
HAL Id: tel-01115023
https://theses.hal.science/tel-01115023

Submitted on 10 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameter estimation and performance analysis of
several network applications

Sara Alouf

To cite this version:
Sara Alouf. Parameter estimation and performance analysis of several network applications. Net-
working and Internet Architecture [cs.NI]. Univeristé Nice Sophia Antipolis, 2002. English. �NNT : �.
�tel-01115023�

https://theses.hal.science/tel-01115023
https://hal.archives-ouvertes.fr

Université de Nice - Sophia Antipolis – UFR Sciences
École Doctorale STIC

THÈSE

Présentée pour obtenir le titre de :

Docteur en Sciences de l’Université de Nice - Sophia Antipolis

Spécialité : Informatique

par

Sara Alouf

Équipe d’accueil : Mistral – INRIA Sophia Antipolis

Estimation de paramètres et analyse des
performances de diverses applications réseaux

Soutenue publiquement à l’INRIA le 8 nov. 2002 à 14:30 devant le jury composé de :

Président : Ernst Biersack Institut Eurécom
Directeur : Philippe Nain INRIA

Rapporteurs : Patrick Thiran EPFL
Don Towsley Université du Massachusetts

Examinateurs : Walid Dabbous INRIA
Michel Riveill I3S - ESSI

Estimation de paramètres et analyse des performances
de diverses applications réseaux

Sara Alouf

Titre de la thèse en anglais :

Parameter estimation and performance analysis of
several network applications

Cette thèse est dédicacée
à mes parents
et à ma sœur

Remerciements

Plusieurs personnes ont contribué, de près ou de loin, au bon déroulement de cette
thèse. Je les remercie du fond de mon cœur. Tout particulièrement, je souhaite exprimer
ma gratitude envers mon directeur de thèse, Philippe Nain, pour son encadrement précieux
et sa grande confiance en moi. Il m’a toujours traitée en égale et ceci m’a beaucoup touchée.
Notre collaboration ne s’en est trouvée qu’enrichie. Mon respect pour lui n’a pas de bornes
et je suis fière d’avoir été son étudiante.

J’ai vivement apprécié le séjour d’un mois que j’ai passé à l’Université du Mas-
sachusetts dans le groupe de recherche CNRG. L’accueil qui m’y a été réservé était des
plus chaleureux, et j’en remercie Don Towsley ainsi que tous les membres du groupe.

Certains résultats présentés dans cette thèse sont issus de collaborations scientifiques
avec Eitan Altman, Chadi Barakat, Fabrice Huet et Don Towsley. Je tiens particulièrement
à les remercier pour le temps qu’ils m’ont consacré.

Je suis reconnaissante à Patrick Thiran et Don Towsley d’avoir accepté d’être rappor-
teurs de ma thèse et d’avoir lu et corrigé mon manuscrit de thèse.

Je remercie Ernst Biersack, d’avoir accepté de présider le jury, et Walid Dabbous et
Michel Riveill d’avoir accepté d’être membres du jury.

Je remercie Sven Östring pour avoir lu et corrigé mon manuscrit de thèse.
Un grand remerciement va à l’assistante du projet Mistral, Ephie Deriche. Sa disponi-

bilité, ses réponses à toutes les questions possibles et imaginables et sa bonne humeur
permanente ont été une aide de tous les jours.

Je souhaite exprimer mon amitié pour tous les membres de Mistral, passés et présents.
Pour tous les merveilleux moments passés ensemble, entre repas de midi, pots, soirées et
pique-niques, je les remercie.

Je ne saurais assez exprimer ma gratitude envers Fabrice Huet pour m’avoir aidée,
conseillée et encouragée durant ses trois années de thèse. Je lui en serai éternellement
reconnaissante.

Enfin, une pensée chaleureuse va vers ma famille qui m’a toujours accompagnée, malgré
les milliers de kilomètres qui nous séparaient, et qui a tenu à faire le voyage, pour assister à
la soutenance de ma thèse et me soutenir en ce dernier jour de ma vie d’étudiante. Merci.

Contents

Présentation des travaux de thèse 1
1 Introduction . 1

1.1 Description des sujets étudiés . 1
1.2 Contributions des travaux de thèse 3

2 Modèles d’inférence pour l’estimation de caractéristiques réseaux 5

2.1 La file d’attente M+M/M/1/K . 6

2.2 La file d’attente M+M/D/1/K . 7

2.3 Estimation des paramètres . 7
2.4 Analyse des résultats . 8
2.5 Conclusion . 9

3 Estimation de la taille de groupes multipoints 9
3.1 Estimation optimale à base de filtre de Kalman 10

3.2 Estimation optimale à base de filtre de Wiener 11
3.3 Estimation efficace à base de filtre linéaire d’ordre 1 13
3.4 Validation des modèles . 13
3.5 Conclusion . 14

4 Analyse de deux mécanismes de communication dans un environnement à
code mobile . 14
4.1 Mécanisme distribué à base de répéteurs 15
4.2 Mécanisme centralisé à base de serveur de localisation 16
4.3 Validation des modèles et évaluation des performances 16
4.4 Extension au cas de multiples paires source-agent 18
4.5 Conclusion . 19

5 Conclusions et perspectives . 19

Introduction 1
Description of the subjects studied . 1
Thesis contributions . 3
Thesis organization . 4
Notation in use . 4

1 Inference models to estimate network characteristics 5
1.1 Introduction . 6
1.2 Related work . 7
1.3 Methodology . 8

i

ii Contents

1.4 The M+M/M/1/K queue . 9
1.4.1 The model . 9
1.4.2 The loss probability . 10
1.4.3 The server utilization . 10
1.4.4 The expected response time . 11
1.4.5 The conditional loss probability . 12
1.4.6 The conditional non-loss probability 14

1.5 The M+M/D/1/K queue . 15
1.5.1 The model . 15
1.5.2 The loss probability . 21
1.5.3 The server utilization . 22
1.5.4 The expected response time . 22

1.6 Using the inference models . 23
1.6.1 An inference question . 23
1.6.2 Solving for the equations . 24
1.6.3 Calculating the moment-based estimators 37
1.6.4 Desirable properties of an estimator 37

1.7 Simulation results and analysis . 43
1.7.1 Trace generation . 43
1.7.2 Estimating cross traffic rate, buffer size and (possibly) server capacity 45
1.7.3 Analysis of the results in case µ is known 46
1.7.4 Analysis of the results in case µ is unknown 58
1.7.5 Simulations with several links . 59

1.8 Extensions . 61
1.8.1 From simulation to reality . 61
1.8.2 Example of a possible application . 61

1.9 Conclusion . 62

2 Estimation of multicast membership 63

2.1 Introduction . 64
2.2 Related work . 66
2.3 Motivation . 69
2.4 Optimal estimation using a Kalman filter . 71

2.4.1 The model . 72
2.4.2 Kalman filter . 74
2.4.3 Simulations . 80
2.4.4 Validation with real traces . 84

2.5 Optimal estimation using a Wiener filter . 88
2.5.1 The model . 89
2.5.2 Wiener filter . 90
2.5.3 Application to the M/M/∞ model 93

2.6 Efficient estimation using an optimal first-order linear filter 96
2.6.1 The model . 96
2.6.2 Optimal first-order linear filter . 97

Contents iii

2.6.3 Application to the M/HL/∞ model 100
2.7 Guidelines on choosing parameters p and S 100
2.8 Validation with real video traces . 102
2.9 Estimating parameters ρ and µ . 107
2.10 Conclusion . 111
Appendix: Computing parameters from trace . 112

3 Analysis of two agent location mechanisms in a mobile environment 115

3.1 Introduction . 116
3.2 Definitions and Notation . 117
3.3 The forwarders . 118

3.3.1 Description . 118
3.3.2 A Markovian analysis of the forwarders 119

3.4 Centralized Server . 132
3.4.1 Description . 132
3.4.2 A Markovian analysis of the server 134

3.5 Validation and comparison . 139
3.5.1 Validation through simulations . 139
3.5.2 Validation through experiments . 141
3.5.3 A theoretical comparison of both approaches 146

3.6 Extension to the case of multiple source-agent pairs 148
3.7 Conclusion . 153

4 Conclusion 155
4.1 Summary . 155
4.2 Perspectives . 156

Glossary 159

Résumé – Abstract 172

iv Contents

List of Figures

1.1 The methodology . 9
1.2 The inference model . 9
1.3 Modulus of the zeros of Gρ(z), −1

ρ
Wk (−ρe−ρ), vs. the traffic load ρ 19

1.4 The parameter αj(ρ) for j = 2, . . . , K and for several values of ρ 21

1.5 0 < ρ(a) < 1 . 30
1.6 1 < ρ(a) < 1/(1− PL) . 31
1.7 ρ(a) = 1 . 31
1.8 U ≤ x2 ≤ 1 . 35
1.9 x2 ≥ 1 . 35
1.10 x2 = 1 . 36
1.11 Evolution of the estimated cross traffic intensity vs. the number of probes . . 48
1.12 Evolution of the estimated buffer size vs. the number of probes 49
1.13 Evolution of the estimates vs. the number of probes 51
1.14 Probe traffic: Poisson, cross traffic: On/Off flows, Pareto On/Off times . . . 53
1.15 Probe traffic: Poisson, cross traffic: FTP/TCP sources 56
1.16 The complementary cumulative distribution function of the relative error re-

turned by estimates λ̂ and K̂ . 57
1.17 The simulated network . 59

2.1 Membership evolution of a short audio session and its estimation using a
naive approach (S = 1s) . 71

2.2 Membership evolution of a short audio session and EWMA estimation 72
2.3 Estimation of the multicast membership over time (p = 0.01, S = 1s): the

light load case λT = 1/185.9s−1, µ = 1/6342s−1 81
2.4 Estimation of the multicast membership over time (p = 0.01, S = 1s): the

heavy load case λT = 1/185.9s−1, µ = 1/37180s−1 82
2.5 Estimation of the multicast group size using the trace of a short audio session

and probability plots for the observed data 85
2.6 Estimation of the multicast group size using the trace of a long audio session

and probability plots for the observed data 86
2.7 The prewhitening approach . 91
2.8 Membership estimation of session video1 and corresponding probability plots 105
2.9 Membership estimation of session video2 and corresponding probability plots 105

v

vi List of Figures

2.10 Membership estimation of session video3 and corresponding probability plots 106
2.11 Membership estimation of session video4 and corresponding probability plots 106
2.12 Membership estimation of session video1 when (i) parameters are known be-

forehand, (ii) estimators λ̂ = m/(qtm) and ρ̂ = E[Yn]/p are used (q = 0.1)
and (iii) EWMA estimators are used (α = 0.99, 0.999) 109

3.1 A time diagram including all RVs relative to the source and to the agent . . 118
3.2 The short-cutting feature in the forwarding mechanism 119
3.3 System states and transition rates in the forwarding mechanism 121
3.4 The expected number of forwarders . 131
3.5 Some possible scenarios in the centralized approach from the source point of

view . 133
3.6 Details on the service policy at the server . 134
3.7 System states and transition rates in the centralized approach 136
3.8 Validation with experiments on a 100Mb/s LAN 142
3.9 Validation with experiments on a 7Mb/s MAN 143
3.10 Experimental results obtained on a LAN and a MAN 145
3.11 Sign of the difference between response times ∆T = TF − TS 147
3.12 Possible choices for modeling the original system 149
3.13 Decomposition of the cyclic-service system into n independent single queue

subsystems . 150
3.14 Equivalence between two systems, one having a server with vacation (service

rate µ) and the other having a server with service rate µi 150
3.15 Simulated and analytical response times, utilization of the server and relative

error between both response times . 152

List of Tables

1.1 Schemes for estimating λ, µ and K . 23
1.2 Schemes for estimating λ and K (µ assumed to be already known/estimated) 24
1.3 Overall performance of the estimators for 50000 probes and M+M/M/1/K

simulations: sample mean and percentiles of the relative error (expressed in
percentage) and the empirical variance . 42

1.4 Relative error (expressed in percentage) of the estimates for 50000 probes
returned by the scheme PL_R, when the cross traffic is a single Poisson source 47

1.5 Relative error (expressed in percentage) of the estimates (scheme PL_R) for
120000 probes: Poisson-like flows, λ = 6677, γ = 250, µ = 6374 and ρ = 1.087 49

1.6 Relative error (expressed in percentage) of the estimates (scheme PL_R) for
120000 probes: cross traffic is of type (T3) and (T4) (On/Off flows) 52

1.7 Summary . 54
1.8 Relative error (expressed in percentage) of the estimates (scheme PL_R) for

120000 probes: cross traffic is of type (T5) and (T6) (FTP/TCP flows) . . . 55
1.9 Percentage of hits for scheme PL_R over the simulations 58

1.10 The 31 simulations where Û < 1 . 58
1.11 Details on the cross traffic in the simulated scenarios 60
1.12 Relative error of K̂ and λ̂ (expressed in %) after 5000 probes 60

2.1 Sample mean and percentiles of the relative error expressed in percentage . . 83

2.2 Mean and variance of the error en = NT (nS)− N̂n 83
2.3 Sample mean and percentiles of the relative error expressed in percentage . . 87

2.4 Mean and variance of the error en = NT (nS)− N̂n 87
2.5 Distributions that best fitted into the inter-arrivals and on-times sequences . 87
2.6 Probability of having 5 ACKs or more every S seconds 101
2.7 Parameter identification . 102
2.8 Mean and percentiles of the relative error |Nn − N̂n|/Nn 103

2.9 Empirical mean and variance of the error Nn − N̂n 104
2.10 Distributions that best fitted into the inter-arrivals and on-times sequences . 107
2.11 Mean and percentiles of the relative error expressed in percentage 108
2.12 Empirical mean and variance of the estimation error 110

3.1 Values of the probabilities, with K := (λ+ ν + µ)(λ+ δ + ν) 138

vii

viii List of Tables

3.2 Distribution fits for the model parameters 140
3.3 Sample mean and percentiles of the relative error provided by the models.

Default values: λ = 1, ν = 10, δ = 11 (forwarders), δ = 15 (server), γ =

45, γ1 = 115, γ2 = 75, µ = 2325 . 140
3.4 Sample mean and percentiles of the absolute error on the average number of

forwarders in the forwarding mechanism . 144
3.5 Sample mean and percentiles of the relative error on the communication time

in both mechanisms . 144
3.6 Values used for theoretical comparison . 146
3.7 Utilization and number of source-agent pairs yielding 10% and 15% of error . 153

Présentation des travaux de thèse

1 Introduction

“Ce qui a débuté comme un exercice de paranoïa militaire est devenu un moyen de
communications globales”1 [2].

L’Internet est un réseau mondial reliant des réseaux d’ordinateurs et plusieurs cen-
taines de millions d’utilisateurs de par le monde. La croissance exponentielle de l’Internet en
nombre de réseaux ou d’utilisateurs pose de réels problèmes en termes de performance et de
contrôle du réseau. L’un des principaux concepts de base qui ont contribué à la popularité
de l’Internet et à son développement est connu sous le nom de “l’argument de bout-en-bout”.
Cette philosophie consiste à garder le réseau le plus simple possible et à déployer les fonc-
tionnalités complexes aux extrémités de celui-ci [108, 37, 66]. Bien que ce principe de base
fut en grande partie responsable du succès de l’Internet, il rend problématique d’obtenir des
informations sur l’état interne du réseau.

Si jamais une fonctionnalité devait être déployée dans l’Internet, deux possibilités
s’offrent au concepteur : soit de l’ajouter au cœur du réseau, soit de l’implémenter dans la
couche application. Il est très coûteux de changer quoi que ce soit à l’intérieur du réseau,
puisque ceci implique de modifier tous les routeurs de l’Internet. D’autre part, cette tâche
devient encore plus ardue quand on sait que l’Internet est très hétérogène. Des réseaux
câblés, sans fil et même satellitaires sont reliés entre eux, et forcément les couches les plus
basses sont différentes d’un sous-réseau à l’autre. Pour toutes ces raisons, nous estimons
qu’il est préférable de garder le réseau tel quel, et tout au long de cette thèse, nous n’allons
nous intéresser qu’à des cas où les fonctionnalités désirées sont à implémenter au niveau
applicatif.

1.1 Description des sujets étudiés

Tout au long de cette thèse, nous nous intéresserons à résoudre des problèmes propres
à certains types d’applications, et pour chacun de ces problèmes, nous adopterons une
approche de bout-en-bout.

Le premier sujet que nous aborderons est lié au problème de contrôle de congestion
dans les applications point-à-points. Celles qui utilisent le protocole de transmission TCP

1En anglais dans le texte.

1

2 Présentation des travaux de thèse

(pour Transmission Control Protocol [98]) pour assurer le transport des informations d’un
site à un autre ne sont pas concernées par ce problème puisque le protocole TCP s’en
charge déjà [67]. Les applications utilisant le protocole UDP (pour User Datagram Pro-
tocol [97]) pour le transport des données n’ont pas ce privilège et doivent contrôler leurs
débits afin d’éviter de congestionner le réseau. Il est d’ailleurs souhaitable que ce type
d’applications puisse se comporter de manière “civilisée” en évitant d’accaparer toutes les
ressources disponibles, en d’autres termes, il faudrait que ces applications puissent être
TCP-friendly [4].

Pour pouvoir adapter le débit d’envoi des données sur le réseau, l’application devrait
avoir une idée sur l’état actuel du chemin utilisé. Une façon de faire consiste à estimer
des caractéristiques propres au lien le plus congestionné de ce dernier. Par exemple, la
bande passante disponible sur ce lien permet de faire un contrôle de congestion, alors que
sa bande passante permet juste de contrôler le débit de l’application. Dans ce contexte,
nous proposons une méthodologie de bout-en-bout qui fournit à l’application des estima-
tions sur l’état du nœud le plus congestionné, rendant possible l’utilisation d’un mécanisme

d’adaptation. À part le problème de contrôle de congestion, notre approche peut servir
à équilibrer la charge des routeurs ou bien encore à la planification du réseau, puisque la
méthodologie proposée permet d’identifier les nœuds congestionnés et ceux peu utilisés.

Le deuxième sujet que nous traiterons concerne les applications multipoints et, plus

précisément, l’estimation de la taille des sessions multipoints en nombre de terminaux con-
nectés à la session. Suite à l’apparition de matériels informatiques sophistiqués permettant
de bien reproduire tant l’image que le son, les applications multimédia deviennent de plus
en plus populaires et le trafic généré par ce type d’applications ne cesse d’augmenter [119].
Nous pensons que, tôt ou tard, les grands événements médiatiques finiront par être dif-
fusés sur l’Internet via des sessions multipoints. De plus en plus de chaînes de télévision
voudront diffuser leurs programmes via le multipoint. Il est alors essentiel pour ces sources
d’information d’évaluer la popularité du contenu émis tant pour l’aménagement des pro-
grammes futurs que pour des raisons publicitaires. Il faudrait donc concevoir une méthode

pour estimer le nombre de récepteurs dans une session multipoint à un instant donné. À
noter que cette information peut également être utilisée par les fournisseurs d’accès dans
l’établissement des factures : au lieu de faire payer les sources sur la base de leurs débits, le
fournisseur d’accès peut choisir de les faire payer sur la base de leurs nombres de récepteurs.

Pour estimer la taille d’une session multiploint, la façon la plus directe serait de dé-
ployer une fonctionnalité de comptage dans le réseau lui-même. Toutefois, cette solution
n’est pas très adaptée à la situation. Premièrement, elle impliquerait que chaque routeur
maintienne un compteur par session multipoint, ce qui est évidemment coûteux en ressources
et supporte mal le passage à l’échelle. Deuxièmement, cette modification devrait être réper-
cutée sur tous les routeurs assurant le multipoint, ce qui est évidemment une tâche énorme.
Troisièmement, l’estimation fournie serait toujours en dessous de la réalité puisque les rou-
teurs d’accès des réseaux locaux n’ont aucun moyen de savoir le compte exact de terminaux
connectés à une session multipoint donnée, la seule information disponible étant l’existence
d’au moins un récepteur dans ladite session [43]. C’est pourquoi nous avons concentré nos

Présentation des travaux de thèse 3

efforts sur l’estimation de la taille d’une session multipoint en utilisant une approche de
bout-en-bout.

Le dernier sujet que nous étudierons est propre aux applications dites à code mobile.
Un agent mobile est un programme qui peut changer de lieu d’exécution quand il le décide.
Partant de cette définition, a été développé un paradigme appelé “code mobile” [117] qui
fait de la mobilité une partie intégrante d’une application d’où le nom “application à code
mobile”. Les champs d’application de ce paradigme sont nombreux ; citons notamment
l’équilibrage de charge, le commerce électronique, la recherche d’information et l’analyse de
données [33]. Dans ce dernier cas, il s’agit d’analyser de grandes bases de données situées
sur un site lointain ; le fait de déplacer le code vers le site en question permet d’économiser
de la bande passante puisque le code est typiquement de petite taille contrairement aux
données.

Les problèmes intrinsèques au paradigme de code mobile concernent les communi-
cations entre agents : il faudrait que ceux-ci puissent communiquer entre eux malgré la
mobilité. Dans la plupart des cas, les librairies de code mobile fournissent, en sus de la
mobilité, des mécanismes de communication entre agents. Parmi les mécanismes les plus ré-
pandus, citons (i) un mécanisme réparti qui fait usage d’objets appelés “répéteurs”, chargés
de transférer tout message à son destinataire ; (ii) un mécanisme centralisé qui s’appuie sur
un serveur de localisation pour assurer les communications. Ce serveur garde à jour une
base de données relative à l’emplacement de tous les agents mobiles. La question qui se pose
tout naturellement est la suivante : quel mécanisme est le plus performant? C’est à fin de

répondre à cette question que nous nous sommes intéressés au problème. À noter qu’aucune
étude formelle dans ce cadre n’a été entreprise auparavant. Les concepteurs de librairies à
code mobile, fournissant un ou plusieurs mécanismes de communication, ne justifient pas en
général leur choix du mécanisme adopté et se basent souvent sur des raisonnements intuitifs
(voir à titre d’exemple [84]). Nous verrons par la suite, lors de la comparaison formelle
entre les deux mécanismes étudiés, que la réponse à la question “quel mécanisme est le plus
performant?” n’est pas toujours évidente.

1.2 Contributions des travaux de thèse

Les contributions de cette thèse sont multiples et variées, allant de la théorie des files
d’attentes, à l’environnement à code mobile, en passant par l’ingénierie des réseaux.

Dans le premier chapitre de cette thèse, nous proposons deux modèles de files d’attente
basés sur les files M/M/1/K et M/D/1/K. Pour chacune de ces files nous trouvons des
expressions pour la probabilité de perte, l’utilisation du serveur, le temps de réponse, etc..
Pour la première fois, des quantités telles que la probabilité de perte conditionnelle et la
probabilité de succès conditionnelle sont calculées et utilisées pour la file M+M/M/1/K.
Par ailleurs, c’est aussi la première fois que l’analyse de la file M/D/1/K est aussi détail-
lée. Des explications précises sont fournies pour le calcul de la distribution stationnaire
de l’occupation de la file d’attente, ce qui permet le calcul de la probabilité de perte, de

4 Présentation des travaux de thèse

l’utilisation du serveur et du temps de réponse de la file d’attente. À partir des modèles
étudiés, nous proposons plusieurs schémas permettant l’estimation des caractéristiques in-
ternes du réseau. Les performances de ces divers schémas sont alors évaluées et comparées
grâce à des simulations faites avec ns-2 [83].

Dans le second chapitre de cette thèse, nous nous intéressons à l’estimation de la taille
des groupes multipoints. Dans un premier temps, nous modélisons le groupe multipoint
par une file d’attente M/M/∞. Dans ce cas, le nombre de récepteurs dans le groupe est
représenté par le nombre de serveurs occupés dans la file d’attente M/M/∞. En trafic fort
et après normalisation, le nombre de récepteurs dans le groupe converge en distribution

vers le processus d’Ornstein-Ühlenbeck. La dynamique de ce processus étant linéaire, nous
pouvons utiliser le filtre de Kalman pour résoudre le problème d’estimation. Notre objectif
étant de trouver l’estimateur optimal sous les hypothèses les plus générales possibles, nous
utilisons un filtre de Wiener pour trouver l’estimateur optimal dans le cas d’une file d’attente

M/M/∞ soumise à un trafic quelconque. À noter que la théorie de Wiener s’applique
pour le cas plus général de la file M/G/∞ mais le calcul des paramètres du filtre n’est
malheureusement possible que pour le cas M/M/∞. Par ailleurs, nous construisons un filtre
linéaire d’ordre 1, qui est optimal parmi tous les filtres linéaires d’ordre 1, dans le cas où le
groupe multipoint est modélisé par une file M/HL/∞ (HL désigne une loi hyperexponentielle
d’ordre L). L’estimateur résultant de ce filtre pour L = 2 et ceux découlant des filtres de
Kalman et de Wiener sont comparés à des traces synthétiques et des traces réelles, en vue
d’évaluer leurs performances et de déterminer le meilleur estimateur parmi ceux proposés.
Malgré le fait que les hypothèses de base des modèles ne sont pas vérifiées dans les traces
réelles, nous observons de bonnes performances : tous les estimateurs proposés reflètent bien
l’évolution dans le temps de la taille des groupes multipoints. Nous insistons sur le fait que
c’est la première fois que des traces réelles (audio et vidéo) sont utilisées pour la validation
d’estimateurs de la taille du groupe, puisque jusqu’à présent seules des traces synthétiques
ont été utilisées.

