molecular Engineering Laboratory, UPC) and Victor Gual-
lar (Barcelona Supercomputing Center), with whom I have very interesting interactions
at present.
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2.5 Software development

2.5.1 Move3D

Since my arrival at LAAS-CNRS, I participate in the development of Move3D, a general-
purpose motion planning software. This software has been mainly used for the prototyping
of algorithms. Modules developed from Move3D libraries are currently embedded in some
of the robots at LAAS-CNRS and have been integrated in demonstrators in the framework
of several european Projects.
Note that Move3D was at the origin of the creation of the start-up company Kineo-
CAM, which commercializes software solutions for CAD/CAM based on motion planning
algorithms originating from robotics research.

2.5.2 MoMA

Since 2006, I lead the development of a new molecular modeling software platform called
MoMA (for Molecular Motion Algorithms). In collaboration with Marc Vaisset (Research
Engineer at LAAS-CNRS), we have conceived and developed a modern, modular and
evolutive set of libraries for the implementation of software applications dedicated to the
simulation of molecular motions and interactions. Two basic modules, PSF and AMC, are
already available in the public domain (under CeCill license) : https://softs.laas.fr/Psf-
Amc . The module called PSF (for Protein Structure Format) is aimed to parse and orga-
nize the informations contained in standard files to represent bimolecular structures (i.e.
the Protein Data Bank file format). The module AMC (for Articulated Molecular Chain)
concerns the mechanistic representation of molecular objects. The core module of MoMA,
called AMC-Motion, which contains a collection of algorithms to explore the conforma-
tional space of molecular systems is under development. A first applications developed
from MoMA, called MoMA-LigPath, is accessible via a web server: http://moma.laas.fr/.
Other applications will be available soon.
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2.6 Technology transfer, industrial relationships

• Since is creation in 2000, I have had a close contact with the company Kineo-CAM.
This LAAS-CNRS spin-off, which was acquired by Siemens in 2012, develops software
solutions integrating motion planning technologies into CAD/CAM packages. Although
the activities of the company are mainly focused on industrial manufacturing, they
aim to spread over other areas. In particular, they are studying the possibility of
developing molecular modeling software based on robotics-inspired algorithms. With
this aim in mind, they have been partners in some projects coordinated by LAAS-
CNRS. Through my regular cooperation with Kineo-CAM, I contribute to technology
transfer from academic research to industry.

• In 2009, I was contacted by the company DNASTAR. Specialized in the development
of software tools for genomics, this USA company wanted to extend its activities toward
structural bioinformatics. Being interested in the type of robotics-inspired methods we
develop, DNASTAR envisaged either the possibility of establishing a research collab-
oration with LAAS-CNRS, or proposing me to serve as a consultant. Unfortunately,
some administrative constraints and a change in the scientific direction of the company
in 2010 made that the collaboration project was not accomplished.
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Research Project
3.1 Overview

The core of my research will continue focused on the development of algorithms to ex-
plore high-dimensional spaces. Despite significant advances in this area during the last
decades, a number of problems related to path finding and optimization in (non-convex)
high-dimensional spaces remain open. Developing better methods to solve these problems
is of interest for robot motion planning and control, as well as in other domains related
to the motion of physical or virtual systems, such as structural bioinformatics. For the
development of improved algorithms, I will investigate connections with other areas of
computer science, especially with other branches of artificial intelligence, and with other
theoretical disciplines. Indeed, sampling and exploration algorithms are the basis of nu-
merous methods in diverse disciplines, being applied mathematics and statistical physics
the two more clear examples.

In addition to methodological developments, their application in different domains
will continue playing an important role in my research. I wish to continue investigating
applications in robotics. Even though this is not a central part of my research project,
this is important for me in order keep rooted in my basic discipline. In particular, motion
planning and control of aerial robots is a challenging area in which I intend to work
together with other researchers at LAAS-CNRS.

As during the past ten years, the main motivation for my research will be the study
of molecular systems. In the context of structural biology, I am interested in coupling
computational methods and experimental methods for a more accurate structural and dy-
namic characterization of biological molecules, especially of protein. I am also particularly
interested in the development of new approaches to computational protein design, taking
into account protein flexibility. Going further in this direction, and for a longer-term re-
search, my project is to develop novel algorithmic approaches for the design of systems at
the atomic scale, with applications in bio-nanotechnologies.

Next sections provide more details on my research project from a fundamental and an
applicative point of view.
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3.2 Methodological developments

As we have shown in recent years, combining the underlying principles of sampling-based
motion planning algorithms and ideas from other methods, such as stochastic optimization
methods, is a suitable approach to address challenging problems in high dimension. This
is an interesting research direction that I propose to continue.

In the short future, I will continue working on further improvements and extensions of
the T-RRT algorithm, as well as on a more rigorous analysis of its properties. T-RRT is
a very general algorithm that can be applied to find good-quality paths in robotics appli-
cations, or low-energy (highly-probable) conformational transitions paths of biomolecules.
Nevertheless, more specialized variants of the algorithm, with specific properties, can be
developed depending on the application. For instance, in robotics, an any-time variant of
the algorithm that will eventually converge to an optimal solution if additional computing
time is available for motion planning, would be of particular interest. In molecular appli-
cations, an important aim for new algorithmic variants is to solve more efficiently problems
in very-high dimension. For this, the development of more sophisticated sampling strate-
gies and suitable search heuristics are required. In addition, I want to further investigate
the properties of the solutions provided by the algorithm with respect to thermodynamic
properties of molecular systems.

Another interesting direction that I intend to investigate is the introduction of machine
learning approaches in motion planning algorithms. Thanks to their conceptual simplic-
ity, sampling-based algorithms are very general techniques, able to solve many classes of
problems in moderately-high dimension. However, their simplicity can also be a drawback
in some cases; for instance, when the feasible (or low-cost/energy) subsets of the search
space have a complicated topology, or when solving problems in very-high dimension. In
such cases, the number of samples required to solve the problem can become prohibitively
high. A suitable approach to better solve these difficult classes of problems is to learn
about the structure of the regions of the space that are incrementally explored, and to
use this information to guide subsequent exploration. The choice of the parameters or
properties to be learnt and of the learning method itself are not straightforward. Several
possibilities have to be studied, taking care of preserving ergodicity, completeness, and
convergence properties of the exploration algorithms when introducing heuristics.

The aforementioned research directions concern extensions or improvements of algo-
rithms that explore continuous high-dimensional spaces by sampling points (i.e. states,
configurations) in order to construct a graph structure that tends to capture the topology
of the subset of the space where solutions can be found. When the problem involves finding
a continuous path, algorithms that directly operate in the path-space or the trajectory-
space (rather than in the state-space) can be an interesting alternative. In robotics, such
method have been mostly developed for trajectory optimization, and (with few exceptions)
they only present local convergence guarantees. More global methods have been developed
in computational biology and statistical physics. Nevertheless, their applicability remains
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mostly restricted to a particular molecular simulation framework. The development of
general, global methods to explore the path/trajectory-space of a mobile system is also a
promising research direction that I would like to investigate in the future.

3.3 Robotics applications:
motion planning and control of aerial robots

During decades, different subproblems related to robot motion have been usually treated
separately. Motion planning has traditionally considered only geometric aspects of the
problem, disregarding time or controllability issues. Algorithms have been mostly devel-
oped to compute collision free paths, considering perfect models of the mobile system and
the environment, and neglecting or simplifying dynamic considerations, which are treated
subsequently by trajectory generation and control methods. It is worth to mention that
the purely geometric problem is difficult enough, mainly when considering mobile systems
with many degrees of freedom in cluttered workspaces, so that it has motivated research
in the robotics community since the 70’s. Furthermore, such a decoupled approach (geo-
metric path planning + trajectory generation + control) is suitable in many applications,
especially when the mobile system is easily controllable, which is usually the case for a se-
rial manipulator or a wheeled robot moving at moderate speed. However, systems that are
more difficult to control, such as legged robots of flying robots, require a more integrated
approach.

I have started to work on more integrated methods for motion planning and control of
aerial robots in the framework of the European project ARCAS. The subject is challenging,
and I expect to continue working on it after the end of this project. Indeed, aerial robotics
is becoming a central research topic in the Robotics and Interactions (RIS) team at LAAS-
CNRS, and more generally in the academic and industrial context of Toulouse. In addition,
the arrival of a new CNRS researcher from January 2014, Antonio Franchi, expert on
control methods for aerial robots, will significantly contribute to reinforce these aspects
inside the team. Together with Antonio Franchi, Simon Lacroix and other colleagues,
we envision the development of more integrated robot system architectures, involving
stronger connections between sensing, planning and control. Problems related to aerial
manipulation are a new venue for the development of this type of methodology. Following
the lines initiated within the ARCAS project, we will continue working on methods to
generate motions of aerial robots equipped with arms or cables for object manipulation.

In addition to aerial robotics, I will continue participating in other activities of the
RIS team related to motion planning and task planning, mainly through co-advising of
PhD students and postdocs.
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3.4 Towards integrative approaches in structural biology

A complete description of biological activity at the molecular and atomic levels requires
taking into account the role of conformational dynamics. However, no single computational
or experimental approach can provide a comprehensive yet detailed characterization of the
ensemble of conformations that flexible biological macromolecules, such as proteins and
RNA, can adopt. Understanding molecular phenomena through such characterization
would be central to novel insights and treatments of numerous diseases related to protein
dysfunction. It would also be interesting in other domains such as biotechnology and
nanotechnology, where proteins an RNA have numerous applications.

Advances in this area require the development of integrative approaches, combining
theory, computation, and experiment to provide an accurate structural and dynamic de-
scription of biological macromolecules. Several leading groups in the U.S.A. and in Europe
are starting very interesting work in this direction. My project is to participate in the
development of an original approach by the introduction of robotics-inspired methods as
new computational tools in an integrative structural biology framework. I have started
discussions on several ideas with structural biology experts, and an informal collaboration
has been initiated with some of them while searching for opportunities to fund our joint
research.

The most direct application of robotics-inspired models and algorithms would be the
flexible fitting of high-resolution structures into low-resolution data provided by small-
angle X-ray scattering (SAXS) or microscopy to produce accurate models of large systems.
This is an important open problem is structural biology, which is not well solved with
current methods. I expect to work on this in the short future in collaboration with Lionel
Mourey (IPBS, Toulouse).

Another even more interesting direction for future research in this area is the combi-
nation of motion-planning-based algorithms and statistical physics methods with experi-
mental techniques, such as nuclear magnetic resonance (NMR) and SAXS, to accurately
model conformational ensembles corresponding to (meta)stable states, and transitions be-
tween them. The idea is to use experimental data to bias and/or to restrain simulations
in an intelligent way. Some directions to put this idea into practice have been envisaged
in collaboration with Alain Milon (IPBS, Toulouse) and Michael Nilges (Institut Pasteur,
Paris).

Following a similar approach on the combination of experimental and computational
methods, an extremely challenging problem than I want to address, in collaboration with
Pau Bernadó (CBS, Montpellier), is the structural and dynamic characterization of intrin-
sically disordered proteins (IDPs). Despite lacking permanent secondary and/or tertiary
structure, IDPs are fully functional and indeed perform highly specialized biological tasks
that complement these done by globular (folded) proteins. Furthermore, numerous IDPs
are directly associated with human diseases, including cancer, cardiovascular diseases, and
amyloidogenic pathologies such as Alzheimer’s, Parkinson’s, or diabetes II. IDPs pose an
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enormous challenge to structural biology as traditional approaches are not useful in such
an extreme case of conformational variability. Structural information can be obtained
with NMR and SAXS methods, but the interpretation of the observables measured is not
straightforward. New computational methods are necessary for a physically meaningful
interpretation in terms of structure and dynamics of experimental data obtained for IDPs
and to understand how these proteins work. The complexity of the problem will require
improved exploration algorithms, as well as sophisticated parallel implementations for
high-performance computing. We have applied for funding for a co-advised PhD student
to start working on such a challenging and largely unexplored subject.

3.5 Computational Protein Design

Due to their large range of possible functions, the study of proteins interests other fields
in addition to biology. For instance, proteins are pharmaceutical targets and drugs, their
catalytic properties are widely used in biotechnology, and they are used as components of
nano-devises in the rising field of bio-nanotechnology. Although the properties of natural
proteins can be directly exploited, new, designed proteins, with novel functions or improved
activities, are of major interest in all these application areas.

An important part of my research in the next years will be focused on the develop-
ment of computational methods and suitable tools to assist the synthesis of proteins with
specific properties and new functions. The problem is extremely challenging since the
number of possible combinations of amino acids to be tested is astronomically large. De-
spite impressive advances in recent years, the activity of proteins designed with available
methods is usually far below that of natural proteins. The main reason for this is that
dynamics aspects are mostly neglected by current design approaches. Indeed, in addition
to the intrinsic combinatorial complexity of the protein design problem, computational
methods have to face the natural flexibility of proteins, which may play essential roles in
their functions. Solving such a challenging problem requires the development of novel ap-
proaches, involving the definition of appropriate models and the implementation of efficient
search/optimization algorithms, beyond the state-of-the-art.

The ANR project ProtiCAD, of which I am the coordinator, represents a first step
in this direction. Started in January 2013 in collaboration with researchers at LISBP-
INSA (Toulouse) and BIOS-Polytechnique (Palaiseau), and with the technical support of
Kineo-SIEMENS (Toulouse), the project aims to yield advances in computational protein
design by a synergistic combination of cutting-edge methods in computational biology with
efficient algorithms originating from robotics. The goal of this interdisciplinary approach
is to overcome the current limitations of available techniques, in particular regarding
protein backbone flexibility and ligand accessibility. The adequacy between models, energy
functions, and exploration algorithms is a key issue for successful protein design that we
are addressing in this project.



42 Chapter 3. Research Project

Among all the possible applications of the methods developed in this project, special
attention will be given to enzyme design for applications in biotechnology such as the
production of high-valued molecules, the development of eco-friendly bioprocesses and
the valorization of renewable carbon resources. Such applications are of high interest
to the pre-industrial demonstrator Toulouse White Biotech (TWB) Center and to the
Competitiveness Cluster AgriMip, which are supporters of our project.

Computational protein design is a fascinating topic that I expect to continue investi-
gating beyond the end of the ProtiCAD project. In addition to the theoretical challenge,
I am particularly motivated by the development of methods to assist the conception of
new enzymes used in biotechnologies, which would contribute to the rise of an innovative
bio-economy, respectful of the environment. The local context in Toulouse, mainly though
collaborations with the LISBP-INSA and with the support of the TWB Center, is very
favorable for this.

3.6 Towards atomic-scale CAD

Research in bio-nanotechnology advances very rapidly. Ground-breaking discoveries in
this area happen almost everyday, offering great opportunities for new technological de-
velopments. Indeed, bio-nanotechnology is leading to totally new classes of devises and
systems, and is providing new insights into the understanding of biological systems. To
date, advances in bio-nanotechnology have been mostly led by experimental research, gen-
erally based on expensive trial-and-error procedures. The main reason is that current
theoretical methods and computational tools for treating the complex problems that arise
in this area are very limited. Like in today’s industrial manufacturing, where CAD/CAM
techniques drastically reduce cost and time for the development of new products and fa-
cilitate product life-cycle management, the use of appropriate computational tools will
completely change the current procedures in bio-nanotechnology. The revolution can be
even more significant than the one represented by the introduction of digital mockups in
the automotive industry during the 80s.

The development of CAD methods and tools for atomic-scale design of bio-nano ma-
terials and systems is an exciting direction for long-term research. This is a big challenge
that will require a strong collaboration between theoreticians, experimentalists and tech-
nologists. First, the development of fundamental methods beyond the state-of-the-art for
modeling, simulating and characterizing complex molecular systems will require a narrow
collaboration with physicists and theoretical chemists. Besides, computational methods
will often be used in tandem with experimental methods, and experiments will be neces-
sary to validate them. Finally, technologists will define specific needs and functionalities
to facilitate decision making for molecular engineering. Building on a fruitful experience
over the past ten years, during which I have been at the core of interdisciplinary research
projects in computational structural biology, and extremely motivated by the theoreti-
cal and technological problems to be addressed, I feel able to conduct such a challenging
exploratory project.



3.6. Towards atomic-scale CAD 43

In the short-medium term, my research project will be focused on the development of
fundamental methods in this context, and on their application to particular systems. The
main topics that I plan to address in the coming years are:

• The analysis of interactions between biomolecules and surfaces:
Developments in bio-nanotechnology usually involve interactions between biomolecules
and synthetic/inorganic surfaces. For instance, biomolecules are used to functionalize
material surfaces and nano-particles, to improve the biocompatibility of medical im-
plants, or as components of electronic nano-devices. Better understanding of the basic
underlying mechanisms of these interactions, through the combination of experimental
and computational approaches, would greatly contribute to significant advances in all
these application domains. I wish to investigate the applicability of robotics-inspired
algorithms in this context. A first work in this direction will be conducted in collabora-
tion with Christian Schön (Max Planck Institute for Solid State Research, Stuttgart).
A two-month visit of Christian Schön has already been scheduled for 2014. In addition,
this is a topic of interest for some colleagues at the N2IS team of LAAS-CNRS, which
would enable internal collaborations between the two teams.

• The design of peptide-based nano-structured materials:
The natural ability of biomolecules that self-organize to form more complex structures
has inspired in the last few years the construction of peptide-based nano-structured
materials such as nanotubes, nanowires and monolayers. Although the very intense
research activity on peptide-based materials is leading to a rapid advancement of the
knowledge in this area, the mechanisms of peptide self-assembly are, in general, not
well understood. New methods are therefore necessary in order to complement avail-
able experimental and computational approaches for the design and characterization of
peptide-based materials. I have started discussions with Lionel Perrin (LPCNO-INSA,
Toulouse) on a multi-scale, multi-physics approach, coupling quantum physics calcula-
tions, mechanistic models, and motion-planning-based algorithms, to simulate peptide
self-assembly. We are looking for opportunities to fund a PhD thesis on this subject.

• The study of amphiphilic peptide-polymer conjugates:
Amphiphilic molecules, which present both hydrophilic and hydrophobic properties,
are very interesting elements for constructing nano-structured objects. In particular,
amphiphiles containing biomimetic peptides can be designed to interact with proteins or
DNA in a very specific manner, which makes these novel materials be very interesting for
medical applications. The analysis of structural, thermodynamic and physical properties
of these materials at the atomic scale by means of computer simulations is a topic
of growing interest. However, the large size of these molecular complexes is a big
challenge for existing simulation techniques. Currently, atomic-scale simulations are
applied to small parts of these complexes, while larger systems are studied with coarse-
grained models. In collaboration with Carlos Alemán (IMEM-UPC, Barcelona, Spain),
we envision de development of new molecular modeling and simulation approaches for
the study of these new materials.
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Finally mention that this topic, atomic-scale CAD, would be a great framework to
carry out novel theoretical research, to promote interdisciplinary education, and to de-
velop new technologies with high valorization potential. Besides, the increasing interest
in bio-nanotechnology at LAAS-CNRS, where several teams work on the technological
development and the characterization of bio-nano devices, makes this laboratory an ideal
place to achieve this (long-term) research project. Furthermore, my research project fits
perfectly in one of the two transverse research axes of the laboratory, ALIVE, whose
objectives are two-fold: the development of novel bio-inspired nanotechnologies, and the
development of technologies for the analysis and understanding of biological systems.
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Siméon, I. André, M. Remaud-Siméon. Structure-controlled lipase enantioselectivity
investigated by a path planning approach. ChemBioChem, 9:1308-1317, 2008.

[16] J. Cortés, L. Jaillet, T. Siméon. Disassembly path planning for complex articulated
objects. IEEE Transactions of Robotics, 24(2):475-481, 2008.

[17] S. Kirillova, J. Cortés, A. Stefaniu, T. Siméon. An NMA-guided path planning ap-
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[31] D. Devaurs, T. Siméon, J. Cortés. Parallelizing RRT on distributed-memory archi-
tectures. IEEE Int. Conf. on Robotics and Automation, 2011.
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[37] J. Cortés, S. Barbe, M. Erard, T. Siméon. Encoding molecular motions in voxel maps.
IEEE Int. Conf. on Robotics and Automation, 2009.
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approach for computing large-amplitude motions of flexible proteins. Congrès du
Group. Graphisme et Modélisation Moléculaire (GGMM), 2007.
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[85] T. Siméon, J.-P. Laumond, C. van Geem, J. Cortés, A. Sahbani, F. Lamiraux, M.H.
Overmars, N. McPhater, J.-L. Bouchet. Second year deliverables of the MOLOG
project. Rapport LAAS n.01207, 2001.
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Sampling-Based Motion Planning
under Kinematic Loop-Closure Constraints

Juan Cortés and Thierry Siméon

LAAS-CNRS, Toulouse, France

Abstract. Kinematic loop-closure constraints significantly increase the difficulty
of motion planning for articulated mechanisms. Configurations of closed-chain mech-
anisms do not form a single manifold, easy to parameterize, as the configurations of
open kinematic chains. In general, they are grouped into several subsets with com-
plex and a priori unknown topology. Sampling-based motion planning algorithms
cannot be directly applied to such closed-chain systems. This paper describes our
recent work [7] on the extension of sampling-based planners to treat this kind of
mechanisms.

1 Introduction

Robot motion planning has led to active research over the two last decades
[13]. More recently, several sampling-based approaches (e.g. [12,16]) have been
proposed and successfully applied to challenging problems that remained out
of scope for previously existing techniques. They allow today to handle practi-
cal motion planning problems arising in such diverse fields as robotics, graphic
animation, virtual prototyping or computational biology [14].

In this paper, we consider motion planning for closed-chain mechanisms.
We present an extended formulation of the motion planning problem in pres-
ence of kinematic loop-closure constraints and we introduce a framework for
the development of sampling-based algorithms (Sects. 2 and 4). The addi-
tional difficulty of this instance of the problem is that feasible configurations
form lower-dimensional subsets in the search-space with no available represen-
tation. The performance of the very few approaches proposed for closed-chain
mechanisms [15,11] (Sect. 3) significantly degrades for reasonably complex
systems, mainly due to the difficulty of generating random samples in such
subsets. We propose a general and simple geometric algorithm, called Ran-
dom Loop Generator (RLG), for sampling random configurations satisfying
loop-closure constraints (Sect. 5). RLG enables virtually any sampling-based
planning algorithm to be extended to closed-chain mechanisms. We have
implemented and experimented with its integration within PRM-based and
RRT-based planners, obtaining very good results (Sect. 6).

Complex articulated mechanisms with closed kinematic chains appear in
all the domains where motion planning techniques can be applied. Figure 1
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Fig. 1. A “closed-chain” version of
the piano mover’s problem. The pi-
ano is moved by three cooperating
mobile manipulators, creating multi-
ple closed kinematic chains.

illustrates an example of coordinated manipulation of an object handled by
several robots. The generality and the practical efficiency of the extended
planners incorporating RLG allow to tackle such kind of problems as well
as problems involving parallel robots, or problems arising in computational
biology for the structural analysis of protein loops. All these applications
are commented in Sect. 7. We conclude devising new directions for future
research (Sect. 8).

2 Problem Formulation

The motion planning problem consists in finding a path between two given
locations of a mobile system that satisfies intrinsic constraints as well as
constraints that arise from the environment. Basically, motion constraints
are due to the kinematic structure of the mechanism and to collision avoid-
ance. Under these constraints, the problem can be posed and solved in the
configuration-space C [19]. Then, it is reduced to explore the connectivity of
the subset Cfree of the collision-free configurations.

The problem has been clearly formulated for articulated mechanisms with-
out kinematic loops (see [13] for a detailed formulation). In this case, C cor-
responds to the space of the joint variables Q, called the joint-space. Topo-
logically, Q is a smooth manifold, with a simple parameterization [2]. For
an articulated mechanism with m independent joint variables defined in real
intervals, Q can be seen as a m-dimensional hypercube. If the articulated
mechanism contains closed kinematic chains, then some joint variables are
related by loop-closure equations [20]. A general expression of loop-closure
constraints is: f(Q)=I, where f(Q) is a system of non-linear equations and
I is the identity displacement. The configuration-space C of a closed-chain
mechanism is the subset of Q satisfying such equations. The stratification
of C leads to several ρ-dimensional manifolds Mi which can be connected
through sets of lower dimension Sk [3,27]. Note that ρ corresponds to the
global mobility of the mechanism. The Mi are called self-motion manifolds
and the Sk are sets of singular configurations. The number of self-motion
manifolds is bounded, and it tends to decrease as ρ increases [3].
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Fig. 2. Illustration for the for-
mulation of the motion planning
problem under kinematic loop-
closure constraints. Configurations
are grouped into several subsets em-
bedded in the joint-space.

Figure 2 illustrates a fictive example with three joint variables {θ1, θ2, θ3}
and ρ = 2. Let us consider a function of the form f(θ1, θ2, θ3)=0, representing
loop-closure constraints. This function maps to several surfaces embedded in
the joint-spaceQ. Such surfaces are the different self-motion manifoldsMi. In
this example,M1 andM2 intersect at a singular set S. We have represented
the obstacle region Qobst in the joint-space. Qfree is the complementary sub-
set:Qfree = Q\Qobst. Cfree is the intersection ofQfree with the differentMi.
Several situations can rise in motion planning queries within this example.
The best case is a query for a path between q1 and q2. These configurations
lie on the same self-motion manifold and in the same connected component of
Cfree, thus there is a free path between them. A path is also feasible between
q1 and q3, even if it contains singular configurations. However, for q4 and q5,
the presence of obstacles makes these configurations cannot be connected by
a free path. Finally, a case that does not appear for open kinematic chains can
rise under closure constraints: q1 and q4 lie on the same connected component
of Qfree but on different components of C !

3 Available Techniques

Only a few exact motion planning approaches have been proposed that treat
kinematic loop-closure and collision avoidance simultaneously, including these
two types of constraints within algebraic expressions (e.g. [4,1]). The compu-
tational complexity of these approaches makes them unpractical. Normally,
different techniques have to be combined for planning motions under kine-
matic loop-closure constraints. First, loop-closure equations must be solved
to obtain the configuration-space C. Then, motion planning algorithms can
be applied to compute paths in the collision-free subset Cfree.

Techniques that provide a complete solution of loop-closure equations are
very limited in practice. Currently, they can be applied to non-redundant
mechanisms, single loops with only a few (two or three) degrees of redun-
dancy or particular classes of parallel mechanisms [22,21,23]. For more com-
plex closed-chain mechanisms, only discrete points in C can be obtained. The
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use of a grid for globally representing C is not applicable to high-dimensional
spaces. The remaining possibility is then to use sampling techniques com-
bined with numerical or algebraic techniques to obtain single configurations
satisfying loop-closure equations. This fact restrains the choice of motion
planning algorithms to those based on sampling.

Sampling-based planners have demonstrated their efficacy for solving diffi-
cult problems in high-dimensional spaces. The Probabilistic RoadMap (PRM)
[12] and the Rapidly-exploring Random Trees (RRT) [16] are two approaches
that have had a particular success. However, only two attempts had been
made to extend such sampling-based planners to closed-chain mechanisms
[15,11].

The first PRM-based approach able to handle mechanisms with closed
chains was presented in [15]. The problem is formulated in the joint-space Q.
Closure constraints are expressed by error functions involving distances in
the Euclidean space. Numerical optimization techniques are used to sample
and to connect configurations in the subset of Q satisfying these constraints
within a given tolerance. The approach is general but suffers the drawbacks
of optimization-based methods to solve inverse kinematic problems: they are
exposed to the local minima problem and the convergence can be very slow.
A technique to randomly sample the tangent space of the constraints is pro-
posed that increases the efficiency of the process to connect sampled config-
urations. More details of the method and the extension of RRT-based algo-
rithms were subsequently published in [29,30]. For the RRT approach, the
random configurations used to bias the exploration are generated ignoring
closure constraints. The argument is that computing closed configurations
is too expensive and does not provide appreciable benefit. We will show in
Sect. 6 that this last assertion is not totally right.

The approach described in [11] treats closed kinematic chains within a
PRM-based planner. Each loop in the mechanism is broken into two sub-
chains. For computing nodes, uniform random sampling is used to generate
the configuration of one of the subchains (called active subchain) and then
an inverse kinematics problem is solved to obtain the configuration of the
remaining part of the loop (called passive subchain) in order to force closure.
For computing edges, the local planner is limited to act on the active con-
figuration parameters and the corresponding passive variables are computed
for each intermediate configuration along the local path. For the efficiency
of the roadmap computation, the passive subchain of each loop must be a
non-redundant mechanism with closed-form inverse kinematics solution. As
the authors admit, this means an important drawback when the approach is
applied to a highly-redundant loop. The probability of randomly generating
configurations of a long active subchain for which a configuration of the pas-
sive chain satisfying closure constraints exists is very low. The performance
of the algorithm drops off significantly due to this fact.
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Our approach shares some ideas used for the extension of PRM-based
planners in [11]. One of our contributions is to resolve the main drawback
of the referred technique by the integration of the RLG sampling technique
(explained in Sect. 5).

4 Sampling-Based Planning
and Closed-Chain Mechanisms

This section presents a general framework to extend sampling-based ap-
proaches for planning the motions of general closed-chain mechanisms. The
use of sampling-based planners is strongly justified since, for the kind of
problems we address (see Sect. 7), there is no available technique providing
a complete, exact representation of Cfree. However, there are important dif-
ficulties for sampling and for checking the connectivity of configurations of
closed-chain mechanisms. Next, we discuss how to deal with these difficulties.

On the Parameterization of C: Configurations of a closed-chain mech-
anism are grouped into a finite number of lower-dimensional manifolds Mi

embedded in the joint-space Q (the search-space in our problem). These
manifolds can be parameterized, at least locally, by a set of ρ independent
parameters, selected from the joint variables. Points in the different man-
ifolds can be generated by sweeping the ρ parameters through their range
and evaluating the loop-closure equations that provide the value of the other
(dependent) variables. An atlas of each one of these manifolds Mi can be
constituted by a finite number (in general not exceeding the dimension of Q,
m) of local charts considering different combinations of ρ parameters. With-
out loss of generality, sets of ρ consecutive joint variables in a kinematic chain
can be chosen as local coordinates [27].

Following a terminology also used in [11], we call active variables qa the
set of the ρ joint variables chosen as parameters of a local chart and passive
variables qp the remaining set of the m− ρ dependent joint variables, so that
{qa, qp} = q ∈ C ⊂ Q.

Main Principle: The core of our approach is to explore the connectivity of
Cfree by sampling configurations and by testing feasible connections through
local parameterizations of C. Motion planning algorithms are applied on the
local parameters qa. Using a roadmap method such as PRM, the nodes are
generated by sampling qa and local paths are obtained by applying a local
planner (also called steering method) to these parameters. In a similar way,
qa are the configuration parameters directly handled by incremental search
methods like RRT. Obviously, for each computed value of the parameters,
loop-closure equations must be solved for obtaining the whole configuration
of the mechanism q ∈ C. Therefore, the efficiency of the planner partially
relies on the efficient solution of these equations.
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Fig. 3. Projection of M1 on the planes θ1θ2 and θ1θ3.

Configuration Sampling: Given a set of active variables qa, loop-closure
equations have real solutions only for a range of values of each joint variable,
that we call the closure range. Besides, the closure range of a parameter
depends on the value of the other parameters. The last assertion is illustrated
in Fig. 3, that shows the projection of the manifoldM1 of Fig. 2 on the planes
θ1θ2 and θ1θ3. Let us consider qa = {θ1, θ2} (the left image). If we sample
first θ1 and then θ2 for generating a configuration q1 ∈ M1, then θ1 can be
sampled in its whole closure range (i.e. the feasible range for any value of
the other joint variables). However, θ2 is valid only in a subset of its whole
closure range, determined by the value of θ1.

There is no general and efficient method to define closure ranges of joint
variables. Thus, in practice, the only possibility for sampling configurations is
to use a trial method: sampling parameters qa in the intervals defined for joint
variables and solving the loop-closure equations. Nevertheless, when a closure
range is very restricted with respect to the interval of a joint variable, too
many samples maybe tested before finding a feasible configuration. Hence,
too much computing time is spent in solving closure equations leading to
imaginary values. This is an important drawback for the efficiency of motion
planners, and mainly for those using a roadmap approach, such as the planner
in [11]. The RLG algorithm, further discussed in Sect. 5, resolves this problem
using simple geometrical operations.

Computing Local Path: Sampling-based roadmap methods check the con-
nectivity of nearby configurations by local paths. Incremental search methods
try to expand a configuration toward a local goal, producing also a sort of
local path. Such paths can be computed by explicitly variating the local pa-
rameters qa and solving loop-closure equations with a given resolution for
obtaining qp.

Without a topological characterization of C, the number of different sets
of parameters qa required to determine if two configurations are connected
or not is a priori unknown. This fact can easily be understood on Fig. 3.
Let us consider that a linear interpolation of the parameters qa produces a
kinematically feasible path (i.e. there are no differential constraints). Then,
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Fig. 4. Probabilistic roadmap cap-
turing the connectivity of Cfree for
the fictive motion planning problem
involving kinematic closure con-
straints of Sect. 2.

any two configurations lying onM1 can be connected (directly or indirectly)
using qa={θ1, θ2} as local parameters. On the contrary, choosing qa={θ1, θ3}
leads to a non-complete solution of motion planning queries within M1. A
solution path between configurations q1 and q2 can be immediately obtained
since they are directly connected by a local path. However, a path between q1

and q3 can not be found using sampling-based techniques. The point indicated
by the small square is a singularity of this parameterization. The probability
of generating this point by sampling values of qa={θ1, θ3} is null, as well as
the probability of sampling two points on a line (local path) passing through
this singularity. Thus, finding a feasible path between q1 and q3 requires
another set of local parameters than {θ1, θ3}.

Local paths have to satisfy other motion constraints besides loop-closure,
such as collision avoidance. In this paper, we do not talk about these other
constraints, that can be checked along local paths by techniques (e.g. [18])
similar to those used for open-chain mechanisms.

Dealing with Kinematic Singularities: Up to now we have limited our
discussion to the case of a single manifold. However, C may be composed of
several manifolds. These manifolds are either disjoint, or they intersect at
lower-dimensional subsets corresponding to kinematically singular configu-
rations. Therefore, exploring the connectivity of Cfree requires to deal with
these singularities.

The roadmap represented in Fig. 4 has been built using qa = {θ1, θ2} as
only set of parameters. Each point {θ1, θ2} maps to two configurations (i.e.
there are two solutions for qp=θ3) on different manifolds for all the domain
underM1 andM2 except for the singular set S where they intersect, so that
configurations in these manifolds are connected by this singular set. This
kinematic singularity corresponds to the singularity of the parameterization
qa = {θ1, θ3} commented above. It can be traversed by a local path on the
current parameterization. When a local path is computed between two con-
figurations at different sides of S, the bifurcation of the solution can be easily
detected when checking the local path validity, and the singular configuration
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(marked by the small rectangle in Fig. 4) connecting M1 and M2 can then
be identified.

Let us consider now a more difficult case where M1 and M2 do not
intersect along a line but meet at a point. None of the three possible pa-
rameterizations would allow to identify such a singular point exactly. The
difference in this case is that the singular set has dimension ρ − 2 instead
of ρ − 1. In theory, sets of kinematically singular configurations can have
dimension from ρ− 1 to zero. Using sampling techniques for generating con-
figurations on C and steering methods on subsets of configuration parameters
qa, our approach has only the guarantee (if we do not admit a tolerance) to
find connections through singular sets of dimension ρ− 1. The other singular
sets, from dimension ρ − 2 to isolated singularities, must be identified by
other methods. The general treatment of such singularities goes beyond the
scope of this paper. As far as we know, techniques able to globally charac-
terize singular configurations have been proposed only for particular classes
of mechanisms (e.g. [10,28]).

5 The RLG Algorithm

We have developed an algorithm, that we call Random Loop Generator
(RLG), for sampling configurations of closed-chain mechanisms. The general
approach was presented in [5]. Then, a variant that treats more efficiently
parallel mechanisms was introduced in [6]. More details can be found in [7].
In this section, we present an overview containing main ideas.

5.1 Mechanical System Decomposition

General Case: RLG is based on a decomposition of the mechanism into
open kinematic chains. In the general case, single loops are handled sepa-
rately, in a determined order. For each loop, sets of active and passive joint
variables are defined consecutively such that they correspond to segments
of the kinematic chain. We call passive subchain the segment involving the
passive variables and active subchains to the other segments. There can be
one or two active subchains depending on the placement of the passive sub-
chain. The passive subchain is a non-redundant mechanism whose end-frame
can span full-rank subsets of the workspace. In general, this requires three
joint variables for a planar mechanism and six for a spatial mechanism. Effi-
cient methods to solve inverse kinematics problems for such mechanisms are
usually available [22].

