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Résumé

La géométrie synthétique, aussi parfois appelée géométrie axiomatique,

s’intéresse purement aux objets géométriques. En reposant sur des ax-

iomes et des théorèmes qui mettent en relation les concepts de base de

la géométrie, elle permet de mettre en valeur les propriétés géométriques

pendant les preuves mathématiques.

Cette thèse se concentre sur les propriétés géométrique et leur description

dans le système de preuve Coq. Les deux résultats principaux sont une

bibliothèque de descriptions formelles et une extension du système de preuve

pour permettre une interaction directe avec les objets géométriques pendant

les preuves.

La première partie présente notre formalisation de la géométrie euclidienne

basée sur la géométrie affine. Nous approchons les notions, les propriétés,

et les théorèmes dans un style similaire à celui utilisé dans l’enseignement

au lycée. Notre développement améliore le développement fourni précédem-

ment par F. Guilhot en éliminant les axiomes inutiles, en fournissant des

définition mieux appropriées pour certains objets géométriques, et en re-

formalisant leurs propriétés.

La deuxième partie s’intéresse à la question de l’orientation dans le plan.

Cela permet d’enlever certaines ambigüıtés dans la présentation des objets

géométriques et d’énoncer des problèmes de géométrie ”ordonnée” et de les

prouver.

La troisième partie s’intéresse à des questions de fondement. En particulier,

nous montrons que les systèmes d’axiomes de Hilbert et Tarski peuvent

être modélisés dans notre système. Nous montrons également que notre

système d’axiome peut supporter les outils de preuve automatique basés

sur la méthode des aires ou sur les bases de Gröbner. Le travail sur les

bases de Gröbner a été effectué en collaboration avec J. Narboux.



La quatrième partie présente une combinaison de l’outil de preuve formel

Coq avec l’outil de géométrie dynamique GeoGebra, en se reposant sur

l’interface d’utilisation pour Coq développée en Java et appelée Pcoq. Le

résultat de cette combinaison permet aux utilisateurs d’effectuer facilement

des raisonnements géométriques dans le style de la géométrie du lycée, in-

teractivement et avec le support d’une interface graphique. Ceci montre

comment un système de preuve pourrait être utilisé en éducation.

Mots-clefs: Formalisation de la géométrie, Preuve interactive, Coq, logiciel

de géométrie dynamique.



Abstract

Synthetic geometry, sometimes also called axiomatic geometry, deals purely

with geometric objects. Relying on axioms and theorems relating the basic

concepts of geometry makes it possible to highlight the geometrical proper-

ties during the proofs.

This thesis concentrates on geometrical properties and their description in

the Coq proof assistant. The two main results of this thesis are a library of

formal descriptions and a proof system extension to interact directly with

geometrical objects during proofs.

The first part presents our formalization of Euclidean geometry based on

affine geometry. We approach notions, properties, and theorems in a style

similar to what is taught in high school. This development improves on

the library developed by F. Guilhot by eliminating needless axioms, giving

more appropriate definitions for some geometric notions and re-formalizing

their properties.

The second part deals with the notion of orientation in the plane. It allows

us to remove ambiguities in the presentation of geometric objects and state

and solve ordered geometry problems.

The third part deals with foundations. In particular, we show that the

axiom systems of Hilbert and Tarski can be described on top of ours. We

also show that automatic proof methods like the area method and Gröbner

bases can be integrated. The work on the area method was performed

jointly with J. Narboux.

The fourth part presents a combination of the Coq formal proof tool and

the Geogebra dynamic geometry tool. This is based on the java-based user-

interface for Coq named Pcoq. This combination allows users to easily

perform geometry reasoning as taught in high school and in a interactive

manner with the support of a graphic interface. This shows how a proof

system could be used in education.



Key words: formalization of geometry, interactive proofs, Coq, dynamic

geometry software
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Chapter 1

General Introduction

1.1 Teaching and learning geometry

Geometry is an important branch of mathematics, that deals with properties, mea-

surement and relationships between geometric objects. Learning geometry is a brain-

boosting activity that helps improve student’s brain function. Doing geometry proofs

requires the brain to operate in new and complex ways. This requires logical thinking,

a mental process that is rarely well developed in the younger students.

The conventional approach to geometry is synthetic or axiomatic geometry, which

deals purely with geometric objects directly by geometrical properties. This is the

kind of geometry, for which Euclid is famous, that makes use of axioms, theorems and

logical arguments to draw conclusions. Its formal proofs are considered as sequences

of geometric deductive reasoning from axioms. They are taught in high school with a

well-known method called two-column method. A two-column geometric proof consists

of a list of statements, and the reasons showing that those statements are true. The

statements are listed in a column on the left, and the reasons for which the statements

can be made are listed in the right column. Each reasoning step is a row in the two-

column proof.

The use of formal proofs is always subject of debates for educators - see the survey

of Battista & Clements [3]. Some argue that we should continue the traditional focus

on axiomatic systems and proofs. Some believe that we should abandon proof for a

less formal investigation of geometric ideas. Others believe that students should move

gradually from an informal investigation of geometry to a more proof-oriented focus.

High school geometry with its formal proofs is considered hard and very detached from

practical life for some reasons: lack of proof and proving in earlier school years, lack of

understanding of geometry concepts and student’s cognitive development.
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The research of Piaget on student’s cognitive development shows that thinking in

general progresses from being non-reflective and unsystematic, to empirical, and finally

to logical-deductive. The research of Van Hiele on understanding of geometry concepts

suggests that students’ geometrical understanding progresses through various levels in

Tab.1.1.

◦ Level 1 - Visualization : Students can name and recognize shapes by their ap-

pearance, but cannot specifically identify properties of shapes.

◦ Level 2 - Analysis : Students begin to identify properties of shapes and learn to

use appropriate vocabulary related to properties, but do not make connections

between different shapes and their properties.

◦ Level 3 - Argumentation : Students are able to recognize relationships between

and among properties of shapes or classes of shapes and are able to follow logical

arguments using such properties.

◦ Level 4 - Deduction : Students can go beyond just identifying characteristics of

shapes and are able to construct proofs using postulates or axioms and definitions.

A typical high school geometry course should be taught at this level.

Table 1.1: Students’ geometrical understanding progresses through various levels which

cannot be skipped

Both theories suggest that students must pass through lower levels of geometric

thought to attain higher level and that they can understand and explicitly work with

axiomatic systems only after they have reached the highest levels. Thus, the explicit

study of axiomatic systems is unlikely to be productive for the vast majority of students

in high school.

Moreover, Battista and Clements suggest that the most effective way to include

meaningful proof in classes is to avoid formal proof at the beginning and focus instead

on justifying ideas based on visual and empirical foundations. This can gradually lead

students to appreciate the need for formal proof. In fact, learning by inductive reasoning

alone is ”surface learning” and deductive proof should continue to be an essential part

of geometry curricula.
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1.2 Using dynamic geometry software

Consistent with this alternative to axiomatic approaches, the focus of dynamic geome-

try softwares (DGSs) is to facilitate students’ making and testing conjectures. Dynamic

geometry softwares not only allow students to understand construction steps that lead

to final drawings, but also provide access to geometric objects, allow students to move

free points and observe the influence on the rest. This allows students to explore new

implicit properties from the drawings. Some among the numerous dynamic geometry

softwares provide a justification feature with the support of algebraic (coordinate-based)

methods or semi-algebraic (coordinate-free) methods that facilitate justifying conjec-

tures.

Nowadays, dynamic geometry softwares are widely used in school. Many researches

pointed out the important role of dynamic geometry softwares in learning and teaching

geometry. The use of dynamic geometry softwares can further students progress. The

research on the influence of dynamic geometry softwares on students’ progress with

respect to van Hiele levels [15][21] showed that dynamic geometry softwares may help

students pass through van Hiele levels. However, most of the material proposed for the

classroom seems to only be concerned with the first three levels.

The fourth level deals with deductive proof. In fact, algebraic (coordinate-based)

methods or semi-algebraic (coordinate-free) methods only allows to justify conjecture.

They do not offers a capability to build deductive proofs. In particular, algebraic

methods are able to produce non-trivial geometric proofs automatically, but their proofs

are usually long and hard to read. On the other hand, coordinate-free methods only

use geometrically meaningful quantities and their generated proofs are human-readable.

But these proofs still are not purely traditional deductive proofs, not produced in the

manner taught in school.

The exploration and proof activities should be interlaced. I think that these two

activities could be better interlaced if they were both conducted using the computer.

This leads to the necessity of developing a geometry proving tool for high school students

which they can use to to construct geometry object, explore conjecture and interactively

construct traditional geometry proofs. Proving with a such system enables students to

understand geometric concepts deeply and beyond the use of these concepts in scope

of current being studied geometry problems.
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1.3 Formal proof with a proof assistant

A proof assistant or interactive theorem prover is a tool to develop formal proofs guided

by users. Proof assistants allow us to state mathematical theorems, perform logic

reasonings and they verify the validity of logical steps.

Proofs are developed in a interactive manner that requires logical reasoning ca-

pabilities from users. Therefore, using proof assistants could help students to better

understand the concepts of deduction.

This use has more interest in proving geometry theorems because traditional geom-

etry reasoning usually relies on tacit assumptions which are based on visual evidence.

The lack of proving these conditions leads to uncertified proofs. It even leads to wrong

reasonings when assumptions are obtained from incorrect drawing. Using a proof as-

sistant has the following advantages:

◦ It gives a clear logical view about geometric problems. Students understand

well what are hypotheses and conclusions. They understand well the logical in-

ferences used in each reasoning step by observing the change of proof environ-

ment(including hypotheses and conclusions).

◦ Students can construct proofs step by step interactively. Reasoning steps are

verified by the proof assistant, thus constructed proofs have very high level of

confidence.

◦ It allows to combine purely geometric arguments with other kind of proofs.

However, beside the advantages, current proof assistants can not be used in high-

school without being adapted for several reasons:

◦ The syntax is not adapted to high-school students.

◦ The level of detail required in the proof is too high. Even a simple proof requires

proving many lemmas.

◦ The developed formal proofs are not readable and understandable

If we aim at using proof assistant in proving geometric theorems, these inconve-

niences need to be corrected.
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1.4 Our work

We see in the last sections the need for formal proofs and the significance of geometry

dynamic softwares in education as well as the use of proof assistants in developing

formal proofs. Our work presented in this dissertation is an attempt to combine these

notions. In particular, we approach interactive formal proofs of geometric theorems

using the Coq proof assistant and the combination of these proofs with the Geogebra

geometry dynamic software. Our work contains 4 principal part as follows:

To be able to develop proofs, we need to have a library containing the necessary

notions, properties and basic theorems. Constructing this library is the first part of our

work. At this moment, we focus only on high school geometry. The covered notions,

properties, and basic theorems make it possible to construct geometric proofs by using

logical reasoning as taught in high school. This work is partially presented in [44]

However, a main difference between proofs in high school and formal proofs is that

the latter require a high level of detail. Every case has to be considered and every fact

used in proofs is either an axiom or an theorem that is already proved before.

We have detected an area of geometry where implicit assumptions are often made,

using only drawing as justification. This area is the area of ordered geometry, which

deals with relative position of points along a straight line, around a polygon or a circle,

orientation of the plane or convexity. Describing order geometry is the subject of the

second part.

We formalize the notion of orientation that allows us to remove ambiguities in the

presentation of geometric objects and state and solve ordered geometry problems. This

work is partially presented in [42]

Our library is not limited to interactive proving. Automatic proving based on the

the area method and Gröbner bases can be integrated it. This allows users to switch

between different proof modes. These integrations are considered in the third part.

This work is partially presented in [44]

The last part of our work aims at combining our library in Geogebra. The sig-

nificance of our work is increased manyfold by this combination. We enrich it with

an interactive proving feature that makes it possible to develop traditional geometric

proofs by clicks of the mouse and interaction with geometrical objects during proofs.

This proving feature offers a logical view for geometry problems, motivates student

to verify the validity of their conjecture that they explore from figures. Interactive

proving with the interaction of dynamic geometry is a good direction for educational

application. This work is presented in [43].



Chapter 2

Formalization of Elementary

Geometry

2.1 Introduction

The earliest axiomatic system for geometry was presented by Euclid in Euclid’s El-

ements which has been one of the most influential books in the history of geometry.

However, there were many discussions concerning the question of whether this system

was fundamentally sound and consistent. In fact many flaws were found in proofs in

this text. For instance, the superposition argument asserting that, by moving a trian-

gle, the sides and the shape are preserved, is not a consequence of the axioms; axioms

of order, etc. We refer the reader to [24][29] for more examples. These documents show

that figures accompany many of the proofs. Using implicit assumptions from intuition

and reasoning from diagrams make proofs incomplete and not rigorous. These gaps

lead to the appearance of other axiomatic systems in an attempt to provide a formal

axiomatic for Euclidean geometry, where tacit assumptions are made explicit.

Many such axiom systems have been proposed. First, we can cite the system that

was proposed by Hilbert in The Foundations of Geometry [30]. This is regarded as a

more formal version of Euclid’s system. This system is based on 3 primitive notions:

point, line, and plane. It contains 6 predicates and 20 axioms which are classified in

five groups: incidence axioms, order axioms, congruence axioms, parallelism axioms and

continuity axioms. It’s purely geometrical and none of theses axioms concern numbers

or arithmetic. This was not the first, but it is perhaps the most intuitive and the closest

to Euclid’s.

Some work was performed to formalize this system. A formalization in Coq was

proposed by C. Dehlinger et al. [16] and another in Isabelle/Isar was proposed by
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L. Meikle and J. Fleuriot [36]. These formalizations using proof assistants show that,

although Hilbert tried to provide a formal system, proofs in his system are still not

fully formal. In particular, degenerate cases are often implicit, geometric intuitions are

still interleaved in the proofs for many theorems.

Another system for geometry was proposed by Tarski [47]. Its last version contains

only 11 axioms, 2 predicates, and only one primitive notion: the notion of point. In

comparison with Hilbert’s, this system is simpler, it relies only on first-order logic

whereas the last axiom group of Hilbert requires second-order logic. This system is

also less intuitive, it involves only one intuitive notion of triangle and predicates about

betweeness and congruence.

A formalization of Tarski’s system was realized by J.Narboux in Coq [40]. This

formalization indicates that, in comparison with Hilbert’s system, the use of Tarski’s

system leads to more uniform proofs with less degenerate cases. Moreover, because this

system is only based on points, it can easily be generalized to other dimensions by just

changing the dimension axiom. This cannot easily be done in Hilbert’s system.

In Learning and Teaching Axiomatic Geometry [49], M. Stone said that there is

quite general agreement that in all of school mathematics, there is no subject more

difficult to learn or to teach than axiomatic geometry. Indeed, students have widely

different geometric insights that lead to quite different inferences, and in order to com-

prehend adequately axiomatic geometry, students have to have some knowledge and

understanding of logical principles. Thus, with the aim of application in school cur-

riculum, we need to formalize geometry from a moderately complex axiomatic system,

that is pedagogically suitable and satisfactory from a logical point of view. However,

Hilbert’s or Tarski’s systems have too low a starting point, hence they are too far for

school use. Proofs are, at the level of axioms, far from being easy, hence very difficult

for students.

We are interested in the development of F. Guilhot, a high-school teacher who de-

veloped a library in the Coq proof assistant for interactive theorem proving in geometry

at the high-school level [27][28]. This development is based on a specific axiom system

which is adapted to the knowledge of high-school students. It covers a large portion

of the basic notions of plane geometry, the properties and the theorems found in the

high-school geometry programme. Moreover, its proofs and its geometry reasoning are

close to what students learn in high-school. Some classical theorems are proved in this

library, such as Menelaus, Ceva, Desargues, Pythagoras, Simsons’ line, etc.
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However, the system was constructed with a pedagogical view rather than a logical

view. This explains the existence of some defects for this library. The axioms are

redundant and constructive definitions are missing. The fact that geometric objects

are usually defined by axioms stating their properties is a usual approach in high-

school curriculum. However, this leads to an explosion of the number of axioms with

many redundant ones. The use of compound geometric constructions, such as, for

example intersection point of lines, orthogonal projection of a point on a line etc,

without knowing how they are constructed makes the library lose constructive property.

In spite of these drawbacks, the library is meaningful from a pedagogical perspective.

The covered notions, properties, and theorems fit the high-school geometry curricula.

The system allows us to interactively construct geometric reasoning. These motivate us

to work on this library. We dedicate this chapter to present our work in this direction.

First, we give an overview about the library, we detail its drawbacks and draw up

strategies to improve it. We then present our development in Coq, focusing on plane

geometry. Finally, we discuss the difficult points that we met in our formalization work

and draw conclusions.

2.2 A formalization of high-school geometry

The initial idea of a library in Coq for high-school geometry was proposed by F. Guilhot

- a highschool teacher [27][28]. With the aim of illustrating geometry proofs in high-

school class room, she developed a library based on educative formation in high-school.

Her development is organized as in Fig.2.1.

F. Guilhot started her formalization with constructing affine geometry. Algebraic

structures and vector spaces are never addressed in school programme. However, the

notions of mass point and barycenter are presented in high-school courses, and cal-

culations of mass point and barycenter are straightforward and familiar to students.

Therefore, F. Guilhot constructed affine space from mass point using the universal

space proposed by M.Berger [4]. This construction is explained in [28].

To build up the Euclidean space, the affine structure is enriched with the notion

of scalar product of vectors (denoted by −→u · −→v ) which makes it possible to define an

Euclidean distance, a measure of angle, etc. Geometric notions are added one by one

in the order that they are taught in school.

With about 25000 lines of formalization in 70 files, a large part of the French high-

school geometry programme is covered, many geometric notions are formalized and



2.2 A formalization of high-school geometry 9

Figure 2.1: Structure of F. Guilhot’s development

some classical theorems are proved. The detail of formalized geometric notions is as

follows.

◦ General affine geometry : basic notions of affine geometry in any dimension are

formalized

– Point, mass point, vector, algebraic measure

– Barycenter, midpoint, barycenter properties, gravity center of triangle

– Parallel lines, concurrent lines

– Collinearity, co-planarity

◦ Affine geometry of dimension 3 : properties of parallelism and incidence of lines

and planes in 3D space are formalized

◦ General Euclidean geometry : the affine structure is enriched with scalar product

and the following dependent notions

– scalar product and its properties
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– orthogonality of vectors and lines

– orthogonal projection of a point on a given line

– Euclidean distance

◦ Orthogonality in dimension 3 : orthogonal lines and orthogonal planes are added

◦ Euclidean plane geometry : this is the most important part of high-school geom-

etry. It includes

– Notions defined using Euclidean distance : perpendicular bisectors, circles

– Coordinates system, orthogonal coordinates system, Cartesian coordinates

system

– Oriented angle of vectors and lines

– Trigonometry

– Signed areas of triangles and parallelograms, determinant

◦ Plane transformation : study properties of plane transformation and composed

transformations, particularly properties about preservation of length and angle

measure

F. Guilhot does not try to provide a system with a minimal number of axioms, nor

to provide an automated tool for theorem proving. She does not build up the whole

of Euclidean geometry from a fundamental axiomatic system such as the systems of

Hilbert or Tarski. An alternative approach is used to arrive at the same geometrical

results, where definitions of geometric notions, theorems and geometry reasonings are

described as they are taught in high-school. In particular, geometric notions usually

are declared as abstract notions, each notion has some companion properties which

are stated in the form of axioms to manipulate it. For example, the following is the

formalization of the notion of line. An abstract type for lines and an abstract function

to construct a line from two points are declared. Two axioms about line properties are

introduced, making it possible to manipulate this notion.

Va r i a b l e L i n e : Type .

V a r i a b l e l i n e : Po in t −> Po in t −> L ine .

Axiom

l i n e p e rmu t e : f o r a l l A B : Point ,

A <> B −> l i n e A B = l i n e B A.

Axiom

a l i g n e s l i n e : f o r a l l A B C : Point ,

A <> B −> A <> C −> c o l l i n e a r A B C −> l i n e A B = l i n e A C .
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From the pedagogical point of view, defining by properties is a usual manner to de-

fine an object in high-school. Students approach geometric notions through properties.

This way of defining is appropriate for notions considered to be really primitive notions.

But axioms are unnecessary in defining compound notions, which are composed from

other ones, and axioms are unnecessary for relations between geometric objects as well.

The following formalization is to define orthogonal projection of a point on a line and

parallelism relation of lines.

Va r i a b l e o r t h o g o n a l P r o j e c t i o n : Point−>Point−>Point−>Po int .

Axiom d e f o r t h o g o n a l P r o j e c t i o n 1 :

f o r a l l A B C H : Point ,

A <> B −>
o r t h o g o n a l P r o j e c t i o n A B C H −>
c o l l i n e a r A B H /\ o r t hogona l ( v e c t o r A B) ( v e c t o r H C ) .

Axiom d e f o r t h o g o n a l P r o j e c t i o n 2 :

f o r a l l A B C H : Point ,

A <> B −>
c o l l i n e a r A B H −>
o r t hogona l ( v e c t o r A B) ( v e c t o r H C) −>
o r t h o g o n a l P r o j e c t i o n A B C H.

Va r i a b l e p a r a l l e l : L i n e −> L ine −> Prop .

Axiom d e f p a r a l l e l :

f o r a l l (A B C D : Po in t ) ( k : R) ,

A <> B −> C <> D −>
1B + (−1)A = kD + (−k )C −>
p a r a l l e l ( l i n e A B) ( l i n e C D) .

Axiom d e f p a r a l l e l 2 :

f o r a l l A B C D : Point ,

A <> B −> C <> D −>
p a r a l l e l ( l i n e A B) ( l i n e C D) −>
e x i s t s k : R , 1B + (−1)A = kD + (−k )C .

For orthogonal projections, two axioms are introduced, the first one gets properties

from the notion, and the second one inversely gets the corresponding object from the

given properties. The first axiom gives us collinearity of the triple of A,B and H, and

orthogonality of two vectors
−−→
AB and

−−→
HC if we have that H is the orthogonal projection

point of C on line AB. The second asserts that H is the orthogonal projection point of

C on line AB if we have collinearity of A,B and H, and orthogonality of
−−→
AB and

−−→
HC.

For the parallelism of lines, two axioms assert that the parallelism of line AB and

CD is equivalent to the collinearity of
−−→
AB and

−−→
CD. This collinearity is expressed by

−−→
AB = k ×

−−→
CD
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This is a fast way to have a geometry library, which provides notions and properties

for students to construct proofs of other theorems. However, this leads to an explosion

of the number of axioms and primitive notions. They increase linearly in respect to the

number of added notions, with a lot of redundancy. As a result of this, there are about

127 axioms in the library. In our examples, we can define the parallelism of 2 lines AB

and CD by collinearity of 2 vectors
−−→
AB and

−−→
CD. Therefore, the two axioms defining

parallelism could be dispensed with.

Moreover, the library does not provide functions to construct points, lines and com-

pound geometric constructions. They are used in axioms which state their properties

without knowing how they are constructed. This makes the library lose the constructive

property. This is the case of orthogonal projection in our example. In a constructive

view, we can construct the orthogonal projection of C on line A B by getting the in-

tersection point of line AB with the line which passes through C and is perpendicular

with line AB. Besides, the lack of definitions in the form of functions leads to unusual

representations. For instance, orthogonalProjection A B C H expresses the relations of

points col ABH ∧ CH ⊥ AB rather than providing a definition of H.

2.3 Reducing axioms and having a constructive library in

a geometric view

In spite of its drawbacks, this library is good from a pedagogical point of view. It

matches requirements for a geometric library being used in school. This motivates us

to improve this library. Our objective is to find a more compact axiom system, that

allows us to rebuild all geometric notions and to prove their properties in this library.

To do that, we analyze the library and draw up strategies to reduce its axiom system.

We can distinguish geometric notions into geometric constructions and geometric

relations. Geometric constructions are geometric objects such as points, lines, circles,

angles, altitudes, orthocenters, etc. Geometric relations express relations between these

geometric objects, for example the parallelism of lines, the perpendicularity of lines,

etc. These relations are essential for the library to manipulate geometric objects and

state geometric problems.

For the first category, we continue to divide them into primitive constructions and

compound constructions. Primitive constructions are elementary constructions based

on ruler and compass. Compound constructions are considered as sequences of elemen-

tary constructions. To make our library match dynamic geometry systems, we refer to

[31] for the elementary construction list.
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As compound constructions are constructed step by step using elementary con-

structions, axioms related to them can be eliminated by retracing the combinations

of elementary construction. These axioms become theorems that have to be proved.

For each compound construction, there are always at least two companion theorems

that correspond to axioms used to define this construction in the system of F. Guil-

hot showed in the example of the previous section. One of these axioms is to prove

properties from the given notion, and the other is to get the corresponding notion from

properties. The latter leads to proving the unique existence of a construction with

the given properties. This is not always straightforward. The axioms concerning the

orthogonal projection of a point C on a line AB in the previous section is an example.

We have to prove that there is only a point H such that A, B, and H are collinear

and AB ⊥ CH. This allows us to deduce that if H satisfies these properties then H is

equal with the orthogonal projection of C on AB which have the same properties.

Reducing axioms related to elementary constructions is more difficult. These con-

structions are primitive in the geometric view, but they may be non-primitive in the

logical view. For example, lines and circles are primitive constructions. However, we

can consider a line as a set of points that are collinear with the 2 given points, a circle

as a set of points that have the same distance with respect to the center. Defining

notions of this kind depends on the axiom system and the primitive notions from which

we build up geometry. Their properties are proved from their definitions. Thus, axioms

for these notions can be eliminated.

Once geometric objects are formalized, we have their definition and properties. In-

tuitively, it is not difficult to define relations between geometric objects. Thus, reducing

the number of axioms used to define these relations comes without much effort.

Besides, there are some notions that come from algebra such as the signed area of

a triangle, the trigonometric functions, etc. These notions are usually expressed by

algebraic equations, so these equations can help us in definitions.

2.4 Formalization of affine geometry

In this section as well as in some of the next ones about formalization in Coq, we cannot

give all the details about our development. We rather focus on some interesting, crucial

formalizations of each part. This clarifies the technique we used to eliminate axioms

from the library of F. Guilhot.
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Figure 2.2: Formalization of Affine Geometry

Figure 2.2 shows the dependency between files in our formalization for affine geom-

etry. The file, namely mass point, contains the formalization of F. Guilhot about the

notion with the same name. The following axioms are used for mass point

Axiom Idempotency : nP + mP =(m+n)P .

Axiom Commutat iv i ty : nP + mQ = mQ + nP .

Axiom A s s o c i a t i v i t y : nP + (mQ + kR) = (nP + mQ) + kR .

Axiom D e f i n i t i o n o f s c a l a r m u l t i p l i c a t i o n : k (nP) = ( k∗n )P .

Axiom D i s t r i b u t i v i t y k (nP + mQ) = knP + kmQ.

We use small letters a, b, c, etc. to denote real numbers; capital letters A, B, C,

etc. to denote points; pairs consisting of a real number and a point in the form aA to

denote mass points.

Here we work with the field of real numbers. It’s familiar with high school students.

These axioms were not directly introduced in her formalization. Instead of this,

she formalized mass point by making a mapping into an abstract field structure in

Coq. Therefore, algebraic properties represented by these axioms is ensured. This

formalization enables us to simplify equations of mass points using automated tactics

from the Coq library for fields (such as ring_simplify, field_simplify, etc.). It

makes calculations easier. The use of mass points is a good approach for computation,

and familiar to students.
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The file named barycenter is for the notion of barycenter. This notion allows us to

create a new point R from the two given mass points nP and mQ in the case n+m 6= 0

such that (n + m)R = nP + mQ and the new point R is called the barycenter of P

and Q with the masses n and m respectively. The equality (n + m)R = nP + mQ is

rewritten by (n+m)(barycenter np mQ) = nP +mQ. The following axiom is used to

define this notion.

Axiom D e f i n i t i o n o f b a r y c e n t e r : ∀ (m n : Rea l ) (P Q : Po in t )

m+ n 6= 0→ ∃(R : Point), nP +mQ = (m+ n)R

The notion of vector is considered as a sum of 2 mass points with the sum of their

masses equals zero. This is represented as follows:

D e f i n i t i o n vec (A B : Po in t ) := (−1)A + 1B.

This definition allows us to convert vectors into mass points so that calculations of

vector are translated to the ones of mass points, hence the automatic tactics can

be reused. For the detail of this formalization, we refer the reader to publications

by F. Guilhot[28][27]. However, we can simply understand that calculations of mass

points and vectors are easily realized by some automatic tactics, as in the proofs of the

following examples.

The first example states Chasles’ relation for vector
−−→
AB +

−−→
BC =

−→
AC.

Lemma t e s t 1 addVec t o r : f o r a l l (A B C : Po in t ) ,

vec A B + vec B C = vec A C .

Proo f .

i n t r o s .

u n f o l d vec i n ∗ .
RingMP .

Qed .

By unfolding the definition of vector in the goal, we have to prove that ((−1)A +

1B)+((−1)B+1C) = (−1)A+1C. The tactic RingMP allows us to solve this equality

automatically. Simply speaking, the tactic repeatedly performs algebraic transforma-

tions to reduce 2 parts of the equality in a normalized form, so that their equality can

be decided.

The next example is more complex, it states that if I is the midpoint of BC we have
−−→
AB +

−→
AC = 2

−→
AI. I is represented as the barycenter of B and C with masses 1 and 1

respectively.

Lemma c a l c u l m i d p o i n t : f o r a l l (A B C I : Po in t ) ,

2 I = 1B + 1C −>
vec A B + vec A C = 2 ( vec A I ) .
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i n t r o s A B C I H.

un f o l d vec i n ∗ .
cut (1 I = (/2) (1B +1C) ) (∗ a s s e r t t h i s f a c t ∗ ) .
i n t r o s H0 .

r e w r i t e H0 i n ∗ . (∗ r e p l a c e 1 I w i th . . ∗ )
a s s e r t (2<>0).

i n t r o s H1 .

FieldMP 2 .

. . .

Qed .

The proof of this example is similar to the first example. By unfolding the definition

of vector, we have to prove that ((−1)A + 1B) + ((−1)A + 1C) = 2((−1)A + 1I).

Replacing (1I) with ((/2)(1B + 1C)) in the goal leads us to prove ((−1)A + 1B) +

((−1)A + 1C) = 2((−1)A + ((/2)(1B + 1C))). As in the first example, we have a

tactic, namely FieldMP, to solve this equality. A difference between these tactics is

that FieldMP is used for equality with fractions of R.

2.4.1 Formalization of vector

Until this point, we preserve the formalization of F. Guilhot. Let’s consider the defini-

tion of vector. This notion plays a crucial role for our formalization, thus we give the

details of formalizing this notion.

The definition of vector allows us to convert vectors into mass points so that cal-

culations of vector are translated to the ones of mass points and can be automatically

performed. However, it also has some drawbacks. It is a constructor of a vector from

two points rather than a definition of vector. Vectors only are a special case of mass

point combinations, they do not have a proper type. This leads to ambiguity in the type

MassPoint. In particular, with a value v of type MassPoint, we do not know whether v

is the representation of a vector or not. Furthermore, the lack of a clean type forces us

to use vectors in the form of
−−→
AB, we do not have −→v without precise points. This leads

to difficulties when defining geometric notions where vectors are used as arguments in

the definition.

Data structure for vector

We aim at providing a new type for vector so that automatic calculations are in-

herited. In fact, a value of mass point v is a vector if there are 2 points A and B such

that v can be expressed by v = (−1)A + 1B. Our approach uses a sub-type of mass

point for vector.
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First, we define a function, namely isVector, of type MassPoint→ Prop that takes

a mass point value and returns true if v is a representation of a vector. In other words,

there are two points A, B such that v = (−1)A + 1B. This function is then used as a

filter in the following definition of vector.

D e f i n i t i o n i s V e c t o r ( v : MassPoint ):=

e x i s t s A, B : Point , v = (−1)A + 1B.

Record Vector : Type :=

vecCons { mpOf : MassPoint ; p r oo f : i s V e c t o r mpOf } .

Vector is defined by the record containing two fields. The first one mpOf is a value of

mass point. The second is a proof showing that the first is a representation of a vector.

We use the pair (mpOf, proof) to denote vector. Note that we use here the notion of

dependent type in Coq where the type of some argument to a function depends on the

value of other arguments. Indeed, the element proof has the type of isVector mpOf

(essentially ∃AB :Point, mpOf = (-1)A + 1B), hence its type depends on the value of

mpOf.

Constructor for vector

The first functions that we have to consider after having created the type Vector

are constructors. For a vector, we only have one constructor in the form of vector A B.

Defining this constructor is simple by the mass point value (−1)A+ 1B and the trivial

proof p showing this value is a representation of a vector. In particular, there exist two

points A’ and B’ such that (−1)A+ 1B = (−1)A′ + 1B′.

Definition of operators

We now define algebraic operators of vectors. It is easy to find that we can define

these operators by using their correspondence in mass point. In particular, we define

the addition operator of two vectors by constructing the vector addition from the sum

of mass point values of these vectors.

D e f i n i t i o n add Vect ( v1 v2 : Vecto r ) :=

match v1 , v2 wi th (mpOf1 , proof mpOf1 ) , (mpOf2 , proof mpOf2 )

=> ( (mpOf1 + mpOf2 ) , ( sumVecs i sVec mpOf1 mpOf2 ) )

end .

This definition is interpreted as follows: v1 and v2 have the type Vector, suppose that

they are represented by records (mpOf1,proof mpOf1) and ( mpOf2, proof mpOf2).