Les travaux présentés dans le troisième chapitre sont très originaux du fait même qu’ils
se trouvent au croisement de deux domaines de recherche très différents : le monde de la
modélisation et celui du code mobile. Les chercheurs travaillant dans le premier domaine
n’ont souvent pas connaissance des problèmes rencontrés dans le deuxième domaine. De la
même façon, les chercheurs venant du monde du code mobile ne sont souvent pas à l’aise avec
des techniques de modélisation telles les chaînes de Markov. Comme conséquence, il n’y a
presque eu aucune étude d’évaluation de performance de mécanismes relatifs au code mobile
jusqu’à présent. Nous développons des modèles markoviens pour deux implémentations
de mécanismes de communications entre agents. Le mécanisme à base de répéteurs est
modélisé par une chaîne de Markov en temps continu et à espace d’états infini. Pour
résoudre les équations d’équilibre et trouver la distribution stationnaire des états, nous
utilisons des transformées en z qui rendent fini le nombre d’équations à traiter. Quant au
mécanisme centralisé, nous le modélisons par une chaîne de Markov en temps continu et à
espace d’états fini et les équations de Chapman–Kolmogorov sont résolues numériquement.
Dans chacun des modèles, nous trouvons une expression pour l’espérance du temps de

Présentation des travaux de thèse 5

communication, et dans le cas du mécanisme à base de répéteurs, nous trouvons également
une expression pour le nombre moyen de répéteurs. Les deux modèles proposés sont alors
validés à travers des simulations et des expérimentations conduites sur un réseau local et sur
un réseau régional. Nous trouvons que les résultats analytiques et expérimentaux sont assez
proches ce qui montre que nous pouvons utiliser les formules analytiques donnant les temps
de réponse des deux mécanismes pour comparer formellement leur performances. Comme
conséquence, nous pouvons tester une large gamme de conditions ce qui n’était pas possible
lors des expérimentations. Les résultats de cette comparaison formelle ont révélés qu’aucun
mécanisme n’est toujours le meilleur, ce qui rend notre analyse encore plus intéressante.

Dans les sections suivantes, nous allons traiter à part chacun des problèmes évoqués
dans la section 1.1.

2 Modèles d’inférence pour l’estimation de carac-

téristiques réseaux

Pour le transport de ses informations d’un point à un autre dans le réseau, une appli-
cation s’appuie soit sur le protocole TCP, soit sur le protocole UDP. Ces deux protocoles de
transport font partie de la famille de protocoles appelée “TCP/IP”. Alors que TCP fournit un
mécanisme de contrôle de congestion, le protocole UDP transmet les paquets de l’application
sans aucun contrôle, au risque de congestionner le réseau. Une autre grande différence en-
tre ces deux protocoles est que TCP retransmet les paquets perçus comme perdus, alors
qu’UDP n’offre aucune garantie sur l’intégralité des informations transmises. Dans ce con-
texte, les applications, utilisant UDP pour le transport des informations et souhaitant avoir
un minimum de garanties, devraient pouvoir régler elles-mêmes le débit avec lequel elles
injectent des paquets dans le réseau. Afin d’obtenir un taux de perte faible, ces applications
devraient veiller à ce que leur débit ne dépasse pas la bande passante disponible. Il faudrait
aussi qu’elles aient un moyen de connaître la taille maximale des rafales de paquets qu’elles
pourraient vouloir injecter dans le réseau. Ce qu’il faut donc c’est que les applications
puissent avoir des estimations sur ces paramètres.

Nous supposons par la suite qu’il n’existe qu’un seul goulot d’étranglement le long
d’une connexion. Nous proposons de modéliser une connexion par une simple file d’attente,
ayant (i) une vitesse de traitement égale à celle du goulot d’étranglement de la connexion
(qu’on notera µ) et (ii) un tampon de taille finie égale à K. Nous proposons également que
l’application sonde le réseau avec des paquets de taille exponentiellement distribuée, à des
intervalles de temps exponentiellement distribués, afin de déterminer l’état du réseau. Ce
flux “sonde” est donc un processus de Poisson injecté dans la file d’attente décrite avant, et
nous noterons son débit par γ. Les paquets de données de l’application, ainsi que les paquets
provenant de tous les autres flux traversant le goulot d’étranglement de la connexion, seront
représentés par un seul flux de débit λ et appelé “flux transverse”.

Pour pouvoir s’adapter aux conditions du réseau, il faudrait donc que l’application

6 Présentation des travaux de thèse

puisse avoir une estimation de la vitesse du serveur µ et de l’intensité du trafic transverse λ.
La taille du tampon K étant inconnue, il faudrait l’estimer aussi. Nous allons supposer que
le flux transverse peut être modéliser par un processus de Poisson de paramètre λ. Nous
savons que cette hypothèse n’est pas vérifiée en général [95], nous ne l’avons considérée

que pour la facilité mathématique qu’elle amène dans le calcul2. Au vu des hypothèses
introduites jusqu’à présent et selon la notation de Kendall–Lee [72, 78]), nous pouvons dire
que la connexion est modélisée par une file d’attente de type M+M/G/1/K (voir la figure
1.2, page 9).

La méthodologie que nous proposons pour estimer µ, λ et K se résume en quatre
points :

1. enregistrer des informations de base relatives aux paquets du flux sonde (instants
d’entrée dans le réseau, instants d’arrivée à la destination, indication sur les paquets
perdus, etc.) ;

2. utiliser ces informations pour estimer le taux de perte des paquets sonde, le délai
moyen induit par le réseau, etc. ;

3. exprimer formellement les mesures de performance estimées en étape 2 en fonction des
paramètres µ, λ et K, en utilisant le modèle de la connexion ;

4. inférer les valeurs des paramètres µ, λ et K en se basant sur les expressions trouvées
en étape 3 et les mesures de performance estimées en étape 2.

2.1 La file d’attente M+M/M/1/K

Dans un premier temps, nous considérons que les temps de service sont indépendants
entre eux et suivent une loi exponentielle de paramètre µ. La distribution stationnaire de
l’occupation de la file d’attente est bien connue [75]. Nous pouvons alors facilement exprimer
la probabilité de perte PL, l’utilisation du serveur U et l’espérance du temps de réponse de
la file d’attente R en fonction des paramètres µ, λ, γ et K (voir les équations (1.3), (1.5) et
(1.10) respectivement, pages 10–11). Pour exprimer les probabilités conditionnelles de perte
qL et de succès qN , nous calculons la probabilité conditionnelle d’avoir k paquets dans la
file à l’instant t sachant qu’il y en avait i à l’instant 0 et étant donné qu’il n’y a pas de flux
sonde (γ = 0). Le calcul de la transformée de Laplace de cette probabilité conditionnelle
est détaillé dans la proposition 1.4.1. Les probabilités conditionnelles qL et qN s’expriment
simplement en fonction de cette transformée de Laplace, et après calcul nous obtenons les
équations (1.18) et (1.21).

2Au moment de valider nos modèles nous avons considéré des flux non-Poissonniens pour tester la sen-
sibilité des modèles à cette hypothèse.

Présentation des travaux de thèse 7

2.2 La file d’attente M+M/D/1/K

Nous considérons à présent que les temps de service sont déterministes et valent σ =

1/µ. Pour trouver la distribution stationnaire de l’occupation de la file d’attente, nous
nous basons sur l’analyse de la file M/G/1/K qu’a faite J. W. Cohen dans [39]. Un calcul
intermédiaire est nécessaire : il faut trouver les coefficients de la série de Taylor d’une
fonction dépendant de la transformée de Laplace–Stieltjes de la distribution des temps de
service. La distribution stationnaire de l’occupation de la file d’attente s’exprime alors très
simplement en fonction de ces coefficients que nous noterons αj (voir les équations (1.28)–

(1.31)). Le lecteur intéressé est vivement encouragé à consulter la section 1.5.1 pour tous
les détails sur le calcul de ces coefficients. Ayant exprimé la distribution stationnaire du
nombre de paquets dans la file, il est facile de trouver des expressions pour la probabilité de
perte PL, l’utilisation du serveur U et l’espérance du temps de réponse R (voir les équations
(1.37), (1.38) et (1.40) respectivement, pages 21–22).

2.3 Estimation des paramètres

Pour le modèle M+M/M/1/K, nous avons trouvé des expressions pour cinq mesures
de performance (PL, U, R, qL et qN) en fonction des paramètres de la file d’attente µ, λ, γ et
K. Le débit du trafic sonde γ est connu de l’application, mais pas les trois autres paramètres.
Pour les estimer, il suffit d’estimer trois mesures de performance et utiliser leurs expressions
pour inférer les valeurs des paramètres µ, λ et K. Comme nous avons le choix entre cinq
différentes mesures de performance, nous obtiendrons au total 10 schémas différents selon les

trois mesures choisies. À noter toutefois, que le schéma qui utilise les trois mesures relatives
aux pertes (PL, qL et qN) n’est pas valide car ces dernières ne sont pas indépendantes. Nous
nous retrouvons donc avec 9 schémas d’estimation.

Pour le modèle M+M/D/1/K, nous avons trouvé des expressions pour trois mesures
de performance (PL, U et R) en fonction des paramètres inconnus de la file d’attente µ, λ et
K. Pour estimer ces derniers nous n’avons qu’un seul choix possible : utiliser les expressions
de PL, U et R et des estimations de ces mesures de performance, et inverser le système de

trois équations à trois inconnues obtenu pour trouver les estimateurs µ̂, λ̂ et K̂. La table
1.1 (page 23) présente les équations à utiliser dans ce schéma, ainsi que celles à utiliser dans
les neuf schémas obtenus précédemment.

Jusqu’à présent nous n’avons pas tenu compte d’un fait important : il existe plusieurs
méthodes permettant l’estimation de la vitesse du goulot d’étranglement, autrement dit, de
µ. Citons notamment [21, 31, 94, 77, 46]. Dans toutes ces références, les techniques utilisées
pour l’estimation de µ se basent sur la dispersion observée sur une paire ou un train de
paquets sonde (ou même sur les deux types d’envoi comme dans [46]). Si nous considérons
maintenant que la vitesse du goulot d’étranglement µ peut être estimée à l’aide de pathrate

[46], PBM [94] ou bien ROPP [77], il ne nous reste plus qu’à estimer λ et K et il est suffisant

8 Présentation des travaux de thèse

dans ce cas d’utiliser deux mesures de performances. Pour le modèle M+M/M/1/K, nous
aurons 10 schémas d’estimation possible mais pour le modèle M+M/D/1/K, nous n’en
aurons qu’un seul (au lieu de 3). Nous avons bien trouvé des expressions pour 3 mesures de
performances (PL, U et R) ce qui offre 3 possibilités pour le choix de deux mesures parmi ces
trois mesures, mais l’expression trouvée pour l’espérance du temps de réponse R comporte
plusieurs inconnues et ne peut pas être utilisée que si celles de PL et U le sont également.
Les 11 schémas d’estimation ainsi obtenus sont présentés brièvement dans la table 1.2 (page
24).

Étant donné que les expressions trouvées pour les mesures de performances ne sont pas
linéaires, il n’est pas certain qu’un système de deux ou trois de ces équations ait une solution
unique. Nous avons pu formellement montrer l’unicité de la solution pour certains schémas
uniquement. Toutefois, dans toutes nos expérimentations, nous avons toujours obtenu une
solution unique pour un système donné.

2.4 Analyse des résultats

Nous avons réalisé une cinquantaine de simulations à l’aide de ns-2. Dans 20 de
ces simulations, nous avons veillé à ce que le scénario simulé soit le plus proche possible
du modèle M+M/M/1/K. Nous pouvons ainsi observer lesquelles parmi les cinq mesures
de performance obtenues pour ce modèle sont le mieux estimées. Rappelons que ces cinq
mesures sont estimées grâce aux informations collectées sur les paquets sonde (instants
d’arrivée et de départ du réseau, indication des paquets perdus, indication des paquets
ayant subi des délais d’attente; voir les équations (1.81)–(1.85), page 37). Nous avons

trouvé que l’estimateur q̂L est très bruité et que P̂L a une faible variance mais une erreur

relative pouvant dépasser la valeur 0.2. Quant aux estimateurs Û , R̂ et q̂N , ils ont une

faible variance et une faible erreur relative. À noter toutefois, que certains estimateurs
convergent plus rapidement que d’autres selon la condition du réseau simulé. Ainsi, pour le
cas congestionné, la majorité des paquets subit un délai d’attente, et la première estimation
valide de l’utilisation U est assez tardive puisqu’elle coïncide avec le premier paquet n’ayant

pas subi de délai (il faut que Û < 1).

La trentaine de simulations qui ne sont pas de type M+M/M/1/K se divise entre des
simulations où le service est déterministe pour chaque flux (il y a 100 flux exogènes et un
flux sonde) ; des simulations où le trafic transverse est constitué de 100 ou de 250 flux de
type On/Off dans lesquels la durée des périodes d’activité et d’inactivité sont de distribution
Pareto ; et des simulations où le trafic transverse est constitué de 250 ou de 1000 flux FTP
sur TCP.

Nous allons d’abord présenter les résultats des schémas dans le cas où la vitesse du
goulot d’étranglement µ est connue. Sur toutes les simulations réalisées, nous avons observé
que le schéma utilisant la probabilité de perte PL et l’espérance du temps de réponse R

retourne les meilleures estimations de λ (intensité du trafic transverse) et K (la taille de la

Présentation des travaux de thèse 9

file d’attente). Nous observons que la qualité des estimations s’améliore quand le nombre
de flux en arrière plan augmente, que ce soit pour les flux On/Off ou FTP sur TCP. Sur
les 50 simulations et après une durée de simulation de 500 secondes, l’erreur relative sur λ

est inférieure à 1% (respectivement 5% et 9%) dans 26 simulations (respectivement 38 et
49 simulations), alors que l’erreur relative sur K est inférieure à 1% (respectivement 5% et
9%) dans 20 simulations (respectivement 35 et 42 simulations).

Les résultats des schémas d’estimation quand la vitesse du goulot d’étranglement
µ doit également être estimée ne sont pas aussi intéressants. Quand nous utilisons une
estimation d’une mesure de performance à la place de celle-ci, nous induisons une erreur sur
l’estimation finale. Il est alors évident que l’utilisation d’un nombre supérieur de mesures de
performances conduit à une erreur plus importante en sortie. C’est ainsi que nous observons
que le meilleur schéma, qui est celui utilisant PL, U et R, ne donne de bons résultats que
dans les simulations de type M+M/M/1/K.

Finalement, nous avons conduit six simulations dans lesquelles le flux sonde traversait
quatre liens en cascade (voir la figure 1.17, page 59) au lieu de n’en traverser qu’un seul
(cas des 50 simulations déjà présentées). Les résultats obtenus à l’aide du schéma utilisant
PL et R sont assez satisfaisants. Comme précédemment, nous avons considéré des flux
transverses de type On/Off (une simulation) et FTP sur TCP (trois simulations). L’erreur
relative sur l’intensité du trafic transverse est très faible quelque soit la position de goulot
d’étranglement. En ce qui concerne l’estimation de la taille de la file d’attente, nous obtenons
de bons résultats sauf pour le cas où le trafic transverse est de type TCP et que le goulot
d’étranglement se situe près de la destination. Nous observons dans ce cas que la qualité de
l’estimation s’améliore quand le nombre de flux en arrière plan augmente. Tous les détails
sur ces simulations se trouvent dans les tables 1.11 et 1.12 (page 60).

2.5 Conclusion

Nous avons présenté deux modèles d’inférence qui permettent d’estimer simultanément
l’intensité du trafic transverse et la capacité du tampon au nœud le plus congestionné d’une
connexion. Nous avons trouvé que la meilleure façon de faire consiste à estimer le taux de
perte et le temps de réponse de la connexion, et utiliser ces estimations pour inférer les
valeurs des paramètres cités ci-dessus. Cette technique a été testée sur diverses simulations
et les résultats obtenus sont satisfaisants. Enfin, ce travail a en partie été publié dans [16].

3 Estimation de la taille de groupes multipoints

Le protocole IP multipoint [43, 44] a été introduit pour permettre à plusieurs ter-
minaux de recevoir les mêmes informations sans pour autant surcharger le réseau. Les
applications pouvant tirer profit de ce protocole sont nombreuses et variées, telles la visio-
conférence, les cours à distance, la vidéo à la demande, la retransmission des événements

10 Présentation des travaux de thèse

sportifs et les diffusions à grand public (cours des monnaies et de la bourse, télévisions,
radios). Dans ces derniers exemples, une estimation du nombre de récepteurs peut être très
utile aux fournisseurs de contenu qui peuvent ainsi adapter leurs services aux préférences
de leur public.

Pour estimer le nombre de membres dans un groupe multipoint, la façon la plus simple
(et la plus sûre) consiste à demander à tous les membres de signaler leur présence par l’envoi
d’un acquittement à la source du groupe. Toutefois, ceci aura un impact négatif tant sur le
réseau que sur la source qui sera submergée par les acquittements (nous nous positionnons
dans le cas de groupes multipoints très larges). Il est donc préférable (et souhaitable)
que les envois d’acquittement soient probabilistes. Pour ceci, nous proposons que chaque
récepteur, à la demande de la source, envoie un acquittement avec une probabilité notée p
à des intervalles de temps réguliers ; soit S cet intervalle. De cette façon, la source reçoit
un certain nombre d’acquittements toutes les S unités de temps. Nous montrerons par la
suite comment ces mesures bruitées peuvent être filtrées pour donner une estimation de la
taille du groupe qui suit son évolution aussi efficacement que possible.

Un groupe multipoint peut être simplement modélisé par une file d’attente G/G/∞.
Les inter-arrivées des membres du groupe sont représentées par les inter-arrivées des paquets
dans la file d’attente, les temps de séjour des récepteurs dans le groupe sont représentés par
les temps de service dans la file d’attente, et enfin, le nombre de récepteurs dans le groupe,
autrement dit la taille du groupe, est représenté par le nombre de serveurs occupés dans
la file G/G/∞. Nous noterons par N(t) la taille du groupe multipoint. Dans les sections
suivantes, nous nous appuyons sur la théorie des filtres adaptatifs pour estimer au mieux
N(t).

3.1 Estimation optimale à base de filtre de Kalman

Dans un premier temps, nous supposons que les inter-arrivées des membres du groupe
suivent une loi exponentielle de paramètre λ, et que les durées de vie des récepteurs dans
le groupe suivent également une loi exponentielle mais de paramètre µ. Dans ce cas, la
taille du groupe N(t) n’est autre que le nombre de serveurs occupés dans la file d’attente
M/M/∞. Nous savons donc que N(t) est une variable poissonnienne de paramètre ρ := λ/µ

[75].

Sous l’hypothèse d’un trafic fort (i.e., un groupe multipoint très large), la variable N(t)

tend vers l’infini. Mais par contre, si nous normalisons N(t) par rapport à sa trajectoire
limite, le processus obtenu (voir l’équation (2.8)) converge en distribution vers un processus
de diffusion (voir l’équation (2.9)) [103]. Le processus de diffusion, dit également processus

d’Ornstein-Ühlenbeck, est caractérisé par une dynamique linéaire : sa valeur à un instant
donné n’est autre qu’une fraction de sa valeur à l’instant précédent à laquelle s’ajoute un
bruit blanc.

Considérons maintenant le nombre d’acquittements Y (t) reçus à un instant donné t.

Présentation des travaux de thèse 11

Quand la taille du groupe multipoint tend vers l’infini, cette variable Y (t) va elle-même
tendre vers l’infini. Pour ceci, nous normalisons également la variable Y (t) autour de sa
trajectoire limite. Le processus obtenu (voir l’équation (2.16)) converge en distribution vers
un processus qui est une fonction linéaire du processus de diffusion déjà mentionné (voir
l’équation (2.27)). Ainsi, la valeur de ce processus à un instant donné n’est autre qu’une
fraction de la valeur du processus de diffusion au même instant à laquelle s’ajoute un bruit
blanc.

Le filtre de Kalman est un filtre linéaire d’ordre 1 qui est optimal parmi tous les filtres
mesurables [107]. L’optimalité réside dans le fait que la variance de l’erreur quadratique
est minimisée. Pour pouvoir utiliser ce filtre, il est nécessaire que la dynamique de l’état
du système et des mesures soit linéaire, ce que nous venons juste de montrer pour le cas
normalisé. Trois équations décrivent le filtre de Kalman ; ce sont (i) l’équation de Riccati
qui permet de calculer la variance de l’erreur quadratique (qui est minimale, rappelons-le),
(ii) l’équation donnant le gain du filtre et (iii) l’équation donnant l’estimation de l’état du
système qui, dans notre cas, est normalisé. Cette dernière équation met en jeu deux termes
dont le premier prend en compte l’estimation précédente et le deuxième l’actualise grâce à
la nouvelle mesure normalisée. Pour obtenir l’estimation de la taille du groupe multipoint,
il suffit de prendre l’équation (iii) et dénormaliser les variables représentant le système et
les mesures (nombre d’acquittements reçus à la source). L’équation finale est donnée en
(2.38) (page 79).

Nous avons testé l’estimateur donné en (2.38) et noté N̂n sur des traces synthétiques
et réelles. Dans les deux cas, nous observons de très bonnes performances (voir à titre
d’exemples les figures 2.3–2.6, pages 81–82 et 85–86). L’estimateur semble être très ro-
buste puisque les résultats sont satisfaisants malgré le fait que les distributions des traces
utilisées ne sont pas exponentielles. Nous avons effectivement utilisé des lois Pareto pour
générer les traces synthétiques et avons observé que les lois des inter-arrivées et des temps
de séjour dans les traces réelles sont sous-exponentielles (loi de Weibull, loi Lognormale).
Nous obtenons également de bons résultats quand le groupe est de petite taille (une quar-
antaine de récepteurs). Rappelons que cet estimateur de la taille du groupe multipoint a
été obtenu sous des hypothèses de lois exponentielles et de trafic fort. Nous savons qu’il
est optimal sous ces conditions et avons observé de bonnes performances dans des cas plus
généraux. Nous aimerions toutefois construire un estimateur optimal sous des hypothèses
plus générales. C’est ce que nous essayons de faire dans les prochaines sections.

3.2 Estimation optimale à base de filtre de Wiener

Nous considérons à présent que les temps de séjour des récepteurs dans le groupe
suivent une loi de distribution générale à l’exception des lois dites à queue lourde. Autrement
dit, la somme des autocovariances du processus N(t) est finie. L’autocovariance de la version
stationnaire de N(t) est donnée en (2.39) [41, équation (5.39)]. Dans la théorie de Wiener,

12 Présentation des travaux de thèse

le processus du signal à estimer et celui des mesures bruitées ont une espérance nulle. Nous
allons donc centrer les variables N(t) et Y (t) autour de leurs moyennes respectives qui sont
ρ et pρ. Les variables ainsi obtenues sont notées ν(t) et y(t).

Par la suite, nous considérons ces variables à l’état stationnaire en temps discret. La
réponse impulsionnelle du filtre optimal qui transforme yn en ν̂n vérifie l’équation de Wiener-
Hopf donnée en (2.43) [61]. Une alternative consiste à calculer la fonction de transfert du
filtre optimal. Pour ceci, il faut procéder aux étapes suivantes:

1. calculer Sy(z), le spectre de puissance du processus des mesures yn ;

2. factoriser Sy(z) de la façon suivant Sy(z) = σ2G(z)G(z−1) où G(z) est la partie de

Sy(z) ayant tous ses zéros et pôles dans le cercle unité ;

3. calculer Sνy(z), le spectre de puissance croisé des processus νn et yn ;

4. écrire le rapport Sνy(z)/G(z−1) sous forme de somme de fractions et isoler les fractions
ayant tous ses zéros et pôles dans le cercle unité ;

5. prendre le résultat obtenu en étape 4 et le diviser par σ2G(z) ; ceci donne la fonction
de transfert du filtre optimal.

L’utilisation du filtre de Wiener est conditionnée par l’aptitude à factoriser Sy(z) comme
présenté dans l’étape 2. Malheureusement, cette factorisation canonique n’est possible que
pour le cas où la distribution des temps de séjour des récepteurs est exponentielle. Nous
nous retrouvons donc avec un modèle M/M/∞ pour le groupe multipoint, mais nous nous
sommes affranchis de l’hypothèse de trafic fort considérée dans la section 3.1. Effectuant les
étapes 1 à 5 décrite ci-dessus et inversant la fonction de transfert pour retrouver la réponse
impulsionnelle du filtre, nous obtenons une équation aux différences d’ordre 1 donnant
l’estimateur centré ν̂n en fonction de sa valeur à l’instant précédent et du processus centré
des mesures yn. Il ne nous reste plus qu’à remplacer les processus centrés par ceux non-

centrés pour obtenir l’équation donnant N̂n (voir (2.47)).

L’estimateur obtenu grâce au filtre de Wiener est identique à celui obtenu dans la
section 3.1 obtenu grâce au filtre de Kalman. Ce résultat s’explique par le fait que les
deux approches considérées minimisent la variance de l’erreur quadratique. Le filtre de
Kalman est toujours linéaire d’ordre 1, celui de Wiener est toujours linéaire, et dans le
cas exponentiel, il s’est avéré qu’il est d’ordre 1 également. Il est donc tout naturel que
les estimateurs fournis par ces deux méthodes de filtrage soient les mêmes pour le modèle

M/M/∞. À noter toutefois que l’utilisation du filtre de Kalman nécessite une hypothèse
de trafic fort, ce qui n’est pas le cas dans la théorie de Wiener.