In multi-loops, some joint variables are involved in the configuration of
several individual loops. Their value is computed for the single loop treated
first, and then, these common portions of the mechanism become rigid bodies
when treating the other loops. Figure 5 shows an example of a planar multi-
loop mechanism. The individual loops are designated by Li, where the index
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Fig. 5. Decomposition of a multi-loop in single loops, and a
possible choice of passive and active subchains in loop L2.

i indicates the order for the treatment. The figure also illustrates the decom-
position of L2. This 6R planar linkage has mobility ρ = 3. Thus, qa and qp

contain three joint variables each. In this illustration we have chosen θ3, θ4

and θ5 (the variables associated with joints J3, J4 and J5) to be the passive
variables. Then, active variables can be seen as configuration parameters of
two open chains rooted at a (fictive) link A0,6.

Parallel Mechanisms: A parallel mechanism is an articulated multi-loop
structure in which a solid, the end-effector or platform P, is connected to the
base A0 by at least two independent kinematic chains Ki. The pose of P is
defined by a vector qP = {xP , yP , zP , γP , βP , αP}. The three first elements
represent the position of FP relative to FA0

, the frames associated with P
and A0 respectively. The orientation is given by three consecutive rotations
around the coordinate axes of FP 1. We consider the configuration q of a
parallel mechanism is defined by the platform pose and the configuration of
the chains Ki: q = {qP , qK1

, . . . , qKnk }. The parameters defining the platform
pose qP are selected as active variables. For a given platform pose, the base-
frame and the end-frame of each chains Ki have fixed relative location. Thus,
they have to be treated as closed kinematic chains. If a chain Ki is redundant,
it is decomposed in active and passive subchains as explained above for a
single loop. Thus, we can separate joint variables as follows: qKi = {qaKi , q

p
Ki}.

Hence, variables defining the configuration q of a parallel mechanism are
divided into active and passive such that:

qa = {qP , qaK1
, . . . , qaKnk } , qp = {qpK1

, . . . , qpKnk
}

5.2 Sampling process

RLG performs a “guided”-random sampling for qa that notably increases the
probability of obtaining real solutions for qp when solving the loop-closure
equations. Figure 6 illustrates the process on a planar 6R linkage (the loop
L2 in Fig. 5). The active joint variables are computed sequentially by the
function Sample qa detailed in Algorithm 1. The two active subchains are

1 RLG could also handle other parameterizations (e.g. Euler angles).
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Fig. 6. Steps of the RLG algorithm performing on a 6R planar linkage.

Algorithm 1: Sample qa

input : the loop L
output : the parameters qa

begin
1 (Jb, Je) ← InitSampler(L);

while not EndActiveChain(L, Jb) do
Ic ← ComputeClosureRange(L, Jb, Je);
if Ic = ∅ then goto line 1;
SetJointValue(Jb, Random(Ic));
Jb ← NextJoint(L, Jb);
if not EndActiveChain(L, Je) then Switch(Jb, Je);

end

treated alternately. The idea of the algorithm is to progressively decrease
the complexity of the closed chain until only the configuration of the passive
subchain, qp, remains to be solved (by inverse kinematics).

At each iteration, the function ComputeClosureRange returns a set of
intervals Ic which approximate the closure range of a joint variable, for a fixed
configuration of the portions of loop previously generated. The approximation
must be conservative in the sense that no region of C is excluded for the
sampling. This is required in order to guarantee any form of sampling-based
completeness (e.g. probabilistic completeness) of motion planning algorithms.
The value of the joint variable is randomly sampled inside the intervals Ic.

The problem of computing the closure range of a joint variable can be for-
mulated as follows. Given a closed kinematic chain bKe involving joints from
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Jb to Je (we consider b < e in this explanation), two open kinematic chains
are obtained by breaking the link Ab between Jb and Jb+1. A suitable break-
point is the physical placement of Jb+1, but any other point can be chosen.
A frame Fc associated with this break-point can be seen as the end-frame of
both open chains. The closure range of the joint variable corresponding to
Jb is the subset of values making Fc reachable by the chain eKb+1. Solving
such a problem requires to represent the workspace of this chain, which is in
general very complicated. For our purpose, a simple and fast method is pre-
ferred versus a more accurate but slower one. RLG handles simple volumes
that bound the reachable workspace (i.e. only considering positional reacha-
bility). They are denoted by RWS in Fig. 6. In general, a reasonable choice
for the RWS is a spherical shell with external and internal radii correspond-
ing respectively to an upper bound of the maximum extension and a lower
bound of the minimum extensions of the chain. Once defined RWS(eKb+1),
computing the approximation of the closure intervals for Jb is very simple. If
Jb is a revolute joint, then the origin of Fc describes a circle around its axis.
If Jb is a prismatic joint, the origin of Fc moves on a straight-line segment.
Then, Ic is obtained from the intersection of a circle or a line with a simple
volume RWS.

The function to sample qP for a parallel mechanism is based on the same
principle that Sample qa. The parameters are sampled progressively from
the computed closure range approximations. The main difference is that the
closure range depends now on the satisfaction of closure constraints that
simultaneously involve several individual loops.

6 Performance of RLG

RLG is a general technique, applicable to any sampling-based planner. In this
section, we show examples of motion planning problems solved by PRM and
RRT planners extended to handle loop-closure constraints. The goal of the
experiments is to compare the performance of the planners with and without
incorporating RLG. The tests have been made with the software Move3D
[25], in which our algorithms have been implemented.

6.1 Results with a PRM-based Planner

PRM-based algorithms build a graph (the roadmap) whose nodes are ran-
domly sampled configurations that satisfy motion constraints. For a closed-
chain mechanism, only the parameters qa are sampled, and loop-closure equa-
tions have to be solved to determine if the sample yields a valid configuration
or not. We have compared the performance of the planner using an uniform
random sampling 2 or RLG for sampling qa.

Figure 7 shows four manipulators handling an object. The whole system
can be seen as an articulated parallel structure. If the grasps are modeled as

2 Implemented using the rand() function of the GNU C Library.
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Fig. 7. Motion planning problem for four robotic arms manipulating an object.
Start and goal configurations (left) and trace of the solution path (right).

fixed attachments, the composed mechanism involves m = 30 joint variables
(6 for each manipulator and 6 for the movable object), and the mobility is
ρ = 6. Since the manipulators are non-redundant, qa = qP : the parameters
defining the location of the object. Almost all (more than 90%) the con-
figurations qP generated by RLG make the object simultaneously reachable
by the four manipulators. Using a uniform random sampling, the bounds of
the parameters qP have first to be adjusted “by hand” with relation to the
workspace of the manipulators (this is not necessary for RLG). Even with a
good setting of the bounds, less than 0.05% of the samples yield valid (closed)
configurations. Let us see now the repercussion when solving motion plan-
ning problems using the PRM approach. In the problem illustrated in the
figure, the manipulators have to unhook an object and to insert it into the
cylindrical axis. For computing a roadmap containing the solution path to
this problem, millions of poses generated by uniform random sampling were
necessary and the process took more than 20 minutes 3. Using RLG for sam-
pling configurations, less than 500 random platform poses were generated
and the roadmap was built in less than 20 seconds. This result show that
RLG avoids an enormous number of futile operations (i.e. calls to inverse
kinematics functions) which drop off the performance of the planner.

6.2 Results with an RRT-based Planner

The principle of RRT is to use uniformly distributed configurations qrand,
sampled at random in C, to bias the expansion of search trees in Cfree. Under
loop-closure constraints, the use of samples in Q was proposed in [29] in
order to evade the cost of sampling C. We have compared the performance
of a uniform random sampling in Q versus RLG for generating qarand.

3 Tests were performed using a Sun Blade 100 Workstation with a 500-MHz
UltraSPARC-IIe processor.
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Fig. 8. Sequence of the solution to a difficult motion planning problem
for two robotic arms manipulating an object among obstacles.

In the example illustrated in Fig. 8, two robotic arms coordinate for ma-
nipulating a twisted bar among two vertical bars that restrict its motion. The
goal is to solve a motion planning query between configurations in Fig. 8.a
and Fig. 8.d. The figure shows a sequence of intermediate configurations of
the solution of this puzzle-like problem. The difficulty of this problem de-
pends on the distance between the vertical bars dbars. We have made tests
with three settings: dbars={150, 175, 200}. In this example, qa corresponds to
the configuration of one of the arms grasping the bar. The next table shows
averaged results of tests. N is the number of iterations for expanding the
search trees. T is the computing time. These results show the importance
of an appropriate sampling considering the presence of kinematic loops. The
gain obtained using the RLG sampling technique increases with the difficulty
of the motion planning problem.

dbars
Uniform With RLG

N T N T gain T

200 2719 42.26 118 3.23 × 13
175 4995 102.92 424 6.30 × 16
150 9761 312.76 615 9.14 × 34

7 Applications of Closed-Chain Motion Planning

We have studied some of the possible applications of algorithms for motion
planning under loop-closure constraints. One of them, coordinated manipu-
lation planning, has been illustrated with the two examples in Sec. 6 and the
problem shown in Fig. 1. This last problem combines several types of diffi-
culty. First, the virtual structure composed by the three mobile manipulators
grasping the piano can be seen as a parallel mechanism with redundant legs
(the chains Ki correspond to the mobile manipulators). And second, the ge-
ometric complexity of the scene makes collision checking very hard. Besides,
obstacles are strategically placed in order to hinder the motion of robots for
changing the orientation of the piano. A roadmap that permits to solve most
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Fig. 9. Model of the robot Logabex-LX4, composed of four Gough-Stewart
platforms connected in series, and trace of a collision-free path.

possible queries in this scene was computed using the an extended version of
the Visibility-PRM algorithm [24] in 5 minutes.

Applied to parallel robots, motion planning algorithms can help designers
of these mechanisms, or can provide useful data for real-time trajectory plan-
ning. Our work on parallel mechanisms [6] represents the first effective appli-
cation of sampling-based planners to this kind of articulated structures. The
generality of our approach is demonstrated by the complexity of the systems
that it is able to treat, such as the model of the Logabex-LX4 (Fig. 9), whose
configuration-space is a 25-dimensional variety embedded in a 97-dimensional
joint-space. Planning queries for moving the manipulator with the grasped
bar from one to another opening of the bridge were solved by the extended
RRT-based algorithm in less than one minute.

The above expounded closed-chain planners can also be used as a key
component of a novel manipulation planning approach described in [26]. The
clever idea is to explore the connectivity of the subset where the manipula-
tion sub-paths (i.e. transit and transfer paths) meet via a virtual closed-chain
mechanism consisting of the robot grasping the movable object placed at a
stable position. Our manipulation planner automatically generates, among
continuous sets, the grasps and the intermediate placements of the movable
object required to solve complicated problems. It is the first general manip-
ulation planner with this capability.

We also began to investigate applications out of the field of robotics. Mo-
tion planning techniques can be used as new tools to help the resolution of
important open problems in computational biology [9]. We discuss in [8] the
application of closed-chain planning techniques to the structural analysis of
protein loops. The algorithms that we have presented can act as efficient fil-
ters for conformational search methods by making a geometric treatment of
strong energetic constraints: maintaining the backbone integrity (i.e. loop-
closure) and avoiding steric classes. We have developed a conformational
sampling algorithm that provides random conformations achieving such ge-
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Fig. 10. Simulated conformational gating of loop 7 in amylosucrase. Crys-
tallographic conformation (left) and geometrically feasible change (right).

ometric constraints. The algorithm combines RLG for generating the back-
bone conformation with other sampling and collision detection techniques to
obtain feasible conformations of the side-chains. We also propose a new con-
formational search technique, inspired by the RRT approach, for studying
geometrically feasible loop motions. Preliminary results are promising. They
demonstrate the capacity of the techniques to handle protein models with
long loops that involve several dozens of degrees of freedom in the backbone
and in the side-chains. Figure 10 illustrates an example of such a long loop
in the model of amylosucrase from Neisseria polysaccharea.

8 Conclusions and Future Work

We have introduced sampling-based motion planning algorithms into an ex-
tended formulation of the motion planning problem under kinematic loop-
closure constraints. We have tried to give general directives without focusing
on a particular implementation. The RLG algorithm allows to overcome the
challenge of sampling random configurations for general closed-chain mecha-
nisms. The results obtained, in different domains of application, when solv-
ing difficult problems with PRM-based and RRT-based extended planners,
demonstrate the efficacy and the generality of the approach.

Several points remain for future research. Some of them concern the RLG
sampling algorithm. RLG provided good results in all our experiments. Nev-
ertheless, a deeper analytical work is necessary in order to characterize its
performance. Also, studying new forms of sampling, using quasi-random se-
quences or multi-resolution grids recently proposed [17], seems to be an in-
teresting way to follow. Another improvement involves the selection of active
and passive subchains. A general automatic method, based on an analysis of
kinematic diagrams of mechanisms, remains to be devised.

A general methodology for the treatment of singularities within sampling-
based motion planning algorithms remains an open topic to be further in-
vestigated. Recent interval methods [21,23] appear to be another matter to
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study for the improvement of closed-chain motion planning techniques. In-
terval methods can provide a complete approximated representation of the
whole set of configurations satisfying loop closure equations. They compute
a set of boxes that contain the continuum of solutions. Such a representa-
tion is very suitable for the application of sampling-based motion planning
algorithms.

Another direction for future research concerns the application of closed-
chain motion planning to computational biology. We intend to further study
problems in structural biology that require the development of new tech-
niques for the conformational analysis of protein loops. A first goal is to get
efficient algorithms to capture the whole subset of the geometrically feasible
conformations of one or several loops in the same protein. The next goal is to
handle several proteins that interact while changing the conformation of loops
on their surfaces. Applications to structural biology are attractive for the
algorithmic development because of the kinematic complexity of molecular
models. Obviously, robotic applications could also benefit from improvements
achieved in this field.
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Sampling-Based Path Planning on
Configuration-Space Costmaps

Léonard Jaillet, Juan Cortés, and Thierry Siméon

Abstract—This paper addresses path planning to consider a cost
function defined over the configuration space. The proposed plan-
ner computes low-cost paths that follow valleys and saddle points
of the configuration-space costmap. It combines the exploratory
strength of the Rapidly exploring Random Tree (RRT) algorithm
with transition tests used in stochastic optimization methods to ac-
cept or to reject new potential states. The planner is analyzed and
shown to compute low-cost solutions with respect to a path-quality
criterion based on the notion of mechanical work. A large set of
experimental results is provided to demonstrate the effectiveness
of the method. Current limitations and possible extensions are also
discussed.

Index Terms—Costmap planning, path quality, sampling-based
motion planning.

I. INTRODUCTION

SAMPLING-BASED path planning has proven to be an ef-
fective framework that is suitable for a large class of prob-

lems in domains, such as robotics, manufacturing, computer ani-
mation, and computational biology (see [1] and [2] for a survey).
These techniques handle complex problems in high-dimensional
spaces but usually operate in a binary world, which aims to find
out collision-free solutions rather than the optimal path.

Specific path-planning methods have been developed in field
robotics for outdoor navigation, where the goal is to find optimal
paths according to a cost function, which is usually computed
from a model of the terrain. Classical grid-based methods, such
as A* or D* [3] can be used to compute resolution-optimal
paths over a costmap. However, compared with sampling-based
algorithms, these methods are limited to problems which involve
low-dimensional spaces that can be discretized and searched
using grid-search techniques.

Some recent works [4]–[8] have tried to bridge the gap
between sampling-based planners and grid-based costmap
planners. They mainly rely on the Rapidly exploring Random
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Fig. 1. Transition-based RRT on a 2-D costmap (the elevation corresponds to
the costs). The exploration favors the expansion in valleys and saddle points,
which connect to low-cost regions.

Tree (RRT) algorithm [9] and are generally focused on spe-
cific applications (e.g., real-time problems [7], [10] or statisti-
cal learning of feasible paths [8]) in the context of 2-D robot
navigation problems.

This paper presents a general algorithm, called Transition-
based RRT (T-RRT),1 for path planning on configuration-space
costmaps. The algorithm considers a user-given cost function
defined over the configuration space as an additional input to the
standard path-planning problem, and it produces solution paths
that are not only feasible (e.g., collision free), but also have a
good quality with respect to the input costmap. For instance, the
costmap may correspond in outdoor navigation problems to the
elevation map of the terrain in order to compute motions that
minimize climbing of high-slope regions. In addition, in robotic-
manipulation problems, the cost function may be defined from
distances to be maximized between the robot and some objects,
in order to find high-clearance solution paths. Finally, in compu-
tational biology applications, the costmap can be viewed as the
energy landscape of the conformational space to be considered
for the simulation of low-energy molecular motions.

The proposed algorithm combines the exploratory strength
of RRTs with the efficiency of stochastic-optimization meth-
ods (e.g., Monte Carlo optimization and simulated annealing)
that use transition tests to accept or reject new potential states.
The filtering of the transition test relies on the gradient of cost
function along the local motion to connect a given state to the
RRT tree that results in an expansion biased to follow the val-
leys and the saddle points of the configuration-space costmap
(see Fig. 1). Solution paths computed by T-RRT fulfill a quality

1The T-RRT planner was introduced in a shorter version published in [11].

1552-3098/$26.00 © 2010 IEEE
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property based on the notion of mechanical work, which is also
introduced in this paper as an effective criterion to evaluate path
quality for costmap planning.

This paper is organized as follows. After a brief presentation
of related work (see Section II), we introduce and discuss the
notion of Minimal Work (MW) paths (see Section III). These
paths are optimal according to a new criterion called mechani-
cal work that is used to evaluate path quality. Comparison with
other existing criteria shows the advantage of this criterion that
may be more suitable in many situations, since it yields better
paths following the low-cost valleys of the costmap. Additional
properties of MW are also presented for a deep understanding
of this notion. Section IV describes the T-RRT algorithm and
explains the methods for self-tuning of parameters and for the
expansion-rate control. Section V shows how T-RRT implicitly
computes MW paths and discusses its probabilistic complete-
ness. An experimental validation of the planner is conducted
in Section VI. The overall efficacy of T-RRT is shown on dif-
ferent problems and positively compared with other existing
techniques [4], [6]. Section VI also analyzes the influence of
the intrinsic parameters of the algorithm on the overall perfor-
mance, and results indicate that no specific tuning is actually
needed. Section VII presents some extensions of T-RRT, and
finally, conclusions are outlined in Section VIII.

II. RELATED WORK

Early potential field methods [12], as well as their combina-
tion with strategies to escape local minima, e.g., the randomized
planner described in [13], rely on some numerical field defined
over the configuration space that may be viewed as a specific
kind of costmap. Note, however, that the artificial potential field
of these methods is only defined as a way to plan collision-free
paths, without considering path optimality. Thus, these methods
do not address the problem considered here to compute low-
cost, feasible paths from an arbitrarily complex costmap given
as input to the planner.

Recent sampling-based planners have proven to be very ef-
fective to find feasible solutions that can be locally optimized in
a postprocessing stage. Local path-optimization methods, such
as the shortcut algorithm [14] are generally used to improve path
quality with respect to simple criteria, e.g., path length, clear-
ance, or a combination of both [15]. These smoothing methods
only aim to locally improve a solution path, as opposed to the
global exploration algorithm proposed in this paper. Moreover,
their extension to arbitrary cost functions has not yet been ad-
dressed, and the resulting efficacy of such an extension remains
to be further evaluated.

Only few papers consider sampling-based path planning on
arbitrary cost spaces. An adaptation of the RRT-connect plan-
ner is used to find low-cost paths for rough terrain navigation
in [4]. The idea is to keep new configurations only if their cost
is under a given threshold, first initialized to a low value, and
then iteratively increased during the search. One limitation of
this technique comes from the nondecreasing threshold, which
limits the efficiency of low-cost search to the vicinity of the root
nodes. To overcome this issue, the extension proposed in [5]

considers multiple RRTs grown from randomly sampled root
configurations. However, this solution still expects an appropri-
ate number of initial samples in order to get enough low-cost
seeds among the space. Moreover, it requires a manual tuning of
the parameter that controls the cost threshold-growth rate. This
tuning is highly problem-dependent.

In [6], the heuristically guided RRT (hRRT) biases the search
by using a quality measure based on the integral of the cost along
the path from the root node and an estimation of the optimal
cost to the goal. Such an approach, inspired from graph-search
techniques, can also be found in the context of real-time appli-
cations [7], [10] and statistical learning of feasible paths [8].
However, with these techniques, the estimated cost to goal is
heuristic, and tends to bias the search straight toward the goal
at the expense of lower quality solution paths. Moreover, the
aforementioned methods have only been demonstrated on sim-
ple low-dimensional examples with discrete cost states (invalid,
low cost, and high cost, respectively). Their scalability and per-
formance for problems which involve complex cost spaces in
higher dimensions have yet to be established.

The T-RRT algorithm introduced in the following is inspired
by Monte Carlo optimization techniques. Developed in order
to find global optima in very complex spaces [16], these tech-
niques introduce randomness as a means to avoid local minima
traps. Many variants have been developed (e.g., random walk
and simulated annealing [17]). The basic exploration process
typically relies on successive transition tests using the Metropo-
lis criterion (see Section IV-B). Note also that the probabilistic
conformational roadmap [18] developed to explore molecular-
energy landscapes in computational biology applications inte-
grates a similar transition test in the Probabilistic RoadMap
(PRM) framework [19].

III. MINIMAL WORK PATHS

This section introduces the mechanical work criterion to mea-
sure path quality in a space that is mapped by a given cost
function. Paths that are optimal according to this criterion are
called Minimal Work (MW) paths. The T-RRT algorithm pre-
sented in the next section tends to produce such MW paths,
as shown by the theoretical analysis and the experimental re-
sults in Sections V and VI, respectively. First, we introduce the
notion of MW paths and illustrate how this criterion generally
yields more natural solution paths (i.e., paths following well the
low-cost valleys of the costmap) compared with other existing
path-quality measures.

A. Notation

Let us consider a system with a configuration space C, pos-
sibly constrained by “binary” obstacle regions. Let us also con-
sider a cost function c : C → R∗

+ mapping this space, i.e., a
cost c(q) > 0 can be computed for each q ∈ C. This cost func-
tion c is assumed to be continuous. A path P of length l is
represented by a unit-speed parametric function2 τ : [0, l] → C

2This representation assumes that the parameterized curve that represents the
path is regular, which simplifies the notation.
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with τ(s) = qs ∈ P. Then, we define the parametric cost func-
tion v : [0, l] → R∗

+ of a path as v(s) = c ◦ τ(s) = c(qs).

B. Classical Path-Quality Measures

Several criteria have been proposed to evaluate the quality of
a path from its parametric cost function, e.g., maximal cost [5],
average cost [5]–[7], or costs sum over discrete path configura-
tions [5], [8] (as a way to approximate the integral of the cost
along the path). The maximal cost criterion is the most limited
one, since it only relies on a point value of the parameterized
cost function. The average cost can also be misleading, since it
does not account for path length (a path that involves many de-
tours inside a low-cost region will have an average cost smaller
than a path that goes straight through this region). Thus, the
integral of the cost along a path appears to be a more reliable
criterion. It is mathematically defined as follows:

S(P) =

∫ l

0

v(s)ds.

A discrete approximation of the integral leads to

S(P) ∼ l

n

n−1∑

k=0

v(sk ), with sk =

(
k

n− 1

)
l.

In what follows, optimal paths according to the Integral of the
Cost criterion are called IC paths. The next section introduces
an alternative way to measure path quality based on the notion
of mechanical work. This alternative technique will then be
compared with IC criterion in Section III-D.

C. Mechanical Work of a Path

The key idea is that positive variations of the parametric
cost function can be seen as forces acting against motion, and
thus, producing mechanical work. We propose to use this loss
of “energy” induced by the mechanical work to measure the
quality of a path. In the case of negative variation of costs, the
system loses no energy. Then, a small penalty proportional to
the distance is added in order to favor shortest paths of equal
mechanical energy. Based on this principle, the mechanical work
of a path is defined as follows:

W (P) =

∫

P
+

∂v

∂s
ds+ ε

∫

P
ds (1)

where P+ represents the portions of path with positive slopes
(i.e., where the parametric cost function is strictly increasing),
and ε is assumed to be very low compared with cost values.

The continuous expression of W in (1) can be transformed
into a discrete formulation expressed from the local extrema
values along the path:

W (P) =
∑

i

(v(βi)− v(αi)) + εl

=
∑

i

∆v+i + εl (2)

where αi and βi are consecutive minima and maxima of the
costs along the paths, and∆v+i = v(βi)− v(αi) are the positive

Fig. 2. Decomposition of a path into portions of monotonic cost variation. αi

and βi correspond to local minima and maxima, respectively. (Right) Mechan-
ical work is the sum of positive cost variations between consecutive extrema
plus a small value εl proportional to the path length.

Fig. 3. MW solution paths. (a) Paths are computed by using the A∗ algorithm
within a 2-D grid discretizing the space. The examples illustrate (b) down-to-
down, (c) top-to-top, and (d) top-to-down queries, respectively.

variations between two consecutive extrema (see Fig. 2). The
mechanical work of a path is simply obtained by summing up the
positive differences between extrema of its parameterized cost
function and adding εl in order to favor shortest paths among the
ones having equally positive cost variations. Paths that minimize
the mechanical work for a given query are called MW paths.

Fig. 3 shows examples of MW paths for several queries on a
2-D hilly costmap. The paths were computed by using a standard
A∗ search performed on a grid discretizing the 2-D landscape.
As one can see, the shapes of the MW paths appear to be suitable
in the sense that they follow as much as possible the low-cost
regions of the space. In order to better state the pertinence of
the mechanical work criterion, we first compare it with the IC
criterion discussed in the next section. Then, we state some
interesting properties of the MW criterion in Section III-E.

D. Minimal Work versus Integral of the Cost

This section compares the optimal solutions for the integral
of the cost S (IC paths) and for the mechanical work W (MW
paths) on representative cost spaces.
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Fig. 4. Straight-line MW path (blue) and two different IC paths for two dif-
ferent inclinations of the plane that represent the cost function.

Fig. 5. High-cost barrier problem. (a) MW path. (b) IC path.

1) Constant Slope: Let us first consider the example of a
planar landscape with a constant slope. In this simple case,
IC solutions can be numerically characterized from calculus of
variations. As shown in Fig. 4, the solutions obtained for two
different slopes show that IC paths (in black) are not intuitive
and, moreover, depend on the plane inclination. In contrast, in
both cases, the MW path is the trivial straight-line path (in blue).
Indeed, the cost of MW paths is always lower bounded by the
cost variation between the initial and final configurations. In
situations for which the query configurations can be connected
through a set of paths having a monotonic cost variation (as for
the specific case of a constant slope landscape), the MW path
will be the shortest one among the set of minimal cost variation
paths. This yields a straight-line solution for the planar slope
example.

2) High-Cost Barrier: This example corresponds to a flat
cost surface with a high-cost barrier that should be preferably
avoided (see Fig. 5). In this case, the MW path is the shortest path
to get around the barrier [see Fig. 5(a)], while the IC solution is a
direct path that crosses the barrier [see Fig. 5(b)]. This example
highlights another possibly negative feature of the integral of
the cost criterion that may favor undesirable paths with short
high-cost portions.

3) Hilly Costmap: In this more complex example, solution
paths have to go through a saddle point to link the query config-
urations located at two opposite corners of the hilly landscape
(see Fig. 6). The MW path makes necessary detours to follow
low-cost valleys of the space. In contrast, the IC solution prefers
shortest paths at the expense of local high costs [circled in blue
in Fig. 6(b)]. As can be seen in the parameterized cost functions
of the two kinds of optimal paths (see Fig. 7), the cost profile
of the IC path (red) is globally much higher than the one of the

Fig. 6. Hilly costmap problem. (a) MW path. (b) IC path.

Fig. 7. Parameterized cost functions of the MW path (green) and the IC path
(red) shown in Fig. 6(a) and (b).

TABLE I
MW AND IC OPTIMAL PATHS OF FIG. 6 COMPARED WITH

A REFERENCE STRAIGHT-LINE SOLUTION

MW path (green). This observation is particularly true when the
IC path goes through the high-cost region avoided by the MW
path.

Finally, Table I compares the costs of the two solutions with
respect to various path-quality measures. It shows that both the
average and maximum costs are better for the MW path than for
the IC path. Indeed, the IC path characteristics are intermediate
between the ones of the MW path and of a simple straight-line
path, not biased to avoid high-cost regions.

These results highlight some interesting features of the MW
criterion. Compared with IC paths, MW paths avoid steep vari-
ations of the cost function. This may be particularly important
in applications, such as outdoor navigation (to avoid high-slope
motions), or computational biology (to minimize the crossing
of high-energy barriers). Besides, in the presented cases, MW
paths look more natural. In the next section, we present some
additional properties of MW paths for a deep understanding of
the mechanical work criterion.
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E. Minimal Work Path Properties

1) Negative Slopes Minimization: Section III-C states that to
minimize the mechanical work means to minimize the amount
of positive cost variations. A first property is that, between two
given configurations, it also leads to minimize the negative cost
variations. Indeed, the total amount of cost variations along the
path can be expressed as follows:

v(l)− v(0) =
∑

i

∆v+i +
∑

j

∆v−j

where ∆v+i and ∆v−j are the intervals of positive and negative
cost variation, respectively. Using (2), we obtain

W (P) = v(l)− v(0) + εl +
∑

j

|∆v−j |. (3)

Because v(l) and v(0) are constants and εl is small relative
to cost values, (3) states that to minimize W is equivalent to
minimize the last term in the right-hand side of the equation,
that is, the total amount of negative cost variations.

2) Cost Variations Minimization: Since the MW pathPmin-
imizes both positive and negative cost variations, P is indeed
the path that minimizes any cost variation between two given
configurations. Let V (P) be a function that sums positive and
negative variations

V (P) =
∑

i

∆v+i +
∑

j

|∆v−j |.

Using (2) and (3), we get

V (P) = 2W (P)− (v(l)− v(0) + 2εl). (4)

Thus, the ordering of the paths remains the same regardless
of the criterion (V or W ), which, indeed, means that they are
equivalent. However, we will keep the formulation of MW path,
since this notion facilitates the analysis of the T-RRT algorithm.

3) Reversibility of Minimal Work Paths: Let −1P be the re-
verse path of P. Since the parametric cost functions v and −1v
have opposed variations, i.e., ∆−1v+ = |∆v−|, we have

W (−1P) =
∑

j

|∆v−j |+ εl

and using (3), we get

W (−1P) = W (P) + v(0)− v(l). (5)

Consequently, the mechanical work of a path is equal to the me-
chanical work of its inverse, except for a constant. This property
allows us to speak about the MW path between two configura-
tions with no need to orient the path.

IV. TRANSITION-BASED RAPIDLY EXPLORING RANDOM TREE

A. Main Algorithm

The T-RRT algorithm combines the advantages of two meth-
ods. First, it benefits from the exploratory strength of RRT-like
algorithms, which result from their expansion bias toward large
Voronoi regions of the space. Additionally, it integrates features
of stochastic optimization methods developed to compute global

minima in complex spaces: It uses transition tests to accept or
reject potential states.

Algorithm 1 shows the pseudocode of the T-RRT planner.
Similar to the Extend version of the basic RRT algorithm [20],
a randomly sampled configuration qrand is used to determine
both the nearest tree node qnear to be extended and the exten-
sion direction. The extension from qnear is performed toward
qrand with an increment step δ. In the case of T-RRT, δ has
to be small enough to avoid cost picks to be missed by the
linear interpolation between qnear and qnew . This stage also
integrates collision detections in the presence of “binary obsta-
cles.” Thus, if the new portion of path leads to a collision, a
null configuration is returned and the extension fails, indepen-
dently of the associated costs. This extension process ensures
the bias toward unexplored free regions of the space. The goal
of the second stage is to filter irrelevant configurations regard-
ing the search of low-cost paths before inserting qnew in the
tree. Such filtering is performed by the TransitionTest
function. It relies on the Metropolis criterion commonly used
in stochastic-optimization methods. This test integrates a self-
tuning technique in order to automatically control its filtering
strength and, thus, to ensure continuous growth of the tree. Fi-
nally, the MinExpandControl function forces the planner to
maintain a minimal rate of expansion toward unexplored regions
of the space and avoids possible blocking situations during the
search. The following sections detail the TransitionTest
and MinExpandControl functions.

B. Transition Test

The TransitionTest function is presented in Algo-
rithm 2. First, configurations with a higher cost than the maxi-
mum cost threshold cmax are filtered. The probability of accep-
tance of a new configuration is defined by comparing its cost
cj relatively to the cost ci of its parent in the tree. This test is
based on the Metropolis criterion initially introduced in statisti-
cal physics and molecular modeling. The transition probability
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pij is defined as follows:

pij =





exp

(
−∆cij

KT

)
, if ∆cij > 0

1, otherwise

(6)

where we have the following:
1) ∆cij = (cj − ci)/dij is the slope of the cost, i.e., the cost

variation divided by the distances between the configura-
tions.3

2) K is a constant value used to normalize the expression. It
is based on the order of magnitude of the considered costs.
K is taken as the average cost of the query configurations,
since they are the only cost values known at the beginning
of the search process.

3) T is a parameter called temperature that is used to control
the difficulty level of transition tests, as further explained
in the following. Note that the term temperature is em-
ployed in analogy with methods in statistical physics, but
in our case, it does not have any physical meaning.

Using this transition probability, downhill transitions are au-
tomatically accepted, whereas for uphill transitions, the chance
of acceptance decreases exponentially with the cost increment.

1) Temperature Parameter: T is a key parameter of the al-
gorithm, since it defines the level of difficulty of a transition for
a given cost increment. Low temperatures limit the expansion to
slightly positive slopes. In contrast, higher temperatures enable
to climb the steeper slopes. Within methods that involve the
Metropolis criterion, the temperature is usually kept constant
(e.g., Monte Carlo search) or decreases gradually as the search
progresses (e.g., simulated annealing). In our algorithm, this
parameter is dynamically tuned according to the information
acquired during the exploration.

2) Adaptive Tuning: The TransitionTest function per-
forms an adaptive tuning of the temperature during the search

3Contrarily to classical Monte Carlo methods, the cost variation is normalized
by the distance to the previous state, since this distance is not necessarily
constant.

Fig. 8. Frontier nodes (in white regions) have a Voronoi region bounded by
the space limits. On the contrary, the Voronoi region of nonfrontier nodes is
bounded by the Voronoi region of other nodes (in brown/gray regions).

process (second stage of Algorithm 2). At the initialization, T
is set to a very low value (e.g., 10−6) in order to only autho-
rize very easy positive slopes (and negative ones). Then, during
the exploration, the number nFail of consecutive times the
Metropolis criterion discards a configuration is recorded and
used for temperature tuning. When the T-RRT search reaches
a maximal number of rejections nFailmax , the temperature is
multiplied by a given factorα. Each time an uphill transition test
succeeds, the temperature is divided by the same factor α. Thus,
the temperature automatically adapts itself, such that an exten-
sion that corresponds to a positive cost variation is performed
in average every nFailmax times. The influence of parameters
α and nFailmax is analyzed in Section VI.

C. Minimal Expansion Control

The adaptive temperature tuning introduced earlier ensures a
given success rate of positive slope transitions. A possible side
effect may appear when the tree expansion toward unexplored
regions remains slow, and the new nodes contribute only to
refine already explored regions. We discuss in the following
this issue and explain how the MinExpandControl function
overcomes this problem.

1) Exploration Versus Refinement: The behavior of the RRT
expansion can be explained by distinguishing two types of
nodes [21]. Frontier nodes are the external nodes of the tree
with a Voronoi region bounded by the space limits, whereas
nonfrontier nodes are the internal ones, whose Voronoi region is
entirely bounded by the Voronoi region of the other nodes (see
Fig. 8). Thus, the extension of a frontier node tends to explore
new regions of the space, and the extension of a nonfrontier node
only refines the existing tree. The problem of unbalanced refine-
ment and exploration modes was addressed in [21] and [22] for
standard RRTs. However, for T-RRT, the interaction between
these two kinds of extensions is more subtle than for the basic
RRT. Indeed, situations occur where the temperature is stabi-
lized by new nonfrontier nodes, which refine the tree in easier
regions of the space; however, the expansion toward new regions
requires the development of frontier nodes. Fig. 9(a) illustrates
this issue with an example of a tree, whose expansion has been
slowed down by the too-frequent insertion of nonfrontier nodes.
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Fig. 9. Impact of the minimal expansion control on the T-RRT algorithm.
(a) Without control, the insertion of nonfrontier nodes tends to slow down the
exploration by decreasing the temperature. (b) With control, the planner is forced
to keep to explore new regions of the space.