We then construct a record of type Vector that takes (mpOf1 +mpOf2) as the mass

point value and consider it as the vector addition. The second element of this vector
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is a proof showing that (mpOf1 +mpOf2) is a representation of vector. This proof is

provided by the function sumVecs isVec constructed using isVector as follows

Lemma sumVecs i sVec :

f o r a l l ( v a l u e1 va l u e2 : MassPoint ) ,

i s V e c t o r v a l u e1 −> i s V e c t o r v a l u e2 −>
i s V e c t o r ( v a l u e1 + va l u e2 ) .

Once this lemma is proved, its application with arguments mpOf1 and mpOf2

(sumVecs isVec mpOf1 mpOf2 ) gives us an object with the type isVector ( mpOf1

+ mpOf2). Thus we can use this as the second element of the vector resulting from the

addition.

................Begin of Technical Details.............. 1.

To prove this lemma, we first introduce hypotheses and destruct the hypotheses isVector

value1 and isVector value2 to have 4 points A, B, C and D such that

value1 = (−1)A+ 1B

and

value2 = (−1)C + 1D.

Proof .

i n t r o s v a l u e1 va l u e2 H0 H1 .

d e s t r u c t H0 as [A [B H0 ] ] .

d e s t r u c t H0 as [C [D H1 ] ] .

H0 : v a l u e1 = (−1)A+1B

H1 : va l u e2 = (−1)C+1D

(1/1)

i s V e c t o r ( v a l u e1 + va l u e2 )

By unfolding isVector in the goal and rewriting value1 and value2 by their represen-

tation of points, we have to prove ∃A′ B′, (−1)A′ + 1B′ = (−1)A+ 1B + (−1)C + 1D.

Observe that, if we choose A′ = A, (1B′) can be calculated by (−1)A + 1B′ =

(−1)A+ 1B + (−1)C + 1D, hence 1B′ = 1B + (−1)C + 1D.

We recall that with 2 mass points aA and bB where a+b 6= 0, we can construct their

barycenter such that ∀(ab : R)(AB : Point), a+ b 6= 0→ (a+ b)(barycenter aA bB) =

aA+ bB.

The sum of masses in the right hand side of the above equality differs from 0.

Therefore, it is evident that we can construct B’ by using the barycenter. The con-

struction of B’ is as follows : 1B′ = 1B + (−1)C + 1D ⇒ 1B′ = (−1)C + (1B + 1D)

⇒ 1B′ = (−1)C + (2(barycenter1B1D))(apply the property of barycenter with 1B
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and 1D) ⇒ 1B′ = 1(barycenter(−1)C(2(barycenter1B1D))) (apply the property of

barycenter with (-1)C and 2(barycenter 1B 1D)).

The proof of existence of A’and B’is performed by respectively assigning A and

(barycenter (-1)C (2(barycenter 1B 1D))) to them. These assignment are performed in

Coq by tactic exists as follows

Proof .

. .

r e w r i t e H0 ,H1 .

un f o l d i s V e c t o r .

e x i s t s A .

e x i s t s ( b a r y c e n t e r ((−1)C) (2 ( b a r y c e n t e r (1B) (1D) ) ) ) .

H0 : v a l u e1 = (−1)A+1B

H1 : va l u e2 = (−1)C+1D

(1/1)

(−1)A+1( b a r y c e n t e r (−1)C (2 ( b a r y c e n t e r 1B 1D))=(−1)A+1B+(−1)C+1D

To prove this new goal, we use the property of barycenter in inverse direction

with the above construction of B’. We make occurrences of barycenter disappear by

repeatedly replacing (a + b)(barycenter aA bB) with aA + bB. The proof obligation

becomes (−1)A+ ((−1)C + (1B + 1D)) = (−1)A+ 1B + (−1)C + 1D. This is solved

by the tactic RingMP mentioned above.

Proof .

. .

r e p e a t r e w r i t e b a r y c e n t e r p r o p ; auto .

Ring MP .

Qed .

..............End of Technical Details................

Similarly, we define the multiplication of vector.

Lemma mul tVec i sVec :

f o r a l l ( k :R) (mpOf :PP) ,

i s V e c t o r mpOf −>
i s V e c t o r ( mult PP k mpOf ) .

D e f i n i t i o n mul t Vect ( k :R) ( v1 : Vecto r ) :=

match v1 wi th

vecCons mpOf proof mpOf => vecCons ( mu l tVec i sVec k mpOf)

end .

Tactic to translate calculations of vectors

By these operator definitions, calculations of vectors are essentially performed with

their mass point value. However, to be able to reuse automatic calculations of mass



2.4 Formalization of affine geometry 20

points, we need to translate equalities of vector in the proof context to equalities of

mass points. The following tactic is designed to do this in Coq:

Ltac t r a n s f Ve c t o r Ma s sPo i n t :=

(∗ s t e p 1 : c onv e r t to s t r u c t u r e ∗)
r e p e a t

match goa l w i th

| |− con t e x t [ v e c t o r ] => un f o l d v e c t o r

| |− con t e x t [ add Vect ] => un f o l d add Vect

| |− con t e x t [ mul t Vect ]=> un f o l d mul t Vect

| H: con t e x t [ v e c t o r ] |− => un f o l d v e c t o r i n H

| H: con t e x t [ add Vect ] |− => un f o l d add Vect i n H

| H: con t e x t [ mul t Vect ] | − => un f o l d mul t Vect i n H

end ;

(∗ s t e p 2 : t r a n s l a t e s t r u c t u r e to mass po i n t ∗)
r e p e a t

match goa l w i th

| |− vecCons ?a = vecCons ?b =>

r e w r i t e <− MassPo in t Vec to r equ i v ; s imp l

| H: vecCons ?a = vecCons ?b |− =>

r e w r i t e <−MassPo in t Vec to r equ i v i n H; s imp l i n H

| => i d t a c

end

) .

The tactic is performed in 2 steps. In the first step (corresponding to the first

repeat loop), we convert all terms of type Vector into their structure. We only have

three functions that return an element of type Vector and these are converted as follows

◦ The constructor of vector vector A B is converted to ((-1)A+1B, )

◦ The addition function add Vect u v is converted to (mpOf u + mpOf v, )

◦ The multiplication function mult Vect k v is converted to (k (mpOf v), )

These conversions are performed repeatedly. As a result, an equality of two terms

of type Vector is replaced by an equality of calculated structures that represent these

terms. For example, −→w = k−→u + l−→v is converted to (mpOf w, ) = ((k(mpOf u) +

l(mpOf v)), ).

In the second step (corresponding to the second repeat loop), the equalities of

structure are translated to ones of their corresponding mass point by using the following

equivalence

MassPo in t Vec to r equ i v : f o r a l l v1 v2 : Vector ,

mpOf v1 = mpOf v2 <−> v1 = v2
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In Coq the equality of two objects of type Record is only ensured by equal-

ity of all their components mpOf v1 = mpOf v2 ∧ proof v1 = proof v2 ↔
(mpOf v1, proof v1) = (mpOf v2, proof v2)↔ v1 = v2. So, to prove this lemma, we

have to use the irrelevant proof in Coq, which shows that all proofs of a property are

equivalent.

Axiom p r o o f i r r e l e v a n c e : f o r a l l (P : Prop ) ( p1 p2 :P) , p1 = p2 .

Using this equivalence, the tactic finds equalities of vector structure in the proof

context, and repeatedly replaces them by equalities of mass points. For example, after

doing this step, −→w = k−→u + l−→v is replaced by mpOf w = (k(mpOf u) + l(mpOf v).

Using this tactic allows us to easily prove algebraic properties of vector. Indeed, we

only need to use the tactic transf Vector MassPoint to get equalities of mass point and

the automatic tactics on mass points to perform calculations. For example, the proof

of distributivity for vectors is short as follows:

Lemma mu l tV e c t a d dV e c t d i s t r i b u t i v e : f o r a l l ( r :R) ( v1 v2 : Vecto r ) ,

mu l t Vect r ( add Vect v1 v2 ) =

add Vect ( mul t Vect r v1 ) ( mul t Vect r v2 ) .

Proo f .

i n t r o s .

d e s t r u c t v1 ; d e s t r u c t v2 . ( ∗ to r e p r e s e n t v e c t o r by p o i n t s ∗)
t r a n s f V e c t o r Ma s sPo i n t .

RingMP .

Qed .

The last properties of vector that we would like to present concern creating new

point as barycenters. In the proofs of the lemma sumVecs isVec, we can see somewhat

the relation between them. Indeed, we saw the analysis to find out B’ such that

(−1)A + 1B′ = (−1)A + 1B + (−1)C + 1D. This analysis leads us to construct B’

using barycenter B′ = (barycenter(−1)C(2(barycenter 1B 1D))). In other words, we

can construct B’ such that
−−→
AB′ =

−−→
AB +

−−→
CD.

In a generalized form of this, a question is that, with any point M and algebraic

combination of vectors, if we can construct a point N such that
−−→
MN equals this com-

bination. The answer is yes by constructing N with the help of the barycenter function

using a similar analysis. The following lemmas state the existence of such an N for

some combinations. Note that we use operator addition and multiplication instead of

add Vect and mult Vect

Lemma e x i s t e n c e mu l tV e c tR e p r e s e n t a t i v e :

f o r a l l (M A B : Po in t ) ( k :R) ,

{N |
−−→
MN = k

−−→
AB } .

Lemma e x i s t e n c e a d dVe c tR e p r e s e n t a t i v e :
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f o r a l l (M A B C D : Po in t ) ,

{N |
−−→
MN =

−−→
AB +

−−→
CD } .

Lemma e x i s t e n c e l i n e a rCombVe c tR e p r e s e n t a t i v e :

f o r a l l (A B C D M : Po in t ) ( k1 k2 :R) ,

{N |
−−→
MN = k1

−−→
AB + k2

−−→
CD } .

Note that the statements of the lemmas use constructive existence. Roughly speak-

ing, {x:A|P x} is a type and an instance of this type gives us an object satisfying the

property P. This differs from ∃x, Px that renders a proof. The first form is stronger

than the second form. Indeed, if we can construct an object satisfying the property P,

we can obviously prove the existence of an object satisfying the property P by using

the newly constructed object.

As a result, proofs of these lemmas have to be performed in a constructive way.

It means that we have to give a construction for N satisfying the requirements of

the lemmas. For example, in the lemma existence multVectRepresentative, we need

to construct N such that
−−→
MN = k

−−→
AB. We have (−1)M + 1N = k((−1)A + 1B) →

1N = (−k)A + kB + 1M → 1N = 1(barycenter (−k)A(k + 1)(barycenter kB 1M)),

hence N = (barycenter (−k)A(k + 1)(barycenter kB 1M)). This assignment of N

allows us to readily prove that
−−→
MN = k

−−→
AB by calculations of mass point.

We will later see the role of these properties in constructing Cartesian coordinate

systems, defining midpoint, and defining some plane transformations.

2.4.2 Formalization of line

The notion of vector allows us to formalize the other notions in affine geometry (see

Fig. 2.2). The following is a short presentation about it.

◦ The middle of two points and the gravity center of a triangle are defined using

barycenters. In particular, the midpoint I of A and B is defined as the barycenter

of the mass points 1A and 1B,

midpoint A B := barycenter 1A 1B.

The gravity center G of triangle ABC is defined by barycenter of 1A 1B and 1C,

gravity A B C := barycenter 1A 2(barycenter 1B 1C).

We can prove its properties such as: G ∈ CI and
−→
AG = 2

3

−→
AI when I is the

midpoint of BC, 3 medians of triangle intersect at G, etc.

◦ The parallelism of vectors is defined by collinearity. The definition is as follows

v1 ‖ v2 := v2 6= −→0 ∧ ∃k : R, k 6= 0 ∧ −→v1 = k
−→
v2.
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◦ The collinearity of three points is defined by using collinearity of vectors as follows

col A B C := A = B ∨ ∃k : R,
−→
AC = k

−−→
AB.

◦ Coplanarity is defined by showing that a vector is a combination of other vectors.

In particular, coplanarity of A, B, C, and D is defined by

coplanar A B C D := ∃(k1 k2 : R),
−−→
AD = k1

−−→
AB + k2

−→
AC.

◦ Intersection of lines is defined by the existence of a common point. Relations

between intersection, coplanarity and parallelism are introduced, for example

intersect (line AB)(line CD)→ coplanar A B C D,

¬parallel (line AB)(line CD)→ intersect (line AB)(line CD)∨¬coplanar A B C D.

Notions in affine geometry are formalized and their properties are also proved. We

now pay attention to the notions of parallelism of lines that are the heart of affine

geometry. We present our formalization by comparing it with the one realized in the

library of F. Guilhot, this allows readers to see the advantages of our approach and

how we eliminate axioms. F. Guilhot considered lines as an abstract object, there is

a function to construct a line from two points and axioms allowing to manipulate this

type of line.

Va r i a b l e l i n e : Po in t −> Po int −> L ine .

Axiom l i n e p e rmu t e : f o r a l l A B : Point ,

A <> B −> l i n e A B = l i n e B A.

Axiom c o l i n e a r l i n e : f o r a l l A B C : Point ,

A <> B −> A <> C −> c o l i n e a r A B C −> l i n e A B = l i n e A C .

In a Coq view, these axioms are strong because they state equalities of objects. Ev-

idently, properties are preserved from one to the other. Therefore, using these axiom

make the system weaker. Moreover, this formalization only provides only one construc-

tion of line using different points. Two other types of line, line passing through a point

and perpendicular with a given line (denoted tline) and line passes through a point

and parallel with a given line (denoted pline), were not approached in the library of

F. Guilhot. Adding these would lead to auxiliary axioms. Besides, the lack of common

structure that represents line raises difficulties in defining relations of lines, for example,

parallelism of two lines have to be precisely defined for each type of line.

To fill these gaps, we need to devise a common data structure for all types of

line. We then define operators and relations concerning lines for this structure. Line

constructors corresponding the types of line are also introduced. Finally, properties of

line is verified with this formalization.
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Data structure for line

We chose to represent lines with a root point and a non zero direction vector. In

Coq, this is expressed by a record with three elements, where the first is a point, the

second is a vector, and the last is the proof that the vector is non zero. Once again,

the structure Record with a dependent type is used.

Record L ine : Type := l i n eCon s

{ rootOf : Po in t ; vecOf : Vecto r ; proofNonZero : i sNonZeroVec vecOf } .

Definition of operators and relations

Equality : As done with vector, the first notion we need to define is the equality of

lines. We observe that, in the case that two lines have the same root point, they are

equal if the two direction vectors are collinear. In the other case, two lines are equal if

the vector composed by the two root points and the two direction vectors are collinear.

The equality of two lines a = (A,−→u ) and b = (B,−→v ) is defined by

a == b :=


−→u ‖ −→v if A = B

−→u ‖ −→v ‖
−−→
AB if A 6= B

In Coq this is expressed by

D e f i n i t i o n l i n e E q u a l : ( a b : L i n e ):=

match a , b wi th (A, −→u ) , (B, −→v )

=> (A = B → −→u ‖ −→v ) ∧ (A 6= B → (
−−→
AB ‖ −→u ∧ −→u ‖ −→v ) .

We here remark that notions of “a==b” and “a=b” are different in Coq. The first

expresses equivalence of lines, it is mapped to semantic equality of lines in geometry.

It is coarser than the second notion which expresses equality of line at the level of data

structures. This distinction will be clarified in the discussion section at the end of this

chapter.

Parallelism : The representation of lines using a direction vector makes it easier

to define the parallelism of lines. In fact, the parallelism of lines is defined by the

parallelism of their direction vector. The parallelism of vectors is already defined.

With a = (A,−→u ) and b = (B,−→v ), we define a ‖ b := −→u ‖ −→v .

A point lying on a line : a point lies on a line if and only if the vector, composed

by this point with the root point of the line, and the direction vector are collinear.

With a = (A,−→u ) and a point M, we define M ∈ a :=
−−→
AM ‖ −→u .

Definition of constructors

In this session, we present only 2 types of line: line with 2 points and parallel line.

The remaining kind (perpendicular) is only formalized in Euclidean geometry where we

have the notion of perpendicularity.

A line passing through two different points A and B is constructed by the root

point A and the direction vector
−−→
AB. In the degenerate case where A and B coincide,
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we return an arbitrary value for this line. The principle of excluded middle is used to

determine cases of A and B. This is represented through a function AB decidable that

gives us A=B or A<>B.

Lemma i sNonZeroVecCond i t i on : f o r a l l A B : Point ,

A<>B −>i sNonZeroVec ( v e c t o r A B) .

Parameter a r b i t r a r y L i n e : L i n e .

D e f i n i t i o n l i n e (A B : Po in t ):=

match ( @AB dec idab le (A = B) ) wi th

| l e f t H => a r b i t r a r y L i n e

| r i g h t H => l i n eCon s A ( v e c t o r A B)

( i sNonZeroVecCond i t i on (A:=A) (B:=B) H)

end .

The chosen structure representing line emphasizes the role of vectors. The role of

the second point in formalization of F. Guilhot is blurred. Using the direction vector

makes it easier to formalize the line passing through a point and perpendicular with

a given line (denoted tline) and the line passes through a point and parallel with a

given line (denoted pline). Indeed, if we want to construct a line passing a point A

and parallel with a given line, we can always use A as the root point of this line. As a

result, defining a line leads to constructing its direction vector.

For the pline lp passing a point A and is parallel with a given line a = (B,−→u , prf), it

is easy to find that −→u can be used as the direction vector of lp. The element prf that is

a proof of −→u 6= −→0 is also reused. Thus, the parallel line is defined by lp := (A,−→u , prf).

D e f i n i t i o n l i n eP (A : Po in t ) ( a : L i n e ) :=

match a wi th l i n eCon s B u p r f

=> l i n eCon s A u p r f

end .

Verification of properties

Our formalization allows us to verify properties of lines. The first ones that we want

to cite here are the properties stated as axioms in the library of F. Guilhot.

Lemma a l i g n p e rmu t e : f o r a l l A B : Point ,

A <> B −> l i n e A B == l i n e B A.

Lemma a l i g n l i n e : f o r a l l A B C : Point ,

A <> B −> A <> C −>
c o l A B C −> l i n e A B == l i n e A C .

The first lemma can be proved easily. For the second one, we start with the hy-

potheses A 6= B and A 6= C we have that
−−→
AB 6= −→0 and

−→
AC 6= −→0 . By the definition of

line
−−→
AB and

−→
AC are direction vectors of the line AB and the line AC respectively. By

the definition of collinearity (col A B C) we have that
−−→
AB and

−→
AC are collinear. Thus

line AB == line AC by the definition of equality of lines for the case where lines have

the same root point.
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Other properties of lines are also proved. They include: the transitivity of par-

allelism ∀a b c, ‖ b ∧ b ‖ c → a ‖ c; properties of parallel lines such as ∀(A :

point)(l : Line), pline(A l) ↔ A ∈ l ∧ pline(A l) ‖ l; properties related to ly-

ing on a line such as ∀A B,A 6= B ∧ A ∈ a ∧ B ∈ a → line A B == a and

∀A B C,A 6= B ∧ C ∈ line A B → col A B C.

2.5 Formalization of Euclidean geometry

In affine geometry, there is no way to talk about distances, orthogonality and angles.

Euclidean geometry is built from affine geometry by adding axioms about the notion

of scalar product (denoted by −→u · −→v ). This is also called dot product or inner product.

The axioms of scalar products are introduced in Coq as follows

Va r i a b l e s c a l a rP r o d u c t : Vecto r −> Vector −> R.

Axiom s c a l a r P r o d u c t p o s i t i v e V e c t o r : f o r a l l v : Vector ,

s c a l a rP r o du c t v v >= 0 .

Axiom s c a l a rP r o du c t n on d e g e n e r a t e Ve c t o r : f o r a l l v : Vector ,

s c a l a rP r o du c t v v = 0 −> v = ZeroVect .

Axiom sca l a rP roduc t s ym : f o r a l l u v : Vector ,

s c a l a rP r o du c t u v = s c a l a rP r o d u c t v u .

Axiom s c a l a rP r o d u c t a d dVe c t l : f o r a l l v1 v2 v3 : Vector ,

s c a l a rP r o du c t ( add Vect v1 v2 ) v3 =

s c a l a rP r o du c t v1 v3 + s c a l a rP r o du c t v2 v3 .

Axiom s c a l a r P r o d u c t mu l tV e c t l : f o r a l l ( k : R) ( u v : Vecto r ) ,

s c a l a rP r o du c t ( mul t Vect k u ) v = k ∗ s c a l a rP r o d u c t u v .

Where R is the type for real numbers. The scalar product in turn is used to define the

followings entities

◦ Length: the length of a vector −→v is defined to be |−→v | =
√−→v · −→v . In Coq, we

have

D e f i n i t i o n magnitude ( v : Vecto r ) :=

s q r t ( s c a l a rP r o d u c t ( v ) ( v ) ) .

◦ Normalization: Given a nonzero vector −→v . Normalization of −→v is a vector of

unit length that points in the same direction as −→v . We have −→v =
−→v
|−→v | . In Coq we

have to use a function, namely scalarVV decidable vec1, to decide that −→v ·−→v = 0

or −→v · −→v 6= 0, these correspond to the case whether −→v =
−→
0 or not.

D e f i n i t i o n u n i t V e c t o r r e p r e s e n t a t i o n ( vec1 : Vecto r ) :=

match ( s c a l a rVV d e c i d a b l e vec1 ) w i th

| l e f t H => a r b i t r a r yU n i t V e c t

| r i g h t H => mult Vect (/ ( s q r t ( s c a l a rP r o d u c t vec1 vec1 ) ) ) vec1

end .
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◦ Distance between points: the distance between two points is the length of the

vector composed by these points, denoted by |AB|

D e f i n i t i o n d i s t a n c e (A B: Po in t ) :=

s q r t ( s c a l a rP r o d u c t ( v e c t o r A B) ( v e c t o r A B ) ) .

◦ Orthogonality: Given 2 vectors −→u and −→v , we say that they are orthogonal if

and only if their scalar product is equal to 0. In Coq, we have

D e f i n i t i o n o r t hogona l ( vec1 vec2 : Vecto r ):=

s c a l a rP r o du c t vec1 vec2 = 0 .

Figure 2.3: Formalization of Plane Geometry

Other notions of Euclidean geometry are introduced one by one into the library.

Our formalization is illustrated in Fig.2.3. We now focus on the formalization of some
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notion in plane geometry where the following axioms are used. These axioms assert the

existence of 3 non-collinear points and their co-planarity with any fourth point.

◦ Axiom about existence of 3 not aligned points: there are 3 different and non-

aligned points O, O1 and O2.

◦ Axiom about coplanarity: for any 4 points A, B, C and D in the plane, we always

have that A, B and C are collinear or
−−→
AD is linear combination of

−−→
AB and

−→
AC.

In fact, formalization of plane geometry is compatible with any plane defined by 3 non-

collinear points. However, to make less complex statements and proofs in our library, we

suppose the existence of 3 non-collinear points O, O1 and O2, and consider properties

in this plane.

2.5.1 Cartesian coordinate system

The first notion whose formalization we want to present is a Cartesian coordinates

system. This notion not only plays a crucial role in formalizations of many notions such

as perpendicular line, trigonometry functions, signed area, etc, but also is a fundamental

notion of algebraic geometry. A Cartesian coordinates system is represented by three

non-collinear points that form two orthonormal vectors. In other words, they are two

orthogonal vectors and both of them have unit length. The notions of orthogonality,

distance, unit length that have been presented allow us to formalize this coordinate

system. We present how to construct I, J , such that O, I and J form a Cartesian

coordinate system, from three arbitrary non-collinear points O, O1 and O2. We now

(a) OO1 ⊥ O1O2 (b) OO1 6⊥ O1O2

Figure 2.4: Constructing a Cartesian coordinate system

have to construct I and J satisfying
−→
OI ·
−→
OJ = 0 (or

−→
OI ⊥

−→
OJ), |OI| = 1 and |OJ | = 1.

Let’s consider the two configurations of O, O1, O2 in Fig. 2.4.

For the first case
−−→
OO1 ⊥

−−−→
O1O2, we construct O3 such that

−−→
OO3 =

−−−→
O1O2. From the

hypothesis
−−→
OO1 ⊥

−−−→
O1O2 we have

−−→
OO3 ⊥

−−→
OO1.
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For the second case
−−→
OO1 6⊥

−−−→
O1O2, Suppose that H is the orthogonal projection of

O2 on OO1. O3 is constructed from O1, O2 by

−−−→
O2O3 =

−−→
HO
−−→
HO1

−−−→
O2O1 =

−−→
O2O ·

−−→
OO1

−−−→
O2O1 ·

−−→
OO1

−−−→
O2O1

It’s easy to find that this construction give us
−−−→
O1H−−→
O1O

=
−−−→
O1O2−−−→
O1O3

. This leads to
−−→
OO3 ‖

−−→
HO2.

As
−−→
O2H ⊥

−−→
OO1, we get

−−→
OO3 ⊥

−−→
OO1.

For the both case, O 6= O1 and O 6= O3 are easily proved. This allows us to construct

I and J by
−→
OI = 1

|OO1| ×
−−→
OO1 and

−→
OJ = 1

|OO3| ×
−−→
OO3 respectively.

−→
OI is a unit vector

of
−−→
OO1, therefore |OI| = 1.

−→
OJ is a unit vector of

−−→
OO3, therefore |OJ | = 1. On the

other hand, we have
−→
OI ⊥

−→
OJ by

−−→
OO1 ⊥

−−→
OO3. This Cartesian coordinate system is

well formed.

Using this idea, the formalization in Coq is as follows:

D e f i n i t i o n O3:= match twocaseofOO1O2 with

| l e f t =>

p r o j 1 s i g ( @ e x i s t e n c e mu l tV e c tR ep r e s e n t a t i v e O O1 O2 1 )

| r i g h t =>

p r o j 1 s i g ( @ e x i s t e n c e mu l tV e c tR ep r e s e n t a t i v e O2 O2 O1
−−→
O2O·

−−→
OO1−−−→

O2O1·
−−→
OO1

)

end .

D e f i n i t i o n I :=

p r o j 1 s i g ( @ e x i s t e n c e mu l tV e c tR ep r e s e n t a t i v e O O O1 1
|OO1| ) .

D e f i n i t i o n J :=

p r o j 1 s i g ( @ e x i s t e n c e mu l tV e c tR ep r e s e n t a t i v e O O O3 1
|OO3| ) .

D e f i n i t i o n o r thono rma l cdnSys (O I J : Po in t ) :=
−→
OI ·

−→
OJ = 0 ∧

−→
OI ·

−→
OI = 1 ∧

−→
OJ ·

−→
OJ = 1

Where, the function twocaseofOO1O2 is to decider whether
−−→
OO1 ·

−−−→
O1O2 = 0 or not.

The application of @existence multVectRepresentative A B C k is to construct a point

D such that
−−→
AD = k

−−→
BC as mentioned in page 21.

To verify if O, I and J form a Cartesian coordinate system, we have to prove that

orthonormal cdnSys O I J . We here focus only in the proof of
−→
OI ·

−→
OJ = 0 for the

case
−−→
OO1 ·

−−−→
O1O2 6= 0. By construction of I and J,

−→
OI and

−→
OJ are normalizations of

−−→
OO1 and

−−→
OO3. This leads us to prove that

−−→
OO1 ·

−−→
OO3 = 0. The proof of this fact

is different with our analysis in constructing O3 where we use this reasoning
−−−→
O1H−−→
O1O

=
−−−→
O1O2−−−→
O1O3

⇒
−−→
OO3 ‖

−−→
HO2 ⇒

−−→
OO3 ⊥

−−→
OO1. Our proof in Coq is realized by calculations of

scalar products as follows.

................Begin of Technical Details.............. 2.

We recall some axioms about scalar product mentioned in page 26. We have:

scalarProduct sym : ∀uv,−→u · −→v = −→v · −→u ,
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scalarProduct addV ect l : ∀uvw, (−→u +−→v ) · −→w = −→u · −→w +−→v · −→w , and

scalarProduct multV ect l : ∀kuv(k−→u ) · −→v = k(−→u · −→v ).

These state algebraic properties. As done with Vector, we can write a tactic to

automatically simplify equations of scalar products and even decide their equalities.

Ltac R ingSca l a rP roduc t := r e p e a t

r e w r i t e s c a l a rP r o d u c t a d dVe c t l | | r e w r i t e s c a l a r P r o d u c t mu l tV e c t l

| | r e w r i t e s c a l a rP r o du c t a ddVe c t r | | r e w r i t e s c a l a rP r o du c t mu l tV e c t r ;

t r y ( r i n g | | r i n g s i m p l i f y ) .

The tactic transfer algebraic combinations in vector to ones in scalar product. As scalar

product have a real value, equalities can be automatically simplified or decided using

the tactic ring simplify or ring respectively.

Let’s return to our proof for the second case in Fig. 2.4(b). From the definition of

O3, we have
−−→
OO3 =

−−→
OO2 +

−−−→
O2O3 =

−−→
OO2 +

−−→
O2O·

−−→
OO1−−−→

O2O1·
−−→
OO1

−−−→
O2O1. Using this equality, we have

prove that

1 subgoa l
−−→
OO1 ·

−−−→
O1O2 6= 0

(1/1)
−−→
OO1 · (

−−→
OO2 +

−−→
O2O·

−−→
OO1−−−→

O2O1·
−−→
OO1

−−−→
O2O1) = 0

Using the tactic RingScalarProduct to simplify this proof obligation, we have

R ingSca l a rP roduc t .

1 subgoa l
−−→
OO1 ·

−−−→
O1O2 6= 0

(1/1)
−−→
OO1 ·

−−→
OO2 +

−−→
O2O·

−−→
OO1−−−→

O2O1·
−−→
OO1

−−→
OO1 ·

−−−→
O2O1 = 0

We normalize scalar products that appears in the goal by replacing
−−→
OO1 ·

−−→
OO2 by

−−→
OO2 ·

−−→
OO1 and

−−→
OO1 ·

−−−→
O2O1 by

−−−→
O2O1 ·

−−→
OO1 using the axiom scalarProduct sym, and

replacing
−−→
O20 with (−1)

−−→
0O2. This gives us

R ingSca l a rP roduc t .

r e p e a t r e w r i t e ( @sca l a rProduc t sym
−−→
OO1

−−→
OO2 ) .

r e p e a t r e w r i t e ( @sca l a rProduc t sym
−−→
OO1

−−−→
O2O1 ) .

r e p e a t r e p l a c e
−−→
O2O with ((−1)

−−→
OO2 ) by R ingVecto r .

1 subgoa l
−−→
OO1 ·

−−−→
O1O2 6= 0

(1/1)
−−→
OO2 ·

−−→
OO1 + (−

−−→
OO2)·

−−→
OO1−−−→

O2O1·
−−→
OO1

−−−→
O2O1 ·

−−→
OO1 = 0
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We readily find that this equality can be solved by the tactic field. This tactic

is similar to ring, but it is for fractions. Equality is decided in the condition that the

denominator is not equal zero. Applying this tactic leads to the proof of
−−−→
O2O1 ·

−−→
OO1 6= 0

that is easily solved.

R ingSca l a rP roduc t .

r e p e a t r e w r i t e ( @sca l a rProduc t sym
−−→
OO1

−−→
OO2 ) .

r e p e a t r e w r i t e ( @sca l a rProduc t sym
−−→
OO1

−−−→
O2O1 ) .

r e p e a t r e p l a c e
−−→
O2O with ((−1)

−−→
OO2 ) by R ingVecto r .

f i e l d .

auto with geo .

Qed .

Proo f completed .

..............End of Technical Details................

Here, we use a database, namely geo, pour store useful proved theorems. This

database is used to automatically prove simple goals.

The construction of this Cartesian coordinate system allows us to prove properties

concerning representation of vectors by unit vectors. For example, we can prove that:

◦ Every vector can be represented by a combination of unit vectors:
−−→
MN = (

−−→
MN ·

−→
OI)
−→
OI + (

−−→
MN ·

−→
OJ)
−→
OJ .

◦ The representation is unique:
−−→
MN = x

−→
OI + y

−→
OJ → x = (

−−→
MN ·

−→
OI) ∧ y = (

−−→
MN ·

−→
OJ).

◦ Calculations on vectors can be translated to calculations on coordinate values:

suppose that
−−→
MN = x

−→
OI+y

−→
OJ and

−−−→
M ′N ′ = x′

−→
OI+y′

−→
OJ , then we can conclude

−−→
MN ·

−−−→
M ′N ′ = (x

−→
OI + y

−→
OJ) · · · (x′

−→
OI + y′

−→
OJ) = xx′ + yy′.

Thus, apart from the use in constructing other notions, the formalization of Carte-

sian coordinate system and its properties makes it possible to introduce algebraic proofs

into our system and paves the way to integrating algebraic systems into ours. This will

be discussed in Chapter 4.

2.5.2 Elementary constructions

2.5.2.1 Perpendicular Line

Defining perpendicular line (denoted by lt) that passes through a point A and perpen-

dicular with a given line l is performed by a similar way as parallel line. We use A as

the root point of perpendicular line. However, it is more complex in constructing the

direction vector of lt that is perpendicular with −→v .
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In fact, this challenge is overcome by constructing the notion of orthogonal vector in

the Cartesian coordinate system (OIJ system). The orthogonal vector of −→v is a vector

(denoted by −→v ⊥) that is perpendicular and has the same magnitude as −→v . Suppose −→v
is represented in OIJ by −→v = x×

−→
OI+y×

−→
OJ , we define −→v ⊥ by −→v ⊥ := −y×

−→
OI+x×

−→
OJ .

