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RÉSUMÉ

Le principe d’invariance de jauge local est au centre de la physique des particules moderne.
Dans le modèle standard (MS), il repose sur le groupe de jauge ad hoc SU(3)c × SU(2)L ×
U(1)Y . L’idée d’étendre ce groupe de jauge est particulièrement attrayante dans une
perspective de “Grand Unified Theory” (GUT) où le MS est la limite basse énergie d’une
théorie plus fondamentale basée sur un groupe de jauge beaucoup plus large tel que SO(10)
ou E6. En effet, lors de la brisure de symétrie du groupe de GUT au MS, des facteurs
de groupe non-brisés supplémentaires, tels que U(1) ou SU(2), peuvent apparaitre. Ce
manuscrit est consacré à la phénoménologie de modèles avec un groupe de jauge étendu.
En particulier, les études présentées sont centrées sur les modèles basés sur le groupe de
jauge SU(2)× SU(2)× U(1) dénotés G221. De manière générique, ces modèles prédisent
de nouveaux bosons de jauges, Z’ et W’.

Après une brève présentation des modèles G221, un nouvau code publique, PyR@TE,
qui permet de déterminer les équations du groupe de renormalisation à deux boucles pour
une théorie de jauge générique est introduit. Ce code est ensuite utilisé pour déterminer les
RGEs des modèles de la classe G221. La suite du manuscrit est dédiée à la présentation des
résultats obtenus sur le calcul des corrections radiatives QCD de la production électrofaible
d’une paire de quarks top dans le cadre des modèles G221, i.e. en présence d’un nouveau
boson de jauge Z’. Ces résultats font l’objet d’une implémentation dans le générateur
d’événements Monte Carlo POWHEG BOX et les premiers résultats numériques obtenus sont
présentés. Les derniers développements concernant le calcul des corrections QCD à la
production électrofaible de single-top sont également revus. Enfin, la dernière partie de
ce manuscrit est consacrée à l’étude de l’impact de nouvelles résonances W’, Z’, telles
que celles présentes dans les modèles G221, sur l’interaction des neutrinos d’ultra-haute
énergie dans l’atmosphère. Ces interactions sont recherchées par l’observatoire Pierre
Auger dans les douches de particules produites par l’interaction des rayons cosmiques avec
les particules de l’atmosphère.

The principle of local gauge invariance is a pillar of modern particle physics theories and
in the SM relies on the ad-hoc gauge group structure SU(3)c×SU(2)L×U(1)Y . Extending
this gauge group is very well motivated in a Grand Unified Theory (GUT) perspective
in which the SM is the low-energy limit of a more fundamental theory based on a larger
gauge group like SO(10) or E6. Indeed, the symmetry breaking (SB) of the underlying
GUT gauge group, down to the SM one, leaves some additional group factors unbroken,
such as U(1) or SU(2). In this spirit, we focus in this manuscript on the phenomenology
of extended gauge group models and on the new heavy neutral and charged resonances,
generically called Z ′ and W ′ predicted by these.

In this manuscript we present different aspects of the phenomenology of the G221

models. After reviewing these extensions, we present a public tool, PyR@TE, that
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aims at automating the calculation of RGEs at two-loop for arbitrary gauge theories
and exemplify its use with the G221 models. In a second part, we present our results
for the calculation of the QCD corrections to the electroweak top-pair production as
well as their implementation in a general purpose Monte Carlo generator allowing for a
consistent matching of next-to-leading order (NLO) matrix elements with parton shower
algorithms, the POWHEG BOX. We then review the status of our calculation of the QCD
corrections to the electroweak single-top production. Finally, we present a different aspect
of the phenomenology of new heavy resonances, Z ′, W ′, by studying their impact on
the interaction of ultra-high energy neutrinos in the atmosphere. For definiteness we
consider the Pierre Auger Observatory, which is sensible to showers initiated by neutrinos
of extreme energies up to 1012 GeV.
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INTRODUCTION

The Standard Model (SM) of particle physics has emerged over the last century, as
many experiments around the world were probing the inner structure of matter, bringing
new discoveries, e.g. the W - and Z-bosons at the UA1 [1,2] and UA2 [3,4] experiments
in 1983. As of today, the SM has been extremely successful in explaining a wealth of
experimental data coming from highly-energetic collider as well as low-energy precision
experiments. Despite this tremendous success and the lack of anomalous measurements,
diverse open questions such as the origin of dark matter (DM), the hierarchy/naturalness
problem or the unification of interactions, are motivations to study extensions of the
standard theory of particle physics.

From a phenomenological point of view, extending the SM leads to the prediction of
new particles that we can search for at experiments and in particular at the Large Hadron
Collider (LHC), at CERN. So far, however, these searches have not revealed any traces
of new physics and this generically pushes the scale at which new phenomena should
occur high into the TeV region, challenging the validity of the arguments to have new
physics around the electroweak scale as a solution to the hierarchy problem. The newly
discovered Higgs boson [5, 6] also perfectly fits within the SM as its couplings agree with
the SM expectations (within the limited precision of the measurements) and its mass,
mH ≃ 126 GeV, lies in the range anticipated by the SM fits to electroweak precision data.
In addition, the specific values for the Higgs boson and top quark masses allow the SM
effective potential to be stable up to very high scales [7]. Of course, it is much too early
to discard any new physics at the TeV scale and the upcoming run of the LHC at 13 TeV
will shed more light on the situation.

The principle of local gauge invariance is a pillar of modern particle physics theories
and in the SM relies on the ad-hoc gauge group structure SU(3)c × SU(2)L × U(1)Y .
Extending this gauge group is very well motivated in a Grand Unified Theory (GUT)
perspective in which the SM is the low-energy limit of a more fundamental theory based
on a larger gauge group like SO(10) or E6. Indeed, the symmetry breaking (SB) of the
underlying GUT gauge group, down to the SM one, leaves some additional group factors
unbroken, such as U(1) or SU(2). In addition, as mentioned above, if we have no principle
to fix the scale at which the SM stops being predictive, it is sensible to adopt a bottom-up
approach and to study minimal modifications of the SM. In this spirit, we focus in this
manuscript on the phenomenology of extended gauge group models and on the new heavy
neutral and charged resonances, generically called Z ′ and W ′ predicted by these.

Even though it is possible to describe the interactions of such generic Z ′- and W ′-boson,
to the SM fermions, in a completely model independent approach, the resulting Lagrangian
possesses too many parameters to successfully carry out relevant phenomenological studies.
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In practice, it is therefore necessary to restrict this freedom. For instance, in the Sequential
Standard Model (SSM) [8] the couplings of the Z ′- and W ′-bosons are identical to their
SM counter parts and the only free parameter is their mass. Another way of proceeding
is to group together several popular models which can be described by a minimal set of
parameters, see for instance [9–13]. In the following, we consider new heavy resonances as
appearing in a general class of models based on the next-to-minimal extension of the SM
gauge group, i.e. when the electroweak gauge group is supplemented by an additional
SU(2) factor. In this class, models are grouped according to their theoretical origin.

At the LHC, the searches for additional resonances are mainly done in the Drell-Yan
(DY) process with dilepton and lepton plus missing transverse energy final states which
has the advantage of being very clean despite the intense hadronic activity. Besides the DY
channel, final states involving the top-quark are among the most presumably promising
final states because of the special role of the top-quark in many extensions of the SM.
The ATLAS and CMS collaborations have performed extensive searches of new spin-one
resonances at the LHC for a large number of final states. In Tab. 1, we summarize the
searches, that exploited data from the pp runs in 2010 and 2011 at

√
s = 7 TeV (LHC7) and

from the pp run in 2012 at
√
s = 8 TeV (LHC8), as well as the corresponding constraints

on W ′ and Z ′ gauge boson masses. As can be seen, the most stringent limits come from
searches with purely leptonic final states, W ′ → ℓ+ ν [14–22] and Z ′ → ℓ+ + ℓ− [23–32]
(with ℓ = e, µ), leading to lower mass limits of mW ′ � 3.3 TeV [14, 18] and mZ′ � 3
TeV [23,29] for gauge bosons in the SSM. In addition, upper limits on the cross section
times the branching ratio, σ × BR, are presented, which can be used to constrain models
different from the SSM.

In the first chapter of this manuscript, we review the G221 class of extended gauge
group models that we use hereafter for various phenomenological studies. The general
setup is presented and the couplings of the new resonances to SM fermions are summarized.
Finally, we review the constraints on the parameter space of these models as derived
in [63,64].

Studying the self-consistency of extended gauge group models is very attractive since
we can hope to obtain constraints on the parameter space by studying the stability
condition. However, this requires to compute the renormalization group equations (RGEs)
for models with several gauge groups and additional scalars1 which can be quite involved
especially at the two-loop level. In view of this, we present in the second chapter a
public tool that aims at automating the calculation of RGEs at two-loop for arbitrary
gauge theories and exemplify its use with the extended gauge group models introduced in
Chapter 1.

As seen in Tab. 1, many searches at the LHC consider processes involving top-quarks.
With the upcoming run of the LHC at 13 TeV many top-quarks will be produced and
precise measurements are expected. In addition, if new physics in the form of heavy
resonances is discovered, unravelling the underlying theory and extracting the parameters
of the underlying theory will require precise theoretical calculations of top-quark related
observables. In Chapter 3, we present our results for the calculation of the QCD corrections
to the electroweak top-pair production as well as their implementation in a general purpose
Monte Carlo generator allowing for a consistent matching of next-to-leading order (NLO)

1These scalars are responsible for the symmetry breaking of this larger gauge group down to the SM.
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matrix elements with parton shower algorithms, the POWHEG BOX. Finally, we review the
status of our calculation of the QCD corrections to the electroweak single-top production.

Finally, we present in Chapter 4 a different aspect of the phenomenology of new heavy
resonances, Z ′, W ′, by studying their impact on the interaction of ultra-high energy
neutrinos in the atmosphere. For definiteness we consider the Pierre Auger Observatory,
which is sensible to showers initiated by neutrinos of extreme energies up to 1012 GeV.

In the last chapter we draw our conclusions and give an outlook. Note that details on
various calculations presented in this manuscript as well as extra material are relegated to
the Appendices.
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Reference
√
S [TeV] L [fb−1] Mode Limits [TeV] Comments

ATLAS:

JHEP01(2013)29 [33] 7 4.8 dijet distributions mW ′ > 1.68
PLB701(2011)50 [17] 7 0.036 W ′ → ℓν mW ′ > 1.49 SSM
PLB705(2011)28 [16] 7 1.04 W ′ → ℓν mW ′ > 2.15 SSM
EPJC72(2012)2241 [15] 7 4.7 W ′ → ℓν mW ′ > 2.55 SSM
ATLAS-CONF-2014-017 [14] 8 20.3 W ′ → ℓν mW ′ > 3.27 SSM
EPJC72(2012)2056 [34] 7 2.1 W ′

R → ℓN → ℓℓjj search for W ′
R, N

PRD87(2013)112006 [35] 7 4.7 WW/WZ → ℓνjj mW ′ > 0.95
ATLAS-CONF-2014-015 [36] 8 20.3 WZ → ℓν mW ′ > 1.52
PRD85(2012)112012 [37] 7 1.02 W ′ → WZ → ℓνℓ′ℓ′ limits on σ × BR
ATLAS-CONF-2013-015 [38] 8 13 W ′ → WZ → ℓνℓ′ℓ′ limits on σ × BR
PRL109(2012)081801 [39] 7 1.04 W ′ → tb̄ mW ′

R
> 1.13

ATLAS-CONF-2013-050 [40] 8 14 W ′ → tb̄ → ℓνbb̄ mW ′

L
> 1.74, mW ′

R
> 1.84

PLB719(2013)242 [41] 7 4.6 Z ′ → τ+τ− mZ′ > 1.4 SSM
ATLAS-CONF-2013-066 [42] 8 19.5 Z ′ → τ+τ− mZ′ > 1.9 SSM
PRD88(2013)012004 [43] 7 4.7 Z ′ → tt̄ σ × BR vs mZ′ narrow Z ′

ATLAS-CONF-2013-052 [44] 8 14 Z ′ → tt̄ σ × BR vs mZ′ narrow Z ′

EPJC72(2012)2083 [45] 7 2.05 Z ′ → tt̄ σ × BR vs mZ′ narrow and wide Z ′

JHEP01(2013)116 [46] 7 Z ′ → tt̄ → 4j + bb σ × BR vs mZ′

PLB700(2011)163 [28] 7 0.04 Z ′ → ℓ+ℓ− mZ′ > 1.048 SSM
PRL107(2011)272002 [27] 7 1.08 (1.21) Z ′ → ℓ+ℓ− mZ′ > 1.83 SSM
JHEP11(2012)138 [26] 7 4.9 Z ′ → ℓ+ℓ− mZ′ > 2.22 SSM
ATLAS-CONF-2012-129 [25] 8 6 Z ′ → ℓ+ℓ− mZ′ > 2.49 SSM
ATLAS-CONF-2013-017 [24] 8 20 Z ′ → ℓ+ℓ− mZ′ > 2.86 SSM
CERN-PH-EP-2014-053 [23] 8 20.5 Z ′ → ℓ+ℓ− mZ′ > 2.90 SSM
PRD87(2013)052002 [47] 7 4.6 ℓℓℓ generic search
CMS:

PLB698(2011)21 [22] 7 0.036 W ′ → eνe mW ′ > 1.36 SSM
PLB701(2011)160 [21] 7 0.036 W ′ → µνµ mW ′ > 1.4 SSM
JHEP08(2012)023 [20] 7 5 W ′ → ℓν mW ′

R
> 2.5, mW ′

L
> 2.43÷ 2.63 W ′

L,W interference
PRD87(2013)072005 [19] 7; 8 5; 3.7 W ′ → ℓν mW ′ > 2.9 SSM
CMS-PAS-EXO-12-060 [18] 8 20 W ′ → ℓν mW ′ > 3.35 SSM; W ′

L,W interf.
PRL109(2012)261802 [48] 7 5 W ′

R → ℓNℓ (MW ′

R
,MNℓ

) exclusions LR model
CMS-PAS-EXO-12-017 [49] 8 3.6 W ′

R → ℓNℓ (MW ′

R
,MNℓ

) exclusions LR model
JHEP05(2011)093 [32] 7 0.04 Z ′ → ℓ+ℓ− mZ′ > 1.14 SSM
PLB714(2012)158 [31] 7 5 Z ′ → ℓ+ℓ− mZ′ > 2.33 SSM
PLB720(2013)63 [30] 7; 8 5.3; 4.1 Z ′ → ℓ+ℓ− mZ′ > 2.59 SSM
CMS-PAS-EXO-12-061 [29] 8 19.6 (20.6) Z ′ → ℓ+ℓ− mZ′ > 2.96 SSM
PLB716(2012)82 [50] 7 4.9 Z ′ → τ+τ− mZ′ > 1.4 SSM
PLB704(2011)123 [51] 7 1 Z ′,W ′ → jj mW ′ �∈ [1.0, 1.51]
PRD87(2013)114015 [52] 8 4 Z ′,W ′ → jj mW ′ �∈ [1.0, 1.73], mZ′ �∈ [1.0, 1.62]
CMS-PAS-EXO-12-059 [53] 8 19.6 Z ′,W ′ → jj mW ′ �∈ [1.2, 2.29], mZ′ �∈ [1.2, 1.68]
PRL109(2012)141801 [54] 7 5 W ′ → WZ → 3ℓν mW ′ > 1.143 SSM
JHEP02(2013)036 [55] 7 5 W ′ → WZ → jjℓ+ℓ−, jjνν mW ′ �∈ [0.7, 0.94] SSM
PLB723(2013)280 [56] 7 5 W ′ → WZ → 4j σ × BR vs mW ′ SSM
CMS-PAS-EXO-12-025 [57] 8 19.6 W ′ → WZ mW ′ �∈ [0.17, 1.45] SSM
JHEP01(2013)013 [58] 7 5 Z ′,W ′ → jjX, Z ′ → bb̄ mW ′ > 1.92, mZ′ > 1.47 SSM
CMS-PAS-EXO-12-023 [59] 8 19.6 Z ′ → bb̄ mZ′ �∈ [1.2, 1.68] SSM
JHEP09(2012)029 [60] 7 5 Z ′ → tt̄ σ × BR vs mtt̄ boosted tops
PLB718(2013)1229 [61] 7 5 W ′ → tb̄ → ℓνbb̄ MW ′

R
> 1.85, MW ′

L
> 1.51 W ′,W interference

PLB717(2012)351 [62] 7 5 W ′ → td̄ MW ′ > 0.84 At
FB, specific model

Table 1: ATLAS and CMS searches for new spin-one gauge bosons (W ′ and Z ′) at the
LHC using data from the pp runs in 2010 and 2011 at

√
s = 7 TeV and from the pp run

in 2012 at
√
s = 8 TeV.
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CHAPTER 1
EXTENDED GAUGE GROUP MODELS: G221 CLASS

New heavy resonances are a generic feature of extended gauge group models. While it is
possible to have neutral resonances alone in this context, charged resonances are always
accompanied by neutral ones. These extensions are attractive because additional group
factors are expected from the breaking of larger gauge groups, e.g. SO(10), E6, in scenarios
where the SM is the low-energy limit of some more fundamental theory. However, they do
not address the shortcomings of the SM directly. In a bottom-up approach, extending the
SM can only be done in a limited number of ways that one can study and characterize i.e.
(i) extend the Pointcaré symmetry, (ii) add new particles to the SM spectrum, (iii) increase
the space time dimensions, (iv) enlarge the gauge symmetries. Supersymmetry would be
an example of (i) while adding a right-handed neutrino to generate neutrino masses via a
see-saw mechanism is representative of (ii). Following the idea of (iii) we find Kaluza-Klein
theories that attempt to solve the hierarchy/naturalness problem by postulating the
existence of extra-dimensions. Finally, the G221 models are illustrative of (iv) and will be
the main topic of this chapter.

The simplest extension of the SM gauge group is to add a U(1) group factor. Since
U(1) is an abelian group with only one generator, this extension predicts one additional
neutral gauge boson denoted Z ′ in the literature. These extensions were considered soon
after the proposal of the SU(2)L×U(1)Y electroweak model [65–67] and have been studied
at length in the literature. We refer the reader to [68–70] and references therein for reviews
on the subject.

Following the same idea, enlarging the SM gauge group with an additional SU(2)
group factor is the next-to-simplest extension of the SM gauge structure with the left-
right model [71–73] being the most well known and widely studied realization of this
setup. On the other hand, despite sharing the same gauge group, various particle content,
charge assignment and pattern of symmetry breaking can lead to significantly different
phenomenologies at the LHC [74].

There are also other popular extended gauge group models1 such as the G331, which in
some versions have been shown to be consistent with all the SM constraints including the
H → γγ rate [75–78]. In addition, these models have a rich DM phenomenology which
was investigated in [79–81] as well as [82] and references therein. These models will not
be considered in this manuscript.

Since we will present various aspects of the phenomenology of the G221 models in the
following chapters, we start by reviewing these extensions. We will follow the classification
of [63] according to the pattern of symmetry breaking and discuss the indirect as well as

1In G331 models the SM gauge group is replaced by SU(3)c × SU(3)L ×U(1)X .
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direct constraints derived in [63,64]. The parametrisation of the various couplings of the
Z ′- and W ′-bosons to SM fermions are also presented.

1.1 G221 models general features

The G221 models share a common gauge group structure being SU(2)1 × SU(2)2 × U(1)X .
This class groups the Left-Right (LR) [71–73], Un-Unified (UU) [83,84], Non-Universal
(NU) [85,86], Lepto-Phobic (LP), Hadro-Phobic (HP) and Fermio-Phobic (FP) [87,88]
models which can be characterized in terms of their charge assignments and breaking
pattern (BP). These models do not contain any new fermionic fields with respect to
the SM except for a potential right-handed neutrino, here to complete the right-handed
doublet in the extensions where it transforms as a doublet, 2, under SU(2)2. The charge
assignments for the various models are listed in Tab. 1.1. Note that some of the models
might not be free of gauge anomalies, however, we do not consider UV completion of
the models and they should be seen as an intermediate step toward a more fundamental
theory.

Table 1.1: Charge assignment for the various models of the G221 class. Fields that do not
appear in a given column are transforming as singlets.

BP Model SU(2)1 SU(2)2 U(1)X

B
P

-I

Left-right (LR)






uL

dL




,






νL

eL











uR

dR




,






νR

eR






1
6

for quarks,

−1
2

for leptons.

Lepto-phobic (LP)






uL

dL




,






νL

eL











uR

dR






1
6

for quarks,

YSM for leptons.

Hadro-phobic (HP)






uL

dL




,






νL

eL











νR

eR






YSM for quarks,

−1
2

for leptons.

Fermio-phobic (FP)






uL

dL




,






νL

eL






YSMfor quarks,

YSM for leptons.

B
P

-I
I

Un-unified (UU)






uL

dL











νL

eL






YSM for quarks.

YSM for leptons.

Non-universal (NU)






uL

dL






1st,2nd

,






νL

eL






1st,2nd






uL

dL






3rd

,






νL

eL






3rd

YSM for quarks.

YSM for leptons.
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We will consider two types of BP, BP-I and BP-II. In BP-I, the first SU(2) is
identified to SU(2)L of the SM and the first stage symmetry breaking (SB) consist in
breaking SU(2)2 × U(1)X to U(1)Y at high scale. The second stage symmetry breaking is
the same as in the SM, i.e. SU(2)L×U(1)Y → U(1)e.m.. BP-II starts by the identification
of U(1)X with U(1)Y and the breaking of SU(2)1 × SU(2)2 to SU(2)L at high scale. Again,
it is followed by the subsequent breaking of the SM gauge group down to U(1)e.m.. LR,
LP, FP and HP models follow BP-I while UU and NU follow BP-II.

To achieve the complete chain of SB two scalar fields are required. While in BP-II

the first stage SB is realized via a bidoublet i.e. φ ∼ (2,2,0), in BP-I we consider
two possibilities for the first stage SB: (i) breaking via a doublet φ ∼ (1,2, 1

2
) (LR-D,

LP-D, FP-D, HP-D), (ii) or a triplet scalar φ ∼ (1,3,1) (LR-T, LP-T, FP-T, HP-T).
Consequently, there are two different scales for the SB at which in turn the two scalars
get a vacuum expectation value (vev) dynamically breaking the G221 symmetry down to
U(1)e.m.. The vev of the various scalars and their quantum numbers are shown in Fig. 1.1.

With two SU(2) and one U(1) gauge factors we have a total of seven generators out of
which 3 will be broken by the vevs of the Higgses giving longitudinal polarizations to the
W

′± and Z
′0 gauge bosons, leaving 4 degrees of freedom, 3 associated with the masses of

the W± and Z0-bosons and one preserved, the generator of U(1)e.m..

SU(2)1 × SU(2)2 ×U(1)X

SU(2)1 ≡ SU(2)L U(1)X ≡ U(1)Y

SU(2)2 ×U(1)X

U(1)Y

SU(2)L × U(1)Y

SU(2)1 × SU(2)2

SU(2)L

SU(2)L × U(1)Y

U(1)e.m.

BP− I BP− II

hφi =
1√
2

(
0 0
uT 0

)

hφi =
1√
2

(
0
uD

)

hφi =
1√
2

(
u 0
0 u

)

hHi =
v√
2

(
0
1

)

hHi =
v√
2

(
cβ 0
0 sβ

)

φ ∼ (1,2,
1

2
) φ ∼ (1,3,1) φ ∼ (2, 2̄,0)

H ∼ (1,2,
1

2
)H ∼ (2, 2̄,0)

LR-T, LP-T,
FP-T, HP-T

LR-D, LP-D,
FP-D, HP-D

UU, NU

Figure 1.1: BP of the G221 group down to U(1)e.m.. The vev of the required scalars are
also given.

In what follows we first give some details about the way we treat the scalar triplet
fields and then perform the SB in two steps showing how the various gauge bosons acquire
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their mass. Finally, we give some details regarding the charged and neutral fermionic
currents in the G221 models.

1.1.1 Adjoint fields and covariant derivative

The covariant derivative for a scalar field φ charged under a product of n semi-simple
gauge groups G1 × G2 · · · × Gn is given by :

Dµφa =
(
∂µδab + igjA

α,j
µ T α,j

ab

)
φb , (1.1)

in which T α,j are the representation matrices for the representation of the group Gj under
which φ transforms and Aα,j

µ the corresponding potential vectors. E.g. for a scalar field
in the fundamental representation of SU(2), T α ≡ σα

2
, the Pauli matrices while for the

triplet scalar field one would use their extension namely:

Σ1,Σ2,Σ3 =
1√
2





0 1 0
1 0 1
0 1 0



 ,
1√
2





0 −i 0
i 0 −i
0 i 0



 ,
1√
2





1 0 0
0 0 0
0 0 −1



 . (1.2)

However, as can be seen in Fig 1.1, there exist a very convenient matrix form to represent
the fields transforming under the adjoint of SU(n) [89]. Indeed, if φ = (φ1,φ2, . . . ,φn) is
such a field one can construct a matrix Φ ≡ φiT

i for an arbitrary non-trivial irreducible
representation (irrep). Now, under a gauge transformation we have

φ′ = eiθaT
a
adjφ , (1.3)

leading to the transformation for Φ
′

Φ
′ ≡ φ′

iT
i

=
(

eiθaT
a
adj

)

ij
φjT

i

≃
(

11δij + i
(
θaT

a
adj

)

ij

)

T iφj (1.4)

≃
(
T j + i

(
θaicajiT

i
))

φj (1.5)
≃

(
T j + iθa(

[
T a, T j

]
)
)
φj

≃ eiθaT
a
Φe−iθaT

a
,

where caij are the structure constants2 of the SU(n). Consequently, Φ transforms as a
proper unitary operator3. Hence, for instance, the triplet scalar field can be represented as

Φ =
σi

2
φi =

1

2

(
φ3 φ1 − iφ2

φ1 + iφ2 −φ3

)

.

Deducing the covariant derivative for Φ comes directly from Eq. (1.1) and the same kind
of manipulations

DµΦ = ∂µΦ+ igjA
α,j
µ T α,j

ab φbT
a

= ∂µΦ+ igjA
α,j
µ

[
T α,j, T bφb

]

= ∂µΦ+ igj

[(


Aµ · 
T
)j

,Φ

]

.

2By definition structure constants, caij , satisfy the relation [T a, T i] = icaijT
j = −La

ijT
j

3Note that this result is valid for any value of the parameter θ.
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1.2 Two-step symmetry breaking and gauge boson masses

One key step in studying particle physics models is to derive the expressions of the masses
of the various physical gauge bosons in terms of the fundamental parameters of the theory.
This involves going from the gauge eigenstates basis, in which we write the Lagrangian, to
the physical basis in which all the mass terms are diagonal. In the following, the various
gauge bosons will be denoted by:

SU(2)1(g1) : W µ
1;1,2,3, SU(2)2(g2) : W µ

2;1,2,3, U(1)X(gX) : Xµ. (1.6)

We now calculate the masses for the W -, W ′-, Z- and Z ′- bosons in the G221 models in two
steps to emphasize the dynamics of symmetry breaking and we exemplify this procedure
by the models following BP-I with a doublet scalar field for the first stage SB (BP-I-D),
see Fig 1.1.

The kinetic terms for the scalars in the model reads

L ⊃ (Dµφ)
†(Dµφ) + (DµH)† (DµH) ,

BP-I-D:

Dµφ = ∂µφ+ i

(

g2
1

2

σ · 
W2µ +

1

2
gXXµ

)

φ , (1.7)

DµH = ∂µH + i

(

g1
1

2

σ · 
W1µH + g2

1

2

σ2∗ · 
W2µH

)

,

using σa
2∗ = −(σa

2
)∗ = −(σa

2
)T ≡ −(σa)T one obtains

DµH = ∂µH + i

(

g1
1

2

σ · 
W1µH − g2H

1

2

σ · 
W2µ

)

.

As in the SM we define charged gauge bosons W µ,±
1(2) =

1
2

(

W µ
1(2);1 ± iW µ

1(2);2

)

and once φ

has acquired its vev one obtains the charged gauge bosons matrix
(
W+

1µ W+
2µ

)
(
M2

W,1st δM2
W,1st

δM2
W,1st M2

W ′,1st

)

︸ ︷︷ ︸

M±,1st

(
W−µ

1

W−µ
2

)

,

BP-I-D:

M±,1st =

(
0 0

0
1

4
g22u

2
D

)

. (1.8)

The first thing to note is that in BP-I-D only W±
2 becomes massive after the first stage

SB which of course is a consequence of the identification SU(2)1 ≡ SU(2)L.
In the neutral sector spanned by W2;3, X gauge bosons the mass matrix is read off the

Lagrangian

1

2
(W2;3µ Xµ)

(
M2

Z,1st δM2
Z,1st

δM2
Z,1st M2

Z′,1st

)

︸ ︷︷ ︸

M0,1st

(
W µ

2;3

Xµ

)

,

BP-I-D:

M0,1st =
1

4
u2
D

(
g22 −g2gX

−g2gX g2X

)

. (1.9)
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Diagonalizing the neutral mass matrix leads to two states, B, Z ′ of which the former is
massless and named in analogy with the SM, while the mass of the second reads

M2
Z′,1st =

1

4

(
g22 + g2X

)
u2
D .

The mixing angle is easily obtained from the general formula for symmetric two-by-two
matrices (

a b
b c

)

⇒ tan 2α =
2b

a− c
=

2 tanα

1− tan2 α
, (1.10)

and reads for BP-I-D4

tφ ≡ tanφ =
gX
g2

. (1.11)

Hence, after rotating the fields according to tφ we obtain after the first stage SB a massive
W ′, a massive Z ′ and two massless gauge bosons B and W± related to W µ

1 , W µ
2 and X

in our specific case by

Z ′µ = cφW
µ
2;3 − sφX

µ, Bµ = sφW
µ
2;3 + cφX

µ,W ′µ± = W µ±
2 , W µ± = W µ±

1 .

Below the electroweak scale the second scalar field H acquires its vev and the second
stage SB occurs. The gauge bosons W ′± and W± further mix to give the physical states

(
W+

µ W ′+
µ

)
(
M2

W,2nd δM2
W,2nd

δM2
W,2nd 4M2

W ′,1st + δMW ′,2nd

)

︸ ︷︷ ︸

M±,2nd

(
W−µ

W
′−µ

)

, (1.12)

BP-I-D:

M±,2nd =
1

4

(
g21v

2 −g1g2v
2s2β

−g1g2v
2s2β 4M2

W ′,1st + g22v
2

)

. (1.13)

In the neutral sector, we expect to have a massless gauge boson playing the role of the
photon as in the SM. It is indeed the case as can be seen by verifying that the determinant
of the mass matrix of the states W1;3 and B is zero (MA,Z). We then obtain the angle
θ and rotate the two fields in order to re-express the neutral sector in terms of the new
fields A, Z ′ and Z ′. The explicit form of MA,Z for BP-I-D models is

MA,Z =
g21v

2

4

(
1 −tθ

−tθ t2θ

)

, tθ =
g2gX

g1
√

g22 + g2X
, (1.14)

Aµ = sθW
µ
1;3 + cθB

µ, Zµ = cθW
µ
1;3 − sθB

µ . (1.15)

4Note that in the following the cos and sin trigonometric functions are also shortened, e.g. sθ ≡
sin θ, cθ ≡ cos θ respectively.
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This leads us to the second stage SB neutral mass matrix, M0,2nd

1

2

(
Zµ Z ′

µ

)
(
M2

Z,2nd δM2
Z,2nd

δM2
Z,2nd 4M2

Z′,1st + δM2
Z′,2nd

)

︸ ︷︷ ︸

M0,2nd

(
Zµ

Z ′µ

)

, (1.16)

BP-I-D:

M0,2nd =
1

4







g21
c2θ
v2 −

c2φg1g2gXv
2

4

−
c2φg1g2gXv

2

4
4M2

Z′,1st +
1

4
c2φg

2
2v

2







. (1.17)

It is interesting to note that both M2
W,2nd and M2

Z,2nd can be rewritten into the same form

as in the SM by defining gL ≡ g1 and gY ≡
(

1
g21

+ 1
g2
X

)−1/2

. Finally, one has to diagonalize
the matrices in Eqs. (1.13, 1.17), which is done in the limit that the first stage SB occurs at
a much higher scale than the electroweak scale, e.g. uD ≫ v ⇒ δM2

W (Z),2nd ≪ M2
W ′(Z′),2nd

leading to

M2
W (Z) = M2

W (Z),2nd −
(δM2

W (Z),2nd)
2

M2
W ′(Z′),1st −M2

W (Z),2nd + δM2
W ′(Z′),2nd

,

(1.18)
M2

W ′(Z′) = M2
W ′(Z′),2nd + δM2

W ′(Z′),2nd +
(δM2

W (Z),2nd)
2

M2
W ′(Z′),1st −M2

W (Z),2nd + δM2
W ′(Z′),2nd

.

In the various models this allows us to write down the squared masses for the gauge
bosons in expansion of powers of v over u, uD and uT .

BP-I-D, x =
v

uD

≪ 1 :

M2
W ′ =

1

4
g22u

2
D +

1

4
g22u

2
Dx

2 + g21c
2
βs

2
βu

2
Dx

4 +O(x5) , (1.19)

M2
Z′ =

1

4
g22u

2
D

(
1 + t2φ

)
+

g22u
2
D

4(1 + t2φ)
x2 +

g22t
2
φ + g21(1 + t2φ)u

2
D

4
(
1 + t2φ

)3 x4 +O(x5) , (1.20)

BP-I-T, x =
v

uT

≪ 1 :

M2
W ′ =

1

2
g22u

2
T +

1

4
g22u

2
Tx

2 +
g21
2
c2βs

2
βu

2
Tx

4 +O(x5) , (1.21)

M2
Z′ = g22u

2
T

(
1 + t2φ

)
+

g22u
2
T

4(1 + t2φ)
x2 +

g22t
2
φ + g21(1 + t2φ)u

2
T

16
(
1 + t2φ

)3 x4 +O(x5) , (1.22)

BP-II, x =
v

u
≪ 1 :

M2
W ′ =

1

2

(
g21 + g22

)
u2 +

g22s
2
φu

2

4
x2 +

s3φg
2
1u

2

8
x4 +O(x5) , (1.23)

M2
Z′ =

1

2

(
g21 + g22

)
u2 +

g22s
2
φu

2

4
x2 +

s3φg
2
1g

2
Xu

2

8e2
x4 +O(x5) , (1.24)
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where we have introduced e =
g1g2gX

√

g21g
2
2 + g21g

2
X + g22g

2
X

which will be identified with the

electromagnetic charge (U(1)e.m) later on. We can see from Eqs. (1.19, 1.20, 1.21, 1.22)
that in BP-I, MW ′ and MZ′ are not degenerated contrary to BP-II where the new gauge
boson masses are equal up to order x2 included, Eqs. (1.23, 1.24). Furthermore, we see
that the dependence of the masses on β is extremely small in BP-I models since the first
term involving cβ and sβ is proportional to x4. This will have two important consequences:
(i) gauge boson masses can and will be considered identical in BP-II, (ii) the impact of β
will be neglected in BP-I. Finally, for the expressions of the various mass matrices we
refer the reader to Table VI of [63], which we have independently verified.

1.3 Neutral and charged fermionic currents

As the W - and Z- bosons of the SM, the new heavy resonances predicted in the G221 models
will couple to the SM fermions. In the same spirit as above, we give the general features of
the charged and neutral currents in the G221 models and exemplify the various expressions
by the models following BP-I-D breaking pattern. Finally, we give the couplings of the
Z ′- and W ′-bosons within all the models.

The starting point is the kinetic term for the fermions

Lferm = f̄iD/fi , (1.25)

in which the sum runs over all the fermions in the model. The expression for D/ depends
on the nature of fi and is therefore different for each model. In order to obtain the
couplings of the various gauge bosons to the fermions we begin by performing the rotation
corresponding to the first stage SB. Let’s write the Lferm in terms of the gauge bosons,
W , W ′, A, Z and Z ′. In terms of these fields the Lagrangian reads

Lferm = W+µJ+
µ +W−µJ−

µ + ZµJ0
µ + AµJµ

+W
′+µK+

µ +W
′−µK−

µ + Z
′µK0

µ , (1.26)

where the first line takes the same expression as in the SM and the second line is the new
physics contribution

Jµ = e
∑

f

Qf f̄γµf ,

J0
µ =

√

g2L + g2Y
∑

f

(

T f
3L − s2θQ

f
)

f̄LγµfL − s2θQ
f f̄RγµfR , (1.27)

J+
µ =

gL√
2

(
d̄LγµPLuL + ēLγµPLνL

)
,

in which the expressions for gY and gL depend on the model (the expressions for models
breaking according to BP-I-D have been given above see Eq. (1.17)), Qf is the charge
of the fermion f , T f

3L is the third component of the isospin of the unbroken SU(2) gauge
group after the first SB5 for the fermion f , and e plays the role of the electromagnetic

5This is given by the sum of T 1
3 and T 2

3 the third isospin component of SU(2)1 and SU(2)2 respectively.
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charge. Note also that fL, fR carry a generation index that we omitted. The expressions
for the new currents K0, K± are model dependent and can be read off Tables IV and V
of [63] respectively.

As we have already seen, after the second stage SB the gauge bosons further mix and
within the same limit as above, i.e. uD, uT , u ≫ v we can approximate the charged and
neutral physical states by (below, physical states are denoted by a caret, ∧)

Ẑ ′
µ(Ŵ

′±
µ ) ≃ Z ′

µ(W
′±
µ ) +

δM2
Z(W ),2nd

M2
Z′(W ′),1st −M2

Z(W ),2nd

Zµ(W
±
µ ) ,

(1.28)
Ẑµ(Ŵ

±
µ ) ≃ Zµ(W

±
µ )−

δM2
Z(W ),2nd

M2
Z′(W ′),1st −M2

Z(W ),2nd

Z ′
µ(W

′±
µ ) .

Inverting Eq. (1.28) and inserting the result in Eq. (1.26) we obtain the new currents after
the second SB stage displaying how the SM interactions are modified by the presence of
the new resonances

Lferm = Ŵ+µ

(

J+
µ −

δM2
W,2nd

M2
W ′,1st −M2

W,2nd

K+
µ

)

+ (+ ←→ −)

+ Ŵ ′+µ

(

K+
µ +

δM2
W,2nd

M2
W ′,1st −M2

W,2nd

J+
µ

)

+ (+ ←→ −)

+ Ẑµ

(

J0
µ −

δM2
Z,2nd

M2
Z′,1st −M2

Z,2nd

K0
µ

)

(1.29)

+ Ẑ ′µ

(

K0
µ +

δM2
Z,2nd

M2
Z′,1st −M2

Z,2nd

J0
µ

)

+ AµJµ .

We now define the conventions we are using for the couplings of the new gauge
bosons and for that we start from the general Lorentz invariant Lagrangian describing the
interaction of generic physical bosons Z ′ and W ′ (these will be identified with the mass
eigenstates of Eq. (1.28)) with the fermions of the SM6 [90]:

LW ′

CC =
gW√
2

[

ūiγ
µ

((

CW ′

q,L

)

ij
PL +

(

CW ′

q,R

)

ij
PR

)

dj

(1.30)
+ν̄iγ

µ

((

CW ′

ℓ,L

)

ij
PL +

(

CW ′

ℓ,R

)

ij
PR

)

ej

]

W ′
µ + h.c.

LZ′

NC =
gW
cθW

[
∑

q

q̄iγ
µ

((

CZ′

q,L

)

ij
PL +

(

CZ′

q,R

)

ij
PR

)

qj

(1.31)

+
∑

ℓ

ℓ̄iγ
µ

((

CZ′

ℓ,L

)

ij
PL +

(

CZ′

ℓ,R

)

ij
PR

)

ℓj

]

Z ′
µ + h.c.

6With the addition of a right handed neutrino.
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where q ∈ {ui, dj}, ℓ ∈ {νi, ej} (i, j = 1, 2, 3). In addition, gW is the SU(2)L gauge
couplings and θW the Weinberg angle. Finally, the Cq,L(R), Cℓ,L(R) are the general couplings,
a priori complex, parametrizing the interaction of the new resonances. This Lagrangian is a
generalization of the SM one which can be recovered by setting CW ′

q,L = VCKM, CW ′

ℓ,L = VPMNS,

CW ′

q(ℓ),R = 0,
(

CZ′

q(ℓ),L

)

ij
=

(
T3,q(ℓ) −Qq(ℓ)s

2
θW

)
δij and

(

CZ′

q(ℓ),R

)

ij
= −Qq(ℓ)s

2
θW

δij in which

T3,q(ℓ) is the third isospin component. Obtaining the couplings of the Ẑ ′ and Ŵ ′ gauge
bosons of the G221 models can be done by recasting Eq. (1.29) in the form of Eq. (1.31)
and Eq. (1.30) respectively.

After some manipulations, these couplings can be expressed in terms of two or three
parameters in models following BP-II or BP-I respectively. For models breaking according
to BP-II we will denote M the mass of the new particle independently of the nature of
the gauge boson since their masses are degenerate, see Eqs. (1.23, 1.24), and tφ, the first
SB tangent angle as in Eq. (1.11). For BP-I models, we will use either MW ′ or MZ′ and
neglect the dependence on β reducing the freedom to only two parameters. The couplings
then read [91]

BP-I:

CW ′

q,L = −εW
′

(tφ,MW ′ , β)VCKM

(CW ′

ℓ,L )ij = −εW
′

(tφ,MW ′ , β)δij

(CZ′

q(ℓ),L)ij =
(

−sθXq(ℓ)tφ +
(
T3,q(ℓ) +Qq(ℓ)s

2
θ

)
εZ

′

(tφ,MZ′)
)

δij (1.32)

(CZ′

q(ℓ),R)ij =

(

sθ

(

−Xq(ℓ)tφ + T3,q(ℓ)
1

tφ

)

+Qq(ℓ)s
2
θε

Z′

(tφ,MZ′)

)

δij

LR LP

CW ′

q,R = −tθ

(

1 +
1

t2φ

)1/2

VR CW ′

q,R = −tθ

(

1 +
1

t2φ

)1/2

VR

(CW ′

ℓ,R)ij = −tθ

(

1 +
1

t2φ

)1/2

δij CW ′

ℓ,R = 0

(1.33)

HP FP

CW ′

q,R = 0 CW ′

q,R = 0

(CW ′

ℓ,R)ij = −tθ

(

1 +
1

t2φ

)1/2

δij CW ′

ℓ,R = 0

(1.34)
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BP-II:
UU

CW ′

q,L =

(
1

tφ
− cθε(tφ,M)

)

VCKM CW ′

q,R = 0

(CW ′

ℓ,L )ij = (−tφ − cθε(tφ,M))δij CW ′

ℓ,R = 0

(CZ′

q,L)ij =

(

T3,qcθ
1

tφ
+ (T3,q +Qqs

2
θ)ε(tφ,M)

)

δij (CZ′

q,R)ij = Qqs
2
θε(tφ,M)δij

(CZ′

ℓ,L)ij = (−T3,ℓcθtφ + (T3,ℓ +Qℓs
2
θ)ε(tφ,M))δij (CZ′

ℓ,R)ij = Qℓs
2
θε(tφ,M)δij

(1.35)

NU

1st and 2nd generations, (i, j) ∈ 〚1,2〛2

(CW ′

q(ℓ),L)ij =

(
1

tφ
− cθε(tφ,M)

)

δij CW ′

q(ℓ),R = 0

(CZ′

q(ℓ),L)ij =

(

T3,q(ℓ)cθ
1

tφ
+ (T3,q(ℓ) +Qq(ℓ)s

2
θ)ε(tφ,M)

)

δij (CZ′

q(ℓ),R)ij = Qq(ℓ)s
2
θε(tφ,M)δij

3rd generation

CW ′

q(ℓ),L = −tφ − cθε(tφ,M) CW ′

q(ℓ),R = 0

CZ′

q(ℓ),L = (−T3,q(ℓ)cθtφ + (T3,q(ℓ) +Qq(ℓ)s
2
θ)ε(tφ,M))δij CZ′

q(ℓ),R = Qq(ℓ)s
2
θε(tφ,M)

(1.36)

where T3,q(ℓ) ≡ T 1
3,q(ℓ) + T 2

3,q(ℓ) is, as in Eq. (1.26), the sum of the third components isospin
of SU(2)1 and SU(2)2, Xq(ℓ) is the charge of the q(ℓ) under U(1)X , as given in Tab. 1.1,
and VCKM has been omitted in the NU model7. The functions εW

′

(tφ,MW ′ , β), εZ
′

(tφ,MZ′)

and ε(tφ,M) are collecting terms proportional to s22β

√

1 + t2φ/(M
2
W ′tφ), 1/(tφM2

Z′) and

tφ/M
2 respectively which are negligible in the region of the parameter space unconstrained

by low-energy and precision data. In the following, these functions will be neglected and
we refer the interested reader to [91] for more details. Within these assumptions, we
see that the couplings in BP-I do not depend on whether the symmetry is broken via a
doublet or a triplet.

The BP-I models are sometimes referred to as right-handed because of the properties
of the W ′-boson which does not couple to left-handed fermions. Analogously, models
following BP-II are named left-handed for the similar reasons. It can also be noted that
in the LP model the couplings of the W ′ to leptons are vanishing, i.e. the behaviour of
the additional charged resonance is indeed lepto-phobic. Inspecting the other couplings of
BP-I models reveals that the behaviour of the W ′ in FP and HP models are fermio-phobic
and hadro-phobic respectively.

In the last subsection we discuss the constraints on the G221 models derived from
low-energy and precision data as well as direct constraints from colliders.

7To restore the CKM matrix it suffices to multiply the W ′ couplings to quarks by VCKM.
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1.4 Direct and indirect constraints on the G221 parameter space

Among the various constraints that new physics models have to satisfy, measurements of
low-energy observables as well as precision data (from LEP-1 and SLD) are some of the
most stringent ones. The authors of [63] have performed a global-fit of the G221 models
to 37 observables including LEP-I Z-pole observables, properties of the W -boson, the
tau lifetime and many others. The anomalous magnetic moment of the muon as well as
observables depending strongly on the extended flavor structure of the G221 models like
Br(b → sγ) are excluded from the fit and an example of their impact can be found in [92].

From this global analysis they have obtained limits on the parameter space from which
a lower bound on the masses of the heavy gauge bosons can be extracted. We list below
the lower bounds on the masses obtained with this procedure. Note that these bounds
always depend on at least one another parameter and that the numbers quoted are only
the minima of the lower bounds.

In BP-I the bound on W ′ mass has a stronger model dependence with a constraint
that varies between 0.27 to 0.7 TeV.

Table 1.2: Exclusion bounds on W ′ and Z ′ G221 gauge boson masses as obtained in [63].