Fig. 9(b) shows the tree obtained by using the minimal expan-
sion control detailed in the following.

2) Minimal Exploration Rate: The proposed solution is to
force the planner to explore new regions by controlling the ratio
between exploration and refinement steps. Note that as long as
the tree coverage remains limited compared with the size of the
space, nonfrontier nodes have a Voronoi region that is much
smaller than the one of frontier nodes. Hence, extension steps
can be estimated as refinements or expansions, which depend on
the distance between qnear and qrand . For a large distance value,
qnear has greater chances to be a frontier node, whereas a small
distance value corresponds most probably to the case of a non-
frontier node extension. The control of minimal exploration rate
is performed by the MinExpandControl function presented
in Algorithm 3. If the distance qnear − qrand is greater than the
expansion step δ, qnew is considered to participate in the tree
expansion, and it is inserted in the data structure. Otherwise,
qnew is considered to participate in the tree refinement. The
configuration is not inserted in the tree if it makes the ratio of
nonfrontier nodes be greater than a given maximal value ρ. The
influence of this parameter is further discussed in Section VI.

V. THEORETICAL ANALYSIS OF T-RRT

A. T-RRT and Minimal Work Path

This section analyzes the relationship between T-RRT and
the notion of MW path introduced in Section III. An important
property is obtained first for the simplified case of a discrete

Fig. 10. Case of n equal-length paths. With T-RRT, the branches with the
lowest mechanical work have the highest chances to reach the goal first.

search process. Then, we discuss the extension of this result to
the general case of the T-RRT search.

1) Simplified Case: Let us consider a path search within a
discrete set of n equal length possible paths, each one defined by
a sequence of m edges and m+ 1 nodes (see Fig. 10). Using a
T-RRT scheme, each expansion of a given path requires the path
to be selected and the associated transition test to succeed. Thus,
the probability Pk of a given path Pk to be entirely developed
in m iterations is equal to

Pk =
∏

i∈[1,m ]

epki =
∏

i∈[1,m ]

(spki )(
tpki )

where ep denotes the probability for a given node to be extended,
sp is the probability to be selected, and tp is the probability to
have an accepted transition. In addition, we assume that the
paths have equal chances of being extended at each step (i.e.,
the node-selection process is not biased by Voronoi regions),
i.e.,

Pk =
1

nm

∏

i∈[1,m ]

tpki .

If the transition probability depends only on the transition tests
(i.e., the MinExpandControl is omitted), we get

Pk =
1

nm

∏

j

e(−∆vk +
j

)/KTj .

Moreover, if we assume that the temperature remains constant
during the expansion, we have

Pk =
1

nm
e1/KT e

−
∑

j
∆vk +

j

where ∆vk+j are summed over the positive variations of cost
along the path k. Finally, since εl is negligible in the mechanical
work expression, we get

Pk =
1

nm
e1/KT e−W (Pk ) . (7)

Since (1/nm )e1/KT is the same for all the paths, we obtain an
important property for this simplified version: The paths with the
lowest mechanical work have the highest probability of reaching
the goal first.

2) General Case: One first assumption made in the analysis
earlier is that each branch has an equal chance of being chosen
for the expansion. In practice, the various paths developed by
the T-RRT algorithm (from the root node to each leaf) are not
spatially independent. Each branch expansion tends to increase
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its global Voronoi region and, thus, increases the chance for its
nodes to be selected at the next iteration. This process reinforces
the extension of the paths with the most favorable mechanical
work and increases the convergence of the planner toward lower
cost solutions.

The simplified version also assumed that the temperature is
constant. This parameter affects each path in the same way.
Thus, we can argue that the property remains valid, even when
T varies during the search.

Finally, whereas the aforementioned property is established
for the discrete case of equal-length solution paths, T-RRT
search is performed among an infinite number of variable-length
paths. Since shortest paths require less expansion steps to con-
nect the queries, it is not possible to guarantee that paths of
lower cost have always better chances to reach the goal first.
However, as one can see from (7), the mechanical work of a
path affects exponentially its chances of success. This reveals
how strongly the T-RRT exploration is implicitly biased toward
solution paths of low mechanical work.

B. Probabilistic Completeness

The T-RRT algorithm is a probabilistically complete plan-
ner [19]. This property is directly inherited from the probabilistic
completeness of the RRT planner (see [9, Sec. IV]). The only
difference is that in the present case, the extension steps can
be rejected because of the transition tests, even in the case of a
convex, open, n-dimensional subset of an n-dimensional config-
uration space. However, we argue that the success probability of
the transitions is always strictly positive, since the cost function
takes finite values in this subset, and thus, the cost variations are
bounded. As a result, the planner converges eventually toward
an entire coverage of the considered subset, and the transition
tests affect only the convergence rate of the algorithm.

VI. EXPERIMENTAL RESULTS

A large set of experiments has been conducted to evaluate
the performance of the planner. First, the general behavior of
the method is presented on various problems. Second, its perfor-
mance is compared with that of the existing methods to highlight
the good quality of the T-RRT solutions. Finally, we investigate
the influence of some intrinsic parameters on the overall efficacy
of the method. All the algorithms have been implemented within
the path-planning software Move3D [23]. The performance re-
sults summarized in the tables are values averaged over ten runs.

A. General Performance

A variety of problems are proposed to illustrate the generality
of the method. The examples vary not only in the geometrical
complexity and the configuration space dimensionality but in
the nature of the cost function as well. Two settings of T-RRT
are considered: A greedy version of the planner referred to as T-
RRTg that takesnFailmax = 10, and a tempered version, which
is referred to as T-RRTt , with nFailmax = 100. The latter leads
to higher quality solution paths but is more computationally ex-
pensive. We usedα = 2 in all the examples. The results obtained

Fig. 11. (a) and (b) Construction process of the transition-based RRT planner.
The solution path (c) is close to the optimal one (d) computed from a space
discretization.

TABLE II
COMPARATIVE RESULTS FOR THE COSTMAP PROBLEM

with the basic RRT planner are given as references. The tables
also present comparative results with two existing cost-based
methods that will be discussed latter.

The first set of experiments is performed on the 2-D cost
space shown in Fig. 1. In this example, the solution paths have
to go through a saddle point to link the query configurations
located at two opposite corners of the landscape. Fig. 11 shows
snapshots of the exploration tree and the solution path found [see
Fig. 11(c)], which is close to the optimal one [see Fig. 11(d)].
Table II presents the characteristics of the paths obtained with
each planner.4 It also provides values for the MW and IC optimal
paths (computed with an A∗ search within a 128× 128 grid
discretizing the landscape).

The mechanical work of solutions obtained by the differ-
ent methods is reported in the W column. The numbers in
parentheses integrate the effect of some local smoothing of the
solution path with a simple procedure based on the shortcut al-
gorithm [14]. As one can see from Table II, the mechanical work
of the reference RRT path is almost three times higher than for
the optimal MW solution, and smoothing does not successfully
get close to the optimal value (36.9 versus 15.9). In comparison,
the mechanical work of the path obtained with the tempered ver-
sion of T-RRT is only 45% higher than for the MW path, and it

4In the case of RRT, since there is no obstacle in the scene, connection
attempts to the goal are only performed when d(qnew , qgoal ) < 15δ to avoid
getting a trivial straight-line solution.
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Fig. 12. Stick-extraction problem. A 6-DOF manipulator arm has to extract
a stick from a hole. The T-RRT solution path keeps the stick horizontal to
maximize its distance to the obstacles.

TABLE III
COMPARATIVE RESULTS FOR THE STICK-EXTRACTION PROBLEM

becomes only 6% higher than the optimal value after smoothing.
Most important, the overall shape of the T-RRT solution is very
close to the optimal-MW path and follows the same low-cost
regions. In addition, note that the relatively slight loss of path
quality of the greedy version is compensated by a much smaller
computing time (0.9 s versus 11.0 s). Comparative results ob-
tained with other existing costmap planners (Thresh. and hRRT
rows in Table II) are discussed in Section VI-B.

In the next experiment, a six-degrees-of-freedom (DOF) ma-
nipulator arm is carrying a stick in a 3-D workspace with ob-
stacles (see Fig. 12). Here, the goal is to extract the stick from
a hole, while keeping the stick as far as possible from the ob-
stacles. Thus, the cost function considered here is the inverse
of the distance between the stick and the obstacles. Results are
presented in Table III.

The costs of the T-RRT solution paths are considerably lower
than the ones of RRT. This shows the effectiveness of the planner
to find low-MW paths in higher dimensional spaces. T-RRT
solutions tend to keep the stick horizontal during its extraction
from the hole in order to remain as far as possible from the
obstacles, whereas the basic RRT planner produces erratic paths.
Once again, the slight loss of path quality of the greedy version
of the T-RRT (1.9 versus 1.1) is compensated by a significant
speed up (7.4 s versus 32.8 s).

The third scenario involves the same manipulator arm that
carries a sensor with a spherical extremity for the inspection of
the surface of a car part. The goal here is to keep the sensor
close to the surface of the car part during the motion, in order
to satisfy the requirements for the surface following task (see
Fig. 13 and Table IV). Note that for such a scenario, where the
robot is subject to task-space constraints, specific path-planning
schemes also exist (e.g., [24]).

As to be expected, the T-RRT computing time is higher than
the one of RRT because to compute a collision-free path with

Fig. 13. Car-part-inspection problem. The path for a 6-DOF arm that manipu-
lates a sensor (black sphere), which needs to remain close to the surface during
the inspection task is shown.

TABLE IV
COMPARATIVE RESULTS FOR THE CAR-PART-INSPECTION PROBLEM

RRT and with no cost consideration is a much easier problem
than to obtain a solution that minimizes the distance to the
inspected surface. However, with regard to paths quality, the
mechanical work of T-RRTg and T-RRTt are 3.6 times and 7.7
times lower than the one of RRT, respectively. The average and
maximal costs reported in Table IV are interesting indicators to
get a better idea of the quality of the results, since they corre-
spond directly to the average and maximal distances between
the sensor and the part, respectively. For a distance reference,
the diameter of the black sphere at the extremity of the sensor
is 40 mm. For T-RRTg , the maximal cost corresponds approxi-
mately to twice this value, whereas the average distance is close
to the sensor radius. In the case of T-RRT, solution paths follow
the surface of the part so well that the maximal distance never
exceeds the size of the sphere and the average one is about one
tenth of this diameter.

Finally, the last scenario corresponds to a molecular model
shown in Fig. 14. The task is to compute the pathway to ex-
tract the ligand (small molecule in red/dark) from the active site
located inside a protein. This problem can be seen as a me-
chanical disassembly path-planning problem for the free-flying
ligand [25]. Energetic constraints are translated into geomet-
ric ones by considering a steric model of the molecule, and a
collision-detection algorithm [26] is applied as a geometric filter
that rejects conformations with prohibitively high van der Waals
(VdW) energy. The cost function considered for this problem
is the inverse of the distance between the ligand and the pro-
tein. The interest of this molecular model is to provide a simple
way to quantify the quality of the computed solution path. The
ligand-free space can be simply dilated by shrinking the atoms
radii. The results reported in Table V correspond to both RRT
and T-RRT algorithms applied on the shrunk model shown in
Fig. 14(b) (25% of VdW radii).
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Fig. 14. Two representations of the same ligand–protein “disassembly” prob-
lem, with different VdW radii. (a) Maximal radius. (b) Shrunk radius. The goal
is to compute paths that maximize the clearance and, thus, remain valid for large
VdW radii.

TABLE V
COMPARATIVE RESULTS FOR THE LIGAND–PROTEIN PROBLEM

The T-RRT solution paths have a much lower cost compared
with the one computed by RRT. The higher clearance of the
T-RRTs solutions are also quantified by the maximal VdW ratio
indicated in the last row of the table. This maximal ratio was
obtained by testing solution paths by increasing the VdW radii
until a collision was detected between the ligand and the protein.
While no growing is possible for the RRT solution, the T-RRT
paths (computed with a 25% ratio) remain valid up to 65% and
69% growing, depending on the variant. These values are close
to the maximal radius that allows the ligand to exit (80%). The
high clearance of T-RRT paths reflects their good quality with
respect to the considered distance-based cost.

B. T-RRT versus Existing Methods

T-RRT has been compared with two existing cost-based plan-
ners: the maximal Threshold technique proposed by Ettlin and
Bleuler [4] and the hRRT of Urmson and Simmons [6]. Results
obtained for the set of experiments with these planners are re-
ported in the last two rows of Tables II–V. In the case of the
threshold method, results are highly sensitive to the threshold-
growing speed, and thus, reported data correspond to the ex-
tremal values obtained when varying this parameter in the range
(1–100).

With regard to the mechanical work criterion, results show
that T-RRTt provides significantly better solutions than exist-
ing methods in all tests. Remarkably, T-RRT solutions are also
better with respect to the IC criterion in the three more difficult
problems, which involve a 6-D cost space.

The overall bad performance of the hRRT method is due to the
strong bias introduced by the heuristic that steers the exploration
toward the goal, resulting in a poor exploratory ability, which
makes it unable to circumvent high-cost regions and find higher
quality paths. Comparatively, the threshold technique can pro-

TABLE VI
INFLUENCE OF THE α AND nF ailmax PARAMETERS

TABLE VII
INFLUENCE OF THE ρ PARAMETER

vide solution paths whose quality is close to the one of T-RRTg ,
but its performance is highly sensitive to the parameter that reg-
ulates the variation speed of the threshold. Depending on the
value of this parameter, the running time increases up to 1000
times for the costmap problem, the mechanical work increases
up to 47-fold for the stick-extraction problem, and both the
running time and the mechanical work are notably affected by
the threshold-speed value for the car-part-inspection problem.
Furthermore, this sensitive parameter is problem-dependent and
has to be tuned for each application, whereas T-RRT parameters
remain robust to problem changes, as shown next.

C. Influence of Intrinsic Parameters

We now analyze the influence of the main parameters of the
T-RRT algorithm. Experiments are performed on three prob-
lems that correspond to three different types of cost functions:
the hilly costmap (see Fig. 11), the stick-extraction problem
(see Fig. 12), and the car-part-inspection problem (see Fig. 13).
The results are presented in Tables VI and VII. Bold values
are the default settings used in previous tests.

1) Temperature Variation Control: nFailmax and α are the
two parameters that control the derivative of the temperature,
and hence, the selectivity of the transition test (as explained in
Section IV-B).

Table VI shows that nFailmax is an important parameter
that determines the appropriate balance between time perfor-
mance and solution-path quality. In the costmap problem, when
nFailmax is increased by a factor of ten, the running time
also increases 9–13-fold. Its influence on the runtime perfor-
mance is less direct on the two manipulator problems (due to the
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additional cost of collision checking), even though the tendency
is the same. Finally, note that higher values of nFailmax im-
prove path quality but only up to a point: The quality increases
when nFailmax varies from 10 to 100 but remains approxi-
mately constant from 100 to 1000.

With regard to the α parameter, results show that it affects
only slightly the behavior of the algorithm, even if higher values
tend to increase the time performance, while decreasing the path
quality. Overall, values nFailmax = 100 and α = 2 provide the
best results for the three examples and are used as default setting
for all tests.

2) Expansion Versus Refinement Control: Table VII presents
result for various values of the ρ parameter used in the
MinExpandControl function to set the maximal ratio of
refinement nodes.

In the first line of the table, ρ = 1 means that the
MinExpandControl function is inactive. The results for
the 2-D hilly costmap highlight the importance of this func-
tion, the computing time being much higher when ρ = 1. This
example illustrates cases in which the refinement process slows
down the exploration by decreasing the temperature. This ef-
fect is less visible in the two other examples, where refinement
steps are less likely to happen because of the large size of the
space. Results for the other settings (i.e., ρ �= 1) are quite sim-
ilar, which means that ρ does not require to be tuned precisely.
In all experiments, the default setting ρ = 1/10 appears to be a
good compromise between computing time and path quality.

VII. EXTENSIONS

A. Bidirectional T-RRT

Similar to the bidirectional version of the RRT planner [9],
a bidirectional T-RRT can be envisaged. However, a naive ap-
proach that would use the same transition test for both trees
would lead to poor quality solutions. It would tend to create paths
with consecutive downhill and uphill cost variations, which cor-
respond to branches expanded from the init-tree and goal-tree,
respectively, and may fail to find a more flat solution path of
lower MW cost. A better alternative, using the property of Sec-
tion III-E2, which states that the MW paths minimize any cost
variations, is to modify transition tests in order to filter both pos-
itive and negative cost variations when expanding the two trees.
This can be achieved easily by replacing the transition probabil-
ity pij of (6) by the expression pij = exp(−(|∆cij |)/KT ). Pre-
liminary results show that this approach performs well in prob-
lems where positive and negative cost variations for the best cost
paths are globally of the same amplitude. However, in problems
where the profile of the cost between query nodes is asymmetric,
it turns out to reject too many configurations during the transi-
tion test, which degrades the performance. In this case, a method
based on a more sophisticated transition test should be designed.

B. Toward a Greedy Anytime T-RRT

In this section, we discuss a possible extension of T-RRT for
performance improvement in tricky situations, such as the one
illustrated in Fig. 15. In this example, the large low-cost region
has to be fully explored 1) for determining the need to cross

Fig. 15. Tricky problem for T-RRT. A large low-cost region has to be explored
before deciding to cross the high-cost barrier. (a) Useless in or (b) leading to a
better solution.

Fig. 16. (a) Initial tree built using a greedy T-RRT version. (b) Addition of
cycles (in red) leads to higher quality paths.

the higher cost barrier or 2) to discover the low-cost passage
that yields a better solution. In both cases, the greedy T-RRTg

version may rapidly cross the barrier and, thus, speed up the
computation compared with the tempered T-RRTt . However, it
may miss the preferred detour path in problem 2) for which
a longer exploration is needed to find the passage. To keep
the performance of an aggressive exploration, while avoiding
this issue, we propose to combine the greedy version of the
planner with a cycle-addition mechanism. The idea is to create
cycles in the tree when good paths initially missed during the
search are discovered afterward. The idea has been tested by
using the technique described in [27] for cycle addition. Fig. 16
shows an initial tree built using a greedy version of T-RRT
that goes through a medium cost region [circled in blue on
Fig. 16(a)] that could have been avoided. The addition of cycles
provides alternative paths and yields higher quality solutions
[see Fig. 16(b)].

VIII. CONCLUSION AND FUTURE WORK

We have presented a sampling-based algorithm to compute
paths in problems which involve high-dimensional cost spaces.
The proposed method combines the exploratory strength of
RRTs, with the efficiency of stochastic-optimization methods.
It integrates an adaptive mechanism that helps to ensure a good
performance for a large set of problems.

The notion of MW path has been proposed to quantify the
quality of solution paths. By design, the proposed T-RRT algo-
rithm computes paths that tend to satisfy such a quality property.
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A large set of experiments were performed to show the efficacy
of the T-RRT planner.

Experimental results have shown that the planner is general
enough to be applied, at least, to 6-D spaces constrained by ob-
stacles. Future work concerns the application of T-RRT to new
classes of problems, such as the integration of human–robot in-
teraction constraints within path planning or the exploration of
energy landscapes in computational biology problems. Exten-
sions discussed in the previous section also need to be further
explored for performance improvement. Furthermore, another
direction is to incorporate in the planner other methods inspired
by Monte Carlo optimization techniques, such as stochastic tun-
neling [28] or parallel tempering [29]. Finally, it would be in-
teresting to test our approach on benchmark problems of the
stochastic optimization community, since T-RRT could be used
as a generic optimization tool and, in principle, applied to any
metric cost space.
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Abstract

This paper deals with motion planning for robots manipulating mov-
able objects among obstacles. We propose a general manipulation
planning approach capable of addressing continuous sets for model-
ing both the possible grasps and the stable placements of the movable
object, rather than discrete sets generally assumed by the previous
approaches. The proposed algorithm relies on a topological prop-
erty that characterizes the existence of solutions in the subspace of
configurations where the robot grasps the object placed at a stable
position. It allows us to devise a manipulation planner that captures
in a probabilistic roadmap the connectivity of sub-dimensional man-
ifolds of the composite configuration space. Experiments conducted
with the planner in simulated environments demonstrate its efficacy
to solve complex manipulation problems.

KEY WORDS—manipulation task planning, path planning,
probabilistic roadmaps

1. Introduction

Manipulation planning concerns the automatic generation of
robot motion sequences allowing the manipulation of mov-
able objects among obstacles. The presence of movable ob-
jects, i.e., objects that can only move when grasped by a robot,
leads to a more general and computationally complex version
of the classical motion planning problem (Latombe 1991).
Indeed, the robot has the ability to modify the structure of
its configuration space depending on how the movable object
is grasped and where it is released in the environment. Also,
movable objects cannot move by themselves; either they are
transported by robots or they must lie at some stable place-
ment. Motion planning in this context appears as a constrained
instance of the coordinated motion planning problem. The so-
lution of a manipulation planning problem (see, for example,
Alami, Siméon, and Laumond 1989; Latombe 1991) consists
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in a sequence of subpaths satisfying these motion restrictions.
Motions of the robot holding the object at a fixed grasp are
called “transfer paths”, and motions of the robot while the
object stays at a stable placement are called “transit paths”.

Let us consider the manipulation planning example illus-
trated by Figure 1. The manipulator arm has to get a movable
object (the bar) out of the cage, and place it on the other side of
the environment. Solving this problem requires the automatic
production of the sequence of transfer/transit paths separated
by grasps/ungrasps operations, allowing one extremity of the
bar out of the cage; the manipulator can then re-grasp the
object by the extremity that was made accessible by the pre-
vious motions, perform a transfer path to extract the bar from
the cage, and finally reach the specified goal position. In par-
ticular, the motion shown on the second image illustrating the
solution requires itself four re-grasping operations to obtain a
sufficient sliding motion of the bar. This example shows that
a manipulation task possibly leads to a complex sequence of
motions including several re-grasping operations.A challeng-
ing aspect of manipulation planning is to consider the auto-
matic task decomposition into such elementary collision-free
motions.

Most existing algorithms (e.g., Ahuactzin, Gupta, and
Mazer 1998;Alami, Siméon, and Laumond 1989; Barraquand
and Ferbach 1994; Koga and Latombe 1994; Nielsen and
Kavraki 2000) assume that a finite set of stable placements
and of possible grasps of the movable object are given in the
definition of the problem. Consequently, a part of the task de-
composition is thus solved by the user since the initial knowl-
edge provided with these finite sets has to contain the grasps
and the intermediate placements required to solve the prob-
lem. Referring back to the example, getting the bar out of the
cage would require a large number of grasps and placements
to be given as input data.

In this paper, we describe a general approach based on
recent results presented in Siméon et al. (2002) and Sah-
bani, Cortés, and Siméon (2002). We propose a manipulation
planner that automatically generates grasps and intermediate
placements solving complicated manipulation problems such
as illustrated in Figure 1.The main contribution is the ability to
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Fig. 1. How can we manipulate the bar from its initial position (top left) to the goal (bottom left)? The solution (right) requires
several pick and place operations.

deal with continuous sets in the definition of the manipulation
problem, while covering the scope of the previous proposed
approaches (Section 2). The approach relies on a topologi-
cal property first established in Alami, Laumond, and Siméon
(1994) and recalled in Section 3. This property allows us to
reduce the problem by characterizing the existence of a so-
lution in the lower-dimensional subspace of configurations
where the robot grasps the movable object placed at a stable
position.

Section 4 describes the proposed approach and shows how
the connected components of this subspace can be captured in
a probabilistic roadmap (PRM) computed for a virtual closed-
chain system. Section 5 details the planning techniques devel-
oped to implement the approach. Using theVisibility-PRM al-
gorithm (Siméon, Laumond, and Nissoux 2000) extended to
deal with such closed systems (Cortés, Siméon, and Laumond
2002), we first capture the connectivity of the search space

into a small roadmap composed of a low number of connected
components (Section 5.1). Connections between these com-
ponents using transit or transfer motions are then computed
by solving a limited number of point-to-point path planning
problems (Section 5.2). The details of an implemented plan-
ner interleaving both stages in an efficient way are described
in Section 5.3. Finally, Sections 6 and 7 presents some exper-
iments and comments on the performance of the planner.

2. Related Work

One of the challenging issues of manipulation planning is
to integrate the additional difficulty of planning the grasp-
ing and re-grasping operations to the path planning problem.
This interdependency between path planning and grasp plan-
ning was first touched upon by work done in the 1980s for
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the development of automatic robot programming systems.
In particular, the Handey system (Lozano-Pérez et al. 1992)
integrated both planning levels and was capable to plan simple
pick-and-place operations including some re-grasping capa-
bilities. The geometric formulation of manipulation planning
(Alami, Siméon, and Laumond 1989; Latombe 1991), seen
as an instance of the motion planning problem extended by
the presence of movable objects, provided a unified frame-
work allowing us to better tackle the interdependency issues
between both planning levels.

Motion planning in the presence of movable objects is first
addressed as such inWilfong (1988). In this work, an exact cell
decomposition algorithm is proposed for the particular case
of a polygonal robot and of one movable object translating
in a polygonal workspace, assuming a finite grasp set of the
movable object.

The manipulation graph concept is introduced in Alami,
Siméon, and Laumond (1989) for the case of one robot and
several movable objects manipulated with discrete grasps and
placements. In this case, the nodes of the manipulation graph
correspond to discrete configurations and the edges are con-
structed by searching for transfer (or transit) paths between
nodes sharing the same grasp (or placement) of the movable
object(s). Following this general framework, the approach was
implemented for a translating polygon (Alami, Siméon, and
Laumond 1989) and a three-degrees-of-freedom (3-DoF) pla-
nar manipulator (Laumond andAlami 1989).An exact cell de-
composition algorithm is also proposed in Alami, Laumond,
and Siméon (1994) for the specific case of a translating polyg-
onal robot capable of manipulating one movable polygon with
an infinite set of grasps.

The manipulation planning framework is extended in Koga
and Latombe (1992, 1994) to multi-arm manipulation where
several robots cooperate to carry a single movable object
among obstacles. In this work, the number of legal grasps
of the objects is finite and the movable object has to be held at
least by one robot at any time during a re-grasp operation. The
planner proposed in Koga and Latombe (1994) first plans the
motions of the movable object using an adapted version of a
randomized potential field planner (Barraquand and Latombe
1991), and then finds the sequence of re-grasp operations of
the arms to move the object along the computed path. This
planner relies on several simplifications, but it can deal with
complex and realistic problems.

Another heuristic planning approach proposed in Bar-
raquand and Ferbach (1994) is to iteratively deform a co-
ordinated path first generated in the composite configuration
space using a variational dynamic programming technique
that progressively enforces the manipulation constraints.

Variants of the manipulation planning problem have been
investigated. In Lynch and Mason (1994), grasping is replaced
by pushing and the space of stable pushing directions imposes
a set of non-holonomic constraints that introduce some con-
trollability issues to the problem. The heuristic algorithm de-

scribed in Chen and Hwang (1991) considers a problem where
all the obstacles can be moved by a circular robot in order to
find its way to the goal.

Two other contributions extend recent planning techniques
to manipulation planning. In Ahuactzin, Gupta, and Mazer
(1998), the Ariadne’s Clew algorithm (Bessiere et al. 1993)
is applied to a redundant robot manipulating a single object
in a three-dimensional (3D) workspace. The method assumes
discrete grasps of the movable object; it is, however, capable
in realistic situations of dealing with redundant manipulators
(Ahuactzin and Gupta 1999) for which each grasp possibly
corresponds to an infinite number of robot configurations. Fi-
nally, Nielsen and Kavraki (2000) propose a practical manipu-
lation planner based on the extension of the PRM framework
(Kavraki and Latombe 1994; Overmars and Švestka 1994).
The planner constructs a manipulation graph between dis-
crete configurations; connections are computed using a fuzzy
PRM planner that builds a roadmap with edges annotated by a
probability of collision-freeness. Computing such roadmaps
improves the efficiency of the planner for solving the possibly
high number of path planning queries (in changing environ-
ments) required to compute the connections.

2.1. Contribution

The manipulation planning techniques described above
mostly address the discrete instance of the problem. Only
the algorithms in Alami, Laumond, and Siméon (1994) and
Ahuactzin, Gupta, and Mazer (1998) consider more difficult
instances for which the nodes of the manipulation graph (i.e.,
the places where the connections between the feasible transit
and transfer paths have to be searched) correspond to a col-
lection of submanifolds of the composite configuration space,
as opposed to discrete configurations. Such manifolds arise
when considering infinite grasps and continuous placements
of the object. This continuous formulation is only addressed
in Alami, Laumond, and Siméon (1994) for the specific case
of a translating robot in a polygonal world. Manifolds also
arise in Ahuactzin, Gupta, and Mazer (1998) because of the
redundancy of the robot although the planner assumes a set
of predefined discrete grasps.

In this paper, we propose a general approach for dealing
with such continuous settings of the manipulation planning
problem. Our planning approach considers continuous place-
ments and grasps, and it is also able to handle redundant
robots. It relies on a structuring of the search space allowing
us to efficiently capture the connectivity of the submanifolds
in a probabilistic roadmap computed for virtual closed-chain
mechanisms. The resulting planner is general and practical
for solving complicated manipulation planning problems in
constrained 3D environments.

For example, one can describe the set of stable placements
by constraining the movable object to be placed on top of
some horizontal faces of the static obstacles. Such placement
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constraints define a 3D submanifold of the object’s configu-
ration space (two translations in the horizontal plane and one
rotation around the vertical axis). Also, one can consider sets
of continuous grasping domains such that the jaws of a paral-
lel gripper have a contact with two given faces of the object.
Such grasp constraints also define a 3D domain (two transla-
tions parallel to the grasped faces and one rotation around the
axis perpendicular to the faces).

3. Manipulation Planning

3.1. Notations

We consider a 3D workspace with a robotR and a mov-
able objectM moving among static obstacles. The robot has
n DoF andM is a rigid object with six DoF that can only
move when it is grasped by the robot. LetCSrob andCSobj

be the configuration spaces of the robot and the object, re-
spectively. The composite configuration space of the system
is CS = CSrob × CSobj and we callCSf ree the subset inCS

of all admissible configurations, i.e., configurations where the
moving bodies do not intersect together or with the static ob-
stacles. The domain inCS corresponding to valid placements
of M (i.e., stable placements where the object can rest when
ungrasped by the robot) is denoted byCP . The domain in
CS corresponding to valid grasps configurations ofM by
the robotR is denoted byCG. Both CP andCG are sub-
dimensional manifolds inCS.

3.2. Manipulation Constraints

A solution to a manipulation planning problem corresponds
to a constrained path inCSf ree. Such a solution path is an
alternate sequence of two types of subpaths verifying the spe-
cific constraints of the manipulation problem, and separated
by grasp/ungrasp operations.

• Transit paths where the robot moves alone while the
objectM remains stationary in a stable position. The
configuration parameters ofM remain constant along
a transit path. Such motions allow us to place the robot
at a configuration where it can grasp the object. They
are also involved when changing the grasp of the ob-
ject. Transit paths lie inCP . However, a path inCP

is not generally a transit path since such a path has
to belong to the submanifold corresponding to a fixed
placement ofM. Transit paths induce a foliation1 of
CP (Figure 2(a)).

1. A foliation (Ito 1987) of ann-dimensional manifoldM is an indexed fam-
ily Lα of arc-wise connectedm-dimensional submanifolds (m < n), called
leaves of M, such that

– Lα ∩ Lα′ = ∅ if α �= α′
– ∪αLα = M

– every point inM has a local coordinate system such thatn−m coor-
dinates are constant

• Transfer paths where the robot moves while holding
M with the same grasp. Along a transfer path, the con-
figuration ofM changes according to the grasp map-
ping induced by the forward kinematics of the robot:
qobj = G(qrob). Transfer paths lie inCG. They induce
a foliation ofCG (Figure 2(b)).

3.3. Problem

Consider the two sets of constraints defining the stable place-
ments and feasible grasps. A manipulation planning problem
is to find a manipulation path (i.e., an alternate sequence of
transit and transfer paths) connecting two given configura-
tionsqi andqf in CG∪CP (Figure 2(c)). Manipulation plan-
ning then consists of searching for transit and transfer paths
in a collection of submanifolds corresponding to particular
grasps or stable placements of the movable object. Note that
the intersectionCG∩CP between the submanifolds2 defines
the places where transit paths and transfer paths should be
connected. The manipulation planning problem appears as a
constrained path planning problem inside and between the
various connected components ofCG ∩ CP (Figure 2(d)).

3.4. Reduction Property

Two foliation structures are defined inCG ∩ CP : the first
is induced by the transit paths; the second is induced by the
transfer paths. As a consequence, any path lying in a con-
nected component ofCG ∩ CP can be transformed into a
finite sequence of transit and transfer paths (the proof of this
property3 appears in Alami, Laumond, and Siméon 1994).
Therefore, two configurations which are in a same connected
component ofCG∩CP can be connected by a manipulation
path.

It is then sufficient to study theCG ∩ CP component’s
connectivity by transit and transfer paths. Let us consider a
transit (or transfer) path whose endpoints belong to two dis-
tinct connected components(CG∩CP)i and(CG∩CP)j of
CG ∩ CP . From the reduction property above one may de-
duce that any configuration in(CG∩CP)i can be connected
to any configuration in(CG ∩ CP)j along a manipulation
path.

3.5. Manipulation Graph

It is then possible to build a graphMG whose nodes are the
various connected components ofCG ∩ CP while an edge
between two nodes(CG ∩ CP)i and (CG ∩ CP)j indi-
cates the existence of a transit (or transfer) path whose end-
points belong respectively to(CG∩CP)i and(CG∩CP)j .

2. The intersectionCG ∩ CP is also a submanifold. Note, however, that
CG ∪ P is not a submanifold.
3. Note that this property holds for a single movable object under the hypoth-
esis that the robot does not touch the static obstacles.
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(a) (b)

(c) (d)

Fig. 2. Moving along transit (tranfer) paths induces a foliation of the placement (grasp) space. Both foliations intersect
themselves inCG ∩ CP . (a) The placement spaceCP ; (b) the grasp spaceCG; (c) CG ∪ CP ; (d) CG ∩ CP has five
connected components.

Figure 3 illustrates the graph structure for the example intro-
duced in Figure 2. Examples of manipulation paths are shown
in the bottom-left picture;q1 is not a valid configuration for
the manipulation problem (it does not belong toCP ∪ CG).
Configurationq6 is inCG; nevertheless it cannot escape from
its leaf inCG. A manipulation path exists betweenq3 andq5

and betweenq2 andq4. No manipulation path exists between
q5 andq4.

Let qi andqf be two configurations inCG ∪ CP . There
exists a manipulation path betweenqi andqf iff there exist
two nodes(CG∩CP)i and(CG∩CP)f in MG, called the
manipulation graph, such as:

• there exists a transit (or transfer) path fromqi to some
point in (CG ∩ CP)i ;

• there exists a transit (or transfer) path from some point
in (CG ∩ CP)f to qf ;

• (CG ∩ CP)i and (CG ∩ CP)f belong to a same
connected component ofMG.

3.6. Combinatorial Issues

How can we capture the connected components ofCG∩CP ?
How can we capture their adjacency by transit and trans-
fer paths? These are the two key issues in manipulation task
planning. All the techniques overviewed above fall into this
general framework.

4. A General Approach to Manipulation
Planning

We now describe our approach for solving manipulation prob-
lems in the general setting of continuous grasp and placement
constraints. The proposed approach relies on the structure of
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Fig. 3. The topology ofCS induced by the manipulation problem constraints can be captured by a so-called manipulation
graph. (a) Set of configurations reachable by a transit path starting at a configuration inCG ∩ CP . (b) Adjacency of
CG ∩ CP components via transit paths. (c) Set of configurations reachable by a transfer path starting at a configuration in
CG∩CP . (d)Adjacency ofCG∩CP components via transfer paths. (e) Examples of manipulation paths. (f) The manipulation
graph.
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Fig. 4. A probabilistic roadmap as a manipulation graph; nodes belong toCG ∩ CP while edges model paths belonging to
eitherCG∩CP , CP or CG. Two types of adjacency are considered: directCG∩CP paths (plain segments) or elementary
sequences of transit–transfer (or transfer–transit) paths (dashed segments).