Utilisant les spectres de puissance Sy(z) et Sνy(z) et la fonction de transfert du filtre

optimal, nous calculons la variance de l’erreur quadratique (qui est minimale). De toute
évidence, l’expression trouvée est la même que celle donnée par l’équation de Riccati de la
théorie de Kalman.

Présentation des travaux de thèse 13

3.3 Estimation efficace à base de filtre linéaire d’ordre 1

Nous considérons à nouveau le modèle M/G/∞, autrement dit, les temps de séjour
sont généralement distribués, et comme précédemment, nous excluons les lois à queue lourde.
Dans cette section, nous nous donnons une équation aux différences d’ordre 1 de la forme
ν̂n = Aν̂n−1 +Byn et calculons les paramètres A et B qui minimisent la variance de l’erreur
quadratique donnée par ǫ := E[(νn− ν̂n)

2]. Il suffit donc de résoudre le système d’équations
donné donné par : ∂ǫ/∂A = 0 et ∂ǫ/∂B = 0. Nous montrons que ce système possède une
solution unique, vérifiant 0 < A < 1, ce qui garantit la stabilité du filtre donné ci-haut. Il
est évident que si les temps de séjour sont exponentiellement distribués, alors l’estimateur
obtenu sera identique à celui donné par le filtre de Wiener ou de Kalman. Nous considérons
par la suite que les temps de séjour suivent une loi hyperexponentielle ayant L stages.
Quand L = 2, une solution numérique est facilement obtenue. Nous noterons l’estimateur

obtenu par N̂H2

n par opposition à N̂E
n qui dénotera l’estimateur de la taille du groupe quand

les temps de séjour des récepteurs sont exponentiellement distribués. À noter que N̂E
n est

optimal parmi tous les estimateurs dans le cas où les lois des inter-arrivées et des temps

de séjour sont exponentielles, et que N̂H2

n est optimal parmi tous les estimateurs d’ordre
1 dans le cas où les inter-arrivées suivent une loi exponentielle et les temps de séjour sont
hyperexponentiellement distribués.

3.4 Validation des modèles

Nous avons testé les estimateurs N̂E
n et N̂H2

n sur des traces réelles de sessions vidéos.
Pour chaque trace, les valeurs de la probabilité d’acquittement p et de l’intervalle d’acquit-
tement S sont choisies de façon à obtenir une faible variance de l’erreur quadratique et un
petit volume d’acquittements générés (se référer à la section 2.7 pour tous les détails). Sur les
quatre traces considérées (voir à ce titre les figures 2.8–2.11, pages 105–106), nous observons
de bonnes performances pour les deux estimateurs. Le niveau de qualité de l’estimation est

presque la même si on utilise N̂E
n ou N̂H2

n (les détails sont dans les tables 2.8 et 2.9, pages

103–104). Toutefois nous remarquons que l’estimateur N̂E
n donne de meilleurs résultats

quand la taille du groupe multipoint change abruptement, à l’inverse de l’estimateur N̂H2

n

qui donne de meilleurs résultats quand il y a peu de changements dans le groupe. Mais ce

qui avantage clairement l’utilisation de N̂E
n , c’est qu’elle nécessite la connaissance a priori

de deux paramètres seulement : la taille moyenne du groupe et la valeur moyenne des temps

de séjour des récepteurs. Quant à l’estimateur N̂H2

n , son utilisation nécessite l’identification
de quatre termes (la taille moyenne du groupe, les valeurs moyennes des temps de séjour
des récepteurs dans les deux stages de la loi hyperexponentielle et la probabilité d’un des
stages de cette loi) ce qui est plus difficile à assurer.

L’estimateur N̂E
n a été testé sur des traces où les lois sont sous-exponentielles (voir la

14 Présentation des travaux de thèse

section 3.1), mais qu’en est-il de l’estimateur N̂H2

n ? Ce dernier a été testé sur des traces de
sessions vidéos uniquement. Nous avons identifié les lois des inter-arrivées et des temps de
séjour de ces traces comme étant soit Lognormales soit de Weibull (voir la table 2.10 page

107). Ceci indique que l’estimateur N̂H2

n est assez robuste puisque l’estimation donnée, dans
des cas autres que celui où il a été développé (modèle M/H2/∞), est très satisfaisante.

Enfin, pour estimer la taille moyenne du groupe ρ et le temps moyen de séjour 1/µ

(les paramètres pré-requis pour utiliser N̂E
n), nous proposons trois méthodes différentes qui

nécessitent l’envoi d’acquittements supplémentaires : (i) soit les récepteurs envoient des
acquittements probabilistes au moment de leurs arrivées dans le groupe, ce qui permet
d’estimer λ ; (ii) soit les récepteurs envoient des acquittements au moment de quitter le
groupe, ce qui permet d’estimer µ ; (iii) soit les deux ensembles. Nous proposons au lecteur
intéressé de consulter la section 2.9 pour plus de détails et un test sur une trace réelle.

3.5 Conclusion

Nous avons proposé plusieurs estimateurs de la taille du groupe multipoint en suivant
successivement trois approches distinctes. Nous avons testé les estimateurs sur des traces
synthétiques et réelles et avons observé de bonnes performances. Nous pensons que le
meilleur de ces estimateurs est celui développé pour le modèle M/M/∞ et qui nécessite la
connaissance de la taille moyenne du groupe et du temps moyen de séjour. Ainsi, nous avons
indiqué comment la source pourrait estimer ces deux paramètres. Ce travail a en partie été
publié dans [12].

4 Analyse de deux mécanismes de communication

dans un environnement à code mobile

Dans un environnement à code mobile, il ne suffit pas qu’une librairie de code fournisse
les éléments nécessaires à la mobilité. Il est nécessaire de fournir également des moyens pour
assurer les communications entre les divers agents d’une application. Deux mécanismes de
communication sont très répandus, or jusqu’à présent, le choix d’utilisation de l’un ou de
l’autre de ces mécanismes n’a pas été formellement justifié. Nous proposons de choisir le
mécanisme le plus rapide, autrement dit, celui qui délivre un message à l’agent mobile le
plus rapidement possible. Nous allons décrire et modéliser chacun de ces deux mécanismes
dans les deux prochaines sections.

Nous considérons par la suite une application à code mobile dans laquelle un objet
immobile qu’on désignera par “source” essaie de communiquer avec un objet mobile qu’on
désignera indifféremment par “agent mobile” ou simplement “agent”. Les communications
entre objets sont avec Rendez-vous, autrement dit, tout objet ayant envoyé un message à
un autre objet se retrouve bloqué tant que le message n’a pas atteint sa destination.

Présentation des travaux de thèse 15

4.1 Mécanisme distribué à base de répéteurs

Le premier mécanisme considéré met en jeu des objets spéciaux appelés “répéteurs”.
Quand un agent mobile migre, il laisse sur l’ancien site un objet – un répéteur – chargé de
lui transmettre tout message lui étant destiné. Au fur et à mesure que l’agent migre, une
chaîne de répéteurs se forme entre le site initial de l’agent et le site où l’agent se trouve
actuellement. La source possède une référence sur le site initial de l’agent et, à chaque fois
qu’un message parvient à l’agent après avoir été transmis par un répéteur, l’agent envoie
un message de mise à jour à la source. Quand ceci arrive, la chaîne de répéteurs n’est plus
utilisée lors de l’envoi de futurs messages. La chaîne est dite “court-circuitée” et, de proche
en proche, ses répéteurs sont éliminés car plus référencés.

Pour modéliser ce mécanisme, nous devons prendre en considération la distance sé-
parant le message (ou la source en l’absence de celui-ci) de l’agent en nombre de sauts, l’état
de l’agent (inactif/migrant) et celui de la source (inactive/communiquant). Nous obtenons
ainsi un triplet qui définit l’état du système. Sous des hypothèses d’indépendance et de lois
exponentielles pour les variables en jeu (durée de migration, délai inter-sites, etc.), l’état
du système est représenté par une chaîne de Markov en temps continu (voir la figure 3.3,
page 121). L’espace d’états de cette chaîne est infini à cause de la première composante :
la distance séparant la source de l’agent peut potentiellement atteindre l’infini s’il n’y a pas
de limite sur le nombre de hôtes que l’agent peut visiter.

Pour trouver la condition de stabilité de cette chaîne de Markov et exprimer la dis-
tribution stationnaire des probabilités d’état, nous commençons par écrire les équations
d’équilibre des flux en entrée et en sortie de chaque état. Nous introduisons ensuite une
transformée en z de la distribution stationnaire. En utilisant cette transformée et en ma-
nipulant judicieusement les équations d’équilibre, nous nous retrouvons avec un nombre fini
d’équations facile à résoudre. La condition de stabilité implique que l’agent ne doit pas se
déplacer plus rapidement que le message qui essaie de le joindre. Ceci est évident puisque
la distance entre le message (ou la source) et l’agent croît quand ce dernier migre, et décroît
quand un répéteur transmet le message au site en aval le long de la chaîne des répéteurs.

Pour quantifier la performance de ce mécanisme, nous nous intéressons à deux mesures :
le temps moyen de communication, noté TF et donné en équation (3.33) (page 128), et le
nombre moyen de répéteurs. Dans ce dernier cas, nous faisons la distinction entre le nom-
bre moyen de répéteurs entre la source (qui est immobile) et l’agent, noté Ns et donné en
équation (3.37) (page 129), et le nombre de répéteurs entre le message et l’agent, noté N et
donné en équation (3.50) (page 131). Si l’agent ne migre pas entre le moment d’émission
d’un message et le moment où le message lui parvient, nous obtiendrons Ns = N . Or un
agent mobile peut migrer entre ces deux moments, ce qui fait que le message aura à traverser

un nombre plus important de répéteurs. C’est pour cette raison que nous avons N > Ns. À
noter que Ns peut être utilisé pour évaluer la tolérance aux pannes du mécanisme [20].

16 Présentation des travaux de thèse

4.2 Mécanisme centralisé à base de serveur de localisation

Le deuxième mécanisme considéré se base sur une entité centralisée pour assurer les

communications. À la fin de chaque migration, l’agent envoie un message de mise à jour
à un serveur de localisation. Celui-ci maintient une base de donnée ayant les positions
actuelles de tous les agents mobiles. Quand une source désire communiquer avec l’agent,
elle utilise la dernière position connue de celui-ci et envoie le message au site correspondant.
Si l’agent a migré depuis la dernière communication, l’essai de communication échoue. La
source s’adresse alors au serveur de localisation pour obtenir la position actuelle de l’agent,
qui peut bien ne pas être la bonne : pendant l’envoi de la réponse par le serveur, l’agent
peut avoir migré.

Le serveur de localisation n’a pas le même fonctionnement d’une librairie à une autre.
Nous allons décrire celui adopté dans la librairie de code mobile ProActive [101]. Dans cette
librairie, le tampon du serveur est partitionné afin que chaque paire source-agent ait son
propre espace de mémoire. Ainsi, les interactions entre les différentes paires sont éliminées.
Un ordonnanceur cyclique est utilisé et une seule requête est servie à chaque fois. Quand
plusieurs requêtes sont en attente dans le même tampon, le serveur de localisation traite en
priorité les messages de mise à jour de l’agent. La politique de service est non-préemptive
puisque ProActive est une libraire Java. Quand le serveur finit de traiter une requête de
la source et qu’une requête de mise à jour de l’agent est en attente, le serveur ne va pas
envoyer la position de l’agent trouvée dans la base de donnée (car devenue caduque) à la
source mais va plutôt remettre la requête dans le tampon pour la retraiter ultérieurement.
Pour finir, les requêtes de mise à jour d’un agent remplacent toute requête de mise à jour
du même agent qui serait en attente.

Pour modéliser ce mécanisme, nous nous restreignons au cas d’une seule paire source-
agent et montrons en section 4.4 comment étendre notre modèle au cas plus général de mul-
tiples paires source-agent. L’état du système ainsi simplifié est entièrement défini par l’état
du serveur (notamment le type de requêtes s’y trouvant), celui de l’agent (inactif/migrant)
et celui de la source (inactive/communiquant avec l’agent/communiquant avec le serveur).
Sous des hypothèses d’indépendance et de lois exponentielles des variables en jeu (temps de
service, latence réseau, inter-migrations, etc.), le système est représenté par une chaîne de
Markov en temps continu et espace d’états fini (voir la figure 3.7, page 136).

Pour trouver la distribution stationnaire des probabilités d’état, nous écrivons les équa-
tions d’équilibre pour chaque état et l’équation de normalisation (la somme des probabilités
vaut 1). La résolution du système matriciel ainsi obtenu se fait numériquement. De plus,
nous exprimons le temps moyen de communication, noté TS et donné en équation (3.51)
(page 137).

4.3 Validation des modèles et évaluation des performances

Les modèles développés en sections 4.1 et 4.2 considèrent que les lois des variables

Présentation des travaux de thèse 17

régissant le fonctionnement des mécanismes sont exponentielles et indépendantes entre elles.
Or, des expérimentations conduites sur un réseau local et un autre régional montrent que ces
variables ont plutôt une loi de distribution de Weibull, à l’exception des temps de services

qui sont relativement constants. À noter que les temps d’inactivité de la source et de l’agent
dépendent de l’application uniquement et peuvent donc suivre des lois arbitraires.

Dans un premier temps, nous validons les modèles a l’aide de simulations. Nous consid-
érons plusieurs scénarios dans lesquels toutes les variables sauf une sont exponentiellement
distribuées. Dans ces simulations, nous observons une très bonne robustesse des modèles à
des temps d’inactivité déterministes de l’agent, à des délais inter-sites ayant une loi de distri-
bution de Weibull et à des temps de services déterministes. Les modèles semblent être plus
sensibles aux distributions des temps d’inactivités de la source et des durées de migration.
Nous obtenons ainsi une erreur relative allant jusqu’à 17% quand les temps d’inactivité de
la source sont déterministes, et allant jusqu’à 16% quand les durées de migration suivent
une loi de Weibull. Pour terminer, nous considérons des scénarios où toutes les variables ne
sont pas exponentiellement distribuées. Les résultats sont acceptables puisqu’en moyenne
l’erreur relative est de 14%. Pour plus de détails, se référer à la table 3.3 (page 140).

Dans les simulations effectuées, les hypothèses d’indépendance étaient satisfaites. Pour
tester la robustesse des modèles aux cas où celles-ci ne le sont pas, nous menons des ex-
périmentations sur un réseau local et sur un réseau régional. En effet, dans ces conditions,
les durées de migration et les délais inter-sites sont particulièrement corrélés. Malgré cela,
nous observons que les résultats prédits par les modèles sont assez proches des résultats
expérimentaux, à l’exception des expérimentations sur un réseau régional où le taux de
migration de l’agent est élevé (voir les figures 3.8 et 3.9, pages 3.8 et 3.9). Dans ces cas,
nous avons rencontré des difficultés lors de l’estimation du délai moyen inter-sites (latence
du réseau régional), or ce paramètre a une grande influence sur les résultats théoriques.
D’autre part, nous observons que le temps de communication offert par le mécanisme cen-
tralisé est plus court que celui offert par le mécanisme réparti sur un réseau local. C’est
exactement l’inverse qui se produit sur un réseau régional où le mécanisme des répéteurs est
plus performant (voir à ce titre la figure 3.10, page 145).

Les modèles proposés dans les sections 4.1 et 4.2 sont valides, puisque les résultats
théoriques sont proches des résultats expérimentaux. Nous pouvons donc utiliser les modèles
pour prédire les performances des mécanismes dans des cas généraux. En étudiant le signe de
la différence entre les temps moyens de communication offerts par les deux mécanismes, plus
précisément le signe de ∆T = TF−TS, nous pouvons prédire lequel des deux mécanismes sera
le plus performant. Ainsi quand ∆T est positif, le mécanisme centralisé est plus performant,
et quand ∆T est négatif, c’est le mécanisme réparti qui est meilleur. Le signe de ∆T

est représenté dans la figure 3.11 (page 147) pour plusieurs valeurs des paramètres des
modèles. Nous retrouvons notamment les observations faites lors les expérimentations (le
mécanisme centralisé est plus performant sur un réseau local et le mécanisme distribué est
plus performant sur un réseau régional) et observons plusieurs comportements imprévisibles
que l’intuition seule n’aurait pu prédire. Ainsi, il apparaît que, pour un taux de migration
donné, le mécanisme centralisé est préférable sauf pour des taux de communication de

18 Présentation des travaux de thèse

valeurs moyennes (dans ce cas, ∆T < 0; voir les figures 3.11(a), (b) et (d), page 147). Une
étude plus approfondie montre que pour des taux de communication de valeurs moyennes,
les deux mécanismes offrent des performances presque égales, avec toutefois un temps moyen
de communication légèrement plus faible pour le mécanisme des répéteurs (la différence est
de l’ordre des dixièmes de millisecondes).

4.4 Extension au cas de multiples paires source-agent

La question du passage à l’échelle ne se pose que pour le modèle du mécanisme central-
isé. Pour modéliser le mécanisme réparti, nous avons pris en compte la distance séparant
une source d’un agent et les états desdits source et agent. Ceci revient à étudier la dy-
namique d’une seule chaîne de répéteurs. Or il n’y a pas d’interaction entre les différentes
chaînes puisque, par définition, une chaîne est exclusive a une paire source-agent. Ceci n’est
pas le cas du mécanisme centralisé. La politique de service élimine les interactions entre
les requêtes quand celles-ci sont en attente, mais il n’empêche qu’il n’y a qu’un seul serveur
pour traiter toutes les requêtes. Ainsi, quand le serveur traite une requête relative à une
certaine paire source-agent, il sera vu comme étant en vacances par les requêtes générées
par d’autres paires source-agent. Une alternative consiste à considérer que le serveur est
en fait plus lent à traiter les requêtes. Ainsi le temps passé à traiter les requêtes d’autres
paires sera comptabilisé comme faisant partie du temps de service des requêtes de la paire
considérée.

Dans cette optique, nous allons remplacer dans le modèle la vitesse réelle du serveur
par une vitesse réduite tenant compte du nombre de paires source-agent. Le temps moyen de
communication trouvé n’est alors qu’une approximation. Cette simplification n’est toutefois
plus valable quand le délai inter-sites est important ou que le taux de communication est
très élevé. Le fait est que, dans ces cas, le serveur reste bloqué souvent (grand nombre
de réponses à envoyer) et pendant un long laps de temps à chaque fois (grande latence du
réseau). Pour évaluer la qualité de cette approximation, nous avons conduit quatre séries de
simulations (une centaine de simulations dans chaque série, correspondant à certaines valeurs
des taux de communication et de migration) dans lesquelles nous avons tenu à garder des
variables de loi exponentielle. Le but est d’isoler l’effet de l’approximation dans les résultats
théoriques.

Nous trouvons ainsi que la qualité de l’approximation dépend des valeurs choisies pour
les taux de communication et de migration. Ainsi nous observons que l’erreur relative sur
le temps moyen de communication reste en dessous de 10% tant que l’utilisation du serveur
reste en dessous de 0.7 pour un taux de migration égal à 1, et en dessous de 0.5 pour
un taux de migration égal à 10 (pour plus de détails, se référer à la table 3.7, page 153).

À noter qu’un nombre de paires source-agent donné n’induit pas la même utilisation du
serveur, celle-ci dépendant également des valeurs choisies pour les taux de communication
et de migration. Ainsi, quand le taux de migration vaut 1 et que le taux de communication
vaut 1 aussi, 92 paires source-agent sont nécessaires pour que le serveur soit utilisé à 70%,

Présentation des travaux de thèse 19

alors qu’une cinquantaine suffit si le taux de communication vaut 10.

4.5 Conclusion

Nous avons proposé deux chaînes de Markov pour modéliser deux mécanismes de
communication entre agents dans un environnement à code mobile. Grâce à ces modèles,
nous avons pu trouver des expressions pour le temps moyen de communication donné par
chacun des mécanismes et pour le nombre moyen de répéteurs utilisé dans le mécanisme
réparti. Nous avons validé nos modèles à l’aide de simulations et d’expérimentations sur un
réseau local et un autre régional. Ayant observé une bonne concordance entre les résultats
théoriques et expérimentaux, nous avons utilisé les formules théoriques pour prédire la
performance des mécanismes dans des cas plus généraux. Nous avons ainsi développé un
moyen sûr pour choisir le meilleur mécanisme selon l’environnement de l’application.

5 Conclusions et perspectives

Nous avons, dans ce travail, considéré la même philosophie pour résoudre certains
problèmes propres à certaines applications. Cette philosophie consiste d’abord à proposer
des modèles mathématiques du système étudié ; ensuite, des estimateurs ou des mesures
de performance sont dégagés des modèles proposés ; et finalement, les résultats analytiques
sont comparés à des résultats simulés ou expérimentaux.

Dans la section 2, nous proposons deux modèles basés sur les files d’attente M/M/1/K

et M/D/1/K et considérons onze schémas différents permettant l’estimation desdits para-
mètres. Nous testons ces schémas sur des simulations et trouvons que la meilleure façon
d’estimer l’intensité du trafic transverse et la taille de la mémoire au nœud le plus con-
gestionné repose sur l’utilisation du taux de perte et du temps moyen de réponse. En
ce qui concerne l’estimation de la vitesse du goulot d’étranglement, nous avons proposé
des schémas permettant l’estimation des trois paramètres simultanément, mais les résul-
tats montrent que les schémas d’estimation ne sont pas robustes. Ainsi, il est préférable
d’estimer la vitesse du goulot d’étranglement en utilisant pathrate [46], PBM [94] ou ROPP
[77], et ensuite estimer l’intensité du trafic transverse et la taille de la mémoire au nœud le
plus congestionné. Toutefois, nous n’avons pas étudié l’impact d’utiliser une estimation de
la vitesse du goulot d’étranglement au lieu d’utiliser la valeur correcte comme nous l’avons
fait. Toute erreur sur ce paramètre va forcément influer sur les résultats donnés en section 2.
La quantification de cette influence n’a toujours pas été faite et reste une question ouverte.

Dans la section 3, nous modélisons le groupe multipoint par une file d’attente M/M/∞
et résolvons le problème d’estimation à l’aide d’un filtre de Kalman (cas d’un trafic fort) et
un filtre de Wiener (cas général). Ensuite, nous construisons un estimateur dans le cas d’un
modèle M/H2/∞. Nous testons ces estimateurs sur des traces synthétiques et sur des traces
réelles (audio et vidéo) et observons de bonnes performances. Toutefois, d’autres modèles,

20 Présentation des travaux de thèse

plus réalistes, pourront être proposés. Nous pensons notamment à des modèles M/W/∞ ou
M/L/∞ puisque les lois de distributions observées sur les traces réelles (audio et vidéo) sont
soit de Weibull soit Lognormales. Une façon de procéder consiste à s’imposer une équation
aux différences d’une forme donnée (d’ordre 1 par exemple) reliant l’estimateur au processus
de mesure, et à calculer les coefficients de cette équation de façon à minimiser la variance
de l’erreur quadratique. Une autre perspective de travail concerne le choix de la probabilité
d’acquittement et de l’intervalle d’acquittement. Un critère possible consiste à limiter le
volume d’acquittements générés pendant un laps de temps fixe (dans cette thèse nous avons
limité le volume d’acquittements générés à chaque intervalle d’acquittement).

Dans la section 4, nous modélisons deux mécanismes de communication entre objets à
l’aide de chaînes de Markov et évaluons leurs temps de réponse. Nous validons nos modèles
par des simulations et des expérimentations sur des réseaux réels (local et régional). De nos
expérimentations, il est apparu que le mécanisme centralisé est le plus performant sur un
réseau local alors que le mécanisme réparti est le plus performant sur un réseau régional.
Les expressions des temps moyen de communication sont en fait un outil de prédiction
qui permettent de sélectionner le mécanisme le plus performant étant donné le contexte
d’utilisation. Le modèle du mécanisme centralisé pourrait bien être revu et amélioré pour
mieux tenir compte du passage à l’échelle. D’autre part, il existe plusieurs autres mécanismes
de communication qui n’ont toujours pas été modélisés ni évalués. Citons notamment un
mécanisme mixte qui met en jeu un serveur de localisation et des répéteurs à durée de vie
limitée. Deux variantes existent selon qui parmi les répéteurs et les agents envoient des
messages de mise à jour au serveur. Il n’est effectivement pas nécessaire que répéteurs et
agents mettent à jour le serveur. Concernant la conception de ces mécanismes, plusieurs
questions sont sans réponse, telles “quelle est la durée de vie optimale des répéteurs?” et
“au bout de combien de migrations l’agent doit-il mettre à jour le serveur?” Cette dernière
question ne se pose que si les répéteurs ne font pas de mise à jour avant de devenir inactifs.

Introduction

“What began as an exercise in military paranoia has become a method of global com-
munication” [2].

The Internet is a rapidly-growing worldwide network of computer networks that con-
nects millions of users in more than 170 countries. The recent exponential growth of the
Internet poses challenging problems in terms of control of the network. One of the basic
concepts which contributed to its rapid growth and popularity is the so-called “end-to-end
argument”. The idea behind this argument is: keep the network simple and put the intel-
ligence in the edges of the network [108, 37, 66]. Even though this concept contributed to
the success of the Internet, it made it very difficult to have any information on the internal
state of the network.

Whenever a function is to be added to the Internet, one has the choice of adding it
either to the network or to applications. Adding a single function to the core of the network
is highly difficult as all the routers in the world would have to be updated, which is not very
tractable due to the huge size of the Internet.