The definition in Coq is as follows

D e f i n i t i o n o r thoVec t ( v : Vecto r ):=

add Vect ( mul t Vect (− s c a l a rP r o du c t v ( v e c t O J ) ) ( v e c t O I ) )

( mul t Vect ( s c a l a rP r o du c t v ( v e c t O I ) ) ( v e c t O J ) ) .

Using calculations of scalar product, we can readily prove that −→v · −→v ⊥ = 0 and√−→v · −→v =
√−→v ⊥ · −→v ⊥, hence −→v ⊥ −→v ⊥ and |−→v | = |−→v ⊥|.

These properties allows us to use −→v ⊥ as the direction vector of lt. Therefore, we

have this definition lt A l := (A,−→u ⊥) with −→u is the direction vector of l. In Coq, we

have

D e f i n i t i o n t l i n e (A : Po in t ) ( l : L i n e ):=

l i n eCon s A ( vecOf l )⊥ ( d i rVec i sNonZe roVec ( vecOf l )⊥ ) .

2.5.2.2 Circle

Formalizing circles is simple. First, we use a type of records with two fields to define a

circle: a center point and a radius.

Record C i r c l e : Type

:= c i r c l e C o n s { c i r c l e C e n t e r : Po in t ; r a d i u s :R} .

Other constructors of circles are defined by constructing a record of this type.

◦ Circle with a center point O and passing through a given point A is defined by

D e f i n i t i o n c i r c l e P o i n t (O: Po in t ) (A : Po in t ):=

( c i r c l e C o n s O ( d i s t a n c e O A ) ) .

◦ Circle with diameter AB is defined by using the midpoint of AB as the center

point and distance from this point to A as the radius.

D e f i n i t i o n c i r c l e D i am e t e r (A : Po in t ) (B : Po in t ):=

( c i r c l e C o n s ( midpo in t A B) ( d i s t a n c e ( midpo in t A B ) A ) ) .

◦ Circle passing through 3 points A, B and C: to define this, we construct the

perpendicular bisectors of AB and AC. We use the intersection point of these

lines as the center point and distance from this point to A as the radius.

D e f i n i t i o n c i r c l e 3 P o i n t s (A B C : Po in t ):=

l e t O:= i n t e r s e c t i o n P o i n t ( p e r pB i s e c t o r A B) ( p e r pB i s e c t o r A C) i n

( c i r c l e P o i n t O A ) ) .
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2.5.2.3 Intersection Point

Let’s consider two lines l1 and l2. If l1 ‖ l2, they can be equal or have no common point.

Therefore, in this section, we present how to constructiing the intersection point of 2

lines a and b only for the case where ¬(l1 ‖ l2). Let’s call M the intersection point of

l1 and l2.

By definition of line, we can have the existence of four points A, B, C and D such

that A 6= B, C 6= D, l1 is represented by AB, and l2 is represented by CD.

From the axiom about coplanarity of 4 points, we consider two cases as follows:

The first case is where A, C and D are collinear. We easily see that the intersection

point of a and b is A.

The second case is where A, C and D are not collinear and there exist two real

numbers a and b such that
−−→
AB = a

−→
AC + b

−−→
AD (2.1)

Since M is the intersection point of AB and CD, we have that M, C, and D are

collinear, we can suppose that α
−−→
MC + β

−−→
MD =

−→
0 . Replacing

−−→
MC with

−→
AC −

−−→
AM ,

−−→
MD with

−−→
AD −

−−→
AM , we have

(α+ β)
−−→
AM = α

−→
AC + β

−−→
AD (2.2)

We also have the collinearity of M, A and B, hence ∃k,
−−→
AM = k

−−→
AB. Since A, C and

D are not collinear, we can prove that M 6= A, hence k 6= 0. With equations 2.1 and 2.2,

we can prove without much difficulty that α = k(α+β)a and β = k(α+β)b. This makes

possible to perform deductions as α
−−→
MC+β

−−→
MD =

−→
0 ⇒ k(α+β)a

−−→
MC+k(α+β)b

−−→
MD =

−→
0 ⇒ a

−−→
MC+b

−−→
MD =

−→
0 , hence

−−→
CM = b

a+b

−−→
CD. The last equation allows us to construct

M. This is done by using the lemma existence multVectRepresentative in page 21

2.5.3 Compound constructions

For compound constructions, we formalize them based on the way that they are built

from primitive constructions. For example, instead of defining the orthogonal projection

with three given points by axioms as mentioned in Section 2.2, we define an orthogonal

projection of a given point C onto a given line a. We construct the line that passes

through C and which is perpendicular with a, we prove that this line and a are not

parallel, then we get the intersection point of them.

D e f i n i t i o n o r t h o g o n a l P r o j e c t i o n (C : Po in t ) ( a : L i n e ) :=

i n t e r s e c t i o n P o i n t ( l i n eT C a ) a .

As we said above, students are familiar with definition of geometric objects by axioms

about their properties. So, to avoid losing the pedagogical meaning of the library and to

verify if objects are well formalized, we keep the former axioms in the form of theorems,
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and prove them. Each object is thus accompanied by a pair of theorems. One theorem

allows us to get properties from its definition, the other is to get a definition from

properties.

Lemma o r t h o g o n a l P r o j e c t i o n P r o p e r t i e s :

f o r a l l A B C H : Point ,

A <> B−>
H = o r t h o g o n a l P r o j e c t i o n C ( l i n e A B) −>
c o l l i n e a r A B H /\ o r t hogona l ( v e c t A B) ( v e c t H C ) .

Lemma p r o p e r t i e s o r t h o g o n a l P r o j e c t i o n :

f o r a l l A B C H : Point ,

A <> B −>
c o l l i n e a r A B H −>
o r t hogona l ( v e c t A B) ( v e c t H C) −>
H = o r t h o g o n a l P r o j e c t i o n C ( l i n e A B) .

Proving theorems of the first kind is simpler than proving theorems of the second

kind. The latter usually leads to a proof of uniqueness for the defined objects. Many

compound constructions are introduced: the perpendicular bisector of two given points,

the orthogonal projection of a point onto a line, the circumcircle of three given points,

the center of a circumcircle, the orthocenter, the center of gravity,. . .

2.5.4 Angle and Trigonometry

Enriching scalar product makes it possible to measure angles. In fact, the cosine func-

tion of the oriented angle between two vectors −→u and −→v is defined by the following

formula cos −̂→v1−→v2 =
−→v1· −→v2
|−→v1|×|−→v2|

The sine function is defined with the support of the trigonometric identity sin −̂→v1−→v2 =

cos(π2 −
−̂→v1−→v2). Let’s consider our Cartesian coordinate system OIJ, we are allowed to

chose
−̂→
OI
−→
OJ to represent the angle π

2 . With the notion of orthogonal vector mentioned

above, we have −̂→v −→v ⊥ =
−̂→
OI
−→
OJ = π

2 for every −→v . As a result, we have sin −̂→v1−→v2 =

cos(π2 −
−̂→v1−→v2) = cos(−̂→v1−→v1⊥ − −̂→v1−→v2) = cos −̂→v2−→v1⊥ = cos −̂→v1⊥−→v2 .

Replacing the definition of the cosine function, we get that the definition of the sine

function is given by scalar product as follows sin −̂→v1−→v2 =
−→v1⊥· −→v2
|−→v1⊥|×|−→v2|

Defining trigonometric functions seems to be straightforward. However, since angles

are input values for all trigonometric functions, we need to have a formalization of

oriented angles before giving formal definition of the trigonometry functions and proving

their properties.

Let’s consider the set of axioms on the notion of oriented angle in the library of

F. Guihot. As usual, oriented angles of vectors and operations on them are declared

as primitive notions. Some axioms are then introduced to state their properties. The

following axioms are added for this purpose.
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◦ Axiom unitVector eqAngle :With A 6= B ∧C 6= D, if
−−−→
A1B1 and

−−−→
C1D1 are respec-

tively unit vectors of
−−→
AB and

−−→
CD, so

−̂−→
AB
−−→
CD =

̂−−−→
A1B1

−−−→
C1D1

◦ Axiom Chasles : A 6= B ∧ C 6= D ∧M 6= N →
−̂−→
AB
−−→
CD +

−̂−→
CD
−−→
MN =

−̂−→
AB
−−→
MN

◦ Axiom invAngle: A 6= B ∧ C 6= D →
−̂−→
AB
−−→
CD = −

−̂−→
CD
−−→
AB

◦ Axiom exists representation: for every vector angle α and a non-zero vector −→u ,

there exists −→v such that −̂→u−→v = α.

The fist axiom is to define oriented angles. The next two are for addition and inversion

operation. To eliminate these axioms, as done for the formal description of lines,

formalization of angles progresses in four steps. We need to provide a data structure to

represent oriented angles. We give definition of oriented angles of two vectors. We then

define operations. This formalization is verified by proving axioms and other properties

of angles.

Data structure for angle

For the first axiom, by observing definitions of sin and cos functions, we find that

sin
−̂−→
AB
−−→
CD = sin

̂−−−→
A1B1

−−−→
C1D1 and cos

−̂−→
AB
−−→
CD = cos

̂−−−→
A1B1

−−−→
C1D1. We also have a trigono-

metric property about the equivalence of angles α̂ = β̂ ↔ sinα = sinβ ∧ cosα = cosβ.

So defining oriented angle by a record of sin and cos is intuitively reasonable, and

satisfies the first axiom.

In Coq, we use a record of 3 components (cs :Real, sn :Real, proof : cs2 + sn2 = 1).

the first two elements are real numbers that express values of the sine and the cosine of

the angle, while the last one is a proof ensuring that the first two are really trigonometric

functions of this angle.

Record v e c t o rAng l e : Type :=

angCons { cs :R ; sn :R ; : cs2 + sn2 = 1} .

Definition of angle constructors

Using the above record to represent oriented angle, the oriented angle of 2 vectors
−→v1 and −→v2 can be constructed by assigning values

−→v1· −→v2
|−→v1|×|−→v2|

and
−→v1⊥· −→v2
|−→v1⊥|×|−→v2|

to “cs” and “sn”

elements respectively. The rest is a proof of sn2 + cs2 = 1. This equation is only true

in the non-degenerate case where |−→v1 | × |−→v2 | 6= 0 (i.e. −→v1 6=
−→
0 and −→v2 6=

−→
0 ). It is

expressed by the following lemma in Coq.

Lemma s i n c o sSqua r e :

f o r a l l (
−→
v1
−→
v2 : Vecto r ) ,

|−→v1| × |−→v2| 6= 0 −> (
−→v1· −→v2
|−→v1|×|−→v2|

)2 + (
−→v1⊥· −→v2
|−→v1⊥|×|−→v2|

)2 = 1
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Because functions in Coq are total, every case needs to be considered. So, an arbitrary

value is returned for the degenerated case where |−→v1 |×|−→v2 | = 0 (i.e. −→v1 =
−→
0 or −→v2 =

−→
0 ).

−̂→v1−→v2 =

arbitraryAngle if |−→v1 | × |−→v2 | = 0

((
−→v1· −→v2
|−→v1|×|−→v2|

), (
−→v1⊥· −→v2
|−→v1⊥|×|−→v2|

), sincosSquare) if |−→v1 | × |−→v2 | 6= 0

The following is a definition in Coq. We use lemma“R order 0”to compare |−→v1 |×|−→v2 |
with 0, and use the structure “match..with” to treat derived cases.

D e f i n i t i o n Angle (
−→
v1
−→
v2 : Vecto r ):=

match ( R o rde r 0 ( |−→v1| × |−→v2| ) ) w i th

| l e f t H => ab i t r a r yAV

| r i g h t H => angCons
−→v1· −→v2
|−→v1|×|−→v2|

−→v1⊥· −→v2

|−→v1⊥|×|−→v2|
( s i n c o sSqua r e v1 v2 H)

end .

For every record expressing an angle, we always need to have the last component proving

that the sum of square of the first two components equals 1. Conventionally, in this

chapter, we sometimes omit this element and express angle by a record of only the first

two. However, the proof is never ignored in Coq.

Definition of angle operators

To be able to manipulate the notion of oriented angles and prove trigonometric

properties (such as the second and third axiom), we need to define operators and give

definitions of special angles (such as zero angle, π, π
2 , 2π, etc.). These can be derived

from trigonometric properties.

Using symmetric properties sin(−φ) = − sinφ and cos(−φ) = cosφ, we define the

inversion of an angle φ = (cs, sn) by −φ = (cs,−sn).

D e f i n i t i o n : −angleφ := angCons(cosφ,− sinφ)

Using angle sum identities cos(α+β) = cosα×cosβ−sinα×sinβ and sin(α+β) =

sinα × cosβ + cosα × sinβ, we define the sum of two angles (denoted by +angle) as

follows:

D e f i n i t i o n : α+angle β := angCons(cosα×cosβ− sinα× sinβ, sinα×cosβ+cosα× sinβ)

Verification of angle properties

With these definitions, we can prove oriented angle properties, whereby axioms

used to state these properties are eliminated (for example, the axioms in page 35). The

proofs are usually derived from calculations and transformations of scalar product. We

give here a such proof that is the one of Chasles relation for angle. This is stated as

follows

∀ −→u −→v −→w ,−→u 6= −→0 ∧ −→v 6= −→0 ∧ −→w 6= −→0 → −̂→u−→v +angle
−̂→v −→w = −̂→u−→w

By the non-degenerate conditions, we can unfold the definition of angles and prove

that:
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(
−→u · −→v
|−→u | × |−→v |

,
−→u ⊥ · −→v
|−→u ⊥| × |−→v |

) +angle (
−→v · −→w
|−→v | × |−→w |

,
−→v ⊥ · −→w
|−→v ⊥| × |−→w |

) = (
−→u · −→w
|−→u | × |−→w |

,
−→u ⊥ · −→w
|−→u ⊥| × |−→w |

)

Using the definition of the addition operator, we can replace (c1, s1) +angle (c2, s2)

with (c1c2− s1s2, c1s2 + c2s1). Applying this gives us

(
−→u ·−→v
|−→u |×|−→v | ×

−→v ·−→w
|−→v |×|−→w | −

−→u ⊥·−→v
|−→u ⊥|×|−→v | ×

−→v ⊥·−→w
|−→v ⊥|×|−→w | ,

−→u ·−→v
|−→u |×|−→v | ×

−→v ⊥·−→w
|−→v ⊥|×|−→w | +

−→v ·−→w
|−→v |×|−→w | ×

−→u ⊥·−→v
|−→u ⊥|×|−→v |)

= (
−→u ·−→w
|−→u |×|−→w | ,

−→u ⊥·−→w
|−→u ⊥|×|−→w |)

Thus we have to prove 2 equalities

◦
−→u ·−→v
|−→u |×|−→v | ×

−→v ·−→w
|−→v |×|−→w | −

−→u ⊥·−→v
|−→u ⊥|×|−→v | ×

−→v ⊥·−→w
|−→v ⊥|×|−→w | =

−→u ·−→w
|−→u |×|−→w |

◦
−→u ·−→v
|−→u |×|−→v | ×

−→v ⊥·−→w
|−→v ⊥|×|−→w | +

−→v ·−→w
|−→v |×|−→w | ×

−→u ⊥·−→v
|−→u ⊥|×|−→v | =

−→u ⊥·−→w
|−→u ⊥|×|−→w |

Proofs of these equalities are similar, we here consider the proof of the first one. In

the formalization of orthogonal vector, we have |−→i | = |−→i ⊥| for every
−→
i . Using this to

replace all occurrences of magnitudes of orthogonal vectors by ones of original vectors

and using the tactic field simplify in Coq allows us to simplify the equality. It remains

to prove that

−→u · −→v ×−→v · −→w −−→u ⊥ · −→v ×−→v ⊥ · −→w
|−→v | × |−→v |

= −→u · −→w

Let return to calculations of scalar product using coordinate values mentioned in

Section 2.5.1. We use xi and yi to denote magnitude of
−→
i in the axes of the OIJ system,

they are calculated by xi =
−→
i ·
−→
OI and yi =

−→
i ·
−→
OJ . We have

−→
i · −→j = xixj + yiyj and

−→
i ⊥ · −→j = xi⊥xj + yi⊥yj = −yixj + xiyj for every

−→
i and

−→
j . These equalities are then

repeatedly used to replace scalar products in our proof obligation by their corresponding

value with coordinates. Moreover, we have |−→v | × |−→v | =
√−→v · −→v

√−→v · −→v = −→v · −→v .

Therefore, the new proof obligation is as follows

(xuxv + yuyv)(xvxw + yvyw)− (−yuxv + xuyv)(−yvxw + xvyw)

xvxv + yvyv
= xuxw + yuyw

This equality is solved using the tactic field in Coq. .

Trigonometric functions and identities

For verification of trigonometric identities, the formalization of oriented angle allows

us to define trigonometric functions by values of “cs” and “sn” elements. The formal

definitions are follows.

D e f i n i t i o n s i n ( ang l e : v e c t o rAng l e ):= sn ang l e .

D e f i n i t i o n cos ( ang l e : v e c t o rAng l e ):= cs ang l e .
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Other trigonometric identities are verified without much effort. For example, by the

definitions of the angle operators, the following trigonometric identities are easily veri-

fied

◦ sin(α+angle β) = sinα× cosβ + cosα× sinβ

◦ sin(α+angle β) = cosα× cosβ − sinα× sinβ

◦ sin(−angleφ) = − sinφ

◦ cos(−angleφ) = cosφ

2.5.5 Plane transformation

This part deals with the formalization of plane transformations including rotations,

reflections, translations and dilatations. Existing axioms in this part of the library

of F. Guilhot are used to define these notions. They are again in the form of defining

notion from properties and getting properties from notion. The following example gives

axioms for rotations. The first one is to get its properties and the next two are to define

the notion.

Axiom r o t a t i o n d e f : f o r a l l ( I M N : Po in t ) ( a :AV) ,

I <> M −> N = r o t a t i o n I a M −>
d i s t a n c e I N = d i s t a n c e I M /\ a = Angle ( v e c t o r I M) ( v e c t o r I N) .

Axiom r o t a t i o n d e f 1 c e n t r e :

f o r a l l ( I : PO) ( a : AV) , I = r o t a t i o n I a I .

Axiom r o t a t i o n d e f 2 : f o r a l l ( I M N:PO) ( a :AV) ,

I <> M −> d i s t a n c e I N = d i s t a n c e I M −>
a = Angle ( v e c t o r I M) ( v e c t o r I N) −> N = r o t a t i o n I a M.

Eliminating axioms of this kind is reduced to constructing geometric objects image

of the plane transformations. Among the transformations cited above, translation and

dilatation are formalized without much effort. We only need to use an application of

existence multVectRepresentative (mentioned in page 21) that allows us to produce a

point D from three points A, B and C and a real number k such that
−−→
AD = k ×

−−→
BC.

To construct the reflection of M across a line l, first, we construct the orthogonal

projection H of this point on l. We then define the image point M by N that is

constructed from
−−→
MN = 2×

−−→
MH.

Constructing the image point N of the point M with rotation of the center I and

angle α is more complex. It relies on constructing a point P such that
−̂−→
IM
−→
IP = α. N.

Then is constructed from I and P using
−→
IN = |

−−→
IM |
|
−→
IP |
×
−→
IP .

D e f i n i t i o n r o t a t i o n ( I : Po in t ) ( a :AV) (M: Po in t ) :=

match ( @eqPo i n t d e c i d ab l e ( I =M)) wi th

| l e f t H => M
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| r i g h t H =>

l e t P:= p r o j 1 s i g ( @ e x i s t e n c e a n g l e r e p r e s n t g e n e r a l 1 α I M) i n

p r o j 1 s i g ( @ e x i s t e n c e mu l tV e c tR ep r e s e n t a t i v e I I P ( | IM | / | IP | )
end .

When definitions are given by constructions, axioms in the first form that gets

properties from the notion are easily proved. Axioms in the second form that defines an

object from given properties are more difficult, because we have to prove the uniqueness

of the defined objects. Proof of the above axiom “rotation def2” is an example. We

need to prove that |IN | = |IM | ∧ α =
−̂−→
IM
−→
IN → N = rotation I α M . Let M ′ =

rotation I α M , from lemma rotation def that is easily proved, we have |IM ′| =

|IM | ∧ α =
−̂−→
IM
−−→
IM ′. As a result, we have to prove that N = M ′ while we have

|IN | = |IM ′| = |IM | ∧
−̂−→
IM
−→
IN =

−̂−→
IM
−−→
IM ′ = α. This means that with the given

properties, we only have one object satisfying them.

Using these transformations, composed transformations are then formalized. The

notion of similar triangles and the properties about the ratio of their sides are also

introduced.

2.6 Discussion

Constructiveness Our formalization is geometrically constructive. This relies not

only on building compound geometric constructions from elementary ones in plane

geometry, but also on constructive definitions for other geometric notions such as plane

transformations. The existence of geometric objects is ensured by their construction.

Besides, our formalization respects the notion of constructive existence. This is ex-

pressed in stating existence of points related to given combinations of vector in page 21,

where, the statements use constructive existence. For example, a lemma that is usually

used in our proof is {N|
−−→
MN = k

−−→
AB}. This force us into constructing N satisfying the

condition in order to prove the lemmas. By this reason, vectors used in the combina-

tion of the statements are concretized by points. In particular, our example can not be

stated as {N|
−−→
MN = −→v }. It is because we know that there exist two points A and B

such that −→v =
−−→
AB but we can not get these points. We can do this after constructing

the OIJ system, where, −→v is represented by
−→
OA = xv

−→
OI + yv

−→
OJ . xv = −→v ·

−→
OI and

yv = −→v ·
−→
OJ can be calculated, three points O, I and J exist, hence A is constructed.

As a result, N is constructed from M, O and A.

However, the formalization is not totally constructive from the logical point of view.

We still use a library in Coq about the law of excluded middle to assert equality or

difference of two given points, relative position of points, etc. in proofs by cases or

in some definitions of elementary objects. Furthermore, in the case of the intersection

point of two lines, returning an arbitrary point as their intersection point when the two
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lines are parallel makes our system more complex. We have to use a library that allows

us to construct an object from the proof of its existence.

Equality and Equivalence The fact that we use user-defined structures (setoids)

to represent elementary notions such as line, angle, etc. using vector allows us to

eliminate a lot of axioms. Instead of adding axioms which assert equalities related to

these notion, we prove corresponding lemmas about equivalences.

Axiom a l i g n p e rmu t e : f o r a l l A B : Point ,

A <> B −> l i n e A B = l i n e B A.

is eliminated and replaced by proving

Lemma a l i g n p e rmu t e : f o r a l l A B : Point ,

A <> B −> l i n e A B == l i n e B A.

However, this replacement makes the system lose some of its semantics. Equality

(x = y) expresses an identity of Leibniz’s law. It means that the objects have exactly

the same properties ∀P, (Px↔ Py). This allows us to replace x by y in every geometric

relations where there are occurrence of x.

On the other hand, equivalence (x == y) is a user-defined equality for setoids.

the objects x and y only have semantic equivalence and are not the same. We can

readily prove that equivalence relations of line, of angle have reflexivity, symmetry and

transitivity that are also properties of equality. However, if we want that equivalent

objects can be replaced as identical objects in geometric relations, we have to prove

that these relations are preserved with this replacement.

Proving this is long because it is realized for every geometric relations having occur-

rence of line or angle such as : parallelism of line, perpendicularity of lines, intersection

of lines, a point lying on a line, definition of intersection point, definition of orthogonal

projection, sine and cosine functions, operators of angle, etc. For example, the following

lemmas are for parallelism and incidence.

Lemma p a r a l l e l L i n e c omp a t :

f o r a l l x x′ , x == x′ −>
f o r a l l y y′ , y == y′ −>
( p a r a l l e l L i n e x y <−> p a r a l l e l L i n e x ′ y ′ ) .

Lemma l i e sOnL ine compa t :

f o r a l l A : Point ,

f o r a l l x x′ , x == x′ −>
( l i e sOnL i n e A x <−> l i e sOnL i n e A x ′ ) .

Finally, in order to use tactics such as rewrite,replace to replace an object by its

equivalence in the geometric relations, we declare morphisms for these relations.

Add Morphism p a r a l l e l L i n e

w i th s i g n a t u r e l i n e E q u a l ==>l i n e E q u a l ==>(@ i f f )
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Figure 2.5: An example

as p a r a l l e l L i n e m o r .

Proo f .

e xa c t p a r a l l e l L i n e c omp a t .

Qed .

Comparison with the development of F. Guilhot Our development can be

considered as providing an algebraic foundation and reformalizing the development of

F. Guilhot. Needless axioms are eliminated, this makes the library cleaner from a

logical point of view. As a result, the axioms system is reduced to 13 axioms that are

really familiar with students

The fact that we provide vector based definitions for geometry notions makes our

library more complicated. However, by proving properties of these notions, the peda-

gogical meaning of the library is preserved. Users can use geometry notions through

their properties without knowing how they are defined. Furthermore, proofs of these

properties use calculations of vector, scalar products, traditional methods, students are

familiar with the notions hence proofs.

For other proofs in the development of F. Guilhot, there are changes arising from

changes in definitions of geometry notions or from changes of statements. However,

certain proof ideas are reused.

2.7 An example about school proof and formal proof

We now consider differences between proofs in school and formal proofs through the

following example.

Example 1. : This example is illustrated in Fig. 2.5. Let BD and CE be two altitudes

of triangle ABC and points G and F be the midpoints of BC and DE respectively. It
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holds that GF ⊥ DE.

2.7.1 The proof in school

To prove GF ⊥ DE, we observe that FG is the median of 4FDE since G is midpoint

of DE. If we have 4FDE is isosceles at F, then FG is the altitude of 4FDE, hence

GF ⊥ DE. As a result, we have to prove GF ⊥ DE, or that |FD| = |FE|. This

deduction is insured by the following rule

Rule 1. : Given a 4MNP and I is midpoint of NP. If 4MNP is isosceles at M, then

MI ⊥ NP .

Now, we have to prove the new goal FD = FE. We observe 4EBC, this is a right

triangle with A the right angle. We remember that we have a rule about median of

right triangle as follows

Rule 2. : Given a 4MNP with M the right angle, and I is midpoint of NP. We have

|IM | = |IN | = |IP |.
Because 4DBC is a right triangle with the right angle in D and F is the midpoint

of BC, we can apply this rule and we get |FD| = |FB| = |FC|.
By a similar way, we have |FE| = |FB| = |FC|.
From the last two equations |FD| = |FB| = |FC| and |FE| = |FB| = |FC|, we

can easily prove that |FE| = |FD|.

2.7.2 The formal proof

There are several ways to state this theorem in Coq (with predicate form and construc-

tion form). We use here the statement as follows

Lemma perpExample : f o r a l l A B C D E F G : Point ,

¬ c o l A B C −>
¬ p a r a l l e l ( l i n eT B ( l i n e A C) ) ( l i n e A C) −>
D = i n t e r s e c t i o n P o i n t ( l i n eT B ( l i n e A C) ) ( l i n e A C) −>
¬ p a r a l l e l ( l i n eT C ( l i n e A B) ) ( l i n e A B) −>
E = i n t e r s e c t i o n P o i n t ( l i n eT C ( l i n e A B) ) ( l i n e A B) −>
F = midpo in t B C −>
G = midpo in t E D −>
F <> G −>
D <> E −>
p e r p e n d i c u l a r ( l i n e F G) ( l i n e D E ) .

We note that some conditions to state that lines are not parallel and points are not

equal are added to insure existence of the intersection points and lines in constructions.

Deduction steps in proving this theorem are performed in Coq as follows

Step 1 : We get properties from definitions of D and E in the hypotheses. The

definition of D by the intersection point of line AC with lineT passing through B and
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perpendicular with line AC gives us D ∈ AC and D ∈ (lineT B AC). The last property

gives us BD ⊥ AC . This is insured by the following lemmas

Lemma i n t e r s e c t i o n P o i n t l y i n gO n :

f o r a l l ( I : Po in t ) ( a b : L i ne ) ,

¬ p a r a l l e l L i n e a b −>
I = i n t e r s e c t i o n P o i n t a b −>
l i e sOnL i n e I a /\ l i e sOnL i n e I b

Lemma l i n eT p r o p e r t y 1 :

f o r a l l (A B : Po in t ) ( a : L i ne ) ,

l i e sOnL i n e A ( l i n eT B a ) −>
p e r p e n d i c u l a r ( l i n e A B) a

We use intersectionPoint lyingOnT to get D ∈ AC and D ∈ (lineT B AC) from

the definition of D. We then use lineT property1 to get BD ⊥ AC. By a similar way,

we get properties from definition of E. These is performed in Coq as follows

i n t r o s .

d e s t r u c t ( @ p l a n e i n t e r s e c t i o nP o i n t l y i n gOn D ( l i n eT B AC) AC) ; auto .

a s s e r t (H10:= @ l i n eT p r op e r t y 1 D B ( l i n e A C) H8 ) .

d e s t r u c t ( @ p l a n e i n t e r s e c t i o nP o i n t l y i n gOn E ( l i n eT C AB) AB) ; auto .

a s s e r t (H13:= @ l i n eT p r op e r t y 1 E C ( l i n e A B) H11 ) .

We have the proof context:

H8 : l i e sOnL i n e D ( l i n eT B ( l i n e A C) )

H9 : l i e sOnL i n e D ( l i n e A C)

H10 : p e r p e n d i c u l a r ( l i n e D B) ( l i n e A C)

H11 : l i e sOnL i n e E ( l i n eT C ( l i n e A B) )

H12 : l i e sOnL i n e E ( l i n e A B)

H13 : p e r p e n d i c u l a r ( l i n e E C) ( l i n e A B)

(1/1)

p e r p e n d i c u l a r ( l i n e F G) ( l i n e D E)

Step 2 : We apply the the backward-chaining deduction using rule 1 with the configu-

ration of F D E and G. There are 2 new goals

(1/2)

¬ c o l F D E

(2/2)

d i s t a n c e F D = d i s t a n c e F E

Step 3 : The first goal ¬ col F D E is proved by contradiction. We suppose that

F, D and E are collinear. With a long proof, we arrive the fact that F is midpoint of

DE, hence F = G. This is contradiction with the hypothesis F 6= G. Thus, the goal is

solved.
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Step 4 : Now we have to prove the second goal |FD| = |FE|. We do not directly

prove this equality with backward-chaining method. We observe that rule 2 can be used

for4DBC and F midpoint of BC. We consider applying the rule with the configuration

of D, B, C and F, once its hypotheses being DB ⊥ DC and F is midpoint of BC are

verified, it gives us the new property |FD| = |FB| = |FC|.
Here, we mix backward and forward methods and write a tactic for this purpose.

Ltac l a p p l y 2 H:=

match type o f H wi th

| ?A−>?B =>

l e t H′ := f r e s h i n

l a p p l y H ; [ i n t r o s H′ ; l a p p l y 2 H′ | ] ; t r y c l e a r H

| ?A => i d t a c

end .

Suppose we have a base rule of the form

∀GeometricElements,Hyp1 ∧ · · · ∧Hypn → Goal

The application of the tactic to this rule makes Goal become a new hypothesis of our

context. But then we have to prove every hypothesis Hyp1 of this rule.

Let’s return to our proof. Rule 2 is used with this tactic as follows

l a p p l y 2 ( @ r u l e 2 med i a n r i g h tT r i a n g l e D B C F ) ; auto with geo .

H15 : d i s t a n c e F D = d i s t a n c e F B /\ d i s t a n c e F D = d i s t a n c e F C

(1/2)

d i s t a n c e F D = d i s t a n c e F E

(2/2)

p e r p e n d i c u l a r ( l i n e D B) ( l i n e D C)

Step 5 : This step is similar to Step 4, and is performed by applying rule 2 for the

configuration of E, B, C and F. We have

l a p p l y 2 ( @ r u l e 2 med i a n r i g h tT r i a n g l e E B C F ) ; auto with geo .

H15 : d i s t a n c e F D = d i s t a n c e F B /\ d i s t a n c e F D = d i s t a n c e F C

H16 : d i s t a n c e F E = d i s t a n c e F B /\ d i s t a n c e F E = d i s t a n c e F C

(1/3)

d i s t a n c e F D = d i s t a n c e F E

(2/3)

p e r p e n d i c u l a r ( l i n e E B) ( l i n e E C)

(3/3)

p e r p e n d i c u l a r ( l i n e D B) ( l i n e D C)

Step 6 : The first goal of Step 5 is easily proved. We decompose the hypotheses H15

and H16 to have |FD| = |FB| and |FE| = |FB|. We then replace FD in the goal by

FB, the goal becomes |FB| = |FE|. This is already obtained by composing H16.
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decompose [ and ] H15 .

decompose [ and ] H16 .

r e w r i t e H17 ; auto .

Step 7 We prove the second goal of Step 5 EB ⊥ EC. In fact, we have in hypotheses

H13 : EC ⊥ AB. As a result, we can prove this goal by proving equality of lines

EB == AB.

Step 8 This step is to proved DB ⊥ DC is perform similarly to Step 7.

2.7.3 Discussion

By comparing both proofs, we see that the proof in Coq can follow up the school proof.

However, there are many auxiliary goal that need to be proved. They come from non-

degenerate conditions of applied rules. In our example, among 8 steps, there are only

steps 1, 2, 4 and 5 that correspond to steps in the school proofs. Let’s consider other

steps and how to solve them.

In step 3, we have to prove that ¬col F D E. This is a special case of the figure

where F coincides with G. In fact, this goal is proved with proof by contradiction. We

suppose that F, D and E are collinear. We have prove a property FD = FE, by which

we can prove that F is midpoint of DE. Hence we have contradiction.

It’s easy to see that FD = FE is the goal of the next step. It seems that we have

to prove 2 times this goals with not very different context. In this case, it’s better if

we prove FD = FE (or assert FD = FE and prove after) before step 2 that generate

the goal ¬ col F D E.

