
HAL Id: tel-01110887
https://theses.hal.science/tel-01110887

Submitted on 29 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Polynomial Systems over Finite Fields:
Algorithms, Implementation and Applications

Chenqi Mou

To cite this version:
Chenqi Mou. Solving Polynomial Systems over Finite Fields: Algorithms, Implementation and Ap-
plications. Symbolic Computation [cs.SC]. Université Pierre et Marie Curie, 2013. English. �NNT : �.
�tel-01110887�

https://theses.hal.science/tel-01110887
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique et Mathématique

Ecole Doctorale Informatique, Télécommunications et Électronique (Paris)

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Présentée et soutenue par

Chenqi Mou

Solving Polynomial Systems over Finite Fields :

Algorithms, Implementations and Applications

Thèse dirigée par Jean-Charles Faugère et Dongming Wang
préparée au LIP6, UPMC et SMSS, Beihang University

Soutenue le 29 mai 2013 après avis des rapporteurs :

Masayuki Noro Professeur, Kobe University

Éric Schost Professeur associé, University of Western Ontario

devant le jury composé de :

Jean-Charles Faugère Directeur de Recherche, INRIA Paris-Rocquencourt
Shangzhi Li Professeur, Beihang University
Dongdai Lin Professeur, Institute of Information Engineearing, CAS
Mohab Safey El Din Professeur, Université Pierre et Marie Curie

Éric Schost Professeur associé, University of Western Ontario
Dingkang Wang Professeur, Academy of Mathematics and Systems Science, CAS
Dongming Wang Directeur de Recherche, CNRS
Meng Zhou Professeur, Beihang University

To My Family.

Abstract

Polynomial systems can be used to formulate a large variety of non-linear problems.

Polynomial systems over finite fields are of particular interest because of their ap-

plications in Cryptography, Coding Theory, and other areas of information science

and technologies. Solving polynomial systems is a central topic in Computer Algebra

and has stimulated the development in this area. In this thesis, theories, algorithms,

implementations and applications of solving polynomial systems over finite fields are

studied, leading to several major contributions as follows.

(1) We propose efficient algorithms for changing the orderings of Gröbner bases

of zero-dimensional ideals to LEX by making use of the sparsity of multiplication

matrices and study their complexities. For ideals in shape position, a probabilistic

algorithm is proposed to recover the LEX Gröbner basis by computing the minimal

polynomial of a linearly recurring sequence generated by one multiplication matrix

and by solving a structured linear system. Deterministic and incremental variants

of this algorithm are also presented for related but different purposes. For general

ideals, we generalize the above principle by defining linearly recurring relations with

all the multiplication matrices, and compute the LEX Gröbner basis as the generating

polynomial set w.r.t. LEX by the BMS algorithm from Coding Theory. Computational

complexities of all these algorithms and the sparsity of one multiplication matrix for

generic polynomial systems are analyzed, and the effectiveness and efficiency of the

algorithms are verified by our implementations.

(2) We present algorithms for decomposing polynomial sets over finite fields into

simple sets. For zero-dimensional polynomial sets, an algorithm is designed on the

basis of generalization of squarefree decomposition of univariate polynomials over

finite fields and a specialized technique for computing the pth root of any element in

products of field extensions determined by simple sets; In the positive-dimensional

case, we reduce simple decomposition to computation of radical ideals of positive

characteristics and positive dimensions, and then make use of existing algorithms for

computing such radicals to propose an effective algorithm. We have implemented

both algorithms and preliminary experimental results are also provided.

(3) We study the problems of squarefree decomposition and factorization for poly-

nomials over unmixed products of field extensions represented by simple sets and pro-

pose algorithmic solutions for them using multiple derivations and transformations of

ideals to those in shape position. Examples and experimental results are provided to

illustrate the presented algorithms and to show their performances.

(4) We apply methods for solving polynomial systems over finite fields to detect

the steady states and their numbers of finite biological models and to find the minimal

polynomial in the interpolation problem in Sudan’s list decoding algorithm in Coding

Theory. In the first application we mainly adopt a traversal method based on Gröbner

bases and a method based on specialized algorithm for triangular decomposition over

F2; In the second application we reduce the original problem to change of ordering of

Gröbner bases, for which the algorithm for change of ordering proposed in this thesis

is potentially applicable.

Key Words: Polynomial system, finite field, Gröbner basis, triangular set, change

of ordering, simple set, unmixed product of field extensions

Acknowledgements

First I would like to express my deepest gratitude to both of my supervisors Dongming

Wang and Jean-Charles Faugère for introducing me to such a research subject of

interest, beauty and challenges. Their priceless guidance and help have accompanied

me throughout my entire PhD study, and their wisdom and patience have enlightened

this important period of my life. What I have learnt from you is the treasure that

will benefit my whole life!

It is an honor to have Masayuki Noro and Éric Schost to review my thesis. Their

time and careful reading are highly appreciated, and their detailed and professional

comments on the thesis have led to great improvement on it. And I also want to

express my warm thanks to Shangzhi Li, Dongdai Lin, Mohab Safey El Din, Éric

Schost, Dingkang Wang, Meng Zhou for attending the thesis defense as jury members.

During my PhD study, LIP6, UPMC, France and SMSS–LMIB, Beihang Uni-

versity, China have provided me with excellent research environment. I am grateful

to the researchers Daniel Lazard, Mohab Safey El Din, Ludovic Perret, Guénaël

Renault, Zhiming Zheng, Tiegang Liu, Meng Zhou, Zhikun She, Xiaoyuan Yang,

and PhD students and postdocs Luk Bettale, Christopher Goyet, Mourad Gouicem,

Aurélien Greuet, Louise Huot, Pierre-Jean Spaenlehauer, Mate Soos, Xiaoyu Chen,

Yanli Huang, Ying Huang, Meng Jin, Tielin Liang, Ye Liang, Tian Luo, Ying Shao,

Jing Yang, Ting Zhao from these two institutions for their help. Especially, I would

like to thank Xiaoliang Li and Wei Niu for their helpful discussions in our coopera-

tions.

I owe my thanks to Chinese Scholarship Council for the financial support during

my study in France and to Service de l’Education Ambassade de la Réublique Popu-

laire de Chine en Réublique Françise for providing a warm and friendly environment

to Chinese students in France.

I also would like to thank my friends Kai Shi, Zhiyong Sun, Yunlong Tan, Wei

Wang, Xiaoliang Fan, Sheng Gao, Xin Lin, Yan Ma, Tianze Wang, Xiaomin Wang,

Yan Zhang both in China and France for accompanying and supporting me during

the thesis.

Last but not least, I feel grateful to my wife Lin Zhang and my family. The thesis

is dedicated to you for your endless love and support.

Table of Contents

Introduction . 1

I Background 18

Chapter 1 Gröbner bases . 19

1.1 Preliminaries . 19

1.2 Gröbner bases and Buchberger algorithm 25

1.3 FGLM algorithm . 28

1.4 Gröbner bases for polynomial system solving 30

Chapter 2 Triangular sets . 36

2.1 Concepts and terminologies . 36

2.2 Characteristic sets and Wu–Ritt algorithm 40

2.3 Regular, simple and irreducible triangular sets 43

2.4 Triangular sets for polynomial system solving 47

Chapter 3 Some constructions in algebra 51

3.1 Commutative algebra . 51

3.2 Basics of finite fields . 56

i

II Contributions 64

Chapter 4 Sparse FGLM algorithms 65

4.1 Ideals in shape position . 66

4.2 General ideals . 82

4.3 Multiplication matrices . 92

4.4 Implementation and experimental results 101

Chapter 5 Simple decomposition over finite fields 104

5.1 Simple sets revisited . 105

5.2 Zero-dimensional polynomial sets . 109

5.3 Positive-dimensional polynomial sets 121

5.4 Implementation and experimental results 132

Chapter 6 Squarefree decomposition and factorization over unmixed

products of field extensions 139

6.1 Unmixed products of field extensions 140

6.2 Squarefree decomposition over unmixed products 142

6.3 Factorization over unmixed products 149

6.4 Examples and experiments . 154

Chapter 7 Applications . 160

7.1 Detection of steady states and their numbers for finite biological models160

7.2 Sparse FGLM algorithm for interpolation problem in list decoding . . 165

Conclusions . 169

Bibliography . 170

ii

Introduction

Polynomial system solving: an overview

Polynomial systems are fundamental objects that appear in numerous areas of science

and engineering such as Commutative Algebra [35], Algebraic Geometry [36], Geo-

metric Reasoning [164], Algebraic Cryptanalysis [54], and Signal Processing [102]. In

this thesis we are interested in polynomial system solving, a central topic which has

stimulated and will definitely continue stimulating the development of the subject

Computer Algebra [14, 66, 85, 109, 153, 163].

To solve polynomial systems, one needs not only to study the underlying theory

of polynomial ideals and varieties in Commutative Algebra and Algebraic Geometry,

but also to design and implement constructive methods with proven correctness and

termination. In particular, as a remarkable characteristic of methods in Computer

Algebra, we use symbolic methods to pursue the exact solutions of polynomial systems

with no error.

The problem of solving polynomial systems can be formulated in the following

way. Let K be a field and F be any multivariate polynomial set over K with respect

to (short as w.r.t. hereafter) the variables x1, . . . , xn, and K̃ be some field extension

of K. Then x ∈ K̃n is said to be a solution of F = 0 in K̃ (may be omitted when

K̃ is K, the algebraic closure of K) if F(x) = 0, and solving the polynomial system

F = 0 means to compute all the solutions of F = 0 in K̃, and represent the solutions

in an appropriate way. It is remarkable that when solving F = 0, usually we are only

1

Introduction

interested in its solutions without their multiplicities, and in this case indeed it is

sufficient to study the radical ideal
√

〈F〉.
The polynomial system F = 0 is said to be zero-dimensional if it has finitely

many solutions (in this case we also call F zero-dimensional). For zero-dimensional

polynomial sets, representation of their solutions means the enumeration of all of

them. In particular, in the case K is a finite field, solving F = 0 in K means to

enumerate its solutions in K, which are obviously finite.

Triangular sets are widely considered to be good representations for the solutions

of polynomial systems. A triangular set T in K[x1, . . . , xn] (x1 < · · · < xn) is an

ordered set of polynomials in the form [T1(x1, . . . , xp1), . . . , Tr(x1, . . . , xpr)] with 1 ≤
p1 < · · · < pr ≤ n. In the case of r = n, T is zero-dimensional and all its solutions

can be computed by successively solving univariate polynomials after substitutions of

variables by preceding solutions; otherwise the triangular form of T also makes it easy

to study the properties of the solutions of T , for example the parameters, analogy to

the free variables in linear systems, can be read directly.

The mainstream methods for solving polynomial systems are first summarized in

Figure 1. Besides semi-numeric methods like the homotopy continuation method

[152], there are two major methods in Computer Algebra based on respectively

Gröbner bases [14, 111] and triangular sets [159, 5], through which polynomial sets

are reduced to new ones with certain triangular structures and the same solutions.

By elimination of variables the problem for solving polynomial systems is turned into

that of solving univariate polynomial equations in a symbolic way [127, 86].

By the method of triangular sets the polynomial set F of interest is decomposed

into finitely many triangular sets such that the zeros of F is precisely the union of

the zeros of all these triangular sets (this process is called triangular decomposition)

[159, 5]. Hence, after the triangular decomposition one can acquire the solutions of

F = 0 by computing the zeros of each associated triangular set, which is relatively easy

because of its triangular structure [90, 77, 112]. Indeed in the process of triangular

decomposition the multiplicities of the solutions are disregarded.

Gröbner bases w.r.t. the lexicographical ordering (short as LEX) have the strongest

algebraic structure convenient for polynomial system solving, so to solve the polyno-

mial system F = 0 by the method of Gröbner bases, we need to compute the LEX

2

Introduction

Solutions

Polynomial systems

DRL Gröbner bases

LEX Gröbner bases

Triangular sets

Semi-numeric methods
(Homotopy continuation)

Buchberger

F4, F5

FGLM
Gröbner Walk

e.g.,[Lazard 92]

Figure 1: Solving polynomial systems: an overview

Gröbner basis of 〈F〉. Compared with direct computation of the LEX Gröbner basis

with algorithms like F4 or F5 [49, 50], it is usually more efficient to first compute

a Gröbner basis of 〈F〉 w.r.t. the degree reversed lexicographical ordering (short as

DRL) [21, 49, 50], and convert it to a Gröbner basis w.r.t. LEX with the FGLM algo-

rithm [53, 55] or the Gröbner walk [29]. Since the Shape Lemma holds for the ideals

such that the first coordinates of any two zeros do not coincide [13] (in particular, for

ideals generated by generic polynomial systems this property holds), namely the LEX

Gröbner bases of these ideals are of the form G1(x1), x2 + G2(x1), . . . , xn + Gn(x1)

(such ideals are said to be in shape position), it can be concluded that in most cases

the computed Gröbner bases w.r.t. LEX are triangular sets. Otherwise one may

choose to turn the LEX Gröbner basis to triangular sets to represent the solutions

[91]. Though more steps may be needed to reach the solutions of the polynomial

systems, the method by Gröbner bases has evident advantages, e.g., the efficiency.

3

Introduction

Gröbner bases

The concept of Gröbner bases was first introduced by B. Buchberger [19, 21]. Then

an extensive amount of study has been performed on the Gröbner basis concerning

its theory, algorithms, and applications. Now the Gröbner basis theory has become

a relatively mature subject, with many academic monographs and textbooks on it

(e.g., [14, 35, 153]).

Given a term ordering <, we denote the leading term of a polynomial F ∈
K[x1, . . . , xn] w.r.t. < by lt(F) if no ambiguity occurs. Then for any ideal a ⊂
K[x1, . . . , xn], its Gröbner basis w.r.t. < is a set of polynomials G1, . . . , Gr ∈ a such

that 〈lt(F) : F ∈ a〉 = 〈lt(G1), . . . , lt(Gr)〉. Many theoretical and practical problems

related to polynomial ideals can be solved with Gröbner bases in a computational

way, for example the membership test problem (see Section 1.2) [35].

One remarkable characteristic of Gröbner bases is their computability. The Buch-

berger algorithm, S-pair criterion and corresponding optimization criteria form the

framework of the initial study on the Gröbner basis theory [20, 21]. Then J.-C.

Faugère proposed the algorithms F4 which makes use of the relationship between the

Buchberger algorithm and linear algebra [49] and F5 in which useless S-pair selec-

tion is avoided [50]. These two algorithms greatly improve the Buchberger algorithm

to achieve huge efficiency gains. Following researches include, for example, F5 algo-

rithm variants [46] and the study on signature related algorithms for Gröbner basis

computation [147].

In the worst case the complexity to compute Gröbner bases is proven to be double

exponential in the number of variables [108], but for generic or structured systems,

the complexities are much lower. A homogeneous nonzero polynomial sequence F =

[F1, . . . , Fr] ⊂ K[x1, . . . , xn] is said to be regular if for each i = 2, . . . , r, Fi is not a

zero-divisor in the quotient ring K[x1, . . . , xn]/〈F1, . . . , Fi−1〉, and roughly speaking

semi-regular sequences extend regular ones by focusing on the case when there are

more polynomials than the variables in K[x1, . . . , xn]. It has been shown that for any

semi-regular sequence in K[x1, . . . , xn], the DRL Gröbner basis of the ideal generated

by it can be computed by the F5 algorithm within O
(

(

n+dreg
n

)ω
)

arithmetic operations

in K, where dreg, called degree of regularity of the system, is the highest degree reached

in the computation of Gröbner basis in the F4 algorithm, and ω < 2.39 is the exponent

4

Introduction

in the complexity of efficient matrix multiplication [11]. Complexities of Gröbner basis

computations for structured systems like bilinear, determinantal, and Boolean ones

are studied in [143].

One important step for efficiently solving polynomial systems is to transform

Gröbner bases w.r.t. DRL to those w.r.t. LEX. There have been effective methods

for changing the orderings of Gröbner bases, for example the FGLM algorithm for

the zero-dimensional case [53] or the Gröbner walk for the general case [29]. Related

works include a dedicated algorithm for bivariate zero-dimensional ideals based on

the LLL algorithm [12] and an algorithm for computing Gröbner fans which are useful

in the Gröbner Walk [63]. However, this crucial step of changing the orderings has

become the bottleneck for solving large polynomial systems from many applications,

for example when the number of solutions is greater than 1000.

Triangular sets

J.F. Ritt first introduced the notion of characteristic sets, which are a special kind of

triangular sets [134]. Then W.-T. Wu extended Ritt’s work and greatly developed the

characteristic set method in theory, algorithms, efficiency and applications [164, 165].

The general theory of triangular sets can be found in [5, 74, 159].

For any polynomial F ∈ K[x1, . . . , xn], it can be written in the form F = Ixd
k +R,

where xk is the greatest variable appearing in F and the degree of R w.r.t. xk is smaller

than d. Then the polynomial I is called the initial of F , denoted by ini(F). For any

triangular set T ⊂ K[x1, . . . , xn], the ideal 〈T 〉 : H∞, where H =
∏

T∈T ini(T), is

called the saturated ideal of T , denoted by sat(T). These two concepts are useful

in the theory of triangular sets, for example we study frequently the quotient ring

K[x1, . . . , xn]/ sat(T).

Besides characteristic sets [27, 156, 23, 64], one kind of remarkable triangular sets

are the regular sets, also known as regular chains [77] and proper ascending chains

[167]. Regular sets have a good property that the initial of each polynomial in them

does not vanish at the zeros determined by the preceding truncated regular sets. In

particular, a generalized GCD computation called pseduo-gcd, or GCD modulo regular

sets, is introduced and studied [113, 78, 74, 113, 95], which will be extensively used in

the thesis. It worths mentioning that this pseudo-gcd makes use of the D5 principle

5

Introduction

(or called dynamic evaluation) to introduce dynamic splitting [42, 45, 16, 121].

Each polynomial in an irreducible triangular set is irreducible over the preceding

field extension defined by the truncated irreducible triangular set [155]. Irreducible

triangular sets are the standard representations for finitely generated field extensions.

Clearly, to design algorithms for irreducible decompositions, one needs to realize

factorization over finitely generated field extensions [39, 160, 75, 146].

Among various kinds of triangular sets, simple sets are characterized by the prop-

erty that each of their polynomials is conditionally squarefree. The notion of simple

sets originates from [149, 157] and is the same as the so-called squarefree regular

chains [74]. Algorithms for simple decomposition over fields of 0 and positive charac-

teristics have been presented in [8, 98, 99]. Simple sets have also been used to count

the solutions of polynomial systems [133].

All the above triangular sets have been extended to corresponding triangular sys-

tems by D. Wang [158, 157], where polynomial inequalities are introduced. In partic-

ular, a tight connection between simple systems and dynamic constructible closures

has been revealed [43].

Efficient implementations of algorithms for triangular decompositions are also an

active research focus [156, 6, 93, 96]. Like the Gröbner bases, changing the variable

orderings of triangular sets has also been studied [130].

Applications of polynomial system solving

The theory and methods of polynomial system solving have been widely used in

various areas. In the following we provide several applications as motivations of our

study on polynomial system solving.

Geometric theorem proving: In the 1970s W.-T. Wu proposed an automatic

method to prove elementary geometric theorems. His method essentially reduces the

proof of geometric theorems to determining the relationship of the zeros of the alge-

braic equations defined by the hypotheses and conclusions, and the reduced problem is

further solved with the tool of triangular sets [164, 165]. Then hundreds of non-trivial

theorems are proved with implementations of Wu’s method [26, 154]. The develop-

ment of this method in geometric theorem proving are summarized in [25, 166]. It is

shown that Gröbner bases can also be used to reason about geometric problems [80].

6

Introduction

Cryptography: It has been proved that solving multivariate polynomial equa-

tion sets over finite fields is NP-hard [65]. Based on this difficulty, a category of

cryptosystems has been designed: multivariate public-key cryptosystems [44], with

well-known schemes like Matsumoto-Imai, Hidden Field Equations, Oil–Vinegar, and

Tame Transformation Method [107, 132, 110]. The central mappings of multivariate

public-key schemes are usually structured polynomial sets which are easy to evaluate

but hard to solve, and thus the study on specialized methods to solve structured

polynomial systems are stimulated [131, 33, 57].

Another application of polynomial system solving in cryptography is the algebraic

cryptanalysis on existing cryptosystems, which mainly focuses on breaking a cryp-

tosystem or analyzing its security by algebraic methods [9, 34, 103]. One possible

method is solving the polynomial system over a finite field reduced and simplified

from a cryptosystem. Methods based on Gröbner bases, triangular sets, and SAT

solvers for polynomial system solving have been successfully applied to break some

proposed cryptosystems (e.g., [54, 73, 142]).

It should be remarked that in the application to cryptography, polynomial system

solving over finite fields is particularly important because the general setting is the

finite field.

Coding Theory: Gröbner bases have been used to decode specific codes in

Coding Theory. For example, the papers [24, 104] present algorithms for decoding

cyclic codes up to the true minimal distance with Gröbner bases, and [60, 61, 92]

show how to use Gröbner bases to decode Reed–Solomon codes.

Algebraic-geometric codes, initialized by the geometric Goppa code [69], are a

kind of error-correcting codes derived from algebraic curves [72]. The decoding of

algebraic-geometric codes with Gröbner bases is studied in [71, 137]. In particular,

the Berlekamp–Massey–Sakata (BMS for short) algorithm is a useful tool for decoding

such codes, and it shows a very strong connection with Gröbner bases [138, 139].

Reviews on the application of Gröbner bases in Coding Theory may be found in

[140, 36].

Algebraic Biology: The successful application of algebraic methods, including

those from Computer Algebra, in biology has been influential [126, 88], leading to the

advent of a new interdisciplinary field called Algebraic Biology. A series of conference

7

Introduction

“Algebraic and Numeric Biology” has arisen in response to this need. One instance of

the use of polynomial system solving in Algebraic Biology is detecting stable points

of continuous and discrete biological models [120, 97].

Of course there are a lot of other applications of polynomial system solving, for

example in Control Theory [129], Robotics [35, 100], Integer Programming [31, 150],

etc. Besides the theoretical significance of the study on how to solve polynomial

systems, these practical applications also motivate this thesis.

Problem statement

We mainly focus on the following problems related to polynomial system solving over

finite fields (See Figure 1 for the corresponding relationship).

(Sparse FGLM algorithms) From the computational point of view, with recent

progress on Gröbner basis computation [49, 50], changing the orderings of Gröbner

bases of zero-dimensional ideals has become the bottleneck of the whole process for

solving polynomial systems with Gröbner bases. Hence, it is of crucial significance to

design efficient algorithms to perform the change of ordering.

For any zero-dimensional ideal a in K[x1, . . . , xn] of degree D, the multiplication

matrix w.r.t. xi in the FGLM algorithm is a D × D matrix to represent the linear

map f : K[x1, . . . , xn]/a → K[x1, . . . , xn]/a defined by f(G) = xiG. In the FGLM

algorithm, multiplication matrices link the change of ordering of Gröbner bases to

linear algebra operations. In particular, they usually possess a sparse structure, even

when the defining polynomial sets are dense.

Problems: (1) Make use of the inherent sparsity of multiplication matrices to design

efficient algorithms for changing the orderings of Gröbner bases of zero-dimensional

ideals. (2) Analyze the complexities of the proposed algorithms. (3) Evaluate the

sparsity of multiplication matrices for generic polynomial systems.

(Simple decomposition over finite fields) A simple set is a special regular

set in which every polynomial is conditionally squarefree w.r.t. its leading variable.

One of its remarkable properties is that the number of its zeros (all of multiplicity

1) in the algebraic closure of the ground field K can be easily counted by looking at

the leading degrees of its polynomials. Compared with an irreducible triangular set

which defines a finite extension of K, a simple set may represent a product of such

8

Introduction

field extensions. The representation of field extensions is clearly made more compact

by using one simple set than using several irreducible triangular sets.

Algorithms for decomposing polynomial sets into simple sets have been proposed

by Wang [157] and by Bächler and others [8] for the case in which K is of charac-

teristic 0. However, to our best knowledge, there is no algorithm available for simple

decomposition over finite fields, namely decomposing polynomial sets over finite fields

into simple sets.

Problem: Design effective algorithms for simple decomposition over finite fields, and

implement them.

(Unmixed products of field extensions) By product of field extensions we

mean a direct product of k finitely generated field extensions of a base field K. It is

a nontrivial generalization of the concept of field extension when k > 1. Polynomi-

als over finitely generated field extensions are fundamental objects in commutative

algebra, and so are polynomials over products of such field extensions. Efficient op-

erations with polynomials over products of field extensions allow one to deal with

computational tasks such as decomposition, combination, and relationship testing for

polynomial ideals and algebraic varieties effectively [37, 41, 98, 155, 157].

For any simple set S ⊂ K[x1, . . . , xn], the quotient ring of K[x1, . . . , xn]/ sat(S) is
isomorphic to a product of field extensions of K [98]. This observation motivates the

following problems.

Problems: (1) Identify which category of products of field extensions corresponds to

simple sets. (2) Generalize squarefree decomposition and factorization on polynomials

over fields to those over such products of field extensions by using simple sets, and

design corresponding algorithms for them.

(Applications in Biology and Coding Theory) Finite dynamical systems are

usually used to model biological phenomena, and they are simply structured and have

the advantage of input of a small size. Since it is difficult to find the analytical solution

of a finite biological model (if such solutions exist at all), the detection of their steady

states and the numbers becomes important to study the qualitative behaviors of their

solutions, and thus their dynamical characteristics.

Problem: Compute the steady states and their numbers for biological systems mod-

eled as first-order finite difference equations with algebraic tools like Gröbner bases

9

Introduction

and triangular sets.

In Coding Theory, the list decoding is a useful method for decoding error-correcting

codes of large error rates. One of the two steps in the list decoding algorithms pro-

posed in [70, 84] is to find the minimal bivariate polynomial w.r.t. a given term

ordering which passes through given two-dimensional points with at least the given

multiplicities.

Problem: Find this minimal polynomial in the list decoding problem with efficient

algorithms for change of ordering of Gröbner bases.

Contributions of the thesis

In this thesis we aim at answering those problems raised above. To be precise, we

study several important theoretical and computational aspects for solving polynomial

systems over finite fields and propose original algorithms for fast change of ordering

of Gröbner bases, for simple decomposition over finite fields, and for squarefree de-

composition and factorization over unmixed products of field extensions. Methods

for polynomial system solving over finite fields are also applied to solve practical

problems arising from Biology and Coding Theory.

Sparse FGLM algorithms

Let a be any zero-dimensional ideal of degree D in K[x1, . . . , xn]. We study the

problem of changing the orderings of Gröbner bases from a given term ordering to

LEX by using the sparsity of multiplication matrices.

• (Ideals in shape position: probabilistic algorithm) Suppose a is in shape

position. A probabilistic algorithm is proposed to change the ordering of its

Gröbner basis to LEX with the complexity O(D(N1 + n log(D)2)), where N1 is

the number of nonzero entries in the multiplication matrix T1.

It is easy to see that the univariate polynomial in the LEX Gröbner basis of a

may be computed by applying Berlekamp–Massey algorithm [162] to the con-

structed linearly recurring sequence [〈r, T i
1e〉 : i = 0, . . . , 2D − 1], where r is a

random vector, e = (1, 0, . . .)t is the vector representing 1 in K[x1, . . . , xn]/a,

and 〈·, ·〉 takes the inner product. This proposed method is characterized by

10

Introduction

the way we recover the other polynomials in the Gröbner basis: constructing

and solving structured linear systems with Hankel coefficient matrices.

• (Ideals in shape position: deterministic algorithm) Suppose a is in shape

position. A deterministic algorithm is proposed to return the LEX Gröbner basis

of
√
a with the complexity O(D(N1 +D log(D)2 + nD +R)), where R = 0 if K

has characteristic 0 and R = log(q/p) if K has characteristic p > 0 and |K| = q.

As discussed previously, in the setting of polynomial system solving, the radical

ideal
√
a is usually of interest. This proposed method uses the deterministic

Wiedemann algorithm to find the univariate polynomial in the LEX Gröbner

basis. Then by the Chinese Remainder Theorem we adapt and extend the

probabilistic algorithm to recover the Gröbner basis of
√
a, instead of a.

In order to design an algorithm to compute the univariate polynomial in the

LEX Gröbner basis which has a complexity sensitive to the degree of the output

polynomial, we also briefly discuss how to apply an incremental variant of the

Wiedemann algorithm to compute the univariate polynomial, and this variant

is efficient when the degree of the output polynomial is small.

• (General ideals) A probabilistic algorithm is proposed to change the ordering

of Gröbner bases of general ideals with the complexity O(nD(N+N̂N̄D)), where

N is the maximal number of nonzero entries in matrices T1, . . . , Tn, while N̂

and N̄ are respectively the number of polynomials and the maximal term number

of all polynomials in the resulting Gröbner basis.

We generalize the linearly recurring sequence to an n-dimensional mapping E :

(s1, . . . , sn) 7−→ 〈r, T s1
1 · · ·T sn

n e〉. The minimal set of generating polynomials

w.r.t. LEX for the linearly recurring relation determined by E is essentially the

LEX Gröbner basis of the ideal defined by E. We can compute this minimal

generating set with the BMS algorithm from Coding Theory [138, 139], and this

set coincides with our target LEX Gröbner basis with probabilities.

Combining all these methods above, we present a deterministic algorithm for

change of ordering of Gröbner bases of zero-dimensional ideals, which is able to

choose automatically which sub-algorithm to use according to the input.

11

Introduction

• (Sparsity of multiplication matrices and refined algorithm complexity)

Assuming the correctness of the Moreno-Soćıas conjecture [114], we are able to

prove the structure which the terms in lt(〈P〉) satisfy for any generic polynomial

system P w.r.t. DRL: for a term u ∈ lt(〈P〉), any term v such that deg(u) =

deg(v) and v >DRL u is also in lt(〈P〉) (see Figure 2 below for the bivariate

case).

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10

x1

x
2

Figure 2: Minimal generators of lt(〈P〉) () and terms in lt(〈P〉) ()

Then for generic polynomial systems in n variables of degree d, we have the

following results on the sparsity of the multiplication matrix T1 and the refined

complexity of the probabilistic algorithm for ideals in shape position.

(a) If the Moreno-Soćıas conjecture holds, then the number of dense columns

in the multiplication matrix T1 is equal to the greatest coefficient in the

expansion of (1 + z + · · ·+ z(d−1))n.

(b) Let n be fixed. If the Moreno-Soćıas conjecture holds, then as d tends to

+∞, the percentage of nonzero entries in T1 is ∼
√

6
nπ
/d, and for a generic

polynomial system of degree d, the complexity of the probabilistic algorithm

for ideals in shape position is O(
√

6
nπ
D2+n−1

n).

• (Experimental results) The efficiency of the proposed methods is verified by

experiments with our implementations. The timings for selected benchmarks

are presented in Tables 1 and 2 below. It can be concluded that for ideals

12

Introduction

in shape position, the current implementation outperforms those FGLM ones

in Magma and Singular. In addition, for Katsura and randomly generated

systems, compared to the actual density of T1, the theoretical bound works and

the asymptotic estimation is also close.

Matrix Density FGb Magma Singular Speedup
Name D Actual Theoretical Asymp F5(C) Sparse FGLM F4 FGLM Buchberger FGLM Magma Singular

Random 12,d=2 212 21.26% 22.56% 19.95% 19.9s 10.7s 134.9 1335.8 4867.4 2581.1 124.8 241.2
Random 13,d=2 213 19.98% 20.95% 19.16% 118.0s 80.8s 949.6 10757.4 36727.0 19820.2 133.1 245.3
Random 4,d=8 4096 7.54% 8.40% 8.64% 2.5s 4.2s 3.5s 556.7s 132.5
Random 4,d=9 6561 6.66% 7.45% 7.68% 6.6s 13.5s 9.3s 1800.9s 133.4
Random 3,d=17 4913 3.92% 4.42% 4.69% 1.5s 4.4s 1.95s 585.3s 133.0
Random 3,d=18 5832 3.70% 4.17% 4.43% 2.3s 6.5s 2.9s 1142.6s 175.8

Katsura13 213 19.86% 20.95% 19.16% 177.2s 80.9s 1037.2s 10895.4s 134.7
Katsura14 214 19.64% 20.95% 18.47% 1285.1s 553.4 s 9599.0s 87131.9s 157.4

Eco 12 ‡ 1024 29.69% NA NA 2.8s 0.35s 29.6s 456.5s 1304
Eco 13 ‡ 2048 27.52% NA NA 15.3s 2.0s 262.7s 5692.7s 2846

Crit D=4,p=2,n=6 6480 14.11% NA NA 16.3s 27.3s 63.2s 3196.7s 117.1
Crit D=5,p=2,n=5 6400 11.00% NA NA 10.2s 19.9s 27.9s 2335.1s 117.3

MinR(9,6,3) 980 26.82% NA NA 0.7s 0.3s 6.3s 22.7s 137.5s 38.1s 75.7 127.0
MinR(9,7,4) 4116 22.95% NA NA 17.5s 10.8s 208.1s 1360.4s 4985.8s 2490.3s 126.0 230.6
DLP EC n=4 4096 7.54% NA NA 2.4s 4.25s 7.4s 475.8s 72.4s 1823.6s 112.0 429.1

DLP Edwards n=4 512 7.68% NA NA 0.03s 0.02s 0.16s 21.4s 1066
Cyclic 10 † 34940 1.00% NA NA 1107.8s >16 hrs and >16 Gig

Table 1: Selected timings for ideals in shape position (from DRL to LEX)

Name n D Mat Density Poly Density #Passes #Mat. #Red. #Multi.
Cyclic5 5 70 12.02% 21.13% 499 1347 421 nD2.702

Cyclic6 6 156 11.46% 17.2% 1363 4464 1187 nD2.781

Table 2: Selected performances for general ideals (from DRL to LEX)

• (Further impact) The proposed probabilistic algorithm for ideals in shape

position has been used to greatly improve computations involved in the discrete

logarithm problem in [52], and the study on the structure of term ideals of

generic systems and the sparsity of the multiplication matrix T1 has led to a

new complexity O(n log(D)D + log(D)Dω) for change of ordering for generic

polynomial systems [51].

Effective algorithms for simple decomposition over finite fields

We propose several original algorithms for decomposing polynomial sets over finite

fields into simple sets. There are two cases depending on whether the input polynomial

set is zero-dimensional or not.

• (Zero-dimensional case) In this case the fields we are working on are algebraic

extensions of finite fields and thus they are perfect. We generalize the squarefree

decomposition approach for univariate polynomials over a finite field to that over

13

Introduction

the field product determined by a simple set. In this generalization, pth root

extraction in the field product is a key ingredient. An approach is proposed

to compute the pth root by recursively solving linear equations. Based on this

approach, we present algorithms to decompose any zero-dimensional polynomial

set into simple sets over an arbitrary finite field. These algorithms can produce

both ideal and zero decompositions of the given polynomial set.

• (Positive-dimensional case) In the positive-dimensional case, the key tech-

nique above is no longer applicable. By adjoining the parameters of the reg-

ular set to the finite ground field, the problem of simple decomposition over

the ground field in the positive-dimensional case is then reduced to that over

a purely transcendental extension of the ground field in the zero-dimensional

case. We propose a method to solve the latter problem by using the properties

of simple sets and the relationship we establish between simple sets and radi-

cal ideals. This method relies on the critical step of computing the radical of

a special ideal over the field extension. Then we investigate the three existing

methods developed by Matsumoto [106], Kemper [83], and Fortuna, Gianni, and

Trager [62] for the computation of radicals over finite fields and, in particular,

improve the FGT method (which is the most suitable) according to our specific

setting to formulate a simplified and optimized algorithm.

• (Experimental results) The effectiveness of all these proposed algorithms is

demonstrated by our preliminary experiments with implementations in Maple

and Singular. In particular, comparisons on proposed algorithms in the zero-

dimensional case and on the three methods for radical computation in the

positive-dimensional case (see Table 3 below for selected examples) are also

performed.

Ex Char FGT/Maple Matsumoto/Maple Kemper/Maple

Q4 3 0.516 104.047 205.421
Q7 3 81.609 > 3600 720.015
Q11 17 0.203 > 3600 206.407
Q18 53 7.11 460.921 > 3600

Table 3: Selected timings for decomposing regular sets into simple sets (positive-
dimensional)

14

Introduction

Squarefree decomposition and factorization over unmixed products of field

extensions

We first establish the isomorphism between unmixed products represented and

quotient rings determined by simple sets and then study operations including arith-

metic, gcd computation, squarefree decomposition, and factorization of polynomials

over unmixed products by reducing them to polynomial computations modulo the

saturated ideals of the simple sets. Some of the underlying ideas and techniques for

our treatment have appeared in different forms in previous works on the theories and

methods of triangular sets [5, 37, 74, 159], Gröbner bases [21, 50], and dynamic eval-

uation [42, 45, 16]. However, factorization of polynomials over unmixed products of

field extensions is studied here likely for the first time.

Contributions in this direction include (1) identification of unmixed products of

field extensions with representations by simple sets, (2) introduction of the concepts

of squarefree decomposition, irreducibility, and factorization of polynomials over un-

mixed products, (3) algorithms for squarefree decomposition and factorization of poly-

nomials over unmixed products, and (4) examples and experiments illustrating the

algorithms proposed with an initial implementation.

Furthermore, one can easily design a new algorithm for simple decomposition

based on the proposed algorithm for squarefree decomposition over unmixed products

of field extensions. The designed algorithm will be free of computation of radicals of

positive-dimensional ideals over finite fields.

Applications in Biology and Coding Theory

We have applied methods for solving polynomial systems and for efficient change of

orderings of Gröbner bases over finite fields to practical problems arising in Biology

and Coding Theory.

To be precise, two methods for polynomial system solving over finite fields, namely

the traversal method based on Gröbner bases and a specialized method for Boolean

triangular decomposition, have been applied to detect the steady states and their

numbers for finite biological models like Boolean networks of the segment polarity

genes in Drosophila melanogaster from [2, 87] and lac operon from [145]. This is a

new application to use algebraic methods to study biological phenomena.

In another application to Coding Theory, we reduce the problem of finding an

15

Introduction

interpolation polynomial which is minimal w.r.t. a term ordering in the Sudan list

decoding algorithm to changing the term orderings of Gröbner bases of some ideals

derived from the original problem. This reduction makes it possible to perform pro-

posed algorithms for fast change of ordering of Gröbner bases to solve this particular

problem in Coding Theory. We also briefly discuss the feasibility, difficulties and

potential advantages of applying our algorithms to this problem. This is still ongoing

work.

Perspectives

Following the research directions indicated in this thesis, some theoretical and prac-

tical problems remaining for further study are listed below.

• Deterministic algorithm for change of ordering using sparsity of multiplication

matrices: The deterministic algorithm proposed in the thesis is only able to

compute the LEX Gröbner bases of the radicals of given ideals by discarding

the multiplicities of the solutions. Clearly the design of deterministic algorithms

for change of ordering keeping the multiplicities is also important.

• Sparsity analysis for multiplication matrices other than T1: The multiplication

matrix T1 is of special importance because it is related to the univariate polyno-

mial in the LEX Gröbner basis of an ideal which contains most information of

the solutions, and the sparsity analysis of T1 is relatively easier to carry out, and

thus in this thesis we mainly focus on T1. But other multiplication matrices are

also important, in particular in the general case where the BMS-based method

is applicable.

• Algorithm for factorization over products of field extensions of finite fields of

small characteristics. Designing such an algorithm has not be touched in this

thesis, and the study on all the cases will be complete once corresponding al-

gorithms are available. Potential study may proceed step by step with the

zero-dimensional case first and then the positive-dimensional one, just like the

study on algorithms for simple decompositions over finite fields.

• Application to the interpolation step in list decoding and new applications of

16

Introduction

the algorithms proposed in the thesis, in particular those for fast change of

orderings of Gröbner bases.

Organization of the thesis

In the first part of the thesis, the concepts, algorithms and usage of two mainstream

tools for polynomial system solving, namely Gröbner bases and triangular sets, are

reviewed respectively in Chapters 1 and 2. Chapter 3 furnishes additional background

knowledge in commutative algebra and finite fields. The readers may refer to [35, 159]

for more detailed descriptions of related theories.

The second part consists of main contributions of this thesis, presented in the

same order as summarized above. Publications related to the results presented in

this part include:

• Chapter 4: J.-C. Faugère and C. Mou. Fast algorithm for change of ordering of

zero-dimensional Gröbner bases with sparse multiplication matrices. Proceed-

ings of ISSAC 2011, 115–122, 2011

J.-C. Faugère and C. Mou. Sparse FGLM algorithms. Preprint arXiv:1304.1238,

2013

• Chapter 5: X. Li, C. Mou, and D. Wang. Decomposing polynomial sets into

simple sets over finite fields: The zero-dimensional case. Computers and Math-

ematics with Applications, 60: 2983–2997, 2010

C. Mou, D. Wang, and X. Li. Decomposing polynomial sets into simple sets

over finite fields: The positive-dimensional case. Theoretical Computer Science,

468: 102–113, 2013

• Chapter 6: C. Mou and D. Wang. Squarefree decomposition and factorization

over unmixed products of field extensions. In preparation

• Section 7.1: X. Li, C. Mou, W. Niu, and D. Wang. Stability analysis for discrete

biological models using algebraic methods. Mathematics in Computer Science,

5: 247–262, 2011

17

Part I

Background

18

Chapter 1
Gröbner bases

Gröbner bases have become a standard tool in the computational ideal theory, espe-

cially for solving polynomial systems. In this chapter we first recall basic preliminaries

on multivariate polynomial rings, which are the common ground of the study in this

thesis. Then we review the Buchberger algorithm for computing Gröbner bases and

the FGLM algorithm for changing the term orderings. At the end of this chapter we

focus on solving polynomial systems with Gröbner bases.

1.1 Preliminaries

In this thesis, we fix the notations Z, Q, R and C as the ring of integers, and the fields

of rational, real and complex numbers respectively. For a finite field Fq, we always

assume that it is a field of characteristic p with q = pm elements for some m ∈ Z.

1.1.1 Multivariate polynomial ring

Let R be a commutative ring with unity, and x1, . . . , xn the indeterminates over R.

We fix the orderings of these indeterminates as x1 < . . . < xn, and write x and xi for

short for (x1, . . . , xn) and (x1, . . . , xi) respectively.

Definition 1.1.1. For all αi ≥ 0 (i = 1, . . . , n) with n an integer ≥ 1, the formal

power product xα1

1 · · ·xαn
n is called a term, which may also be written as xα for short

with α = (α1, . . . , αn). A finite sum of terms F =
∑

α cαx
α with cα ∈ R is called a

19

CHAPTER 1. Gröbner bases

polynomial in x1, . . . , xn over R. The element cα ∈ R is said to be the coefficient of

F w.r.t. xα, and is denoted by coef(F,xα).

For a term xα = xα1

1 · · ·xαn
n , αi is called the degree of xα w.r.t. xi and denoted by

deg(xα, xi), and α1 + · · ·+ αn is called the total degree of xα, denoted by tdeg(xα).

Similarly, for a polynomial F ,

deg(F, xi) = max{deg(xα, xi) : coef(F,x
α) 6= 0}

is said to be the degree of F w.r.t. xi, and

tdeg(F) := max{tdeg(xα) : coef(F,xα) 6= 0}

the total degree of F .

Defining additions and multiplications for any two polynomials in x1, . . . , xn over

R, one sees that the set of all polynomials in x1, . . . , xn over R forms a ring, and

it is called the polynomial ring over R w.r.t. the variables x1, . . . , xn. We write

R[x1, . . . , xn] or R[x] for this polynomial ring. Furthermore, R[x] is a univariate

polynomial ring if n = 1, and a multivariate one otherwise, with polynomials within

them also said to be univariate or multivariate respectively.

The polynomial ring over a field K, in most cases the multivariate one, is the

common ground this thesis will work on. A nonconstant polynomial F in K is called

irreducible over K if it cannot be written as the product of two nonconstant polyno-

mials. It should be noted that the irreducibility of a polynomial is dependent on the

field we choose.

Furthermore, K[x] is a unique factorization domain. In particular, if we write

F ∈ K[x] as cF a1
1 · · ·F ar

r for c ∈ K, ai ∈ Z+, and Fi monic, irreducible over K and

pairwise distinct, we call it a factorization of F . In this case, F1 · · ·Fr is called the

squarefree part of F . Furthermore, a polynomial G equal to its own squarefree part

is called squarefree. This name is easier to understand with an equivalent definition

that there does not exist H ∈ K[x] \K such that H2 |G.

1.1.2 Ideals and varieties

Ideals and varieties are two fundamental objects in Algebraic Geometry. With the

development of effective tools for manipulate them like Gröbner bases, we are able to

study them in a computational way.

20

Section 1.1. Preliminaries

Definition 1.1.2. Let R be a commutative ring. Then a subset a ⊂ R is said to be

an ideal if

(a) 0 ∈ a;

(b) if F,G ∈ a, then F +G ∈ a;

(c) for any F ∈ a and H ∈ R, we have HF ∈ a.

The subset 〈F1, . . . , Fr〉 := {∑r

i=1HiFi : H1, . . . , Hr ∈ R} is easily verified to be

an ideal by the definition, and we call it the ideal generated by F1, . . . , Fr. If a finite

set of elements in R can be found to generate an ideal, we say that this ideal is finitely

generated. One important fact about the multivariate polynomial ring K[x] is that

every ideal in it is finitely generated.

Theorem 1.1.1 (Hilbert Basis Theorem). For any ideal a ⊂ K[x], there exist

F1, . . . , Fr such that a = 〈F1, . . . , Fr〉.

In fact this theorem applies to all Noetherian rings, and one of the equivalent

theorems to it is as follows.

Theorem 1.1.2 (Ascending Chain Condition). For any ascending chain of ide-

als in K[x]

a1 ⊂ a2 ⊂ a3 ⊂ · · · ,

there exists N ≥ 1 such that

aN = aN+1 = aN+2 = · · · .

The above theorem, also called ascending chain condition, is very useful to prove

termination of algorithms related to ideal computations, for example the Buchberger

algorithm in Section 1.2.

Definition 1.1.3. Let F1, . . . , Fr be polynomials in K[x]. Then the set

V(F1, . . . , Fr) := {(a1, . . . , an) ∈ Kn : Fi(a1, . . . , an) = 0 (i = 1, . . . , r)}

is called the affine variety defined by F1, . . . , Fr.

21

CHAPTER 1. Gröbner bases

The word “affine” is used to differentiate the variety from the projective variety.

In the case of no ambiguity, we omit “affine” for simplicity.

Let F = [F1, . . . , Fr] be a polynomial set in K[x], and K be the algebraic closure

of K. Then a point x ∈ K is said to be a zero of F if Fi(x) = 0 for all i = 1, . . . , r. A

similar notion to the variety is the set of all the zeros of a polynomial set F , denoted

by Zero(F). The difference lies in the fact that each coordinate of the points in

Zero(F) is from the algebraic closure K, but that in V(F) is from K.

It is easy to prove that V(F1, . . . , Fr) = V 〈F1, . . . , Fr〉, and thus one can derive

that a subset V ⊂ Kn is a variety if and only if an ideal a ⊂ K[x] can be found such

that V = V(a).

Definition 1.1.4. Let V be a subset of Kn. Then the set

I(V) = {F ∈ K[x] : F (v) = 0, ∀v ∈ V }

is an ideal, and we call it the corresponding ideal of V .

In fact, there exists one-one correspondence between varieties and a special kind

of ideals called radical ones. We will explore this in more details in Section 3.1.2.