Another component of the success of the Internet is its heterogeneity and its ability
to connect wired to wireless networks, as well as terrestrial to satellite networks. This
heterogeneity presents yet another difficulty when a certain function is to be added to the
network. For all of these reasons, we believe it is much more attractive to add the required
functions to applications.

Description of the subjects studied

In this thesis, we are interested in solving problems related to different types of appli-
cations and in each case we will adopt an end-to-end approach.

First, we looked at unicast applications wishing to perform congestion control. Ap-
plications using TCP (Transmission Control Protocol [98]) as a transport protocol are not
concerned with such control as this function is implemented in TCP [67]. Applications using
UDP (User Datagram Protocol [97]) will have to control their sending rate in order to avoid
congestion and/or to be TCP-friendly [4]. To enable such a control in such applications, one
must provide the application with the state of the path connecting the sender to the sink.
For instance, the available bandwidth on a path is well suited for congestion control and the

1

2 Introduction

bottleneck bandwidth is well suited for transmission rate control. We propose an end-to-end
methodology which supplies the application with estimates on network-internal character-
istics triggering some adaptation algorithm. Another kind of application that could benefit
from this work is load balancing in routers and capacity planning as our methodology allows
one to identify congested and underutilized links.

In the second part of the thesis, we are concerned with multicast applications and,
more precisely, with the estimation of the membership of multicast sessions. With the
emergence of multimedia applications [119] and dedicated sophisticated hardware such as
high-quality video and audio cards, one is expecting to see major events and live sports
being multicast. It will then be of significant importance to the sender to have an estimate
of the number of receivers. This will allow the sender to determine the popularity of emitted
content and even to advertise when the number of receivers is high. Not only can the sender
benefit from such estimates: Internet Service Providers (ISPs) may take advantage of this
information and charge the source based on the number of receivers instead of charging on
an input-rate basis. One may think that the easiest way to provide membership estimates
to the source would be to implement this function in the network. However, this solution is
not convenient for multiple reasons. First, it requires that each multicast router maintain in
memory one counter per multicast session, which is clearly not scalable. Second, it requires
all of multicast routers to be changed. Third, such estimates will not be precise as gateway
routers will have no way of determining the number of receivers within Local Area Networks
(LANs), the only information available to them being the possible existence of at least one
receiver [43]. Such an approach will rather return a lower bound on the number of receivers.
Here again, we believe that an end-to-end approach is more suitable.

The third and last part of the thesis is concerned with applications in a mobile agent
environment. In such applications, components of a running program can move from one
host to another and proceed with their execution on the new host. This is often called
the “code mobility paradigm” [117] and is very useful to load balancing. Another possible
application is data mining [33] in which the data to be processed is situated on a remote
machine. Moving the code to the location of the data will save bandwidth as the code is
usually smaller in size. Inherent problems to this paradigm are insuring communications
between the different components of the applications. Usually, mobile code libraries supply
the applications with communication mechanisms. There are two widely used mechanisms,
and we will, in this thesis, analyze one implementation of each. The first mechanism is
decentralized and relies on special objects called “forwarders” that will forward the messages
to the moving components. The second mechanism is centralized and relies on a location
server which records the current positions of all of moving components. The question which
arises then is: which mechanism performs better? This Quality of Service (QoS) issue has
motivated our work on the subject. The mobile code libraries implementing one or the other
mechanism have not justified their choice formally (see for instance [84]), and there is no
formal comparison of the performance of both mechanisms.

Thesis contributions 3

Thesis contributions

This thesis makes several contributions to the queueing theory, to the networking field
and to the code mobility field.

In the first chapter, we propose two queueing models based on the M/M/1/K and
M/D/1/K queues, and derive several QoS metrics of interest in each model, such as the
loss probability, the server utilization, the response time and some conditional probabilities.
For the first time, metrics such as the conditional loss probability and the conditional
non-loss probability are derived for the M+M/M/1/K queue. Furthermore, our detailed
analysis of the M/D/1/K queue has not been carried out before. Explicit information is
provided on how to compute the probability distribution of the queue length, which triggers
the computation of the loss probability, the server utilization and the response time of
the M/D/1/K queue. Based on these models, we propose several schemes for estimating
network-internal characteristics, and evaluate their performance on simulations conducted
with ns-2 [83].

In the second chapter, we embark towards estimating the membership in multicast
sessions. We first propose to model the multicast group as an M/M/∞ queue under a
heavy traffic regime. In this case, the scaled membership weakly converges to an Ornstein-

Ühlenbeck process which is known to have linear dynamics. The fact that both the dynamics
of the system and the measurements are linear enables the use of the powerful Kalman
filter theory. The estimator derived from this theory is ensured to be optimal under the
considered assumptions. The linearization of the problem and the use of the Kalman filter
in this context is a very original contribution. Motivated to derive an estimator under
more general assumptions, we build on Wiener filter theory which returns the best filter, in
steady-state, among all of linear filters. The model considered in this case is the M/M/∞
queue under a general traffic regime. The last estimator we derive in this chapter, is based
on an M/HL/∞ queue model where HL denotes an L-stage hyperexponential distribution.
All of these estimators have been applied on real audio and video traces, and they appear to
perform very well despite the fact that the assumptions considered in the different models
were violated in the considered traces. Note that it is the first time that membership
estimators are applied to real traces as usually they are only tested on synthetic traces.

The material presented in the third chapter is very original as it falls within the in-
tersection of two very different fields: the modeling world and the code mobility world.
Researchers from the first field are often not familiar with the problems encountered in
the second field, and researchers from the code mobility world are often not familiar with
modeling techniques such as Markov chains. This fact has impaired the performance eval-
uation of mechanisms related to code mobility. We model two implementations of location
mechanisms using Markov chains. The forwarders mechanism is modeled as an infinite state-
space Markov chain, and the state probability distribution is expressed using z-transforms.
Expressions for the average number of forwarders and the average response time of the
mechanism are then found. The centralized mechanism is modeled as a finite state-space

4 Introduction

Markov chain and the Chapman–Kolmogorov equations are solved numerically. Here also
we find an expression for the average response time of the mechanism. After validating both
Markovian models through simulations and experiments over both a LAN and a MAN, the
expressions of the expected response times returned by both models are compared under a
wide variety of conditions, showing that no mechanism is uniformly better than the other,
thereby justifying even more this research.

Thesis organization

The following chapters are self-contained, since each problem is treated individually
and in sequential. Chapter 1 is concerned with adaptive unicast applications which trans-
mission rate is to be adjusted to avoid congestion. Chapter 2 is concerned with multicast
applications in which the sender is interested in tracking the dynamics of the group mem-
bership. Chapter 3 is concerned with the performance evaluation and comparison of two
agent location mechanisms in a mobile code environment. Chapter 4 summarizes the thesis
and discusses some perspectives. A glossary and the bibliography complete the report.

Notation in use

Here are some notes on the notation used in the following. Vectors and matrices
are represented by bold letters. The Kendall–Lee notation [72, 78] is used to classify the
queueing models. Cp

n will denote a combination of n objects arranged in groups of size p

(n > 0 and 0 ≤ p ≤ n). Row 1 in a table will denote the first line of the table, i.e., the one
having the names assigned to the columns. When counting the number of rows, every line
is considered even if it is almost empty. Similarly, column 1 will denote the first column as
illustrated in this example:

column 1 column 2 . . .
row 1 . . .
row 2 . . .

...
...

...
. . .

Chapter 1

Inference models to estimate network
characteristics

The first chapter of the thesis is concerned with adaptive unicast applications that adjust
their sending rate in order to avoid congestion in the network. One way of achieving this
involves estimating both the available bandwidth and the available storage capacity along a
connection. The research presented herein builds on simple inference models based on finite
capacity single server queues to estimate the buffer size, the intensity of cross traffic and the
service rate at the bottleneck link of a path between two application-level hosts. Throughout
the chapter, several groups of moment-based estimators are proposed to estimate these
quantities. The best scheme, identified as the one achieving the best performance and the
fastest convergence, is then identified through simulation. An application to routing in
content distribution networks is discussed.

Keywords: Queueing, M/M/1/K queue, M/D/1/K queue, measurement, monitoring,
simulation.

Note: Part of the material presented in this chapter is published in [16].

6 Chap. 1 Inference models to estimate network characteristics

1.1 Introduction

The huge expansion of the Internet coupled with the emergence of new (in particular,
multimedia) applications pose challenging problems in terms of performance and control of
the network. These include the design of efficient congestion control and recovery mecha-
nisms, and the ability of the network to offer good Quality of Service (QoS) to the users.
In the current Internet, there is a single class of best effort service which does not promise
anything to the users in terms of performance guarantees. The forthcoming deployment in
the Internet of differentiated services (known as DiffServ [1]) will be a first (long awaited)
step towards the support of various types of applications and business requirements. It is
however doubtful that DiffServ – which will mark each packet to receive a particular for-
warding treatment, or per-hop behavior, at each network node – or the RED mechanism
for congestion avoidance in gateways [53] alone will solve all QoS issues raised by real-time
applications. Diffserv and RED are two instances of a general approach that aims at adding
more intelligence in the network. A more ambitious component of this approach is cap-
tured in the concept of active networking [122] that aims at exploiting mobile code and
programmable infrastructure to provide rapid and specialized service introduction.

A complementary approach for providing QoS guarantees is to add intelligence to the
applications. The idea is to provide applications with enough knowledge of the network
so that they can use this information to adapt their transmission rates to current network
conditions. Since it is impossible to monitor every link on the Internet, static (e.g. bandwidth
of a link) and dynamic (e.g. available bandwidth on a path) network internal characteristics
have to be estimated from measurements delivered by the network (e.g. packet losses in
RTCP feedback). Our work falls into the latter category.

In this chapter, we are interested in the available bandwidth on a route. Under the
single bottleneck link assumption, we expect this quantity to be better estimated if one
has estimates of the bottleneck bandwidth, the cross traffic intensity and the buffer size
at the bottleneck link. The latter quantities are not provided by packet pair algorithms
[73, 21, 31, 94, 77]). We believe that the available bandwidth will be better estimated when
taking explicitly into account the cross traffic and the buffer size at the bottleneck link.
Not only can the application adapt its sending rate and/or encoding in response to network
congestion, but it can estimate the maximum size of a burst of packets as well. We propose
to perform active measurements by probing the network, and model the end-to-end path as
a simple single server queueing model with two input streams: the probe stream and the
cross traffic stream (also called the background traffic stream). The input probe traffic will
be a Poisson process and the input cross traffic will be assumed to be a Poisson process.
Two models will be considered depending on whether the service times are assumed to be
exponentially distributed or deterministic. Based on the single bottleneck link assumption,
the inference models will allow us to simultaneously estimate the bandwidth capacity, the
background traffic intensity and the buffer size at the bottleneck link. Potential applications
for this work are: adapting the transmission for congestion control [21, 111], load balancing

Sec. 1.2 Related work 7

in routers and analysis of IP network usage. In fact, ISPs need bandwidth monitoring tools
to plan their capacity upgrades, and to detect congested or underutilized links [26].

The chapter is organized as follows. Section 1.2 briefly discusses some related works
and Section 1.3 introduces the methodology followed in this work. Two inference models
based on the M/M/1/K and the M/D/1/K queues are introduced in Sections 1.4 and 1.5,
respectively. In each case, several QoS metrics of interest are identified and expressed in
terms of the parameters to be estimated (buffer size, cross traffic intensity, server capacity).
In Section 1.6, we propose ten schemes that can be used to estimate these quantities, and
under the assumption that the service capacity is known (provided for instance by a packet
pair technique), we propose a total of eleven schemes that can be used to compute estimates
of the intensity of the cross traffic and the buffer size. Section 1.7 reports simulation results
obtained with the ns-2 simulator [83] from which we were able to select the best scheme
out of the proposed schemes. Extensions to our work are given in Section 1.8.

1.2 Related work

Inference models have been widely used for characterizing internal network behav-
ior from end-to-end multicast measurements. This methodology is captured in the MINC
project [3]. Among the network characteristics which have been estimated (refer to [3] for
a list of references), are the internal loss rates in the MBone [29, 28, 30, 51], the packet
delay variance at interior network links [50], the network-internal delay [100, 49], and the
multicast topology [27, 48, 47] (these lists are not exhaustive).

The estimation of network characteristics from measurements has been carried out
in a number of cases. For instance, the arrival rates of interfering traffic and the service
rates of customers on the route of a CAC (call acceptance controller) probe stream can be
estimated for a product form Kelly network [110]. The steady-state throughput of a bulk
transfer TCP flow can be estimated as a function of loss rate and round-trip time using
the so-called TCP-friendly formula [93, 80, 82]. The packet pair technique can be used to
estimate both the bottleneck bandwidth [21, 31, 94, 77] and the available bandwidth along a
path connecting two hosts on the Internet [67, 73, 31]. Although the previous estimates have
been devised under the assumption that a single bottleneck link exists on a path connecting
two hosts, experiments reported in the previous references indicate that these estimates still
perform reasonably well when this assumption is violated.

The estimation of the bottleneck bandwidth has been carefully investigated by Paxson
[94, Chapter 14]. Paxson proposes a robust procedure called “packet bunch mode” (PBM)
and compares the results returned by PBM with other techniques such as receiver-based
packet pair (RBPP), sender-based packet pair (SBPP) and peak rate (PR). It is seen in [94]
that PR performs poorly, that RBPP performs as well as PBM if some requirements are
observed and that SRPP does not work especially well (the estimators studied in [21, 31]
are both sender-based). As for PBM, Paxson observes that “it produces many bandwidth

8 Chap. 1 Inference models to estimate network characteristics

estimates that accord with known link speeds, and produces few erroneous results, except
for a tendency to misdiagnose a multiple-channel bottleneck link in presence of considerable
delay noise”. Note that PBM has a large component of heuristics, as it has to deal with
the multimodal distribution of bandwidth measurements to further identify and select the
capacity estimate from these modes.

Subsequent to our work, Lai and Baker [77] propose another technique called “receiver
only packet pair” (ROPP), which is yet another variant of the packet pair algorithm. The
authors compare the performance of ROPP and SRPP and RBPP (but not PBM). The
results reported in [77] suggest that ROPP can achieve an accuracy close to that of RBPP,
while maintaining the ease of deployment of SBPP. Recently, Dovrolis, Ramanathan and
Moore [46] develop a bandwidth estimation methodology that is robust to cross traffic
effects. This methodology, based on end-to-end measurements, is implemented in a tool
called pathrate. There are potentially two phases in pathrate. In the first phase, a packet
pair probing is done. If the distribution of bandwidth measurements is unimodal, then
the unique mode is the bandwidth estimator and the measurement process terminates.
Otherwise (multimodal distribution), the second phase is initiated and a packet train probing
is done. The authors make use of a heuristic to estimate the bottleneck bandwidth. When
evaluating the heuristic rule, they observe that the methodology is quite accurate as long
as the path capacity is lower than about 40 Mbps. For higher capacities, the estimator
underestimates the capacity, in some cases by a factor of almost two. However, the authors
show that the performance of their estimator is enhanced when increasing the histogram bin
width ω. This parameter tunes the resolution of the estimator, for instance, if ω = 2 then
pathrate will output estimates at 2 Mbps interval (refer to [46] for more details).

1.3 Methodology

Consider the following scenario: an application sends a probe stream into the network
together with its data packets. All packets are assumed to follow the same path to the
destination. At the source, the arrival times to the network (denoted by an) are available. At
the destination, the departure times from the network (denoted by dn) are available as well
as the information on lost packets and on packets that find the network non-empty. Assume
that all these variables are available at the source by using some feedback mechanism. The
source is then capable of estimating some QoS related metrics such as the loss probability
or the expected response time of the network.

Given a model for the network (such as a simple single server queue representing the
bottleneck node along the path source-destination), one is able to express the QoS related
metrics in terms of the buffer size, the cross traffic intensity and the server capacity. Given
estimates of these QoS related metrics, the source can simply infer the values of the buffer
size, the cross traffic intensity and the server capacity, by using the network model. Figure
1.1 illustrates the estimation approach just described.

Sec. 1.4 The M+M/M/1/K queue 9

• collect at the source samples of the variables an, dn, Xn, Yn,
• estimate some performance metrics using these variables (e.g. loss probability),

• infer the unknown parameters.

General methodology:

• given a model for the connection, express these metrics in terms of the parameters to estimate,

γ

λ

{dn}n

Network

Model

{an}n
data packets

Poisson probes γ

K

SinkApplication µ

Xn = 1{packet n is lost}
Yn = 1{packet n found a non-empty queue}

Figure 1.1: The methodology

1.4 The M+M/M/1/K queue

1.4.1 The model

We model an Internet connection by a single server queue representing its bottleneck
node, following [22]. The buffer is finite with room for K customers (K ≥ 1) including the
customer in service. The incoming traffic at the bottleneck is modeled as two independent
Poisson sources: the probe traffic generated by a foreground source with rate γ, and the cross
traffic generated by a background source with rate λ. This background source can be seen
as the superposition of many heterogeneous sources. We model the service times as i.i.d.
random variables with exponential distribution with mean 1/µ, furthermore, independent
of the arrival processes. This assumption represents the variability of the packet sizes. We
are aware of the strength of this assumption, but we assume it for the tractability it gives
to the study of the model.

K

λ

µ
γ

Figure 1.2: The inference model

The traffic intensity is defined as

ρ =
λ+ γ

µ
. (1.1)

We are interested in the behavior of the system from the perspective of the foreground cus-
tomers. This includes stationary measures such as expected delay, loss probability, server

10 Chap. 1 Inference models to estimate network characteristics

occupancy and a number of additional statistics associated with the foreground loss process,
namely, the probability of two consecutive losses and the probability of two consecutive suc-
cesses. It is important to observe that these stationary metrics do not pertain exclusively to
the foreground source, but to the background source as well, due to the Poisson assumption
and its memoryless property.

Let {Qn}∞n=1 be the process of the number of packets in the buffer at time of the

nth arrival from foreground source, and let Q = limn→∞Qn
1. The distribution of Q is

πi = P (Q = i). It is known that [75]

πi =
(1− ρ)ρi

1− ρK+1
, i = 0, 1, . . . , K. (1.2)

1.4.2 The loss probability

We focus here on the loss process. We define Xn = 1{Qn = K} and X = limn→∞Xn.
A customer is lost whenever it arrives to a full buffer. In other words, customer n is lost
whenever Xn = 1 and is not lost otherwise. Let {an}∞n=1 and {dn}∞n=1 be the arrival times
to the system and the departure times from the system, respectively, of the nth foreground
customer, n = 1, 2, When a packet is lost, it never reaches the destination. We shall
assume that dn = ∞ if Xn = 1.

Using the PASTA property [17, page 137], the probability that a foreground customer
arrives to find the system full and is lost is

PL := P (X = 1) = P (Q = K)

=
(1− ρ) ρK

1− ρK+1
. (1.3)

Observe that the expression for PL can be used to give the following expression for K in
terms of ρ and PL,

K =
1

log ρ
log

(

PL

1− ρ (1− PL)

)

. (1.4)

1.4.3 The server utilization

The second metric of interest is the utilization U of the server, defined as the proba-
bility of a non-empty queue as seen by a foreground customer. In order to express U , we

1A word on the notation in use: let {Zn}n be a sequence of random variables taking values in [0,∞).

Assume that limn→∞ P [Zn ≤ x] exists for all x ≥ 0. Then Z = limn→∞ Zn designates any random variable

such that P [Z ≤ x] = limn→∞ P [Zn ≤ x]

Sec. 1.4 The M+M/M/1/K queue 11

introduce the following indicator Yn = 1{Qn > 0} and define Y = limn→∞ Yn. The server
utilization is then

U := P (Y = 1) = P (Q > 0)

= ρ

(

1− ρK

1− ρK+1

)

(1.5)

= ρ (1− PL). (1.6)

Again, we can derive from the expression for U the following expression for K in terms of
ρ and U ,

K =
1

log ρ
log

(

1− U/ρ

1− U

)

. (1.7)

1.4.4 The expected response time

When available, the expected response time is also a relevant metric. To express this
quantity, we first define Tn as the response time of the nth foreground packet. It follows
that Tn = dn − an. Again, let T = limn→∞ Tn, then, the expected response time is

R := E[T |X = 0] =

∑K−1
i=0 (i+ 1) π(i)

µ(1− πK)
(1.8)

since a customer waits for an average time (i+1)/µ if there were already i customers in the
queue; 1− πK is the probability of a success. Using (1.2) we can write

R =
1

µ (1− πK)

(

1− ρ

1− ρK+1

K−1
∑

i=0

(i+ 1) ρi

)

.

Hence,

R =
1

µ (1− πK)

[

1− ρK

(1− ρ) (1− ρK+1)
− K ρK

1− ρK+1

]

=
1

µ (1− ρ)
− K

µ

πK

(1− ρ) (1− πK)
. (1.9)

The last expression for R, which was derived using (1.2), will prove useful. We can express
R only in terms of ρ and K by replacing πK given by (1.3) in (1.9). This gives

R =
1

µ (1− ρ)
− K

µ

ρK

1− ρK
. (1.10)

12 Chap. 1 Inference models to estimate network characteristics

1.4.5 The conditional loss probability

The next metric we are going to study is the conditional loss probability or, in other
words, the probability that two consecutive losses occur. It is expressed as follows

qL := P (Qn = K |Qn−1 = K). (1.11)

In order to be able to derive a closed form expression for qL, we define N(t) to be the
queue length of the system at time t ≥ 0 with the foreground source removed (γ = 0). Let
Pi,k(t) = P (N(t) = k |N(0) = i). Hence (1.11) rewrites

qL = γ

∫ ∞

0

e−γtPK,K(t) dt = γ P ∗
K,K(γ) (1.12)

where P ∗
K,K(γ) is the Laplace transform of PK,K(t).

Proposition 1.4.1

P ∗
i,K(γ) =

ai+1 (1− a)−1 − bi+1 (1− b)−1

λ (bK+1 − aK+1)

for i = 0, 1, . . . , K, where

a =
λ+ µ+ γ +

√

(λ+ µ+ γ)2 − 4λµ

2λ

b =
λ+ µ+ γ −

√

(λ+ µ+ γ)2 − 4λµ

2λ
.

�

Proof. Recall the definition Pi,k(t) = P (N(t) = k |N(0) = i) where N(t) is the queue
length of the system with the foreground source removed (γ = 0) at time t ≥ 0. We have
the following differential equations:

d

dt
Pi,0(t) = −λPi,0(t) + µPi,1(t) (1.13)

d

dt
Pi,K(t) = −µPi,K(t) + λPi,K−1(t) (1.14)

d

dt
Pi,k(t) = −(λ+ µ)Pi,k(t) + λPi,k−1(t) + µPi,k+1(t), for k = 1, . . . , K − 1, (1.15)

for i = 0, . . . , K. Define Pi(z, t) =
∑K

k=0 Pi,k(t)z
k. Then,

z
d

dt
Pi(z, t) = z

d

dt

K
∑

k=0

Pi,k(t)z
k = z

K
∑

k=0

d

dt
Pi,k(t)z

k.

Sec. 1.4 The M+M/M/1/K queue 13

Using (1.13) – (1.15) and after some algebra we get

z

1− z

d

dt
Pi(z, t) = (µ− λz)Pi(z, t)− µPi,0(t) + λzK+1Pi,K(t). (1.16)

Now we consider the Laplace transform of Pi(z, t), P ∗
i (z, s) =

∫∞

0
e−stPi(z, t) dt. Replace-

ment of this in (1.16) along with the use of the following relation

∫ ∞

0

e−st d

dt
Pi(z, t) dt = sP ∗

i (z, s)− Pi(z, 0)

and some algebraic manipulations yields

P ∗
i (z, s) =

zi+1 − µ(1− z)P ∗
i,0(s) + λ(1− z)zK+1P ∗

i,K(s)

sz − (1− z)(µ− λz)
(1.17)

where P ∗
i,k(s) =

∫∞

0
e−stPi,k(t)dt, k = 0, 1, . . . , K. The denominator of the right-hand side

of (1.17) contains two zeros,

z1(s) =
λ+ µ+ s−

√

(λ+ µ+ s)2 − 4λµ

2λ

z2(s) =
λ+ µ+ s+

√

(λ+ µ+ s)2 − 4λµ

2λ

for ℜ(s) ≥ 0.

As P ∗
i (z, s) is analytic, the zeros of the denominator must also be zeros of the numer-

ator. More precisely, the numerator must satisfy

zi+1
k (s)− [1− zk(s)][µP

∗
i,0(s)− λzk(s)

K+1P ∗
i,K(s)] = 0.

These two equations for k = 1, 2 can be solved to yield

P ∗
i,0(s) =

z2(s)
i+1z1(s)

K+1/[1− z2(s)]− z1(s)
i+1z2(s)

K+1/[1− z1(s)]

µ (z1(s)K+1 − z2(s)K+1)

P ∗
i,K(s) =

z2(s)
i+1/[1− z2(s)]− z1(s)

i+1/[1− z1(s)]

λ (z1(s)K+1 − z2(s)K+1)
.