In step 7 (as well in step 8), we have to prove that EB ⊥ EC. In fact, to work

with line stated by 2 points, we always need to have the difference of these points. In

particular, we need E 6= B and E 6= C.

E 6= C can be proved by the fact that A, B and C are not collinear. However, we

can not prove that E 6= B. In fact, it is a degenerate case where 4ABC is a right

triangle at B. So, to solve this, somewhere before step 5 that require this difference, we

have to use the proof by cases to consider 2 cases B = E and B 6= E.

Once we have these difference, EB ⊥ EC is proved by equivalence of EB and AB

as mentioned in step 7. Indeed, we have E ∈ AB, B ∈ AB, so it is easy to have

EB == AB. In the hypotheses we have EC ⊥ AB (from definition of E), hence the

goal is proved. Goals of this kind need to be proved automatically.

Therefore, the final proof of this theorem progresses in the following steps. the proof

detail in Coq is presented in appendix A.

Part 1 : Get properties from the hypotheses

Part 2 : Get properties about difference, for example B 6= D, C 6= E

Part 3 : We have B = E and C = D. Replacing E by B and D by C in the

hypotheses, we have AB ⊥ BC and AC ⊥ BC. These allows us to deduce AB ‖ AC.



2.8 Conclusion and perspectives 46

This is contradictor with the hypothesis ¬col A B C.

Part 4 : We have B = E and C 6= D. We prove this case as follows

◦ By C 6= D and B 6= D, we use rule 2 for 4DBC and F to have |FB| = |FD|.

◦ We apply rule 1 with F, D, E and G to have FG ⊥ DE

◦ We prove the condition of rule 1 ¬col F F E by using |FB| = |FD| of the first

step

Part 5 : We have B 6= E and C = D. We prove this by a similar way to part 4.

Part 6 : We have B 6= E and C 6= D. The proof is as one mentioned above.

By comparing between the school proof and the formal proof, we find that, for

formal proofs, we spend many efforts for degenerate cases, we need to have to a good

proof strategies to avoid the same proof many times and we need to have automatic

tactics for some easy proofs.

2.8 Conclusion and perspectives

With more than 20000 lines of formalization in about 50 files, we re-formalize the library

of F. Guilhot by focusing into affine geometry and Euclidean geometry for plane. Our

new system is based only on 13 axioms. Much of the redundancy of the axiomatic

system is eliminated. Geometric notions are formalized in the manner that is closer to

the student’s knowledge and more constructive. Some new notions are also produced

to enrich the library such as similar triangle, orientation, etc. The library allows to

interactively produce traditional proofs.

Providing definitions of geometric notions, by showing how they are constructed

from elementary geometric constructions, gives students a constructive view of geometry

theorems in logic. This helps students to understand geometric constructions better.

Using proof assistant offers high level of confidence, but at the same time, it forces

users to delve into detail which leads to very technical proofs. This is not adapted to

their level of abstraction. Some automatic tactics were developed in this direction, but

they are not enough to make proofs of the library natural. This is the first point that

needs to be improved

Constructed objects are defined by functions which are total function in Coq. So,

their properties can be obtained under some conditions which assure existence of these

objects. Treatment of these conditions are usually complex and we need to have a

mechanism to do that.



Chapter 3

Orientation and its applications

3.1 Introduction

Traditional geometry reasoning usually relies on tacit assumptions which are based on

visual evidence. Even in a formal system such as Hilbert’s one, many proofs are still

based on reasoning with diagrams. We consider the following example to figure out

how assumptions are tacitly interleaved in a traditional proof. Given a parallelogram

ABCD with diagonals AC BD, we prove that they bisect each other.

Figure 3.1: Parallelogram

Proof.

1. AD ‖ BC (Since the opposite sides of a parallelogram are parallel)

2.
−̂−→
AD
−→
AC =

−̂−→
CB
−→
CA (2 alternate interior angles of parallel lines are equal)

3.
−̂−→
AD
−→
AO =

−̂−→
CB
−−→
CO (From (2) and

−̂−→
AD
−→
AO =

−̂−→
AD
−→
AC and

−̂−→
CB
−−→
CO =

−̂−→
CB
−→
CA)

4.
−̂−→
DB
−−→
DA =

−̂−→
BD
−−→
BC (2 alternate interior angles of parallel lines are equal)

5.
−̂−→
DO
−−→
DA =

−̂−→
BO
−−→
BC (From (4) and

−̂−→
DO
−−→
DA =

−̂−→
DB
−−→
DA and

−̂−→
BO
−−→
BC =

−̂−→
BD
−−→
BC)

6. AD = BC (Since the opposite sides of a parallelogram are equal)

7. 4AOD ' 4COB (Two triangles are congruent by Side-Angle-Side (3)(5)(6))

8. So we have AO = CO and BO = DO (Corresponding sides of congruent triangles



3.1 Introduction 48

are congruent).

The proof appears to be quite logical. But it still has some flaws. In fact, in proving

the congruence of triangles in step 7, we use equality in step 3. The first argument to

deduce this equality is
−̂−→
AD
−→
AC =

−̂−→
CB
−→
CA that is affirmed in step 2. This fact seems to

be evident because these angles are 2 alternate interior angles. However, this is true

only if we have an assumption that A and C lie on opposite sides of the line BD.

The other arguments of step 3 are
−̂−→
AD
−→
AO =

−̂−→
AD
−→
AC and

−̂−→
CB
−−→
CO =

−̂−→
CB
−→
CA. To

have these, we need an assumption that O is inside the segment AC.

One of the main defects in traditional proofs taught in high school geometry is its

almost complete disregard of assumptions which concern such notions as two sides of

a line, betweenness of two points, interior of an angle, etc. These rely on intuition

and exactness of drawing, and are implicitly used without proving. This causes non-

rigorous proofs. It even leads to wrong reasoning if the assumptions come from an

incorrect drawing. Proving these conditions is tedious and sometimes more difficult

than proving the original problems.

In fact, these conditions are related to a notion of order relation. Let’s consider this

notion in different geometry system.

Order relation with algebraic geometry : Our example, in an algebraic view, is a

theorem of equality type. In fact, this class of theorems contains most of the impor-

tant theorems of elementary geometry although it excludes theorems involving order

relation. Some algebraic or semi-algebraic methods achieved success in mechanically

proving theorems of this class. Algebraic methods such as Wu’s method [9], the Grob-

ner basis method [8] and semi-algebraic (so called coordinate free) methods such as the

area method [11] and the full angle method [12] can solve problems without using any

order relation.

However, these methods are restricted to theorems in the class which can be ex-

pressed by only equalities. For theorems in which the order relation is essential, proving

them is beyond the scope of these methods.

Besides, algebraic methods are based on calculations of polynomials, their proofs

are not readable. Coordinate free methods are based on geometric invariants which are

more intuitive, then generated proofs are human-readable but still not fully traditional.

Furthermore, these methods are automatic methods, hence they do not allow us to

construct traditional proofs interactively.

Order relation with synthetic geometry : We realize that, although our example is

stated in unordered geometry, the traditional proof is synthetically performed using or-

dered geometry. Order relations are implicitly used in the proofs. This shows that order

relations are not only indispensable in order geometry theorems, but also necessary for

synthetic proofs of some unordered geometry theorems.
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In fact, the treatment of order relations is still a challenge in synthetic geometry.

As we mentioned in the previous chapter, Euclidean’s proofs are considered to be not

rigorous because they disregard order relations. To fill this gap, axiom systems such as

Hilbert’s and Tarski’s were proposed. Some axioms about order relation are introduced

in these systems.

The above analysis motivates us to formalize the notion of order. In fact this notion

was not present in F. Guilhot’s library when we started our work. Formalizing order

relation and constructing a tool to solve order problems were necessary. Our approach

for this objective relies on constructing the notion of plane orientation. Instead of in-

troducing axioms for order relation, we construct orientation for plane geometry in our

library. We then use this to verify properties concerning the order relation. With this

notion, we can also remove ambiguity in point positions or representation of geometric

objects and we can formalize other notions such as oriented angles of vectors, oriented

angles of lines, or similar triangles, which play important roles in many geometry the-

orems.

Related work

Some formalizations of orientation were developed in the Coq system. The first

approach was proposed by D.Pichardie and Y.Bertot [14] based on the axiom system of

D.Knuth [34] to solve convex hull problems. This approach uses an algebraic method

with calculations of determinants to verify the axiom system. However, algebraic cal-

culations do not preserve the intuition of geometry. The second approach was proposed

by J.Duprat [18] for the purpose of reasoning on constructions of figures in plane ge-

ometry. In addition, this notion is also approached in the development of J.Avigad et

al [2] which provide a formal system for Euclid’s Elements. Except the first approach,

the other ones consider orientation as an abstract notion and have axiom systems to

manipulate it.

3.2 Definition of orientation

Consider three distinct and non-aligned points in Euclidean plane. They form a pred-

icate about orientation. The notion of orientation is not absolute, but only relative.

However, we can completely pick one orientation to say about this predicate. In par-

ticular, we here use the orientation of O, I and J to define orientation (denoted by

	)

Let’s consider a oriented points A, B, and C in the system of OIJ (in Fig 3.2). Let

B’ be the image of B after applying rotation with the center A and the angle
−̂→
OI
−→
OJ .

It is easy to agree that OIJ and ABB’ have the same orientation, so ABC is oriented

if ABC and ABB’ have the same orientation. This is expressed by B’ and C lying on

the same half plane with respect to the line AB. Therefore the orthogonal projection



3.3 Some properties of orientation 50

Figure 3.2: Constructing orthogonal vector

H of C on AB’ is on the same side as B’ with respect to A. In other words, we have

cos
−̂→
AC
−−→
AB′ > 0.

Since
−→
AC ·
−−→
AB′ = |AC||AB′| cos

−̂→
AC
−−→
AB′, it is easy to find that the above inequality is

equivalent with
−→
AC ·

−−→
AB′ > 0. This new inequality can be used to define the orientation

of ABC.

However, a question arising is how we can formally construct
−−→
AB′. As B’ is the

image of B after a rotation with center A and angle
−̂→
OI
−→
OJ , we easily find that

−−→
AB′

satisfies |
−−→
AB′| = |

−−→
AB| and

−̂−→
AB
−−→
AB′ =

−̂→
OI
−→
OJ . As a result,

−−→
AB′ is exactly orthogonal

vector of
−−→
AB that is defined in the previous chapter. Thus we can formally define

orientation as follows:

D e f i n i t i o n 	(A B C : Po in t ):=
−−→
AB⊥ ·

−→
AC > 0 .

3.3 Some properties of orientation

3.3.1 The properties of Knuth’s system

We now prove some properties of orientation. We pay attention to the ones stated in

the axiom system of Knuth [34]. The following properties are equivalent with Knuth’s

axioms.

Property Orient 1. : The orientation is preserved with a cyclic permutation:

	 ABC →	 BCA.
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Property Orient 2. : The orientation is changed with a permutation, we don’t have

	 ABC and 	 ACB at the same time:

	 ABC → ¬ 	 ACB.

Property Orient 3. : This property corresponds with to axiom 3 in Knuth’s system

stated as

	 ABC∨ 	 ACB.

This system does not deal with the degenerated case. It assumes that every three

points are never collinear. In our system, we distinguish the case where three points

are collinear and the case where three points are oriented. Hence, for a triple of points

A, B and C, we only fall into one of three cases 	 ABC, 	 ACB or collinear ABC.

This is represented by the following two lemmas.

Lemma p o s i t i o n 3 p o i n t s 1 : ∀ (A B C : Po in t ) ,

¬(	 ABC∨ 	 ACB) ∨ ¬collinear ABC .

Lemma p o s i t i o n 3 p o i n t s 2 : ∀ (A B C : Po in t ) ,

	 ABC∨ 	 ACB ∨ collinear ABC .

(a) Orientation for 4 points (b) Orientation for 5 points

Figure 3.3

Property Orient 4. : If we have orientation of three triplets 	 DAB 	 DBC 	 DCA,

we can deduce that A, B, C are oriented: 	 DAB∧ 	 DBC∧ 	 DCA→	 ABC. This

property is illustrated in Fig. 3.3(a).

Property Orient 5. : The orientation predicate may be used to sort points in some way,

this is similar to transitivity: 	 ABC∧ 	 ABD∧ 	 ABE∧ 	 ACD∧ 	 ADE →	
ACE. This property is illustrated in Fig. 3.3(b).

3.3.2 Proving the properties

Proofs of these properties are performed by transformations and calculations of vectors,

orthogonal vectors, and their scalar products. Properties of vector and scalar product

are mentioned in the previous chapter. We list some properties used for transformations

of orthogonal vector :
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ant i Symmetry : −→u ⊥ · −→v = −−→u · −→v ⊥ .

o r t h o Add i t i o n : (−→u +−→v )⊥ = −→u ⊥ +−→v ⊥ .

o r t h o Mu l t i p l i c a t i o n : (k−→v )⊥ = k−→v ⊥ .

o r t ho Ze ro : −→u ⊥ · −→u = 0 .

We now return to the properties of orientation. Proofs of the first three properties

of orientation are straightforward, so we focus on proofs of properties 4 and 5.

Proof of property 4: ∀ABCD,	 DAB∧ 	 DBC∧ 	 DCA→	 ABC
In mathematics, the proof of this property derives from a view about area of a

triangle. Intuitively, a point D satisfying hypotheses in the statement has to lie inside

4ABC, hence

SABC = SDAB + SDBC + SDCA.

Besides, let’s see the definition of orientation 	 ABC :=
−−→
AB⊥ ·

−→
AC > 0. In mathematic,

the value of the left part of this inequality expresses the area of parallelogram composed

by
−−→
AB and

−→
AC, hence this is equivalent with two times the area of 4ABC. This

motivates us to prove that
−−→
DA⊥ ·

−−→
DB +

−−→
DB⊥ ·

−−→
DC +

−−→
DC⊥ ·

−−→
DA =

−−→
AB⊥ ·

−→
AC. Once

this is proved, we can deduce 	 DAB∧ 	 DBC∧ 	 DCA →	 ABC as follows

	 DAB∧ 	 DBC∧ 	 DCA ⇒
−−→
DA⊥ ·

−−→
DB > 0 ∧

−−→
DB⊥ ·

−−→
DC > 0 ∧

−−→
DC⊥ ·

−−→
DA > 0 ⇒

−−→
DA⊥ ·

−−→
DB +

−−→
DB⊥ ·

−−→
DC +

−−→
DC⊥ ·

−−→
DA > 0 + 0 + 0⇒

−−→
AB⊥ ·

−→
AC > 0⇒	 ABC

The remaining work is to prove this equation. This is realized by a sequence of

transformations of vectors and scalar products:

1.
−−→
AB⊥ ·

−→
AC = (

−−→
DB −

−−→
DA)⊥ · (

−−→
DC −

−−→
DA) (replacement of vector)

2.
−−→
AB⊥ ·

−→
AC = (

−−→
DB⊥ −

−−→
DA⊥) · (

−−→
DC −

−−→
DA) (application of ortho Distributivity

property)

3.
−−→
AB⊥ ·

−→
AC =

−−→
DB⊥ ·

−−→
DC −

−−→
DB⊥ ·

−−→
DA −

−−→
DA⊥ ·

−−→
DC +

−−→
DA⊥ ·

−−→
DA(transformation

of scalar product)

4.
−−→
AB⊥ ·

−→
AC =

−−→
DB⊥ ·

−−→
DC +

−−→
DA⊥ ·

−−→
DB +

−−→
DC⊥ ·

−−→
DA + 0(transformation of scalar

product)

5.
−−→
AB⊥ ·

−→
AC =

−−→
DA⊥ ·

−−→
DB+

−−→
DB⊥ ·

−−→
DC+

−−→
DC⊥ ·

−−→
DA(transformation of scalar product)

.

................Begin of Technical Details.............. 3.

The proof of this property in Coq conforms to the mathematical proof. The replace-

ments of vectors and transformations of scalar products are performed manually.

Lemma o r i e n t 4 p o i n t s : f o r a l l (A B C D : PO) ,

o r i e n t D A B −> o r i e n t D B C −> o r i e n t D C A −> o r i e n t A B C .

We introduce the hypotheses, and unfold every occurrence of orientation in the

context by using its definition. We have:
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Proof .

i n t r o s ; u n f o l d o r i e n t i n ∗ .

H0 : s c a l a rP r o d u c t ( o r thoVec t
−−→
DA)

−−→
DB > 0

H1 : s c a l a rP r o d u c t ( o r thoVec t
−−→
DB )

−−→
DC > 0

H2 : s c a l a rP r o d u c t ( o r thoVec t
−−→
DC )

−−→
DA > 0

(1/1)

s c a l a rP r o du c t ( o r thoVec t
−−→
AB )

−→
AC > 0

We replace
−−→
AB by (−1)

−−→
DA+

−−→
DB,

−→
AC by (−1)

−−→
DA+

−−→
DC. These replacement is en-

sured by Chasles’ relation for vectors and automatically solved by the tactic RingVector

containing this relation.

We then perform transformations of orthogonal vectors to simplify the proof obli-

gation. In particular, ((−1)
−−→
DA+

−−→
DB)⊥ is transformed to (−1)

−−→
DA⊥+

−−→
DB⊥. This uses

the properties ortho Addition and ortho Multiplication.

These steps are corresponding to steps 1-2 of the above mathematic proof and give

us:

. . .

r e p l a c e (
−−→
AB ) w i th ((−1)

−−→
DA +

−−→
DB ) by R ingVecto r .

r e p l a c e (
−→
AC ) w i th ((−1)

−−→
DA +

−−→
DC ) by R ingVecto r .

r e w r i t e o r t h o Add i t i o n .

r e w r i t e o r t h oV e c t Mu l t i p l i c a t i o n .

H0 : . . .

(1/1)

s c a l a rP r o du c t ((−1)( o r thoVec t
−−→
DA) + or thoVec t

−−→
DB )

((−1)(
−−→
DA) +

−−→
DC ) > 0

We now use the tactic RingScalarProduct(mentioned on page 30) to simplify the

formula in the proof obligation and have:

. . .

R i ngSca l a rP roduc t .

H0 : . . .

(1/1)

s c a l a rP r o du c t ( o r thoVec t
−−→
DA)

−−→
DA −

s c a l a rP r o du c t ( o r thoVec t
−−→
DA)

−−→
DC −

s c a l a rP r o du c t ( o r thoVec t
−−→
DB )

−−→
DA +

sc a l a rP r o du c t ( o r thoVec t
−−→
DB )

−−→
DC > 0

We use the property ortho Zero to replace
−−→
DA⊥ ·

−−→
DA with 0. We use the property

anti Symmetry to replace −
−−→
DA⊥ ·

−−→
DC with (− −

−−→
DA ·

−−→
DC⊥), then the symmetry



3.3 Some properties of orientation 54

of scalar product to replace (− −
−−→
DA ·

−−→
DC⊥) with

−−→
DC⊥ ·

−−→
DA . In a similar way,

−
−−→
DA⊥ ·

−−→
DC is replaced with

−−→
DA⊥ ·

−−→
DB. We have:

. . .

r e w r i t e o r t ho Ze ro .

r e w r i t e ( @anti Symmetry
−−→
DA

−−→
DC ) .

r e w r i t e ( @sca la rProduct Symmetry ( o r thoVec t (
−−→
DA ) )

−−→
DC )

r e w r i t e ( @anti Symmetry
−−→
DB

−−→
DA ) .

r e w r i t e ( @sca la rProduct Symmetry ( o r thoVec t
−−→
DB )

−−→
DC )

r i n g s i m p l i f y .

H0 : s c a l a rP r o d u c t ( o r thoVec t
−−→
DA)

−−→
DB > 0

H1 : s c a l a rP r o d u c t ( o r thoVec t
−−→
DB )

−−→
DC > 0

H2 : s c a l a rP r o d u c t ( o r thoVec t
−−→
DC )

−−→
DA > 0

(1/1)

s c a l a rP r o du c t ( o r thoVec t
−−→
DC )

−−→
DA +

sc a l a rP r o du c t ( o r thoVec t
−−→
DA)

−−→
DB +

sc a l a rP r o du c t ( o r thoVec t
−−→
DB )

−−→
DC > 0

This proof obligation is easily proved using the tactic fourier. This tactic allows us

to solve linear inequalities on real numbers using Fourier’s method.

. . .

f o u r i e r .

Proo f completed .

..............End of Technical Details................

Proof of property 5: ∀ABCDE,	 ABC∧ 	 ABD∧ 	 ABE∧ 	 ACD∧ 	
ADE →	 ACE

This property is proved as in [14]. However, we use here a variant of Cramer’s

equation, which is stated in the scalar product form as follows
−−→
AB⊥ ·

−−→
AD ×

−→
AC⊥ ·

−→
AE =

−−→
AB⊥ ·

−→
AC ×

−−→
AD⊥ ·

−→
AE +

−→
AC⊥ ·

−−→
AD ×

−−→
AB⊥ ·

−→
AE.

The hypotheses about orientation give us

−−→
AB⊥ ·

−→
AC > 0 ∧ ×

−−→
AB⊥ ·

−−→
AD > 0 ∧

−−→
AB⊥ ·

−→
AE > 0 ∧

−→
AC⊥ ·

−−→
AD > 0 ∧

−−→
AD⊥ ·

−→
AE > 0.

It is not difficult to see that every scalar products appearing in the right part of the

equality is positive, hence the right part of the equality is also positive. Besides, the

first scalar product of the left part of the equality is positive. Therefore we can readily

prove the positivity of the second element of this part (
−→
AC⊥ ·

−→
AE > 0), hence 	 ACE.

Due to the complexity of this equality, the proof technique that uses manual re-

placement of vectors as in the proof of property 4 is difficult to apply. Fortunately,

using representation of vectors in the OIJ system (−→v = (−→v ·
−→
OI)
−→
OI + (−→v ·

−→
OJ)
−→
OJ)
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allows us to perform calculations of scalar products through their coordinate values.

This allows us to prove this equality.

................Begin of Technical Details.............. 4.

The following proof in Coq of this property show the capability of our library in calcu-

lations of scalar products using their coordinate values. This power is useful in many

problems where manual transformation is not easily performed.

The proof context is as follows

(1/1)

s c a l a rP r o du c t ( o r thoVec t
−−→
AB )

−−→
AD ∗

s c a l a rP r o du c t ( o r thoVec t
−→
AC )

−→
AE =

sc a l a rP r o du c t ( o r thoVec t
−−→
AB )

−→
AC ∗

s c a l a rP r o du c t ( o r thoVec t
−−→
AD )

−→
AE +

sc a l a rP r o du c t ( o r thoVec t
−−→
AB )

−→
AE ∗

s c a l a rP r o du c t ( o r thoVec t
−→
AC )

−−→
AD

For every vector in the proof obligation, we replace −→v by (−→v ·
−→
OI)
−→
OI+(−→v ·

−→
OJ)
−→
OJ

and −→v ⊥ by −(−→v ·
−→
OJ)
−→
OI + (−→v ·

−→
OI)
−→
OJ(using the definition of orthogonal vector). We

then use xv, yv to respectively denotes (−→v ·
−→
OI) and (−→v ·

−→
OJ). These lead us to the

following proof obligation:

r e p e a t un f o l d o r thoVec t .

R i ngSca l a rP roduc t .

s e t (XB := s c a l a rP r o d u c t
−−→
AB

−→
OI ) .

r e p l a c e ( s c a l a rP r o d u c t
−−→
AB

−→
OI ) w i th XB

by ( un f o l d XB; auto with geo ) .

s e t (YB := s c a l a rP r o d u c t
−−→
AB

−→
OJ ) .

r e p l a c e ( s c a l a rP r o d u c t
−−→
AB

−→
OJ ) w i th YB

by ( un f o l d YB; auto with geo ) .

(1/1)

YB ∗ XD ∗ YC ∗ XE − YB ∗ XD ∗ XC ∗ YE −
XB ∗ YD ∗ YC ∗ XE + XB ∗ YD ∗ XC ∗ YE =

YB ∗ XD ∗ YC ∗ XE − YB ∗ YD ∗ XE ∗ XC +

YB ∗ XE ∗ XC ∗ YD − YB ∗ YE ∗ XC ∗ XD −
XD ∗ XB ∗ YC ∗ YE + XB ∗ YD ∗ XC ∗ YE −
XB ∗ XE ∗ YC ∗ YD + XB ∗ YE ∗ YC ∗ XD

This proof obligation seems to be very complex. However, this is solved with only

one command using the tactic ring :

. . .

r i n g .

Proo f completed .
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..............End of Technical Details................

3.3.3 Variants

We note that, as mentioned, the notion of orientation is a relative, we pick one direction

(counter-clockwise) to define this notion. Therefore, every propertiy about orientation

can be generalized with the notion of same orientation (denoted by 		 ABCMNP ).

For example, property 4 can be stated in a generalized form as

		 DABDBC∧ 		 DABDCA→		 DABABC

Lemma sameOr i e n t 4po i n t s : f o r a l l (A B C D : PO) ,

sameOr ient D A B D B C−> sameOr ient D A B D C A −>
sameOr ient D A B A B C .

Where the notion of same orientation is defined by

D e f i n i t i o n sameOr ient A B C M N P :=

(	 ABC∧ 	MNP ) ∨ (	 ACB∧ 	MPN) .

This notion makes theorem statements more concise. It allows us to avoid stating

theorems in the two cases corresponding to the two orientation. However, proving

theorems stated with samOrient is performed by considering both cases of orientation.

3.4 Orientation and order

3.4.1 Properties

Orientation and order are closely related. They both express relative positions among

geometric objects (which usually are points). Enriching our system with orientation

allows us to define some order relations and verify their properties. Before explaining

what we can do, we need to define some basic order relations that we usually meet in

solving order geometry problem. They include: same side of point, between 2 points,

same side or opposite side of line, interior of angle . . .

same side: we say that B and C lie on the same side to A (denoted by
−−−→
ABC) if

they are 3 distinct points that lie on the same line and two vectors
−−→
AB and

−→
AC are

positive collinear. Intuitively, this notion says that C lies on the half line from A to B

and differs from A.

D e f i n i t i o n sameSide A B C :=A <> B ∧ (∃k, k > 0 ∧
−→
AC = k

−−→
AB) .

between: the fact that B lies between A and C (denoted by ABC) is expressed by

B and C lying on the same side of A and A and B lying on the same side of C.

D e f i n i t i o n between A B C := sameSide A B C ∧ sameSide C B A.

same side of line: 2 points C and D lie on the same side of the line AB if ABC and

ABD have the same orientation
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D e f i n i t i o n s ameS i d e o fL i n e A B C D := sameOr ient A B C A B D.

interior : we say that D is interior of angle formed by B, A and C (in other words,
−−→
AD lies between

−−→
AB and

−→
AC) if and only if D and C lie on the same side of line AB

and D and B lie on the same side of line AC. With the definition of same orientation,

this notion can be expressed by

D e f i n i t i o n i n t e r i o r A B C D := sameOr ient ABC ABD ∧ sameOr ient ABC ADC.

To facilitate explantation, we use 		 ABCMNP to denote same orientation of

ABC and MNP, ABC to denote that B is between A and C,
−−−→
ABC to denote that B

and C lie on the same side of A

We now consider some interesting results concerning relations between orientation

and the newly defined notions. We always focus on the relative position of a fourth

point with respect to three given points. The following two properties are simple cases

when the fourth point D lies on the line AB. Similarly, we have corresponding properties

for the case where D lies on the line AC but we do not give details here.

(a) (b)

Figure 3.4: Relations between the same side and the same orientation

Property Orient 6. : Given 4 points A, B, C and D such that A, B and C are not

collinear and D lies on the line AB and differs from A. Then ABC and ADC have the

same orientation if and only if D lies on the same side of A as B (see Fig. 3.4(a)).

Lemma sameS i d e s ameOr i e n t l e f t 1 :=

∀ABCD,¬col ABC → sameSide A B D → sameOrient A B C A D C .

Lemma sameS i d e s ameOr i e n t l e f t 2 :=

∀ABCD,¬col ABC → D ∈ AB → sameOrient A B C A D C → sameSide A B D .

Property Orient 7. : Given 4 points A, B, C and D such that A, B and C are not

collinear and D lies on the line AB and differs from A. Then ABC and ACD have the

same orientation if and only if A is between D and B (see Fig. 3.4(b)).

Lemma be twe en s ameOr i e n t l e f t 1 :=

∀ABCD,¬col ABC → between D A B → sameOrient A B C A C D .
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Lemma be twe en s ameOr i e n t l e f t 2 :=

∀ABCD,¬col ABC → D ∈ AB → sameOrient A B C A C D → between D A B .

We focus now on more complex relations where D does not lie either on AB or on

AC. That is the case of the interior relation. We consider configurations of points in

Fig. 3.5 and are interested in determining the relative position of the intersection point

E of lines AD and BC with respect to A, B, C and D. The first case is illustrated by

Fig. 3.5(a) which corresponds to the case where
−−→
AD lies between

−−→
AB and

−→
AC, and will

be treated in the following property 8. The second case is illustrated by Fig. 3.5(b),

which correponds to the case where
−→
AC lies between

−−→
AB and

−−→
AD, and will be treated

in the following property 9.

(a) (b)

Figure 3.5: Intersection point

Property Orient 8. : Given four points A, B, C and D, if
−−→
AD is between

−−→
AB and

−→
AC,

then AD and BC always intersect and the intersection point E is in the segment BC

and on the same side as D with respect to A. It’s still true in the inverse direction(see

Fig. 3.5(a)).

Lemma I n t e r s e c t i n t e r i o r : ∀(A B C D : Point), interior A B C D → ∃E :

Point, between B E C ∧ sameSide A D E.

Property Orient 9. : Given four points A, B, C and D, if
−→
AC is between

−−→
AB and

−−→
AD

and AD and BC intersect at the point E, then E lies on the same side as D with respect

to A and E lies on the same side as C with respect to B (see Fig. 3.5(b)).

Lemma I n t e r s e c t e x t e r i o r : ∀ (A B C D E : Po in t ) ,

i n t e r i o r A B D C ∧ c o l l i n e a r BCE ∧ c o l l i n e a r ADE →
( sameSide B C E ∧ sameSide A D E ) .

These properties are used a lot when verifying order axioms in the axiom systems

of Hilbert and Tarski. In particular, they are used in proving Pasch’ axiom and its

variant. This will be detailed in the next chapter.
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3.4.2 Proving the properties

In this section, we only consider the hardest proof that is for property 8. Proving this

theorem contains 3 steps. In the first step, we prove the existence of intersection point

of lines AD and BC. This is performed by proving AD ∦ BC. The other two steps

are to prove respectively
−−−→
ADE and BEC. In the following explanation of the proofs,

hypotheses of distinction of points such as E 6= B, E 6= A, E 6= C are used without

proving. Their proofs are not hard, but long and tedious.

For proving
−−−→
ADE, we use proof by cases over the position of E with respect to A

and D, we have 3 cases ADE∨DEA∨EAD. For the first two cases, it is easy to prove
−−−→
ADE. We consider the last case, where we have EAD. Applying property 7 with 4

points A D C E, we have EAD ↔		 ADCACE, hence 		 ADCACE . On the other

hand, from the hypothesis interior ABCD, by the definition of this notion, we have

		 ABCADC.

		 ADCACE and 		 ABCADC allow us to deduce 		 ABCACE. By a similar

proof, we get 		 ABCAEB.

We see that the configuration of E, B, C and A satisfies the variant of property 4

in the last section (see page 56). Applying this property with the configuration gives

		 ABCAEB∧ 		 ABCACE →		 ABCEBC, hence 		 ABCEBC. This leads

to a contradiction with the collinearity of B, C and E.

For proving BEC, we also use proof by cases over the position of E, with 3 cases

BEC ∨EBC ∨ECB. For the first case, our proof is finished since we have BEC. The

latter are equivalent by switching B and C, so they are treated by the same way.

We now continue to prove with the case of EBC. Applying property 7 with 4

points B, C, A and E, we have EBC ↔		 BCABAE, hence 		 BCABAE. This is

equivalent with 		 ABCAEB.

From the hypothesis interior ABCD, by the definition of this notion, we have

		 ABCABD. Besides, we already proved
−−−→
ADE. From the last two, we have 		

ABDABE, hence 		 ABCABE.

So we have 		 ABCAEB and 		 ABCABE in the same time. This leads to

		 ABEAEB. This is contradictory with the property 2 which say that if we have

	 ABE we do not have 	 AEB. Thus, our proof of this case is finished.

................Begin of Technical Details.............. 5.

In comparing with the mathematic proof mentioned above, the proof of this property

in Coq is very long with more than 100 proof lines. We have to prove many degenerate

cases and auxiliary properties, for example: existence of E such that E ∈ AD∧E ∈ BC,

difference of E with A, B, C and D, etc.

We here present only the part of the proof for
−−−→
ADE. The proof context is as follows:

. . .
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H0 : l i e sOnL i n e E ( l i n e A D)

H1 : l i e sOnL i n e E ( l i n e B C)

H12 : sameOr ient A B C A B D

H14 : sameOr ient A B C A D C

(1/1)

sameSide A D E

From the hypothesis H0, we have the collinearity of A, D and E. A lemma, namely

between 3cases, to state that we have one of 3 cases ADE ∨DEA ∨ EAD. The tactic

destruct allows us to continue our proof with each case. The first two are simply proved

using the following equivalences ADE ↔
−−−→
ADE ∧

−−−→
EDA and DEA↔

−−−→
DEA ∧

−−−→
ADE. It

remains to prove the last case.