1.1.3 Term ordering

The term ordering is one important concept in the Gröbner basis theory, for it imposes

an ordering on polynomials and polynomial sets and leads to termination criteria for

algorithms related to Gröbner bases. We first define the term ordering on the set of

all the terms w.r.t. x, denoted by T(x), and then extend it to R[x].

Definition 1.1.5. A total order < on T(x) is said to be a term ordering, if

(a) for any term u1,u2 and v ∈ T(x), if u1 < u2, then u1v < u2v;

(b) < is a well order, in other words, any nonempty subset of T(x) has a minimal

element.

For two terms xα = xα1

1 · · ·xαn
n and xβ = xβ1

1 · · ·xβn
n ∈ T(x), the following two

term orderings are the most commonly used ones:

22

Section 1.1. Preliminaries

1. Lexicographic ordering (short as LEX): we say xα <LEX xβ if there exists i (1 ≤
i ≤ n) such that

αj = βj (i+ 1 ≤ j ≤ n) and αi < βi.

2. Graded reverse lexicographic ordering or degree reverse lexicographic ordering

(short as DRL): we say xα <DRL x
β if

tdeg(xα) < tdeg(xβ), or tdeg(xα) = tdeg(xβ) and there exists

i (1 ≤ i ≤ n) such that

αj = βj(1 ≤ j ≤ i− 1) and αi > βi.

Let F ∈ R[x] be a nonzero polynomial, and < a term ordering. Then the biggest

term of F w.r.t. < is called the leading term of F and denoted by lt<(F). The

coefficient of F w.r.t. lt<(F) is the leading coefficient of F and denoted by lc<(F).

When no ambiguity occurs, we can write lt(F) and lc(F) for simplicity. In the case

of lc(F) = 1, we call F a monic polynomial.

Any term ordering < on T(x) also induces an ordering <′ on R[x] in the following

recursive way:

(a) For any nonzero polynomial F ∈ R[x], 0 <′ F ;

(b) For any F,G ∈ R[x] nonzero, F <′ G if and only if

lt(F) < lt(G) or lt(F) = lt(G) and F − lt(F) <′ G− lt(G).

We also denote the induced ordering on R[x] by < for simplicity.

1.1.4 Polynomial reduction

Next we discuss a kind of reduction on polynomials in R[x], where terms of polyno-

mials are of our interest. In the following we restrict to the simple case where R is

simply a field K.

Definition 1.1.6. Fix a term ordering <. For any polynomials F, P ∈ K[x] with

P 6= 0, if there exist a term u of F and v ∈ T(x) such that u = v lt(F), then we say

F is reducible by P . In this case, let

G = F − coef(F,u)

lc(P)
· uP.

23

CHAPTER 1. Gröbner bases

Then we say F is reduced to G by P by eliminating u, and denote this process by

F
P−→
u

G, simplified as F
P−→ G if the term u is not of our interest.

For a polynomial set P ⊂ K[x], if there exists P ∈ P such that F
P−→
u

G, we say

F is reduced to G by P, and denote this process by F
P−→
u

G. In this case F is said

to be reducible by P; otherwise it is reduced. Suppose after a number of reductions

on F by P the resulting polynomial R becomes reduced. Then we call R the normal

form of F by P, denote it by nform(F,G).
We can perform the reduction of a polynomial by a finite set of polynomials with

the following algorithm.

Algorithm 1: ([Q1, . . . , Qs], R) := PolyRed([P1, . . . , Ps], F)

Input: [P1, . . . , Ps] ⊆ K[x], F ∈ K[x].

Output: [Q1, . . . , Qs] ⊆ K[x], R ∈ K[x] such that

(a) F =
∑s

i=1QiPi +R;

(b) R is reduced by {P1, . . . , Ps};

(c) If QiPi 6= 0, then lt(QiPi) ≤ lt(F).

Qi := 0 (i = 1, . . . , s), R := F ;1.1

while R is reducible by {P1, . . . , Ps} do1.2

Choose Pi such that R is reducible by Pi;1.3

Choose a monomial λ such that R
Pi−→ R− λPi;1.4

R := R− λPi;1.5

Qi := Qi + λ;1.6

end1.7

return ([Q1, . . . , Qs], R);1.8

According to the requirements of the algorithm on the output R, obviously we have

F − R ∈ 〈P1, . . . , Ps〉. If the computed normal form R = 0, then F ∈ 〈P1, . . . , Ps〉.
Therefore, it is hopeful to test ideal membership by this algorithm. But two major

drawbacks of this reduction algorithm are as follows:

(a) The normal form is not unique. It depends on the choice of Pi at Line 1.3;

(b) R = 0 is only a sufficient condition for F ∈ 〈P1, . . . , Ps〉, but not necessary.

24

Section 1.2. Gröbner bases and Buchberger algorithm

This reduction process is also one of the fundamental operations on polynomials in

the theory of Gröbner bases. And we will see that only when combined with Gröbner

bases can this algorithm overcome the drawbacks and become much more powerful.

1.2 Gröbner bases and Buchberger algorithm

Definition 1.2.1. For a set S ⊂ Nn, we call the ideal generated by the set of terms

{xα ∈ α ∈ S} the term ideal of S, and denote it by 〈xα : α ∈ S〉.

Proposition 1.2.1. For a term ordering and an ideal a ⊂ K[x], we have

(a) 〈lt(a)〉 is a term ideal;

(b) there exist G1, . . . , Gs ⊂ K[x] such that 〈lt(a)〉 = 〈lt(G1). . . . , lt(Gs)〉.

Definition 1.2.2. Fix a term ordering < and an ideal a ⊂ K[x]. If a finite subset

G = {G1, . . . , Gs} of a satisfies

〈lt(G1), . . . , lt(Gs)〉 = 〈lt(a)〉,

then we call G a Gröbner basis of a w.r.t. <.

It can be proved that a Gröbner basis G of an ideal a is also a set of generators of

it, namely 〈G〉 = a. When the term ordering is clear, one may omit it when referring

to a Gröbner basis. Furthermore, when referring to a Gröbner basis G, if the ideal a

is not explicitly stated, then we mean that G is the Gröbner basis of 〈G〉.
The term ordering plays an important role in the theory of Gröbner bases. For

example, from the definition one may expect Gröbner bases w.r.t. different term

orderings are also different, for the term ideal 〈lt(a)〉 is dependent on the chosen

term ordering. One main contribution of the thesis is on change of term orderings of

Gröbner bases, and we will further study this issue in Chapter 4.

The following theorem lists several equivalent properties for a polynomial set to

be a Gröbner basis.

Theorem 1.2.2. Fix a term ordering. Then for an ideal a ⊂ K[x] and a subset G
of a, the following statements are equivalent.

25

CHAPTER 1. Gröbner bases

(a) G is a Gröbner basis of a.

(b) For any polynomial F ∈ a, there exists Gi such that lt(Gi) | lt(F).

(c) For any polynomial F ∈ K[x], nform(F,G) is unique.

(d) For any polynomial F ∈ a, nform(F,G) = 0;

As indicated by Items (c) and (d) of Theorem 1.2.2, one can see that the Gröbner

basis, as a special set of generators for an ideal, overcomes the two drawbacks sum-

marized in Section 1.1.4 for ordinary polynomial reductions. Therefore, we can claim

that the problem of ideal membership test can be solved algorithmically once the

Gröbner basis of the ideal is given.

Gröbner bases w.r.t. LEX are of the best algebraic structure and convenient to use

for many practical problems. One of its remarkable properties is related to elimination

of variables. Fix the LEX ordering on K[x] with x1 < · · · < xn. For any l (1 ≤ l ≤ n)

and ideal a ⊂ K[x], one can show that a ∩ K[xl] is still an ideal, and we call it the

lth elimination ideal of a, denoted by al.

Theorem 1.2.3 (Elimination theorem). Let G ⊂ K[x] be a Gröbner basis of an

ideal a ⊂ K[x] w.r.t. LEX. Then the polynomial set G ∩K[xl] is still a Gröbner basis

of al w.r.t. LEX.

Combined with the Extension theorem with Gröbner bases, the Elimination theo-

rem furnishes the foundation of solving polynomial systems. We will touch this issue

later in Section 1.4.4.

A Gröbner basis can be further processed so that it is unique for the ideal. Such

Gröbner bases are called reduced ones. In fact in most Computer Algebra systems the

output Gröbner bases are reduced so that the user may compare them from various

systems.

Definition 1.2.3. A Gröbner basis G is called a reduced Gröbner basis if

(a) Each polynomial in G is monic.

(b) For any G ∈ G, G is reduced modulo G \ {G}.

26

Section 1.2. Gröbner bases and Buchberger algorithm

Proposition 1.2.4. Any ideal a ⊂ K[x] has a unique reduced Gröbner basis w.r.t. a

given term ordering.

The uniqueness of reduced Gröbner bases not only provide a method for compari-

son of different output Gröbner bases of various algorithms, but also make it possible

to test the ideal equality: two ideals 〈F1, . . . , Fs〉 and 〈G1, . . . , Gr〉 in K[x] are the

same if and only if their reduced Gröbner bases w.r.t. some term ordering coincide.

Now it is clear that many problems related to ideals are reduced to the computa-

tion of their Gröbner bases. Along with the introduction of Gröbner bases, Buchberger

also proposed an algorithm for computing them. Nowadays this algorithm is called

the Buchberger algorithm in general.

One key object in the Buchberger algorithm is the S-polynomial. For two terms

u = xk1
1 · · ·xkn

n and v = xl1
1 · · ·xln

n , it is easy to see that lcm(u, v) = xm1

1 · · ·xmn
n ,

where mi = max(ki, li).

Definition 1.2.4. For two nonzero polynomials F,G ∈ K[x], let u = lcm(lt(F), lt(G)).

Then the polynomial

S(F,G) = lc(G) · u

lt(F)
· F − lc(F) · u

lt(G)
·G

is called the S-polynomial of F and G.

The term “S” in the S-polynomial derives from syzygies, a concept from Algebraic

Geometry. From the definition of S-polynomials, one can see that in the S-polynomial

of F and G, in fact the leading terms of F and G are canceled. The Buchberger

algorithm is based on a necessary and sufficient condition for a polynomial set to be a

Gröbner basis, which can be easily turned into an algorithm. This following condition

is called the Buchberger’s criterion, or S-pair criterion.

Theorem 1.2.5. Let G = {G1, . . . , Gs} be a generator set of an ideal a ⊂ K[x].

Then G is a Gröbner basis of a if and only if for any i 6= j, nform(S(Gi, Gj),G) = 0.

With this criterion it is natural to have the Buchberger algorithm (Algorithm 2).

27

CHAPTER 1. Gröbner bases

Algorithm 2: Buchberger algorithm G := GröbnerBasis(F)

Input: F = [F1, . . . , Fs] ⊆ K[x].

Output: A Gröbner basis G of 〈F〉 such that F ⊆ G.

G := F ;2.1

L := {{Gi, Gj} : Gi, Gj ∈ G such that Gi 6= Gj};2.2

while L 6= ∅ do2.3

{Gi, Gj} := pop(L);2.4

R := a normal form of S(Gi, Gj) modulo G;2.5

if R 6= 0 then2.6

L := L ∪ {{G,R} : G ∈ G};2.7

G := G ∪ {R};2.8

end2.9

end2.10

return G;2.11

Combining the above algorithm with two other criteria proposed also by Buch-

berger for speeding up (see e.g., [14, Section 5.5]), we have a relatively efficient algo-

rithm for computing Gröbner bases. This makes Gröbner bases a computational tool

to study problems of ideals, and now we complete the algorithmic method for several

such problems, such as the tests for ideal membership and ideal equality.

1.3 FGLM algorithm

Gröbner bases w.r.t. different term orderings are also different and possess different

theoretical and computational properties. For example, Gröbner bases w.r.t. LEX

have good algebraic structures and are convenient to use for polynomial system solv-

ing, while those w.r.t. DRL are computationally easy to obtain. Therefore, as shown

in Figure 1, the common strategy to solve a polynomial system via Gröbner bases is

to first compute the Gröbner basis of the ideal defined by the system w.r.t. DRL, and

then change its ordering to LEX.

In this section we review the FGLM algorithm, which performs the change of

ordering of Gröbner bases of zero-dimensional ideals efficiently [53]. One main feature

of this well-known algorithm is the close link exploited in it between the change of

ordering and linear algebra operations in the quotient ring.

28

Section 1.3. FGLM algorithm

Suppose that G1 is the Gröbner basis of a zero-dimensional ideal a ⊂ K[x] w.r.t.

a term ordering <1. Now one aims at computing the Gröbner basis G2 of a w.r.t.

another ordering <2. Denote by D the degree of a (the dimension of K[x]/a as a

vector space). The FGLM algorithm consists of three major steps as follows.

(1) One computes the canonical basis of K[x]/〈G1〉 and orders its elements follow-

ing <1. Let B = [ǫ1, . . . , ǫD] be the ordered basis. Since <1 is a term ordering, one

knows that ǫ1 = 1 for sure.

(2) For any variable xi (i = 1, . . . , n), one can compute nform(ǫjxi,G1) for j =

1, . . . , D, which can be viewed as an element in K[x]/〈G1〉 and thus can also be

written as a linear combination of B. Taking the coefficients of this combination as

the column vector, one can construct a D×D matrix Ti by adjoining all the column

vectors for j = 1, . . . , D. This matrix is called the multiplication matrix of a for xi.

The multiplication matrix for xi indeed represents the linear map φi : B → B defined

by φi(ǫ) = nform(xiǫ,G1). It is not hard to verify that all Ti commute: TiTj = TjTi

for i, j = 1, . . . , n.

(3) Then the terms in K[x] are handled one by one w.r.t. <2. For each term xs

with s = (s1, . . . , sn), its coordinate vector w.r.t. B can be computed by

vs = T s1
1 · · ·T sn

n e,

where e = (1, 0, . . . , 0)t is the coordinate vector of 1. Then criteria proposed in FGLM

guarantee that once a linear dependency of the coordinate vectors of computed terms

∑

s∈S

csvs = 0

is found, a polynomial F ∈ G2 can be directly derived in the following form

F = xl +
∑

s∈S,s6=l

cs
cl
xs,

where xl = lt(F) w.r.t <2 [53].

To obtain the whole Gröbner basis G2, all one needs to do is to compute the

coordinate vector of each term one by one, and check whether a linear dependency

of these vectors occurs once a new vector is computed (which can be realized by

maintaining an echelon form of the matrix constructed from the computed vectors).

29

CHAPTER 1. Gröbner bases

A trivial upper bound for the number of terms to consider is D + 1 because of the

vector size.

As for the complexity for the FGLM algorithm to perform the change of order-

ing, the computational cost to compute all the multiplication matrices are O(nD3)

arithmetic operations [53, Proposition 3.1], and the whole construction in Step (3)

also needs O(nD3) arithmetic operations (obtained by analyzing the cost of maintain-

ing the echelon matrix). To summarize, the change of ordering for zero-dimensional

Gröbner bases can be completed with O(nD3) operations in total with the FGLM

algorithm [53, Proposition 4.1].

As one can see, all operations in these three steps are merely matrix manipula-

tions from linear algebra. That is why the FGLM algorithm is efficient for change

of ordering. In this algorithm, the multiplication matrices play an important role as

the bridge between the change of ordering and linear operations. In Chapter 4 we

will further extend the FGLM algorithm to have more efficient variants which take

advantage of the sparsity of multiplication matrices.

1.4 Gröbner bases for polynomial system solving

The general method to solve a polynomial equation set is to transform it into several

equation sets of triangular-like shapes with the same solutions, and then extend the

solution of each univariate polynomial within to that of the whole polynomial equation

set. Therefore we start the study on polynomial system solving with Gröbner bases

with univariate polynomial equations.

1.4.1 Univariate polynomial equation solving

For a univariate polynomial F ∈ K[x], now consider its solutions in some algebraic

extension K̃ of K. By the algebraic fundamental theorem, F has at most deg(F)

roots in K̃, and they are the solutions of the equation F = 0. Therefore by solving

F = 0 we mean to find an appropriate way to represent all these roots in K̃ of F .

First, to obtain the solutions of F = 0 in Q one can use factorization of F over

Q. Take F = 2x4 − 3x3 + 2x2 − 1 for example. With methods for factorization (see

30

Section 1.4. Gröbner bases for polynomial system solving

e.g., [153, Chapters 14&15]), one can factorize F as

F = (x− 1)(2x+ 1)(x2 − x+ 1).

Then it is known that there exist two and only two rational solutions of F = 0: x = 1

and x = 1/2. Take the fact that all integers and rational numbers can be represented

precisely in computers, one knows that the whole solving process of F = 0 in Q can

be implemented in computers.

Then for the solutions in R and C, we can use formula by radicals to represent

precisely the solutions of F = 0 if deg(F) ≤ 4. However, the solvability by radicals

has been proved to be not feasible for general equations of degree ≥ 5 as in the Galois

theory [86, Chapter VI]. But this does not mean that we can do nothing to solve

equations with higher degrees, for example we can adopt the numeric methods like

the Newton method [82].

But in Computer Algebra we have a symbolic method to represent the real so-

lutions of a polynomial equation, that is the real root isolation [30, 136]. It means

to compute a sequence of disjoint rational intervals such that each real root of F is

contained in some interval and there is only one root in each interval. As the lengths

of the intervals can be arbitrarily small, we can regard these intervals as a “precise”

representation of all the real roots of F without errors. Or in other words, all the

distinct real solutions can be computed precisely.

To summarize, the solutions of a univariate polynomial equation in various number

fields can be represented in an appropriate way, and there exist applicable methods

to solve them. Therefore, in the following we always assume that any univariate

polynomial equation is solvable.

1.4.2 Number of solutions of polynomial equation sets

For a polynomial equation set in K[x]

F1(x) = 0, . . . , Fs(x) = 0,

we call F = {F1, . . . , Fs} its defining polynomial set. It is already shown that

Zero(F) = Zero(〈F 〉), and thus the solutions of a polynomial equation set are uniquely

determined by the ideal generated by its defining polynomial set. Then the study on

solving F = 0 is reduced to that on the corresponding ideal 〈F〉.

31

CHAPTER 1. Gröbner bases

Suppose that F = 0 has some solution in K. If the number of solutions if finite,

then F is said to be zero-dimensional, otherwise positive-dimensional. The following

results show how to determine whether a given polynomial set F = 0 has a solution

and whether F is zero-dimensional.

Theorem 1.4.1 (Hilbert’s Weak Nullstellensatz). Let K be an algebraically closed

field and a ⊂ K[x] be an ideal. Then V(a) = ∅ if and only if 1 ∈ a.

By the above theorem, F = 0 has no solutions if and only if 1 ∈ 〈F 〉. We can

determine whether 1 ∈ 〈F 〉 by computing the reduced Gröbner bases of 〈F〉, and
thus it can be decided whether F = 0 has a solution.

Theorem 1.4.2. Let G be a Gröbner basis of F ⊂ K[x] w.r.t. any term ordering.

Then F is zero-dimensional if and only if for any i = 1, . . . , n, there exists a positive

integer mi and polynomial Gi ∈ G such that lt(Gi) = xmi

i .

Example 1.4.1. For the Cyclic 3 system














x1 + x2 + x3 = 0,

x1x2 + x2x3 ++x3x1 = 0,

x1x2x3 − 1 = 0,

the Gröbner basis of the ideal generated by its defining polynomial set w.r.t. LEX is

{x3
1 − 1, x2

2 + x1x2 + x2
1, x3 + x2 + x1}, and thus one knows that this polynomial set

is zero-dimensional. Similarly, one can confirm that Cyclic 5 is also zero-dimensional

while Cyclic 4 is not by computing the corresponding Gröbner bases.

1.4.3 Zero-dimensional polynomial equation set

In previous discussions we have made clear that the common method to solve a zero-

dimensional polynomial equation set via Gröbner bases consists of three steps: com-

puting Gröbner bases w.r.t. DRL, changing their orderings to LEX, and transforming

Gröbner bases w.r.t. LEX to either triangular sets or rational univariate represen-

tations. We have reviewed the first two steps in this chapter, next we briefly show

how the rational univariate representation (short as RUR) can be used to represent

the solutions of zero-dimensional polynomial equation sets, leaving the contents for

transformation to triangular sets in Section 2.4.

32

Section 1.4. Gröbner bases for polynomial system solving

The rational univariate representation is a special representation of the solutions

of zero-dimensional polynomial equation sets over Q (in fact it is effective over fields

of characteristic 0 and of “large” positive characteristics) [135]. For a polynomial

equation set defined by F ⊂ Q[x], its RUR is composed of two parts: (1) a separating

variable, which is usually a linear combination of x1, . . . , xn; (2) a polynomial set in

Q[x0, x1, . . . , xn] of the shape










H(x0) = 0,

x1 =
G1(x0)

G(x0)
, . . . , xn =

Gn(x0)

G(x0)
.

The RUR for F = 0 has the following properties.

(a) The solutions of H(x0) = 0 correspond to the solutions of F = 0, and so are

the multiplicities of these solutions.

(b) All the solutions of F = 0 can be computed by substituting the solutions of

H(x0) = 0 into other equations.

(c) Almost all (with only finitely many exceptions) linear combinations of x1, . . . , xn

can be chosen as the separating variable.

(d) Once the separating variable is chosen, the rational univariate representation

exists and is unique.

From the above properties of RUR one sees that solving F = 0 is almost equivalent

to solving the univariate polynomial equation H(x0) = 0 in the RUR, for the coordi-

nates x1, . . . , xn of its solution can be directly computed by Property (b). Therefore it

can be concluded that RUR is a good representation of zero-dimensional polynomial

equation sets over Q. But it should also be mentioned that RUR only works for fields

of characteristic 0.

As for computation of RUR, an effective method has been proposed for trans-

forming the LEX Gröbner basis into RUR [135]. This completes the whole process of

solving zero-dimensional polynomial equation sets via Gröbner bases and RUR.

Example 1.4.2. It is easy to verify that
{

2 x3 − 3 xy + 4 = 0,

3 x2y − y2 + x− 1 = 0

33

CHAPTER 1. Gröbner bases

is zero-dimensional, and its rational univariate representation is


























14 t6 + 29 t3 − 9 t2 − 16 = 0,

x =
−29 t3 + 12 t2 + 32

28 t5 + 29 t2 − 6 t
,

y =
18 t4 + 8 t3 + 60 t− 8

28 t5 + 29 t2 − 6 t
,

where t is the introduced separating variable.

1.4.4 Positive-dimensional polynomial equation set

Now suppose that F ⊂ K[x] is a positive-dimensional polynomial equation set, and G
is a Gröbner basis of a = F w.r.t. LEX. Then by the Elimination Theorem (Theorem

1.2.3), one knows that G ∩K[xl] is precisely a Gröbner basis of the elimination ideal

al.

Let a = (a1, . . . , al) ∈ Zero(al). Then we call a a partial solution of the polynomial

equation set F = 0. The following theorem furnishes a sufficient condition to extend

a partial solution.

Theorem 1.4.3 (Extension Theorem). Let a = 〈F1, . . . , Fs〉 be an ideal in C[x],

and an−1 be its (n−1)th elimination ideal. For each i = 1, . . . , s, write Fi in the form

Fi = Gix
Ni

n +Hi,

where Ni ≤ 0, Gi ∈ C[xn−1] nonzero, and deg(Hi, xn) < Ni. Suppose that c =

(c1, . . . , cn−1) ∈ Zero(an−1) is a partial solution. If c 6∈ Zero({G1, . . . , Gs}), then

there exists cn ∈ C such that (c, cn) ∈ Zero(a).

It is easy to prove that for any ideal a, al is the lth elimination ideal of al+1.

Therefore the Extension Theorem above can be applied step by step, as long as

the condition within is satisfied, until the solution of the polynomial equation set is

computed. This is the general way to solve polynomial equation systems including

positive-dimensional ones.

Corollary 1.4.4. Suppose that a = 〈F1, . . . , Fs〉 ⊂ C[x] is an ideal, and there exist

i (1 ≤ i ≤ s) such that Fi is in the form

Fi = cxN
n +Hi,

34

Section 1.4. Gröbner bases for polynomial system solving

where Ni ≤ 0, c ∈ C is a constant, and deg(Hi, xn) < N . If c = (c1, . . . , cn−1) ∈
Zero(an−1) is a partial solution, then there exists cn ∈ C such that (c, cn) ∈ Zero(a).

35

Chapter 2
Triangular sets

After the introduction of characteristic sets by J.F. Ritt, triangular sets have evolved

into an alternative tool for manipulating ideals besides Gröbner bases. In this chap-

ter, we introduce basic concepts and terminologies related to triangular sets, and

review the Wu–Ritt algorithm for computing characteristic sets and several common

triangular sets with different properties like regular, simple and irreducible triangular

sets. Similarly, at the end the way how to use triangular sets to solve polynomial

systems is discussed.

2.1 Concepts and terminologies

Similar to the term ordering in the Gröbner basis theory, in the theory of triangular

sets one inherent ordering is endowed to all the polynomials in R[x] based on the

fixed ordering on all the variables x1 < . . . < xn.

For any variable xi (1 ≤ i ≤ n), one has R[x] = R[x1, . . . , xi−1, xi+1, . . . , xn][xi].

The biggest variable xp appearing in a polynomial F ∈ R[x] is called the leading

variable of F , denoted by lv(F). Suppose lv(F) = xk. Then F can be written as

F = Ixd
p + R, where deg(R, xp) < d. We call I, R and d here the initial, tail and

leading degree of F , and denote them by ini(F), tail(F) and ldeg(F) respectively.

These terms are mainly used in the triangular set theory, which essentially views

polynomials in R[x] in an inductive way on the variables x1, . . . , xn. Following this

point of view, a polynomial reduction is defined as follows.

36

Section 2.1. Concepts and terminologies

Proposition 2.1.1. Let F,G be two polynomials in R[x], and xk a variable. Suppose

that m = deg(F, xk) and l = deg(G, xk). If l > 0, then there exist Q,R ∈ R[x] and

s (0 ≤ s ≤ m− l + 1) such that

lc(G, xk)
sF = QG+R and deg(R, xk) < l. (2.1)

Furthermore, if s is fixed then Q and R are unique.

The process to compute Q and R from F and G is called the pseudo division

of F to G w.r.t. xk, and the polynomials Q and R are the pseudo quotient and

pseudo remainder of F to G w.r.t. xk respectively, denoted by prem(F,G, xk) and

pquo(F,G, xk). The equation in (2.1) is said to be the pseudo division formula. In

particular, a polynomial P ∈ K[x] is said to be reduced w.r.t. G if deg(P, lv(G)) <

ldeg(G). Apparently the pseudo remainder prem(P,G, lv(G)) is reduced w.r.t. G.

The following algorithm performs the pseudo division of F to G w.r.t. xk to

compute the pseudo quotient Q and pseudo remainder R.

Algorithm 3: (Q,R, s) := Prem(F,G, xk)

Input: Polynomials F,G ∈ R[x], and a variable xk such that deg(G,xk) > 0.

Output: Q = pquo(F,G, xk), R = prem(F,G, xk), and s as in (2.1)

R := F ; Q := 0; l := deg(G,xk); s := 0;3.1

while deg(R,xk) ≥ l do3.2

r := deg(R,xk);3.3

R := lc(G,xk)R− lc(R,xk)x
r−l
k G;3.4

Q := lc(G,xk)Q+ lc(R,xk)x
r−l
k ;3.5

s := s+ 1;3.6

end3.7

return (Q,R, s);3.8

The pseudo division is an important operation on polynomials inR[x]. It is similar

to divisions of univariate polynomials over a field, but in R[x1, . . . , xk−1, xk+1, . . . , xn]

the inverse of an element does not necessarily exist, and thus we have to multiply

lc(G, xk) as in (2.1). Given two polynomials F and G, with the pseudo division we are

able to product a new polynomial R whose degree w.r.t. the fixed variable is smaller,

and a certain zero relation between these polynomials hold (see [159] for details). The

process from F to R via G can be viewed as a reduction which focuses on a specific

37

CHAPTER 2. Triangular sets

variable of the polynomials. This reduction process plays a fundamental role in the

theory of triangular sets, and will be used extensively in related algorithms.

Definition 2.1.1. An ordered polynomial set T = [T1, . . . , Tr] ⊂ K[x] \K is said to

be a triangular set if lv(T1) < · · · < lv(Tr).

Clearly the truncated polynomial set [T1, . . . , Ti] for i = 1, . . . , r is also a triangular

set, and we denote it by T≤i. The variables lv(T1), . . . , lv(Tr) are called the dependents

of T , while the others called its parameters. In the case when r = n, a triangular

set is zero-dimensional ; otherwise positive-dimensional (Note that these definitions

coincide with those for polynomial sets).

For example, the ordered polynomial set T = [ux2
1+3x1+5, (x1−1)x2

2+ux1x2+4] is

a triangular set in Q[u, x1, x2]. The dependents of T are x1 and x2, and the parameter

is u. It is obvious that T is positive-dimensional.

For a triangular set T = [T1, . . . , Tr] ⊂ K[x], rename all its dependents as yi =

lv(Ti) for i = 1, . . . , r and its parameters as u1, . . . , un−r. Then by the definition

of triangular sets, one sees that T is still a triangular set for the variable ordering

u1 < · · · < un−1 < y1 < · · · < yr. Without loss of generality, we always assume such

an ordering of the variables once a triangular set is given, that is, the parameters

are ordered smaller than the dependents. We write u and y for (u1, . . . , un−r) and

(y1, . . . , yr) for short, and yi for (y1, . . . , yi) similarly.

A triangular set T is of a triangular form w.r.t. their leading variables as follows:

T =

















T1(x1, . . . , xp1)

T2(x1, . . . , xp1, . . . , xp2)

...

Tr(x1, . . . , xp1, . . . , xp2 , . . . , xpr)

















, (2.2)

where lv(Ti) = xpi for i = 1, . . . , r, and p1 < p2 < · · · < pr ≤ n.

This form makes the solutions of T = 0 for a triangular set T are easy to compute.

One only needs to solve T1 = 0 to find a solution x1, then substitute x1 to T2 to solve

T2(x1, . . . , xp2) for a solution x2. Repeating this process will lead to the full solution

of T = 0. This is particularly the case when T is zero-dimensional, for in this case

each time we only need to solve a univariate polynomial equation, which is much

easier.

38

Section 2.2. Characteristic sets and Wu–Ritt algorithm

Now we are able to extend the pseudo division to that w.r.t. a triangular set

T = [T1, . . . , Tr] ⊂ K[x], and this is possible because the leading variables of the

polynomials in T are distinct. The pseudo remainder of a polynomial F ∈ K[x] w.r.t.

T is recursively defined by

prem(F, T) = prem(prem(F, Tr), T≤r−1),

where T≤r−1 = [T1, . . . , Tr−1] is the truncated triangular set. For a polynomial set

P ⊂ K[x], prem(P, T) := {prem(P, T) : P ∈ P}. And a polynomial F ∈ K[x] is

said to be reduced w.r.t. T if F is reduced w.r.t. every Ti in T for i = 1, . . . , r. One

can easily see that prem(F, T) is reduced w.r.t. T .

Applying the pseudo division formula (2.1) inductively, we can also have the fol-

lowing formula for pseudo division w.r.t. a triangular set.

(

r
∏

i=1

ini(Ti)
di)P =

r
∑

i=1

QiTi + prem(P, T), (2.3)

where di are integers, and Qj ∈ K[x] for i = 1, . . . , r. This formula furnishes a zero

relationship as follows. For two polynomial sets P,Q ⊂ K[x], we denote the set

Zero(P) \ Zero(Q) by Zero(P/Q).

Proposition 2.1.2. For any polynomial P ∈ K[x] and triangular set T ⊂ K[x], if

prem(P, T) = 0, then

Zero(T / ini(T)) ⊂ Zero(P),

where ini(T) = {ini(T) : T ∈ T }.

This zero relationship is the starting point of characteristic sets, one kind of im-

portant triangular sets in their development. This relationship also addresses the

importance of one kind of ideals of our interest for triangular sets: the saturated ideal

of a triangular set T = [T1, . . . , Tr] is defined as

sat(T) = 〈T 〉 : H∞ = {G : ∃s ≥ 0 such that HsG ∈ 〈T 〉}

with H =
∏r

i=1 ini(Ti). For the sake of brevity, we write sati(T) := sat([T1, . . . , Ti]).

39

CHAPTER 2. Triangular sets

2.2 Characteristic sets and Wu–Ritt algorithm

Definition 2.2.1. A triangular set T = [T1, . . . , Tr] ⊂ K[x] is said to be an ascending

set, if each polynomial Ti is reduced w.r.t. all Tj (j 6= i) for i = 1, . . . , r. Furthermore,

for a polynomial set P ⊂ K[x], an ascending set C is a characteristic set of P if

C ⊂ 〈P〉, and prem(P, C) = {0}.

As one can see from the definition of characteristic sets and Proposition 2.1.2, the

notion of characteristic sets is introduced to study the zeros of polynomial sets. The

following zero relationship makes a step further.

Proposition 2.2.1. Let T = [T1, . . . , Tr] be a characteristic set of a polynomial set

P ⊂ K[x]. Denote Pi = P ∪ {ini(Ti)} for i = 1, . . . , r. Then

Zero(T / ini(T)) ⊂ Zero(P) ⊂ Zero(T),

Zero(T / ini(T)) = Zero(P/ ini(T)),

Zero(P) = Zero(T / ini(T)) ∪
r
⋃

i=1

Zero(Pi).

(2.4)

Next we recall the Wu–Ritt algorithm for computing a characteristic set of a given

polynomial set, which is a typical algorithm for triangular decompositions.

We first define an ordering on polynomials and then extend it to triangular sets.

This ordering is crucial in the termination of the Wu–Ritt algorithm.

Definition 2.2.2. For two non-zero polynomials F,G ∈ K[x], F is said to have a

lower rank than G if either lv(F) < lv(G), or lv(F) = lv(G) > 0 and ldeg(F) <

ldeg(G). In this case, G is said to have a higher rank than F . We denote this rank

between F and G by F ≺ G or G ≻ F .

If neither F ≺ G nor G ≺ F , then F and G are said to have the same rank,

denoted by F ∼ G.

Definition 2.2.3. For two triangular sets T = [T1, . . . , Tr] and P = [P1, . . . , Ps], T
is said to have a lower rank than P if either (a) or (b) below holds.

(a) There exists j < min(r, s) such that

T1 ∼ S1, . . . , Tj−1 ∼ Sj−1, Tj ≺ Sj;

40

Section 2.2. Characteristic sets and Wu–Ritt algorithm

(b) r < s, and

T1 ∼ S1, . . . , Tr ∼ Sr.

In this case, P is said to have a higher rank than T .

If neither T ≺ S nor S ≺ T , then T and S are said to have the same rank,

denoted by T ∼ S.

In the above definition, if T ∼ S, then r = s, and T1 ∼ S1, . . . , Tr ∼ Sr. One

sees that the rank � between two triangular sets is indeed a partial ordering on all

the triangular sets. The following theorem plays the same role in the termination

of the Wu–Ritt algorithm as the Ascending Chain Condition (Theorem 1.1.2) in the

Buchberger algorithm.

Theorem 2.2.2. Let

T1 � T2 � · · · � Tk � · · ·

be a sequence of triangular sets with ranks never getting higher. Then there exists an

integer k′ such that Tk ∼ Tk′ for all k > k′.

With the partial ordering �, given a set of ascending sets we can talk about the

“minimal” one (if it exists). For a polynomial set F , let P be the set of all ascending

sets contained in F . Then clearly P 6= ∅ because the set consisting of one single

polynomial is also an ascending set. We call the minimal ascending set in P the basic

set of F . Existence of the basic set has been proved, and one can compute it from F
with the Algorithm 4.

41

CHAPTER 2. Triangular sets

Algorithm 4: Basic set algorithm B := BasicSet(F)

Input: F ⊆ K[x].

Output: B, a basic set of F .

P := F , B := ∅;4.1

while P 6= ∅ do4.2

B := an element in P with the lowest rank;4.3

B := B ∪ [B];4.4

if tdeg(B) = 0 then4.5

P := ∅;4.6

else4.7

P := {P ∈ P \ {B} : P is reduced w.r.t. B};4.8

end4.9

end4.10

return B;4.11

With Algorithm 4, the Wu–Ritt algorithm (Algorithm 5) to compute characteristic

sets from polynomial sets is natural.

Algorithm 5: Wu–Ritt algorithm C := CharSet(F)

Input: F ⊆ K[x].

Output: B, a characteristic set of F .

P := F , R := F ;5.1

while R 6= ∅ do5.2

C := BasicSet(P);5.3

if C is contradictory then5.4

R := ∅;5.5

else5.6

R := prem(F \ C, C);5.7

P := P ∪R;5.8

end5.9

end5.10

return C;5.11

Based on the zero relation stated in Proposition 2.2.1 (in particular the last equa-

tion), the Wu–Ritt algorithm can be extended to compute finite characteristic sets

42

Section 2.3. Regular, simple and irreducible triangular sets

T1, . . . , Ts such that

Zero(F) =
s
⋃

i=1

Zero(Ti/ ini(Ti))

for a polynomial set F . The relation above turns the study on Zero(F) totally to

that on the zeros of each Ti and ini(Ti). As stated previously, the zeros of triangular

sets are relatively easier to compute, and thus we can conclude that this approach is

a feasible method for solving polynomial systems.

With the ability to study zeros of polynomial sets entitled by the characteristic

set, Wu applied his algorithm to automatic proving of elementary geometric theorems

[164, 165]. We sketch his method by as follows.

Step 1: Turn an elementary geometric theorem into the corresponding algebraic

form via Descartian coordinates. For example, the geometric relationship for two seg-

ments to be parallel can be described by the gradients of them with their coordinates.

In fact, most elementary geometric relationship can be expressed in an algebraic way.

The hypothesis of a theorem is turned into a polynomial equation set H = 0, while

the conclusion is a polynomial equation G = 0.

Step 2: Compute an appropriate characteristic set T of H.

Step 3: Compute the pseudo remainder R = prem(G, T). If R ≡ 0, then we know

the theorem holds under the condition ini(T) 6= 0.

This method due to Wu contains insights on the relationship between geometry

and algebra. After a rewriting of the geometric theorem in the algebraic form, the

characteristic set provides a tool to test the zero relation. What worths mentioning

is that the condition ini(T) 6= 0 indeed reflects the degenerative conditions for the

geometric objects.

2.3 Regular, simple and irreducible triangular sets

2.3.1 Regular sets

Let R be a commutative ring with identity and a ⊂ R an ideal . An element p ∈ R is

said to be regular in R if p is neither zero nor a zero divisor in R, and regular modulo

a if its standard image in R/a is regular.

Definition 2.3.1. A triangular set T = [T1, . . . , Tr] ⊂ K[x] is called a regular set if

ini(Ti) is regular modulo sati−1(T) for i = 2, . . . , r.

43

CHAPTER 2. Triangular sets

Regular sets are also known as regular chains introduced by Kalkbrener [77] and

as proper ascending chains due to Yang and Zhang [167]. They were generalized by

Wang [158] to regular systems.

The regular set is one kind of commonly used triangular sets. Next we list some

of its remarkable properties for later use. Recall that u and y are the parameters

and dependents of a triangular set respectively.

Proposition 2.3.1 ([5, Theorem 6.1], [158, Theorem 5.1]). For any regular set

T ⊆ K[x] and polynomial P ∈ K[x],

(a) P ∈ sat(T) if and only if prem(P, T) = 0;

(b) P is regular modulo sat(T) if and only if res(P, T) 6= 0, where res(P, T) is the

recursively defined resultant of P w.r.t. T .

Proposition 2.3.2 ([74, Theorem 4.4]). Let T be a regular set in K[x]. Then

(a) sat(T) 6= 〈1〉;

(b) sat(T) is unmixed-dimensional and its parameters form a transcendental basis

of every associated prime of sat(T).

Proposition 2.3.3 ([74, Proposition 5.18]). For any zero-dimensional regular set

T ⊆ K[x], sat(T) = 〈T 〉.

Proposition 2.3.4 ([74, Proposition 5.8]). Let T be a regular set in K[x]. Then

T≤i is a regular set in K[u][yi] and for any dependent yi of T ,

(a) sati(T) = sat(T) ∩K[u][yi];

(b) the associated primes of sati(T) are the intersections of the associated primes

of sat(T) with K[u][yi].

Another kind of triangular sets similar to the regular set is the normal set: T ⊂
K[x] is called a normal triangular set if each ini(Ti) is a nonzero polynomial in K[u].

One can transform any regular set T into a normal triangular set N , such that

sat(N) = sat(T) [159, 94].

44

Section 2.3. Regular, simple and irreducible triangular sets

By decomposition of a polynomial set F into triangular sets we mean to com-

pute finite triangular sets T1, . . . , Ts such that Zero(F) =
⋃s

i=1 Zero(Ti/ ini(T)), or

algebraically
√
F =

⋂s

i=1 sat(Ti).

As the above relations show, to design an algorithm for triangular decomposition,

we need to split somewhere in the algorithm so as to turn one polynomial set into

several triangular ones. In addition, different triangular sets with different properties

impose different conditions on the splitting technique in corresponding algorithms. As

for algorithms for regular decomposition (i.e., the triangular sets in the decomposition

is regular), the key technique used for splitting is the following pgcd algorithm.

Specification 6: {(G1,A1), . . . , (Gs,As)} := pgcd(F , T)

Input: T — a regular set in K[x], where K is an arbitrary field;

F — a polynomial set in K[x][z].

Output: {(G1,A1), . . . , (Gs,As)} — a set of pairs such that

(a) each Ai is a regular set in K[x], and sat(T) ⊆ sat(Ai);

(b)
√

sat(T) =
√

sat(A1) ∩ · · · ∩
√

sat(As);

(c) 〈F〉 = 〈Gi〉 in fr(K[x]/ sat(Ai))[z];

(d) Gi ∈ 〈F〉+ sat(Ai);

(e) Gi = 0, or ini(Gi) is regular modulo sat(Ai).

In the algorithm description, for a ring R, fr(R) denotes the total quotient ring

of R. In other words, it is the localization of R at the multiplicatively closed set

of all its non-zerodivisors. A remarkable behavior of pgcd is that the splitting in it

occurs only when it is necessary, and this splitting property is indeed derived from the

well-known D5 principle [42, 16], which is introduced to perform the case discussion

dynamically.

2.3.2 Simple and irreducible sets

Simple sets are also called squarefree regular sets [74]. From this name one also expect

that simple sets are regular sets with some squarefree properties. One of the main

contributions of this thesis is the study on algorithms for simple decompositions over

finite fields. Here we only review the basic definitions of simple sets, leaving detailed

45

CHAPTER 2. Triangular sets

discussions to Chapter 5.

Definition 2.3.2. For a regular set T = [T1, . . . , Tr] ⊂ K[x] with lv(Ti) = xpi for

i = 1, . . . , r, a point ξ is called a regular zero of T if for each i = 1, . . . , r, Ti(ξ) = 0,

and ξ is of the form

ξ = (x1, . . . , xp1−1, ξp1, xp1+1, . . . , xpr−1, ξpr , xpr+1 . . . , xn) ∈ K̃n,

where K̃ is the algebraic closure of the field generated by all the parameters xk as

transcendental elements over K. We denote the set of all regular zeros of T by

RZero(T).

A regular zero of T indeed corresponds to a finitely generated field extensions ofK,

where the variables with constrains from polynomials of T are algebraic elements and

the others transcendental ones. The introduction of regular zeros reduces the study

on regular sets to that on an irreducible components (i.e. a field extension from the

algebraic object defined by the regular set). This idea will be further exploited in

Chapter 5 in the study on simple sets.

Definition 2.3.3. A regular set T = [T1, . . . , Tr] ⊂ K[x] with lv(Ti) = xpi for i =

1, . . . , r is called a simple set if for i = 1, . . . , r − 1 and regular zero xi ∈ K̃i of

Ti = [T1, . . . , Ti] ⊂ K[x1, . . . , xpi+1−1], where K̃ is the algebraic closure of the field

generated by all the parameters of T as transcendental elements over K, the univariate

Ti+1(xi, xpi+1
) w.r.t. xpi+1

is squarefree.

As explained earlier, a regular zero corresponds to a finitely generated field exten-

sion. In the theory of triangular sets, we also have one kind of triangular sets which

are directly corresponding to finitely generated field extensions. The following notion

of irreducible sets is recursively defined.

Definition 2.3.4. A triangular set in the form [T] ⊂ K[x] is said to be an irre-

ducible set if T is irreducible over K. Then a regular set T = [T1, . . . , Tr] ⊂ K[x]

with lv(Ti) = xpi for i = 1, . . . , r is said to be an irreducible set if for any i =

2, . . . , r, [T1, . . . , Ti−1] is an irreducible set, and for any regular zero xi−1 ∈ K̃i−1 of

[T1, . . . , Ti−1] ⊂ K[x1, . . . , xpi−1], where K̃ is the algebraic closure of the field gener-

ated by all the parameters of T as transcendental elements over K, Ti(xi−1, xpi) as a

univariate polynomial in xpi is irreducible.

46

Section 2.4. Triangular sets for polynomial system solving

In fact the triangular set is exactly the defining polynomial set of a finitely gen-

erated field extension. For transcendental elements α1, . . . , αs of K, denote the tran-

scendental extension K(α1, . . . , αs) of K by K̃. Suppose βi (i = 1, . . . , r, s+r = n) are

algebraic over K̃, with Fi(xs+i) the minimal polynomial of βi over K̃(β1, . . . , βi−1).

Then we have the defining polynomial set F = {F1, . . . , Fr} ⊂ K[x] of the field

extension K(α1, . . . , αs, β1, . . . , βr) over K.

One can also derive the following correspondence between irreducible sets and

finitely generated field extensions. We include the proof for the convenience of later

use in Chapter 6.

Proposition 2.3.5. An irreducible set determines a finitely generated field exten-

sions, and vice versa.

Proof. Given an irreducible set T = [T1, . . . , Tr] ⊂ K[x], rewrite it as in K[u][y].

Then K(u) is a transcendental extension of K. By the definition of irreducible sets,

for each i = 1, . . . , r, Ti is irreducible over K(u)(β1, . . . , βi−1), where βj is defined by

Tj(β1, . . . , βj−1) as its minimal polynomial (perhaps transformation into monic one

by division is necessary). Then K(u)(β1, . . . , βr) is the desired finitely generated field

extension of K.

Suppose there exists a finitely generated field extension K(u)(β1, . . . , βr) of K.

Then for each i = 1, . . . , r, βi is determined by a minimal polynomial Pi over

K(u)(β1, . . . , βi−1). Replacing all βj in Pi by yj and multiplying the lcm of all de-

nominators of Pi, we will have the irreducible set we want. �

2.4 Triangular sets for polynomial system solving

In the case when the characteristic of the base field is 0, with regular sets one is also

able to test whether a given polynomial equation set is zero-dimensional or not.

Theorem 2.4.1. Let char(K) = 0, F ⊂ K[x], and T1, . . . , Ts be the regular sets in

the regular decomposition of F . Then F is zero-dimensional if and only if |Ti| = n

for i = 1, . . . , s.

As the consequence of Theorem 2.4.1, given a polynomial equation set F = 0,

we can first compute its regular decomposition T1, . . . , Ts to check whether it is zero-

dimensional. If so, then for i = 1, . . . , s, |Ti| = n. That is to say, the polynomial set

47

CHAPTER 2. Triangular sets

defined by Ti is of the form



























Ti,1(x1) = 0,

Ti,2(x1, x2) = 0,

· · · · · ·
Ti,n(x1, . . . , xn) = 0,

and for any x̄ ∈ Zero(T1, . . . , Ti−1), ini(Ti)(x̄) 6= 0 holds. To compute Zero(Ti) one

needs to solve the univariate polynomial Ti,1(x1) = 0 with any applicable method (see

Section 1.4.1), substitute its solution into Ti,2(x1, x2) and solve the resulting univariate

equation, and repeat this process until all the solutions of Ti are obtained. In this

way, all the solutions of the zero-dimensional F = 0 can be explicitly computed.