Let a and b be defined as a = z2(γ) and b = z1(γ), we get

P ∗
i,K(γ) =

ai+1 (1− a)−1 − bi+1 (1− b)−1

λ (bK+1 − aK+1)

and the proof is concluded. �

14 Chap. 1 Inference models to estimate network characteristics

From Proposition 1.4.1 we get that

P ∗
K,K(γ) =

(1− a)−1 − (b/a)K+1(1− b)−1

λ ((b/a)K+1 − 1)

which in turn implies from (1.12) that

qL =
(γ

λ

)

(

(1− a)−1 − (b/a)K+1(1− b)−1

(b/a)K+1 − 1

)

. (1.18)

Expression (1.18) for qL can be inverted to give

K =
log
(

γ
1−a

+ qLλ
)

− log
(

γ
1−b

+ qLλ
)

log b− log a
− 1. (1.19)

1.4.6 The conditional non-loss probability

Another metric can also be calculated. It is the conditional probability that an arriving
foreground packet finds room in the buffer given that the previous foreground customer was
also admitted. We shall refer to this probability as the conditional non-loss probability and
will denote it by qN . We have

qN := P (Qn+1 6= K |Qn 6= K)

=

K−1
∑

i=0

P (Qn+1 6= K,Qn = i, Qn 6= K)

P (Qn 6= K)

=

K−1
∑

i=0

P (Qn+1 6= K |Qn = i) π(i)

1− π(K)

=
K−1
∑

i=0

(1− P (Qn+1 = K |Qn = i)) π(i)

1− π(K)
.

Recall the definition of Pi,k(t) = P (N(t) = k |N(0) = i), where N(t) is the queue-length

at time t when γ = 0 (no foreground customers). Since the nth foreground customer is
accepted in the system when Qn = i < K, we have

P (Qn+1 = K |Qn = i) =

∫ ∞

0

Pi+1,K(t) γ e
−tγ dt

= γ P ∗
i+1,K(γ)

for i = 0, 1, . . . , K − 1, with P ∗
j,k(s) =

∫∞

0
e−stPj,k(t)dt. Therefore,

qN = 1− γ
K−1
∑

i=0

P ∗
i+1,K(γ) π(i)

1− π(K)
. (1.20)

Sec. 1.5 The M+M/D/1/K queue 15

Using Proposition (1.4.1) which gives an expression for P ∗
j,K(γ), (1.20) rewrites

qN = 1−
(γ

λ

)

(

1− ρ

1− ρK

)(

1

bK+1 − aK+1

)[

a2 (1− (ρa)K)

(1− a)(1− ρa)
− b2 (1− (ρb)K)

(1− b)(1− ρb)

]

. (1.21)

Since

P (Qn+1 = K) = P
(

Qn+1 = K|Qn = K
)

P (Qn = K)+P
(

Qn+1 = K|Qn 6= K
)

P (Qn 6= K)

we deduce that PL, qL and qN are linked by the following relationship

PL (1− qL) = (1− PL) (1− qN). (1.22)

1.5 The M+M/D/1/K queue

1.5.1 The model

We still consider the model introduced in Section 1.4.1 but we now change the as-
sumption that the service times are exponentially distributed. Instead we will assume that
the service times are constant and all equal to 1/µ. In Section 1.4.1, we motivated our
choice for exponentially distributed service times by the fact that various packet lengths are
possible. Taking into consideration that packet lengths may not be so variable to justify
the choice of an exponential distribution, we study here another case: the service times are
taken to be constant (i.e. all packets have the same length) with value σ = 1/µ. Recall the
definition of the traffic intensity given in (1.1).

Again, let {Qn}∞n=1 be the process of the number of packets in the queue at time of
the nth arrival from foreground source and let Q = limn→∞Qn. Some preliminary results
must be introduced before computing the stationary distribution of Q.

Let F(θ) = E[exp(−θσ)] (ℜ(θ) ≥ 0) be the Laplace–Stieltjes transform (LST) of the
service time distribution. Since we consider a constant service time, this transform rewrites
as F(θ) = exp(−θσ). For ρ > 0 and |z| ≤ 1, define

Gρ(z) = F
(

ρ (1− z)

σ̄

)

− z

= e−ρ (1−z) − z. (1.23)

For ρ > 0, we denote by z0(ρ) the zero of Gρ(z) having the smallest modulus. Also, we

denote by [zn]f the coefficient of zn in the Taylor series expansion of f .

To express the stationary distribution of Q, we base our calculus on Cohen’s analysis
of the M/G/1 queue with finite waiting room (K > 1) [39, Chapter III.6]. Introduce the

16 Chap. 1 Inference models to estimate network characteristics

parameter B defined as

B = 1 +
ρ

2πi

∮

Dr

(

1

Gρ(z)

)

dz

zK−1
(1.24)

with Dr any circle in the complex plane with center 0 and radius strictly less than |z0(ρ)|.
According to the results obtained by Cohen [39, page 575], we have

P (Q = 0) =
1

B
, (1.25)

P (Q = j) =
1

2πiB

∮

Dr

(

1− z

Gρ(z)
− 1

)

dz

zj
, for j = 1, . . . , K − 1, (1.26)

P (Q = K) =
1

2πiB

∮

Dr

(

ρ− 1

Gρ(z)
+

1

1− z

)

dz

zK−1
. (1.27)

The integrals in the r.h.s. of (1.24), (1.26) and (1.27) can be evaluated using the theorem of
residues [118]. More precisely, the formula which is to be used is

∮

C

f(z)dz = 2πi

n
∑

k=1

Res[f, zk]

where (z1, . . . , zn) are the poles of the meromorphic function2 f inside the circle C. To
calculate a residue, use the identity

Res[f, zk] =
1

(m− 1)!

(

d(m−1)

dzm−1
(z − zk)

mf(z)

)

z=zk

= [zm−1](z − zk)
mf(z)

where m is the multiplicity of pole zk. It is easily seen that

1

2πi

∮

Dr

1

zj
dz = Res

[

1

zj
, 0

]

= [zj−1]1 =

{

1, if j = 1
0, if j = 2, 3, . . .

1

2πi

∮

Dr

1

(1− z) zK−1
dz = Res

[

1

(1− z)zK−1
, 0

]

= [zK−2]
1

1− z
= 1,

1

2πi

∮

Dr

1

Gρ(z) zj−1
dz = Res

[

1

Gρ(z) zj−1
, 0

]

=

{

0, if j = 1
[zj−2] 1

Gρ(z)
, if j = 2, 3, . . .

Finally, from (1.24)–(1.27) and with the help of the previous identities, the distribution of

2A meromorphic function is a rational function, i.e. it has no essential singular points; for instance

f(z) = e(1/z) is not a meromorphic function since 0 is a singular essential point.

Sec. 1.5 The M+M/D/1/K queue 17

Q is given by

π0 =
1

1 + ραK(ρ)
, (1.28)

π1 =
α2(ρ)− 1

1 + ραK(ρ)
, (1.29)

πj =
αj+1(ρ)− αj(ρ)

1 + ραK(ρ)
, j = 2, . . . , K − 1, (1.30)

πK =
1 + (ρ− 1)αK(ρ)

1 + ραK(ρ)
, (1.31)

where we have defined

αj(ρ) := [zj−2]
1

Gρ(z)
=

1

(j − 2)!

(

d(j−2)

dzj−2

1

Gρ(z)

)

z=0

=
1

2πi

∮

Dr

1

Gρ(z) zj−1
dz. (1.32)

When the service times are constant, an analytical expression for αj(ρ) can be derived.
To this end, start from

1

Gρ(z)
=

1

e−ρ (1−z) − z
= eρ (1−z)

∑

i≥0

(zeρ (1−z))i

where the last equality is true for z such that |zeρ (1−z)| < 1, which yields

1

Gρ(z)
=

∑

i≥0

zieρ (i+1) e−ρ (i+1)z =
∑

i≥0

∑

k≥0

zieρ (i+1) (−ρ (i+ 1)z)k

k!

=
∑

n≥0

(

∑

i+k=n

eρ (i+1) (−1)k ρk (i+ 1)k

k!

)

zn.

Hence,

αj(ρ) =
∑

i+k=j−2

eρ (i+1)(−1)kρk(i+ 1)k

k!
=

j−2
∑

k=0

eρ (j−k−1) (−1)k ρk (j − k − 1)k

k!
, j ≥ 2. (1.33)

1.5.1.1 Alternative computation of αj(ρ)

Computing αj(ρ) as in (1.33) becomes rapidly intractable because of the factorial in

the denominator. An alternative calculation consists of computing the integral in (1.32).
The key point is to determine r < r0 := |z0(ρ)|, the radius of the circle over which the integral
is to be computed. Recall that z0(ρ) is the zero of Gρ(z) having the smallest modulus. For

general service times, it is known from the Lemma of Takàcs [114, pages 47-49] that:

18 Chap. 1 Inference models to estimate network characteristics

• z0(ρ) is a continuous function of ρ,

• z0(ρ) = 1 if ρ ≤ 1,

• z0(ρ) < 1 if ρ > 1,

• z0(ρ) is the only zero inside the unit circle if ρ > 1,

• for ρ = 1, the multiplicity of the zero z0(1) = 1 is 2.

When the service times are deterministic, the zeros of Gρ(z) are simply a Lambert W
series. For later use, we briefly review some of the properties of the Lambert W function
[40]. By definition, the Lambert W function satisfies:

W (x)eW (x) = x.

As this equation has an infinite number of solutions for each (non-zero) value of x, W (x)

has an infinite number of branches. Denote the kth branch by Wk(x). If x is real, then
for −1/e ≤ x < 0, there are two possible (negative) real values of W (x). The branch
satisfying −1 ≤ W (x) < 0 is denoted by W0(x) and referred to as the principal branch of
the W function; and the branch satisfying W (x) ≤ −1 is denoted by W−1(x). Note that
W0(x) and W−1(x) are the only branches that take on real values and that W0(−1/e) =

W−1(−1/e) = −1.

Let us now return to the function Gρ(z). Rewriting it as follows:

Gρ(z) = −eρz

ρ

(

− ρe−ρ + ρze−ρz
)

,

it becomes clear that the zeros of Gρ(z) satisfy the following equation:

−ρz e−ρz = −ρe−ρ.

Thus, the zeros of Gρ(z) are

z(ρ) := −1

ρ
Wk

(

−ρe−ρ
)

, for k ∈ Z. (1.34)

Figure 1.3 depicts the modulus of the zeros z(ρ) for k ∈ [−4, 3]∩Z as a function of the load
ρ. The zero having the smallest modulus is given by the principal branch of the Lambert
function (drawn in red in Figure 1.3) which is real for any ρ > 0 (Note: −ρ exp(−ρ) is real
and −1/e ≤ −ρ exp(−ρ) < 0 hence W0(−ρ exp(−ρ)) is real and negative), thus

r0 = z0(ρ) = −1

ρ
W0

(

−ρe−ρ
)

Sec. 1.5 The M+M/D/1/K queue 19

0
1

2
3

4
5

6
7

8

0 1 2 3 4 5 6

m
o
d
u
lu

s
o
f

th
e

ze
ro

s

traffic load ρ

z0(ρ) z0(1) = 1

z0(ρ)
exp(−αρ)

k = 0
k = −1
k = −2 and k = 1
k = −3 and k = 2
k = −4 and k = 3
exp(−αρ), α > 1

Figure 1.3: Modulus of the zeros of Gρ(z), −1
ρ
Wk (−ρe−ρ), vs. the traffic load ρ

As expected, we find that z0(ρ) = 1 if ρ ≤ 1; z0(ρ) < 1 if ρ > 1; z0(1) = 1 has a multiplicity
2 (because W0(−1/e) = W−1(−1/e) = −1); and for ρ > 1, z0(ρ) is the only zero inside the
unit circle. Furthermore, we have that z0(ρ) is a continuous real function of ρ.

We want to find now a real number r which is smaller than r0 for any ρ. It can be
easily proved that the function exp(−αρ) for α > 1 serves well, as illustrated in Figure 1.3.
Indeed, to have exp(−αρ) < z0(ρ) for ρ > 0, it suffices to have W0(−ρ exp(−ρ)) < ρ(α− 1).
The latter condition is always satisfied for α > 1, since W0(−ρ exp(−ρ)) < 0.

Now that we have found a possible value for the radius of the circle Dr (take r =

exp(−2ρ) for instance), letting z = r exp(iθ) = r cos θ + ir sin θ in (1.32) yields

αj(ρ) =
1

2πrj−2

∫ 2π

0

e−iθ(j−2)Gρ(θ)

|Gρ(θ)|2
dθ, (1.35)

where Gρ(θ) denotes the conjugate of Gρ(θ) in the complex plane and |Gρ(θ)| denotes its
modulus. We can write:

Gρ(θ) = e−ρ(1−r exp(iθ)) − reiθ

Gρ(θ) = e−ρ(1−r exp(−iθ)) − re−iθ

|Gρ(θ)|2 = r2 + e−2ρ(1−r cos θ) − 2re−ρ(1−r cos θ) cos[θ − ρr sin θ]

20 Chap. 1 Inference models to estimate network characteristics

e−iθ(j−2)Gρ(θ) = e−ρ(1−r cos θ) e−i(ρr sin θ+θ(j−2)) − re−iθ(j−1)

= Realj(θ) + i Imagj(θ),

where

Realj(θ) := e−ρ(1−r cos θ) cos[ρr sin θ + θ(j − 2)]− r cos[θ(j − 1)]

Imagj(θ) := −e−ρ(1−r cos θ) sin[ρr sin θ + θ(j − 2)] + r sin[θ(j − 1)].

It is seen that Realj(θ) and |Gρ(θ)|2 are even functions in θ and that Imagj(θ) is odd.

Equation (1.35) reduces then to

αj(ρ) =
1

πrj−2

∫ π

0

Realj(θ)

|Gρ(θ)|2
dθ. (1.36)

The integral in (1.36) is easily computed using a numerical procedure provided by the NAG3

C library [91].

1.5.1.2 General remarks

Instead of taking r = exp(−αρ) with α > 1, it is possible to assign to r any value
strictly less than 1 when ρ ≤ 1 (letting r = 0.5 rather than r = 0.9 leads to fast convergence
when computing numerically the integral). Let us now investigate the case where ρ > 1.
Notice that Gρ(z) has a unique negative real minimum at 1 − log ρ/ρ and that Gρ(0) =

exp(−ρ) is positive. Hence, we are sure that r0 is in the interval [0, 1 − log ρ/ρ] and may
compute r iteratively, starting at 1− log ρ/ρ, and decrementing r until Gρ(r) > 0.

Since the stationary distribution exists, the coefficients αj for j = 2, . . . , K satisfy the
following conditions:

• 1 + ραK(ρ) > 1 (existence of π0),

• 0 < α2(ρ)− 1 < 1 + ραK(ρ) (existence of π1),

• 0 < αj+1(ρ)− αj(ρ) < 1 + ραK(ρ) for j = 2, . . . , K − 1 (existence of πj),

• 0 < 1 + (ρ− 1)αK(ρ) < 1 + ραK(ρ) (existence of πK),

which are summarized by:

• 1 < α2(ρ) < · · · < αj(ρ) < αj+1(ρ) < · · · < αK(ρ) for j = 2, . . . , K − 1,

• αK(ρ)(1− ρ) < 1,

Sec. 1.5 The M+M/D/1/K queue 21

1
7

1
3

1
9

2
5

2 6 10 14

α
j(

ρ
)

j

ρ = 0.8
ρ = 0.9
ρ = 1.0
ρ = 1.1
ρ = 1.2

Figure 1.4: The parameter αj(ρ) for j = 2, . . . , K and for several values of ρ

• αj+1(ρ)− αj(ρ) < 1 + ραK(ρ) for j = 2, . . . , K − 2,

Last, we observe that the function j 7→ αj(ρ) is concave increasing for ρ < 1, convex
increasing for ρ > 1 and linear increasing for ρ = 1 as plotted in Figure 1.4.

1.5.2 The loss probability

Recall the definition of Xn introduced in Section 1.4.2, Xn = 1{Qn = K} and X =

limn→∞Xn. A customer n is lost whenever Xn = 1 and is not lost otherwise.

The probability that a foreground customer is lost is the probability that it finds the
system full upon arrival, namely,

PL := P (X = 1) = P (Q = K)

=
1 + (ρ− 1)αK(ρ)

1 + ραK(ρ)
. (1.37)

Notice that in order to have 0 < PL < 1, the following condition must be satisfied:

0 <
αK(ρ)

1 + ραK(ρ)
< 1.

3NAG is a copyright of The Numerical Algorithms Group Ltd

22 Chap. 1 Inference models to estimate network characteristics

The first inequality says that αK(ρ) and 1 + ραK(ρ) must have the same sign. This
is always true since both quantities are greater than 1.

The second inequality says that αK(ρ) < 1/(1 − ρ) in the case ρ < 1 and αK(ρ) >

1/(1−ρ) otherwise. The latter is always true, as αK(ρ) > 1 and 1/(1−ρ) < 0. When ρ < 1

and for large values of K, the coefficients αK become close to each others and very close
to 1/(1 − ρ). A lack of precision during the computation of αK(ρ) may lead to a negative
value for PL instead of a negligible positive value.

1.5.3 The server utilization

The utilization U of the server was defined as the probability of a non-empty queue.
The server utilization is

U := P (Q > 0)

=
ραK(ρ)

1 + ραK(ρ)
. (1.38)

Notice that the condition

0 < U =
ραK(ρ)

1 + ραK(ρ)
< 1

is always satisfied.

1.5.4 The expected response time

Applying Little’s formula and the PASTA property to the queue, we find that the
expected response time R is given by

R =

∑K
j=1 j π(j)

(λ+ γ)(1− πK)
. (1.39)

Using (1.29), (1.30) and (1.31), (1.39) rewrites

R =
K(1 + ραK(ρ))−

[

1 +
∑K

j=2 αj(ρ)
]

µ ραK(ρ)
(1.40)

with αj(ρ) defined in (1.32).

Sec. 1.6 Using the inference models 23

1.6 Using the inference models

1.6.1 An inference question

Until now we have introduced two models for a connection. In the first model, we
were able to identify five metrics describing the quality of service provided to the foreground
source, PL, U , R, qL and qN , given in (1.3), (1.5), (1.10), (1.18) and (1.21). In the second
model, we were able to identify three QoS metrics, PL, U and R, given in (1.37), (1.38) and
(1.40). Since ρ = (λ+ γ)/µ, all these equations are expressed in terms of the parameters λ,
µ and K (the probing rate γ is known).

The problem is therefore the following: How can we infer estimates λ̂n, µ̂n and K̂n

of parameters λ, µ and K, respectively, from the observations collected from the first n
probes?

If the parameters λ, µ and K are unknown, then (1.3), (1.5), (1.10), (1.18) and (1.21)
leave us with nine schemes to compute these three constants in the M/M/1/K case (there

are C3
5 = 10 possible schemes but relation (1.22) reduces that number to nine); only one

scheme is available in the M/D/1/K case. These ten schemes are listed in Table 1.1, where
the notation X_Y _Z denotes the scheme obtained by using the metrics X, Y and Z in the
M/M/1/K case and where PL_U_R_D denotes the scheme obtained by using the metrics
PL, U and R in the M/D/1/K case.

Table 1.1: Schemes for estimating λ, µ and K

Scheme Reference Equations to use
PL_U_R 1 (1.3), (1.5), (1.10)
PL_U_qL 2 (1.3), (1.5), (1.18)
PL_U_qN 3 (1.3), (1.5), (1.21)
PL_R_qL 4 (1.3), (1.10), (1.18)
PL_R_qN 5 (1.3), (1.10), (1.21)
U_R_qL 6 (1.5), (1.10), (1.18)
U_R_qN 7 (1.5), (1.10), (1.21)
U_qL_qN 8 (1.5), (1.18), (1.21)
R_qL_qN 9 (1.10), (1.18), (1.21)
PL_U_R_D 10 (1.37), (1.38), (1.40)

If we now assume that only λ and K are unknown (µ being estimated for instance,

using pathrate [46], PBM [94] or ROPP [77], see Section 1.2), then C2
5 = 10 schemes in the

M/M/1/K case and one scheme in the M/D/1/K case (Equation (1.40) can be used only
if (1.37)–(1.38) are also used) can be used to compute these two constants, resulting in a
total of eleven schemes. These eleven schemes are listed in Table 1.2, where the notation
X_Y denotes the scheme obtained by using the metrics X and Y in the M/M/1/K case

24 Chap. 1 Inference models to estimate network characteristics

and where PL_U_D denotes the scheme obtained by using the metrics PL and U in the
M/D/1/K case.

Table 1.2: Schemes for estimating λ and K (µ assumed to be already known/estimated)

Scheme Reference Equations to use
PL_U I (1.3), (1.5)
PL_R II (1.3), (1.10)
PL_qL III (1.3), (1.18)
PL_qN IV (1.3), (1.21)
U_R V (1.5), (1.10)
U_qL VI (1.5), (1.18)
U_qN VII (1.5), (1.21)
R_qL VIII (1.10), (1.18)
R_qN IX (1.10), (1.21)
qL_qN X (1.18), (1.21)
PL_U_D XI (1.37), (1.38)

1.6.2 Solving for the equations

Up to now, we have defined two groups of schemes. The schemes, denoted by the
italic numbers 1, . . . ,10, have three QoS metrics as inputs and can be used to simultaneously
estimate parameters λ, µ and K. The schemes, denoted by the roman numbers I, . . . ,XI,
have two QoS metrics as inputs and can be used to estimate parameters λ and K solely,
parameter µ being known/estimated beforehand by using some other technique (the pathrate

tool for instance). Assume that the QoS metrics involved in a scheme can be evaluated from
measurements collected at the sender/receiver (cf. Section 1.6.3). Then, estimators for λ, µ
and K (or for λ and K only) are obtained by “solving” the scheme with respect to (w.r.t.)
the variables λ, µ and K (or w.r.t. the variables λ and K).

If we want to apply a certain scheme to estimate the buffer size, the intensity of the
cross traffic, and possibly the server capacity, we must establish existence and uniqueness
of its solution (λ, µ,K) or (λ,K). To be more precise, consider for instance scheme I that
involves the loss probability PL and the server utilization U (µ is known). Then, for any
(measured) values of PL and U with 0 < PL < 1 and 0 < U < 1, we want to find a single
pair (λ,K) satisfying the set of equations defined by (1.3) and (1.5). This existence and
uniqueness property holds for scheme 1, as shown below, as well as for schemes 10, I, II, V
and XI. As for the other schemes we have not been able to show that property, but in all
experiments that have been carried out, and that are reported in Section 1.7, each scheme
always gave us a unique solution. We now discuss the solution to scheme 1, and indicate
how the solution of scheme 10 can be derived. We next discuss the solution to scheme I,

Sec. 1.6 Using the inference models 25

show the existence and uniqueness of the solution for schemes II and V, and indicate how
the solution of scheme XI can be found.

1.6.2.1 Solving for scheme 1

The equations involved here are (1.3), (1.5) and (1.10), namely,

PL =
(1− ρ) ρK

1− ρK+1
,

U = ρ

(

1− ρK

1− ρK+1

)

= ρ (1− PL),

R =
1

µ (1− ρ)
− K

µ

ρK

1− ρK
=

1

µ (1− ρ)

(

1− K PL

1− PL

)

.

These equations produce the following expressions to ρ and µ,

ρ =
U

1− PL
i.e. λ =

µU

1− PL
− γ (1.41)

µ =
1

R (1− ρ)

(

1− K PL

1− PL

)

=
1− PL(K + 1)

R (1− PL − U)
. (1.42)

Combining (1.41) and (1.7) yields an additional expression to K,

K =
log(PL/(1− U))

log(U/(1− PL))
. (1.43)

1.6.2.2 Solving for scheme 10

This scheme still involves PL, U and R, but this time these quantities have to be
computed for the M+M/D/1/K queue. More precisely, cf. (1.37), (1.38) and (1.40),

PL =
1 + (ρ− 1)αK(ρ)

1 + ραK(ρ)
, (1.44)

U =
ραK(ρ)

1 + ραK(ρ)
, (1.45)

R =
K(1 + ραK(ρ))−

[

1 +
∑K

j=2 αj(ρ)
]

µ ραK(ρ)
(1.46)

with αK(ρ) given in (1.32).

26 Chap. 1 Inference models to estimate network characteristics

Recall that we want to solve the system of equations (1.44)–(1.46) with respect to the
variables λ, µ and K. We readily observe from (1.44)–(1.46) that

ρ =
U

1− PL
i.e. λ =

µU

1− PL
− γ, (1.47)

αK(ρ) =
1− PL

1− U
, (1.48)

µ =
K − (1− U)

[

1 +
∑K

j=2 αj(ρ)
]

RU
. (1.49)

Since all coefficients {αj(ρ), j ≥ 2} in the Taylor series expansion of 1/Gρ(z) are different
(see Section 1.5.1.2), then (1.47)–(1.48) returns a unique solution (ρ,K).

For a given ρ, we computed the coefficients αj(ρ) for a certain range of j and compared

the results with the r.h.s. of (1.48); then K was chosen as the integer j for which αj(ρ) was
the closest to (the measured value of) (1− PL)/(1− U).

Having K at our disposal, as well as the coefficients {αj(ρ), 2 ≤ j ≤ K}, it is then

possible to infer µ using (1.49), and subsequently λ using (1.47).

1.6.2.3 Solving for scheme I

The equations involved here are (1.3) and (1.5), namely,

PL =
(1− ρ) ρK

1− ρK+1
,

U = ρ

(

1− ρK

1− ρK+1

)

= ρ (1− PL).

These yield the following expressions to ρ and K,

ρ =
U

1− PL
, i.e. λ =

µU

1− PL
− γ, (1.50)

K =
log(PL/(1− U))

log(U/(1− PL))
, (1.51)

where the last equation is obtained by combining (1.50) and (1.7). Therefore, the set of
equations (1.3) and (1.5) in the variables λ and K has a unique solution given in (1.50) and
(1.51), respectively.