CG ∩ CP discussed in the previous section. The main idea
is to exploit the reduction property of Section to decompose
the construction of the manipulation graph at two levels:

• compute the connected components ofCG ∩ CP ;

• determine the connectivity ofCG ∩ CP components
using transit and transfer paths.

4.1. A Two-Level Probabilistic Manipulation Roadmap

The manipulation graph is computed as in Nielsen and
Kavraki (2000) using a probabilistic technique (Kavraki and
Latombe 1994; Overmars and Švestka 1994), but our con-
struction of the manipulation roadmap integrates a specific
step allowing us to directly capture the connectivity of the
submanifoldCG ∩ CP inside the roadmap. The structure of
a manipulation roadmap computed using this approach is il-
lustrated by Figure 4.

The roadmap is composed by a small number of nodes (the
connected components ofCG∩CP ) connected together with
transit or transfer paths. EachCG∩CP component is captured
into a subroadmap computed using a local planner that gener-
ates feasibleCG∩CP motions (the black edges in Figure 4)
between nodes (in black) randomly sampled inCG ∩ CP .
These subroadmaps are connected via transit and transfer
paths (the dotted edges) using some intermediate nodes (in
white). The intermediate nodes are defined as follows. Con-
sider two configurations inCG ∩ CP that cannot be directly

connected by a collision-free path inCG∩CP (i.e., configu-
rations that do not belong to the same connected component of
CG ∩ CP ). These configurations correspond to fixed grasps
and placements of the movable object, noted(gi, pi)i=1,2. Us-
ing motions outsideCG ∩ CP , they can only be connected
by following the particular leaves ofCP andCG issued from
both configurations. We then define the intermediate nodes as
(g1, p2) and(g2, p1). An edge between(g1, p1) and(g2, p2)

is added if at least one of the intermediate nodes(g1, p2) and
(g2, p1) belongs toCG∩CP and the node is reachable from
(g1, p1) and(g2, p2) by a collision-free transit/transfer path.
The connection between two randomly sampled configura-
tions ofCG∩CP is then possible if one of the three types of
adjacency (Figure 4) exists:

• Type1—a direct path from(g1, p1) to (g2, p2) lying
insideCG ∩ CP is collision-free;

• Type2a—a transfer path from(g1, p1) to (g1, p2) fol-
lowed by a transit path from(g1, p2) to (g2, p2) are both
collision-free;

• Type2b—a transit path from(g1, p1) to (g2, p1) fol-
lowed by a transfer path from(g2, p1) to (g2, p2) are
both collision-free.

Once the manipulation roadmap is computed, queries
are solved by searching for a path insideMG. The ob-
tained solution alternates elementary manipulation paths (i.e.,
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Fig. 5. Closed-chain system (right) formed inCG ∩ CP by
the robot and the movable object (left).

transfer/transit paths computed when traversing edges ofMG

usingType2 adjacencies) withCG ∩ CP paths (i.e., paths
computed inside the nodes ofMG usingType1 adjacencies).
Note that the directCG ∩ CP paths correspond to simul-
taneous changes of grasp and placement; they are therefore
not feasible from the manipulation point of view. However,
thanks to the reduction property, any suchType1paths can be
transformed in a post-processing stage into a finite sequence
of Type2 transit and transfer paths.

4.2. Capturing CG ∩ CP Topology via Closed-Chain
Systems

The main critical issue of the approach is to capture into a
probabilistic roadmap the topology ofCG ∩ CP which is
a submanifold of the global configuration spaceCS with a
lower dimension. The idea here is to exploreCG ∩ CP as
such. For this, we consider thatCG∩CP is the configuration
space of a single system consisting of the robot together with
the movable object placed at a stable position. Maintaining
the stable placement while the object is grasped by the robot
induces a closed chain for the global system (Figure 5).

We now explain how the closed chain used for the explo-
ration ofCG ∩ CP is defined. A fixed grasp of the movable
object corresponds to a transformation matrixTg position-
ing the end-frame of the robot with respect to the coordinate
frame of the object. The set of continuous grasps can then be
defined by a transform matrixTg(qgrasp) whereqgrasp denotes
a set of varying parameters. TheCG subspace corresponds
to the set of free configurations(qrob, qobj ) for which the con-
figurationqobj of M changes according to the grasp mapping
induced by the forward kinematics of the robot and by the
grasp of the object:qobj = G(qrob, qgrasp). CG is therefore
parametrized by the configuration vector(qrob, qgrasp) associ-
ated with a composite robot obtained by adding virtual joints
induced byqgrasp between the last link ofR and the object
M. On the other hand, the set of stable placements is de-
fined by a transformation matrixTp(qplace) relating the ob-
ject’s frame to the world frame, whereqplace denotes the set of
varying placements parameters. TheCP submanifold corre-
sponds to configurations whereqobj changes according to the

mappingqobj = P(qplace). Then, theCG ∩ CP space can be
parametrized as the set of configurations(qrob, qgrasp, qplace)

satisfying the closure constraintsG(qrob, qgrasp) = P(qplace).
Facing such sub-dimensional manifolds is a challenging

problem for motion planning. In particular, applying a purely
randomized PRM framework (Kavraki and Latombe 1994;
Overmars and Švestka 1994) to closed-chain mechanisms is
prohibited by the fact that the probability to choose a configu-
ration at random on a given sub-dimensional manifold is null
(LaValle, Yakey, and Kavraki 1999). However, several recent
contributions (LaValle, Yakey, and Kavraki 1999; Han and
Amato 2001; Cortés, Siméon, and Laumond 2002) have ex-
tended the PRM framework to face this issue. In Section 5 we
describe the planning technique used in our implementation.

4.3. Connections with Transit and Transfer Paths

Computing such connections requires that we solve multi-
ple point-to-point path planning problems, as for the case of
discrete grasps and placements. Here, the issue is to provide
efficient solutions for searching such collision-free transit (or
transfer) paths in the various leaves ofCP (or CG). For ex-
ample, the fuzzy roadmap technique (Nielsen and Kavraki
2000) could be used to gain efficiency by limiting the number
of collision tests performed when solving the queries. Our
implemented planner, however, uses another kind of speed-
up. It relies on a simple technique sharing a similar idea with
the kinematic roadmaps (Han and Amato 2001). It exploits
the fact that each planning problem has to be performed in a
partially modified environment to re-use a precomputed static
roadmap that is dynamically updated when solving the plan-
ning queries. This planning technique is also further explained
in the section below.

5. Planning Techniques

We now detail the planning techniques developed to imple-
ment the approach. The two basic primitives required for com-
puting theType1 andType2 motions are respectively de-
scribed in Sections 5.1 and 5.2. Then, we explain how both
primitives are combined by the algorithm used to build the
manipulation roadmap.

5.1. Closed-Chain Planner for Type1 Motions

As explained above, our approach requires the application of
planning techniques for closed-chain systems in order to cap-
ture the topology ofCG ∩ CP . Several recent contributions
extended the PRM framework to deal with closure constraints
(LaValle, Yakey, and Kavraki 1999; Han and Amato 2001;
Cortés, Siméon, and Laumond 2002). In particular, we use the
Random Loop Generator (RLG) algorithm (Cortés, Siméon,
and Laumond 2002) that demonstrates good performance on
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complex 3D closed chains involving more than 20 DoF.As ini-
tially proposed in Han and Amato (2001), the loop is broken
into two open subchains, called the active and passive sub-
chains. Using the RLG algorithm, the random closure config-
urations (i.e., valid nodes) are obtained by combining random
sampling techniques with simple geometrical operations that
compute approximated reachable workspaces of various sub-
chains to iteratively generate the configuration for the active
chain. Then, it performs inverse kinematics for the remaining
passive part of the loop in order to force the closure constraint.
The advantage of the RLG algorithm is to produce random
samples for the active chain that have a high probability to
be reachable by the passive part. This significantly decreases
the cost of computing and connecting closure configurations.
The roadmap edges are computed using a local planner lim-
ited to act on the active joints, while the passive part of the
loop follows the motion of the rest of the chain. The practical
efficacy of our approach results from the good performance
reached today by these closed-chain extensions of the PRM
framework.

TheCG∩CP roadmap is then computed using Visibility-
PRM (Laumond and Siméon 2000; Siméon, Laumond, and
Nissoux 2000). This technique keeps the roadmap as small as
possible by only adding two types of useful samples: guards
that correspond to samples not already “seen” by the current
roadmap, and connectors allowing to merge several connected
components. Its interest is first to control the quality of the
roadmap in term of coverage and, second, to capture the con-
nectivity of possibly complex spaces into a small data struc-
ture. We believe that the small size of the visibility roadmaps,
combined with the proposed structuring ofCG ∩ CP , con-
tributes to the overall efficiency of our approach by limiting
the number of costly path planning queries to be performed
during the second stage, when searching the connections with
collision-free transfer or transit paths.

Figure 6 shows the closed-chain system formed by the
6-DoF arm manipulating the long bar for the manipulation
example of Figure 1. The bar moves in contact with the floor
while sliding within the gripper. The sliding motion of the
gripper results from the additional DoFqgrasp introduced in
the system to characterize the infinite set of grasps. In this ex-
ample,qgrasp is chosen to allow a translation of the parallel jaw
gripper along the bar. Similarly, the set of stable placements
corresponds to the planar motions parametrized by a 3D vec-
tor qplace (two horizontal translations and a vertical rotation),
that maintain the contact of the bar with the floor. The motion
shown in the right image of Figure 6 is a feasible motion in
CG ∩ CP . It is not admissible from the manipulation prob-
lem point of view. However, thanks to the reduction property
it can be transformed into a finite sequence of feasible transit
and transfer paths.

Figure 7 shows the visibility roadmap computed by the
algorithm inCG ∩ CP for the example of Figure 1. While
the collision-free configuration space of the arm alone is con-

nected,CG ∩ CP is not. The computed roadmap has four
connected components: two main components separated by
the long static obstacle, and two other small components that
correspond to placements of the movable object inside the
cage obstacle while it is grasped by the arm through the open
passage in the middle of the cage. These two small compo-
nents (inside the dashed circle of the left image) correspond
to the same position of the bar with two different orientations
180◦ apart. The associated placement of the system is shown
in the top-right image. The bottom-right image corresponds
to a node of the main component with the bar placed at the
same position, but using a different grasp. Connecting this
node to the small component is not possible because of the
cage obstacle that limits the continuous change of grasp. Such
re-grasping requires the computation of collision-free paths
outsideCG ∩ CP as explained below.

5.2. Connection Planner for Type2 Motions

ComputingType2 connections requires a basic routine to
find elementary collision-free transit and transfer paths. Each
of the planning problems corresponds to a particular grasp or
placement of the movable object. Then, the queries have to be
performed in a partially modified environment. The motiva-
tion of the two-stage method used by the connection planner is
simply to reduce the cost of dealing with such partial changes
by re-using at each query some of the paths pre-computed
during the first stage regardless of the movable object.

First, we compute a roadmap for the robot and the static
obstacles, without considering the presence of the movable
object. Then, before solving a given (transit or transfer) path
query, the roadmap is updated by checking whether each edge
is collision-free in respect with the current position of the
movable object. Colliding edges are labeled as blocked in the
roadmap.

The search for a given path is then performed within the
labeled roadmap.As illustrated by Figure 8, three cases possi-
bly occur. When the search fails, this means that no path exists
even in the absence of the movable object; the problem has no
solution. Similarly, when the computed path does not contain
any blocked edge (dashed edges in Figure 8) then a solution is
found. Now let us consider the intermediate situation where
the solution path necessarily contains blocked edges. In such
case, the algorithm tries to solve the problem locally using a
rapidly-exploring random tree planner (Kuffner and LaValle
2000) to connect the endpoints of the blocked edges. The prin-
ciple of the bidirectional RRT-Connect algorithm (see Kuffner
and LaValle 2000) used in our connection planner consists in
incrementally building two random trees rooted at the start
and goal configurations, such that both trees explore the space
around them and advance toward each other through the use of
a simple heuristic. This algorithm was originally designed to
efficiently process single-query path planning problems. The
main interest of RRT is to perform well locally. Its complexity
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Fig. 6. Virtual closed-chain system and a feasibleCG∩CP motion (the bar moves on the floor while sliding into the gripper’s
jaws).

Fig. 7. A visibility roadmap computed inCG ∩ CP (left) and two placements of the system inside two different connected
components ofCG ∩ CP (right).
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Fig. 8. (a) A static roadmap is computed in the configuration
space of the robot. During queries, it is labeled according to
collisions withM. If the query fails, there is no solution (b).
Otherwise, either there exists a solution path in the roadmap
avoiding labeled edges (c) or not (d). In the latter case, the
colliding part of the path is locally updated using an RRT-like
technique.

depends on the length of the solution path. This means that
the approach quickly finds easy solutions. It may be viewed
as a dynamic updating of the roadmaps.

Figure 9 shows the connecting paths computed by the
planner for linking the connected components of theCG ∩
CP roadmap shown in Figure 7.The transfer path (left) is used
to connect the two main components ofCG∩CP , while the
transit path connects the small component (inside the dashed
circle of Figure 7) to the main one.

5.3. Manipulation Planning Algorithm

The algorithm incrementally constructs the manipulation
roadmapMG by interleaving the two steps of the approach:
computingCG ∩ CP connected components (Type1adja-
cency) and linking them (Type2a-badjacencies). Following
the principle ofVisibility-PRM, the algorithm stops when it is
not able to expand the graph after a given number of tries. This
number of failures is related to an estimated coverage of the
search space (Siméon, Laumond, and Nissoux 2000; in our
case, theCG ∩ CP space). The functionEXPAND_GRAPH
performs one expansion step ofMG. Candidate nodes are first
sampled inCG ∩ CP and the different types of connections
to the graph are then tested.

EXPAND_MANIP_GRAPH(MG)
q ← NEW_CONFIG(MG)
Type ←ADJACENCY_CHOICE(MG)
nlinked comp. ← TEST_CONNECTIONS(MG, q, Type)
if nlinked comp. �= 1 then

ADD_NODE(q, MG, Type)
UPDATE_GRAPH(MG)
return TRUE

else
return FALSE

5.3.1. Node Generation

Our algorithm possibly considers several classes of contin-
uous grasps (placements), each defined by a transformation
matrix Tgi

(qgrasp) (Tpj
(qplace)) with qgrasp (qplace) as varying

parameters. Therefore, each couple(Tgi
, Tpj

) induces a par-
ticular closed-chain system. A candidate node is generated as
follows by the functionNEW_CONFIG; it first randomly se-
lects one couple(i, j) of grasps and placement classes. The
grasp and the stable placement of the movable object is then
chosen by randomly sampling the parameters of vectorsqgrasp

andqplace inside their variation interval. The candidate node
N is generated when the sampled grasp and placement are
collision-free and feasible for the virtual closed system in-
duced by the couple(Tgi

, Tpj
).

5.3.2. Adjacency Selection

Following the discussion in Section 4.2, the desired behavior
of the roadmap builder is to start by constructing portions of

 at LAAS - CNRS on January 15, 2014ijr.sagepub.comDownloaded from 



740 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July–August 2004

Fig. 9. The transfer path (left) and the transit path (right) computed for connectingCG∩CP components shown in Figure 7.

the roadmap insideCG ∩CP components usingType1 ad-
jacency, and then to determine connections of the components
usingType2 adjacencies. Rather than considering separately
the two stages, the algorithm uses a more sophisticated way to
interleave both phases. FunctionADJACENCY_CHOICEper-
forms a biased random choice {Type1,Type2} that de-
pends on the evolution of the size ofMG: the first expansion
steps start with a low probability to return aType2 choice;
when the roadmap grows, this probability increases as the per-
centage of the coveragecov estimated by the fraction(1− 1

ntry
)

(see Siméon, Laumond, and Nissoux 2000 for details).
A tuning parameterα ∈ [0, 1[ is used to put more or

less weight between expanding theCG ∩ CP components
and connecting them using transit/transfer paths: the prob-
ability of choosing theCG ∩ CP expansion is determined
by Prob(Type1) = α.(1 − cov) and Prob(Type2) =
1− Prob(Type1). With α set to zero, the roadmap builder
only considers connections ofMG nodes with transit/transfer
paths. Whenα tends toward 1, the algorithm rarely selects
such Type2 connections before a sufficient coverage of
CG ∩ CP has been reached. The effect ofα on the perfor-
mance of the algorithm when solving the manipulation prob-
lem of Figure 1 is further discussed in Section 6.

TEST_CONNECTIONS(MG, q, Type)
nlinked comp. ← 0
for k = 1 to N_COMP(MG) do
if LINKED_TO_COMP(q, Ck, Type) then

nlinked comp. = nlinked comp. + 1
return nlinked comp.

5.3.3. Edge Generation

The functionTEST_CONNECTIONSchecks the connection
between the candidate node and each connected component
Ck of MG using the type of adjacency selected by function
ADJACENCY_CHOICE.When the expansion step is performed
usingType1 motions, connections are computed using the
closed-chain planner of Section 5.1. In this case, it can be
noted that the connection of the candidate node to the roadmap
is only possible with nodes computed for the same classes
of grasps and placements(Tgi

, Tpj
). For each componentCk,

nodes with such characteristics are tested until a connection
is found feasible for the closed-chain mechanism induced by
(Tgi

, Tpj
). When the expansion is performed usingType2

motions, functionTEST_CONNECTIONSstops checking the
componentCk as soon as valid connection is found using the
planning technique of Section 5.2. Following the visibility
principle, the candidate node is added to the graph only if the
random sampleq was linked to none or to more than one con-
nected component. In the second case, the linked components
are merged.

5.3.4. Solving Manipulation Queries

Once the manipulation roadmap is built, queries can be
performed using the three following steps. First, the start
and goal configurations are connected toMG using the
TEST_CONNECTIONSfunction called with aType2 adja-
cency choice, and the manipulation graph is searched for a
path between both configurations. The second step is neces-
sary to transformCG∩CP portions of the solution path into
a finite sequence of transfer/transit paths. This is done by a
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dichotomic procedure that iteratively splits theCG∩CP paths
into pieces whose endpoints can be connected by a composi-
tion of two collision-free transit/transfer paths. The operation
of the algorithm is very simple. It begins by computing the
Type2a path and theType2b path which connect the initial
and final configurations of theType1 portion (see Figure 4).
If one of the paths is collision-free, the algorithm stops and
returns the collision-free path. If both paths are colliding, the
configuration halfway along theCG∩CP portion is generated
and the algorithm is recursively applied to two subpaths con-
necting this intermediate configuration to the initial and the
final ones.When all the necessary subdivisions are completed,
the concatenation of all elementary subpaths is collision-free
and respects the manipulation constraints.The process is guar-
anteed to converge. Finally, the solution is smoothed by a
procedure that eliminates unnecessary motions.

6. Performance Analysis

6.1. Performance of the Approach

The purpose of the proposed approach is first to reduce the
complexity of the problem since theCG ∩ CP submanifold
is a lower-dimensional space compared to the leaves of the
placements and grasps spaces. Let us illustrate this by detail-
ing the dimension of the various spaces for the problem of
Figure 1. Here, we havedim(CSrob) = 6, dim(CSobj ) = 6
anddim(CS) = 12. Placements of the object are allowed only
when the bar is placed on the table (three DoF). For a fixed
placement of the bar, the robot can freely move its six DoF.
Then, the dimension of the placement space isdim(CP ) = 9.
The bar is grasped by the robot by allowing a (one DoF) trans-
lating motion along its length; we then havedim(CG) = 7. In
this example, the leaves in bothCP andCG have dimension
6 whiledim(CG ∩ CP) = 4.

The other rationale is also to enlarge the size of the solu-
tion space when searching insideCG∩CP . Once a solution
path (includingType1 sliding motions) is found, it is always
possible to approximate it by a feasible manipulation path.
Such an additional transformation step is preferable to other
approaches that would directly take into account the manipu-
lation constraints during the search. In particular, for solving
the problem of Figure 1, the sliding motion allowing us to
get the bar out the cage (see Figure 11) is obtained much
more easily insideCG ∩ CP than the resulting sequence of
transit/transfer paths that would be computed by the existing
planners (e.g., Ahuactzin, Gupta, and Mazer 1998; Nielsen
and Kavraki 2000) after discretizing the continuous grasps
and placements.

6.2. Influence of the α Parameter

Let us now discuss the performance of the planner accord-
ing to α which is the major parameter of our planner. The

curve displayed in Figure 10 plots the time4 spent by the al-
gorithm to build the manipulation roadmap allowing to solve
the illustrative problem of Figure 1. As explained above, the
role of the parameterα is to control the rate of connections
searched insideCG∩CP (Type1 adjacencies) compared to
connections searched outsideCG ∩ CP along the leaves of
theCG andCP spaces (Type2adjacencies). Whenα = 0,
the roadmap builder only considers collision-free transit and
transfer paths to connect the random samples generated in
CG ∩ CP . In this case the algorithm behaves as the discrete
approaches.

Increasingα allows us to favor the construction of the
CG ∩ CP connected components usingType1 adjacencies
before trying possible connections along leaves withType2
adjacencies. The curve shows that the computation time sig-
nificantly decreases for runs performed with higher values of
α. This increased performance can be explained by the fact
that many searches of collision-free motions along the leaves
of CP andCG are avoided thanks to the direct exploration of
theCG∩CP submanifold. Note, however, that whenα tends
towards 1, the probability of selectingType2 adjacencies re-
mains very low until a sufficient coverage ofCG ∩ CP with
Type1 adjacencies has been reached. SinceType2 adjacen-
cies are required to link theCG∩CP connected components,
the performance decreases again whenα → 1. The reason
is that the algorithm spares time to reach such good cover-
age insideCG ∩ CP instead of trying connections outside
CG∩CP . In all the experiments performed with the planner,
this degradation of performance was observed to become sig-
nificant for values ofα closed to 1. The experimental study
conducted on the difficult manipulation problem of Figure 1
tends to show that when the problem is rather constrained, it is
qualitatively advantageous to spend time on the connectivity
of theCG ∩ CP submanifold before checking connections
with feasible manipulation paths. As shown by the curve, the
gain can be very important in such constrained situations. It is
however observed to be less significant on simpler problems
like the two other examples presented in the next section. As
often with the probabilistic methods, the choice of the best
value for this parameter remains an issue that would need to
be further investigated. In our experiments with the planner,
runs are generally performed with a value ofα set to.9.

7. Experimental Results

The manipulation planner was implemented within the soft-
ware platform Move3D (Siméon et al. 2001) developed at the
Laboratory forAnalysis andArchitecture of Systems (LAAS).
Several environments have been used as test-bed of the plan-
ner. In this section, we present the results obtained with three
of them. The computation times correspond to experiments
conducted on a 330 MHz Sparc Ultra 10 workstation.

4. Each time value was averaged over ten runs performed using different
seeds to initialize the random generator.
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Fig. 10. Performance of the algorithm depending on the percentage ofCG ∩ CP exploration (Type1paths) with respect to
transit–transfer (Type2paths) used to build the manipulation roadmap for the example of Figure 1. The abcissa corresponds
to the parameterα.

Fig. 11. A CG ∩ CP path with a sliding motion of the bar (left) transformed into a sequence of three feasible trans-
fer/transit/transfer manipulation paths (right).

The first example corresponds to the problem of Figure 1.
We refer to it as the Cage example.Two other scenes are shown
in Figure 12: the left image illustrates a problem (MulGP)
involving the same arm manipulating a more complicated U-
shaped object. Manipulating this object requires to consider
multiple classes of grasps and of placements depending on
the contact faces used to grasp/release the object. The right
example (MobM) corresponds to a problem involving a ma-
nipulator arm mounted on a mobile platform.

The difficulty with the Cage example is the complexity of
the manipulation task. Several consecutive re-grasping mo-
tions through the middle of the cage obstacle are necessary
to move the bar to a position where it can be regrasped by its

extremity. The planner automatically computes the required
configurations from only one continuous placement domain
(the floor) and one grasping zone all along the bar. The path to
get the bar out of the cage is found in theCG∩CP manifold,
and then transformed during the post-processing step in a se-
quence of transit and transfer paths (see Figure 11). The final
path contains 20 elementary paths with eight re-graspings of
the movable object. This difficult manipulation problem was
solved in less than 2 min, which demonstrates the efficacy of
the proposed approach.

In the example MulGP, the manipulation problem is to re-
orient the U-shaped movable object, starting from an initial
placement where it is trapped by the mechanical device lying
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Fig. 12. Scenes and start/goal positions for the MulGP and MobM examples.

at the left of the workplan.This problem was solved by consid-
ering eight grasp classes, each corresponding to a continuous
grasp along one of the eight thin faces defined by the U-shaped
form of the object. Also, the set of stable placements corre-
sponds to positions where one of the three large faces contact
with the workplan. We then consider three classes of place-
ments according to the orientation of the movable object when
placed on the table. Figure 13 shows the manipulation solu-
tion computed by the planner. Here, the presence of several
grasp/placements classes, and the larger size of the movable
object (which results in more RRT calls during the connection
stage) increase the overall cost of manipulation planner (see
Table 1).

In the example MobM, the mobile manipulator (nine DoF)
can only pass from one side of the scene to the other side
through the passage under the X-shaped obstacle. However,
this passage is too narrow for the movable object (the square
frame). A continuous grasping set is defined all around this
object. The frame can be placed on the central obstacles. Fig-
ure 14 shows the manipulation solution computed by the plan-
ner. Here, the manipulation task is simpler compared to the
previous examples; fewer re-graspings are needed to solve
the problem. The difficulty illustrated by the example is to
deal with a redundant system. An infinite set of solutions ex-
ists to achieve the same grasp. Redundancy is a challenge

Table 1. Numerical Results
Examples

Cage MulGR RobM

Total time 96 s 330 s 293 s
ComputingCG ∩ CP 23 s 10 s 6 s
Transit/transfer paths 70 s 306 s 284 s

Total collision checks 43,518 187,342 102,241
LocalCG ∩ CP paths 3689 1104 190
Transit/transfer paths 54 168 147
Dynamic updates 15 91 17

No. of manipulation nodes 32 36 21
No. of manipulation paths 29 30 21

when treating closed-chain mechanisms. The exploration of
the CG ∩ CP manifold for such systems is efficiently per-
formed using the RLG-based closed-chain planner (Cortés,
Siméon, and Laumond 2002).

Table 1 shows, for the three examples, numerical results
that illustrate the good performance of the planner. All prob-
lems were solved withα = 0.9 after less than 5 min of
computation. Most of the computation time is spent check-
ing connections with transit and transfer paths; this shows the
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Fig. 13. Manipulation path computed for the MulGP problem.
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Fig. 14. Manipulation path computed for the MobM problem.

advantage of the proposed approach which limits the number
of such connection tests by first computing connected compo-
nents insideCG∩CP .Also, the use of the visibility technique
is the reason for the small size of the manipulation roadmaps;
such small roadmaps also reduce the number of connections
to be tested.

8. Conclusion

We have presented a new approach to manipulation planning.
Its power lies in the fact that it can deal with a continuous for-
mulation of the manipulation problem. It is based on structur-
ing the search space to directly capture the connectivity of the
submanifolds that correspond to the places where transit and
transfer paths can be connected. This structure is expressed
in a probabilistic roadmap and allows us to design a manipu-
lation planner that automatically generates, inside continuous
domains, the grasps and placements that make the problem
solvable. Simulation results show the approach’s effective-
ness for solving complex manipulation problems.

There remain several possible improvements. For example,
it is important to improve the performance of the connection
planner which remains the most costly operation. This re-
lates to the efficiency of PRM planners when facing dynamic
changes of the environment. Although the approach has the
potential to handle general models of the grasp and placements

spaces, the planner is currently implemented for the particu-
lar case of planning pick-and-place operations for polyhedral
objects. One could, however, imagine applications requiring
other models. Finally, the manipulation planner is currently
restricted to a single movable object manipulated by a sin-
gle robot. The case of multiple movable objects and robots
requires studying the conditions under which the reduction
property can be extended to such situations. We also began
to investigate a more general approach (Gravot, Alami, and
Siméon 2002) combining a symbolic task planning level with
the geometric manipulation planner in order to solve problems
of higher complexity with multiple objects and robots.
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Abstract: The efficient filtering of unfeasible conformations would considerably benefit the exploration of the
conformational space when searching for minimum energy structures or during molecular simulation. The most
important conditions for filtering are the maintenance of molecular chain integrity and the avoidance of steric clashes.
These conditions can be seen as geometric constraints on a molecular model. In this article, we discuss how techniques
issued from recent research in robotics can be applied to this filtering. Two complementary techniques are presented:
one for conformational sampling and another for computing conformational changes satisfying such geometric
constraints. The main interest of the proposed techniques is their application to the structural analysis of long protein
loops. First experimental results demonstrate the efficacy of the approach for studying the mobility of loop 7 in
amylosucrase from Neisseria polysaccharea. The supposed motions of this 17-residue loop would play an important role
in the activity of this enzyme.
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Introduction

Prime techniques in structural investigations require the explora-
tion of the conformational space � of a molecule. Conformational
search methods1 explore � to identify the stable structures of
molecules, which determine their properties and functions. Molec-
ular simulations2 explore � while computing conformational
changes on a molecule under modified environmental conditions.
The analysis of such changes of the molecular structure is essential
for the understanding of many biologic processes.

Because the goal of the conformational search is to find min-
imum energy structures, the exploration is much more efficient
when it is limited to a subset of � excluding energetically unac-
ceptable conformations. Conformational changes explored in sim-
ulations can occur only if there is not a high energetic barrier to
overcome. Therefore, approaches treating these problems will
greatly benefit from efficient techniques able to provide samples
and paths in � that filter most unfeasible conformations.

The conformational analysis of a whole macromolecule is a
difficult problem. From a methodological point of view, two stages
are usually necessary: the first corresponds to the identification of
rigid segments (i.e., secondary structural elements) capable of
participating in the molecular framework; the second is devoted to
the remaining segments, so-called loops, assumed to be much

more flexible. However, available techniques to predict low-en-
ergy conformations of long loops are limited and much less effi-
cient because of the loop flexibility.

When the global molecular architecture is assumed to be
known and only portions (loops) are studied separately, the integ-
rity of molecular chains must be maintained. The first and last
atoms of the treated segment of a molecular chain must remain
bonded with their neighbor atoms. Breaking these bonds requires
a high amount of energy. A strong constraint is thus imposed for
the conformational exploration. This same constraint is present in
the analysis of cyclic molecules. It is often referred to in the
literature as the loop-closure constraint. Three main kinds of
methods can be applied to solve the loop-closing problem (i.e.,
computing conformations satisfying loop closure): analytic (e.g.,
refs. 3–5), optimization-based (e.g., refs. 6–8), and database meth-
ods (e.g., refs. 9 and 10). The difficulty of this problem increases
with the length of the molecular chain, and available techniques
are limited, or at least strongly penalized, by this.

In addition to breaking bonds, another large amount of energy
is required to get two nonbonded atoms significantly closer than
the sum of their van der Waals (vdW) radii. A violation of this
condition is called steric clash. Feasible conformations of a mo-
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lecular segment cannot contain either internal clashes, which we
call self-clashes, or clashes with atoms of the rest of the molecule.
A possible filter for such unacceptable conformations consists of
evaluating the repulsive term of the vdW energy and discarding
conformations that exceed a given cutoff value.11 However, this
energetic constraint can also be treated by geometric procedures.
The use of “clash grids,” computed from the distances between
atoms, to perform this filtering was proposed in ref. 12. An
interesting alternative is the use of collision detection algorithms
applied on a 3D model of the molecule.13 Obviously, the higher
the number of atoms the more critical the efficiency of the tech-
nique.

In robotics, the same kinds of constraint appear when treating
the motion planning problem.14 Paths must be computed in the
subset of feasible configurations* of the robot, �feas. The main
feasibility condition is collision avoidance. The robot cannot col-
lide with obstacles in the workspace and self-collisions are also
forbidden. Besides, when the robotic mechanism contains kine-
matic loops closure constraints must be considered in the com-
puted motions. Sampling-based motion planning techniques (e.g.,
refs. 15–17) have been demonstrated to be efficient and general
tools in this field. These techniques capture the topology of �feas

within data structures (graphs or trees) by performing a random (or
quasirandom) exploration of � on a model of the robot and its
environment.

In recent publications,18,19 we described efficient algorithms
for planning motions of closed-chain mechanisms. In this article,
we investigate the adaptation of these techniques to handle mo-
lecular models. Although the method could be applied to any
molecular segment or cyclic molecule, we are mainly interested in
the application to long protein loops.

Interest in Protein Loops

Loops play key roles in the function of proteins. They are often
involved in active and binding sites. Therefore, when predicting a
protein structure an accurate loop modeling is necessary for de-
termining its functional specificity.

Modeling loops in proteins is one of the main open problems in
structural biology. Comparative modeling methods (see ref. 20 for
a survey) often fail in the prediction of protein loop structures
when the percentage of sequence identities between known and
predicted protein family members is low. Indeed, it is well estab-
lished that there is no reliable approach for modeling long loops
(more than five residues) available at this time.21

The alternatives to comparative modeling are de novo (or ab
initio) methods.22 Such methods carry out a search of low-energy
conformations for a given amino acid sequence. Many different
approaches have been proposed for modeling protein loops. One of
the most developed techniques is described in ref. 23. This refer-
ence article also provides a concise survey of loop modeling
methods. The accuracy of de novo methods mainly depends on the

energy function they use. Therefore, improvements in the results
provided by these approaches require the design of fine-energy
models. However, progress in the conformational exploration
strategies may also be necessary to increase the efficiency of these
techniques, which are today computationally expensive.

Even more important than the prediction of stable loop confor-
mations is the determination of the feasible conformational
changes. In many enzymes, for example, surface loops undergo
conformational changes to catalyze a reaction.24 Further, loop
motions are in general involved in protein interactions. Therefore,
introducing loop flexibility into docking approaches is necessary
for a more accurate prediction of these interactions.25

Aim of Our Approach

The techniques proposed in this article aim to be new tools for the
structural analysis of long polypeptide segments and, in particular,
of protein loops. The efficiency of geometric algorithms developed
in the field of robotics can relieve conformational exploration
approaches of a part of the heavy energetic treatment.

In Section 5, we propose a conformational sampling technique
that generates random conformations satisfying loop-closure and
clash avoidance constraints. The backbone conformation is first
computed by an algorithm that relies on efficient geometric and
kinematic procedures. Side-chain conformations are then gener-
ated by combining sampling techniques and an effective collision
detection algorithm. Families of approaches requiring conforma-
tional sampling, such as Monte Carlo algorithms26 or stochastic
roadmap techniques,27 would directly benefit from such filtered
conformations.

Another interesting feature of our sampling technique is to
compute loop conformations avoiding steric clashes with the rest
of the protein. Using this technique to compute random samples
uniformly distributed in the conformational space will provide
useful information about the allowed conformations of the loop in
its environment. For instance, this information could be repre-
sented in the form of Ramachandran plots,28 and techniques (e.g.,
MODELLER23) using such statistical distributions could gain in
performance.

The geometric analysis can be pushed further. In Section 6, we
propose an algorithm to capture the connectivity of the subspace of
geometrically feasible conformations. The possible deformations
maintaining loop-closure and clash avoidance constraints are ex-
plored and encoded in a data structure. Such a data structure would
be useful for many existing conformational exploration ap-
proaches. Note that a conformational search method sharing sim-
ilar ideas has been proposed in ref. 29 for small molecules (li-
gands) under geometric constraints.

Problem Formulation

The problem is formulated from a robotic point of view. First, the
geometric model of the molecule is described. The constraints that
must be satisfied during the exploration of the conformational
space are then defined.

*A configuration for a robot is equivalent to a conformation for a molecule.
We designate both, the configuration space and the conformational space,
by �.
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Geometric Model

Kinematics-Inspired Model

A molecule is a set of atoms �i partially connected by bonds. A
sequence of bonded atoms is called a molecular chain. Three
parameters, usually called internal coordinates, define the relative
position of consecutive atoms in a molecular chain: bond lengths,
bond angles, and dihedral angles. The widely adopted rigid geom-
etry assumption (see ref. 30 as one of the first references) considers
that only dihedral angles are variable parameters. Under this as-
sumption, a molecule can be seen as an articulated mechanism
with revolute joints between bonded atoms. The model of a mo-
lecular chain can be built from the internal coordinates using
kinematics conventions. We follow the modified Denavit–Harten-
berg (mDH) convention described in ref. 31. A Cartesian coordi-
nate system Fi is attached to each atom �i and then the relative
location of consecutive frames can be defined by a homogeneous
transformation matrix:

i�1Ti � �
C�i �S�i 0 0

S�iC�i�1 C�iC�i�1 �S�i�1 �S�i�1di

S�iS�i�1 C�iS�i�1 C�i�1 C�i�1di

0 0 0 1
�

where di is the bond length between atoms �i�1 and �i; �i�1 is
the supplement of the bond angle between �i�2, �i�1, and �i;
�i is the dihedral angle formed by atoms �i�2, �i�1, �i, and
�i�1 [see Fig. 1(a)]. C and S represent sines and cosines, respec-
tively.