Example 2.4.1. Consider the following polynomial equation set in Q[x1, . . . , x4]



























x2x3 − 1 = 0,

x2
4 + x1x2x3 = 0,

x1x2x4 + x2
3 − x2 = 0,

x1x3x4 − x3 + x2
2 = 0.

(2.5)

With the variable ordering x1 < · · · < x4 we can compute the regular sets of its

defining polynomial set as

C1 = [x3
1 + 4, x3

2 + 1, x2x3 − 1, 2 x4 + x2
1], C2 = [x1, x

3
2 − 1, x2x3 − 1, x4].

Then by Theorem 2.4.1 we know the equation set (2.5) is zero-dimensional.

With recursive solving and substituting of the polynomial equation set defined by

either regular set, we can obtain all the solutions of (2.5) as

(0, 1, 1, 0), (0,−α,−β, 0), (0,−β,−α, 0),

(−γ,−1,−1,−γ2/2), (−γ, α,β,−γ2/2), (−γ,β, α,−γ2/2),

(αγ,−1,−1,βγ2/2), (αγ, α,β,βγ2/2), (αγ,β, α,βγ2/2),

(βγ,−1,−1, αγ2/2), (βγ, α,β, αγ2/2), (βγ,β, α, αγ2/2),

where

α =
1−

√
−3

2
, β =

1 +
√
−3

2
, γ =

3
√
4.

48

Section 2.4. Triangular sets for polynomial system solving

A triangular set T = [T1, . . . , Tr] ⊂ K[x] with lv(Ti) = xpi is said to have the

projection property if for each i = 1, . . . , r and any zero x ∈ RZero(T≤i), there exist

xpi+1
, . . . , xpr such that (x, xpi+1, . . . , xpi+1−1, xpi+1

, . . . , xn) ∈ RZero(T). It can be

proved that regular, simple and irreducible sets all have the projection property.

The projection property is necessary for using triangular sets to solve positive-

dimensional polynomial systems, for with this property we know each partial regular

zero (in this case with parameters) can be extended to the complete regular zero.

And therefore the process to solve positive-dimensional polynomial systems is to

decompose them into triangular sets with the projection property, and solve the

polynomials in all obtained triangular sets one by one.

Besides the rational univariate representation which is mainly over Q, the trian-

gular set is another good representation for solutions of polynomial equation sets.

As one important step for solving polynomial systems, we present the algorithm to

transform Gröbner bases w.r.t. LEX to finitely many triangular sets (indeed irre-

ducible ones) [91]. The key techniques used in the algorithm below are operations

and factorization over finitely generated field extensions [113, 160].

49

CHAPTER 2. Triangular sets

Algorithm 7: Gröbner bases to triangular sets T := LexTriangular(G)
Input: G, Gröbner basis of F ⊆ K[x] w.r.t. LEX, with F zero-dimensional.

Output: T, irreducible decomposition of F .

T := {∅};7.1

for i = 1, . . . , n do7.2

H := {G ∈ G : lv(G) = xi};7.3

Reorder H according to the polynomial ordering;7.4

U := T; T := {∅};7.5

for M ∈ U do7.6

repeat7.7

P := the first element in H; H := H \ P ; Q := ini(P);7.8

Q := the inverse of Q in K[x1, . . . , xi−1]/〈M〉;7.9

until Q 6= 0 ;7.10

end7.11

Factorize P into irreducible factors Q1, . . . , Qr in K[x1, . . . , xi−1]/〈M〉;7.12

T := T ∪ {M∪ {Qi} : i = 1, . . . , r};7.13

end7.14

return T7.15

50

Chapter 3
Some constructions in algebra

In this chapter more notions and notations from commutative algebra are first re-

viewed. Then polynomial system solving over finite fields is briefly discussed, with

other background knowledge related to finite fields.

3.1 Commutative algebra

3.1.1 Ideal arithmetic

Definition 3.1.1. For two ideals a, b ⊂ K[x], the set

a+ b = {F +G : F ∈ a, G ∈ b}

is call the sum of a and b, denoted by a+ b.

This set can be shown to be an ideal. In particular, a+b is the smallest ideal that

contains both a and b. In terms of corresponding varieties, V(a + b) = V(a) ∩ V(b).

For a = 〈F1, . . . , Fr〉 and b = 〈G1, . . . , Gs〉, it can also be shown that a + b =

〈F1, . . . , Fr, G1, . . . , Gs〉.

Definition 3.1.2. For two ideals a, b ⊂ K[x], their product is the ideal generated by

F ·G for all F ∈ a and G ∈ b. We denote the product of a and b by a · b.

From the definition, one can easily show that for a = 〈F1, . . . , Fr〉 and b =

〈G1, . . . , Gs〉, a · b = 〈FiGj : i = 1, . . . , r, j = 1, . . . , s〉. As regards to their vari-

eties, V(a · b) = V(a) ∪ V(b).

51

CHAPTER 3. Some constructions in algebra

Definition 3.1.3. For two a, b ⊂ K[x], the set

{F ∈ K[x] : FG ∈ a, ∀G ∈ b}

is called the ideal quotient of a by b and denoted by a : b.

One can prove the set a : b to be an ideal. In particular, a ⊂ a : b. To study

the relationship on varieties of the three ideals a, b and a : b, we need to introduce

another important concept about varieties, the Zariski Closure.

Definition 3.1.4. Let S ⊂ Kn. Then the Zariski Closure of S is the smallest affine

variety that contains S, and it is denoted by S.

One can show that S = V(I(S)). Then the following proposition states the rela-

tionship on varieties about ideal quotients.

Proposition 3.1.1. For the ideals a, b ∈ K[x], we have V(a : b) ⊃ V(a)− V(b).

Definition 3.1.5. The intersection a∩b of two ideals a, b ⊂ K[x] in the sense of sets

is also an ideal, and is called the intersection of a and b.

Proposition 3.1.2. For two ideals a, b ⊂ K[x], we have

a ∩ b = (ta+ (1− t)b) ∩K[x],

where t is a newly introduced variable.

This proposition furnishes a computational approach to construct the intersection

of two ideals by using Gröbner bases (with the Elimination Theorem).

3.1.2 Radical ideals and ideal-variety correspondence

The kind of ideals which corresponds to varieties are indeed radical ones. Now we

exploit such ideals and their correspondence to the varieties.

Definition 3.1.6. An ideal a is said to be radical if any F such that Fm ∈ a for

some integer m ≥ 1 also satisfies F ∈ a.

52

Section 3.1. Commutative algebra

In fact one can prove that for a variety V ⊂ Kn, if Fm ∈ I(V), then F ∈ I(V).

By the definition of radical ideals, clearly I(V) is radical. For an ideal which is not

radical, we can perform the operation of taking its radical in the sense as follows.

Definition 3.1.7. The radical of an ideal a ⊂ K[x] is the set

{F : Fm ∈ a for some integer m ≥ 1}.

The radical of a is denoted by
√
a.

The radical of an ideal is also an ideal. Now we can state the Nullstellensatz which

relates varieties to radical ideals.

Theorem 3.1.3 (Hilbert’s Strong Nullstellensatz). Let K be an algebraically closed

field. Then for any ideal a ⊂ K[x], I(V(a)) =
√
a.

Theorem 3.1.4. Let K be an algebraically closed field. Then the map I and V estab-

lishes an inclusion-reversing bijections between the set of affine varieties in Kn and

that of radical ideals in K[x].

By inclusion-reversing we mean:

(a) If V1 ⊂ V2 for two varieties V1 and V2, we have I(V1) ⊃ I(V2);

(b) If a1 ⊂ a2 for two radical ideals a1 and a2, we have V(a1) ⊃ V(a2).

This one-one correspondence between varieties and radical ideals entitles us an

important bridge to work on the other in order to study one of the two. For example,

given a radical ideal, we can translate to its corresponding variety to have a geometric

intuition about this ideal. On the other hand, the translation to ideals which are much

easier to manipulate because of the algebraic form makes possible the computational

study on varieties.

For a principal ideal, taking its radical is equivalent to extracting the squarefree

part of its generator.

Proposition 3.1.5. For F ∈ K[x],
√

〈F 〉 = 〈F̃ 〉, where F̃ is the squarefree part of

F .

53

CHAPTER 3. Some constructions in algebra

The following proposition reduces the problem of testing whether an element is

in a radical ideal to that of testing an ideal membership, which can be solved via

Gröbner bases.

Proposition 3.1.6. Let a = [F1, . . . , Fr] ⊂ K[x] be an ideal, and F a polynomial in

K[x]. Then F ∈ √
a if and only if 1 ∈ 〈F1, . . . , Fr, 1− yF 〉 ⊂ K[x1, . . . , xn, y].

3.1.3 Prime decomposition

Similar to the idea behind factorization of polynomials, we also want to decompose

ideals or varieties into smaller ones which can not be further decomposed. Next we

first make clear those ideals and varieties which can not be reduced, and then relate

ideals or varieties to their decomposition into such special ideals and varieties.

Definition 3.1.8. An ideal p ⊂ K[x] is said to be prime if for any F,G ∈ K[x],

FG ∈ p implies F ∈ p or G ∈ p.

This property of prime ideals is similar to that of prime elements in a commutative

ring with unity. Furthermore, from the definition, one can prove that a prime ideal

is radical.

Definition 3.1.9. A variety V ⊂ Kn is called irreducible if V cannot be written as

the union of two proper sub varieties, i.e., V = V1 ∪ V2 implies V = V1 or V = V2.

As one can see, the definitions of prime ideals and irreducible varieties are similar.

In fact, a one-one correspondence exists between them.

Proposition 3.1.7. A variety V ⊂ Kn is irreducible if and only if I(V) is a prime

ideal in K[x].

Proposition 3.1.8. Let K be an algebraically closed field. Then the maps I and V

induce a one-one correspondence between irreducible varieties in Kn and prime ideals

in K[x].

A proper ideal in K[x] is called maximal if there is no proper ideal containing it.

A maximal ideal is prime. The following proposition characterizes maximal ideals.

Proposition 3.1.9. The following statements hold:

54

Section 3.2. Basics of finite fields

(a) Let K be a field. Then the ideal 〈x1 − a1, . . . , xn − an〉 in K[x] with ai ∈ K (i =

1, . . . , n) is maximal.

(b) If K is algebraically closed, then any maximal ideals in K[x] is of the form

〈x1 − a1, . . . , xn − an〉 for some ai ∈ K (i = 1, . . . , n).

Corollary 3.1.10. Let K be an algebraically closed field. There exists a one-one

correspondence between points in Kn and maximal ideals in K[x].

The next theorem states the possibility to decompose any radical ideals into the

intersection of prime ideals.

Theorem 3.1.11. Every radical ideal a ∈ K[x] can be written as the intersection of

finite prime ideals p1, . . . , pr, i.e., a =
⋂r

i=1 pi. Furthermore, if we require pi 6⊂ pj for

i 6= j, then the ideals p1, . . . , pr are unique up to their orders.

Translating into the variety language with the ideal-variety correspondence, we

have the following corollary.

Corollary 3.1.12. Every variety V ⊂ Kn can be written as V =
⋃r

i=1 Vi with Vi

irreducible variety in Kn for i = 1, . . . , n. Furthermore, if we require Vi 6⊂ Vj for

i 6= j, the varieties V1, . . . , Vr are unique up to their orders.

The decomposition a =
⋂r

i=1 pi and V =
⋃r

i=1 Vi as in Theorem 3.1.11 and Corol-

lary 3.1.12 are called a minimal decomposition of a and V . Now we try the special

case when the radical ideal is generated by a squarefree polynomial F ∈ K[x]. Let

F = F1, . . . , Fr be a factorization of F . Then 〈F 〉 = ⋂r

i=1〈Fi〉 is a minimal decompo-

sition of a, for each Fi is irreducible over K and thus 〈Fi〉 is prime.

We end this section with the following Chinese Remainder Theorem (short as

CRT), which will be frequently used.

Theorem 3.1.13 (Chinese Remainder Theorem). Let a1, . . . , ar be ideals in R
such that ai and aj are coprime (namely ai + aj = R) for all i 6= j. Then

R/
(

r
⋂

i=1

ai

)

∼=
r
∏

i=1

R/ai.

55

CHAPTER 3. Some constructions in algebra

3.2 Basics of finite fields

The study on finite fields can be dated back to the 17th and 18th century, but

finite fields only become of great interest in the 20th century because of its wide

applications in cryptography, Coding Theory, combinatorics and etc. In this section

we first provide basic results on the structure of finite fields, and then present notions

and algorithms related to the scope of the thesis.

A field of finite elements is called a finite field. The number of elements a finite

field contains can be characterized by the following theorem.

Theorem 3.2.1 ([101, Theorem 2.2]). Let K be a finite field. Then K has pn

elements, where the prime p is the characteristic of K and n is the degree of K over

its prime subfield.

Proposition 3.2.2. If K is a finite field with q elements, then every a ∈ K satisfies

aq = a.

For every prime p and positive integer n there exists a finite field with pn elements.

It can also be concluded that two finite fields are isomorphic if and only if their

numbers of elements are equal. Therefore there only exists one finite field of q = pm

elements up to isomorphisms, and we denote it by Fq.

For a field K, all the elements K \ {0} form a group w.r.t. the multiplications in

K, and this group is called the multiplicative group of K, denoted by K∗. For a finite

field Fq, it can be proved that F∗
q is cyclic.

3.2.1 Polynomial system solving over finite fields

In general, solving a polynomial equation set F = 0 for F ⊂ K[x] means to find all its

solutions in K̃n, where K̃ is an extension of K. Usually the solutions in the algebraic

closure of K are of interest. However, for polynomial system solving over a finite

field Fq, compared with the solutions in F
n

q , those in Fn
q are usually more important

because of their practical background in applications like cryptography and Coding

Theory.

It is obvious that the number of solutions of F = 0 in Fn
q is finite, and thus one

trivial method to compute them is traversing all possibilities to check whether they

56

Section 3.2. Basics of finite fields

satisfy F = 0. This method is useful when both the cardinality q and the number

of variable n are small. However, when the number of possible solutions is large

(for example, in multivariate public-key cryptography the solution space is usually of

cardinality greater than 2160), the traversal method is no longer applicable. In this

case, one has to turn to other solving methods like those based on Gröbner bases and

triangular sets.

A common strategy to restrict the solutions of F = 0 in Fn
q is to solve F ∪P = 0

instead, where P = {xq
1 − x1, . . . , x

q
n − xn} is the set of field polynomials of Fq.

It is easy to prove that this strategy works as intended. To facilitate polynomial

system solving over F2, the Computer Algebra system Magma introduces the Boolean

polynomial ring defined over F2 whose polynomials are automatically reduced with

the field relations x2
i = xi for i = 1, . . . , n.

Most methods based on Gröbner bases and triangular sets for solving polynomial

systems over fields of characteristic 0 are also applicable to systems over finite fields

with the above strategy (Clearly RUR does not work any longer). However, special-

ized algorithms for computing Gröbner bases (e.g., the XL algorithm) and triangular

sets over finite fields have also been designed taking the structure of finite fields into

consideration [32, 3, 64, 15], and these algorithms, which are usually more efficient,

should be chosen when applied to solve polynomial systems over finite fields. Fur-

thermore, algorithms for solving SAT problems can also be used to solve polynomial

systems over F2 [40, 117]. In particular SAT solvers are effective tools to achieve this

purpose [47, 142].

3.2.2 Squarefree decomposition over finite fields

Squarefree decomposition is a fundamental tool to understand the inherent structure

of a polynomial. For a principal ideal domain, there is a close relationship between

radical ideals and squarefree polynomials: an ideal is radical if and only if its gener-

ating polynomial is squarefree. We will use this result later, but over a specific ring.

Furthermore, squarefree decomposition is usually a proceeding step for polynomial

factorization, and thus in factorization we usually assume the input polynomial is

squarefree.

Here we recall the method of computing squarefree decompositions of univariate

57

CHAPTER 3. Some constructions in algebra

polynomials over finite fields from [68], which is the starting point for our discussions

in Chapters 5 and 6.

For a non-constant polynomial F ∈ K[x], we call {[A1, a1], . . . , [As, as]} a square-

free decomposition of F , where Ai ∈ K[x] is non-constant and ai is a positive integer

for i = 1, . . . , s, if the following conditions hold:

• F = cAa1
1 · · ·Aas

s for some nonzero constant c ∈ K;

• Ai is squarefree for all i = 1, . . . , s;

• gcd(Ai, Aj) = 1 for all i 6= j.

In particular, the polynomial A1 · · ·As is the squarefree part of F .

Algorithms for squarefree decomposition of polynomials over finite fields are some-

how different from those over fields of characteristic 0 in the sense that the derivative,

an important tool in squarefree decomposition, of any pth power over a field of char-

acteristic p is 0.

Proposition 3.2.3. Let K be a field of characteristic p > 0. For any F ∈ K[x], there

exist unique (up to unit) polynomials P1, . . . , Pk and Q in K[x] such that

(a) F = Q
∏k

i=1 P
i
i ;

(b) gcd(Pi, P
′
i) = 1, which means that Pi is squarefree for all i = 1, . . . , k;

(c) gcd(Pi, Pj) = gcd(Pi, Q) = 1 for all i 6= j;

(d) Q′ = 0;

(e) if i ≡ 0 mod p, then Pi = 1.

Corollary 3.2.4. Let K be a field of characteristic p > 0 and F = Q
∏k

i=1 P
i
i be the

decomposition given in Proposition 3.2.3. Then gcd(F, F ′) = Q
∏k

i=1 P
i−1
i .

Proposition 3.2.5. Let K be a field of characteristic p > 0 and F ∈ K[x]. Then

F ′ = 0 if and only if there exists a polynomial G ∈ K[x] such that F (x) = G(xp).

58

Section 3.2. Basics of finite fields

For any F ∈ Fq[x] \ Fq, let F = Q
∏k

i=1 P
i
i be the decomposition in Proposition

3.2.3. When Q ∈ Fq[x] \ Fq, the squarefree part of F is Q1

∏k

i=1 Pi, where Q1 is the

squarefree part of Q. However, by Corollary 3.2.4,

gcd(F, F ′) = Q
k
∏

i=1

P i−1
i and F/ gcd(F, F ′) =

k
∏

i=1

Pi.

Hence using F/ gcd(F, F ′) to obtain the squarefree part will cause Q1 missing. This

problem can be solved by the following squarefree decomposition algorithm (Algo-

rithm 8). In this and other algorithms, the operation

merge({[A1, a1], . . . , [As, as]}, {[D1, d1], . . . , [Dt, dt]})

first merges the two sets into one and then replaces any [Ai, ai] and [Dj , dj] for which

Ai = Dj by [Ai, ai + dj].

Algorithm 8: Squarefree decomposition of a univariate polynomial over

a finite field S := sqf(F)

Input: F — a polynomial in Fq[x] \ Fq.

Output: S — the squarefree decomposition of F .

S := ∅; d := 1;8.1

C1 := gcd(F,F ′);8.2

B1 := F/C1;8.3

while B1 ∈ Fq[x] \ Fq do8.4

B2 := gcd(B1, C1), C2 := C1/B2, P := B1/B2;8.5

if P ∈ Fq[x] \ Fq then S := S ∪ {[P, d]};8.6

B1 := B2; C1 := C2;8.7

d := d+ 1;8.8

end8.9

if C1 ∈ Fq[x] \ Fq then8.10

C3 := the pth root of C1;8.11

{[A1, a1], . . . , [As, as]} := sqf(C3);8.12

S := merge({[A1, a1 · p], . . . , [As, as · p]},S);8.13

end8.14

59

CHAPTER 3. Some constructions in algebra

3.2.3 Multiple derivations

Multiple derivations are a tool we will use for verifying pth powers in the extended

squarefree decomposition we will discuss in Chapters 5 and 6.

Let R be a ring. A map D : R → R is called a derivation of R if for all a, b ∈ R,

D(a+ b) = D(a) +D(b) and D(ab) = D(a)b+ aD(b). The set of all derivations of R,

denoted by Der(R), is an R-module. One can also show that for any ideal a ⊂ K[x],

a derivation D ∈ Der(K[x]) induces a derivation in Der(K[x]/a) if D(a) ⊂ a.

If a basis of the K[x]-module Der(K[x]) is known, then the proposition below

furnishes an approach for computing a generating basis of Der(K[x]/a) with syzygy

computation.

Proposition 3.2.6 ([62, Proposition 5.2]). Let D1, . . . , Dr be a basis of Der(K[x]),

a = 〈F1, . . . , Fs〉 ⊂ K[x], and v = (v1, . . . , vr) ∈ K[x]r. Then a derivation D =
∑r

i=1 viDi satisfies D(a) ⊂ a if and only if D(Fj) =
∑r

i=1 viDi(Fj) = 0 mod a for

j = 1, . . . , s.

In Chapters 5 and 6 we will often work on K̃[y] := K(u1, . . . , ut)[y1, . . . , yr], where

u1, . . . , ut and y1, . . . , yr are transcendental and algebraic elements over K defined by

a regular set T respectively. In this case Der(K̃[y]/ sat(T)K̃) is of our interest and

a basis of Der(K̃) is Di := ∂/∂ui, for i = 1, . . . , t [68]. Then a basis D̃1, . . . , D̃t+r of

Der(K̃[y]) can be obtained in the following way [62]: for any P =
∑

i∈Nr ciy
i, define

D̃i(P) =
∂P

∂yi
, i = 1, . . . , r;

D̃i(P) =
∑

i∈Nr

Di−r(ci)y
i, i = r + 1, . . . , r + t.

Therefore, from any regular set T ⊂ K[x], one can construct a basis of Der(K̃[y]/ sat(T)K̃).

The following results show how to detect pth powers in a finitely generated field

extension of a finite field and a quotient ring with multiple derivations.

Proposition 3.2.7 ([86, VIII, Proposition 5.4]). Let K be a finitely generated

extension of a perfect field. Then P ∈ K is a pth power in K if and only if D(P) = 0

for all D ∈ Der(K[x]).

60

Section 3.2. Basics of finite fields

Corollary 3.2.8 ([62, Proposition 5.3]). Let K be a field of characteristic p > 0,

a a zero-dimensional radical ideal in K[x], and P ∈ K[x]/a. Then there exists a

Q ∈ K[x]/a such that Qp = P if and only if D(P) = 0 for all D ∈ Der(K[x]/a).

With multiple derivations Proposition 3.2.3 which is useful for squarefree decom-

position over finite fields may be generalized to fields of positive characteristics. The

following proposition will be used in Section 6.2.2.

Proposition 3.2.9 ([68, Proposition 8]). Let K be a field of characteristic p > 0,

and D1, . . . , Dt a basis of Der(K[z]). Then for a polynomial F ∈ K[z], there exist

polynomial Pi and Q ∈ K[z] such that

(a) F = Q
∏k

i=1 P
i
i with Pi squarefree;

(b) gcd(Pi, Pj) = gcd(Q,Pi) = 1 for i 6= j;

(c) Di(Q) = 0 for i = 1, . . . , t;

(d) if p divides i, then Pi = 1;

(e) gcd(f,D1(f), . . . , Dt(f)) = Q
∏

i P
i−1
i .

3.2.4 BMS algorithm

The BMS algorithm from Coding Theory is a decoding algorithm to find the gen-

erating set of the error locator ideal in algebraic geometry codes [138, 139, 137].

From a more mathematical point of view, it computes the set of minimal polynomials

(w.r.t. a term ordering <) of a linearly recurring relation generated by a given multi-

dimensional array. It is a generalization of the Berlekamp–Massey algorithm, which

is applied to Reed–Solomon codes to find the generating error locator polynomial, or

mathematically the minimal polynomial of a linearly recurring sequence.

The BMS algorithm, without much modification, can also be extended to a more

general setting of order domains [36, 72]. Combining with the Feng–Rao majority

voting algorithm [59], this algorithm can often decode codes with more with (dmin −
1)/2 errors if the error locations are general [17], where dmin is the minimal distance.

Next a concise description of the BMS algorithm is given, focusing on its mathematical

meanings.

61

CHAPTER 3. Some constructions in algebra

As a vector u = (u1, . . . , un) ∈ Zn
≥0 and a term xu = xu1

1 · · ·xun
n ∈ K[x] are

1–1 corresponding, usually we do not distinguish one from the other. A mapping

E : Zn
≥0 −→ K is called an n-dimensional array. In Coding Theory, the array E

is usually a syndrome array determined by the error word [137]. Besides the term

ordering, we define the following partial ordering: for two terms u = (u1, . . . , un) and

v = (v1, . . . , vn), we say that u ≺ v if ui ≤ vi for i = 1, . . . , n.

Definition 3.2.1. Given a polynomial F =
∑

s Fsx
s ∈ K[x], an n-dimensional map-

ping E is said to satisfy the n-dimensional linearly recurring relation with character-

istic polynomial F if
∑

s

FsEs+r = 0, ∀r ≻ 0. (3.1)

The set of all characteristic polynomials of the n-dimensional linearly recurring

relation for the array E forms an ideal, denoted by I(E). Again in the setting of

decoding when E is a syndrome array, this ideal is called the error locator ideal for

E, and its elements are called error locators. The definition of I(E) used here in this

thesis follows [137], and one can easily see that this definition is equivalent to that in

[36] by [137, Thereom 23].

Furthermore, the set of minimal polynomials for I(E) w.r.t. <, which the BMS

algorithm computes, is actually the Gröbner basis of I(E) w.r.t. < [139, Lemma 5].

The canonical basis of K[x]/ I(E) is also called the delta set of E, denoted by ∆(E).

The term “delta set” comes from the property that if u ∈ Zn
≥0 is contained in ∆(E),

then ∆(E) also contains all elements v ∈ Zn
≥0 such that v ≺ u.

Instead of studying the infinite array E as a whole, the BMS algorithm deals with

a truncated subarray of E up to some term u according to the given term ordering

<. A polynomial F with lt(F) = s is said to be valid for E up to u if either u 6≻ s or

∑

t

FtEt+r = 0, ∀r (0 ≺ r ≤ u− s).

E may be omitted if no ambiguity occurs. A polynomial set is said to be valid up to

u if each its polynomial is so.

Similarly to FGLM, the BMS algorithm also handles terms in K[x] one by one

according to <, so that the polynomial set F it maintains is valid up to the new

term. Suppose F is valid up to some term u. When the next term of u w.r.t.

62

Section 3.2. Basics of finite fields

<, denoted by Next(u), is considered, the BMS algorithm will update F so that it

keeps valid up to Next(u). Meanwhile, terms determined by Next(u) are also tested

whether they are members of ∆(E). Therefore, more and more terms will be verified

in ∆(E) as the BMS algorithm proceeds. The set of verified terms in ∆(E) after the

term u is called the delta set up to u and denoted by ∆(u). Then we have

∆(1) ⊂ · · · ⊂ ∆(u) ⊂ ∆(Next(u)) ⊂ · · · ⊂ ∆(E).

After a certain number of terms are considered, F and ∆(u) will grow to the Gröbner

basis of I(E) and ∆(E) respectively.

Next only the outlines of the update procedure mentioned above, which is also

the main part of the BMS algorithm, are presented as Algorithm 9 for convenience

of later use. More details will also be provided in Section 4.2.2. One may refer to

[137, 36] for a detailed description. In Algorithm 9 below, the polynomial set G, called
the witness set, is auxiliary and will not be returned with F in the end of the BMS

algorithm.

Algorithm 9: (F+, G+) := BMSUpdate(F,G,Next(u),E)

Input:

F , a minimal polynomial set valid up to u;

G, a witness set up to u;

Next(u), a term;

E, a n-dimensional array up to Next(u).

Output:

F+, a minimal polynomial set valid up to Next(u);

G+, a witness set up to Next(u).

(a) Test whether every polynomial in F is valid up to Next(u)

(b) Update G+ and compute the new delta set up to Next(u) accordingly

(c) Construct new polynomials in F+ such that they are valid up to Next(u)

63

Part II

Contributions

64

Chapter 4
Sparse FGLM algorithms

The term ordering plays an important role in the theory of Gröbner bases. It has

been shown in previous contents of the thesis that the change of orderings of Gröbner

bases from DRL to LEX is one important step in the Gröbner basis method for solving

polynomial systems. Furthermore, some practical problems can be directly modeled

as the change of orderings of Gröbner bases, for example [22, 104] from cryptography

and Coding Theory.

However, the computation of Gröbner bases greatly enhanced recently [49, 50],

the step to change the orderings of Gröbner bases has become the bottleneck of the

whole solving process (see Section 4.4 for details). Hence it is of crucial significance

to design efficient algorithms for the change of ordering. The purpose of this chapter

is precisely to provide such efficient algorithms.

Suppose G1 is the Gröbner basis of a zero-dimensional ideal a ⊂ K[x] w.r.t. a term

ordering <1. Given another term ordering <2, one wants to compute the Gröbner

basis G2 of a w.r.t. it. Denote by D the degree of a, that is, the dimension of K[x]/a

as a vector space. These notations are fixed hereafter in this chapter.

This chapter is organized as follows. Section 4.1 is devoted to the shape position

case, where two methods with their complexity analyses are exploited. The method

based on the BMS algorithm for the general case is presented in Section 4.2, with a

top-level algorithm which combines all the previous methods. The sparsity of T1 is

studied in Section 4.3 and experimental results are provided in Section 4.4.

65

CHAPTER 4. Sparse FGLM algorithms

The results in this chapter are based on the joint work with Jean-Charles Faugère.

Part of the contents has been published in [55].

4.1 Ideals in shape position

Definition 4.1.1. An ideal a ⊂ K[x] is said to be in shape position if its Gröbner

basis w.r.t LEX is of the following form

[F1(x1), x2 − F2(x1), . . . , xn − Fn(x1)]. (4.1)

One may easily see that a here is zero-dimensional and deg(F1) = D.

Such ideals take a large proportion in all the consistent ideals and have been well

studied and applied [13, 135]. The special structure of their Gröbner bases enables

us to design specific and efficient methods to change the term ordering to LEX. In

the following, methods designed for different purposes, along with their complexity

analyses, are exploited.

Throughout this section, we assume the multiplication matrix T1 is nonsingular.

Otherwise, one knows by the Stichelberger’s theorem (see, e.g. [135, Theorem 2.1])

that x1 = 0 will be a root of the univariate polynomial in a’s Gröbner basis w.r.t.

LEX, and sometimes the polynomial system can be further simplified.

4.1.1 Probabilistic algorithm to compute Gröbner basis of the ideal

Algorithm description

Given a zero-dimensional ideal a, if the univariate polynomial F1(x1) in its Gröbner

basis w.r.t. LEX is of degree D, then we know a is in shape position.

The way to compute such a univariate polynomial is the Wiedemann algorithm.

Consider now the following linearly recurring sequence

s = [〈r, T i
1e〉 : i = 0, . . . , 2D − 1], (4.2)

where r is a randomly generated vector in K(D×1), T1 is the multiplication matrix of

x1, e is the coordinate vector of 1 w.r.t the canonical basis of K[x]/a, and 〈·, ·〉 takes
the inner product of two vectors. It is not hard to see that the minimal polynomial

F̃1 of the sequence s is a factor of F1. As D is always a bound on the size of the

66

Section 4.1. Ideals in shape position

linearly recurring sequence, the Berlekamp–Massey algorithm can be applied to the

sequence s to compute F̃1. Furthermore, if deg(F̃1) = D, then F̃1 = F1 and a can be

verified to be in shape position.

Suppose deg(F̃1) = D holds and Fi in (4.1) is of the form Fi =
∑D−1

k=0 ci,kx
k
1 for

i = 2, . . . , n. Then computing the whole Gröbner basis of a w.r.t. LEX reduces to

determining all the unknown coefficients ci,k. Before we show how to recover them,

some basic results about linearly recurring sequences are recalled.

Definition 4.1.2. Let s = [s0, s1, s2, · · ·] be a sequence of elements in K and d an

integer. The d× d Hankel matrix is defined as

Hd(s) =















s0 s1 s2 · · · sd−1

s1 s2 s3 · · · sd
...

...
...

. . .
...

sd−1 sd sd+1 · · · s2d−2















.

Theorem 4.1.1 ([76]). Let s = [s0, s1, s2, · · ·] be a linearly recurring sequence. Then

the minimal polynomial M (s)(x) =
∑d

i=0mix
iof the sequence s is such that:

(i) d = rank(Hd(s)) = rank(Hi(s)) for all i > d;

(ii) ker(Hd+1(s)) is a vector space of dimension 1 generated by (m0, m1, . . . , md)
t.

For each i = 2, . . . , n, as xi−
∑D−1

k=0 ci,kx
k
1 ∈ a, one has nform(xi−

∑D−1
k=0 ci,kx

k
1) = 0,

thus

vi := Tie =
D−1
∑

k=0

ci,k · T k
1 e.

Multiplying T j
1 and taking the inner product with a random vector r to both hands

for j = 1, . . . , D − 1, one can further construct D linear equations

〈r, T j
1vi〉 =

D−1
∑

k=0

ci,k · 〈r, T k+j
1 e〉, j = 0, . . . , D − 1. (4.3)

With ci,k considered as unknowns, the coefficient matrix H with entries 〈r, T k+j
1 e〉 is

indeed a D ×D Hankel matrix, and thus invertible by Theorem 4.1.1. Furthermore,

the linear equation set (4.3) with the Hankel matrix H can be efficiently solved [18].

67

CHAPTER 4. Sparse FGLM algorithms

All the solutions of these linear systems for i = 2, . . . , n will lead to the Gröbner basis

we want to compute.

The method above is summarized in the following algorithm, whose termination

and correctness are direct results based on previous discussions. The subfunction

BerlekampMassey() is the Berlekamp–Massey algorithm, which takes a sequence over

K as input and returns the minimal polynomial of this sequence [162].

Algorithm 10: Shape position (probabilistic) G2 := ShapePro(G1, <1)

Input: G1, Gröbner basis of a zero-dimensional ideal a ⊂ K[x] w.r.t. <1

Output: G2, Gröbner basis of a w.r.t. LEX if the polynomial returned by

BerlekampMassey() is of degree D; Fail, otherwise.

Compute the canonical basis of K[x]/〈G1〉 and multiplication matrices10.1

T1, . . . , Tn;

e := (1, 0, . . . , 0)t ∈ K(D×1);10.2

Choose r0 = r ∈ K(D×1) randomly;10.3

for i = 1, . . . , 2D − 1 do10.4

ri := (T t
1)ri−1;10.5

end10.6

Generate the sequence s := [〈ri,e〉 : i = 0, . . . , 2D − 1];10.7

F1 := BerlekampMassey(s);10.8

if deg(F1) = D then10.9

H := HD(s) // Construct the Hankel matrix10.10

for i = 2, . . . , n do10.11

b := (〈rj , Tie〉 : j = 0, . . . ,D − 1)t;10.12

Compute c = (c1, . . . , cD)
t := H−1b;10.13

Fi :=
∑D−1

k=0 ck+1x
k
1;10.14

end10.15

return [F1, x2 − F2, . . . , xn − Fn];10.16

else10.17

return Fail;10.18

end10.19

Remark 4.1.1. As can be seen from the description of Algorithm 10, such a method

is a probabilistic one. That is to say, it can return the correct Gröbner basis w.r.t.

68

Section 4.1. Ideals in shape position

LEX with probabilities, and may also fail even when a is indeed in shape position.

Complexity

In this complexity analysis and others to follow, we assume that the multiplication

matrices are all known and neglect their construction cost.

Suppose that the number of nonzero entries in T1 isN1. TheWiedemann algorithm

(both construction of the linearly recurring sequence and computation of its minimal

polynomial with the Berlekamp–Massey algorithm) will take O(D (N1+log(D))) field

operations to return the minimal polynomial f̃1 [162].

Next we show how the linear system (4.3) can be generated for free. Note that

for any a, b ∈ K(D×1) and T ∈ K(D×D), we have 〈a, Tb〉 = 〈T ta, b〉, where T t denotes

the transpose of T . Thus in (4.2) and (4.3)

〈r, T i
1e〉 = 〈(T t

1)
ir, e〉, 〈r, T j

1vi〉 = 〈(T t
1)

jr, vi〉.

Therefore, when computing the sequence (4.2), we can record (T t
1)

ir (i = 0, . . . , 2D−
1) and use them for construction of the linear equation set (4.3).

First, as each entry 〈r, T k+j
1 e〉 of the Hankel matrix H can be extracted from

the sequence (4.2), the construction of H is free of operations. What is left now

is the computation of 〈(T t
1)

jr, vi〉, where (T t
1)

jr has already been computed and

vi = Tie = nform(xi). Without loss of generality, we can assume that nform(xi) = xi

(this is not true only if there is a linear equation xi + · · · in the Gröbner basis G1,

and in that case we can eliminate the variable xi). Consequently vi is a vector with

all its components equal to 0 except for one component equal to 1. Hence computing

〈(T t
1)

jr, vi〉 is equivalent to extracting some component from the vector (T t
1)

jr and

there is not additional cost.

For each i = 2, . . . , n, solving the linear equation setHc = bi only needs O(D log(D)2)

operations if fast polynomial multiplication is used [18]. Summarizing the analyses

above, we have the following complexity result for this method.

Theorem 4.1.2. Assume that T1 is constructed (note that T2, . . . , Tn are not needed).

If the minimal polynomial of (4.2) computed by the Berlekamp–Massey algorithm is

69

CHAPTER 4. Sparse FGLM algorithms

of degree D, then the complexity of this method is bounded by

O(D(N1 + log(D)) + (n− 1)D log(D)2) = O(D(N1 + n log(D)2)).

This complexity almost matches that of computing the minimal polynomial of the

multiplication matrix T1 if n is small compared with D.

Illustrative example

We use the following small example to show how this method applies to ideals in shape

position. Given the Gröbner basis of a zero-dimensional ideal a ⊂ F11[x1, x2, x3] w.r.t.

DRL

G1 = [x2
2 + 9 x2 + 2 x1 + 6, x2

1 + 2 x2 + 9, x3 + 9],

we first compute the degree of a as D = 4, the canonical basis B = [1, x1, x2, x1x2],

and the multiplication matrices T1, T2 and T3.

With the random vector r = (8, 4, 8, 6)t ∈ K(4×1), we can construct the linearly

recurring sequence

s = [8, 4, 0, 7, 6, 8, 10, 10].

Then the Berlekamp–Massey algorithm is applied to s to obtain the minimal polyno-

mial F̃1 = x4
1 + 8 x1 + 9. From the equality deg(F̃1) = D = 4, we know now that the

input ideal a is in shape position.

The Hankel coefficient matrix

H =















8 4 0 7

4 0 7 6

0 7 6 8

7 6 8 10















is directly derived from s. Next take the computation of the polynomial x2−F2(x1) ∈
G2 for example, the vector b = (8, 6, 8, 3)t is constructed. The solution of the linear

equation set Hc = b being c = (1, 0, 5, 0)t, we obtain the polynomial in G2 as x2 +

6 x2
1 + 10. The other polynomial x3 − F3(x1) can be similarly computed. In the end,

we have the Gröbner basis of a w.r.t. LEX

G2 = [x4
1 + 8 x1 + 9, x2 + 6 x2

1 + 10, x3 + 9].

70

Section 4.1. Ideals in shape position

4.1.2 Deterministic algorithm to compute Gröbner basis of radical of the

ideal

As already explained in Remarks 4.1.1, the classical Wiedemann algorithm is a prob-

abilistic one. For a vector chosen at random, it may only return a proper factor F̃1

of the polynomial F1, i.e., F̃1|F1 but F̃1 6= F1. In fact, the deterministic Wiedemann

algorithm can be applied to obtain the univariate polynomial F1, then one knows for

sure whether a is in shape position or not. The main difficulty is to compute the

other polynomials F2, . . . , Fn in a deterministic way.

In the following we present an algorithm to compute the Gröbner basis of the

radical of the ideal a. Indeed, in most applications, only the zeros of a polynomial

system are of interest and we do not need to keep their multiplicities. Hence it is also

important to design an efficient method to perform the change of ordering of Gröbner

basis of an ideal a in a way that the output is the Gröbner basis of
√
a.

Deterministic version of the Wiedemann algorithm

The way how this deterministic variant of the Wiedemann algorithm proceeds is first

recalled. Instead of a randomly chosen vector in the classical Wiedemann algorithm,

in the deterministic version all the vectors of the canonical basis of K(D×1)

e1 = (1, 0, . . . , 0)t, e2 = (0, 1, 0, . . . , 0)t, . . . , eD = (0, . . . , 0, 1)t

are used. One first computes the minimal polynomial F1,1 of the linearly recurring

sequence

[〈e1, T
j
1e〉 : j = 0, . . . , 2D − 1]. (4.4)

Suppose d1 = deg(F1,1), and b1 = F1,1(T1)e. If b1 = 0, one has F1,1 = F1 and the

algorithm ends; else it is not hard to see that the minimal polynomial F1,2 of the

sequence

[〈e2, T
j
1b1〉 : j = 0, . . . , 2(D − d1)− 1]

is indeed a factor of F1/F1,1, a polynomial of degree ≤ D − d1 (that is why only

the first 2(D − d1) terms are enough in the above sequence). Next, one computes

b2 = F1,1F1,2(T)e and checks whether b2 = 0. If not, the above procedure is repeated

and so on. This method ends with r (≤ D) rounds and one finds F1 = F1,1 · · ·F1,r.

71

CHAPTER 4. Sparse FGLM algorithms

Deterministic algorithm description

First we study the general case when a factor of F1 is found. Suppose that a vector

w ∈ K(D×1) is chosen to construct the linearly recurring sequence

[〈w, T i
1e〉 : i = 0, . . . , 2D − 1], (4.5)

and the minimal polynomial of this sequence is F̃1, a proper factor of F1 of degree

d. We show how to recover the Gröbner basis of a+ 〈F̃1〉 w.r.t. LEX. Since the ideal

a is in shape position, it is not hard to see that the ideal a + 〈F̃1〉 is also in shape

position, and its Gröbner basis w.r.t. LEX is indeed [F̃1, x2 − F̃2, . . . , xn − F̃n], where

F̃i is the remainder of Fi modulo F̃1 for i = 2, . . . , n.

Now for each i, we can construct the linear system similar to (4.3)

〈w, T j
1Tie〉 =

d−1
∑

k=0

yk · 〈w, T k+j
1 e〉, j = 0, . . . , d− 1, (4.6)

where y0, . . . , yd−1 are the unknowns. As the d×d Hankel matrix of (4.5) is invertible

by Theorem 4.1.1, there is a unique solution ci,0, ci,1, . . . , ci,d−1 for (4.6). Next we

will connect this solution and a polynomial in the Gröbner basis of a+ 〈F̃1〉, and the

following lemma is useful to show this connection.

Lemma 4.1.3. Suppose F̃1 is the minimal polynomial of (4.5) for some w ∈ K(D×1),

T̃1 the multiplication matrix of x1 of the ideal a+〈F̃1〉 w.r.t. <1, and ẽ = (1, 0, . . . , 0) ∈
K(d×1) the coordinate vector of 1 in K[x]/(a + 〈F̃1〉). Then F̃1 is also the minimal

polynomial of [ẽ, T̃1ẽ, T̃
2
1 ẽ, . . .].

Proof. Suppose F̃1 = xd
1 +
∑d−1

k=0 akx
k
1 . Then according to the FGLM criteria, for the

ideal a+ 〈F̃1〉,

T̃ d
1 e =

d−1
∑

k=0

akT̃
k
1 e

is the first linear dependency of the vectors ẽ, T̃1ẽ, T̃
2
1 ẽ, . . . when one checks the vec-

tor sequence [ẽ, T̃1ẽ, T̃
2
1 ẽ, . . .]. That is to say, F̃1 is also the minimal polynomial of

[ẽ, T̃1ẽ, T̃
2
1 ẽ, . . .]. �

Proposition 4.1.4. Suppose that w ∈ K(D×1) is such a vector that a proper factor

F̃1 of F1 of degree d < D is found from the linearly recurring sequence (4.5). Then

72

Section 4.1. Ideals in shape position

for each i = 2, . . . , n, the polynomial xi −
∑d−1

k=0 ci,kx
k
1, where ci,0, ci,1, . . . , ci,d−1 is the

unique solution of (4.6), is in the Gröbner basis of a+ 〈F̃1〉 w.r.t. LEX.

Proof. Let T̃1, . . . , T̃d be the multiplication matrices of the ideal a+ 〈F̃1〉 w.r.t. <1.

For each i = 2, . . . , n, suppose that xi −
∑d−1

k=0 c̃i,kx
k
1 is the corresponding polyno-

mial in the Gröbner basis of a + 〈F̃1〉 w.r.t. LEX. Then T̃iẽ =
∑d−1

k=0 c̃i,kT̃
k
1 ẽ holds,

and for any vector w̃ ∈ K(d×1), we have

〈w̃, T̃ j
1 T̃iẽ〉 =

d−1
∑

k=0

c̃i,k · 〈w̃, T̃ k+j
1 ẽ〉, j = 0, . . . , d− 1.

As long as w̃ is chosen such that the coefficient matrix is invertible, the coefficients

c̃i,0, c̃i,1, . . . , c̃i,d−1 will be the unique solution of the linear equation set

〈w̃, T̃ j
1 T̃iẽ〉 =

d−1
∑

k=0

yk · 〈w̃, T̃ k+j
1 ẽ〉, j = 0, . . . , d− 1. (4.7)

Therefore, to prove the correctness of the proposition, it suffices to show that

there exists w̃ ∈ K(d×1) such that the coefficient matrix of (4.7) is invertible, and that

the two linear equation sets (4.6) and (4.7) share the same solution. In particular, we

will prove (4.6) and (4.7) are the same themselves for some w̃.

To prove that, we need to show the two Hankel matrices and the vectors in the

left hands of (4.6) and (4.7) are the same. That is, for some vector w̃

(i) 〈w, T j
1e〉 = 〈w̃, T̃ j

1 ẽ〉, for j = 0, . . . , 2d− 2;

(ii) 〈w, T j
1Tie〉 = 〈w̃, T̃ j

1 T̃iẽ〉, for j = 0, . . . , d− 1.

Next we will prove these two arguments respectively.

(i) We take the first d equations in (i)

〈w, T j
1e〉 = 〈w̃, T̃ j

1 ẽ〉, j = 0, . . . , d− 1.

As the vectors ẽ, T̃1ẽ, . . . , T̃
d−1
1 ẽ are linearly independent, the above linear equation

set has a unique solution w for the unknown w̃. From Lemma 4.1.3, the vector

sequence [ẽ, T̃1ẽ, T̃
2
1 ẽ, . . .] and the sequence (4.5) share the same minimal polynomial

F̃1 of degree d. Thus there exist a0, . . . , ad−1 ∈ K such that

T̃ d
1 ẽ =

d−1
∑

k=0

akT̃
k
1 ẽ, 〈w, T d

1 e〉 =
d−1
∑

k=0

ak〈w, T k
1 e〉.

73

CHAPTER 4. Sparse FGLM algorithms

Hence

〈w, T̃ d
1 ẽ〉 = 〈w,

d−1
∑

k=0

akT̃
k
1 ẽ〉 =

d−1
∑

k=0

ak〈w, T̃ k
1 ẽ〉 =

d−1
∑

k=0

ak〈w, T k
1 e〉 = 〈w, T d

1 e〉.

Other equalities in (i) for j = d+1, . . . , 2d−2 can also be proved similarly. Actually,

the equality 〈w, T j
1e〉 = 〈w0, T̃

j
1 ẽ〉 holds for any j = 0, 1,

(ii) Since there is a polynomial xi −
∑D−1

k=0 a′kx
k
1 in the Gröbner basis of a w.r.t.