. . .

d e s t r u c t ( @between 3cases A D E) as [ H17 | [ H17 |H17 ] ] ; auto .

r e w r i t e ( @between sameSide A D E) i n H17 ;

d e s t r u c t H17 ; auto with geo . (∗ f o r case 1∗)
r e w r i t e ( @between sameSide D E A) i n H17 ;

d e s t r u c t H17 ; auto with geo . (∗ f o r case 2∗)

H1 : l i e sOnL i n e E ( l i n e B C)

H12 : sameOr ient A B C A B D

H14 : sameOr ient A B C A D C

H17 : between E A D

(1/1)

sameSide A D E

Applying property 7, particularly the lemma between sameOrient left1, with 4 points

A, D, C, E and EAD, we have 		 ADCACE. It is similar for 		 ABDAEB. We

have

. . .

a s s e r t ( sameOr ient A B D A E B) by

( app l y b e twe en s ameOr i e n t l e f t 1 ; auto with geo ) .

a s s e r t ( sameOr ient A D C A C E ) by

( app l y b e twe en s ameOr i e n t l e f t 1 ; auto with geo ) .

H1 : l i e sOnL i n e E ( l i n e B C)

H12 : sameOr ient A B C A B D

H14 : sameOr ient A B C A D C

H18 : sameOr ient A B D A E B

H19 : sameOr ient A D C A C E

(1/1)

sameSide A D E

From H12 and H18 we have 		 ABCAEB and from H14 and H19 we have 		
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ABCACE. These rely on the transitivity property of orient and are automatically

solved. As a result, the configuration of B, C, E and A satisfies the extension of

property 4 for same orientation (see page 56)

		 ABCACE∧ 		 ABCAEB →		 ABCCEB.

Therefore we apply this property and have:

. . .

a s s e r t ( sameOr ient A B C C E B) by

( app l y s ameOr i e n t 4po i n t s ; auto with geo ) .

H1 : l i e sOnL i n e E ( l i n e B C)

H12 : sameOr ient A B C A B D

H14 : sameOr ient A B C A D C

H18 : sameOr ient A B D A E B

H19 : sameOr ient A D C A C E

H20 : sameOr ient A B C C E B

(1/1)

sameSide A D E

Here, we unroll sameOrient A B C C E B to get ¬col C E B. This conflicts with

the hypothesis H1 that gives us col C E B. This contradiction in the hypotheses allows

us to prove the problem. This is performed by the tactic intuition.

. . .

a s s e r t ( c o l C E B) by auto with geo .

a s s e r t (˜ c o l C E B) by u n r o l l H20 .

i n t u i t i o n .

Proo f completed .

..............End of Technical Details................

3.5 Some application

3.5.1 Orientation in formalizing some geometric notions

3.5.1.1 Orientation and Oriented Angle

Oriented angles of vectors (also called oriented angles or angles for abbreviation) and

orientation are interlaced. Given three points A, B and C,
−̂−→
AB
−→
AC is defined by the

record of ((
−→
AB·

−→
AC

|
−→
AB|×|

−→
AC|

), (
−→
AB⊥·

−→
AC

|
−→
AB⊥|×|

−→
AC|

)). The sine function of this angle is defined by the

second element sin
−̂−→
AB
−→
AC =

−→
AB⊥·

−→
AC

|
−→
AB⊥|×|

−→
AC|

. It is obvious that the denominator of the

fraction is positive (|
−−→
AB⊥| × |

−→
AC| > 0) in the case A 6= B ∧A 6= C and the numerator
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Figure 3.6: Inscribed angles

is used in defining orientation. As a consequence of the definition of orientation, we

can deduce that if A, B and C are oriented then they are not collinear, hence they are

distinct. We so easily get that 	 ABC ↔ A 6= B ∧ A 6= C ∧ sin
−̂−→
AB
−→
AC > 0. This

equivalence shows that our definition of orientation is consistent with the conventional

approach that uses a positive value of the sine function to define orientation.

We now consider using orientation to remove ambiguity of representation of in-

scribed angles in the figure 3.6. The angles ∠ACB and ∠ADB are either equal or

complementary according to the relative positions of C and D to the line AB (on the

same side or opposite sides of the line AB). In usual proofs of geometry, this kind of

ambiguity is treated by intuition, hence it depends on the exactness of drawing. How-

ever, with orientation, we can distinguish these cases. In fact, C and D are on the same

side of the line AB expresses the same orientation of ACB and ADB. The fact that

they are not on the same side expresses that there is a different orientation for ACB

and ADB. So, deciding that ∠ACB and ∠ADB are either equal or complementary is

formally represented and verified in the form of the following lemmas.

Property Orient 10. : two inscribed angles intercepting the same arc are equal if they

have the same orientation.

Lemma i n s c r i b e dA n g l e s e q u a l : ∀ A B C D: Point ,

co cyclic A B C D →		 CABDAB →
−̂→
CA
−−→
CB =

−̂−→
DA
−−→
DB .

Property Orient 11. : two inscribed angles intercepting the same arc are complementary

if they do not have the same orientation.

Lemma i n s c r i b e dAng l e s c omp l : ∀ A B C D ’ : Point ,

co cyclic A B C D′ →		 CABD′BA→
−̂→
CA
−−→
CB =

̂−−→
D′A
−−→
D′B + (−π) .

To prove these properties, we first prove a lemma stating that the inscribed angle

equals a half of central angle that intercepts the same arc. Given A, B and M which
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are distinct points in the circle with the center O, this lemma is stated by
−̂→
OA
−−→
OB =

̂−−→
MA
−−→
MB +angle

̂−−→
MA
−−→
MB. This is readily proved by using Chasles lemma for oriented

angles, the equivalence of base angles of an isosceles triangle and the sum of angles of

a triangle.

Let’s return to proofs of properties 10 and 11. We use α and β to respectively

denote
−̂→
CA
−−→
CB and

−̂−→
DA
−−→
DB. Applying the above lemma with the triples of ABC and

ABD gives us α+angleα = β+angle β =
−̂→
OA
−−→
OB. By definition of the addition operator,

we have

(sinα× cosα+ cosα× sinα, cosα× cosα− sinα× sinα) = (sinβ × cosβ + cosβ ×
sinβ, cosβ × cosβ − sinβ × sinβ).

Thus we have equalities of the corresponding elements as follows

sinα× cosα = sinβ × cosβ (3.1)

sinα× sinα = sinβ × sinβ (3.2)

To prove property 10, from its hypothesis 		 CABDAB, we have 	 CAB∧ 	
DAB or 	 CBA∧ 	 DBA. The proofs for the 2 cases are similar, so we only consider

the first case. We have 	 CAB and 	 DAB . At the beginning of this section, we

showed that 	 CAB → sin
̂−→

CA
−−→
CB > 0, hence sinα > 0. Similarly we have sinβ > 0.

On the other hand we have sinα×sinα = sinβ×sinβ from (3.2), so we get sinα = sinβ.

By substituting sinα for sinβ in (3.1) , we get cosα = cosβ. The fact that sinα = sinβ

and cosα = cosβ allows us to conclude α = β .

To prove property 11, in the same way, we consider the case that 	 CAB and

	 DBA. We have sinα > 0 ∧ sinβ < 0, then sinα = − sinβ and cosα = − cosβ. So

we have (sinα, cosα) = (− sinβ,− cosβ) = (sinβ × (−1) + cosβ × 0, cosβ × (−1) −
sinβ × 0) = (sinβ × cos(−π) + cosβ × sin(−π), cosβ × cos(−π)− sinβ × sin(−π)). By

definition of oriented angle and addition operator we get α = β +angle (−π) .

3.5.1.2 Orientation and Similar Triangles

Two triangles are similar if they have the same shape, but can be have different sizes.

Learning the properties of similar triangles helps to solve problems about relationships

in geometric figures and finding unknown quantities. Different approaches can be used

to define it such as Angle-Angle (two pair of corresponding angles of triangles are equal),

or Side-Side-Side (three pairs of corresponding sides of triangles are in proportion),etc

. However, it is a fact that each of these conditions implies the others. We chose the

first to define similar triangles (denoted by ∼). We divide this notion into direct and

inverse similarity (see Fig 3.7). Two triangles are said to be directly similar (denoted

by ∼d) when all corresponding angles are equal and described in the same rotational
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(a) Directly similar trian-

gles

(b) Inversely similar trian-

gles

Figure 3.7: Directly similar triangles and Inversely similar triangles

Figure 3.8: Demonstration of proportion

sense. They are said to be inversely similar (denoted by ∼i) when they are equal but

described in the opposite rotational sense. Their definitions are as follows

ABC ∼d A
′B′C ′ := 4ABC

∧
4A′B′C ′

∧ −̂−→
BC
−−→
BA =

̂−−−→
B′C ′

−−−→
B′A′

∧ −̂→
CA
−−→
CB =

̂−−→
C ′A′

−−−→
C ′B′.

ABC ∼i A
′B′C ′ := 4ABC

∧
4A′B′C ′

∧ −̂−→
BC
−−→
BA =

̂−−−→
B′A′

−−−→
B′C ′

∧ −̂→
CA
−−→
CB =

̂−−−→
C ′B′

−−→
C ′A′.

ABC ∼ A′B′C ′ := ABC ∼d A
′B′C ′

∨
ABC ∼i A

′B′C ′.

One of the most important properties is the proportionality of corresponding sides

of two similar triangles. Given 2 triangles 4ABC ∼ 4MNP , this property is stated

by equation

AB

MN
=
BC

NP
=

CA

PM
(3.3)

Its traditional proof is readily performed using Euclidean transformations and

Thales’ theorem for parallel lines, illustrated in Fig. 3.8.

The case of inverse similarity is reduced to the one of direct similarity using reflec-

tion. Triangle 4MNP is moved to triangle 4AB”C” by applying a rotation with the

angle
−̂−→
MN
−−→
AB to have MN ‖ AB and a translation to have M ≡ A.

These transformation lead to
̂−−→

MN
−−→
AB” =

−̂−→
NM
−−→
AB, hence collinearity of A, B” and

B.

From the preservation of angle measures and lengths of Euclidean transformations,

we can also prove that A, C” and C are collinear, B”C” ‖ BC, and |AB”| = |MN | ∧
|AC”| = |MP | ∧ |B”C”| = |NP |.
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We observe that the configuration of A, B, C , B” and C” satisfies a consequence of

Thales’ theorem for parallel lines that is

∀ABCB”C”, col A B B”→ col A C C”→ B”C” ‖ BC → AB
AB” = AC

AC” = BC
B”C”

Applying this give us AB
AB” = AC

AC” = BC
B”C” . By replacing the sides of 4AB”C” by

the corresponding ones of 4MNP , we have AB
MN = BC

NP = CA
PM .

................Begin of Technical Details.............. 6.

We can now consider the proof of this property for direct similar case in Coq. The case

is stated as follows

Lemma S imTr i a n g l e s P r opo r t i o n :

f o r a l l A B C M N P : Point , d i r e c t S i m i l a r A B C M N P −>
e x i s t s k :R , k <> 0 /\ d i s t a n c e B C = k ∗ d i s t a n c e N P /\
d i s t a n c e A B = k ∗ d i s t a n c e M N /\ d i s t a n c e A C = k ∗ d i s t a n c e M P .

H1 : d i r e c t S i m i l a r A B C M N P

(1/1)

e x i s t s k :R , k <> 0 /\ d i s t a n c e B C = k∗ d i s t a n c e N P /\
d i s t a n c e A B = k∗ d i s t a n c e M N /\ d i s t a n c e A C = k∗ d i s t a n c e M P .

In the first step, moving 4MNP to 4AB”C” is performed by defining two points

B” and C” using constructive definitions of Euclidean transformations. In particular,

these point are constructed by

s e t (B′ := r o t a t i o n M ( ang leCons ( v e c t o r MN) ( v e c t o r AB) ) N) .

s e t (B”:= t r a n s l a t i o n ( v e c t o r MA) B′ ) .

s e t (C′ := r o t a t i o n M ( ang leCons ( v e c t o r MN) ( v e c t o r AB) ) P)

s e t (C”:= t r a n s l a t i o n ( v e c t o r MA) C′ ) .

H1 : d i r e c t S i m i l a r A B C M N P

B′ := r o t a t i o n M ( ang leCons ( v e c t o r MN) ( v e c t o r AB) ) N.

B”:= t r a n s l a t i o n ( v e c t o r MA) B′ .

C′ := r o t a t i o n M ( ang leCons ( v e c t o r MN) ( v e c t o r AB) ) P

C”:= t r a n s l a t i o n ( v e c t o r MA) C′ .

(1/1)

e x i s t s k :R , k <> 0 /\ d i s t a n c e B C =k∗ d i s t a n c e N P /\
d i s t a n c e A B = k∗ d i s t a n c e M N /\ d i s t a n c e A C = k∗ d i s t a n c e M P .

To introduce equalities of corresponding side of 4MNP and 4AB”C”, we use

preservations of length of rotation and translation as follows.

Lemma r o t a t i o n i s om e t r i e : f o r a l l ( I A B A′ B′ : Po in t ) ( a : AV) ,

A′ = r o t a t i o n I a A −> B′ = r o t a t i o n I a B −>
d i s t a n c e A′ B′ = d i s t a n c e A B.

Lemma t r a n s l a t i o n i s om e t r i e : f o r a l l (A B A′ B′ : Po in t ) ,

B′ = t r a n s l a t i o n A A′ B −> d i s t a n c e A′ B′ = d i s t a n c e A B.
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Since B’ is obtained from N with a rotation of the center M and the angle
−̂−→
MN
−−→
AB,

using rotation isometrie give us |MN | = |MB′|. In addition, B”is obtained from B with

a translation of
−−→
MA, using translation isometrie give us |MB′| = |AB”|. As a result,

we get |AB”| = |MN |. By a similar way, we have equalities of other corresponding

sides |AC”| = |MP | and |B”C”| = |NP |.
Equalities of corresponding angles are easily introduced by using preservations of

angles of rotation and translation. We have the following proof context

. . .

a s s e r t ( d i s t a n c e AB” = d i s t a n c e MN) .

r e w r i t e <−(@ r o t a t i o n i s om e t r i e M M N M B′ ( angCons
−−→
MN

−−→
AB ) ) ;

auto with geo .

app l y ( @ t r a n s l a t i o n i s om e t r i e M B′ A B” ) : auto with geo .

. . .

H1 : d i r e c t S i m i l a r A B C M N P

H2 : d i s t a n c e A B” = d i s t a n c e M N

H3 : d i s t a n c e A C” = d i s t a n c e M P

H4 : d i s t a n c e B” C” = d i s t a n c e N P

H5 : ang leCons
−−→
MN

−−→
AB” = ang leCons

−−→
MN

−−→
AB

H6 : ang leCons
−−→
MP

−−→
AC” = ang leCons

−−→
MN

−−→
AB

H7 : ang leCons
−−→
NP

−−−→
B”C” = ang leCons

−−→
MN

−−→
AB

. .

(1/1)

e x i s t s k :R , k <> 0 /\ d i s t a n c e B C = k∗ d i s t a n c e N P /\
d i s t a n c e A B = k∗ d i s t a n c e M N /\ d i s t a n c e A C = k∗ d i s t a n c e M P .

Unfolding the definition of direct similarity in H1, we have
̂−−→

NP
−−→
NM =

−̂−→
BC
−−→
BA and

−̂−→
PM
−−→
PN =

−̂→
CA
−−→
CB. By calculations of angle, we can prove that

−̂−→
MN
−−→
AB =

−̂−→
MP
−→
AC =

−̂−→
NP
−−→
BC. Using this equation in H6 H7 give us

H1 : d i r e c t S i m i l a r A B C M N P

H2 : d i s t a n c e A B” = d i s t a n c e M N

H3 : d i s t a n c e A C” = d i s t a n c e M P

H4 : d i s t a n c e B” C” = d i s t a n c e N P

H5 : ang leCons
−−→
MN

−−→
AB” = ang leCons

−−→
MN

−−→
AB

H6 : ang leCons
−−→
MP

−−→
AC” = ang leCons

−−→
MN

−−→
AB

H7 : ang leCons
−−→
NP

−−−→
B”C” = ang leCons

−−→
MN

−−→
AB

. .

(1/1)

e x i s t s k :R , k <> 0 /\ d i s t a n c e B C =k∗ d i s t a n c e N P /\
d i s t a n c e A B = k∗ d i s t a n c e M N /\ d i s t a n c e A C = k∗ d i s t a n c e M P .
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We replace the left parts by the right parts of the equalities in H2, H3 and H4. We

then apply the above consequence of Thales’ theorem. We have to prove 3 subgoals

. . .

r e w r i t e <−H2 , <−H3 , <−H4 .
app l y Tha l e s consequence .

H1 : d i r e c t S i m i l a r A B C M N P

H5 : ang leCons
−−→
MN

−−→
AB” = ang leCons

−−→
MN

−−→
AB

H6 : ang leCons
−−→
MP

−−→
AC” = ang leCons

−−→
MN

−−→
AB

H7 : ang leCons
−−→
NP

−−−→
B”C” = ang leCons

−−→
MN

−−→
AB

. .

(1/3)

c o l A B B”

(2/3)

c o l A C C”

(3/3)

p a r a l l e l ( l i n e B C) ( l i n e B”C”)

We observe that collinearity of points A, B and B” is defined by collinearity of

vectors ∃k,
−−→
AB” = k

−−→
AB); similarly collinearity of points A, C and C” is defined by

collinearity of vectors ∃k,
−−→
AC” = k

−→
AC) and parallelism of lines BC and B”C” is defined

by ∃k,
−−→
BC = k

−−−→
B”C”). As a result, all three sub-goals are solved by proving the

following lemma for non-zero vectors:
−̂→u−→v1 = −̂→u−→v2 → ∃k,−→v1k−→v2
The proof of this lemma is performed by unfolding the angles to records of scalar

products and using equalities of corresponding elements of the records.

..............End of Technical Details................

3.5.2 Orientation in Proving Theorems

We now give some applications to the proof of geometry theorems by proving 2 theorems

in the list of famous theorems in mathematics [19]. We will show the indispensability

of notion and the applications of its properties in these proofs.

3.5.2.1 Ptolemy’s Theorem

Ptolemy’s theorem describes a relation in Euclidean geometry between the four sides

and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a

common circle). Let a convex quadrilateral ABCD be inscribed in a circle, we have

|AD| × |BC|+ |AB| × |CD| = |AC| × |BD|
Statement using orientation: Firstly we describe the statement of this theorem

in Coq. One question is how to present a convex quadrilateral. Formally, a convex
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Figure 3.9: Demonstration of Ptolemy’s theorem

polygon is a polygon which satisfies one of the following conditions : the entire segment

connecting two points is contained in a polygon if two points are contained in this

polygon, every interior angle is ≤ π. . . We use an equivalent definition: a polygon is

convex if and only if all ordered triplets points in the enumerated order have the same

orientation. In our case, a convex quadrilateral ABCD is described by

D e f i n i t i o n convexQuad (A B C D : Po in t ):=

		 ABCBCD∧ 		 ABCCDA∧ 		 ABCDAB

Thus, the statement of Ptolemy’s theorem is as follows:

Theorem Ptolemy : ∀(A B C D : Point),

convexQuad A B C D → co− cyclic A B C D → |AB| × |CD|+ |BC| × |DA| = |AC| × |BD|.

Proof : The proof of this theorem is realized by locating a point M on BD such that
−̂−→
AB
−→
AC =

−̂−→
AM
−−→
AD (see Fig. 3.9) . We readily get that

−−→
AM is between

−−→
AB and

−−→
AD, in

other words M is in interior of angle
−̂−→
AB
−−→
AD. So the four points A, B, D and M satisfy

the configuration of property 8. It follows that the intersection point of AM and BD is

inside segment BD, so we have |BM |+ |MD| = |BD|(1).

Consider 4ABC and 4AMD, from hypothesis of locating M we have that
−̂−→
AB
−→
AC

=
−̂−→
AM
−−→
AD(2). Thanks to property 10, with two inscribed angles

−̂→
CA
−−→
CB and

−̂−→
DA
−−→
DB

which intercept the same arc
_
AB and they have the same orientation 		 CABDAB

(proved from hypotheses), we get
−̂→
CA
−−→
CB =

−̂−→
DA
−−→
DB(3). By the fact that M is in

segment [BD] we get
−̂−→
DA
−−→
DB=

−̂−→
DA
−−→
DM(4), it follows that

−̂→
CA
−−→
CB =

−̂−→
DA
−−→
DM(5). Let’s

consider 2 triangles4ABC and4AMD, (2) (5) show that they have 2 pair of congruent

angles. So by definition of similar triangles, they are similar 4ABC ∼ 4AMD. We

get |AB||AM | = |BC|
|MD| = |CA|

|DA| , hence |BC| × |AD| = |MD| × |AC| (6).

Similarly with4ACD and4ABM , we have |AC||AB| = |CD|
|BM | = |DA|

|MA| and |AB|×|CD| =
|BM | × |AC| (7).

By adding equations (6) (7) and applying (1) we have |AB|×|CD|+ |BC|×|AD| =
|BM | × |AC|+ |MD| × |AC| = |AC| × |BD|.
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Figure 3.10: Intersecting Chords Segment Product property

The theorem is proved with the help of orientation by applying properties 10 and

8. Without property 8, we can not prove the existence of M inside BD, it follows that

we do not have the equations (1) and (4). Without property 10, we do not have the

equality of inscribed angles, so we do not have the equation (3). Then, the proof is not

complete.

3.5.2.2 Product of Segments of Chords

Another geometry theorem we would like to present is the Product of Segments of

Chords. In fact, it is one of three theorems in a series dealing with chords, secants

and tangents in circles. Given four points A, B, C and D which lie on the same circle

such that AB and CD intersect in M, the theorems state the equality |MA| × |MB| =
|MC| × |MD| . If point M is interior to the circle (in other words, is interior to the

segments AB and CD), this is called the Chords theorem. If it is exterior we have the

Secants theorem. In a particular case of Secants theorem where two points of a secants

coincide,we have the Tangents theorem. This is also the theorem about the power of

a point with respect to a circle. However, we present here its traditional proof where

order notion is used.

Chords theorem : If two chords intersect at an interior point of a circle, the product

of the lengths of the segments of one chord equal the product of the segments of the

other |MA| × |MB| = |MC| × |MD|.
Statement of the theorem: Before explaining how to prove this in Coq, we need to

clarify the notion ’two chords intersect at a interior point of a circle’. A point in the

interior of a circle can be presented by existence of two points on the circle, between

which this point lies.

D e f i n i t i o n i n s i d e C i r c l e (M : Po in t ) ( c : C i r c l e ):=

∃(I J : Point), liesOnCircle I c ∧ liesOnCircle J c ∧ between I J M.

Chords theorem is described as follows:

Theorem Chords : ∀( A B C D M : Point)(c : Circle), co − cyclic A B C D → c =
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(circle3points A B C) → insideCircleMc → collinear A B M → collinear C D M →
|MA| × |MB| = |MC| × |MD|.

Proof : The traditional proof using similar triangles is easy. We use similarity of 2

triangles 4MAC ∼ 4MDB. However, to obtain this similarity, we have to determine

the relative position of M with respect to AB and CD. It means that we need to

show that M is interior to the both segments AB and CD. The following property is a

consequence of property 8 for the case of 4 co-cyclic points.

Property Orient 12. : Given two chords of a circle, if they intersect at a point which is

in the interior of one chord, this point will be in the interior of the other.

Lemma i n t e r s e c t i o n C h o r d s : ∀( A B C D M Point), co − cyclic A B C D →
between A B M → collinear C D M → between C D M.

Coming back to the proof, by hypothesis that M is in the interior of the circle, we can

deduce the existence of points I J on the circle such that M is in segment IJ. By applying

property 12 with two chords IJ and AB, we have that M is in segment AB. This property

give us
−̂−→
AM
−→
AC =

−̂−→
AB
−→
AC =

̂−−→
MB
−−→
MC. Similarity with IJ and CD, we get that M is

in segment CD, then we have
−̂−→
DB
−−→
DM =

−̂−→
DB
−−→
DC =

̂−−→
MB
−−→
MC From the two equations

above, we deduce
−̂−→
AM
−→
AC =

−̂−→
DB
−−→
DM . By the same way, we have

−̂→
CA
−−→
CM =

−̂−→
BM
−−→
BD.

So 4MAC ∼ 4MDB and we have |MA|
|MC| = |MD|

|MB| or |MA|×|MB| = |MC|×|MD|.

3.6 Some discussions about full angles

Let’us now discuss about a remarkable method - the full angles method [12]. As men-

tioned, this is a coordinate free method relying on a geometric invariant called the

full-angle to prove theorems. This can generate short, human-readable and diagram

independent proofs.

The most interesting of this method lies in the crucial notion of the full-angle. The

authors try to provide a notion about angles which is similar to oriented angles of

vectors, in order to construct traditional proofs without involving order relations. In

fact, full-angles are oriented angles of 2 lines (instead of two vectors as in definition of

oriented angle of vectors), this notion is robust to solve problems concerning inscribed

angle, similar triangles, etc.

For example, in Fig. 3.6, the oriented angle of lines DA and DB (denoted ]DA DB)

is always equal ] CA CB without knowledge about relative position of D.

We can define similarity of 2 triangles by equality of corresponding oriented angle of

line without specifying “irect similar” or “indirect similar”. Furthermore we can easily

prove the problem of Product of Segments of Chords using this notion.

However, as a coordinate free method, this can not solve problems in which order

relation is essential. Intuitively, we can not solve the problem of Ptolemy with this
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method because it can not ensure that M lies inside BD (see the above proof of this

theorem). In spite of this, formalizing this notion is still interesting for the advantages

that it offers in treatment of inscribed angle and similar triangles.

3.7 Conclusion

In this chapter, we formalized plane orientation. Its relation with oriented angle was

introduced, this allows us to remove ambiguities in the presentation of inscribed angles.

Besides, the relations between orientation and order were approached. They form a

toolbox to state and solve ordered geometry problems. This is tested through the proof

of 2 famous theorems which had not been formalized in Coq before.

As mentioned, we aim at application in high school education, students somehow

use our library to construct proofs. However, in high school geometry proofs, oriented

problems in minor reasoning steps are omitted, as they lead to hard proving techniques

and are pedagogically not suitable to students. So, some works remain to be done to

improve this toolbox. Providing an automatic tactic to solve this kind of problems is a

good research direction. It is considered as future work.



Chapter 4

Multiple Points of View about

Geometry

4.1 Introduction

Synthetic or axiomatic geometry is the branch of geometry which makes use of axioms,

as opposed to algebraic geometry. While synthetic proofs are traditional proofs com-

posed by sequences of geometric reasoning steps that are based on geometric objects

and their properties, algebraic proofs are constructed by algebraic calculations over

polynomials of coordinates that describe geometric objects.

The mixture of synthetic and algebraic methods offers coordinate-free methods.

Generated proofs of these methods are sequences of calculations over geometric invari-

ants, such as the area of triangles or full angle of lines, that are intuitive. Therefore,

proofs are partially traditional and human-readable.

Some development in Coq with the aim of formalizing geometry were previously per-

formed. For axiomatic geometry, the systems of Hilbert and Tarski were respectively

formalized by C. Dehlinger [16] and J.Narboux [40]. The development of J.Duprat [17]

is to construct a library that contains an axiomatization of the ruler and compass for Eu-

clidian geometry. Typically, following several chapters in the book Meta-mathematische

Methoden in der Geometrie [47], J.Narboux mechanized proofs of over 150 lemmas in

Tarski’geometry [41].

For algebraic geometry, there are efforts of J.Narboux and L.Pottier in formalizing

coordinates-free and algebraic methods such as the area method [37] and the method of

Gröbner bases [33][45] in Coq. These methods are implemented in the form of tactics,

and allow us to prove many theorems.

However, there is not, prior to our work, any formal link between these systems.

This motivates us to make our library to be a foundation to connect these systems. We

integrate the systems into our library. With this integration, we can make sure that the
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concepts that we have formalized are consistent with the concepts in the other systems.

Moreover, it allows us to use automatic proofs in the other systems and to interleave

them with interactive proofs in our system.

Related work : The idea of using a common formal development about geometry

for different purpose was also proposed by J.Narboux in [41]. He would like to inte-

grate the development of F.Guilhot and his development about the area method into

Tarski’system. His direction has an advantage in using the axiomatic system of Tarski

which is standard and has low level with respect to the axiomatic system of our library

which comes from school’s curriculum. However, this low level leads to difficulties in

integrating. In my knowledge, his work has not been finished yet.

4.2 Verifying axiomatic systems of synthetic geometry

In this section, we consider Hilbert’s and Tarski’s systems. We do not intend to formal-

ize proofs of theorems presented in these systems, we merely want to verify that their

axioms are provable in our axiomatic system. We focus on axioms for plane geometry.

4.2.1 Verifying Hilbert’s system

Hilbert proposed his axiomatic system for Euclidean geometry in [30]. His axioms state

facts about primitive notions such as points, lines and planes and relations such as be-

tweeness, congruence and lying on. He classified them into five groups: I.Incidence ax-

ioms, II.Order axioms, III.Congruence axioms, IV.Parallelism axiom and V.Continuity

axioms.

The first step of the process of verifying his axioms is to make his primitive notions

and relations available in our system. In fact, these notions and relations are the

elementary ones that are covered in our library. As a result, we can work directly on

the axioms. The following are primitive notions of Hilbert in our system:

◦ Point: primitive notion

◦ Line: defined by a record containing a root point and a non-null direction vector

(rootPoint,
−−−−−→
dirV ect,

−−−−−→
dirV ect 6= −→0 ). A line passing through two distinct points

A and B is defined by (A,
−−→
AB).

◦ Point lying on a line: defined by collinearity of the direction vector of the line with

the vector composed by the root point and this point A ∈ (P,−→v ) := ∃k,
−→
AP = k−→v

◦ Point lying between 2 distinct points: this is equivalent with the ”between” notion

mentioned on page 56 of Chapter 3. Essentially this notion can be expressed using

vectors as follows: C ∈ [AB] := A 6= B ∧ ∃k, 0 < k ∧ k < 1 ∧
−→
AC = k

−−→
AB
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◦ Congruence of 2 segments: defined by equality of distances of segments |AB| =

|CD| where distance of 2 points A and B is defined by scalar product as follows

|AB| :=
√−−→
AB ·

−−→
AB

◦ Congruence of 2 triangles: defined equality of their corresponding sides 4ABC =

4A′B′C ′ := |AB| = |A′B′| ∧ |BC| = |B′C ′| ∧ |CA| = |C ′A′′|

Before going into each group, we note that Hilbert’s axioms are always stated in the

form of“for every x”. This means that they are true in every case including degenerated

cases where primitives in statement are identical (for example equality of points, lines

in statements). However, in the development of his system, he usually made distinction

of primitive objects which have the same type (such as point, line, etc ). Therefore,

some non-degenerated conditions are added in axiom statement in Coq. We prove

the axioms under these conditions. However, proofs of the degenerate cases are easily

performed. The continuity axioms require second-order logic and have not been treated

in our system yet.

4.2.1.1 Axioms of Incidence

The axioms of this group for plane geometry are related to the notion of line and points

lying on lines.

◦ Axiom I.1. For every two points A, B there exists a line a that contains each of

the points A, B.

◦ Axiom I.2. For every two points A, B there exists no more than one line that

contains each of the points A, B.

◦ Axiom I.3. There exist at least two points on a line. There exist at least three

points that do not lie on a line.

The first two semantically state unique existence of a line that passes through two

distinct points A and B. They are translated to two lemmas in Coq

Lemma AI 1 : ∀(A B : Point), A 6= B → ∃l : Line,A ∈ l ∧B ∈ l.
Lemma AI 2 : ∀(A B : Point)(a b : Line), A 6= B → A ∈ a∧B ∈ a∧A ∈ b∧B ∈ b→ a == b.

Note that, as the line is expressed by a pair of point and direction vector, we use the

semantic equality of lines (denoted ==) instead of syntactic one in the second lemma.

The semantic equality, presenting coincidence of lines, is defined by collinearity (also

called parallelism) of the direction vectors and vector composed by the root points as

mentioned in Chapter 2

Proofs of these lemmas rely on a function named line in our library that takes A, B

as arguments and return a line (A,
−−→
AB). We can easily prove that A ∈ line(A B)∧B ∈

line(A B), hence the lemma AI 1 is solved by the existence of (line AB).
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For the lemma AI 2, we prove that both of a and b are equal to line ab. In

other words, we have to prove that ∀a,A ∈ a ∧ B ∈ a ∧ A 6= B → a == line(AB).

Indeed, suppose that a = (X, −→x ), from the hypothesis A ∈ a ∧ B ∈ a, we have
−−→
XA = k1

−→x ∧
−−→
XB = k2

−→x . By calculations over vector, we have
−−→
XA = k1

−→x = k1
k2−k1

−−→
AB.

Thus, we have collinearity of −→x ,
−−→
XA, and

−−→
AB. This results in (X,−→x ) == (A,

−−→
AB),

hence a == line AB. Similarly, we get b == line AB. So, the axiom AI 2 is proved

by a == line(A B) == b.

The statement of the lemma I.3 contains 2 part corresponding to the two following

lemmas.

Lemma AI 3 1 : ∀(a : Line),∃ A B,A 6= B ∧A ∈ a ∧B ∈ a.
Lemma AI 3 2 : ∀(A B : Point), A 6= B → ∃C,¬C ∈ line(A B).

We prove the lemma AI 3 1 by assigning the root point of a to A, and constructing

B such that
−−→
AB is equal to the direction vector of a. The construction of such a point

B is performed by existence multVectRepresentative mentioned on page 1.