Model W ′ limit [TeV] Z ′ limit [TeV]

BP-I

LR-D (T) 0.27 (0.20) 1.6 (1.6)
LP-D (T) 0.70 (0.50) 1.8 (1.8)
HP-D (T) 0.40 (0.29) 1.7 (1.7)
FP-D (T) 0.67 (0.48) 1.7 (1.7)

BP-II
UU 2.5 2.5
NU 3.6 3.6

New heavy resonances have been actively searched for at the Tevatron and now at
the LHC producing more and more stringent constraints on possible new processes. The
results of these searches have to be interpreted in a benchmark model often chosen to
be the SSM which even though practical is far from capturing all the phenomenological
richness of the various G221 models. Therefore, it is necessary to recast the analysis of
the various experimental collaborations into the framework of the G221 models in order to
extract specific bounds. This work was done in [64] and even though the LHC searches
considered are early ones and at ’low’ energy (2011, 7 TeV) the bounds obtained are more
stringent than the one extracted from Tevatron data for almost all the models8.

Interestingly, the constraints on the W ′-boson mass extracted from LHC7 data are
more stringent than the one obtained from low-energy and precision data experiments
only for LR-D(T) models. Conversely, the bounds derived on the Z ′-boson mass are
tighter or at least comparable for all the BP-I models in spite of the low-energy and
limited luminosity. Furthermore, it was also shown in the same study that the reach
of the LHC14 will be very much extended with respect to this analysis. Indeed, large
portions of the Z ′ parameter space up to masses of 5 TeV are expected to be probed while

8The data used in the analysis are the following: (i) ATLAS: pp → W
′
± → ℓν,

∫
Ldt = 1.04fb−1 [16],

pp → Z ′ → ℓ+ℓ−,
∫
Ldt = 1.1fb−1 [27]. (ii) CMS: pp → Z ′ → tt̄,

∫
Ldt = 4.33fb−1 [93].
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Table 1.3: Constraints obtained from direct searches at the LHC7. The constraints coming
from Tevatron were also considered in [64] but were found to be less stringent than the
one extracted from LHC data, for almost all the models.

Model W ′ limit [TeV] Z ′ limit [TeV]

BP-I

LR-D (T) 1.72 (1.76) 2.25 (3.2)
LP-D (T) 0.55 (0.55) 1.8 (1.8)
HP-D (T) 0.46 (0.35) 1.7 (1.7)
FP-D (T) 0.5 (0.40) 1.75 (1.75)

BP-II
UU 1.7 1.7
NU 3.1 3.1

improvements in the W ′-boson exclusion limits will only be possible for BP-II models9.
Moreover, the latest analyses coming from the LHC [15,18, 24,29], see Tab. 1, exclude at
the 95 % C.L. SSM Z ′- and W ′-bosons of masses smaller than 2.86 TeV (ATLAS), 2.96
TeV (CMS) and 3.35 TeV (CMS), 2.55 TeV (ATLAS) respectively. Finally, should such
resonances be observed, it will be possible to disentangle the nature of the underlying G221

model in large portions of the parameter space by looking at correlations of observables
as was demonstrated in [74].

Models from the G221 class are very well motivated and simple to study since they
can be described by two or three free parameters. In this chapter, we have reviewed the
specificities of each models and how they can be described in a single class. We derived
the expressions of the masses of the Z ′- and W ′-bosons that appear in these extensions
in terms of the fundamental parameters of the models. Furthermore, we summarized
the expressions of the new heavy resonances couplings to SM fermions highlighting the
characteristic behaviour of the gauge bosons in each extensions. Finally, we detailed
the constraints on the parameter space of G221 models, coming both from global fits to
precision observables and from collider searches at the Tevatron and LHC.

9The exclusion limits should also reach 5 TeV for these models for a wide range of values of the
parameters.
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CHAPTER 2
AUTOMATIC GENERATION OF

RENORMALIZATION GROUP EQUATIONS AT
TWO-LOOP WITH PyR@TE

The Standard Model (SM) is an impressively successful theory. It has been tested in a
very large number of precision measurements in low-energy experiments and at high-energy
colliders, and, despite all efforts, no solid evidence for physics beyond the Standard Model
(BSM) has emerged. The recent discovery of a Higgs boson at the Large Hadron Collider
at CERN [5,6] is consistent with this picture. Indeed, the couplings of this particle are in
very good agreement with the predictions from the SM, and its mass mH ≃ 126 GeV also
lies in the right ballpark anticipated by SM fits to electroweak precision data.

This particular value of the Higgs mass is quite intriguing when analyzing the stability
of the electroweak symmetry breaking vacuum and the perturbativity of the underlying
dynamics which involves running the couplings from the electroweak scale to higher
energies using the renormalization group equations (RGEs) [94]. As a general rule, the
β-function of the quartic Higgs coupling λ receives positive (negative) contributions from
scalars (fermions), leading to an increasing (decreasing) contribution to the running of λ
with increasing energy. Clearly, we need λ > 0 to have a stable minimum in the Higgs
potential. However, slightly negative values of λ are also admissible, if they lead to a
metastable vacuum with a lifetime which exceeds the age of the universe. In the SM,
given mH and the mass of the top-quark (which gives the dominant fermionic contribution
due to the large Higgs-top Yukawa coupling), one can ask at what scale λ turns negative,
thus implying an internal inconsistency and the breakdown of the (perturbative) SM. A
detailed analysis of this question depends on (i) the boundary conditions for the RGEs at
the weak scale, (ii) the running of the RGEs of the SM (at a given loop order), possibly
modified by the presence of extra particles, and (iii) the perturbative validity of the RGEs.
The parameters that have the largest effect on the boundary conditions are the Higgs
and top-quark mass, as well as the strong coupling constant. Most interestingly, it turns
out that with present data the values are just right so that the SM with a (meta-)stable
vacuum can be a consistent theory up to very high energies, potentially up to the Planck
scale [7, 95].

Of course, the internal consistency of a theory is just a necessary condition for
its validity, and there are several reasons of different quality to go beyond the SM.
Supersymmetry (SUSY) is one of the best-motivated extensions of the SM. At a technical
level, it addresses the hierarchy problem by canceling the large corrections to the Higgs
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mass, and the seeming unification of gauge couplings may be indicative of a grand
unified theory at a higher scale. However, the conspicuous absence so far of (low-energy)
supersymmetry at the LHC1 has rekindled the interest in non-supersymmetric extensions
of the SM2. In this chapter we present a tool useful to explore non-supersymmetric BSM
scenarios.

In the context of SUSY several public codes exist which numerically evolve the RGEs
not only for the minimal supersymmetric standard model, but also for the next-to-minimal
supersymmetric standard model [99], for high-scale seesaw scenarios [100, 101] or for
R-parity violating models [102,103]. In addition, the Mathematica packages Susyno [104]
and SARAH [105–108] allow since a few years an automated calculation of all β-functions for
SUSY models. In contrast, there has not been much effort so far to push also non-SUSY
models to that level of automation.

Here, we present a Python program [109] that automatically generates the full two-loop
renormalization group equations for all (dimensionless and dimensionful) parameters of
a general gauge theory. The gauge group, the particle content and many other input
parameters can be specified by the user by editing text files in an easy-to-understand
format. Once the RGEs for the theory at hand have been calculated by PyR@TE, the
results can optionally be exported to LATEX and Mathematica, or stored in a Python data
structure for further processing by other programs. Also, for the convenience of the user,
we have implemented an interactive mode in form of an IPython Notebook.

The general RGEs for non-supersymmetric gauge theories have been known at two-loop
accuracy for about 30 years [110–115]. In developing PyR@TE, all known typos in the
series of papers by Machacek and Vaughn have been taken into account3, and the code has
been validated against several known results in the literature (see Section 2.4.11). Also,
independently of the Python program, Mathematica routines [118] have been developed
and cross-checked against PyR@TE, so that we feel confident to have eliminated most
sources of possible errors that might affect the correctness of the RGEs.

The scope of PyR@TE is not limited to exploring the stability of the SM electroweak
vacuum, as we discussed in some detail above. First, extensions of the SM by weak scale
dark matter have been studied in the literature [119]. Second, in cases where the scale Λ

is well below a possible unification scale or the Planck scale the knowledge of the RGEs is
necessary whenever the boundary conditions are defined at the unification scale. In such
a case it is also interesting to study the stability (and perturbativity) of the theory in a
similar way as it is done in the SM. Third, in split SUSY scenarios [120] the low-energy
spectrum is effectively non-supersymmetric, and therefore requires the most general RGEs.

This chapter is organized as follows. We start by reviewing the various definitions of
group theory that are used throughout this part of the manuscript, then we introduce
several ideas regarding the renormalization group equations (RGEs) via the example of
the massive scalar field theory in Section 2.2 and continue with the RGEs of general gauge
theories, Section 2.3. The last two sections, Section 2.4 and 2.5, are devoted to the tool we
have developed and its use, PyR@TE, and to an example of its application: the derivation

1Clearly, it is much too early to discard the idea of TeV-scale supersymmetry, and the increase in
center of mass energy from 8 TeV to 13 TeV will open up the possibility to discover some of the SUSY
particles, if they are heavier than originally expected.

2For the by now standard motivation for SUSY, we refer the reader to the standard literature [96–98].
3See Ref. [116] and the appendix of Ref. [117].

30



of the two-loop RGEs for the various G221 models presented in Chapter 1.

2.1 Glossary of Group Theory

Since the advent of quantum mechanics, group theory and linear algebra have been at the
heart of the mathematical description of nature provided by physics. Concepts such as Lie

groups, Lie algebras and representations are omnipresent in particle physics and we
review these concepts in this section. The main goal of this section is to remind the reader
of various definitions and to introduce quantities that will be used throughout the chapter,
the reader is referred to the literature for more detailed discussions. Note that some of
these concepts have already been briefly encountered in the previous chapter. Lie groups
and algebras are introduced first. Then, we discuss the concept of representation and
terminate with the definitions of quadratic Casimir operator and Dynkin index.

2.1.1 Lie Groups and Algebras

A key concept we will refer to in the following is that of a Lie algebra, however, the term
Lie group is used more often in practice and refers to the underlying group of the algebra.
Confusion can arise and we therefore, clarify in turn these two concepts.

A group G is a set of elements with a multiplicative operation, group law, denoted ·
such that to each ordered pair a, b of elements of G it associates an element a · b ∈ G. For
G to be a group, the group law must satisfy the following three axioms [121]

• Associativity: ∀(a, b, c) ∈ G3, a · (b · c) = (a · b) · c.

• Identity element: ∃ e ∈ G such that ∀a ∈ G we have the relation a · e = e · a = a.

• Inverse element: ∀a ∈ G, ∃ x ∈ G such that a · x = x · a = e. x is called the inverse
of element a and is denoted a−1.

Note that in general a · b �= b · a. For this reason a group for which a · b = b · a is called
Abelian. It is clear from the definition that the number of elements of G can be finite or
not. In the case where they are not in a finite number but can be labelled continuously
by a given parameter the group is said to be continuous. If in addition, both operations
of multiplication and inversion are analytic functions of the parameters labelling the
elements, and that G is a differentiable manifold, G is a Lie group.

Let g be a vector space over some field K and equipped with an additional internal
law (x, y) �→ x ⋆ y. If ⋆ is bilinear then g is an algebra. If in addition ⋆ has the following
two properties

• ∀ x ∈ g x ⋆ x = 0

• ∀(x, y, z) ∈ g3, x ⋆ (y ⋆ z) + y ⋆ (z ⋆ x) + z ⋆ (x ⋆ y) = 0 ,

then g is a Lie algebra. The second property is called the Jacobi identity and the product
x ⋆ y is called the Lie bracket and will be denoted [x, y] as it is often in the literature.
Note that the first property along with bilinearity imply that ⋆ is anticommutative, i.e.
x ⋆ y = −y ⋆ x.
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The link between the Lie group and Lie algebra is made via the following map

ρ : g −→ TeG (2.1)
x �→ xe (2.2)

where TeG is the tangent space of the manifold G at e (and a vector space). ρ is an
isomorphism and as such transports the algebra structure of g onto the vector space TeG.
Therefore, the algebra is said to describe the local structure of the underlying Lie group
near the identity (e). Further details can be found in e.g. [89].

Let g be a Lie algebra, since it is a vector space there exist Ta, a = 1, . . . , N elements
of g that forms a basis. Such elements are called the generators of the algebra and N
its dimension. Each element of g can therefore be written as a linear combination of the
Ta in which the coefficients can be either real or complex depending on the nature of g4.

We now define in turn the concepts of abelian, simple and semi-simple Lie algebras
as well as subalgebra and ideals.

• A Lie algebra g, is said to be abelian if and only if [g, g] = 0 (⇔ ∀(x, y) ∈ g2, [x, y] = 0).
Consequently, g can be broken down to several u(1) algebras5.

• Let h be a subset of g, h ⊂ g. h is a subalgebra of g if it closes under the Lie bracket,
i.e. if [h, h] ⊂ h.

• An ideal is a subalgebra for which the condition [h, g] ⊂ h holds. The non trivial ideals
of g are called proper ideals6.

• A simple algebra is an algebra which does not have any proper ideals.

• If g has no abelian proper ideals, then it is semi-simple.

There is an important result linked to these definitions and another notion: (i) a semi-
simple Lie algebra is a direct sum of simple Lie algebras, (ii) the direct sum of simple and
abelian Lie algebras is called a reductive algebra. This concept is important because
gauge symmetries must be given by reductive Lie algebras7. Consequently, since abelian
Lie algebras are the direct sum of u(1)’s, the complexity of reductive algebras is comprised
in simple algebras.

2.1.2 Representation of Lie algebra

We now move to the concept of representation of Lie algebras. Giving a representation
of g is to associate to each element g of g an endomorphism ρg

ρg : V (K) −→ V (K)

x �→ ρg(x) , (2.3)

4In particle physics, the gauge symmetry are given by real Lie algebra as can be induced from the
expression of a gauge transformation [122].

5A u(1) algebra has an underlying U(1) group.
6The trivial ideals are g itself and the 0 algebra.
7This can be inferred from the gauge transformations of the gauge bosons under the adjoint represen-

tation [122].
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where V is an arbitrary vector space over a field K. From the endomorphism nature of
ρg we have that ∀(α, β) ∈ K

2, ∀(x, y) ∈ V 2, ρg(αx + βy) = αρg(x) + βρg(y). To be a
representation the map ρ that associates to each g of g the endomorphism ρg must be a
homomorphism (between the two algebras: g and the algebra of the endomorphisms of V )
i.e. it must preserve the structure of the algebra and hence that ρ([g1, g2]) = [ρ(g1), ρ(g2)].
Only finite vector spaces are considered here, so that what we call the dimension of the

representation is the dimension of V .
In particle physics, the Lie algebras considered are themselves sets of matrices so that

there is possible identification between the algebra itself and its trivial representation
ρ = Id. Subsequently, the set of matrices of g is often referred to as the fundamental or
defining representation.

Additional possible confusion arises when V is chosen to be g itself. In this case, one can
define ρ : x �→ ρx ≡ adx such that ∀y ∈ g, adx(y) = [x, y]. By virtue of the Jacobi identity,
ρ ≡ ad is linear and preserves the Lie bracket, it is therefore a homomorphism. This
representation is called the adjoint representation of g. Considering again the set of
generators of g, Ta, a = 1, . . . , N since [Ta, Tb] ∈ g, ∃fabc such that [Ta, Tb] = fabcTc. From
adTa

(Tb) = [Ta, Tb] = fabcTc, adTa
can be seen as a matrix with entries fabc. The coefficients

fabc are called the structure constants of the algebra, and are basis dependent.
Another way of defining a n-dimensional representation is to consider a set of N , n×n

dimensional matrices La. If these matrices satisfy the same relation as the generators of
g, namely [La, Lb] = fabcL

c, then they are said to form a representation of g.
The last point we want to discuss is the definition of irreducible representations.

Let ρ be a representation of g on a vector space V and W ⊂ V a linear subspace of V . If
W is a proper subspace8 of V which is mapped onto itself by the various generators of g
then the restriction of ρ to W is a subrepresentation of g and ρ is said to be reducible.
Equivalently, if the only subrepresentations of ρ are trivial then ρ is irreducible [123].

2.1.3 Casimir operator and Dynkin index

There are three additional definitions that we would like to introduce before concluding
this section on group theory.

• The rank of an algebra g is the number of generators that can be diagonalized simulta-
neously. For su(n) algebras it is given by n− 1.

• We will call the dimension of an algebra, the dimension of the adjoint representation.
The su(n) algebras have dimension n2 − 1.

• Let Ta, a = 1, . . . , N be a matrix representation, R, of an algebra g, the quadratic

Casimir operator C2 is defined as

C2(R)ij = (T aT a)ij , (2.4)

where the sum over a is implied. We also introduce the Dynkin index of the representa-
tion R by

8I.e. it is not V itself nor the null space.
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S2(R)ab = S2(R)δab = Tr
(
T aT b

)
. (2.5)

For su(n), the Dynkin index of the fundamental representation is 1
2

while the eigenvalue

of the quadratic Casimir is
n2 − 1

2n
. Note that the quadratic Casimir of the adjoint

representation of su(n) is simply n.

For the computation of various Casimir and Dynkin index for different representation we
refer the reader to [122,124].

This concludes this brief section on group theory terminology and we now move on to
the renormalization group equations.

2.2 Renormalization Group Equations: φ4 theory

The goal of this section is to introduce various concepts regarding the renormalization group
equations and to exemplify them on the φ4 theory. We will introduce the Callan-Symanzik
equation along with the definitions of anomalous dimension and beta function.

2.2.1 Renormalization of φ4 theory

We consider the massive scalar theory described by the following Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4 , (2.6)

which describes a self-interacting scalar field with mass parameter m. The Feynman-rules
are9:

The divergences appearing beyond tree-level in perturbation theory can be absorbed into
a redefinition of the mass parameter and coupling, and by renormalizing the wave function
in the following way

φ̃ = Z
−1/2
φ φ, λ̃ = Z−1

λ λ, m̃2 = Z−1
m m2 , (2.7)

in which we have introduced φ̃, λ̃, m̃ the renormalized wave function, coupling and
mass respectively. Zφ, Zλ, Zm are the renormalization constants of the theory. They
are divergent and cancel the divergences appearing in the theory to yield finite results.
Inserting Eq. (2.7) into Eq. (2.6) we can rewrite the Lagrangian in terms of the renormalized
quantities

L = L0 + Lct = L0 + (Zφ − 1)
1

2
∂µφ̃∂

µφ̃− (ZmZφ − 1)
1

2
m̃2φ̃2 − (ZλZ

2
φ − 1)

λ̃

4!
φ̃4 , (2.8)

9We have omitted the iε term in the propagator of the scalar field for simplicity but implicitly assume
a +iε convention.
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where L0 has the same form as in Eq. (2.6) in which the field and parameters have
been replaced by the renormalized quantities. Therefore, we see that the renormalized
Lagrangian gives rise to two new interaction terms, see Fig. 2.1.

Figure 2.1: Feynman-rules for the counter terms in φ4 theory.

It is our goal now to show how to calculate the renormalization constants from the
divergent diagrams of the theory.

At the one-loop level, there are two divergent diagrams, see Fig. 2.2, that we must
calculate and we first concentrate on the contributions coming from L0, ignoring the
counter terms.

Figure 2.2: Corrections to the propagator and quartic vertex at one-loop in φ4 theory.

Correction to the propagator

The integral corresponding to the diagram10 is

I2(p
2) = −iλ

i

2

∫
d4k

(2π)4
1

k2 −m2
. (2.9)

From naive dimensional analysis we can see that the above integral has four powers of
k in the numerator and two in the denominator so it diverges quadratically at large k
(eventual problems in the infrared regions are not relevant for this discussion). We use
dimensional regularization and re-write the integral in d = 4− 2ε dimension

I2(p
2) =

λ

2

∫
(µ)4−dddk

(2π)d
1

k2 −m2
=

λ

2
(µ2)εi

∫
ddkE
(2π)d

1

−k2
E −m2

(2.10)

where as usual, we introduce the renormalization scale µ, with mass dimension to keep
the integration measure in four-dimension. Note that we also re-wrote the integral in

10Note that the factor 1

2
comes from the symmetry of the diagram.
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Euclidian space on the right-hand side, i.e. k0 → ik0, ddk → iddkE. This can now be
directly integrated using the general formula [125]

∫
dkd

E

(2π)d
1

(k2
E + L2)a

=
Γ(a− d/2)

(4π)d/2Γ(a)
Ld/2−a (2.11)

leading to

I2(p
2) = −λ

2
(µ2)εi

Γ(1− d/2)

(4π)d/2Γ(1)
(m2)d/2−1 = −im2 λ

32π2
(4π)ε

(
µ2

m2

)ε

Γ(−1 + ε) . (2.12)

The fact that the integral diverges quadratically manifests itself in the structure of
Γ(−1 + ε) which has a pole at ε = 0 and ε = 1. However, since we are interested in the
result in the limit ε → 0 we expand Eq. (2.12) in Laurent series around ε = 0

Γ(−1 + ε) = −1

ε
+ (−1 + γE) +O(ε), I2(p

2) =
iλ

32π2
m2

[

1 +∆+ log(
µ2

m2
)

]

,

(2.13)

in which we introduced ∆ =
1

ε
− γE + log(4π) , the MS expansion parameter11.

The vertex

Applying the Feynman-rules we obtain the integral corresponding to the second diagram
of Fig. 2.2.

I4(s, t, u) = Ĩ4(s) + Ĩ4(t) + Ĩ4(u) ,

Ĩ4(q
2) =

(−iλ)2

48
(µ2)εi2

∫
ddk

(2π)d
1

(k2 −m2)((q − k)2 −m2)
,

=
λ2

48
(µ2)ε

∫
iddkE
(2π)d

1

(k2
E +m2)((q − k)2E +m2)

. (2.14)

Note that the factor 1/48 is a symmetry factor12 and s, t and u are the usual Mandelstam
variables. In order to calculate these integrals we use a method commonly referred to as
Feynman parameters in which

1

Aα1
1 Aα2

2 . . . Aαn
n

=
Γ(α1 + α2 + · · ·+ αn)

Γ(α1)Γ(α2) . . .Γ(αn)

∫ 1

0

dx1dx2 . . . dxn

δ(1− x1 − x2 − · · ·− xn)x
α1−1
1 xα2−1

2 . . . xαn−1
n

(A1x1 + A2x2 + · · ·+ Anxn)α1+α2+···+αn
(2.15)

11MS denotes a renormalization scheme which will be discussed in a following section.
12Symmetry factors come from the contraction of the S-matrix within the Wick theorem. In this case

it reads 1/S = 2× 2× 2× 3 because without distinguishing the momenta diagram 2.2 (right) has the
following symmetries: the incoming two lines can be exchanged as well as the two vertices, the branches
and the two outgoing lines. Plus, there are three different channels, s, t and u.
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which leads to

Ĩ4(q
2
E) =

iλ2

48
(µ2)ε

∫
ddkE
(2π)d

Γ(2)

Γ(1)Γ(1)

∫ 1

0

dx1dx2δ(1− x1 − x2)

1

((k2
E +m2)x1 + (q2E + k2

E − 2qE · kE +m2)x2)
2

=
iλ2

24
(µ2)ε

∫
ddkE
(2π)d

∫ 1

0

dx2
1

((k2
E +m2 + (q2E − 2qE · kE)x2)

2

=
iλ2

24
(µ2)ε

∫
ddkE
(2π)d

∫ 1

0

dx2
1

(((kE − qEx2)2 +m2 + q2Ex2(1− x2))
2

=
iλ2

24
(µ2)ε

∫
ddkE
(2π)d

∫ 1

0

dx2
1

(((kE − qEx2)2 +m2 + q2Ex2(1− x2))
2 . (2.16)

Using Eq. (2.11) again one obtains

Ĩ4(q
2) =

iλ2

24
(µ2)ε

∫ 1

0

dx2
Γ(2− d/2)

(4π)d/2Γ(2)
(m2 − q2x2(1− x2))

d/2−2

=
iλ2

48
(µ2)ε

1

16π2
(4π)ε

∫ 1

0

dx2Γ(ε)(m
2 − q2x2(1− x2))

−ε . (2.17)

Expanding the result in Laurent series and using Γ(ε) = 1/ε− γE +O(ε), we obtain

Ĩ4(q
2) =

iλ2

48

1

16π2

(
∆− F (q2,m, µ)

)
+O(ε) , (2.18)

where we have introduced the function F (q2,m, µ) =

∫ 1

0

dx log

[
m2 − q2x(1− x)

µ2

]

. With

these corrections at hand we can write down the corresponding (1PI) vertex functions
Γ
2(p), Γ4(s, t, u)

Γ
2(p) = p2 −m2

(

1− λ

32π2

[

∆+ log(
µ2

m2
)

])

, (2.19)

Γ
4(s, t, u) = −iλ

(

1− λ

32π2
(3∆− F (s,m, µ)− F (t,m, µ)− F (u,m, µ))

)

. (2.20)

Renormalization constants in the MS scheme

Obviously, the above (1PI) vertex functions are divergent in the limit ε → 0 and in order
to obtain finite results we need to renormalize them. We already renormalized the φ4

Lagrangian in Eq. (2.8), and showed that it gives rise to two additional interaction terms
that we have not considered so far, see Fig. 2.1. Taking them into account, it is immediate
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to see how Eqs. (2.19, 2.20) are modified

Γ
2(p) = p2(1 + (Zφ − 1))−m2

(

(1 + (ZmZφ − 1)

− λ

32π2

[

∆+ log(
µ2

m2
)

])

, (2.21)

Γ
4(s, t, u) = −iλ

(

1 + (ZλZ
2
φ − 1)− λ

32π2
(3∆

−F (s,m, µ) + F (t,m, µ) + F (u,m, µ))
)

, (2.22)

in which the ∼ on m and λ in the counter terms have been dropped since the renormal-
ized and bare parameters are equal up to order λ. Then, the following choice for the
renormalization constants renders the vertex functions finite at this order of perturbation
theory

ZMS
m = 1 +

λ

32π2
∆, ZMS

λ = 1 +
λ

32π2
3∆, ZMS

φ = 1. (2.23)

We subtracted terms proportional to ∆ and not only 1/ε in the above expressions as
prescribed in the MS scheme. Also, we see that the wave function does not get renormalized
at one-loop13. Finally, according to Eq. (2.7) the bare parameters read

m̃ =

(

1− λ

32π2
∆

)

m, λ̃ =

(

1− λ

32π2
3∆

)

λ . (2.24)

2.2.2 Invariance of Green functions

In the previous paragraph we have shown that the divergences appearing in the vertex
functions could be absorbed into a redefinition of the parameters m2,λ as well as in
the wave function renormalization. The corresponding renormalized connected Green’s
functions are generated from a renormalized functional W̃ [J̃ , m̃2, λ̃] which is obtained
from the generating functional W [J,m2,λ] by exchanging the functions and parameters,
J,m2,λ for their renormalized counterparts [125]. By definition, W̃ does not contain
any divergences and from the general relation δW [J ]/δJ(x) = φ(x) one can observe that
J̃ = Z

1/2
φ J , while as a reminder we had defined φ̃ = Z

−1/2
φ φ, see Eq. (2.7). From the

expression for the connected Green’s function

G̃(n)
c (x1, . . . , xn) =

1

in−1

δnW̃ [J̃ ]

δJ̃(x1) . . . δJ̃(xn)

∣
∣
∣
∣
∣
J̃=0

, (2.25)

we deduce

G̃(n)
c (x1, . . . , xn) = Z

−n/2
φ G(n)

c (x1, . . . , xn) ⇒ G̃(n)
c (p1, . . . , pn) = Z

−n/2
φ G(n)

c (p1, . . . , pn) .
(2.26)

Finally, translating the above relation for the vertex function one has

Γ̃
(n)(p1, . . . , pn) = Z

n/2
φ Γ

(n)(p1, . . . , pn) . (2.27)

13It does at the two-loop level though [126].
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Thus, we see that the renormalized vertex function is obtained from the vertex function
by carrying out the replacements m → m̃, λ → λ̃ and multiplying by the wave function
renormalization constant for each external leg. Consequently, the renormalized vertex
function, Γ̃(n) depends on the renormalization scale µ, through its dependence on Zφ, m̃
and λ̃.

On the other hand, Γ
(n) is independent of µ and is therefore invariant under the

transformation
µ → µ′, µ

∂

∂µ
Γ
(n) = 0 . (2.28)

These transformations form the renormalization group [127]. Inserting Eq. (2.27) into
Eq. (2.28) we obtain

µ
d

dµ

[

Z
−n/2
φ (µ)Γ̃n(pi, m̃(µ), λ̃(µ), µ)

]

= 0 , (2.29)

where we have written explicitly the dependences of Γ̃(n) on µ. Performing the derivation
in Eq. (2.29) and multiplying through by Z

n/2
φ gives

(

−n

2

1

Zφ

µ∂µZφ + µ∂µλ
∂

∂λ
+ µ∂µm

∂

∂m
+ µ∂µ

)

Γ
(n)(pi,m(µ),λ(µ), µ) = 0 , (2.30)

in which we have dropped the “∼” even though we deal only with renormalized quantities
in the following. Introducing the quantities

γ = µ
1

2Zφ

d

dµ
Zφ ,

β(λ) = µ
∂

∂µ
λ , (2.31)

γm =
µ

m

∂

∂µ
m ,

Eq. (2.30) becomes
(

µ∂µ + β(λ)
∂

∂λ
+mγm

∂

∂m
− nγ

)

Γ
(n)(pi,m(µ),λ(µ), µ) = 0 , (2.32)

known as the Callan-Symanzik equation [128–130]. It expresses the variation of the
renormalized vertex function Γ

(n) under a change of µ. Note that in a theory with several
couplings and fields there are a beta function for each coupling similar to β(λ) and an
anomalous dimension (γ) for each field (and mass). These quantities encode the response
of the couplings and parameters to a change of the renormalization scale µ and they
strongly depend on the theory. It is important to note that this equation is independent of
perturbation theory even though our previous discussion on renormalization were based on
a perturbative treatment. Because of this property, it is possible to use the renormalization
group equation to study the proper asymptotic behaviour of Green’s functions for large
external momenta. Solving the Callan-Symanzik equation one can see that the asymptotic
behaviour of the vertex function is governed by the evolution of the mass, coupling as
well as anomalous dimension with the scale µ, that is to say, γm, β(λ) and γ.
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Beta function

Let us finish this section by looking at the beta function of λ in our φ4 example. From
Eq. (2.24) we have

λ = λ̃

(

1 +
λ̃

32π2
3∆

)

. (2.33)

When continuing the theory in d-dimensions, the parameters λ, λ̃ acquire a mass dimension
µ4−d
0 , µ4−d of which µ0 is fixed while µ is identified with the renormalization scale of dimen-

sional regularization. To make this dependence explicit in Eq. (2.33), we introduce two
temporary dimensionless parameters λ0, λ̃0 such that λ = µ2ε

0 λ0, λ̃ = µ2ελ̃0. Expressing
Eq. (2.7) in terms of λ0 and λ̃0 and differentiating with respect to µ we obtain

µ
d

dµ
(λ0) = 0

= µdµ

(

Zλλ̃0

(
µ2

µ2
0

)ε)

= µdµZλλ̃0

(
µ2

µ2
0

)ε

+ Zλβ(λ̃0)

(
µ2

µ2
0

)ε

+ Zλλ̃02ε

(
µ2

µ2
0

)ε

(2.34)

leading to

β(λ̃0) = −2ελ̃0 − λ̃0
µ

Zλ

dµZλ .

(2.35)

Applying Eq. (2.35) to our present case we find

β(λ̃0) = −2ελ̃0 −
1

Zλ

λ̃0
3∆

32π2
β(λ̃0)

= −2ελ̃0

(

1− 1

Zλ

λ̃0
3∆

32π2

)

=ε→0 3λ̃2
0

16π2
. (2.36)

As a consequence the beta function for the coupling parameter λ in φ4 theory is positive.
Believing in our simple 1-loop perturbative calculation we observe that conversely to
what happens in QCD, the strength of the interaction is always increasing with the
renormalization scale.

We have shown in the previous paragraphs that the beta functions (along with the
anomalous dimensions) are very important objects of a field theory since they tell us how
the parameters will be affected by quantum corrections. With their knowledge, one can
study the asymptotic behaviour of the theory by solving the Callan-Symanzik equation.

2.3 Renormalization group equations for a general gauge theory

We have seen in the previous sections the importance of the renormalization group
equations for studying the evolution of the parameters of the theory via the example of the
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massive scalar theory. We now review how the concepts that we have just introduced are
applied to the case of a general gauge field theory to derive the set of evolution equations
that dictates the behaviour of the parameters under a change of the renormalization scale
µ. These equations form the main object of the implementation in a computer code that
will be described in the next section.

The equations presented here are the results of various calculations mainly carried out
in the 70’s and 80’s. Along the years, the computation of coefficients in the renormalization
group equations in perturbation theory has been done for several renormalizable quantum
field theories. For instance, the QCD beta functions have been calculated at the one-
[131–133], two- [134–136], three- [137,138] and finally four-loop [139,140] level. In a scalar
theory with self interaction a series of calculation [141,142] have lead to the four-loop beta
function for the scalar quartic coupling. For a general renormalizable gauge theory involving
scalars, spin-1/2 fermions and vector gauge fields the results for the beta functions were
given in [143] at the one-loop level. The various contributions to the evolution equations
for the coupling constants at two-loop were finalized in [110–112,114,115].

We start this section by giving some details on how the calculation is performed.
Then, we briefly introduce the background field method which is used to calculate the
beta functions of the gauge couplings. The RGEs for the Yukawa couplings as well as
the quartic terms are discussed. The evolution equations for mass terms and trilinear
couplings are also reviewed. Finally, the extension to semi-simple gauge groups is also
discussed before concluding with some remarks regarding the SUSY renormalization group
equations.

2.3.1 Definitions

We first review the set up of Machacek and Vaughn [110] and the way they extracted the
beta functions since the RGEs implemented in our code follow their results14.

Notations and definitions

The Lagrangian for a general renormalizable gauge field theory with gauge fields Aα
µ

associated to a compact simple group G, scalar fields φa and two component fermion fields
ψj can be written in the form

L = L0 + L1 + LGF + LFP , (2.37)

where LGF and LFP are the parts corresponding to the gauge fixing and to the ghosts for
a general Rξ gauge15 [144, 145]. L0 contains all the dimensionless parameters while L1

contains the remaining dimensionful parameters. They take the form

L0 = −1

4
F α
µνF

µν
α +

1

2
DµφaDµφa + iψ†

jσ
µDµψj

− 1

2

(
Y a
jkψjζψkφa + h.c.

)
− 1

4!
λabcdφaφbφcφd , (2.38)

L1 = −1

2

[

(mf )jk ψjζψk + h.c.
]

− m2
ab

2
φaφb −

habc

3!
φaφbφc , (2.39)

14Once proper corrections pointed out along the years have been taken into account.
15We will not need the explicit expression for these terms.
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in which ζ = ±iσ2 is the spinor metric. The definition of the gauge field strengths is as
follows

F α
µν = ∂µA

α
ν − ∂νA

α
µ + gfαβγAβ

µA
γ
ν , (2.40)

with g the gauge coupling and fαβγ the structure constants of G. In the Rξ gauge the
gauge field propagator reads

Dαβ
µν (k) = δαβ

i

k2

(

−gµν + (1− ξ)
kµkν
k2

)

. (2.41)

Finally, the covariant derivatives for the matter fields are given by

Dµφa =
(
∂µδab − igθαabA

α
µ

)
φb (2.42)

Dµψj =
(
∂µδjk − igtαjkA

α
µ

)
ψk . (2.43)

The matrices tα, θα are the hermitian matrix representations for the group generators
acting on the fermions and scalars respectively. The scalars are assumed to be real, hence,
from the gauge transformation on the scalar fields

φ′
a = eiγ

αθαabφb ,

(φ′
a)

∗
= φ′

a = e−iγα (θαab)
∗
φb , (2.44)

which leads to the relation

eiγ
α (θαab + (θαab)

∗) = δab , (2.45)

we conclude that the matrices θα are purely imaginary and since they are hermitian they
must be anti-symmetric. This is an important point since, as we will see, these matrices
are present in the expressions of the evolution equations for the parameters. This implies
that such matrices must be constructed for each scalar field in the theory. Note, that the
Pauli matrices do not satisfy this criterion. We will come back to this issue later on.

Beta functions and anomalous dimensions in dimensional regularization

In [110] the calculation of the various beta functions and anomalous dimensions was
performed in dimensional regularization using the MS scheme. In order to derive the
beta functions one needs to calculate the relevant renormalization constants that can
be obtained from the divergent part of the relevant Feynman diagrams. We will start
with {xi} the set of dimensionless parameters and show a relation analogous to Eq. (2.31)
between the anomalous dimension/beta function and the corresponding renormalization
constant within dimensional regularization. The RGEs for the parameters in L1 can then
be inferred from those of the dimensionless parameters and we will investigate these later.

As we have already seen, in dimensional regularization, in order to keep the action
dimensionless, the dimension of the parameters are no longer equal to their value in 4
space-time dimensions. By examining the various kinetic terms we can easily find the
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dimensionality of the fields and parameters in d-dimension.

[ψj] =
d− 1

2
, [φa] =

d− 2

2
,

[
Aα

µ

]
=

d− 2

2
,

[
Y a
ij

]
= d− 2

(
d− 1

2

)

− d− 2

2
[g] =

4− d

2
[λabcd] = d− 4

(
d− 2

2

)

=
4− d

2
= ε, = ε, = 4− d = 2ε . (2.46)

In view of Eq. (2.46), any renormalized parameter, x̃k, is related to the bare one, xk,
through the relation

xk

(
µ

µ0

)−ρkε

= x̃kZk = x̃k +
∞∑

n=1

a
(n)
k (x)

1

εn
. (2.47)

According to Eq. (2.46) we see that ρk = 1 for the gauge and Yukawa coupling constants
while ρk = 2 for the quartic coupling constants. The coefficients a

(n)
k (x) ≡ a

(n)
k ({xi})

depend on the other parameters of the Lagrangian and are to be computed in perturbation
theory. As in Eq. (2.31) we define the beta functions for the parameter x̃k by

βk(x) = µ
d

dµ
x̃k

∣
∣
∣
∣
ε=0

. (2.48)

Inserting Eq. (2.47) in Eq. (2.48) it is easy to derive the following relation

µ
d

dµ
x̃k = µ

d

dµ
Z−1

k xk

(
µ

µ0

)−ρkε

= −x̃kµ
1

Zk

d

dµ
Zk − ρkεx̃k , (2.49)

which in the limit ε → 0 gives

βk(x) = −x̃kµ
1

Zk

d

dµ
Zk ⇒ µ

d

dµ
x̃k = βk(x)− ρkεx̃k . (2.50)

We now differentiate Eq. (2.47) with respect to µ

− ρkε

(

x̃k +
∞∑

n=1

a
(n)
k

1

εn

)

= µ
d

dµ
x̃k +

∞∑

n=1

∑

l

µ
dx̃l

dµ

∂a
(n)
k

∂x̃l

1

εn
, (2.51)

and collect the finite terms to obtain

βk(x) =
∑

l

ρlx̃l
∂a

(1)
k

∂x̃l

− ρka
(1)
k , (2.52)

where we used Eq. (2.50) to express µ
dx̃k

dµ
in terms of βk(x) and ρk. Therefore, the beta

functions are determined by the single order pole in the expansion Eq. (2.47). Furthermore,
it is easy to see that the following relation also holds

(
∑

l

ρlx̃l
∂

∂x̃l

+ 1

)

a
(n+1)
k =

∑

l

βl(x)
∂a

(n)
k

∂x̃l

n ≥ 1 , (2.53)
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indicating that the higher order poles are all determined by the lowest order pole. This
provides a useful cross-check on the calculation.

Applying Eq. (2.52) to Eq. (2.23) we find

β(λ̃) = 2λ̃
∂

∂λ̃

3∆λ̃2

32π2
− 2

λ̃2
∆

32π2
=

3λ̃2

16π2
, (2.54)

in agreement with our previous result Eq. (2.36). Finally, we will write perturbatively at
the two-loop level the various beta functions in the form

βx̃k
(x) =

1

(4π)2
β
(1)
x̃k

+
1

(4π)4
β
(2)
x̃k

. (2.55)

In order to extract the anomalous dimensions of the various fields we proceed in a
similar way and start by writing the wave function renormalization constant of the i-th
field, Zi as an expansion in powers of 1/ε

Zi = 1 +
∞∑

n=1

C
(n)
i

1

εn
. (2.56)

Following the convention set in Eq. (2.31) we define the corresponding anomalous dimension
by

γi =
1

2
µ
d

dµ
lnZi . (2.57)

Performing the derivation and inserting the definition of Zi, Eq. (2.56), and using Eq. (2.50)
we find by equating the finite terms

γi = −1

2

∑

l

ρlx̃l
∂C

(1)
i

∂x̃l

, (2.58)

which shows, as for the coupling constants, that the anomalous dimension is entirely
determined, order by order, by the lowest pole16.

We conclude by giving a very useful relation that allows us to avoid performing
explicitly the derivation in Eq. (2.58). Indeed, it is easy to see that for the N -loop
contribution to C

(n)
i one has

∑

l

ρlx̃l
∂C

(n)
i

∂x̃l

∣
∣
∣
∣
∣
N−loop

= 2NC
(n)
i . (2.59)

It is clear that the strategy to obtain the evolution equations for the couplings as well
as the anomalous dimensions of the fields to two-loop order is to evaluate the relevant
dimensionally regularized Feynman diagrams to this order, extract the coefficient of
the single pole of the corresponding renormalization constants and use Eq. (2.58) and
Eq. (2.52). For the beta functions of the gauge coupling it was shown that the background
field method is much more suited for this kind of computation and we now review its
main advantages and characteristics.

16A relation similar to Eq. (2.53) can be derived for the anomalous dimensions.
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2.3.2 Background field method

Before concluding this section we review the formalism of the Background field method
(BFM) which greatly simplifies the derivation of the gauge couplings beta functions.

The BFM [146–153] is an approach in which the explicit gauge invariance is preserved
even after the introduction of gauge-fixing and ghost terms. This contrasts with the classical
approach where the gauge invariance of the classical Lagrangian is no longer manifest once
quantum corrections are included. Thus in the background field approach, even unphysical
quantities such as the divergent counter-terms are gauge invariant. Calculation in the
BFM are thus easier both technically and conceptually. In order to keep the discussion
simpler we assume a pure Yang-Mills theory. There is no obstacles to then, add fermions
and scalars [115,154,155].

The basic idea of the BFM is to split the gauge field into an arbitrary background field
Âa

µ and a quantum field Aa
µ which is the variable of integration in the functional integral.

After a gauge has been fixed, gauge invariance is preserved only in terms of Âa
µ. Therefore,

in the background field approach it is desirable to work with background field Green’s
functions only since they are the one which retain explicit gauge invariance. Moreover, it
can be shown that the renormalization even beyond one-loop can be carried out only in
terms of the background fields, the quantum fields do not need to be renormalized [156]. In
this setup, only the gauge coupling constant and background field need to be renormalized17

which can be done by simply calculating the two-point function of the Âa
µ field.

Due to the explicit gauge invariance retained in this approach, one can relate the beta
function of the gauge coupling constant to the anomalous dimension of the background
field. Consequently, the gauge couplings beta functions can be calculated from two-point
functions, without the need to calculate vertex corrections as in the conventional approach.
Indeed, for example in QCD, denoting Z3, Z̃3, Z2, Zm and Zg the renormalization constants
of the gluon, ghost, quark fields, and the mass and coupling parameters respectively, the
two-point functions of the gauge, ghost and quark fields allow to determine Z3, Z̃3, Z2

and Zm. However, to obtain information on Zg one has to at least calculate one of the
three-point functions and then extract Zg in the following way [125]

Triple gluon vertex ⇒ Z1 ≡ ZgZ
3/2
3 ,

Gluon-quark vertex ⇒ Z1F ≡ ZgZ2Z
1/2
3 , (2.60)

Gluon-ghost vertex ⇒ Z̃1 ≡ ZgZ̃3Z
1/2
3 ,

(2.61)

where ⇒ means that the three-point function gives access to the corresponding combination
of renormalization constants. As a side remark, note that assuming that the Zgs are all
the same we then obtain the Slavnov-Taylor identity [157,158]

Z1

Z3

=
Z̃1

Z̃3

=
Z1F

Z2

, (2.62)

which guarantees the universality of the renormalized coupling constant. Hence, the
background field approach is much more efficient to calculate the beta function of the

17In principle, the gauge fixing parameter also needs to be renormalized but this can be avoided by
going to the Landau-type background field gauge [156].

45



gauge coupling. Below we review the important results of the BFM and apply it to the
calculation of the one-loop gauge coupling beta function in pure Yang-Mills theory.

Calculations in the BFM

The functional integral for the gauge field in the conventional approach is given by

Z[J ] =

∫

[dA]detMG exp

{

i

∫

d4x

(

L− 1

2ξ
(Ga)2 + Aa

µJ
aµ

)}

, (2.63)

in which the integration is over the measure [dA] ≡ Πµ,a[dA
a
µ], (MG)ab =

δGa
µ

δθb
is the

derivative of the gauge-fixing term under an infinitesimal gauge transformation defined by

δAa
µ = fabcθbAc

µ −
1

g
∂µθ

a . (2.64)

The Lagrangian is simply −1
4
F aµνF a

µν with F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . We have

already used in the previous section the effective action which is obtained by the Legendre
transformation

Γ[v] = W [J ]−
∫

d4xJaµvaµ, W [J ] = −i lnZ[J ], vaµ =
δW [J ]

δJa
µ

, (2.65)

which derivatives with respect to v are the vertex functions. One can define analogous
quantities in the BFM where Aa

µ → Âa
µ + Aa

µ. However, in this approach the background
field is not coupled to the source J , we thus introduce

Ẑ[J, Â] =

∫

[dA]detMG exp

{∫

d4x

(

L(Âa
µ + Aa

µ)−
1

2ξ
(Ga)2 + Aa

µJ
aµ)

)}

, (2.66)

where the gauge transformation parameter θa is defined by

δAa
µ = fabcθb(Âc

µ + Ac
µ)−

1

g
∂µθ

a . (2.67)

In addition, similar to W [J ] and Γ[v] we define Ŵ [J, Â] and Γ̂[v̂, Â]

Ŵ [J, Â] = −i ln Ẑ[J, Â], Γ̂[v̂, Â] = Ŵ [J, Â]−
∫

d4xJaµv̂aµ, v̂aµ =
δŴ [J,A]

δJa
µ

. (2.68)

Fixing the background gauge condition to

Ga =
(
∂µδ

ac + gfabcAb
µ

)
Âcµ , (2.69)

one can show [156] that the BFM effective action Γ̂[v̂, Â] is invariant under the following
set of infinitesimal transformations

δÂa
µ = fabcθbÂc

µ −
1

g
∂µθ

a , (2.70)

δv̂aµ = fabcθbv̂cµ . (2.71)
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Consequently, Γ̂[0, Â] is explicitly gauge invariant since the gauge transformation in
Eq. (2.70) is just an ordinary gauge transformation for the background field. Γ̂[0, Â] is
what is computed in the BFM. It can be related to the conventional effective action Γ[v]
by

Γ̂[0, Â] = Γ[v]|v=Â , (2.72)

where the effective action in the BFM Γ̂[0, Â] is computed in the gauge Eq. (2.69) while
the conventional effective action, Γ[v], has to be evaluated with the following gauge fixing
term

Ga = ∂µA
aµ − ∂µÂ

aµ + gfabcÂb
µA

cµ . (2.73)

In general, the vertex functions calculated from the effective action in the gauge of
Eq. (2.73) will look very different from the one in the conventional approach and normal
gauges, however, Eq. (2.72) assures us that every gauge independent physical quantity
will be exactly the same, making it possible to use the BFM to simplify the calculation.