LEX, where a′0, . . . , a
′
D−1 ∈ K, we know Tie =

∑D−1
k=0 a′kT

k
1 e. Then on one hand, for

the vector w and any i = 0, . . . , d− 1, we have

〈w, T j
1Tie〉 =

D−1
∑

k=0

a′k〈w, T k+j
1 e〉.

On the other hand, as xi −
∑D−1

k=0 a′kx
k
1 ∈ a, we have xi −

∑D−1
k=0 a′kx

k
1 ∈ a+ 〈f̃1〉, and

thus T̃iẽ =
∑D−1

k=0 a′kT̃
k
1 ẽ. Therefore for the vector w and any j = 0, . . . , d− 1,

〈w, T̃ j
1 T̃iẽ〉 =

D−1
∑

k=0

a′k〈w, T̃ k+j
1 ẽ〉 =

D−1
∑

k=0

a′k〈w, T k+j
1 e〉 = 〈w, T j

1Tie〉.

This ends the proof. �

Now let us return to the special case of the deterministic Wiedemann algorithm,

where unit vectors are used to find F1 = F1,1 · · ·F1,r with r ≤ D and deg(F1,i) = di.

Suppose deg(F1) = D so the ideal a is verified in shape position. In the ith step of the

algorithm, the unit vector ei is applied to construct the linearly recurring sequence

[〈ei, T
j
1bi−1〉 : j = 0, . . . , 2(D −

i−1
∏

k=1

dk)− 1],

where bi−1 =
∏i−1

k=1 F1,k(T1)e. With this sequence the factor F1,i is computed. As the

above sequence is the same as

[〈(
i−1
∏

k=1

F1,k(T1))
tei, T

j
1e〉 : j = 0, . . . , 2(D −

i−1
∏

k=1

dk)− 1],

from Proposition 4.1.4 we can recover efficiently the Gröbner basis of a+ 〈F1,i〉 w.r.t.
LEX by constructing and solving linear equation sets with Hankel coefficient matrices.

So we have at hands the factorization F1 = F1,1 · · ·F1,r, together with the Gröbner

basis of a+ 〈F1,i〉 w.r.t. LEX for i = 1, . . . , r. Suppose that the Gröbner basis for i is

Pi = [F1,i, x2 − F2,i, . . . , xn − Fn,i]. (4.8)

74

Section 4.1. Ideals in shape position

Then to recover the polynomials Fj in (4.1) for j = 2, . . . , n, we have the following

modulo equation set constructed from P1, . . . ,Pr:



















Fj ≡ Fj,1 mod F1,1

· · ·
Fj ≡ Fj,r mod F1,r

. (4.9)

Now it is natural to give a try of the Chinese Remainder Theorem (Theorem 3.1.13).

To use the CRT, we have to check first whether F1,1, . . . , F1,r are pairwise coprime.

One simple case is when F1 is squarefree, or in other words the input ideal a is radical

itself. In that case, the direct application of CRT will lead to the Gröbner basis G of

a w.r.t. LEX, and the change of ordering ends.

When the polynomial F1 is not squarefree, the CRT does not apply directly. In

this case, the Gröbner basis of
√
a w.r.t. LEX is our aim. Before the study on how to

recover this Gröbner basis, we first make clear how a polynomial set of form (4.1) can

be split to a series of polynomial sets with a certain zero relation according to some

factorization of F1. The following proposition is a direct result of [91, Proposition

5(i)], and it is actually a splitting technique commonly used in the theory of triangular

sets [159].

Proposition 4.1.5. Let T ⊂ K[x] be a polynomial set in the form

[R1(x1), x2 −R2(x1), . . . , xn −Rn(x1)],

and R1 = R1,1 · · ·R1,r. For i = 1, . . . , r, define

T (i) = [R1,i, x2 − R2,i, . . . , xn − Rn,i],

where Rj,i is the remainder of Rj modulo R1,i for j = 2, . . . , n. Then we have the

following zero relation

Zero(T) =
r
⋃

i=1

Zero(T (i)). (4.10)

Let F 1 be the squarefree part of F1. As each Pi in (4.8) satisfies the form in Propo-

sition 4.1.5, we can compute t new polynomial sets P j whose univariate polynomials

in x1 is F 1,j for j = 1, . . . , t, such that F 1 =
∏t

j=1 F 1,j, and F 1,j are pairwise coprime.

75

CHAPTER 4. Sparse FGLM algorithms

These new polynomial sets can be found in the following way. Set P = F 1. We start

with j = 1 and computes F 1,j = gcd(F1,j , P). As long as this polynomial is not equal

to 1, a new polynomial set Pj whose univariate polynomial is F 1,j is constructed from

Pj by Proposition 4.1.5. Next set P := P/F 1,j and check whether P = 1. If so, we

know we already have enough new polynomial sets; otherwise j := j + 1, and the

process above is repeated.

Now we reduce the current case to the earlier one with F 1 squarefree and P1, . . . ,P t

to construct the modulo equation sets. Thus the Gröbner basis of
√
a w.r.t. LEX can

be obtained similarly (note that extracting the squarefree part of F1 results in the

radical of a).

The whole method based on the deterministic Wiedemann algorithm is summa-

rized in Algorithm 11 below. The subfunction Sqrfree() returns the squarefree part

of the input polynomial. The operator “cat” means concatenating two sequences.

76

Section 4.1. Ideals in shape position

Algorithm 11: Shape position (deterministic) G2 := ShapeDet(G1, <1)

Input: G1, Gröbner basis of a zero-dimensional ideal a ⊂ K[x] w.r.t. <1

Output: G2, Gröbner basis of
√
a w.r.t. LEX if a is in shape position; Fail,

otherwise.

Compute the canonical basis of K[x]/〈G1〉 and multiplication matrices11.1

T1, . . . , Tn;

e1 = (1, 0, . . . , 0)t,e2 = (0, 1, 0, . . . , 0)t, . . . ,eD = (0, . . . , 0, 1)t ∈ K(D×1);11.2

k := 1; F := []; F ; = 1; d := 0; b = e1; S = [];11.3

while b 6= 0 do11.4

s := [〈ek, T i
1b〉 : i = 0, 1, . . . , 2(n − d)− 1];11.5

G := BerlekampMassey(s);11.6

F := F ·G; d := deg(F); F := F cat [G]; b := g(T1)b; S := S cat [s];11.7

k := k + 1;11.8

end11.9

(Suppose F = [F1,1, . . . , F1,r]) F1 :=
∏r

i=1 F1,i;11.10

if deg(F1) 6= D then11.11

return Fail11.12

else11.13

for i = 1, . . . , r do11.14

di := deg(F1,i);11.15

for j = 2, . . . , n do11.16

Construct the Hankel matrix Hj and the vector b from S;11.17

Compute c = (c1, . . . , cdi)
t := H−1

j b; fi,j :=
∑di

k=0 ck+1x
k
1 ;11.18

end11.19

end11.20

F 1 := Sqrfree(F1);11.21

if F 1 6= F1 then11.22

Compute {[F 1,j , x2 − F 2,j, . . . , xn − Fn,j] : j = 1, . . . , t} from11.23

{[F1,i, x2 − F2,i, . . . , xn − Fn,i] : i = 1, . . . , r} by Proposition 4.1.5 such

that F 1 =
∏t

j=1 F 1,j and F 1,j are pairwise coprime;

end11.24

for j = 2, . . . , n do11.25

Solve the modulo equation set (4.9) to get Fj ;11.26

end11.27

return [F 1, x2 − F2, . . . , xn − Fn]11.28

end11.29 77

CHAPTER 4. Sparse FGLM algorithms

Remark 4.1.2. If the factors F1,1, . . . , F1,r of F1 returned by the deterministic Wiede-

mann algorithm are pairwise coprime (which needs extra computation to test), the

Gröbner basis of a w.r.t. LEX can be computed from the CRT.

The method of the deterministic version described above is also applicable to the

Wiedemann algorithm with several random vectors. To be precise, when the first

random vector does not return the correct polynomial F1, one may perform a similar

procedure as the deterministic Wiedemann algorithm by updating the sequence with a

newly chosen random vector (instead of ei in the basis) and repeating [162]. In that

case, the method above with CRT can also be used to compute the Gröbner basis of
√
a w.r.t. LEX.

Complexity

Next the computational complexity, namely the number of field operations needed,

for the deterministic method for ideals in shape position is analyzed.

(1) In total the deterministic Wiedemann algorithm needs

O(D(N1 +D log(D) log log(D)))

operations if fast polynomial multiplications are used [162]. Here N1 still denotes the

number of nonzero entries in T1.

(2) Next at mostD structured linear equation sets with Hankel coefficient matrices

are constructed and solved, each with maximum operations O(D log(D)2). Hence this

procedure needs O(D2 log(D)2) operations at most.

(3) The squarefree part F 1 of F1 can be obtained with complexity at most O(D2 log(D))

for the case when K has characteristic 0 and O(D2 log(D) +D log(q/p)) for charac-

teristic p > 0 respectively, where |K| = q [153, Theorem 14.20 and Exercise 14.30].

For the case when f1 is not squarefree, suppose t new polynomial sets P1, . . . ,Pt are

needed, and deg(F 1,i) = di for i = 1, . . . , t. To compute each set P i of the form

(4.1), n− 1 polynomial divisions are needed to find the remainders, with complexity

O(ndiD). Hence the total complexity to obtain P1, . . . ,P t is

O(

t
∑

i=1

ndiD) = O(nD

t
∑

i=1

di) ≤ O(nD2),

78

Section 4.1. Ideals in shape position

for we have
∑t

i=1 di = deg(F 1) < D.

(4) Solving the modulo equation set (4.9) for each j = 2, . . . , n requires O(D2)

operations at most by [153, Theorem 5.7]. Thus in total O(nD2) operations are

needed for the CRT application.

Therefore, we have the following complexity result for the method with the deter-

ministic Wiedemann algorithm.

Theorem 4.1.6. Assume that T1 is known. If the input ideal a is in shape position,

then this deterministic method will return the Gröbner basis of
√
a w.r.t. LEX with

the complexity

O(D(N1 +D log(D)2 + nD +R)),

where R = 0 if K has characteristic 0 and R = log(q/p) if K has characteristic p > 0

and |K| = q.

Illustrative example

Here is a toy example to illustrate how the deterministic method works. Consider an

ideal a in F2[x1, x2] generated by its Gröbner basis w.r.t. DRL

G1 := [x2x
3
1 + x3

1 + x1 + 1, x4
1 + x3

1 + x2 + 1, x2
1 + x2

2].

Its LEX Gröbner basis is

G2 = [F1 := (x1 + 1)3(x2
1 + x1 + 1)2, x2 + x4

1 + x3
1 + 1],

from which one can see that a is in shape position.

From G1 the canonical basis B = [1, x1, x2, x
2
1, x1x2, x

3
1, x

2
1x2] and the multiplica-

tion matrices T1 and T2 are first computed. With a vector r = (1, 1, 0, 1, 0, 1, 0)t ∈
F
(7×1)
2 generated at random, the classical Wiedemann algorithm will only return a

proper factor (x1 + 1)(x2
1 + x1 + 1) of F1, and whether a is in shape position is

unknown.

Next we use the deterministic Wiedemann algorithm to recover F1. With e1 =

(1, 0, . . . , 0)t, a factor F1,1 = (x1+1)2(x2
1+x1+1) of F1 is found with the Berlekamp–

Massey applied to the sequence (4.4). Then we update the vector

b = F1,1(T1)e = (0, 1, 1, 0, 0, 0, 0)t,

79

CHAPTER 4. Sparse FGLM algorithms

and execute the second round with e2 = (0, 1, 0, . . . , 0)t, obtaining another factor

F1,2 = (x1+1)(x2
1+x1+1). This time the updated vector b = 0, thus the deterministic

Wiedemann algorithm ends, and F1 is computed as F1,1F1,2. As deg(F1,1F1,2) = D,

now a is verified to be in shape position.

Then we construct the linear equation sets similar to (4.3) to recover F2,1 and F2,2

respectively. The first one, for example, is














1 0 0 0

0 0 0 1

0 0 1 1

0 1 1 1















·















c0

c1

c2

c3















=















0

0

0

1















.

After solving them, we have the Gröbner bases of a+〈F1,1〉 and a+〈F1,2〉 respectively
as

P1 = [(x1 + 1)2(x2
1 + x1 + 1), x2 + x1],

P2 = [(x1 + 1)(x2
1 + x1 + 1), x2 + x1].

Then the squarefree part F 1 of F1 is computed, and we find that a is not radical,

and thus only the Gröbner basis G̃2 of
√
a w.r.t. LEX may be computed. From

F1,2 = F 1, we directly have G̃2 = P2, and the algorithm ends.

The way to compute G̃2 by CRT, which is more general, is also shown in the

following. Two new polynomial sets

P1 = [x1 + 1, x2 + 1], P2 = [x2
1 + x1 + 1, x2 + x1]

are first computed and selected according to F 1 by Proposition 4.1.5. Then the

modulo equation set






F2 ≡ x2 + 1 mod x1 + 1,

F2 ≡ x2 + x1 mod x2
1 + x1 + 1

as (4.9) is solved with CRT, resulting in the same G̃2. One can check that G̃2 is the

Gröbner basis of
√
a w.r.t. LEX with any Computer Algebra system.

4.1.3 Incremental algorithm to compute the univariate polynomial

For a zero-dimensional ideal a ⊂ K[x], the univariate polynomial in its Gröbner basis

w.r.t. LEX is of special importance. For instance, it may be the only polynomial

80

Section 4.2. General ideals

needed to solve some practical problems. Furthermore, in the case when K is a finite

field, after the univariate polynomial is obtained, it will not be hard to compute all its

roots, for one can simplify the original polynomial system by substituting the roots

back, and sometimes the new system will become quite easy to solve.

Besides the two methods in the previous parts, next the well-known incremen-

tal Wiedemann algorithm dedicated to computation of the univariate polynomial is

briefly recalled and discussed.

In the Wiedemann algorithm, the dominant part of its complexity comes from

construction of the linearly recurring sequence (O(DN1)), while the complexity of the

Berlekamp–Massey algorithm is relatively low (O(D log(D))). Hence the idea of the

incremental method is to construct the sequence incrementally to save computation

and apply the Berlekamp–Massey algorithm to each incremental step.

We start with the linearly recurring sequence [〈r, T i
1e〉 : i = 0, 1] and compute its

minimal polynomial with the Berlekamp–Massey algorithm. Next we proceed step

by step with the sequence

[〈r, T i
1e〉 : i = 0, . . . , 2k − 1]

until the returned polynomial coincides with the one in the previous step. Then this

minimal polynomial equals the univariate polynomial F we want to compute with a

large probability.

Suppose deg(F) = d. Then the number of steps the method takes is bounded by

d + 1. In other words, the method stops at most after the sequence [〈r, T i
1e〉 : i =

0, . . . , 2d+ 1] is handled. The number of field operations to construct the sequences

is O(dN1), while the total complexity to compute the minimal polynomials with the

Berlekamp–Massey algorithm is O(
∑d+1

k=1 k
2) = O(d3) (note that in the incremen-

tal case, the fast Berlekamp–Massey with complexity O(k log(k)) is not applicable).

Therefore the overall complexity for the incremental Wiedemann method to compute

the univariate polynomial is O(dN1 + d3). As can be seen here from this complexity,

this incremental method is sensitive to the output polynomial F . When the degree d

is relatively small compared with D, this method will be useful.

81

CHAPTER 4. Sparse FGLM algorithms

4.2 General ideals

In the general case when the ideal a may not be in shape position, perhaps those

methods described in Section 4.1 will not be applicable. However, we still want

to follow the idea of constructing linearly recurring sequences and computing their

minimal polynomials with the Berlekamp–Massey algorithm. The way to do so is to

generalize the linearly recurring sequence to a multi-dimensional linearly recurring

relation and apply the BMS algorithm to find its minimal generating set.

4.2.1 Algorithm description

We first define an n-dimensional mapping E : Zn
≥0 −→ K as

(s1, . . . , sn) 7−→ 〈r, T s1
1 · · ·T sn

n e〉, (4.11)

where r ∈ K(D×1) is a random vector. One can easily see that such a mapping is

an n-dimensional generalization of the linearly recurring sequence constructed in the

Wiedemann algorithm.

Note that T s1
1 · · ·T sn

n e in the definition of E above is the coordinate vector of

(s1, . . . , sn) in the FGLM algorithm. As a polynomial F in the Gröbner basis of a is of

form (1.3), and the linear dependency (1.3) holds, one can verify that F satisfies (3.1)

and thus is a polynomial in I(E). The BMS algorithm is precisely the one to compute

the Gröbner basis of I(E) w.r.t. to a term ordering, so one may first construct the

mapping E via T1, . . . , Tn, and attempts to compute the Gröbner basis of a from the

BMS algorithm applied to I(E).

We remark that F is in I(E) for any vector r. In fact, the idea above is a multi-

dimensional generalization of the Wiedemann algorithm. The minimal polynomial G

of the Krylov sequence [b, Ab, A2b, . . .] is what the Wiedemann algorithm seeks, for

G directly leads to a solution of the linear equation Ax = b for a nonsingular matrix

A and vector b. Then a random vector is chosen to convert the sequence to a scalar

one

[〈r, b〉, 〈r, Ab〉, 〈r, A2b〉, . . .],

and the Berlekmap–Massey algorithm is applied to find the minimal polynomial of

this new sequence, in the hope that G can be obtained. While the method proposed

82

Section 4.2. General ideals

here converts the mapping from (s1, . . . , sn) to its coordinate vector in the FGLM to

a n-dimensional scalar mapping with a random vector, and then the BMS algorithm

(generalization of Berlekamp–Massey) is applied to find the minimal polynomial set,

which is also the Gröbner basis, w.r.t. to a term ordering.

This method for computing the Gröbner basis of a makes full use of the sparsity

of T1, . . . , Tn in the same way as how the Wiedemann algorithm takes advantage of

the sparsity of A. The method is a probabilistic one, also the same as the Wiedemann

algorithm. This is reasonable for the ideal I(E) derived from the n-dimensional map-

ping may lose information of a because of the random vector, with a ⊂ I(E). Clearly,

when a is maximal (corresponding to the case when G in the Wiedemann algorithm

is irreducible), I(E) will be equal to a. Furthermore, as polynomials in the Gröbner

basis are characterized by the linear dependency in (1.3), we are always able to check

whether the Gröbner basis of I(E) returned by the BMS algorithm is that of a.

Remark 4.2.1. When the term ordering in the BMS algorithm is LEX, computation

of the univariate polynomial in this method is exactly the same as that described in

Section 4.1.1. This is true because for the LEX ordering (x1 < · · · < xn), the terms

are ordered as

[1, x1, x
2
1, . . . , x2, x1x2, x

2
1x2, . . .],

hence the first part of E is E((p1, 0, . . . , 0)) = 〈r, T p1
1 e〉, and the BMS algorithm

degenerates to the Berlekamp–Massey one.

Another fact we would like to mention is that the BMS algorithm from Coding

Theory is mainly designed for graded term orderings like DRL, for such orderings

are Archimedean and have good properties to use in algebraic decoding [36]. But it

also works for other orderings, though extra techniques not contained in the original

literature have to be introduced for orderings dependent on LEX (like LEX itself or

block orderings which break ties with LEX).

Take the term ordering LEX for instance, an extra polynomial reduction is per-

formed after every BMSUpdate() step (Algorithm 9) to control the size of intermediate

polynomials. This is actually not a problem for orderings like DRL, for in that case

the leading term of a polynomial will give a bound on the size of terms in that polyno-

mial. We also have to add an extra termination check for each variable xi, otherwise

83

CHAPTER 4. Sparse FGLM algorithms

the BMS algorithm will endlessly follow a certain part of the terms. For example,

all variables in the sequence [1, x1, x
2
1, . . .] are smaller than x2, and the original BMS

does not stop handling that infinite sequence by itself.

With all the discussions, the algorithm is formulated as follows. The “Termination

Criteria” here in this description mean that F does not change for a certain number

of iterations. The subfunction Reduce(F) performs reduction on F so that every

polynomial F ∈ F is reduced w.r.t. F \ {F}, and IsGB(F) returns true if F is the

Gröbner basis of a w.r.t. LEX and false otherwise.

Algorithm 12: General case G2 := BMSbased(G1, <1)

Input: G1, Gröbner basis of a zero-dimensional ideal a ⊂ K[x] w.r.t. <1

Output: Gröbner basis of a w.r.t. <2; or Fail, if the BMS algorithm fails

returning the correct Gröbner basis

Compute the canonical basis of K[x]/〈G1〉 and multiplication matrices12.1

T1, . . . , Tn;

Choose r ∈ K(D×1) at random;12.2

u := 0; F := [1]; G := []; E := [];12.3

repeat12.4

e := 〈r, Tu1

1 · · ·Tun
n e〉, E := E cat [e];12.5

F ,G := BMSUpdate(F ,G,u,E);12.6

u := Next(u) w.r.t. <2;12.7

F := Reduce(F);12.8

until Termination Criteria ;12.9

if IsGB(F) then12.10

return F12.11

else12.12

return Fail12.13

end12.14

The correctness of Algorithm 12 is obvious. Next we prove its termination. Once

the loop ends, the algorithm almost finishes. Hence we shall prove the termination

of this loop. Clearly when the polynomial set F the BMS algorithm maintains turns

to the Gröbner basis of I(E) w.r.t. <2, the current termination criterion, namely F
keeps unchanged for a certain number of passes, will be satisfied. And a sufficient

condition for F being the Gröbner basis is given as Theorem 4.2.4 below.

84

Section 4.2. General ideals

4.2.2 Complexity

Part of earlier computation of values of E can be recorded to simplify the computation

at Line 12.5. Suppose that the value of E at a certain term (u1, u2, . . . , ui−1, ui −
1, ui+1, . . . , un)

ẽ = Tu1

1 · · ·Tui−1
i · · ·Tun

n e

has been computed and recorded. Then we know the value at u = (u1, . . . , un) is

〈r, Tu1

1 · · ·Tun

n e〉 = 〈r, Tiẽ〉,

for all Ti and Tj commute. Thus the computation of one value of E can be achieved

within O(N) operations, where N is the maximal number of nonzero entries in ma-

trices T1, . . . , Tn.

Next we focus on the case when the target term ordering is LEX. The complexities

of the three steps in Algorithm 9 are analyzed below.

(1) As an extra reduction step is applied after each iteration, the numbers of terms

of polynomials in F are bounded by D+1. Denote by N̂ the number of polynomials

in G2. Then checking whether F is valid up to Next(u) needs O(N̂D) operations.

(2) The computation of the new delta set ∆(Next(u)) only involves integer com-

putations, and thus no field operation is needed.

(3) Constructing the new polynomial set F+ valid up to Next(u) requires O(N̂D)

operations at most. The readers may refer to [137, 36] for the way to construct new

polynomials.

In step (1) above, new values of E other than e may be needed for the verification.

The complexity for computing them is still O(N), and this is another difference from

the original BMS algorithm for graded term orderings. After the update is complete,

a polynomial reduction is applied to F to control the size of every polynomial. This

requires O(N̂N̄D) operations, where N̄ denotes the maximum term number of poly-

nomials in G2. To summarize, the total operations needed in each pass of the main

loop in Algorithm 12 is

O(N + N̂D + N̂N̄D) = O(N + N̂N̄D).

Hence to estimate the whole complexity of the method, we only need an upper bound

for the number of passes it takes in the main loop.

85

CHAPTER 4. Sparse FGLM algorithms

Theorem 4.2.1. Suppose that the input ideal a ⊂ K[x] is of degree D. Then the

number of passes of the loop in Algorithm 12 is bounded by 2nD.

Before giving the proof, we need to introduce some of the proven results on the

BMS algorithm for preparations. Refer to [17, 36] for more details.

Denote the previous term of u w.r.t. < by Pre(u). Given an n-dimensional array

E, suppose now a polynomial F ∈ K[x] is valid for E up to Pre(u) but not to u.

Then the term u− lt(F) is called the span of F and denoted by Span(F), while the

term u is called the fail of F and written as Fail(F). When F ∈ I(E), F is valid up

to every term, and in this case we define Span(F) := ∞. The following proposition

reveals the importance of spans.

Proposition 4.2.2 ([17, Corollary 9]). ∆(E) = {Span(F) : F 6∈ I(E)}.

Define I(u) := {F ∈ K[x] : Fail(F) > u}. Such a set is not an ideal but is closed

under monomial multiplication: supposing that F ∈ I(u), we have tF ∈ I(u) for

every term t ∈ K[x].

Proposition 4.2.3 ([17, Proposition 6]). For each u, ∆(u) = {Span(F) : F 6∈
a(u)}. Furthermore, v ∈ ∆(u) \ ∆(Pre(u)) if and only if v ≺ u and u − v ∈
∆(u) \∆(Pre(u)).

The above proposition states when a term in ∆(E) is determined, and it is going

to be used extensively in the sequel. Also from this proposition, one can derive the

following termination criteria for the BMS algorithm, which are mainly designed for

graded term orderings like DRL.

Theorem 4.2.4 ([36, pp.529, Proposition (3.12)]). Let cmax be the largest el-

ement of ∆(E) and smax be the largest element of {lt(G) : G ∈ G}, where G is the

Gröbner basis of I(E) w.r.t. <.

(1) For all u ≥ cmax + cmax, ∆(u) = ∆(E) holds.

(2) For all v ≥ cmax + max{cmax, smax}, the polynomial set F the BMS algorithm

maintains equals G.

86

Section 4.2. General ideals

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

Terms needed
Delta set

x1

x2

Figure 4.1: Delta set and terms needed for Cyclic5-2

As explained in Section 4.2.1, actually the term ordering LEX is not the one

of interest in Coding Theory and does not possess some properties needed for a

good order domain. But the results stated above are still correct. In particular,

Theorem 4.2.4 indicates when the iteration in the BMS algorithm ends. For graded

term orderings like DRL, once the termination term is fixed, the whole intermediate

procedure in the BMS algorithm is also determined. However, for LEX it is not the

case. We have to study carefully what happens between the starting term 1 and the

termination term indicated by Theorem 4.2.4.

Next we first illustrate the procedure for a 2-dimensional example derived from

Cyclic5. Both the delta set (marked with crosses) and the terms handled by the BMS

algorithm (with diamonds) are shown in Figure 4.1.

The cmax and smax in Theorem 4.2.4 are respectively (4, 6) and (0, 7). In fact,

the BMS algorithm obtains the whole delta set at (8, 12) = cmax + cmax, and the

polynomial set it maintains grows to the Gröbner basis at (4, 13) = cmax + smax,

which is also where the algorithm ends.

Next we go into some details of what happens when a diamond row is handled by

the BMS algorithm. We call a diamond (or cross) row the jth diamond (or cross) row

if terms in this row are (i, j). Then for the 0th diamond row, the BMS algorithm de-

generates to the Berlekamp–Massey one to compute the univariate polynomial F1(x1).

Here 30 diamond terms are needed because the minimal polynomial is of degree 15.

For other rows in Figure 4.1, from Proposition 4.2.3, one knows that at a jth

87

CHAPTER 4. Sparse FGLM algorithms

diamond rows with an odd j, the delta set does not change. Thus such diamond rows

are only bounded by the latest verified row in the delta set. This is because otherwise

a wrong term in the delta set will be added if other diamond terms are handled. For

example, the 3rd diamond row is of the same length as the 1st cross row, while the

5th diamond row is as that of the 2nd cross one.

For a 2kth diamond row, its number is related to two criteria. On one hand, again

from Proposition 4.2.3, the kth cross row is determined while the 2kth diamond row

is handled in the BMS algorithm. Denote by cmax(k) the largest term in the kth cross

row, then terms up to cmax(k)+ cmax(k) in the 2kth diamond row have to be handled

to furnish the kth cross row. On the other hand, the number of 2kth diamond row

is also bounded by the latest verified cross row, as the odd diamond ones. The first

criterion is shown by the 6th diamond and the 3rd cross rows, while the 4th diamond

row is the result of both criteria.

For a term u = (u1, . . . , ui, 0, . . . , 0) ∈ K[x1, . . . , xi], in the proof below we write

it as u = (u1, . . . , ui) for simplicity, ignoring the last n − i zero components in the

terms.

Proof. (of Theorem 4.2.1) Suppose G is the Gröbner basis of I(E) the BMS algorithm

computes. Denote the number of terms needed in the BMS algorithm to compute

G ∩ K[x1, . . . , xi] by χi, and ∆i := ∆(E) ∩ K[x1, . . . , xi]. From a ⊆ I(E) one knows

that ∆(E) is a subset of the canonical basis of K[x]/a, thus |∆(E)| ≤ D. Therefore

to prove the theorem, it suffices to show 2n|∆(E)| is an upper bound.

We induce on the number of variable i of K[x1, . . . , xi]. For i = 1, the BMS

algorithm degenerates to the Berlekamp–Massey, and one can easily see that χ1 ≤
2|∆1| holds. Now suppose χk ≤ 2k|∆k| for k(< n). Next we prove χk+1 ≤ 2(k +

1)|∆k+1|.

As previously explained, in the terms to compute G ∩ K[x1, . . . , xk+1], the terms

(u1, . . . , uk, 2l) are determined by two factors: terms (v1, . . . , vk, l) in ∆k+1, and the

latest verified terms in the delta set. First we ignore those (u1, . . . , uk, 2l) terms

determined by the latter criterion, and denote by Tk+1 all the remaining ones in

K[x1, . . . , xk+1]. We claim that |Tk+1| is bounded by (2k + 1)|∆k+1|.

88

Section 4.2. General ideals

From Theorem 4.2.4, we can suppose there exists some integer m, such that

Tk+1 =
⋃

l=0,...,2m+1

Tk+1,l, ∆k+1 =
⋃

j=0,...,m

∆k+1,j, (4.12)

where

Tk+1,l := {u ∈ Tk+1 : u = (u1, . . . , uk, l)},
∆k+1,j := {u ∈ ∆k+1 : u = (u1, . . . , uk, j)}.

Clearly |Tk+1,0| = χk ≤ 2k|∆k|, and ∆k+1,0 = ∆k. One can see that |Tk+1,2j|
is bounded by either 2k|∆k| = 2k|∆k+1,0| (if j = 0) or 2|∆k+1,j| (≤ 2k|∆k+1,j|).
Furthermore, |Tk+1,2j+1| is bounded by |∆k+1,j|, the number of the latest verified

delta set. Hence we have

|Tk+1,2j|+ |Tk+1,2j+1| ≤ (2k + 1)|∆k+1,j|,

which leads to |Tk+1| ≤ (2k + 1)|∆k+1|.
Now we only need to show the number of all the previously ignored terms, denoted

by T ′
k+1, is bounded by |∆k+1|. Suppose T ′

k+1 =
⋃

i∈S T ′
k+1,i, where S is a set of indexes

with |S| ≤ m in (4.12), and

T ′
k+1,i := {u ∈ T ′

k+1 : u = (u1, . . . , uk, i)}.

Then for each i, |T ′
k+1,i| is bounded by the number of the latest verified delta set, say

|∆k+1,pi|. Thus the conclusion can be proved if one notices
⋃

i∈S ∆k+1,pi ⊆ ∆k+1. �

Theorem 4.2.5. Assume that T1, . . . , Tn are constructed. The complexity for Al-

gorithm 12 to complete the change of ordering is bounded by O(nD(N + N̂N̄D)),

where N is the maximal number of nonzero entries in the multiplication matrices

T1, . . . , Tn, and N̂ and N̄ are respectively the number of polynomials and the maximal

term number of all polynomials in the resulting Gröbner basis.

4.2.3 Illustrative example

Consider the ideal a ⊂ F65521[x1, x2] defined by its DRL Gröbner basis (x1 < x2)

G1 ={x4
2 + 2 x3

1x2 + 21 x3
2 + 11 x1x

2
2 + 4 x2

1x2 + 22 x3
1 + 9 x2

2 + 17 x1x2 + 19 x2
1+

2 x2 + 19 x1 + 5, x2
1x

2
2 + 10 x3

2 + 12 x2
1x2 + 20 x3

1 + 21, x4
1 + 15 x2

1 + 19 x1 + 3}.

89

CHAPTER 4. Sparse FGLM algorithms

Here F65521[x1, x2]/〈G1〉 is of dimension 12. Its basis, and further the multiplication

matrices T1 and T2, can be computed accordingly.

Now we want to compute the Gröbner basis G2 of a w.r.t. LEX. With a vector

r = (6757, 43420, 39830, 45356, 52762, 17712,

27676, 17194, 138, 48036, 12649, 11037)t ∈ F
(12×1)
65521

generated at random, the 2-dimensional mapping E is constructed. Then BMSUpdate()

is applied term by term according to the LEX ordering, with ∆(u) and the polyno-

mial set F valid up to u shown in Table 4.1. For example, at the term (4, 0), the

polynomial x2
1 + 62681 x1 + 41493 ∈ F is not valid up to (4, 0). Then the delta set is

updated as {(0, 0), (1, 0), (2, 0)}, and F is reconstructed such that the new polynomial

x3
1 + 62681 x2

1 + 35812 x1 + 18557 is valid up to (4, 0).

The first polynomial in G2:

G1 = x4
1 + 15 x2

1 + 19 x1 + 3

is obtained at the term (7, 0). Next BMSUpdate() is executed to compute other mem-

bers of I(E) according to the remaining term sequence [x2, x1x2, . . . , x
2
2, x

2
1x

2
2, . . . ,],

until the other polynomial in G2:

G2 = x3
2 + 7 x2

1x
2
2 + 15 x2

1x2 + 2 x3
1 + 9

is obtained at (3, 5). Now the main loop of Algorithm 12 ends. Then one can easily

verify that {G1, G2} ⊂ G2 and dim(F65521[x2, x1]/〈G1, G2〉) = 12, and thus G2 =

{G1, G2}.
Here is an example where this method fails. Let G = {x3

1, x
2
1x2, x1x

2
2, x

3
2} ⊂

F65521[x1, x2]. Then the ideal 〈G〉 is zero-dimensional with degree D = 6. It is easy to

see that G is Gröbner basis w.r.t. both DRL and LEX. Starting from G as a Gröbner

basis w.r.t. DRL, the method based on the BMS algorithm to compute the Gröbner

basis w.r.t. LEX will not be able to return the correct Gröbner basis, even the base

field itself is quite large and different random vectors r are tried.

4.2.4 Putting all methods together: top-level algorithm

In this section, we combine the algorithms presented in the previous parts of this

chapter as the following integrated top-level algorithm, which performs the change of

ordering of Gröbner bases to LEX.

90

Section 4.2. General ideals

Term u ∆(u) F : polynomial set valid up to u

(0, 0) (0, 0) x1, x2

(1, 0) —– x1 + 65437, x2

(2, 0) (0, 0), (1, 0) x2
1 + 65437 x1 + 21672, x2

(3, 0) —– x2
1 + 62681 x1 + 41493, x2

(4, 0) (0, 0), (1, 0), (2, 0) x3
1 + 62681 x2

1 + 35812 x1 + 18557, x2

(5, 0) —– x3
1 + 30688 x2

1 + 45566 x1 + 54643, x2

(6, 0) (0, 0), (1, 0), (2, 0), (3, 0) x4
1 + 30688 x3

1 + 20026 x2
1 + 45766 x1 + 5434, x2

(7, 0) —– g1, x2

(0, 1) —– g1, x2 + 65034 x3
1 + 24330 x2

1 + 14876 x1 + 52361
(1, 1) —– g1, x2 + 64550 x3

1 + 37707 x2
1 + 48745 x1 + 7628

(2, 1) —– g1, x2 + 38842 x3
1 + 5603 x2

1 + 45755 x1 + 44311
(3, 1) —– g1, x2 + 9449 x3

1 + 20826 x2
1 + 39078 x1 + 38885

(0, 2) (0, 0), (1, 0), (2, 0), (3, 0), (0, 1)
g1, x

2
2 + 38885 x2 + 65360 x3

1 + 1782 x2
1 + 36000 x1 + 39469

x2x1 + 20826 x3
1 + 28385 x2

1 + 55917 x1 + 37174
...

...
...

Table 4.1: Example for the BMS-based method

Algorithm 13: Top-level algorithm G2 := TopLevel(G1, <1)

Input: G1, Gröbner basis of a zero-dimensional ideal a ⊂ K[x] w.r.t. <1

Output: G2, Gröbner basis of a or
√
a w.r.t. LEX

G2 := ShapePro(G1, <1);13.1

if G2 6= Fail then13.2

return G213.3

else13.4

G2 := ShapeDet(G1, <1);13.5

if G2 6= Fail then13.6

return G213.7

else13.8

G2 := BMSbased(G1, <1);13.9

if G2 6= Fail then13.10

return G213.11

else13.12

return FGLM(G1, <1)13.13

end13.14

end13.15

end13.16

We would like to mention that to integrate these three algorithms, one needs to

skip some overlapped steps in the three algorithms, like computation of the canonical

basis and the multiplication matrices, and the choice of random vectors, etc. If one

91

CHAPTER 4. Sparse FGLM algorithms

does not seek for the Gröbner basis of
√
a, that is to say, the multiplicities of the

zeros are needed, then the deterministic invariant should be omitted.

Thanks to the feasibility in each algorithm to test whether the computed poly-

nomial set is the correct Gröbner basis, this top-level algorithm will automatically

select which algorithm to use according to the input, until the original FGLM one is

called if all these algorithms fail. It is also a deterministic algorithm, though both

the Wiedemann algorithm and the BMS-based method will introduce randomness and

probabilistic behaviors to the individual algorithms.

For an ideal in shape position, the probability for Algorithm 10 to compute the

correct Gröbner basis is the same as that of computing the correct minimal polynomial

in the Wiedemann algorithm for one choice of a random vector, which has been

analyzed in [162]. When Algorithm 10 fails, the one based on the deterministic

Wiedemann algorithm can tell us for sure whether the input ideal is in shape position,

and return the Gröbner basis of
√
a. However, the probability for the BMS-based

method to return the correct Gröbner basis is still unknown.

4.3 Multiplication matrices

In the previous description and complexity analyses of all the algorithms, the multipli-

cation matrices T1, . . . , Tn are assumed known. In this section, for generic polynomial

systems and the term ordering DRL, the multiplication matrix T1 is exploited, on its

sparsity and cost for construction. We are able to give an explicit formula to compute

the number of dense columns in T1, and we also analyze the asymptotic behavior of

this number, which further leads to a finer complexity analysis for the change of or-

dering for generic systems. The term ordering is preassigned as DRL in this section

without further notification.

4.3.1 Construction of multiplication matrices

Given the Gröbner basis G of a zero-dimensional ideal a w.r.t. DRL, letB = [ǫ1, . . . , ǫD]

be the canonical basis of K[x]/〈G〉, and L := {lt(G) : G ∈ G}. The three cases of the

multiplication ǫixj for the construction of the ith column of Tj in FGLM are reviewed

below [53].

92

Section 4.3. Multiplication matrices

(a) The term ǫixj is inB: the coordinate vector of nform(ǫixj) is (0, . . . , 0, 1, 0, . . . , 0)
t,

where the position of 1 is the same as that of ǫixj in B;

(b) The term ǫixj is in L: the coordinate vector can be obtained easily from the

polynomial G ∈ G such that lt(G) = ǫixj ;

(c) Otherwise: the normal form of ǫixj w.r.t. G has to be computed to get the

coordinate vector.

Obviously, the ith column of Tj is sparse if case (a) occurs, thus a dense column

can only come from cases (b) and (c). Furthermore, the construction for a column

will not be free of arithmetic operations only if that column belongs to case (c). As a

result, we are able to connect the cost for construction of the multiplication matrices

with the numbers of dense columns in them.

Proposition 4.3.1. Denote by Mi the number of dense columns in the multiplica-

tion matrix Ti. Then the matrices T1, . . . , Tn can be computed within O(D2
∑n

i=1Mi)

arithmetic operations.

Proof. Direct result from the proof of Proposition 3.1 in [53]. �

As shown in Section 4.1, among all multiplication matrices, T1 is the most im-

portant one, and it is also of our main interest. However, for an arbitrary ideal, now

we are not able to analyze the cost to construct T1 by isolating it from the others in

Proposition 4.3.1, for the analysis on T1 needs information from the other matrices

too.

In the following parts we first focus on generic sequences which impose stronger

conditions on T1 so that the analyses on it become feasible. We show that the con-

struction of T1 for generic sequences is free and present finer complexity results based

on an asymptotic analysis.

4.3.2 Generic sequences and Moreno-Soćıas conjecture

Let P = [P1, . . . , Pn] be a sequence of polynomials in K[x] of degree d1, . . . , dn. If

d1 = · · · = dn = d, we call it a sequence of degree d. We are interested in the

properties of the multiplication matrices for the ideal generated by P if P1, . . . , Pn

93

CHAPTER 4. Sparse FGLM algorithms

are chosen “at random”. Such properties can be regarded generic in all sequences.

More precisely, let U be the set of all sequences of n polynomials of degree d1, . . . , dn,

viewed as an affine space with the coefficients of the polynomials in the sequences

as the coordinates. Then a property of such sequences is generic if it holds on a

Zariski-open in U . Next for simplicity, we will say some property holds “for a generic

sequence” if it is a generic one, and also P is “a generic sequence” if its properties of

our interest are generic.

For a generic sequence [P1, . . . , Pn], its properties concerning the Gröbner basis

computation, in particular the canonical basis, are the same as [P h
1 , . . . , P

h
n], where

P h
i is the homogeneous part of Pi of the highest degree. That is to say, we only

need to study homogeneous generic sequences, which are also those studied in the

literature. Hence in the following part of this section, a generic sequence is further

assumed homogeneous.

Since we restrict to the situation where the number of polynomials is equal to that

of variables, a generic sequence is a regular one [89]. We first recall the well-known

characterization of a regular sequence via its Hilbert series.

Theorem 4.3.2. Let [P1, . . . , Pr] be a sequence in K[x] with deg(Pi) = di. Then it

is regular if and only if its Hilbert series is
∏r

i=1(1− zdi)

(1− z)n
.

Let P be a generic sequence of degree d. Then we know its Hilbert series is

H(n, d) := (1− zd)n/(1− z)n = (1 + z + z2 + · · ·+ zd−1)n, (4.13)

from which one can easily derive that the degree of 〈P〉 is dn, and that the greatest

total degree of terms in the canonical basis is (d− 1)n.

Gröbner bases of generic sequences w.r.t. DRL have been studied in [115]. A term

ideal b is said to be a weakly reverse lexicographic ideal if the following condition

holds: if t ∈ b is a minimal generator of b, then b contains every term of the same

total degree as t which is greater than t w.r.t. some term ordering. For the term

ordering DRL, we have the following conjecture due to Moreno-Soćıas.

Moreno-Soćıas conjecture ([114]) Let K be an infinite field, and P = [P1, . . . , Pn]

94

Section 4.3. Multiplication matrices

a generic sequence in K[x] with deg(Pi) = di. Then lt(〈P〉), the leading term ideal of

〈P〉 w.r.t. DRL, is a weakly reverse lexicographical ideal.

The Moreno-Soćıas conjecture is proven true for the codimension 2 case and for

some special ideals for the codimension 3 case [1, 28]. It has been proven that this

conjecture implies the Fröberg conjecture on the Hilbert series of a generic sequence,

which is well-known and widely acknowledged true in the symbolic computation com-

munity [128]. Recall that for two terms u = (u1, . . . , un) and v = (v1, . . . , vn), we say

that u ≺ v if ui ≤ vi for i = 1, . . . , n.

Proposition 4.3.3. Use the same notations as those in the Moreno-Soćıas conjec-

ture. If this conjecture holds, then for a term u ∈ lt(〈P〉), any term v such that

deg(u) = deg(v) and v > u is also in lt(〈P〉).

Proof. If u is a minimal generator of lt(〈P〉), then the conclusion is a direct result by

the Moreno-Soćıas conjecture. Else there exists one minimal generator ũ 6= u which

divides u. To prove the conclusion in this case, it suffices to find a term ṽ ∈ lt(〈P〉)
which divides v. Let ṽ = ũ − u + v. If ṽ is a term, by its construction we know

deg(ṽ) = deg(ũ) and ṽ > ũ, and thus by the conjecture ṽ is in lt(〈P〉); otherwise we

may replace ṽ by the biggest term v such that deg(v) = deg(ũ). Then it is easy to

show that and it will work. This ends the proof. �

As Proposition 4.3.3 implies, the Moreno-Soćıas conjecture imposes a stronger

requirement on the structure of the terms in lt(〈P〉) for a generic sequence P. For

the bivariate case, once a term u is known to be an element in lt(〈P〉), the terms in

lt(〈P〉) determined by it are illustrated in Figure 4.2 (left), and furthermore, in the

right figure the shape all terms in lt(〈P〉) form.

The base field in the Moreno-Soćıas conjecture is restricted infinite. According

to our preliminary experiments on randomly generated sequences over fields of large

cardinality, we find no counterexample of this conjecture. As a result, we will consider

it true and use it directly. The following variant of Moreno-Soćıas conjecture, which

is more convenient in our setting, can be derived easily from Proposition 4.3.3.

Variant of Moreno-Soćıas conjecture Let K be an infinite field, P ∈ K[x] a

95

CHAPTER 4. Sparse FGLM algorithms

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10

x1

x
2

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10

x1

x
2

Figure 4.2: Terms and minimal generators in lt(〈P〉) for a generic sequence P

generic sequence of degree d, and B the canonical basis of K[x]/〈P〉 w.r.t. DRL. De-

note by B(k) the set of terms of total degree k in B. Then for k = 1, . . . , (d − 1)n,

B(k) consists of the first |B(k)| smallest terms in all terms of total degree k.

4.3.3 Sparsity and construction

Let P ⊂ K[x] be a generic sequence, and G the Gröbner basis of 〈P〉. Then polyno-

mials in G can be assumed dense (in the case when K is of characteristic 0 or of large

cardinality). As the number of dense columns in T1 will directly lead to a bound on

the number of nonzero entries in T1, the study of T1 sparsity is reduced to that of how

many cases of (b) and (c) happen. Combining the Hilbert series of a generic sequence

and our variant of Moreno-Soćıas conjecture, we are able to give the counting of the

dense columns in T1.

Proposition 4.3.4. Let K, P, B and B(k) be the same as those in the Moreno-

Soćıas conjecture variant. If the Moreno-Soćıas conjecture holds, then the number of

dense columns in the multiplication matrix T1 is equal to the greatest coefficient in

the expansion of (1 + z + · · ·+ z(d−1))n.

Proof. Let k′ = (d − 1)n, and denote by T (k) be set of all terms in K[x] of total

degree k.

96

Section 4.3. Multiplication matrices

Suppose that u is the lth smallest term in T (k). Then x1u is still the lth smallest

term in T (k+1). Hence from the conjecture variant, if |B(k)| ≤ |B(k + 1)|, then

for every u ∈ B(k), x1u is still in B(k + 1). Therefore it belongs to case (a) we

reviewed in Section 4.3.3, and the corresponding column in T1 is a sparse one. If

|B(k)| > |B(k+1)|, we will have |B(k)| − |B(k+1)| dense columns which come from

the fact that they belong to case (b) or (c).

As the coefficients in the the expansion of (1 + z + · · · + z(d−1))n are symmetric

to the central coefficient (or the central two when (d − 1)n is odd), the condition

|B(k)| > |B(k+1)| holds for the first time when k = k0, the index of the central term

(or of the second one in the central two terms). Then the number of dense columns

is

(|B(k0)| − |B(k0 + 1)|) + (|B(k0 + 1)| − |B(k0 + 2)|)
+ · · ·+ (|B(k′ − 1)| − |B(k′)|) + |B(k′)| = |B(k0)|.