To prove the latter, we use the existence of three non-collinear points O O1 and O2

in our axiom system. As they are not collinear, so it is impossible that they lie on the

line AB at the same time. So, we can chose one among them to assign to C. Using

proofs by cases and contradiction, we easily get ¬C ∈ line(A B).

4.2.1.2 Axioms of Order

◦ Axiom II.1. If a point B lies between a point A and a point C then the points A,

B, C are three distinct points of a line, and B then also lies between C and A.

◦ Axiom II.2. For two points A and C, there always exists at least one point B on

the line AC such that C lies between A and B.

◦ Axiom II.3. Of any three points on a line there exists no more than one that lies

between the other two.

◦ Axiom II.4. Let A, B, C be three points that do not lie on a line and let a be a

line in the plane ABC which does not meet any of the points A, B, C. If the line

a passes through a point of the segment AB, it also passes through a point of the

segment AC, or through a point of the segment BC (see Fig. 4.1).

The fact that betweenness C ∈ [AB] (also denoted by ACB or between ACB) is

expressed by 0 < k ∧ k < 1 ∧
−→
AC = k

−−→
AB allows us to readily prove the first three

axioms.

The proof of the last axiom is the most difficult and interesting, in that the notion of

orientation that we formalize in Chapter 3 plays a crucial role. Let’s see the statement

of this axiom in Coq
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(a) N lies inside BC (b) C lies inside NB (c) B lies inside CN

Figure 4.1: 3 cases of axiom II.4

Lemma A I I 4 :

∀(A B C : Point)(l : Line),¬A ∈ l → ¬B ∈ l → ¬C ∈ l → ¬colABC → (∃M,M ∈ l ∧M ∈
[AB])→ (∃N,N ∈ l ∧N ∈ [BC]) ∨ (∃P, P ∈ l ∧ P ∈ [AC]).

................Begin of Technical Details.............. 7.

Proof of axiom II.4 : Let’s consider two lines BC and l that passes through M, N and

P.

For the special case that the line l passing through M is parallel with BC, we

prove that the intersection P of this line with line AC lies in segment AC. This is

straightforward because in 4ABC we have that M ∈ [AB] and MP ‖ BC. So we have
−−→
AM−→
AB

=
−→
AP−→
AC

.

We now consider the case that l intersects BC. Suppose that N is the intersection

point. Once again, the method of proof by cases is used. We devise this problem into

3 cases illustrated in Fig. 4.1 that is corresponding with CNB, NCB and CBN . In

the first case where N lies inside BC, we can finish our proof. The last two are proved

using the same technique that relies on the orientation and its properties, so we present

only the part of proof for the case where C lies between N and B (NCB). This case

corresponds to Fig. 4.1(b).

Before delving into the details of the proof, we remind the readers of some properties

related to orientation mentioned in Chapter 3 that will be used in this proof.

◦ Property Orient6: ¬col ABC →
−−−→
ABD →		 ABCADC

◦ Property Orient6’ (a variant of property 6): ¬col ABC →
−−−→
ACD →		 ABCABD

◦ Property Orient7: ¬col ABC → DAB →		 ABCACD

◦ Property Orient7’ (a variant of property 7): ¬col ABC → DAC →		 ABCADB

◦ Property Orient8: interior ABCD → ∃E,BEC ∧
−−−→
ADE

The proof context with NCB is as follows
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H : ¬ c o l A B C

H0 : l i e sOnL i n e M l

H13 : l i e sOnL i n e N l

H1 : between A M B

H15 : between N C B

(1/2)

( e x i s t s P : Point , l i e sOnL i n e P l /\ between A P C) \/
( e x i s t s N : Point , l i e sOnL i n e N l /\ between B N C)

In this context, there is a second goal that is for the case CBN .

Returning to our proof, we will prove that the intersection point P of AC and MN

satisfies liesOnLine E l ∧ APC. It seems that the configuration of N, A, C, M and

P satisfies property Orient8. Using this property gives us APC ∧
−−−−→
NMP so that our

current goal liesOnLine P l ∧APC can readily be proved.

However, these new hypotheses only are introduced after we prove interior NACM

that is the hypothesis of the property Orient8 to ensures a correct application of this

property. The commands in Coq are as follows

. . .

l e f t .

d e s t r u c t ( @Or ient8 N A C M) as [P [ H16 H17 ] .

2 : e x i s t s P .

H : ¬ c o l A B C

H0 : l i e sOnL i n e M l

H13 : l i e sOnL i n e N l

H1 : between A M B

H15 : between N C B

. . .

(1/3)

i n t e r i o r NACM

(2/3)

l i e sOnL i n e P l /\ between A P C

Unfolding the definition of “interior” leads us to prove 		 NAMNAC∧ 		
NMCNAC. Let’s see in the hypotheses, we have AMB, NCB. So 		 NAMNAC

and 		 NMCNAC are proved by sequence of application of the above properties and

the transitivity of orientation.

The proof of 		 NAMNAC is as follows: First, we assert 		 NAMNAB by

applying property Orient6 with A, M, N, B and the hypothesis H1. Similarly, we then

assert 		 NABNAC by applying property Orient6’ with N, A, B, C and H15.

. . .

u n f o l d i n t e r i o r ; s p l i t .

a s s e r t (H18 : s ameOr i en t a t i on N A M N A B) by
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app l y ( @Or ient6 A M N B H1)

a s s e r t (H19 : s ameOr i en t a t i on N A B N A C) by

app l y ( @Or ient6’ N A B C H15)

H1 : between A M B

H15 : between N C B

H18 : s ameOr i en t a t i on N A M N A B

H19 : s ameOr i en t a t i on N A B N A C

. . .

(1/4)

s ameOr i en t a t i on N A M N A C

(1/4)

s ameOr i en t a t i on N M C N A C

From the two new hypotheses 		 NAMNAB and 		 NABNAC, we deduce

		 NAMNAC by the transitivity of orientation. This is performed by tactic auto

with a data base containing this transitivity.

. . .

eauto wi th geo .

H : ¬ c o l A B C

H0 : l i e sOnL i n e M l

H13 : l i e sOnL i n e N l

H1 : between A M B

H15 : between N C B

. . .

(1/3)

s ameOr i en t a t i on N M C N A C

(2/3)

l i e sOnL i n e P l /\ between A P C

The proof of 		 NMCNAC is performed by a similar manner. Once it is proved,

the application of Property 8 is taken into account. The two hypotheses H16 and H17

are introduced as in the following context.

. . .

eauto wi th geo .

H : ¬ c o l A B C

H0 : l i e sOnL i n e M l

H13 : l i e sOnL i n e N l

H1 : between A M B

H15 : between N C B

H16 : between A P C

H17 : sameSide N M P
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. . .

(1/2)

l i e sOnL i n e P l /\ between A P C

(2/2)

( e x i s t s P : Point , l i e sOnL i n e P l /\ between A P C) \/
( e x i s t s N : Point , l i e sOnL i n e N l /\ between B N C)

The left part of the current goal is readily solved thanks to H0, H13, and H17 and

the right part is exactly H16. So the proof for the case NCB is finished.

..............End of Technical Details................

4.2.1.3 Axioms of Congruence

◦ Axiom III.1. If A, B are two points on a line a, and A’ is a point on the same or

on another line a’ then it is always possible to find a point B’ on a given side of

the line a’ such that AB and A’B’ are congruent.

◦ Axiom III.2. If a segment A’B’ and a segment A”B” are congruent to the same

segment AB, then segments A’B’ and A”B” are congruent to each other.

◦ Axiom III.3. On a line a, let AB and BC be two segments which, except for B,

have no points in common. Furthermore, on the same or another line a’, let A’B’

and B’C’ be two segments which, except for B’, have no points in common. In

that case if AB=A’B’ and BC=B’C’, then AC=A’C’.

◦ Axiom III.4. If ∠ABC is an angle and if B’C’ is a ray, then there is exactly one

ray B’A’ on each ”side” of line B’C’ such that ∠A′B′C ′ = ∠ABC.

◦ Axiom III.5. (Side-Angle-Side) If for two triangles ABC and A’B’C’ the congru-

ences AB=A’B’, AC=A’C’ and ∠BAC = ∠B′A′C ′ are valid, then the congruence

4ABC = 4A′B′C ′ is also satisfied.

Axiom III.1 can be verified by constructing B’ on a’ such that
−−→
A′B′ =

−−→
AB. This

construction also relies on the barycenter function over mass points as in the proof of

lemma I.3 above. Axiom III.2 is easily achieved because we use the real number as

measure of segment. In Axiom III.3, the hypothesis of having no points in common

except for B of 2 segments AB and BC is translated to relation that B lies between

A and C. Similarly, we have B’ is between A’ and C’. So, the axiom is stated as

ABC ∧ A′B′C ′ ∧ |AB| = |A′B′| ∧ |BC| = |B′C ′| → |AC| = |A′C ′|. The hypotheses

allow us to prove |AC| = |AB|+ |BC| and |A′C ′| = |A′B′|+ |B′C ′|, hence AC = A′C ′

Axiom AIII.4 is illustrated in Fig. 4.2. Requirement of “each side” leads us to the

use of same orientation for its formal representation. We have to prove existence of 2

points A′1 and A′2 such that 		 B′A′1C
′B′C ′A′2 and ∠A′B′1C

′ = ∠A′B′2C
′ = ∠ABC.
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However, orientation and oriented angle have similar meanings, equality of oriented

angle can lead to the same orientation. Thus, such A′1 and A′2 on opposite sides of B’C’

can be expressed by
−̂−→
BA
−−→
BC =

̂−−−→
B′A′1

−−→
B′C ′ =

̂−−→
B′C ′

−−−→
B′A′2. In other words, we prove the

existence of A′1 and A′2 satisfying
̂−−−→

B′A′1
−−→
B′C ′ =

−̂−→
BA
−−→
BC and

̂−−−→
B′A′1

−−→
B′C ′ = −

−̂−→
BA
−−→
BC. As

a result, this axiom is translated into the following lemmas

Figure 4.2: Figure of axiom III.4

Lemma A I I I 4 c a s e 1 : f o r a l l A B C B’ C’ : Point ,

B<>A −> B <>C −> B’ <> C’ −> ¬ c o l A B C −>

e x i s t s A’ ,
−̂−→
BA
−−→
BC =

̂−−−→
B′A′

−−−→
B′C ′

Lemma A I I I 4 c a s e 2 : f o r a l l A B C A’ B’ : Point ,

B<>A −> B <>C −> B’ <> C’ −> ¬ c o l A B C −>

e x i s t s A’ , −
−̂−→
BA
−−→
BC =

̂−−−→
B′A′

−−−→
B′C ′ .

Instead of proving these two lemmas, we prove an auxiliary lemma that is their

generalization as follows: given two distinct points B′, C ′, for every angle α, there is A′

such that
̂−−→

B′A′
−−→
B′C ′ = α. It’s not hard to find that by a translation of the points that

moves B′ into the root O of the coordinates system OIJ, this lemma is transferred into

constructing A′′ such that
̂−−→

OA′′
−−→
OC ′′ = α, where C ′′ is image of C ′ by the translation

(see Fig. 4.2).

Let’s consider coordinates of A” in Fig 4.2. Suppose that
−→
Ox
−−→
OC ′′ = β, we

have (xA′′ , yA′′) = (cos
−̂→
Ox
−−→
OA′′, sin

−̂→
Ox
−−→
OA′′) = (cos(

−̂→
Ox
−−→
OC ′′+

̂−−→
OC ′′

−−→
OA′′), sin(

−̂→
Ox
−−→
OC ′′+

̂−−→
OC ′′

−−→
OA′′)) = (cos(α+β), sin(α+β)) = (cosα cosβ−sinα sinβ, sinα cosβ+cosα sinβ).

Because α and β are determined, xA′′ and yA′′ are also determined. Therefore, A” is

constructed as follows
−−→
OA′′ = (cosα cosβ − sinα sinβ)

−→
OI + (sinα cosβ + cosα sinβ)

−→
OJ

Finally, A’ of this auxiliary lemma is constructed by
−−→
B′A′ =

−−→
OA′′. Application of

this lemma with α = ±
−̂−→
BA
−−→
BC gives us A′1 and A′2.
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The last axiom in this group is about triangle equality. From the hypotheses, we

have to prove that corresponding sides and angles of these two triangle are equal. This

is performed thanks to the metric relations in a triangle that are provided in our library.

For this case, we use |BC|2 = |AB|2 + |AC|2 − 2|AB||AC| cos
−̂−→
AB
−→
AC.

4.2.1.4 Axiom of Parallels

◦ Axiom IV.1. Let a be any line and A a point not on it. Then there is at most

one line in the plane that contains a and A that passes through A and does not

intersect a.

In our formalization, we defined lineP(A a) that passes through A and is parallel with

a by a line that takes A as its root point direction vector of a as its direction vector.

Uniqueness of this line is verified. This allows us to easily prove this axiom.

4.2.2 Verifying Tarski’s system

The history of Tarski’s axiom systems is presented by J.Narboux in [41]. The final

version of the axiomatic system was used in his formalization. With the aim of making

homogeneous geometry formalizations in Coq, we also want to verify this axiomatic sys-

tem. The axioms are based on two predicates : betweenness and equidistance. Whereas

equidistance describes equality of distance in the same manner as the congruence no-

tion in Hilbert’s system, there is a difference with betweenness. This notion in Tarski’s

system takes coincidence of points into account. In particular, we say that B lies be-

tween A and C if A, B and C are the same or if B lies inside segment A C with A and

C included for the case A and C are different. Use β to denote this notion, we have

βABC ↔ A = B = C ∨ (A 6= C ∧ (B = A ∨B = C ∨ABC). Axioms in [41] are stated

for plane geometry as follows

◦ 1.Identity βABA→ A = B

◦ 2.Pseudo-transitivity AB = CD ∧AB = EF → CD = EF

◦ 3.Symmetry AB = BA

◦ 4.Identity AB = CC → A = B

◦ 5.Pasch ∃X,βAPC ∧ βBQC → βPXB ∧ βQXA

◦ 6.Euclid ∃XY, βADT ∧ βBDC ∧A 6= D → βABX ∧ βACY ∧ βXTY

◦ 7.Five segments AB = A′B′ ∧BC = B′C ′ ∧AD = A′D′ ∧BD = B′D′ ∧βABC ∧
βA′B′C ′ ∧A 6= B → CD = C ′D′

◦ 8.Construction ∃E, βABE ∧BE = CD
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◦ 9.Lower Dimension ∃ABC,¬βABC ∧ ¬βBCA ∧ ¬βCAB

◦ 10.Upper Dimension AP = AQ ∧ BP = BQ ∧ CP = CQ ∧ P 6= Q → βABC ∨
βBCA ∨ βCAB

◦ 11.Continuity ∀XY, (∃A, (∀xy, x ∈ X∧y ∈ Y → βAxy))→ ∃B, (∀xy, x ∈ X∧y ∈
Y → βxBy)

As the betweenness notion inherently contains degenerated cases, the statements

of axioms have a concise look. Moreover, proofs of theorem from this system do not

need to be restricted to non-degenerate cases, they are more uniform. However, this

makes proofs of axioms long with many case treatments. In addition, the proofs were

realized using proof techniques similar to the ones of Hilbert’s axioms. So, rather than

addressing in details, we give the main ideas in proving some axioms which are as

follows: For axiom 5, we use properties concerning the same orientation; For axiom

6, we construct line passing through T and is parallel with BC. This line respectively

intersects AB, AC at X and Y; for axiom 10, we prove that for any point X satisfying

XP = XQ, then X lies in perpendicular bisector of PQ, etc.

4.3 Combining with the area method

Our library contains a large number of geometric notions and propositions. This al-

lows us to prove many geometry theorems. Constructing a traditional proof consists

in finding a sequence in logical steps to the conclusion. But in the context of educa-

tion, a drawback of constructing fully traditional proofs is that, as mentioned in the

introduction section, there are minor goals in interactive proving which are necessary

to complete the formal proof but which lead to tedious steps and are not adapted to

the level of abstraction at which we usually work with students.

On the other hand, coordinate-free automatic deduction methods can automati-

cally solve many non-trivial geometry theorems. Generated proofs are constructed by

transformation, calculation of geometric invariant, hence human-readable.

So, beyond motivations about homogeneousness of formalization systems, integra-

tion of coordinate-free automatic deduction methods with our interactive proving li-

brary offers many advantages in a educational view. This integration allows us to realize

proofs by switching between interactive proof and automatic proof. Constructed proofs

are always human-readable and acceptable by students. This improves the power and

does not decrease pedagogical meaning of the library.

4.3.1 The area method

The coordinate-free method we want to present here is the area method of Chou, Gao

and Zhang [11]. This method provides a set of geometric constructions to construct
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Figure 4.3: Parallelism of lines

the theorem and three geometric quantities: the signed area of a triangle, the signed

distance and the Pythagoras difference to state the conjecture. Theorem statement is

built by a sequences of constructions from free points. The conjecture is expressed by

an equality between the geometric quantities or geometry relations. Geometry relations

deeply is also expressed by equalities of the geometric quantities. The proof of the theo-

rem is performed by eliminating all constructed points in reverse order of constructions,

thanks to some provided elimination lemmas. This is repeated until there are only free

points in the conjecture equality. The theorem is proved if the last equality is correct.

In fact, the elimination lemmas also have a form of an equality of the geometric

quantities. Each lemma corresponds to one construction, where constructed points of

the construction only appear in the left of this equality. So, applying this lemma allows

us to remove a constructed point from the conjecture. These elimination lemmas are

proved from an axiomatic system which are given in Table 4.1

We do not detail how this method works because this method was formalized in

Coq by J.Narboux [41], and implemented it in the form of a tactic. It means that if we

have a theorem statement with a set of constructions in hypotheses and a conjecture

which satisfy requirement of the method, we can use this method to solve the theorem

by a single command with this tactic. The following example shows the use of this

method in Coq.

Example 2. :This example is illustrated in Fig 4.3.Given 4ABC and 4A′B′C ′. 3 lines

AA’, BB’, and CC’ are concurrent at X. If AB ‖ A′B′ and AC ‖ A′C ′ then we have

BC ‖ B′C ′.
In the formalization of J.Narboux, this theorem is stated and solved with the area

method as follows

Theorem P a r a l l e l i s m e :
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1. AB = 0 if and only if the points A and B are identical

2. SABC = SCAB

3. SABC = −SBAC

4. If SABC = 0 then AB +BC = AC (Chasles’ axiom)

5. There are points A, B, C such that SABC 6= 0 (dimension; not all points are

collinear)

6. SABC = SDBC + SADC + SABD (dimension; all points are in the same plane)

7. For each element r of F , there exists a point P , such that SABP = 0 and AP =

rAB (construction of a point on the line)

8. If A 6= B, SABP = 0, AP = rAB, SABP ′ = 0 and AP ′ = rAB, then P = P ′

(uniqueness)

9. If PQ ‖ CD and PQ

CD
= 1 then DQ ‖ PC (parallelogram)

10. If SPAC 6= 0 and SABC = 0 then AB

AC
= SPAB

SPAC
(proportions)

11. If C 6= D and AB ⊥ CD and EF ⊥ CD then AB ‖ EF

12. If A 6= B and AB ⊥ CD and AB ‖ EF then EF ⊥ CD

13. If FA ⊥ BC and SFBC = 0 then 4S2ABC = AF
2
BC

2
(area of a triangle)

Table 4.1: The axiom system for the area method

f o r a l l A B C X A’ B’ C’ : Point , A’ <>C’ −> A’ <> B’ −>
o n l i n e A’ X A −>
o n i n t e r l i n e p a r a l l e l B’ A’ X B A B −>
o n i n t e r l i n e p a r a l l e l C’ A’ X C A C −>
p a r a l l e l B C B’ C’ .

Proo f .

area method .

Qed .

Three constructions are used in statement with the order. A’ lying on XA is con-

structed by on line A’ X A. B’ satisfying B′ ∈ XB ∧ B′A′ ‖ BA is constructed by

on inter line parallel B’ A’ X B A B. Finally, C’ satisfying C ′ ∈ XC ∧ C ′A′ ‖ CA is

constructed by on inter line parallel C’ A’ X C A C. The conjecture BC ‖ B′C ′ is



4.3 Combining with the area method 85

expressed by parallel BC B’C’.

Constructions and relations of the area method are built from its primitive notions.

They are not provided and used when stating theorems in our library. Therefore, to

integrate this method, apart from proving its axiomatic system to ensure its correctness

in our system, we have to convert statements from our system to the area method system

to ensure usability of this method in alternative mode with interactive proving of our

library.

4.3.2 Correctness of the area method

As the method has its own axiomatic system, correctness of the method is guaranteed

by verifying its axioms. However, before going to verify the axiomatic system, we

need to make a mapping of all notions that are used in these axioms into our library.

Although this method relies on three geometric invariant including signed area, signed

distance and Pythagoras difference, only signed area and signed distance are primitive

notions. Pythagoras difference and other notions used in the axioms such as parallelism,

perpendicularity, collinearity are defined from these two primitive notions.

Let’s consider the notion of signed distance. This is a mixed notion from Euclidean

distance and vector. It has magnitude as Euclidean distance and direction as vector.

The difference lies in arithmetic operators. Addition in Chasles’axiom in Table 4.1 is

an example : for every 3 collinear points A, B and C, AC = AB +BC. This operator

is similar to the addition operator of vector (∀ ABC,
−→
AC =

−−→
AB +

−−→
BC) but this is

only applied for segments which are collinear. It is similar to Euclidean distance but

it takes into account the direction of segments. In particular, if
−−→
AB and

−−→
BC have the

same direction then we have |AC| = |AB| + |BC|, if they have opposite directions we

have |AC| = ||AB| − |BC||. This leads us to define signed distance by using Euclidean

distance with sign constructed by the direction of vectors.

In Chapter 2, we showed the construction of a Cartesian coordinates system with

O, I and J and how these points are used to define orientation for Euclidean plane.

Here, they also allow us to define the sign of signed distance. Let’s see a
−−→
AB in the

system OIJ that is represented in Fig 4.4. We move
−−→
AB to the root O such that A = O.

Intuitively, we define AB = |AB| if the image of B lies in the half plane on the right of

the axis Oy (the point P in the figure), and AB = −|AB| if the image of B lies in the

half plane on the left of the axis Oy (the point Q in the figure). The formal definition

is as follows
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Figure 4.4: Definition of signed distance



if
−−→
AB ·

−→
OI > 0 AB = |AB|

if
−−→
AB ·

−→
OI < 0 AB = −|AB|

if
−−→
AB ·

−→
OI = 0


if
−−→
AB ·

−→
OJ > 0 AB = |AB|

if
−−→
AB ·

−→
OJ < 0 AB = −|AB|

if
−−→
AB ·

−→
OJ = 0 AB = 0

This definition expresses that its signed distance gets positive value if
−−→
AB and

−→
OI

have the same direction with respect to the axis Oy, and negative value if they have

opposite directions. In the case they are orthogonal, we involve
−→
OJ in the definition in

a similar way.

Intuitively, this definition sounds good because we easily find that AB and BA

have different signs for every A and B. We move
−−→
AB and

−−→
BA to the root and get

corresponding vectors
−−→
OP and

−−→
OQ. The points P and Q are symmetric with respect

to O, so if OP = |AB| then OQ = −|AB| and inversely. So we have AB = OP =

−OQ = −BA. As a generalization of this, we can prove that ∀ABC,
−→
AC = k

−−→
AB ↔

(col ABC ∧ AC = kAB). The proof is realized by dividing relative position of
−−→
AB

into cases cited in the signed distance definition, then using the value of k to determine

relative position of
−→
AC.

The remaining primitive notion is signed area. As in mathematic, the signed area

of 4ABC is defined by SABC = 1
2 × |AB| × |AC| × sin

−−→
AB
−→
AC. In the precedent

chapter, the function sine is calculated by sin
−−→
AB
−→
AC =

−→
AB⊥·

−→
AC

|
−→
AB⊥|×|

−→
AC|

. Therefore we have

SABC = 1
2

−−→
AB⊥ ·

−→
AC

Finally, we find equivalences for non-primitive notions including parallelism, per-

pendicularity and collinearity. Because these notions are also provided in our system,

so this finding is straightforward. Using characters with small word ”area” ‖area, ⊥area
and colarea to respectively denote these notions, we have the equivalence table 4.2
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In the are method In our system Equivalence

AB: primitive AB: is defined as above —

SABC : primitive SABC := 1
2

−−→
AB⊥ ·

−→
AC —

colarea ABC ↔ col ABC ↔ colarea ABC ↔
SABC = 0 A = B ∨ ∃k,

−→
AC = k

−−→
AB col ABC

AB ‖area CD ↔ AB ‖ CD ↔ (A 6= B∧ AB ‖area CD ↔ A = B ∨ C = D

SACB + SABD = 0 C 6= D ∧ ∃k,
−−→
AB = k

−→
AC) ∨(A 6= B ∧ C 6= D ∧AB ‖ CD)

Table 4.2: The Equivalence of notions

This table allows us to translated the axioms in Table 4.1 into our system. With

this translation, we can perform proofs in our system by using all existening proved

properties. We present here the proofs of some axioms

Axiom 4 If SABC = 0 then AB +BC = AC (Chasles’ axiom)

Proof: From equivalences in Table 4.2, we have SABC = 0→ A = B ∨ ∃k,
−→
AC = k

−−→
AB.

For the case A=B, by replacing all occurrence of B by A in the proof obligations, we

have AB +BC = AC ↔ AA+AC = AC ↔ AC = AC.

Axiom 6 SABC = SDBC + SADC + SABD (dimension; all points are in the same

plane)

Proof: By the definition of signed area, we have SABC = SDBC + SADC + SABD ↔
1
2

−−→
AB⊥ ·

−→
AC = 1

2

−−→
AB⊥ ·

−→
AC + 1

2

−−→
AB⊥ ·

−→
AC + 1

2

−−→
AB⊥ ·

−→
AC ↔

−−→
AB⊥ ·

−→
AC =

−−→
AB⊥ ·

−→
AC +

−−→
AB⊥ ·

−→
AC +

−−→
AB⊥ ·

−→
AC

.

The last equality is already proved in the proof of property 4(on page 51).

Axiom 10 If SPAC 6= 0 and SABC = 0 then AB

AC
= SPAB

SPAC

Proof: In the proof of this lemma, we suppose that axioms 2 and 3 are already proved.

By applying these, we have SACB = SBAC = −SABC = 0. From equivalences in

Table 4.2, we have SACB = 0→ A = C ∨ ∃k,
−−→
AB = k

−→
AC. For the case A=C, we have

−→
AC =

−→
0 , hence SPAC = SACP = 1

2

−→
AC⊥ ·

−→
AP = 0. We have SPAC 6= 0 and SPAC = 0

at the same time, so the proof for this case is finished.

For the remaining case where A 6= C ∧
−−→
AB = k

−→
AC, by unfolding the definition of

area, we have

SPAB

SPAC
=

SABP

SACP
=

1
2

−−→
AB⊥ ·

−→
AP

1
2

−→
AC⊥ ·

−→
AP

=
~AB
⊥ ·
−→
AP

−→
AC⊥ ·

−→
AP

=
k
−→
AC⊥ ·

−→
AP

−→
AC⊥ ·

−→
AP

= k

.

On the other hand, from a property of signed distance mentioned earlier, we have
−−→
AB = k

−→
AC → AB = kAC. Because A 6= C → AC 6= 0, we get AB

AC
= k. From this

transformation, we obtain SPAB
SPAC

= k = AB
AC

. .



4.3 Combining with the area method 88

In a similar way, we prove all axioms of the area method. The formalization of this

method is well integrated in our system. We can now go to the second step of our

integration process.

4.3.3 Usability of the area method

The objective of this section is to make the area method on alternative mode to in-

teractive proving with our library. In particular, in a context of interactive proof with

hypotheses and a proof obligation, the area method can be invoked to solve it.

In fact, to be able to use the area method, as mentioned, there are requirements

for theorem hypotheses and conjectures. This method has its own specific geometric

constructions which are regarded as basic constructions. Hypotheses have to be stated

as a sequence of these constructions. Similarly, a conjecture need to be expressed by

certain provided geometric relation or equality of geometric invariant.

As a result, in this step, we have to find out construction sequence from the hy-

potheses in the proof context, and express the proof obligation in a form acceptable by

the area method. The last point is similar to the first step of integration mentioned

in the previous section, so we omit its detail and only focus on the process of finding

constructions.

In our library as well as in mathematics, a geometry theorem can be stated either

in constructive form or in predicate form, even in a mix of both. For example, the

foot H of altitude AH in 4ABC is the intersection point of BC with line passing

through A and being perpendicular with BC. Simultaneously, it can be expressed by

col BCH ∧AH ⊥ BC.

Finding a construction sequence from hypotheses in predicate form is really hard.

It’s because there are many construction sequences that lead the same figure. For our

example, we can consider it not only as construction of H from A, B and C, but also

as construction of A from H, B and C as follows: we take a point H in BC; we then

construct line passing through H that is perpendicular with BC; finally, we take a point

A on the newly constructed line. This leads to an ambiguity in construction order of

geometry objects that is forbidden in the area method.

In this section, we limit the scope of our work to a simpler case where theorem

is stated in the constructive form. In this case, geometry objects are created by con-

structions provided by our library and the construction order is taken into account.

Suppose that these constructions are always preserved in the proof context during in-

teractive proofs. Thus, our work focuses on finding a sequence of constructions of the

area method that represents the same theorem with the set of constructions of the

statement.

To illustrate this process, we continue to use the example on page 83. The statement

of this theorem in our system is as follows
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1 subgoa l

H1 : A’ <> B’

. .

H5 : l i e sOnL i n e A’ ( l i n e A X)

H6 : b’ == l i n eP A’ ( l i n e A B)

H7 : c’ == l i n eP A’ ( l i n e A C)

H8 : B’ = i n t e r s e c t i o n P o i n t b’ ( l i n e B X)

H9 : C’ = i n t e r s e c t i o n P o i n t c’ ( l i n e C X)

. .

(1/1)

p a r a l l e l L i n e ( l i n e B C) ( l i n e B’ C’)

The constructions in this statement are interpreted as follows: we take a point A’

on line AX (the hypothesis H5), we construct line b’ passing through A’ and parallel

with AB (the hypothesis H6), we take B’ as the intersection point of b’ and BX, etc.

Our goal here is to convert this sequence of constructions to a sequence of construc-

tion for the area method that states the same theorem. The theorem is stated in the

area method as follows:

Theorem P a r a l l e l i s m e :

f o r a l l A B C X A’ B’ C’ : Point , A’ <>C’ −> A’ <> B’ −>
o n l i n e A’ X A −>
o n i n t e r l i n e p a r a l l e l B’ A’ X B A B −>
o n i n t e r l i n e p a r a l l e l C’ A’ X C A C −>
p a r a l l e l B C B’ C’ .

Proo f .

area method .

Qed .

We observe that the statement in constructive form is very close to the one in the

area method. A main reason is that constructions of both systems have order, and

they are closely related with elementary constructions by ruler and compass. As a

result, converting constructions is performed by passing through these constructions.

We divide our process into 3 following phases:

In the first phase, we normalize constructions in proof context. First, the construc-

tions are recursively unfolded until there are only elementary constructions by ruler

and compass in their representation. The elementary construction are arbitrary point,

point on a line, line with 2 points, perpendicular line, parallel line, and intersection of

lines, etc. This gives us sequences of the elementary constructions. We then perform

some simplification of these sequences. We note that circles are barely treated in the

area method [32], so they are not treated at this moment.

In our example, by using H6: b′ == lineP A′ (line AB), this step replaces the

hypothesis

H8: B′ = intersectionPoint b′ (line BX)
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with

H8: B′ = intersectionPoint(lineP A′ (line AB))(line BX)

In the second phase, we translate the sequences that we get from the first phase

into constructions of the area method. Since the constructions of the area method

are close to the elementary constructions, for each construction, we can readily find

out sequences of elementary constructions that express this constructions. Once one

of sequences appears in the hypotheses after the first step, we try to convert it to

this construction. Some constructions and their equivalent sequence are illustrated in

Table 4.3.

Construction of the area method Equivalent consequence of

elementary constructions

on line A B C A ∈ BC

inter ll I A B C D I = AB
⋂

CD

on parallel A’ A B C A’ ∈ (lineP A BC)

on inter line parallel Y R’ U V P Q Y = (lineP R’ PQ)
⋂

UV

on inter parallel parallel Y R’ U V W P Q Y = (lineP R’ UV)
⋂

(lineP W PQ)

is midpoint I A B I = midpoint A B

on perp A B C A ∈ (lineT B BC)

Table 4.3: The equivalence of constructions

In our example, this phase converts the hypothesis

H8:B′ = intersectionPoint(lineP A′ (line AB))(line BX)

to the construction

H8: on inter line parallel B′ A′ B X A B.

Both of them express that we draw a line passing through A’ and parallel with AB,

this line intersects BX at B’.

In the last phase, we convert proof obligation in the form that is accepted by the

area method.

................Begin of Technical Details.............. 8.

We now detail how we implement these phases in Coq.

Normalizing constructions The first phase is to normalize the constructions

provided by our library. We try to have the simplest representations of construction.

We now unfold and replace compound constructions with corresponding sequences

of the elementary constructions. For example, the perpendicular bisector of AB (l ==

perpendiculer bisector AB) is replaced by the line that passes through the middle

point of AB and is perpendicular with AB (l == lineT (midPoint AB)(line AB)). As

a result, we have only elementary constructions in the proof context. Our example does
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not include compound constructions, hence this step does not have any effect in this

case. The context proof remains unchanged.