It is interesting to investigate the sensitivity of λ and K with respect to the variables
PL and U . To do so, let us compute the differentials of λ and K considered as functions of

Sec. 1.6 Using the inference models 27

PL and U . From (1.50) and (1.51) we find

dλ =
µ

1− PL

(

dU +
U

1− PL

dPL

)

,

dK =
1

log2(U/(1− PL))

(

A dU +B dPL

)

,

where

A =
log(U/(1− PL))

1− U
− log(PL/(1− U))

U
,

B =
log(U/(1− PL))

PL

− log(PL/(1− U))

1− PL

.

Using (1.3) and (1.5), A and B are rewritten as follows:

A =
log ρ(1− ρK+1)

ρK(1− ρ)(1− ρK)

(

ρK(1− ρK)−KρK−1(1− ρ)
)

,

B =
log ρ(1− ρK+1)

ρK(1− ρ)(1− ρK)

(

1− ρK −KρK(1− ρ)
)

.

We find that A > 0 and B < 0 for any value of ρ. Comparing |A| and |B| = −B, we obtain
|A| > |B| for ρ > 1 and |A| < |B| for ρ < 1. We deduce that K follows primarily U ’s
variations for ρ > 1 (since |A| > |B|) and it is more influenced by PL’s variations than by
U ’s variations for ρ < 1 (since |A| < |B|). As for λ, it is more sensitive to the variations
of PL (resp. U) than to the variations of U (resp. PL) whenever ρ = U/(1− PL) > 1 (resp.
ρ < 1). When ρ = 1 (U = 1 − PL), both λ and K are equally influenced by PL and U ’s
variations since in this case

dλ =
µ

1− PL

(

dU + dPL

)

,

dK =
1

2
(K + 1)2(dU − dPL).

In other words, when ρ > 1 (resp. ρ < 1), fast convergence in the estimation of PL (resp. of
U) leads to fast convergence in the estimation of λ while slow convergence in the estimation
of U (resp. of PL) leads to slow convergence in the estimation of K.

1.6.2.4 Solving for scheme II

Assume that one knows R and PL and that ρ and K are unknown. The expression

28 Chap. 1 Inference models to estimate network characteristics

for PL (1.3) yields the following expression for K in terms of ρ and PL,

K =
log(PL/(1− ρ (1− PL)))

log ρ
. (1.52)

Substituting this value of K into (1.9) yields

R =
1

µ (1− ρ)
− PL log(PL/(1− ρ (1− PL)))

µ (1− ρ) (1− PL) log ρ
.

Observe that necessarily ρ < 1/(1−PL). For 0 < x < 1/(1− PL), we introduce the mapping

f(x) :=
1

µ (1− x)
− PL log(PL/(1− x (1− PL)))

µ (1− x) (1− PL) log x
−R. (1.53)

If one can show that the equation f(x) = 0 has a unique solution in (0, 1/(1 − PL)), then
this solution yields ρ, hence λ, and subsequently K by using (1.52). Proposition 1.6.1 shows
that this is indeed the case.

Proposition 1.6.1 For any constants µ > 0, PL ∈ (0, 1) and R ≥ 1/µ, the equation

f(x) = 0 has a unique solution in [0, 1/(1− PL)]. �

Proof. Define

g(x) := (1− PL) (1− Rµ (1− x)) log x− PL logPL + PL log(1− x (1− PL)) (1.54)

for 0 < x < 1/(1− PL)). Hence, cf. (1.53),

f(x) :=
g(x)

µ (1− PL)(1− x) log x
. (1.55)

Denote by g(1)(x) (resp. g(2)(x)) the first (resp. second) order derivative of g(x). We find

g(1)(x) = (1− PL)Rµ

(

log x− (1− PL)(x− 1)(x+ a)

x (1− x(1− PL))

)

(1.56)

with

a :=
Rµ− 1

Rµ (1− PL)
≥ 0, (1.57)

and

g(2)(x) =
(1− PL)Rµh(x)

x2 (1− x(1− PL))2
(1.58)

Sec. 1.6 Using the inference models 29

with

h(x) := (1− PL)
2 x3 + ((1 + a)P 2

L + (1− 2a)PL − (2− a))x2

+ (1− 2a (1− PL)
2) x+ a(1− PL). (1.59)

From the identities

g(1) = 0, g(1)(1) = 0 and g(2)(1) =

(

1− PL

PL

)

(2RµPL − 1)

we see, by applying l’Hôpital’s rule to the r.h.s. of (1.55), that f(1) is well-defined, with
value

f(1) = − g(2)(1)

2µ(1− PL)
= −2RµPL − 1

2µPL
. (1.60)

Therefore, unless g(2)(1) = 0, the zeros of f(x) in (0, 1/(1 − PL)) are the zeros of g(x) in

(0, 1/(1−PL))\{1}; if g(2)(1) = 0, then f(x) and g(x) have the same zeros in (0, 1/(1−PL)).

We now show that g(x) has a unique zero in (0, 1/(1−PL))\{1} when g(2)(1) 6= 0 and

that g(x) has a unique zero in (0, 1/(1−PL)), located at the point x = 1, when g(2)(1) = 0,
which will conclude the proof.

Assume first that a 6= 0. It is then seen from the identities

h(0) = a (1− PL) > 0, limx→−∞ h(x) = −∞,
h(1/(1− PL)) = − 1

(1−PL)Rµ
< 0, limx→+∞ h(x) = +∞,

(1.61)

that the polynomial h(x) of degree 3 in the variable x has exactly one root x = ρ(a) in
(0, 1/(1− PL)). Combining (1.61) and (1.58) yields

g(2)(x) > 0, for 0 < x < ρ(a), limx→0 g(2)(x) = ∞,
g(2)(x) < 0, for ρ(a) < x < 1/(1− PL), limx→1/(1−PL) g

(2)(x) = −∞,
g(2)(ρ(a)) = 0.

Assume now that a = 0. Then, cf. (1.58)–(1.59),

g(2)(x) =
(1− PL)Rµ

x (1− x(1 − PL))2
k(x) (1.62)

with

k(x) := (1− PL)
2 x2 + (P 2

L + PL − 2)x+ 1. (1.63)

From

k(0) = 1, k(1/(1− PL)) = −PL, and lim
x→∞

k(x) = ∞,

30 Chap. 1 Inference models to estimate network characteristics

we deduce that the polynomial k(x), of degree 2 in the variable x, has exactly one zero,
x = ρ(0), in (0, 1/(1− PL)). This in turn implies from (1.62) that

g(2)(x) > 0, for 0 < x < ρ(0), limx→0 g(2)(x) = ∞,
g(2)(x) < 0, for ρ(0) < x < 1/(1− PL), limx→1/(1−PL) g

(2)(x) = −∞,
g(2)(ρ(0)) = 0,

In summary, we have shown that for all a ≥ 0, g(2)(x) has a unique zero x = ρ(a) in

(0, 1/(1 − PL)); furthermore, g(2)(x) > 0 for 0 < x < ρ(a) and g(2)(x) < 0 for ρ(a) < x <

1/(1− PL)).

From the above we may now determine the variations of the function g(x) in (0, 1/(1−
PL)). This is done in Figures (1.5)–(1.7) by distinguishing the cases when (i) 0 < ρ(a) < 1,
(ii) 1 < ρ(a) < 1/(1− PL) and (iii) ρ(a) = 1.

• 0 < ρ(a) < 1

−0

f(x)

log x

1− x

g(x)

g(2)(x)

x

g(1)(x)

ρ(a) 1

−∞

0 (1− PL)
−1

−∞

−∞

−∞

+

+

−

−

−

−

0

0

0

0

f(1)

+

−

+

−

+

0

0

0−

−

+

+

−

++∞

+∞

Figure 1.5: 0 < ρ(a) < 1

We conclude from Figure 1.5 that g(x) has a unique zero in (0, 1/(1−PL)) \ {1} when
0 < ρ(a) < 1. This zero is located in (0, ρ(a))

• 1 < ρ(a) < 1/(1− PL)

Sec. 1.6 Using the inference models 31

+∞
x

g(2)(x)

g(1)(x)

g(x)

1− x

log x

f(x)

0

−

−

+

+

−

1

0

0

0 −

0

f(1)

(1− PL)
−1

−∞

ρ(a)

0+

+

+

−

−∞

−∞

−+

+−∞ 0 −

0 −

−

+

+0

+∞

Figure 1.6: 1 < ρ(a) < 1/(1− PL)

We conclude from Figure 1.6 that g(x) has a unique zero in (0, 1/(1−PL)) \ {1} when
0 < ρ(a) < 1. This zero is located in (ρ(a), 1/(1− PL)).

• ρ(a) = 1

−∞

−∞

1 (1− PL)
−1

−∞0

0

0

0

0

0 +

+

−

−

−

−+

−

+

+

−

−f(x)

log x

1− x

g(x)

g(1)(x)

g(2)(x)

x

−∞

+∞

+∞

0

Figure 1.7: ρ(a) = 1

In this case, x = 1 in the only zero of g(x) in (0, 1/(1− PL)) (cf. Figure 1.7). This is
a zero of multiplicity 3.

�

It is interesting to investigate the sensitivity of λ and K with respect to the variables
R and PL. To do so, let us compute the differentials of λ and K considered as functions of
R and PL. From (1.10) and (1.3) we have

dR = C dλ+D dK (1.64)

dPL = E dλ+ F dK (1.65)

32 Chap. 1 Inference models to estimate network characteristics

with

C =
∂R

∂ρ

∂ρ

∂λ
=

1

µ2(1− ρ)2
− K2ρK−1

µ2(1− ρK)2
,

D =
∂R

∂K
= −ρK(1 +K log ρ− ρK)

µ(1− ρK)2
,

E =
∂PL

∂ρ

∂ρ

∂λ
=

ρK−1(K(1− ρ)− ρ(1 − ρK))

µ(1− ρK+1)2
,

F =
∂PL

∂K
=

ρK(1− ρ) log ρ

(1− ρK+1)2
.

From (1.64) and (1.65), we can write

dλ =
F

CF −DE
dR− D

CF −DE
dPL

dK = − E

CF −DE
dR +

C

CF −DE
dPL.

It is seen that C ≥ 0, D > 0, E > 0 and F < 0 for any ρ > 0 and any K ≥ 1. To identify
which parameter affects the most λ (resp. K), one should compare −F to D (resp. E to C).
Unfortunately the sign of D+ F (resp. C −E) depends on the values of µ, ρ and K, and it
is impossible to formally identify which estimator among R and PL has the biggest impact
on the estimation of λ and K.

1.6.2.5 Solving for scheme V

Scheme V involves Equations (1.5) and (1.10)

U = ρ

(

1− ρK

1− ρK+1

)

R =
1

µ (1− ρ)
− K

µ

ρK

1− ρK
. (1.66)

The expression for R in (1.9) is useful here

R =
1

µ (1− ρ)
− K

µ

πK

(1− ρ) (1− πK)
. (1.67)

Using (1.6), πK can be expressed as

πK = 1− U/ρ, (1.68)

Sec. 1.6 Using the inference models 33

to yield from (1.67)

R =
1

µ (1− ρ)
− K

µ

ρ− U

(1− ρ)U
. (1.69)

Recall the relation (1.7) for K

K =
1

log ρ
· log

(

1− U/ρ

1− U

)

.

Substituting Equation (1.7) for K into (1.69) yields

R =
1

µ (1− ρ)
− ρ− U

µU (1− ρ) log ρ
log

(

ρ− U

ρ (1− U)

)

. (1.70)

Observe that necessarily ρ ≥ U . For ρ ≥ U , introduce the mapping

f(x) =
1

µ (1− x)
− x− U

µU (1− x) log x
log

(

x− U

x (1− U)

)

− R. (1.71)

If one can show that the equation f(x) = 0 has a unique solution in [U,∞), then this
solution yields ρ, and subsequently K by using (1.7). Proposition 1.6.2 shows that this is
indeed the case.

Proposition 1.6.2 For any constants µ, U and R such that µ > 0, 0 < U < 1 and

R ≥ 1/µ, the equation f(x) = 0 has a unique solution in [U,∞). �

Proof. Define

g(x) = U log x− (x− U) log

(

x− U

x (1− U)

)

− µRU (1− x) log x

for x ≥ U . Hence (1.71) rewrites as

f(x) =
g(x)

µU (1− x) log x
. (1.72)

Denote by g(1)(x) (resp. g(2)(x)) the first (resp. second) order derivative of g(x). We find

g(1)(x) = µRU log x− µRU
1− x

x
− log

(

x− U

x (1− U)

)

(1.73)

and

g(2)(x) =
µRU

x
+

µRU

x2
− U

x (x− U)

=
U h(x)

x2 (x− U)
(1.74)

34 Chap. 1 Inference models to estimate network characteristics

with

h(x) := µRx2 − [1− µR(1− U)] x− µRU. (1.75)

The function h(x) has two zeros

x1 =
1− µR(1− U)−

√

[1 − µR(1− U)]2 + 4µ2R2U

2µR

x2 =
1− µR(1− U) +

√

[1− µR(1− U)]2 + 4µ2R2U

2µR
.

It is clear that x1 ≤ 0. As for x2, observe that h(U) = −U ≤ 0. Since h(x2) = 0 and
limx→±∞ h(x) = +∞, it follows that x2 ≥ U . Hence h(x) has only one zero in [U,∞).

Looking at expression (1.72), we can say that, unless x = 1, the zeros of g(x) are the

zeros of f(x). For x = 1, we have g(1) = 0, g(1)(1) = 0 and g(2)(1) = 2µRU−U/(1−U). By
applying l’Hôpital’s rule to the right-hand side of (1.72), we see that f(1) is well-defined,
with value

f(1) =
g(2)(1)

−2µU

=
1− 2µR (1− U)

2µ (1− U)
. (1.76)

f(1) = 0 if and only if g(2)(1) = 0 i.e. if 1 − 2µR (1 − U) = 0. Therefore, unless this
condition is satisfied, the zeros of f(x) in [U,∞) are the zeros of g(x) in [U,∞) \ {1}; for
1 − 2µR (1 − U) = 0, the zeros of f(x) in [U,∞) are the zeros of g(x) in [U,∞). In that
case, (1.75) rewrites as

h(x) = µR (x2 − (1− U)x− U)

and its zeros become x1 = −U and x2 = 1.

Three cases are to be considered depending on whether x2 is less than, equal to or
greater than 1 (we have seen that x2 = 1 if 1−2µR(1−U) = 0). In each case, the variations
of the functions g(x) and f(x) are studied. We aim at showing that g(x) has a unique zero

in [U,∞) \ {1} when g(2)(1) 6= 0 and a unique zero in [U,∞), located at the point x = 1,

when g(2)(1) = 0, which will conclude the proof. The following limits are easily calculated

limx→+∞ g(2)(x) = 0, limx→±∞ g(1)(x) = +∞,
limx→−∞ g(2)(x) = −∞, limx→+∞ g(x) = +∞.

• U ≤ x2 ≤ 1

Sec. 1.6 Using the inference models 35

x

h(x)

g(1)(x)

g(x)

1− x

log x

f(x)

U

−

−g(2)(x) −∞

1 +∞

0

0

0

0

f(1)

0

+

x2

0

0

+

+ +

+ +∞

0 − +

+

−

+

−

0

0

−

+

−

+

+

+

−

−

+∞ +∞

+∞

Figure 1.8: U ≤ x2 ≤ 1

We conclude from Figure 1.8 that g(x) has a unique zero in [U,∞) \ {1} when U ≤
x2 ≤ 1. This zero is located in [U, x2)

• x2 ≥ 1

+∞

+

+

x

h(x)

g(2)(x)

g(1)(x)

g(x)

1− x

log x

f(x)

U 1

−

−−∞

+∞

+∞

0

0

0

0

0

f(1)

−

+

+

−

+

x2

0

0
+∞

+∞
0

0 +

−

+

−0+

+

−

−

− +

Figure 1.9: x2 ≥ 1

We conclude from Figure 1.9 that g(x) has a unique zero in [U,∞) \ {1} when x2 ≥ 1.
This zero is located in (x2,∞)

• x2 = 1 (i.e. 1− 2µR (1− U) = 0)

36 Chap. 1 Inference models to estimate network characteristics

x

h(x)

g(1)(x)

g(x)

1− x

log x

f(x)

U

g(2)(x) −∞ −

−

+

−

+

−

+ 0

0

0

0

0

0

0

x2 = 1 +∞

+∞

0+

+

+

+

−

+

−

+∞

+∞+∞

Figure 1.10: x2 = 1

In this case (cf. Figure 1.10), g(x) has only one zero in [U,∞) which is x2 = 1.

�

Concerning the sensitivity of λ and K with respect to the variables U and R, a similar
analysis as the one in Section 1.6.2.4 can be performed, leading to the same conclusion: dλ
and dK depend on the values of µ, ρ and K and it is rather impossible to formally identify
which estimator among U and R has the biggest impact on the estimations of λ and K.

1.6.2.6 Solving for scheme XI

This scheme has PL and U as inputs, but this time these quantities have to be com-
puted for the M+M/D/1/K queue. More precisely, cf. (1.37) and (1.38),

PL =
1 + (ρ− 1)αK(ρ)

1 + ραK(ρ)
(1.77)

U =
ραK(ρ)

1 + ραK(ρ)
(1.78)

with αK(ρ) given in (1.33).

Recall that we want to solve the system of equations (1.77)–(1.78) with respect to the
variables λ and K. We readily observe from (1.77)–(1.78) that

ρ =
U

1− PL
, i.e. λ =

µU

1− PL
− γ (1.79)

αK(ρ) =
1− PL

1− U
. (1.80)

Sec. 1.6 Using the inference models 37

Since all coefficients {αj(ρ), j ≥ 2} in the Taylor series expansion of 1/Gρ(z) are different

(see Section 1.5.1.2), then (1.79)–(1.80) will return a unique solution (ρ,K).

For a given ρ, we computed the coefficients αj(ρ) for a certain range of values for j

and compared the results with the r.h.s. of (1.80); then K was chosen as the integer j for
which αj(ρ) was the closest to (the measured value of) (1− PL)/(1− U).

1.6.3 Calculating the moment-based estimators

We have at our disposal the first n samples of {Xi}i, {Yi}i, {ai}i, {di}i for the probing

traffic, and we know γ and µ. Let Û(n), P̂L(n), R̂(n), q̂L(n) and q̂N(n) denote the estimators
of U , PL, R, qL and qN , respectively. They are defined as (n = 1, 2, . . .)

P̂L(n) :=
1

n

n
∑

i=1

1{Xi = 1}, (1.81)

Û(n) :=
1

n

n
∑

i=1

1{Yi = 1}, (1.82)

R̂(n) :=

∑n
i=1 1{Xi = 0} (di − ai)
∑n

i=1 1{Xi = 0} , for
n
∑

i=1

1{Xi = 0} > 0, (1.83)

q̂L(n) :=

∑n−1
i=1 1{Xi = 1, Xi+1 = 1}
∑n−1

i=1 1{Xi = 1}
, for

n−1
∑

i=1

1{Xi = 1} > 0, (1.84)

q̂N(n) :=

∑n−1
i=1 1{Xi = 0, Xi+1 = 0}
∑n−1

i=1 1{Xi = 0}
, for

n−1
∑

i=1

1{Xi = 0} > 0. (1.85)

The estimates P̂L(n) and Û(n) are obtained using all observations, R̂(n) and q̂N (n) are
obtained using observations corresponding to successful packets, and q̂L(n) is obtained using
observations corresponding to lost packets. We expect q̂L(n) to converge slowly to qL, hence,
intuitively, we can say that all schemes involving this metric will not perform well.

1.6.4 Desirable properties of an estimator

If a comparison is to be made among several estimators, it is useful to identify the
main properties expected of a good estimator. Namely, an estimator is preferably unbiased

and consistent. Unbiasedness has been proven for P̂L(n), Û(n) and R̂(n), while q̂L(n) and

q̂N(n) turn out to be biased (see next Section). Consistency4 for each metric is much more
complicated to show. Establishing such a property implies computing both the bias and the

4A consistent estimator is one that concentrates completely on its target as the sample size increases

38 Chap. 1 Inference models to estimate network characteristics

variance of an estimator. The major difficulty in this computation is due to the fact that
the random variables {Xi}i are correlated, since the queue is finite and since the samples
are taken from consecutive foreground packets, rather than random packets.

1.6.4.1 Study of the mean values

Using the identity E[1{A}] = P (A) that holds for any event A, we find

E[P̂L(n)] = PL,

E[Û(n)] = U,

E[R̂(n)] = R,

E[q̂L(n)] = qL − cov[q̂L(n), P̂L(n− 1)]

PL
,

E[q̂N (n)] = qN +
cov[q̂N(n), P̂L(n− 1)]

PL
.

The last two equalities follow from (1.84) and (1.85) when expressed as follows

q̂L(n) =

∑n−1
i=1 1{Xi = 1, Xi+1 = 1}
(n− 1) P̂L(n− 1)

,

q̂N(n) =

∑n−1
i=1 1{Xi = 0, Xi+1 = 0}
(n− 1) (1− P̂L(n− 1))

.

Clearly, P̂L(n), Û(n) and R̂(n) are unbiased estimators, whereas q̂L(n) and q̂N(n) are biased,

but the bias depends on the size of the samples. Moreover, if P̂L(n) is consistent then the
bias approaches 0 as n → ∞ for both estimators.

1.6.4.2 Distribution of P̂L(n)

In this section, we want to express the distribution of P̂L(n), or in other words,

P (P̂L(n) = i/n). This allows the computation of the variance of P̂L(n). We have seen
that this estimator is unbiased. If its variance approaches zero as the number of probes goes

to infinity, then P̂L(n) is consistent, or equivalently, P̂L(n) → PL for n → ∞.

The estimation of PL at the nth probe sample is simply the ratio of the number of
lost probes, i, over the total number of probes, n. For n samples, one may construct the

indefinitely. In the limiting case, as the sample size becomes infinite, a consistent estimator will provide a
perfect point estimate of the target. In other words, an estimator is said to be consistent if and only if its
bias and variance both approach zero, as n → ∞.

Sec. 1.6 Using the inference models 39

vector (X1, . . . , Xn) where Xi = 1{Qi = K}. This vector takes on values from the set space

{0, 1}n. For i lost packets, there are C i
n := C(n, i) possible values for (X1, . . . , Xn), denote

by Ai the set of these values. We can now write

P
(

P̂L(n) = i/n
)

=
∑

(x1,...,xn)∈Ai

P
(

(X1, . . . , Xn) = (x1, . . . , xn)
)

=
∑

(x1,...,xn)∈Ai

P (X1 = x1, . . . , Xn = xn)

=
∑

(x1,...,xn)∈Ai

P (Xn = xn|X1 = x1, . . . , Xn−1 = xn−1)

×P (Xn−1 = xn−1|X1 = x1, . . . , Xn−2 = xn−2)

× . . .× P (X2 = x2|X1 = x1)× P (X1 = x1)

=
∑

(x1,...,xn)∈Ai

P (Xn = xn|Xn−1 = xn−1)× P (Xn−1 = xn−1|Xn−2 = xn−2)

× . . .× P (X2 = x2|X1 = x1)× P (X1 = x1) (1.86)

where exactly i variables xj are equal to 1 and the remaining n− i variables are equal to 0.
To derive the last equality, we have used the memoriless property of the Markovian process
{Qn}n. In order to simplify (1.86), introduce the following:

a := number of occurrences of two consecutive lost packets
= number of occurrences of the sequence ’11’ in (x1, . . . , xn)

b := number of occurrences of two consecutive successful packets
= number of occurrences of the sequence ’00’ in (x1, . . . , xn)

c := number of occurrences of a lost packet followed by a successful packet
= number of occurrences of the sequence ’10’ in (x1, . . . , xn)

d := number of occurrences of a successful packet followed by a lost packet
= number of occurrences of the sequence ’01’ in (x1, . . . , xn)

and

P0 =

{

PL, if x1 = 1,
1− PL, if x1 = 0.

Obviously, the parameters a, b, c and d satisfy:














a+ b+ c+ d+ 1 = n,
a+ d+ 1{P0 = PL} = i,
c = d, if x1 = xn,
c = d+ 1{x1 = 1, xn = 0} − 1{x1 = 0, xn = 1}, if x1 6= xn.

Notice that

P (Qk 6= K|Qk−1 = K) = 1− P (Qk = K|Qk−1 = K) = 1− qL,

P (Qk = K|Qk−1 6= K) = 1− P (Qk 6= K|Qk−1 6= K) = 1− qN .

40 Chap. 1 Inference models to estimate network characteristics

Equation (1.86) can now be rewritten as follows

P
(

P̂L(n) = i/n
)

=
∑

(x1,...,xn)∈Ai

P0(qL)
a(qN)

b(1− qL)
c(1− qN)

d. (1.87)

At this point, we must distinguish between four different cases, according to whether the
first packet and/or the last packet are lost or not.

• x1 = 0 and xn = 0. We have P0 = 1− PL

i = 0 ⇒
{

a = c = d = 0,
b = n− 1.

1 ≤ i ≤ n− 2 ⇒















a = i− d,
b = n− i− d− 1,
c = d,
with d = 1, . . . ,min(i, n− i− 1).