That ends the proof, for such a coefficient |B(k0)| is exactly the greatest one. �

The Hilbert series is usually used to analyze the behaviors of Gröbner basis com-

putation, for example the regularity of the input ideal. As the leading terms of

polynomials in the Gröbner basis and the canonical basis determine each other com-

pletely, it is also natural to have Proposition 4.3.4, which links the canonical basis

and Hilbert series.

Remark 4.3.1. When d = 2, the number of dense columns in T1 is the binomial

coefficient Ck0
n , where

k0 =

{

n/2 if n is even;

n+1
2

if n is odd.

For the case d = 3, such the greatest coefficient is called the central trinomial coeffi-

cient.

Corollary 4.3.5. If the Moreno-Soćıas conjecture holds, then the percentage of nonzero

entries in T1 for a generic sequence of degree d is bounded by (m0 + 1)/D, where m0

is the number of dense columns computed from Proposition 4.3.4.

Proof. The number of nonzero entries in the dense columns is bounded by m0D, and

that in the other columns is smaller than D. �

97

CHAPTER 4. Sparse FGLM algorithms

Assuming the correctness of the Moreno-Soćıas conjecture, we can take a step

forward from Proposition 4.3.4. That is, we show case (c) will not occur during the

construction of T1.

Proposition 4.3.6. Follow the notations in the Moreno-Soćıas conjecture. If the

conjecture holds, then for any term u 6∈ lt(〈P〉), x1u is either not in lt(〈P〉) or a

minimal generator of lt(〈P〉).

Proof. Suppose x1u = (u1, . . . , un) ∈ lt(〈P〉) is not a minimal generator. We will

draw a contradiction by showing u ∈ lt(〈P〉) under such an assumption.

Without loss of generality, we can assume each ui 6= 0 for i = 1, . . . , n, otherwise

we can reduce to the n − 1 case by ignoring the ith component of u. As x1u is not

a minimal generator, there exist a k (1 ≤ k ≤ n) such that u(k) := (u1, . . . , uk −
1, . . . , un) is in lt(〈P〉). The case when k = 1 is trivial. Otherwise, since deg(u(k)) =

deg(u) and u(k) < u, by Proposition 4.3.3 we know u ∈ lt(〈P〉). �

Corollary 4.3.7. If the Moreno-Soćıas conjecture holds, then the number of dense

columns in T1 for generic sequences is equal to the cardinality of {G ∈ G1 : x1| lt(G)},
where G1 is the Gröbner basis w.r.t. DRL.

Remark 4.3.2. By Corollary 4.3.7, for generic sequences, to construct T1 one only

needs to find the leading term of which polynomial in G1 is a given term x1u. Thus

we can conclude that the construction of T1 is free of arithmetic operations. Even for

real implementations, the cost for constructing T1 is also quite small compared with

that for the change of ordering. Bearing in mind that the ideal generated by a generic

sequence is in shape position, we know the complexity in Theorem 4.1.2 is indeed

the complete complexity for the change of ordering for generic sequences, including

construction of T1, the only multiplication matrix needed.

4.3.4 Asymptotic analysis

Next we study the asymptotic behavior of the number of dense columns in T1 for a

generic sequence of degree d, with n fixed and d increasing to +∞. These results are

mainly derived from a more detailed asymptotic analysis of coefficients of the Hilbert

98

Section 4.3. Multiplication matrices

series of semi-regular systems in [10, 11], where standard methods in asymptotic

analysis, like the saddle-point and coalescent saddle points methods, are applied.

The target of this subsection is to find the dominant term of the greatest coefficient

in the expansion of the Hilbert seriesH(n, d) in (4.13), as d tends to +∞ and n is fixed.

First one writes the mth coefficient Id(m) of H(n, d) with the Cauchy integration:

Id(m) =
1

2π i

∮

H(n, d)(z)

zm+1
dz =

1

2π i

∮

(1− zd)n

(1− z)nzm+1
dz.

With F̃ (z) := (1−zd)n

(1−z)nzm+1 = eF (z) and G(z) := 1, Id(m) becomes the form conve-

nient to the asymptotic analysis

Id(m) =
1

2π i

∮

G(z)eF (z)dz.

Suppose the greatest coefficient in H(n, d) comes from the m0th term. Since we are

interested in the asymptotic behavior, we can assume m0 = (d− 1)n/2. As a special

case of [10, Lemma 4.3.1], we have the following result.

Proposition 4.3.8. Suppose m0 = (d − 1)n/2. Then the dominant term of Id(m0)

is

Id(m0) ∼
√

1

2πF ′′(r0)
eF (r0),

where F (z) = n log(1−zd

1−z
) − (m + 1) log(z), and r0 is the positive real root of F ′(z).

Furthermore, r0 tends to 1 as d increases to +∞.

To prove the fact that the positive real root r0 of F ′(z) tends to 1, one needs to

use the equality m0 = (d− 1)n/2. Other parts of the proof are the same as those in

[10, Section 4.3.2].

Next we investigate the value of F ′′(r0) and F̃ (r0) in the dominant part of Id(m0)

as r0 tends to 1. Set R(z) := 1−zd

1−z
= 1 + z + · · ·+ zd−1. Then

F ′′(z) = n
R′′(z)R(z)− R′(z)2

R(z)2
+

d+ 1

z
.

Noting that R(1) = d, R′(1) = d(d− 1)/2, and R′′(1) = d(d− 1)(d− 2)/3, we have

F ′′(1) = nd2/12 +O(d).

With the easily obtained the equality F (1) = dn, we have the following asymptotic

estimation of Id(m0).

99

CHAPTER 4. Sparse FGLM algorithms

Corollary 4.3.9. Let n be fixed. As d tends to +∞, Id(m0) ∼
√

6
nπ
dn−1.

This asymptotic estimation of the greatest coefficient in H(n, d) accords with

the theoretical one. Figure 4.3 shows the number of dense columns derived from

both Proposition 4.3.4 and Corollary 4.3.9. As can be shown from this figure, the

asymptotic estimation is good, even when d is small.

Figure 4.3: Number of dense columns in T1 for n = 3, 4 and d = 1, . . . , 100

Corollary 4.3.10. Let n be fixed. As d tends to +∞, if the Moreno-Soćıas conjecture

holds, then the following statements hold:

(a) the proportion of nonzero entries in T1 is ∼
√

6
nπ
/d;

(b) for a generic sequence of degree d, the complexity in Theorem 4.1.2 is O(
√

6
nπ
D2+n−1

n).

As Corollary 4.3.10 shows, for a generic sequence, the multiplication matrix T1

become sparser as d increases. Furthermore, the complexity of Algorithm 10 is smaller

in both the exponent and constant compared with FGLM.

Remark 4.3.3. Here we only consider the case when n is fixed and d tends to +∞,

while the asymptotic behaviors of the dual case when d is fixed and n tends to +∞
have been studied in [11] for the special value d = 2.

100

Section 4.4. Implementation and experimental results

4.4 Implementation and experimental results

The first method for the shape position case, namely Algorithm 10, has been imple-

mented in C over fields of characteristic 0 and finite fields. The BMS-based method for

the general case has been implemented preliminarily in Magma over large finite fields.

Benchmarks are used to test the correctness and efficiency of these two methods.

All the experiments were made under Scientific Linux OS release 5.5 on 8 Intel(R)

Xeon(R) CPUs E5420 at 2.50 GHz with 20.55G RAM, and the base field used is

F65521.

Table 5.1 records the timings (in seconds) of our implementations of F5 and Al-

gorithm 10 applied to benchmarks including theoretical ones like Katsura systems

(Katsuran) and randomly generated polynomial systems (Random n, d), and practi-

cal ones like MinRank problems from Cryptography [56] and systems coming from

economic modelings (Eco n) [116, pp.148], critical points computation (Crit D, p, n)

[58], and algebraic cryptanalysis of some curve-based cryptosystem (DLP EC and

DLP Edwards) [52]. In this table, the instances marked with †are indeed not in

shape position, and the timings for such instances only indicate those of computing

the univariate polynomial in the LEX Gröbner basis.

Furthermore, for Katsura and randomly generated systems, three kinds of T1

density are also recorded, namely the actual one (column “Actual”), the theoretical

one by Proposition 4.3.4 (column “Theoretical”), and the asymptotic one by Corollary

4.3.9 (Column “Asymp”).

As shown by this table, the current implementation of Algorithm 10 outperforms

the FGLM implementations inMagma and Singular. Take the Random 13,d=2 instance

for example, the FGLM implementations in Magma and Singular take 10757.4 and

19820.2 seconds respectively, while the new implementation only needs 80.8 seconds.

This is around 133 and 245 times faster. Such an efficient implementation is now

able to manipulate ideals in shape position of degree greater than 60000. It is also

important to note that with this new algorithm, the time devoted to the change

of ordering is somehow of the same order of magnitude as the DRL Gröbner basis

computation.

In addition, for Katsura and randomly generated systems, compared to the ex-

perimental density of T1, the theoretical bound works and the asymptotic estimation

101

CHAPTER 4. Sparse FGLM algorithms

is also close. For all the benchmarks, T1 holds a sparse structure to some extent, even

when the input ideals are defined by dense polynomial systems like random ones. In

fact, dense columns of T1 only occur at or close to the end of T1, and most of the

other columns are sparse, with only one nonzero component equal to 1, as analyzed

in Section 4.3.3. For matrices with such a structure, we store them in a half-sparse

way, that is, the sparse parts of these matrices are stored as a permutation and the

others normally.

Matrix Density FGb Magma Singular Speedup
Name D Actual Theoretical Asymp F5(C) Sparse FGLM F4 FGLM Buchberger FGLM Magma Singular

Random 11,d=2 211 21.53% 22.56% 20.83% 3.3s 1.7s 18.0s 162.2s 623.9 328.6 95.4 193.3
Random 12,d=2 212 21.26% 22.56% 19.95% 19.9s 10.7s 134.9 1335.8 4867.4 2581.1 124.8 241.2
Random 13,d=2 213 19.98% 20.95% 19.16% 118.0s 80.8s 949.6 10757.4 36727.0 19820.2 133.1 245.3
Random 14,d=2 214 19.64% 20.95% 18.47% 747.2s 559.0s 7832.4 84374.6 150.9
Random 15,d=2 215 18.52% 19.64% 17.84% 5364.6s 3894.6s
Random 4,d=8 4096 7.54% 8.40% 8.64% 2.5s 4.2s 3.5s 556.7s 132.5
Random 4,d=9 6561 6.66% 7.45% 7.68% 6.6s 13.5s 9.3s 1800.9s 133.4
Random 4,d=10 10000 5.97% 6.70% 6.91% 15.5s 45.7s
Random 4,d=11 14641 5.40% 6.09% 6.28% 36.8s 127.0s
Random 4,d=12 20736 4.94% 5.57% 5.76% 81.3s 363.6s
Random 4,d=13 28561 4.55% 5.14% 5.32% 182.0s 713.9s
Random 3,d=15 3375 4.46% 5.01% 5.32% 0.7s 1.8s 0.95s 262.9s 146.1
Random 3,d=16 4096 4.17% 4.69% 4.99% 1.1s 2.9s 1.5s 333.8s 115.1
Random 3,d=17 4913 3.92% 4.42% 4.69% 1.5s 4.4s 1.95s 585.3s 133.0
Random 3,d=18 5832 3.70% 4.17% 4.43% 2.3s 6.5s 2.9s 1142.6s 175.8
Random 3,d=20 8000 3.32% 3.75% 3.99% 4.3s 13.9s
Random 3,d=22 10648 3.01% 3.41% 3.63% 8.1s 27.9s
Random 3,d=24 13824 2.76% 3.13% 3.32% 14.1s 57.0s
Random 3,d=30 27000 2.20% 2.50% 2.66% 65.9s 325.7s
Random 3,d=40 64000 1.64% 1.88% 1.99% 470.1s 3491.5s

Katsura11 211 21.53% 22.56% 20.83% 4.7s 1.7s 18.3s 178.6s 632.0s 328.4s 105.1 193.2
Katsura12 212 21.26% 22.56% 19.95% 29.6s 10.6s 147.9s 1408.1s 5061.8s 2623.5s 132.8 247.5
Katsura13 213 19.86% 20.95% 19.16% 177.2s 80.9s 1037.2s 10895.4s 134.7
Katsura14 214 19.64% 20.95% 18.47% 1285.1s 553.4 s 9599.0s 87131.9s 157.4
Katsura15 215 18.52% 19.64% 17.84% 8487.0s 3874.6s

Eco 12 ‡ 1024 29.69% NA NA 2.8s 0.35s 29.6s 456.5s 1304
Eco 13 ‡ 2048 27.52% NA NA 15.3s 2.0s 262.7s 5692.7s 2846
Eco 14 ‡ 4096 26.4% NA NA 85.2s 13.0s
Eco 15 ‡ 8192 24.9% NA NA 587.0s 96.3s

Crit D=2,p=4,n=9 896 30.17% NA NA 0.5s 0.24s 3.0s 17.4s 72.5
Crit D=2,p=4,n=10 1344 31.13% NA NA 1.6s 0.68s 11.8s 62.1s 91.3
Crit D=2,p=4,n=11 1920 31.86% NA NA 4.3s 1.77s 40.7s 192.5s 108.8
Crit D=3,p=3,n=6 2160 17.52% NA NA 1.3s 1.4s 4.3s 134.2s 95.9
Crit D=3,p=3,n=7 6480 17.39% NA NA 26.2s 34.2s 122.8s 4139.4s 121
Crit D=3,p=3,n=8 18144 17.63% NA NA 520.1s 762.6s
Crit D=4,p=2,n=5 1728 14.46% NA NA 0.48s 0.70s 1.4s 57.3s 81.9
Crit D=4,p=2,n=6 6480 14.11% NA NA 16.3s 27.3s 63.2s 3196.7s 117.1
Crit D=5,p=2,n=5 6400 11.00% NA NA 10.2s 19.9s 27.9s 2335.1s 117.3
Crit D=6,p=2,n=5 18000 8.80% NA NA 123.4s 346.7s

MinR(9,6,3) 980 26.82% NA NA 0.7s 0.3s 6.3s 22.7s 137.5s 38.1s 75.7 127.0
MinR(9,7,4) 4116 22.95% NA NA 17.5s 10.8s 208.1s 1360.4s 4985.8s 2490.3s 126.0 230.6
MinR(9,8,5) 14112 19.04% NA NA 297.4s 337.7s
MinR(9,9,6) 41580 16.91% NA NA 5010.7s 7086.6s
DLP EC n=4 4096 7.54% NA NA 2.4s 4.25s 7.4s 475.8s 72.4s 1823.6s 112.0 429.1

DLP Edwards n=4 512 7.68% NA NA 0.03s 0.02s 0.16s 21.4s 1066
DLP Edwards n=5 216 3.30% NA NA 1802.0s 5742.7s

Cyclic 10 † 34940 1.00% NA NA 1107.8s >16 hrs and >16 Gig

Table 4.2: Timings for Algorithm 10 for the shape position case from DRL to LEX

Table 4.3 illustrates the performances of Algorithm 12 for the general case. As

currently this method is only implemented preliminarily in Magma, only the number

of field multiplications and other critical parameters are recorded, instead of the

timings.

102

Section 4.4. Implementation and experimental results

Benchmarks derived from Cyclic 5 and 6 instances are used. Instances with ideals

in shape position (marked with ‡) are also tested to demonstrate the generality of this

method. Besides n and D denoting the number of variables and degree of the input

ideal, the columns “Mat Density” and “Poly Density” denote the maximal percentage

of nonzero entries in the matrices T1, . . . , Tn and the density of resulting Gröbner bases

respectively. The following 4 columns record the numbers of passes in the main loop

of Algorithm 12, matrix multiplications, reductions and field multiplications.

As one can see from this table, the numbers of passes accord with the bound

derived in theorem 4.2.1, and the number of operations is less than the original

FGLM algorithm for Cyclic-like benchmarks. However, for instances of ideals in shape

position, this method works but the complexity is not satisfactory. This is mainly

because the resulting Gröbner bases in these cases are no longer sparse, and thus the

reduction step becomes complex. Fortunately, in the top-level algorithm 13, it is not

common to handle such ideals in shape position with this method.

Name n D Mat Density Poly Density #Passes #Mat. #Red. #Multi.
Cyclic5-2 2 55 4.89% 17.86% 165 318 107 nD2.544

Cyclic5-3 3 65 8.73% 19.7% 294 704 227 nD2.674

Cyclic5-4 4 70 10.71% 21.13% 429 1205 355 nD2.723

Cyclic5 5 70 12.02% 21.13% 499 1347 421 nD2.702

Cyclic6 6 156 11.46% 17.2% 1363 4464 1187 nD2.781

Uteshev Bikker ‡ 4 36 60.65% 100% 179 199 105 nD2.992

D1 ‡ 12 48 34.2% 51.02% 624 780 517 nD2.874

Dessin2-6 ‡ 6 42 46.94% 100% 294 336 205 nD2.968

Table 4.3: Performances of Algorithm 12 for the general case from DRL to LEX

103

Chapter 5
Simple decomposition over finite fields

As stated in Section 2.3.2, simple sets are a special kind of regular sets in which every

polynomial is conditionally squarefree with respect to its leading variable. One of

its remarkable properties is that the number of its zeros (all of multiplicity 1) in the

algebraic closure of the ground field K can be easily counted by looking at the leading

degrees of its polynomials. Compared with an irreducible triangular set which defines

a finite extension of K, a simple set may represent a product of such field extensions.

The representation of field extensions is clearly made more compact by using one

simple set than using several irreducible triangular sets. Compactness is desirable

when produced triangular sets need be manipulated in further computations, for

otherwise the size of intermediate results may grow out of control.

Algorithms for decomposing polynomial sets into simple sets have been proposed

by Wang [157] and by Bächler and others [8] for the case in which K is of charac-

teristic 0. However, To our knowledge, there is no algorithm available for simple

decomposition over finite fields, for squarefree decomposition of polynomials become

more complicated in this case. The purpose of this chapter is to propose original

algorithms for simple decomposition over finite fields.

The results in this chapter are based on the joint work with Dongming Wang and

Xiaoliang Li and are published as [98, 118].

104

Section 5.1. Simple sets revisited

5.1 Simple sets revisited

In Section 2.3.2, we have defined simple sets in the geometric way (by regular zeros).

In this section we revisit simple sets and their properties in an algebraic way (mainly

by ideals).

Recall that for any triangular set T = [T1, . . . , Tr] ⊂ K[x], u = (u1, . . . , un−r)

and y = (y1, . . . , yr) are its parameters and dependents respectively, and a variable

ordering u1 < · · · < un−1 < y1 < · · · < yr is assumed. We will work extensively on

the transcendental extension K̃ := K(u) of K. For the clarity, for an ideal a ⊂ K[x]

we write aK̃ to indicate the extension of a in K̃[y].

Let T = [T1, . . . , Tr] be a regular set and F a polynomial in K[u][yi]. Then for

any prime ideal p ⊂ K̃[yi−1], the image of F in (K̃[yi−1]/p)[yi] under the natural

homomorphism is denoted by F
p
. Similarly for any polynomial set P ⊂ K[u][yi],

Pp
:= {P p

: P ∈ P}. We write F for the image of F in (K̃[yi−1]/
√

sati−1(T)K̃)[yi],

and P in a similar way. In the case i = 1, K̃[yi−1] and sati−1(T)K̃ are understood

as K̃ and {0} respectively. The notations F and P rarely incur ambiguity, for we

usually work on only one regular set T .

Suppose that p1, . . . , ps are all the associate primes of sati−1(T)K̃. From Proposi-

tion 2.3.2((b)), one knows that for all j 6= k, pj 6⊂ pk, and thus pj + pk = 〈1〉. Hence
by the Chinese Remainder Theorem (Theorem 3.1.13)

K̃[yi−1]/
√

sati−1(T)K̃
∼=

s
∏

j=1

K̃[yi−1]/pj. (5.1)

Furthermore, the ideal sati−1(T)K̃ is zero-dimensional in K̃[yi−1], and thus each

K̃[yi−1]/pj is a field. In other words, K̃[yi−1]/
√

sati−1(T)K̃ is isomorphic to a product

of fields. In particular,

(K̃[yi−1]/
√

sati−1(T)K̃)[yi]
∼=

s
∏

j=1

(K̃[yi−1]/pj)[yi].

In what follows, we do not distinguish between the corresponding elements in the

two rings on the two sides of the isomorphism above. With the notations introduced

previously, we have F = (F
p1
, . . . , F

ps
) for any F ∈ K̃[yi] and define the natural

projection πj : (K̃[yi−1]/
√

sati−1(T)K̃)[yi] → (K̃[yi−1]/pj)[yi] as πj(F) := F
pj

for

j = 1, . . . , s.

105

CHAPTER 5. Simple decomposition over finite fields

Definition 5.1.1. A regular set T = [T1, . . . , Tr] ⊂ K[x] with lv(Ti) = yi (i =

1, . . . , r) is called a simple set if for any i and associated prime p of sati−1(T)K̃, the

polynomial T
p

i is squarefree in (K̃[yi−1]/p)[yi].

For example, in F5[u, x, y] with u < x < y, [(x2 − u)(x3 − u), y2 + 2 xy+ u] is not

a simple set (because the image of y2 + 2 xy + u in (F̃5[x]/〈x2 − u〉)[y] is (y + x)2,

which is not squarefree), but [(x2 − u)(x3 − u), y2 + u] is. One can see that as

representations of the same field extensions the above simple set is more compact

than the two irreducible triangular sets [x2 − u, y2 + u] and [x3 − u, y2 + u].

The concept of simple sets was derived by Wang [157] from Thomas’ classical

concept of simple systems [149] and in the tutorial article [74] by Hubert simple sets

are called squarefree regular chains.

One can show that the definition above of simple sets via associate primes is

equivalent to the one via regular zeros. Roughly speaking, this is because in some

sense a regular zero of T≤i−1 is the zero of T≤i−1 = 0 over K(u), where u are all the

transcendental elements (See Definition 2.3.2). Hence, substituting a regular zero in

Ti is equivalent to projecting Ti to T
p

i for the corresponding associated prime p of

sati−1(T)K̃ for that regular zero. The most remarkable property of simple sets is as

stated in Theorem 5.1.3 below.

Lemma 5.1.1. Let T = [T1, . . . , Tr] ⊂ K[x] be a regular set with lv(Ti) = yi (1 ≤
i ≤ r). Then sati(T)K̃ = 〈T i〉.

Proof. By Proposition 2.3.3, sati(T)K̃ = 〈T≤i〉K̃. For any T ∈ T≤i−1, we have T ∈
sati−1(T)K̃ ⊆

√

sati−1(T)K̃ and thus T = 0. The conclusion follows. �

Lemma 5.1.2. Let T = [T1, . . . , Tr] ⊂ K[x] be a regular set and F ∈ K[x] a poly-

nomial with lv(F) = yi (1 ≤ i ≤ r). If F ∈ 〈T i〉 and sati−1(T)K̃ is radical, then

F ∈ sati(T)K̃.

Proof. From the pseudo-division of F w.r.t. T≤i, we getMF =
∑i−1

j=1QjTj+QiTi+R,

where R = prem(F, T≤i), M =
∏i

j=1 ini(Tj)
sj , and sj is a nonnegative integer. Hence

M F = Qi T i + R. If F ∈ 〈T i〉, then R ∈ 〈T i〉. Noting that deg(R, yi) < deg(T i, yi),

we have R = 0.

106

Section 5.1. Simple sets revisited

Write R =
∑d

l=0Aly
l
i, where Al ∈ K[u][yi−1]. Then R =

∑d

l=0Aly
l
i = 0. It follows

that Al = 0 for all l = 0, . . . , d. Therefore, Al ∈
√

sati−1(T)K̃ = sati−1(T)K̃, and thus

Al ∈ sati−1(T). By Proposition 2.3.1, we have Al = prem(Al, T<i) = 0. Hence R = 0

and F ∈ sati(T)K̃. �

Theorem 5.1.3. For any regular set T = [T1, . . . , Tr] ⊂ K[x], the following state-

ments are equivalent:

(a) T is simple;

(b) sat(T) is radical;

(c) sat(T)K̃ is radical;

(d) sati(T) is radical for all i = 1, . . . , r;

(e) sati(T)K̃ is radical for all i = 1, . . . , r.

Proof. (a) ⇐⇒ (e). Obviously, (a) implies (e) for i = 1. In order to apply induction

to i, supposing that sati−1(T)K̃ is radical, we need to prove that sati(T)K̃ is also

radical. As T is simple, for any associated prime p of sati−1(T)K̃, T
p

i is a square-

free polynomial and thus 〈T p

i 〉 is radical in (K̃[yi−1]/p)[yi]. Hence 〈T i〉 is radical in

(K̃[yi−1]/ sati−1(T)K̃)[yi]. If sati(T)K̃ is not radical, then there exist a polynomial

G ∈ K̃[yi] and some integer k such that Gk ∈ sati(T)K̃, but G 6∈ sati(T)K̃. Therefore,

we have (G)k ∈ 〈T i〉 and G 6∈ 〈T i〉 by Lemmas 5.1.1 and 5.3.5. This is a contradiction.

If T is not simple, then let i be the smallest integer such that the condition in

the definition of simple set does not hold, i.e. there exists an associated prime p of

sati−1(T)K̃ (radical) such that T
p

i is not squarefree. In this case, sati(T)
p

K̃ = 〈T p

i 〉 is
not radical. Hence 〈T i〉 is not radical, and neither is sati(T)K̃.

(e) ⇐⇒ (d). If sati(T)K̃ is radical, then obviously sati(T) is also radical as

sati(T)K̃ ∩K[u][yi] = sati(T).

Suppose that sati(T) is radical and recall that sati(T)K̃ = (K[u] \ {0})−1 sati(T).

For any (F/G)s = F s/Gs ∈ sati(T)K̃, we have F s ∈ sati(T) and Gs ∈ K[u]; hence

F ∈ sati(T) and G ∈ K[u]. Consequently, F/S ∈ sati(T)K̃.

The proof of (b) ⇐⇒ (d) and (c) ⇐⇒ (e) is trivial, as sati(T) = sat(T)∩K[u][yi]

and sati(T)K̃ = sat(T)K̃ ∩ K̃[yi]. �

107

CHAPTER 5. Simple decomposition over finite fields

The above property that the saturated ideal of a simple set is radical is consistent

to the definition that each polynomial in a simple set is squarefree modulo the pro-

ceeding saturated ideal. By the isomorphism (5.1), we know that for a simple set S,
K̃[yi−1]/ sati−1(S)K̃ is indeed a product of field extensions of K̃, and therefore of K.

This structure should be kept in mind for the readers to better understand our study

on simple sets. We can see that simple sets are good representations of products of

field extensions, which is a key idea we will further exploit in Chapter 6.

The main purpose of this chapter is to present algorithms for decomposing any

polynomial set F ⊂ Fq[x] for a finite field Fq into finitely many simple sets S1, . . . ,Sk

such that
√

〈F〉 = ⋂k

i=1 sat(Si) holds. Such a decomposing process is called simple

decomposition. With the properties of the decomposed simple sets, we are able to

study
√
F (or V(F) with the ideal-variety correspondence) by simple sets.

Since algorithms exist for decomposing F into regular sets T1, . . . , Ts such that
√
F =

⋂s

i=1

√

sat(Ti), which are effective over fields of both characteristics 0 and

p (name such an algorithm as {T1, . . . , Ts} = RegDec(F) for later use) [77, 74], to

design algorithms for simple decomposition over finite fields we only need to study

how to turn a regular set into one or several simple sets. This turning problem can

be further reduced by induction to the following relatively easier problem.

Problem. Given a regular set T = [T1, . . . , Tr] ⊂ Fq[x], with [T1, . . . , Tr−1] being a

simple set, compute finitely many simple sets S1, . . . ,Sk ⊂ Fq[x] such that

√

sat(T) =
k
⋂

i=1

sat(Si).

One natural way to solve this problem is to decompose the radical ideal
√

sat(T)

into prime components, each component corresponding to an irreducible triangular

set (which is a special simple set Si). Efficient algorithms for prime decomposition

over finite fields have been well studied and implemented [124, 144] (for example,

prime decompositions for most of the examples in Table 5.5 can be computed in the

matter of seconds by using primedec mod in the Risa/Asir1 system [122]). However,

prime decomposition splits products of field extensions (determined by simple sets)

completely and needs irreducible factorization of polynomials (which is an expensive

1http://www.math.kobe-u.ac.jp/Asir/

108

Section 5.2. Zero-dimensional polynomial sets

process). We are interested in simple decomposition because it keeps products of field

extensions with as little splitting as possible, thus having its representation usually

more compact than the representation of prime decomposition, and it only needs

generalized gcd computation rather than irreducible factorization.

In the following two sections, simple decomposition for the two cases of zero-

dimensional and positive-dimensional polynomial sets is discussed respectively.

5.2 Zero-dimensional polynomial sets

There exist several effective algorithms for simple decomposition over fields of char-

acteristic 0 like Q [77, 74]. These algorithms all make use of the property that for a

univariate polynomial F over a field of characteristic 0, F/ gcd(F, F ′) is its squarefree

part. However, as already explained in Section 3.2.2, this property does not hold

any longer for finite fields, and the use of F/ gcd(F, F ′) will lose some factor in the

squarefree part of F . For example, for the polynomial F = x3(x − 1)2 ⊂ F3[x], we

have F ′ = 2x3(x− 1), and thus gcd(F, F ′) = x3(x− 1). Then F/ gcd(F, F ′) = x− 1,

causing the squarefree factor x of F lost.

One may notice that the factor x3 of F is where the problem comes, for (x3)′ = 0.

In fact, for a field of characteristic p, any pth power will behave in this way. Therefore

to compute the squarefree part of a polynomial, it is necessary to isolate its factors as

pth powers and extract their pth roots. We fist study this problem for the relatively

easier zero-dimensional case.

The major difference of the case of zero-dimensional polynomial sets from positive

ones is that the field we are working on is indeed an algebraic extension of a finite

field, and thus a perfect field. We start our algorithm for simple decomposition of

zero-dimensional polynomial sets over finite fields with recalling perfect fields and

their properties.

5.2.1 Perfect field

A perfect field is a field for which any algebraic extension is separable. As a simple

criterion, a field K is perfect if and only if

(a) K is of characteristic 0, or

109

CHAPTER 5. Simple decomposition over finite fields

(b) K is of characteristic p > 0, and every element of K has a pth root in K.

In particular, every finite field is perfect, and any algebraic extension of a perfect field

keeps to be perfect. As shown by (b), a field of characteristic p > 0 is perfect if and

only if the pth roots are extractable for all its elements. In fact, pth root extraction

is one important problem of our later interest.

For a perfect field, we may derive the following properties useful for checking

squarefreeness.

Lemma 5.2.1. Let K be a perfect field and P ∈ K[x]. Then P is squarefree if and

only if P ′ is regular modulo 〈P 〉.

Proposition 5.2.2. Let T = [T1, . . . , Tr] be a regular set in K[x]. If K̃ is a perfect

field, then T is simple if and only if for all S ∈ sep(T), S is regular modulo sat(T)K̃.

Proof. (⇒) Suppose that T is a simple set and S = sep(Ti) is not regular modulo

sat(T)K̃ for some i ∈ {1, . . . , r}. Then S is not regular modulo sati(T)K̃. Hence there

exists an F ∈ K̃[yi] such that SF ∈ sati(T)K̃, but F 6∈ sati(T)K̃. Thus by Lemma

5.1.2 there exists some associated prime p of sati−1(T)K̃ such that F
p 6∈ sati(T)

p

K̃,

and by Lemma 5.1.1 we have S
p
F

p ∈ sati(T)
p

K̃ = 〈T p

i 〉. Therefore, S
p
is not regular

modulo 〈T p

i 〉, and by Lemma 5.2.1, T
p

i is not squarefree. This leads to a contradiction,

so every S ∈ sep(T) must be regular modulo sat(T)K̃.

(⇐) For any Ti ∈ T , suppose that Si = sep(Ti) is regular modulo sat(T)K̃ and

thus regular modulo sati(T)K̃. Then for any associated prime p of sati−1(T)K̃, S
p

i is

regular modulo 〈T p

i 〉. By Lemma 5.2.1, T
p

i is squarefree. Consequently, T is simple.�

Corollary 5.2.3. Let T be a regular set in K[x]. If K̃ is a perfect field, then T is

simple if and only if S is regular modulo sat(T) for all S ∈ sep(T).

If the field K̃ is not perfect, then the conclusions of Proposition 5.2.2 and Corollary

5.2.3 do not necessarily hold. For example, [y3 − u] ⊆ F3[u, y] is a simple set, but

sep(y3−u) = 0 (under u < y). As fields of characteristic 0 are perfect, the equivalent

condition in Corollary 5.2.3 may be used to define simple sets over the field of rational

numbers (see, e.g., [74]).

110

Section 5.2. Zero-dimensional polynomial sets

5.2.2 Generalized squarefree decomposition

In this part we generalize the algorithm for squarefree decomposition of a univariate

polynomial to the case modulo a zero-dimensional simple set.

Definition 5.2.1. For any zero-dimensional simple set S ⊆ K[x] and polynomial

F ∈ K[x][z] \ K[x], the generalized squarefree decomposition of F w.r.t. S is a set

{({[Fi1, ai1], . . . , [Fiki, aiki]},Si) : i = 1, . . . , s} such that

(a) Each Si is a simple set inK[x] for i = 1, . . . , s, and sat(S) = sat(S1)∩· · ·∩sat(Ss)

is an irredundant decomposition;

(b) each {[F p

i1, ai1], . . . , [F
p

iki
, aiki]} is the squarefree decomposition of F

p
for any

associated prime p of sat(Si).

Though K[x]/ sat(S) is not a UFD, we reduce the definition of generalized square-

free decomposition to each field K[x]/p. The critical idea behind this concept is that

we combine ordinary squarefree decompositions of F
p
for different ps if the decompo-

sitions are of the same form. This idea is further studied in Chapter 6.

In the following extended algorithm, the extraction of pth root of an element

modulo a simple set is an important ingredient and we will discuss it later. The

operation pop(D) in the algorithm below means to take one element randomly and

then delete it from D.

111

CHAPTER 5. Simple decomposition over finite fields

Algorithm 14: Generalized squarefree decomposition S := sqfZero(F,S)
Input: F — a polynomial in Fq[x][z] \ Fq[x];

S — a zero-dimensional simple set in Fq[x].

Output: S — the generalized squarefree decomposition of F w.r.t. S.

S := ∅; D := ∅;14.1

for (C1, C) ∈ pgcd({F, sep(F)},S) do14.2

B1 := F/C1 mod C;14.3

D := D ∪ {[B1, C1, C, ∅, 1]};14.4

end14.5

while D 6= ∅ do14.6

[B1, C1, C,P, d] := pop(D);14.7

if deg(B1, z) > 0 then14.8

for (B2,A) ∈ pgcd({B1, C1}, C) do14.9

C2 := C1/B2 mod A;14.10

P := B1/B2 mod A;14.11

if deg(P, z) > 0 then P := P ∪ {[P, d]};14.12

D := D ∪ {[B2, C2,A,P, d+ 1]};14.13

end14.14

else14.15

if deg(C1, z) > 0 then14.16

C3 := the pth root of C1 in (Fq[x]/ sat(C))[z];14.17

for ({[F1, a1], . . . , [Fs, as]},B) ∈ sqfZero(C3, C) do14.18

S := S ∪ {(merge({[F1, a1 · p], . . . , [Fs, as · p]},P),B)};14.19

end14.20

else14.21

S := S ∪ {(P, C)};14.22

end14.23

end14.24

end14.25

In this algorithm, D stores what to be processed. For each element [B,C, C,P, d] ∈
D, C is a simple set over which later computation is to be performed; P stores the

squarefree components already obtained, which are of power smaller than d.

112

Section 5.2. Zero-dimensional polynomial sets

Proof. (Termination) Suppose that the call sqfZero(C,S) terminates for any polyno-

mial C whose degree in z is smaller than deg(F, z) by induction. As the while loop

is essentially a splitting procedure, we can regard it as building trees with elements

in D as their nodes. The roots of these trees are built in Lines 14.2–14.5. For each

node [B1, C1, C,P, d], its child [B2, C2,A,P, d + 1] is constructed in Line 14.13 with

deg(B2, z) < deg(B1, z) and the parameter d indicates its depth in the trees. Hence

each path of the trees must be finite. The termination of Line 14.18, where sqfZero is

called recursively, follows from the induction hypothesis, as it is easy to see that the

degree of C3 in z is smaller than deg(F, z). Consequently, the while loop terminates,

and the termination of the algorithm follows.

(Correctness) For the algorithm pgcd, if the input triangular set is simple set S,
then we can show that sat(Si) is also radical for any i = 1, . . . , s as follows. Let q be

any primary component of sat(Si) and p =
√
q. One knows from (b) that p is a prime

component of sat(S). Let T = K[x] \ p. It is easy to verify that T intersects with

every prime component of sat(S) other than p. By (a), sat(S) ⊆ sat(Si). Performing

localization at T on this formula and then contracting back, we get p ⊆ q. Hence

q = p, i.e. every primary component of sat(Si) is prime. Hence sat(Si) is radical.

Again by Theorem 5.1.3, Si is a simple set in K[x]. Furthermore, the ideal relation

sat(S) = sat(S1)∩· · ·∩sat(Ss) is obtained, and thus Condition (a) is proved, combined

with the irredundant property of the ideal decomposition by pgcd.

For any fixed path of one of the trees, we denote the node of depth i in the path by

[B(i), C(i), C(i),P(i), i], where i ≤ s, the length of the path. For any associated prime

p of sat(C(s)) in the leaf node, F
p
is a univariate polynomial over the field Fq[x]/p.

Thus we can assume that F
p
= Q

∏s−1
i=1 P

i
i is the decomposition of F

p
as in Proposition

3.2.3. By the properties of pgcd, it is easy to check that B(i)
p
∼ PiPi+1 · · ·Ps−1 and

C(i)
p
∼ QPi+1P

2
i+2 · · ·P s−i−1

s−1 . In particular, B(s)
p
∼ 1 and C(s)

p
∼ Q. Hence C(s)

can be written in the form
∑

i ci z
pi, where ci ∈ Fq[x]/ sat(C(s)). In the next step,

if deg(C1, z) = 0, then the squarefree decomposition of F is obtained. Otherwise,

lines 14.17–14.20 are executed to compute C3, the pth root of C(s) (i.e. C1), and then

the squarefree decomposition of C3. The extraction of pth roots of polynomials in

(Fq[x]/ sat(S))[z], where S is a zero-dimensional simple set in Fq[x], will be discussed

in the next subsection. Hence condition (b) of Definition 5.2.1 follows clearly from

113

CHAPTER 5. Simple decomposition over finite fields

the above analysis (analogous to the correctness proof of Algorithm 8). �

5.2.3 Extracting pth roots

Now we discuss the remaining issue in Algorithm 14: extracting the pth root of a

polynomial
∑

i ciz
pi ∈ (Fq[x]/ sat(S))[z], where S is a zero-dimensional simple set.

This issue can be reduced to the extraction of the pth roots of the elements ci in

Fq[x]/ sat(S). We already exploited the structure of Fq[x]/ sat(S), which is isomor-

phic to a product of perfect fields of characteristic p > 0, in Section 5.1.

Proposition 5.2.4. Let S be a zero-dimensional simple set in Fq[x]. Then for i =

1, . . . , n, there exists a unique pth root for every element in Fq[xi]/ sati(S).

Proof. The existence and uniqueness of the pth roots of elements in Fq[xi]/ sati(S)
follow immediately from the fact that Fq[xi]/ sati(S) is isomorphic to a product of

perfect fields. �

For a positive-dimensional simple set S, F̃q = Fq(u) is not perfect, so the ex-

traction of pth roots in F̃q[yi]/ sati(S)F̃q
may be infeasible. Consider for example

T = [y3−u] ⊆ F3[u, y]. The 3rd root of u does not exist in F3(u)[y]/〈y3−u〉F3(u). We

need some extra technique other than the one presented here to handle the positive-

dimensional case. We will study this problem in Section 5.3.

For any perfect field of characteristic p > 0, one can extract the pth roots of its

elements by solving some linear equations (see, e.g., [68]). In view of the product

structure of Fq[x]/ sat(S), an obvious way for extracting the pth root of an ele-

ment F ∈ Fq[x]/ sat(S) is to compute the pth root of πj(F) over all the branches

Fq[x]/pj and then lift them back, where pj (j = 1, . . . , s) are the associated primes

of sat(S). The drawback of this method is that it needs to split the field product

Fq[x]/ sat(S) completely. As prime decomposition of sat(S) may involve the computa-

tion of Gröbner bases or irreducible triangular sets, one can imagine the ineffectiveness

of this method.

In what follows, we propose another method for pth root extraction. The following

two propositions serve as the basis of our method.

114

Section 5.2. Zero-dimensional polynomial sets

Proposition 5.2.5. Let S = [S1, . . . , Sr] ⊆ K[x] be a simple set. Then, for any

i = 1, . . . , r, K̃[yi]/ sati(S)K̃ is a (K̃[yi−1]/ sati−1(S)K̃)-module and 1, yi, . . . , y
d−1
i form

a free basis (of this module), where d = deg(Si, yi).

Proof. First we have

K̃[yi]/ sati(S)K̃ ∼= (K̃[yi]/ sati−1(S)K̃)/(sati(S)K̃/ sati−1(S)K̃).

Furthermore, K̃[yi]/ sati−1(S)K̃ = (K̃[yi−1]/ sati−1(S)K̃)[yi] and sati(S)K̃/ sati−1(S)K̃ =

〈Si〉, which is an ideal in (K̃[yi−1]/ sati−1(S)K̃)[yi]. It follows that K̃[yi]/ sati(S)K̃ is a

(K̃[yi−1]/ sati−1(S)K̃)-module. Let F ∈ (K̃[yi−1]/ sati−1(S)K̃)[yi]. Since lc(T i) is regu-

lar and thus invertible in K̃[yi−1]/ sati−1(S)K̃, we can divide F by Si. The remainder

is a linear combination of 1, yi, . . . , y
d−1
i , which is equal to F in K̃[yi]/ sati(S)K̃. It is

easy to verify the linear independence of 1, yi, . . . , y
d−1
i . �

The elements 1, yi, . . . , y
d−1
i in the above proposition are called the standard basis

of K̃[yi]/ sati(S)K̃.

Proposition 5.2.6. Let R be a ring isomorphic to a product of fields, M be an n×n

matrix over R, and b ∈ Rn. Then the set of linear equations

Mx = b (5.2)

has a unique solution if and only if det(M) is regular in R. If the equivalent condi-

tions are satisfied, then the unique solution is a = (a1, . . . , as), where ai = det(Mi) ·
det(M)−1 and Mi is the matrix obtained by replacing the ith column of M with b.

Proof. Suppose that R ∼= K1 × · · · × Ks, where Ki is a field for i = 1, . . . , s. We

use πi to denote the projection of R to Ki. It induces two maps respectively from

matrices and vectors over R to those over Ki, which are also denoted by πi. If

a = (a1, . . . , an) is a solution of (5.2), then the following sets of equations may be

obtained by projection:

πi(M) πi(a) = πi(b), i = 1, . . . , s. (5.3)

Thus solving (5.2) for x is equivalent to finding πi(a) satisfying (5.3) for all i =

1, . . . , s. According to the Cramer’s rule, each set of equations in (5.3) has a unique

115

CHAPTER 5. Simple decomposition over finite fields

solution if and only if det(πi(M)) = πi(det(M)) 6= 0; if the equivalent conditions are

satisfied, then πi(aj) = det(πi(Mj)) · det(πi(M))−1 = πi(det(Mj) · det(M)−1), where

Mi is the matrix obtained by replacing the ith column of M with b.

Hence (5.2) has a unique solution if and only if det(M) is regular inR. If the equiv-

alent conditions are satisfied, then one can find the unique solution a = (a1, . . . , as)

with ai = det(Mi) · det(M)−1. �

In the following parts of this section, the simple set S = [S1, . . . , Sn] ⊆ Fq[x] is

restricted to be zero-dimensional. Let F ∈ Fq[x], lv(F) = xi, and deg(Ti, xi) = d.

We want to construct a polynomial G = a0+ a1xi + · · ·+ ad−1x
d−1
i with aj ∈ Fq[xi−1]

such that Gp = F modulo sati(S).
Suppose that the pseudo-division formula of Gp − F w.r.t. Si is C(Gp − F) =

QSi + R, where C is some power of ini(Si) and R = prem(Gp − F, Si). The pseudo-

remainder R can be written as R = (fd−1x
d−1
i + · · ·+f0)+(bd−1x

d−1
i + · · ·+b0), where

each fj is a linear combination of ap0, . . . , a
p
d−1 with coefficient in Fq[xi−1] and each

bj is an element in Fq[xi−1] for j = 0, . . . , d − 1. Noting that C is regular modulo

sati(S), one can prove that Gp = F modulo sati(S) is equivalent to

fd−1x
d−1
i + · · ·+ f0 = −(bd−1x

d−1
i + · · ·+ b0) modulo sati(S).

Comparing the coefficients of xj
i (j = 0, . . . , d − 1) in this equality, we obtain the

following set of equations modulo sati−1(S):

f0(a
p
0, . . . , a

p
d−1) = −b0,

f1(a
p
0, . . . , a

p
d−1) = −b1,

...

fd−1(a
p
0, . . . , a

p
d−1) = −bd−1.

(5.4)

As the existence and uniqueness of the pth roots of elements in Fq[xi]/ sati(S) have
been proven, the set of linear equations (5.4) has a unique solution; hence we are able

to solve it for ap0, . . . , a
p
d−1 by Proposition 5.2.6. After apj is obtained, we are in the

position to compute the pth root aj of apj in Fq[xi−1]/ sati−1(S) for j = 0, . . . , d − 1.

Repeating the above process will lead to pth root extraction in Fq in the end, which

is computable. It should be noted that when using Proposition 5.2.6 to solve (5.4),

116

Section 5.2. Zero-dimensional polynomial sets

one needs to obtain the inverse of an element in Fq[xi−1]/ sati−1(S), which can be

computed by the algorithm QuasiRecip described in [113].

The whole process is illustrated by the following example.

Example 5.2.1. Consider the simple set S = [S1, S2] = [x2 +2 x+2, x y2+ y+1] ⊆
F5[x, y]. We want to compute the 5th root of F = y+4 x in F5[x, y]/ sat(S). Suppose
that G = a1 y+a0 is the 5th root of F . One has the pseudo-division formula of G5−F

w.r.t. S2:

x4(G5−F) = pquo(G5, S2)·S2+(x2a51+2 x a51+a51) y+(x4a50+3 x a51+a51)−(x4 y+4 x5).

And thus in F5[x, y]/ sat(S), we have (x2a51 + 2 x a51 + a51) y + (x4a50 + 3 x a51 + a51) −
(x4 y + 4 x5) = 0. Equating the coefficients of yi (i = 1, 0) to 0, we obtain a set of

linear equations in the matrix form

(

x4 3 x+ 1

0 x2 + 2 x+ 1

)(

a50

a51

)

=

(

4 x5

x4

)

(5.5)

Denote by M the coefficient matrix of (5.5) and by Mi the matrix obtained by

replacing the (i+1)th column of M with
[

4 x5 x4
]T

for i = 0, 1. By Proposition 5.2.6,

a5i = det(Mi) · det(M)−1 is the solution of (5.5). Using the algorithm QuasiRecip in

[113], we find that the inverse of det(M) = x4 (x2 + 2 x+ 1) is 4. Hence the solution

of (5.5) is a50 = x7 + 2 x6 + 4 x5 + x4 and a51 = 4 x8. Recursively extracting the 5th

root of a50 and a51 in the same way, we get G = 4 y + 2 x+ 1 in the end.