Finally, because explicit gauge invariance is preserved in the BFM, the renormalization
constants ZÂ, Zg of the background field and coupling constant respectively are related.
Indeed, the divergences appearing in the effective action Γ̂[0, Â] must take an explicit
gauge invariant form and are therefore proportional to F a

µνF
aµν times a divergent constant.

Since the renormalized field strengths F̃ a
µν reads

F̃ a
µν = Z

−1/2

Â

(

∂µÂ
a
ν − ∂νÂ

a
µ + gZ−1

g Z
−1/2

Â
fabcdÂb

µÂ
c
ν

)

, (2.74)

it will only take the form of a constant times F a
µν if Zg = Z

−1/2

Â
. Consequently, from

Eq. (2.58) we deduce the relation between the anomalous dimension of the background
gauge field and the beta function of the gauge coupling in Yang-Mills theory

βg = gγÂ = −1

2
g2

∂C
(1)

Â

∂g
, (2.75)

in which in analogy to Eq. (2.56) we have written

ZÂ = 1 +
∞∑

n=1

C
(n)

Â

1

εn
. (2.76)

Example of a calculation in BFM: gauge coupling beta function in Yang-Mills

theory

As an illustrative example we now show how the beta function for the gauge coupling
parameter in pure Yang-Mills theory can be obtained in the background field method.
For that we first need the Feynman rules that can be obtained in the usual way from the
Lagrangian. Since we put A = 0 in Eq. (2.72) there is no gauge field on the external lines.
Because, the integration in the functional integral is only over the quantum field, A, the
background fields do not appear in the loops. In Fig 2.3, we show only the modified and
new vertices in the BFM, taking all momenta as incoming and indicating background
fields by a hat over the group indices.

It is then easy to see that there are only two diagrams that contribute to the two-point
function of the background field, see Fig. 2.4: (i) the ghost loop, diagram (a), (ii) and the
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gauge field loop, diagram (b). Using the Feynman rules given above one can write down
the expression for diagram (a)

iΓ̂FP
µν = (−1)g2µ4−dfdbcf cad

∫
ddk

(2π)d
(2kµ + qµ)(2kν + qν)

k2(k + q)2

= −g2µ2εδabC2(G)

∫
ddk

(2π)d
4kµkν + 2qµkν + 2qνkµ + qµqν

k2(k + q)2
,

(2.77)

in which
∫

µ2εddk

(2π)d
kµkν

k2(k + q)2
=

iπ2

(2π)4
Bµν(q;m1 = 0,m2 = 0)

= − iπ2

(2π)4
Γ(1− ε)2Γ(ε)

4Γ(2− 2ε)

(
4πµ2

−q2

)ε (
1

d− 1
(q2gµν − qµqν)− qµqν

)

,

(2.78)

∫
µ2εddk

(2π)d
qµkν

k2(k + q)2
=

iπ2

(2π)4
qµBν(q;m1 = 0,m2 = 0)

= − iπ2

(2π)4
1

2

(
4πµ2

−q2

)ε
Γ(1− ε)2Γ(ε)

Γ(2− 2ε)
qµqν , (2.79)

∫
µ2εddk

(2π)d
1

k2(k + q)2
=

iπ2

(2π)4
B0(q;m1 = 0,m2 = 0)

=
iπ2

(2π)4
Γ(1− ε)2Γ(ε)

Γ(2− 2ε)

(
4πµ2

−q2

)ε

. (2.80)

Our conventions for the definition of the tensor and scalar integrals Bµν , Bµ, B0 are
given in the Appendix B. Summing Eqs. (2.78, 2.79, 2.80), longitudinal terms (terms
proportional to only qµqν) cancel leaving only the transverse terms

iΓ̂FP
µν = g2δabC2(G)

iπ2

(2π)4
Γ(1− ε)2Γ(ε)

Γ(2− 2ε)

(
4πµ2

−q2

)ε
1

3

(
q2gµν − qµqν

)
. (2.81)

To extract the anomalous dimension of the background field, only the divergent part of
the two-point functions is required. Expending the Eq. (2.81) in Laurent series

Γ(1− ε)2 = 1 +O(ε), Γ(2− 2ε)−1 = 1 +O(ε), Γ(ε) =
1

ε
− γE +O(ε) , (2.82)

Γ̂
FP
µν =

(
1

3ε

)

δabC2(G)
g2

(4π)2
(
q2gµν − qµqν

)
+O(ε) , (2.83)

we obtain the contribution of the ghost loop to the divergent part of the two-point function.
Diagram (b) is calculated in the exact same way and yields

Γ̂
VV
µν =

(
10

3ε

)

C2(G)δ
ab g2

(4π)2
(
q2gµν − qµqν

)
+O(ε) . (2.84)
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â1, µ1, p1

â1, µ1, p1

â1, µ1, p1

â1, µ1, p1

â1, µ1, p1

â2, µ2, p2

â2, µ2, p2
a2, µ2, p2

a2, µ2, p2

a3, µ3, p3

a3, µ3, p3

a4, µ4, p4

a3, p3

a3, p3

a3, p3

a4, p4a4, p4

a2, p2

−ig2 ×

[

f â1â2bfa3a4b(gµ1µ3
gµ2µ4

− gµ1µ4
gµ2µ3

)

+f â1a3bfa4â2b(gµ1µ4
gµ3µ2

− gµ1µ2
gµ3µ4

− gµ1µ3
gµ2µ4

/ξ)

+f â1a4bf â2a3b(gµ1µ2
gµ4µ3

− gµ1µ3
gµ4µ2

+ gµ1µ4
gµ3µ2

/ξ)

]

ig2f â1a3bfa2a4bgµ1µ2 ig2(f â1a3bf â2a4b + f â1a4bf â2a3b)gµ1µ2

−gf â1a2a3(p2 − p3)µ1

a b

b, νa, µ −iδab

k2 + iε
[gµν − kµkν

k2
(1− 1/ξ)]

iδab

k2 + iε
k

k

gf â1a2a3

[

gµ1µ2
(2p1 + p3(1− 1/ξ))µ3

+gµ2µ3
(p2 − p3)µ1

−gµ3µ1
(2p1 + p2(1− 1/ξ))µ2

]

Figure 2.3: Modified vertices with respect to the conventional approach in the BFM. All
the momenta have been taken incoming.

(a) (b)

Figure 2.4: Diagrams contributing to the two-point function of the background field in
pure Yang-Mills theory. The caret reminds us that the external field is the background
field.

In the conventional approach, in contrast to the BFM case, diagram (a) and (b) exhibit
longitudinal contributions that cancel against each other. Adding Γ̂

FP
µν and Γ̂

VV
µν we

determine ZÂ and hence the one-loop beta function of the gauge coupling

ZÂ = 1 +
g2

(4π)2
C2(G)

11

3ε
, βg = −C2(G)

g3

(4π)2
11

3
. (2.85)

Finally, it can be shown that the Feynman rules involving fermions in the BFM are
identical to the ones in the conventional approach, therefore to include the effect of
fermions in the above result one only has to add the conventional results for the fermion
loop, we refer the interested reader to [154] for details.
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2.3.3 Wave function renormalization

Going back to the general gauge field theory introduced in Section 2.3.1, we are now in a
position to present the results for the various RGEs that are implemented in PyR@TE
(Section 2.4). The results of this section take into account all the typos and mistakes of
the original papers that have been reported in the literature, these are nicely summarized
in [159].

We denote Zab
S and Zij

F the wave function renormalization matrices for the scalar
and fermion fields. The contribution of a diagram to the divergent part of Zab

S , and Zij
F

respectively can be written perturbatively in the form

(Zi1i2)
−1 =

1

(4π)2
S
(1)
i1i2

(
A(1)

∆+ B(1)
∆

2
)
+

1

(4π)4
S
(2)
i1i2

(
A(2)

∆+ B(2)
∆

2
)
, (2.86)

where Zi1i2 can be one of the two wave function renormalization quantity, Zab
S , Zij

F , and
∆ is the usual MS expansion parameter as introduced in Eq. (2.13). S

(1),(2)
i1i2

are group
theoretic factors associated with the corresponding diagrams at one- and two-loop order
respectively. The anomalous dimensions for the scalar and fermion fields, γab

S , γij
F , are

respectively obtained from Zab
S , Z ij

F , using Eqs. (2.58, 2.59), and read

γi1i2 =
∑

diag

(
1

(4π)2
A(1)S

(1)
i1i2

+
2

(4π)4
A(2)S

(2)
i1i2

)

, (2.87)

where the minus sign between Eq. (2.86) and Eq. (2.87) disappears because of the fact that
we expand Z−1

i1i2
rather than Zi1,i2 . We now give in turn the results for the two anomalous

dimensions as well as with some example diagrams18 for the two-loop order. Note that
some details will be given on how to interpret the various group factors in Section 2.4.1.

Scalar anomalous dimension

Example diagrams contributing to the scalar anomalous dimension are shown in Fig. 2.5 and
their respective values, A(2), S(2)

ab in Tab. 2.1. The diagram (a) groups three contributions
depending on the nature of the inside loop: bosonic (GB), fermionic (Ferm.), scalar (Sca.).

In a general gauge theory the anomalous dimension depends not only on g but on
many different couplings, e.g. λ, Y . The first line of Fig. 2.5 shows some contributions
proportional to g4 (diagrams (a) and (b)) while line 2 and 3 (diagrams (c), (d), (e))
contains contributions proportional to λ2, Y 2g2 and Y 4. The various expressions for A(2)

of Tab. 2.1 are not gauge invariant. However, properly combined with the anomalous
dimension for the fermions (also gauge dependent, see below) and the corresponding
vertex corrections, the Yukawa and quartic coupling constant will be gauge invariant, see
Sections 2.3.4 and 2.3.5 below.

18Solid lines are fermions, dashed lines represent scalars and wavy lines gauge bosons.
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Finally, we reproduce the full result for the anomalous dimension of the scalar field [159]

(γS
ab)

(1) ≡ A(1)S
(1)
ab = 2κY ab

2 (S)− g2(3− ξ)Cab
2 (S) , (2.88)

(γS
ab)

(2) ≡ 2A(2)S
(2)
ab = −g4Cab

2 (S)

[(
35

3
− 2ξ − 1

4
ξ2
)

C2(G)−
10

3
κS2(F )− 11

12
S2(S)

]

+
1

2
Λ

2
ab(S) +

3

2
g4Cac

2 (S)Ccb
2 (S)− 3κH2

ab(S)− 2κH̄2
ab(S)

+ 10κg2Y 2F
ab (S) , (2.89)

where κ = 1/2(1) for two(four)-component fermions, and

H2
ab(S) =

1

2
Tr

(
Y aY †bY cY †c + Y †aY bY †cY c

)
, Y 2F

ab (S) =
1

2
Tr

(
C2(F )(Y aY †b + Y bY †a)

)
,

H̄2
ab(S) =

1

2
Tr

(
Y aY †cY bY †c + Y †aY cY †bY c

)
, Λ

2
ab(S) =

1

6
λacdeλbcde . (2.90)

(a) (b)

(c) (d)

(e)

Figure 2.5: Example two-loop diagrams contributing to the anomalous dimension of the
scalars.

Fermion anomalous dimension

Again, we show some example diagrams that contribute to the two-loop order anomalous
dimension of the fermion fields and their corresponding contributions in Fig. 2.6 and
Tab. 2.2. As stated in the previous paragraph the anomalous dimension of the fermion
fields depends on the gauge parameter ξ. The full result to one- and two-loop reads
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Table 2.1: Contributions A(2), S(2)
ab corresponding to the diagrams in Fig. 2.5. For diagram

(a) we have split the contribution depending on the nature of the inside loop: bosonic
(GB), fermionic (Ferm.), scalar (Sca.).

Diagram S
(2)
ab A(2)

(a)
(S

(2)
GB)ab = −g4C2(S)δabC2(G) A

(2)
GB = 4

3
+ 11

8
ξ + 3

8
ξ2

(S
(2)
Ferm.)ab = −g4C2(S)δab40κS2(F ) A

(2)
Ferm. = −5

3

(S
(2)
Sca.)ab = −g4C2(S)δabS2(S) A

(2)
Sca. = −11

24

(b) δab
1
2
g4C2(S)C2(G) −63

8
+ 15

4
ξ + 2ξ2

(c) 1
6
λacdeλbcde

1
4

(d) κδabg
2 1
2
Tr

(
C2(F )(Y aY †b + Y bY †a)

)
−ξ

(e) κδab
1
2
Tr

(
Y aY †cY bY †c + Y †aY cY †bY c

)
−1

(b)(a)

(c) (d)

Figure 2.6: Example diagrams contributing to the two-loop anomalous dimension of the
fermion fields.

(γF
ij)

(1) ≡ A(1)S
(1)
ij =

1

2
(Y aY †a)ij + g2C2(F )ijξ ,

(γF
ij)

(2) ≡ 2A(2)S
(2)
ij = 18(Y aY †bY bY †a)ij −

3

2
κ(Y aY †b)ijY

ab
2 (S)

+ g2
[
9

2
Cab

2 (S)(Y aY †b)ij −
7

4
(C2(F )Y aY †a)ij −

1

4
(Y aC2(F )Y †a)ij

]

+ −g4C2(F )ij

[(
25

4
+ 2ξ +

1

4
ξ2
)

C2(G)− 2κS2(F )− 1

4
S2(S)

]

− 3

2
g4 [C2(F )]2ij . (2.91)

The brackets (. . . )ij mean that we take the i, j element of the matrix delimited by the
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Table 2.2: Contributions A(2), S(2)
ij corresponding to the diagrams in Fig. 2.6.

Diagram S
(2)
ij A(2)

(a) g4 [C2(F )]2ij −1
4
ξ2

(b) κ(Y aY †b)ij
1
2
Tr

(
Y †aY b + Y †bY a

)
−3

4

(c) g2(Y bY †a)ijC2(S)ab
1
8
(5 + ξ)

(d) g2(Y btαY †a)ijθ
α
ba −1

4
(6− ξ)

dots. Note that the explicit dependence on θα and tα of diagram (d) disappears in the
final result.

Gauge coupling constant beta function

As discussed at length in Section 2.3.2 the beta function of the gauge coupling parameter
is more efficiently calculated in the BFM, and we reproduce the two-loop result here for
completeness, Eq. (2.92).

β(g) = − g3

(4π)2

{
11

3
C2(G)−

4

3
κS2(F )− 1

6
S2(S) +

2κ

(4π)2
Y4(F )

}

− g5

(4π)4

{

34

3
[C2(G)]

2 − κ

[

4C2(F ) +
20

3
C2(G)

]

S2(F )

−
[

2C2(S) +
1

3
C2(G)

]

S2(S)

}

, (2.92)

where Y4(F ) is defined through

Y4(F ) =
1

d(G)
Tr

(
C2(F )Y aY +a

)
, (2.93)

in which d(G) is the dimension of the gauge group, i.e. the dimension of the adjoint
representation.

2.3.4 Yukawa terms

The next result that we review here is the beta function for the Yukawa coupling. Following
the definition for the renormalization matrix for the scalar, fermion and background fields,
Eq. (2.86) we define

(Zaij)
−1 =

1

(4π)2
S
(1)
aij

(
A(1)

∆+ B(1)
∆

2
)
+

1

(4π)4
S
(2)
aij

(
A(2)

∆+ B(2)
∆

2
)
. (2.94)

We show some example diagrams of ladder topology that contribute to the renormalization
of the Yukawa vertex in Fig. 2.7 along with their contribution to Zaij in Tab. 2.3.
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(a) (b)

(c) (d)

Figure 2.7: Example diagrams contributing to the two-loop anomalous dimension of the
Yukawa vertex.

Table 2.3: Contributions A(2), S(2)
aij corresponding to the diagrams in Fig. 2.7.

Diagram S
(2)
aij A(2)

(a) λabcd(Y
bY †cY d)ij −1

(b) (tβtαY atβtα)ij (−3 + 6ξ + ξ2)

(c) + (d) (Y btαY †aY btα + tαY bY †atαY b)ij 3− ξ

The beta function for the Yukawa coupling constant is obtained as a combination of
the anomalous dimension of the proper vertex correction, γY a

ij obtained from Zaij, the
anomalous dimension of the scalar and fermion fields in the following way

βa
ij ≡ µ

dY a
ij

dµ
= γY a

ij + (γF†Y a)ij + (Y aγF)ij + γS
abY

b
ij (2.95)

As already mentioned, all the gauge dependent parts on the right-hand side of Eq. (2.95)
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cancel against each other to leave βa
ij gauge invariant. Putting all these together leads to

(βa
ij)

(1) =
1

2

[
Y2(F )†Y a + Y aY2(F )

]

ij
+ 2(Y bY †aY b)ij + 2κY b

ijY
ab
2 (S)

−3g2{C2(F ), Y a}ij ,
(2.96)

(βa
ij)

(2) = 2(Y cY †bY a(Y †cY b − Y †bY c))ij −
(

Y b
[

Y2(F )Y †a + Y †aY †
2 (F )

]

Y b
)

ij

− 1

8

[

Y bY2(F )Y †bY a + Y aY †bY †
2 (F )Y b

]

ij
− 4κY ac

2 (S)(Y bY †cY b)ij − 2κY b
ijH̄

2
ab(S)

− 3

2
κY bc

2 (S)(Y bY †cY a + Y aY †cY b)ij − 3κY b
ijH

2
ab(S)− 2λabcd(Y

bY †cY d)ij

+
1

2
Λ

2
ab(S)Y

b
ij + 3g2{C2(F ), Y bY †aY b}ij + 5g2(Y b{C2(F ), Y †a}Y b)ij

− 7

4
g2[C2(F )Y †

2 (F )Y a + Y aY2(F )C2(F )]ij + 6g2(Ha
2t)ij + 10κg2Y b

ijY
2F
ab (S)

− 1

4
g2[Y bC2(F )Y †bY a + Y aY †bC2(F )Y b]ij

+ 6g2[Cbc
2 (S)(Y bY †aY c)ij − 2Cac

2 (S)(Y bY †cY b)ij] + 6g4Cab
2 (S){C2(F ), Y b}ij

+
9

2
g2Cbc

2 (S)(Y bY †cY a + Y aY †cY b)ij −
3

2
g4{[C2(F )]2 , Y a}ij

+ g4
[

−97

6
C2(G) +

10

3
κS2(F ) +

11

12
S2(S)

]

{C2(F ), Y a}ij

− 21

2
g4Cab

2 (S)Cbc
2 (S)Y c

ij

+ g4Cab
2 (S)

[
49

4
C2(G)− 2κS2(F )− 1

4
S2(S)

]

Y b
ij , (2.97)

where we have defined

Y2(F ) = Y +aY a , (2.98)
Ha

2t = tα∗Y aY †btα∗Y b + Y btαY †bY atα . (2.99)

It is a useful check of consistency to see that indeed the terms depending on the gauge
parameter ξ cancel in the expression for βa

ij . Also, we see that the matrices of the fermion
representations, tα appear in the final result making it necessary to apply this result to a
specific model.

2.3.5 Quartic terms

The calculation of the beta function for the quartic coupling to two-loop order is quite
involved with many diagrams contributing. Following the previous definitions of Zab, Zij

and Zaij we define the scalar quartic vertex renormalization Zabcd by

(Zabcd)
−1 =

1

(4π)2
S
(1)
abcd

(
A(1)

∆+ B(1)
∆

2
)
+

1

(4π)4
S
(2)
abcd

(
A(2)

∆+ B(2)
∆

2
)
. (2.100)

In Fig. 2.8, we show some examples of the vertex corrections ordered by their power
of the gauge coupling, from no power (top line) to 6 powers of g. The corresponding
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contributions A(2)S
(2)
abcd can be found in Tab. 2.4. As for the Yukawa coupling constant

the corrections to the vertex are gauge dependent. When combined with the anomalous
dimension of the scalar fields the cancellation occurs leaving the beta function of the
quartic interaction gauge independent as it should. Note also that some diagrams do
not have any contribution to A(2) and are therefore not present in the final result, see
diagrams (a) and (b)19. The invariants appearing in Tab. 2.4 are defined by

Figure 2.8: Example diagrams contributing to the divergent part of Zabcd. From bottom
to top the diagrams are respectively proportional to 6, 4, 2 and no powers of g.

19These diagrams are divergent but have only poles of second order and therefore do not contribute.
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Table 2.4: Contributions A(2), S(2)
abcd corresponding to the diagrams in Fig. 2.8.

Diagram S
(2)
aij A(2)

(a) Λ
3
abcd 0

(b) κHλ
abcd 0

(c) g2
(
Λ̄

2S
abcd + Λ

2g
abcd

)
ξ

(d) g2Λ2g
abcd −(3− ξ)

(e) g4Aλ
abcd

5
4

(f) g4κBY
abcd −2ξ2

(g) g6
(
1
4
Ag

abcd − 1
8
C2(G)Aabcd

)
2ξ3

(h) g6
(
1
4
Ag

abcd − 3
8
C2(G)Aabcd

)
−2ξ2(3− ξ)

Aabcd =
1

8

∑

perm.

{θα, θβ}ab{θ
α, θβ}cd , Λ

2
abcd =

1

8

∑

perm.

λabefλefcd ,

Λ
3
abcd =

1

8

∑

perm.

λabefλefghλghcd , Hλ
abcd =

1

2

∑

perm.

λabefTr
(
Y cY †dY eY †f

)
) ,

Λ̄
2S
abcd =

1

8

∑

perm.

C2(S)
fgλabefλcdeg , Λ

2g
abcd =

1

8

∑

perm.

λabefλcdghθ
α
egθ

α
fh ,

Aλ
abcd =

1

4

∑

perm.

λabef{θ
α, θβ}ef{θ

α, θβ}cd , Ag
abcd =

1

8
fαβγfρσγ

∑

perm.

{θα, θσ}ab{θ
β, θγ}cd ,

BY
abcd =

1

4

∑

perm.

{θα, θβ}abTr
(
tα∗tβ∗Y cY †d + Y ctαtβY †d

)
,

(2.101)

where
∑

perm. represents the sum over the 4! permutations of the external indices a, b, c and
d. At this stage, it is already apparent that a determination by hand of the two-loop beta
function for a given theory is tedious and prone to error due to the numerous combinations
and summations that one has to carry out in order to reduce the general formula given
above into a specific set of RGEs. This is especially true for theories with many different
scalars as illustrated by the group factors entering the quartic coupling beta functions
shown above, Eq. (2.101).

Finally, for completeness we give the full result for the two-loop beta function for the
scalar quartic coupling obtained by combining the anomalous dimension of the scalar
quartic vertex and the anomalous dimension for scalar fields in the following way

βλabcd
≡ µ

dλabcd

dµ
= γabcd +

∑

k

γS
kkλabcd , (2.102)
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where k ∈ {a, b, c, d} and γabcd is the anomalous dimension related to Zabcd by Eq. (2.87).

β
(1)
λabcd

= Λ
2
abcd − 8κHabcd + 2κΛY

abcd − 3g2ΛS
abcd + 3g4Aabcd , (2.103)

β
(2)
λabcd

=

1

2

∑

i

Λ
2(i)λabcd − Λ̄

3
abcd − 4κΛ̄2Y

abcd + κ

{

8H̄λ
abcd −

∑

i

[
3H2(i) + 2H̄2(i)

]
λabcd

}

+ 4κ(HY
abcd + 2H̄Y

abcd + 2H3
abcd) + g2

{

2Λ̄2S
abcd − 6Λ2g

abcd + 4κ(HS
abcd −HF

abcd)

+ 10κ
∑

i

Y 2F(i)λabcd

}

− g4
{[

35

3
C2(G)−

10

3
κS2(F )− 11

12
S2(S)

]

Λ
S
abcd −

3

2
Λ

SS
abcd

− 5

2
Aλ

abcd −
1

2
Āλ

abcd + 4κ(BY
abcd − 10B̄Y

abcd)

}

+ g6
{[

161

6
C2(G)−

32

3
κS2(F )− 7

3
S2(S)

]

Aabcd −
15

2
AS

abcd + 27Ag
abcd

}

, (2.104)

where to the already defined group factors, Eq. (2.101), one has to introduce the following
ones

Habcd =
1

4

∑

perm.

Tr
(
Y aY †bY cY †d

)
, Λ

Y
abcd =

∑

i

Y2(i)λabcd ,

B̄Y
abcd =

1

4

∑

perm.

{θα, θβ}abTr
(
tα∗Y ctβY †d

)
, Λ̄

3
abcd =

1

4

∑

perm.

λabefλceghλdfgh ,

H̄λ
abcd =

1

8

∑

perm.

λabefTr
(
Y cY †eY dY †f + Y †cY eY †dY f

)
, Λ̄

2Y
abcd =

1

8

∑

perm.

Y fg
2 (S)λabefλcdeg ,

HY
abcd =

∑

perm.

Tr
(
Y2(F )Y †aY bY †cY d

)
, Λ

S
abcd =

∑

i

C2(i)λabcd ,

H3
abcd =

1

2

∑

perm.

Tr
(
Y aY †bY eY †cY dY †e

)
, HS

abcd =
∑

i

C2(i)Habcd ,

HF
abcd =

∑

perm.

Tr
(
{C2(F ), Y a}Y †bY cY †d

)
, Λ

SS
abcd =

∑

i

[C2(i)]
2
λabcd ,

Āλ
abcd =

1

4

∑

perm.

λabef{θ
α, θβ}ce{θ

α, θβ}df , AS
abcd =

∑

i

C2(i)Aabcd ,

H̄Y
abcd =

1

2

∑

perm.

Tr
(
Y eY †aY eY †bY cY †d + Y †eY aY †eY bY †cY d

)
, (2.105)

with i ∈ {a, b, c, d} and Λ
2(i) ≡ Λ

2
ab(S)|a=b=i, H

2(i) ≡ H2
ab(S)|a=b=i, H̄

2(i) ≡ H̄2
ab(S)

∣
∣
a=b=i

and Y 2F(i) ≡ Y 2F
ab (S)

∣
∣
a=b=i

are the eigenvalues of the invariants of Λ2
ab(S), H2

ab(S), H̄
2
ab(S),

Y 2F
ab (S). A more precise definition of the various terms entering Eqs. (2.104, 2.105) will be

given in a forthcoming section when we will discuss the implementation of these equations
in PyR@TE, Section 2.4.1.
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2.3.6 Including mass and trilinear terms

All the evolution equations for the couplings present in L0 have now been presented and
we turn to the parameters of L1, the dimensional parameters, Eq. (2.39). In principle,
one has to repeat the calculation entirely for each term, extract the anomalous dimension
of the various operator and combine it with the anomalous dimensions of the scalar and
fermion fields to obtain the corresponding beta function. Fortunately, this can be avoided
by noting the following three points

(i) the RGEs for the fermion mass terms can be inferred from the beta function of the
Yukawa couplings by taking the a index to be a dummy index,

(ii) for the trilinear scalar interaction terms it suffices to take one external index to be
dummy in the beta function of the quartic scalar interaction coupling, a, b, c or d,

(iii) scalar mass terms are also obtained from the beta function of the quartic coupling
by taking two indices to be dummy.

Dummy, here, means that the corresponding field does not propagate and do not have any
gauge interaction. Doing so, we can see that the trilinear couplings enter the RGE of the
fermion mass at the two-loop level while the fermion mass contribute to the beta function
of the trilinear coupling at one-loop already. Finally, the scalar mass beta function receives
contributions from both the fermion mass and trilinear terms at one-loop. The results20are
quite lengthy and we do not include them here and refer the interested reader to [159]
instead.

2.3.7 Extension to semi-simple gauge groups

So far, all the results presented above were for a simple gauge group G. However, theories
based on a product of simple gauge groups are very common in particle physics and to
accommodate these models the above results need to be modified accordingly. Fortunately,
it is possible to obtain the corresponding RGEs by applying substitution rules [111]. To
understand the requirements needed if the gauge structure is now a product of simple
gauge groups with at most one abelian factor let us say, G1 × G2 · · · × Gn with coupling
constants g1, g2, . . . gn, one has to associate a gauge coupling factor g for each generator
θα or tα and a factor g2 for each Casimir or Dynkin index. Then a careful inspection of
the Feynman diagrams leads to the following replacement rules for the gauge coupling
constants RGEs

g3C2(G) → g3kC2(Gk) , g3S2(R) → g3kS
k
2 (R) ,

g5[C2(G)]
2 → g5k[C2(Gk)]

2 , g5C2(G)S2(R) → g5kC2(Gk)S
k
2 (R) ,

g5C2(R)S2(R) →
∑

l

g3kg
2
l C

l
2(R)Sk

2 (R) , (2.106)

20As for the results above the expressions are coming from the latest summary [159].
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in which k, l are subgroup indices, and R denotes either S or F . Then, for the replacement
rules of the other beta functions we have

g2C2(R) →
∑

k

g2kC
k
2 (R) , g4C2(G)C2(R) →

∑

k

g4kC2(Gk)C
k
2 (R) ,

g4S2(R)C2(R
′) →

∑

k

g4kS
k
2 (R)Ck

2 (R
′) , g4C2(R)C2(R

′) →
∑

k,l

g2kg
2
l C

k
2 (R)C l

2(R
′) .

(2.107)

For the group factors Ha
2t, B

Y
abcd and B̄Y

abcd one has to give a different group index to each
representation matrix i.e. θα → θαk and θβ → θ

β
l , same for tα, tβ. The g4 factor are also

split into
∑

k,l g
2
kg

2
l , e.g. g4BY

abcd is replaced by

g4BY
abcd =

g4

4

∑

perm.

{θα, θβ}abTr
(
tα∗tβ∗Y cY †d + Y ctαtβY †d

)
(2.108)

→
∑

k,l

g2kg
2
l

∑

perm.

{θαk , θ
β
l }Tr

(

tα∗k tβl Y
cY †d + Y ctαk t

β
l Y

†d
)

. (2.109)

The final set of substitution rules are expressed in terms of the following quantity

Λab,cd = θαacθ
α
bd , (2.110)

so that Aabcd can be written in the form

Aabcd =
1

4

∑

perm.

(Λac,efΛef,bd + Λae,fdΛeb,cd) , (2.111)

and the substitution rule simply as

g2Λab,cd →
∑

k

g2kΛab,cd . (2.112)

Consequently, the last substitution rules read

g4Aabcd →
1

4

∑

perm.

(Λac,efΛef,bd + Λae,fdΛeb,cf ) ,

g6S2(R)Aabcd →
1

4

∑

k,l

g4kg
2
l S

k
2 (R) ,

g6C2(G)Aabcd →
1

4

∑

k,l

g4kg
2
l C2(Gk)

∑

perm.

(Λk
ac,efΛ

l
ef,bd + Λ

k
ae,fdΛ

l
eb,cf ) ,

g6AS
abcd →

∑

k

∑

i

g2kC
k
2 (i)

1

4

∑

l,m

g2l g
2
m

∑

perm.

(Λl
ac,efΛ

m
ef,bd + Λ

l
ae,fdΛ

m
eb,cf ) ,

g6Ag
abcd →

∑

k

g6kA
g
abcd(k) .

This set of substitution rules are in principle straightforward to apply even though they
make the calculation by hand yet a bit more challenging. Computational wise they
make the computation significantly more demanding since the time for computing terms
proportional to g4 grows quadratically with the number of gauge groups.
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2.3.8 What about supersymmetric theories?

In principle, the general beta functions reviewed in the previous sections can be used
to calculate evolution equations for supersymmetric theories. However, there is one
difficulty to this. As explained in Section 2.3, the general equations have been obtained
using dimensional regularization (DREG) and the MS renormalization scheme which is
known to violate explicitly supersymmetry because it introduces a mismatch between the
gauge boson and gaugino number of degrees of freedom. Therefore, the use of DREG
is not appropriate and one should rather rely on dimensional reduction (DRED) which
manifestly preserves supersymmetry. It has been shown that in DREG SUSY is violated
in the finite parts of one-loop graphs and in the divergent terms of two-loop contributions.
Consequently, the beta functions calculated in the two schemes will differ starting at the
two-loop order [160]. One way out is to use translation rules to go from MS scheme to DR
or DR which have been given in [160]. The results of this approach can be found in [160]
and a direct calculation using dimensional reduction [161] or supergraph methods [162]
are also available in the literature21.

When using the first method, the general equations need to be specialized to the
SUSY case before doing the translation into the DR scheme. Doing so, the RGEs
significantly simplifies and the final expressions are much shorter. In addition, because
quartic terms in SUSY come from the D terms and are therefore related to the gauge
couplings of the theory, one does not need the RGEs for the quartic terms. Since these
beta functions are responsible for most of the complexity (including the need of a specific
matrix representation for the scalar) of applying the general equations to specific theories
because of the multiple sums they require, deriving evolution equations for SUSY models
is much simpler than for general theories.

This concludes our review of the results for the two-loop beta functions of a general
gauge theory. We have presented the evolution equations for dimensionless parameters
such as gauge, Yukawa and scalar quartic coupling constants in the MS scheme to the
second order in perturbation theory. In addition, we discussed how the RGEs for the
fermion and scalar mass terms as well as the scalar trilinear terms can be obtained.
Note that we did not discuss kinetic mixing because it is not implemented in PyR@TE,
comments on this issue are given in Section 2.4.12.

2.4 PyR@TE

It is clear from the previous section that deriving the full set of two-loop RGEs for a specific
model from the general equations is tedious and prone to error. In this section we present
a python code that we called PyR@TE for “Python RGEs @ Two-loop for Everyone”
which implements the equations presented in Section 2.3 for an arbitrary Lagrangian22.
We first provide details about the meaning of the various group factors appearing in the
RGEs and the meaning of the general equations. Then, the structure of the code is briefly
introduced before explaining the installation of PyR@TE and its use. We also discuss the
validation of the results and give more information about the supported gauge groups,
irreducible representations and already implemented models. Finally, we discuss future

21Obviously, these results agree with each other.
22The technical limitation of PyR@TE will be presented below.
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possible directions to extend the code such as considering modifications induced by kinetic
mixing, including the running of vevs and higher order corrections.

2.4.1 Implementing the equations

In this paragraph, we want to explicit the meaning of the various terms in the RGEs
presented in Section 2.3, emphasizing the set in which the various indices must be varied.
This is done in the view of being able to write algorithms implementing these results.
The first step we take is to give more details on the construction of the matrices forming
representations of the real degrees of freedom of complex scalar fields. Then, we re-write
the various RGEs equations and show how the SM result is recovered.

Generators for scalars

In the calculation the scalar fields are assumed to be real and the θα matrices to be purely
imaginary and anti-symmetric. To get the correct form of these generators we can start
with a complex scalar ϕ which transforms similar to the complex fermion as

ϕ → eiǫ
αtαϕ . (2.113)

We can now define a real vector Φ which consists of the real and imaginary component of
ϕ

Φ =

(
Re(ϕ)
Im(ϕ)

)

. (2.114)

Φ transforms according to
Φ → eiǫ

αθαΦ , (2.115)

from where we can obtain the relation

θα = i

(
Im(tα) Re(tα)
−Re(tα) Im(tα)

)

. (2.116)

We can demonstrate this construction at the example of the fundamental representation
of SU(2). Note, that this is equivalent to embedding SU(2) into SO(4). The complex,
Hermitian generators for SU(2) are proportional to the Paul matrices

{σ1, σ2, σ3} =

{(
0 1
1 0

)

,

(
0 −i
i 0

)

,

(
1 0
0 −1

)}

. (2.117)

Now, applying the relation 2.116 to all three matrices, we obtain the following set of
generators

{Σ̃1, Σ̃2, Σ̃3} = i

{(
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

)

,

(
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

)

,

(
0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

)}

.

(2.118)
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These matrices are indeed antisymmetric and imaginary and we can check that they satisfy
the same commutation relations as the σ’s:

[

Σ̃1, Σ̃2

]

= 2iΣ̃3, (2.119)
[

Σ̃1, Σ̃3

]

= −2iΣ̃2, (2.120)
[

Σ̃2, Σ̃3

]

= 2iΣ̃1 . (2.121)

Gauge interactions

We now give some details on the general formula presented in the previous section and
as a first step we concentrate on the terms involving only gauge interactions. The basic
objects to calculate the one- and two-loop β-functions for the gauge couplings in absence
of any matter interaction are the quadratic Casimir operator C2 and the Dynkin index S2

of the gauge group. Those indices can be related to the generators tα for fermions and θα

for scalars introduced in Section 2.3.1

Cab
2 (S) = θαacθ

α
cb , S2(S)δAB = Tr(θαθβ) , (2.122)

Cab
2 (F ) = tαact

α
cb , S2(F )δαβ = Tr(tαtβ) . (2.123)

The first step is to make the meaning of the indices more explicit. For this purpose we
assume that we have a gauge sector which is a direct product of n non-Abelian gauge
groups and at most one Abelian gauge group U(1). The non-Abelian groups are labeled
with small letters: U(1) × G1 × · · · × Gk × · · · × Gn. In the case of several U(1)′s the
situation is more involved due to the impact of kinetic mixing [163]. Rules to derive the
entire two-loop RGEs in this context have just recently been given in Ref. [164].

For the charge indices with respect to the non-Abelian gauge groups we are going to
use Greek letters in the following. In addition, there are sets of fermion fields ψ1 . . .ψnf

and real scalars φ1 . . .φns which can be charged under these gauge groups. Moreover,
all fields can come in an arbitrary number of generations N i

F respectively N i
S so that in

general each field carries n+ 1 indices. Using these conventions, we can rewrite the group
constants for one particular non-Abelian gauge group k as

C
ψi
gi,α1...αk...αn

ψ
j
gj ,β1...βk...βn

2,k (F ) = δijδgigjδα1β1 . . . δαk−1βk−1
δαk+1βk+1

. . . δαnβn
Ck(Λ(ψ

i)) ,

S
ψi
gi,α1...αk...αn

ψ
j
gj ,β1...βk...βn

2,k (F ) = δijδgigjδα1β1 . . . δαk−1βk−1
δαk+1βk+1

. . . δαnβn
Sk(Λ(ψ

i)) ,

(2.124)

and similar for scalars. Here, we introduced Ck(Λ) and Sk(Λ) which are the quadratic
Casimir and Dynkin index of an irrep with highest weight Λ with respect to the gauge
group k. C can be calculated using the well-known formula

C(Λ) = hΛ,Λ+ 2δi , (2.125)

with δ = (1, 1, . . . , 1) in the Dynkin basis. The Dynkin index is normalized in a way that
the value for the fundamental irrep is 1

2
:

Sk(Λ) =
Nk(Λ)

N(Gk)
Ck(Λ) . (2.126)
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Here, N(Λ) is the dimension of the irrep and N(G) the dimension of the adjoint represen-
tation. For the Abelian gauge group we have

C
ψi
gi,α1...αk...αn

ψ
j
gj ,β1...βk...βn

2,U(1) (F ) = S
ψi
gi,α1...αk...αn

ψ
j
gj ,β1...βk...βn

2,U(1) (F )

= δijδgigjδα1β1 . . . δαnβn
Q(ψi)2 .

(2.127)

Q is the charge of the field which might include a GUT normalization. We can now define
the Dynkin index summed over all states present in the model:

S̃2,k(S) =
ns∑

s=1

n∏

l=1

N s
SÑ(Λ(s))lkSk(Λ(s)) , (2.128)

S̃2,k(F ) =

nf∑

f=1

n∏

l=1

N f
F Ñ(Λ(f))lkSk(Λ(f)) , (2.129)

with

Ñ(Λ)lk =

{

Nl(Λ) if l �= k,

1 else if l = k .
(2.130)

For the Abelian gauge group we get

S̃2,U(1)(S) =
ns∑

s=1

n∏

l=1

N s
SNl(Λ(s))Q(s)2 , (2.131)

S̃2,U(1)(F ) =

nf∑

f=1

n∏

l=1

N f
FNl(Λ(f))Q(f)2 . (2.132)

With these results, the one-loop β functions of a particular gauge coupling gGk
is calculated

via

β(gGk
) = −

g3Gk

16π2

(
11

3
C(Gk)−

2

3
S̃2,k(F )− 1

6
S̃2,k(S)

)

, (2.133)

where C(G) is the quadratic Casimir operator in the adjoint representation.
We want to clarify these expression with the example of the SM, but concentrate

for brevity just on the non-Abelian sector. That means, we have the gauge groups
SU(2)L × SU(3)C , the fermionic fields23 q(2, 3), ū(1, 3̄), d̄(1, 3̄), l(2, 1), e(1, 1) and two real
scalars φh(2, 1), σh(2, 1) which are stemming from one complex Higgs doublet

H =
1√
2
(φh + iσh) . (2.134)

All fermions appear in NG generations while we restrict the generation of Higgs fields to
one. Hence, we obtain:

S̃2,1(F ) = NG

[
3 · SSU(2)(Λ(q)) + SSU(2)(Λ(l))

]
= 2NG , (2.135)

S̃2,1(S) = SSU(2)(Λ(φ
h)) + SSU(2)(Λ(σ

h)) = 1 , (2.136)

S̃2,2(F ) = NG

[
2 · SSU(3)(Λ(q)) + SSU(3)(Λ(d)) + SSU(3)(Λ(u))

]
= 2NG . (2.137)

23In brackets we show the quantum numbers with respect to SU(2)L × SU(3)C .
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In addition, C(SU(N)) = N holds. Hence, we obtain from 2.133

β(g2) = − g32
16π2

(
11

3
2− 2

3
2NG − 1

6

)

= − g32
16π2

(
43

6
− 4

3
NG

)

, (2.138)

β(g3) = − g33
16π2

(
11

3
3− 2

3
2NG

)

= − g33
16π2

(

11− 4

3
NG

)

. (2.139)

Here, we have introduced the short form g2 = gSU(2) and g3 = gSU(3). We continue with
the two-loop β-functions. We have to clarify the meaning of

|C(G)|2 , S(R)C(G) , S(R)C(R) , (2.140)

with R = S, F . The easy part is |C(G)|2 which results for a SU(N) gauge group in N2.
We can use the already introduced S̃ to express S(R)C(G) as

S(R)C(G) → S̃2,kC(Gk) . (2.141)

Furthermore, the correct multiplicity for the term S(R)C(R) can be obtained by inspecting
a representative Feynman diagram. The result is

(S(R)C(R))k ≡
∑

r

∑

l

g2kg
2
l NrSk(Λ(r))Cl(Λ(r))

∏

m

Ñ(Λ(r))mk (2.142)

with r = s if R = S or f if R = F . Note, there is no (implicit) sum over k. Hence, the
two-loop contributions stemming purely from gauge interactions to the β functions are in
general given by

β(2)(gGk
) = − gGk

(16π2)2

[

g4Gk

34

3
|C(Gk)|

2 − 1

2

(

4(S(F )C(F ))k +
20

3
S̃2,k(F )C(Gk)

)

−
(

2(S(S)C(S))k +
1

3
S̃2,k(S)C(Gk)

)]

. (2.143)

For a SU(N) gauge group this can be simplified by using |C(Gk)| = N and |C(Gk)|
2 = N2.

For the same particle content as above we obtain

(S(F )C(F ))1 = NG

(
3

2
g42 + 2g22g

2
3

)

, (2.144)

(S(S)C(S))1 =
3

4
g42 , (2.145)

(S(F )C(F ))2 = NG

(
3

4
g22g

2
3 +

8

3
g43

)

, (2.146)
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and end up with the β functions

β(2)(g2) = − g2
(16π2)2

[

g42
34

3
22 − 1

2

(

4NG

(
3

2
g42 + 2g22g

2
3

)

+
20

3
· 2 · 2 · NG · g42

)

−
(

2 ·
3

4
g42 +

1

3
· 2 · g42

)]

= − g2
(16π2)2

[
138

4
g42 −NG

(
49

3
g42 + 4g22g

2
3

)

− 13

6
g42

]

, (2.147)

β(2)(g3) = − g3
(16π2)2

[

g43 ·
34

3
· 32 − 1

2

(

4NG

(
3

4
g22g

2
3 +

8

3
g43

)

+
20

3
· 2 · 3NG · g43

)]

= − g3
(16π2)2

[

102g43 −NG

(
76

3
g43 +

3

2
g22g

2
3

)]

. (2.148)

Matter interactions

From Eqs. (2.38, 2.39) the potential of a general renormalizable quantum field theory
consists of the following terms:

−V =
1

2
(Y a

jkψjξψkφa − (mf )jkψjξψk + h.c.)

+
1

4!
λabcdφaφbφcφd −

1

2
m2

abφaφb −
1

3!
habcφaφbφc . (2.149)

Note that a tadpole term tφ, which is in principle possible for a gauge singlet is not
present, since it can always be absorbed into a shift of φ. Using the same conventions as
introduced in Section 2.4.1, we can re-write 2.149 as

−V =
1

2

∑

i,j,k

[Cα1β1γ1 · · · · · Cαnβnγn ]Y
φk
g1,α1...αn

ψi
g2,β1...βn

ψ
j
g3,γ1...γn

φk
g1,α1...αn

ψi
g2,β1...βn

ξψj
g3,γ1...γn

+ h.c.

−1

2

∑

i,j

[Cα1β1 · · · · · Cαnβn
](mf )ψi

g1,α1...αn
ψ
j
g3,β1...βn

ψi
g1,α1...αn

ξψ
j
g3,β1...βn

+ h.c.

+
1

4!

∑

i,j,k,l

[Cα1β1γ1δ1 · · · · · Cαnβnγnδn ]λφi
g1,α1...αn

φ
j
g2,β1...βn

φk
g3,γ1...γn

φl
g4,δ1...δn

φi
g1,α1...αn

φ
j
g2,β1...βn

φk
g3,γ1...γn

φl
g4,δ1...δn

− 1

3!