For each value of d, there are Cd
n−i−1C

d−1
i−1 different possible values for (x2, . . . , xn−1)

(Note: there are Cd
n−i−1 ways of putting the d ’0’ of the sequence ’01’ in n − i − 1

positions, and there are Cd−1
i−1 possibilities for choosing d − 1 cuts among all i − 1

possible cuts in order to separate all the i 1’s into d groups ’01. . .1’).

• x1 = 0 and xn = 1. We have P0 = 1− PL

1 ≤ i ≤ n− 1 ⇒























a = i− d,
b = n− i− d,
c = d− 1,
with d = 1, . . . ,min(i, n− i),
or c = 0, . . . ,min(i− 1, n− i− 1).

For each value of c, there are Cc
n−i−1C

c
i−1 different possible values for (x2, . . . , xn−1)

(Note: there are Cc
n−i−1 ways of putting the c ’0’ of the sequence ’10’ in n−2− (i−1)

positions, and there are Cc
i−1 possibilities for choosing c cuts among all i− 1 possible

cuts in order to separate all the i 1’s into c groups ’1. . .10’ and the right-most group
’1. . .1’).

• x1 = 1 and xn = 0. We have P0 = PL

1 ≤ i ≤ n− 1 ⇒















a = i− d− 1,
b = n− i− d− 1,
c = d+ 1,
with d = 0, . . . ,min(i− 1, n− i− 1).

Sec. 1.6 Using the inference models 41

For each value of d, there are Cd
n−i−1C

d
i−1 different possible values for (x2, . . . , xn−1)

(Note: there are Cd
n−i−1 ways of putting the d ’0’ of the sequence ’01’ in n−2− (i−1)

positions, and there are Cd
i−1 possibilities for choosing d cuts among all i− 1 possible

cuts in order to separate all the i 1’s into d groups ’01. . .1’ and the left-most group
’1. . .1’).

• x1 = 1 and xn = 1. We have P0 = PL

2 ≤ i ≤ n− 1 ⇒















a = i− d− 1,
b = n− i− d,
c = d,
with d = 1, . . . ,min(i− 1, n− i).

i = n ⇒
{

a = n− 1,
b = c = d = 0.

For each value of c (= d), there are Cd−1
n−i−1C

d
i−1 different possible values for (x2, . . . , xn−1)

(Note: there are Cc
i−1 ways of putting the c ’1’ of the sequence ’10’ in n− 1− (n− i)

positions, and there are Cc−1
n−i−1 possibilities for choosing c−1 cuts among all n− i−1

possible cuts in order to separate all the n− i 0’s into c groups ’10. . .0’).

Finally, and after a factorization of the cases x1 6= xn, (1.87) becomes

P
(

P̂L(n) = i/n
)

= 1{i = 0}(1− PL)(qN)
n−1 + 1{i = n}PL(qL)

n−1

+1{1 ≤ i ≤ n− 2}
min(i,n−i−1)
∑

d=1

Cd
n−i−1C

d−1
i−1 (1− PL)(qL)

i−d(qN)
n−i−d−1(1− qL)

d(1− qN)
d

+1{1 ≤ i ≤ n− 1}2PL(1− qL)

×
min(i−1,n−i−1)

∑

d=0

Cd
n−i−1C

d
i−1(qL)

i−d−1(qN)
n−i−d−1(1− qL)

d(1− qN)
d

+1{2 ≤ i ≤ n− 1}
min(i−1,n−i)
∑

d=1

Cd−1
n−i−1C

d
i−1PL(qL)

i−d−1(qN)
n−i−d(1− qL)

d(1− qN)
d.

The variance of the estimator P̂L(n) is simply

Var
[

P̂L(n)
]

= E

[

(

P̂L(n)
)2
]

− E
[

P̂L(n)
]2

=

n
∑

i=0

(i/n)2 P
(

P̂L(n) = i/n
)

− (PL)
2.

It is quite hard to formally compute limn→∞ Var[P̂L(n)]. Thus, we will rely on simulated

results to compute the empirical variance of P̂L(n) and further know whether or not this
estimator is consistent. This is addressed in the next section.

42 Chap. 1 Inference models to estimate network characteristics

1.6.4.3 Overall performance of the estimators

The overall performance of the estimators is presented in Table 1.3. In order to have
a fair comparison between the estimators, we report their performance in M+M/M/1/K

simulations only. In these simulations, all the assumptions considered in Section 1.4.1 are
satisfied. The performance of the estimators is thus affected by the speed of convergence
solely.

Table 1.3: Overall performance of the estimators for 50000 probes and M+M/M/1/K

simulations: sample mean and percentiles of the relative error (expressed in percentage)
and the empirical variance

Relative error (%)
Metric Mean 25 50 75 90 95
PL 5.07 0.52 2.86 6.46 11.9 21.9
U 0.17 0.002 0.09 0.27 0.51 0.68
R 0.46 0.03 0.07 0.59 1.43 2.43
qL 10.7 0.55 5.76 11.4 18.8 57.8
qN 0.20 0.01 0.11 0.24 0.60 0.90

Empirical variance
Metric Mean 25 50 75 90 95
PL 0.20 0.01 0.09 0.23 0.59 0.88
U 0.04 9 10−4 0.02 0.07 0.09 0.16
R 1.39 3 10−6 2 10−5 10−4 0.004 13.1
qL 19.6 0.13 1.06 15.2 91.1 115
qN 0.35 0.003 0.05 0.30 1.37 2.25

For each experiment (20 different M+M/M/1/K experiments have been conducted;
see details in Section 1.7), we have computed the relative error (expressed in percentage)
between each estimator in (1.81)–(1.85) and its corresponding theoretical value, as well as
the variance of the estimato. This computation has been performed after the generation
of 50000 probes. For a given estimator, we therefore have a collection of 20 values for the
relative error as well as 20 values for the variance of the estimator.

Rows 3–7 in Table 1.3 report the mean and the percentiles of the relative error (ex-
pressed in percentage) using the collection of 20 values computed from the simulations, and
rows 10–14 in the same table report the mean and the percentiles of the empirical variance
of the estimators.

Estimator q̂L is the least efficient estimator5 since it has the largest empirical variance
(see row 13 in Table 1.3). In other words, the estimator q̂L is not good because it exhibits
high variance. The distribution of q̂L is not concentrated and the estimates of q̂L vary too

5An estimator is said to be more efficient if it has a smaller variance. The distribution of an efficient
estimator is highly concentrated.

Sec. 1.7 Simulation results and analysis 43

much over time. We expect all schemes using q̂L to perform badly. The rest of the estimators

is more or less efficient, their distribution being highly concentrated. For P̂L, Û and R̂, we
already now that they are unbiased (see Section 1.6.4.1), hence their distributions are said
to be on target.

Looking now at rows 3–7 in Table 1.3, we see that the relative error of estimators Û ,

R̂ and q̂N is low, unlike the relative errors of P̂L and q̂L. Thus, we expect all schemes using

P̂L to perform worse than the schemes using R̂ for instance. However, this might not be the
case due to the unexpected effect of combining several “noisy” estimators within the same
scheme.

Remark 1.6.1 Estimators P̂L, q̂L and q̂N are all loss-related and based on single-sided
measurements, as these estimators are “naturally” available at the destination. Estimator

R̂ is based on an end-to-end measurement, as well as Û . One might expect that schemes
involving both kind of metrics will perform better than schemes involving single-sided or
end-to-end metrics solely, regardless of the performance of the metrics at hand.

1.7 Simulation results and analysis

1.7.1 Trace generation

The data sets {ai}i, {di}i, {Xi}i and {Yi}i were extracted from traces generated by
simulation models in ns-2. In this section, we report simulations in which there is a single
queue to better observe the behavior of both inference models under various background
traffic patterns. Simulations with multiple links are reported later on in Section 1.7.5.
Overall, 50 simulations have been performed in which several types of background traffic
are considered:

(T1) A Poisson flow of packets with exponentially distributed packet size. The average
packet size is 100 Bytes.

(T2) A superposition of 100 Poisson-like flows. The inter-arrivals within each flow is ex-
ponentially distributed. The packet length is constant for each flow and its value is
taken from an exponential distribution with average 100 Bytes. Therefore, different
flows have different packet lengths.

(T3) An aggregation of 100 On/Off flows, where the On and Off times were taken from a
Pareto distribution with shape 1.5. The packet length is constant for each flow and
its value is taken from an exponential distribution with average 100 Bytes.

(T4) An aggregation of 250 On/Off flows, where the On and Off times were taken from a
Pareto distribution with shape 1.5. The packet length is constant for each flow and
its value is taken from an exponential distribution with average 100 Bytes.

44 Chap. 1 Inference models to estimate network characteristics

(T5) An aggregation of 250 long-lived FTP over TCP flows.

(T6) An aggregation of 1000 long-lived FTP over TCP flows.

In all experiments foreground packets arrive according to a Poisson process and have ex-
ponentially distributed packet sizes (average = 100 Bytes) except in the case when the
background traffic is of type (T2); in the latter case, the foreground source is also of type
(T2).

It is important to specify, for each type of simulations, which assumptions are satisfied
and which ones are violated.

• The set of simulations where the cross traffic is of type (T1) corresponds to the
M+M/M/1/K queue model. The interest of such simulations is to identify which
scheme among schemes I-X converges faster.

• When both foreground and background traffic are of type (T2), the only assumption
that is violated is the one concerning the service times. In these simulations, the
service times are the same for each flow, but differ from flow to flow. There are a total
of 101 different values coming all from an exponential distribution (the service time is
proportional to the packet size). If the number of background flows is increased, the
service time distribution will get closer to the exponential distribution. In this set of
simulations, we are testing the robustness of both queue models against violation of
the assumption on the service times.

• When the cross traffic is of type (T3) or (T4), the Poisson assumption for the back-
ground traffic is violated. The assumption on the distribution of the service times is
also violated, but as the number of flows increases, the service time distribution will
get closer to the exponential distribution (cf. previous item). However, when the num-
ber of flows grows to infinity, it is known that the aggregation of such On/Off flows
will exhibit correlations across several time scales (see [116]). So, when the number of
flows is increased, on one hand the assumption on the cross traffic will be more vio-
lated, and on the other hand the assumption on the service times will be less violated
(case of the M+M/M/1/K queue model). A comparison of the performance of the
estimators when the background traffic is either (T3) or (T4) will help identify which
assumption is more essential to the M+M/M/1/K queue model.

• In the last set of assumptions (cross traffic of type (T5) or (T6)), the Poisson assump-
tion for the background traffic is violated as well as the assumption of exponential
service times. The FTP/TCP flows generate two kinds of packets: 512-Bytes data
packets, and 40-Bytes acknowledgements. Thus, the service times of the background
traffic take on two distinct values, whereas the service times of the foreground traffic
are exponentially distributed. When the number of background flows is increased,
the resulting distribution of the service times is expected to get farther from the ex-
ponential distribution. Going back to the background traffic assumption (which has

Sec. 1.7 Simulation results and analysis 45

been made only for mathematical tractability), it is known from [95] that the arrivals
within a single FTP flow are not Poisson. However, what we do not know is whether
the distribution of the arrivals from an aggregation of several FTP flows approaches
the exponential distribution or not. We can say that, a priori, the assumption on
the background arrivals is violated, and we are tempted to add: as the number of
exogenous flows increases, the distribution of the resulting inter-arrival process gets
closer to the exponential distribution.

Let us now return to the description of the traces generated. The rate of the foreground
traffic (the probes) was equal to 250 pkts/s in all experiments (except in case (T1) where
values of 125, 250 and 500 pkts/s were retained). On the network side, the server rate was
either equal to 1500 pkts/s or to 6500 pkts/s and the buffer size was either equal to 10,
30, 65, 100, 150 or to 1000 packets (recall that in ns-2 the size of the buffer is defined in
number of packets regardless of their size).

Below, we give the ranges of values obtained for the five metrics over all 50 experiments:

• PL ranged from 1.7×10−4 to 0.637

• U ranged from 0.892 to 1

• R ranged from 0.0007 to 0.66 seconds

• qL ranged from 0.105 to 0.64

• qN ranged from 0.367 to 0.9998.

As for the rate of exogenous traffic intensity λ, measured as the number of background
packets arriving to the bottleneck link over the run time, its value ranged from 1593.2 to
17437 packets per second, giving the range 0.965 – 2.758 for the traffic intensity ρ. Notice
that in all the simulations, the single link was (highly) congested.

1.7.2 Estimating cross traffic rate, buffer size and (possibly) server
capacity

Having at our disposal {ai}i, {di}i, {Xi}i and {Yi}i for the n first probing packets, the
moment-based estimators are computed according to formulas (1.81), (1.82), (1.83), (1.84)

and (1.85). At this point, P̂L(n), Û(n), R̂(n), q̂L(n) and q̂N (n) are substituted into (1.3),
(1.5), (1.10), (1.18), (1.21), (1.37), (1.38) and (1.40). The ten triples of equations referred to
as schemes 1 through 10 and the eleven pairs of equations referred to as schemes I through
XI are then solved numerically using a C program including the NAG6 C library [90, 91].
Results are reported in Tables 1.3–1.9 and Figures 1.11–1.15.

6NAG is a copyright of The Numerical Algorithms Group Ltd

46 Chap. 1 Inference models to estimate network characteristics

1.7.3 Analysis of the results in case µ is known

In this section, we restrict ourselves to the estimation of parameters λ and K, thereby
assuming that µ is known. We briefly discuss the results returned by schemes I through XI

(each involving two QoS metrics) and then focus on the performance of the “best” scheme.

Our findings can be summarized as follows:

• Schemes III, IV and X give almost identical results. This is not surprising, though,
since the three of them involve loss-related metrics which are related by (1.22) as
seen in Section 1.4.6. We further observed that their solutions always under-estimate
the correct values. We believe that this is due to a lack of information as these
schemes count on loss-related measurements solely (variables {Xn}n introduced in
Section 1.4.2).

• Schemes I = PL_U and VII = U_qN return similar results as do schemes II = PL_R

and IX = R_qN . Notice that both pairs of schemes have a common metric (U for
the first pair and R for the second one) and the second metric is either PL (schemes
I and II) or qN (schemes VII and IX). It appears that interchanging PL and qN has
little impact on the performance of a scheme, even though the latter metric is much
better estimated than the former one (cf. Section 1.6.4.3).

• Schemes VI and VIII performed poorly, either returning bad estimates λ̂ and K̂ or
even not returning results at all. This is due to the fact that these schemes involve
qL, which was seen to be badly estimated (cf. Section 1.6.4.3).

• The solution returned by scheme V always over-estimates the true values. This scheme
involve metrics U and R which can both be seen as end-to-end measurements. These
metrics provide somehow redundant informations which can explain the bad perfor-
mance of the scheme.

• All schemes including U saw their performance degrade as the network become more
congested. When the single queue is congested, its buffer does not empty often. As a

result the first estimates of U are Û = 1, which is not a valid value in either model. As
soon as a probe packet finds an empty queue, the first valid estimate of U is computed,
and it is then and only then that the schemes using U can return a solution. Since in
our simulations we considered only congested cases, all schemes including U suffered
from this discrepancy and their results were not the best ones.

• Scheme XI returns the same estimate λ̂ as does scheme I. Both schemes involve metrics
PL and U , but the first one derive from the M/D/1/K model whereas the second one

come from the M/M/1/K model. However, the formulas giving λ̂ are identical (see
Equations (1.50) and (1.79)). As for the buffer size K, it is much better estimated
using scheme I. The cause behind the misestimation of K when using scheme XI

Sec. 1.7 Simulation results and analysis 47

is the misestimation of U . Even though scheme I involves U as well, scheme XI is

much more sensitive to the value of Û . Recall that K is estimated as the integer j

for which αj(ρ) is the closest to (1 − P̂L)/(1 − Û) (cf. Section 1.6.2.6). In congested

cases, Û is almost 1 and a small deviation from the true value leads to a large error

in (1 − P̂L)/(1 − Û) (e.g. if Û = 1 − 10−5 and U = 1 − 10−4 then αK̂(ρ) = 10αK(ρ),

resulting in K̂ > K).

Now that we have discussed the averall results for all eleven schemes, we will focus on
the best scheme, scheme II = PL_R. We have mentioned before that schemes PL_R and
R_qN gave similar results but that the former scheme performed slightly better. Notice
that both schemes combine the use of a single-sided measurement (PL or qN) and an end-to-
end measurement which is R. These schemes contain the least redundant information, (as
opposed to scheme PL_qN , for instance). From now on, only results pertaining to scheme
PL_R are presented.

Tables 1.4, 1.5, 1.6 and 1.8 report the relative error (expressed in percentage) between

the estimate of parameter λ (resp. K), denoted as λ̂ (resp. K̂), returned by scheme PL_R

and the measured value λ (resp. the true value K), for various cross traffic patterns (Poisson
traffic as defined in (T1) in Table 1.4, Poisson-like flows as defined in (T2) in Table 1.5),
a superposition of On/Off sources with Pareto On and Off time distribution as defined in
(T3)-(T4) in Table 1.6, a superposition of FTP/TCP flows as defined in (T5)-(T6) in Table
1.8.

Table 1.4: Relative error (expressed in percentage) of the estimates for 50000 probes returned
by the scheme PL_R, when the cross traffic is a single Poisson source

Simulation parameters
λ = 6600 λ = 6600 λ = 6600 λ = 17068
γ = 124 γ = 248 γ = 496 γ = 125
µ = 6968 µ = 6968 µ = 6967 µ = 6962

Buffer size Estimator ρ = 0.965 ρ = 0.983 ρ = 1.019 ρ = 2.470

K = 10 λ̂ 0.6 0.004 0.1 0.1
K̂ 0.7 0.9 1.4 0.4

K = 30 λ̂ 0.1 0.1 0.3 0.9
K̂ 0.7 1.6 0.6 0.05

K = 65 λ̂ 0.04 0.2 0.7 1.0
K̂ 1.1 1.0 0.3 0.1

K = 100 λ̂ 0.04 0.1 0.1 0.5
K̂ 2.8 2.7 0.2 0.01

K = 150 λ̂ 0.1 0.1 0.02 0.2
K̂ 8.3 4.1 0.4 0.03

48 Chap. 1 Inference models to estimate network characteristics

Table 1.4 shows excellent results regarding the estimation of λ (obtained after 50000

probes). The relative error on λ̂50000, computed as |λ̂50000−λ|/λ, is always below 1.0% in all
the simulations reported in Table 1.4 (see rows 6, 8, 10, 12 and 14). As for the estimation

of K, the results are very good for moderate values of K: the relative error on K̂50000,

computed as |K̂50000 −K|/K, is always below 1.6% when K ≤ 65 (see rows 7, 9 and 11 in
Table 1.4). For larger values of K, the speed of convergence depends on the load ρ. As ρ

increases from 0.965 (third column) to 2.470 (column 6), the relative error on K decreases
for K ≥ 65 (see rows 11, 13 and 15). Notice that in any case the estimates should converge
to the true values as the number of probes increases since the experiments considered in
Table 1.4 simulate at best the M/M/1/K queue.

The speed of convergence of λ̂ can be observed in Figure 1.11, where the evolution
of the estimated cross traffic intensity is plotted against the number of probes for several
values of the load ρ. For ρ around 1, the estimation converges after approximately 10000
probes (see Figures 1.11(a)-(c)) whereas 5000 probes are enough for ρ = 2.470 (see Figure
1.11(d)).

6
5

0
0

6
7

5
0

7
0

0
0

100 1000 10000es
ti

m
at

ed
 e

x
o
g
en

o
u
s

ra
te

 (
p
k
ts

/s
)

number of probes

Probe traffic: Poisson, cross traffic: Poisson source; server rate µ ≈ 6970 pkts/s

(a) ρ = 0.965, γ = 124 pkts/s

λ = 6600

K = 10 pkts
K = 30 pkts
K = 65 pkts
K = 100 pkts
K = 150 pkts

6
4

0
0

6
6

5
0

6
9

0
0

100 1000 10000 100000es
ti

m
at

ed
 e

x
o
g
en

o
u
s

ra
te

 (
p
k
ts

/s
)

number of probes

(b) ρ = 0.983, γ = 248 pkts/s

λ = 6600

K = 10 pkts
K = 30 pkts
K = 65 pkts
K = 100 pkts
K = 150 pkts

6
4
0
0

6
7
0
0

7
0

0
0

100 1000 10000 100000es
ti

m
at

ed
 e

x
o
g
en

o
u
s

ra
te

 (
p
k
ts

/s
)

number of probes

(c) ρ = 1.019, γ = 496 pkts/s

λ = 6600

K = 10 pkts
K = 30 pkts
K = 65 pkts
K = 100 pkts
K = 150 pkts
K = 1000 pkts

1
5
5
0
0

1
7
5
0
0

1
9

5
0

0

100 1000 10000es
ti

m
at

ed
 e

x
o
g
en

o
u
s

ra
te

 (
p
k
ts

/s
)

number of probes

(d) ρ = 2.470, γ = 125 pkts/s

λ = 17068

K = 10 pkts
K = 30 pkts
K = 65 pkts
K = 100 pkts
K = 150 pkts

Figure 1.11: Evolution of the estimated cross traffic intensity vs. the number of probes

The slower convergence of K̂ for smaller values of ρ can be observed in Figure 1.12

Sec. 1.7 Simulation results and analysis 49

where the evolution of the estimated buffer size is plotted against the number of probes for

several values of K. It is clearly visible in Figures 1.12(c)-(d) that K̂ converges faster to K

as ρ increases. Notice also the fast convergence of K̂ to the true value for ρ = 2.470 in all
four cases shown in Figure 1.12 (K = 10, 30, 65, 100).

9
.4

1
0

1
0
.6

100 1000 10000

es
ti

m
at

ed
 b

u
ff

er
 s

iz
e

(p
k
ts

)

number of probes

Probe traffic: Poisson, cross traffic: Poisson source; server rate µ ≈ 6970 pkts/s

(a) K = 10 pkts

K = 10

ρ = 0.965, γ = 124 pkts/s
ρ = 0.983, γ = 248 pkts/s
ρ = 1.019, γ = 496 pkts/s
ρ = 2.470, γ = 125 pkts/s

2
6

3
0

3
4

100 1000 10000 100000

es
ti

m
at

ed
 b

u
ff

er
 s

iz
e

(p
k
ts

)

number of probes

(b) K = 30 pkts

K = 30

ρ = 0.965, γ = 124 pkts/s
ρ = 0.983, γ = 248 pkts/s
ρ = 1.019, γ = 496 pkts/s
ρ = 2.470, γ = 125 pkts/s

5
0

6
0

7
0

100 1000 10000 100000

es
ti

m
at

ed
 b

u
ff

er
 s

iz
e

(p
k
ts

)

number of probes

(c) K = 65 pkts

K = 65

ρ = 0.965, γ = 124 pkts/s
ρ = 0.983, γ = 248 pkts/s
ρ = 1.019, γ = 496 pkts/s
ρ = 2.470, γ = 125 pkts/s 6

0
9

0
1

2
0

1
5

0

100 1000 10000

es
ti

m
at

ed
 b

u
ff

er
 s

iz
e

(p
k
ts

)

number of probes

(d) K = 100 pkts

K = 100

ρ = 0.965, γ = 124 pkts/s
ρ = 0.983, γ = 248 pkts/s
ρ = 1.019, γ = 496 pkts/s
ρ = 2.470, γ = 125 pkts/s

Figure 1.12: Evolution of the estimated buffer size vs. the number of probes

Consider now the set of simulations where all sources (i.e. foreground and background
sources) are Poisson-like (type (T2)). We have seen before that this set of simulations
undertakes the robustness of both models to violation of the assumption on the distribution
of the service times. The relative error (expressed in percentage) is reported in Table 1.5.

We observe that both λ and K are better estimated as K increases. In all cases, λ̂ stays

Table 1.5: Relative error (expressed in percentage) of the estimates (scheme PL_R) for
120000 probes: Poisson-like flows, λ = 6677, γ = 250, µ = 6374 and ρ = 1.087

Estimator K = 10 K = 30 K = 65 K = 100 K = 150

λ̂ 3.1 1.1 0.04 0.1 0.1
K̂ 9.2 8.5 6.9 5.4 4.0

50 Chap. 1 Inference models to estimate network characteristics

within 3.1% of the true value (cf. row 2 in Table 1.5) such as λ is overestimated, whereas

K̂ stays within 9.2% of the true value (cf. row 3 in Table 1.5) such as K is underestimated.

The estimation of K is not as satisfactory as the estimation of λ. It is clear that the

quality of λ̂ and K̂ is influenced by the quality of estimators P̂L and R̂. Our next step is
to look at the performance of these estimators. We will compute the loss probability PL

and the expected response time R as expected by the M+M/M/1/K model using the true
values of λ and K. The resulting values of PL and R are then compared to the estimated

values. A small error between both pairs of values implies a small error in λ̂ and K̂ as
predicted by scheme PL_R. Our findings can be summarized as follows.

• The loss probability predicted by the model, PL, is smaller than the estimated P̂L.

The absolute deviation of the predicted PL (defined as |PL− P̂L|) decreases from 0.025

(16.3% of relative deviation7) for K = 10 down to 0.002 (2.8% of relative deviation)
for K = 150.

• The expected response time predicted by the model, R, is slightly larger than the

estimate R̂. The deviation of the predicted R increases from 57µs (6.3% of mismatch)
for K = 10 up to 871µs (4.2% of mismatch) for K = 150.

• The M+M/M/1/K model predicts much better the response time R than the loss
probability PL.