Because constructions in the area method take only points as its arguments, we have

to replace every occurrence of a line with its definition. As mentioned in Chapter 2,

this replacement is also realized by the tactic rewrite. The following tactic allows us to

automatically do this .

Ltac u n f o l d l i n e s t o p o i n t s :=

r e p e a t

match goa l w i th

|H : ?a == l i n e |− =>

r e w r i t e H i n ∗ ; r e v e r t H

|H : ?a == l i n eT |− =>

r e w r i t e H i n ∗ ; r e v e r t H

|H : ?a == l i n eP |− =>

r e w r i t e H i n ∗ ; r e v e r t H

end ;

i n t r o s .

This tactic seeks all variant of definition of any line a in the hypotheses (the term a

== ). If it finds a hypothesis containing the definition (H: a == )), replacement with

all occurrence of a in the context (rewrite H in *) is performed. This process of finding

and replacing is repeated. To avoid infinite loops, after each step, we takes off treated

hypothesis and put it in the goal (revert H). When the repeat loops finishes, we use

intros to restore the hypotheses from the goal.

Finally, these sequences are reduced in a concise form without loosing their se-

mantics. For example, a line passing through A that is parallel with perpendic-

ular bisector of BC is simplified to a line passing through A that is perpendic-

ular to line BC as follows: l == linePA(perpendiculer bisector BC) → l ==

linePA(lineT (midPoint BC)(line BC)) → l == lineTA(line BC). Some lemmas

need to be proved to ensure this simplification.

Lemma s i m p l i f y l i n e P l i n e T :

f o r a l l A B C D : Point ,

A <> B−>
l i n eP D ( l i n eT C ( l i n e A B) ) == l i n eT D ( l i n e A B) .

Lemma s i m p l i f y l i n e T l i n e P :

f o r a l l A B C D : Point ,

A <> B−>
l i n eT D ( l i n eP C ( l i n e A B) ) == l i n eT D ( l i n e A B) .

. . .

And a tactic is written to automatically do this simplification.

Ltac s i m p l i f y l i n e T l i n e P :=
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r e p e a t

match goa l w i th

|H: con t e x t [ l i n eP ?D ( l i n eT ?C ( l i n e ?A ?B ) ) ] |− =>

l e t H1:= f r e s h i n

cut (A<>B) ; [ i n t r o s H1 | ] ;

r e w r i t e ( @ s im p l i f y l i n e P l i n e T A B C D H1) i n ∗ ;
c l e a r H1

|H: con t e x t [ l i n eT ?D ( l i n eP ?C ( l i n e ?A ?B ) ) ] |− =>

l e t H1:= f r e s h i n

cut (A<>B) ; [ i n t r o s H1 | ] ;

r e w r i t e ( @ s im p l i f y l i n e T l i n e P A B C D H1) i n ∗ ;
c l e a r H1

. .

end .

This tactic repeatedly finds hypotheses containing the construction lineP D (lineT

C (line A B)), it then replace this construction by lineT D (line A B).

So, our tactic in this part is a combination of the tactics above

Ltac no rma l i z eS ta t ement :=

. . . ;

t r y u n f o l d l i n e s t o p o i n t s ;

t r y s i m p l i f y l i n e T l i n e P .

After this phase, we have only combination of elementary constructions in a concise

form. The proof context after applying this step is as follows:

Proof

no rma l i z eS ta t ement .

1 subgoa l

H1 : A’ <> B’

. .

H5 : l i e sOnL i n e A’ ( l i n e A X)

H8 : B’ = i n t e r s e c t i o n P o i n t ( l i n eP A’ ( l i n e A B) ) ( l i n e B X)

H9 : C’ = i n t e r s e c t i o n P o i n t ( l i n eP A’ ( l i n e A C) ) ( l i n e C X)

. .

(1/1)

p a r a l l e l L i n e ( l i n e B C) ( l i n e B’ C’)

Converting constructions In the second phase, we try to extract constructions

of the area method from the sequence of constructions we get in the first step. Let’s

consider the constructions of the area method. In fact, each construction aims to create

a geometric object with a precise semantics. For this, we know how to construct this

object with elementary constructions.

For example, on inter line parallel Y R′ U V P Q is the construction of Y such
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that Y is the intersection point of line UV with the line passing through R’ and parallel

with line PQ. With the elementary construction, we can construct Y as follows: we

first construct the lines PQ and UV; we then construct the line parallel to PQ that

passes through R’; finally we take Y as intersection of the parallel line with line UV.

Therefore, Y is defined by Y = intersectionPoint (lineP R′ PQ) UV

This equivalence is assured by proving the following lemma. We need to find out

all possible consequences for each construction of the area method and prove them.

Lemma c o n s t r o n i n t e r l i n e p a r a l l e l :

f o r a l l (Y R U V P Q : Po in t ) ,

P <> Q −>
U <> V−>
¬ l i e sOnL i n e R ( l i n e P Q) −>
¬ p a r a l l e l L i n e ( l i n e P Q) ( l i n e U V) −>
Y = i n t e r s e c t i o n P o i n t ( l i n eP R ( l i n e P Q) ) ( l i n e U V) −>
o n i n t e r l i n e p a r a l l e l Y R U V P Q .

For each construction of the area method, we know sequences of the elementary

constructions that can construct the same object (see Tab. 4.3), we look for occurrences

of these sequences in the proof context. Once we find them, we try to convert them

into the equivalent construction of the area method.

Ltac conve r t t o AMCons t r u c t i on s 6 :=

match goa l w i th

| |− ?G =>

r e p e a t

match goa l w i th

|− −> G =>

match goa l w i th

| H: ?Y = i n t e r s e c t i o n P o i n t ( l i n eP ?R ( l i n e ?P ?Q) ) ( l i n e ?U ?V)

|− =>

l e t H1 := f r e s h i n

cut ( o n i n t e r l i n e p a r a l l e l Y R U V P Q) ;

[ i n t r o s H1 | app l y ( @ c o n s t r o n i n t e r l i n e p a r a l l e l Y R U V P Q) ;

auto with geo ]

; r e v e r t H

end

| |− G =>

match goa l w i th

| H: ?Y = i n t e r s e c t i o n P o i n t ( l i n eP ?R ( l i n e ?P ?Q) ) ( l i n e ?U ?V)

|− =>

l e t H1 := f r e s h i n

cut ( o n i n t e r l i n e p a r a l l e l Y R U V P Q) ;

[ i n t r o s H1 | app l y ( @ c o n s t r o n i n t e r l i n e p a r a l l e l Y R U V P Q) ;

auto with geo ]
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; r e v e r t H

end

| => i d t a c ”avo i d ”

end

end ;

i n t r o s .

A short description of this tactic is as follows:

◦ We use the structure match goal with ... H:?Y = intersectionPoint.. to look for

hypotheses of the form = interesectionPoint (lineP ) .

◦ If we find such a hypothesis, we introduce its corresponding construction by using

the tactic cut (on inter line parallel..).

◦ To prove equivalence of introduced construction with the former sequence, we

apply its corresponding lemma apply (@constr on inter line parallel ...)

◦ We add some techniques to avoid loops

After this phase, constructions of the area method are introduced. However, some

sub-goals are generalized. They are conditions necessary for the equivalence of con-

structions in the lemma constr on inter line parallel. The proof context is as follows:

Proof

no rma l i z eS ta t ement .

conve r t t o AMCons t ru c t i on s .

1 subgoa l

H1 : A’ <> B’

. .

H5 : l i e sOnL i n e A’ ( l i n e A X)

H8 : B’ = i n t e r s e c t i o n P o i n t ( l i n eP A’ ( l i n e A B) ) ( l i n e B X)

H9 : C’ = i n t e r s e c t i o n P o i n t ( l i n eP A’ ( l i n e A C) ) ( l i n e C X)

H10 : o n i n t e r l i n e p a r a l l e l B’ A’ B X A B

H12 : o n i n t e r l i n e p a r a l l e l B’ A’ B X A B

. .

(1/7)

p a r a l l e l L i n e ( l i n e B C) ( l i n e B’ C’)

(2/7)

˜ l i e sOnL i n e A’ ( l i n e A C)

(3/7)

˜ p a r a l l e l L i n e ( l i n e A C) ( l i n e C X)

Converting proof obligation This phase is to convert proof obligation into the

form accepted by the area method. This phase is readily performed.

..............End of Technical Details................
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4.4 Combining with the method of Gröbner bases

In this method, geometry problems are stated in an algebraic form where points are

represented by their coordinates and geometric predicates by polynomials. This method

is performed by calculations over polynomials. The proof obligation will be constructed

by a combination of polynomials in the hypotheses. Similar to the area method, this

is formalized and provided under the form of a tactic nsatz. For more detail of the

formalization of this method, we refer readers to [25].

In comparing with the area method, integration of this method is less complex.

It is because we only need to translate our statements into the algebraic form. In

particular, each hypothesis in our proof context has to be translated. We recall that

there are 2 types for hypotheses: predicate form and constructive form. For example,

the hypothesis that I is the middle point of AB can be stated as |IA| = |IB|∧col A B I

and I = midPoint A B.

Since we can get equivalent properties from geometry constructions, we only need

consider the first type. In fact, geometric predicates can be represented by polynomials

based on algebraic relations of vectors and scalar products, so geometric problems stated

in the constructive form or the predicate form are easily turned into the algebraic form.

Some translations are as follows

Lemma t r a n s c o l :

f o r a l l (A B C : Po in t ) , c o l A B C −>
(X A − X B)∗ (Y C − Y B)−(Y A − Y B)∗ (X C − X B)=0.

Lemma t r a n s p a r a l l e l :

f o r a l l (A B C D: Po in t ) , p a r a l l e l L i n e ( l i n e A B) ( l i n e C D) −>
( (X B)−(X A) ) ∗ ( (Y D)−(Y C))=((Y B)−(Y A) ) ∗ ( (X D)−(X C ) ) .

Lemma t r a n s l i e sO n :

f o r a l l (A B C : Po in t ) , l i e sOnL i n e A ( l i n e B C) −>
(X B − X A)∗ (Y C − Y B)−(Y B − Y A)∗ (X C − X B)=0.

Lemma t r a n s p e r p e n d i c u l a r :

f o r a l l (A B C D: Po in t ) , p e r p e n d i c u l a r ( l i n e A B) ( l i n e C D) −>
( (X B)−(X A) ) ∗ ( (X D)−(X C))+((Y B)−(Y A) ) ∗ ( (Y D)−(Y C))=0.

Lemma t r a n s s amed i s t a n c e := f o r a l l (A B C D : Po in t )

d i s t a n c e A B = d i s t a n c e C D −>
(XB −XA)2 + (Y B − Y A)2 = (XD −XC)2 + (Y D − Y C)2 .

Where X, Y are functions of type Point -> Real, that return the coordinates of the

input point and defined in our Cartesian coordinate system OIJ system by

X A :=
−→
OA
−→
OI

Y A :=
−→
OA
−→
OJ

In fact, our formalization of the system OIJ makes easy calculations of point coor-

dinates, vectors and scalar products. We saw a preview of this capability through

technical detail 4 on page 55. Now we consider how to prove the above lemmas.



4.4 Combining with the method of Gröbner bases 96

The following are some properties concerning point coordinates and vector that

are easily verified and used in our proofs:

∀AB : Point, (XB −XA) =
−−→
AB
−→
OI ∧ (Y B − Y A)

−−→
AB
−→
OJ

∀AB : Point,
−−→
AB = (XB −XA)

−→
OI + (Y B − Y A)

−→
OJ

∀(ABCD : Point)(k : R),
−−→
AB = k

−−→
CD →

(XB −XA) = k(XD −XC) ∧ (Y B − Y A) = k(Y D − Y C)

∀(ABCD : Point)(k : R),
−−→
AB + k

−−→
CD →

(XB −XA) = k(XD −XC) ∧ (Y B − Y A) = k(Y D − Y C)

Let’s consider the proof of the lemma trans parallel : from parallelism of line AB

and CD, we have existence of a real number k such that
−−→
AB = k

−−→
CD. The third above

property gives us

k
−−→
CD → (XB −XA) = k(XD −XC) ∧ (Y B − Y A) = k(Y D − Y C)

As a result, we have

(XB −XA)(Y D − Y C) = k(XD −XC)(Y D − Y C) = (XD −XC)(Y B − Y A)

Now, let’s consider the proof of the lemma trans perpendicular : from perpendicularity

of line AB and CD, we have
−−→
AB ⊥

−−→
CD, hence

−−→
AB ·

−−→
CD = 0. Using the second property,

we replace
−−→
AB with (XB −XA)

−→
OI + (Y B − Y A)

−→
OJ . Similarly, we replace

−−→
CD with

(XD −XC)
−→
OI + (Y D − Y C)

−→
OJ . We have

((XB −XA)
−→
OI + (Y B − Y A)

−→
OJ)((XD −XC)

−→
OI + (Y D − Y C)

−→
OJ) = 0

Once again, we use the tactic RingScalarProduct to simplify the formula and get

(XB −XA)(XD −XC)
−→
OI ·

−→
OI + (Y B − Y A)(XD −XC)

−→
OJ ·

−→
OI +

(XB −XA)(Y D − Y C)
−→
OI ·

−→
OJ + (Y B − Y A)(Y D − Y C)

−→
OJ ·

−→
OJ = 0

From the construction of the Cartesian coordinate system OIJ, we have
−→
OI ·
−→
OI = 1,

−→
OI ·

−→
OJ = 0,

−→
OJ ·

−→
OI = 0 and

−→
OJ ·

−→
OJ = 1. Replacing the left parts of these equation

by the corresponding right parts, we get

(XB −XA)(XD −XC) + (Y B − Y A)(Y D − Y C) = 0

So, translating theorem statements into the algebraic form is easily performed.

However, difficulties that we meet are how to treat conditions in the hypotheses. To

ensure existence of geometric objects, non-degenerate conditions usually state that two

points are different and two lines are not parallel

The conventional treatment of conditions of this kind in this method is performed

by putting them into the proof obligation. For example, instead of proving Goal with

the hypothesis A <> B, we prove the new goal A = B ∨Goal without this hypothesis.
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Suppose Poly1 = 0 and Poly2 = 0 are respectively algebraic forms of A = B and Goal.

So, the algebraic form of the new goal is Poly1.Poly2 = 0.

This treatment is applied for all the conditions. As a consequence, the algebraic

form of the proof obligation becomes complex. This makes the method very slow.

In fact, there are conditions in the hypotheses that can be eliminated when translat-

ing the theorems statement into the algebraic form. It is because theorem statements

in algebraic form implicity contain degenerate cases. There are conditions that are

introduced in the proof obligation after the translation.

For example, in example 2, we have to prove BC ‖ B′C ′ . The statement of this

example in our library needs the conditions B 6= C and B′ 6= C ′ to ensure the existence

of lines BC and B’C’.

Using the lemma trans parallel to translate the proof obligation in the algebraic

form, we have to prove that

((XB)− (XC)) ∗ ((Y B′)− (Y C ′)) = ((Y B)− (Y C)) ∗ ((XB′)− (XC ′))

It is easy to find that this equality is still true for the cases B = C and B′ = C ′.

Therefore, adding them to the proof obligation is redundant.

However, it is really difficult to determine which conditions are superfluous after

the translation. We do not have a technique for this yet.

4.5 Conclusion and future work

We present in this chapter the use of our library as a foundation to integrate other

geometry systems. The axioms of Hilbert’s and Tarski’s systems for plane geometry

are expressed and proved in our library. This, in a logical point of view, affirms the

consistence of the formalization of geometry notions in our system with Hilbert’s and

Tarski’s systems.

Integrating the area method and the method of Gröbner bases makes it possible

to reuse the formalizations of these methods. As a result, users can switch between

interactive proving and automatic proving. This has benefits from a geometry proving

point of view. By using automatic proving for minor proof obligations that would lead

to long and tedious proofs, users can concentrate on major reasoning steps. Users

can use automatic proving to ensure the correctness of what they are going to prove.

Besides, this integration offers users multiple geometry points of view about the same

problem.

However, there is still some work to be done. Translating proof contexts of our

library into ones of the area method, that we present in this chapter, is only for the

case where problems are stated by constructions. This needs to be improved to deal with

the other case where problems are stated in the form of predicates. In this direction, an
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approach presented in [6] allows us to get geometric constructions from given predicates

by constructing constraint matric. However, it is implemented in Java.

To integrate the method of Gröbner bases, treatment of non-degenerate conditions

also needs to be improved.

In the future, we plan to integrate Wu’s method that was formalized in Coq by

J.D. Genevaux [22]. We also intend to formalize the notion of full angle. This will lay

foundations for formalizing the full angle method in Coq.



Chapter 5

Dynamic Geometry Tool for

Interactive Theorem Proving

5.1 Context

Nowadays, dynamic geometry software (DGS, also called interactive geometry software)

plays an important role and has highly influenced mathematics education. It allows

users to create and then manipulate geometric constructions, primarily in plane geom-

etry. Users start with free points and construct new geometry objects with provided

constructions like lines, intersection points, circle, Euclidean transformations, etc. By

moving these free points, users can observe their influence on other constructed objects.

Therefore, conjectures can be discovered.

There are numerous applications for interactive geometry on the market with a

variety of features. Many of them are really used in classroom in many countries

and have certain effects. However, a few of them deals with proof related features.

Generally, they are classified into 2 categories1.

◦ DGSs allowing users to automatically verify conjectures by using automatic the-

orem proving

◦ DGSs allowing users to construct proofs of conjectures

For the first category, proofs are generated by using automatic theorem proving

which is usually based on efficient automatic proof methods such as the Gröbner bases

method[33], Wu’s method[10], the area method[11], and the full-angles method[11].

Some dynamic geometry softwares of this category are as follows

MMP/Geometer[20] and GeoExpert[50] are strong systems which implement Wu’s

method, the area method, the full-angles method (for GeoExpert), and especially the

1This classification is also presented in the PhD thesis of J. Narboux
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deductive database method[13]. The last method relies on a set of basic rule, and allows

to find out traditional proofs. GeoExpert allows users to visually understand each step

in generated proof.

Geothms[46] with a web interface uses the GCLC prover which is based on the

area method. With the support of a repository of geometry theorems, users can store

theorem statements and their proofs.

Geometry Explorer[48] also implements the full-angles method. However, it can

automatically generate novel diagrammatic proofs corresponding with reasoning used

in geometry theorem proving. It is a good illustration for proofs.

For the second category, users can construct proofs step by step. We want to

cite here remarkable software such as Chypre[5], Cabri-Euclide[35] and Geometrix[26].

Generally, dynamic geometry software of this category provides a set of basic rules

and allows users to guide proofs by using the rules. There are some differences for

manipulation in these tools.

For Geometrix, the teacher can create an exercise with an specification of the appli-

cable rules. From the hypotheses of a created figure, system performs deductions with

the set of rules, then generate conjectures. The teacher picks one to state the exercise.

In turn, the student, at each proving step, can select a rule and see propositions that

this rule can offer from the current proof context (hypotheses). These propositions are

automatically calculated. The student chose propositions to add into the hypotheses.

Once the proof obligation appears, the proof is finished.

For Chypre, the problem solving process is represented by a graph of facts. Once

users add an assertion, the system automatically takes into account two types of ele-

ments: reasoning steps to deduce this assertion form existing ones, and other assertions

that can be deduced form this newly one (by using the provided rules).

In the two systems above, automatic pre-calculations can make proving easier for

users. However, users do not really participate in deduction, in particular in rules

selection. Cabri-Euclide fills this gap by allowing users to organize their proof. When

users introduce a statement, the system only verifies if this leads to a circular argument.

When users apply a rule, the system verifies the necessary conditions that ensure the

correctness of this deduction , and requests users to prove them.

All above systems realize their proof related feature by implementing their own

theorem prover. We can see some drawbacks as follows:

◦ At the level of interaction with users: in the first category, tools automatically

generate proofs hence users can not be involved in the proof process. In the

second category, users can guide proofs. However, this guidance has to follow pre-

conceived scenarios and interaction with geometric objects in the figure during

proofs is limited.
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◦ At the level of extension: their proof related features are difficult to extend. In

fact, the theorem prover of a dynamic geometry software is often specifically im-

plemented for the corresponding methods. Consequently, providing a new method

leads to implementing a new prover completely, sometimes changing the under-

lying system (logic, algebraic).

◦ At the level of proof related capability: users can not combine different kinds of

proofs. For example, proofs by deduction of a rule can not be used at the same

time as algebraic calculations

In this chapter, we present a proof system extension to construct traditional proofs

and interact directly with geometrical objects during these proofs. It is an interface for

interactive geometry proving which is a combination of the Geogebra dynamic geometry

software [23] with the Coq proof assistant. We think that using a proof assistant like

Coq to implement theorem proving can remove the above drawbacks.

There are some developments that also aim at the combination of DGSs and proof

assitants. First, we want to cite here the work developed by J. Narboux[39][38]. He

developed a DGS named Geoproof, that provides the proof related feature with the

support of Coq. This tool allows users to construct geometric objects and conjecture.

Once users want to prove this conjecture, the theorem statement is translated to a

proof context in the Coq proof assistant (including hypotheses and goal). Geoproof

then launches the Coq IDE (as a separated editor or embedded editor) to prove this

theorem with the area method [37]. However, this system provides only automatic

proofs.

Another one which is also a combination of a DGS with Coq is GeoView[6], but this

tool works in the opposite direction. It produces a diagram in a DGS, namely GeoPlan,

from a theorem statement in Coq.

5.2 Introduction to Geogebra

Geogebra is a free dynamic geometry software for education in schools. It was started

by Markus Hohenwarter in 2001 in his master and PhD work[23]. It is implemented

in Java and thus available for multiple platforms. It provides a new kind of tool for

mathematics by joining geometry, algebra and calculus. It received several international

educational software awards and is applied in education at schools in different countries.

The Fig.5.1 is a screen shot of this tool. Like other dynamic geometry software,

Geogebra provides basic geometric objects such as points, vectors, straight lines, circle,

and more complex constructions such as midpoint, parallel lines, circumcircle, etc.

Users can draw geometric objects by selecting the corresponding icon in the tool bar,

or typing command in the textbox at the bottom as well. Actions are performed in the
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Figure 5.1: A screen shot of Geogebra

drawing window at the right. Geogebra also allows users to undo or redo constructions

at anytime. Users than can move free points (A, B and C for the case of this figure) and

observe the change of the others. By observing movements, users can find conjectures

and check their correctness. For now, checks are limited to simple relations of two

objects at the moment by using its underlying Computer Algebra System (CAS).

The left part of the figure is the algebraic window. It contain algebraic representa-

tions of geometric objects. When users move points in the drawing window, geometric

constructions concerning these points are also changed. This change is automatically

updated in the algebraic window.

Inversely, if users change values of coefficients of polynomials in the algebraic win-

dow, their geometric representation are changed.

This is a strong point of Geogebra which makes it different from other dynamic

geometry software is the connection of Dynamic Geometry Software and Computer

Algebra System. They are two types of educational software that connect the math-

ematical fields of geometry and algebra and are used for mathematics teaching and

learning. However, they are usually treated in separated software packages.

Geogebra can profit both from visualization capabilities of computer algebra system

and dynamic changeability of dynamic geometry system. This encourages students to

discover mathematics in a bidirectional experimental way. Students can investigate
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equations corresponding to drawn objects and they can also investigate the figures

corresponding to given equations.

In fact, thanks to its advantages, Geogebra has a large community and used in

classroom in many country. By combining Geogebra and Coq, we would like to provide

a logical view for students on geometric problems besides what they have already.

5.3 Some analyses about school proofs

Let’s return to example 1 mentioned in page 41. This is illustated in Fig. 5.2 and stated

as follows: Let BD and CE be two altitudes of triangle ABC and points G and F be

the midpoints of BC and DE respectively. It holds that GF ⊥ DE.

Figure 5.2: Example

We remind readers of the proof of this theorem. We use 2 following rules

Rule 1: Given a 4MNP and I is middle point of NP. If 4MNP is isosceles at M,

then MI ⊥ NP .

Rule 2: Given a 4MNP with a right angle in M, if I is middle point of NP, we

have |IM | = |IN | = |IP |.
To prove GF ⊥ DE, by applying the first rule, we need to prove that 4FDE is

isosceles at F. In other words we have to prove |FD| = |FE|.
To prove this new goal. From the hypotheses of theorem, we have that 4DBC a

right triangle with A the right angle. This configuration satisfies rule 2. Using this rule

gives us |FD| = |FB| = |FC|. By a similar way, we have |FE| = |FB| = |FC|. From

the last two equations |FD| = |FB| = |FC| and |FE| = |FB| = |FC|, we can easily

prove that |FE| = |FD|.
There are three principal proof techniques used in proving geometry theorem :

backward-chaining method, forward-chaining method and proving by drawing auxiliary
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lines. These proof methods are accompanied with a set of basic rules.

The backward-chaining approach for geometry reasoning progresses from the con-

clusion to the hypotheses, i.e. we need to prove that

∀GeometricElements,Hyp1 ∧ · · · ∧Hypn → Goal

We search in the set of base rule to find out a rule of the form

∀GeometricElements,G1 ∧ · · · ∧Gn → Goal

Using this rule, the current goal is solved if the hypotheses of this rule are verified.

So, the problem evolves into proving the new goal (also called subgoals) G1, . . . , Gn.

This process is repeated for each subgoal until subgoals are in the hypotheses list or

axioms.

The forward-chaining approach for geometry reasoning aims at generating new prop-

erties from the hypotheses by applying given rules. This means that if the hypotheses

of a basic rule are in the hypotheses list of the proof context, then this rule can be

used and its assertion is added in the proof context as a new hypothesis for the next

deduction steps. In particular, if we need to prove that

∀GeometricElements,Hyp1 ∧ · · · ∧Hypn → Goal.

And in the base of rules we have

∀GeometricElements,Hj1 ∧ · · · ∧Hjm → Goalj

with {Hj1 , . . . ,Hjm } are a subset of {Hyp1, . . . ,Hypn}
So we can add Gj as a hypothesis of theorem. The process finishes when it can

generate the goal.

Generally, we do not use only backward reasoning or forward reasoning to com-

pletely solve problems. These methods are alternatively used in deduction steps. In

our example above,the backward reasoning is used in the deduction step where we ap-

ply rule 1. The proof obligation GF ⊥ DE is replaced by 3 new goals: FD = FE, G

is the middle point of DE, and FDE is a triangle (in other words, F, D and E are not

collinear). However, the last subgoal that corresponds to a degenerate case is usually

omitted in school proofs. The second subgoal is a hypothesis of theorem. So we only

continue the proof by proving the first subgoal.

Forward reasoning is used in the next deduction step where we apply rule 2. Since

we have 4DBC with D the right angle and F is middle point of BC, this rule is applied

and gives us new property |FD| = |FB| = |FC|.
The last method based on drawing auxiliary lines is used when the two methods

above can not resolve problem. Auxiliary lines can make users to find out new use-

ful properties. For example, this method is used in the proof of Ptolemy’s theorem

mentioned in Chapter 3.
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5.4 The interface with the proof related feature

In this section, we present an extension of Geogebra with the proof related feature.

This feature is performed by using our library mentioned in the previous chapter. We

detail this system by showing how users can state and prove geometric theorems. Once

again, example 1 is used for the purpose of explanation.

5.4.1 A snapshot of the interface

Figure 5.3: A screen-shot of GUI. A proof window is integrated in the left

The main interface is as in Fig. 5.3). A window is added for the proof related

feature (the window in the left of the interface in the figure). It is used to interact with

users in constructing proofs and contains two main sub-windows: the command window

and the proof window. The command window is used to display all Coq commands

which state and prove theorems. The proof window allows users to construct proofs,

they can see hypotheses, and goals that need to be proved appear in this window. In

addition, other sub windows are used to display applicable rules for a goal, to apply

rules by giving values for their parameters, and to announce errors, etc.
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Like other views, the proof window can be shown, hidden, dragged around to modify

its position, and opened as an external window.

5.4.2 Stating theorems

5.4.2.1 Constructing diagrams

Geogebra provides a construction toolbar for users to construct diagrams. This toolbar

contain common geometry constructions such as point, line, point on a line, the inter-

section point of lines, circle, triangle, etc. Geometry objects are created one by one by

selecting appropriate constructions with the support of existing objects. During these

step, users can undo and redo the last constructions that they create. Once the figure

is drawn, users can move free points, and dependent constructions will be updated.

To construct a diagram corresponding to the above example, users draw a triangle

4ABC, construct perpendicular lines d ⊥ AC such that B ∈ d and e ⊥ AB such that

C ∈ e, take intersection points E and D, and complete the figure by taking midpoints

G and F of BC and DE respectively and joining them.

Each construction is translated into commands in Coq (figure 5.3). Adding new

geometry objects or removing existing geometry objects implies adding or removing

corresponding hypotheses.

Table 5.1: Constructive and predicate form of some constructions

Constructive form Predicate form

M = midPoint (A, B) collinear (A B M) ∧ MA = MB

M = intersectPoint (l1, l2) l1 ∦ l2 ∧ M ∈ l1 ∧ M ∈ l2
l = line (A, B) A 6= B ∧ A ∈ l ∧ B ∈ l

l = parallelLine (A, m) A ∈ l ∧ l ‖ m

l = perpendicularLine (A, m) A ∈ l ∧ l ⊥ m

In most geometry theorem provers, the predicate form(right column of table 5.1) is

used to describe geometric statements, i.e. hypotheses and conclusion are represented

by geometry predicates. This offers a view about properties of geometric objects.

Our approach is different. We think that, in a pedagogical view, the constructive

form(left column of table 5.1) is suitable for students during this phase. Thanks to the

constructivity of our library, theorems are readily stated in this form.

However, the predicate form is necessary in proving theorems and users can obtain

it in the proving phase which will be presented in the next section.
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Figure 5.4: Users find and add a conclusion

5.4.2.2 Discovering conjectures

Once a diagram is completely constructed, users easily see free points that do not

depend on other constructions as these points are highlighted using a different color.

Users can move these free points by drag-and-drop, dependent constructions are up-

dated, and users can observe relationships between geometry objects, traces of points,

etc. and conjecture.

Once users want to prove a conjecture, they can check if this conjecture is correct.

This is useful because they need to be ensure that they are going to prove a valid fact.

This pre-verification can be performed using a feature of Geogebra with the support of

its CAS, or using an automatic proof method in Coq (such as the area method).

For our example, users can move points A, B and C, they find out perpendicularity

of GF and DE (GF ⊥ DE). They select these lines and right click, a dialog appears to

confirm this perpendicularity, and ask users to prove it (figure 5.4). Once users decide

to prove the conjecture, we can go to theorem proving phase in the next section.
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5.4.3 Theorem proving

As mentioned in Chapter 2, there is a big difference regarding the detail of proof

between proofs in high school and formal proofs. In fact, at the cognitive level of high

school students, they only concentrate on the main deduction steps that are performed

by using the forward method and the backward method. Proving other subgoals that

appear in the proof process does not adapt to their knowledge, hence these goals are

usually omitted or admitted.

Consistent with proofs in school, our tool makes students concentrate on principal

deductions steps. The auxiliary subgoals are solved by the underlying proving system,

hence hidden from students’ view.

5.4.3.1 Getting properties

We start this section by discovering geometric predicates from the construction. Our

implementation allows users to get geometric predicates automatically or manually.

Users can select a geometric object definition in hypotheses and get its properties using

mouse-clicks, they can also unfold all definition in hypotheses at the same time. The

corresponding tactics are automatically sent to Coq.

The following tactics collects hypotheses that define new points (for example M

is the intersection point of lines a and b) and creates new hypotheses that are cor-

responding to properties of the new points (for example M ∈ a, M ∈ b and a ∦ b).

Ltac u n f o l d A l l D e f i n i t i o n := match goa l w i th

|H: ?M = i n t e r s e c t i o n P o i n t ?a ?b |− =>

l e t H1 H2 H3 := f r e s h ” i n t e r s e c t i o n P o i n t P r o p e r t y ” i n

d e s t r u c t ( @ u n f o l d i n t e r s e c t i o nP o i n t M a b )

as [H1 [H2 H3 ] ] ; auto ;

r e v e r t H; c l e a r H; u n f o l d A l l D e f i n i t i o n ; i n t r o H

end .

Once this tactic is applied, geometric object definitions are replaced by the corre-

sponding predicates in the second column of table 5.1.

This form contains predicates such as l1 ∦ l2, A 6= B, etc. which may be used as non

degeneracy conditions for the existence of objects. With many definitions of geometric

objects, we implicitly add non degeneracy conditions in hypotheses. These conditions

are very important for reasoning. Resolving a problem in degenerate cases is often more

complex than resolving the original problem. The same diagram with different paths

of construction will have different non degeneracy conditions.
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5.4.3.2 Searching and Applying rules

We present how the backward method is implemented in our system. Section 5.3 shows

that for each backward deduction step, users need to find and apply a rule that leads

to the current goal.

Figure 5.5: List of searched rules

Searching applicable rules in our interface is implemented using Search commands.

It is strong enough to find all rules in a database which lead to a goal given by a

pattern. From the proof window of the interface, users can search all applicable rules

for the current goal. A list of applicable rules will be displayed (in the bottom of the

proof window in Fig. 5.5). The result list is useful for users because it is a reduction of

database of rules focusing in the current goal.

In our example 1, to prove that GF ⊥ DE, we need to find rules which have a

conclusion in the form of perpendicularity of two lines. A variant of tactic Search is

sent to Coq

SearchPattern ( ⊥ ) inside GeoBasicModule

For another provided interaction users, we want to emphasize is the capability to

visualize rules. Users not only have a list of applicable rules, but also can visualize
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them. The corresponding figure of a rule makes it easier for users to select points for

the application of this rule. In addition, it allows users to visually know what are

the sub-goals generated by this application. The visualization of rules is illustrated in

Fig. 5.6.