∑

i,j,k

[Cα1β1γ1 · · · · · Cαnβnγn ]hφi
g1,α1...αn

φ
j
g2,β1...βn

φk
g3,γ1...γn

φi
g1,α1...αn

φ
j
g2,β1...βn

φk
g3,γ1...γn

−1

2

∑

i,j

[Cα1β1 · · · · · Cαnβn
]m2

φi
g1,α1...αn

φ
j
g2,β1...βn

φi
g1,α1...αn

φ
j
g2,β1...βn

. (2.150)

Here, we introduced the Clebsch-Gordan coefficient (CGC), C, which vanish for combi-
nations of fields which are not gauge invariant. In addition, to simplify the notation we
kept also a charge (’dummy’) index for fields which are not charged under a particular
gauge group. In this case relations like Cαβγ = Cαγ hold for a dummy index β, of course.
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Finally, we are going to define the following objects:

Y
φi
gi,α1...αn

ψ
j
gj ,β1...βn

ψk
gk,γ1...γn

= − ∂3V

(∂φi
gi,α1...αn

)(∂ψj
gj ,β1...βn

)(∂ψk
gk,γ1...γn

)
, (2.151)

M
ψ
j
gj ,β1...βn

ψk
gk,γ1...γn

= − ∂2V

(∂ψj
gj ,β1...βn

)(∂ψk
gk,γ1...γn

)
, (2.152)

L
φi
gi,α1...αn

φ
j
gj ,β1...βn

φk
gk,γ1...γn

φl
gl,δ1...δn = − ∂4V

(∂φi
gi,α1...αn

)(∂φj
gj ,β1...βn

)(∂φk
gk,γ1...γn

)(∂φl
gl,δ1...δn

)
,

(2.153)

H
φi
gi,α1...αn

φ
j
gj ,β1...βn

φk
gk,γ1...γn = − ∂3V

(∂φi
gi,α1...αn

)(∂φj
gj ,β1...βn

)(∂φk
gk,γ1...γn

)
, (2.154)

MS
φi
gi,α1...αn

φ
j
gj ,β1...βn = − ∂2V

(∂φi
gi,α1...αn

)(∂φj
gj ,β1...βn

)
. (2.155)

The objects Y , H, L, M and MS are independent of the ordering of their arguments and
contain all necessary information about the involved states in the most explicit way and
can therefore be used to build up algorithms to calculate the β functions for any given
model if the particle content and the potential is provided. For this purpose, it is, of
course, necessary to express the general formulae, see Section 2.3, by using these objects.
We show this at the example of the one-loop β function of the Yukawa couplings which
reads Eq. (2.97)

(βa
ij)

(1) =
1

2
[Y bY †bY a + Y aY †bY b]ij + 2

(
Y bY †aY b

)

ij

+
1

2
Y b
ijTr(Y †aY b + Y †bY a)− 3g2{C2(F ), Y a}ij . (2.156)
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Using our most explicit notation, these terms are written as

(β(1))
φi
gi,α1...αn

ψ
j
gj ,β1...βn

ψk
gk,γ1...γn

=

1

2

∑

s1,f1,f2

∑

o,p,q

∑

η,ρ,σ

[

Y
φ
s1
go,η1...ηn

ψ
j
gj ,β1...βn

ψ
f1
gp,ρ1...ρn

(

Y
φ
s1
go,η1...ηn

ψ
f1
gp,ρ1...ρn

ψ
f2
gq,σ1...σn

)†

Y
φi
gi,α1...αn

ψ
f2
gq,σ1...σn

ψk
gk,γ1...γn

+

+Y
φi
gi,α1...αn

ψ
j
gj ,β1...βn

ψ
f1
gp,ρ1...ρn

(

Y
φ
s1
go,η1...ηn

ψ
f1
gp,ρ1...ρn

ψ
f2
gq,σ1...σn

)†

Y
φ
s1
go,η1...ηn

ψ
f2
gq,σ1...σn

ψk
gk,γ1...γn

]

+2
∑

s1,f1,f2

∑

o,p,q

∑

η,ρ,σ

[

Y
φ
s1
go,η1...ηn

ψ
j
gj ,β1...βn

ψ
f1
gp,ρ1...ρn

(

Y
φi
gi,α1...αn

ψ
f1
gp,ρ1...ρn

ψ
f2
gq,σ1...σn

)†

Y
φ
s1
go,η1...ηn

ψ
f2
gq,σ1...σn

ψk
gk,γ1...γn

+
1

2

∑

s1,f1,f2

∑

o,p,q

∑

η,ρ,σ

[

Y
φ
s1
go,η1...ηn

ψ
j
gj ,β1...βn

ψk
gk,γ1...γn

((

Y
φi
gi,α1...αn

ψ
f1
gp,ρ1...ρn

ψ
f2
gq,σ1...σn

)†

Y
φ
s1
go,η1...ηn

ψ
f2
gq,σ1...σn

ψ
f1
gp,ρ1...ρn

+

(

Y
φ
s1
go,η1...ηn

ψ
f1
gp,ρ1...ρn

ψ
f2
gq,σ1...σn

)†

Y
φi
gi,α1...αn

ψ
f2
gq,σ1...σn

ψ
f1
gp,ρ1...ρn

)]

+

−3
∑

n

g2n
∑

f1

∑

o

∑

η

[

C
ψ
j
gj ,β1...βn

ψ
f1
go,η1...ηn

2,n Y
φi
gi,α1...αn

ψ
f1
go,η1...ηn

ψk
gk,γ1...γn

+Y
φi
gi,α1...αn

ψ
j
gj ,β1...βn

ψ
f1
go,η1...ηn

C
ψ
f1
go,η1...ηn

ψk
gk,γ1...γn

2,n

]

−3g2
∑

f1

∑

o

∑

η

[

C
ψ
j
gj ,β1...βn

ψ
f1
go,η1...ηn

2,U(1) Y
φi
gi,α1...αn

ψ
f1
go,η1...ηn

ψk
gk,γ1...γn

+Y
φi
gi,α1...αn

ψ
j
gj ,β1...βn

ψ
f1
go,η1...ηn

C
ψ
f1
go,η1...ηn

ψk
gk,γ1...γn

2,U(1)

]

. (2.157)

The most general expressions look quite involved. Therefore, we are going to clarify their
usage at the example of the SM, but concentrate again on the non-Abelian sector. The
Yukawa part of the SM potential is usually written as:

− V = Y ij
d H†diqj + Y ij

e H†eilj + Y ij
u Huiqj . (2.158)

Here, i, j are the generation indices of the SM fermions and all isospin and charge indices
are only implicit. We can make the following association:

ψ1
gj ,α1α2

= qj,α1α2 , ψ2
gj ,α1α2

= uj,α2 , (2.159)

ψ3
gj ,α1α2

= dj,α2 , ψ4
gj ,α1α2

= lj,α1 , ψ5
gj ,α1α2

= ej (2.160)

φ1
gj ,α1α2

= φh
α1

, φ2
gj ,α1α2

= σh
α1

. (2.161)
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Together with Eq. (2.134) and Eq. (2.150), the potential given in Eq. (2.158) becomes

−V =
1√
2
Y

φh
α1

di,β2qj,γ1γ2
δβ2γ2δα1γ1φ

h
α1
di,β2qj,γ1γ2 −

i√
2
Y

σh
α1

di,β2qj,γ1γ2
δβ2γ2δα1γ1σ

h
α1
di,β2qj,γ1γ2

+
1√
2
Y

φh
α1

eilj,γ1
δα1γ1φ

h
α1
eilj,γ1 −

i√
2
Y

σh
α1

eilj,γ1
δα1γ1σ

h
α1
eilj,γ1

+
1√
2
Y

φh
α1

ui,β2
qj,γ1γ2

δβ2γ2ǫα1γ1φ
h
α1
ui,β2qj,γ1γ2 +

i√
2
Y

σh
α1

ui,β2
qj,γ1γ2

δβ2γ2ǫα1γ1σ
h
α1
ui,β2qj,γ1γ2 .

(2.162)

Here, we already introduced the CGC

C2,2
αβ = ǫαβ , C2∗,2

αβ = C2,2∗

αβ = δαβ , (2.163)

for SU(2) as well as
C 3̄,3

αβ = C3,3̄
αβ = δαβ , (2.164)

for SU(3). Using Eq. (2.151) we can calculate the Y ’s we need:

Y
σh
α1

ui,β2
qj,γ1γ2

= i√
2
Y ij
u δβ2γ2ǫα1γ1 , Y

φh
α1

ui,β2
qj,γ1γ2

= 1√
2
Y ij
u δβ2γ2ǫα1γ1 (2.165)

Y
σh
α1

di,β2qj,γ1γ2
= − i√

2
Y ij
d δβ2γ2δα1γ1 , Y

φh
α1

di,β2qj,γ1γ2
= 1√

2
Y ij
d δβ2γ2δα1γ1 (2.166)

Y
σh
α1

eilj,γ1
= − i√

2
Y ij
e δα1γ1 , Y

φh
α1

eilj,γ1
= 1√

2
Y ij
e δα1γ1 . (2.167)

All other combinations of fields vanish. Inserting this into Eq. (2.157) and evaluating all
sums we would obtain the one-loop β function for all Yukawa couplings. For instance, the
β-function of Yd can be calculated using the relation

β
(1)

Y ij
d

=
√
2(β(1))

φh
α1

di,β2qj,γ1γ2
δβ2γ2δα1γ1 ≡

√
2(β(1))

φh
1

di,2qj,12
(2.168)

First, we multiplied the β function by
√
2 since Yφh

dq corresponds to Yd√
2
, while we want to

have the running of Yd. Furthermore, we restricted ourselves to an explicit combination of
external color charges and isospin indices. This has been done to simplify the following
calculation. To point out the main steps of the calculation, we concentrate on the fourth
and fifth line of Eq. (2.157):

β
(1)

Y ij
d

=
√
2

[

. . .

1

2

∑

s

∑

f1,f2

N f
F∑

p,q=1

2∑

η1=1

2∑

σ1=1

2∑

ρ1=1

3∑

ρ2=1

3∑

σ2=1

[

Y
φs
η1

di,1qj,12

(

(

Y
φh
1

ψ
f1
p,ρ1ρ2

ψ
f2
q,σ1σ2

)†

Y
φs
η1

ψ
f2
q,σ1σ2

ψ
f1
p,ρ1ρ2

+

(

Y
φs
η1

ψ
f1
p,ρ1ρ2

ψ
f2
q,σ1σ2

)†

Y
φh
1

ψ
f2
q,σ1σ2

ψ
f1
p,ρ1ρ2

)]

+ . . .

]

. (2.169)
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First, one has to evaluate the sum over s and f1, f2. The non-vanishing contributions are

ψf1,2 = d, q , ψf1,2 = u, q , ψf1,2 = l, e (2.170)

while only
φs = φh (2.171)

is possible. For φs = σh the two terms in the sum enter with a different sign and cancel
each other. All terms are calculated in the same way, and we pick for further discussion
ψf1 = d, ψf2 = q:

β
(1)

Y ij
d

=
√
2

[

· · ·+
1

2

∑

p,q

∑

η1,σ1

∑

ρ2,σ2

[

Y
φh
η1

di,2qj,12

(
(

Y
φh
1

dp,ρ2qq,σ1σ2

)†

Y
φh
η1

qq,σ1σ2dp,ρ2

+
(

Y
φh
η1

dp,ρ2qq,σ1σ2

)†

Y
φh
1

qq,σ1σ2dp,ρ2

)]

+ . . .

]

= . . .

√
2

2

∑

p,q

∑

η1,σ1

∑

ρ2,σ2

[(
1√
2
Y ij
d δ1η1

)(
1√
2
Y pq,†
d δ1σ1δρ2σ2

)(
1√
2
Y qp
d δη1σ1δρ2σ2

)

+

+

(
1√
2
Y ij
d δ1η1

)(
1√
2
Y pq,†
d δη1σ1δρ2σ2

)(
1√
2
Y qp
d δ1σ1δρ2σ2

)]

+ . . .

= · · ·+
1

4
Y ij
d

∑

p,q

(3Y pq,†
d Y qp

d + 3Y pq,†
d Y qp

d ) + . . .

= · · ·+
3

2
Y ij
d Tr(Y †

d Yd) + . . . (2.172)

Here, one can see nicely the appearance of the color factor due to the sum over the charges
of the internal particles. The other terms can be obtained similarly: ψf1 = q and ψf2 = d
results in the same coefficient, i.e. one gains a factor of two. For ψf1,2 = q, u one gets the
same result as for q, d with Yd replaced by Yu, while for ψf1,2 = l, e one gets this term
with Yd → Ye together with a relative factor of 1

3
because of the missing color factor. In

sum, we end up with the well known result

β
(1)
Yd

=
1

16π2

[

Yd

(

3Tr(Y †
d Yd) + 3Tr(Y †

uYu) + Tr(Y †
e Ye)

)

+ . . .
]

. (2.173)

The same approach holds for all other terms and even at the two-loop level. To cover also
the evaluation of the quartic coupling and the Higgs mass terms given by

− V = −1

2
λ|H†H|2 + µ2H†H , (2.174)

the following objects are needed in addition:

Lφh
α1

φh
β1

φh
γ1

φh
δ1 = λ(δα1β1δγ1δ1 + δα1γ1δβ1δ1 + δα1δ1δβ1γ1) (2.175)

Lσh
α1

σh
β1

σh
γ1

σh
δ1 = λ(δα1β1δγ1δ1 + δα1γ1δβ1δ1 + δα1δ1δβ1γ1) (2.176)

Lφh
α1

φh
β1

σh
γ1

σh
δ1 = λδα1β1δγ1δ1 (2.177)

MS
φh
α1

φh
β1 = −µ2δα1β1 (2.178)

MS
σh
α1

σh
β1 = −µ2δα1β1 (2.179)
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As an example to demonstrate this, we pick the term ∝ µ2λ in the one-loop β-function
of µ2. This terms is stemming from

β
(1)

m2
ab

= m2
efλabef + . . . (2.180)

which results in the most explicit form in

β
(1)

µ2 = −(β(1))φ
h
i φ

h
j ≡ −(β(1))φ

h
1φ

h
1 = −

∑

s1,s2

∑

η1,ρ1

MS
φ
s1
η1

φ
s2
ρ1Lφ

s1
η1

φ
s2
ρ1

φh
1φ

h
1 + . . . (2.181)

Here, we used again a particular choice for the isospin indices. The only, non-vanishing
combinations are φs1 = φs2 = σh and φs1 = φs2 = φh. Hence, we obtain

β
(1)

µ2 = −
∑

η1,ρ1

[

MS
σh
η1

σh
ρ1Lσh

η1
σh
ρ1

φh
1φ

h
1 +MS

φh
η1

φh
ρ1Lφh

η1
φh
ρ1

φh
1φ

h
1

]

+ . . .

= −
∑

η1,ρ1

[
−µ2δη1ρ1λδη1ρ1 − µ2δη1ρ1λ(δη1ρ1 + 2δ1η1δ1ρ1)]

]
+ . . .

= 6µ2λ+ . . . (2.182)

2.4.2 Installation

PyR@TE is free software under the terms of the GNU General Public License and can be
downloaded from the following web page:

http://pyrate.hepforge.org

To install PyR@TE, simply open a shell and type:

1 cd $HOME

2 wget http://pyrate.hepforge.org/downloads/pyrate-1.1.2.tar.gz

3 tar xfvz pyrate-1.1.2.tar.gz

4 cd pyrate-1.1.2/

For definiteness, we will assume here and in the following that you want to install
PyR@TE in your home directory (cf. line 1 in the listing above). Otherwise, simply replace
" $HOME" by a directory of your choice. At the time of writing, PyR@TE is available
in the version 1.1.2, and later you may need to replace this by a more recent version
number24 (cf. line 2). Unpacking the tar ball (line 3) will then create a subdirectory that
contains PyR@TE. We will describe how to run the program in Section 2.4.3.

PyR@TE has the following minimal software requirements:

• Python ≥ 2.7.125 [166]

• NumPy ≥ 1.7.1 [167] and SciPy 0.12.0 [168]

• SymPy ≥ 0.7.2 [169]

24All versions of PyR@TE will be available in the “Downloads” section of our web page [165].
25PyR@TE was developed with Python 2.7.1 but should work with more recent versions with the

exception of Python 3 for which it has not been tested.
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• IPython ≥ 0.12 [170]

• PyYAML ≥ 3.10 [171]

Most of these packages ship with any standard Linux distribution and are by default
pre-installed on your system, but in case they are not, you can easily install them. All but
one are available in the standard repositories and can be installed by the respective package
manager of your system, e.g. " yum install SymPy" for a Fedora-based distribution and "
apt-get install python-sympy" for a Debian-based one. For PyYAML, you have to visit
its web page [171] and follow the installation instructions.

If SymPy 0.7.2 is not available for your system in the repositories (or not in the correct
version26), you can easily install it by downloading the source code from its web page [169]:

1 wget https://github.com/sympy/sympy/archive/sympy-0.7.2.tar.gz

2 tar xfvz sympy-0.7.2

3 mv sympy-sympy-0.7.2/sympy $HOME/pyrate-1.1.2/

After unpacking the tarball (line 2), move the subdirectory " SymPy" to where
PyR@TE is installed (line 3). In the next section, we will explain in detail how to run
PyR@TE.

2.4.3 Running PyR@TE: first steps

We will first describe how to run PyR@TE from the command line and later explain in
some detail the interactive mode. Throughout this section, we will use the SM to illustrate
how to use PyR@TE, since it is the theory people are most familiar with. Also, for the
SM the output of PyR@TE can easily be compared to the literature.

To run PyR@TE, open a shell, change to the directory where it is installed and enter:

python pyR@TE.py -m models/SM.model

The option " -m" (or " --Model") is used to read in a model file, in this case the
SM. For now, we defer the discussion of how to create a model file to Section 2.4.5 and
proceed directly with the calculation of the RGEs. Because the calculations can be quite
time-consuming, PyR@TE does not calculate them by default. Rather, the user has
complete freedom over the parts of the calculation he needs. For instance, to calculate
the RGEs for the gauge, Yukawa or quartic couplings, one would add the options "
--Gauge-Couplings", " --Yukawas", " --Quartic-Couplings", respectively, or alternatively "
-gc", " -yu" or " -qc":

python pyR@TE.py -m ./models/SM.model -gc -yu -qc

After PyR@TE terminates and the shell prompt reappears, the results of the calculation
will be available in the newly created subdirectory " $HOME/pyrate-1.1.0/results".
Specifically, the LATEX file " RGEsOutput.tex" contains the RGEs and a summary of the
settings and of the model for which the calculation was done. We will discuss other forms
of output later in Section 2.4.6. Before we go into those details, we would first like to give
an exhaustive list of the options used to control PyR@TE.

26If SymPy 0.7.3 is available on your system, you can patch it so that it works with PyR@TE. You can
find detailed instructions on how to do this on our web page [165].
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2.4.4 Settings and options

PyR@TE and the type of output it generates are controlled by various options that we
have summarized in Tab. 2.5. Alternatively, one can also obtain the complete list of
options by typing

python pyR@TE.py --help

at the shell prompt. Most options are self-explanatory, and we will therefore not go
into any details at this point. In later sections, we will illustrate their use by providing
examples.

As the number of options increases, it is more convenient to save all settings in a file
which can then be passed to PyR@TE instead of appending a long string of options27:

python pyR@TE.py -f SMsets.settings

The input file " SMsets.settings" is written in YAML [172] which is a human-readable
format for storing information that can also be easily accessed by a computer. The lines
in this file have the following generic structure:

keyword: value

Here, " keyword" is a keyword predefined in PyR@TE, and " value" is either a path, a
filename or a Boolean, i.e. " True" or " False". For example, a typical " SMsets.settings"
file could look like this:

Listing 2.1: SMsets.settings
1 # YAML 1.1
2 ---
3 Model : ./ models /SM. model
4 Gauge - Couplings : True
5 Quartic - Couplings : True
6 Yukawas : True
7 ScalarMass : False
8 Two -Loop: False
9 verbose : True

Note that (i) strings need not be delimited by quotes, (ii) you can only use spaces as
whitespace, i.e. tabulators are not allowed, and (iii) the space after ":" is mandatory. For
the keys that can be used in the settings file, we refer the reader again to Tab. 2.5.

2.4.5 Implementing your own model

The previous sections described how to run PyR@TE to calculate the RGEs for a given
model. In this paragraph we will explain how to create your own model file that you can
use with PyR@TE. As before, we will use the SM as an epitome to explain the format
of the model file. In Appendix D, we give several examples of model files for various
extensions of the SM. These examples and many more are also available in the " models"
subdirectory that ships with PyR@TE.

27Note that we provide no default settings file and that you have to create your own one e.g. by copying
the lines given in listing 2.1.
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Table 2.5: List of all options that can be used to control PyR@TE. Note that the last two
are only available in versions 1.1.x

Option Keyword | Default Description

--Settings/-f - | - Specify the name of a .settings file.
--Model/-m Model | - Specify the name of a . model file.
--verbose/-v verbose | False Set verbose mode.
--VerboseLevel/-vL VerboseLevel | Critical Set the verbose level: Info, Debug, Critical

--Gauge-Couplings/-gc Gauge-Couplings | False Calculate the gauge couplings RGEs.
--Quartic-Couplings/-qc Quartic-Couplings | False Calculate the quartic couplings RGEs.
--Yukawas/-yu Yukawas | False Calculate the Yukawa RGEs.
--ScalarMass/-sm ScalarMass | False Calculate the scalar mass RGEs.
--FermionMass/-fm FermionMass | False Calculate the fermion mass RGEs.
--Trilinear/-tr Trilinear | False Calculate the trilinear term RGEs.
--All-Contributions/-a all-Contributions | False Calculate all the RGEs.
--Two-Loop/-tl Two-Loop | False Calculate at two-loop order.
--Weyl/-w Weyl | True The particles are Weyl spinors.
--LogFile/-lg LogFile | True Produce a log file.
--LogLevel/-lv LogLevel | Info Set the log level: Info, Debug, Critical

--LatexFile/-tex LatexFile | RGEsOutput.tex Set the name of the LATEX output file.
--LatexOutput/-texOut LatexOutput | True Produce a LATEX output file.
--Results/-res Results | ./results Set the directory of the results
--Pickle/-pkl Pickle | False Produce a pickle output file.
--PickleFile/-pf PickleFile | RGEsOutput.pickle Set the name of the pickle output file.
--TotxtMathematica/-tm ToM | False Produce an output to Mathematica.
--TotxtMathFile/-tmf ToMF | RGEsOutput.txt Set the name of the Mathematica output file.
--Export/-e Export | False Produce the numerical output.
--Export-File/-ef ExportFile | BetaFunction.py File in which the beta functions are written.
--Skip/-sk Skip | ” Set the various terms that can be neglected during the calculation.
--Only/-onl Only | {} Set a dictionary of terms you want to calculate.

The three ingredients needed to define a model file are the gauge group, the particle
content and the scalar potential. The general form of the model file is similar to that
of the settings file already described in Section 2.4.4. Consider the following model file
given in listing 2.2. The first line indicates that this is a YAML file. Lines 3-5 indicate
the author of the model, the filename and the date when it was created.

Listing 2.2: models/SM.model
1 # YAML 1.1
2 ---
3 Author : Florian Lyonnet
4 Date: 11.04.2013
5 Name: SM
6 Groups : {’U1 ’: U1 , ’SU2L ’: SU2 , ’SU3c ’: SU3}
7

8 ##############################
9 # Fermions assumed weyl spinors

10 ##############################
11 Fermions : {
12 Qbar: {Gen: 3, Qnb :{ U1: -1/6, SU2L: -2, SU3c: -3}},
13 Lbar: {Gen: 3, Qnb :{ U1: 1/2 , SU2L: -2, SU3c: 1}} ,
14 uR: {Gen: 3, Qnb :{ U1: 4/6 , SU2L: 1, SU3c: [1 ,0]}} ,
15 dR: {Gen: 3, Qnb :{ U1: -1/3, SU2L: 1, SU3c: 3}} ,
16 eR: {Gen: 3, Qnb :{ U1: -1, SU2L: 1, SU3c: 1}}
17 }
18

19 #############################
20 #Real Scalars , none in the SM
21 #############################
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22

23 RealScalars : {
24 }
25

26 #####################################################
27 # Complex Scalars : give names for the real components
28 #####################################################
29

30 CplxScalars : {
31 H: { RealFields : [Pi ,I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: 1/2 , SU2L: 2,

SU3c: 1}} ,
32 H*: { RealFields : [Pi ,-I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: -1/2, SU2L:

-2, SU3c: 1}}
33 }
34

35 Potential : {
36

37 #######################################
38 # All particles must be defined above !
39 #######################################
40

41 Yukawas :{
42 ’Y_{u}’: { Fields : [Qbar ,uR ,H*], Norm: 1},
43 ’Y_{d}’: { Fields : [Qbar ,dR ,H], Norm: 1},
44 ’Y_{e}’: { Fields : [Lbar ,eR ,H], Norm: 1}
45 },
46 QuarticTerms : {
47 \ Lambda_1 : { Fields : [H,H*,H,H*], Norm : 1/2}
48 },
49 ScalarMasses : {
50 \mu_1 : { Fields : [H*,H], Norm : 1}
51 }
52 }

On line 6 you find the definition of the gauge group labelled by the keyword " Groups".
The gauge group is a product of simple Lie algebras and any number of U(1) factors
(note, however, that we have not implemented kinetic mixing between the U(1) factors).
In turn, each simple Lie algebra or U(1) is associated with a user-defined name (e.g. "
SU3c" on line 6), and a predefined PyR@TE keyword that specifies the Lie algebra as
a mathematical object (cf. SU(3) on line 6). So far, we have implemented SU(N) for
N = 2, . . . , 6 and U(1), and in Appendix A we present a list of irreducible representations
(irreps) that are currently recognized by PyR@TE. Note that this list will be extended in
future versions of PyR@TE.

Next, we discuss how to add particles to our model (lines 11-33 in listing 2.2). We
distinguish between " Fermions", " RealScalars" and " CplxScalars". Each particle is
defined by giving it a name and then listing all its quantum numbers, cf. e.g. line 12 in
listing 2.2:

Qbar: {Gen: 3, Qnb:{ U1: -1/6, SU2L: -2, SU3c: -3}}

Here, " Gen" is a predefined keyword denoting the number of generations, but the names
for the gauge group factors correspond to those specified by the user on line 6. The
number of generations for a given particle can in principle be kept general, but then
PyR@TE will not be able to perform some basic simplifications and the result may look
more complicated. The gauge quantum numbers (specified via the keyword " Qnb") can
either be specified by the dimension of the corresponding irrep28, or their Dynkin labels

28For simple gauge group factors we use a minus sign to distinguish between a representation and its
complex conjugate one. For a U(1) factor the quantum number corresponds to the usual U(1) charge in
some physics normalization.
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(see definition of " uR" on line 14). This is possible for all simple gauge groups, but for
SU(2) we have to use a slightly more complicated notation, since we need to distinguish
between a given representation and its complex conjugate29: "(n− 1, )" will correspond to
the n-dimensional representation, and "(n− 1,True)" to its complex conjugate. Note that
internally all the quantum numbers are translated to Dynkin labels, so if the dimension of
a given irrep does not define it uniquely, the user has to use the Dynkin labels. A table
with all the irreps that can be used in PyR@TE is given in Appendix A.

Let us now turn to discussing how to add scalars (lines 23-33 in listing 2.2). Real
scalars are declared by using the keyword " RealScalars" and then specifying their gauge
quantum numbers (see below for examples including real scalars). For complex scalars
(keyword " CplxScalars"), one has to name the real degrees of freedom using the keyword
" RealFields" because each complex field will be split into real components during the
calculation. The user can choose a convenient normalization for the complex scalar using
the keyword " Norm". Also note that you have to declare H∗ explicitly (see line 32).

We mention in passing that in order to simplify the notation we have introduced
a short-hand syntax. The preceding declarations (lines 1-33 in listing 2.2) can also be
rewritten in the form given in listing 2.3.

Listing 2.3: Short-hand syntax for the SM model file
1 Groups : [U1 ,SU2 ,SU3]
2 Fermions : {
3 Qbar: [3, -1/3, -2,-3],
4 Lbar: [3, 1,-2,1],
5 uR: [3 ,4/3 ,1 , [1 ,0]] ,
6 dR: [3 , -2/3 , 1,3],
7 eR: [3 , -2 ,1 ,1]
8 }
9 RealScalars : {

10 }
11 CplxScalars : {
12 H: { RealFields : [Pi ,I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : [1, 2, 1]} ,
13 H*: { RealFields : [Pi ,-I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : [ -1, -2 ,1]}
14 }

We now come to the potential which is introduced by the keyword " Potential" (lines 35-
51 in listing 2.2) and has five parts, each preceded by its own keyword: Yukawa interactions
(" Yukawas"), quartic terms (" QuarticTerms"), scalar masses (" ScalarMasses"), trilinear
interactions (" TrilinearTerms"), and fermion masses (" FermionMasses"). Each term
in one of the five parts is represented by a coupling constant (e.g. "mu_1" on line 50), a
number of fields (" [H*,H]") and a numerical factor (" Norm : 1"). Note that for the
coupling constant we can use LATEX notation30which will then be used for the output.

Addition in versions 1.1.x

The last two options of the table Tab. 2.5 are only available since versions 1.1.x. The
fisrt one allows the user to skip some of the terms directly at the calculation level. The
different pieces that can be skipped are defined according to [116], e.g. a viable entry
would be

29In SU(2) any representation is equivalent to its complex conjugate one, but for contracting the SU(2)
indices this change of basis matters.

30In this case, quotation marks must be used so that the string is recognized as a latex expression.
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Skip: [’CAabcd’,’CL2abcd’]

would skip equations Eqs. (43) and (39) of [116]. Note that the label are identical
to the ones defined in the article with a “C” added in front and with the subtitution
“Lambda→L”. All the existing label as well as their precise definition can be seen in
“Source/Core/RGEsDefinition.py”. The second option, “Only” allows the user to calculate
only some of the constants defined in the Lagrangian while keeping the dependance on
the others. E.g. in a model in which three quartic terms are defined, “lambda1, lambda2,
lambda3”, the user might be interested only in the RGE of “lambda1” while keeping the
terms involving “lambda2, lambda3” in the calculation. This is accomplished via the
option “Only”.

Only: {’QuarticTerms’: [’\lambda2’,’\lambda3’]}

The user must pass the whole argument as a string if using the ’Only’ option via the
command line, e.g.

python pyR@TE -m models/2HDM.model

--Only ‘‘{’QuarticTerms’: [’\lambda3’]}’’

Appart from these two new options we also introduced the possibility to define sums of
terms. For instance, declaring the term λ1(H

†HH†φ− φ†HH†H) in PyR@TE one would
need to enter

lambda_1: {Fields: [[H*,H,H*,Phi],[Phi*,H,H*,H]],Norm: [1,-1]}

in which the norm could also be a single number, e.g. 1/2 in case where both terms have
the same normalization. This allows for a much more efficient disentangling of the various
RGEs that mix with each others.

2.4.6 Output

In this section we explain in some more detail the various formats in which PyR@TE can
generate output.

LATEX With the option " --Latex-Output", PyR@TE generates a LATEX file whose name
can be set by " --LatexFile" followed by a filename. This is the most convenient way
to obtain the RGEs in a human-readable format. The file will be saved in the directory
specified by the option " --Results", or, more conveniently, set in a settings file (cf. 2.1 on
page 73).

Pickle As the name suggests, Pickle is used to efficiently store Python data structures
(in our case the partial or full results of our calculations) for later use. It is particularly
useful when combined with the interactive mode to be described below. We refer the
reader to Tab. 2.5 for a short description of the options " --Pickle" and " --PickleFile".
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Mathematica To export results to Mathematica, PyR@TE can produce a text file
with lines that can be directly copy-pasted into a Mathematica notebook. This option is
controlled by the switches " --TotxtMathematica" and " --TotxtMathFile" (see Tab. 2.5
for more details).

2.4.7 Numerical evaluation

The RGEs generated by PyR@TE can be directly solved and visualized in one of two
ways: Either from within Python or in a Mathematica notebook. We will describe in turn
both approaches.

Solving within Mathematica

The option " --TotxtMathematica" also produces a file31 that ends on " _numerics.m"
that contains the equations as well as the information required by Mathematica to solve
the RGEs. The package " RunPyRate_RGEs.m" which is included in the directory "
Source/Output" prepares the equations for Mathematica and uses its internal routines to
solve the system. For instance, one would enter the following lines in Mathematica:

1 PATH = "$HOME/pyrate-1.0.0/";

2 Get[PATH <> "results/RGEsOutput.txt_numeric.m"];

3 Get[PATH <> "/Source/Output/RunPyRate_RGEs.m"];

4 IncludeOffDiagonal=True;

5 AllParameters

Line 1 tells Mathematica where PyR@TE is installed. Line 2 points to the file where
the results are stored, and line 3 loads the package to solve the RGEs. The switch "
IncludeOffDiagonal=True" instructs Mathematica to include the full matrix structure of
the parameters in solving the RGEs and not to neglect off-diagonal entries. By contrast, "
IncludeOffDiagonal=False" will neglect the off-diagonal terms. Note that the variable "
AllParameters" contains all the different RGEs that can be solved i.e. all the ones for
which the user can set initial values and explore the results. After the initialization, a
routine called " RunRGEs" is available that takes as input the starting and ending points
of the interval over which the RGEs are to be integrated as well as the initial values of
the parameters. Passing a last argument with values " True/False" will tell Mathematica
to ignore or not the two loop contributions in the RGEs if they are available32.

running=RunRGEs[3, 16, {g1->0.36, gSU2L->0.65, gSU3c->1.08},False];

The first and second inputs are the logarithms of the scales where the running starts and
ends, respectively. If Landau poles appear, Mathematica will terminate before reaching
the end point. The third input is the initialization of the parameters that have non-zero
values at the starting scale. For instance, to run the gauge couplings in the SM from
1 TeV to 1016 GeV and to plot the result, simply enter:

31If the filename is not set by " --TotxtMathFile", the default name " RGEsOutput.txt_numerics.m"
will be chosen.

32This is only possible since version 1.0.3
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Plot[{g1[x],gSU2L[x],gSU3c[x]} /.running[[1]],{x,3,16}];

This example is also included in the file " Example.nb" inside the PyR@TE directory.

Using Python

Now we explain how to run the RGEs from within Python. With the options " --Export"
and " --Export-File"33 PyR@TE creates two files: The first one contains the results of the
calculation in a form that is amenable to numerical analysis (i.e. NumPy objects). The
second one, named SolveRGEs.py, is a Python script that solves34 the RGEs stored in
the first file and contains instructions on how to plot the results with Matplotlib. Note
that the user is responsible for setting the interval over which the RGEs will be integrated
(start and end points) and also the initial values of the parameters. In a schematic way
there are three steps to be done to solve the RGEs within our framework:

(i) Create an instance of the RGEclass, our own class to represent the RGEs of a
given model. This is done by calling the constructor of the class which takes three
inputs. The name of the function encoding the beta functions (declared inside
BetaFunction.py), number of equations contained in the system as well as a list of
the labels to identify the different equations.

1 myrges = RGEclass(beta_function_toymodel,3,labels=[’g1’,’g2’,’g3’])

(ii) Set the Y0 attributes of the instance just created (myrges in this example) to the
initial values.

1 myrges.Y0 = [0.36,0.65,1.08]

(iii) Call the method solve_rges of the RGEclass instance to solve the RGEs. This
method takes in input the initial scale, the final scale, the step of iteration35 as well
as an optional dictionary assumptions that we will describe below. Note the scale
value must be given in log10 as in the Mathematica case.

1 myrges.solve_rges(3,16,0.1,assumptions={})

Once these three steps have been done, the user can access the results via the Sol attributes
of the instance which is a dictionary e.g.

1 myrges.Sol[’g1’]#contains the values calculated for the ’g1’ equation

Note that the results are stored according to the labels specified when creating the instance.
The assumptions dictionary allows the user to customize the solving of the RGEs. By
default there are two switches implemented which are ’two-loop’: True/False and
’diag’: True/False. The first one will turn-off all the two-loop contributions when

33If this option is skipped, the file will be named " BetaFunction.py" by default.
34We use python.scipy.integrate [168] to numerically solve ordinary differential equations.
35i.e. (tf − ti)/ts fixes the number of points calculated, where ti is the initial scale, tf the final scale

and ts the step.
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set to False and the second one will turn-off the off-diagonal term when set to False.
However, one can look into the " BetaFunction.py" file and implement one’s own switches
as desired. The file generated when calling PyR@TE with the option " --Export" is ready
to use and carries all the steps described here for your specific model. The only input
from the user is the initial values that have to be set. Comments that will guide the eye
of the user to perform the necessary modifications are present in this file.

In the next section we will introduce a user interface à la Mathematica, called an
IPython Notebook, in which we can perform all the tasks described so far in an interactive
way.

2.4.8 The interactive mode

A very convenient and user friendly way of using PyR@TE is to combine our code with
an IPython Notebook [170]. The first thing to do is to start it by typing in the PyR@TE
directory36:

1 cd $HOME/pyrate-1.1.2/

2 ipython notebook

The IPython Notebook will then start in your default browser, and you will see all
the available notebooks that are located in the PyR@TE directory. You can now start
executing one of these notebooks by simply clicking on the link. An easy way to get
started is to look at one of the tutorials available online and/or to go through the
InteractivePyRaTE.ipynb file located in the PyR@TE directory.

Running PyR@TE from within a notebook

An IPython Notebook, that we will simply call notebook in the following, is a web interface
inside which you can execute any Python command. Once you open a new notebook you
have access to cells (as in Mathematica) in which you execute any python command of
your will as well as external python scripts. Therefore, to run PyR@TE from within the
notebook simply enters in one of the cell :

1 %run pyR@TE.py -m models/SM.model -a -v

and then press shift+Enter to execute the cell. You will see the same output as when
executing this command from the shell appear on the webpage. The main advantage of
the notebook is that once the execution is finished, all the variables defined during the
run are accessible. Therefore, one has access to the results of the calculation and can
study them directly inside the notebook. Note that the equations are stored in the RGEs

list and can be access like this :

1 #first result depending on the model it can be the gauge couplings

2 #or something else

3 RGEs[0]

36The IPython Notebook is included in recent installations of ipython. If you are using an older version,
you can download it from its web page [170] or use the command " pip install ipython" (recommended)
which should also take care of possible dependencies. If not pre-installed, the package manager " pip"
can be installed by hand or using " easy_install pip".
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All the algebraic equations are rendered in latex directly37 inside the notebook and a right
click on one of the equations gives you the possibility to get the latex code directly. In
order to make full use of this framework we developed a Toolbox that implements various
functions to do common tasks including the export of results, simplifications of equations
and comparison of models. All the functions in the Toolbox are now described in the next
section.

2.4.9 The Toolbox

To load the Toolbox from a notebook, make sure that the path ’./Source/Output’ is
available (automatic if you have run PyR@TE in the same notebook otherwise you may
need to run import sys

sys.path.append(’./Source/Output’)). Then import the Toolbox via the regular
python command, i.e.

1 from Toolbox import *

We now describe all the functions present in the Toolbox and exemplify them when
necessary.

1 ExportToLatex(FileName,Expression,AModel)

2 ExportToMathematica(FileName,Expression,AModel)

3 ExportToPickle(FileName,Expression,AModel,description=’’)

4 ExportBetaFunction(FileName,AModel)

(i) FileName is the name of the output file

(ii) Expression is the list containing the results i.e. RGEs

(iii) AModel is the model instance of the ModelClass i.e. model

(iv) description is a string which contains some additional description of the results
being stored in the pickle file

These can only be called after a run of PyR@TE inside the same notebook since
the variables RGEs and model are defined during the run. Therefore these functions
will always be called with the values model and RGEs for the values Expression and
AModel respectively. They execute the same actions as the corresponding run options :
--LatexOutput,--TotxtMathematica, --Pickle and --Export.

1 getoneloop(Expression)

2 gettwoloop(Expression)

Where Expression in the first two functions can be either a list, a dictionary or an
algebraic expression. These functions, get rid of the factor 1/4π,1/(4π)2 respectively.

37to start the latex printing the user might need to type in the command
init_printing(using_latex=True)
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1 loadmodel(FileName)

where FileName is a pickle file containing a model i.e. a calculation that has been
saved via the function ExportToPickle or during a previous run (e.g. a calculation done
with the option --Pickle). Hence someone can load multiple results in the same notebook
and study them.

1 CompareModels(Model1,Model2,subrules=[],display=False):

Where Model1 and Model2 are either two strings pointing to a pickle file containing a
model or two models loaded in the notebook via the loadmodel function. This function
calculates the differences for each terms present in both models and display them if
display is set to True else it just returns the result of the comparison as a list where each
entry correspond to a different beta function. Finally, the subrules argument can be a
list of tuple where each tuple contains a replacement rule i.e. of the form (old symbol,

new symbol) that will be apply to each beta function difference.

1 settozero(Expression,ListofSymols)

where Expression is an algebraic expression and ListofSymbols is a list of symbols38

that must be set to zero. This function set all the symbols in ListofSymbols to zero as
well as the traces and matrix multiplications consistently.

2.4.10 Pitfalls

There are some subtleties in the implementation of a model to which we would like to
draw the user’s attention. We start with commenting on the restrictions concerning the
input format. To ascertain that Python interprets all parts of the model file correctly, the
user must make sure that:

(a) only spaces and line breaks can be used as whitespace, i.e. tabulators are not allowed,

(b) there is a space after each colon,

(c) each element in any input file except for the last one should be separated by a comma.

In addition, beware that no operation on the fields is recognized, i.e. for complex conjugated
fields one needs to introduce a new symbol. For complex scalars, the real degrees of
freedom have to be defined together with the required normalization. The Yukawa matrices
are assumed to be symmetric in generation space. Therefore, if e.g. some Yukawa terms
are antisymmetric, PyR@TE will return zero.

Finally, all indices are contracted automatically by PyR@TE. For this purpose a
database with the most common Clebsch-Gordan coefficients (CGCs) has been created,
see Appendix A. This database uses the following conventions:

38the symbols must be proper Sympy symbols declared e.g. Yu=Symbol(’Y_u’)
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Normalization We assume a set of n fields φi with dimensions Di under an SU(N)
gauge group. We will denote the CGC that gives the contraction of indices to an invariant
combination as C, i.e.

Ci1i2...inφi1φi2 . . .φin . (2.183)

does not transform under SU(N). Here, the ix, x = 1, . . . , n are the charge indices with
respect to the gauge group. In contrast to Susyno which has been used to create the
database of CGCs we use a different normalization. Our convention is that

D1∑

i1=1

D2∑

i2=1

· · ·
Dn∑

in=1

|Ci1i2...in |
2 = max(Di). (2.184)

With this normalization we reproduce for instance the standard CGCs for all bilinear
terms, but also those for SU(2)L triplets with non-zero hypercharge and color sextets.
However, we do not distinguish between SU(2)L triplets with and without hypercharge
and use the same CGCs for both of them. Therefore, our convention for triplets without
hypercharge is different to the standard one by a factor 1/

√
2.

Conjugate irreps In general, conjugate irreps are either defined by the corresponding
Dynkin indices or by a negative dimension. However, we would like to stress that

(a) the 2 under SU(2) is related to its conjugate representation 2∗. Nevertheless, it
is possible to use " -2" to represent 2∗ which is then treated as a doublet with
an additional iσ2. For instance, the tensor product 2∗ ⊗ 2 is contracted with the
Kronecker δij whereas 2⊗ 2 by the anti-symmetric tensor ǫij. This shows up e.g. in
the case of the SM Yukawa couplings Yd and Yu.

(b) For self-conjugate representations like the adjoint ones, there are two ways to obtain
a gauge singlet. To distinguish these two cases it is possible to use -A as dimension of
the adjoint of SU(N). The convention is then that bilinear terms of the form A

∗ ⊗A

are always contracted with a Kronecker δij , while for A⊗A the CGCs as calculated
by Susyno are used. For instance, 3 ⊗ 3 in SU(2) is contracted by a matrix of the
form 



0 0 1
0 −1 0
1 0 0



 (2.185)

while for 3∗ ⊗ 3 the three-dimensional identity matrix is used.

2.4.11 Validation

In the literature, there are very few models for which the RGEs at two-loop have been
calculated for all dimensionless and dimensionful parameters. Therefore, we have also
independently developed routines in Mathematica to calculate the full two-loop RGEs
for all terms. These routines will be merged with the SARAH [105–108] in an upcoming
version. For all tested models we had full agreement between PyR@TE and the results
obtained by the new SARAH routines.

In the following, we present the comparisons between the results obtained with
PyR@TE and the RGEs for some models presented in the literature. The reason for
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choosing this subset of models is twofold. For one thing, they represent a broad variety of
interactions so that we could obtain non-trivial tests for PyR@TE. For another, these are
the models for which the RGEs have been calculated at two-loop for a large number of
parameters.

Standard Model

We find full agreement for all parameters at the two-loop level with the results given in
Ref. [116] including the full CP and flavor structure. This also confirms that the differences
pointed out in Ref. [116] in comparison to the earlier results of Refs. [111,112] are correct.

Standard Model with real scalar singlet

For the SM extended by a real scalar singlet field and a Dirac doublet [119] we find
complete agreement for all dimensionless parameters, where we have applied the same
approximation that only third generation Yukawa couplings contribute.

Standard Model with real scalar triplet

The RGEs for all dimensionless parameters for the SM extended by a real scalar triplet and
a Dirac doublet are given in Ref. [119]. Making the same approximation as in Ref. [119],
i.e. neglecting the Yukawa interactions for the first two generations of SM fermions, we
find disagreement at the one- and two-loop level in the following parameters: ∆b

(2)
λH

, b(1)κT ,
b
(2)
κT , b(1)λT

, b(2)λT
.

Standard Model with Majorana singlet fermion and Dirac doublet

The RGEs for all dimensionless parameters for the SM extended by a real singlet fermion
and a Dirac doublet are given in Ref. [119]. We find complete agreement with these
results by taking the same approximation that only third generation Yukawa couplings
contribute.

Standard Model with complex scalar doublet

The two Higgs doublet model is one of the most widely studied extensions of the SM. In
the literature, the results for the β-functions are mostly available at one-loop level, see
e.g. Ref. [173] and references therein. We agree with those results. In addition, Ref. [119]
contains also partial two-loop results for which we also find agreement in the limit that
only third generation Yukawas are taken into account.