5.2.4 Algorithm for simple decomposition: zero-dimensional case

In this section, we present our algorithms to decompose zero-dimensional polynomial

sets into simple sets over finite fields.

Let F be a zero-dimensional polynomial set in Fq[x]. The following algorithm

computes a finite number of simple sets S1, . . . ,Sr such that
√

〈F〉 = ⋂r

i=1〈Si〉.

117

CHAPTER 5. Simple decomposition over finite fields

Algorithm 15: Simple decomposition zero-dim S := SimDecZero(F)

Input: F — a zero-dimensional polynomial set in Fq[x].

Output: S — a finite set of simple sets in Fq[x] such that
√

〈F〉 = ⋂S∈S〈S〉.

S := ∅;15.1

for T ∈ RegDec(F) do15.2

D := {(T , ∅)}; ST := ∅;15.3

while D 6= ∅ do15.4

(A,S) := pop(D);15.5

if A = ∅ then15.6

ST := ST ∪ {S};15.7

else15.8

A := the polynomial in A with smallest leading variable;15.9

for ({[C1, c1], . . . , [Cs, cs]},Q) ∈ sqfZero(A,S) do15.10

D := D ∪ {(A \ {A},Q ∪ {C1 · · ·Cs})};15.11

end15.12

end15.13

end15.14

S := S ∪ ST ;15.15

end15.16

Proof. It is easy to verify the termination of the algorithm. We prove the correctness

as follows.

For any zero-dimensional regular set T , sat(T) = 〈T 〉. By Specification 6,
√

〈F〉 =
⋂

T ∈RegDec(F)

√

〈T 〉. By Algorithm 14, one can easily verify that for any

(A,S) ∈ D, S is a simple set. Hence each element in S is a simple set.

To prove the ideal relation
√

〈F〉 = ⋂S∈S〈S〉, we only need to prove that for each

T ∈ RegDec(F),
√

〈T 〉 =
⋂

S∈ST
〈S〉 holds at the end of the corresponding while

loop for T . For Lines 15.10–15.12, the ideal relation

√

〈A〉+ 〈S〉 =
⋂

({[C1,c1],...,[Cs,cs]},Q)∈sqfZero(A,S)

√

〈A〉+ 〈Q〉

118

Section 5.2. Zero-dimensional polynomial sets

holds. For each ({[C1, c1], . . . , [Cs, cs]},Q) ∈ sqfZero(A,S), we have

√

〈A〉+ 〈Q〉 =
√

〈A \ {A}〉+ 〈Q ∪ {A}〉

=

√

〈A \ {A}〉+
√

〈Q ∪ {A}〉
=
√

〈A \ {A}〉+ 〈Q ∪ {C1 · · ·Cs}〉.

Hence the following invariant of the corresponding while loop for T follows:

√

〈T 〉 =
⋂

(A,S)∈D

√

〈S ∪ A〉 ∩
⋂

S∈ST

〈S〉. �

Next we present prejudging criteria for excluding some cases in which complete

squarefree decomposition is unnecessary and some variants of the algorithm SimDecZero.

In the case of univariate polynomials, by Proposition 3.2.3 a polynomial F ∈ Fq[x]

can be written in the form F = Q
∏

i P
i
i with Q′ = 0. If Q is a constant, then the

squarefree part of Q can be obtained just by computing F/ gcd(F, F ′); otherwise, we

need squarefree decomposition as done in Algorithm 8. In other words, squarefree

decomposition in the cases when Q is a constant may be avoided by identifying such

cases. The key observation is as follows.

If Q is not a constant, then Q is a pth power of some nonconstant polynomial. In

this case, the following conditions must be satisfied:

• deg(F) ≥ p;

• if F (s) is the last nonzero polynomial in the derivative sequence

F, F ′, F (2), . . . , F (s), 0, . . . ,

then p | deg(F (s)).

Let S be a simple set in Fq[x] and F ∈ Fq[x][z]. These conditions can be generalized

to the case of generalized squarefree decomposition:

• deg(F, z) ≥ p;

• if ∂sF/∂zs is the last regular polynomial modulo sat(S) in the derivative se-

quence F, ∂F/∂z, ∂2F/∂z2, . . . , ∂sF/∂zs, . . ., then p | deg(∂sF/∂zs, z).

119

CHAPTER 5. Simple decomposition over finite fields

The above conditions can be used to identify some cases in which the technique

for computing the squarefree part in still works. However, for the second condition

it is necessary to determine whether a polynomial is regular, which may be quite

time-consuming as shown in Section 5.4.1. The modified version of SimDecZero with

the prejudging criteria incorporated is named as SimDecZeroPJ.

What we have actually computed is the complete squarefree decomposition, while

only the squarefree part is needed. One can choose to split the squarefree part into

factors. The splitting may lead to more branches, but polynomials in each branch

are simpler. We call the new algorithm with this splitting strategy the strong simple

decomposition algorithm, denoted by SSimDecZero, which can be easily obtained by

replacing Line 15.11 of Algorithm 15 with the following statement

“D := D ∪ {(A \ {A},Q∪ {Ci}) : i = 1, . . . , s}; ”.

The output of SSimDecZero has the same properties as that of SimDecZero, and the

proof of termination and correctness is similar.

For instance, consider the regular set T = [(x + 1)4(x3 + 2 x + 1), y3 + x + 2]

in the polynomial ring F3[x, y] with x < y. SSimDecZero(T) yields two simple sets

[x+ 1, y+ 1] and [x3 + 2 x+ 1, y + x], while SimDecZero(T) returns [x4 + x3 + 2 x2 +

1, y + 2 x3 + 2 x+ 2].

The following example illustrates the entire process of our main algorithms.

Example 5.2.2. Consider the polynomial set F = {F1, F2} ⊆ F3[x, y], where

F1=(y2 + y + 2 x2 + 2)(2 xy + y + 2 x2 + 2)(x6y6 + 2 x9y3 + 2 x3y3 + x12 + 2 x6 + 1),

F2=2 y6 + y3 + 2 x6 + 1.

Order the variables as x < y. By the algorithm RegDec, F is decomposed into four

regular sets

T1 = [x+ 1, y + 2], T2 = [x+ 2, y + 2], T3 = [x2 + 1, y + 1], T4 = [T1, T2],

where

T1 = x3 + 2 x+ 1, T2 = (x2 + 2) y4 + (x2 + 2 x) y3 + (2 x2 + x+ 1) y + x2 + 2.

120

Section 5.3. Positive-dimensional polynomial sets

It is easy to check that T1, T2, T3 are all simple sets, but T4 is not. Thus further

computation is needed to turn T4 into simple sets. In SimDecZero, T4 is converted to

S4 = [T1, (x
4 + x2 + x) y2 + (2 x4 + 2 x3 + 2 x2 + 2) y + 2 x3 + 2 x+ 2],

which is a simple set. The output of SimDecZeroPJ is the same. To illustrate the

prejudging criteria in SimDecZeroPJ, first consider T1. Note that deg(T1, x) = 3

and the derivative sequence of T1 is T1, 2, 0. Thus the second prejudging criterion

ensures that complete squarefree decomposition of T1 is unnecessary and one can use

gcd(T1, T
′
1)/T1 only to obtain the squarefree part of T1. For T2, deg(T2, y) > 3 and

its derivative sequence T2, 2 y
3 + x2y2 + 2 x2 + x+ 1, 0 satisfies the second prejudging

criterion. Hence squarefree decomposition is still needed.

The algorithm SSimDecZero produces a finer decomposition, turning T4 into two

simple sets

S41 = [T1, (x
2 + x+ 2) y + x+ 2], S42 = [T1, (x

2 + 2 x) y + 2 x2 + 2 x+ 1].

Consequently, two kinds of simple decomposition of F are obtained such that

√

〈F〉 =
3
⋂

i=1

〈Ti〉 ∩ 〈S4〉 =
3
⋂

i=1

〈Ti〉 ∩ 〈S41〉 ∩ 〈S42〉.

5.3 Positive-dimensional polynomial sets

As already explained in Section 5.2.3, the technique for pth root extraction is no

longer applicable to the positive-dimensional case. Therefore in this case we have to

find an alternative way to design the algorithm for simple decomposition.

By adjoining the parameters of the regular set to the ground finite field, the

problem of simple decomposition over the ground field in the positive-dimensional

case is then reduced to that over a purely transcendental extension of the ground field

in the zero-dimensional case. We propose a method to solve the latter problem with

the critical step of computing the radical of a special ideal over the field extension.

Computation of radicals of positive-dimensional ideals over finite fields is a dif-

ficult problem itself, but fortunately it has already been studied in the literature.

We investigate the three methods developed by Matsumoto [106], Kemper [83], and

Fortuna, Gianni, and Trager (referred to as FGT) [62] for the computation of radicals

121

CHAPTER 5. Simple decomposition over finite fields

and, in particular, improve the FGT method (which is the most suitable) according

to our specific setting to formulate a simplified and optimized algorithm.

5.3.1 Algorithm for simple decomposition: positive-dimensional case

We start our solving approach to the problem formulated at the end of Section 5.1

with the following observations.

Proposition 5.3.1. Let T ⊂ K[u][y] be a normal triangular set. Then T is a

Gröbner basis of 〈T 〉K̃ w.r.t. the lexicographical term order.

Proof. For any two distinct polynomials in T , viewed as elements in K̃[y], their lead-

ing terms are powers of their respective leading variables and thus they are coprime.

The conclusion follows from Proposition 4 in [35, Section 2.9]. �

Lemma 5.3.2 ([90]). Let T be a regular set in K[u][y], and P ∈ K[u][y]. Then

P ∈ sat(T) if and only if there exists a nonzero polynomial L ∈ K[u] such that

LP ∈ 〈T 〉.

Proposition 5.3.3. For any regular set T ⊂ K[u][y], sat(T) = 〈T 〉K̃ ∩K[u][y].

Proof. (⊂) By Proposition 2.3.3, sat(T)K̃ = 〈T 〉K̃ and thus

sat(T) ⊂ sat(T)K̃ ∩K[u][y] = 〈T 〉K̃ ∩K[u][y].

(⊃) Let T = [T1, . . . , Tr]. Then for any P ∈ 〈T 〉K̃∩K[u][y], there existQ1, . . . , Qr ∈
K̃[y] such that P =

∑r

i=1QiTi. Let L be the least common multiplier of the denom-

inators of all the coefficients of Q1, . . . , Qr. Then L ∈ K[u] \ {0} and LP ∈ 〈T 〉.
Hence P ∈ sat(T) by Lemma 5.3.2. �

Proposition 5.3.4. Let T = [T1, . . . , Tr] ⊂ K[x] be a regular set with lv(Ti) = yi for

i = 1, . . . , r. If [T1, . . . , Tr−1] is a simple set, then

√

〈T 〉K̃ ∩ K̃[y1, . . . , yr−1] = 〈T1, . . . , Tr−1〉K̃.

Proof. First we see, for instance, from [4, Exercise 1.13] that

√

〈T 〉K̃ ∩ K̃[y1, . . . , yr−1] =
√

〈T 〉K̃ ∩
√

K̃[y1, . . . , yr−1] =

√

〈T 〉K̃ ∩ K̃[y1, . . . , yr−1].

122

Section 5.3. Positive-dimensional polynomial sets

Let N = [N1, . . . , Nr] be a normal triangular set transformed from T such that

sat(N) = sat(T). Then by Proposition 5.3.1, N is a Gröbner basis of 〈T 〉K̃ w.r.t. the

lexicographical term order. Thus

〈T 〉K̃ ∩ K̃[y1, . . . , yr−1] = 〈N1, . . . , Nr−1〉K̃ = 〈T1, . . . , Tr−1〉K̃,

where the last equality follows from Proposition 2.3.4(a) and the fact that sat(N) =

sat(T). �

Let T = [T1, . . . , Tr] ⊂ Fq[x] be a regular set with lv(Ti) = yi and [T1, . . . , Tr−1]

already a simple set. According to Proposition 5.3.4, we assume that
√

〈T 〉F̃q
can be

written as
√

〈T 〉F̃q
= 〈T1, . . . , Tr−1, F1, . . . , Fk〉F̃q

,

where Fj ∈ F̃q[y] and lv(Fj) = ys for j = 1, . . . , k. We turn Fj into a polynomial in

Fq[u][y] by multiplying some polynomial in Fq[u] as usual and denote the resulting

polynomial still by Fj.

Now take

G := pgcd({F1, . . . , Fk}, [T1, . . . , Tr−1]).

Then for any (P,A) ∈ G and associate prime p of sat(A)F̃q
, we have P

p
= gcd(F

p

1, . . . , F
p

k),

namely 〈P p〉 = 〈F p

1, . . . , F
p

k〉. It follows that 〈P 〉 = 〈F 1, . . . , F k〉 and
√

〈T 〉F̃q
= 〈T1, . . . , Tr−1, F1, . . . , Fk〉F̃q

=
⋂

(P,A)∈G

〈A ∪ {P}〉F̃q
.

Contracting the above equation back to Fq[u][y] (i.e., taking intersection with Fq[u][y])

and by Proposition 5.3.4, we have

√

sat(T) =
⋂

(P,A)∈G

sat(A ∪ {P}). (5.6)

Lemma 5.3.5 ([98, Lemma 3.2]). Let T = [T1, . . . , Tr] be any regular set in K[x]

and F ∈ K[x] with lv(F) = yi (1 ≤ i ≤ r). If F ∈ 〈T i〉 and sati−1(T)K̃ is radical,

then F ∈ sati(T)K̃.

Proposition 5.3.6. For every (P,A) ∈ G in the decomposition (5.6), A∪{P}, when
ordered properly, is a simple set.

123

CHAPTER 5. Simple decomposition over finite fields

Proof. Since [T1, . . . , Tr−1] is a simple set, sat([T1, . . . , Tr−1]) is radical by Theorem

5.1.3. Thus it follows from Specification 6 that sat(A) is radical for every (P,A) ∈ G.

Hence 〈A〉F̃q
= sat(A)F̃q

is also radical. From the radicality of 〈T1, . . . , Tr−1, F1, . . . , Fk〉F̃q
,

we know that 〈P 〉 = 〈F 1, . . . , F k〉 is radical, where F denotes the image of F in

(F̃q[ys−1]/ sat(A)F̃q
)[ys].

We complete the proof by showing that 〈A ∪ {P}〉F̃q
is radical. Suppose that

F n ∈ 〈A ∪ {P}〉F̃q
. Then F

n ∈ 〈P 〉 and hence F ∈ 〈P 〉, because 〈P 〉 is radical. By

Lemma 5.3.5, F ∈ 〈A ∪ {P}〉F̃q
. This implies that 〈A ∪ {P}〉F̃q

is radical. �

Now we are ready to formulate the method described above as Algorithm 16.

Algorithm 16: Simple decomposition Positive-dim S = SimDecPos(T)

Input: T — a regular set in Fq[x].

Output: S — a finite set of simple sets in Fq[x], such that
√

sat(T) =
⋂

S∈S sat(S).

S := ∅; D := {(T , ∅)};16.1

while D 6= ∅ do16.2

(A,S) := pop(D);16.3

if A = ∅ then16.4

S := S ∪ {S};16.5

else16.6

T := polynomial in A with smallest leading variable yt;16.7

F := LEX Gröbner basis of
√

〈S ∪ {T}〉
F̃q
;16.8

F ′ := {F ∈ F : lv(F) = yt};16.9

G := pgcd(F ′,S);16.10

D := D ∪ {(A \ {T},Q ∪ {F}) : (F,Q) ∈ G};16.11

end16.12

end16.13

return S16.14

To use Algorithm 16, one needs to compute the Gröbner bases of the radicals of

zero-dimensional ideals over a purely transcendental extension of Fq. This is a major

computational step and will be discussed in the next subsection.

Example 5.3.1. We illustrate how Algorithm 16 works by a simple example: T =

124

Section 5.3. Positive-dimensional polynomial sets

[T1, T2] ⊆ F3[s, t, x, y] with s < t < x < y, where

T1 = (x9 − s)(x3 − t), T2 = y3 − t.

It is easy to verify that T is a regular set.

In the first iteration of Algorithm 16, (A,S) = (T , ∅) and T1 is chosen as the

polynomial with smallest leading variable. The result of Line 16.10 is G = {(T1, ∅)}
and thus, after this iteration, D = {([T2], [T1])}.

In the second iteration, we have (A,S) = ([T2], [T1]). The polynomial in Line 16.7

is T2 and the Gröbner basis of
√

〈T1, T2〉F̃q
computed is F = {T1, T2, (y−x)(x9− s)}.

Therefore we have

G = {(y3 − t, [x9 − s]), (y − x, [x3 − t])}

and D = {(∅,S1), (∅,S2)}, where S1 = [x9 − s, y3 − t] and S2 = [x3 − t, y − x]. These

two simple sets are returned as output of the algorithm.

5.3.2 Computing radicals of polynomial ideals

Computing a finite basis for the radical of a positive-dimensional polynomial ideal

over a finite field is difficult in general. There are three methods due to Matsumoto

[106], Kemper [83], and Fortuna and others [62], but no routine available in popular

Computer Algebra systems like Maple and Magma for such computation. For our

purpose of simple decomposition, the ideal whose radical need be computed is not

arbitrary: it is generated by a simple set with one additional polynomial having bigger

leading variable. In this part, we investigate the application of the above-mentioned

three methods in our particular situation.

Methods of Matsumoto and Kemper

The method developed by Matsumoto [106] is characterized by its use of the Frobenius

mapping over Fq[x], that is, the mapping f : G 7→ Gp. It works for any given ideal

a ⊂ Fq[x] by computing a := f−1(a) recursively until a stabilizes. To find the radical

of the ideal aF̃q
⊂ F̃q[y] needed for simple decomposition, we can contract aF̃q

to an

ideal a in Fq[x], compute the radical of the contracted ideal a using Matsumoto’s

method, and then extend the radical back to F̃q[y].

125

CHAPTER 5. Simple decomposition over finite fields

Kemper’s method [83] was proposed for computing the radical of any zero-dimensional

ideal in K̃[y]. It generalizes the method given in [141] for fields of characteristic 0.

The main difficulty for the generalization lies in that over a field of positive charac-

teristic, a squarefree polynomial may no longer remain squarefree when it is extended

to a larger field. This difficulty was overcome by means of replacing the squarefree

part of a polynomial in the method in [141] by its separable part.

Both of the methods recalled above are based on Gröbner bases computation with

introduction of additional variables and polynomials. We can apply these general

methods to compute the radical of the particular ideal in our algorithm of simple

decomposition without taking the special structure of the ideal into account. In

fact, we have not figured out how to make use of the ideal structure to speed up

the computation. Our attention will therefore be focused on another method to be

discussed, optimized, and improved in the following subsections.

FGT method: brief review

The FGT method proposed by Fortuna and others [62] can be used to compute the

radical
√
a of any ideal a ⊂ F̃q[y]. It starts with the computation of the radical

of a ∩ F̃q[y1] (e.g., by using Algorithm SQFREE-FGE in [68]) and then adjoins the

next elimination ideal inductively to the radical already computed. Thus the key

ingredient of this method is to compute the radical of a∩ F̃q[yr], when a∩ F̃q[yr−1] is

radical.

For simple decomposition, we need to compute the radical of 〈S ∪ {T}〉F̃q
, where

S is a simple set and thus 〈S〉F̃q
= sat(S)F̃q

is radical. By Proposition 2.3.4(a) we

have sati(T)K̃ = sat(T)K̃ ∩ K̃[yi] for each i. Suppose that lv(T) = ys. Then

〈S ∪ {T}〉F̃q
∩ F̃q[ys−1] = sat(S ∪ {T})F̃q

∩ F̃q[ys−1] = sat(S)F̃q
= 〈S〉F̃q

.

At this point, one sees that our problem is indeed what the FGT method can solve. In

what follows, we briefly review the method and optimize it according to our setting.

For any polynomial ring R[z], we use ′ to denote the derivation w.r.t. z (i.e., for

any F ∈ R[z], F ′ := ∂F/∂z). For any zero-dimensional ideal a = 〈F1, . . . , Fr〉 ⊂ R[z]

and derivation D of R[z], define D(a) := 〈D(F1), . . . , D(Fr)〉. The FGT method is

outlined in Algorithm 17 and the reader may refer to [62] for more details.

126

Section 5.3. Positive-dimensional polynomial sets

Algorithm 17:
√
a = update(a)

Input: a — a zero-dimensional ideal in R[z], with a ∩R = b being radical.

Output:
√
a — the radical of a.

Compute {D1, . . . ,Dr}, a basis of Der(R/b);17.1

l := a : 〈a′,D1(a), . . . ,Dr(a)〉; h := a : l∞;17.2

Compute G1, . . . , Gs and j1, . . . , js such that h =
⋂s

i=1〈Gi, ji〉 and Gi ≡ Hp
i17.3

mod ji;

Compute Hi for i = 1, . . . , s;17.4

return l ∩ (
⋂s

i=1 update(〈Hi, ji〉))17.5

In Line 17.1 of Algorithm 17, a basis of Der(R/b) can be computed according

to Proposition 3.2.6 and the comments below the proposition. The ideal l in Line

17.2 is guaranteed to be radical, while h there contains polynomials as pth powers

and thus is not radical. The decomposition of h in Line 17.3 is related to Gröbner

bases under specification and can be achieved as shown in [67]. In each branch of

the decomposition, the polynomial Gi is a pth power modulo ji, and its pth root is

extracted in Line 17.4. The algorithm is completed finally by calling the function

update recursively to compute the radical of each 〈Hi, ji〉.
Algorithm 17 generalizes the algorithm for squarefree decomposition of univariate

polynomials over finite fields (see, e.g., [68]) by replacing the ordinary derivative w.r.t.

one variable with multiple derivations in R/b and by replacing polynomial quotients

with ideal quotients and saturations. The ideals l and h correspond to the two parts

of the squarefree decomposition of a univariate polynomial: one does not contain pth

power factors and the other does and need be handled by using additional techniques.

FGT method: optimization

We want to compute efficiently the radical of 〈S ∪ {T}〉F̃q
, where T ∈ F̃q[yr], and

S ⊂ F̃q[yr−1] such that 〈S〉F̃q
is radical. For this end, we proceed to optimize the

algorithm update for 〈S∪{T}〉F̃q
as input by making use of the structure of the special

type of input ideals.

(1) For any ideal a ⊂ K[x] as input to the algorithm update, a maximal indepen-

dent subset {xi1 , . . . , xis} of variables such that a ∩ K[xi1 , . . . , xis] = {0} has to be

found so as to turn a to a zero-dimensional ideal. However, for any regular set whose

127

CHAPTER 5. Simple decomposition over finite fields

parameters can be easily identified, no extra computation is needed.

(2) Recall that p is the characteristic of Fq. The following prejudgement criteria

can be used to avoid some useless computations after l is obtained.

(a) If a = l, then a =
√
a. This is because l is radical [62, Porposition 3.7].

(b) If p > deg(T, ys), then for every associate prime p of sat(S)F̃q
, deg(T

p
, yr) <

deg(T, yr) < p and thus (T
p
)′ 6= 0, which implies that T

p
is not a pth power. In

this case, the ideal l is equal to
√
a because the ideal h containing pth powers

is trivial.

The above criteria identify the cases when some “troublesome” part in the squarefree

decomposition of T does not occur and thus the involved computation is unnecessary.

Criterion (b) is particularly effective when p is large.

(3) When the generators of h form a triangular set, the splitting of h in Line 17.3

is no longer needed. This can be shown by using the proof of Corollary 3.8 in [62].

Now we explain how to extract pth roots. Let P ∈ F̃q[yr−1][yr] be a polynomial

which is a pth power modulo a radical ideal 〈S〉F̃q
⊂ F̃q[yr−1]. As P ′ = 0, one can

write P =
∑

j Pjy
pj
r , where Pj ∈ F̃q[yr−1]/〈S〉F̃q

. Therefore, the extraction of the pth

root of P reduces to that of each Pj in F̃q[yr−1]/〈S〉F̃q
. In other words, we only need

to deal with the following problem: given a pth power G ∈ F̃q[yr−1]/〈S〉F̃q
, extract

its pth root H ∈ F̃q[yr−1]/〈S〉F̃q
.

Proposition 5.3.7. Let G ∈ F̃q[yr−1]/〈S〉F̃q
be a pth power, where S is a simple set.

Then the pth root of G in F̃q[yr−1]/〈S〉F̃q
is unique.

Proof. Suppose that H1 and H2 are two pth roots of G in F̃q[yr−1]/〈S〉F̃q
. Then

Hp
1 − Hp

2 = (H1 − H2)
p = 0. As in F̃q[yr−1]/〈S〉F̃q

there is no nilpotent element, we

have H1 −H2 = 0 and thus the conclusion follows. �

Take a basis {b1, . . . , bk} of F̃q[yr−1]/〈S〉F̃q
as an F̃q-module and write bpi =

∑k

j=1 aijbj

modulo 〈S〉F̃q
for i = 1, . . . , k. Suppose that G =

∑k

j=1 gjbj for gj ∈ F̃q and its pth

root H =
∑k

i=1 cibi with ci ∈ F̃q is to be determined. Then in F̃q[yr−1]/〈S〉F̃q
,

Hp =

k
∑

i=1

cpi b
p
i =

k
∑

i=1

cpi

(

k
∑

j=1

aijbj

)

=

k
∑

j=1

(

k
∑

i=1

aijc
p
i

)

bj =

k
∑

j=1

gjbj = G,

128

Section 5.3. Positive-dimensional polynomial sets

from which the following linear equations over F̃q can be derived:

k
∑

i=1

aijc
p
i = gj, j = 1, . . . , k, (5.7)

where cpi are unknowns.

If the coefficient matrix (aij) is invertible, then the system of linear equations (5.7)

can be directly solved and ci may be recovered via pth root extraction in F̃q = Fq(u).

Otherwise, we can apply the techniques in Condition P of [141, Section 40] to solve

(5.7). Theoretically, it has been proved that Condition P is a necessary and sufficient

condition on the coefficient field for the radical of an ideal to be computable [62].

Since Condition P holds for the coefficient field Fq(u), we can solve the linear system

(5.7) effectively. The solution obtained furnishes the unique pth root of G.

FGT method: specialized algorithm

The previous discussions are combined to devise the algorithm SimpleRadical. It com-

putes
√

〈S ∪ {P}〉F̃q
for any simple set S ⊂ F̃q[yr−1] and polynomial P ∈ F̃q[ys−1][ys].

We first use a small example to illustrate this algorithm and the FGT method.

Let a = 〈x3
1 − u, x3

2 − u〉 ⊆ F3(u)[x1, x2]. The FGT method starts by com-

puting the radical of 〈x3
1 − u〉 ⊆ F3(u)[x1] using Algorithm SQFREE-FGE in [68],

resulting in
√

〈x3
1 − u〉 = 〈x3

1 − u〉. Then according to Proposition 3.2.6, a basis of

Der(F3(u)[x1]/〈x3
1 − u〉) is computed as ∂/∂x1, ∂/∂x2. Thus l = 〈1〉 and h = a. Since

the generators of h already form a regular set, no splitting is needed for h. It is

verified in this step that x3
2 − u is a pth power modulo 〈x3

1 − u〉.
The pth root of x3

2 − u is extracted as follows. In order to compute the pth root

of the coefficient 2 u, the following system of linear equations corresponding to (5.7)

is constructed:








1 u u2

0 0 0

0 0 0









·









cp0

cp1

cp2









=









2 u

0

0









.

The coefficient matrix is clearly not invertible and Condition P should be applied. Ac-

cording to the procedure described in [141, Section 40] with independent set [1, u, u2],

129

CHAPTER 5. Simple decomposition over finite fields

the above system can be expanded further as









1 0 0

0 1 0

0 0 1









·









c0

c1

c2









=









0

2

0









,

whose solution is c1 = 2 and c0 = c2 = 0. This means that the pth root of 2 u is

2 x1. Therefore, we obtain the pth root x2 − x1 of x3
2 − u.

Then
√

〈x3
1 − u, x2 − x1〉 is computed recursively. Now the ideal is already radical

because deg(x2 − x1, x2) = 1 < p, so the computation of
√
a ends.

For this example, the ideal l is trivial and no further splitting of h is needed, but

it is not so in general.

130

Section 5.4. Implementation and experimental results

Algorithm 18: l := SimpleRadical(P,B)
Input: B — a zero-dimensional simple set in F̃q[ys−1]; P — a polynomial in

F̃q[ys].

Output:
√

〈B ∪ {P}〉
F̃q

— the radical of 〈B ∪ {P}〉
F̃q
.

Compute {D1, . . . ,Du}, a basis of Der(F̃q[ys−1]/〈B〉F̃q
);18.1

l := 〈B ∪ {P}〉
F̃q

: 〈〈B ∪ {P}〉′
F̃q
,D1(〈B ∪ {P}〉

F̃q
), . . . ,Du(〈B ∪ {P}〉

F̃q
)〉;18.2

if p > deg(P, ys) or l = 〈B ∪ {P}〉
F̃q

then18.3

return l;18.4

else18.5

h := 〈B ∪ {P}〉
F̃q

: l∞;18.6

Compute G1, . . . , Gv and j1, . . . , jv such that h =
⋂v

i=1〈Gi, ji〉 and each Gi18.7

is a pth power modulo ji;

for i = 1, . . . , v do18.8

Suppose that ji = 〈Bi〉F̃q
, where Bi is a simple set, and Gi =18.9

∑

j Gijy
pj
s with Gij ∈ F̃q[ys−1]/ji;

Compute a basis b of F̃q[ys−1]/ji;18.10

Express bp as F̃q-linear combinations of b;18.11

for each Gij do18.12

Construct the linear system Mx = g as (5.7), where g is the18.13

column coordinate vector of Gij w.r.t. b;

if M is invertible then18.14

Solve Mx = g for x to obtain x; x := p
√
x;18.15

else18.16

Use Condition P to obtain x such that Mxp = g;18.17

end18.18

Hj := x · b;18.19

end18.20

hi = SimpleRadical(
∑

j Hjy
j
s,B);18.21

end18.22

return l ∩ (
⋂v

i=1 hi)18.23

end18.24

131

CHAPTER 5. Simple decomposition over finite fields

5.4 Implementation and experimental results

We have implemented the algorithms for decomposing zero- and positive-dimensional

polynomial sets into simple sets over finite fields mainly in Maple using the Regu-

larChains library [93], which is useful for computations related to regular sets. As

currently this library can only handle polynomial sets over prime finite fields, i.e. Fp,

our implementation also has this restriction. In this section we present the experi-

mental results obtained for all our implementations and provide concise comparison

and analysis.

5.4.1 Zero-dimensional polynomial sets

Various regular sets as shown in Table 5.2 are tested, covering fields of small, medium

and big characteristics (F5, F541 and F7919), to verify the effectiveness of our algo-

rithms. Preliminary observations and analyses are given below, which may shed light

on the differences of the three algorithms and suggest which one to choose in different

situations.

All the experiments were made in Maple 11 running on AMD Athlom(tm) II

X2 CPU 1.60GHz with 2.00G RAM under Windows XP OS. Table 5.1 records the

timing (in seconds) of each algorithm, followed by the branch number of the output

in brackets. The last column gives the prejudging time in SimDecZeroPJ.

Table 5.1: Timings of decomposing regular sets into simple sets (zero-dimensional)

No. SSimDecZero SimDecZero SimDecZeroPJ Prejudge

P1 0.766 (21) 189.984 (16) 191.610 (16) 2.985
P2 331.750 (28) 392.437 (20) 163.891 (20) 16.094
P3 72.578 (72) 97.922 (36) 43.610 (36) 0.202
P4 18.922 (36) 16.907 (18) 11.687 (18) 7.890
P5 85.625 (24) 133.188 (12) 133.906 (12) 1.421
P6 96.187 (36) 187.047 (36) 76.641 (36) 8.641
P7 59.547 (108) 542.672 (180) 166.250 (180) 0.000
P8 924.687 (8) 653.297 (6) 382.391 (6) 0.000
P9 286.860 (4) 387.453 (2) 173.984 (2) 0.000
P10 80.812 (2) 84.016 (1) 0.890 (1) 0.797
P11 228.672 (10) 228.750 (12) 0.391 (12) 0.000
P12 585.844 (120) 590.406 (120) 497.250 (120) 0.000
P13 267.656 (14) 229.844 (16) 0.484 (16) 0.000
P14 851.406 (48) 1658.016 (11) 404.765 (11) 0.000

132

Section 5.4. Implementation and experimental results

From the experiments, one may observe the following.

• The strong simple decomposition algorithm is more efficient than the weak one

in most cases and especially for P1, P7, and P14. This may be due to the

influence of the complexity of polynomials in a regular set T on the perfor-

mance of pgcd(∗, T) computation. Compared with SimDecZero, the algorithm

SSimDecZero reduces the complexity of polynomials in the simple sets, on which

later pseudo-gcd computation is performed.

• As shown by P4, the prejudging process may be quite time-consuming compared

with the squarefree part computation.

• If the prejudging process can detect some branches for which F/ gcd(F, F ′),

rather than the complete squarefree decomposition, is sufficient for computing

the squarefree part, then the algorithm SimDecZeroPJ may save a lot of time

in obtaining the squarefree part of polynomials. See P3, P4, P9, P10, P11, and

P13 for instance. In this case, the amount of saved time depends on the time

spent in the while loop of Algorithm 14.

5.4.2 Positive-dimensional polynomial sets

Due to the lack of function in Maple for syzygy and ideal-saturation computation over

finite fields, our implementation has to call external functions from Singular (Version

3-1-4) [41] for some of the computations. Communication between the two systems

for our purpose is automated. For the sake of comparison, we have also implemented

in Maple the methods of Matsumoto and Kemper for computing radicals of positive-

dimensional ideals over finite fields.

We have carried out experiments with test examples for our algorithm of simple

decomposition using the three methods discussed in Section 5.3.2 for the involved

computation of radicals. Here we present the experimental results for 18 positive-

dimensional regular sets (Q1–Q18 in Table 5.5), with finite fields of characteristics

3, 17, and 53 used. All the experiments were made on an Intel(R) Pentium(R) P8700

CPU 2.53GHz with 1.89G RAM under Windows XP Professional SP3.

Table 5.3 shows the timings (in seconds) of simple decomposition based on the

three methods of Matsumoto, Kemper and FGT for radical computation in Maple

133

CHAPTER 5. Simple decomposition over finite fields

and the method of Kemper for radical computation in Singular. In the table, > 3600

indicates that the computation did not terminate within one hour and “overflow”

means that the computation stopped abnormally because of overflow. The timings

show that the algorithm implemented in Maple using the FGT method is faster in

general than that using the method of Matsumoto or Kemper, in particular when the

prejudgement criteria hold (e.g., for Q11). As the condition p > deg(T, ys) is expected

to hold with high probability for fields of big characteristics, it may be concluded that

the FGT-method-based algorithm performs better than the algorithm based on the

two other methods for big characteristics.

Without optimization, the methods of Matsumoto and Kemper are comparable

in terms of efficiency for those special ideals arising from simple decomposition. Mas-

tumoto’s method is more sensitive to the number of parameters and its efficiency

decreases dramatically as the number of parameters increases (see, e.g., Q5 and Q7),

while the efficiency of Kemper’s method depends more on the characteristics of the

ground field (see, e.g., Q5 and Q13).

However, our implementation of the algorithm for simple decomposition using

Kemper’s method (or even using the FGT method) in Maple performs much worse

than that using Kemper’s method implemented (by Gerhard Pfister) in Singular,

as shown in Table 5.3, Columns 5 and 6. This is mainly due to the computation

of elimination ideals using the EliminitionIdeal function from the PolynomialIdeals

package, which is very costly in Maple. Table 5.4 shows the total times for computing

the elimination ideals in Maple (Column 3) and for computing the radicals in Maple

(Column 4) and in Singular (Column 5) using Kemper’s method for the same set

of 18 examples. One sees clearly that computation of elimination ideals takes the

large majority of the total computing times. Therefore, our implementation of the

algorithm in Maple may become much more efficient if a more efficient function is

implemented to replace EliminationIdeal for computing elimination ideals.

The compactness of representations of simple sets may also be confirmed exper-

imentally: for Q6, the simple decomposition computed by using our algorithm has

5 components, whereas the prime or irreducible decomposition (computed, e.g., by

using the function minAssChar in Singular) has 27 components.

The algorithm proposed for positive-dimensional polynomial sets works also for

134

Section 5.4. Implementation and experimental results

zero-dimensional ones (when the coefficient matrix of (5.7) is always invertible, as

shown by Proposition 5.2.6 and its following remark). We have applied the algorithm

to the zero-dimensional benchmarks given in Table 5.2. Some of the empirical results

are reported in [99], showing the performance of the algorithm in the zero-dimensional

case. However, in regard to efficiency, those specially designed algorithms for zero-

dimensional polynomial sets outperform the more general one for positive-dimensional

polynomial sets.

In addition to the output radical ideal, Algorithm 18 computes some other radical

ideals (e.g., the ideals l in all recursive calls of the algorithm), whose intersection is

the output ideal. This observation allows one to introduce a variant of the algorithm.

Instead of returning the radical ideal, the algorithm may output the sequence of

ideals l. Handling such ideals by using the decomposition technique explained in

Section 5.3, one may obtain another simple decomposition. It may contain more

branches than the one returned by Algorithm 18 and thus is less compact in terms

of representation, while the average size of the branches can become smaller. In fact,

by means of factorizing intermediate polynomials, one can split simple sets (or even

decompose them into irreducible triangular sets, leading to prime decompositions).

The splitting reduces the size of polynomials and thus may help speed up the process

of decomposition, but the representation of the resulting decompositions may become

less compact. As we have already mentioned, our interest is in computing simple

decompositions with compact representations, so polynomial factorization is not used

and splitting takes place only when it is really necessary.

135

CHAPTER 5. Simple decomposition over finite fields

Table 5.2: Regular set benchmarks (zero-dimensional)

No. char Regular sets (x1 < x2 < x3 < x4 < x5)

P1 5 [x1(x1−2)6, x22(x2−1), (x3−1)2(x3−2)3, (x4−1)(x4−2)5, ((x1−1)x65+
x1x2x

2
5 + (x1 − 2)(x2 − 1)(x3 − 1)x4x

3
5 + 1)(x5 + x4 + x3)]

P2 5 [x51(x1 +1)17(x1+2)9, (x21 +x1+1)x52 +(2x31+3)x2 +3, ((x41 +x2)x3+
x2)

5((x2 + 1)x53 + (x1 + x3)x
2
3 + 1)7, (x114 + 2x4 + 4)11(x4 + 3)23, (x1 +

x2 + x3)x
3
5 + (x1 + x2)x5 + (x3 + x4)]

P3 5 [(x41 + 4x21 + 3x1 + 1)(x51 + 4x1 + 2)(x1 + 3)15, (x42 + x22 + 2)2(x32 + x2 +
4)10, (x23 + x3 + 2)3(x33 + x23 + x3)

15, (x4 − 2)5(x4 − 1), ((x1 − x2)x5 +
1)2(x5 + x4 + x3)]

P4 5 [(x41 + 4x21 + 3x1 + 1)3(x51 + 4x1 + 2)(x1 + 3), (x42 + x22 + 2)2(x32 + x2 +
4)7, (x23+x3+2)3(x33+x23+x3)

11, (x4−2)7, ((x1−1)x5+1)4(x5+x4+x3)]
P5 5 [(x41 +4x21 +3x1 +1)(x1 +3)15, (x42 + x22 +2)2(x32 +x2 +4)10, (x23 +x3 +

2)3(x33 + x23 + x3)
15, (x4 − 2)5, ((x1 − 1)x65 + 1)2(x5 + x4 + x3)]

P6 5 [x1(x1 − 2)5, (x22 + 2)2(x32 + 4x32 + 3x2 + 1)3, (x43 + 4x23 + 3x3 + 1)(x33 +
x23 + 1)2(x3 − 2)3, (x4 − 2)5(x54 + 2x34 + 3x24 + x4 + 4)(x44 + 3x24 + x4 +
1)3, ((x1 − 1)x65 + x1x2x

2
5 + (x1 − 2)(x2 − 1)(x3 − 1)x4x

3
5 + 1)]

P7 541 [x1(x1 − 2)5, x22(x
3
2 + 4x32 + 3x2 + 1)(x42 + 3x22 + 3)3, (x43 + 4x23 + 3x3 +

1)(x33 +x23 +1)2(x3 − 2)3, (x4 − 2)5(x54 +2x34 +3x24 +x4 +4)(x44 +3x24 +
x4 + 1)3, (x1 − 1)x155 + (x4 + x1)x

10
5]

P8 541 [(234x21 + 257)(153x1 + 412)3, ((x1 + 23)x32 + (23x31 + 264)x2 +
521)(267x32 +123)7, 255x43+345x3+112, (234x31 +341x22+194x3)x

2
4+

(x1+x2+x3), (283x1+203x2+461x3+123x4)x
6
5+(234x31+x1)x

2
5+237]

P9 541 [(12x21 + 62)155(153x1 + 412)3, ((x1 + 23)x32 + (23x31 + 264)x2 +
521)13((23x31+236)x32+123)27, 13x3+531, 43x24+342x4+249, 345x5+
82]

P10 541 [(323x1 + 52)432(x21 + 236)117, x2, x3, x4, x5]
P11 7919 [(x41+4x21+3x1+1)31(x51+4x1+2)11(x1+3)329(x1−4)537, x2−1, x23+

x3 + 2, x4 − 2, (x1 − 1)x5 + 1]
P12 7919 [(1234x131 +1435x71+4576)(323x51 +134x41+2356)9, (2346x32+345x32+

865)(234x22+2456)3, 645x33+6346x3, (1234x4−345)11(234x24+345x4+
2346)7, (376x31 − 2134x2)x

27
5 + 4565x125 + 255

P13 7919 [(1244x41+6454x21+3465x1+5345)31(155x51+4545x1+235)11(215x1+
3125)329(2356x1 − 4123)537 , 346x2 − 1214, 1234x23 + 214x3 +
2234, 2423x4 − 234, (2443x51 − 456x4)x5 + 2134]

P14 7919 [(2445x31 + 3456)5(235x1 + 767)7, ((156x21 + 124)x32 + 266x2 +
1676)3(235x42+3671x32+(234x1+31))5, (234x21+23x2)x

3
3+235, (13x4+

235)5(235x4 + 3467x3 + 272x2 + 3678x1)
7, (435x75 + 2347x35 +

1236)7(2734x5 + 234)3]

136

Section 5.4. Implementation and experimental results

Table 5.3: Timings for decomposing regular sets into simple sets (positive-
dimensional)

Ex Char FGT/Maple Matsumoto/Maple Kemper/Maple Kemper/Singular

Q1 3 0.484 0.547 4.204 0.415
Q2 3 69.937 0.515 > 3600 0.467
Q3 3 0.109 9.657 63.797 0.169
Q4 3 0.516 104.047 205.421 0.223
Q5 3 1.578 3.578 14.86 0.779
Q6 3 18.843 > 3600 174.812 1.931
Q7 3 81.609 > 3600 720.015 3.064
Q8 3 42.813 > 3600 > 3600 4.512
Q9 17 0.078 1.656 78.453 overflow
Q10 17 0.172 > 3600 0.422 0.223
Q11 17 0.203 > 3600 206.407 0.114
Q12 17 0.812 2.313 > 3600 0.645
Q13 17 592.781 41.297 > 3600 21.138
Q14 53 0.047 > 3600 > 3600 overflow
Q15 53 0.219 827.235 0.203 0.208
Q16 53 62.297 0.656 > 3600 1.614
Q17 53 54.968 11.859 > 3600 46.635
Q18 53 7.11 460.921 > 3600 6.953

Table 5.4: Timings for radical computation in Maple and Singular

Ex Char EliminitionIdeal/Maple Radical/Maple Radical/Singular

Q1 3 3.734 3.859 0.04
Q2 3 > 3600 > 3600 0.03
Q3 3 11.5 63.718 0.06
Q4 3 205.171 205.25 0.02
Q5 3 14.11 14.218 0.06
Q6 3 172.75 173.078 0.04
Q7 3 609.563 609.828 0.08
Q8 3 > 3600 > 3600 0.09
Q9 17 16.547 78.375 overflow
Q10 17 0.11 0.203 0.02
Q11 17 206.125 206.203 0.02
Q12 17 > 3600 > 3600 0.02
Q13 17 > 3600 > 3600 2.06
Q14 53 > 3600 > 3600 overflow
Q15 53 0.031 0.063 0.02
Q16 53 > 3600 > 3600 0.02
Q17 53 > 3600 > 3600 0.01
Q18 53 > 3600 > 3600 0.11

137

CHAPTER 5. Simple decomposition over finite fields

Table 5.5: Regular set benchmarks (positive-dimensional)

Ex Regular set (u1 < u2 < u3 < x1 < x2 < x3)

Q1 [(x31 − u1)(x
9
1 − u2), x

3
2 − u1]

Q2 [(x3
5

1 − u1)(x
9
1 − u2), x

3
2 − u1]

Q3 [x3
10

1 − u3
10

1]
Q4 [u1x

5
1 − u2, u2x

5
2 − u1, u3x

5
3 − u1 + u2]

Q5 [(x31 − u1)(x
3
1 − u2), (x

3
2 − u1)(x

3
2 − u2), (x

3
3 − u1)(x

3
3 − u2)]

Q6 [(x31−u1)(x
3
1−u2)(x

3
1−1), (x32−u1)(x

3
2−u2)(x

3
2−1), (x33−u1)(x

3
3−u2)(x

3
3−1)]

Q7 [(x31−u1)(x
3
1−u2)(x

3
1−u3), (x

3
2−u1)(x

3
2−u2)(x

3
2−1), (x33−u1)(x

3
3−u2)(x

3
3−1)]

Q8 [(x31−u1)(x
3
1−u2)(x

3
1−u3), (x

3
2−u1)(x

3
2−u2)(x

3
3−u3), (x

3
3−u1)(x

3
3−u2)(x

3
3−u3)]

Q9 [x17
4

1 − u17
4

1]
Q10 [x51 − u1x

2
1 + u1, x

5
2 − u2x1 + u1]

Q11 [u1x
5
1 − u2, u2x

5
2 − u1, u3x

5
3 − u1 + u2]

Q12 [(x171 − u1)(x
17
1 − u2), (x

17
2 − u1)(x

17
2 − u2)]

Q13 [(x171 − u1)(x
17
1 − u2), (x

17
2 − u1)(x

17
2 − u2), (x

17
3 − u1)(x

17
3 − u2)]

Q14 [x53
5

1 − u53
5

1]
Q15 [x31 − u1x

2
1 + u1, x

3
2 − u1x1]

Q16 [(x531 − u1)(x
53
1 − u2), x

53
2 − u1]

Q17 [(x531 − u1)(x
53
1 − 1), (x532 − u1)(x

53
2 − 1)]

Q18 [(x531 − u1)(x
53
1 − u2), (x

53
2 − u1)(x

53
2 − u2)]

138

Chapter 6
Squarefree decomposition and factorization

over unmixed products of field extensions

The problems of squarefree decomposition and factorization of polynomials have been

well studied in the area of computer algebra. Algorithms developed for their solu-

tions, in particular for polynomials over finite fields, the field of rational numbers,

and their transcendental and algebraic extensions [68, 79, 123, 160, 75, 146], have

been implemented to back efficient functioning of many core routines in generations

of computer algebra systems. In this chapter we address the problems and provide

algorithmic solutions to them for polynomials over unmixed products of field exten-

sions, which are not necessarily unique factorization domains (UFDs), but have an

algebraic structure close to that of UFDs.

In this chapter we identify unmixed products of field extensions which correspond

to and can be represented by simple sets, and introduce the concepts of squarefree de-

composition, irreducibility, and factorization of polynomials over unmixed products,

Then we propose algorithms for squarefree decomposition and factorization of polyno-

mials over unmixed products, with illustrative examples and preliminary experiments

with our initial implementation.