A molecular chain between atoms �0 and �n is then modeled by
a kinematic chain, 1�n, in which joint variables correspond to dihedral
angles. The conformation of the chain is determined by the array q of
the �i. The kinematic model of a polypeptide segment is composed of
a set of chains: the main-chain (the backbone) and the side-chains,

which are built upon it. The conformation of the segment is then
specified by an array containing the conformation parameters of the
backbone and of all the side-chains.

Often, some portions of molecular models are treated as rigid
solids, for instance, peptide units in proteins. The rigid geometry
assumption also considers that double-bond torsion angles, such as
peptide bonds, are fixed. Hence, the number of frames required in the
kinematic modeling is reduced. Figure 1(b) illustrates how the frames
corresponding to the mDH parameters are obtained by simple geo-
metric operations when the dihedral angle associated with a peptide
bond � is fixed at a given value. Thus, several atoms in each peptide
unit have constant coordinates in these frames. As proposed in a
recent work,32 frames only need to be attached to rigid units (called
atomgroups by the authors). Then, the relative location of atoms in an
atomgroup only requires positional coordinates, yielding to a more
efficient method for updating conformations.

vdW Model

The vdW model consists of a representation of the molecule by the
union of solid spheres associated with atoms. A vdW radius is
assigned to each atom type. This geometric model of the molecule
is the simplest and most ordinary space-filling diagram.33 In mo-
lecular models treated by our approach, such spheres are the
mobile bodies of the articulated polypeptide segment and the static
obstacles corresponding to the rest of the atoms in the molecule,
which compose what we call the environment.

Geometric Constraints

Loop Closure

A loop-closure constraint applied on the kinematic model of a
molecular chain 1�n fixes the relative location of the frames F0

and Fn, which we call base-frame and end-frame, respectively.

Figure 1. Molecular chain model. Frames associated (a) with atoms and (b)
defining the articulated mechanism. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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Therefore, the transform matrix 0Tn is known. This matrix can also
be obtained from the sequence of local transformations:

0Tn � 0T1
1T2 . . . n�1Tn

This equality provides a system of equations, called closure equa-
tions, where the unknowns are the joint variables �i. Hence, a
relationship must exist between the parameters in q for satisfying
loop closure.

Clash Avoidance

Distances between nonbonded atoms that are substantially shorter
than the sum of their vdW radii must be avoided. The choice of the
limiting contact distance is ambiguous. For our experiments, we
model molecules using a percentage (usually 70%) of the vdW
radii proposed in ref. 34. Collisions between such reduced vdW
spheres must be avoided if they are separated by more than three
bonds. This condition must be satisfied between the atoms of the
articulated segment and between these atoms and the static atoms
of the rest of the molecule.

Conformational Sampling

Algorithm 1 computes a random conformation of a polypeptide
segment (the protein loop) achieving loop-closure and clash avoid-
ance constraints on the 3D model. First, the backbone conforma-
tion qb is generated. The procedure for obtaining random confor-
mations satisfying closure is explained in the next subsection.
These conformations are then tested for clashes of backbone atoms
between themselves and with atoms in the environment. Once a
feasible conformation for the backbone has been computed, ran-
dom conformations of the side-chains qs are tested. These chains
are built iteratively until all of them are free of clashes. The
process is explained below.

Backbone Conformation with Closure

Obtaining a backbone conformation satisfying loop closure re-
quires the solution of the closure equations mentioned above.
Unfortunately, and despite the intensive research in the field, no

efficient general solution is currently available to solve systems of
multivariable nonlinear algebraic equations (see ref. 35 for a
survey).

It is now well known that, in general, six variables in the
closure equations are dependent on the rest (independent vari-
ables). Note that six is the minimum number of parameters that
allow us to span full-rank subsets of SE(3) (the position-orienta-
tion space in a 3D world).14 Many articles in computational
chemistry and robotics (e.g., refs. 3, 5, and 36–39]) propose
methods to obtain these six dependent variables as a function of
the other parameters. Except for very particular geometries (e.g.
regular cyclohexane40), only a finite number of solutions exists.

The remaining difficulty is how to obtain values for the inde-
pendent variables for which a solution of the closure equations
exists. In robotics, detailed analytic approaches have been pro-
posed only for planar or spherical closed mechanisms.41 In com-
putational chemistry, only a few authors have tackled this problem.
Decimation approaches and hierarchical decomposition of the
closing problem have been proposed for loops with six or more
residues.5 However, for very long loops the efficiency of such
methods decreases because closure equations must be solved sev-
eral times for different fragments of the chain.

We propose an algorithm, called random loop generator
(RLG), that produces random configurations of articulated mech-
anisms containing closed chains. This algorithm has demonstrated
its efficiency within robotic motion planning techniques.18,19 The
configuration parameters of a closed kinematic chain are separated
into two arrays: we call the independent variables of the closure
equations the active variables qa and the dependent variables the
passive variables qp. The RLG algorithm performs a particular
random sampling for qa that notably increases the probability of
obtaining solutions for qp.

We next explain the main elements of our approach and how it
can be applied to polypeptide backbone segments. Explanations
are illustrated on a simple mechanism, the 6R planar linkage in
Figure 2. The �i are the rigid bodies and the Ji the revolute joints
connecting them.

Loop Decomposition

The choice of the dependent and independent variables in the
closure equations is arbitrary. We choose them consecutively in
the kinematic chain. Thus, we can refer to a passive subchain
involving joints whose variables are in qp (passive joints). Al-
though the passive subchain can be placed anywhere in the closed
chain, it is convenient to place it in the middle. In general, the
passive subchain is a mechanism with six degrees of freedom. For
a polypeptide backbone model under the rigid geometry assump-
tion, only dihedral angles � and � are variable. Therefore, the
passive subchain is composed of the backbone of three residues. In
the example in Figure 2, three consecutive revolute joints (i.e., a
3R planar mechanism) are sufficient. We have chosen J3, J4, and
J5 to be the passive joints of the 6R linkage. Then, the rest of the
joints (active joints corresponding to qa) can be seen as contained
in two active subchains rooted on the (fictive) solid on which the
base frame and the end frame are fixed (�0,6 in Fig. 2).

Algorithm 1: RANDOMLOOPCONF.

input : the loop, the rest of the protein

output : the conformation q

begin

qb 4 RANDOMBACKBONECONF(loop.bkb);

if not CLASHCHECK(qb, loop.bkb, protein) then

if qs 4 GENERATESIDECHAINS(qb, loop, protein) then

q 4 COMPOUNDCONF(loop, qb, qs);

else return Failure;

else return Failure;

end
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RLG Algorithm

The pseudocode of the algorithm that generates random configu-
rations of a single-loop closed chain (applied to the loop backbone)
is synthesized in Algorithm 2. First, the configuration parameters
of the active subchains, qa, are computed by the function SAM-
PLE_qa detailed in Algorithm 3. The idea of the algorithm is to
progressively decrease the complexity of the closed chain treated
at each iteration until only the configuration of the passive sub-
chain, qp, remains to be solved. The two active subchains are
treated alternately. The ideal solution should be to sample each

joint variable from the subset of values, which we call closure
range, satisfying the closure equations. However, computing this
subset is as difficult as solving the general closure equations. Thus,
an approximation is used. This approximation must be conserva-
tive to guarantee a complete solution (i.e., no region of the sub-
space satisfying closure constraints is excluded from the sam-

Figure 2. Steps of the RLG algorithm performed on a 6R planar linkage. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Algorithm 2: RANDOMBACKBONECONF.

input : the backbone

output : the conformation qb

begin

qa 4 SAMPLE_qa(backbone);

if qp 4 COMPUTE_qp (backbone, qa) then

qb 4 COMPOUNDCONF(backbone, qa, qp);

else return Failure;

end

Algorithm 3: SAMPLE_qa.

input : the backbone

output : the active variables qa

begin

(Jb, Je) 4 INITSAMPLER(backbone);

while not ENDACTIVECHAIN(backbone, Jb) do

Ic 4 COMPUTECLOSURERANGE(backbone, Jb, Je);

if Ic � A then go to line 1;

SETJOINTVALUE(Jb, RANDOM(Ic));

Jb 4 NEXTJOINT(backbone, Jb);

if not ENDACTIVECHAIN(backbone, Je) then

SWITCH(Jb, Je);

end
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pling). More details about how to obtain the approximated closure
range are given in the next subsection. The closure range of the
joint variable treated at one iteration depends on the configuration
of the previously treated joints. Hence, this subset must be recom-
puted for all joints (except the first treated one) in the generation
of each new configuration. Because of the conservative nature of
the approach, it is possible to obtain an empty set. In this case, the
process is restarted.

Figures 2(a)–2(c) illustrate how the values of �1, �6, and �2 (the
active variables qa) are generated for the 6R linkage. For each
joint variable, the estimation of the closure range is computed and
a random value is sampled inside this set. Figure 2(d) shows the
two solutions of the closure equations for the passive subchain. In
this case, these solutions are obtained by simple trigonometric
operations. The solution for the passive subchain in the polypep-
tide backbone model is treated below.

Computing Closure Range

The problem can be formulated as follows. Given a closed kine-
matic chain b�e involving joints from Jb to Je (we consider b �
e in this explanation), two open kinematic chains are obtained by
breaking the body �b between Jb and Jb�1. A suitable break point
is the physical placement of Jb�1, but any other point can be
chosen. A frame FC associated with this break point can be seen
as the end frame of both open chains. The closure range of the joint
variable corresponding to Jb, �b, is the subset of values for which
FC is reachable by the open chain e�b�1. In general, the exact
solution to this problem is extremely complex. Most works in the
robot kinematics literature are limited to particular instances (e.g.,
refs. 42 and 43). For our purpose, a simple and fast method is
preferred to a more accurate but slower one. We solve the problem
only considering positional reachability.

Because Jb is a revolute joint, the origin of FC describes a
circle around its axis. The approximation of the closure range is
obtained by the intersection of this circle with a volume (surface
for the planar case in Fig. 2) bounding the region mapped by the
origin of FC attached to the chain e�b�1, which is called the
reachable workspace (RWS) in robotics. This bounding volume is
contained between two concentric spheres (circles) centered at the
origin of the base frame and whose radii are the maximum and
minimum extension of the chain, rext and rint. For a general
mechanism, obtaining these radii requires the solution of complex
optimization problems. If the appropriate (even if computationally
slow) method is available, it can be used in a precomputing phase.
However, simpler particular solutions can be adopted for particular
classes of mechanisms. The solution is straightforward for the
planar linkage in our example. The regions designated as RWS in
Figures 2(a)–2(c) represent such bounding surfaces at different
steps of the algorithm.

In the application to molecular models, frames FC are the
frames attached to atoms. Particularities in the geometry of
polypeptide backbones allow the design of a simple approximated
method to compute the spheres bounding RWS. For chains con-
taining more than three residues (which is the size of the passive
subchain), rint can be simply considered zero without decreasing
the performance of the technique.

The maximum distance between the extreme atoms of a seg-
ment of polypeptide backbone* is often obtained for a conforma-
tion with all the dihedral angles at �. We call this length l�.
However, this assumption is not always true, in particular if a
slight rotation around peptide bonds is allowed. An upper bound of
the maximum is required for guaranteeing completeness. This
upper bound l̂ is the sum of the distances between consecutive C�

atoms (i.e., the length of peptide units). Obviously, when the chain
begins or ends with a fragment of a peptide unit (i.e., only one or
two of the three concerned atoms in the backbone are contained in
the chain) the length of this portion is added. Instead of using a
constant value, rext is sampled from a distribution between l� and
l̂ each time this dimension is required in the process. We suggest
using a Gaussian distribution with � � l� and 	2 � 1. This
increases the efficiency of the approach while keeping complete-
ness.

This approximated method to obtain rext is not dependent on a
particular kind of geometry. It can be applied on standard models
or to structures acquired from the Protein Data Bank (PDB)
(http://www.rcsb.org/pdb). Figure 3 illustrates the application to
backbone segments with standard Pauling–Corey geometry.44

General 6R Inverse Kinematics

The kinematic model of the three-residue backbone corresponding
to the passive subchain in our approach can be seen as a 6R
manipulator with general geometry.45 Obtaining the conformation
of a serial manipulator, given the location of the base frame and the
end frame (i.e., solving the closure equations), is known in robotics
as the inverse kinematics problem.

The method we use to solve the general 6R inverse kinematics
problem is inspired by the work of Lee and Liang.36 The principle

*Without proline. This case, studied apart, is not detailed in this article.

Figure 3. Maximum extension of polypeptide backbone with Paul-
ing–Corey geometry.
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of the method is described in ref. 39.* The algebraic elimination of
variables starts in a way similar to that used in related works (e.g.,
refs. 37 and 38). However, Renaud goes further in the elimination
process, arriving at an 8 � 8 quadratic polynomial matrix in one
variable instead of the 12 � 12 matrix in the referred methods. The
problem can then be treated as a generalized eigenvalue problem
(as previously proposed in ref. 38), for which efficient and robust
solutions are available.46 Another important advantage of the
method in relation to all previous approaches is that it requires a
minimum number of divisions in the elimination process. In par-
ticular, divisions by zero are avoided to guarantee robustness.

Note that the general 6R mechanism can have up to 16 inverse
kinematic solutions. Thus, several sets of values of the passive
variables qp satisfy loop-closure equations for a given value of the
active variables qa. Each backbone conformation obtained by
composing qa with the different qp is treated by the algorithm
RANDOMLOOPCONF (Algorithm 1).

Clashes and Side-Chain Conformation

Collision Detection Algorithms

A collision detection algorithm determines if contacts or penetra-
tions exist between 3D bodies. They are important tools in com-
putational geometry and robotics.47,48 Collision detection is the
most computationally expensive process in sampling-based motion
planning techniques. Thus, effective algorithms have been devel-
oped in this field to try to minimize this cost.

In our current implementation of the approach, clashes in a
sampled conformation are checked by a generic collision detection
algorithm,49 which operates well within geometrically complex 3D
scenes.

Sampling Side-Chain Conformation

The conformation of the side-chains is built upon a feasible back-
bone conformation. These side-chain conformations are generated
by randomly sampling the side-chain dihedral angles and tested
until a collision-free solution is found. A progressive construction
is carried out. Instead of rebuilding all the side-chains when the
collision test is positive, only the conformation of clashing side-
chains is resampled. The resampling and collision detection pro-
cess is performed following an arbitrary order of the side-chains,
intending to prevent a privileged conformational sampling. When
two side-chains collide together, but self-clashes or clashes with
the backbone and the rest of the protein do not exist, only one of
them will be resampled. The process is iterated a certain number of
times before returning that a clash-free conformation of the side-
chains cannot be found.

Conformational Space Exploration

Sampling-Based Motion Planning Techniques

Sampling-based motion planning techniques appeared in robotics
as an alternative to exact approaches14 that cannot be applied to
high-dimensional configuration spaces. In particular, algorithms
based on the probabilistic roadmap (PRM) approach (e.g., refs. 15
and 16) have mostly been developed. The general PRM principle
is to construct a graph (roadmap) that captures the topology of the
feasible subset of robot configurations, �feas. The nodes of this
graph are randomly sampled configurations satisfying intrinsic
conditions in this subset (e.g., collision avoidance). The edges are
short feasible paths (local paths) linking “nearby” nodes. Other
families of methods aim to efficiently solve single planning que-
ries instead of covering the whole search space. The rapidly-
exploring random tree (RRT)17 is a data structure and sampling
scheme to quickly search high-dimensional constrained spaces.
�feas is explored by one or two trees rooted at the start and/or goal
configurations. The exploration is biased by sampling points in �
and incrementally pulling the search tree(s) toward them.

This section treats the application of these techniques onto
geometric models of molecules. Let us call �clos the subset of the
conformations satisfying the loop-closure constraints and �free the
subset of clash-free conformations. �feas � �clos � �free is the
subset of the geometrically feasible conformations to be explored.
Obviously, not every conformation in �feas is energetically accept-
able, but a significant number of high-energy structures are ex-
cluded from this subset. We assume that �feas contains all the
energetically feasible conformations: �low E � �feas � �.

*The author is currently working on an extended version with full tech-
nique details.

Algorithm 4: ExploreByRRT.

input : the loop, the rest of the protein, qinit

output : the tree �

begin

G 4 INITTREE(qinit);

nfail 4 0;

while not STOPCONDITION(�) do

qrand 4 GUIDEDRANDOMCONF(loop);

qnear 4 NEARESTNEIGHBOR(qrand, �);

qfeas 4 qnear;

state 4 OK;

while state � OK do

qstep 4 MAKESTEP(qfeas, qrand);

if FEASIBLECONF(qstep) then qfeas 4 qstep;

else state 4 FAIL;

if not TOOSIMILARCONF(qnear, qfeas) then

qnew 4 INTERMEDIATECONF(qnear, qfeas);

GROWTREE(qnew, qnear, �);

nfail 4 0;

else nfail 4 nfail � 1;

end
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Incremental Search Keeping Constraints

We next explain an algorithm to carry out the incremental search
of �feas using an RRT-like technique17 extended to handle the
geometric constraints in our problem. Algorithm 4 gives the
pseudocode and Figure 4 illustrates the exploration in a simple 2D
example. The darker regions in the figure correspond to confor-
mations with steric clashes, �free being the rest of the space. In
general, conformations satisfying closure (in �clos) are grouped
into different disjoint continuous manifolds.50 We considered two
manifolds �clos

1 and �clos
2 for this illustration.

The starting point qinit can be a randomly sampled feasible
conformation (e.g., generated by the technique explained above) or

a known conformation (e.g., acquired from the PDB). For execut-
ing an expansion step of the RRT, a random conformation qrand is
first sampled in �. qrand need not satisfy either closure or clash
avoidance constraints. This conformation is only used as a local
goal for the exploration. Nevertheless, we have experimentally
shown that a guided-random sampling generating qrand close to the
subset satisfying closure equations improves the process (i.e., a
wider portion of the space is explored in less time) in relation to a
uniform random sampling.51 For this, the configuration parameters
corresponding to the independent variables of the closure equa-
tions, qa, are generated by the function SAMPLE_qa (Algorithm 3),
explained above. Then, the nearest node in the current tree, qnear,

Figure 4. Incremental exploration of �feas using an RRT-like technique.

Figure 5. Structure of AS from N. polysaccharea.

Conformational Analysis of Long Protein Loops 963



is selected using a distance metric in �. A new conformation qfeas

is iteratively pulled from qnear toward qrand. The pulled conforma-
tion must remain in the feasible subset. The closure constraint is
maintained as follows. A conformation qstep is obtained by inter-
polating qnear and qrand following a law (e.g., linear interpolation).
The closure equations are then solved for the passive variables of
the backbone conformation (called qp above). If the solution in the
same manifold as qnear exists, then the conformation satisfying
closure, q�step, is checked for clashes. The process goes on until one
of the feasibility conditions is violated. The new node of the tree,
qnew, is an intermediate conformation between qnear and the last
obtained qfeas. We use a Gaussian sampling between qfeas and qnear

to obtain it.
Several criteria can be adopted for stopping the exploration.

The simplest one is to build the tree until it contains a given
number of nodes. The drawback is that this criterion is not related
to a coverage of the explored region. We believe that an estimation
of this coverage could be deduced from the number nfail of
consecutive times the algorithm fails when trying to expand the
tree. A similar relationship has been demonstrated in related meth-
ods.16

While the infinite solutions of the global inverse kinematics
problem are grouped into different disjoint continuous manifolds
and collision-free portions of each manifold can be also disjoint,
the explained algorithm can explore only a region in �feas. Several
starting points are required for exploring the different connected
components of �feas. An algorithm combining RRT and PRM
techniques could be used for the exploration of the whole subset.

Exploration with Flexible Geometry

Considering fixed values for bond lengths, bond angles, and dou-
ble-bond torsion angles is a well-accepted assumption that reduces
the complexity of the structural analysis of molecules. However, it
implies a severe restriction for conformational space exploration.52

The rigid geometry assumption can be relaxed by allowing a
slight variation of these parameters within given intervals. Han-
dling these new variables is not a hard problem for our exploration
algorithm, proceeding as follows. To generate a conformation
qrand, parameters d, �, and � (see above) are first randomly
sampled within the defined intervals. Then, the approach explained
in the Conformational Sampling section can be used. In the incre-
mental variation of the selected conformation qnear toward qrand,
the new parameters are treated like the rest of the (nonpassive)
variables (i.e., they are interpolated following a given law).

First Results: Loop 7 Motions of Amylosucrase
from Neisseria Polysaccharea

Amylosucrase (AS) is a glucansucrase that catalyzes the synthesis
of an amylose-like polymer from sucrose. In the Carbohydrate-
Active enZYme database (CAZy) (http://afmb.cnrs-mrs.fr/�cazy/
CAZY/index.htm), this enzyme is classified in family 13 of glu-
coside-hydrolases (GH), which mainly contains starch-converting
enzymes (hydrolases or transglycosidases). Remarkably, this en-
zyme is the only polymerase acting on sucrose substrate reported
in this family, all the other glucansucrases being gathered in GH

family 70. Which structural features are involved in AS specificity
is an important fundamental question. Indeed, the structural sim-
ilarity of AS to family 13 enzymes is high. The 3D structure
reveals an organization in five domains.53 Three of them are
commonly found in family 13: a catalytic (
/�)8 barrel domain, a
B domain between 
-strand 3 and �-helix 3 (loop 3), and a C
terminal Greek key domain. Two additional domains are found in
AS only: a helical N-terminal domain and a domain termed B�,
formed by an extended loop between 
-strand 7 and �-helix 7.
Domain B� partially covers the active site located at the bottom of
a pocket and is mainly responsible for this typical architecture.
Recently, cocrystallization of AS with maltoheptaose revealed the
presence of two maltoheptaose binding sites, the first (OB1) in the
main access channel to the active site and a second (OB2) at the
surface of domain B�. Soaking AS crystals with sucrose also
revealed the presence of a second sucrose binding site (SB2)
different from the active site initially identified.54 The comparison
of the various structures obtained suggests that motion of the
17-residue fragment of domain B� starting at residue Gly433 and
ending at residue Gly449, consecutive to oligosaccharide binding,
could facilitate sucrose translocation from SB2 to the active site. In
the following part, this fragment will be called loop 7. This loop
could play a pivotal role responsible for the structural change and
the polymerase activity. In this context, molecular simulation of
loop 7 motion appears to be crucial to gain new insight into AS
structure–function relationships.

Figure 5 shows the crystallographic structure of AS and the
location of the residues we mention in the following paragraphs.
The model for our tests was created from the PDB file containing
this structure (PDB ID: 1G5A), considering loop 7 as an articu-
lated mechanism and the rest of the atoms as static elements.
Atoms were modeled with 70% of their vdW radii. Images on the
left in Figure 6 represent the articulated vdW model of the loop
and a portion of its environment. Under our modeling assumptions,
the results of the geometric exploration showed that only slight
conformational variations of the loop are possible if the backbone
integrity is maintained and steric clashes are avoided. The image
on the right in Figure 6(a) shows the skeleton of the articulated
segment and a representation of one of the RRTs computed for this
test. Nodes of the RRT are graphically represented by the positions
explored by the C� atom of Ser441, the middle residue of the loop.
This result contradicts presupposed significant loop fluctuations.
Of course, our approach is not deterministic and therefore we
cannot guarantee that such a motion does not exist. However, after
several exhaustive tests we can assert that the probability of its
existence is low. The average size of the constructed RRTs is 1000
nodes, for which about 4000 random conformations and 20,000
complete collision tests were necessary. The average computing
time was 1 h.* Note that computing time is mostly spent in
collision detection. The generation of random conformations is
fast. For this loop, computing a conformation-satisfying closure
(including the update of all the frames and atom positions) takes
less than 0.1 s with a nonoptimized implementation. The confor-
mational sampling used by the exploration algorithm (i.e., guided-

*Tests were performed using a Sun Blade 100 workstation with a 500-MHz
UltraSPARC-IIe processor.
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random sampling of qa without solving the closure equations for
qp) demands only about 0.01 s per conformation.

Several structural elements, and mainly loop 3 (residues
183–262), restrain the mobility of loop 7. Residue Asp231 was
identified as the main “geometric lock” responsible for the loop
7 enclosing. The side-chain of this residue was removed from
the model to simulate a possible conformational change of this
chain or even of the whole loop 3. The conformational explo-
ration in this case showed that the loop is able to effect the
expected motions keeping geometric constraints. The C� atom
of Ser441 can be dislocated more than 9 Å from its crystallo-
graphic position. Several tests were performed to see if the
random nature of the approach could have an important influ-
ence on the nature of the results. Similar motions were obtained
for all of them. The loop moves almost as a rigid body with
hinges at the extreme residues. Considerable variations of the
backbone dihedral angles are concentrated in residues 433– 436
and 446 – 449. Figure 6(b) shows the representation of the RRT
constructed in one of these tests. The images in Figure 7
correspond to four frames of the conformational change en-
coded in the RRT. Therefore, an “opening/closing” mechanism
similar to other enzymes (e.g., refs. 24 and 55), termed confor-
mational gating, is suspected for this loop. The role that residue
Asp231 could play in this mechanism is being investigated.
Directed mutagenesis experiments, replacing residue Asp231
by glycine, are currently being developed.

Discussion and Prospects

We proposed geometric techniques aimed at providing powerful
filters for conformational sampling and search methods. Our solution
to the loop-closing problem is computationally efficient and its per-
formance is only slightly affected by the length of the molecular
chain. To the best of our knowledge, only the CCD algorithm recently
proposed in ref. 8 offers a similar performance. While this optimiza-
tion-based algorithm converges to an approximate closure solution
starting from a nearly open conformation of the loop, our RLG
sampling method computes exact solutions to the closure problem.
Also, one disadvantage pointed out in ref. 8 is that the CCD optimi-
zation technique, which considers one degree of freedom at a time,
may favor large changes in the first residues of the loop. By compar-
ison, the random strategy of RLG produces more uniformly distrib-
uted samples, better suited for exploration of the conformational space.

Our algorithms are currently implemented within the motion
planning platform Move3D56 developed at LAAS for robotics
applications. No particular consideration has been given to reduc-
ing computation time in the present implementation, which is
aimed at demonstrating the efficacy of the proposed techniques.
More extensive experimental tests and performance comparisons
remain for future work, based on an optimized version taking
advantage of the specifics of molecular models. We started the
development of such an optimized version and a standalone library
that could be made accessible to the scientific community.

Figure 6. Exploration (a) with and (b) without the side-chain of Asp231.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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Concerning the avoidance of steric clashes, collision detection
algorithms combined with smart sampling techniques constitute an
attractive alternative to methods producing optimization-based re-
arrangements. We are developing a tailored collision detection
algorithm for molecular models that should perform faster than the
generic checker currently used. In addition, a different progressive
process for building backbone conformations is going to be tried.
In contrast to the described sampling approach, clashes between
the backbone atoms and the static environment will be checked
after each step of the RLG algorithm.

In our current implementation, values for all variable dihedral
angles in the side-chains and backbone are randomly sampled in
the interval (��, �]. As in other related techniques, our approach
could handle information on the statistically preferred values of
these angles (e.g., from Ramachandran plots by residue type).
Using this information, many local steric clashes should be im-
plicitly avoided.

Concerning the exploration technique, we are working on a
method for pruning branches of the RRT to decrease the size of
this data structure, thus increasing the speed of the search process.
Preliminary results using a visibility-based heuristic16 seem prom-
ising.

The algorithms presented in this article treat conformations of
a molecular segment in a static environment. The extension of
these algorithms to handle the flexibility of side-chains in this
environment could be done without difficulty. Handling several
loops that share the same region of the space (e.g., antibody
hypervariable loops57) is an interesting extension we expect to
develop.

The first results of the application of our robotic approach to
molecular models show the potential of this technique. A fast
geometric analysis can help find the answer to important biochem-

ical questions such as: what are the crucial residues in the bio-
chemical reaction? and what are the possible conformational
changes?

Although our next goal is to improve this geometrically con-
strained exploration, the final aim is to incorporate the energetic
analysis into the incremental search technique. An energy function
can easily be integrated into this kind of exploration algorithm.
Indeed, impressive results have been obtained by conformational
search methods inspired by sampling-based motion planning tech-
niques applied to computer-assisted drug design,29 protein fold-
ing,27,58 and ligand–protein docking.59,60 Given this energy func-
tion, geometrically feasible conformations generated by our
approach could be evaluated and labeled, and then only the subset
of the conformational space �low E below a certain energetic limit
should be explored.
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Nantes), Paul Bates (CRUK, London), Patrick Danes (LAAS-
CNRS, Toulouse), David Guieysse (INSA, Toulouse), Marc
Renaud (LAAS-CNRS, Toulouse), Lluı́s Ros (IRI-CSIC, Barce-
lona), and Vicente Ruiz (IRI-CSIC, Barcelona). This work has
been partially supported by the interdisciplinary CNRS project
BioMove3D and the European project IST-37185 MOVIE.

References

1. Leach, A. R. Molecular Modeling: Principles and Applications; Long-
man: White Plains, NY, 1996; Chapter 8.

Figure 7. Simulated conformational gating of loop 7 in AS. [Color figure can
be viewed in the online issue, which is available at www.interscience.
wiley.com.]

966 Cortés et al. • Vol. 25, No. 7 • Journal of Computational Chemistry



2. Frenkel, D.; Smit, B. Understanding Molecular Simulation: From
Algorithms to Applications; Academic Press: New York, 1996.

3. Go� , N.; Scheraga, H. A. Macromolecules 1970, 3, 178–187.
4. Manocha, D.; Zhu, Y.; Wright, W. CABIOS 1995, 11, 71–86.
5. Wedemeyer, W. J.; Scheraga, H. A. J Comput Chem 1999, 20, 819–

844.
6. Shenkin, P. S.; Yarmush, D. L.; Fine, R. M.; Wang, C.; Levinthal, C.

Biopolymers 1987, 26, 2053–2085.
7. Zheng, Q.; Rosenfeld, R.; Vajda, S.; DeLisi, C. J Comput Chem 1993,

14, 556–565.
8. Canutescu, A. A.; Dunbrack, R. L. Jr. Protein Sci 2003, 12, 963–972.
9. Oliva, B.; Bates, P. A.; Querol, E.; Aviles, F. X.; Sternberg, M. J. E.

J Mol Biol 1997, 266, 814–830.
10. van Vlijmen, H. W. T.; Karplus, M. J Mol Biol 1997, 267, 975–1001.
11. Bruccoleri, R. E.; Karplus, M. Biopolymers 1987, 26, 137–168.
12. Moult, J.; James, M. N. G. Proteins 1986, 1, 146–163.
13. Lotan, I.; Schwarzer, F.; Halperin, D.; Latombe, J. C. In Proceedings

of the 18th ACM Symposium on Comp Geom; Barcelona, 2002; p
43–52.

14. Latombe, J. C. Robot Motion Planning; Kluwer Academic: Boston,
1991.
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56. Siméon, T.; Laumond, J. P.; Lamiraux, F. In Proceedings of the IEEE

International Conference on Robotics and Automation; Seoul, 2001; p
25–30.

57. Bruccolerim, R. E.; Haber, E.; Novotny, J. Nature 1988, 335, 564–
568.

58. Amato, N. M.; Dill, K. A.; Song, G. J Comp Biol 2002, 9, 149–168.
59. Apaydin, M. S.; Singh, A. P.; Brutlag, D. L.; Latombe, J. C. In

Proceedings of the IEEE International Conference on Robotics and
Automation; Seoul, 2001; p 932–939.

60. Bayazit, O. B.; Song, G.; Amato, N. M. In Proceedings of the IEEE
International Conference on Robotics and Automation; Seoul, 2001; p
954–959.

Conformational Analysis of Long Protein Loops 967



RESEARCH Open Access

Modeling protein conformational transitions by a
combination of coarse-grained normal mode
analysis and robotics-inspired methods
Ibrahim Al-Bluwi1,2, Marc Vaisset1,2, Thierry Siméon1,2, Juan Cortés1,2*

From Computational Structural Bioinformatics Workshop 2012
Philadelphia, PA, USA. 4 October 2012

Abstract

Background: Obtaining atomic-scale information about large-amplitude conformational transitions in proteins is a
challenging problem for both experimental and computational methods. Such information is, however, important
for understanding the mechanisms of interaction of many proteins.

Methods: This paper presents a computationally efficient approach, combining methods originating from robotics
and computational biophysics, to model protein conformational transitions. The ability of normal mode analysis to
predict directions of collective, large-amplitude motions is applied to bias the conformational exploration
performed by a motion planning algorithm. To reduce the dimension of the problem, normal modes are
computed for a coarse-grained elastic network model built on short fragments of three residues. Nevertheless, the
validity of intermediate conformations is checked using the all-atom model, which is accurately reconstructed from
the coarse-grained one using closed-form inverse kinematics.

Results: Tests on a set of ten proteins demonstrate the ability of the method to model conformational transitions
of proteins within a few hours of computing time on a single processor. These results also show that the
computing time scales linearly with the protein size, independently of the protein topology. Further experiments
on adenylate kinase show that main features of the transition between the open and closed conformations of this
protein are well captured in the computed path.

Conclusions: The proposed method enables the simulation of large-amplitude conformational transitions in
proteins using very few computational resources. The resulting paths are a first approximation that can directly
provide important information on the molecular mechanisms involved in the conformational transition. This
approximation can be subsequently refined and analyzed using state-of-the-art energy models and molecular
modeling methods.

Background
Conformational transitions in proteins are generally related
to their capacity to interact with other molecules. Their
study is therefore essential for the understanding of protein
functions. Unfortunately, it is very difficult to obtain this
type of dynamic information at the atomic scale using
experimental techniques. Modeling protein conformational
transitions with conventional computational methods is

also challenging because, in many cases, these transitions
are rare, slow events. Standard molecular dynamics (MD)
simulations with current computational resources cannot
be applied in practice to model large-amplitude (slow
time-scale) conformational transitions. Such simulations
require variants of MD methods that enhance sampling of
rare events or that bias the exploration in a given direction
(e.g. [1-5]), or, alternatively, to have access to outstanding
computational power [6].
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Modeling conformational transitions in proteins
has motivated the development of specific methods,
computationally more efficient than MD simulations.
Many of these methods (e.g. [7-9]) are based on the defor-
mation of a trivial initial path between the two given con-
formations toward the minimum energy path connecting
them. Consequently, the performance of these methods is
strongly conditioned by the suitability of the initial path.
In recent years, methods to model conformational tran-
sitions have also been developed on the basis of robot
motion planning algorithms [10-13]. Most of these
robotics-inspired methods are aimed at providing quali-
tative information about the conformational transition
using few computational resources. For this, they exploit
the efficiency of sampling-based exploration algorithms
applied to simplified molecular models.
The high dimensionality of the space to be explored is

the main difficulty that all computational methods to
model protein conformational transitions have to face.
Therefore, several approaches have been developed to
reduce the dimensionality of the problem (e.g. [14-16]).
Normal mode analysis (NMA) [17] is a particularly inter-
esting tool in this regard, since a small number of low-
frequency normal modes provide a good hint of the
direction of large-amplitude conformational changes
[18-21]. Several recent works apply this property of
NMA to improve the performance of conformational
exploration methods.
The approach presented in this paper was originally

introduced in [22]. The basic principle is to use NMA to
bias the conformational exploration performed by a
Rapidly-exploring Random Tree (RRT) algorithm [23],
aiming to efficiently compute conformational transition
paths. The main novelty presented in the present work is
the introduction of a multi-scale model for the protein.
In this model, an elastic network is defined considering
only a single node (called a particle) per tripeptide.
Motion directions provided by NMA of such a coarse-
grained elastic network are then applied to the all-atom
model for a more accurate conformational exploration.
The introduction of this multi-scale model has important
outcomes. First, the number of normal modes is largely
reduced thanks to the use of the coarse-grained model,
which significantly reduces the time required to compute
them. In addition, generating the all-atom model from
the coarse-grained model can be accurately and effi-
ciently achieved using methods from robot kinematics
[24], avoiding the need of artifacts such as the RTB
approach (rotations-translations of blocks) [25].
Next section presents the overall method, and explains

each of its elementary components: elastic network normal
mode analysis, tripeptide-based multi-scale protein model-
ing, and motion-planning-based conformational explora-
tion. Then, several types of results aimed to validate the

approach and to show its good computational performance
are presented for a set of proteins with different sizes and
topologies. A more detailed analysis of results is presented
for adenylate kinase (ADK). Finally, together with the con-
clusions, we discuss possible directions for future work.
Note that a preliminary version of this work was presented
in [26]. Compared to this previous version, this paper
includes more detailed explanations of the method, a more
exhaustive presentation of results, with additional figures
and tables, as well as additional results for the ADK pro-
tein. In addition, some movies that illustrate results
obtained with the proposed method are included as supple-
mentary material.