Standard Model with Majorana triplet fermion and Dirac doublet

The one- and two-loop β-functions for all dimensionless parameters for the SM extended
by a fermionic Majorana triplet and Dirac doublet are given in Ref. [119]. We find full
agreement with their results, if we (i) take the limit of vanishing Yukawa couplings for the
first two generations, (ii) include a relative factor of

√
2 in the definition of the Yukawa-like

couplings of the triplet. This factor stems from a different normalization of the triplet
(see also Section 2.4.10).

84



B − L extended Standard Model

The one-loop RGEs for an extension of the SM by an additional U(1)B−L, right-handed
neutrinos and a SM singlet complex scalar with B − L charge 2 have been calculated in
Ref. [174]. These results contain a contribution originating from the kinetic mixing which
is not yet calculated by PyR@TE. In the limit of g̃ → 0 we find almost full agreement.
Only the coefficient of the contribution proportional to Tr(Y 4

M ) in the RGE for λ2 should
read -16 and not -1. This issue has been confirmed in a private discussion with one of the
authors of Ref. [174].

SM extended by a complex triplet and vectorlike doublets

Partial one-loop results for the SM extended by a complex scalar and vectorlike doublets
are given in Ref. [175]. However, we find the following disagreements: In the quartic
coupling λ∆H the terms Tr(f †

LfLf
†
LfL + f †

ψfψf
†
ψfψ) cannot be present, since they would

need four triplets as external fields. In the β-function for the Yukawa couplings fL and
fψ, we do not find the terms 3fLf

†
ψfψ and 3fψf

†
LfL, respectively. In addition, we also find

disagreement in the coefficients for the trilinear coupling. The full details can be obtained
by running PyR@TE.

SM with neutrino Yukawa couplings

The RGEs for the SM extended by right handed neutrinos have been given at the two-loop
level for all dimensionless parameters in Ref. [176]. However, as it was already pointed out
in Ref. [117], the terms at two-loop are missing. In addition, we find many more terms
in disagreement with Ref. [176]. Also, we have some disagreement in some terms in the
two-loop β-function of λ.

SM with a fourth generation of vectorlike fermions

The SM extended by a vector-like fourth generation has been studied in Ref. [177]. The
authors have calculated the RGEs for the Yukawa couplings and the quartic Higgs coupling
at one-loop in the limit, where the fourth generation quark masses are of the order the
cut-off scale. The results we obtain with PyR@TE are identical for all the couplings they
have listed.

2.4.12 Beyond. . .

In the near future, extensions of PyR@TE will be done in mainly two directions that we
discuss here in turn. Also, in the longer term, implementing available partial results for
the three-loop RGEs of a general theory, as well as contributing to the evaluation of the
missing ones, is possible.

Include Kinetic mixing

In Section 2.3.7, we presented the various substitution rules to be applied in cases where the
gauge group of the theory at hand is a product a simple gauge groups, i.e. G = G1×· · ·×Gn
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with at most one abelian factor. When there are several abelian factors present, kinetic
mixing can appear and these equations must be modified to take it into account.

Indeed, the field strength tensors of the various abelian groups can mix together and a
general kinetic term, gauge and Lorentz invariant can be written in the form

Lkin. ⊃ −1

4
(F µν)T ξFµν , (2.186)

where the n abelian field strength tensors have been grouped in a n dimensional vector Fµν

and ξ is a n× n real symmetric matrix. Consequently, in the case of kinetic mixing there
are 1

2
n(n− 1) additional dynamical parameters to deal with. The direct way of addressing

this issue would be to (i) calculate the evolution equations for these new parameters,
(ii) and to calculate the modifications induced by these new terms to the usual beta
functions such as gauge couplings, Yukawas, etc.The results of this approach can be found
in [178].

Alternatively, it was recently suggested to treat the abelian sector as a whole and to
describe it by a general real n× n gauge coupling matrix G [164]. It can be shown that
the off-diagonal entries of G come form the ξ parameter after it has been absorbed into
the redefinition of the gauge fields. Subsequently, the method consists in re-writing the
general RGEs by replacing all the polynomials including individual gauge couplings by
the relevant matrix structures, with no need to deal with the evolution equations for the ξ

matrix. The result of this approach is a set of substitution rules that can be easily applied
to the general equations to take into account kinetic mixing. For the sake of illustration
we give as an example the following replacement rule for the one-loop beta function of the
gauge couplings

g3S2(S) → G
∑

a

W S
a (W

S
a )

T , (2.187)

in which the sum is over the scalars and where the quantity W S
a is defined by

W S
a ≡ GTQS

a . (2.188)

QS
a is the vector of U(1) charges of the scalar a. This second approach will be implemented

in PyR@TE in very near future.

Broken symmetries and the running of vacuum expectation values

In Section 2.3 we presented the full two-loop RGEs for all the dimensionful and dimension-
less parameters of a general gauge field theory. However, in the case where we deal with
spontaneously broken gauge symmetries, one also has to take care of the renormalization
of scalar vacuum expectation values. These are not gauge invariant physical quantities,
but because of their central role, one needs to address this issue.

The renormalization of a vev v can be generically written in the form

v → v + δv =
√
Z (v + δv̄) , (2.189)

in which
√
Z is the field renormalization constant of the corresponding scalar field. δv̄

characterizes how differently from the scalar field v renormalizes. In [179], the authors

86



showed that δv̄ vanishes only in gauges that break local gauge invariance but preserve
global gauge invariance, e.g. the Landau gauge. For instance, this is not the case of the
Rξ gauge in which consequently δv̄ is non vanishing. In addition, δv̄ can be linked to the

field renormalization constant
√

Ẑ of a suitable chosen scalar background field. Hence,
the calculation of the beta function of the vev can be obtained from a simple two-point
function. The results in the Rξ gauge at one- and two-loop order have been calculated by
the same authors and can be found in [180]. As for the kinetic mixing, these results will
be implemented in PyR@TE in the future.

Higher order corrections

As mentioned at the beginning of this section, partial three-loop results are available
in the literature. Among them, the beta functions of the SM gauge coupling constants
have been calculated up to three-loop order, see [181, 182] and references therein for
intermediate computations that lead to the full result. The dominant contributions to
the beta functions for the top-quark Yukawa have been calculated in [183] and the full
result is also now available [184]. Finally, for the scalar sector, the dominant contributions
to the three-loop scalar self-interaction of the Higgs bosons were calculated in [183] and
the full result in [185]. All these results even though limited to the SM case could be
implemented in PyR@TE.

This concludes our section on PyR@TE, where we have presented in details how to
write in the most explicit form suitable for implementation the general equations for
the beta functions of the various parameters of an arbitrary gauge theory. The use of
PyR@TE was also discussed and many examples of model implementations are available
in Appendix D. To conclude, we gave an outlook on future developments of the code.

2.5 Renormalization group equations of the G221 models

PyR@TE has been extensively presented in the previous section and as an example of
its application, we now turn to the calculation of the full set of two-loop RGEs in the
G221 models as introduced in Chapter 1. The idea here is to show on a concrete example
how to use our code and to give some general comments about the structure of the RGEs.
In order to keep the discussion short, we will focus on models following BP-I and show
what is the impact on the RGEs of having a first SB mediated via a doublet or a triplet.
All the Yukawa couplings are ignored in the following.

We start this section by defining the various parameters we consider, then give the
input files and discuss the results at one- and two-loop order.

2.5.1 Implementation of the various G221 realizations

There are two points that we have not discussed in Chapter 1 about G221 models: the
Yukawa sector, and the scalar potential. As discussed in the introduction, we will not
bother with the Yukawa couplings here since our goal is simply to illustrate how PyR@TE
works.
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In BP-I models we have the following scalar fields

H ∼
(
2,2,0

)
, BP-I−D : φ ∼ (1, 2,

1

2
), BP-I−T : φ ∼ (1, 3,1) . (2.190)

The potential depends on the fields φ, H, φ† and H† and because of the U(1)X charge of
φ, the terms in the potential cannot have odd numbers of φ fields. We are not interested
in writing down the potential in matrix form and we will simply give the list of fields in
each term as is required for PyR@TE. Hence (h1 ⊗ h2) means that we contract the fields
h1 and h2 into a singlet. In this notation, independently of the breaking pattern (BP-I-D
or BP-I-T) we will consider the following potential

V =µφ

(
φ† ⊗ φ

)
+ µH,1

(
H ⊗H +H† ⊗H†

)
+ µH,2

(
H† ⊗H

)

+ λφ

(
φ† ⊗ φ

) (
φ† ⊗ φ

)

+ λH,1

(
H† ⊗H†

)
(H ⊗H)

+ λH,2

((
H† ⊗H†

) (
H† ⊗H

)
+ h.c.

)

+ λH,3

((
H† ⊗H†

) (
H† ⊗H†

)
+ h.c

)

+ λH,4

((
H† ⊗H

) (
H† ⊗H

)
+ h.c.

)

+ λφH,1

((
φ† ⊗ φ

)
(H ⊗H + h.c.)

)

+ λφH,2

((
φ† ⊗ φ

) (
H† ⊗H

))
. (2.191)

The charge assignment of the various fermions depends on the model and we show in listing
D.1 of Appendix D only the LR-D model input file. The others are trivial modifications
of the Particle part of this one and we do not spell them out39.

2.5.2 Analytic result at 1-loop: Gauge Couplings

The first thing to do to check the consistency of a set of RGEs is to look at the gauge
couplings beta functions. Indeed, they depend only on the particle content and charge
assignment of the various fields. Therefore, if something is wrong in the model file it is
most likely apparent in the beta functions of the gauge coupling constants. The result for
the one-loop beta functions of the gauge couplings reads

LR
HP
LP
FP

:=








−17
6

−3 17
6

−7

−35
6

−3 35
6

−7

−23
6

−3 23
6

−7

−41
6

−3 41
6

−7








D

,








−7
3

−3 11
3

−7

−16
3

−3 20
3

−7

−10
3

−3 14
3

−7

−19
3

−3 23
3

−7








T

, (2.192)

where for each line (model) we write in the four columns the coefficients of the terms
g3SU(2)2

≡ g32, g3SU(2)1
≡ g31, g3U(1)X

≡ g3X , g3SU(3)c
≡ g33 for the doublet and triplet cases. At

one-loop, these are the only contributions. We draw the reader’s attention to the following
points:

(i) The first thing to note is that across the BP-I models, the fields charged under
SU(3)c and SU(2)1 are the same. Therefore, we expect the corresponding beta
functions g3, g1 (second and fourth column) to be identical for all the models.

39They are available with the code in the models directory.
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(ii) Also, for a given model (LR, LP, HP, FP) the difference between the doublet and
triplet cases resides in the coefficients of g22 and g3X which is traced back to the
quantum numbers of the doublet and triplet fields (the shift is the same for all the
models).

(iii) The relative size of one coefficient with respect to the same one in a different
model is also easily understood from the charge assignment. For instance, we have
βg2 ⊃ −17

6
g32 for the LR-D model and βg2 ⊃ −35

6
g32 for the HP-D model. From

Eq. (2.92) we have β(g) ∼ g3 {−C2(G) + S2(F ) + S2(S)}, hence if the coefficient of
g32 < 0 it means that the more particles are charged under this group the smaller the
coefficient will be in absolute value. Consequently, LR-D has a smaller coefficient
with respect to HP-D because of the additional doublet charged under SU(2)2.

These kind of arguments are very useful to see how a model is affected by a modification
of the particle content or charge assignment.

2.5.3 Analytic result at 1-loop: Quartic Couplings

There are seven quartic coupling constants in V for which we calculate the RGEs. With
so many terms, the one-loop calculation takes about 20 minutes for one model while in
comparison, for the SM it takes about 3 minutes on the same computer.

One issue that arises with so many terms in the potential is that of finding a combination
of the external indices of the scalar fields which is such that only the beta function of the
quartic term we want to calculate gives a non zero contribution.

To illustrate this point, let us consider λH,1,λH,3 and λH,4 terms in the above potential
and write Hij = (πij + iσij) where i, j represent the indices of SU(2)1, SU(2)2, respectively.
It then follows

V =
∑

i,j,k,l,m,n,p,q∈〚1,2〛8

{

λH,1εikεjlεmpεnq (πij + iσij) (πkl + iσkl) (πmn − iσmn) (πpq − iσpq)

+ λH,3

(

εikεjlεmpεnq (πij − iσij) (πkl − iσkl) (πmn − iσmn) (πpq − iσpq)

+ εikεjlεmpεnq (πij + iσij) (πkl + iσkl) (πmn + iσmn) (πpq + iσpq)

)

+ λH,4δikδjlδmpδnq (πij + iσij) (πkl − iσkl) (πmn + iσmn) (πpq − iσpq)

}

+ . . . , (2.193)

in which we wrote explicitly the Clebsch-Gordan coefficients for the products 2⊗ 2 ←→ ε

and 2⊗ 2 ←→ δ. We now take the derivative of Eq. (2.193) with respect to the exterior
field configuration, πabπcdπefπgh as explained40 in Section 2.4.1 and fix the choice of isospin

40This choice is arbitrary and in practice we calculate the various derivatives with respect to the possible
external field configurations. For instance, we could also take the derivative with respect to πabσcdπefσgh.
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values a, b, c, d, e, f, g, h ≡ 1, 2, 2, 1, 1, 2, 2, 1.

∂4V

∂πab∂πcd∂πef∂πgh

=
∑

i,j,k,l,m,n,p,q∈〚1,2〛8

4λH,1εikεjlεmpεnq

(

δ1iδ1kδ1nδ1qδ2jδ2lδ2mδ2p + δ1iδ1lδ1mδ1qδ2jδ2kδ2nδ2p

+ δ1iδ1lδ1nδ1pδ2jδ2kδ2mδ2q + δ1jδ1kδ1mδ1qδ2iδ2lδ2nδ2p

+ δ1jδ1kδ1nδ1pδ2iδ2lδ2mδ2q + δ1jδ1lδ1mδ1pδ2iδ2kδ2nδ2q

)

+ 8λH,3εikεjlεmpεnq

(

δ1iδ1kδ1nδ1qδ2jδ2lδ2mδ2p + δ1iδ1lδ1mδ1qδ2jδ2kδ2nδ2p

+ δ1iδ1lδ1nδ1pδ2jδ2kδ2mδ2q + δ1jδ1kδ1mδ1qδ2iδ2lδ2nδ2p

+ δ1jδ1kδ1nδ1pδ2iδ2lδ2mδ2q + δ1jδ1lδ1mδ1pδ2iδ2kδ2nδ2q

)

+ 4λH,4δikδjlδmpδnq

(

δ1iδ1kδ1nδ1qδ2jδ2lδ2mδ2p + δ1iδ1lδ1mδ1qδ2jδ2kδ2nδ2p

+ δ1iδ1lδ1nδ1pδ2jδ2kδ2mδ2q + δ1jδ1kδ1mδ1qδ2iδ2lδ2nδ2p

+ δ1jδ1kδ1nδ1pδ2iδ2lδ2mδ2q + δ1jδ1lδ1mδ1pδ2iδ2kδ2nδ2q

)

. (2.194)

Finally, carrying out the sums one obtains

∂4V

∂π12∂π21∂π12∂π21

= 16λH,1 + 32λH,3 + 8λH,4 , (2.195)

where the three quartic couplings, λH,1,λH,3,λH,4 are still present. Any other combination
of a, b, c, d, e, f, g, h leads either to the same result or 0 or 24λH,4, hence it is not possible
to disentangle the three quartic coupling constants with this external field combination.
Actually, any other combination would lead to similar results (but different coefficients)
and in the end one has to write a linear system and invert it to access all the constants.
This is done in PyR@TE automatically41 and the result reads for the various quartic
couplings

41Actually, PyR@TE is not able to solve the system of linear equations, it rather calculates the beta
function of the full linear relation for the couplings that cannot be disentangled.
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BP-I-D:
βλH,1

= 16λ2
H,1 + 24λH,1λH,4 − 9λH,1g

2
1 − 9λH,1g

2
2 + 24λ2

H,2 + 128λ2
H,3

+4λ2
Hφ,1 −

1

2
λ2
Hφ,2 +

3

2
g21g

2
2 , (2.196)

βλH,2
= 48λH,1λH,2 + 96λH,2λH,3 + 48λH,2λH,4 − 9λH,2g

2
1 − 9λH,2g

2
2

+4λHφ,1λHφ,2 , (2.197)
βλH,3

= 48λH,1λH,3 + 12λ2
H,2 + 24λH,3λH,4 − 9λH,3g

2
1 − 9λH,3g

2
2 + 2λ2

Hφ,1 ,

(2.198)
βλH,4

= 16λ2
H,1 + 16λH,1λH,4 + 48λ2

H,2 + 64λ2
H,3 + 32λ2

H,4 − 9λH,4g
2
1

−9λH,4g
2
2 + 2λ2

Hφ,2 +
9

8
g41 +

3

4
g21g

2
2 +

9

8
g42 , (2.199)

βλφ
= 16λ2

Hφ,1 + 4λ2
Hφ,2 + 24λ2

φ − 3λφg
2
X − 9λφg

2
2 +

3

8
g4X +

3

4
g2Xg

2
2

+
9

8
g42 , (2.200)

βλHφ,1
= 16λH,1λHφ,1 + 12λH,2λHφ,2 + 48λH,3λHφ,1 + 4λH,4λHφ,1

+8λHφ,1λHφ,2 + 12λHφ,1λφ −
3

2
λHφ,1g

2
X − 9

2
λHφ,1g

2
1

−9λHφ,1g
2
2 , (2.201)

βλHφ,2
= 8λH,1λHφ,2 + 48λH,2λHφ,1 + 20λH,4λHφ,2 + 16λ2

Hφ,1 + 4λ2
Hφ,2

+12λHφ,2λφ −
3

2
λHφ,2g

2
X − 9

2
λHφ,2g

2
1 − 9λHφ,2g

2
2 +

9

4
g42 , (2.202)

BP-I-T:
βλH,1

= 16λ2
H,1 + 24λH,1λH,4 − 9λH,1g

2
1 − 9λH,1g

2
2 + 24λ2

H,2 + 128λ2
H,3

+6λ2
Hφ,1 +

3

2
g21g

2
2 , (2.203)

βλH,2
= 48λH,1λH,2 + 96λH,2λH,3 + 48λH,2λH,4 − 9λH,2g

2
1 − 9λH,2g

2
2

+6λHφ,1λHφ,2 , (2.204)
βλH,3

= 48λH,1λH,3 + 12λ2
H,2 + 24λH,3λH,4 − 9λH,3g

2
1 − 9λH,3g

2
2

+3λ2
Hφ,1 , (2.205)

βλH,4
= 16λ2

H,1 + 16λH,1λH,4 + 48λ2
H,2 + 64λ2

H,3 + 32λ2
H,4 − 9λH,4g

2
1

−9λH,4g
2
2 + 3λ2

Hφ,2 +
9

8
g41 +

3

4
g21g

2
2 +

9

8
g42 , (2.206)

βλφ
= 16λ2

Hφ,1 + 4λ2
Hφ,2 + 20λ2

φ − 12λφg
2
X − 24λφg

2
2 +

3

2
g42 , (2.207)

βλHφ,1
= 16λH,1λHφ,1 + 12λH,2λHφ,2 + 48λH,3λHφ,1 + 4λH,4λHφ,1

+16λHφ,1λφ − 6λHφ,1g
2
X − 9

2
λHφ,1g

2
1 −

33

2
λHφ,1g

2
2 , (2.208)

βλHφ,2
= 8λH,1λHφ,2 + 48λH,2λHφ,1 + 20λH,4λHφ,2 + 16λHφ,2λφ

−6λHφ,2g
2
X − 9

2
λHφ,2g

2
1 −

33

2
λHφ,2g

2
2 . (2.209)
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Of course, these RGEs are valid only above the electroweak scale when both scalars run
in the loops. Furthermore, these RGEs do not depend on a specific realization of the G221

model since at one-loop, all the particle propagators in the loops are connected to scalars
at both ends and can therefore only be scalars or gauge bosons (we ignore the Yukawa
couplings). Consequently, only the type of first stage SB matters, doublet or triplet. The
following comments are in order:

(i) The difference between the doublet and triplet case RGEs is mild and for terms that
are present in both equations it comes only from the Clebsh-Gordan coefficients. For
instance, the term λHφ,1λHφ,2 in βλH,2

. Furthermore, only terms involving the triplet
field can be different (this also includes the gauge boson corrections like Aabcd).

(ii) A good cross check that we properly disentangled the various beta functions of the
quartic coupling constants is that there are no terms of the form βλi

⊃ g2λj, i �= j
in the result. These terms come from −3g2ΛS

abcd ∼ λabcd, see Eq. (2.105), and must
be proportional to the quartic coupling constant corresponding to the beta function
being considered.

(iii) The beta functions of λH,1,2,3,4 do not have terms proportional to gX since H is not
charged under U(1)X and analogously the beta function of λφ do not have terms
proportional to g1.

(iv) Finally, contrary to what would naively be expected, in some of the beta functions,
the term proportional to λ2 of the corresponding beta function does not appear. It
is indeed the case for βλH,2

where only mixed contributions are present in the result
e.g. λH,1λH,2. This behaviour also appears in the RGEs of the 2HDM model.

The last result we present is the beta functions for the mass terms µφ, µH,1 and µH,2.

2.5.4 Analytic result at 1-loop: Scalar mass terms

Finally, we give the results for the three mass terms in the potential Eq. (2.191):

βµφ
= 32λHφ,1µH,1 + 8λHφ,2µH,2 + 12λφµφ −

3

2
g2Xµφ −

9

2
g22µφ ,

βµH,1
= 16λH,1µH,1 + 12λH,2µH,2 + 48λH,3µH,1 + 4λH,4µH,1 + 4λHφ,1µφ

−9

2
g21µH,1 −

9

2
g22µH,1 ,

βµH,2
= 8λH,1µH,2 + 48λH,2µH,1 + 20λH,4µH,2 + 4λHφ,2µφ

−9

2
g21µH,2 −

9

2
g22µH,2 . (2.210)

Similar remarks to the ones done for the quartic coupling constants apply here and we do
not repeat them. In the next part we investigate numerically the size of the differences
between SB occurring via a doublet or a triplet at one-loop.
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2.5.5 Numerical study of the G221 RGEs

Using the interactive mode of PyR@TE, Section 2.4.8, we can easily solve the system of
coupled differential equations formed by the RGEs above. We fix the initial parameters
arbitrarily to some values and compare the evolution of BP-I-D and BP-I-T models42.
The initial values for the gauge couplings are fixed as follows

g1(MZ) ≡ gSMSU(2)L
(MZ) = 0.65, gSU(3)c(MZ) ≡ gSMSU(3)c(MZ),

gX(MZ) = 0.4, g2(MZ) =

√

g2Xg
2
Y

g2X − g2Y
= 0.78 , (2.211)

where we have enforced the relation between gX , g2 and gY as well as the one between g1
and gSU(2)L coming from SB. Finally, we set all the other parameters at MZ to 0.01.

In Fig. 2.9 we show the result at one-loop for the various gauge couplings of the model.
We remind the reader of the fact that βg1 and βg3 are independent of the model. For
the other two gauge coupling constants we see that the difference between BP-I-D and
BP-I-T for a given model is small and of about 5% at most.

Below, in Fig. 2.10, we present the evolution of all the dimensionless and dimensionful
parameters of the potential. To avoid too many curves on the same plot, and because the
effects are similar from one model to the other, we show only one or two triplet results
for each parameter. In all the cases, the pattern of modifications is similar for the other
models.

With these initial conditions, the variation between the two SB ranges from 1-2%
for µH,1,λH,1,λH,3,λH,4 to about 8% for µH,2 and λH,2, µH,2. Very different behaviours
between the doublet and triplet case are observed in the evolution of λφ,λHφ,1,λHφ,2

and µφ as expected since they involve directly the field φ. The change of sign in the
beta function of λφ (i.e. the sign of the slope of λφ) in the LR-T and HP-T models
comes from the fact that the positive contributions to the beta function proportional to
g4X and g2Xg

2
2 are absent in the triplet version of the model. In addition, the negative

contributions −3λφg
2
X ,−9λφg

2
2 are enhanced to −12λφg

2
X ,−24λφg

2
2, respectively, as can

be seen in Eqs. (2.200, 2.207). Similar arguments can be used to explain the striking
difference in the behaviour of βλHφ,2

.

2.5.6 Comparison one vs two loop

Finally, we turn to the two-loop results. The differences in the beta functions of the gauge
coupling and mass terms beta functions can be explained by arguments similar to the
ones already made above, we therefore will not repeat them and concentrate instead on
the quartic couplings. The results can be found in Appendix C.

We have seen at one-loop that the beta functions for the various quartic couplings
depend only on the representation of the scalar field mediating the first stage SB. At the
two-loop level, once the scalar field content is fixed, there are only two terms that can
give rise to differences across the models. Closely inspecting Eq. (2.104), we see that these

42Our principal goal here is to see whether the difference between BP-I-D and BP-I-T models can be
sizeable.
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Figure 2.9: Evolution of the gauge coupling constants in the BP-I-D and BP-I-T
realizations @1-Loop. The scale Q is given in units of GeV.

two terms are

g4 10
3
κS2(F )ΛS

abcd , −g6 32
3
κS2(F )Aabcd . (2.212)

Therefore, the two-loop beta functions for the quartic couplings can be written in the form

β
(2)
λi

(M) = β̃
(2)
λi

(M) +∆λi
, (2.213)

where M denotes any of the realizations (LR, LP, FP, HP) and in which β̃
(2)
λi
(M) is the

model dependent part and ∆λi
the model independent contribution. The results for ∆λi

are quite lengthly. Therefore,we only give here the result for λφ for a SB mediated by a
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Figure 2.10: Evolution of the quartic coupling constants and scalar mass parameters in
the BP-I-D and BP-I-T realizations @1-Loop.

doublet for illustration and refer the reader to Appendix C for the complete set of RGEs.
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The model independent part reads

∆
D
λφ

= −192λ2
Hφ,1λHφ,2 − 160λ2

Hφ,1λφ + 96λ2
Hφ,1g

2
1 + 96λ2

Hφ,1g
2
2 − 16λ3

Hφ,2

− 40λ2
Hφ,2λφ + 24λ2

Hφ,2g
2
1 + 24λ2

Hφ,2g
2
2 + 15λHφ,2g

4
2 − 312λ3

φ

+ 36λ2
φg

2
1 + 108λ2

φg
2
2 , (2.214)

while the model dependent parts are given by

LR-D:

β̃λφ
= +

389

24
λφg

4
X +

39

4
λφg

2
Xg

2
2 −

29

8
λφg

4
2 −

187

48
g6X − 367

48
g4Xg

2
2 −

317

48
g2Xg

4
2 +

277

16
g62 ,

(2.215)
LP-D:

β̃λφ
= +

449

24
λφg

4
X +

39

4
λφg

2
Xg

2
2 −

89

8
λφg

4
2 −

235

48
g6X − 415

48
g4Xg

2
2 −

269

48
g2Xg

4
2 +

325

16
g62 ,

(2.216)
HP-D:

β̃λφ
= +

569

24
λφg

4
X +

39

4
λφg

2
Xg

2
2 −

209

8
λφg

4
2 −

331

48
g6X − 511

48
g4Xg

2
2 −

173

48
g2Xg

4
2 +

421

16
g62 ,

(2.217)
FP-D:

β̃λφ
= +

629

24
λφg

4
X +

39

4
λφg

2
Xg

2
2 −

269

8
λφg

4
2 −

379

48
g6X − 559

48
g4Xg

2
2 −

125

48
g2Xg

4
2 +

469

16
g62 ,

(2.218)

which indeed are all of the form specified in Eq. (2.212).
To conclude this section, we illustrate the impact of the two-loop corrections by

performing a simple numerical analysis. We follow the same procedure as for the one-loop
case and use identical initial conditions, cf. Eq. (2.211).

In Fig. 2.11, we show for the various gauge couplings the ratio of the one-loop over the
two-loop prediction. We see that the impact of the two-loop corrections varies between
a few per mille for the SU(2)1 and SU(3)c groups, and to a few percents for U(1)X and
SU(2)2.

Finally, in Fig. 2.12, we show the ratio of one-loop over two-loop predictions for all
the quartic couplings and mass terms involved in the potential and for various models.
As before, we see that the impact is of a few percents. Note however, that a few percent
modification in the value of the quartic couplings can have drastic impact on the stability
bound of the effective potential as it is the case in the SM [7].

This concludes this chapter on the automation of the generation of two-loop RGEs for
general gauge field theories. After having introduced the issue we presented a tool that we
dubbed PyR@TE for Python Renormalization group equations @ Two-loop for Everyone
that aims at calculating the algebraic system of coupled first order differential equations
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Figure 2.11: Ratio of one-loop over two-loop predictions for various models and the four
gauge groups factors of the G221 models.

that governs the scale evolution of the parameters of the theory. PyR@TE is easy to use:
Once the user specifies in an intuitive format the gauge group and the particle content
of a given model, the RGEs are generated, and, for ease of inspection, directly exported
to LATEX. Also, the results can be exported to Mathematica where the RGEs can be
numerically solved and plotted. Furthermore, we have developed an interactive mode in
form of an IPython Notebook that mimics much of the functionality of Mathematica.

Since the calculations that lead to the RGEs are if not difficult so at least involved,
we paid special attention to validating our results. To that end, we not only compared
the RGEs generated by PyR@TE with complete or partial results that are available in
the literature, but also developed Mathematica routines that are now part of version 4 of
SARAH. With SARAH 4 we find complete agreement, whereas we have some disagreement
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Figure 2.12: Ratio of one-loop over two-loop predictions for all the quartic couplings and
scalar mass terms of the G221 potential. We show the ratio for various models and first
stage symmetry breaking.

with some results in literature (even at the one-loop level).
Finally, we used PyR@TE to derive the two-loop RGEs of the G221 models exemplifying

the capabilities of the code, especially for models with many quartic terms for which a
calculation by hand would be very challenging.

We believe that PyR@TE can make an important contribution to exploring physics
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beyond the Standard Model. We have developed the code in the spirit that calculational
or technical details should not stop us exploring new scenarios and that one should make
sensible use of computer-aided calculations.
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CHAPTER 3
W ′, Z ′ AT THE LHC: QCD CORRECTIONS TO
TOP-PAIR AND SINGLE-TOP PRODUCTIONS

New heavy resonances that appear in some extensions of the SM have broad conse-
quences. Indeed, because they mix1 with the SM W - and Z-bosons, all the SM processes
involving the electroweak gauge bosons are sensitive to the new particles. In the previous
chapter, we have investigated the RGEs at the two-loop level of the G221 models which
predict such new resonances. Complementary to this study, we now focus on the LHC
phenomenology of these new resonances.

Discovered in 1995 at the pp̄ collider, Tevatron [186,187] the top-quark is significantly
different from the other quarks. Its heavy mass2 of 173.34 ± 0.27(stat) ± 0.71(syst)
GeV [188] or equivalently its short life-time, confers the top-quark the ability to decay
before it hadronizes, a major difference with respect to all the other quarks. This property
offers a unique opportunity to study a bare quark and effects due to its spin via the
angular correlations of its decay products. At the LHC the top-quark is mainly produced
via the following processes:(i) top-pair production, pp → tt̄, (ii) single-top, pp → tq̄ or,
single-top associated with W production, pp → Wt. When the LHC reaches its nominal
energy of

√
s = 14 TeV and luminosity of 10 fb−1/yr, 106 top-pairs and almost as many

single-tops are expected to be produced each year. Therefore, it will be feasible to perform
precision measurements of the top-quark mass, production cross sections as well as various
kinematic distributions and the mixing angle of the CKM matrix, V CKM

tb . Any deviation
from the SM predictions will be a hint towards new physics.

Due to its mass close to the electroweak scale, new physics contributions to top-quark
observables are expected to be particularly sizeable3. Leading order (LO) predictions in
theories beyond the standard model usually suffice to design search strategies or to derive
exclusion bounds in the parameter space of new physics scenarios. After the first run of
the LHC, it seems that new physics is not so much around the corner we expected and
the scale of new physics might be higher than previously envisaged. Consequently, it is
probable that future measured deviations will be smaller than first hoped and disentangling
various new physics scenarios will only be feasible if we have precise theoretical predictions
for various observables. Furthermore, accurate determination of the parameters of the
underlying theory clearly requires precision that is beyond LO.

1Note that this is not necessary but indeed the case for G221 models on which we focus here.
2From the latest combination of ATLAS, CDF, CMS and D0.
3This assumes that new physics responsible for the electroweak symmetry breaking couples to the

top-quark and is not too far from the electroweak scale.
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In practice, precise predictions must also account for the busy environment of hadronic
colliders, including multi-parton effects and underlying events. In addition, parton shower
effects have been shown to be important and must be taken into account for realistic
simulations at the hadron level. In order to achieve this, multi-purpose Monte Carlo event
generators such as Pythia [189] and HERWIG [190] are used. However, these tools provide
only LO accuracy for the hard process.

In order to merge the NLO accuracy of hard scattering processes with the parton
shower (PS) techniques, two methods have been proposed: (i) the MC@NLO [191–193]
method is based on a careful modification of the NLO result to match the parton shower
with the advantage that it does not require any modification of the shower Monte Carlo
(SMC) program. On the other hand, the modifications are specific to a given SMC and
showering variable. Moreover, as a result of the whole procedure, negative event weights
may appear. (ii) As an alternative, the POWHEG method [194] allows for the matching of
NLO hard process matrix elements with PS. It does not need to generate negative weighted
events but historically required the implementation of pT ordered showers4. Around this
method, a framework has been developed, the POWHEG BOX [195] which greatly simplifies
the implementation of NLO hard process matrix elements in SMC.

In this chapter, we present our calculation of the QCD corrections to the electroweak
top-pair production and report on the ongoing calculation of the QCD corrections to the
electroweak single-top production in presence of additional generic neutral and charged
gauge bosons, Z ′ and W ′. Before the completion of this work a similar calculation of the
top-pair production has appeared [196]. However, contrary to the calculation by Melnikov
et al. we also provide an implementation of our result in the POWHEG BOX framework,
hence allowing for realistic collider phenomenology. Note that part of our results for the
top-pair production have already been presented in [91]. However, for completeness, we
review all the steps of the calculation and focus on the last technicalities of the calculation
including the treatment of QED divergences and their implementation in the POWHEG BOX

as well as on the numerical results.
We start this chapter by describing the various theoretical tools that we use to perform

the calculation in Section 3.1. Section 3.2 and Section 3.3 present in turn the specificities
of both calculations of the top-pair and single-top production at NLO QCD while in
Section 3.4 we provide the reader with some details about the POWHEG BOX implementation.
Finally, the last section is dedicated to the numerical results, Section 3.5.

3.1 Next-to-Leading order techniques

Loop calculations are a complicated enterprise which was made possible along the years only
by the advent of various techniques and methods. At the same time, tools implementing
some of these ideas have been designed which renders the calculation of QCD corrections
more accessible. In spite of all these efforts, the amount of input from the user as well
as the tasks left to him are still considerable depending on the calculation. In order to
reduce the input from the user and in the view of reusing our computations for later
purposes, our group has developed a set of python script, that we dubbed bsmLoops.
bsmLoops links several tools already existing to perform different steps of the computation

4Truncated showers were also needed [194].
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considerably reducing user input. We use a Feynman diagram approach where we generate
the diagrams/amplitude squared using QGRAF/DIANA interfaced to FORM to perform
the algebraic manipulations (Lorentz contractions, traces). Once this task is performed,
we automatically extract the integrals which we reduce to a basis of scalar integrals, called
master integrals, using Integration-By-Parts identities (IBPs) via the REDUZE program.
Note that up to this point the computation is fully automatic. We then evaluate the
master integrals in terms of (Generalized) Harmonic Polylogarithm, (G)HPLs which is
done using the differential equation method, see Section 3.1.3. The real contributions to
the corresponding process are also calculated using our code.

In this first section, we review the various theoretical techniques that we use for
the calculation of virtual QCD corrections to the electroweak top-pair and single-top
productions, and comment on the steps that are automatized and what is left to the user.
More details on our code can be found in [91].

3.1.1 Dimensional Regularization

The first issue one has to face when calculating observables at NLO is the appearance of
divergent integrals. Indeed, the virtual amplitude of a given process involves the integral
over the internal momentum of the virtual particle in the loop. This integral will in
general be improper in four dimension and one has to find a way of regularizing it. Note
that since we calculate modulus of amplitudes squared, we only deal with scalar integrals,
i.e. that do not have any free Lorentz indices.

An elegant solution to this problem has been found in the form of what we nowadays
call dimensional regularization [197]. This techniques consist in extending the usual
four dimensional Minkowski space time to an arbitrary dimension that we will denote d.
Subsequently, integrals that were previously divergent in d = 4 are now properly defined
in arbitrary dimension d �= 4. The divergences will appear in the final results as poles in
d = 4 but the integration can be carried out.

As a defining example, let us consider the following integral
∫

d4k

(2π)4
1

(k2 −m2)n
, (3.1)

where k is the momentum of the internal particle over which we integrate, m its mass
and n an arbitrary integer. It is clear from naive dimensional arguments that the above
integral is UV divergent (large momentum) for n ≤ 2. In the limit m → 0, it is also IR
(small momentum) divergent for n ≥ 2. In dimensional regularization, this integral in
d-dimension reads

µ4−d

∫
ddk

(2π)d
1

(k2 −m2)n
, (3.2)

in which we introduced an arbitrary parameter µ with mass dimension to conserve the
dimension of the integral5. This is now a proper integral that can be integrated (details
on how to perform such integrations were given in Chapter 2) leading to

µ4−d

∫
ddk

(2π)d
1

(k2 −m2)n
∼ µ4−d Γ(n− d/2)

(4π)d/2Γ(n)
(m2)d/2−n , (3.3)

5Note that the momentum k is now a d-dimensional vector kµ =
(
k0, k1, . . . , kd−1

)
. Consistently, the

metric tensor is such that gµµ = d.
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in which the poles are contained in the poles of the Euler gamma function Γ(n− d/2).
As expected, we still have that the result of this integral is divergent for n ≤ 2 as can be
inferred from the expansion, Γ(n− d/2) = Γ(n− 2) +O((d− 4)) and the properties of
the gamma function.

Dimensional regularization, gives us a way of isolating the poles in the integrals and
perform the calculation while keeping track of them. This is extremely powerful and
handy. In the following, we will explain how the poles disappear in a complete calculation
when we discuss renormalization as well as spontaneous emissions of soft particles.

One implication of promoting the integrals in d-dimension, is that we also have to
extend the Dirac algebra to d dimensions. Consequently, instead of 4 gamma matrices,
γµ, we now have d of them with µ ∈ 〚0, d− 1〛. Since we are only interested in the limit
d = 4, we can set the normalization of the gamma matrices to Tr (γµγν) = 4gµν . This
is simpler than using the definition Tr (γµγν) = 2d/2gµν , that one would expect from the
definition of a Clifford algebra and leads to the same results in the limit d = 4 [125].

One final complication comes from the treatment of γ5 in d-dimension. The reason is
that γ5 =

i
4!
εµνρσγ

µγνγργσ is a purely 4-dimensional object and cannot be consistently
extended to d-dimensions. Several prescriptions have been put forward to get around this
problem and in our calculation we will rely on Larin prescription [198] which amounts to do
the substitution γµγ5 = i 1

3!
εµνρσγ

νγργσ and then carry out the calculation in d-dimension.
However, by doing so, the Ward identities are violated starting at one-loop and one has
to perform an extra finite renormalization for γ5 in order to restore the Ward identities
and hence preserve gauge invariance. It is important to note that this renormalization
is to be done on a vertex per vertex basis since purely vector currents should not get
affected by this renormalization. In Section 3.1.4 we will give the expression for this extra
renormalization constant needed for our calculation.

3.1.2 Integration By Parts identities and Master integrals

The dimensionally regularized scalar integrals satisfy Integration-By-Parts identities
(IBPs) [199,200]. These identities link scalar integrals within the same auxiliary topology
and allow one to reduce the number of loop integrals present in the problem, to a smaller
set of master integrals. Consequently, there is no need to calculate all the scalar integrals
appearing in the problem but only a handful of them, the master integrals.

In the following we will refer to the propagator denominators by D. They take the
form D = (q2 − a) where q is a linear combination of loop momenta ki and external
momenta pi, a is a constant.

An auxiliary topology [201] is defined by a set of n propagator denominators A ≡
{D1, . . . ,Dn} which satisfies the following properties: (i) each scalar product of a loop
momentum ki with another loop momentum kj or an external momentum pj can be
expressed as a linear combination of the Di and kinematic invariants, (ii) this decomposition
must be unique. Subsequently, all the scalar loop integrals can be written in the form

I(i1, i2, . . . ) = µ4−d

∫
ddk

(2π)d
1

Di1Di2 . . .
, (3.4)

in which i1, i2, . . . are the powers of the propagator denominators and can in general take
positive, negative integer values or can be null. Note that property (i) is essential to the
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reduction algorithms to guarantee that within two consecutive steps we stay within the
same ensemble of propagator denominators appearing in the loop integrals, the auxiliary
topology.

In dimensional regularization, the integral over a total derivative is zero. As a
consequence the following equality holds

∫

ddki
∂

∂kµ
i

[quI(i1, i2, . . . )] = 0 , (3.5)

where q is an arbitrary loop or external momentum and µ is summed over contrary to i
which is fixed. Carrying out the derivation leads to the IPBs. If the auxiliary topology is
constructed form n loop momenta and m+ 1 external lines, one can build n(m+ n) such
relations for each integral.

Let’s now see how this works on the simplest example, and consider the tadpole integral

IT (i1 = 1) = µ4−d

∫
ddk

(2π)d
1

Di1
1

, D1 = k2 +m2 . (3.6)

In the associated diagram, there is no external momentum and therefore there is only one
IBP associated to IT

∫

ddk
∂

∂kµ

(
kµ

D1

)

=

∫

ddk
d

D1

+

∫

ddkkµ−2kµ

D2
1

= 0

IT (2) =
−(d− 2)

2m2
IT (1) , (3.7)

where we have used the relation k2 = D1 −m2 between the two lines. This relation can
be easily generalized to arbitrary i1

IT (i1 + 1) =
−(d− 2i1)

2i1m2
IT (i1) . (3.8)

This example is extremely simple and in general one obtains a linear combination of the
I(i1, i2, . . . ) (for various i1, i2, . . . ) with coefficients composed out of the external momenta
invariants, dimension d and the denominator powers ii.

A slightly more involved example is that of the equal masses two-point function

IA(1, 1) = µ4−d

∫
ddk

(2π)d
1

D1D2

,D1 = k2 +m2 ,D2 = (p+ k)2 +m2 , (3.9)

with two independent momenta kµ and pµ. Since k2 = D1−m2 and p·k = 1
2
(D2 −D1 − p2),

A = {D1,D2} is a proper auxiliary topology. The following system of IBPs can then be
written

∫

ddk
∂

∂kµ

(
kµ

D1D2

)

= 0

∫

ddk
∂

∂kµ

(
pµ

D1D2

)

= 0 , (3.10)
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and leads to
∫

ddk
d

D1D2

+

∫

ddk

(

− 2k2

D2
1D2

− 2(p+ k) · k

D1D2
2

)

= 0

∫

ddk

(

− 2k · p

D2
1D2

− 2(p+ k) · p

D1D2
2

)

= 0 . (3.11)

Expressing the scalar products in terms of the inverse denominators one obtains

IA(1, 2)− IA(2, 1) = 0

(d− 3)IA(1, 1) + (4m2 + p2)IA(1, 2)− IA(0, 2) = 0 , (3.12)

and finally using Eq. (3.8) and IA(0, i) = IT (i)

IA(1, 2) = − (d− 3)

4m2 + p2
IA(1, 1)−

(d− 2)

2m2(p2 + 4m2)
IA(1, 0) . (3.13)

Hence, we see that the two-point function with a squared propagator can be reduced
in terms of the simple equal masses two-point function and the tadpole.

As shown in the second example, the IBPs for a given auxiliary topology form a
homogeneous system of linear equations with the integrals as unknowns. However, this
system is under-determined and it is therefore impossible to solve for all the loop integrals.
The left-over integrals in terms of which the others are expressed are called the master
integrals, e.g. IA(1, 1), IA(1, 0) in the previous example. We will present the master
integrals for the problem at hand in a coming section.

Generating all the IBPs for a given problem is straightforward and the difficulty of
this method resides in solving the system of IBPs, the reduction. There exist several
methods to solve a system of IBPs and in our work we use the Laporta [202] algorithm as
implemented in the public tool REDUZE 26 [201,204].

3.1.3 Solving the master integrals

Even though the number of scalar integrals that have to be calculated is greatly reduced
during the reduction, one usually ends-up with a handful of master integrals for which a
solution must be sought. For one loop calculations, many of the master integrals that
are commonly encountered are well known in the literature and this step can actually be
skipped. However, since in principle the master integrals must be calculated we review an
interesting method to find such solutions, the differential equation method [205]. Note that
other methods can be employed such that for instance the application of Mellin-Barnes
transformation to all propagators [206, 207] or the negative dimension approach [208]
which are both based on a direct evaluation of the integral.

The differential equation method is a technique that avoids the explicit integration
over the loop momenta but relies on solving a differential equation satisfied by the scalar
integral itself. To illustrate this method we derive the differential equation satisfied by
the already encountered equal masses two-point function, see Eq. (3.9)

IA(1, 1) = µ4−d

∫
ddk

(2π)d
1

D1D2

,D1 = k2 +m2 ,D2 = (p+ k)2 +m2 . (3.14)

6Note that the Laporta algorithm is also implemented in older tools e.g. AIR [203].
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Using the relation

pµ
d

dpµ
= pµ

d

dp2
dp2

dpµ
= pµ

d

dp2
2pµ = 2p2

d

dp2
, (3.15)

we calculate the derivative of IA(1, 1)

d

dp2
IA(1, 1) =

1

2p2
pµ

d

dpµ
µ4−d

∫
ddk

(2π)d
1

D1D2

=
1

2p2
pµµ4−d

∫
ddk

(2π)d
−2(p+ k)µ

D1D2
2

= −1

2
IA(1, 2)−

1

2p2
IA(1, 1)−

(d− 2)

4m2p2
IA(1, 0) , (3.16)

which involves IA(1, 1) but also IA(1, 2) and IA(1, 0). Now, the central point of this
method is to inject the IBPs inside this equation to obtain a differential equation. Using
the IBPs derived in the previous section, Eq. (3.13), we obtain a non-homogeneous first
order differential equation for the integral IA(1, 1)

dIA(1, 1)

dp2
= −1

2

[
1

p2
− (d− 3)

p2 + 4m2

]

IA(1, 1)−
(d− 2)

4m2

[
1

p2
− 1

p2 + 4m2

]

IA(1, 0) . (3.17)

This case is actually quite simple and can be solved analytically for a generic value of the
parameter d. First, the initial condition has to be determined. This is done by using the
regular property of IA(1, 1) in p2 → 0 and the subsequent relation limp2→0 p

2 d
dp2

IA(1, 1) =

0 [209]. Multiplying Eq. (3.17) by p2 and taking the limit p2 → 0 we have

0 = −1

2
lim
p2→0

IA(1, 1)−
(d− 2)

4m2
IA(1, 0) , (3.18)

from which we obtain the initial condition

lim
p2→0

IA(1, 1) = −(d− 2)

2m2
IA(1, 0) . (3.19)

The solution to the homogeneous part is immediate and reads

ĨA = kz−1/2(1 + z)(d−3)/2 , (3.20)

where we have introduced the dimensionless parameter z = p2/4m2. The variation of
the constant method is well suited to determine the solution of the inhomogeneous part.
Indeed, considering k(z) as a function of z and calculating the derivative of Eq. (3.20)

k′z−1/2(1 + z)(d−3)/2 = −(d− 2)

4a

(
1

z
− 1

1 + z

)

IA(1, 0)

k =
(d− 2)

4a
IA(1, 0)

∫ z

0

dtt1/2(1 + t)(1−d)/2 − t−1/2(1 + t)(3−d)/2 , (3.21)

we find

ÎA(1, 0) = z−1/2(1 + z)d−3/2 (d− 2)

4a
IA(1, 0)

∫ z

0

t1/2(1 + t)(1−d)/2 − t−1/2(1 + t)(3−d)/2dt .