We define unmixed products of field extensions, connect them to simple sets, and

list a few basic operations over unmixed products in Section 6.1. Then we present

three algorithms for squarefree decomposition and factorization of polynomials over

139

CHAPTER 6. Unmixed products of field extensions

unmixed products using multiple derivations and transformations of ideals to shape

position in Sections 6.2 and 6.3. Some examples and preliminary experimental results

are provided in Section 6.4 to illustrate our algorithms and to show their performance.

The results in this chapter are based on the joint work with Dongming Wang with

a paper in preparation.

6.1 Unmixed products of field extensions

6.1.1 Representations

In Section 5.1, we have identified the relationship between simple sets and products

of field extensions preliminarily. Now we elaborate which kind of products of field

extensions simple sets correspond to.

Let i ≤ j be positive integers. For any field K, we denote by πj,i the projection

from Kj to Ki, which maps (a1, . . . , aj) to (a1, . . . , ai). A zero-dimensional variety

V ⊂ Kj is said to be equiprojectable if π−1
j,i (M1) and π−1

j,i (M2) have the same cardinality

for any M1,M2 ∈ πj,i(V) and 1 ≤ i ≤ j.

By Theorem 4.5 in [7], any zero-dimensional variety over a perfect field K is

equiprojectable if and only if its defining ideal is generated by a simple set over K.

Definition 6.1.1. A product of field extensions K1, . . . ,Kt over K is said to be un-

mixed if

(a) Ki can be written in the form

K(u1, . . . , us)(βi,1, . . . , βi,r)

with same u1, . . . , us and r + s = n for all i = 1, . . . , t, where u1, . . . , us are

transcendental over K and βi,1, . . ., βi,r are algebraic over K̃ = K(u1, . . . , us);

(b) the maximal ideals mi and mj such that Ki = K̃[y]/mi and Kj = K̃[y]/mj are

coprime for all i 6= j;

(c) the union V of the varieties of mi (i = 1, . . . , t) in K̄r is equiprojectable, where

K̄ denotes the algebraic closure of K̃.

For any simple set S ⊂ K[x], K̃[y]/〈S〉K̃ = K̃[y]/ sat(S)K̃ is isomorphic to a

product of field extensions such that Definition 6.1.1 (a) and (b) hold, with u1, . . . , us

140

Section 6.1. Unmixed products of field extensions

being the parameters of S. By the proof technique used for Theorem 4.5 in [7], we

can show that condition (c) holds as well.

On the other hand, for any unmixed product of field extensions K1, . . . ,Kt as

in Definition 6.1.1, there exists a simple set S ⊂ K[x] such that 〈S〉K̃ is the ideal

defined by V . The proof of this statement is similar to that of Theorem 4.5 in

[7]. By Definition 6.1.1 (b) and (c) and the Chinese Remainder Theorem, we have

K̃[y]/〈S〉K̃ ∼=
∏t

i=1 K̃[y]/mi. Therefore, every simple set determines an unmixed

product of field extensions, and vice verse.

Simple sets are convenient representations for unmixed products of field exten-

sions. When speaking about a simple set S representing an unmixed product A, we

mean that the relationship K̃[y]/ sat(S)K̃ ∼= A holds. At this point one can see that

performing operations in A is equivalent to performing computations in K̃[y] modulo

sat(S)K̃.
As explained in Section 5.1, one advantage of using simple sets is that related field

extensions can be represented together. This makes the representations compact and

thus may lead to potential improvement on the performance of manipulation with

the field extensions.

6.1.2 Basic operations over unmixed products

Let A be an unmixed product of field extensions K1, . . . ,Kt of K, represented by a

simple set S ⊂ K[x], and let K̃ denote K(u). These notations will be fixed in what

follows. Next we review basic operations over unmixed products of field extensions.

The readers may refer to [78, 38] for more details such as their complexity analyses.

Representation in A. Any element f ∈ A can be written as f = (f1, . . . , ft) with

fi ∈ Ki for i = 1, . . . , t. Note that each fi can be represented as a polynomial in

βi,1, . . . , βi,r with coefficients in K̃. Let Fi be the polynomial in K̃[y] obtained from

fi by replacing βi,j with yj and let Ti be the irreducible triangular set such that

Ki
∼= K̃[y]/ sat(Ti)K̃. By the Chinese Remainder Theorem (Theorem 3.1.13) there

exists a unique polynomial F ∈ K̃[y] modulo sat(S)K̃ such that F ≡ Fi mod sat(Ti)K̃

for i = 1, . . . , t.

We use the normal form of F w.r.t. the Gröbner basis of 〈S〉K̃ = sat(S)K̃ to

represent f ∈ A. Therefore, each f ∈ A corresponds to a unique representation in

141

CHAPTER 6. Unmixed products of field extensions

K̃[y]/ sat(S)K̃, and vice verse.

Arithmetic in A. For any f, g ∈ A represented by F, G ∈ K̃[y] respectively, we

compute F ± G and FG in K̃[y]/ sat(S)K̃ as the representations of f ± g and fg

(which are obviously in A) respectively. The representation of f−1 ∈ A (when it

exists) can be computed by using existing algorithms (e.g., QuasiRecip described in

[113]) for computing the inverses of elements in K̃[y]/ sat(S)K̃.
Zero-test over A. A polynomial in A[z] is 0 if and only if all its coefficients are 0

in A ∼= K̃[y]/〈S〉K̃. The latter can be checked via Gröbner basis computation or by

using Proposition 2.3.1 (a).

Arithmetic over A. For any polynomials in A[z] represented by F,G ∈ K̃[y][z], F ±G

and FG can be computed in K̃[y][z] and then reduced modulo sat(S)K̃.
GCD over A. The computation of gcd over A may be achieved by using pgcd (Algo-

rithm 6). For any polynomial set in A[z] represented by F , let

{(F1,S1), . . . , (Fk,Sk)} := pgcd(F ,S).

What pgcd does is to split the unmixed product A represented by S into sub-products

A1, . . . , Ak, which are unmixed, disjoint, and represented by S1, . . . ,Sk. The polyno-

mials Fi over Ai are returned as the “gcd” of F over A in the sense that the gcd of

F over each field Kij in the product Ai is the projection of Fi to Kij . In other words,

the gcd’s of F over all the fields Kij share the same form as Fi for any fixed i. This is

consistent with the compact representation of simple sets: encoding the information

of multiple field extensions into a single simple set.

6.2 Squarefree decomposition over unmixed products

For any polynomial in A[z] represented by F ∈ K̃[y][z] and any fieldKi in the unmixed

product A, let F
(i)

denote the image of F in Ki[z] under the natural homomorphism.

Definition 6.2.1. A polynomial f ∈ A[z], represented by F ∈ K̃[y][z], is said to be

squarefree over A if S ∪ [F] is a regular set in K̃[y][z] and F
(i)

is squarefree over Ki

for all i = 1, . . . , t. We call

{({[Fj,1, aj,1], . . . , [Fj,rj , aj,rj]},Sj) : j = 1, . . . , k}

a squarefree decomposition of f over A if

142

Section 6.2. Squarefree decomposition over unmixed products

(a) each Sj is a simple set in K[x] and sat(S) =
k
⋂

j=1

sat(Sj);

(b) {[F (i)

j,1, aj,1], . . . , [F
(i)

j,rj
, aj,rj]} is a squarefree decomposition of F

(i)
for all j =

1, . . . , k and i=1, . . . , t such that Ki occurs in the unmixed product represented

by Sj .

Although these definitions are given upon A, which is not necessarily a UFD, we

actually reduce the issue of squarefreeness to that over each field in A. By Defini-

tion 6.2.1 (b), one can show that for each j the polynomials Fj,1, . . . , Fj,rj in the def-

inition are squarefree over K̃[y]/ sat(Sj)K̃ and F =
∏rj

l=1 F
aj,l
j,l in (K̃[y]/ sat(Sj)K̃)[z].

This is the way we generalize the concept of squarefree decomposition over UFDs to

that over unmixed products of field extensions. The idea has been explored initially

in [98] for “generalized squarefree decomposition”.

6.2.1 Existing algorithms revisited

In view of the tight connection between simple sets and squarefree decomposition over

unmixed products of field extensions, we adapt some existing algorithms for simple

decomposition [98, 157], whose target is essentially to extract the squarefree parts

of polynomials over A, to compute squarefree decompositions over A. We want to

mention that the underlying idea for splitting in the proposed algorithms below is

the D5 principle (or called dynamic evaluation), which is incorporated in the pgcd

algorithm.

The following algorithm is presented for squarefree decomposition over A for the

case when the characteristic of the base field K is 0. It merely combines squarefree

decomposition of univariate polynomials over fields of characteristic 0 and the D5

principle with pgcd. We write it here to illustrate how this combination works.

As usual, the operation pop(D) means to choose one element and then delete

it from D. For any [B,C, C,P, d], B and C are two polynomials waiting for later

processing, C is a simple set at the current state of computation, and P is used to store

computed components, with degrees smaller than d, of the squarefree decomposition.

Proof (Algorithm 19). Termination. The while loop implements a splitting pro-

cess based on the algorithm pgcd. We can consider adjoining elements to D as building

up a tree. Elements in D are the nodes whose depth in the tree is indicated by the

143

CHAPTER 6. Unmixed products of field extensions

Algorithm 19: Squarefree decomposition for p = 0 S := sqfChar0(F,S)
Input: S, a simple set in K[x] representing an unmixed product A;

F , a polynomial in K̃[y][z] representing a polynomial f ∈ A[z] \A
Output: S, a squarefree decomposition of f over A

S := ∅; D := ∅;19.1

for (C1, C) ∈ pgcd({F,F ′},S) do19.2

B1 := F/C1 mod C;19.3

D := D ∪ {[B1, C1, C, ∅, 1]};19.4

end19.5

while D 6= ∅ do19.6

[B1, C1, C,P, d] := pop(D);19.7

if deg(B1, z) > 0 then19.8

for (B2,A) ∈ pgcd({B1, C1}, C) do19.9

C2 := C1/B2 mod A;19.10

P := B1/B2 mod A;19.11

if deg(P, z) > 0 then P := P ∪ {[P, d]};19.12

D := D ∪ {[B2, C2,A,P, d+ 1]};19.13

end19.14

end19.15

S := S ∪ {(P, C)};19.16

end19.17

return S19.18

parameter d. To prove the termination of the algorithm, it suffices to show that in

each iteration of the while loop we have deg(B2, z) < deg(B1, z), so that each path

of the tree is finite. Otherwise, deg(B2, z) = deg(B1, z); this means that C1 = 0

in Line 19.9, which is impossible by its construction (Lines 19.2 and 19.10) and the

assumption that f ∈ A[z] \ A (and thus F ′ 6= 0).

Correctness. Since splitting occurs only in Lines 19.2 and 19.9 with the algorithm

pgcd, by the properties of pgcd it can be proved that the regular set C in each element

of the output S is simple and sat(S) = ⋂(P,C)∈S sat(C).
Now we look at any complete path of the tree. Suppose that the depth of the

path is s and denote the node in the path by [B(i), C(i), C(i),P(i), i] for i = 1, . . . , s.

144

Section 6.2. Squarefree decomposition over unmixed products

Let C(s) represent an unmixed product of K1, . . . ,Kk. Then for each j = 1, . . . , k,

F
(j)
, the canonical image of F over the field Kj , may be assumed to have a squarefree

decomposition F
(j)

=
∏s−1

l=1 Fl
l. Using the properties (mainly (c)) of pgcd, one can

check that

B(i)
(j)

= FiFi+1 · · ·Fs−1, C(i)
(j)

= Fi+1F
2
i+2 · · ·F s−1−i

s−1 ,

and thus at the node of depth i,

P
(j)

= B(i)
(j)
/B(i+ 1)

(j)
= Fi · · ·Fs−1/Fi+1 · · ·Fs−1 = Fi.

This squarefree factor, together with its degree, is stored in P in Line 19.12, and

then stored in S with the corresponding simple set in Line 19.16. This completes the

proof. �

Next we turn to the case when K = Fq is a finite field. If dim(S) = 0 (when

F̃q is algebraic extension of Fq and is also perfect), an algorithm (Algorithm 14) has

been presented in Section 5.2.2 for squarefree decomposition over A. Indeed, when K̃

is a perfect field, algorithms for squarefree decomposition already exist, for pth root

extraction, an important ingredient in squarefree decomposition over fields of positive

characteristics (See Section 5.2.2 for the detail), is feasible over K̃.

However, if dim(S) > 0, then F̃q is no longer perfect, and thus the technique in

Section 5.2.2 is not valid. Furthermore, the method proposed in Section 5.3 for simple

decomposition is not applicable to our problem here either (because computation

of radical ideals in the method discards the degree information). Next we study

squarefree decomposition over A in the case when K = Fq is a finite field and dim(S) >

0.

6.2.2 New algorithm

In Section 3.2.3, we have described the algorithmic structure of squarefree decompo-

sition of polynomials over fields of positive characteristic in Proposition 3.2.9, and

the construction of the bases of the sets of derivations of finitely generated field ex-

tensions and quotient rings has also been studied. Here we focus our attention on the

behaviors of the bases under projections.

145

CHAPTER 6. Unmixed products of field extensions

Let a ⊂ K[x] be a zero-dimensional radical ideal such that a =
⋂k

i=1mi with

mi maximal, and mi and mj coprime for i 6= j. It is easy to verify the one-to-

one correspondence between Der(K[x]/a) and
∏k

i=1Der(K[x]/mi). Let πi be the

projection from Der(K[x]/a) to Der(K[x]/mi) (note that projections from K[x]/a to

K[x]/mi can be induced). Then any derivation D ∈ Der(K[x]/a) induces a derivation

D(i) ∈ Der(K[x]/mi) by defining

D(i)(πi(F)) := πi(G), i = 1, . . . , k,

if D(F) = G for F,G ∈ K[x]/a.

Proposition 6.2.1. Let D1, . . . , Dl be a basis of the K[x]/a-module Der(K[x]/a) and

D
(i)
1 , . . . , D

(i)
l be the derivations of Der(K[x]/mi) induced respectively by D1, . . . , Dl via

πi for i=1, . . . , k. Then D
(i)
1 , . . . , D

(i)
l form a basis of Der(K[x]/mi).

Proof. It suffices to prove that for any i = 1, . . . , k and D(i) ∈ Der(K[x]/mi) there

exist P
(i)
1 , . . . , P

(i)
l ∈ K[x]/mi such that D(i) =

∑l

j=1 P
(i)
j D

(i)
j .

Note that there is a unique derivationD ∈ Der(K[x]/a) which inducesD(1), . . . , D(k)

by π1, . . . , πk respectively. That is, if D(F) = G for any F,G ∈ K[x]/a, then

D(i)(πi(F)) = πi(G). SinceD1, . . . , Dl is a basis of Der(K[x]/a), there exist P1, . . . , Pl ∈
K[x]/a such that D =

∑l

j=1 PjDj , and thus G = D(F) =
∑l

j=1 PjDj(F) for any

F,G ∈ K[x]/a.

Supposing Dj(F) = Gj, we know that D
(i)
j (πi(F)) = πi(Gj), and thus

D(i)(πi(F)) = πi(G) = πi

(

∑l

j=1
PjGj

)

=

l
∑

j=1

πi(Pj)πi(Gj) =
∑l

j=1
πi(Pj)D

(i)
j (πi(F)).

Setting P
(i)
j = πi(Pj), we have D(i) =

∑l

j=1 P
(i)
j D

(i)
j because of the arbitrariness of F

and G in K[x]/a. �

Corollary 6.2.2. Let D1, . . . , Dl be a basis of the K[x]/a-module Der(K[x]/a) and

P be a partition of {m1, . . . ,mk}. Then for each P ∈ P the derivations induced by

D1, . . . , Dl via the projection from K[x]/a to K[x]/ã form a basis of Der(K[x]/ã),

where ã =
⋂

m∈P m.

146

Section 6.2. Squarefree decomposition over unmixed products

Using the relationship between the bases of Der(K[x]/a) and Der(K[x]/mi) estab-

lished above, when handling an unmixed product of field extensions, we only need to

compute a basis of the derivations of the product once; the bases of the derivations

of all the fields in the product and of some sub-products of the fields can be obtained

via projection.

The following algorithm is proposed for squarefree decomposition over unmixed

products for p > 0 and dim(S) > 0. In this algorithm there is an important part of

pth root extraction over A. Let q ∈ A[z] represented by Q is a pth power in A[z],

then there exist q0, q1, . . . , qs such that q =
∑s

j=0 qjz
pj , and the extraction of the pth

root of q reduces to that in A. This is precisely what we have discussed in Section

5.3.2: For F̃q Condition P holds, and thus we can obtain the unique pth root of q in

A[z] by using Condition P [62].

The operationmerge({[A1, a1], . . . , [Ar, ar]}, {[B1, b1], . . . , [Bs, bs]}) first computes

the union of the two sets and then replaces any [Ai, ai] and [Bj , bj] such that Ai = Bj

by [Ai, ai + bj]. As usual, Fq denotes the finite field of q elements.

Proof (Algorithm 20). Termination. Without loss of generality, we assume that

when sqfPos is called recursively in Line 20.19, it terminates if deg(C3, z) < deg(F, z).

It is easy to observe from Line 20.18 that deg(C3, z) < deg(F, z) indeed. The ter-

mination proof for other parts of the algorithm is the same as that for Algorithm

19.

Correctness. We can view Lines 20.8–20.14 as a tree-building process. Choose any

specific path of the tree of depth s and denote by [B(i), C(i), C(i),P(i), i] the node of
depth i in the path for i = 1, . . . , s. Let C(s) represent an unmixed product of field

extensions K1, . . . ,Kk. Then for any j = 1, . . . , k, we can write F
(j)

= Q
∏t

i=1 P
i
i as

in Proposition 3.2.9, where F
(j)

is the canonical image of F over the field Kj .

Using the specification of pgcd, one can show that

B(i)
(j)
= QPiPi+1 · · ·Ps−1, C(i)

(j)
= QPi+1P

2
i+2 · · ·P s−1−i

s−1 .

Thus at the node of depth i, we have

P
(j)
= B(i)

(j)
/B(i+ 1)

(j)
= QPi · · ·Ps−1/QPi+1 · · ·Ps−1= Pi,

which is stored with its degree in P in Line 20.13.

147

CHAPTER 6. Unmixed products of field extensions

Algorithm 20: Squarefree decomposition for p > 0 and dim(S) > 0

S := sqfPos(F,S)
Input: S, a simple set in Fq[x] representing an unmixed product A

F , a polynomial in F̃q[y][z] representing a polynomial f ∈ A[z] \A
Output: S, a squarefree decomposition of f over A

S := ∅; D := ∅;20.1

Compute a basis D1, . . . ,Dl of Der(F̃q[y]/ sat(S)F̃q
);20.2

for (C1, C) ∈ pgcd({F,F ′,D1(F), . . . ,Dl(F)},S) do20.3

B1 := F/C1 mod C;20.4

D := D ∪ {[B1, C1, C, ∅, 1]};20.5

end20.6

while D 6= ∅ do20.7

[B1, C1, C,P, d] := pop(D);20.8

if deg(B1, z) > 0 then20.9

for (B2,A) ∈ pgcd({B1, C1}, C) do20.10

C2 := C1/B2 mod A;20.11

P := B1/B2 mod A;20.12

if deg(P, z) > 0 then P := P ∪ {[P, d]};20.13

D := D ∪ {[B2, C2,A,P, d+ 1]};20.14

end20.15

else20.16

if deg(C1, z) > 0 then20.17

C3 := pth root of C1 in (F̃q[y]/ sat(C)F̃q
)[z];20.18

for ({[A1, a1], . . . , [As, as]},B) ∈ sqfPos(C3, C) do20.19

S := S ∪ {(merge({[A1, a1p], . . . , [As, asp]},P),B)};20.20

end20.21

else20.22

S := S ∪ {(P, C)};20.23

end20.24

end20.25

end20.26

return S20.27

148

Section 6.3. Factorization over unmixed products

Furthermore, deg(B(s), z) = 0, so C(s) = Q. If deg(C(s), z) > 0, then by

Propositions 3.2.9 and 6.2.1, it can be verified that Q is a nontrivial pth power, whose

pth root need be extracted for further computation. In this case the algorithm sqfPos

is called recursively to compute a squarefree decomposition of p
√
Q, which completes

the whole process of squarefree decomposition. �

As explained previously, Algorithm 20 is essentially based on the D5 principle

which can extend most operations over fields to those over the products of fields.

However, the usefulness of this algorithm lies in the fact that pth power identification

and pth root extraction, which are non-trivial in the case of positive characteristics,

are performed directly over unmixed products of fields without splitting (as discussed

in Section 5.1) so that this algorithm may be potentially more efficient than merely

adopting the D5 principle.

According to Algorithm 20, one can easily extract the squarefree parts of poly-

nomials modulo the saturated ideals of simple sets. It is thus straightforward to

design an algorithm for simple decomposition based on Algorithm 20. The designed

algorithm will be free of computation of radicals of positive-dimensional ideals over

finite fields, in contrast to the need of such computation in the algorithm proposed

in Section 5.3.

6.3 Factorization over unmixed products

Definition 6.3.1. A polynomial f ∈ A[z], represented by F ∈ K̃[y][z], is said to be

irreducible if S ∪ [F] is a regular set in K̃[y][z] and F
(i)

is irreducible over Ki for all

i = 1, . . . , r. We call {([Fj,1, . . . , Fj,rj],Sj) : j = 1, . . . , k} an irreducible factorization

of f if

(a) each Sj is a simple set in K[x] and sat(S) =
k
⋂

j=1

sat(Sj);

(b) F
(i)

j,1 · · ·F
(i)

j,rj
is an irreducible factorization of F

(i)
for all j = 1, . . . , k and i =

1, . . . , t such that Ki occurs in the unmixed product represented by Sj .

There are polynomials over A whose images over different fields in A have different

irreducibilities: the simple set [(x − 1)(x2 + x + 1)] ⊂ Q[x] represents an unmixed

product of field extensions; the image of y2 − x over Q[x]/〈x − 1〉 can be factorized

as (y + 1)(y − 1), while that over Q[x]/〈x2 + x+ 1〉 is irreducible.

149

CHAPTER 6. Unmixed products of field extensions

One can easily infer that all the polynomials Fj,1, . . . , Fj,rj in Definition 6.3.1 are

irreducible over K̃[y]/ sat(Sj)K̃ and F =
∏rj

l=1 Fj,l in (K̃[y]/ sat(Sj)K̃)[z]. This is how

factorization over A generalizes ordinary factorization over UFDs.

6.3.1 Irreducibility test

The key strategy for the design of dynamic algorithms in the preceding section is

to reduce squarefree decomposition to gcd computation over unmixed products and

introduce dynamic splitting through the algorithm pgcd. This strategy will be used

again to design algorithms for factorization over unmixed products.

Proposition 6.3.1. Let S ⊂ K[x] be a simple set representing an unmixed product A

and f be a squarefree polynomial in A[z] represented by F ∈ K̃[y][z]\ K̃[y]. Then f is

irreducible over A if and only if the number of prime components of 〈S, F 〉K̃ in K̃[y][z]

is equal to that of 〈S〉K̃ in K̃[y].

Proof. Suppose that 〈S〉K̃ =
⋂t

i=1 pi is a minimal prime decomposition, with Ki =

K̃[y]/pi for i = 1, . . . , t.

(=⇒) If f is irreducible over A, then by definition F
(i)

is irreducible over each Ki

for i = 1, . . . , t. Since K̃[y][z]/〈S, F 〉K̃ ∼= K1[z]/〈F (1)〉 × · · · × Kt[z]/〈F (t)〉 with each

Ki[z]/〈F (i)〉 already being a field, we know that the number of prime components of

〈S, F 〉K̃ in K̃[y][z] is also t.

(⇐=) This is easily proved by using

K̃[y][z]/〈S, F 〉K̃ ∼= K1[z]/〈F (1)〉 × · · · ×Kt[z]/〈F (t)〉. �

Instead of giving a simple algorithm for irreducibility test by direct computation of

the numbers of prime components according to Proposition 6.3.1, we will incorporate

the test into the factorization algorithm.

By random transformation of variables, one can turn the zero-dimensional ideal

〈S, F 〉K̃ into another ideal in shape position as Definition 4.1.1, with large probability

of success [13]. One linear transformation usually suffices [160]. In what follows, we

assume that p = 0, or p > 0 is big enough so that linear transformations of variables

can effectively bring the ideals in question to ideals in shape position.

150

Section 6.3. Factorization over unmixed products

Let an ideal a ⊂ K[x] be turned into another ideal ã in shape position with

its lex Gröbner basis as in (4.1). The univariate polynomial G1 contains the ma-

jority of information about the zeros of ã. In particular, G1 is also the minimal

polynomial of the multiplication matrix w.r.t. x1 in the FGLM algorithm [53], which

provides us with an effective method to compute G1 by using the Wiedemann algo-

rithm [55].

Proposition 6.3.2. Let a be a zero-dimensional radical ideal in K[x]. Then every

associated prime p of a remains prime after a linear transformation of variables.

Proof. It is straightforward and omitted. �

Let f ∈ A[z] be represented by F ∈ K̃[y][z] and assume that f is squarefree

over A. Write F in the form F = Izd + F<d + C, where I, C ∈ K̃[y] and 0 <

deg(T, z) < d = deg(F, z) for any term T in F<d. In order to address irreducibility

test and factorization together, we introduce an additional variable λ to construct

F̃ = λIzd + F<d + C ∈ K̃(λ)[y], which represents a polynomial f̃ ∈ A(t)[z].

Proposition 6.3.3. The polynomial f̃ above is irreducible over A(t) if and only if C

is regular modulo sat(S)K̃.

Proof. As f is squarefree over A, S ∪ [F] is a simple set in K̃[y]. Hence the initial

I of F is regular modulo sat(S)K̃ and thus I
(i) 6= 0 for all i = 1, . . . , t. Therefore,

F̃ (i), the image of F̃ in Ki(λ)[z] by the projection πi, is equal to λI
(i)
zd +F

(i)

<d +C
(i)
.

It can be easily proved that F̃ (i) is reducible over Ki(λ) if and only if C
(i)

= 0. By

Definition 6.3.1, f̃ is irreducible over A(λ) if and only if C
(i) 6= 0 for all i = 1, . . . , t.�

To factorize f or test its irreducibility over A, we assume that C is regular modulo

sat(S)K̃, so that f̃ is irreducible over A(λ). If C is not regular, then S can be split into

S1 and S2 as in pgcd such that C is regular modulo sat(S1)K̃ and is 0 modulo sat(S2)K̃.

Then S1 may be taken instead of S. Meanwhile, we need to deal with the unmixed

product represented by S2 and the polynomial represented by F̂ = zs(Îzd̂+ F̂<d̂+ Ĉ)

for some integer s ≥ 1. In this case, take S2 and Îzd̂ + F̂<d̂ + Ĉ instead of S and

F respectively and assume that Ĉ is regular modulo sat(S2)K̃. The splitting may

continue otherwise but will terminate because d̂ < d. It is part of the factorization

151

CHAPTER 6. Unmixed products of field extensions

process and does not lead to additional cost. In what follows, we focus our study on

the ideal 〈S, F̃ 〉K̃ ⊂ K̃(λ)[y, z].

Assume further that 〈S, F̃ 〉K̃ has been transformed by a linear transformation τ of

variables into an ideal 〈S, F̃ 〉τ
K̃
in shape position and let 〈S, F 〉τ

K̃
be the ideals obtained

from 〈S, F 〉K̃ by using the same transformation. Let the univariate polynomial in

the lex Gröbner basis of 〈S, F̃ 〉τ
K̃

(with z < y) be H ∈ K̃(λ)[z]. Since for all the

polynomials involved here only their numerators are of influence on irreducibility and

factorization, we assume that they are all in K̃[λ,y, z].

Proposition 6.3.4. Under the above assumptions, the ideal 〈S, F 〉τ
K̃
in K̃[y, z] is in

shape position and H|λ=1 is the univariate polynomial in its lex Gröbner basis.

Proof. Let H = [H(z), y1−H2(z), . . . , yr−Hr(z)] be the lex Gröbner basis of 〈S, F̃ 〉τ
K̃

(with z < y). As S ⊂ K̃[y] is free of λ, 〈S, F 〉τ
K̃
can be obtained by evaluating 〈S, F̃ 〉τ

K̃

at λ = 1. Thus H|λ=1 is a basis of 〈S, F 〉τ
K̃
. The conclusion follows from the structure

of H. �

Assume finally that factorization of multivariate polynomials over K̃ is feasible.

Let H = H1 · · ·Hk be the irreducible factorization of H ∈ K̃[λ, z]. From Proposition

6.3.2 we know that each irreducible factor Hi of H corresponds to a field extension

in the unmixed product represented by the simple set S ∪ [F̃]. Since f̃ is irreducible,

k = t.

Evaluating the factorization of H at λ = 1, we obtain the equality H|λ=1 =

H1|λ=1 · · ·Hk|λ=1 in K̃[z]. SomeHi|λ=1 may be reducible and can be further factorized.

Using Proposition 6.3.2 and counting the numbers of factors in the factorizations ofH

and H|λ=1 respectively, we can check whether 〈S, F 〉K̃ has also t prime components.

Therefore, by Proposition 6.3.1 we can test the irreducibility of f ∈ A[z].

The gain of the tricky use of the auxiliary variable λ above is that the number

of prime components of 〈S〉K̃ is determined on the way of computing H|λ=1 and its

factorization for 〈S, F 〉K̃ (which will be further used).

6.3.2 Factorization algorithm

First we reformulate a key technique for factorization over finitely generated field

extensions [160, 146] in the setting of unmixed products of field extensions.

152

Section 6.3. Factorization over unmixed products

Theorem 6.3.5. Let S ⊂ K[x] be a simple set representing A, an unmixed product

of K1, . . . ,Kt, and f be a squarefree polynomial in A[z], represented by F ∈ K̃[y][z].

Let Ki = K̃[y]/pi with pi maximal and 〈pi, F 〉K̃ ⊂ K̃[y, z] be transformed into an

ideal ai in shape position by a linear transformation τ for i = 1, . . . , t. Let Pi be the

univariate polynomial in the lex Gröbner basis of ai (with z < y) as of the form (4.1)

and Pi = Q
mi,1

i,1 · · ·Qmi,ki

i,ki
be an irreducible factorization over K̃. Then

F
(i)

= ci
∏ki

j=1
gcd

(

F
(i)
, τ−1(Q

mi,j

i,j)
)

(6.1)

is an irreducible factorization of F
(i)

over Ki, where ci ∈ Ki.

A straightforward way for factorization over A is to separate the fields in A by

prime or irreducible decomposition [36, 159]) and then perform factorization over

each finitely generated field extension [160]. However, to keep representations of field

extensions and factorizations compact, we prefer to represent those field extensions

over which factorizations share the same form by their unmixed product if possible.

Thus we may need to combine the resulting factorizations of each polynomial over all

the field extensions in A. The number of possible combinations could be large. To

avoid some of the combinations, we choose an alternative method which reduces the

problem of factorization to that of gcd computation over A.

Recall the factorization H = H1 · · ·Hk and the equality H|λ=1 = H1|λ=1 · · ·Hk|λ=1

from Section 6.3.1, which provide sufficient information for factorizing f over A. The

method of factorization is sketched as follows with three steps.

(1) Since f̃ is irreducible over A(λ), each field Ki in A corresponds to a field Ki(λ)

in A(λ). By Proposition 6.3.2 each Ki(λ) corresponds to a factor Hi of H . By using

Propositions 6.3.1, it can be proved that F
(i)

is irreducible over Ki in A corresponding

to Hi if and only if Hi|λ=1 is irreducible over K̃.

Denote by I the set of all i such that Hi|λ=1 is irreducible over K̃ and let

I =
⋃

l Il be a (noncontractible) decomposition of I such that the product AIl

of the fields in {Ki : i ∈ Il} is unmixed for all l. Then f is irreducible over all

the unmixed products AIl and the simple sets representing AIl can be computed by

pgcd({∏i∈I τ
−1(Hi|λ=1), F},S), yielding one part of the factorization of f over A.

(2) Let J := {1, . . . , k} \ I. Then Hj |λ=1 is reducible over K̃ for all j ∈ J ,

so F
(j)

is reducible over Kj in A. Now for each j ∈ J , use Theorem 6.3.5 and

153

CHAPTER 6. Unmixed products of field extensions

pgcd to compute a factorization of F
(j)

over Kj and an irreducible triangular set Sj

representing Kj . This results in the other part of the factorization of f over A as

{([Fj,1, . . . , Fj,kj],Sj) : j ∈ J } (which is not necessarily a compact representation).

(3) The remaining task is to combine some of the factorizations over field exten-

sions computed in step (2), if possible, as factorizations over unmixed products in a

uniform way. Combining triangular sets has been studied in [7, 37, 91]. We are in-

terested essentially in combining irreducible triangular sets Sj ∪ [Fj,l] for l = 1, . . . , kj

and j ∈ J to form simple sets in K̃[y][z]. The method based on Proposition 1 in

[37] (under additional conditions on combined triangular sets) can be used for our

purpose. We denote by Combine(S) the subalgorithm for combining factorizations in

S.

The factorization process explained above is described formally as Algorithm 21,

in which Wiedemann(·) denotes the Wiedemman algorithm for computing the minimal

polynomial of a matrix and merge((A,S), (B,S)) returns ([A,B],S).

6.4 Examples and experiments

6.4.1 Squarefree decomposition: p= 0

To illustrate how Algorithm 19 works, let us consider S = [x2 + u, (y2 + u)(y− 2)] ⊂
Q[u, x, y], a simple set representing an unmixed product A of three field extensions

Q(u)[x, y]/〈x2 + u, y + x〉, Q(u)[x, y]/〈x2 + u, y − x〉, Q(u)[x, y]/〈x2 + u, y − 2〉.

Let F1 = z2 − 2xz − u and F2 = z2 − 4z + y2. We want to compute a squarefree

decomposition of the polynomial f ∈ A[z] represented F = F1F2.

It can be easily verified that F1 = α2 over all the three field extensions, F2 = β2

only over Q(u)[x, y]/〈x2 + u, y − 2〉, and F2 is irreducible over the two other field

extensions, where α = z − x and β = z − 2. Hence we know that

{[{[αβ, 2]},S1], [{[F2, 1], [α, 2]},S2]}

is a squarefree decomposition of f , where S1 = [x2 + u, y − 2] and S2 = [x2 + u, y2 +

u]. The following shows how to compute the squarefree decomposition according to

Algorithm 19.

154

Section 6.4. Examples and experiments

Algorithm 21: Factorization over unmixed products S := Factor(F,S)
Input: S, a simple set in K[x] representing an unmixed product A;

F , a polynomial in K̃[y][z] representing a squarefree polynomial

f ∈ A[z] \ A
Output: S, a factorization of f over A

Write F̃ = λIzd + F<d + C with a new variable λ;21.1

Assume that C is regular modulo sat(S)
K̃
and turn S ∪ [F̃] into a normal set;21.2

D := degree of 〈S, F̃ 〉;21.3

repeat21.4

Choose a K̃-linear transformation τ of y and z;21.5

Construct the multiplication matrix Mτ of 〈S, F̃ 〉τ w.r.t. z < y;21.6

H := Wiedemann(Mτ);21.7

until deg(H, z) = D;21.8

Factorize H over K̃(λ) as H = H1 · · ·Ht;21.9

if H and H|λ=1 have the same number of factors then21.10

return {([F],S)} // f is irreducible21.11

end21.12

H̃ := 1; S := ∅;21.13

for i = 1, . . . , t do21.14

if Hi|λ=1 is reducible over K̃ then21.15

Factorize Hi|λ=1 over K̃ to obtain its factors Hi;21.16

S′ := ∅;21.17

for Q ∈ Hi do21.18

S′ := merge(S′, pgcd({τ−1(Q), F},S));21.19

end21.20

S := S ∪ S′;21.21

else21.22

H̃ := H̃ ·Hi|λ=1;21.23

end21.24

end21.25

S := Combine(S) ∪ pgcd({τ−1(H̃), F},S) ;21.26

return S21.27

155

CHAPTER 6. Unmixed products of field extensions

First compute F ′ and then

pgcd({F, F ′},S) = [(αβ,S1), (α,S2)].

Computing B1 in Line 20.4, we have

D := {[αβ, αβ,S1, ∅, 1], [αF2, α,S2, ∅, 1]}.

Pick up the first element of D. Since pgcd({αβ, αβ},S1) = (αβ,S1), we have C2 = 1

and P = 1. In this iteration no element is added to P and ∆ = [αβ, 1,S1, ∅, 2] is
added to D.

Continue with ∆ ∈ D: in this iteration we have pgcd({αβ, 1},S1) = (1,S1) and

thus B2 = 1, C2 = 1, and P = αβ. Hence in this step P = {[αβ, 2]}, and we need

to handle the remaining [1, 1,S1, {[αβ, 2]}, 3]. Clearly the criterion deg(B1, z) > 0 is

not satisfied and we end the computation over the field extension represented by S1.

Computation over the unmixed product represented by S2 is similar. At the end

we will arrive at the squarefree decomposition of f given above.

6.4.2 Squarefree decomposition p> 0 and dim(S) > 0

Consider the simple set [x3 − u, (y2 − u)(y − x)] ⊂ R which represents an unmixed

product A of two field extensions

K1
∼= R/〈x3 − u, y − x〉, K2

∼= R/〈x3 − u, y2 − u〉,

where R = F3(u)[x, y]. Write F̃3 := F3(u) and R̃ := F̃3[x, y]. Let f ∈ A[z] be

represented by F = F1F2, where F1 = z3 − u and F2 = z2 − u. We show how to

compute a squarefree decomposition of f using Algorithm 20.

Compute first a basis D1 = (x − y) ∂
∂x
, D2 = (x3 − xy) ∂

∂x
+ (x3 − y2) ∂

∂y
of

Der(R̃/ sat(S)F̃3
) by using the method described in [68]. With this basis,

pgcd({F, F ′, D1(F), D2(F)},S) = (F1,S)

in Line 20.3 and thus B1 = F2. Continue with the algorithm: pgcd({F2, F1},S) =

(1,S) in Line 20.10 and consequently C2 = F1 and P = F2. Then [F2, 1] is adjoined

to P.

156

Section 6.4. Examples and experiments

Since deg(F1, z) > 0, F1 is a third power in (R̃/ sat(S)F̃3
)[z]. Its third root

F3 = z−x is computed by using the method described in [62, 118]. Clearly {[F3, 1],S}
is the result in the recursive call in Line 20.19. Therefore, the complete squarefree

decomposition of F over A is {({[F3, 3], [F2, 1]},S)}.
Note that the factorizations of F2 over K1 and K2 are different: they are F2 and

(z+ y)(z− y) respectively, but this does not affect the fact that F2 is squarefree over

A. That is why no splitting occurs in any of the pgcd calls in Algorithm 20.

6.4.3 Factorization

To illustrate how Algorithm 21 works, let us consider S = [x2 + u, (y2 + u)(y− 2)] ⊂
Q[u, x, y], a simple set representing an unmixed product A of three field extensions.

We want to compute an irreducible factorization of f ∈ A[z] represented by F =

z2 − (u2 + 2)z + u2y.

Set F̃ = λz2−(u2+2)z+u2y. One sees easily that u2y is regular modulo sat(S)Q(u).

As S ∪ [F̃] is already a normal set, it is also the Gröbner basis of 〈S, F̃ 〉. The degree

of 〈S, F̃ 〉 is 12. Choose a linear transformation τ : z + 2 x+ y 7→ z and construct the

multiplication matrix Mτ over Q(u, λ) of 〈S, F̃ 〉τ w.r.t. the lex ordering determined

by z < x < y.

The univariate polynomial H in the lex Gröbner basis of 〈S, F̃ 〉τ computed by the

Wiedemann algorithm is of degree 12 in z, which ensures that 〈S, F̃ 〉τand 〈S, F 〉τ are

both in shape position. Factorizing H over Q(u, λ) and H|λ=1 over Q(u) shows that

H = H1H2H3, H|λ=1 = H1|λ=1(H21H22)H3|λ=1.

Since the numbers of irreducible factors of H and H|λ=1 are different, f is reducible

over A. As H1|λ=1 and H3|λ=1 are irreducible and H2|λ=1 can be factorized as H21H22,

first compute

pgcd({F, τ−1(H1|λ=1H3|λ=1)},S) = (F,S1),

where S1 = [x2+u, (y+x)(y−x)]. This means that f is irreducible over the unmixed

product represented by the simple set S1. Then compute

pgcd({F, τ−1(H21)},S) = (α,S2), pgcd({F, τ−1(H22)},S) = (β,S2),

157

CHAPTER 6. Unmixed products of field extensions

where α = z − 2, β = z − u2, and S2 = [x2 + u, y − 2].

The output {([F],S1) , ([α, β],S2)} is an irreducible factorization of f over the un-

mixed product A represented by S. For this example no combination of factorization

occurs, as there is only one j such that Hj |λ=1 is reducible.

6.4.4 Preliminary experiments

We have implemented Algorithms 20 and 21 (mainly) in Maple 14. The implemen-

tation makes use of the RegularChains library for computations with regular sets

[93] and calls external functions from Singular [41] for Algorithm 20. We have made

preliminary experiments with the implementation on an Intel(R) Pentium(R) P8700

CPU 2.53GHz with 1.89G RAM under Windows XP Professional SP3.

Experiments for Algorithm 20 have been carried out with examples derived from

those used in [118]. The dominant part of computation is the pth root extraction when

it is necessary. For example, computing sqfPos((z53−s)(z53−t), [(x53−s)(x53−t)]) over

F53 takes about 130.1 CPU seconds, of which 129.5 seconds are spent for computing

all the pth roots. During the pth root extraction for this example, linear systems with

coefficient matrices of size 2809 × 53 have to be constructed and solved. It may be

concluded that the larger the characteristic p is, the more difficult the computation

for the pth root extraction becomes.

For Algorithm 21, our experiments on several constructed examples show that

dominant computations take place in pgcd in Lines 21.19 and 21.26, and the efficiency

of the algorithm depends largely on the degree of 〈S, F̃ 〉 and the number of parame-

ters. For example, the factorization Factor(z2i−2 u, [(x2−u)(x−u), (y2−2)(y−u)])

over Q for i = 1, . . . , 6 takes about 2, 15, 202, 576, 2426, and more than 3600 CPU

seconds respectively. For i = 5, the time for computing pgcd is about 2163 seconds

in total and the polynomial τ−1(H̃) computed in Line 21.26 contains 1244 terms and

is of degree 50 in z.

Concluding remarks and future work

Based on the useful complexity analyses on standard operations like GCD over un-

mixed products of field extensions [38], the computational complexity of Algorithms

158

Section 6.4. Examples and experiments

20 may be analyzed. This is one direction of our future work. Furthermore, our im-

plementations of the proposed algorithms need further refinement and improvement,

with more experiments. In particular, the proposed algorithms should be compared

with the algorithms adapted from those over field extensions by the D5 principle.

159

Chapter 7
Applications

The results in this chapter are based on the joint work with Xiaoliang Li, Wei Niu,

and Dongming Wang (Section 7.1, published in [97]) and with Jean-Charles Faugère

(Section 7.2, on-going work).

7.1 Detection of steady states and their numbers for finite biological

models

7.1.1 Introduction

Continuous and discrete dynamical systems are widely used for the modeling of bi-

ological phenomena. A general algebraic approach has been proposed in [120, 161]

to study real equilibria, their stability, bifurcations and limit cycles of biological net-

works modeled as continuous dynamical systems. Discrete dynamical systems are

simply structured and intuitive to biologists. In particular, discrete systems can be

modeled with a small amount of data.

For discrete dynamical systems, the time domain is on fixed discrete intervals (not

the real axis R). A finite biological model, usually used to describe finite dynamical

systems, is one kind of discrete biological models where the variables and parameters

are values from a finite field Fq. As in the continuous case, it is difficult to find the

analytical solution of a finite biological model (if such solutions exist at all), so the

detection of their steady states and the numbers becomes important to study the

160

Section 7.1. Detection of steady states and their numbers for finite biological models

qualitative behaviors of their solutions, and thus their dynamical characteristics.

We only consider systems of first-order autonomous discrete difference equations

of the form














x1(t+ 1) = φ1(u1, . . . , um, x1(t), . . . , xn(t)),
...

xn(t + 1) = φn(u1, . . . , um, x1(t), . . . , xn(t)),

(7.1)

where u1, . . . , um are parameters independent of t, x1, . . . , xn are variables, and φi :

Fq
m+n → Fq is a map for i = 1, . . . , n with Fq a finite field. Let u = (u1, . . . , um),

x = (x1, . . . , xn) and Φ = (φ1, . . . , φn).

A point x ∈ Fq
n is said to be a steady state of system (7.1) if x = φ(u,x). By this

definition one sees that after the parameter u is fixed, the point x keeps unchanged

while t increases. The purpose of this part is to study the steady states and their

numbers of finite biological systems which can be modeled as (7.1).

Our attention is focused on the simplest but most widely used finite dynamical

systems, Boolean networks, where φi is written in terms of the Boolean operators

∨, ∧, ¬; values of state variables x and parameters u are taken from Fn
2 and Fm

2

respectively. Boolean networks can describe qualitatively the structures and dynam-

ical characteristics of biological systems, and are usually used to model complicated

systems like gene regulatory networks [145]. For such systems, most of the existing

studies focus on random Boolean networks [81]. Recently, methods based on Gröbner

bases [87, 88] and SAT algorithms [148] are applied to detecting equilibria for given

Boolean networks.

7.1.2 Detecting steady states and their numbers

Boolean functions can be translated into polynomial functions by using the rules

x∧ y = xy, x∨ y = x+ y+ xy and ¬x = x+1 (see, e.g., [88]). Then determining the

number of steady states of a Boolean network can be reduced to counting the number

of solutions of the equation system for x in Fn
2

F1(u,x)− x1 = 0, . . . , Fn(u,x)− xn = 0, (7.2)

where Fi is the polynomial transformed from φi for i = 1, . . . , n.

We are mainly interested in the positive-dimensional case, that is system (7.2) is a

parametric one. It should be emphasized that the solutions of our interest are in Fn
2 ,

161

CHAPTER 7. Applications

instead of F
n

2 . Therefore to restrict the solutions to Fn
2 , we adjoin the field equations

x2
i + xi = 0 (i = 1, . . . , n) to the original polynomial equations F1 = 0, . . . , Fn = 0 to

have a new equation set

F1 = · · · = Fn = x2
1 + x1 = · · · = x2

n + xn = 0. (7.3)

It can be easily shown the solutions of (7.3) are precisely all the solutions of F1 =

· · · = Fn = 0 in Fn
2 .

To solve such polynomial systems over finite fields, we mainly adopt two kinds of

method based on Gröbner bases and triangular sets respectively: the traversal method

which traverses all the possible parameters and solves the resulting parameter-free

systems with Gröbner bases, and the method based triangular decomposition for

Boolean systems [64]. All the experiments in this part were made in MAGMA 2.16-1,

running under Scientific Linux OS release 5.4 on 8 Xeon(R) CPUs E5420 2.50GHz

with 20.55G RAM.

Traversal method based on Gröbner bases

Here the traversal method for a parametric system means to traverse all the parameter

specifications and solve the parameter-free system directly for each specification with

Gröbner bases. This method is feasible because there are only finitely many points

in the parameter space and it is efficient when the number of parameters is relatively

small. The Gröbner basis of a Boolean system has a quasi-triangular form which

makes it easy to count the number of solutions of the system.