Figure 5.6: Corresponding figure of a rule

Users select a rule and view its corresponding figure. By moving points of this

figure, they find out that there is a configuration of points in the theorem that satisfies

this rule. After giving values for parameters of this rule which usually are points, lines,

etc. users can update the statement of the rule with given values. Finally, users can

apply this rule with assigned parameters to finish the deduction step.

In our example, the following rule is selected

Lemma rule24 1: ∀ A B C M :Point, B 6= C → A 6= M → AB = AC → M =

MidPoint(B,C) → AM ⊥ BC.

Users view its corresponding figure in the left window. By moving points, the figure

is transform to the same configuration of points G, D, E and F. By assigning these

points to corresponding parameters of the rule, users recognize that applying this rule

gives GF ⊥ DE. The instance of rule is as follows

D 6= E → G 6= F → GD = GE → F = MidPoint(D,E) → GF ⊥ DE.
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Users can easily know which new goal they have to prove after this application

|GD| = |GE|.
Applying this rule with selected points is performed by command

app l y r u l e 2 4 1 wi th (A:=G) (B:=D) (C:=E) (M:=F ) .

5.4.3.3 Adding new properties

Generally, we do not only use the backward method to solve problems. This method

is used in alternation with the forward method. As mentioned, the forward method

aims at generating new properties from hypotheses of the proof context by applying

some rules. A rule can be applied when it is ensured in the proof context, in particular,

hypotheses of the rule have to appear in the proof context.

This method is rather suitable to automatic deductions than interactive deduc-

tions, because applying this kind of method gives new properties without changing

goals. However, sometimes in a proof, users can find new properties by moving free

points in the figure and observing changes. These properties are useful for their proof.

Unfortunately, these properties can not be directly deduced from hypotheses that they

have. As a consequence, the forward method can not be applied. This case is a variant

of this method and is provided in our system.

Our system, during proofs, allows users to add new properties that they find out

from the figure into the proof context. As done with the conjecture of the theorem,

users can select geometric objects, get properties among them and ask the system for

a pre-verification. Then these properties are used as hypotheses in the current proofs

once they are verified. This interaction is illustrated in Fig. 5.7.

In our example, users observe that |GD| = |GC| and want to use this property.

Users select 2 segments GD and GC, with a right click users can find out that they are

equal and add this equation to the proof context. Proving these properties is performed

as in the previous section.

In our example, |GD| = |GC| is added into the proof context by the tactic assert

and proved as follows

a s s e r t ( d i s t a n c e G D = d i s t a n c e G C ) .

app l y r u l e 6 r w i th (A:=D) (B:=B) (C:=C) (E:=G) .

Where rule6 r is stated by

Lemma r u l e 6 r : ∀ A B C E : Point , A 6= B → A 6= C →
l i n e (A,B) ⊥ l i n e (A,C) → E = MidPoint (B,C) → EA = EC .

5.4.3.4 Drawing auxiliary lines

Sometime, users need to add lines, ray, segment, etc. to a diagram during their proofs.

It is quite important to ensure the existence of these objects. In the theorem proving
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Figure 5.7: Corresponding figure of a rule

phase, each created object exists only under some conditions, the corresponding veri-

fication are sent to Coq. The following commands are sent to Coq when users create

the intersection point M of 2 lines l1 and l2.

l e t H:= f r e s h ” i s I n t e r s e c t i o n P o i n t ” i n

a s s e r t (H: e x i s t s M, M = I n t e r s e c t i o n P o i n t l 1 l 2 ;

app l y e x i s t s i n t e r s e c t i o n P o i n t .

Coq requests to prove l1 ∦ l2 to guarantee existence of M. Once this condition is verified,

the point M will be displayed in the drawing window, and the command destruct H as

[M, H] is automatically sent to Coq to have M = IntersectionPoint(l1,l2)) in hypotheses.

5.4.3.5 Automatic tactics

Proving geometry with the support of Coq gives a high level of confidence, each rea-

soning step is verified. However, it also complicates the process of proving. Users not

only decide which rule will be applied but also prove many minor goals which lead to

tedious proofs and is not suitable for a pedagogical setting. So, to avoid overwhelming

users in proof details, we try to provide tactics to automatically solve these problems.
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Figure 5.8: Users can use automatic tactics in popup menu

For example, we present a tactic to solve problems of line and points on the

line. In our example, we have to prove that line BD ⊥ line CD while we have

c = line AC, d = perpendicularLine B c, D = intersectionPoint c d. With the tactic

unfold AllDefinition presented on page 5.4.3.1, we will get A ∈ c ∧ C ∈ c, B ∈ d ∧ d

⊥ c and D ∈ c ∧ D ∈ d. The following tactics try to replace all instance of line(M,N)

by line l if it finds M ∈ l and N ∈ l in hypotheses.

Ltac r e p l a c e A l l L i n e I n s t a n c e s := match goa l w i th

|− con t e x t [ l i n e ?M ?N] =>

match goa l w i th | H1 : l i e sOnL i n e M ? l |− =>

match goa l w i th | H2 : l i e sOnL i n e M l |− =>

t r y ( r e p l a c e ( l i n e (M,N) ) w i th l i n ∗ ; auto ) ;

r e p l a c e A l l L i n e I n s t a n c e s

end

end

end .

So, one of our tactics is a combination of ”unfold AllDefinition” and ”replaceAllLineIn-

stances” tactics.

Ltac r e p l a c e a u t o L i n e s :=

s o l v e [ u n f o l d A l l D e f i n i t i o n ; r e p l a c e A l l L i n e I n s t a n c e s ] .

For each particular goal, corresponding tactics are provided in a popup menu (figure

5.8).
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5.5 Some discussion about proving with our interface

In comparing with proving at school, our system offers advantages in interaction with

student and emphasizes logical reasoning in proofs. Students can understand hypothe-

ses, goals, as well as rules that they use. The support of the system is moderate.

Students themselves have to decide which rule is used, by which they can guide proofs.

Corresponding figures of rules allows students to have a visual view of how rules are

applied.

Besides, our system also provides some functions that make students more comfort-

able in proving. It can highlight geometric objects that students selected in hypotheses,

by which students are clearer about correspondences between geometric objects and

properties. It allows students to hide and display hypotheses. This avoid disturbing

students with unimportant hypotheses.

In comparing with other DGSs with proof related features, interactions with users

of our system are more familiar. Students feel free in proving by mouse clicks. We

do not have scenarios for their proofs. They do proving in a similar way as they do

in school. All support provided by our system aims at makes students easier to prove

theorems but they do not lose the initiative in the proof process.

The base rules database of the system can be flexibly extended. In fact, it is because

illustrated figures of rules are automatically generated, new rules are easily introduced

in the database once they are proved and loaded. It also makes it easier for students

to reused theorems that are proved by themselves.

Another advantage lies in the extension capability of theorem proving. In chapter 4,

we presented combinations of our library with others automatic deduction methods such

as the area method and the Gröbner basic method. These methods are implemented

in Coq, and integrated in our library. This allows us to use alternatively these method

in interactive proving.

5.6 Communication between Geogebra with Coq

Some integrated development environments (IDE) can be used to communicate with

Coq. Here, we are interested in Pcoq which is a graphical user-interface for Coq [1].

Using Pcoq to communicate with Coq offers some benefits.

PCoq makes it possible to separate between the interface and the proof system.

It means that the graphical interface and Coq are two independent processus. Using

Pcoq with Geogebra allows users to continue manipulating geometric object while Coq

performs deductions that users proposed.

Pcoq manipulates all formulas and commands as tree-like structures (also known

as abstract syntax trees) rather than plain text. It means that commands sent to Coq
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and responses received from Coq (including hypotheses and proof obligations) have

tree structures and displayed by a structure editor. This allows us to easily access

elements in proof context and also get information related to this elements. From this

information, we can make our system to have reasonable interaction with users.

For example, if users select a hypotheses in the form of a = line A B, analyzing over

its structure give us: this is relation with the operator “=”, the left part is a variable

namely a, the right part is a function namely line with 2 parameter A and B. Using

these information, we highlight points A, B and line AB in the figure and allows users

to use the tactic rewrite with this hypotheses.

Pcoq is implemented in Java, the same programming language as Geogebra, so this

makes its integration in Geogebra easier.

5.7 Implementation

Figure 5.9: The system architecture.

An overview of our system is illustrated in Fig. 5.9. Integrating Pcoq into Geogebra

makes it possible to communicate between Geogebra and Coq. In the section presenting

the interface, we saw interactions between the draw pad and the proof view. In par-

ticular, when users draw geometry objects, corresponding command are sent to Coq to

define these objects. We see also interactions between the proof view and Coq through

sending commands and receiving proof contexts during proofs.

So, in this section, we present how we integrate Pcoq into Geogebra and clarify the

implementation of its interactions with the draw window and Coq.
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The version of Geogebra at the moment of concluding this work is 3.3.69.

5.7.1 Integration of the prove view

Geogebra is implemented in Java, its architecture is clear and well organized in separate

layers and modules. It is built with a Model-Controller-View (so called MVC) model.

The Model is application data, the View is a screen, and the Controller defines the way

the View reacts to user input.

In Geogebra, we can simply understand that: the Model contains a list of built

geometric constructions. The Controller contains functions to interact with users. For

example when users create a line, Controller is responsible for creating a construction

for a line and add it to the list in the Model. Finally, we have Views like the drawing

view, or the algebra view to display information from the Model.

Figure 5.10: Implementing The Observer Pattern

Geogebra’s views (including drawing pad, algebra view, CAS view, Spreadsheet

view) are built in the MVC model by using the Observer pattern in Java (see Fig. 5.10).

Therefore, they are synchronized each other and with the change of Model. For exam-

ple, the representation of geometry objects in the drawing view and the algebra view

are synchronized. Moving free points in the drawing view leads to a change of the

construction list in the Model. This change is notified to all views by calling a function

update with the changed construction. So, the algebraic representation of these objects

are also changed.

Besides, they extend the JPanel class of Java. Thus, some features are easily pro-

vided that allow users to show or hide the views, drag around to modify their position,

and open them in an external window as well.

Our integration of Pcoq in Geogebra respects this architecture. Pcoq is re-

implemented as a view of Geogebra. This implementation makes Pcoq receive noti-

fications from other views about changes of constructions. From this information, we

can construct commands and send them to Coq.
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5.7.2 Tree structure for geometric object definition

Now we consider creating objects in the phase of stating theorems. Once a geometrical

object is drawn (for example the middle point of points A and B), a Java object of

type geometry element is sent to all views. This Java object contains information such

as the name of geometric object (suppose that M), the start point A, the endpoint B,

and algorithm constructing this object (middle point). Our proof view receives this

java object. After analyzing the contained information, we construct the corresponding

hypotheses to define this geometry object. For example, the following code lines are

for adding a midpoint in the phase of stating theorems:

p r i v a t e Tree [ ] commandMidPoint ( GeoElement geo ){
// t h i s f u n c t i o n i s to produce commands f o r a midpo in t

Tree [ ] c on t en t s=n u l l ;

A lgoElement pa r en tA lgo = geo . g e tPa r en tA l go r i t hm ( ) ;

GeoElement po i n t 1 = pa ren tA lgo . g e t I n pu t ( ) [ 0 ] ;

GeoElement po i n t 2 = pa ren tA lgo . g e t I n pu t ( ) [ 1 ] ;

c on t en t s = new Tree [ 2 ] ;

c on t en t s [ 0 ] = TreeFormat . addVar ( geo . g e t Labe l ( ) ,

TreeFormat . Po in t ) ;

c on t en t s [ 1 ] = TreeFormat . addHypothe s i s ( ”Hyp MidPoint ” ,

TreeFormat . a s s i g nV a r i a b l e ( geo . g e tLabe l ( ) ,

TreeFormat . f u n c t i o n ( TreeFormat . MidPointAB ,

po i n t 1 . g e t Labe l ( ) , po i n t 2 . g e t Labe l ( ) ) ) ) ;

return con t en t s ;}

The function commandMidPoint(GeoElement geo) constructs a tree structure that

declares a hypothesis with the name Hyp MidPoint. The content of this hypothesis is

the definition M = midpoint A B . Then this newly constructed command is sent to

Coq as in the following code.

p u b l i c c l a s s ProofView ex t end s JPane l implements View {
p r i v a t e GeoCommandManager gcManager ;

p u b l i c void add ( GeoElement geo ) {
gcManager . add ( geo ) ;

}
}

p u b l i c c l a s s GeoCommandManager {
p u b l i c Tree [ ] add ( GeoElement geo ) {
Tree [ ] c on t en t s =n u l l ;

A lgoElement pa r en tA lgo = geo . g e tPa r en tA l go r i t hm ( ) ;

i f ( pa r en tA lgo i n s t a n c e o f A lgoMidpo int ){
con t en t s = commandMidPoint ( geo ) ;

}
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. .

i f ( c on t en t s != n u l l ){
proo fV iew . addTreeCommand ( con t en t s ) ; // send command to Coq

}
return con t en t s ;

}
}

The fact that we construct hypotheses in tree structures is also performed with

command in the proving theorems phase. In the original version of Pcoq, users type

commands in a plain text format. There is a parser to translate them to tree structures.

However, we think that using an external parser is not secure. The correctness depends

on the parser. We want to construct tree structure ourselves. This ensures that the

right commands will be sent.

5.7.3 Interactions with users during their proofs

As mentioned, based on analyzing tree structure data, we can provide functions such

as highlighting the selected objects, searching applicable rules, providing reasonable

tactics and so on.

When users click on an element of a hypothesis, we can find the whole tree that

expresses this hypothesis. Analyzing this tree allows us to figure out the semantics of

this hypothesis and its elements. The grammar used for tree structures is called Vernac.

The following is a part of this grammar

p rem i s e −> ID FORMULA;

FORMULA : := appc prodc ar rowc no t a t i o n p r o j ;

n o t a t i o n −> STRING FORMULA LIST ;

FORMULA LIST : := f o r m u l a l i s t ;

f o r m u l a l i s t −> FORMULA ∗ . . . ;

appc −> FORMULA FORMULA NE LIST ;

A short description of this grammar is as follow : α -> A B means that a node of tree

with operator name α (called node α) has 2 sub-nodes of type A and B; A :: α′ β′ A’

means that a node type A can be implemented by nodes α′, β′, or other nodes of type

A′; α -> A * .. means that node α has at least a sub-node.

As a result, the hypothesis H : M = midpoint A B in the proof context has the

tree structure given in Fig. ??.

Our analyses in structures are performed by going down nodes. In particular, we

check if a node is a premise. We go down the right branch and check if it is a notation.

We then get names of the hypothesis (H), operator in this notation (operator +), used

function and its arguments (midpoint, A and B). Implementation in Java is as follows:

i f ( s e l e c t e d I t em . operatorName ( ) . e q u a l s I g n o r eCa s e ( ”p r em i s e ”) ){
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Figure 5.11: Tree structure of the hypothesis H: M = midpoint A B

i f ( s e l e c t e d I t em . sons ( ) [ 1 ] . operatorName ( ) .

e qu a l s I g n o r eCa s e ( ”no t a t i o n ”) ){
S t r i n g hypName = s e l e c t e d I t em . sons ( ) [ 0 ] . atomValue ( ) . t o S t r i n g ( ) ;

Tree hypContent =s e l e c t e d I t em . sons ( ) [ 1 ] ;

S t r i n g connec t eu r = hypContent . sons ( ) [ 0 ] . atomValue ( ) . t o S t r i n g ( ) ;

i f ( connec t eu r . e q u a l s I g n o r eCa s e ( ”=”) ){
miTmp = new MyMenuItem(ACTION REWRITE LEFT ,

ACTION NAME REWRITE LEFT ,

MyMenuItem .NORMAL TYPE) ;

m i L i s t . add (miTmp ) ;

miTmp = new MyMenuItem(ACTION UNFOLD,

ACTION NAME UNFOLD,

MyMenuItem .NORMAL TYPE) ;

m i L i s t . add (miTmp ) ;

}
. . .

}

This information allows us to provide reasonable assistance for users. In our code,

we give users, in a popup menu, the tactic rewrite to replace M by its definition in the
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proof context and the tactic unfold to get properties from this definition.

By providing assistances to allows users to guide precisely the proof process using

mouse clicks, we continue the notion of “proof by pointing” that was approached by Y.

Bertot et al. in Pcoq [7]. However, there are differences between these systems. While

proof-by-pointing in Pcoq relies on analyzing formulas and understanding the meaning

of logical symbols, our system focuses on geometric reasoning by getting geometric

significations of formulas. In particular, with the hypothesis H : M = midpoint A B,

the logical view only leads us to provide the tactic rewrite, whereas the geometrical

view leads us to the tactics rewrite and unfold Definition, the latter is to get properties

from the definition.

5.7.4 Visualizing theorem statements

Figures of theorems, statements of theorems in the constructions form, statements of

theorems in the predicate form are strictly related to each other. In the previous

sections, we see that when we draw a figure, its geometric constructions are declared

and these constructions are translated to predicates of geometric objects in the proving

theorem phase.

We now consider an inverse direction of this relation which is how to obtain figures

from predicates. As mentioned in the section 4.3.1, this is really difficult to implement

in Coq, it is because there are probably several construction lists that lead to the same

set of predicates.

However, this is implemented in Java based on calculations of a constraint set that

are used in GeoView [6]. The idea of this implementation is as follows: from predicates

we construct constraint set between points, then an algorithm is provided to produce

constructions of points that satisfy constraints.

Reusing this algorithm, from a statement of a rule, we can obtain constructions

of its points. By modifying the algorithm, we can receive constructions in its output

under the forms of input command of Geogebra. It remains to instantiate the class in

Java of the drawing view and use commands to produce the figure.

5.8 Conclusion and Future Work

In this chapter, we present our interface which allows users to construct interactively

traditional proofs in geometry. The reasoning methods at high school level such as

forward method, backward method, and drawing auxiliary objects as well are provided.

Steps of reasoning are verified by a proof assistant hence the correctness is guaranteed.

Integrating a proof assistant in a dynamic geometry software offers a novel way of

learning geometry. It allows users to additionally have a logic view in solving geometric

problems. Users know what they have in hypotheses, what they have to prove, which
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rules they can apply. By which, they can take good decisions and thoroughly understand

reasoning steps.

Some features need to be improved to allow users to use our tool easily. Dynamically

constructing a diagram from the statement of a rule allows users to better understand

this rule. However, users still have to move free points manually in this constructed

figure to find out points on the figure of the current theorem that conform to the rule.

So the first improvement is how to automatically find out points for a selected rule.

Another improvement concerns the result list of searched rules. For now, users get

rules by syntactic searching in Coq. Some of the rules obtained may be unapplicable

in the current situation. We need to have a mechanism to eliminate rules of this kind.

We could use the computer algebra system of Geogebra to do this

The last improvement we cite here is how we can organize and manage the set of

applicable rules and the set of tactics while adapting to users levels. At this moment,

all rules in our library can be used in proving. Of course, this is not suitable for all

levels of students. Classifying them into levels is necessary.



Chapter 6

General Conclusion and

Perpectives

6.1 Conclusion

In this thesis, we have presented our work about the formal description of geometric

properties.

In Chapter 2, we described how to remove axioms in a development where axioms

has been used for definitional purposes. We worked on a library that had been designed

by F.Guilhot for its use by young students and focused in plane geometry.

Its axiomatic system was reduced to a system containing only axioms for mass point,

scalar products and coplanarity. From this system, we built up affine geometry, then

Euclidean geometry including trigonometry and planar transformation.

The number of axioms we rely on is 13, to which it should be added that we use

the type of real number and all its properties.

A library was provided that covers almost all notions of plane geometry like lines, cir-

cles, intersection point of lines, parallelism of lines, perpendicularity of lines, collinearity

of points, etc.

Geometry objects are defined in a constructive way, proofs are performed in a man-

ner adapted to student’s level of abstraction. It allows students to develop traditional

geometric proofs as taught in school.

In Chapter 3, we described how new notions about orientation could be added to

treat geometrical aspects that would otherwise be left implicit.

The notion of orientation was formalized by using a Cartesian coordinate system.

Its close relationship with the notion of order was considered through proving order

properties. We also clarified the role of orientation in formalizing other notions like

oriented angles and similar triangles.

Our work provided a toolbox for orientation. This was tested by proving Ptolemy’s
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theorem and a theorem about product of segments of chords.

In Chapter 4, we described how axioms systems could be modeled in the library we

developed and how automatic proving tool could be integrated.

Axioms in Hilbet’s and Tarski’s system for plane geometry were expressed and

proved in our library. This, in a logical point of view, brings arguments for the consis-

tence of our formalization of geometry notions with the other systems.

Axioms of the area method, a coordinate-free method, were verified. Tactics were

provided to make it possible to translate geometric theorem statements in our library

into one acceptable by this method. As a result, users can switch between interactive

proving and automatic proving during proofs. Integration was also approached for the

method of Gröbner bases that is an algebraic method for geometry.

With the fact that axioms systems were modeled and automatic methods were

integrated, we provided a foundation for the formalization of geometry. Besides, we

offered multiple geometry points of view about the same geometry problem.

In the last chapter, we presented a software tool that we developed which integrates

the Coq proof assistant and the Geogebra dynamic geometry system. We also showed

that many interface functionalities could be added to ease the work of developing formal

proofs in geometry.

Using our software, users can interactively construct traditional proofs in geometry.

Reasoning methods at school level such as forward method, backward method, and

drawing auxiliary lines are provided.

Our software offers to users useful proof functionalities. At each deduction steps,

users can request for applicable rules, users can see their illustrated figures by which

users can give out good decisions. Moreover, direct interactions with geometric ob-

jects and reasonable assistance are provided during proofs making more natural proof

processes.

6.2 Perspective

For the formalization in Coq, our main objective is to make proofs as natural proofs in

school. This depends not only on which notions are provided in our library, but also

on how we can manipulate them. Enriching the library by notions and properties need

to be done.

Since there are a difference between formal proofs and school proofs in the level of

their detail, we need to provide automatic tactics that is robust enough to solve minor

deduction steps that appear in formal proofs and usually omitted in school proofs.

For our software, there are many ideas to improving this system. The first one lies

on displaying contexts during proofs in natural language. In fact, in [6], the authors

showed that statements in Coq can be expressed in natural languages with PCoq as
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Figure 6.1: Statement in natural language

in Fig. 6.1. Therefore, this direction is reasonable. It makes the interface closer to

students, hence it is a good direction from a pedagogical point of view.

The second one lies on showing proofs by using proof diagrams. Nothing could be

better than using proof diagram to make students to understand proofs. This was also

approached in Geometry Explorer[48] to display proofs developed by the full-angles

method. With using Coq, we can re-use the tactic Show Tree that gives us a tree

structure of our proof. This tactic is mentioned in [1] and proofs are expressed in

natural language as in 6.2.

Figure 6.2: Proof in natural language

Instead of analyzing sent and received information between Geogebra and Coq dur-

ing proofs, we can use this tactic to construct more easily proof diagrams. Moreover,

thanks to using the structure editor of Pcoq, we can display proofs in natural language
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as done with proof contexts.

By improving existing functionalities with adding these new functionalities into our

system, we provide tools for students to perform integral proof processes.



Appendix A

Formal proof of a geometry

theorem

This appendix contains the formal proof of the example 1. The theorem statement is

as follows

Lemma perpExample : f o r a l l A B C D E F G : Point ,

˜ c o l A B C −>
˜ p a r a l l e l L i n e ( l i n eT B ( l i n e A C) ) ( l i n e A C)−>
D = i n t e r s e c t i o n P o i n t ( l i n eT B ( l i n e A C) ) ( l i n e A C) −>
˜ p a r a l l e l L i n e ( l i n eT C ( l i n e A B) ) ( l i n e A B) −>
E = i n t e r s e c t i o n P o i n t ( l i n eT C ( l i n e A B) ) ( l i n e A B) −>
F = midpo in t B C −>
G = midpo in t E D −>
F<>G −>
D <> E −>
p e r p e n d i c u l a r ( l i n e F G) ( l i n e D E ) .

Two basic rules are used in the proofs

Lemma r u l e 1 m e d i a n a l t i t u d e : f o r a l l (M N P I : Po in t ) ,

˜ c o l M N P −> I = midpo in t N P −> d i s t a n c e M N = d i s t a n c e M P −>
p e r p e n d i c u l a r ( l i n e M I ) ( l i n e N P ) .

Lemma r u l e 2 m e d i a n r i g h tT r i a n g l e : f o r a l l (M N P I : Po in t ) ,

p e r p e n d i c u l a r ( l i n e M N) ( l i n e M P) −>
I = midpo in t N P −>
d i s t a n c e I M = d i s t a n c e I N /\ d i s t a n c e I M = d i s t a n c e I P .

The proof is as follows:

i n t r o s .

(∗ Get p r o p e r t i e s from d e f i n i t i o n s o f D and E ∗)
d e s t r u c t ( @ p l a n e i n t e r s e c t i o nP o i n t l y i n gOn
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D ( l i n eT B ( l i n e A C) ) ( l i n e A C ) ) ; auto .

a s s e r t (H10:= @ l i n eT p r op e r t y 1 D B ( l i n e A C) H8 ) .

d e s t r u c t ( @ p l a n e i n t e r s e c t i o nP o i n t l y i n gOn

E ( l i n eT C ( l i n e A B) ) ( l i n e A B ) ) ; auto .

a s s e r t (H13:= @ l i n eT p r op e r t y 1 E C ( l i n e A B) H11 ) .

(∗ Prove some d i f f e r e n c e s o f p o i n t s B<>D and C<>E ∗)
a s s e r t (B <> D) .

r ed ; i n t r o s .

r e w r i t e <−H14 i n ∗ .
e l im H.

l a p p l y 2 ( @ l i e sOnL ineAB co l1 A C B) ; auto with geo .

u n f o l d t r i a n g l e A B C ; auto .

a s s e r t (C <> E ) .

r ed ; i n t r o s .

r e w r i t e <−H15 i n ∗ .
e l im H.

l a p p l y 2 ( @ l i e sOnL ineAB co l1 A B C ) ; auto with geo .

(∗ Cons i d e r 2 c a s e s D = C and D <> C∗)
e l im ( c l a s s i c (D = C ) ) ; i n t r o s .

r e w r i t e H16 i n ∗ .

(∗ For D = C, c o n s i d e r 2 c a s e s E = B and E <> B∗)
e l im ( c l a s s i c (E = B) ) ; i n t r o s .

r e w r i t e H17 i n ∗ .

(∗ 1 s t case D = C and E = B ∗)
(∗ Con t r a d i c t i o n by AB // AC because both o f them are

p e r p e n d i c u l a r w i th BC ∗)
a s s e r t ( p a r a l l e l L i n e ( l i n e A B) ( l i n e A C ) ) .

u n f o l d t r i a n g l e A B C .

app l y p e r p 2 p a r a l l e l w i th ( l i n e B C ) ; auto with geo .

e l im H; app l y p a r a l l e l L i n e c o l ; auto .

(∗ 2nd case D = C and E <> B ∗)
l a p p l y 2 ( @ r u l e 2 med i a n r i g h tT r i a n g l e E B C F ) ; auto with geo .

d e s t r u c t H19 .

app l y ( @ r u l e 1 med i a n a l t i t u d e F C E G) ; auto with geo .

r ed ; i n t r o s .

l a p p l y 2 ( @co l eqD i s m idpo i n t E C F ) ; auto with geo .

r e w r i t e <−H22 i n ∗ ; i n t u i t i o n .

a s s e r t ( l i n e E B == l i n e A B) .
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u n f o l d t r i a n g l e A B C ;

r e w r i t e ( @ l i e sOnL i n e l i n e E q u a l E B ( l i n e A B ) ) ; auto with geo .

r e w r i t e H18 ; auto with geo .

(∗ For D <> C, c o n s i d e r 2 c a s e s E = B and E <> B∗)
e l im ( c l a s s i c (E = B) ) ; i n t r o s .

r e w r i t e H17 i n ∗ .

(∗ 3 rd case D <>C and E = B ∗)
l a p p l y 2 ( @ r u l e 2 med i a n r i g h tT r i a n g l e D B C F ) ; auto with geo .

d e s t r u c t H19 .

app l y ( @ r u l e 1 med i a n a l t i t u d e F D B G) ; auto with geo .

r ed ; i n t r o s .

l a p p l y 2 ( @co l eqD i s m idpo i n t B D F ) ; auto with geo .

r e w r i t e <−H22 i n ∗ ; i n t u i t i o n .

a s s e r t ( l i n e D C == l i n e A C ) .

u n f o l d t r i a n g l e A B C ;

r e w r i t e ( @ l i e sOnL i n e l i n e E q u a l D C ( l i n e A C ) ) ; auto with geo .

r e w r i t e H18 ; auto with geo .

(∗ 3 rd case D <>C and E <> B, t h i s i s the non−degene r a t e case ∗)
l a p p l y 2 ( @ r u l e 2 med i a n r i g h tT r i a n g l e D B C F ) ; auto with geo .

l a p p l y 2 ( @ r u l e 2 med i a n r i g h tT r i a n g l e E B C F ) ; auto with geo .

app l y ( @ r u l e 1 med i a n a l t i t u d e F D E G) ; auto with geo .

r ed ; i n t r o s .

l a p p l y 2 ( @co l eqD i s m idpo i n t E D F ) ; auto with geo .

r e w r i t e <−H22 i n ∗ ; i n t u i t i o n .

d e s t r u c t H19 ; d e s t r u c t H20 ; r e w r i t e H19 ; auto .

d e s t r u c t H19 ; d e s t r u c t H20 ; r e w r i t e H19 ; auto .

(∗ prove tha t EB and EC a r e p e r p e n d i c u l a r ∗)
a s s e r t ( l i n e E B == l i n e A B) .

u n f o l d t r i a n g l e A B C ;

r e w r i t e ( @ l i e sOnL i n e l i n e E q u a l E B ( l i n e A B ) ) ; auto with geo .

r e w r i t e H18 ; auto with geo .

(∗ prove tha t DB and DC are p e r p e n d i c u l a r ∗)
a s s e r t ( l i n e D C == l i n e A C ) .

u n f o l d t r i a n g l e A B C ;

r e w r i t e ( @ l i e sOnL i n e l i n e E q u a l D C ( l i n e A C ) ) ; auto with geo .

r e w r i t e H18 ; auto with geo .

Qed .



Appendix B

Axiomatic system

In this appendix, we present the axioms that we use in our system. This axiomatic

system is more compact but enough to derive proofs of theorems in high-school scope.

These axioms are suitable for the knowledge of students and are taught in school.

We preserve the approach of F. Guilhot in constructing Euclidean geometry from

affine geometry because the notions of mass point and vector are presented in high-

school courses, and calculations of mass point and vector are straightforward and fa-

miliar to students. The following axioms are for barycenter and mass point, which are

used in her development:

Axiom 1 ( D e f i n i t i o n o f a d d i t i o n ) : ∀ (m n : Rea l ) (P Q : Po in t )

m+ n 6= 0→ ∃(R : Point), nP +mQ = (m+ n)R

Axiom 2 ( Idempotency ) : nP + mP =(m+n)P .

Axiom 3 ( Commutat iv i ty ) : nP + mQ = mQ + nP .

Axiom 4 ( A s s o c i a t i v i t y ) : nP + (mQ + kR) = (nP + mQ) + kR .

Axiom 5 ( D e f i n i t i o n o f s c a l a r m u l t i p l i c a t i o n ) : k (nP) = ( k∗n )P .

Axiom 6 ( D i s t r i b u t i v i t y ) k (nP + mQ) = knP + kmQ.

We use small letters a, b, c. . . to denote real numbers; capital letters A, B, C. . . to

denote points; pairs of a real number and a point in the form aA to denote mass points

These axioms allow students to approach affine geometry through simple calcula-

tions of mass points. The notion of vector is then defined from mass points. To build up

the Euclidean space, we introduce a system of axioms for the scalar product of vectors

(denoted by −→u · −→v ), also called the dot product or the inner product. This notion is

also familiar to students. It comes not only from mathematics, but also from physics.

Axiom 7 ( p o s i t i v i t y ) : ∀ −→v : Vector , −→v · −→v > 0

Axiom 8 ( p o s i t i v i t y 2 ) : ∀ −→v : Vector , −→v · −→v = 0 −> −→v =
−→
0

Axiom 9 ( symmetry ) : ∀ −→u −→v : Vector , −→u · −→v = −→v · −→u
Axiom 10 ( a d d i t i v i t y ) : ∀ −→v1 −→v2 −→v3 : Vector , (−→v1 +−→v2) · −→v3 = −→v1 · −→v3 +−→v2 · −→v3
Axiom 11 ( homogene i ty ) : ∀ ( k : R) (−→u −→v : Vecto r ) , (k ×−→u ) · −→v = k × (−→u · −→v )
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Finally, to define the Euclidean plane, the following axioms are added, they assert

the existence of 3 non-collinear points and their co-planarity with any fourth point.

Axiom 12 ( e x i s t e n c e o f 3 not a l i g n e d p o i n t s ) : t h e r e a r e 3 d i f f e r e n t and

non−a l i g n e d p o i n t s O , O1 and O2 .

Axiom 13 ( c o p l a n a r i t y ) : f o r any 4 p o i n t s A, B, C and D i n the p lane ,

we a lway have
−−→
AD i s l i n e a r comb inat ion o f

−−→
AB and

−→
AC .

Note that we here give the axioms in their mathematic forms.
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