(3.22)
Note that the two integrals in the last equation are representations of the hypergeometric
function [209]. Finally, the full result is given by the sum of the two solutions IA(1, 1) =
ĨA(1, 1) + ÎA(1, 1). The differential equation method, is a powerful method that has been
applied to many cases in the literature with great success, see for instance [210].
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3.1.4 Renormalization

Divergent loop integrals are inherent to any calculation that goes beyond the leading
order. Here, we concentrate on divergences that appear for large values of the integration
momenta (UV) keeping in mind that in a theory with massless particles divergences in the
limit of small momenta can also be present. For a virtual amplitude of a given process,
after the integrals have been calculated in d-dimension the UV as well as IR divergences
are extracted as poles7 of 1/ε = 2/(4 − d). The renormalization procedure consists in
treating the UV divergences by redefining the parameters and fields of the theory. We
have already shown in Chapter 2 how the divergences in φ4 theory could be absorbed into
a re-definition of the scalar field wave function, gauge parameter and quartic coupling to
give finite predictions. In this part, we give some details on the renormalization procedure
that we use in our calculation.

The Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [211–213] allows one
to link the renormalized squared amplitude to the bare one via the following relation

M̃ =
∏

n

Z
1/2
WF,nM({x̃i}) , (3.23)

in which Z
1/2
WF,n are the wave function renormalization constants for each one of the

n external legs and {x̃i} denotes the set of renormalized coupling parameters of the
theory. They are obtained from the corresponding bare parameters by multiplicative
renormalization

x̃i = Zixi , (3.24)

where we introduced the renormalization constants Zi. These constants are obtained in
perturbation theory by calculating the divergent parts of the diagrams and are scheme
dependent.

We now expand the relation of Eq. (3.23) in the case at hand, i.e. the QCD corrections
to electroweak processes. Both, the electroweak top-pair and the single-top production
amplitudes are of the order O(α2

EW ) at tree level and therefore the QCD corrections at
the order O(αSα

2
EW ). They can be written in the form

M =
(αEW

π

)2

M0;2 +
αS

π

(αEW

π

)2

M1;2 + . . . , (3.25)

where . . . represents higher order corrections and indices m;n represents the power of αS,
αEW respectively. Since the corrections that we consider are of first order in αS and have
the same order in αEW as the tree level contributions there is no correction to either αS

or αEW and we have

δZαEW
= 1 +O(αEW ), δZαS

= 1 +O(αS) . (3.26)

In addition, the only quark considered massive is the top-quark and its mass does not
need to be renormalized either as will be shown in Section 3.2. Therefore, we only need
to carry out the wave function renormalization

ZWF,n = 1 +
αS

π
δZWF,n +O

((αs

π

)2
)

. (3.27)

7UV singularities will appear as single pole while IR divergences can lead to single or double poles.
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Expanding Eq. (3.23) and inserting Eqs. (3.25, 3.27) one obtains

M̃ =
∏

n

(

1 +
αS

π
δZWF,n

)1/2
((αEW

π

)2

M0;2 +
αS

π

(αEW

π

)2

M1;2 + . . .

)

=
(αEW

π

)2

M0;2 +
αS

π

(αEW

π

)2
(

M1;2 +
∑

n

1

2
δZWF,nM0;2

)

︸ ︷︷ ︸

M̃(1)

+O(α2
Sα

2
EW ) .

(3.28)

Hence, the procedure to obtain the renormalized amplitude is straightforward: (i) Cal-
culate the virtual corrections of order O(αSα

2
EW ), M1;2, (ii) multiply the Born evaluated

in d-dimension8, M0;2, by the sum of adequate wave function renormalization, (iii) and
sum the two contributions M̃(1) and M0;2. The renormalized amplitude thus obtained,
M̃, does not contain any UV divergence anymore. Note however, that single and double
poles in ε are still present in the virtual amplitude since we have not dealt with the IR
divergences yet.

We list below the various renormalization wave function constants that we use in
Eq. (3.28). The top-quark wave function is renormalized on-shell (OS) while the massless
quark fields are renormalized in the MS scheme in which the renormalization constant van-
ish for on-shell partons. Therefore, we are left with only the top-quark field renormalization
constant which reads in d = 4− 2ε dimension [214]

δZOS
WF,t = (4π)εΓ(1 + ε)

(
µ2

m2
t

)

CF

(

− 3

4ε
− 1

1− 2ε

)

. (3.29)

As explained in Section 3.1.1 if one uses the Larin prescription for treating the γ5

matrices in dimensional regularization, an extra finite renormalization has to be performed
in order to restore the Ward identities. This renormalization constant has been calculated
up to three-loops in the MS scheme in [198] and reads at one-loop

Z5 = 1− αS

π
CF +O(α2

S) . (3.30)

However, it must be noted that only the terms involving γ5 and products of γ5 should
be multiplied by corresponding powers of Z5. Consequently, it is often more practical to
calculate a dedicated expression for the Born in which the axial couplings of the gauge
bosons have been multiplied by Z5 in such a way that this modified Born can be directly
added to the other counter terms to complete the renormalization procedure.

Note that in bsmLoops, the renormalization is not yet done automatically and one
has to carry it directly in FORM. Note however, that some template files are provided
so that only the expressions of the various wave function renormalization constants and
their combination multiplying the Born must be provided. Automating this procedure is
one of the important steps towards which the efforts will be directed in the future.

8This is necessary in order to obtain all the finite pieces from the multiplication with the divergent
renormalization constants and understood in the definition of the MS scheme.
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3.1.5 Infrared structure of the virtual corrections

Even though renormalization tames the UV divergences, it does not address the issue of
soft (low-momentum) and collinear (small-angle) singularities that are present both in the
real and virtual contributions (referred to as infrared divergences (IR)). According to the
Kinoshita-Lee-Nauenberg theorem [215,216] in a theory with massless fields, transition
rates are free of the infrared (soft and collinear) divergences if the summation over the
initial and final degenerate states is carried out. That is to say, the IR divergences in the
real and virtual contributions cancel. However, in hadron collisions, the left-over collinear
singularities coming from initial state radiations due to the violation of the KLN theorem
must be absorbed in the re-definition of the PDFs.

Schematically, at LO we can write a given cross section of a 2 to n process as the
integration of the partonic Born cross section over the phase space of the n outgoing
partons

σLO =

∫

dΦnLB ≡
∫

n

dσ̂B , (3.31)

dΦn is a set of variables characterizing the n-particle phase space, L = f(x1)f(x2) is the
product of parton density functions with xi being the momentum fraction of the incoming
partons and B is the Born matrix element. dσ̂B is the Born cross section and can be
calculated in 4-dimension. Following the same notation, the NLO contribution to the
total cross section takes the form

σNLO =

∫

n+1

dσ̂R +

∫

n

dσ̂Vren.

+

∫

n

dσ̂C , (3.32)

in which we indicate by a subscript n, n + 1 the dimension of the phase space similar
to the definition in Eq. (3.31). All the terms on the right-hand side of Eq. (3.32) are
separately divergent while the sum, σNLO, must be finite for well defined observables. The
singularities in the virtual contribution are expressed in dimensional regularization as
powers of 1/ε while the IR divergences in the real contribution are phase space singularities.
Therefore, it is clear that the cancellation of the divergences in exclusive observables
cannot be achieved numerically and the various pieces must be regularized separately
before any numerical integration. The last term on the right-hand side of Eq. (3.32),
the collinear counter term arises from the redefinition of the PDFs. Indeed, within the
factorization theorem, additional radiation from the initial state with low momentum
with respect to ∼ µf are described by the PDFs. Since the splittings leading to collinear
singularities are universal we are free to absorbed these divergences in the definition of the
PDFs. In order to obtain a finite partonic cross section the collinear divergences absorbed
in the PDFs must be subtracted which is referred to as collinear counter terms and are
contained in dσ̂C.

We now review the idea of the subtraction method in combination with the dipole
formalism which aims at providing a technique to perform the above mentioned regu-
larization. Here we only briefly review the presentation of [217, 218] to which we refer
the reader for additional information. Note that several other methods for the treatment
of infrared divergencies exist including phase-space slicing methods, e.g. [219], or the
Frixione-Kunszt-Signer (FKS) dipole subtraction [220].

The basic idea of the subtraction method is to add and subtract an auxiliary cross
section, dσA to the NLO cross section which acts as a local counter term for dσ̂R. It
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must be an approximation of dσ̂R such as to have the same pointwise singular behaviour
in d-dimension as dσ̂R itself. In addition, it must be simple enough so that it can be
integrated in d-dimension analytically over the single-parton subspaces that lead to the
soft and collinear divergences to yield 1/ε poles. These poles can then be combined with
the ones in dσ̂Vren.

to cancel the remaining infrared singularities. The key point of this
method relies in being able to construct such an object independently of the process9

and with the required properties. This can be achieved within the dipole formalism as
explained now.

The main result of [218] is a prescription to construct dσA as a sum of various
contributions called dipoles. A given dipole contribution describes the soft and collinear
radiation from a pair of ordered partons, the emitter and the spectator. Only the kinematics
of the emitter leads to singularities while the spectator carries information on the color
and spin correlations of the real cross section dσ̂R. The auxiliary cross section can then
be written

dσA =
∑

dipoles

dσ̂B ⊗ dVdipole , (3.33)

where dVdipole, the dipole factors, encode the two-parton decay of the emitters. These
factors are universal and can be obtained from the QCD factorization formulae in the soft
and collinear limits. Note that the symbol ⊗ means that the spin and color correlations
are included. dVdipole can be made fully integrable analytically [218] and in a process
independent way leading to

∫

n+1

dσA =
∑

dipoles

∫

n

dσ̂B ⊗
∫

1

dVdipole =

∫

n

dσ̂B ⊗ I . (3.34)

with the universal factor I defined as

I =
∑

dipoles

∫

1

dVdipole . (3.35)

I contains the 1/ε poles that will cancel the infrared divergences in the virtual contribution
dσ̂Vren.

. Consequently, the cross section for the NLO contribution reads symbolically

σNLO = σNLO
n+1 (p) + σNLO

n (p) +

∫ 1

0

dxσ̂NLO
n (x; xp)

=

∫

n+1

dσ̂R(p)−
∑

dipoles

dσ̂B(p)⊗ dVdipole

+

∫

n

[
dσ̂Vren.

(p) + dσ̂B(p)⊗ I
]

+

∫ 1

0

dx

∫

n

[
dσ̂B(xp)⊗ (P+K)(x)

]
. (3.36)

The contributions σNLO
n+1 (p) and σNLO

n (p) with n+1- and n- partons kinematics respectively,
are separately finite. The third term on the first line is a left-over from the cancellation

9Each term is constructed from universal pieces that only depend on the masses of the external
particles.
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of the divergences in the collinear counter terms. It involves a NLO cross section with
n parton kinematics and an additional one-dimensional integration with respect to the
longitudinal momentum fraction x. As explicitly written on the last line of Eq. (3.36), it
comes from the convolution of the Born cross section dσ̂B(xp) with x-dependent functions
P and K that are universal and finite for ε → 0. The various expressions for the universal
factors, I, dVdipole, P and K can be found in [217, 218]. Note that dVdipole includes
contributions from the collinear counter terms as required to make dσ̂R finite.

In practice, once the finite part of the virtual amplitude, the real and the Born cross
sections (as well as Born correlated amplitudes) are known, σNLO can be constructed
following Eq. (3.36) in an automated manner. We will come back to this when we discuss
the POWHEG BOX implementation of our results, see Section 3.4. However, in order to check
the consistency of our virtual amplitudes with the corresponding Born, one can verify
analytically that dσ̂Vren.

(p) + dσ̂B(p)⊗ I yields a finite result. Details for the processes at
hand will be given later on in the manuscript, see Section (3.2).

3.2 Top-pair production

In the first section of this chapter we have presented various theoretical tools and explained
the general method we use to carry out the calculation of the NLO QCD corrections to the
electroweak top-pair and single-top productions. We now give some details on the order
O(αSα

2
EW ) contributions to the top-pair production in the framework of the G221 models,

i.e. in addition to the SM γ and Z-boson an extra Z ′-boson is considered. For the sake
of generality, we consider the axial and vector part of the Z ′-boson couplings arbitrary
flavour diagonal so that we can accommodate the various G221 models, see Eqs. (1.30,
1.31). In addition, the top-quarks in the final state will be considered on-shell and stable
since their subsequent decay can be handled automatically at leading order accuracy by a
general purpose Monte Carlo event generator. Finally, all the calculations presented in
this chapter are performed in the Feynman gauge.

The partonic top-pair production up to NLO has the following perturbative expansion

σ̂NLO = σ̂2;0(α
2
S)+σ̂0;2(α

2
EW )+σ̂3;0(α

3
S)+σ̂2;1(α

2
SαEW )+σ̂1;2(αSα

2
EW )+σ̂0;3(α

3
EW ) , (3.37)

where as previously mentioned the indices m;n represent the powers of αS and αEW

respectively. Out of the six terms in the expansion we concentrate on the two that are
highlighted in red i.e. σ̂0;2 the LO electroweak cross section and its QCD corrections in
σ̂1;2. Even though the inequality α2

SαEW > αSα
2
EW let us foresee that σ̂1;2 will likely yield

a smaller correction than σ̂2;1 it will likely be more relevant for new physics searches at
the LHC due to the role of the resonant Z ′-boson. In addition, while the calculation of
σ̂1;2 can be carried out in a model independent way as long as the Z ′ couplings are kept
general, σ̂2;1 will be highly model dependent due to the rich structure of the scalar sector
in G221 models.

In the SM, all the above contributions have been calculated: (i) cross sections and
distributions including QCD effects of O(αS)

3 were computed in [221–224], (ii) part of
the electroweak corrections of order O(α2

SαEW ) were investigated in [225], neglecting
the interferences between QCD and electroweak interactions, (iii) finally, the rest of
the corrections were calculated in a series of papers including the effects of the Z-gluon
interferences [219,226–228].
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3.2.1 Leading-order contribution

In Fig. 3.1 we show the order O(αEW ), tree level diagrams. The squared matrix element
is obtained by interfering all possible diagrams together. Summing over the spin of final
state particles and averaging over the initial ones we obtain the Born matrix element,
B. We perform this calculation in 4 and d-dimension as the latter is required for the
calculation of the counter terms used for the renormalization as explained in Section 3.1.4.

Figure 3.1: Tree level Feynman diagrams to the electroweak top-pair production. The
three gauge bosons exchange, γ, Z, Z ′, are considered.

The diagrams are generated automatically using bsmLoops which uses QGRAF and
DIANA to translate it into amplitudes. The traces for each interference term are then
calculated using FORM and summed together. The result is already quite lengthy due
to the general structure of the Z ′ couplings and reads for a general interference term10

Bq(B,B′) [91]

Bq(B,B′) =
2α2

EW

ŝ2DBDB′s4W

{

ŝ(t̂− û) (A
q
BB

q
B′ + A

q
B′B

q
B)

(

A
t
BB

t
B′ + A

t
B′B

t
B

)

+

(A
q
BA

q
B′ + B

q
BB

q
B′)

[(
t̂2 + û2 + 4ŝm2

t − 2m4
t

)
A

t
BA

t
B′ +

(
t̂2 + û2 − 2m4

t

)
B

t
BB

t
B′

]}

{[
(ŝ−M2

B)(ŝ−M2
B′) +mBmB′ΓBΓB′

]
+ i

[
(ŝ−M2

B)mB′ΓB′ − (ŝ−M2
B′)mBΓB

]}
,

(3.38)

where B,B′ ∈ {γ, Z,Z′}, the subscript q denotes the flavor of the incoming massless
parton and ŝ, t̂, û are the usual partonic Mandelstam variables11. DB, DB′ come from
the product of denominators of the propagators and take the usual form

Dγ =
1

ŝ2
, DZ =

1

(ŝ−M2
Z)

2 +m2
ZΓ

2
Z

, DZ′ =
1

(ŝ−M2
Z′)2 +m2

Z′Γ
2
Z′

. (3.39)

The coefficients Aq
B(B′), B

q
B(B′), A

t
B(B′), B

t
B(B′), are proportional to the axial (A) and vector

(B) couplings of the various gauge bosons to massless (q) and top (t) quark. Their
expressions have been collected in Appendix E. To take into account the finite width of
the Z- and Z ′-bosons we introduced the complex masses, mZ(Z′) → mZ(Z′) − iΓZ(Z′)/2
such that our propagator for a massive gauge boson B, reads

1

q2 −m2
B + iΓBmB + Γ2

B/4
. (3.40)

10Note that the flux factor 1/2ŝ is included.
11Note that we use the Pauli-Dirac metric in which the dot product has an overall minus sign with

respect to the Bjorken-Drell metric. Details on this metric as well as recipes on how to convert between
the two formulae can be found in [229].
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Consequently, the following relation between m2
B and M2

B holds: M2
Z(Z′) = m2

Z(Z′) −
Γ
2
Z(Z′)/4.

Subsequently, the expression for the total Born matrix element can be written in terms
of general interference terms as

B =
∑

q

(

Bq(γ, γ) + Bq(Z,Z) + Bq(Z
′,Z′) +

∑

B �=B′

Bq(B,B′)

)

, (3.41)

where we sum over all the possible light quarks in the initial state q ∈ {d, u, s, c, b}. Note
that, the general interference term contains an imaginary part, Eq. (3.38). However, as
expected, it drops out in the final amplitude due to the relation Bq(B

′, B) = Bq(B,B′)∗.

3.2.2 Virtual contribution

We now summarise the result for the virtual corrections to the electroweak top-pair
production. From the LO diagrams, Fig. 3.1, it is clear that there are only two types
of virtual corrections to calculate: vertex corrections to either the initial or final state
particles. Indeed, since the electroweak gauge bosons are color singlets the interference of
the Born amplitude with the box diagrams shown in Fig. 3.2 are proportional to Tr(T a)
and therefore vanish. Summing the interferences of any of the diagrams in Fig. 3.3 with
the LO ones, Fig. 3.1 lead to the virtual amplitude.

Figure 3.2: Example of box diagram of order O(αSαEW ) leading to vanishing contribution.
Note that this diagram would contribute to observables at order O(α2

SαEW ).

Figure 3.3: Virtual corrections to the electroweak top-pair production of order O(αSαEW ).
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Master integrals and renormalization

As explained in Section 3.1 the virtual amplitude is regularized using dimensional regu-
larization and the various scalar integrals are reduced to a basis of master integrals. For
the calculation of the corrections of order O(αSα

2
EW ) we have reduced 30 distinct loop

integrals to a set of 3 master integrals: (i) the massive one-point function referred to as
the massive tadpole, (ii) the equal masses two-point function known as the massive

bubble (iii) and the massless two-point function, the massless bubble. The solution
of these master integrals can be obtained via the differential equation method and are
well known, see e.g. [230]. All the other integrals encountered during the calculation can
be expressed in terms of these three integrals by solving the system of IBPs. The full
solution is too lengthly and we do not show it here.

After this step, the IR as well as UV singularities in the virtual amplitude are expressed
as poles of 1/ε and 1/ε2. The UV divergences are tamed by the renormalization procedure
as outlined in Section 3.1.4. There we showed that the counter term that must be added
to the virtual amplitude in order to cancel the UV poles is of the form

∑

n∈{q,q̄,t,̄t}

1

2
δZWF,nM0;2 . (3.42)

where M0;2 refer to the Born amplitude. Since the initial partons are massless we only have
the two top-quarks in the final states that need to be renormalized. Therefore the counter
term for the top-pair production is simply given by δZWF,tM0;2. In addition, because
there is no diagram containing corrections to the top-quark propagator the top-quark
mass does not need to be renormalized and we are left with only one contribution to the
counter term.

Dipole subtraction

As explained above, a good cross check of the consistency of the calculation and in
particular of the Born and the virtual is to construct the dipoles by hand, add them to the
virtual amplitude and confirm that the cancellation of 1/ε poles occurs. In other words,
the sum dσ̂Vren.

+ dσ̂B ⊗ I must be finite.
The case of the electroweak top-pair production is simplified by the fact that there

is no colour correlation between the initial and final state12. Therefore, the integrated
dipole I take the following form [218]

I = Iinit. + Ifinal , (3.43)

with only an initial and final part. Iinit. and Ifinal can be both obtained from the general
formula

I(ε, µ2, pi,mi) = −αS

2π

(4π)ε

Γ(1− ε)

1

T2
i

Ti ·Tj ×

[

T2
i

(
µ2

sij

)ε

Vj(mi,mj, ε) + Γj(mj, ε)

]

+i ↔ j + finite terms , (3.44)

12For now, we do not define what colour correlation means, we will come back to this when we calculate
the Born colour correlated amplitudes.
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in which we wrote only the divergent pieces since we are interested in the singular structure
of dσ̂Vren.

. Tj is the colour matrix associated to the parton j. Introducing the structure
constants and matrix representation of the fundamental representation of SU(3)c, fabc, tlab
we have for gluons Tl

cb = ifclb while for quarks and anti-quarks we have Tl
ab = tlab and

Tl
ab = −tlab respectively. These definitions are such that the colour factors reduces in our

case to T 2
i = CF and Ti · Tj = −CF , where CF = 4/3 is the value of the Casimir operator

acting on the fundamental representation. Also, sij = 2pi · pj.
The expression for Vj and Γj for the massless initial partons and top-quarks are given

by

Vj(0, 0, ε) =
1

ε2
, Vj(mt,mt, ε) =

1

ε

1

vji
ln ρ ,

Γj(0, ε) =
γq

ε
, Γj(mj, ε) =

CF

ε
, (3.45)

in which vji =

√

1− p2jp
2
i

(pi·pj)2
, ρ =

√
1−vji
1+vji

and γj=q = 3/2CF . Collecting, Eqs. (3.44, 3.45)

and the various definitions we obtain the final expression for Iinit. and Ifinal

Iinit. =
2αS

2π

(4π)ε

Γ(1− ε)

((
µ2

ŝ

)ε
CF

ε2
+

γq

ε

)

+ finite terms

Ifinal =
2αS

2π

(4π)ε

Γ(1− ε)

(
CF

ε

(
µ2

ŝ− 2m2
t

)ε
1 + x2

1− x2
ln x+

CF

ε

)

+ finite terms ,(3.46)

where we introduced a convenient variable x defined by ŝ = −m2
t
(1−x)2

x
. Note that we see

again that the double poles come only from the initial state partons.

3.2.3 Real emissions

The last set of corrections to the process of our interest involves the emission of one extra
parton. We divide these corrections in two groups depending on the nature of the incoming
partons: qq̄ and gq(q̄). Indeed, while at LO the top-pair production is necessarily initiated
by a quark/anti-quark pair, there is a new channel opening up at order O(αSα

2
EW ) and

the real emission can be also be initiated by a gluon/quark. In Fig. 3.4 and Fig. 3.5 we
show the Feynman diagrams of the 2 → 3 processes that contribute to the real emission.
Contrary to the virtual corrections that have to be interfered with LO diagrams the real
emission diagrams are interfered with themselves to yield the appropriate O(αSα

2
EW )

order.
In the qq̄ channel, diagrams (a) and (b) have only singularities associated to the

emitted gluon in the final states when it becomes soft. On the other hand, diagrams
(c) and (d) exhibit a divergent behaviour both when the radiated gluon becomes soft,
collinear or soft and collinear to the emitting parton. The gq and gq̄ channels do not
have any soft singularities but have some collinear ones (except for diagram (a)). Indeed,
inspecting diagram (b) we see that the internal quark propagating can be collinear to the
initial gluon while in diagrams (c) and (d) it is the internal gauge boson, in case it is a
photon, that can be collinear to the initial parton, leading to other collinear singularities.

In summary, the soft and soft and collinear divergences cancel the ones in the virtual
amplitude while the collinear singularities, also called mass singularities must be absorbed
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into the PDFs by means of the mass factorization. The fact that the collinear divergences
appearing in diagrams (c) and (d) involve a photon has two consequences: (i) we have to
introduce a PDF for the photon inside the proton, (ii) the corresponding underlying Born
process shown in Fig. 3.6, γg → tt̄, must be added to the calculation. This cancellation
can in principle be done analytically by regularizing in d-dimension the integral of the
real amplitude over the additional radiated parton phase space making apparent the
singularities as poles of 1/εsoft (soft), 1/εcoll. (collinear13) or 1/ε2 (for the regions where
the soft and collinear divergences overlap). The squared pole and soft one are equal and
opposite in sign to the ones in the virtual amplitude. Within the dipole formalism, this is
much easier since the singularities are treated directly in the n+ 1-parton phase space.
Finally, the collinear counter terms in Eq. (3.32) are taking care of the left-over collinear
singularities (giving rise to 1/εcoll.) which have been absorbed into the PDFs.

Even though the photon induced top-pair production at LO is of order O(αSαEW )
and is therefore a contribution of σ1;1, it must be included for a consistent treatment of
the divergences. As we will see in Section (3.5) this channel is numerically important with
respect to the corrections. The calculation of this process follows from simple application
of the Feynman rules and we do not detail it here. We will discuss it in Section 3.4 when
introducing the spin-correlated Born amplitude. The expression for the real corrections
can be found in [91].

Figure 3.4: Real diagrams for the contributions of order O(αSα
2
EW ) with qq̄ as initial

state. Note that B ∈ {γ, Z, Z ′}.

Figure 3.5: Real diagrams for the contributions of order O(αSα
2
EW ) with gq initial state.

Similar diagrams contribute to the gq̄ channel. Note that B ∈ {γ, Z, Z ′}.

This concludes our presentation of the electroweak top-pair production calculation at
order O(αsα

2
EW ). We have made great use of the techniques presented in the first section of

this chapter to obtain the Born cross section, the renormalized virtual amplitude as well as
the real corrections. We are one step away of being able to describe the implementation of

13Note that the coefficient in front of the poles of the collinear and soft regions are the same.
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Figure 3.6: Photon induced top-pair production of order O(αSαEW ). Note that these
diagrams must be added for a consistent subtraction of the singularities, see text.

the calculation in a general purpose Monte Carlo generator but we first present the second
calculation at hand namely the single-top production in presence of a heavy W ′-boson.

3.3 Single-top: a status report

Analogously to what we did for the top-pair production, we now give some details on the
second calculation we are interested in namely the single-top production.

As we have seen in Chapter 1, a common feature of the G221 models is the prediction of
new neutral as well as charged gauge bosons, Z ′, W ′. With the LHC soon running at 13
TeV, many top-quarks will be produced in the coming years and precision measurements
of top-quark related processes will be possible. In this view, having precision calculations
of as many observables as possible is essential to make full use of the future experimental
measurements. In addition, with the combination of the previously presented calculation
of the electroweak top-pair production we will be able to study correlations of these
observables which has been shown to be a very good way of disentangling the underlying
theory, hence extending the study in [74] to NLO.

In order to be as general as possible, the axial and vector part of the W ′ couplings to
fermions are kept general and we calculate the processes

qq̄′ → W,W ′ → tb̄ , bq → W,W ′ → tq′ (3.47)

in which q and q′ are arbitrary up-type and down-type light quarks respectively. Even
though the b-quark luminosity is largely suppressed the b quark initiated t-channel
contribution is significant and we include it in addition to the resonant s-channel.

3.3.1 Leading-order cross section

The leading order cross section of the electroweak single-top production proceeds in the SM
via the exchange of a W -boson and is of order O (α2

EW ). As for the top-pair production
the QCD corrections are therefore of order O(αSα

2
EW ), and we show the LO diagrams in

Fig. 3.7. This process proceed either via s- or t-channel (diagram (a), (b) respectively)
and since the b-quark is either in the initial or final state the two classes of diagrams do
not interfere with each other. For renormalization purposes we calculate the Born in 4
and d-dimensions and show here the expression in the limit d = 4 including the sum and
average over the spin of final and initial state particles as well as the relevant flux factor.
The Born cross section can be decomposed as
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B =
∑

q∈{u,c}

∑

i∈{s,t}

∑

B,B′∈{W,W ′}

Bi
q(B,B′), , (3.48)

with

Bi
q(B,B) =

1

256ŝ

α2
EM

s4W
Di

BD
i
Br

i
B

(
cq1,Bχ

i
1 + cq2,Bχ

i
2

)

Bi
q(B,B′) =

1

256ŝ

α2
EM

s4W
Di

BD
i
B′ r̃i

(
dq1χ

i
1 + dq2χ

i
2

)
,

and where the various coefficients read

rsB = (Γ4
B + 16(m2

B − ŝ)2 + 8Γ2
B(m

2
B + ŝ)) , rtB = (Γ4

B + 16(m2
B − t̂)2 + 8Γ2

B(m
2
B + t̂)) ,

χs
1 = ŝ(ŝ+ 2t̂−m2

t ) , χs
2 = (ŝ2 + 2ŝt̂+ 2t̂2 −m2

t (ŝ+ 2t̂)) ,

χt
1 = −t̂(2ŝ+ t̂−m2

t ) , χt
2 = (2ŝ2 + 2ŝt̂+ t̂2 −m2

t (2ŝ+ t̂)) ,

cq1,B = 4aqBa
t
Bb

q
Bb

t
B cq2,B = ((aqB)

2 + (bqB)
2)((atB)

2 + (btB)
2) ,

Ds
B =

1

(ŝ−M2
B)

2 +m2
BΓ

2
B

, Dt
B =

1

(t̂−M2
B)

2 +m2
BΓ

2
B

,

r̃s = 16ΓWΓW ′mWmW ′ + Γ
2
W (Γ2

W ′ − 4m2
W ′ + 4ŝ)− 4(m2

W − ŝ)(Γ2
W ′ − 4m2

W ′ + 4ŝ)) ,

r̃t = 6ΓWΓW ′mWmW ′ + Γ
2
W (Γ2

W ′ − 4m2
W ′ + 4t̂)− 4(m2

W − t̂)(Γ2
W ′ − 4m2

W ′ + 4t̂)) ,

dq1 = (bqW ′a
q
W + aqW ′b

q
W )(atW btW ′ + atW ′btW ) ,

dq2 = (bqW ′b
q
W + aqW ′a

q
W )(atW ′atW + btW ′btW ) . (3.49)

In the above expressions we have introduced the axial, aqB, atB, and vector, bqB, btB, couplings

of a gauge boson B, (W or W ′) to a light-quark doublet (
(
u
d

)

or
(
c
s

)

) and top/bottom-

quark doublet respectively. Note that for the SM the CKM matrix is included in the
definition of the couplings such that e.g. auW = buW = (VCKM)ud, atW = btW = (VCKM)tb.
Finally, sW is the sine of the Weinberg angle.

3.3.2 Virtual corrections

Single-top production is mediated by uncolored gauge bosons which leads to a small set
of virtual corrections: (i) For the s-channel, only initial and final state vertex corrections
lead to non vanishing contributions, while box diagrams as the one shown in Fig. 3.8 are
irrelevant, (ii) in the t-channel, however, it is the corrections between two initial particles
that need not be calculated instead.

Reduction and master integrals

The corrections presented above lead to 30 different scalar integrals divided into two
auxiliary topologies for the s-channel and identically for the t-channel. In both cases,
these integrals can be reduced to three master integrals using the REDUZE 2 program as
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Figure 3.7: Leading-order diagrams contributing to the Born cross section of the single-top
production at order O(αSαEW ).

Figure 3.8: Example of s-channel virtual correction, box diagram, that do not contribute
to the virtual amplitude.

Figure 3.9: Diagrams contributing to the order O(αSα
2
EW ) virtual corrections to the s-

and t-channel.

explained in Section 3.1. Among these master integrals the massive one-point function,
referred to as massive tadpole, and the massless bubble, have already been encountered
in the top-pair production calculation. In addition to these two, there is one additional
master that is required for the single-top which is the half-massive two-point function.
The expression for this master is also known and can be found in [231].

Renormalization

The renormalization of the single-top production is very similar to the top-pair produc-
tion. Indeed, there are no corrections to either αS or mt for the very same reasons,
see Section 3.2.2, and we renormalize the top-quark wave function on-shell while the
massless quarks (including the b-quark) are renormalized in the MS scheme in which the
renormalization constant is one. Therefore the overall renormalization constant reads

∑

n∈out.part.

1

2
δZWF,nM0;2 =

1

2
ZWF,tM0;2 , (3.50)

in which M0;2 is the Born amplitude.
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Dipole subtraction

After renormalization, the virtual amplitude still suffers from IR divergences and we check
using the dipole subtraction of Catani-Seymour that the infrared structure of our virtual
amplitude is consistent with the Born i.e. that

dσ̂B ⊗ I+ dσ̂Vren.

, (3.51)

is finite. For this process the integrated dipoles can be decomposed in two parts

I = Iinit. + Ifinal , (3.52)

in which the initial state integrated dipole is identical as in the case of top-pair production
while the final state one must be modified to take into account the fact that only one of
the final state particle is massive.

Iinit. =
2αS

2π

(4π)ε

Γ(1− ε)

((
µ2

ŝ

)ε
CF

ε2
+

γq

ε

)

+ finite terms

Ifinal =
αS

2π

(4π)ε

Γ(1− ε)

(

2CF

(
µ2

ŝ−m2
t

)ε (
1

2ε2
+

1

2ε
ln

m2
t

ŝ−mt2

)

+
CF

ε
+

γq

ε

)

+ finite terms . (3.53)

3.3.3 Final remarks

As a conclusion, we have calculated the virtual corrections at order O(αSα
2
EW ) to single-

top production. The real contributions have not been considered yet and once this is
finalized, the POWHEG BOX implementation as described in the next section will be feasible
for the single-top as well. For the top-pair production, all the various pieces have been
calculated and we now present the implementation in POWHEG BOX.

3.4 POWHEG BOX implementation

Shower Monte Carlo (SMC) programs play a central role in comparing data and theory
predictions at colliders. Indeed, it is the only way to describe the complexity of hadron
collisions and all the LHC phenomenology is based on their use. However, SMCs only
provide leading-log accuracy for the shower via the collinear approximation of spontaneous
emissions while the partonic hard process is described by LO matrix elements. Increasing
the accuracy of the shower algorithms is very difficult and most of the effort over the last
years has been directed towards improving the description of the hard process scattering
by making use of the available partonic calculations at NLO. Since, shower algorithms
already approximate NLO corrections the problem of including NLO matrix element in
SMC is that of avoiding double-counting between the hard process description and the
shower. The ultimate goal is that inclusive observables are described at NLO accuracy
while the leading-logarithmic accuracy of the shower in the collinear regions is preserved.

In order to avoid overlapping descriptions, two methods have been put forward: (i) first,
the MC@NLO method was suggested [191], (ii) and later, the POWHEG method was
introduced in [194,232].
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The MC@NLO method solves the double-counting problem by subtracting from the
exact NLO result its approximation as implemented in the SMC. Therefore, it depends on
the exact implementation of the SMC and must be calculated analytically for each SMC.
On the other hand, these subtraction terms are process-independent and can therefore be
calculated once and for all. Since there is no reason for the subtraction term to be smaller
than the NLO cross section, the MC@NLO method yields some events with negative
weights (at the end, physical distributions must turn out to be positive). To summarize,
infrared-safe observables have NLO accuracy, the shower is summing collinear emissions
at leading-log accuracy and the soft and collinear regions are left to the SMC (i.e. they
are treated properly if the SMC has this capability). The MC@NLO method has been
used for many processes [192,233] including heavy quark pair and single-top production.

The main motivation for the Positive Weight Hardest Emission Generator (POWHEG),
as suggested by its name, is to match NLO matrix element with existing SMC program in
such a way that only positive weighted events are generated. In addition, this was shown
to be achievable independently of the SMC program provided it implements pT -ordered
showers or allows for the implementation of a pT veto. To solve the double-counting
problem, POWHEG generates the first emission with a modified Sudakov form factor
using the full NLO accuracy while the subsequent emissions are controlled by the usual
pT -ordered SMC algorithms14. If the SMC used with the POWHEG method is transverse
momentum-ordered and double-log accurate, then the POWHEG method retains the
double-log accuracy.

Matching NLO calculation with SMC following the POWHEG method has been
partly automated via a computer framework called the POWHEG BOX. This framework is a
collection of algorithms in Fortran 77 which deal with many aspects of the subtraction
procedure:

(i) The POWHEG BOX finds all the singular regions.

(ii) It constructs the soft and collinear counter terms.

(iii) It builds the collinear remnants which are the left-over of the PDFs redefinition.

(iv) It generates the event with Born kinematics including virtual corrections.

(v) Finally, it adds the hardest emission according to the POWHEG Sudakov form
factor.

Hence, the user input in the form of numerical routines is limited and comprises the list
of all flavour structures of the Born and real processes, the Born phase space, the Born
squared, color- and spin-correlated amplitudes, the finite part of the virtual amplitude
and the real squared amplitudes. Once these have been specified the POWHEG BOX does the
rest and the output of the POWHEG BOX can then be interfaced to any SMC to obtained
various physical distributions. Several processes are already available in the POWHEG BOX

including single-top and single-top W associated production, Higgs boson production in
gluon fusion and many others [234–236].

A description of the POWHEG method is beyond the scope of this manuscript and we
refer the reader to [91,195,232] for more details. In the following, we review the various
pieces that must be provided by the user.

14Or angle-ordered with pT veto.
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3.4.1 Colour-correlated Born amplitudes

To calculate the subtraction terms in the dipole formalism, the POWHEG BOX needs the
information on the colour correlations between each pair of two external legs. The
colour-correlated Born, Bij, contains this information and is formally defined by

Bij = −N
∑

spins
colours

M{ck}

(

M†
{ck}

)

ci → c′i
cj → c′j

T a
ci,c′i

T a
cj ,c′j

, (3.54)

where M{ck} is the Born amplitude and {ck} the colour indices of all the external coloured
particles. The suffix in M†

{ck}
indicates that the colour indices of partons i, j are substituted

with primed indices. N is the appropriate normalization factor including the flux factor.
For incoming quarks (as well as outgoing anti-quarks), T a

α,β = taαβ, for incoming anti-quarks
(as well as outgoing quarks) T a

α,β = −taβα while T a
α,β = ifcab for gluons.

From colour conservation we have the relation
∑

i,i �=j

Bij = CfjB , (3.55)

where Cfj is the quadratic Casimir of the colour representation of particle j. Bij is a
symmetric matrix and only off diagonal terms need to be calculated.

For the qq̄ initiated electroweak top-pair production, this trivially leads to

1

2sb
Bij = CFB , (3.56)

for two incoming or outgoing particles and zero otherwise, CF = 4/3.
As we have seen in Section 3.2.3, we also have to include the photon-gluon induced pair

production process in order to treat the QED divergence occurring in the qg real channel
for which we also need to calculate the colour-correlated Born. The colour structure of
this diagram, see Fig. 3.6, factorizes in the amplitude and we can therefore calculate
directly the colour-correlated Born in terms of the Born. The colour factor of this process
reads

C = taαβt
b
βαδ

ab =
N2

c − 1

2
= 4 . (3.57)

Applying Eq. (3.54) to each pair of external legs of this process we obtain the following
values for the various coefficients

B13 = − 1

C
taαβt

a′

βα′T e
a,a′T

e
αα′B = −taαβt

a′

βα′ifaea′(−teα′α)
B

C

= −ifa′eaTr(t
a′teta)

B

C
=

1

2
NcTr(t

ata)
B

C

=
1

2
NcB (3.58)

B14 = B13 =
1

2
NcB

B34 = − 1

C
Btaαβt

b
β′α′T e

ββ′T e
αα′δ

ab = Tr(tatetate)
1

C
B =

−1

2Nc

B . (3.59)
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Of course, the relation Eq. (3.55), holds as can be explicitly verified.

B1,3 + B1,4 =

(
1

2
Nc +

1

2
Nc

)

B = CAB

B3,4 + B3,1 =

(
−1

2Nc

+
1

2
Nc

)

B =
N2

c − 1

2Nc

B = CFB . (3.60)

Note that this cross check is implemented in POWHEG BOX.

3.4.2 Spin-correlated Born amplitude

In the POWHEG BOX, the spin-correlated Born squared, Bµν
j is defined to be non zero if leg

j is a gluon. It is obtained by leaving un-contracted the indices of the jth leg following
the definition

Bµν
j =

∑

{i},sj ,s′j

M({i}, sj)M
†({i}, s′j)(ε

µ
sj
)∗ενs′j , (3.61)

in which M({i}, sj) is the Born amplitude, {i} represents collectively all the remaining
spins and colours of the incoming and outgoing particles and sj is the spin of the jth

particle. In addition, the εµsj are polarization vectors normalized as
∑

µ,ν

gµν(ε
µ
sj
)∗ενs′j = −δsjs′j . (3.62)

As for the colour-correlated Born we have a closure relation, namely
∑

µ,ν

gµνB
µν
j = −B . (3.63)

Since processes without external gluons lead to vanishing contributions, we only have
to consider the photon-gluon induced top-pair production. At this point one has to be
careful and also calculate the contribution from the external photon. Indeed, the QED
divergence present in the qg channel cannot be detected by the POWHEG BOX in its present
implementation and we will have to modify the code so that it actually treats the QED
singularity along with the other divergences. However, this will only be possible if the
corresponding dipoles can be constructed by POWHEG BOX, and we consequently have to
provide the adequate spin-correlated Born amplitude.

To illustrate the form of the result we show the expression for Bµν
2 where the subscript

2 designates the photon leg consistently with the diagram shown in Fig. 3.6. Applying
the above procedure leads to the following expression

Bµν
2 =

16π2αEWαSQ
2
t

ŝm2
t z

2
1y

2
1




(
pµ1 pµ2 pµ3

)
A1





pν1
pν2
pν3



−A2g
µν



 , (3.64)

in which Qt is the top-quark electric charge, A1,2 are a three-by-three matrix and a scalar,
composed of combinations of the kinematics variables, and where y1 and z1 have the
following definition

y1 =

(

1− t̂

m2
t

)

z1 =

(

1− û

m2
t

)

. (3.65)
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Finally, A1 and A2 read

A1 =





8z21 2P2z1 −8P1z1
2P2z1 4(P1 − z1)

2z1 6P1z
2
1 − 4z31 − 2P2

1 (2 + z1)
−8P1z1 6P1z

2
1 − 4z31 − 2P2

1 (2 + z1) 8P2
1



 ,

A2 = m2
tP3(P1 − z1)z1 ,

P1 = y1 + z1 , P2 = 2(y1 + z1) + y21 , P3 = y21 + z21 .

(3.66)

As for the color-correlated Born, the closure relation Eq. (3.63) is implemented in
POWHEG BOX allowing the user to check the consistency of his implementation.

3.4.3 Implementation of the virtual corrections in POWHEG BOX

The calculations of the virtual corrections presented in Section 3.2.2 for the top-pair
production and in Section 3.3.2 for the single-top lead to amplitudes squared which are
slightly different from the one required for the POWHEG BOX implementation and we now
give some details regarding the form in which the virtual corrections must be provided.

The user must provide a numerical routine setvirtual in virtual.f which, given
a set of external momenta, and a flavour configuration, returns the corresponding finite
part of the virtual amplitude, Vfin.. The contribution Vfin., calculated in dimensional
regularization must be in the form

V = N
αS

2π

[

1

ε2
aB +

1

ε

∑

i,j

cijBij + Vfin.

]

. (3.67)

In the above equation a and cij are coefficients that do not depend upon ε while the Born
and colour-correlated Born B and Bij contain powers of ε. The normalization factor N is
defined by

N =
(4π)ε

Γ(1− ε)

(
µ2
R

Q2

)ε

, (3.68)

where Q is the Ellis-Sexton scale [237]. The expressions for a and cij can be found in [238]
and are closely related to the dipoles presented in Section 3.2.2. This step is in principle
straightforward but one must take special care to take the various normalizations into
account. For this reason, we show the details of the terms that must be subtracted in our
case to bring the virtual corrections into the form of Eq. (3.67).

We begin by writing our virtual amplitude (interfered with the Born) resulting from
the evaluation of the Feynman diagrams and expanded in powers of 1/ε in the following
form

Vour = N
αEWαS

2π

[

V0 +
V−1

ε
+

V−2

ε2

]

. (3.69)

In the same way we expand the Born15, B and colour-correlated Born, Bij in powers

15The Born is calculated in d-dimension as explained in Section 3.1 and therefore does depend on
d = 2ε+ 4.
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of ε

B = αEW

[
B0 + εB1 + ε2B2

]
,

Bij = αEW

[
B0
ij + εB1

ij + ε2B2
ij

]
. (3.70)

For convenience we remind the expressions for the dipoles presented in Eq. (3.46)

Iinit. = Ñ
αS

2π
2

(
ŝ

m2
t

)−ε [
CF

ε2
+

γq

ε

]

,

Ifinal = Ñ
αS

2π

CF

ε
2

[

1 +

(
ŝ− 2m2

t

m2
t

)−ε
1 + x2

1− x2
ln x

]

,

I = Iinit. + Ifinal , (3.71)

in which we have introduced Ñ =
(4π)ε

Γ(1− ε)

(
µ2
R

m2
t

)ε

and where we omitted the finite terms

since they are irrelevant for the following discussion.
Since the dipoles are constructed to reproduce the singular behaviour of the virtual

we have the relation
IB + Vour = finite , (3.72)

from which we can identify the terms order by order in 1/ε. For the second order poles, it
comes immediately

V−2 = −2CFB0 ≡ C−2B0 .