Methods
This section presents a new method to model protein con-
formation transitions. It builds on the combination of
several components inside an iterative algorithm. One of
these components is NMA performed on a coarse-grained
elastic network model of the protein, which enables very
fast computation of normal modes. Indeed, a single parti-
cle of the elastic network is considered for each group of
three consecutive amino-acid residues (i.e. one particle per
tripeptide). The all-atom model, which is used to accept
or reject sampled states during the conformational
exploration, is accurately reconstructed from the coarse-
grained one using closed-form inverse kinematics. The
RRT algorithm is applied to explore linear combinations
of normal modes computed from intermediate conforma-
tions along the path. All these elementary components of
the method are further explained below.

Elastic networks and normal mode analysis
Based on a harmonic approximation of the potential
energy, normal mode analysis provides information about
the directions and frequencies of vibration of a molecule
from a minimum-energy conformation. Each mode repre-
sents a motion pattern, in which all the atoms move with
the same frequency and phase. Low-frequency normal
modes correspond to collective motions (e.g. domain
motions), whereas high-frequency normal modes corre-
spond to local fluctuations [19,27].
Normal modes are calculated by diagonalizing the

Hessian matrix of the potential energy of the molecule.
For reducing the computational cost of this operation,
several works propose to use simplified potentials and
coarse-grained models. An extensively used simplified
potential is based on the elastic network model (ENM)
[28], which represents the molecule as a set of particles
connected by virtual springs. All the protein atoms can
be considered as particles in the elastic network. However,
a coarse-grained representation that only considers Ca

atoms (i.e. a single particle per amino-acid residue) is often
applied [19,20]. Moreover, particles are connected by
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virtual springs only if they are closer than a user-defined
cut-off distance dcut.
The potential energy function of such an elastic net-

work takes the following form:

E =
∑

d0
ij<dcut

C
2

(dij − d0
ij)

2

where dij is the distance between particle i and particle j,
d0

ij is the distance between the two particles at the equili-
brium state and C is the elastic constant. This type of sim-
plified potential has been used in many works and for very
different applications [29-32].
In this work, we investigate a further simplification of

the ENM. Indeed, the ENM is built using a coarser model
based on tripeptides, instead of using Ca atoms. Figure 1
illustrates the approach. Note that coarse-grained NMA
approaches considering more than one residue per particle
have already been proposed [25,33,34]. However, these
approaches, which are mainly devised to analyze motions
of very large systems made of protein assemblies, consider
rigid-body motions of groups of residues. In contrast, the
approach presented here preserves full flexibility of the
protein, which leads to a more accurate simulation of con-
formational transitions.
Several works show that using a simplified ENM does

not necessarily imply a loss of accuracy in the prediction
of large-amplitude motion directions [20,25]. However, it
certainly leads to a computational performance gain. This
issue is further discussed in the results section, where the
performance of NMA using tripeptide-based models and
Ca-based models is compared.
The anisotropic network model (ANM) approach, as

described in [27,35], is adopted in this work to construct
the Hessian matrix from the positions of the particles of
the tripeptide-based model. Each 3 × 3 sub-matrix

corresponding to the interaction between two particles is
computed as follows:

Hij = − C

d2
ij

⎡
⎣ (xj − xi)(xj − xi) (xj − xi)(yj − yi) (xj − xi)(zj − zi)

(yj − yi)(xj − xi) (yj − yi)(yj − yi) (yj − yi)(zj − zi)
(zj − zi)(xj − xi) (zj − zi)(yj − yi) (zj − zi)(zj − zi)

⎤
⎦

Hij = −
∑
j|j�=i

Hij

If the distance between particles i and j is more than the
cut-off distance dcut, then the whole 3 × 3 matrix is
replaced by zeros. The Hessian matrix is then diagonalized
to compute the eigenvalues and eigenvectors. Each eigen-
value and eigenvector pair corresponds to one normal
mode, where the eigenvalue defines the mode frequency
and the eigenvector defines the motion direction for each
particle in the elastic network.

Multi-scale model
Tripeptide-based model
The multi-scale modeling approach applied in this work
is based on a decomposition of the protein chain into
fragments of three amino acid residues, which we refer
to as tripeptides. The reason for choosing such a subdi-
vision is that, assuming fixed bond lengths, bond angles
and peptide bond torsions, the backbone of a tripeptide
involves 6 degrees of freedom (three pairs of angles �, ψ),
and thus, an analogy can be made with a 6R mechanism
like a robotic manipulator [24]. Two Cartesian reference
frames attached to the N atom in the backbone of the first
residue and to the C atom in the last residue define
respectively the base-frame and the end-frame of the 6R
mechanism. Since tripeptides are linked through rigid pep-
tide bonds, the location of the end-frame of tripeptide i
can be determined from the base-frame of tripeptide i + 1
by a constant 3D transformation. Given the location of the

Figure 1 Illustration of the different models on the ADK protein. (a) Representation of the all-atom model, (b) the particles of the coarse-
grained tripeptide-based model, (c) representation of the elastic network model.
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base-frame and the end-frame, the conformation of a tri-
peptide backbone can be obtained by inverse kinematics.
Consequently, the conformation of the whole protein
backbone can be determined from the pose of a single
reference frame attached to each tripeptide (this is true for
all the protein backbone except two short fragments at the
N-terminal and C-terminal ends of the chain, which
require a particular treatment). In the following, we will
refer to these reference frames as (oriented) particles.
They are the particles in the coarse-grained ENM.
Reconstructing the all-atom model
The interest of the decomposition of the protein into
tripeptides explained above is that closed-form inverse
kinematics (IK) can be applied to reconstruct the all-
atom protein model from the coordinates of the parti-
cles. The IK solver applied in this work has been
adapted from the method developed by Renaud [36].
This solver is based on algebraic elimination theory,
and develops an ad-hoc resultant formulation inspired
by the work of Lie and Liang [37]. Starting from a sys-
tem of equations representing the IK problem, the
elimination procedure leads to an 8-by-8 quadratic
polynomial matrix in one variable. The problem can
then be treated as a generalized eigenvalue problem, as
proposed in [38], for which efficient and robust meth-
ods such as the Schur factorization can be applied.
Note however that our approach is not dependent on
this solver, so that other IK methods (e.g. [38,39])
could be applied.
In general, the IK problem for a 6R serial kinematic

chain has a finite number of solutions (up to 16 in the
most general case). All the solutions correspond to geo-
metrically valid conformations of the tripeptide backbone
with fixed ends defined by the pose of the particles. How-
ever, when the goal is to simulate continuous motions,
the closest conformation to the previous one (i.e. the one
before a perturbation applied to the particles) has to be
selected in order to avoid jumps in the conformational
space. All IK solutions are rejected if none of them
remains within a distance threshold that depends on the
perturbation step-size.
The explanations above concern only the reconstruc-

tion of the all-atom model of the protein backbone from
the coarse-grained tripeptide-based model. Side-chains
are treated separately, using a simple method based on
energy minimization as explained below.

Path finding algorithm
The path finding method works by iteratively generating
short portions of the transition between two given con-
formations of a protein, which we will refer to as qinit
and qgoal. Algorithm 1 presents the pseudo-code with
the main steps of the method. At each iteration, normal

modes are computed for a root conformation qroot.
Note that qroot = qinit for the first iteration. Then, the
RRT algorithm is applied to explore motions corre-
sponding to linear combinations of normal modes. RRT
is run until the protein moves a predefined distance
toward the target conformation qgoal. The conforma-
tional exploration performed by the RRT algorithm is
further explained below. Once the RRT exploration is
stopped, the closest node qclose in the tree to qgoal is
searched. The path between qroot and qclose is then
extracted and saved. All the conformations in this path
are guaranteed to have a collision-free backbone
(including Cb atoms) which generally implies getting
acceptable energy values after a short minimization to
rearrange side-chain conformations. Such an energy
minimization procedure is performed on qclose, which
will be the root conformation in the next iteration. The
algorithm keeps iterating until a predefined distance
dtargetto qgoal is reached. The resulting path is defined
by the sequence of minimized conformations qclose at
each iteration. If a finer-grained path is required, other
intermediate conformation can be extracted from the
sub-paths computed at each iteration. These conforma-
tions may require energy minimization to rearrange
side-chains, as it is done for qclose.
Algorithm 1: COMPUTE_PATHWAY
input : Initial conformation qinit, final conformation

qgoal, minimum distance to target dtarget
output : The transition path p
begin

qroot ¬ qinit;
while RMSD(qroot, qgoal) >dtarget do

a ¬ COMPUTE_NORMAL_MODES(qroot);
t ¬ BUILD_RRT(qroot, qgoal, a);
qclose ¬ CLOSEST_TO_TARGET(t, qgoal);
qroot ¬ MINIMIZE(qclose);
p ¬ CONCATENATE(p, qroot);

end

Algorithm 2: BUILD_RRT
input : Initial conformation qroot, final conformation

qgoal, normal modes a
output : The tree t
begin

t ¬ INIT_TREE(qroot);
while not STOP_CONDITION(t, qgoal) do

qrand ¬ SAMPLE(t, a);
qnear ¬ BEST_NEIGHBOR(t, qrand);
qnew ¬ EXPAND_TREE(qnear, qrand);
if ISVALID(qnew) then

ADD_NEW_NODE(t, qnew);
ADD_NEW_EDGE(t, qnear, qnew);

end
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Implementation details
The RRT algorithm, iteratively applied in Algorithm 1,
performs the same steps as the basic RRT [23]. The steps
are sketched in Algorithm 2. At each iteration, a confor-
mation qrand is randomly sampled. Note that qrand is not
required to be a feasible conformation. Then, the tree is
searched for the closest conformation to qrand, called qnear
. A new conformation, qnew , is generated by moving from
qnear towards qrand with a predefined short step size. The
new conformation is added to the tree if it does not violate
feasibility constraints, which in the present work are
limited to geometric constrains related to no atom over-
lapping and no bond breaking. The difference with respect
to the basic RRT algorithm concerns the implementation
of the methods for sampling conformations, searching the
nearest neighbor, and expanding the tree. These methods,
which are further explained below, are specific to the pre-
sent framework because of the multi-scale protein model
and the application of NMA to bias the exploration.
Sampling random conformations
The idea is to randomly sample conformations qrand using
information given by the normal modes. The coarse-
grained tripeptide-based model is used at this level.
Hence, qrand is not an all-atom conformation, but an array
of particle positions. Random particle positions are gener-
ated by moving them from their initial positions, defined
by qroot, using a linear combination of normal modes with
randomly sampled weights. More precisely:

- A sequence of 3n random weights wj are sampled in
the range [-1, 1], where n is the number of particles,
being 3n the number of normal modes (actually, the
number of normal modes is 3n − 6, since 6 degrees of
freedom correspond to rigid-body motions of the
whole set of particles).
- The new positions of the n particles are computed by
a linear combination of all the randomly weighted
modes as follows:

qrand = qroot +
3n∑

f ∗ wj ∗ aj

where aj refers to each normal mode, and f is an
amplification factor used to push the sampled confor-
mation away from qroot (this factor is the same for all
the normal modes). Note that, since the normal
modes are not normalized, low frequency modes have
larger norm. Thus, they contribute more significantly
in the sum.

Finding nearest neighbors
Nearest neighbor search is also performed using the
coarse-grained model. Indeed, the computed distance is
based on the root mean squared deviation (RMSD) of the
particle positions. In the current implementation, the

distance is biased to pull the exploration towards the tar-
get conformation as follows:

d(q, qrand) = RMSD(q, qrand)
RMSD(q, qgoal)

RMSD(qinit, qgoal)
.

In this work, we have implemented a simple brute-
force algorithm to find qnear. More sophisticated nearest
neighbor search algorithms could be used to reduce the
number of performed distance computations. Note,
however, that currently used algorithms based on space
partitioning techniques (e.g. kd-trees) do not perform
well in high-dimensional spaces [40]. A computationally
efficient solution would require the implementation of
an approximate nearest neighbor search algorithm.
Generating new conformations
For generating qnew, all particle positions in qnear are line-
arly interpolated towards qrand with a predefined step
size k. Given these new particle positions, the all-atom
model corresponding to qnew is obtained by solving an IK
problem for every tripeptide. The implemented method
proceeds iteratively. If no IK solution is found for a tri-
peptide ti(the tripeptide between particles pi and pi+1) or
if the solution involves atom collisions, the pose (position
and orientation) of particle pi+1 is slightly perturbed and
the IK problem is solved again. This process is repeated
until a collision-free IK solution is found or a maximum
number of trials is reached. If this process fails to find a
collision-free IK solution for any tripeptide, failure is
reported and the RRT algorithm goes back to the random
sampling step.
Once the treatment of all tripeptides has been com-

pleted, the conformation of the two terminal fragments is
generated. For this, the pose of these fragments is updated
with respect to the new poses of the first and last tripep-
tides. Random perturbations can be applied to these end
fragments in order to remove possible collisions with the
rest of the protein.
Protein conformations qnew generated using the afore-

mentioned process are guaranteed to satisfy geometric
constraints: correct bond geometry and no overlap
betweew backbone atoms. However, in order to speed-up
computations, side-chains are not treated at this stage
(only Cb atoms are considered for collision avoidance).
This is because side-chains are known to be very flexible,
and resolving possible collisions along the conforma-
tional transition path can be done in a post-processing
stage. Indeed, side-chain collisions are resolved during
the minimization step at the end of each short RRT
execution.

Results and discussion
This section discusses several experiments aimed to vali-
date the proposed method and to evaluate its performance.
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First, the question concerning the accuracy of the tripep-
tide-based elastic network model is addressed. Then,
results are presented on conformational transitions com-
puted for a set of ten proteins with different sizes and
topologies. Finally, further results on adenylate kinase are
presented and compared to available data on the transition
between the open and closed forms of this protein.

Validating the coarse-grained ENM
Previous works (e.g. [19,20]) have shown that simple
ENMs built using Ca atoms perform as well as ENMs
built using the all-atom model when studying the dynamic
properties of proteins with NMA. Here, we compare the
performance of the proposed tripeptide-based model
with the Ca-based model for predicting directions of con-
formational transitions. A set of seven proteins listed
in Table 1 was used for this comparison. These proteins
were also used in related work [20] for the validation of
the Ca-based ENM.
For evaluating the capability of normal modes to predict

directions of conformational transitions, we use the notion
of overlap as proposed in related work [20]. The overlap Ij
between a normal mode j and an experimentally observed
conformational change between two conformations (open
and closed) qoand qcis defined as a measure of similarity
between the conformational change and the direction
given by the normal mode j. It can be computed as
follows:

Ij =

∣∣∣∣
3n∑

aij�qi

∣∣∣∣
[

3n∑
a2

ij

3n∑
�q2

i

]1/2

where �qi = qo
i − qc

i measures the difference between
the particle coordinates in conformations qoand qc, aij
corresponds to the ith coordinate of the normal mode
j, and n is the number of particles. A value of 1 for
the overlap means that the direction given by the nor-
mal mode matches exactly the conformational change,
whereas a value around 0.2 or less means that the
normal mode is unable to provide any meaningful
prediction.

Before conducting the comparative analysis, we need to
determine an optimal cutoff distance for the tripeptide-
based ENM. A good cutoff distance should create an elas-
tic network that correctly captures the topology of the
protein. For Ca-based models, 8 Å is generally used, since
this cutoff distance has been empirically shown to provide
the best results in most cases. It can be intuitively inferred
that the same cutoff distance may not be the optimal
choice in our case, because distances between particles of
the tripeptide-based model are larger than distances
between Ca atoms. Moreover, defining the optimal cutoff
value theoretically is not straightforward. Therefore, we
have measured and compared the overlap values for the
seven proteins with cutoff distances between 8 and 34 Å
in order to empirically determine the most suitable range
of cutoff values. Figure 2 shows the overlap value for each
cutoff distance averaged over the seven proteins. Note
that, for each protein, overlap values were computed for
all the normal modes, and the best value was considered
for the average. As clearly shown in the figure, the best
overlap values are for cutoff distances of 15, 16 and 17 Å.
The tripeptide-based ENMs for four of the proteins in

Table 1, using a cutoff distance of 16 Å, are represented
in Figure 3. The figure shows that the main topological
features of the proteins appear in the coarse-grained
model.
Table 2 compares overlap values of tripeptide-based

ENMs using a cutoff distance of 16 Å with those pre-
sented in [20] for Ca-based ENM using a cutoff distance
of 8 Å. In the table, columns labeled “Open” correspond
to the open-to-closed conformation and columns labeled
“Closed” are for the opposite case. The similar overlap
values show that the coarse-garined, tripeptide-based
ENM is also able to capture the topological information
required to compute normal modes that correctly predict
directions of large-amplitude motions. Importantly, such
a similar performance in terms of overlap is obtained

Table 1 Proteins used in the overlap experiments

Protein Residues PDBopen PDBclosed

Che Y Protein 128 3chy 1chn

LAO binding Protein 238 2lao 1laf

Triglyceride Lipase 256 3tgl 4tgl

Thymidulate Synthase 264 3tms 2tsc

Maltodextrine Binding Protein 370 1omp 1anf

Enolase 436 3enl 7enl

Diphtheria Toxin 523 1ddt 1mdt

Figure 2 Average overlap over the seven proteins of Table 1.
Lines are drawn between the 25th and the 75th percentiles of the
overlap values. Average overlap values are indicated with dots.
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with much less computational cost. Since the computa-
tional complexity of the Hessian matrix diagonalization is
O(n3), the reduction of n by a factor 3 (a tripeptide
involves 3 Ca atoms) provides a theoretical gain of more

than one order of magnitude. This theoretical gain has
been confirmed with some experiments. In summary, the
time required to compute the normal modes with the
tripetide-based model ranges from 0.05 seconds to 0.9
seconds, whereas several minutes may be necessary using
the Ca model.

Finding conformational transitions
Experimental setup
The proposed method was applied to compute conforma-
tional transition paths for the ten proteins listed in Table 3,
and represented in Figure 4. For each protein, at least two
experimental structures corresponding to different confor-
mations are available in the Protein Data Bank (PDB) [41].
The difference between these conformations involves
large-amplitude domain motions. The ten proteins are var-
ied in size and topology, as well as in the type of domain
motions they undergo. This heterogeneity is important to
analyze the reliability and scalability of the method.
Each iteration of the algorithm that computes the

transition path performs a short RRT exploration, as
mentioned in the previous section. In the current imple-
mentation, such a local exploration runs until the pro-
tein moves 0.3 Å Ca-RMSD towards the goal. This
distance is gradually reduced to 0.15 Å as the distance
to the target conformation decreases. The reason is that
the speed of convergence tends to decrease when
approaching the target conformation, and recomputing
normal modes more frequently provides better results in
this situation. If the distance stopping condition is not
reached first, the exploration stops after a pre-defined
number of iterations (4000 in our case). This additional
stopping condition prevents too long runs of RRT in
case of blocking situations.
At the end of the RRT exploration, the closest confor-

mation to the goal is identified and submitted to an energy
minimization procedure aimed at generating better side-
chain conformations. In this work, we have used the
AMBER software package [42] for energy minimization.

Figure 3 Tripeptide-based elastic network models. Representation
of the all-atom models and the tripeptide-based ENMs for four
different proteins.

Table 2 Comparison between overlap values for Ca-based
ENMs and tripeptide-based ENMs

Protein Ca Overlap Tripep. Overlap

Open Close Open Close

Che Y Protein 0.32 0.34 0.52 0.34

LAO binding Protein 0.84 0.40 0.53 0.52

Triglyceride Lipase 0.30 0.17 0.26 0.35

Thymidulate Synthase 0.56 0.40 0.49 0.29

Maltodextrine Binding Protein 0.86 0.77 0.90 0.84

Enolase 0.33 0.30 0.40 0.30

Diphtheria Toxin 0.58 0.37 0.48 0.30

Table 3 Proteins used in the experiments

Protein Residues PDB IDinit PDB IDgoal Ca RMSD

ADK 214 4ake 1ake 6.51

LAO 238 2lao 1laf 3.73

DAP 320 1dap 3dap 3.78

NS3 436 3kqk 3kql 2.75

DDT 535 1ddt 1mdt 10.96

GroEL 547 1aon 1oel 10.49

ATP 573 1m8p 1i2d 3.78

LTF 691 1cb6 1bka 4.75

IBS 876 1ukl 1qgk 6.17

HKC 917 1hkc 1hkb 3.00
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Results
Table 4 summarizes the results achieved by the proposed
method for the set of ten proteins. In this table, Ca-
RMSDend is the distance between the goal conformation
and the conformation obtained at the end of the iterative
path finding process. Timetotal is overall computing time,
which includes the RRT running time (TimeRRT ) and
the time for computing the normal modes and running
minimizations at the end of each iteration. The number
of iterations of the main algorithm (i.e. the number of
NMA calculations) is also indicated in the table. Note
that, in all the experiments, the RRT exploration takes
more than 90% of the total computing time, which

Figure 4 The ten proteins used in the experiment. Representation of open and closed forms of these proteins available in the PDB (IDs are
provided in Table 3).

Table 4 Performance of the method on ten proteins
(cf. Table 3)

Protein Ca-RMSDend Iterations TimeRRT Timetotal

ADK 1.56 31 1.82 2.00

LAO 1.32 20 1.52 1.65

DAP 1.31 16 1.78 1.92

NS3 1.29 14 2.82 3.00

DDT 2.88 272 81.54 86.4

GroEL 2.79 142 40.21 42.17

ATP 1.45 30 13.46 14.16

LTF 1.96 74 29.56 31.09

IBS 1.99 80 80.61 82.62

HKC 1.64 38 37.91 39.63
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corresponds to runs on a single core of an AMD Opteron
148 processor at 2.6 GHz.
In all cases, the method was able to compute the con-

formational transition, reaching conformations very close
to the given goal conformations. Figure 5 shows superim-
posed structures (structure superimpositions and images
have been done using PyMOL [43]) of open and closed
forms of the proteins (qinit and qgoal), and of the closed
form and the last conformation of the computed

transition path (qgoal and qfinal). The distances between
the final and goal conformations are below 2 Å (mea-
sured using Ca-RMSD) for all the tested proteins with
the exception of DDT and GroEL. Note that 2 Å RMSD
corresponds to the current accuracy of experimental
methods for high-resolution protein structure determina-
tion. As can be seen in Figure 5 the superimpositions of
the final and goal conformations is very good, even for
DDT and GroEL. Note that the method could have

Figure 5 Superimposed structures and final conformations of the computed transition path. For each protein, the left image shows the
open form (in red) and the closed form (in black), and the right image shows the closed form (in black) and the final conformations of the
computed path (in red).
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reached closer conformations to the goal with a higher
number of iterations. Nevertheless, the strategy applied
in these experiments was to stop iterating when the dis-
tance to the goal reached a very slow rate of convergence.
We also conducted experiments to analyze the rela-

tionship between the computing time and the size of
the protein. Since the lengths of the transition paths for
the different test systems is variable, we measured the
computing time to move 1Å along these paths. The results
of these experiments, presented in Table 5 and Figure 6,
show a linear relationship between the computing time and
the protein size. This scalability is an interesting property of
the method. Note that the performance of the method
seems not be (or only slightly) affected by the topology of
the protein. This is an important advantage over the
method presented in [22], which experienced some difficul-
ties in dealing with relative motions of domains connected
by several linkers, mainly because of the internal-coordinate
representation of proteins used in this previous work.
Finally, we did a profiling of the algorithm to identify

possible bottlenecks and points to be improved to
enhance computational efficiency. Table 6 gives values of
the percentage of the time spent in the most time-con-
suming operations within the RRT exploration: nearest
neighbor search (NN), collision checking (CC), inverse
kinematics (IK) and random sampling (RS). Surprisingly,
nearest neighbor search takes around 60% of the overall
computing time. This is due to the brute-force algorithm
applied in the current implementation. As mentioned
before, a more sophisticated nearest neighbor algorithm
should be implemented. The performance of the method
could also be enhanced by applying simplified distance
metrics (e.g. [16,44]). The use of an appropriate simpli-
fied distance metric could reduce computing time while
preserving good exploration properties of the algorithm.
A closer look at adenylate kinase
Adenylate kinase (ADK) [45] is a widely studied protein
involved in signal transduction. The structure of ADK is
composed of three domains known as: LID, CORE and

NMPbind. Several works tend to show that the LID and
NMPbind domains undergo large-amplitude conforma-
tional changes with respect to the CORE domain, which
remains stable [46,47]. Some of these works (e.g. [47])
also suggest that the conformational transition between
open and closed states of ADK proceeds in two steps:
(1) the LID domain moves more clearly than the NMPbind
domain at the beginning of the open-to-close transition;
(2) then NMPbind domain moves at a faster pace towards
the end of the transition path.
The open conformation of ADK (PDB ID 4AKE),

the closed conformations (PDB ID 1AKE) of ADK, and
several intermediate conformations obtained with our
method are represented in Figure 7 The figure shows sig-
nificant conformational changes of the LID and NMPbind
domains, as expected. The motion of these two regions is
also illustrated in Figure 8, which represents the displace-
ment of the residues along the conformational transition.
Two darker regions, involving residues 20-60 and 130-160,
indicate the parts of the protein that undergo larger displa-
cements. These regions correspond to the NMPbind
domain and LID domain, approximately. Figure 8 also
shows that residues 20-60, corresponding to the NMPbind

Table 5 Relationship between the size of the protein and
the computing time

Protein Residues Time (hours)

ADK 214 0.4

LAO 238 0.68

DAP 320 0.79

NS3 436 2.11

DDT 535 10.72

GroEL 547 5.84

ATP 573 6.74

LTF 691 11.17

IBS 876 19.96

HKC 917 28.93

Figure 6 Plot of the results in Table 5. The plot shows a linear
relationship between the size of the protein and the time required
to compute the conformational transition path.

Table 6 Percentage of the time spent performing the
main operations in RRT

Protein NN CC IK RS

ADK 57.2% 14.1% 15.0% 6.3%

LAO 51.3% 20.9% 17.0% 5.4%

DAP 50.5% 20.6% 11.0% 12.3%

NS3 67.9% 13.4% 6.6% 8.9%

DDT 64.3% 17.1% 6.9% 9.0%

GroEL 60.4% 17.6% 8.9% 9.8%

ATP 57.3% 20.9% 6.8% 11.9%

LTF 55.1% 16.8% 6.1% 19.3%

IBS 62.9% 15.5% 4.1% 15.5%

HKC 68.9% 5.8% 3.3% 18.2%

Average 59.58% 16.27% 8.57% 11.66%
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domain, start moving more significantly near the end of the
transition path, whereas residues 130-160, corresponding to
the LID domain, start moving at an earlier stage. This
reflects the two-step nature of the conformational transi-
tion discussed earlier, and shows that our method provides

results that are qualitatively comparable with those pre-
sented in previous work on ADK.
The open conformation of ADK (PDB ID 4AKE), the

closed conformations (PDB ID 1AKE) of ADK, and sev-
eral intermediate conformations obtained with our
method are represented in Figure 7 The figure shows
significant conformational changes of the LID and
NMPbind domains, as expected. The motion of these
two regions is also illustrated in Figure 8, which repre-
sents the displacement of the residues along the confor-
mational transition. Two darker regions, involving
residues 20-60 and 130-160, indicate the parts of the
protein that undergo larger displacements. These
regions correspond to the NMPbind domain and LID
domain, approximately. Figure 8 also shows that resi-
dues 20-60, corresponding to the NMPbind domain,
start moving more significantly near the end of the tran-
sition path, whereas residues 130-160, corresponding to
the LID domain, start moving at an earlier stage. This
reflects the two-step nature of the conformational tran-
sition discussed earlier, and shows that our method pro-
vides results that are qualitatively comparable with those
presented in previous work on ADK.

Figure 7 Different conformations of ADK along the studied conformational transition. The LID domain is shown in blue and the NMPbind
domain is shown in red. Images (a) and (f) represent the start and goal conformations respectively. Images (b) to (e) show intermediate
conformations generated by our method.

Figure 8 Displacement of the residues along the conformational
transition of ADK. The plot shows, using a gray-scale, the
displacement of each residue at each iteration relative to the previous
iterations. Darker regions represent larger displacements.

Al-Bluwi et al. BMC Structural Biology 2013, 13(Suppl 1):S2
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We have also compared intermediate conformations in
the computed transition path of the ADK to a small
number of other experimentally solved structures of this
protein. These structures correspond to homolog pro-
teins or mutants with very high sequence identity, and
some of them are known to be intermediate structures
between open and closed forms of the protein. Interest-
ingly, four of these structures are very close to confor-
mations along the transition path. Table 7 shows the
distance between each of these structures and the closest
conformation in the transition path. The table also shows
the position of this conformation in the path. More pre-
cisely, the table shows the corresponding iteration num-
ber and the percentage of the path length. 2RH5 (A) is
very close to the conformation generated by the first
iteration, whereas 1E4Y (A) is close to the conformation
generated by iteration 27 (near the closed structure).
1DVR (A) is also very close to a conformation toward the
beginning of the path (near the open structure), whereas
2RH5 (B) is a slightly less open structure. These results
are comparable to those provided by previous studies
[12,48], which further validates the proposed method.

Conclusions
This paper has presented an efficient approach for com-
puting large-amplitude conformational transitions in pro-
teins. It exploits the ability of normal modes to predict
directions of collective, large-amplitude motions and the
efficiency of the RRT algorithm to explore large spaces.
The proposed approach also relies on a multi-scale repre-
sentation of the protein, based on a decomposition into
tripeptides, which significantly contributes to the good
performance of the method.
Interestingly, first results presented in the paper show

that using an ENM based on the coarse-grained tripep-
tide-based model instead of a Ca-based model preserves
the ability of NMA to predict directions of large-amplitude
motions, while significantly reducing computing time.
The proposed method was applied to simulate large-

amplitude conformational transitions in proteins of dif-
ferent sizes and topologies. Results show a good perfor-
mance of the method in all the cases. Computing time
scales linearly with the number of residues. It ranges

from a few hours for medium-size proteins to a few days
for very large ones. This computational performance
could be significantly improved by the implementation of
more sophisticated methods to perform the most time-
consuming operations within the RRT algorithm, in par-
ticular, nearest neighbor search.
A deeper analysis of the conformational transition

between open and closed forms of ADK shows that
results provided by the proposed method are qualitatively
consistent with results obtained with other computa-
tional methods and with experimental data. Nevertheless,
it is important to note that the resulting paths are a first
approximation, which cannot be used directly for an
accurate evaluation of energy variations along conforma-
tional transitions. This would require a subsequent
refinement and analysis using state-of-the-art energy
models and molecular modeling methods. It could also
be possible to integrate energy evaluations within the
RRT exploration with the aim of obtaining better-quality
solutions, at the expense of additional computational
cost. An interesting extension that could be investigated
is to use T-RRT [49,50], instead of RRT, to compute
paths that follow more accurately the valleys of the con-
formational energy landscape.
In this work, we have shown the ability of the proposed

method to compute transition paths between two given
conformations of a protein. Nevertheless, the approach
could also be applied to more challenging problems, such
as the prediction of other (meta-)stable states reachable
from a given protein conformation, or the discrimination
between probable and improbable transitions. This
would require some extensions, mainly in the definition
of energy/scoring functions to identify interesting inter-
mediate and meta-stable states, as well as high-energy
barriers, during the conformational exploration.
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Simulating protein conformational changes induced or required by the internal diffusion

of a ligand is important for the understanding of their interaction mechanisms. Such simulations

are challenging for currently available computational methods. In this paper, the problem is

formulated as a mechanical disassembly problem where the protein and the ligand are modeled

like articulated mechanisms, and an efficient method for computing molecular disassembly paths

is described. The method extends recent techniques developed in the framework of robot motion

planning. Results illustrating the capacities of the approach are presented on two biologically

interesting systems involving ligand-induced conformational changes: lactose permease (LacY),

and the b2-adrenergic receptor.

Introduction

Proteins are flexible macromolecules that fluctuate between

nearly isoenergetic folded states.1 In many cases, conformational

changes are associated with their function, and they occur

through the interaction with other molecules. For instance,

conformational changes are of major importance for protein–

ligand and protein–protein recognition.2,3

This paper addresses protein conformational changes induced

(or required) by the diffusion of a ligand (or substrate/product)

molecule inside the protein. An illustrative example is the

permeation of lactose through a membrane transport protein

(LacY).4 LacY fluctuates between a conformation where

lactose is accessible from the cytoplasm, but the channel

toward the periplasmic side is closed (Fig. 1a), and the

opposite conformation where the channel is open toward the

periplasm and closed in the cytoplasmic side (Fig. 1b). The

transition between these two conformational states occurs

during lactose diffusion inside the protein.

Despite impressive recent advances on the structural determi-

nation of protein motions,5,6 currently available experimental

methods are unable to provide an atomic-resolution structural

description of protein conformational changes associated with

ligand diffusion. Computational methods are therefore necessary

to better understand such processes. However, the time-scale

of the ligand diffusion process from a deep active site to the

protein surface is out of range for standard molecular dynamics

(MD) simulations. Variants of MD methods such as steered

molecular dynamics (SMD)7 and random acceleration molecular

dynamics (RAMD)8 have been proposed for accelerating the

simulation of the ligand exit. Both methods introduce an

artificial force in the molecular force field to enhance the

ligand motion in a given direction. In SMD simulations, this

direction is usually defined by the user through an haptic

device. In RAMD simulations, the direction is randomly

chosen and iteratively modified after a given number of

simulation steps if the ligand gets stuck. Although these

methods have been shown to provide biologically relevant

information, they remain computationally expensive. Besides,

the artificial force introduced for accelerating the simulation

may yield biased results about the induced conformational

changes, so that the interest of simulating with an accurate

molecular force field is partially lost.

This paper presents an alternative method for simulating

ligand diffusion motions, together with the possibly induced

conformational changes of the protein. Given an initial struc-

ture with the ligand docked inside the protein, the proposed

method computes a path (i.e. continuous sequence of con-

formations) simulating the ligand exit. Such a path search

problem is formulated as a mechanical disassembly problem,

where the protein and the ligand are modeled as articulated

Fig. 1 Lactose permease (LacY) conformational transition. (a) The

crystal structure9 (PDB ID 1PV7), where the substrate is accessible

from the cytoplasm. (b) Model of LacY after the conformational

change induced by the substrate diffusion toward the periplasm.
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mechanisms. The main feature of this method is its com-

putational efficiency, enabling to compute large-amplitude

conformation transition paths, such as the one illustrated in

Fig. 1, in less than one hour of CPU time.

Computing disassembly paths for mechanical parts is an

important problem in the fields of robotics and manufacturing

engineering. In the last years, randomized search algorithms10

have been demonstrated to be effective computational

tools for disassembly path planning.11,12 Thanks to their

generality, this type of algorithms have also been applied to

solve problems in computational structural biology.13–15 In

this framework, the ML-RRT algorithm16 was introduced as a

general method for computing disassembly paths of objects

with articulated parts. ML-RRT has been successfully applied

in enzyme enantioselectivity studies for computing ligand exit

paths considering the flexibility of the protein side-chains.17,18

The methodological contribution of this paper is an exten-

sion of ML-RRT that enables further introduction of protein

flexibility, so that challenging problems involving protein

models with flexible backbone segments can be tackled. The

improved algorithm is able to consider not only side-chain

local flexibility, but also loop or domain motions induced by

the ligand along the diffusion pathway. As a proof of concept,

the method is applied to two biologically interesting systems

involving ligand-induced conformational changes: lactose

permease (LacY), and the b2-adrenergic receptor.