As an example for the traversal method, we consider a Boolean network of the

segment polarity genes in Drosophila melanogaster studied in [2, 87]. As shown in

Figure 7.1, each cell consists of 15 nodes which are abstracted from mRNA and

proteins inside, and every cell interacts with its neighbor cells with 6 nodes. To some

extent, four successive cells are regarded as a unit, for a given gene is expressed in

every four cells when expression of the segment polarity genes begins.

We study the two cases of 4 and 8 cells with nodes inside these cells considered as

variables and 6 nodes (from the neighbors) that influence these cells as parameters.

The Boolean functions that govern the evolution process can be derived from Figure

7.1, similarly as in [87]. Hence these Boolean systems have 60 and 120 variables

162

Section 7.1. Detection of steady states and their numbers for finite biological models

Figure 7.1: Graph of interactions in the Boolean network.

respectively, both with 6 parameters. Table 7.1 illustrates the solution number for

each specification of the 6 parameters for both instances. In this table, the parameters

in the list correspond to WG0,HH0, hh0,WGm+1, hhm+1 and HHm+1 as in Figure 7.1

respectively, where m is the cell index.

All the computations for the 4-cell and 8-cell cases, including the solution counting,

took 1.94 and 38.62 CPU seconds respectively.

As seen from the experimental performances, the traversal method based on

Gröbner bases has the advantage of high efficiency for Boolean polynomial systems

derived from biological models. Such systems usually have a simpler structure (for

example, several nodes in Figure 7.1 are influenced only by one other node), compared

with random Boolean polynomial systems which are relatively hard to solve.

Triangular set method

The field F2 is a special finite field where specialized techniques can be applied. An

algorithm for computing triangular decomposition from Boolean polynomial sets has

been proposed [64].

Given a polynomial set F ⊆ F2[x], denote by Zero2(F) the set of common zeros

of F in Fn
2 . One can compute triangular sets Ti = [Ti1, . . . , Tiri] (i = 1, . . . , r) from F

such that

163

CHAPTER 7. Applications

Table 7.1: Numbers of steady states for the 4-cell/8-cell instances

Specification N1/N2

0, 0, 0, 0, 0, 0 7/49
1, 0, 0, 0, 0, 0 5/35
0, 1, 0, 0, 0, 0 5/35
1, 1, 0, 0, 0, 0 3/21
0, 0, 1, 0, 0, 0 7/49
1, 0, 1, 0, 0, 0 5/35
0, 1, 1, 0, 0, 0 6/42
1, 1, 1, 0, 0, 0 3/21
0, 0, 0, 1, 0, 0 7/49
1, 0, 0, 1, 0, 0 5/35
0, 1, 0, 1, 0, 0 5/35
1, 1, 0, 1, 0, 0 3/21
0, 0, 1, 1, 0, 0 7/49
1, 0, 1, 1, 0, 0 5/35
0, 1, 1, 1, 0, 0 6/42
1, 1, 1, 1, 0, 0 3/21
0, 0, 0, 0, 1, 0 7/49
1, 0, 0, 0, 1, 0 5/35
0, 1, 0, 0, 1, 0 5/35
1, 1, 0, 0, 1, 0 3/21
0, 0, 1, 0, 1, 0 7/49
1, 0, 1, 0, 1, 0 5/35

Specification N1/N2

0, 1, 1, 0, 1, 0 6/42
1, 1, 1, 0, 1, 0 3/21
0, 0, 0, 1, 1, 0 7/49
1, 0, 0, 1, 1, 0 5/35
0, 1, 0, 1, 1, 0 5/35
1, 1, 0, 1, 1, 0 3/21
0, 0, 1, 1, 1, 0 7/49
1, 0, 1, 1, 1, 0 5/35
0, 1, 1, 1, 1, 0 6/42
1, 1, 1, 1, 1, 0 3/21
0, 0, 0, 0, 0, 1 0/0
1, 0, 0, 0, 0, 1 0/0
0, 1, 0, 0, 0, 1 0/0
1, 1, 0, 0, 0, 1 0/0
0, 0, 1, 0, 0, 1 0/0
1, 0, 1, 0, 0, 1 0/0
0, 1, 1, 0, 0, 1 0/0
1, 1, 1, 0, 0, 1 0/0
0, 0, 0, 1, 0, 1 0/0
1, 0, 0, 1, 0, 1 0/0
0, 1, 0, 1, 0, 1 0/0
1, 1, 0, 1, 0, 1 0/0

Specification N1/N2

0, 0, 1, 1, 0, 1 0/0
1, 0, 1, 1, 0, 1 0/0
0, 1, 1, 1, 0, 1 0/0
1, 1, 1, 1, 0, 1 0/0
0, 0, 0, 0, 1, 1 7/49
1, 0, 0, 0, 1, 1 5/35
0, 1, 0, 0, 1, 1 5/35
1, 1, 0, 0, 1, 1 3/21
0, 0, 1, 0, 1, 1 7/49
1, 0, 1, 0, 1, 1 5/35
0, 1, 1, 0, 1, 1 6/42
1, 1, 1, 0, 1, 1 3/21
0, 0, 0, 1, 1, 1 7/49
1, 0, 0, 1, 1, 1 5/35
0, 1, 0, 1, 1, 1 5/35
1, 1, 0, 1, 1, 1 3/21
0, 0, 1, 1, 1, 1 7/49
1, 0, 1, 1, 1, 1 5/35
0, 1, 1, 1, 1, 1 6/42
1, 1, 1, 1, 1, 1 3/21

(a) Zero2(F) =
⋃r

i=1 Zero2(Ti), and Zero2(T1), . . . ,Zero2(Tr) are pairwisely disjoint;

(b) Tij is of the form xci + Uj , where Uj ∈ F2[x1, . . . , xci−1].

It is obvious by Item (b) above that the number |Zero2(Ti)| of common zeros of Ti is

2di , where di is the number of parameters of Ti, and thus |Zero2(P)| =∑r

i=1 2
di . Then

with this special triangular decomposition we can not only obtain all the solutions,

but we can also directly count the number of solutions without explicit computing

them. This is especially useful if only the number of solutions are of the main interest.

When handling parametric polynomial systems with both explicit parameters u

and variables x, we first regard all of them as variables, but with the ordering u < x,

that is all the parameters are ordered smaller than the variables. Then according

to the definition of triangular sets, each triangular set Ti in the decomposition can

be further written as Ti = [T (1)
i , T (2)

i], where T (1)
i and T (2)

i are triangular sets in

164

Section 7.2. Sparse FGLM algorithm for interpolation problem in list decoding

F2[u] and F2[u][x] respectively. Note that all T (1)
i (i = 1, . . . , r) indeed describe

all the possible parameter values for the system to have a solution. With the same

formula for counting the solutions as above, we can compute the number of solutions

|Zero2(T (2)
i)| for the parameter values determined by T (1)

i . In particular, this number

of solutions is consistent for all the values determined by T (1)
i .

7.2 Sparse FGLM algorithm for interpolation problem in list decoding

7.2.1 Introduction

In Coding Theory, list decoding is a useful method for decoding error-correcting

codes of large error rates [48, 105]. Guruswami and Sudan developed an efficient list

decoding algorithm for Reed-Solomon codes, which is able to correct more errors than

traditionary decoding methods [70]. Following this result Koetter and Vardy proposed

a soft-decision list decoding algorithm for Reed-Solomon [84]. The list decoding forms

a part of study on Algebraic Geometric codes [72].

The list decoding algorithm proposed in [70, 84] consists of two steps: the in-

terpolation step and the factorization step. We are interested in the interpolation

step, where the main purpose is to find a bivariate polynomial which has the mini-

mal weighted degree and passes through a number of points with given multiplicities.

This polynomial can be easily computed via solving a linear system constructed from

the given constrains, if efficiency is not the main concern. Hence the existence of this

polynomial is already guaranteed, and the study on this interpolation step in the list

decoding algorithm mainly focuses on finding the target polynomial in an efficient

way.

There have been many effective and efficient algorithms proposed for solving this

interpolation problem from different perspectives [119, 125, 92, 151]. In particular,

in some algorithms the interpolation problem has already been formulated as finding

the minimal polynomial w.r.t. the given weighted term ordering of a polynomial ideal

defined by the given points and multiplicities [92]. In the follwing we further reduce

the problem to that of change of orderings of Gröbner bases of this ideal, which may

be solved with our algorithms proposed in Chapter 4.

165

CHAPTER 7. Applications

7.2.2 From interpolation to change of orderings

The interpolation problem in the list decoding algorithm is: given points (x1, y1), . . . ,

(xk, yk) ∈ Fq × Fq with corresponding integers m1, . . . , mk representing their multi-

plicities and a term ordering < (usually a weighed degree ordering because of the

Coding Theory background), find a polynomial in Fq[x, y] which passes through these

points with at least the given multiplicities and is minimal w.r.t. <.

For any polynomial P ∈ Fq[x, y] and a point (xi, yi) with the multiplicity mi (1 ≤
i ≤ k), we can write

P (x, y) =
∑

r,s

ai,r,s(x− xi)
r(y − yi)

s.

It is clear that a necessary and sufficient condition for (xi, yi) to be a zero of P with

multiplicities at least mi is that ai,r,s = 0 for any r and s such that r+ s < mi. In the

terminology of polynomial ideals, one sees that such a polynomial P is in the ideal

ai := 〈(x− xi)
r(y − yi)

mi−r : r = 0, . . . , mi〉.

With all points (xi, yi) and their multiplicities mi taken into consideration, the

target polynomial Q in the interpolation problem is indeed the minimal polynomial

in the ideal a =
⋂k

i=i ai w.r.t. <. That is also the minimal polynomial in the Gröbner

basis of a w.r.t. <.

Next we turn our interest to the quotient rings Fq[x, y]/a and Fq[x, y]/ai. First it is

clear that for each i = 1, . . . , k, the generators {(x− xi)
r(y− yi)

mi−r : r = 0, . . . , mi}
of ai already form a Gröbner basis of ai w.r.t. the DRL ordering. Therefore we know

that ai is zero-dimensional, and a basis of Fq[x, y]/ai is Bi := {xiyj : i + j < mi}.
With the above information, one can construct the multiplications matrices of ai in

the FGLM algorithm for x and y w.r.t. the DRL ordering, denoted by Ti,x and Ti,y

respectively.

Since for all i 6= j, V(ai+aj) = V(ai)∩V(aj) = ∅, one knows that ai+aj = Fq[x, y].

Then by the Chinese Remainder Theorem (Theorem 3.1.13), one has

Fq[x, y]/a ∼=
k
∏

i=1

Fq[x, y]/ai.

The basis of the vector space Fq[x, y]/ai being Bi, one can construct the basis B of the

direct product Fq[x, y]/a of Fq[x, y]/a1, . . . ,Fq[x, y]/ak componentwise. In particular,

166

Section 7.2. Sparse FGLM algorithm for interpolation problem in list decoding

the multiplication matrices Tx and Ty of a for x and y respectively w.r.t the DRL

ordering can be obtained by adjoining T1,x, . . . , Tk,x and T1,y, . . . , Tk,y diagonally.

At this point we have a clear understanding of the structure of Fq[x, y]/a, which

is revealed by studying its relationship with Fq[x, y]/a1, . . . ,Fq[x, y]/ak. As analyzed

previously, the polynomial Q we want to compute for the interpolation problem is

the minimal polynomial of a w.r.t. <. With the Gröbner basis and multiplication

matrices of a w.r.t. DRL known, the problem of finding Q is reduced to changing the

ordering of its Gröbner basis from DRL to <.

7.2.3 Preliminary results

Since the problem of finding the minimal polynomial has been reduced to changing

the orderings of Gröbner bases of a, efficient algorithms for this purpose proposed

in Chapter 4 may become applicable. The preliminary observations obtained from

our applications of these algorithms to this interpolation problem are summarized as

follows.

The basic result is that the ideal a is not in shape position, therefore we have

to apply the BMS-based algorithm for the general case to a. However, even this

algorithm fails to return the correct Gröbner basis of a w.r.t. < (remember that

it can be checked whether we obtained the correct result). Since the BMS-based

algorithm works for most zero-dimensional ideals (for example randomly generated

ones), we can conclude that the ideal a bears a very special structure, which is also

clear from the way it is constructed. We are still working on how to adapt the BMS-

based algorithm to this specific ideal. One potential technique needed here is the

generalization of Wiedemann algorithm to the multivariate case

One advantages of applying the BMS-based algorithm to find the minimal poly-

nomial in the interpolation polynomial in the list decoding algorithm is that the

algebraic structure behind the problem is made clearer (as discussed above), and the

process of finding the minimal polynomial as the change of orderings of Gröbner bases

is also straightforward, and hopefully efficient.

Another potential advantage is related to the complexity result, both for construc-

tion of Tx and Ty and for computation as in Theorem 4.2.5, may be clearly analyzed.

The construction process of all the multiplication matrices Ti,x and Ti,y for ai are

167

CHAPTER 7. Applications

clear for i = 1, . . . , k. This makes it possible to directly analyze the cost to construct

Tx and Ty and their sparsity, which is a key factor in the complexity analysis for the

BMS-based algorithm for change of orderings.

On the other hand, one disadvantage is that though only the minimal polynomial

is needed (it can also be checked with similar techniques whether the corrected one is

computed) and the algorithm will be stopped once this polynomial is computed, we

will still have computed a large majority of the Gröbner basis with the BMS-based

algorithm up to the termination. The underlying reason for this phenomenon is that

the target term ordering is a (weighted) degree one, and the degree of the minimal

polynomial we want to compute is usually close to those of other polynomials in

the Gröbner basis w.r.t. this term ordering. And therefore with the BMS-based

algorithm which computes the minimal generating set degree by degree, we cannot

simply compute the target minimal polynomial without the others in the Gröbner

basis.

168

Conclusions

In the introduction relatively detailed descriptions of the contributions and perspec-

tives of this thesis have been presented. We end this thesis by briefly summarizing

and emphasizing the original scientific contributions.

(a) Efficient algorithms for change of orderings of Gröbner bases of zero-dimensional

ideals are proposed by using the sparsity of multiplication matrices, and the

computational complexities of these algorithms and the sparsity of one multi-

plication matrix for generic polynomial systems are analyzed.

(b) Algorithms for decomposing both zero-dimensional and positive-dimensional

polynomial sets over finite fields into simple sets are proposed and implemented.

(c) The concepts of squarefreeness and irreducibility of polynomials over unmixed

products of field extensions are introduced, and algorithms for squarefree de-

composition and factorization over such unmixed products are designed.

(d) Methods for solving polynomial systems over finite fields are applied to de-

tect the steady states of finite biological systems and their numbers, and the

method to find the minimal polynomial in the interpolation problem in Sudan’s

list decoding algorithm with the proposed algorithm for change of ordering is

discussed.

169

Bibliography

[1] E. Aguirre, A. Jarrah, and R. Laubenbacher. Generic ideals and Moreno-Soćıas
conjucture. In Proceedings of ISSAC 2001, pages 21–23. ACM Press, 2001.

[2] R. Albert and H. G. Othmer. The topology of the regulatory interactions
predicts the expression pattern of the segment polarity genes in Drosophila
melanogaster. Journal of Theoretical Biology, 223(1):1–18, 2003.

[3] G. Ars, J.-C. Faugère, H. Imai, M. Kawazoe, and M. Sugita. Comparison be-
tween XL and Gröbner basis algorithms. Advances in Cryptology–ASIACRYPT
2004, pages 157–167, 2004.

[4] M. Atiyah and I. MacDonald. Introduction to Commutative Algebra. Westview
Press/Addison-Wesley, Reading, MA, 1969.

[5] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets.
Journal of Symbolic Computation, 28(1–2):105–124, 1999.

[6] P. Aubry and M. Moreno Maza. Triangular sets for solving polynomial sys-
tems: A comparative implementation of four methods. Journal of Symbolic
Computation, 28(1–2):125–154, 1999.

[7] P. Aubry and A. Valibouze. Using Galois ideals for computing relative resol-
vents. Journal of Symbolic Computation, 30(6):635–651, 2000.

[8] T. Bächler, V. Gerdt, M. Lange-Hegermann, and D. Robertz. Algorithmic
Thomas decomposition of algebraic and differential systems. Journal of Sym-
bolic Computation, 47(10):1233–1266, 2012.

[9] G. Bard. Algebraic cryptanalysis. Springer, 2009.

[10] M. Bardet. Étude des systèmes algébriques surdéterminés. Applications aux
codes correcteurs et à la cryptographie. PhD thesis, Université Pierre et Marie
Curie, France, 2004.

170

BIBLIOGRAPHY

[11] M. Bardet, J.-C. Faugère, and B. Salvy. On the complexity of Gröbner basis
computation of semi-regular overdetermined algebraic equations. In Interna-
tional Conference on Polynomial System Solving - ICPSS, pages 71 –75, 2004.

[12] A. Basiri and J.-C. Faugère. Changing the ordering of Gröbner bases with LLL:
Case of two variables. In Proceedings of ISSAC 2003, pages 23–29. ACM Press,
2003.

[13] E. Becker, T. Mora, M. Marinari, and C. Traverso. The shape of the Shape
Lemma. In Proceedings of ISSAC 1994, pages 129–133. ACM Press, 1994.

[14] T. Becker, V. Weispfenning, and H. Kredel. Gröbner Bases: a Computational
Approach to Commutative Algebra. Graduate Texts in Mathematics. Springer,
New York, 1993.

[15] L. Bettale, J.-C. Faugère, and L. Perret. Solving polynomial systems over finite
fields: Improved analysis of the hybrid approach. In Proceedings of ISSAC 2012,
pages 67–74. ACM Press, 2012.

[16] F. Boulier, F. Lemaire, and M. Moreno Maza. Well known theorems on trian-
gular systems and the D5 principle. In Proceedings of Transgressive Computing
2006, pages 79–91, 2006.

[17] M. Bras-Amorós and M. O’Sullivan. The correction capability of the
Berlekamp–Massey–Sakata algorithm with majority voting. Applicable Alge-
bra in Engineering, Communication and Computing, 17(5):315–335, 2006.

[18] R. Brent, F. Gustavson, and D. Yun. Fast solution of Toeplitz systems of equa-
tions and computation of Padé approximants. Journal of Algorithms, 1(3):259–
295, 1980.

[19] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenrings nach einem nulldimensionalen Polynomideal. PhD thesis, Universi-
tat Innsbruck, Austria, 1965.

[20] B. Buchberger. A criterion for detecting unnecessary reductions in the con-
struction of Gröbner-bases. Symbolic and Algebraic Computation, pages 3–21,
1979.

[21] B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal
theory. In N. Bose, editor, Multidimensional Systems Theory, pages 184–232.
Springer, New York, 1985.

[22] J. Buchmann, A. Pyshkin, and R.-P. Weinmann. A zero-dimensional Gröbner
basis for AES-128. In M. Robshaw, editor, Fast Software Encryption, volume
4047 of LNCS, pages 78–88. Springer, Berlin/Heidelberg, 2006.

171

BIBLIOGRAPHY

[23] F. Chai, X.-S. Gao, and C. Yuan. A characteristic set method for solving
Boolean equations and applications in cryptanalysis of stream ciphers. Journal
of Systems Science and Complexity, 21(2):191–208, 2008.

[24] X. Chen, I. Reed, T. Helleseth, and T. Truong. Use of Gröbner bases to decode
binary cyclic codes up to the true minimum distance. IEEE Transactions on
Information Theory, 40(5):1654–1661, 1994.

[25] S.-C. Chou. Mechanical Geometry Theorem Proving. Reidel, Dordrecht, 1988.

[26] S.-C. Chou and X.-S. Gao. Ritt-Wu’s decomposition algorithm and geometry
theorem proving. In M. E. Stickel, editor, 10th International Conference on
Automated Deduction, volume 449 of LNAI, pages 207–220. Springer, Berlin,
1990.

[27] S.-C. Chou and X.-S. Gao. Automated reasoning in differential geometry and
mechanics using the characteristic set method. Journal of Automated Reason-
ing, 10(2):173–189, 1993.

[28] M. Cimpoeas. Generic initial ideal for complete intersections of embed-
ding dimension three with strong Lefschetz property. Bulletin Mathématique
de la Société des Sciences Mathématiques de Roumanie. Nouvelle Série, 50
(98)(1):33–66, 2007.

[29] S. Collart, M. Kalkbrener, and D. Mall. Converting bases with the Gröbner
walk. Journal of Symbolic Computation, 24(3–4):465–469, 1997.

[30] G. Collins and A. Akritas. Polynomial real root isolation using Descarte’s rule
of signs. In Proceedings of the third ACM symposium on symbolic and algebraic
computation, pages 272–275. ACM Press, 1976.

[31] P. Conti and C. Traverso. Buchberger algorithm and integer programming.
In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pages
130–139. Springer, 1991.

[32] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for
solving overdefined systems of multivariate polynomial equations. In B. Preneel,
editor, Advances in Cryptology — EUROCRYPT 2000, volume 1807 of LNCS,
pages 392–407. Springer, Berlin, 2000.

[33] N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined
systems of equations. In Y. Zheng, editor, Advances in Cryptology — ASI-
ACRYPT 2002, volume 2501 of LNCS, pages 267–287. Springer, Berlin, 2002.

[34] N. T. Courtois and G. V. Bard. Algebraic cryptanalysis of the data encryption
standard. In S. D. Galbraith, editor, Cryptography and Coding, pages 152–169.
Springer, Berlin, 2007.

172

BIBLIOGRAPHY

[35] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: an Intro-
duction to Computational Algebraic Geometry and Commutative Algebra (2nd
edn.). Undergraduate Texts in Mathematics. Springer, New York, 1997.

[36] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Springer Verlag,
1998.

[37] X. Dahan, M. Moreno Maza, E. Schost, W. Wu, and Y. Xie. Lifting techniques
for triangular decompositions. In Proceedings of ISSAC 2005, pages 108–115.
ACM Press, 2005.

[38] X. Dahan, M. Moreno Maza, É. Schost, and Y. Xie. On the complexity of the
D5 principle. In Transgressive Computing 2006, pages 149–168, 2006.

[39] J. Davenport and B. Trager. Factorization over finitely generated fields. In Pro-
ceedings of the fourth ACM symposium on symbolic and Algebraic computation,
pages 200–205. ACM Press, 1981.

[40] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, 1962.

[41] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 3-
1-4 — A computer algebra system for polynomial computations. 2012.
http://www.singular.uni-kl.de.

[42] J. Della Dora, C. Dicrescenzo, and D. Duval. About a new method for com-
puting in algebraic number fields. In EUROCAL’85, pages 289–290. Springer,
1985.

[43] S. Dellière. DM Wang simple systems and dynamic constructible closure. Rap-
port de Recherche, (2000-16), 2000.

[44] J. Ding, J. E. Gower, and D. S. Schmidt. Multivariate Public Key Cryptosys-
tems. Springer, New York, 2006.

[45] D. Duval. Algebraic numbers: An example of dynamic evaluation. Journal of
Symbolic Computation, 18(5):429–445, 1994.

[46] C. Eder and J. Perry. F5C: A variant of Faugère’s F5 algorithm with reduced
Gröbner bases. Journal of Symbolic Computation, 45(12):1442–1458, 2010.

[47] N. Eén and N. Sörensson. An extensible SAT-solver. In Theory and Applications
of Satisfiability Testing, pages 333–336. Springer, 2004.

[48] P. Elias. List decoding for noisy channels. Technical Report 355, Research
Laboratory of Electronics, Massachusetts Institute of Technology, 1957.

[49] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra, 139(1–3):61–88, 1999.

173

BIBLIOGRAPHY

[50] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In Proceedings of ISSAC 2002, pages 75–83. ACM Press,
2002.

[51] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Fast change of ordering with
exponent ω. ACM Communnications in Computer Algebra, 46:92–93, 2012.

[52] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Using symmetries in the
index calculus for elliptic curves discrete logarithm. Cryptology ePrint Archive,
Report 2012/199, 2012.

[53] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional Gröbner bases by change of ordering. Journal of Symbolic
Computation, 16(4):329–344, 1993.

[54] J.-C. Faugère and A. Joux. Algebraic cryptanalysis of hidden field equation
(HFE) cryptosystems using Gröbner bases. In D. Boneh, editor, Advances in
Cryptology – CRYPTO 2003, volume 2729 of LNCS, pages 44–60, Berlin, 2003.
Springer.

[55] J.-C. Faugère and C. Mou. Fast algorithm for change of ordering of zero-
dimensional Gröbner bases with sparse multiplication matrices. In Proceedings
of ISSAC 2011, pages 115–122. ACM Press, 2011.

[56] J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer. Computing loci of rank
defects of linear matrices using Gröbner bases and applications to cryptology.
In Proceedings of ISSAC 2010, pages 257–264. ACM Press, 2010.

[57] J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer. Gröbner bases of
bihomogeneous ideals generated by polynomials of bidegree (1,1): Algorithms
and complexity. Journal of Symbolic Computation, 46(4):406–437, 2011.

[58] J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer. Critical points and
Gröbner bases: the unmixed case. In Proceedings of ISSAC 2012, pages 162–
169. ACM Press, 2012.

[59] G. Feng and T. Rao. Decoding algebraic-geometric codes up to the designed
minimum distance. IEEE Transactions on Information Theory, 39(1):37–45,
1993.

[60] P. Fitzpatrick. On the key equation. IEEE Transactions on Information Theory,
41(5):1290–1302, 1995.

[61] P. Fitzpatrick. Solving a multivariable congruence by change of term order.
Journal of Symbolic Computation, 24:575–590, 1997.

[62] E. Fortuna, P. Gianni, and B. Trager. Derivations and radicals of polynomial
ideals over fields of arbitrary characteristic. Journal of Symbolic Computation,
33(5):609–625, 2002.

174

BIBLIOGRAPHY

[63] K. Fukuda, A. Jensen, and R. Thomas. Computing Gröbner fans. Mathematics
of Computation, 76(260):2189–2212, 2007.

[64] X.-S. Gao and Z. Huang. Characteristic set algorithms for equation solving in
finite fields. Journal of Symbolic Computation, 47(6):655–679, 2012.

[65] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W. H. Freeman, San Francisco, 1979.

[66] K. Geddes, S. Czapor, and G. Labahn. Algorithms for Computer Algebra.
Kluwer Academic, Boston, 1992.

[67] P. Gianni. Properties of Gröbner bases under specializations. In J. Davenport,
editor, Eurocal ’87, volume 378 of LNCS, pages 293–297. Springer, Berlin–
Heidelberg, 1989.

[68] P. Gianni and B. Trager. Square-free algorithms in positive characteristic. Appli-
cable Algebra in Engineering, Communication and Computing, 7(1):1–14, 1996.

[69] V. D. Goppa. Codes on algebraic curves. Soviet Math. Dokl, 24(1):170–172,
1981.

[70] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon
and algebraic-geometry codes. IEEE Transactions on Information Theory,
45(6):1757–1767, 1999.

[71] C. Heegard, J. Little, and K. Saints. Systematic encoding via Gröbner bases for
a class of algebraic-geometric Goppa codes. IEEE Transactions on Information
Theory, 41(6):1752–1761, 1995.

[72] T. Høholdt, J. van Lint, and R. Pellikaan. Algebraic Geometry Codes. Elsevier,
Amsterdam, 1998.

[73] Z. Huang and D. Lin. Attacking Bivium and Trivium with the characteristic
set method. In A. Nitaj and D. Pointcheval, editors, Progress in Cryptology–
AFRICACRYPT 2011, pages 77–91. Springer, 2011.

[74] E. Hubert. Notes on triangular sets and triangulation-decomposition algorithms
I: Polynomial systems. In F. Winkler and U. Langer, editors, Symbolic and Nu-
merical Scientific Computation, volume 2630 of LNCS, pages 143–158, Berlin,
2003. Springer.

[75] S. M. M. Javadi and M. B. Monagan. On factorization of multivariate polyno-
mials over algebraic number and function fields. In Proceedings of ISSAC 2009,
pages 199–206. ACM Press, 2009.

[76] E. Jonckheere and C. Ma. A simple Hankel interpretation of the Berlekamp–
Massey algorithm. Linear Algebra and its Applications, 125:65–76, 1989.

175

BIBLIOGRAPHY

[77] M. Kalkbrener. A generalized Euclidean algorithm for computing triangular rep-
resentations of algebraic varieties. Journal of Symbolic Computation, 15(2):143–
167, 1993.

[78] M. Kalkbrener. Algorithmic properties of polynomial rings. Journal of Symbolic
Computation, 26(5):525–581, 1998.

[79] E. Kaltofen. Polynomial factorization: A success story. In Proceedings of ISSAC
2003, pages 3–4. ACM Press, 2003.

[80] D. Kapur. Using Gröbner bases to reason about geometry problems. Journal
of Symbolic Computation, 2(4):399–408, 1986.

[81] S. A. Kauffman. The Origin of Order: Self-Organization and Selection in Evo-
lution. Oxford University Press, New York, 1993.

[82] C. Kelley. Solving Nonlinear Equations with Newton’s Method, volume 1. Society
for Industrial Mathematics, 1987.

[83] G. Kemper. The calculation of radical ideals in positive characteristic. Journal
of Symbolic Computation, 34(3):229–238, 2002.

[84] R. Koetter and A. Vardy. Algebraic soft-decision decoding of reed-solomon
codes. IEEE Transactions on Information Theory, 49(11):2809–2825, 2003.

[85] M. Kreuzer and L. Robbiano. Computational Commutative Algebra 2, volume 1.
Springer Verlag, 2005.

[86] S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer, New
York, Revised 3rd edition, 2002.

[87] R. Laubenbacher and B. Stigler. A computational algebra approach to the
reverse engineering of gene regulatory networks. Journal of Theoretical Biology,
229:523–537, 2004.

[88] R. Laubenbacher and B. Sturmfels. Computer algebra in systems biology. Amer-
ican Mathmetical Monthly, 116(10):882–891, 2009.

[89] D. Lazard. Gröbner bases, Gaussian elimination and resolution of systems
of algebraic equations. In Computer Algebra, EUROCAL’ 83, pages 146–156.
Springer, 1983.

[90] D. Lazard. A new method for solving algebraic systems of positive dimension.
Discrete Applied Mathematics, 33(1–3):147–160, 1991.

[91] D. Lazard. Solving zero-dimensional algebraic systems. Journal of symbolic
computation, 13(2):117–131, 1992.

176

BIBLIOGRAPHY

[92] K. Lee and M. O’Sullivan. List decoding of Reed–Solomon codes from a Gröbner
basis perspective. Journal of Symbolic Computation, 43(9):645–658, 2008.

[93] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library in Maple
10. In I. Kotsireas, editor, Maple Conference 2005, pages 355–368. Maplesoft,
Waterloo, 2005.

[94] B. Li and D. Wang. An algorithm for transforming regular chain into normal
chain. In D. Kapur, editor, Computer Mathematics, volume 5081 of LNCS,
pages 236–245. Springer, Berlin – Heidelberg, 2008.

[95] X. Li, M. Moreno Maza, and W. Pan. Computations modulo regular chains. In
Proceedings of ISSAC 2009, pages 239–246. ACM Press, 2009.

[96] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for triangular sets:
From theory to practice. In Proceedings of ISSAC 2007, pages 269–276. ACM
Press, 2007.

[97] X. Li, C. Mou, W. Niu, and D. Wang. Stability analysis for discrete biological
models using algebraic methods. Mathematics in Computer Science, 5:247–262,
2012.

[98] X. Li, C. Mou, and D. Wang. Decomposing polynomial sets into simple sets
over finite fields: The zero-dimensional case. Computers & Mathematics with
Applications, 60(11):2983–2997, 2010.

[99] X. Li and D. Wang. Simple decomposition of polynomial sets over finite fields (in
Chinese). Journal of Systems Science and Mathematical Sciences, 32(1):15–26,
2012.

[100] Q. Liao. Equation solving in robotics and mechanisms. In X.-S. Gao and
D. Wang, editors, Mathematics Mechanization and Applications, pages 433–
460. Academic Press, London, 2000.

[101] R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley, Reading, Mass.,
1983.

[102] Z. Lin, L. Xu, and N. Bose. A tutorial on Gröbner bases with applications in
signals and systems. IEEE Transactions on Circuits and Systems I, 55(1):445–
461, 2008.

[103] M. Liu, D. Lin, and D. Pei. Fast algebraic attacks and decomposition of symmet-
ric boolean functions. IEEE Transactions on Information Theory, 57(7):4817–
4821, 2011.

[104] P. Loustaunau and E. York. On the decoding of cyclic codes using Gröbner
bases. Applicable Algebra in Engineering, Communication and Computing,
8(6):469–483, 1997.

177

BIBLIOGRAPHY

[105] F. Macwilliams and N. Sloane. The Theory of Error-correcting Codes. North-
Holland, Amsterdam, l977.

[106] R. Matsumoto. Computing the radical of an ideal in positive characteristic.
Journal of Symbolic Computation, 32(3):263–271, 2001.

[107] T. Matsumoto and H. Imai. Public quadratic polynomial-tuples for efficient
signature-verification and message-encryption. In C. G. Günther, editor, Ad-
vances in Cryptology — EUROCRYPT 88, volume 330 of LNCS, pages 419–453.
Springer, Berlin, 1988.

[108] E. Mayr and A. Meyer. The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in mathematics, 46(3):305–329,
1982.

[109] B. Mishra. Algorithmic Algebra. Texts and Monographs in Computer Science.
Springer, New York, 1993.

[110] T. Moh. A public key system with signature and master key functions. Com-
munications in Algebra, 27(5):2207–2222, 1999.

[111] T. Mora. Solving Polynomial Equation Systems II: Macaulay’s Paradigm and
Gröbner Technology, volume 2. Cambridge University Press, 2005.

[112] M. Moreno Maza. On triangular decompositions of algebraic varieties. Technical
Report 4/99, NAG, UK. Presented at the MEGA-2000 Conference, Bath, UK.

[113] M. Moreno Maza and R. Rioboo. Polynomial GCD computations over towers
of algebraic extensions. In Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, pages 365–382. Springer, 1995.

[114] G. Moreno-Soćıas. Autour de la fonction de Hilbert-Samuel (escaliers d’idéaux
polynomiaux). PhD thesis, Ecole Polytechnique, France, 1991.

[115] G. Moreno-Soćıas. Degrevlex Gröbner bases of generic complete intersections.
Journal of Pure and Applied Algebra, 180(3):263–283, 2003.

[116] A. Morgan. Solving Polynominal Systems Using Continuation for Engineering
and Scientific Problems. Englewood Cliffs, NJ: Prentice-Hall, 1987.

[117] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: En-
gineering an efficient SAT solver. In Proceedings of the 38th annual Design
Automation Conference, pages 530–535. ACM, 2001.

[118] C. Mou, D. Wang, and X. Li. Decomposing polynomial sets into simple sets
over finite fields: The positive-dimensional case. Theoretical Computer Science,
(468):102–113, 2013.

178

BIBLIOGRAPHY

[119] R. Nielsen and T. Hholdt. Decoding Reed-Solomon codes beyond half the
minimum distance. In H. S. Johannes Buchmann, Tom Hoeholdt and H. Tapia-
Recillas, editors, Coding Theory, Cryptography and Related Areas, pages 221–
236. Springer-Verlag, 2000.

[120] W. Niu and D. Wang. Algebraic approaches to stability analysis of biological
systems. Mathematics in Computer Science, 1(3):507–539, 2008.

[121] M. Noro. Modular dynamic evaluation. In Proceedings of ISSAC 2006, pages
262–268. ACM Press, 2006.

[122] M. Noro and T. Takeshima. Risa/Asir–a computer algebra system. In Proceed-
ings of ISSAC 1992, pages 387–396. ACM Press, 1992.

[123] M. Noro and K. Yokoyama. Factoring polynomials over algebraic extension
fields. Josai Information Science Researches, 9:11–33, 1997.

[124] M. Noro and K. Yokoyama. Implementation of prime decomposition of poly-
nomial ideals over small finite fields. Journal of Symbolic Computation,
38(4):1227–1246, 2004.

[125] H. O’Keeffe and P. Fitzpatrick. Gröbner basis solutions of constrained interpo-
lation problems. Linear Algebra and its Applications, 351–352:533–551, 2002.

[126] L. Pachter and B. Sturmfels. Algebraic Statistics for Computational Biology.
Cambridge University Press, Cambridge, 2005.

[127] V. Pan. Solving a polynomial equation: Some history and recent progress.
SIAM review, pages 187–220, 1997.

[128] K. Pardue. Generic sequences of polynomials. Journal of Algebra, 324(4):579–
590, 2010.

[129] H. A. Park and G. Regensburger. Gröbner bases in Control Theory and Signal
Processing, volume 3 of Radon Series on Computational and Applied Mathe-
matics. De Gruyter, 2007.

[130] C. Pascal and É. Schost. Change of order for bivariate triangular sets. In
Proceedings of ISSAC 2006, pages 277–284. ACM Press, 2006.

[131] J. Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of
Eurocrypt’88. In D. Coppersmith, editor, Advances in Cryptology — CRYPTO
95, volume 963 of LNCS, pages 248–261. Springer, Berlin, 1995.

[132] J. Patarin. Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): Two new families of asymmetric algorithms. In U. Maurer, editor, Ad-
vances in Cryptology — EUROCRYPT 96, volume 1070 of LNCS, pages 33–48.
Springer, Berlin, 1996.

179

BIBLIOGRAPHY

[133] W. Plesken. Counting solutions of polynomial systems via iterated fibrations.
Archiv der Mathematik, 92(1):44–56, 2009.

[134] J. F. Ritt. Differential Algebra. American Mathematical Society, New York,
1950.

[135] F. Rouillier. Solving zero-dimensional systems through the rational univariate
representation. Applicable Algebra in Engineering, Communication and Com-
puting, 9(5):433–461, 1999.

[136] F. Rouillier and P. Zimmermann. Efficient isolation of polynomial’s real roots.
Journal of Computational and Applied Mathematics, 162(1):33–50, 2004.

[137] K. Saints and C. Heegard. Algebraic-geometric codes and multidimensional
cyclic codes: A unified theory and algorithms for decoding using Gröbner bases.
IEEE Transactions on Information Theory, 41(6):1733–1751, 2002.

[138] S. Sakata. Finding a minimal set of linear recurring relations capable of gener-
ating a given finite two-dimensional array. Journal of Symbolic Computation,
5(3):321–337, 1988.

[139] S. Sakata. Extension of the Berlekamp–Massey algorithm to N dimensions.
Information and Computation, 84(2):207–239, 1990.

[140] S. Sakata. Gröbner bases and coding theory. In B. Buchberger and F. Winkler,
editors, Gröbner Bases and Applications, volume 251 of London Mathematical
Society Lecture Note Series, pages 205–220. Birkhauser, Cambridge University
Press, 1998.

[141] A. Seidenberg. Constructions in algebra. Transactions of the American Math-
ematical Society, 197:273–313, 1974.

[142] M. Soos, K. Nohl, and C. Castelluccia. Extending SAT solvers to cryptographic
problems. In Proceedings of the 12th International Conference on Theory and
Applications of Satisfiability Testing, pages 244–257. Springer-Verlag, 2009.

[143] P.-J. Spaenlehauer. Résolution de systèm multi-homogènes et déterminantiels:
Algorithms, complexities and applications. PhD thesis, Université Pierre et
Marie Curie, France, 2012.

[144] A. Steel. Conquering inseparability: Primary decomposition and multivariate
factorization over algebraic function fields of positive characteristic. Journal of
Symbolic Computation, 40(3):1053–1075, 2005.

[145] B. Stigler and A. Veliz-Cuba. Network topology as a driver of bistability in the
lac operon. Arxiv preprint arXiv:0807.3995, 2008.

[146] Y. Sun and D. Wang. An efficient algorithm for factoring polynomials over
algebraic extension field. Science in China, Series A: Mathematics. Accepted.

180

BIBLIOGRAPHY

[147] Y. Sun and D. Wang. A generalized criterion for signature related Gröbner
basis algorithms. In Proceedings of ISSAC 2011, pages 337–344. ACM Press,
2011.

[148] T. Tamura and T. Akutsu. Algorithms for singleton attractor detection in
planar and nonplanar AND/OR Boolean networks. Mathematics in Computer
Science, 2(3):401–420, 2009.

[149] J. M. Thomas. Differential Systems. American Mathematical Society, New
York, 1937.

[150] R. R. Thomas. A geometric Buchberger algorithm for integer programming.
Mathematics of Operations Research, 20(4):864–884, 1995.

[151] P. Trifonov. Efficient interpolation in the guruswamisudan algorithm. IEEE
Transactions on Information Theory, 56(9):4341–4349, 2010.

[152] J. Verschelde. Homotopy Methods for Solving Polynomial Sys-
tems, tutorial at ISSAC 2005, July 24–27, 2005. Available at
http://www.math.uic.edu/˜jan/tutorial.pdf.

[153] J. Von Zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, 2003.

[154] D. Wang. On Wu’s method for proving constructive geometric theorems. In
Proceedings of the 11th International Joint Conference on Artificial Intelligence,
pages 419–424. Morgan Kaufmann, San Fransisco, 1989.

[155] D. Wang. An elimination method for polynomial systems. Journal of Symbolic
Computation, 16(2):83–114, 1993.

[156] D. Wang. An implementation of the characteristic set method in Maple. Auto-
mated practical reasoning: algebraic approaches, pages 187–201, 1995.

[157] D. Wang. Decomposing polynomial systems into simple systems. Journal of
Symbolic Computation, 25(3):295–314, 1998.

[158] D. Wang. Computing triangular systems and regular systems. Journal of Sym-
bolic Computation, 30(2):221–236, 2000.

[159] D. Wang. Elimination Methods. Springer Verlag, 2001.

[160] D. Wang and D. Lin. A method for multivariate polynomial factorization over
successive algebraic extension fields. In W. Lin, D. Li and Y. Yu, editors, Mathe-
matics and Mathematics-Mechanization, pages 138–172, Jinan, 2001. Shandong
Education Publishing House.

[161] D. Wang and B. Xia. Stability analysis of biological systems with real solution
classification. In Proceedings of ISSAC 2005, pages 354–361. ACM Press, 2005.

181

BIBLIOGRAPHY

[162] D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans-
actions on Information Theory, 32(1):54–62, 1986.

[163] F. Winkler. Polynomial Algorithms in Computer Algebra. Texts and Mono-
graphs in Symbolic Computation. Springer, Berlin, 1996.

[164] W.-T. Wu. Basic principles of mechanical theorem proving in elementary ge-
ometries. Journal of Automated Reasoning, 2(3):221–252, 1986.

[165] W.-T. Wu. On zeros of algebraic equations: An application of Ritt principle.
Kexue Tongbao, 31(1):1–5, 1986.

[166] W.-T. Wu and X.-S. Gao. Mathematics mechanization and applications after
thirty years. Frontiers in Computer Science, 1(1):1–8, 2007.

[167] L. Yang and J.-Z. Zhang. Searching dependency between algebraic equations:
An algorithm applied to automated reasoning. In J. Johnson, S. McKee, and
A. Vella, editors, Artificial Intelligence in Mathematics, pages 147–156, Oxford,
1994. Oxford University Press.

182

Curriculum Vitae

Student Dormitory 9–215, Beihang University Chenqi.Mou@gmail.com

XueYuan Road No.37, HaiDian District (+86) 138 1142 6823

Beijing 100191, China http://www-polsys.lip6.fr/˜mou/

EDUCATION

Ph.D. in Applied Mathematics / Computer Science May 2013

Beihang University, Beijing, China / Université Pierre et Marie Curie, Paris, France

• Supervisors: Dongming Wang / Jean-Charles Faugère

• Subject: Solving Polynomial Systems over Finite Fields: Algorithms, Implementation and Ap-

plications

• Research Field: Symbolic Computation

Bachelor of Science in Mathematics and Applied Mathematics Jul. 2007

Beihang University, Beijing, China

• Top 5 out of 120

PUBLICATIONS

Book

[1] D. Wang, C. Mou, X. Li, J. Yang, M. Jin, and Y. Huang. Polynomial Algebra (in Chinese),

Higher Education Press, Beijing, 2011

Journal Papers

[2] C. Mou, D. Wang, and X. Li. Decomposing polynomial sets into simple sets over finite fields:

The positive-dimensional case. Theoretical Computer Science, 2013, 468: 102–113

[3] C. Mou. Design of termination criterion of BMS algorithm for lexicographical ordering (in

Chinese). Journal of Computer Applications, 2012, 32(11): 2977–2980

[4] X. Li, C. Mou, W. Niu, and D. Wang. Stability analysis for discrete biological models using

algebraic methods. Mathematics in Computer Science, 2011, 5: 247–262

[5] X. Li, C. Mou, and D. Wang. Decomposing polynomial sets into simple sets over finite fields:

The zero-dimensional case. Computers and Mathematics with Applications, 2010, 60: 2983–2997

183

Curriculum Vitae

[6] J.-C. Faugère and C. Mou. Sparse FGLM algorithms. Preprint arXiv:1304.1238, 2013

[7] C. Mou and W. Niu. Application of triangular set methods to detection of steady states and

their numbers for finite biological models (in Chinese). Computer Applications and Software, ac-

cpeted

[8] C. Mou and Dongming Wang. Squarefree decomposition and factorization over unmixed prod-

ucts of field extensions. In preparation

Conference Papers

[9] J.-C. Faugère and C. Mou. Fast algorithm for change of ordering of zero-dimensional Gröbner

bases with sparse multiplication matrices. International Symposium on Symbolic and Algebraic

Computation 2011 (ISSAC 2011). San Jose, USA, June 8–11

• Top conference in Theoretical Computer Science

[10] X. Li, C. Mou, W. Niu, and D. Wang. Stability analysis for discrete biological models using

algebraic methods. Mathematical Aspects of Computer and Information Sciences 2009 (MACIS

2009). Fukuoka, Japan, December 14–17

ACADEMIC ACTIVITIES

Contributed talks:

• Simple Triangular Sets: from Q to Fq

Seminar on Symbolic Computations, Beijing, China May 2012

• Fast Algorithm for Change of Ordering of Zero-dimensional Gröbner Bases with Sparse Multi-

plication Matrices

International Workshop on Certified and Reliable Computation, NanNing, China Jul. 2011

• Fast Algorithm for Change of Ordering of Zero-dimensional Gröbner Bases with Sparse Multi-

plication Matrices

International Symposium on Symbolic and Algebraic Computation, San Jose, USA Jun. 2011

Member of Local Arrangements for

• Fourth International Conference on Mathematical Aspects of Computer and Information Sciences

Beihang University, Beijing, China Oct. 2011

• First International Conference on Symbolic Computation and Cryptography

Beihang University, Beijing, China Apr. 2008

External reviewer for

• SCIENCE CHINA Information Sciences

• Mathematics in Computer Science

• First International Conference on Symbolic Computation and Cryptography

Participant in

• Summer School on Symbolic Computation 2009

University of Electronic Science and Technology, Chengdu, China Aug. 2009

• International Conference on Mathematics Mechanization

Chinese Academy of Science, Beijing, China May 2009

184

Curriculum Vitae

• NUS–PKU Joint Summer Programme on Mathematical Modeling

National University of Singapore, Singapore/Peking University, Beijing, China Jun.–Jul. 2006

SELECTED HONORS

• Scholarship from Chinese Scholarship Council to support the study in France 2009–2011

• Second Prize of China Graduate Mathematical Contest in Modeling 2008

• Meritorious Winner of Mathematical Contest in Modeling (COMAP in USA) 2007

• Second Prize of China Undergraduate Mathematical Contest in Modeling 2006

• First Prize of National English Contest for College Students in China 2005

LANGUAGES

Chinese: Native

English: Fluent

• Translation Proficiency Qualification Certificate of the People’s Republic of China level III

COMPUTER SKILLS

Magma, Maple, Matlab, C++, Linux, LATEX, Emacs

185