For the first order pole one has to be careful and take into account the expansion of the
factors

Ñ = N

(
Q2

m2
t

)ε

= N

(

1 + ε log
Q2

m2
t

+
1

2
ε2 log2

Q2

m2
t

)

+O(ε3) ,

(
ŝ

m2
t

)−ε

= 1− ε log
ŝ

m2
t

+
1

2
ε2 log2

ŝ

m2
t

+O(ε3) , (3.73)

as well as the expansion of the Born. Taking this into account we obtain the relation

V−1 = −CF

(

2

[
1 + x2

1− x2
ln x

]

+ 5− 2 log
ŝ

m2
t

+ 2 log
Q2

m2
t

)

B0 − 2CFB1 ≡ C−2B1 + C−1B0 .

(3.74)
We can now focus on determining the pieces that need to be subtracted from our result

to obtain Vfin. Comparing Eqs. (3.67, 3.69) and identifying equal powers of 1/ε we obtain

αEWV−2 = aB0 ⇒ a = αEWC−2 , (3.75)

which means that the two definitions of the second order poles are identical. Now, it
is clear from Eq. (3.67) that the expected first order pole in POWHEG BOX notation is
∑

i,j cijB0 which is linked to our result through the relation

αEWV−1 = aB1 +
∑

i,j

cijB
0
ij ⇒

∑

i,j

cijB
0
ij = αEWV−1 − αEWC−2B1 ,

= αEWC−1B0 , (3.76)
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which can be simplified further since from Eq. (3.56) we have Bij ∼ B and by redefining
cij we can write

∑

ij

cij = αEWC−1 . (3.77)

Finally, following the same reasoning we obtain the finite part Vfin.

αEWV−2 = aB2 +
∑

ij

cijB
1
ij + Vfin. ⇒ Vfin. = αEWV−2 − αEWC−2B2

−αEWC−1B1 , (3.78)

with C−1, C−2 given by Eq. (3.74) and take into account the difference in normalization.

3.4.4 Regularization of the QED divergence

We now turn to the discussion of the treatment of the QED divergence in POWHEG BOX,
and how we perform it despite the fact that it is not a feature of the framework.

The POWHEG BOX has been written to deal with the QCD corrections to general processes.
Therefore, if the photon exchanged leading to the collinear singularity in the third and
fourth diagrams of Fig. 3.5 was a gluon16 then POWHEG BOX would be able to handle the
corresponding QCD singularity.

On the other hand, since POWHEG BOX v2, spontaneous emissions of real photons can
be included in POWHEG BOX, that is to say the collinear remnants corresponding to photon
emissions are implemented in the framework as demonstrated in [239,240]17. Consequently,
it is clear that the missing piece in POWHEG BOX is that of distinguishing the internal
photon from the gluon which is simply in contradiction with the very idea of the framework
because the relevant algorithms rely only on the external particles.

One question arises at this point: how is it that POWHEG BOX does not wrongly
classify the third and fourth diagrams as QCD divergent ? Looking at the details of the
implementation, it is clear that the reason for that lies in the way the singular regions
are identified: (i) each possibly singular region is identified, (ii) for each region found,
POWHEG BOX constructs the underlying Born process, (iii) finally, if this Born process is
valid, i.e. it is among the list of Born flavour structures input by th user, the region is
kept, otherwise, it is discarded. Hence, it appears that the reason for POWHEG BOX not to
include a fake QCD divergence is that we excluded the gluon induced top-pair production
from our calculation18.

Our strategy to have the QED divergences treated in the POWHEG BOX is the following:

(i) Implement our process in POWHEG BOX v2, to benefit from the machinery to treat
spontaneous emissions of photons, including the implementation of collinear rem-
nants.

16This case is excluded of our calculation since this contribution would lead to order O(α2
S)

17These terms are implemented in sigcollremn.f.
18Adding this process to the list of Born flavour structures, it can be checked explicitly that there is a

new singular region identified by POWHEG BOX.
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(ii) Since the corresponding process to diagrams (c) and (d) in Fig. 3.5, in which a gluon
instead of a photon is internally exchanged, is excluded from our calculation, we can
safely replace in the algorithm constructing the corresponding underlying Born a
gluon by a photon.

This procedure has been successfully applied to the electroweak top-pair production as
will be shown in the validation section, see Section 2.4.11. Point (ii) in the above list,
makes sure that diagrams (c) and (d) are linked to the photon induced top-pair production
Born diagram, Fig. 3.6 and subsequently treated properly by the POWHEG BOX v2. Finally,
one has to be careful and switch on the QED flag for real photon emissions to true,
flg_with_em as well as pdf_nparton = 2219 to indicate POWHEG BOX that photon PDFs
will be used.

3.4.5 Final remarks

After downloading the latest POWHEG BOX v2 from the svn repository at
svn://powhegbox.mib.infn.it/trunk/POWHEG-BOX, the above implementation has been
added to the list of the POWHEG BOX processes under the name PBZp. However, since
we modified the main code of the POWHEG BOX in order to treat the QED divergences,
we cannot directly make public our implementation in the present status without the
authorization of the authors and, at the time of writing, the code is therefore not publicly
available.

To allow for maximum flexibility, we have implemented the various channels and
their interferences separately, such that the user can investigate to his convenience the
production via any of the gauge bosons, γ, Z, Z ′ or any pair of two as well as the complete
process. This is easily done, by setting the variable channel to 1 (photon), 2 (Z), 3

(Z’), 4 (photon/Z), 5 (photon/Z’), 6 (Z/Z’) or 7 (photon/Z/Z’) corresponding
to the desired process in the input parameter file powheg.input. Also in the same file,
the user has the freedom to set the vector and axial couplings of the Z ′-boson to up and
down type quarks, azpu,bzpu,azpd,bzpd.

The implementation also provides various choices of scheme for the renormalization
and factorization scales through the value of the scale switch: (i) 0, the scales are running
according to µR = µF =

√

p2T +m2
t , (ii) 1, the running scales satisfy µR = µF =

√
ŝ,

(iii) 2, the scales are fixed to the user chosen value of muR and muF.
Finally, a series a switches control the number of generated events, numevts, the level

of approximation Born, as well as general properties of POWHEG BOX common to all the
implementations and described in the user manual [241].

Note also that the photon induced top-pair production is taken into consideration
only when necessary, i.e. if the real diagrams leading to the QED divergence are included
in the run. In the next section we present our first results of the top-pair production
obtained with the implementation described above.

19These two switches are in init_couplings.f.

127



3.5 Numerical results

This section is devoted to our numerical results. We review the validation of the im-
plementation before discussing some typical distributions of the top-pair production in
presence of a new heavy neutral resonance.

3.5.1 Validation

Validating NLO computations is an involved task that requires a very good knowledge of
the inner working of various tools. In addition, it is also the most time consuming and
important step of the calculation.

In our case, there are two sets of tests that can be carried out:

(i) internal consistency checks related to the POWHEG BOX implementation and the
validity of the IR regularization of real amplitudes,

(ii) comparisons with existing SM calculations of top-pair production, i.e. neglecting
the Z ′-channel.

Note that one could also think about comparing our results with the ones of Melnikov et
al. [196] that appeared before the completion of this work. However, even though they
consider the top-pair production by a heavy Z ′-boson, and their subsequent decay, the set
of NLO corrections they consider is slightly different from ours and it is not straightforward
to compare our predictions20. In addition, they provide a fixed order calculation while we
match ours with a shower Monte Carlo program. We now briefly review points (i) and (ii).

Soft and collinear limits

The POWHEG BOX framework provides some very useful information on the internal consis-
tency of the implementation. Indeed, the routine checklims allows the user to validate
the limiting behaviour of the real squared amplitudes against their soft and collinear
approximations. Hence, for each singular region identified by POWHEG BOX algorithms
the real squared amplitude and its soft and collinear approximations built from the
colour- and spin-correlated Born amplitudes are compared and their ratio in the soft and
collinear regions must be one. This allows one to make sure that: (i) all the expected
singularities have been identified, (ii) for each one of them the colour- and spin-correlated
Born amplitudes are consistent with the squared real amplitude. Note that the double
soft and collinear regions are also tested. The results of these checks are output in the file
pwhg_checklimits and exhibit the expected behaviour for our implementation.

In addition, as mentioned in Section 3.4.1 and 3.4.2, the consistency of the colour- and
spin-correlated Born amplitudes is internally validated in POWHEG BOX via the implemen-
tations of Eqs. (3.55, 3.63).

During the integration of the real contributions, POWHEG BOX produces a set of his-
tograms representing the Monte Carlo sampling of all the kinematical variables, three
for the Born integration and three for the real amplitude squared. The three variables

20For instance they do not include diagrams including photon exchange but consider some corrections
of order O(α2

SαEM ).
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spanning the integration of the real amplitude are denoted ξ, y and θ, which we do not
need to define further to demonstrate our point. Soft, as well as collinear limits, are
located at ξ → 0, and y → 1 with ξ fixed (or y → 1, ξ → 0 for collinear-soft singularities)
respectively. Hence the QED divergence appears in these histograms as an over-sampled
region (vertical lines) around y = 1. In Fig. 3.10 we show two examples of such histograms
for the y variable, in the case where we do not regularize the QED divergence (left) and in
the case where we do (right). This confirms that the treatment presented in Section 3.4.4
is effective in regularizing the QED collinear singularities.

Figure 3.10: Monte Carlo sampling of the real integration variable y, without the regular-
ization of the QED divergence (left) and after regularization (right).

Matrix elements and total cross sections

In order to validate our implementation we have compared numerically at the matrix
element level21 all the expressions for the Born, real and virtual amplitudes in the SM
against MadGraph5_aMC@NLO [242] as well as against GoSam [243] which provides a
numerical expansion of the virtual corrections in 1/ε. We have found a perfect agreement
below the per mille level, for all the channels (including interferences) and all the amplitudes
across a detailed sampling of the entire kinematical parameter space22. We have also
verified the dependence of the matrix elements on the renormalization scale.

Once the matrix elements have been validated, they can be safely convoluted with PDFs
to yield total cross sections. In Fig. 3.11, we show the comparison of the LO total cross
sections in the SM for the Z- and γ− g-channels as predicted by MadGraph5_aMC@NLO
and PBZp. These results have been obtained using the MRST2004qed PDF set [244],

21This is a highly non-trivial task since it involves extracting the matrix elements from the intricate
structure of the various tools and compile them in a consistent way in an independent library that can
then be called externally. This then allows us to avoid any dependence on the physical parameters.

22We generated order of 104 evenly distributed phase space points for which we did the comparison.
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αEW = 1/137, mt = 175 GeV, sin θW = 0.23112 and for various values of the hadronic
center of mass energy,

√
shad.. The numerical errors are similar for all the channels. Note

that the agreement across all the channels is of order 1% including the γ-channel (not
shown).

Figure 3.11: Born total cross sections as predicted by PBZp and MadGraph5_aMC@NLO
as a function of the center-of-mass energy

√
shad.. The Z- and γ − g-channels are shown

on the left and right panels respectively.

Finally, we show in Fig. 3.12 the PBZp NLO predictions for the γ- and Z-channels
compared against MadGraph5_aMC@NLO. Note that only the qq̄ real corrections have
been included in this comparison since it is not possible to obtain the qg and q̄g channels
in MadGraph5_aMC@NLO because of the QED divergence. The physical parameters
have been fixed to the values quoted above and we have used fixed renormalization and
factorization scales, µF = µR = 175 GeV. Again, the agreement is within a few percents.

3.5.2 Impact of the NLO corrections

The rest of this section is devoted to PBZp results. In Tab. 3.1 we present our SM
predictions for the sum of all the channels as well as the contribution of each channel
separately for the LHC running at 13 and 14 TeV. Note that the Z − γ channel is the
sum of Z- and γ channels including their interference. Also, the qq̄ + qg-channel contains
contributions from quark gluon initial states as well as from anti-quark gluon ones. Its
contribution from the γ and Z − γ channels is much larger due to the photon initiated
contribution whose value is listed in Tab. 3.2 with the other Born contributions. For the
NLO predictions, we also indicate the uncertainties due to the scale variation by a factor
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Figure 3.12: PBZp NLO predictions for the Z- and γ-channels compared with Mad-
Graph5_aMC@NLO for several values of the center-of-mass energy

√
shad.. Note that the

qg and q̄g real corrections are not included, see text.

of two up and down around the top-quark mass, i.e. muF = muR ∈ {87.5, 350}. Note that
we show these uncertainties only for the channels with the full set of corrections, i.e. the
qq̄ + qg-channels. The QCD corrections to the electroweak top-pair production are large
due to the fact that the qg channel opens up at NLO.

Table 3.1: PBZp predictions at NLO per channel and for the sum in pb. We show
predictions for the LHC running at 13 and 14 TeV.

channel 13 TeV 14 TeV

sub-channel qq̄ qq̄ + qg qq̄ qq̄ + qg

γ 0.25 4.95+0.970
−0.400 0.28 5.73+1.121

−0.465

Z 0.15 2.15+0.400
−0.317 0.17 2.56+0.461

−0.368

Z − γ 0.49 7.24+1.387
−0.732 0.54 8.45+1.604

−0.849
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Table 3.2: PBZp predictions at LO per channel in pb. We show predictions for the LHC
running at 13 and 14 TeV.

channel 13 TeV 14 TeV

γ 0.18 0.20

Z 0.11 0.13

Z − γ 0.35 0.39

γ − g 3.98 4.57

3.5.3 Z ′ production at the LHC

In this last section we present results including the effects of a SSM Z ′ gauge boson with
a mass of 3.6 TeV, still allowed by the latest exclusion limits, see Chapter 1. We also show
the dependence of the total cross section on the mass of the new resonance for the LHC13
and LHC14 as well as the invariant mass spectrum of the tt̄ pair and discuss the impact of
the matching to a parton shower (PS) program, Pythia 8 [189,245]. A cut on the invariant
mass of the tt̄ system of 3/4MZ′ is imposed on all the cross sections presented in this
section in order to suppress the contributions coming from the Z-boson.

Total cross section of the electroweak top-pair production in the SSM

In Tab. 3.4, we show the contributions of the various channels to the total cross section. For
the sum of all the channels, i.e. the column and row labeled qq̄+qg, Z ′−Z−γ respectively,
we include the combined uncertainties due to scale variation and numerical integration23

where as before the former have been obtained by varying muR = muF ∈ {87.5, 350}.
Tab. 3.3 contains the corresponding Born total cross section. Concentrating on the Born
cross sections, we see that while the impact of the Z-boson contributions are negligible
(due to the invariant mass cut) the inclusion of the photon can lead to a relative increase
of about 40 %. Similar conclusion holds for the relative size of the NLO corrections for
which we find that the cross section including the photon channel (Z ′ − γ) is roughly 50%
larger than the one with only the Z ′-boson channel.

Exclusion limits on new heavy neutral resonances are derived by the experimental
collaboration in the plane MZ′ , σ × BR for a given channel, see e.g. [45,60]. Indeed, in
this plane the intersection of the theoretical prediction with the observed limit gives the
lower mass limit on the Z ′-boson. It is therefore interesting to study the dependence
of the total cross section on the mass of the new particle. Such an analysis is shown
in Fig. 3.13 for a SSM Z ′ with mass MZ′ ∈ [3000, 6000] GeV and for the LHC running
at 13 and 14 TeV. The bands on this figure represent the scale variation and numerical
uncertainties combined. In the same figure, we also show the ratio of the NLO predictions
over the LO ones. Note that the K-factor varies between 1.3 and 1.5 over the range of
masses probed. Finally, note that we impose the same cut on the invariant mass of the tt̄
system as previously.

23Hence, the error is defined by δ± = ±
√

(δ±µ )2 + (δ±num.)2 with δ±µ the positive (negative) contribution

due to scale variation and δ±num. the corresponding errors due to the numerical integration.
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Table 3.3: Top-pair total Born cross section in fb for a SSM Z ′-boson of 3.6 TeV. The error
due to numerical integration is of the order 10−3 fb. We impose a cut on the invariant
mass of the tt̄ system, Mtt̄ ≥ 3/4MZ′ .

channel 13 TeV 14 TeV

Z ′ 1.17 1.77

Z ′ − Z 1.17 1.78

Z ′ − γ 1.67 2.50

Z ′ − Z − γ 1.68 2.52

Table 3.4: Top-pair total cross section in fb for a SSM Z ′-boson of 3.6 TeV. Contributions
from the various channels are detailed and the impact of scale variation as well as the
numerical errors combined as explained in the text are shown. Note that we impose a cut
on the invariant mass of the tt̄ system, Mtt̄ ≥ 3/4MZ′ .

channel 13 TeV 14 TeV

sub-channel qq̄ qq̄ + qg qq̄ qq̄ + qg

Z ′ 1.48 1.49 2.22 2.22

Z ′ − γ 1.50 2.23 2.24 3.30

Z ′ − Z 1.49 1.56 2.22 2.34

Z ′ − Z − γ 1.51 2.32+.13
−.08 2.26 3.44+.18

−.11

Invariant mass spectrum of the tt̄ system

The invariant mass of the top-pair produced via a heavy resonance, is peaked around the
mass of the resonance. This can be reconstructed by the experiments from the decays of
the two tops, e.g. with one of the two tops decaying into a b-jet and a lepton plus missing
energy and the other one fully hadronically. In Fig. 3.14, we show the invariant mass
spectrum24 of the tt̄ pair in presence of a SSM Z ′-boson of 3.6 TeV for the LHC13. In the
upper-left corner we show the LO and NLO prediction without showering while in the
upper-right corner we show the impact of the PS on the NLO invariant mass spectrum.
The bottom plot contains the LO+PS as well as NLO+PS predictions with its associated
K-factor. The two K-factors, NLO/LO and NLO+PS/NLO, are also shown on the same
figure. The showering is done with Pythia 8 [189,245] and even though the top quarks
are decayed we obtain the invariant mass of the tt̄ pair directly from the Monte Carlo
intermediate information, i.e. the top- (and anti-top) quark momenta just before they
decay. For all the runs we use a sampling of 300000 events and normalize the histograms to

24The invariant mass is simply defined by (p1 + p2)
2 where p1,2 are the 4-momenta of the top-quark

and anti top-quark, respectively.
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Figure 3.13: NLO cross section in dependence of the mass of the new resonance for the
LHC13 and LHC14. The bands represent the scale variation and numerical error. We
also show the K-factor for the same range of masses, i.e. [3000, 6000] GeV.

the total cross sections. From the upper left plot, we clearly see the impact of having the
first hard radiation generated by POWHEG (PBZp) in the higher tail in the low invariant
mass region. Indeed, for instance, if a gluon is emitted from one of the two top-quark in
the final state, the invariant mass of the top pair is reduced accordingly by the momentum
carried away by the gluon. In the same spirit, we understand that the effect of the parton
shower is to populate the low invariant mass region as can be confirmed by studying the
upper right plot. Finally, we see that the PS increases the K-factor in the region below
the Z ′ peak to reach 6 at its maximum. Note that the peak at 2750 is an artefact of the
cut off on the invariant mass25 (at 2700 GeV).

25The bins below 2700 GeV are filled up only by the PS.
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Figure 3.14: Invariant mass spectrum of the tt̄ pair in presence of a SSM
Z ′-boson of 3.6 TeV at the LHC13. We show predictions for the LO,
NLO, LO+PS and NLO+PS as well as for the corresponding ratios, K =
{PBZp/Born,PBZp + PS/PBZp,PBZP + PS/Born + PS}.

135



After the discovery of the Higgs boson by ATLAS and CMS, the main challenge of the
LHC remains to explore the TeV region in search for new phenomena. If new physics is
found, precise theoretical predictions will be required to discriminate between various new
physics scenarios and extract the fundamental underlying parameters. Making precise
predictions at hadronic colliders requires to use Monte Carlo event generators to model
the intense hadronic activity surrounding the hard process.

In this chapter, we presented NLO QCD corrections to the electroweak top-pair and
single-top production in presence of new resonances as predicted by the G221 models.
While the later process is not yet finalized, the former has been integrated to a general
Monte Carlo event generator allowing for a consistent matching of NLO matrix elements
and parton shower algorithms, the POWHEG BOX.

After having reviewed the various techniques employed, we presented details of the
calculation for both processes. Finally, we reviewed the main elements needed for the
POWHEG BOX implementation of the corrections to the top-pair production and presented
our first numerical results including the total cross section for electroweak top-pair
production per channel for a Z ′-boson of 3.6 TeV as well as the mass dependence of the
same cross section for MZ′ ∈ [3000, 6000] GeV and the invariant mass cut Mtt̄ > 3/4MZ′ .
It turns out that the contribution of the γ channel to the NLO corrections can lead to
a relative increase of 50%, and must be taken into account contrary to what has been
done in previous studies [196]. Finally, we presented the invariant mass spectrum of the
tt̄ pair in presence of a SSM Z ′-boson of 3.6 TeV for the upcoming LHC run at 13 TeV.
The results at the partonic level were compared to the ones matched to parton shower.
We found that the K-factors in all these cases are sizeable: within [1.3− 1.5] for the total
cross sections and even larger in some bins of the invariant mass of the top-quark pair.
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CHAPTER 4
W ′

AND Z ′
AT THE PIERRE AUGER

OBSERVATORY

New charged and neutral resonances are predicted in many well-motivated extensions
of the Standard Model (SM) such as theories of grand unification (GUTs) or models with
extra spatial dimensions [68]. These extensions generally do not predict the precise energy
scale at which the new heavy states should manifest themselves. However, for various
theoretical reasons (e.g. the hierarchy problem) new physics is expected to appear at the
TeV scale and is searched for at the Large Hadron Collider (LHC) which will soon operate
at a center-of-mass energy of

√
s = 13 TeV. At the same time, important restrictions on

new physics scenarios are imposed by low-energy precision observables. On the other hand,
highly energetic interactions of cosmic rays in the atmosphere involve processes at higher
center-of-mass energies than those reached by the LHC. Motivated by this fact, we study
the prospects to observe new spin-1 resonances in collisions of ultra-high energy neutrinos
(UHEν) with nuclei in the atmosphere as analyzed by the Pierre Auger Collaboration or
a future neutrino telescope. For example, for neutrinos with an energy of about 1019 eV,
the center-of-mass energy of the neutrino-nucleon interactions is about

√
s ≃ 140 TeV,

considerably extending the energy range accessible at the LHC. So far, no UHEν events
have been observed by the Pierre Auger Observatory which has led to improved limits on
the diffuse flux of UHEν in the energy range Eν ≥ 1018 eV [246,247].

The potential of the Pierre Auger Observatory for testing new physics scenarios
like extra dimensions or the formation of micro-black holes has been studied in [248]
and [249, 250]. In this section we revisit the predictions for cross sections in the SM,
and we explore the impact of new charged (W ′) and neutral (Z ′) gauge bosons on these
quantities. We address the following questions: (i) Assuming the LHC does observe new
charged or neutral spin-1 resonances, how would this affect the predicted neutrino cross
sections? (ii) Assuming the LHC does not discover any new spin-1 resonances, what are
the prospects to observe heavy W ′- and Z ′-bosons with masses larger than 5 TeV using
ultra-high energy cosmic neutrino events?

For definiteness, we consider W ′ and Z ′ bosons due to an extended G221 ≡ SU(2)1 ×
SU(2)2 × U(1)X gauge group. In this framework, constraints on the parameter space
from low-energy precision observables have been derived in [63], see Chapter 1 and the
collider phenomenology has been studied in [64,74,251,252]. Several well-known models
emerge naturally from different ways of breaking the G221 symmetry down to the SM gauge
group [63], in particular Left-Right (LR) [71–73], Un-Unified (UU) [83,84], Non-Universal
(NU) [85,86], Lepto-Phobic (LP), Hadro-Phobic (HP) and Fermio-Phobic (FP) [87,88]
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models as presented in Chapter 1. In addition, we present results for the Sequential
Standard Model (SSM) [8], where the W ′- and Z ′-bosons are just heavy copies of the W -
and Z-bosons in the SM. This is motivated by the fact that the SSM often serves as a
benchmark model in the literature [15,18,24,29].

This Chapter is organized as follows. In Section 4.1 we briefly present the Pierre Auger
Observatory and specificities about UHEν that allow the Pierre Auger Collaboration to
detect them. Section 4.2 is dedicated to the calculation of the interaction cross sections of
UHEν with nuclei of the atmosphere while the last section contains our numerical results.

4.1 Ultra-high energy neutrinos at the Pierre Auger Observatory

Ultra-high energy neutrinos propagating through the atmosphere interact with an energy
in the center-of-mass of about

√
S ≃ 100 TeV, probing SM interactions in a kinematical

region not accessible by current collider experiments. New spin-1 resonances as the one
presented in the previous section could be produced in these processes modifying the SM
cross sections. In this section we study the impact of such resonances on the interaction
of UHEν in the atmosphere at the Pierre Auger Observatory. We start by presenting the
Auger Observatory and details about the detection of UHEν induced showers. Then, we
review the calculation of the relevant cross sections and the modifications due to new
heavy gauge bosons. Finally, we discuss our numerical results and conclude.

4.1.1 The Pierre Auger Observatory

Cosmic rays (CR) are charged particles that rain down on us from space. While cosmic
rays of low and moderate energies, below 109 GeV, are well understood, the origin and
composition of the highest energetic particles observed still remain a mystery. It is to
study the CR in this regime, above 108 GeV, that the Auger Project, was first proposed in
1992 by Jim Cronin and Alan Watson. Twelve years later, the observatory was collecting
its first data and after four more years the construction was completed [253].

Highly energetic particles arriving down on earth interact with the nuclei of the
atmosphere and produce extensive electromagnetic as well as hadronic showers of particles
that keep extending until they reach the ground. These particles can be detected via
the Cherenkov light they emit when travelling through water. Hence the first detector
of the observatory is a Cherenkov ground array telescope composed of 1600 water tanks
distributed over 3000 square kilometers in the vast plain of Pampa Amarilla near the town
of Malargue in Argentina. Each one of these tanks contains 12 tonnes of water viewed
by 9" photomultipliers that detect photons and charged particles. The large size of the
detector is justified by the expected event rate at these extreme energies, 1 particle/km2

per year [254].
The other effect exploited at the Auger Observatory to obtain information on the

cosmic rays is the fluorescent light emitted by nitrogen molecules after being excited by
charged particles traversing the atmosphere. The wavelength of this emission is between
300 and 400 nm and is detected by the Auger’s optic detectors. The Auger Observatory
has 27 fluorescent light detectors grouped in four sites overlooking the ground array
telescope. Fluorescent light detectors are very good to estimate the total energy of the
shower while it is very difficult to access this information with the ground array telescope.
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On the other hand the duty cycle of the fluorescent light detector is only 10% rendering
these two methods complementary1 [255]. The fact that we observed cosmic rays of
energies 109 − 1010 GeV points toward the existence of associated flux of ultra-high energy
neutrinos (UHEν).

4.1.2 Cosmogenic flux

In the early sixties the bigbang theory was not yet an established theory but astrophysicist,
A. G. Doroshkevich and I. Novikov, postulated the existence of a detectable cosmic
microwave background (CMB) radiation in 1964 [256]. The same year, A. Penzias and R.
Wilson working on a 6 meter horn antenna originally built to detect radio waves bounced
off Echo balloon satellites discovered the predicted radiation [257]. It was soon realized that
ultra-high energy cosmic rays propagating through the universe would interact with such
a radiation. Almost simultaneously Greisen in the US [258] and Zatsepin & Kuzmin [259]
in the USSR calculated the mean path of extragalactic nucleons interacting with the
CMB and showed that it is shorter than the typical distance between two galaxies capable
of producing particles of such energy. The extragalactic component of the cosmic ray
spectrum should then be drastically reduced for energies above 5×1010 GeV, which is
nowadays known as the GZK cutoff.

The idea of a “guaranteed” extragalactic cosmogenic neutrino flux is a consequence of
the GZK effect and was first formulated by Berezinsky and Zatsepin in 1969 [260]. Indeed,
the proton interact with the photons from the CMB via the following two processes:

p+ γCMB → ∆
+ → π+ + n (4.1)

p+ γCMB → ∆
+ → π0 + p , (4.2)

followed by the subsequent decays of pions [90]:

π+ → µ+ + νµ (99.98%) (4.3)
π0 → γ + γ (98.82%) (4.4)
π0 → e+ + e− + γ (1.17%) . (4.5)

Despite the fact that the production of ∆+ and its decay to π0 is the main channel at
the origin of the GZK cutoff, Eq. (4.2), it is not relevant for further discussions on the
cosmogenic neutrino flux [261]. Adding the beta decay of neutron we see that for each
proton interacting with a photon, a muon, an anti-electronic as well as a muonic neutrino
are produced. Looking at the kinematical production threshold we can estimate the
minimal energy the proton must carry so that the process in Eq.( 4.1) happens:

Eth =
((Mn +Mπ)

2 −M2
p )

4Eγ

. (4.6)

Inserting the values for the different parameters one obtains Eth = 3.05× 1011 GeV which
is close to the value of the GZK cutoff quoted above. A more precise estimate would
require to take into account the statistical spread of photon energies in the CMB, which
effectively lowers the threshold.

1The fluorescent light detectors are efficient only at night and under specific atmospheric conditions.
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The data from the Auger Observatory rejects the hypothesis that the cosmic-ray
spectrum continues with a constant slope above 4×1011 GeV, at the level of 6 sigmas [254],
clearly indicating a decrease in the flux of particles with such an energy. Together with
the indications that cosmic-ray above 5.7× 1011 GeV are from extragalactic origins [262]
this is a strong indication in favor of the GZK cutoff and therefore the existence of a
cosmogenic neutrino flux.

Accurate predictions of this neutrino flux relies on multiple assumptions including the
composition of cosmic-rays, the cosmological evolution of the sources and the maximum
acceleration energy. In 2010, Kotera et al. [263] have carried out a complete numerical
Monte Carlo study of neutrino fluxes produced by the interaction of propagating cosmic-
rays of ultra high energy over cosmological distances. In Fig. 4.1 we show the obtained
flux of neutrinos in dependence of several parameters. Without going into the details
of the different lines it is interesting to note that between optimistic fluxes, soon to be
probed by experiments, and the most pessimistic ones there is a large spread of almost
three orders of magnitude, at an energy of 109 eV. At this energy a reasonable flux would
be of the order of 7× 109 GeVcm−2s−1sr−1, still one order of magnitude below the current
sensitivity of the Pierre Auger Observatory. These neutrino events are actively searched
for by the Auger Observatory and we now briefly review the specificities of neutrino
induced showers with respect to “regular” cosmic-ray induced ones.

Figure 4.1: From [263], cosmogenic neutrino fluxes for all flavors, for different parameters
compared to various instrument sensitivities. The spread of the predictions due to the
dependence on the parameters of the simulation covers almost three orders of magnitude.
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4.1.3 Distinguishing neutrino induced showers

The main challenge in detecting neutrino induced showers lies in separating them from
those initiated by regular cosmic-rays. Already in the 70’s it was suggested that this could
be achieved at large zenith angle because the atmosphere slant depth provides a large
target for the neutrinos [264]. The idea is that the tiny cross sections of neutrinos allow
them to interact deep in the atmosphere, while protons and heavier nuclei will interact
much higher up on their way to earth. Hence, the strategy is to look for inclined showers
interacting deep in the atmosphere.

The surface detector of the Pierre Auger Observatory can detect inclined showers
induced by neutrinos of energy larger than 1017 eV [265]. There are two different categories
of neutrino events that can be detected:

(i) Downward-going neutrinos: the charged current (CC) and neutral current (NC)
interaction of neutrinos2 scattering off nuclei in the atmosphere produce extensive
air showers that can be detected at ground [266].

(ii) Earth-skimming tau neutrinos: in this channel, the decay products of a tau lepton,
originating from an upward-going tau neutrino travelling through the earth crust
and interacting, produce a shower close to the ground that can be detected [267,268].

In both cases the neutrino induced showers can be identified and separated from the
background for zenith angle around 65◦ − 75◦ [247]. In addition, there are fundamental
properties of the shower that can be used to distinguish neutrino induced showers. Among
these, the time distribution of the shower particles is very useful. Indeed, vertical showers
induced by nuclei will have a large electromagnetic component typical of “young” shower
front while inclined ones, angle larger than 75◦, will be mainly composed of muons because
of the large depth of air, “old” shower front. On the other hand, for the same zenith angle
neutrinos will produce showers with young fronts and large electromagnetic component.
Finally, young showers produce signals spread over hundreds of nano-seconds in a fraction
of the stations triggered by the shower while old showers will have a narrow signal spreading
over tens of nano-seconds in almost all the stations involved. Based on these differences,
the selection of neutrino events can be easily accomplished [255]. In the following we will
only consider “downward-going” neutrinos as they represent an independent channel on
their own and dealing with earth-skimming events would require extensive simulation not
well suited for a first estimate of the impact of new physics.

4.2 Interactions of UHE in the atmosphere in presence of new

heavy resonances

Working in the framework of G221 models, we are now interested in the issue of estimating
the interaction cross section of UHEν with nuclei of the atmosphere, when additional Z ′

and W ′ gauge bosons can mediate their interaction in the atmosphere. In the SM, the
following neutrino interactions can take place [269,270]:

(i) Charged current deep-inelastic scattering (CC DIS): νℓ +N → ℓ− +X, ν̄ℓ +N →
ℓ+ +X. Here, νℓ stands for the three neutrino flavors νe, νµ, ντ .

2All three flavours contribute to this channel.
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(ii) Neutral current deep-inelastic scattering (NC DIS): νℓ+N → νℓ+X, ν̄ℓ+N → ν̄ℓ+X.

(iii) The Glashow resonance (GR) [271–273]: ν̄e + e− → ν̄ℓ + ℓ−, ν̄e + e− → q + q̄′, where
q = u, d, s, c, b. Obviously, charged current resonant s-channel scattering occurs only
for incoming anti-electron neutrinos. The process ν̄e + e− → ν̄e + e− also has a
non-resonant neutral current t-channel contribution.

(iv) Non-resonant neutrino-electron scattering:

(a) νe + e− → νe + e−, which has contributions from W and Z exchange diagrams.

(b) Charged current νµe− and ντe
− scattering in the atmosphere: νℓ+e− → ℓ−+νe

(ℓ = µ, τ). Note that the corresponding process with incoming anti-neutrinos is
not possible.

(c) Neutral current scattering of νµ, ν̄µ, ντ , ν̄τ and ν̄e: νℓ+e− → νℓ+e−, ν̄ℓ+e− →
ν̄ℓ + e−.

In the following, we mainly focus on the dominant cross sections of neutrino–nucleon
DIS and neglect the contributions from non-resonant neutrino–electron scattering which
are smaller by several orders of magnitude. The W ′ and Z ′ resonances contribute to the
νN DIS, where the main contribution comes from the interference with the SM amplitudes.
We also consider the Glashow resonance, which has attracted a lot of interest in the
literature as a way to detect extra-galactic neutrinos and as a discriminator of the neutrino
production mechanism and of the relative abundance of the pp and pγ sources [274–279].
While the GR is entirely negligible3 at energies Eν ≥ 108 GeV there is a new, potentially
interesting, resonance due to the W ′-boson which we call GR′ in the following. Before
presenting our results we start be reviewing the calculation of the DIS as well as GR cross
sections in the SM and the extensions considered here.

4.2.1 Deep Inelastic Scattering

Charged-current deep inelastic scattering of neutrinos off nucleons can be schematically
represented as:

(−)
ν ℓ(k) +N(p) → ℓ∓(k′) +X(p′) ,

where ℓ is a charged lepton and N is a nucleon. As Mn ≈ Mp we will denote Mp either
the neutron or the proton mass in the following. The differential cross section for DIS
mediated by interfering gauge bosons B and B ′ can be written as

d2σ

dxdy
=

∑

B,B′

d2σBB′

dxdy
, (4.7)

where the Bjorken variable x and the inelasticity y are defined as

x ≡ −q2

2p · q
=

Q2

2Mpν
, ν ≡ p · q

Mp

= EL − EL′ , y ≡ p · q

p · k
=

ν

Eν

=
EL − EL′

EL

, (4.8)

3Note that the threshold of the Pierre Auger Observatory is Eν = 108 GeV which is above the GR
peak of the SM.
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in which EL(EL′) is the energy of the incoming (outgoing) neutrino (lepton) respectively.
Furthermore, B,B′ ∈ {W,W ′} in the case of CC DIS and B,B′ ∈ {γ, Z, Z ′} in the case
of NC DIS. In the following we assume a general interaction term of a fermion with a
vector boson of the form

LB
int = ψfγµ[g

B
R(1 + γ5) + gBL (1− γ5)]ψfB

µ , (4.9)

where ψf denotes a generic fermion field. The couplings gBR and gBL of the gauge boson B
to the right- and left-chiral components of the quark and lepton fields are given by

gBR = g(B) CB
q(ℓ),R , gBL = g(B) CB

q(ℓ),L , (4.10)

where g(B) =
gW

2
√
2

for charged-current interactions (B = W,W ′) and g(B) =
gW
2cθW

for

neutral-current interactions (B = Z,Z ′). We also define a short hand notation that will
be used later on and in which the relevant couplings at work are grouped together:

gBB′

±f = CB
f,LC

B′

f,L ± CB
f,RC

B′

f,R , (4.11)

where B,B′ ∈ {W,W ′} for CC DIS and B,B′ ∈ {Z,Z ′} in the NC case. Furthermore, f
denotes either quarks (f = q) or leptons (f = ℓ).

Figure 4.2: Representation of the matrix element squared for the DIS of neutrinos off a
proton.

We are now set up to write down the sum-averaged matrix element4 corresponding to
d2σBB′

/dxdy as the contraction of a leptonic tensor Lµν and an hadronic tensor Wµν :
∑

| M |2= GBGB′4πQ2LµνW
µν , (4.12)

with

Lµν =
1

Q2

∑〈
νl
∣
∣j†ν

∣
∣ l
〉 〈

l
∣
∣jµ

∣
∣ νl

〉
, (4.13)

W µν =
1

4π

∑

X

(2π)4δ4(p+ q − pX)
〈
p
∣
∣Jµ

∣
∣ pX

〉 〈
pX

∣
∣Jν†

∣
∣ p

〉
. (4.14)

4We calculate the DIS off a proton from which the interaction with a nuclei will be inferred.
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The leptonic tensor represents the upper fermionic line of the diagram shown in Fig. 4.2
while the hadronic tensor parametrizes the lower part of the same diagram. The term
GB = g(B)2/(Q2 + M2

B) contains the product of the gauge boson propagator and its
gauge coupling. The leptonic tensor can be fully calculated in perturbation theory, while
the hadronic tensor contains non perturbative physics and therefore cannot be calculated
perturbatively. Using the same convention as in [280] the leptonic tensor reads

Lµν =
8

Q2

{

gBB′

+l [kµk
′
ν + kνk

′
µ − gµν(k · k′)]− gBB′

−l [iǫµνρσk
ρk′σ]

}

. (4.15)

The hadronic tensor is written in terms of fundamental Lorentz tensors

W µν = −gµνW1 +
pµpν

M2
p

W2 − i
ǫµναβpαqβ

2M2
p

W3 +
qµqν

M2
p

W4 +
pµqν + pνqµ

2M2
p

W5

+
pµqν − pνqµ

2M2
p

W6 , (4.16)

where the Wi = Wi(Q
2, ν) are the invariant hadron structure function and ǫµναβ the

Levi-Civita tensor. Contracting Lµν and Wµν we finally obtain :

L ·W =
16EνEl

Q2

{

gBB′

+l

[

2 sin2 θ

2
W1 + (1− sin2 θ

2
)W2

]

+ gBB′

−l

[
Eν + El

Mp

sin2 θ

2
W3

]}

,

(4.17)
in which terms of the order O(m

2
l

s
) have been neglected5 resulting in the dropping of the

terms proportional to {W4,W5,W6}. In addition we have introduced the angle θ between
the momenta k and k′.

Adding the flux factor, the phase space of the outgoing lepton and expressing the
result in terms of the kinematical variables x and y, one obtains the differential cross
section6 for neutrinos (+ sign) and anti-neutrinos (− sign) scattering of a proton [281]

d2σBB′

(ν, ν̄p)

dxdy
=

2MpEνGBGB′

π

{

gBB′

+l

[

xF1y
2 + F2

[

(1− y)−
(
Mpxy

2Eν

)]]

±gBB′

−l

[
xF3y

(
1− y

2

)]
}

, (4.18)

in which we have introduced the CC or NC scaling structure functions Fi(x,Q
2) defined

by

F1 = W1 , F2 =
ν

Mp

W2 , F3 =
ν

Mp

W3 . (4.19)

Note that from Eq. (4.8) we have Q2 = sxy so that the structure functions Fi(x,Q
2)

depend only x and y as the differential cross section. The structure functions are generally
given as convolutions of parton distribution functions with Wilson coefficients. We now
review the expressions for the structure functions in terms of the parton density functions
(PDF).

5Note that at the energies considered here, Eν ≃ 108 GeV, these terms are extremely small.
6θ and Q2 variables are mapped onto x and y using the relations Eq. (4.8).
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Structure Functions @LO

Expressing the structure functions in terms of the PDF of the various quarks can be done
by exploiting the parton model framework [282]. Here we review the derivation of the
structure functions directly from the factorization theorem which enables for a rigorous
treatment of the heavy quarks. We will calculate the contribution of a quark Q1(m1 = 0)
to the CC structure functions F ν,CC

1 , F ν,CC
2 , F ν,CC

3 in presence of W -,W ′-bosons keeping
the effects of the top-quark mass mt. In the following we drop the superscript ν, CC.

The factorization theorem asserts that the hadronic tensor of Eq. (4.14) takes the
form [283]:

W µν
BN = fa

N ⊗ ŵµν
Ba =

∫
dξ

ξ
fa
N(ξ, µ)ŵ

µν
Ba(q, ka, . . . ,αs)(µ) , (4.20)

to the leading power of exchanged momentum, q2. We denote fa
N the parton distribution

function of parton a in the nucleon N and ŵµν
Ba the hard scattering tensor parametrizing the

parton interaction7. The variable ξ is the momentum fraction carried by the parton with
respect to the hadron and µ the renormalization and factorization scale taken identical.
The factorization theorems allows us to relate the hadronic tensor to the partonic dynamics
of the process. In order to obtain the structure functions we proceed as follows:

(i) derive the projectors on the various structure functions, P µν
i , such that Piµν ·W

µν
BN =

Wi,

(ii) calculate the partonic tensor ŵµν
Ba,

(iii) apply the projector to Eq. (4.20) to obtain the structure functions.

Projectors We first calculate P3 and P6 because they can easily be disentangled.

Contracting Eq. (4.16) with
pµqν − qµpν

2p · q
, ipρqσ

ǫµνρσ

q2
one obtains:

α1

2p · q
W6 ,

−α1

q2
W3 , (4.21)

where we have defined α1 = q2− (p · q)2

M2
p

, and from which the corresponding projectors can

be read off immediately. Next, we contract Eq. (4.16) with gµν ,
pµpν
M2

p

,
qµqν
q2

,
pµqν + pνqµ

2p · q
and obtain a set of four equations which in the basis {W1,W2,W4,W5} reads:

P̃ =
















−4 1
q2

M2
p

p · q

M2
p

−1 1
(p · q)2

M4
p

p · q

M2
p

−1
(p · q)2

M2
p q

2

q2

M2
p

p · q

M2
p

−1 1
q2

M2
p

p · q

2M2
p

+
q2

2p · q
















. (4.22)

7When dealing with NLO effects, long distance contributions must be subtracted off from ŵµν
Ba [284].
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Inverting P̃ one obtains the expressions for the projectors. We give here only the result
for P1, P2, P3 since they are the relevant ones for deriving the corresponding structure
functions.

P1 =
−1

2
gµν +

1

2α1

(
q2

M2
p

pµpν + qµqν

)

+

(

1− q2

α1

)
pµqν + pνqµ

2p · q
, (4.23)

P2 =
−q2

2α1

gµν +
3

2α2
1M

2
p

(

q4pµpν +

(
2(p · q)2 +M2

p q
2
)

3
qµqν − (p · q)q2 (pµqν + pνqµ)

)

,

(4.24)

P3 =
−i

α1

pρqσǫ
µνρσ . (4.25)

Partonic tensor ŵµν
Ba We neglect all the masses but the top-quark mass and use the

same current parametrization as for the leptonic tensor Eq. (4.9) and we will refer to the
couplings of the gauge boson B to a parton a by gRa, gLa. The partonic tensor for the
heavy quark production, B∗Q1(m1 = 0) → Q2(m2), is given by

ŵµν
Ba =

1

(4π)

∑

< pi, σi|jµ|p
′, σ′ >< p′, σ′|jν

∗|pi, σi > (2π)δ(p′
2 −m2

2) , (4.26)

where the delta function coming from the phase space element reads

δ(p′
2 −m2

2) = δ
(
(pi + q)2 −m2

2

)
= δ

(
2ξ(p · q)− (m2

2 +Q2)
)
=

1

2p · q
δ (ξ − χ) ,

in which χ =
Q2 +m2

2

2p · q
= x

(

1 +
m2

2

Q2

)

and the sum leads to

ŵµν
Ba =

δ (ξ − χ)

2p · q

1

4
Tr [pi/Γµ(p′/+m2)Γ

ν∗]

=
1

2p · q
δ (ξ − χ)

(

2gBRag
B′

Ra {−gµν(pi · p
′) + pµi p

′ν + pνi p
′µ + iǫµνρσpiρp

′
σ}

+ 2gBLag
B′

La {−gµν(pi · p
′) + pµi p

′ν + pνi p
′µ − iǫµνρσpiρp

′
σ}

)
.

(4.27)

Note that the average over the polarization of the parton a gives a factor 1
2
.

Structure functions Using the projectors Eq. (4.25) one can obtain the following
expressions for the contribution of a single quark Q1(m1 = 0) to the various the structure
functions

F1 =

∫
dξ

ξ

δ(ξ − χ)

2(p · q)
(2p · q)ξ(gBLag

B′

La + gBRag
B′

Ra)Q(ξ) = (gBLag
B′

La + gBRag
B′

Ra)Q(χ) ,

F2 =

∫
dξ

ξ

δ(ξ − χ)

2(p · q)
4M2

p (g
B
Lag

B′

La + gBRag
B′

Ra)ξ
2 ν

Mp

Q(ξ) = 2χ(gBLag
B′

La + gBRag
B′

Ra)Q(χ) ,

F3 =

∫
dξ

ξ

δ(ξ − χ)

2(p · q)
4M2

p ξ(g
B
Lag

B′

La − gBRag
B′

Ra)
ν

Mp

Q(ξ) = 2(gBLag
B′

La − gBRag
B′

Ra)Q(χ) .