Methods

Outline

Path search problem. The problem of computing the exit

path of a ligand from a protein active site is formulated

as a mechanical disassembly problem in which molecules are

represented as articulated mechanisms. The degrees of

freedom of the molecular models correspond to bond torsions

(backbone or side-chains) and to rigid-body motions of atom

groups (rigid secondary structure elements). Starting from a

given ‘‘assembled’’ (docked) position of the ligand inside the

protein, the disassembly problem consists in finding the path

leading to a ‘‘disassembled’’ state, where the ligand is located

outside the protein. The disassembly path has to be searched

in a composite conformational space involving the degrees of

freedom of the protein and the ligand. The difficulty for

solving such path search problem is due to the very high

dimension of this search-space.

Random diffusion trees. The conformational exploration

algorithm described in this work is derived from the Rapidly-

exploring Random Tree (RRT) algorithm,19 developed in

robotics, and which has been demonstrated to perform well

for solving complex disassembly problems in constrained

spaces. The basic principle of RRT is to iteratively construct

a random tree, rooted at a given initial state, and tending to

cover the accessible regions of the search-space. The nodes of

the tree correspond to states generated by the diffusion

process, and the edges correspond to feasible local paths.

The RRT construction process is illustrated by Fig. 2 on a

simple two-dimensional problem. At each iteration of the

algorithm, a state qrand is randomly sampled following a

uniform distribution in the search-space. The nearest node in

the tree qnear is selected, and an attempt is made to expand it

in the direction of qrand. A new node qnew is generated at the

endpoint of the feasible straight-line path (i.e. sub-path

satisfying motion constraints) from qnear to qrand. The process

is iterated until the final state can be connected to the tree. This

tree construction strategy favors an efficient exploration biased

toward unexplored regions, while converging to a uniform

coverage of the space.19 This technique performs well for

solving moderately high-dimensional problems. However, its

performance degrades when applied to very-high-dimensional

search-spaces.

Manhattan-like RRT. The Manhattan-like RRT (ML-RRT)

variant16 was developed to circumvent this limitation of the

basic RRT algorithm for dealing with disassembly problems

involving complex articulated objects. The main idea is to

facilitate the tree expansion by considering separately two

types of conformational parameters, called active and passive.

Active parameters are essential for the disassembly problem,

and they are directly treated at each iteration of the algorithm.

Passive parameters, however, only need to be treated when

they hinder the expansion of active parameters. The advantage

of this decoupled treatment, that favors the expansion of the

active parameters, is to maintain the exploratory strength of

the RRT algorithm while dealing with high-dimensional

problems. The ML-RRT algorithm was successfully applied in

previous work17,18 for computing ligand exit paths considering

the flexibility of the protein side-chains. For this particular

application, the partition of the conformational parameters

makes the exploration be focused on the ligand diffusion (active

parameters), while the protein side-chain motions (passive

parameters) are induced by the ligand motion.

Building on this prior work, we describe below an extension

of ML-RRT that enables the simulation of loop/domain

motions induced by the ligand diffusion. The proposed general-

ization of the ML-RRT principle relies on a classification and

hierarchization of the different elements in the mechanistic

molecular model, receiving each a specific treatment during

the exploration.

Fig. 2 Illustration of the RRT expansion process.
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Model and parameters

Mechanistic molecular model. The proposed method deals

with all-atom models of molecules, which are represented as

articulated mechanisms. Groups of atoms form the bodies,

and the articulations between bodies correspond to bond

torsions. The size of the atom groups depends on the level of

flexibility allowed to different parts of the molecule. Flexible

and rigid regions can be assigned based on structural know-

ledge. In the present work, flexibility is defined by the user.

Note however that the identification of rigid and flexible

regions may be automated using computational methods such

as FIRST.20

Fig. 3 illustrates the mechanistic model of a protein. The

following notation is used:

� Gi group: set of rigid secondary structure elements (with

flexible side-chains), possibly connected by flexible loops.

� iLk
i intra-group loop: kth flexible segment between two

secondary structure elements of group Gi.

� eLi,i+1 inter-group loop/linker: flexible segment between

secondary structure elements in consecutive groups Gi and

Gi+1.

Each group Gi holds free rigid body mobility, independently

from the other groups. Therefore, loop-closure constraints have

to be imposed on flexible segments eLi,i+1 and eLi�1,i connecting

Gi to its neighboring groups, in order to maintain the molecular

chain integrity. As indicated in Fig. 3, several parts are differen-

tiated inside inter- or intra-group loops: the N-terminal and

C-terminal segments, and the middle part (M), which is com-

posed by a tripeptide. Such a decomposition is required for the

treatment of loop motions that will be explained below. Addi-

tionally, geometric (distance and orientation) constraints can be

introduced between any pair of elements (rigid groups or loops)

in order to model interactions such as hydrogen bonds or

disulfide bonds. All these constraints will be satisfied during

the conformational exploration.

Side-chains (not represented in the Figure) are generally

modeled as flexible elements with freely rotatable bond

torsions. By default, the ligand is also fully flexible. Never-

theless, the user can arbitrarily define the flexibility of the

ligand and the side-chains.

Conformational parameters. The protein conformation is

defined by the parameters determining the pose (position

and orientation) of all the groups Gi, the values of the bond

torsions in intra- and inter-group loops, and the bond torsions

of the side-chains. The conformational parameters of the

ligand are the six parameters defining the pose of its reference

frame (associated with its center of mass), and the values of the

allowed bond torsions.

Let q denote the array containing the values of all the

conformational parameters of the protein and the ligand.

The ML-RRT algorithm explores the composite conforma-

tional space C, which is the set of all conformations q. As

mentioned above, the conformational parameters are parti-

tioned into active and passive on the basis of their role in the

disassembly problem. Active parameters are essential for

carrying out the disassembly task, while passive parameters

only need to move if they hinder the progress of the process.

Thus, the mobile parts of the molecular model are separated

into two lists Pact and Ppas containing the active and the

passive parts respectively. For a given partition, the conforma-

tional parameters are separated into two sets: q = {qact,qpas},

where qact is the set of conformational parameters associated

with the parts in Pact and qpas is the set associated with Ppas.

For the protein–ligand disassembly problems addressed in this

paper, qact involves the ligand parameters, while qpas concerns

the protein flexibility.

Additionally, a mobility coefficient d A (0,1] is assigned to

each passive parameter. This coefficient is used to differentiate

passive parts that are allowed to move easily from those that

should be moved only if the solution path cannot be found

otherwise. By default, the mobility coefficient of all side-chains

is set to 1, meaning that they will systematically move if

they are identified during the exploration. Lower mobility is

allowed to loops and secondary structure groups, with d= 0.5

and d = 0.2 respectively in the current implementation.

Conformational exploration algorithm

ML-RRT computes the motion of parts associated with active

and passive parameters in a decoupled manner. Fig. 4 provides

a simple illustration of the process, which alternates expansion

attempts of these parameter subsets.

The ML-RRT algorithm is sketched in Algorithm 1. At each

iteration, the motion of active parts is computed first. The

function receives as argument the list of active

parts Pact and samples only the associated parameters qact.

Thus, this function generates a conformation q
act
rand in a sub-

manifold of the conformational space involving the active

parameters, Cact. The function selects the

node to be expanded qnear using a distance metric in Cact

(i.e. involving the ligand pose and its bond torsions). Then,

performs the expansion of the selected conformation

by only changing the active parameters. The returned con-

formation qnew corresponds to the last valid point (i.e. satisfying

all the geometric constraints) computed along the straight-line

path from qnear toward {qactrand,q
pas
near}. If the expansion succeeds

Fig. 3 Schematic representation of a flexible protein model. The three

secondary structure elements grouped in G1 are modeled as a rigid

solid. The group G2 involves only one secondary structure element.

The loop/linker eL1,2, between G1 and G2, is flexible. Loops connecting

elements in a group can be flexible or not. Only the intra-domain loop

iL1
1 is flexible in this example.
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(i.e. the distance from qnear to qnew is not negligible), a new

node and the corresponding edge are added to the tree. The

function analyzes the collision pairs yielding the stop

of the expansion process. If active parts in Pact collide with

potentially mobile passive parts in Ppas, the list of the involved

passive parts Pcol
pas is returned. This information is used in the

second stage of the algorithm, which generates the motion of

passive parts.

The function determines the list Pmov
pas of

passive parts to be moved at one iteration. This function

receives as argument the list of colliding passive parts Pcol
pas,

and constructs a list with all the parts indirectly involved in the

collision based on the kinematic diagram of the molecular

model. Fig. 5 illustrates three typical situations. If the ligand

motion is hindered by a side-chain in a secondary structure

element (Case 1 in Fig. 5), then, the list involves this side-chain

and the corresponding group Gi. When the colliding side-chain

is on a flexible loop, then the list involves the side-chain, the

loop backbone, and the group Gi for an intra-group loop iLi

(Case 2), or the groups Gi and Gi+1 for an inter-group

loop eLi,i+1(Case 3). In all the cases, when a group Gi is

involved in Pmov
pas , then the backbone of inter-group loops

eLi�1,i and eLi,i+1 (if any) is also considered into the list,

since the conformation of these loops needs to be sampled

together with the group pose in order to maintain the chain

integrity.

The function acts on passive parameters. The

conformational parameters associated with parts in the list

Pmov
pas are sampled with a probability that depends on their

mobility coefficient d, and on the difficulty for expanding qnear,

which is estimated by the number of previous expansion

failures nfail. A parameter is sampled if the following condition

is satisfied:

Where returns a random positive real number

sampled from a normal distribution with mean m = 0 and

variance s2 = 0.1 � nfail. Such a selection strategy maintains a

low probability of moving parts with small mobility coefficient

(e.g. protein domains) when the diffusion tree grows easily,

while the probability is increased when required to unblock the

exploration.

The value of the selected passive parameters is perturbed by

randomly sampling in a ball centered at qnear. Then, an

attempt is made to further expand qnew toward {qactnew,q
pas
rand}.

Note that only parts in Pmov
pas associated with the perturbed

parameters move during this tree expansion. The function

returns a list P0colpas of blocking parts involved in

collisions with moving passive parts. If this list contains

new passive parts (not contained in Pcol
pas), the process generating

passive part motions is iterated. Such a possible cascade of

passive part motions is needed to solve problems where passive

parts indirectly hinder the motion of the active ones because

they block other passive parts.

The algorithm is iterated until the problem is solved, or

when a determines that the solution cannot be

found. The problem is considered to be solved when a con-

formation with the ligand outside the protein is reached.

Failure is returned if a solution is not found after a given

maximum number of iterations. Once the random diffusion

tree is constructed, the solution path is simply obtained by

tracing back the edges from the goal node (‘‘disassembled’’ state)

to the root node (‘‘assembled’’ state). Finally, a randomized

Fig. 4 Illustration of the decoupled exploration of active and passive

parameters within ML-RRT. (a) Expansion of active parameters

corresponding to the motion of the ligand. (b) Identification of the

passive parts hindering the ligand motion. (c) The expansion of passive

parameters yielding the opening motion of the protein. (d) New

iteration of the active parameters expansion.
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path smoothing post-processingz is performed in the compo-

site space of all the parameters, so that simultaneous motions

of the ligand and the protein are obtained in the final path,

instead of the alternate motions resulting from the Manhattan-

like exploration strategy.

Geometric constraints verification

During the conformational exploration, a set of geometric

constraints have to be checked (e.g. collision avoidance,

hydrogen/disulfide bond integrity) or reinforced (e.g. loop

closure). These constraints are explained below.

Collision avoidance. The main geometric constraint to be

verified during the conformational exploration is the avoidance

of atom overlaps. The atoms are represented by rigid spheres

with a percentage of van der Waals radii. Considering a

percentage of the van der Waals equilibrium distance ensures

that only energetically infeasible conformations are rejected

by the collision checker. The value of 80% is often used

in techniques that geometrically check atom overlaps.22

Collisions are checked between the ligand and the protein, as

well as internal collisions between mobile parts of each molecule.

The collision test is done inside the function , which

performs the local expansion motion. Our implementation

builds on the efficient BioCD algorithm,23 specially designed

for articulated molecular models. BioCD uses hierarchical data

structures to approximate the shape of the molecules at succes-

sive levels of detail, making the number of atom pairs tested for

collision to be significantly reduced.

Loop closure. The functions and

perform a specific sampling procedure of loop conformations,

taking into account loop closure constraints. Once the pose

parameters of all groups Gi have been sampled, the Random

Loop Generator (RLG) algorithm24 is applied to sample the

backbone torsions of the N-terminal and C-terminal segments

of each loop. This iterative algorithm, based on simple geo-

metric operations, biases the sampling of these chain segments

toward conformations with a high probability of satisfying the

loop closure constraint. The constraint is reinforced within the

function , which applies an inverse kinematics method25

to compute the bond torsions of the tripeptide in the middle

loop part (M) for the conformations along the local expansion

motion.

Hydrogen bonds and disulfide bonds. These structural con-

straints can be considered within the mechanistic molecular

model. Indeed, they are modeled as distance and angle con-

straints between the bonded atoms. For hydrogen bonds, the

distance d between the donor and the acceptor atoms, and the

bond angle y, must remain within a given range. For instance,

for O–H� � �N bonds: dO–N A [2.5 Å, 3.8 Å] and yO–H–N A
[1101,1801]. Disulfide bonds also imply bond length and

bond angle constraints between the involved S and C atoms.

Additionally, the S–S bond torsion g is restricted around 901.

The ranges by default are dS–S A [1.8 Å,2.2 Å], yC–S–S A
[1001,1301], and gS–S A [601,1201]. All these constraints are

checked within the function .

Results and discussion

This section presents results obtained with the proposed

method on two biologically interesting systems involving

ligand-induced conformational changes. In the first one, the

mechanism of sugar permeation through LacY involves a

large-amplitude relative motion of transmembrane domains.

In the second system, the access/exit of a ligand to the active

site of the b2-adrenergic receptor is related with side-chain

motions, loop motions and transmembrane domain rearrange-

ments. The presented results are not aimed to provide new

insights into these biological systems, but to serve as a proof of

concept and to show the interest of the proposed approach.

The method was implemented within our software proto-

type BioMove3D. PyMOL26 was used for viewing molecular

models. The computing times reported below correspond to

tests run on a single AMD Opteron 148 processor at 2.6 GHz.

Lactose permease

Lactose permease (LacY) is a transport protein that trans-

duces electrochemical proton gradients into sugar concentra-

tion gradients across the cell inner membrane.4 LacY is

composed of two main domains:9 the N-domain involving

helices I–VI, and the C-domain involving helices VII–XII. The

two domains are connected by a long loop containing more

than 20 residues. For carrying out its function, LacY is

supposed to alternate between two conformational states:

the inward-open state, where the substrate is accessible from

the cytoplasm, and the outward-open state, where the access is

possible from the periplasmic side. However, only the struc-

ture of the inward-open conformational state of LacY has

been solved by X-ray crystallography.

Different approaches have been used to analyze the

conformational transition pathway toward the outward-

open state. In particular, experimental studies using double

Fig. 5 Determination of the list of passive parts to be moved

Pmov
pas based on the contacts with active parts and on the kinematic

diagram of the protein model. Three typical cases are illustrated.

z The probabilistic path shortening method21 was used for path
smoothing.
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electron-electron resonance (DEER)27 suggest that the con-

formational transition can be mainly described as a rigid-body

rotation of the C-domain and the N-domain. Based on such

structural knowledge, the mechanistic model of LacY was

simplified by considering a rigid backbone for the C- and

N- domains. Flexibility was allocated to the loop between

helices VI and VII, and to all the protein side-chains. Thus, the

mechanical model contains two main groups G1 and G2

associated with the C-domain and the N-domain respectively,

and an inter-domain loop eL1,2. The X-ray structure of LacY

of Escherichia coli9 (PDB ID 1PV7), corresponding to the

inward-open conformation, used as starting point in this

work, contains a bound substrate homologue TDG (see

Fig. 1a). The substrate molecule was modeled with full flexi-

bility, and it could freely rotate and translate by 50 Å in any

direction excepting the direction to the cytoplasm (only 5 Å

were permitted in this direction in order to force the exit

toward the periplasmic side). Overall, the mechanistic model

of LacY-TDG contains 775 degrees of freedom: 12 correspond

to the rigid-body motion of the C- and N- domains, 75 to the

backbone torsions of the inter-domain loop, 678 to the protein

side-chains, and 10 to the substrate mobility and flexibility.

The ML-RRT algorithm was applied to compute the exit

pathway of TDG toward the periplasmic side, which involves

the conformational transition of LacY. The computing time of

a run was about 1 h on a single processor. Such high

computational performance is worth to be noted since it

represents an important feature of the proposed approach

compared to the very long computing times required by other

simulation methods such as molecular dynamics. The algorithm

was run 10 times in order to analyze a possible variability of

results associated with the randomized exploration procedure.

All the runs yielded very similar results with regard to the

protein conformational change. The obtained ‘‘disassembled’’

conformation, with the ligand outside the protein and LacY in

a outward-open state, is represented in Fig. 1b. A movie of the

computed conformational transition is provided as ESI.w As it

has been pointed out by prior studies,27 the substrate exit

requires the rotation of the two domains. In our results, the

observed rotation between the domains is around 201.

Although this is smaller that the 601 suggested by DEER

experiments, the overall motion is alike. The comparison of

the variation of distances between some residue pairs in the

inward- and outward- faces of LacY (see Table 1) shows an

approximate overall ratio of 1/3 between the values measured

by DEER and our results. The explanation for this quantita-

tive difference is that ML-RRT tends to produce the minimal

conformational change required for the molecular disassembly,

while larger motions may occur in reality. Interestingly, the

distance between residues Ile40 and Asn245 in the outward-

open conformation computed by ML-RRT is of approximately

15 Å, which has been shown by cross-linking experiments28 to

be the minimal distance between these residue positions for

guaranteeing the activity of LacY.

In other recent studies,29 steered molecular dynamics

(SMD) simulations have been carried out to better understand

the physical mechanisms of lactose permeation at the atomic

level. SMD results provide detailed information about the

interactions between lactose and LacY residues during

permeation. Such information cannot be directly provided by

our method, since it does not consider accurate energy functions.

However, a straightforward geometric analysis of the paths

obtained by ML-RRT can provide the list of residues that the

ligand has encountered during its diffusion. The diagram in

Fig. 6 represents the residues encountered by the ligand along

the path toward the periplasm. A contact between the ligand

and a residue side-chain was recorded if the distance between

the surface of van der Waals spheres modeling their atoms

was below 1 Å. The diagram shows the percentage of times

that a contact appeared over the set of 10 paths. Contacts

were recorded for three segments of the path: the beginning

(0–10 Å), where the ligand is close to its location in the crystal

structure, the middle part (10–20 Å), and the final part (above

20 Å), where TDG is near the periplasm. Remarkably, all

the residues identified by SMD simulations29 as interacting

residues (through side-chain hydrogen bonds or hydrophobic

interactions) appear in the diagram, with the exception of

Asp36. Note however that this residue is on the periplasmic

surface of the protein. On the other side, only one residue

(Thr265) appearing in the contact diagram with a signifi-

cant percentage is not reported in the referred work. Such

an impressive consistency with results of SMD simula-

tions confirms the validity and the potential interest of our

approach.

b2-Adrenergic receptor

The b2-adrenergic receptor (b2-AR) is a membrane protein

belonging to the superfamily of the G-protein-coupled recep-

tors (GPCRs),30 which activate signal transduction inside the

cell in response to the binding of hormones and neurotrans-

mitters in the extracellular region. GPCRs are important

therapeutic targets for a large class of diseases. Therefore,

numerous studies have been devoted to this family of proteins,

aiming to better understand their activation/deactivation

mechanism. However, many questions remain. In particular,

little is known about the functional role of extracellular loops,

and about their possible conformational coupling to ligand

binding.31 One major difficulty comes from the lack of struc-

tural information inherent to membrane proteins.

A high-resolution crystal structure of b2-AR has been

recently obtained32 (PDB ID 2RH1). The crystal structure

also contains a molecule of carazolol, a partial inverse agonist,

in the protein active site. This receptor–ligand structure is the

starting point of the conformational analysis presented below.

The structure is represented in Fig. 7, using standard notation

for the structural elements. Like all GPCRs, b2-AR contains

seven transmembrane helices, which were modeled as rigid

groups Gi. The intracellular and extracellular loops were

modeled as flexible elements eLi,i+1. All the side-chains and

the ligand were considered to be fully flexible. The number of

degrees of freedom of the whole model is 703: 42 of them

correspond to the rigid-body motion of the seven trans-

membrane helices, 159 to the backbone torsions of the five

loops, 490 to the protein side-chains, and 12 to the ligand

mobility and flexibility.

The ML-RRT algorithm was applied to compute the exit

pathway of carazolol from the active site of b2-AR. A first set
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of 10 runs revealed some variability on the trajectories

followed by the ligand. Thus, the algorithm was run 60 times

in order to do a more accurate statistical analysis of results.

The 60 paths were obtained in 2 h of computing time (each run

takes an average of 2 min on a single processor). These exit

paths can be divided into two main clusters. In one class of

paths, which we refer to as ‘‘left-hand’’ paths, carazolol exits

between transmembrane helices H5, H6 and H7. In the other

class, called ‘‘right-hand’’ paths, the ligand exits between H2,

H3 and H7. The two clusters can be separated by an axis

traced between residues Asp192 and Lys305, which form a salt

bridge in the crystal structure. Fig. 8 shows snapshots of the

ligand exit path for each path class. Movies of these paths are

provided as ESI.w Interestingly, these two classes of exit paths

have also been observed in prior studies33 based on random

acceleration molecular dynamics (RAMD) simulations. A

quantitative comparison can be done between results obtained

with ML-RRT and RAMD. The most significant comparable

result is that both approaches suggest that left-hand and right-

hand exit paths are approximately equiprobable. Indeed,

31/60 of the ML-RRT solutions correspond to left-hand,

and 29/60 to right-hand paths. Another result from RAMD

simulations concerns the recurrent breakage of the salt bridge

Asp192-Lys305 during ligand exit. Paths computed with

ML-RRT show a significant motion of the side-chains of these

two residues, which lead to the salt bridge breakage for most

of the 60 paths. However, in some of the left-hand paths, the

ligand exits with only a slight perturbation in the conforma-

tion of Asp192 and Lys305. The interpretation is that it is

geometrically possible for the ligand to exit between helices

H5, H6 and H7 without breaking the salt bridge.

A further comparison between left-hand and right-hand

paths obtained with ML-RRT displays other interesting

differences. The first one concerns the orientation of the ligand.

In most of the left-hand paths, the ring head of carazolol

reaches first the protein surface (see Fig. 8a). Contrarily, the

ring and the alkylamine–alcohol tail exit almost simul-

taneously in most of the right-hand paths (Fig. 8b). A possible

interpretation may be that one of the pathways could be

preferred for the exit of the ligand, while the other could be

more suited to the access. A more accurate analysis of the

paths computed by ML-RRT would be required to reinforce

such a suggestion. Note however that RAMD simulations

from a putative ligand-free model of b2-AR33 suggest that

carazolol enters the receptor between helices H2, H3 and H7,

with its ring head diving first.

Another interesting difference between the two classes of

exit paths concerns the conformational changes of the extra-

cellular loop ECL2 induced by the ligand exit. As shown in

Fig. 9, right-hand paths imply, on average, a more significant

motion of ECL2 than left-hand paths. Note that although the

loop ECL2 of b2-AR is very long, its conformation is con-

strained by two disulfide bonds, one between residues in the

loop (Cys184–Cys190), and one between the loop and H3

(Cys106–Cys191). Thus, in any case, this loop cannot undergo

large conformational changes. The observed relationship

between right-hand paths and ECL2 flexibility has been con-

firmed by tests performed on a model of b2-AR only considering

side-chain flexibility. Using this rigid-backbone model, the

Table 1 Distance variation between residue pairs in LacY

Residue pair Inward-open
Outward-open
(experimental)27

Outward-open
(simulation)

73–401 41 Å 27 Å 36.9(�1.0) Å
73–340 36 Å 21 Å 31.0(�1.3) Å
136–340 34 Å 17 Å 28.7(�1.4) Å
137–340 32 Å 16 Å 26.7(�1.4) Å
136–401 40 Å 24 Å 35.6(�1.3) Å
137–401 38 Å 22 Å 33.5(�1.4) Å
105–310 34 Å 41 Å 38.0(�1.6) Å
164–310 27 Å 43 Å 32.8(�1.4) Å
164–375 33 Å 49 Å 35.8(�1.2) Å

Fig. 6 List of residues whose side-chain was encountered by the

substrate during its diffusion toward the periplasm. For facilitating

interpretation, the pathway is divided into three segments. The grey-

scale represents the percentage of times that the contact appears over

the set of 10 runs.

Fig. 7 Structure of b2-AR with carazolol bound in the protein active

site viewed from the extracellular side. The secondary structure

elements and important residues are displayed on the image.
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ligand exited through the left-hand pathway in 90% of the

ML-RRT runs. These results suggest that right-hand access/exit

paths involve a more important interaction between the ligand

and ECL2 than left-hand paths. Note that recent studies on

GPCRs show important roles of ECL2. Indeed, it can be

required for ligand binding,34 and its motion can be involved

in the activation mechanism.35

The analysis of contacts between carazolol and b2-AR

residues along the set of 60 exit pathways computed with

ML-RRT was performed using the technique described above

for the study of LacY. Fig. 10 shows the list of residues whose

side-chain was encountered by the ligand. For clarity reasons,

the Figure only reports contacts that appeared in more than

30% of the paths. Four residues are clearly highlighted in the

diagram: Asp192, Phe193, Lys305, and Asn312. The positions

of these residues are indicated in Fig. 7. Two of them, Asp192

and Lys305, form the aforementioned salt bridge, which is

broken during the ligand diffusion. Phe193, which is located

on ECL2, has also been identified as an important residue in

related works. Results of RAMD simulations33 suggest that

this aromatic residue may participate in the ligand entry

and stabilization in the active site of b2-AR. Recent NMR

experiments31 have shown that inverse agonists induce a

conformational change of this residue. Finally, Asn312 is an

important residue for the stabilization of carazolol in the

active site through a polar interaction with its alkylamine–

alcohol tail.

Overall, the presented results show that structural informa-

tion on the access/exit of carazolol to the active site of b2-AR

provided by ML-RRT is in agreement with results of other

experimental and computational studies.

Conclusion

The results in this paper show that a mechanistic approach to

molecular simulations may lead to the development of efficient

computational methods, able to provide relevant information

on the interaction of biological molecules. The proposed

algorithm, ML-RRT, is a novel and fast method for simula-

ting ligand diffusion inside flexible models of proteins. Indeed,

ML-RRT generates long (20–30 Å) diffusion paths within tens

of minutes of computing time on a single processor, which is

remarkably short compared to the time required by MD-based

methods. Such a high computational performance is achieved

thanks to the efficiency of the conformational exploration

method that operates on geometric models of molecules.

Geometrically feasible paths are a reasonably good approxi-

mation that provides very useful information. Furthermore, as

shown in prior work,13 the approximate solution path can also

be efficiently refined with standard molecular modeling tools

(e.g. energy minimization) in order to perform a more accurate

energetic analysis. However, a current limitation with this

approach is that non-bonding interactions such as electrostatic

and hydrophobic interactions are neglected when computing

the approximate solution path, although they can play

some role in the conformational transitions. The accuracy

of the approach can be further improved by integrating

energy computations during the conformational exploration.

For this, we are currently investigating the combination of

ML-RRT with a recent algorithm36 developed for exploring

cost-spaces to compute low-energy paths. Other future work

involves the improvement of the method to better deal with

full molecular flexibility during protein–ligand interactions.

We also expect to extend the method for its application to the

modeling of protein–protein interactions.
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Introduction

A great challenge for pharmaceutical and industrial chemistry
of the next decades will be the discovery and development of
fast and economic resolution processes. To obtain pure enan-
tiomers, various methods such as diastereomeric salts, race-
mate resolution, or asymmetric synthesis with chiral auxiliaries
and chiral catalysts can be used.[1–4] Among the different ap-
proaches, biocatalysis based on the enzymatic resolution of
racemic mixtures remains a method of choice. In particular,ACHTUNGTRENNUNGlipases (triacylglycerol hydrolases, EC 3.1.1.3) are among the
most employed catalysts in organic synthesis to catalyse theACHTUNGTRENNUNGkinetic resolution of a wide range of substrates and yield opti-
cally pure compounds.

Recent advances in tailoring enzymes for high activity and
selectivity and their combined use with chemocatalytic reac-
tions has expanded the role of biocatalysis to produce enantio-
pure compounds from racemic mixtures. Directed evolution or
rational design techniques have proven to be successful for
the development of lipases with either enhanced or inverted
enantioselectivity compared to their parental enzymes.[5–7]

Amongst lipases used for racemic resolution, lipase from Burk-ACHTUNGTRENNUNGholderia cepacia (BCL) has proven to be very useful for the res-
olution of racemic mixtures of primary and secondary alco-
hols[8] and carboxylic acids.[9, 10] In a previous study[11, 12] focused
on the understanding of the factors involved in racemic resolu-
tion of 2-substituted carboxylic acids, it was suggested that
given the topology of BCL active site, which is located at the
bottom of a narrow 17 � pocket, the enzyme ligand affinity
and, by extension enantioselectivity, could be affected by the
accessibility of the substrate to the catalytic site and the diffi-

culty encountered by the substrate in adopting a productive
conformation at the reaction site.

Path-planning algorithms, originating from robotics and
adapted for the investigation of various molecular motion
problems,[13–22] were previously applied for investigating the
access/exit of ligands to the BCL active site.[11] The amino acids
hindering the displacement of (R,S) enantiomers along the
active site pocket were highlighted by using the atom distance
information collected during the path searches by the collision
detector BioCD[23] integrated in the software prototype Bio-
Move3D.[16, 24] On the basis of the analysis of contacts found
along the computed access, two amino acids, L17 and V266,
were identified as playing a major role in the discrimination of
the pairs of enantiomers and were proposed as targets forACHTUNGTRENNUNGmutagenesis aiming at tailoring enzyme enantioselectivity.

Lipase from Burkholderia cepacia (BCL) has proven to be a very
useful biocatalyst for the resolution of 2-substituted racemic
acid derivatives, which are important chiral building blocks.
Our previous work showed that enantioselectivity of the wild-
type BCL could be improved by chemical engineering of the
substrate’s molecular structure. From this earlier study, three
amino acids (L17, V266 and L287) were proposed as targets for
mutagenesis aimed at tailoring enzyme enantioselectivity. In
the present work, a small library of 57 BCL single mutants tar-
geted on these three residues was constructed and screened
for enantioselectivity towards (R,S)-2-chloro ethyl 2-bromophe-

nylacetate. This led to the fast isolation of three single mutants
with a remarkable tenfold enhanced or reversed enantioselec-
tivity. Analysis of substrate docking and access trajectories in
the active site was then performed. From this analysis, the con-
struction of 13 double mutants was proposed. Among them,
an outstanding improved mutant of BCL was isolated that
showed an E value of 178 and a 15-fold enhanced specificACHTUNGTRENNUNGactivity compared to the parental enzyme; thus, this study
demonstrates the efficiency of the semirational engineering
strategy.
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In the present work, we have constructed libraries of var-
iants in which amino acids identified by path analysis and lo-
cated both in the bottleneck and at the entrance of BCL active
site were targeted. The libraries were first screened on the
basis of enzyme activity towards the substrate para-nitrophen-
yl butyrate (pNPB). Then, the enantioselectivity of the mutants
towards the substrate (R,S)-2-chloro ethyl 2-bromophenylace-
tate (1) was experimentally determined. Here, we also discuss
the interpretation of molecular modelling results with regards
to understanding BCL enantioselectivity.

Results and Discussion

Construction of the single mutant library

Three amino acids were chosen as mutagenesis targets: L17,
V266 and L287 (Figure 1). The selection of L17 and V266 was
based on a previous study[11] in which we showed that the bot-
tleneck formed by these residues in BCL active site influences
both the trajectory and the positioning of various two substi-
tuted-acids. The third amino acid, L287, was selected to exam-
ine the possible role of a residue located along the access
channel but farther from the catalytic centre. Notably, muta-
tion of L287 residue was found in the V266L-L287I-F221LACHTUNGTRENNUNGvariant of B. cepacia lipase (Ps-FVL mutant from Amano CO.,
Japan), which displayed an enantioselectivity enhanced by

200-fold as compared to the wild-type BCL for the resolution
of (R,S)-2-bromophenyl acetic acid ethyl ester.[12] To furtherACHTUNGTRENNUNGinvestigate the role of these residues on enzyme enantioselec-
tivity, the three amino acids (L17, V266 and L287) were system-
atically replaced by the 19 other possible amino acid residues
to obtain a library of 57 single mutants.

Preliminary screening on pNPB substrate

The variants were first grown in deep-well plates. As shown in
Figure 2, bacterial growth was rather homogenous for all of
them. Following cell lysis, the mutants were screened for their
ability to hydrolyse pNPB (Scheme 1 A), a substrate easily moni-
tored by spectrophotometry at 405 nm and often used to de-
termine lipase activity.[25] The variability of pNPB hydrolytic ac-
tivity found amongst the variants is shown in Figure 2. Overall,
ten variants out of 57 appeared more active on pNPB than the
wild-type BCL. In particular, replacement of V266 by polar and
uncharged Thr, Cys, Asn or Gln amino acids led to variants dis-
playing a two- to four-fold enhanced hydrolytic activity, with
the highest enhancement being reached for the V266N variant
(Figure 2). In contrast, almost all the mutations at positions 17
and 287 had either a neutral or a negative effect and reduced
the hydrolytic activity.

Figure 1. Representation of B. cepacia lipase structure. A) Cross-section view of the enzyme active site. Catalytic triad residues are D264, H286, S87. Amino
acid residues forming the oxyanion hole are L17 and Q88. The three amino acid residues selected as mutagenesis targets are: L17, V266 and L287. B) The
overall fold of BCL is shown in a cartoon representation in which b-strands are represented by arrows and helices as coils. The regions 1–117, lid (118–159) in
red, region 160–213, sub-domain facing the lid (214–261) and region 262–320 are labeled. The position of a Ca2 + is indicated by a sphere. The catalytic triad
(S87, D264 and H286) and amino acid residues involved in oxyanion hole stabilization (L17 and Q88) are shown in stick.
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Enantioselectivity of BCL single mutants towards (R,S)-2-
chloro ethyl 2-bromophenylacetate (1)

The library of single mutants produced in 96-deep well plates
was assayed in the presence of racemate 1 (Scheme 1 B). Reac-
tions to determine enantioselectivity were performed in deep
wells by using crude extracts. The enantiomeric excess of the
substrate (ees) was plotted as a function of the conversion for
all BCL variants (Figure 3). As shown in the figure, the single
mutations at positions 266 and 287 had limited effect on
enzyme enantioselectivity. In one single case, a variant was
found to reverse its enantiopreference from the R to the S sub-

strate. Indeed, when changing V266 to glycine, which is the
most compact amino acid and is also known to contribute
greatly to conformational flexibility of polypeptide chains, S se-
lectivity was observed. Conversely, three L17 variants (namely
L17S, L17G and L17M) showed an enhanced enantiopreference
for the R enantiomer (Figure 3 B). Variants L17S, L17G and
L17M were produced from cultures in Erlenmeyer flasks to vali-
date the microtiter-plate assay. They exhibited E values of 87,
24 and 78, respectively; this shows that microtiter-plate assay
was a reliable screen for enantioselectivity.

Characterization of V266G, L17S and L17M variants

The most enantioselective variants (L17S and L17M) and the
variant with reversed enantioselectivity (V266G) were then
characterized in more detail. Following production and
immuno-affinity purification, their ability to hydrolyse substrate
1 was determined. For the V266G mutant, the specific activity
remained unchanged compared to the wild-type enzyme (vi =
0.38 mU mg�1), but the reversal of enantioselectivity was con-
firmed by assay of the purified enzyme. The V266G variant was
indeed found to hydrolyse the S enantiomer significantly faster
than the R one, with an E value of 20 (Table 1). Compared to
the parental wild-type enzyme, variants L17S and L17M

Figure 2. Profile of cell density and activity obtained for wild-type and variants of BCL expressed in E. coli JM109. Activity and OD600/nm were an average of
values obtained in eight wells.

Scheme 1. Hydrolysis of A) para-nitrophenyl butyrate (pNPB) and B) (R,S)-2-
chloro ethyl 2-bromophenylacetate (1).

Table 1. Specific hydrolytic activity and Enantioselectivity values determined for the wild-type BCL and its three single mutants towards each enantiomer
of the racemic substrate (R,S)-2-chloroethyl-2-bromophenylacetate (1).