(4.28)
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For quarks different from the bottom quark, χ reduces to the Bjorken x variable and
F1, F2 satisfy the Callan-Gross relation F2 = 2xF1. This set of equations show how to
express the structure functions in terms of the parton density function, Q(χ), as well as
how the top-quark mass modifies this relation. Note that these results are in agreement
with results in the literature [285]. The structure functions for the NC and anti-neutrinos
are obtained following the same procedure and are not reported here.

4.2.2 Glashow Resonance

The Glashow resonance is the resonant s-channel scattering of anti-electron neutrinos off
electrons of the atmosphere

ν̄e + e− → ν̄ℓ + ℓ−, ν̄e + e− → q + q̄′, (4.29)

which in the SM peaks around s ≃ M2
W ⇒ Eν ≃ M2

W/2me ≃ 6.3×106 GeV, which is below
the energy threshold of the Pierre Auger Observatory. However, for heavier resonances,
the same process, denoted GR′, will lead to a resonant cross section for energies much
higher and possibly in the region of interest for the Pierre Auger Observatory. Therefore,
we review the cross section for this process in presence of a hypothetic heavier resonance
W ′ including the interferences with the SM W -boson.

The differential cross section is obtained from straightforward application of the
Feynman rules and can be written as (p1, p2 designate incoming momenta while pa and pb
refer to the outgoing ones)

dσBB′

= dΩ × D
g2Bg

2
B′

32π2s
×

[

(pa · p2)(pb · p1)(g
BB′

+l gBB′

+f + gBB′

−l gBB′

−f ) (4.30)

+ (pa · p1)(pb · p2)(g
BB′

+l gBB′

+f − gBB′

−l gBB′

−f )
]

,

where dΩ is the solid angle of the final state fermion f which can be either a quark or a
lepton, and

D =
(s−M2

B)(s−M2
B′) +MBMB′ΓBΓB′

[(s−M2
B)

2 +M2
BΓ

2
B] [(s−M2

B′)2 +M2
B′Γ

2
B′ ]

. (4.31)

Here, B,B′ ∈ {W,W ′} and ΓB is the total decay width of a B-boson, which we approximate
by the sum of its partial decay widths into two fermions8

ΓB =
∑

{fi,fj}

ΓB→fif̄j =
g2BMBg

BB
+f (fi, f̄j)

6π
. (4.32)

Integrating over the solid angle dΩ and summing over the gauge bosons B,B′ one obtains
the total GR cross section

σ(s) =
∑

B,B′

s

12π
g2Bg

2
B′gBB′

+l gBB′

+f D . (4.33)

8We estimated using Pythia that the W ′ decay into a pair of gauge bosons is at the level of 1-2%.
Note that there are regions of parameter space where the decay of the new gauge boson into additional
scalars may be significant. However, even in that case this would not affect our conclusions.
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Collecting the expressions of the cross sections for the various processes of interest
we are now in position to discuss numerical results for the cross sections of UHEν in the
atmosphere.

4.3 Results and discussion

In this section we present our numerical results for the DIS and GR(GR′) cross sections
in the SM, SSM as well as in several realization of the G221 class. We study the impact of
the new resonances for various masses and explore a special kind of signature: “the pure
muon” events. Background and uncertainties are also discussed.

4.3.1 PDF choice

For the CC and NC DIS, we consider an isoscalar target and neglect nuclear effects so that
the structure functions are given by the average of the proton and the neutron structure
functions, Fi = (F n

i + F p
i )/2. As is well-known, the UHEν cross sections in DIS are

sensitive to the PDFs at very small momentum fractions x down to x ≃ 10−12 which
results in large uncertainties as shown in Sarkar et al. [281]. On the other hand, the UHE
neutrino cross sections are quite insensitive to the lower bound for the Q2 integration
for which we take Q2

min = 1 GeV2. In our calculations we use the next-to-leading order
(NLO) ZEUS2002_TR proton PDFs and QCDNUM 16.12 [286] for the scale evolution
of the PDFs. Furthermore, for simplicity, we neglect the contributions from the NLO
Wilson coefficients which are known to be small. Note that the uncertainties due to the
extrapolation of the PDFs into the small-x region and the scale uncertainties are much
larger.

4.3.2 Cross Sections

Our total cross sections for CC and NC DIS are displayed in Fig. 4.3 as a function of
the incoming neutrino energy Eν . We have verified that our cross section for CC DIS
(red line) agrees with the results by Cooper-Sarkar et al. [281] within a few percent in
the entire energy range shown. It exceeds the CC cross section of Gandhi et al. [270] by
about 25% at the highest energies Eν = 1012 GeV. Conversely, our result for the NC cross
section (green line) is 15% - 20% below the one in [270].

In addition to the SM results, we present predictions for the total cross sections in the
SSM (red and green crosses) assuming MW ′ = MZ′ = 4 TeV. The DIS cross sections in
the SM and the SSM differ at the 1% level and the corresponding curves lie on top of
each other. Similar observations hold for the other G221 models introduced above. This
can be seen in Fig. 4.4, where the ratio of the DIS cross sections in the new physics
scenario and in the SM is presented. The areas have been obtained by fixing, depending
on the model, either MW ′ = 4(6) TeV or MZ′ = 4(6) TeV and by scanning over the
allowed range of values for tφ in each model, see Chapter 1. We find that the new physics
contributions modify the SM results by at most 1%, which is much smaller than the
theoretical uncertainty of the DIS cross sections. Similar results have been obtained for
masses of the heavy resonance of 5 TeV. Note that even though it might look peculiar
that the cross sections seems larger for MB′ = 6 TeV than for 3 TeV, this is an artifact of
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Figure 4.3: Total cross sections for CC νµN DIS (red line), NC νµN DIS (green line)
and the Glashow resonance (solid black line) in dependence of the incoming neutrino
energy. The vertical line at Eν = 108 GeV indicates the lower energy threshold of the
Auger Observatory. The red and green crosses show the CC DIS and NC DIS cross
sections, respectively, in the SSM with MW ′ = MZ′ = 4 TeV. The resonant ν̄ee− scattering
including the contribution from the W ′ resonance is represented by the dashed, black line.

Figure 4.4: The CC+NC νµN DIS cross sections in different G221 models scaled to the
cross section in the SM. The areas have been obtained by fixing either MW ′ = 4(6) TeV
or MZ′ = 4(6) TeV and scanning over the allowed parameter range of the model. For
details see Chapter 1 or [74]. For comparison we also show the ratio obtained with the
SSM using MW ′ = MZ′ = 4(6) TeV.

the weaker constraints available for 6 TeV and hence of the larger range of allowed values
over which we scan. Also interesting is the behaviour of the cross section in the UU model.
Indeed, the DIS cross section is roughly proportional to the couplings of the W ′-boson to
leptons times the couplings to partons, which in this model are proportional to −tφ, 1/tφ
respectively, see Chapter 1, therefore resulting in this line shape negative ratio. We note
that the ratio of the total cross sections could be enhanced by a few more percents by
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imposing a suitable minimal xmin-cut on the x-integration at the price of reducing the
cross sections. Indeed, the dominant contribution to the cross section comes from a region
with ultra-small x-values (see Fig. 3 in [287]) and this region is shifted to larger x due to
the heavy resonance mass so that a cut on x can considerably reduce the SM DIS cross
section while affecting less the result in the SSM. For a similar reason, any suppression of
the nuclear PDFs in the small x region due to saturation effects would also lead to an
enhanced signal to background ratio. However, an increase of the SM DIS cross section by
1 or 2% is clearly not measurable with the Auger Observatory or any foreseeable UHEν
experiment.

In Fig. 4.3, we also show numerical results for the production of hadrons in resonant
ν̄ee

− scattering in the SM (solid, black line) and in the SSM (dashed, black line). More
specifically, we include the contributions with first and second generation quarks in the
final state. As can be seen, the GR cross section is more than one order of magnitude
larger than the total CC neutrino DIS cross section at the resonance energy Eν = 6.3 · 106

GeV. However, it decreases sharply away from the resonance, and the GR cross section
is smaller than the CC DIS cross section by several orders of magnitude for energies
greater than the Auger Observatory threshold, i.e. Eν > 108 GeV. On the other hand, the
contribution from the W ′ resonance interferes destructively with the SM amplitude at
energies below 1010 GeV but leads to a clear enhancement of the cross section in a bin
around the W ′-resonance energy Eres

ν = M2
W ′/(2me) ≃ 1.56 · 1010 GeV. Still it remains

more than two orders of magnitude smaller than the DIS cross sections as can be inferred
from Tab. 4.1 where we list the values of the different cross sections at the peak of the
resonance with mass MW ′ = 4 TeV. For this reason, the effect of the GR′ resonance is
irrelevant for events with hadronic showers.

4.3.3 “Pure muon” events

One way to enhance the relative importance of the new physics signal is to consider pure
’muon events’ discussed in Ref. [279] as a rather background free signal of the GR (in the
SM). The corresponding cross section for the resonant production of an electron or a muon
is a factor 1/6 smaller than the one shown in Fig. 4.3 (see rows 3, 4, and 5 in Tab. 4.1).
As can be seen, at the resonance, the GR′ cross section in the SSM (row 5, column 4)
is about 600 times larger than the one from the SM GR (row 5, column 3). However,
it is necessary to take into account the non-resonant production of pure muon events
which, contrary to the SM case, is more important than the resonant mechanism. The
corresponding cross section in the SM, due to the process νµe

− → µ−νe, can be inferred
from Fig. 8 in [270]. It depends only very mildly on the neutrino energy for Eν > 108

GeV and we provide its value at the energy of the W ′-resonance in row 7 of Tab. 4.1. For
completeness, we also list the cross section for the elastic neutrino scattering (ES) in row
6.

We have not calculated the non-resonant elastic neutrino–electron scattering cross
sections including additional W ′ and Z ′ bosons but it is reasonable to assume that such
contributions will modify the SM result at the low percent level in the SSM and the
G221 models when scanning over the allowed parameter range, similar to the DIS case in
Fig. 4.4. Therefore, we estimate that the contribution from the GR′ resonance enhances
the cross section for muon production in the SM by about 7% at the resonance peak.
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Table 4.1: Cross sections at Eν = 1.56 · 1010 GeV in the SM and the SSM assuming
MW ′ = MZ′ = 4 TeV. The numbers in the 6th and 7th rows have been taken from figure
8 in [270]. The elastic neutrino scattering off electrons into an electron (row 6) receives
contributions from the following processes: νee

− → νee
−, ν̄ee

− → ν̄ee
−, νµe

− → νµe
−, and

ν̄µe
− → ν̄µe

−. The non-resonant production of a muon (row 7) is due to the process
νµe

− → µ−νe.

Process σ [pb] (SM) σ [pb] (SSM)
1.) CC DIS νµN → µ− +X 2.84 · 104 2.84 · 104

2.) NC DIS νµN → νµ +X 1.20 · 104 1.20 · 104

3.) GR(′) to had. ν̄ee
− → hadrons 6.6 · 10−2 41.16

4.) GR(′) to e− ν̄ee
− → ν̄ee

− 1.1 · 10−2 6.86
5.) GR(′) to µ− ν̄ee

− → ν̄µµ
− 1.1 · 10−2 6.86

6.) ES into e− νee
− → νee

−, . . . 154.50 —
7.) ES into µ− νµe

− → µ−νe 102.17 —

Needless to say, that this enhancement gets reduced when calculating event numbers in
appropriate energy bins. In addition, we have estimated the background to the pure muon
events due to CC DIS events where the hadronic shower energy is below the detection
threshold which turns out to be much smaller than the signal so that it can be neglected.
The flux of UHEν will not be known with a better precision than the uncertainty of the
DIS cross sections at very small x. Therefore, it seems impossible for general reasons that
the very precisely known leptonic cross sections can be used to discover new spin-1 W ′

and Z ′ resonances. In addition to these general considerations, the Auger Observatory
has not yet detected UHEν events. A detector with a much larger acceptance would be
required to measure the much smaller UHE neutrino–electron cross sections.

Cosmic-rays of ultra-high energy as measured by the Pierre Auger Observatory are
fascinating astrophysical objects. The tremendous energy they carry rank their sources
among the most powerful objects in our Universe and studying cosmic-ray properties gives
us insight about the most violent processes ever considered and the physics at work in
these extreme environments. As we have seen, the GZK cutoff may have already been
observed in which case it is likely that neutrinos of extreme energy, Eν > 108 GeV, are
being produced by primary cosmic-rays while travelling through the universe. Because
neutrinos interact so weakly with matter and propagate without being deflected, detecting
events of such energies would be very exciting and promising.

With such an energy, UHEν may allow us to probe new physics scenarios in kinematical
regions out of reach for the LHC. In this spirit, we have computed UHEν cross sections
in the SSM and G221 models including additional charged and neutral spin-1 resonances.
We find that the effects of such resonances are too small to be observed with the Auger
Observatory or any foreseeable upgrade of it. Conversely, should such resonances be
observed at the LHC or a future hadron collider they will have no measurable impact on
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the UHEν events. Any deviation from the SM seen in UHE cosmic neutrino events would
require another explanation.
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SUMMARY AND OUTLOOK

With the upcoming run of the LHC planned for early 2015, particle physics is more
than ever an exciting field of research. The first run of the LHC shed some light on the
nature of the electroweak symmetry breaking by unravelling the existence of a scalar
spin-0 particle, the Higgs boson. Even though one might have hoped for even more to
be discovered during this first stage, it is probably much too early to be over pessimistic.
New physics might still be lying right in the soon to be accessible range at the LHC. Since
theoretical principles pointing at new physics around the TeV scale are being challenged,
it is also the right time to question them.

Among the various scenarios of new physics that will be extensively probed at the LHC
next year, we focused in this manuscript on new heavy resonances of spin-1 generically
called W ′- and Z ′-bosons. These resonances are predicted in theories based on an enlarged
gauge group like the G221 models in which the SM electroweak gauge group is supplemented
by an additional SU(2) group factor. Such extensions are particularly well motivated
when they emerge as the low energy limit of theories based on much larger simple gauge
groups like SO(10) or E6. The G221 models based on the SU(2)1 × SU(2)2 × U(1)X gauge
group have been reviewed in the first chapter of this manuscript. We presented the various
realizations of this class, the Left-right, Lepto-phobic, Fermio-phobic, Hadro-phobic, Non-
universal and Un-unified models which differ from each other in the particle content and
pattern of symmetry breaking. The expressions for the masses and couplings of the new
resonances to SM fermions have also been presented and currently available bounds on
the parameter space have been reviewed.

Since the measurement of the Higgs mass at mH ≃ 125 GeV, we know that the SM
electroweak vacuum can be stable up to a very high scale – at least 1010 GeV – without
having its internal consistency challenged. Theories beyond the SM usually generate
contributions to the effective potential that can modify it drastically and potentially make
it unstable at a much lower scale than in the SM. Consequently, requiring the internal
consistency of a given model up to a certain scale can lead to stringent constraints on its
parameter space. So far, these studies have been limited to simple extensions because
the required renormalization group equations for sophisticated models are not known
and a calculation by hand is challenging9. In Chapter 2, we presented a new tool called
PyR@TE, that aims at generating the RGEs for an arbitrary gauge field theory. In
PyR@TE, once the gauge group and particle content have been specified, the two-loop
RGEs are derived for all the dimensionful as well as dimensionless parameters of the
model. After having presented the renormalization group equations for a general gauge

9Since the parameters need to be run over a large range of scale values, these RGEs must be known at
the two-loop level if one wants to draw any reliable conclusion.
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field theory, we reviewed the specificities of PyR@TE and explained in great details its
use. To conclude, we used the code to present the complete set of two-loop RGEs for
the G221 models concentrating on realizations following the breaking pattern one. We
analysed the differences between the various models and showed that the effects of the
two-loop contributions can be sizeable.

Chapter 3 was dedicated to a different phenomenological aspect of the G221 models,
specifically precision calculations of processes involving top-quarks at the LHC. Indeed,
we presented our calculation of the NLO QCD corrections to the electroweak top-pair
production and its implementation in a Monte Carlo event generator that allows for a
consistent matching of NLO matrix elements and parton shower, the POWHEG BOX. To do
so, we had to extend the POWHEG BOX so that it identifies and properly treats the QED
divergences present in the real corrections. After extensive validation, we showed our
first numerical results and found that the electroweak top-pair production mediated by a
photon can be comparable to the other channel. Various kinematical distributions for a
Sequential Standard Model Z ′-boson have been obtained by interfacing our POWHEG BOX

implementation with Pythia 8 for subsequent showering. We explored the impact of the
NLO corrections as implemented according to the POWHEG method along with the effect of
the parton shower. Finally, in the same chapter, we presented our ongoing calculation of
the NLO QCD corrections to the single-top production.

The last chapter of this manuscript, Chapter 4, was devoted to the phenomenological
study of the impact of new heavy resonances on the interaction of ultra-high energy
neutrinos in the atmosphere and the subsequent shower that can be detected by the Pierre
Auger Observatory. We focused on G221 models and scanned the allowed parameter space,
calculating for each configuration the deep inelastic scattering of neutrinos off nuclei in
the atmosphere as well as the Glashow resonance. We found that the modifications to
the total cross sections due to new physics are too small to be detected by the Auger
Observatory or any upgrade of it. Therefore, if such resonances are found at the LHC
or a future collider, there would be no measurable impact on ultra-high energy neutrino
events. Any deviation in ultra-high energy neutrino events from the SM would require
another explanation.

In the near future, the work presented in this manuscript will be extended in several
directions. First, as already discussed there are many ways to extend PyR@TE: (i) include
kinetic mixing, (ii) implement the running of the vevs, (iii) extend the existing implemen-
tation by including higher-order corrections. In addition, PyR@TE is not bounded to the
G221 models of course and can be used to perform various phenomenological studies. A
publication on the electroweak top-pair production is being finalized and the single-top
calculation will be finalized in the coming months with a publication expected in fall.
Also, we now have the know-how for such calculations and we can foresee future work in
this direction. In addition to all these plans, we will be awaiting with great excitement
the new run of the LHC and look for the potential first cracks in the SM.
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Appendix A
LIST OF AVAILABLE IRREDUCIBLE
REPRESENTATIONS IN PyR@TE

We list below all the gauge groups with their respective irreps available in PyR@TE.

Table A.1: List of all the irreps available in PyR@TE. Note that the True argument for
SU(2) represents the conjugate representation.

Gauge Group Irreps: dimension Gauge Group Irreps: dimension
SU(2) (0,) : 1 SU(4) (0,0,0) : 1

(1,) : 2 (0,0,1) : 4
(1,True) : 2 (0,0,2) : 10
(2,) : 3 (0,1,0) : 6
(2,True) : 3 (1,0,0) : 4
(3,) : 4 (1,0,1) : 15
(3,True) : 4 (2,0,0) : 10

SU(3) (0,0) : 1 SU(5) (0,0,0,0) : 1
(0,1) : 3 (0,0,0,1) : 5
(0,2) : 6 (0,0,0,2) : 15
(0,3) : 10 (0,0,1,0) : 10
(1,0) : 3 (0,1,0,0) : 10
(1,1) : 8 (1,0,0,0) : 5
(2,0) : 6 (1,0,0,1) : 24
(3,0) : 10 (2,0,0,0) : 15

SU(6) (0,0,0,0,0) : 1 U(1)Y
(0,0,0,0,1) : 6
(0,0,0,0,2) : 21
(0,0,0,1,0) : 15
(0,0,1,0,0) : 20
(0,1,0,0,0) : 15
(1,0,0,0,0) : 6
(1,0,0,0,1) : 35
(2,0,0,0,0) : 21
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Appendix B
DEFINITION OF THE TENSOR AND SCALAR

INTEGRALS

Our definition for the tensor, vector and scalar integrals are reviewed below, we follow
the definitions of [154].

B.1 Scalar integrals

The tadpole integral is defined by

A0(m) =
µ4−d

iπ2

∫
ddk

(2π)d−4

1

k2 −m2 + iε
. (B.1)

Performing the Wick rotation to Euclidian space and the integration yields1

A0(m) = −
(
4πµ2

m2

)ε

Γ(−1 + ε)m2 , (B.2)

which can be expanded in Laurent series in the following way

A0(m) = m2

(

∆− log
m2

µ2
+ 1

)

. (B.3)

In the same spirit we define the two point function B0(p
2;m1,m2) by

B0(p
2;m1,m2) =

(2πµ)4−d

iπ2

∫
ddk

(k2 −m2
1)((k + p2)−m2

2)
, (B.4)

in which we have suppressed the iε term. B0 can be integrated directly by performing a
Wick rotation and inserting Feynman parameters to yield

B0(p
2;m1,2 ) = ∆+ 2− log

m1m2

µ2
+

m2
1 −m2

2

p2
log

m2

m1

− m1m2

p2

(
1

r
− r

)

log r , (B.5)

where r is and 1/r are the solutions of the quadratic equation

r2 +
p2 −m2

1 −m2
2

m1m2

r + 1 = 0 . (B.6)

1Note that we denote ε the dimension parameter ε = d− 4.
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B.2 Tensor integrals

We can now move to the tensor integrals and we consider in turn Bµ and Bµν .

Bµ(p
2;m1,m2) =

(2πµ)4−d

iπ2

∫
ddkkµ

(k2 −m2
1)((k + p2)−m2

2)
, (B.7)

Bµν

(
p2;m1,m2

)
=

(2πµ)4−d

iπ2

∫
ddkkµkν

(k2 −m2
1)((k + p2)−m2

2)
. (B.8)

These integrals are Lorentz-covariant and can therefore be decomposed onto Lorentz-
covariant structures in the following way

Bµ = pµB1 , (B.9)
Bµν = gµνB00 + pµpνB11 , (B.10)

in which we have introduced the invariant scalar coefficient functions B1, B00 and B11.
To solve this system one has to first invert it

B1 =
1

2p2
pµBµ , (B.11)

B00 =
1

d− 1

(

gµν −
pµpν
p2

)

Bµν , (B.12)

B11 =
1

d− 1

1

p2

(

−gµν + d
pµpν
p2

)

Bµν , (B.13)

and express it in terms of the scalar integrals

B1 =
1

p2
(
A0(m1)− A0(m2)− (p2 +m2

1 −m2
2)B0(p

2;m1,m2)
)
, (B.14)

B00 =
1

2(d− 1)

(
A0(m2) + 2m2

1B0(p
2;m1,m2) + (p2 +m2

1 −m2
2)B1(p

2;m1,m2)
)
, (B.15)

B11 =
1

2(d− 1)p2
(
(d− 2)A0(m2)− 2m2

1B0(p
2;m1,m2)− d(p2 +m2

1 −m2
2)B1(p

2;m1,m2)
)
.

(B.16)

Finally, one obtains the expression for the tensor integrals Bµ and Bµν

Bµ =
pµ
2p2

(
A0(m1)− A0(m2)− (p2 +m2

1 −m2
2)B0(p

2;m1,m2)
)
, (B.17)

Bµν =
1

2

[
1

d− 1

(

gµν −
pµpν
p2

)
(
A0(m2) + 2m2

1B0(p
2;m1,m2) + (p2 +m2

1 −m2
2)B1(p

2;m1,m2)
)

+
pµpν
p2

(
A0(m2)− (p2 +m2

1 −m2
2)B1(p

2;m1,m2)
)
]

. (B.18)
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Appendix C
RENORMALIZATION GROUP EQUATIONS FOR

THE G221 MODEL

Here we give the full results of the RGEs for the G221 models at two-loop. We start by
the quartic couplings and scalar mass terms before completing the gauge couplings RGEs.

C.1 Quartic and scalar mass terms RGEs

We present the model independent parts ∆ for the doublet and triplet realizations and
then present the dependent parts for each one of the couplings, β̃λi

. The complete RGEs
for a given coupling λi is then given by Eq. (2.213), which re-write here for convenience

β
(2)
λi

(M) = β̃
(2)
λi

(M) +∆
D(T )
λi

. (C.1)

Note that in the following we will drop the superscript (2).
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C.2 Gauge couplings RGEs

We now give the two-loop quartic couplings RGEs which complete the set of RGEs for
the G221 models.
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Appendix D
SAMPLE MODEL FILES FOR PyR@TE

Listing D.1: models/G221BPI-LRD.model
1 # YAML 1.1
2 ---
3 Author : Florian Lyonnet
4 Date: 21.04.2014
5 Name: G221BPILRD
6 #Here we have four gauge group factors
7 Groups : {’U1 ’: U1 , ’SU21 ’: SU2 , ’SU22 ’: SU2 , ’SU3c ’: SU3}
8

9 ##############################
10 # Fermions assumed weyl spinors
11 ##############################
12 Fermions : {
13 QbarL : {Gen: 3, Qnb :{ U1: -1/6, SU21: -2, SU22: 1, SU3c: -3}},
14 LbarL : {Gen: 3, Qnb :{ U1: 1/2 , SU21: -2, SU22: 1, SU3c: 1}} ,
15 LR: {Gen: 3, Qnb :{ U1: -1/2, SU21: 1, SU22: 2, SU3c: 1}} ,
16 QR: {Gen: 3, Qnb :{ U1: 1/6 , SU21: 1, SU22: 2, SU3c: 3}} ,
17 }
18

19 #############
20 #Real Scalars
21 #############
22

23 RealScalars : {
24 #Only for the LR -T variant here we have to add the real triplet
25 #phi: {U1: 1, SU21: 1, SU22: 3, SU3c: 1},
26 #phic: {U1: -1, SU21: 1, SU22: 3, SU3c: 1},
27 }
28

29 ##########################################################################
30 # Complex Scalars : have to be expressed in terms of Real Scalars see above
31 ##########################################################################
32

33 CplxScalars : {
34 H: { RealFields : [Pi ,I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: 0, SU21: 2, SU22

: -2, SU3c: 1}} ,
35 H*: { RealFields : [Pi ,-I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: 0, SU21: -2,

SU22: 2, SU3c: 1}} ,
36 #In the doublet case we need the complex scalar field and its

conjugate form
37 phi: { RealFields : [phi1 ,I*phi2], Norm: 1/ Sqrt (2) , Qnb: {U1: 1/2 , SU21: 1,

SU22: 2, SU3c: 1}} ,
38 phi *: { RealFields : [phi1 ,-I*phi2], Norm: 1/ Sqrt (2) , Qnb: {U1: -1/2, SU21:

1, SU22: -2, SU3c: 1}} ,
39 }
40

41 Potential : {
42

43 #######################################
44 # All particles must be defined above !
45 #######################################
46

47 QuarticTerms : {
48 ’\lambda_H1 ’ : { Fields : [H,H,H*,H*], Norm : 1},
49 ’\lambda_H2 ’ : { Fields : [[H*,H*,H*,H],[H,H,H,H*]] , Norm : 1},
50 ’\lambda_H3 ’ : { Fields : [[H,H,H,H],[H*,H*,H*,H*]] , Norm : 1},

171



51 ’\lambda_H4 ’ : { Fields : [H,H*,H,H*], Norm : 1},
52 #For the LR -T model , replace phi* -> phic
53 ’\ lambda_Hphi1 ’ : { Fields : [[ phi*,phi ,H,H],[ phi*,phi ,H*,H*]] , Norm : 1},
54 ’\ lambda_Hphi2 ’ : { Fields : [phi*,phi ,H,H*], Norm : 1},
55 ’\ lambda_phi ’ : { Fields : [phi*,phi ,phi*,phi], Norm : 1}
56 },
57 ScalarMasses : {
58 #For the LR -T model , replace phi* -> phic
59 ’\mu_phi ’ : { Fields : [phi*,phi], Norm : 1},
60 ’\mu_H1 ’ : { Fields : [[H,H],[H*,H*]] , Norm : 1},
61 ’\mu_H2 ’ : { Fields : [H,H*], Norm : 1}
62 }
63 }

Listing D.2: models/SM_BiD.model
1 # YAML 1.1
2 ---
3 Author : Florian Lyonnet
4 Date: 9.08.2013
5 Name: SMBiD
6 Groups : {’U1 ’: U1 , ’SU2L ’: SU2 , ’SU2R ’: SU2}
7

8 ##############################
9 # Fermions assumed weyl spinors

10 ##############################
11 Fermions : {
12 QL: {Gen: 3, Qnb :{ U1: 1/6 , SU2L: 2, SU2R: 1}} ,
13 QR: {Gen: 3, Qnb :{ U1: -1/6, SU2L: 1, SU2R: 2}} ,
14 LL: {Gen: 3, Qnb :{ U1: -1/2, SU2L: 2, SU2R: 1}} ,
15 LR: {Gen: 3, Qnb :{ U1: 1/2 , SU2L: 1, SU2R: 2}} ,
16 }
17

18 #############
19 #Real Scalars
20 #############
21

22 RealScalars : {
23 }
24

25 #####################################################
26 # Complex Scalars : give names for the real components
27 #####################################################
28

29 CplxScalars : {
30 H: { RealFields : [Pi ,I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: 0, SU2L: 2, SU2R

: 2}} ,
31 H*: { RealFields : [Pi ,-I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: 0, SU2L: -2,

SU2R: -2}}
32 }
33

34 Potential : {
35

36 #######################################
37 # All particles must be defined above !
38 #######################################
39

40 Yukawas :{
41 ’Y_{q}’: { Fields : [H,QL ,QR], Norm: 1},
42 ’Y_{l}’: { Fields : [H,LL ,LR], Norm: 1}
43 },
44 QuarticTerms : {
45 ’\ lambda_ {1} ’ : { Fields : [H,H*,H,H*], Norm : 1/2}
46 },
47 ScalarMasses : {
48 ’\mu_ {1} ’ : { Fields : [H*,H], Norm : 1}
49 }
50 }
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Listing D.3: models/SMCplexDoubletScalar.model
1 # YAML 1.1
2 # #This is the A.4 Model of 1203.5106
3 ---
4 Author : Florian Lyonnet
5 Date: 26.07.2013
6 Name: SMCplexDoubletScalar
7 Groups : {’U1 ’: U1 , ’SU2L ’: SU2 , ’SU3c ’: SU3}
8

9 ##############################
10 # Fermions assumed weyl spinors
11 ##############################
12 Fermions : {
13 Qbar: {Gen: 3, Qnb :{ U1: -1/6, SU2L: -2, SU3c: -3}},
14 Lbar: {Gen: 3, Qnb :{ U1: 1/2 , SU2L: -2, SU3c: 1}} ,
15 uR: {Gen: 3, Qnb :{ U1: 2/3 , SU2L: 1, SU3c: [1 ,0]}} ,
16 dR: {Gen: 3, Qnb :{ U1: -1/3, SU2L: 1, SU3c: 3}} ,
17 eR: {Gen: 3, Qnb :{ U1: -1, SU2L: 1, SU3c: 1}} ,
18 }
19

20 #############
21 #Real Scalars
22 #############
23

24 RealScalars : {
25 }
26

27 #####################################################
28 # Complex Scalars : give names for the real components
29 #####################################################
30

31 CplxScalars : {
32 H: { RealFields : [Pi ,I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: 1/2 , SU2L: 2,

SU3c: 1}} ,
33 H*: { RealFields : [Pi ,-I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: -1/2, SU2L:

-2, SU3c: 1}} ,
34 D: { RealFields : [PiD ,I* SigmaD ], Norm: 1/ Sqrt (2) , Qnb : {U1: 1/2 , SU2L: 2,

SU3c: 1}} ,
35 D*: { RealFields : [PiD ,-I* SigmaD ], Norm: 1/ Sqrt (2) , Qnb : {U1: -1/2, SU2L:

-2, SU3c: 1}} ,
36 }
37

38 Potential : {
39

40 #######################################
41 # All particles must be defined above !
42 #######################################
43

44 Yukawas :{
45 ’Y_{u}’: { Fields : [Qbar ,uR ,H*], Norm: 1},
46 ’Y_{d}’: { Fields : [Qbar ,dR ,H], Norm: 1},
47 ’Y_{e}’: { Fields : [Lbar ,eR ,H], Norm: 1}
48 },
49 QuarticTerms : {
50 ’\ lambda_ {1} ’ : { Fields : [H,H*,H,H*], Norm : 1/2} ,
51 ’\ lambda_ {D}’ : { Fields : [D,D*,D,D*], Norm : 1/2} ,
52 ’\ kappa_ {D}’ : { Fields : [D,D*,H,H*], Norm : 1/2} ,
53 ’\ Pkappa_ {D}’ : { Fields : [D,H*,H,D*], Norm : 1/2}
54 },
55 ScalarMasses : {
56 ’\mu_{H}’ : { Fields : [H,H*], Norm : 1},
57 ’\mu_{D}’ : { Fields : [D,D*], Norm : 1}
58 }
59 }
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Listing D.4: models/SM.model
1 # YAML 1.1
2 ---
3 Author : Florian Lyonnet
4 Date: 11.06.2013
5 Name: SM
6 Groups : {’U1 ’: U1 , ’SU2L ’: SU2 , ’SU3c ’: SU3}
7

8 ##############################
9 # Fermions assumed weyl spinors

10 ##############################
11 Fermions : {
12 Qbar: {Gen: 3, Qnb :{ U1: -1/6, SU2L: -2, SU3c: -3}},
13 Lbar: {Gen: 3, Qnb :{ U1: 1/2 , SU2L: -2, SU3c: 1}} ,
14 uR: {Gen: 3, Qnb :{ U1: 2/3 , SU2L: 1, SU3c: [1 ,0]}} ,
15 dR: {Gen: 3, Qnb :{ U1: -1/3, SU2L: 1, SU3c: 3}} ,
16 eR: {Gen: 3, Qnb :{ U1: -1, SU2L: 1, SU3c: 1}}
17 }
18

19 #############
20 #Real Scalars
21 #############
22

23 RealScalars : {
24 }
25

26 #####################################################
27 # Complex Scalars : give names for the real components
28 #####################################################
29

30 CplxScalars : {
31 H: { RealFields : [Pi ,I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: 1/2 , SU2L: 2,

SU3c: 1}} ,
32 H*: { RealFields : [Pi ,-I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: -1/2, SU2L:

-2, SU3c: 1}}
33 }
34

35 Potential : {
36

37 #######################################
38 # All particles must be defined above !
39 #######################################
40

41 Yukawas :{
42 ’Y_{u}’: { Fields : [Qbar ,uR ,H*], Norm: 1},
43 ’Y_{d}’: { Fields : [Qbar ,dR ,H], Norm: 1},
44 ’Y_{e}’: { Fields : [Lbar ,eR ,H], Norm: 1}
45 },
46 QuarticTerms : {
47 ’\ Lambda_ {1} ’ : { Fields : [H,H*,H,H*], Norm : 1/2}
48 },
49 ScalarMasses : {
50 ’\mu_ {1} ’ : { Fields : [H*,H], Norm : 1}
51 }
52 }
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Listing D.5: models/ScalarSinglet.model
1 # YAML 1.1
2 ---
3 Author : Florian Lyonnet
4 Date: 22.07.2013
5 Name: ScalarSinglet
6 Groups : {’U1 ’: U1 , ’SU2L ’: SU2 , ’SU3c ’: SU3}
7

8 ##############################
9 # Fermions assumed weyl spinors

10 ##############################
11 Fermions : {
12 Qbar: {Gen: 2, Qnb :{ U1: -1/6, SU2L: -2, SU3c: -3}},
13 Lbar: {Gen: 2, Qnb :{ U1: 1/2 , SU2L: -2, SU3c: 1}} ,
14 uR: {Gen: 3, Qnb :{ U1: 2/3 , SU2L: 1, SU3c: [1 ,0]}} ,
15 dR: {Gen: 3, Qnb :{ U1: -1/3, SU2L: 1, SU3c: 3}} ,
16 eR: {Gen: 3, Qnb :{ U1: -1, SU2L: 1, SU3c: 1}}
17 }
18

19 ############
20 #Real Scalars
21 #############
22

23 RealScalars : {
24 si : {U1: 0, SU2L: 1, SU3c: 1}
25 }
26

27 #####################################################
28 # Complex Scalars : give names for the real components
29 #####################################################
30

31 CplxScalars : {
32 H: { RealFields : [Pi ,I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: 1/2 , SU2L: 2,

SU3c: 1}} ,
33 H*: { RealFields : [Pi ,-I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: -1/2, SU2L:

-2, SU3c: 1}}
34 }
35

36 Potential : {
37

38 #######################################
39 # All particles must be defined above !
40 #######################################
41 Yukawas :{
42 ’Y_{u}’: { Fields : [Qbar ,uR ,H*], Norm: 1},
43 ’Y_{d}’: { Fields : [Qbar ,dR ,H], Norm: 1},
44 ’Y_{e}’: { Fields : [Lbar ,eR ,H], Norm: 1}
45 },
46

47 QuarticTerms : {
48 ’\ lambda_ {1} ’ : { Fields : [H,H*,H,H*], Norm: 1/2} ,
49 ’\ lambda_ {s}’ : { Fields : [si ,si ,si ,si], Norm: 1/2} ,
50 ’\ kappa_ {s}’ : { Fields : [H,H*,si ,si], Norm: 1/2}
51 },
52

53 ScalarMasses : {
54 ’\mu_ {1} ’ : { Fields : [H,H*], Norm: 1},
55 ’\mu_{s}’ : { Fields : [si ,si], Norm: 1/2}
56 }
57 }
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Listing D.6: models/SMSingletDoublet.model
1 # YAML 1.1
2 ---
3 Author : Florian Lyonnet
4 Date: 30.07.2013
5 Name: SMSingletDoublet
6 Groups : {’U1 ’: U1 , ’SU2L ’: SU2 , ’SU3c ’: SU3}
7

8 ##############################
9 # Fermions assumed weyl spinors

10 ##############################
11 Fermions : {
12 Qbar: {Gen: 3, Qnb :{ U1: -1/6, SU2L: -2, SU3c: -3}},
13 Lbar: {Gen: 3, Qnb :{ U1: 1/2 , SU2L: -2, SU3c: 1}} ,
14 uR: {Gen: 3, Qnb :{ U1: 2/3 , SU2L: 1, SU3c: [1 ,0]}} ,
15 dR: {Gen: 3, Qnb :{ U1: -1/3, SU2L: 1, SU3c: 3}} ,
16 eR: {Gen: 3, Qnb :{ U1: -1, SU2L: 1, SU3c: 1}} ,
17 D: {Gen : 1, Qnb :{ U1: -1/2, SU2L: 2, SU3c: 1}} ,
18 Dc: {Gen: 1, Qnb :{ U1: 1/2 , SU2L: 2,SU3c: 1}} ,
19 S: {Gen: 1, Qnb :{ U1: 0, SU2L: 1, SU3c: 1}}
20 }
21

22 #############
23 #Real Scalars
24 #############
25

26 RealScalars : {
27 }
28

29 #####################################################
30 # Complex Scalars : give names for the real components
31 #####################################################
32

33 CplxScalars : {
34 H: { RealFields : [Pi ,I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: 1/2 , SU2L: 2,

SU3c: 1}} ,
35 H*: { RealFields : [Pi ,-I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: -1/2, SU2L:

-2, SU3c: 1}}
36 }
37

38 Potential : {
39

40 #######################################
41 # All particles must be defined above !
42 #######################################
43

44 Yukawas :{
45 ’Y_{u}’: { Fields : [Qbar ,uR ,H*], Norm: 1},
46 ’Y_{d}’: { Fields : [Qbar ,dR ,H], Norm: 1},
47 ’Y_{e}’: { Fields : [Lbar ,eR ,H], Norm: 1},
48 ’g_{d}’: { Fields : [H,S,D], Norm: 1/ Sqrt (2)},
49 ’g_{u}’: { Fields : [H*,S,Dc], Norm: 1/ Sqrt (2)}
50 },
51 QuarticTerms : {
52 ’\lambda_1 ’ : { Fields : [H,H*,H,H*], Norm : 1/2}
53 },
54 ScalarMasses : {
55 ’\mu_1 ’ : { Fields : [H*,H], Norm : 1},
56 },
57 FermionMasses :{
58 ’\mD ’: { Fields : [D,Dc], Norm: 1},
59 ’\mS ’: { Fields : [S,S], Norm: 1/2}
60 }
61 }
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Listing D.7: models/SMCplxTriplet.model
1 # YAML 1.1
2 ---
3 Author : Florian Lyonnet
4 Date: 9.07.2013
5 Name: SMCplxTriplet
6 Groups : {’U1 ’: U1 , ’SU2L ’: SU2 , ’SU3c ’: SU3}
7

8 ##############################
9 # Fermions assumed weyl spinors

10 ##############################
11 Fermions : {
12 Qbar: {Gen: 3, Qnb :{ U1: -1/6, SU2L: -2, SU3c: -3}},
13 L: {Gen: 3, Qnb :{ U1: -1/2, SU2L: 2, SU3c: 1}} ,
14 uR: {Gen: 3, Qnb :{ U1: 2/3 , SU2L: 1, SU3c: 3}} ,
15 dR: {Gen: 3, Qnb :{ U1: -1/3, SU2L: 1, SU3c: 3}} ,
16 eR: {Gen: 3, Qnb :{ U1: -1, SU2L: 1, SU3c: 1}} ,
17 PsiL: {Gen: 1, Qnb: {U1: -1/2, SU2L: 2, SU3c: 1}} ,
18 PsiRbar : {Gen: 1, Qnb: {U1: 1/2 , SU2L : -2, SU3c: 1}}
19 }
20 #############
21 #Real Scalars
22 #############
23

24 RealScalars : {
25 }
26

27 #####################################################
28 # Complex Scalars : give names for the real components
29 #####################################################
30 CplxScalars : {
31 H: { RealFields : [Pi ,I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: 1/2 , SU2L: 2,

SU3c: 1}} ,
32 H*: { RealFields : [Pi ,-I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: -1/2, SU2L:

-2, SU3c: 1}} ,
33 T : { RealFields : [T1 ,I*T2], Norm: 1/ Sqrt (2) , Qnb: {U1: 1, SU2L : 3, SU3c:

1}} ,
34 T* : { RealFields : [T1 ,-I*T2], Norm: 1/ Sqrt (2) , Qnb: {U1: -1, SU2L : 3,

SU3c: 1}}
35 }
36

37 Potential : {
38 #######################################
39 # All particles must be defined above !
40 #######################################
41 ##############
42 #The doublet vector like and the yukawa corresponding to the triplet are not

included yet
43 Yukawas :{
44 ’Y_{u}’: { Fields : [H*,Qbar ,uR], Norm: 1},
45 ’f_{L}’: { Fields : [T,L,L], Norm: 1/ Sqrt (2)},
46 ’f_ {\ psi }’: { Fields : [T, PsiL ,PsiL], Norm: 1/ Sqrt (2)}
47 },
48 QuarticTerms : {
49 ’\ lambda_ {1} ’ : { Fields : [H,H*,H,H*], Norm : 1/2} ,
50 ’\ lambda_ {T}’ : { Fields : [T,T*,T,T*], Norm: 1/2} ,
51 ’\ kappa_ {T}’: { Fields : [T,T*,H,H*], Norm: 1}
52 },
53 ScalarMasses : {
54 ’\mu_ {1} ’ : { Fields : [H,H*], Norm : 1},
55 mT : { Fields : [T,T*], Norm: 1/2} ,
56 },
57 TrilinearTerms : {
58 fH : { Fields : [T*,H,H], Norm: 1/ Sqrt (2)},
59 },
60 FermionMasses : {
61 mD : { Fields : [PsiL , PsiRbar ], Norm: 1, latex : \m_D},
62 }
63 }

177



Listing D.8: models/SMTripletDoublet.model
1 # YAML 1.1
2 ---
3 Author : Florian Lyonnet
4 Date: 30.07.2013
5 Name: SMTripletDoublet
6 Groups : {’U1 ’: U1 , ’SU2L ’: SU2 , ’SU3c ’: SU3}
7

8 ##############################
9 # Fermions assumed weyl spinors

10 ##############################
11 Fermions : {
12 Qbar: {Gen: 3, Qnb :{ U1: -1/6, SU2L: -2, SU3c: -3}},
13 Lbar: {Gen: 3, Qnb :{ U1: 1/2 , SU2L: -2, SU3c: 1}} ,
14 uR: {Gen: 3, Qnb :{ U1: 2/3 , SU2L: 1, SU3c: [1 ,0]}} ,
15 dR: {Gen: 3, Qnb :{ U1: -1/3, SU2L: 1, SU3c: 3}} ,
16 eR: {Gen: 3, Qnb :{ U1: -1, SU2L: 1, SU3c: 1}} ,
17 D: {Gen : 1, Qnb :{ U1: -1/2, SU2L: 2, SU3c: 1}} ,
18 Dc: {Gen: 1, Qnb :{ U1: 1/2 , SU2L: 2,SU3c: 1}} ,
19 T: {Gen: 1, Qnb: { U1: 0, SU2L: 3, SU3c: 1}}
20 }
21

22 #############
23 #Real Scalars
24 #############
25

26 RealScalars : {
27 }
28

29 #####################################################
30 # Complex Scalars : give names for the real components
31 #####################################################
32

33 CplxScalars : {
34 H: { RealFields : [Pi ,I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: 1/2 , SU2L: 2,

SU3c: 1}} ,
35 H*: { RealFields : [Pi ,-I* Sigma ], Norm: 1/ Sqrt (2) , Qnb : {U1: -1/2, SU2L:

-2, SU3c: 1}}
36 }
37

38 Potential : {
39

40 #######################################
41 # All particles must be defined above !
42 #######################################
43

44 Yukawas :{
45 ’Y_{u}’: { Fields : [Qbar ,uR ,H*], Norm: 1},
46 ’Y_{d}’: { Fields : [Qbar ,dR ,H], Norm: 1},
47 ’Y_{e}’: { Fields : [Lbar ,eR ,H], Norm: 1},
48 ’g_{d}’: { Fields : [T,D,H], Norm: -1},
49 ’g_{u}’: { Fields : [T,Dc ,H*] ,Norm: 1}
50 },
51 QuarticTerms : {
52 ’\lambda_1 ’ : { Fields : [H,H*,H,H*], Norm : 1/2} ,
53 },
54 ScalarMasses : {
55 ’\mu_1 ’ : { Fields : [H,H*], Norm : 1},
56 },
57 FermionMasses : {
58 ’m_{T}’ : { Fields : [T,T], Norm: 1/2} ,
59 ’m_{D}’ : { Fields : [D,Dc], Norm: 1}
60 }
61 }
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Appendix E
TOP-PAIR PRODUCTION: BORN EXPRESSION

For completeness, the complete expression for the Born amplitude squared of the elec-
troweak top-pair production is summarized below. In addition to Eq. (3.38)
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we give the expressions for the various definitions
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(E.2)

In the above equation, B,B′ ∈ {γ, Z,Z′}, the subscript q denotes the flavor of the incoming
massless parton and ŝ, t̂, û are the usual partonic Mandelstam variables. Finally, the
expression for the total Born matrix element is written in terms of general interference
terms as

B =
∑

q

(

Bq(γ, γ) + Bq(Z,Z) + Bq(Z
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∑

B �=B′
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. (E.3)
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