Variants viR
[a] [mU mg�1] viS

[a] [mU mg�1] vi
[a] [mU mg�1] Enantiopreference E value Conversion [%]

Wild-type 0.354 0.028 0.38 R 13 (�1.8)[b] 6.5 (48 h)
V266G 0.02 0.36 0.38 S 20 (�4)[c] 6.6 (51 h)
L17S 1.57 0.01 1.58 R 128 (�35)[b] 15.6 (49 h)
L17M 2.07 0.014 2.09 R 133 (�31)[b] 15.5 (48 h)

[a] viR, viS : initial rates; vi = viR+viS. [b] E value = viR/viS. [c] E value = viS/viR
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showed an increase of up to sixfold in the initial rate of R en-
antiomer consumption (viR). In parallel, the initial rate of S en-
antiomer consumption (viS) decreased by up to threefold
(Table 1). This resulted in a four- and fivefold improvement of
the specific activity of the L17S and L17M variants, respectively,

compared to the wild-type enzyme. In similar way,
the enantioselectivity of these mutants was increased
by a remarkable tenfold respect to wild-type BCL.

Insights on structural features that control activity
and selectivity of BCL single mutants through mo-
lecular modelling

The dynamics of the improved single mutants were
first investigated to ensure that the mutations did
not induce major modifications in the flexibility of
the enzyme structure nor in the lid conformation of
BCL variants.[26] Dynamics studies were then complet-
ed by i) the analysis of the binding interactions of
each enantiomer in the active site of the variants and
ii) the analysis of substrate trajectories during the
transport out of the active site.

Dynamics of wild-type BCL and its variants at
water/octane interface

The starting model of wild-type BCL was built from
the X-ray structure of BCL in open conformation[27]

(PDB ID: 3LIP), which adopts the characteristic a/b-
hydrolase fold[28] (Figure 1 B). The model was then
subjected to a 20 ns molecular dynamics (MD) simu-
lation under constant temperature and pressure con-
ditions in an explicit water/octane interface, in which
the enzyme is known to be active, following a proce-
dure previously described.[26] In a similar way, we per-
formed MD simulations on L17S, L17M and V266G
mutants by using 3D-models generated from the
wild-type BCL model. To verify the stability of the MD
trajectories, we inspected the potential energy of the
system and the RMSD throughout the simulations.
The RMSD trajectories calculated for the backbone
atoms of the proteins were compared to the initial
structures over the 20 ns of simulations. All profiles
show a plateau with an average RMSD around 2 �,
reached after 2 ns; this indicates that the systems
have reasonably converged to stable states
(Figure 4). To detect the regional motions in the pro-
tein structures, B-factors were calculated from MD
simulations (Figure 5 A). Main differences between
the wild-type BCL and its variants reside in two re-
gions, mostly constituted by hydrophobic amino acid
residues, surrounding the catalytic pocket. The first
region is defined by the lid (residues 118–159) while
the second (residues 221–246) corresponds to a sub-
domain facing the lid (Figure 1 B). Simulated B-factors
revealed a particularly high mobility of the hydropho-

bic b-hairpin constituted by the b3 and b4 strands for all var-
iants as well as for the wild-type BCL. Of note, the mobility of
the loop between the a5 and a6 helices was found to be
more pronounced for the V266G variant than for the wild-type
BCL (Figure 5 A).

Figure 3. Evolution of substrate enantiomeric excess (ees) as a function of the conversion
for single variants on positions V266 (A), L17 (B) and L287 (C). Enantiomeric excess was
calculated as defined below: ees = {[S]�[R]}s/{[S] + [R]}s (s = substrate) and the conversion:
C = 1�ACHTUNGTRENNUNG[(R+S)t/ACHTUNGTRENNUNG(R+S)t = 0] . The results for the best variants are highlighted.
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Comparison of initial structures with those obtained after
20 ns MD simulation shows that wild-type BCL and its mutants
stay in the wide open conformation observed in the crystal
(Figure 5 B–E). Overall, no major effect of the mutation on the
flexibility of the protein backbone was observed. The two var-
iants exhibited similar conformational rearrangements along
the simulation and residues involved in the catalytic machinery
located at the bottom of a narrow and deep pocket (catalytic
triad: S87, H286, D264 and oxyanion hole stabilisation: Q88
and L17) did not undergo any significant variation. TheseACHTUNGTRENNUNGresults suggest that the amino acid substitutions introduced in
BCL did not perturb the protein folding.

Covalent docking of substrate in active sites of wild-type
BCL, L17S, L17M and V266G variants

Using a covalent docking procedure, we generated models of
the substrate covalently bound to each enzyme; these models
corresponded to the tetrahedral intermediate known to be a
good mimic of the transition state. In wild-type BCL, L17S and
L17M variants, the bulky bromine atom of the rapidly trans-
formed R enantiomer is positioned in the inner hydrophobic
pocket, the so-called acyl pocket HA,[12] pointing towards the
inner L167 with the aromatic ring pointing towards the outside
of the catalytic pocket (Figure 6 A). In contrast, the least rapidly
hydrolysed S enantiomer was also docked with its bromine
atom in the HA pocket, but oriented towards the bottleneck-
forming V266. Interestingly, mutation L17S also introduced an
additional hydrogen bonding interaction with the covalent in-
termediate; this led to greater stabilization of the transition
states for both R and S enantiomers compared to the wild-
type BCL (Figure 6 C). These results are in agreement with a
greater hydrolytic activity of L17S variant compared to the
wild-type BCL towards substrate 1 (Table 1). However, the dif-
ference between scores of the S and R enantiomers in L17S is
lower than that observed for the wild-type enzyme; thus, this

fails to explain the tenfold increase of enantioselectivity ob-
served for the variant in favour of the R enantiomer. The dock-
ing scores obtained respectively for the R and the S enantio-
mers in the L17M variant are in agreement with the enantio-
preference of the enzyme. The V266G mutation uncluttered
the active site and thus favoured the docking of the S enantio-
mer of substrate 1 in the catalytic site, as reflected by the
more favourable docking score (Figure 6 B). Figure 6 shows
that the orientation of the aromatic ring in the docked poses
within all enzymes varies between the R and the S enantio-
mers, except for the V266G variant. In the latter, the aromatic
ring fits nicely in the space left empty by the V266G mutation;
this allows stacking of the aromatic ring onto the catalytic
H286. Close values of docking scores were obtained for both
enantiomers, that is, �1.03 and �1.20 for the R and S enantio-
mers, respectively. The favourable docking score for the S en-
antiomer is in agreement with the experimentally observedACHTUNGTRENNUNGreverse of enantiopreference exhibited by the V266G variant.

Overall, the docking scores (Figure 6) are in agreement with
the enantiopreference, but they failed to predict quantitatively
the enantioselectivity, in particular the large improvement of
L17S and L17M enantioselectivity. Molecular docking was per-
formed on rigid enzyme 3D-models and solely, the substrate
was allowed to adapt its conformation to the active site. Given
that molecular adaptation and flexibility are important compo-
nents for an accurate description of specific ligand bindingACHTUNGTRENNUNGinteractions, this is obviously a limitation.

Computing substrate pathways to BCL single mutantsACHTUNGTRENNUNGcatalytic site

Dynamic simulations indicate that the amino acid substitutions
introduced in B. cepacia lipase did not perturb the protein fold-
ing. However, they contribute to significant changes in the en-
antiomer accessible volume and may have an impact on sub-
strate accessibility. The geometrically feasible motions of the
substrates within the enzyme active site were explored using
the path-planner integrated in the Biomove3D software.[16, 24]

The algorithm used in this work is derived from the previously
described disassembly path-planning technique of articulated
objects.[11, 24, 29] In the new version of the Biomove3D software,
the basic RRT algorithm was replaced by ML-RRT (Manhattan-
Like Rapidly-exploring Random Tree) algorithm.[24] ML-RRT out-
performs the basic RRT algorithm by considerably decreasing
the computing time and its variance. Furthermore, it is able to
efficiently treat protein models with all side chains being po-
tentially flexible.[24] Within a few minutes on a standard mo-
noprocessor PC, the algorithm is able to compute ligand path-
ways while taking into account the entire flexibility of both the
ligand and the protein side chains that are required to move
during the computation of the pathways. In the latest version
of Biomove3D, a new computational tool has been included
that facilitates the analysis of the ML-RRT search trees by en-
coding molecular motions in voxel maps.[30] Such representa-
tion permits arrangement of the information obtained from
the exploration of a high-dimensional space (the conforma-
tional space of the molecular model) into a three-dimensional

Figure 4. Time variation of the RMSD of backbone atoms of the proteins
(wild-type (black), V266G (green), L17S (red) and L17M (orange) variants)
during the course of MD simulations carried out in explicit water/octaneACHTUNGTRENNUNGsolvent.
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data structure. By combining a geometric conformational ex-
ploration and an arrangement of the resultant information into
a voxel map, the method permits visualisation of the differen-
ces between the space explored by the different enantiomers
when accessing the catalytic site of the different BCL enzymes.

Starting from the docked tetra-
hedral intermediate of the R and
S enantiomer of substrate 1, we
sampled the space that the en-
antiomers can explore to go
from the bottom (catalytic site)
of selected BCL variants (L17S,
L17M and V266G) to the protein
surface. The voxel maps reflect
the volume of the catalytic
pocket explored by the sub-
strate during its access/exit
pathways to the active site. In
Figure 7 the computed voxel
maps, which represent the posi-
tions that can be geometrically
reached by the substrate center
of mass during the conforma-
tional explorations, are shown.
As voxels have been coloured
following the chronological
order of generation, one can
easily identify the regions that
the substrate reaches first
during the geometrical explora-
tion. Comparison of the voxel
maps reveals significant differ-
ences in the behaviour of race-
mate 1 into the different
enzyme catalytic pockets. Voxel
maps obtained for the wild-type
BCL indicate a narrower distribu-
tion for the S enantiomer than
the R form; this reflects a more
constrained motion of the S en-
antiomer as it goes through the
bottleneck formed by V266 and
L17. Light-blue voxels are found
from the bottom to the en-
trance of the catalytic pocket for
the R enantiomer; this indicates
a faster displacement that re-
quires less iterations than for
the S enantiomer for which
orange voxels are seen around
the bottleneck revealing a geo-
metrically difficult passage.
These results are in agreement
with the faster conversion of the
R enantiomer by the wild-type
BCL (Table 1). As can be seen by
the larger voxel map, the intro-

duction of the V266G mutation notably facilitates the move-
ment of the S enantiomer in the mutant active site compared
to the parental enzyme. On the other hand, the V266G muta-
tion exposed a secondary pocket (encircled in Figure 7 B) that
is unsuccessfully explored by the R enantiomer as it searches

Figure 5. A) Calculated B-factors of BCL residues from MD simulations carried out in an explicit water/octane in-ACHTUNGTRENNUNGterface for wild type BCL (black), for variant V266G (green), for L17S (red) and for L17M (orange). The secondary
structure of BCL is shown on the graph for reference. Snapshots of the enzyme backbone structures taken at the
beginning of the production phase (grey coloured) and after 20 ns of MD simulation in water/octane environ-
ment: B) wild-type BCL (dark grey), C) V266G (green) D) L17S (red) and E) L17M (orange).
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for a way out of the pocket. The exploration of this dead-end
region resulted in an increase of the CPU time taken by the
path planner to find a solution. Interestingly, upon L17S muta-
tion, the topology of the active site considerably favoured the
movement of the R enantiomer along the access/exit pathway.
Indeed, a network of dark-blue voxels connects the bottom to
the top of the catalytic site and reveals the existence of path-
ways that require less iterations than for the wild-type BCL to
exit the catalytic pocket. Of note, the voxel maps computed
for the S enantiomer in the wild-type and the L17S variant are
nearly the same, and this is in agreement with the comparable

initial rates determined experimentally. Overall, the computa-
tion of the exit pathway is greatly facilitated for the R enantio-
mer upon the L17S mutation, and this is in qualitative agree-
ment with the tenfold enhanced enantioselectivity of the L17S
variant compared to the wild-type enzyme. The differences ob-
served between the R and the S voxel maps in the L17M var-
iant reflect the variations in the behaviour of each enantiomer
during its displacement along the active site. Indeed, the ex-
plored space of the S enantiomer is significantly reduced com-
pared to the R form; thus, this indicates a greater difficulty of
the active site exploration to find an exit pathway. These differ-
ences are in agreement with the E value of 133 in favour of
the R substrate.

In the examples presented here, it clearly appears that mod-
elling of the tetrahedral intermediates for both enantiomers
was not enough to explain the differences observed in the
enantioselectivity of BCL and its variants. Often neglected, the
effect of entropy variation has been shown in many cases to
be as important as the enthalpic component in enzyme enan-
tioselectivity.[31, 32] Several studies have attempted to under-
stand the role of entropy on a molecular level and they have
estimated the substrate accessible volume within the active
site and showed that it could be correlated to transition state
entropy.[31, 32] The modelled volumes could in some cases pre-
dict the correct enantiopreference, and the topology of the
active site is also proposed to be more suited for the near-
attack conformation of the favoured enantiomer.[33] In our ap-
proach, the full flexibility of both the protein side chains and
the substrate is considered for the calculation of the enantio-
mer pathways. In view of the importance of taking into ac-
count the entire molecular motions involved in catalysis when
modelling the enzyme reaction, we believe that the computa-
tional methods applied in this work might help to expand our
knowledge on how enzymes distinguish between enantiomers
and to understand the role of entropy on a molecular level.

Designing improved BCL double mutants

The enantiomers docking, access trajectories and voxel map
analyses confirmed the predominant role of the V266/L17 bot-
tleneck on racemate 1 accommodation. To generate diversity
at these positions, we first selected the best single mutants
L17S and L17M and attempted to introduce an additional mu-
tation at position V266 (Table 2). In the same way, we also at-
tempted the modification of the substrate access to the active
site by introducing an additional mutation at position 287 in
mutant L17S.

Docking scores, analysis of collision and voxel maps were
used to target the mutations. A total of 13 double mutants
were constructed and their enantioselectivity was roughlyACHTUNGTRENNUNGdetermined without purification of the variants. As shown in
Table 2, except for the L17M/V266M mutant, none of the
double mutants targeted at positions 17 and 266 led to a nota-
ble improvement of the enzyme enantioselectivity. This under-
lines that engineering of the active site bottleneck is a tricky
task, likely due to the proximity of the catalytic triad and oxy-
anion hole. The behaviour of the L17S/L287 double mutants

Figure 6. Highest score docking modes of (R,S)-2-chloro ethyl 2-bromophe-
nylacetate (1) covalently bound in the enzyme active site. 1 is docked in the
catalytic pocket of wild type enzyme is represented on A) in V266G variant
on B), in L17S on C) and in L17M on D). Bromine atom is shown as a sphere.
Docking scores are indicated on the figures.
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turned out to be quite interest-
ing as all of them were found to
be more enantioselective than
the wild type BCL. Altogether,
four mutants were finally puri-
fied to homogeneity and charac-
terized. As shown in Table 3,
L17M/V266M enantioselectivity
was confirmed. The mutant was
found slightly more enantiose-
lective than the single L17M
mutant and also slightly more
active. For the double mutants
L17S/L287A; L17S/L287I and
L17S/L287W an interesting mod-
ulation of the enantioselectivity
towards racemate 1 was ob-
served that correlates pretty well
with the steric hindrance of the
substituent at position 287. In
addition, these results show that
distant mutations allow a more
subtle tune-up of the enzyme
structure to enhance its enantio-
selectivity than mutations locat-
ed near the catalytic center. With
a remarkable E value of 178, the
L17S/L287I variant was the most
enantioselective BCL mutant iso-
lated. Furthermore, this mutant
was also found to be 15 times
more active than the wild-type
enzyme.

Conclusions

Overall, our study shows that the catalytic properties of B. ce-
pacia lipase can be exploited “� la carte” for the kinetic resolu-
tion of 2-substituted racemic acids by structural perturbations
via amino acid substitution. The screening of a small library of
only 57 monomutants on two structurally different substrates
clearly revealed the importance of designing screening assays
specifically adapted to the substrate of interest. Another ach-
ievement is that the screening of this library enabled the fast
isolation of several lipases with a remarkable ten times en-
hanced or reversed enantioselectivity for the resolution of
(R,S)-2-chloro ethyl 2-bromophenylacetate.

The voxel map analysis revealed differences that could be
linked to accessible volumes and by extension to entropy var-
iations. However, to investigate further the role of both enthal-
py and entropy contributions on the enantioselectivity of the
BCL variants, we will need to determine experimentally these
thermodynamic parameters.

Finally, the semirational engineering strategy developed,
which combines the use of classical and novel molecular mod-
elling tools, enabled us to select a restricted number of double
mutants (only 13) to construct. Out of this library, the best iso-

Figure 7. Voxel maps representing locations of the center of mass of the (R, S) enantiomers of (R,S)-2-chloro ethyl
2-bromophenylacetate (1) reachable from the catalytic position within the wild-type BCL, V266G, L17S and L17M
mutants. Voxels resolution is 0.1 � and colours indicate the chronological order of generation.

Table 2. Preliminary Enantioselectivity screening of BCL single and
double variants towards the racemic substrate (R,S)-2-chloro ethyl 2-bro-
mophenylacetate (1). E values were determined on nonpurified enzyme
extracts. All variants showed an enantiopreference for the R enantiomer.

Variants E value[a]

Wild-type 12
Bottleneck : L17S–V266 combinations

Single mutant: L17S 87
L17S/V266I 19
L17S/V266M 15
L17S/V266Q 1
L17S/V266F 18
L17S/V266D 2
L17S/V266W 1
L17S/V266L 4
L17S/V266T 10

Bottleneck : L17M–V266 combinations
Single mutant: L17M 78
L17M/V266F 9
L17M/V266M 122
L17S–L287 combinations
L17S/L287A 39
L17S/L287I 45
L17S/L287W 24

[a] E value =
ln½ð1�CÞð1�ees Þ�
ln½ð1�CÞð1þees Þ�
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lated variant displayed a 15-fold increased activity and a ten-
fold enhanced enantioselectivity. Although additional analyses
are now necessary to give a comprehensive interpretation of
the molecular factors involved in those enhancements, we can
still conclude on the basis of the positive hit ratio (15 % ofACHTUNGTRENNUNGenhanced variants out of the screened library) that the semi-ACHTUNGTRENNUNGrational engineering strategy that we followed was fairly effi-
cient.

Experimental Section

Site-directed mutagenesis : By using the plasmid pFLAG-ATS-Lip-
Hp as a template, the QuickChange Site-Directed Mutagenesis Kit
(Stratagene, La Jolla, CA) was used according to the manufacturer’s
instruction to introduce 19 other amino acids at positions 266,[25]

17 and 287. The primers employed are L17 forw (5’-CTC GTG CAC
GGG XXX ACG GGC ACC GAC-3’) and L17 rev (5’-GTC GGT GCC
CGT XXX CCC GTG CAC GAG-3’), where X corresponds to the 19
other amino acids (L17A forw = GCC; L17A rev = GGC; L17C forw =
TGC; L17C rev = GCA; L17D forw = GAC; L17D rev = GCT; L17F
forw = TTC; L17F rev = GAA; L17G forw = GGC; L17G rev = GCC;
L17H forw = CAC; L17H rev = GTG; L17I forw = ATC; L17I rev = GAT;
L17M forw = ATG; L17M rev = CAT; L17N forw = AAC; L17N rev =
GTT; L17P forw = CCC, L17P rev = GGG; L17Q forw = CAG; L17Q
rev = CTG; L17R forw = CGC; L17R rev = GCG; L17S forw = AGC;
L17S rev = GCT; L17T forw = ACC; L17T rev = GGT; L17V forw = GTC;
L17V rev = GAC; L17W forw = TGG; L17W rev = CCA; L17Y forw =
TAC; L17Y rev = GTA; L17E forw = GAG; L17E rev = CTC; L17K
forw = AAG; L17K rev = CTT).

The primers employed for position L287 are L287 forw (5’-CG AGC
TAC AAG TGG AAC CAT XXX GAC GAG ATC AAC CAG-3’) and L287
rev (5’-CTG GTT GAT CTC GTC XXX ATG GTT CCA CTT GTA GCT CG-
3’) where XXX correspond to the codon of the other 19 amino
acids (L287A forw = GCC, L287A rev = GGC; L287C forw = TGC,
L287C rev = GCA; L287D forw = GAC, L287D rev = GTC; L287E
forw = GAG, L287E rev = CTC; L287F forw = TTC, L287F rev = GAA;
L287G forw = GGC, L287G rev = GCC; L287H forw = CAC, L287H
rev = GTG; L287I forw = ATC, L287I rev = GAT; L287K forw = AAG,
L287K rev = CTT; L287M forw = ATG, L287M rev = CAT; L287N
forw = AAC, L287N rev = GTT; L287P forw = CCC, L287P rev = GGG;
L287Q forw = CAG, L287Q rev = CTG; L287R forw = CGC, L287R
rev = GCG; L287S forw = AGC, L287S rev = GCT; L287T forw = ACC,
L287T rev = GGT; L287V forw = GTC, L287V rev = GAC; L287W
forw = TGG, L287W rev = CCA; L287Y forw = TAC, L287Y rev = GTA).

Double mutants were constructed by following the same proce-
dure used for single mutants construction. Mutant plasmids were
used as template for site directed mutagenesis (QuickChange Site-

Directed Mutagenesis Kit). Primers employed are the same asACHTUNGTRENNUNGdescribed above.

Mutant plasmids were transformed into E. coli JM109 (Promega,
Madison, WI). Clones were stored in glycerol (15 % v/v) in cryotube
vials (Nunc�Brand Products, Denmark) at �20 8C and they were
used to inoculate culture in 96-deep-well microplate (Nunc�Brand
Products).

Production of BCL variant in microplate scale : Starter cultures in
sterile 96-well microplates filled with 2 � YT medium (150 mL) were
inoculated using clones of wild-type or BCL variants (10 mL) stored
in cryotube. After 24 h of growth at 30 8C under horizontal shaking
(250 rpm), starter cultures (100 mL) were used to inoculate sterile
96-deep-wells culture for protein production (ABgene, Cambridge,
UK; 1.1 mL 2 � YT; isopropyl-b-d-thiogalactopyranoside (IPTG) at
0.01 mm supplied by Euromedex (Mundolsheim, France)).

Theses cultures were grown at 30 8C during 24 h under agitation.
Growth was measured by OD600 nm after shaking to avoid settle-
ment and the cells were then centrifuged at 3700 rpm for 30 min
at 4 8C. The pellets were resuspended in lysis buffer (200 mL;
100 mm Tris-HCl pH 7.5, protease inhibitor cocktail tablet EDTA free
(Roche Diagnostic), 1 mg mL�1 lysozyme (Euromedex), 5 mg mL�1

DNase I (Euromedex) and 1 � BugBuster (Novagen), sonicated in a
sonicating bath (four cycles; one cycle: 2 min of sonication and
2 min on ice), and frozen at �80 8C over night. After thawing,
crude extract were used to measure lipase activity and for screen-
ing procedures.

Determination of hydrolytic activity on pNPB of BCL variants
produced in microplate : Clones were screened for their hydrolytic
activity by using an integrated robotic TECAN Genesis RSP-200
platform on pNPB supplied by Sigma–Aldrich as substrate. The
lipase extract (20 mL) diluted (v/v) in Tris-HCl buffer (100 mm,
pH 7.5) were mixed with Tris-HCl buffer (175 mL; 100 mm, pH 7.5)
and pNPB (5 mL; 40 mm in solution in 2-methylbutan-2-ol). pNPB
consumption was measured at 405 nm on a VersaMax tunable mi-
croplate reader (Molecular Devices, Sunnyvale, CA, USA) at 30 8C.
One unit was defined as the amount of enzyme that released 1
mmol of p-nitrophenol per minute under these conditions. Activity
measurements were performed once for each well. BCL is almost
exclusively produced in the form of inclusion bodies and only a
small part of the enzyme is in the soluble fraction. The quantity of
enzyme in soluble fraction varies between productions and the hy-
drolytic activity measured can thus be different. To overcome this
problem, wild-type enzyme was produced in each deep-well plate
and the hydrolytic activity of single variants was always compared
to the wild-type enzyme of the same plate.

The activity values obtained from deep-well cultures and Erlenmey-
er flask cultures were compared. A positive correlation was found

Table 3. Specific hydrolytic activity and enantioselectivity values determined for the wild-type BCL and its six double mutants towards each enantiomer of
the racemic substrate (R,S)-2-chloro ethyl 2-bromophenylacetate (1). (Error range for the double mutants is within 10 to 20 %).

Variants viR
[a] [mU mg�1] viS

[a] [mU mg�1] vi
[a] [mU mg�1] Enantiopreference E value[b] Conversion [%]

Wild-type 0.354 0.028 0.38 R 13 6.5 (48 h)
L17M/V266M 2.81 0.017 2.83 R 166 9 (19 h)
L17S/L287A 1.83 0.081 1.91 R 22.5 15.6 (20 h)
L17S/L287I 5.95 0.033 5.98 R 178 15.5 (20 h)
L17S/L287W 0.55 0.01 0.56 R 55 6 (20 h)

[a] viR, viS : initial rates; vi = viR + viS. [b] E value = viR/viS.
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between the hydrolytic activities produced either by Erlenmeyer or
deep-well cultures (data not shown), in agreement with that previ-
ously reported for V266 variants.[25]

Determination of BCL variants’ enantioselectivity towardsACHTUNGTRENNUNGhydrolysis of (R,S)-2-chloro ethyl 2-bromophenylacetate

Classical test : When BCL variant were produced in Erlenmeyer
flasks using 2x YT medium (tryptone 16 g L�1, yeast extract 10 g L�1,
NaCl 5 g L�1) supplemented with ampicillin (100 mg mL�1) by using
conditions previously reported,[25] a classical enantioselectivity test
was used. Crude extract (500mL) containing recombinant BCL was
added to racemic substrate (250 mL; 50 mm in n-octane). The hy-
drolysis reaction was carried out at 30 8C under magnetic stirring.
The progress of the reaction was followed by sampling the re-ACHTUNGTRENNUNGaction at regular intervals.

Miniaturized test : For this test, hydrolysis reaction was carried out
in 96-deep-well plates used for the enzyme production. After
lipase hydrolytic activity measurement, (R,S)-2-chloro ethyl 2-bro-
mophenylacetate (100 mL; 50 mm in n-octane) were added into
each well containing enzyme extract (180 mL). The deep-well plate
was sealed with a thermosealing system (Thermofischer Scientific,
ALPS 50 V) and the reactions were shaken at 800 rpm and 30 8C in
Infors Microtron. The reaction was stopped by addition of n-
hexane/IPA (500 mL; 70:30 v/v) and the reaction medium was
mixed, centrifuged at 13 000 rpm during 5 min. The organic extract
was analysed by chiral liquid chromatography.

HPLC analysis : The chiral HPLC instrument was equipped with a
chiral column (Chiralcel OJ-H (25 cm � 4.6 mm), Daicel ChemicalACHTUNGTRENNUNGIndustries Ltd, Osaka, Japan) connected to a UV detector (at
254 nm). The following conditions were used: n-hexane/isopropa-
nol 70:30, v/v ; flow rate of 1.0 mL min�1 at 40 8C.

Determination of conversions, substrate enantiomeric excess
(ees) and enantioselectivities (E values): The conversion was cal-
culated from HPLC results by using the following relationship: C =
1� ACHTUNGTRENNUNG[(R+S)t/ ACHTUNGTRENNUNG(R+S)t0] � 100. The substrate enantiomeric excess is cal-
culated as: ees = {[R]�[S]}s/{[R] + [S]}s (s = substrate). Enantioselectivi-
ty value was determined as the ratio of the initial rate of R enantio-
mer production versus the intial rate of S enantiomer production:
E value = (viR/viS). Initial rates were determined, before 10 % of sub-
strate conversion, by linear regression over at least five points. For
reaction on nonpurified enzyme, E value was calculated using the
conversion, the substrate enantiomeric excess and the mathemati-
cal expression [Eq. (1)]:

E value ¼ ln½ð1�CÞð1�eesÞ�
ln½ð1�CÞð1þ eesÞ�

ð1Þ

Purification and protein assay : Enzyme was expressed in E. coli
JM109 in fusion with a FLAG peptide. This peptide was used then
to purify the enzyme by immuno-affinity purification by using
ANTI-FLAG M2 affinity gel (Sigma). Purification was made in batch.
One volume of enzyme extract interacts with one volume of affini-
ty gel during 1 h at 4 8C. One volume of gel was then washed by
36 volumes of TBS (50 mm TRIS, 150 mm NaCl, pH 7.4). Elution was
made by interaction between gel and FLAG-peptide (300 mg mL�1,
Sigma) dissolved in TBS with Triton X-100 (1 %, Euromedex) and
Tween 20 (1 %, Sigma–Aldrich). One volume of gel interacts with
one volume of elution solution over 5 min. This step was per-
formed three times. The assay of purified protein was made with a
NanoDrop 1000 with 2 mL of solution.

General procedure for the preparation of (R,S)-2-chloroethyl 2-
bromophenylacetate (1): Compound 1 was synthesised according

to the procedure previously described,[34] but with 2-chloroethanol
as the alcohol.

Spectroscopic data : Infrared spectra were recorded on a Perkin–
Elmer, 1310 infrared spectrophotometer. 1H and 13C NMR spectra
were recorded on a Bruker AC-200.1 (1H 200.1 MHz and 13C
50.3 MHz) spectrometer.ACHTUNGTRENNUNG(R,S)-2-chloro ethyl 2-bromophenylacetate (1): Yield: 53 %;
1H NMR (CDCl3), d= 3.65–3.71 (t, J = 5.7 Hz, 3 H; -CH2-Cl), 4.35–4.45
(td, J = 2.7, 5.7 Hz, 2 H; -OCH2CH2Cl), 5.40 (s, 1 H; -CHBr), 7.33–7.59
(m, 5 H; ArH) ; 13C NMR (CDCl3): d= 41.12 (-CH2Cl), 46.31 (-CHBr),
65.75 (-OCH2-), 128.79(�2), 128.97(�2), 129.52, 135.43, 168.09
(COO); IR: 1750 and 1730 (nC=O), 1600 and 1475 (nC=C), 1280–
1140 cm�1 (nC�O) ; elemental analysis calcd (%) for C10H10O2BrCl : C
43.49, H 3.65; found: C 43.13, H 3.46.

Computational methods

MD calculations: All MD simulations were carried out by using the
AMBER 9 suite of programs[35] and the all-atom ff03 forcefield.[36, 37]

The starting model of BCL was derived from the high-resolution
crystal structure of BCL in an open conformation, available from
the Protein Data Bank (PDB ID: 3LIP).[27] The calcium ion that plays
a structural role in BCL was conserved in the model and appropri-
ately parameterized according to prior work.[38] Four Na+ cations
were added to neutralize the protein. Models of BCL mutants were
constructed from wild-type BCL X-ray structure using the Biopoly-
mer module of SybyL7.3 (Tripos). MD simulations were performed
in explicit solvent at water/octane interface using a procedure pre-
viously described.[26] The simulations were carried out for a total of
20 ns at constant temperature and pressure conditions, using the
Berendsen algorithm with a coupling constant of 2 ps for both pa-
rameters. Electrostatic interactions were calculated by using the
Particle-Mesh Ewald method[39] with a nonbonded cutoff of 10 �.
All bonds involving hydrogen atoms were constrained with the
SHAKE algorithm,[40] permitting the use of 2 fs time steps to inte-
grate the equations of motion. The centre of mass of translational
and rotational motion was removed every 6000 MD steps to avoid
methodological problems described by Harvey et al.[41] The trajec-
tories were extended, as noted above, to 20 ns, and conformations
of the system were saved every 0.4 ps for further analysis. Trajecto-
ries analysis was carried out using the Ptraj module of the AMBER
9 package.[35] The root mean square deviation (RMSD) was calculat-
ed for the protein backbone atoms using least squares fit. AtomicACHTUNGTRENNUNGpositional fluctuations (Dri

2) of backbone were calculated. A mass-
weighted average value was then calculated for each residue.
These parameters are related to the B-factors through the follow-
ing relationship [Eq. (2)]:

Bi ¼ 8p2

3
hDr2

i i ð2Þ

The simulated B factors were calculated by using the coordinates
of the 20 ns trajectories.

Covalent docking of substrates : Starting coordinates were ex-
tracted from the crystal structure of B. cepacia lipase (PDB ID: 3LIP)
to generate models of wild-type BCL and its variants. Models of
BCL mutants were constructed by replacing in silico the target
amino acid (L17 or V266) with either L17S, L17M or V266G muta-
tion using the Biopolymer module of Insight II software package
(Accelrys, San Diego, USA). The conformation of the mutated resi-
due side chain was optimized by manually selecting a low-energy
conformation from a side-chain rotamer library. Steric clashes (van
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der Waals overlap) and nonbonded interaction energies (Coulom-
bic and Lennard-Jones) were evaluated for the different side-chain
conformations.

The tetrahedral intermediates of both the R and the S form of the
(R,S)-2-chloroethyl 2-bromophenylacetate (1) were generated using
Insight II. Energy minimization of each substrate was performed to
generate low-energy starting conformation with suitable bond dis-
tances and angles. Starting from these initial structures, the confor-
mational space accessible by the substrate covalently bound to
the catalytic serine (Ser 87) in a tetrahedral form was ACHTUNGTRENNUNGinvestigated
using the automated flexible docking program FlexX[42, 43] (Biosol-
veit). All parameters were set to the standard values as implement-
ed in Version 3.1.1. FlexX uses a fast algorithm for the flexible
docking of small ligands into fixed protein binding sites using an
incremental construction process of the ligand.[43] The docking
region was defined to encompass all protein amino acids for which
at least one heavy atom was located within a 6.5 � radius sphere,
whose origin was located at the centre of mass of catalytic Ser87.
All crystallographic bound waters were removed prior to docking.
Hydrogen atoms were added to the protein using standard Sybyl
(Tripos) geometries. Residues were kept fixed in their crystallo-
graphic positions in all docking experiments. For each docking, the
top 30 solutions corresponding to the best FlexX scores wereACHTUNGTRENNUNGretained.

Calculation of enantiomer trajectories : To allow the displacement
of the substrates along the active site path, the covalent bond be-
tween the catalytic serine and the carbon of the substrate carbonyl
function was broken to create two separate molecular entities. The
hybridization of the carbonyl function was corrected from sp3 to
sp2 to generate the molecular models used to search for trajecto-
ries. Starting from the docked position, enantiomer trajectories
were computed using Biomove3D integrated path planner,[16, 24]

going from the bottom towards the entrance of the active site.

Within BioMove3D, both the lipase and the substrate are modelled
as polyarticulated mechanisms, and their motion is restricted by
geometric constraints such as steric clash avoidance between
spherical atoms with (a percentage of) van der Waals radii. The
substrate is considered entirely flexible and all protein side chains
that are required to move during the computation of the pathway
can do it freely. The ML-RRT (Manhattan-Like Rapidly-exploring
Random Tree) algorithm[24] is used to explore the conformational
space. This algorithm considers two sets of parameters—active and
passive—that are treated in a decoupled manner. Active parame-
ters consider the location and the internal torsions of the ligand
and they are treated at each iteration of the algorithm. Passive pa-
rameters take into account the torsion angles of the protein side
chains and they only need to be treated when such side chains
hinder the motion of active parts or other passive parts. Therefore,
the algorithm favours the ligand motion and determines the pro-
tein side chains that must move to allow the ligand progression in
the catalytic pocket of the protein. Of note, although the active
and passive parts move alternately in the path computed by the
ML-RRT algorithm, a randomized path smoothing post-processing
is performed in the composite configuration space of all parame-
ters, so that simultaneous motions are obtained in the final path.
For each enzyme–enantiomer pair, the search tree generated by
the ML-RRT algorithm was embedded in a three-dimensional data
structure called voxel map. The procedure used to construct the
voxel maps is identical to that described in our earlier report.[30]

Visualization and graphics were done using VMD[44] and PyMol[45]

softwares.

Equipment : Biomove3D calculations, molecular constructions and
graphic displays were performed on an Intel Pentiu m4 PC with a
3.2 GHz processor. MD calculations were carried out at the Com-
puting Centre of the R�gion Midi–Pyr�n�es (CALMIP, Toulouse,
France) and on the Linux cluster available at the Centre for Com-
puting ACHTUNGTRENNUNGResources (CRI) of INSA–Toulouse, France.
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