It seems that the error in estimating K is due to the error between PL and P̂L, and that

both the error on K and the (small) one on λ vary as does the error on P̂L. It is also possible

that the errors at hand are also affected by the error on R̂, but this impact (if it exists) is

negligible both because of the small error on R̂ and because of the large relative error on

P̂L.

Remark 1.7.1 The preceding observations describe the sensitivity of λ̂ and K̂ to variations

in P̂L and R̂.

The values that are given in Table 1.5 were computed for 120000 probes. The evolution
of the estimates over the number of probes is plotted in Figure 1.13. Observe in Figure

1.13(a) how the estimate λ̂ for K = 10 converges above the dashed line which represents
the true value to be estimated. The same is true for K = 30. For K = 65, 100, 150, the

estimate λ̂ converges to the correct value. The reason why, for small K, λ̂ overestimates

λ, is that P̂L is larger than the PL predicted by the model (R̂ being close to R for small

7The relative deviation between two values X and X̂ is defined as |X − X̂|/X̂ and is sometimes called
mismatch.

Sec. 1.7 Simulation results and analysis 51

K). Recall that in the M/M/1/K queue, when the load increases/decreases, both the loss
probability and the response time increase/decrease. For large values of K, we have seen

that P̂L is slightly larger than PL (2.8% of mismatch) and that R̂ is slightly smaller than R

(4.2% of mismatch). Each mismatch induces an error on λ̂, but since the induced errors are

in opposite directions, the final result is that λ̂ is on target (cf. plots for K = 65, 100, 150

in Figure 1.13(a)).

5
7

5
0

6
2
5
0

6
7
5
0

100 1000 10000 100000es
ti

m
at

ed
 e

x
o
g
en

o
u
s

ra
te

 (
p
k
ts

/s
)

number of probes

Probe traffic: Poisson-like flow, cross traffic: 100 Poisson-like flows

(a) Estimation of λ

λ = 6677

K = 10 pkts
K = 30 pkts
K = 65 pkts
K = 100 pkts
K = 150 pkts

0
5
0

1
0
0

1
5
0

100 1000 10000 100000

es
ti

m
at

ed
 b

u
ff

er
 s

iz
e

(p
k
ts

)

number of probes

(b) Estimation of K

K = 10

K = 30

K = 65

K = 100

K = 150

Figure 1.13: Evolution of the estimates vs. the number of probes

Figure 1.13(b) depicts the variations of the estimates for K as a function of the number

of probes. Even though the absolute error (|K̂−K|) between each plot and its corresponding

dashed line increases as K increases, the relative error (|K̂−K|/K) decreases. Observe that

K is always underestimated, which is expected since P̂L > PL and R̂ < R. If the size of
the buffer in the M/M/1/K queue decreases, the loss probability PL increases whereas the
response time decreases. The mismatch of both metrics induces a larger error on K than
the one induced on λ, as both mismatches result in underestimating K. Notice how “flat”
are the plots in Figure 1.13(b), especially when compared to the bursty plots in Figure 1.12.
Finally, convergence takes place with approximately 10000 probes when estimating λ, and
even fewer when estimating K.

Of more interest are the results in Tables 1.6 and 1.8, since they have been obtained
when the assumption that the cross traffic is Poisson is violated. We see that the quality of
the estimates increases as the number of sources increases, or equivalently, when the load ρ

increases (results obtained after 120000 probes). We will discuss first the results obtained
when the cross traffic is the aggregation of On/Off flows (cf. Table 1.6) and come back later
on to the case where the cross traffic is the aggregation of TCP flows (cf. Table 1.8).

For 100 On/Off sources (see rows 3–4 in Table 1.6), all estimates for λ are within 6%

of the correct value, which is a satisfactory result. The relative error on λ̂ seems to increase

for K ≤ 65 and decrease for K > 65 whereas the relative error on K̂ definitely increases as

52 Chap. 1 Inference models to estimate network characteristics

Table 1.6: Relative error (expressed in percentage) of the estimates (scheme PL_R) for
120000 probes: cross traffic is of type (T3) and (T4) (On/Off flows)

100 sources: λ = 6812, γ = 247, µ = 6663 and ρ = 1.059
Estimator K = 10 K = 30 K = 65 K = 100 K = 150

λ̂ 3.8 5.2 6.0 5.4 4.7
K̂ 7.5 17.7 29.5 31.4 33.2

250 sources: λ = 17437, γ = 246, µ = 6532 and ρ = 2.707
Estimator K = 10 K = 30 K = 65 K = 100 K = 150

λ̂ 1.0 0.6 0.6 0.4 0.05
K̂ 1.1 0.5 0.4 0.4 0.1

the buffer size increases. For 250 On/Off sources (see rows 7–8 in Table 1.6), the results are
much more satisfactory with all estimates for λ (resp. K) lying within 1% (resp. 1.1%) of

the correct value. Notice that the relative error on both λ̂ and K̂ decreases as K increases.
Searching for an explanation on these observations, we investigated on the performance of

P̂L and R̂ in these particular simulations, and observed the following.

• For 100 On/Off sources (ρ = 1.059), the measured loss probability decreases from 0.16
for K = 10 down to 0.09 for K = 150, whereas the loss probability predicted by the
model decreases from 0.13 to 0.05 as K increases and is smaller than the measured
P̂L. The absolute deviation on PL increases from 0.03 up to 0.05 for 10 ≤ K ≤ 65

and decreases from 0.05 to 0.02 for 65 ≤ K ≤ 150. The mismatch between the two
values is not negligible (between 16.7% and 47.6%). As K increases, the response

time predicted by the model increases from 0.94ms to 19.7ms; R̂ is smaller than the
predicted R, increasing from 0.91ms to 13.5ms. The deviation between the two values
grows from 34µs (3.8% of mismatch) up to 6.2ms (45.9% of mismatch).

• For 250 On/Off sources (ρ = 2.707), both the predicted loss probability and the
measured one are approximately constant and equal to 0.63, having the former be-
ing slightly larger than the latter (0.56% of maximum mismatch). The negligible
deviation on PL is always decreasing as K increases. As for the response time, the
prediction returned by the M+M/M/1/K model increases from 1.45ms to 22.90ms

as K increases. As for the measured R̂, it increases from 1.43ms to 22.87ms as K
increases. The deviation between the two values is really negligible, of the order of
tens of microseconds.

We can deduce from the above observations that for 100 On/Off sources (µ = 6663), the

error on λ̂ varies as does the deviation between P̂L and PL; and that the error on K̂ varies

as does the deviation between R̂ and R. For 250 On/Off sources (µ = 6532), the errors on

λ̂ and K̂ follow mainly the variations of the deviation between P̂L and PL.

Sec. 1.7 Simulation results and analysis 53

Figure 1.14 depicts the evolution of the estimates as a function of the number of
probes. Looking at Figure 1.14(a) (resp. Figure 1.14(b)), it appears that, for all K’s, the

estimator λ̂ converges after 1000 probes (resp. 3000 probes) when the number of background
flows is 100 (resp. 250). We observe in Figure 1.14(a) that the estimates deviate from the
true value as K goes from 10 to 65, and get closer to λ = 6812 as K goes from 65 to 1000.
The estimates for K are quite bursty (see Figures 1.14(c)-(f)). The estimates corresponding
to 250 sources stay close to the true values (dashed line in each graph), while the ones
corresponding to 100 sources considerably underestimate the true values as K increases.

The causes of such underestimation (31.4% of error for K = 100) are twofold: first, R̂ < R,

and second, P̂L > PL. Recall that in a M/M/1/K queue, decreasing the buffer size increases
the loss probability and decreases the response time, which explains why such deviations in
the values of PL and R lead to an underestimation of K.

5
4

0
0

6
0

0
0

6
6

0
0

7
2

0
0

100 1000 10000 100000es
ti

m
at

ed
 e

x
o
g
en

o
u
s

ra
te

 (
p
k
ts

/s
)

Evolution of the exogenous rate vs. the number of probes

(a) 100 On/Off sources, ρ = 1.059

λ = 6812

number of probes

K = 10 pkts
K = 30 pkts
K = 65 pkts
K = 100 pkts
K = 150 pkts
K = 1000 pkts

1
3

0
0

0
1

6
0

0
0

1
9

0
0

0

100 1000 10000 100000es
ti

m
at

ed
 e

x
o
g
en

o
u
s

ra
te

 (
p
k
ts

/s
) (b) 250 On/Off sources, ρ = 2.707

λ = 17437

number of probes

K = 10 pkts
K = 30 pkts
K = 65 pkts
K = 100 pkts
K = 150 pkts
K = 1000 pkts

8
.5

9
9

.5
1

0

100 1000 10000 100000es
ti

m
at

ed
 b

u
ff

er
 s

iz
e

(p
k
ts

)

Evolution of the estimated buffer size vs. the number of probes

(c) K = 10 pkts

K = 10

number of probes

100 sources, ρ = 1.059
250 sources, ρ = 2.707

2
4

2
8

3
2

3
6

100 1000 10000 100000es
ti

m
at

ed
 b

u
ff

er
 s

iz
e

(p
k
ts

)

(d) K = 30 pkts

K = 30

number of probes

100 sources, ρ = 1.059
250 sources, ρ = 2.707

3
5

5
0

6
5

100 1000 10000 100000es
ti

m
at

ed
 b

u
ff

er
 s

iz
e

(p
k
ts

)

(e) K = 65 pkts

K = 65

number of probes

100 sources, ρ = 1.059
250 sources, ρ = 2.707

6
0

8
0

1
0
0

100 1000 10000 100000es
ti

m
at

ed
 b

u
ff

er
 s

iz
e

(p
k
ts

)

(f) K = 100 pkts

K = 100

number of probes

100 sources, ρ = 1.059
250 sources, ρ = 2.707

Figure 1.14: Probe traffic: Poisson, cross traffic: On/Off flows, Pareto On/Off times

54 Chap. 1 Inference models to estimate network characteristics

To complete the discussion of the set of simulations where the cross traffic is of type
(T3) or (T4), we will try to explain why scheme PL_R behaves much better when there
are 250 background sources rather than just 100 sources (for large K, the difference in
performance between both cases is even more important). For each type of cross traffic, we
have computed the Hurst parameter as well as the autocorrelation for both the interarrival
sequence of the cross traffic and the service times sequence8. We have also tested the
exponential distribution hypothesis of both sequences, using the goodness of fit test9 [120].
Table 1.7 summarizes our findings. We have seen that the mismatch between the measured
metrics and the predictions returned by the model drastically decreases when the number of
background sources grows from 100 to 250 (see rows 12–13 in Table 1.7). We have not found
any important difference in the characteristics of the cross traffic interarrivals sequence nor
in the service times sequence when the number of sources increases (see rows 4–6, 8–10 in
Table 1.7), which is not the case of the load (see second row in Table 1.7). We believe
that the large value of ρ is behind the good performance of scheme PL_R when there are
250 background sources. When the load is large, the queue does not empty often leading
to a high number of lost packets and to a response time which is approximately the same

Table 1.7: Summary

Criterion 100 On/Off sources 250 On/Off sources
Rate 1.059 2.707

Cross traffic interarrivals sequence
Distribution slightly closer to an exponential when 250 sources
Autocorrelation slightly less autocorrelation when 250 sources
Hurst parameter 0.805849 0.811553

Service times sequence
Distribution slightly closer to an exponential when 250 sources
Autocorrelation less autocorrelation when 250 sources
Hurst parameter 0.837137 0.831835

Mismatch (in %) at 120000 packets min, avg, max min, avg, max
between PL and P̂L 16.7, 37.1, 47.6 0.04, 0.26, 0.6
between R and R̂ 3.8, 28.4, 45.9 0.07, 0.45, 1.3

8In [35], the author provides practical instructions on how to compute the autocorrelation and the Hurst

parameter using C programs, which are available at [34]
9For a descriptive derivation of the test, the N observed values of a sequence are ordered from smallest

to largest. Denote as x(i) the observed value coming in the ith position. If the data really do come from

an exponential distribution with parameter r, then we would expect the points (1− exp(−rx(i)), i/(N +1))

to be close to the diagonal line y = x; conversely, strong deviation from this line is evidence that the
distribution did not produce the data.

Sec. 1.7 Simulation results and analysis 55

for all packets. We believe that, in this case, the measured values of the metrics are close
to the actual values (which are close to those predicted by the model, even though some
assumptions are violated), which is not the case for 100 sources.

We will now analyze the results of the set of simulations in which the cross traffic
is of type (T5) and (T6) (FTP over TCP flows). The relative error of the estimates are
reported in Table 1.8. For 250 FTP/TCP flows, we observe the same thing as for 100 On/Off

sources: the relative error on λ̂ increases for K ≤ 65 and decreases for K > 65, but here,

the relative error on K̂ is decreasing as the buffer size increases (refer to rows 4–5 in Table
1.8). However, in the case where there are 1000 FTP/TCP flows (see rows 9–10 in Table
1.8), both estimators present a relatively constant error. Furthermore, all estimates for λ

(resp. K) are within 3.2% (resp. 0.6%) of the correct values, which is a good result.

Remark 1.7.2 One characteristic of the set of simulations where the cross traffic is of type

(T5) or (T6) is that the cross traffic intensity λ depends on the buffer size K. This is due

to the fact that TCP is a closed-loop protocol. The cross traffic intensity is reported in rows
3 and 8 in Table 1.8.

Table 1.8: Relative error (expressed in percentage) of the estimates (scheme PL_R) for
120000 probes: cross traffic is of type (T5) and (T6) (FTP/TCP flows)

250 sources: γ = 248, µ = 1502 and ρ = 1.258
K = 10 K = 30 K = 65 K = 100 K = 150

Estimator λ = 1655 λ = 1661 λ = 1656 λ = 1642 λ = 1593

λ̂ 7.0 7.6 8.3 7.6 6.7
K̂ 5.9 2.2 1.0 1.4 1.3

1000 sources: γ = 248, µ = 1491 and ρ = 1.421
K = 10 K = 30 K = 65 K = 100 K = 150

Estimator λ = 1883 λ = 1881 λ = 1882 λ = 1881 λ = 1820

λ̂ 2.8 3.2 3.0 3.2 3.0
K̂ 0.5 0.04 0.4 0.6 0.6

We will try as before to identify what lies behind these observations. We looked at the

performance of P̂L and R̂ in all the simulations in which the cross traffic is the aggregation
of FTP over TCP flows, and found that:

• For 250 FTP/TCP sources, the absolute deviation between the measured P̂L and the
predicted PL increases for K ≤ 65 and decreases for K ≥ 65, staying in the range 0.041

– 0.054 (mismatch in the range 15.3% – 20.2%), such that P̂L > PL. The response

time predicted by the model is quite close to the measured R̂, the absolute deviation
is in the range 0.11ms – 0.59ms and the mismatch is in the range 0.47% – 2.3%.

56 Chap. 1 Inference models to estimate network characteristics

• For 1000 FTP/TCP sources, both metrics have a relatively stable mismatch, the one

on PL (resp. on R) being around 5.96% (resp. 0.57%). As before, P̂L > PL.

In this set of simulations, it appears that the error on λ̂ varies as does the error on P̂L;

and that the error on K̂ varies as does the error on R̂. When the mismatch of P̂L (resp.

of R̂) does not vary much for different values of K (given the same number of probes), the
estimates of λ (resp. of K) will be approximately constant.

To observe the speed of convergence of the estimates, the reader is invited to look at
Figure 1.15. In Figures 1.15(a)-(b), the evolution of the estimates of λ is plotted against
the number of probes. Surprisingly enough, the estimates converge rather quickly. The
convergence occurs around 2000 probes for all values of K and for both types of cross traffic
((T5) and (T6)), it is even faster than in the case of Poisson background traffic (see Figure

1
3

0
0

1
6

0
0

1
9

0
0

100 1000 10000 100000es
ti

m
at

ed
 e

x
o
g
en

o
u
s

ra
te

 (
p
k
ts

/s
)

Evolution of the exogenous rate vs. the number of probes

(a) 250 FTP/TCP sources, ρ = 1.258

λ ≈ 1654

λ = 1593

number of probes

K = 10 pkts
K = 30 pkts
K = 65 pkts
K = 100 pkts
K = 150 pkts

1
6

0
0

1
9

0
0

2
2

0
0

100 1000 10000 100000es
ti

m
at

ed
 e

x
o
g
en

o
u
s

ra
te

 (
p
k
ts

/s
) (b) 1000 FTP/TCP sources, ρ = 1.421

λ = 1882
λ = 1820

λ = 1600

number of probes

K = 10 pkts
K = 30 pkts
K = 65 pkts
K = 100 pkts
K = 150 pkts
K = 1000 pkts

9
1

0
1

1

100 1000 10000 100000es
ti

m
at

ed
 b

u
ff

er
 s

iz
e

(p
k
ts

)

Evolution of the estimated buffer size vs. the number of probes

(c) K = 10 pkts

K = 10

number of probes

250 TCP sources, ρ = 1.258
1000 TCP sources, ρ = 1.421

2
8

2
9

3
0

3
1

100 1000 10000 100000es
ti

m
at

ed
 b

u
ff

er
 s

iz
e

(p
k
ts

)

(d) K = 30 pkts

K = 30

number of probes

250 TCP sources, ρ = 1.258
1000 TCP sources, ρ = 1.421

6
3
.5

6
4
.5

6
5
.5

100 1000 10000 100000es
ti

m
at

ed
 b

u
ff

er
 s

iz
e

(p
k
ts

)

(e) K = 65 pkts

K = 65

number of probes

250 TCP sources, ρ = 1.258
1000 TCP sources, ρ = 1.421

9
8

9
9

1
0
0

1
0
1

100 1000 10000 100000es
ti

m
at

ed
 b

u
ff

er
 s

iz
e

(p
k
ts

)

(f) K = 100 pkts

K = 100

number of probes

250 TCP sources, ρ = 1.258
1000 TCP sources, ρ = 1.421

Figure 1.15: Probe traffic: Poisson, cross traffic: FTP/TCP sources

Sec. 1.7 Simulation results and analysis 57

1.11). We observe the same speed of convergence of the estimates for K (between 2000 and
5000 probes, see 1.15(c)-(f)). We can also observe how the estimates are right on target

when there are 1000 TCP flows. In the case where there are 250 TCP flows, K̂ slightly

underestimates K. The reason is that P̂L > PL. Another effect of such mismatch is the
overestimation of λ as observed in Figures 1.15(a)-(b).

As in the previous set of simulations, the predicted PL returned by the model ap-

proaches the measured P̂L when the load increases, resulting in a better performance for
scheme PL_R.

Finally, we report the performance of scheme PL_R over all 50 simulations (each
simulation lasts exactly 500 seconds). Figure 1.16 displays the complementary cumulative

distribution function (CCDF) of the relative error returned by estimates λ̂ and K̂. We

observe that estimate λ̂ returns more accurate results compared to K̂, as the tail of the
CCDF of the error on K is longer than the tail on the CCDF of the error on λ.

0
0
.2

0
.4

0
.6

0
.8

1

0.1 1 10

P
(r

el
at

iv
e

er
ro

r
≥
 x

)

x

CCDF of error on λ
CCDF of error on K

Figure 1.16: The complementary cumulative distribution function of the relative error re-

turned by estimates λ̂ and K̂

In Table 1.9 we classify the results according to some specific performance criterion.
For instance, we see from this table that the estimate for λ (resp. K) is within 9% of the
exact value in 98% (resp. 84%) of the experiments. Only for large values of K (K ≥ 1000)

the scheme works poorly and may return no value for K̂.

From this experimental study we conclude that the inference model M+M/M/1/K

58 Chap. 1 Inference models to estimate network characteristics

Table 1.9: Percentage of hits for scheme PL_R over the simulations

Criterion Percentage of hits over the simulations
λ̂, error within 1 % 52 %
K̂, error within 1 % 40 %
λ̂, error within 5 % 76 %
K̂, error within 5 % 70 %
λ̂, error within 9 % 98 %
K̂, error within 9 % 84 %
bad estimation for λ 2 %
bad estimation for K 10 %
no estimation for K 6 %

returns reasonably good results even when the Poisson assumption on the background traffic
and the assumption on the service times are violated. We have seen that, in general, the
scheme PL_R performs better under high load, returning good estimates for both λ and K.

1.7.4 Analysis of the results in case µ is unknown

We were not surprised to see that scheme 1 = PL_U_R was the “best” scheme in
simultaneously estimating the cross traffic intensity λ, the server rate µ and the buffer size
K. Even though this scheme was the “best”, it returned results only in 31 simulations among
all 50. Since this scheme uses an estimate of the utilization U , all simulations where the
queue never emptied (there were 19 such simulations) did not lead to any valid estimate of
U . (Recall that the value U = 1 is not valid in both models.) Table 1.10 lists the simulations
in which the queue emptied at least once.

Table 1.10: The 31 simulations where Û < 1

Probe traffic Cross traffic
Type Rate (pkts/s) Type Rate (pkts/s) Buffer size K (pkts) Simulations
(T1) γ = 124 (T1) λ = 6600 10, 30, 65, 100, 150 5
(T1) γ = 248 (T1) λ = 6600 10, 30, 65, 100, 150 5
(T1) γ = 496 (T1) λ = 6600 10, 30, 65, 100, 150, 1000 6
(T1) γ = 125 (T1) λ = 17068 10 1
(T2) γ = 250 (T2) λ = 6677 10, 30, 65, 100, 150 5
(T1) γ = 247 (T3) λ = 6812 10, 30, 65, 100, 150, 1000 6
(T1) γ = 246 (T4) λ = 17437 10 1
(T1) γ = 248 (T5) λ = 1655 10 1
(T1) γ = 248 (T6) λ = 1883 10 1

Sec. 1.7 Simulation results and analysis 59

We will not discuss much the results returned by scheme PL_U_R, as the latter does
not perform especially well. The relative error (computed after 60000 probes) on λ (resp.
on µ, on K) was below 4.98% (resp. below 4.72%, below 3.23%) in 17 simulations: the ones
listed in rows 3–6 (except for K = 1000) and row 9 in Table 1.10. The relative error on
each parameter is not negligible in the other 14 simulations (even after 120000 probes). The
smallest error on λ (resp. on µ, on K) is 18.3% (resp. 18.4%, 22.1%), the average error on
λ (resp. on µ, on K) is 75.0% (resp. 68.9%, 65.2%) and the largest error on λ (resp. on µ,
on K) is 151.5% (resp. 126.4%, 102.9%)! In other words, the scheme behaves well almost
only in M+M/M/1/K simulations (rows 3–6 in Table 1.10). This statement is somehow
biased since we have simulated congested cases solely (ρ ∈ [0.965, 2.758]). It is likely that
for moderate values of ρ, the utilization will be better estimated, which will imply a better
performance of scheme PL_U_R.

1.7.5 Simulations with several links

We have seen that scheme PL_R is the most promising one in estimating the cross
traffic intensity λ and the buffer size K. Until now, we have tested this scheme on simulations
in which there was only one single link. In this section, we briefly present the results returned
by scheme PL_R when applied on simulations with multiple links.

We have simulated six different scenarios all having the same network topology as
illustrated in Figure 1.17. In each simulation, the probe traffic is Poisson. In two simulations,
the bottleneck link is located between nodes 2 and 5, and in the other four simulations, it
is located between nodes 5 and 7. Table 1.11 reports details on the cross traffic in each
scenario. In each simulation, there was only one type of cross traffic considered (provided in
first column of Table 1.11). Columns 2 and 3 give the total number of flows considered and
the number of flows per route, respectively. There are six possible routes in the case that
the cross traffic type is either Poisson or On/Off, and there are twelve routes when the cross

0 2

1

3

5

6

4

7

8

10

9

Probe traffic
Cross traffic

Figure 1.17: The simulated network

60 Chap. 1 Inference models to estimate network characteristics

Table 1.11: Details on the cross traffic in the simulated scenarios
Along the path Flows via bottleneck

Type Flows Flows/route link 2–5 link 5–7 Routes for cross traffic
Poisson 6 1 3 4 (i, i+ 4), i = 1, . . . , 6
On/Off 750 125 500 (i, i+ 4), i = 1, . . . , 6
FTP/TCP 1020 85 510 680 (i, i+ 4), (i+ 4, i), i = 1, . . . , 6
FTP/TCP 1500 125 1000 (i, i+ 4), (i+ 4, i), i = 1, . . . , 6

traffic is the aggregation of 1500 FTP/TCP flows (see column 6). Column 4 (resp. column
5) gives the number of cross traffic flows going through the bottleneck when the latter is
the link 2–5 (resp. link 5–7).

We observed in our experiments that the propagation delay is crucial in simulations
in which the cross traffic is transported by TCP. That is, of course, because TCP is a
closed-loop protocol, as opposed to UDP which is used to transport Poisson or On/Off
flows. Table 1.12 reports the relative error (expressed in percentage) returned by scheme

PL_R after 5000 probes only. We notice that λ̂ performs very well (see column 5 in Table

1.12), which is not the case of K̂, as the latter misestimates the buffer size K when the
cross traffic is the aggregation of FTP/TCP flows (cf. rows 6–8 in Table 1.12, column 4).
Observe that the error on K decreases from 27.6% to 16.8% when the number of FTP/TCP
flows increases from 680 to 1000.

Table 1.12: Relative error of K̂ and λ̂ (expressed in %) after 5000 probes

Flows via bottleneck Relative error Propagation
Bottleneck Type Flows K̂ λ̂ delay considered?
link 2–5 Poisson 3 4.6 1.4 No
link 5–7 Poisson 4 5.6 0.6 No
link 5–7 On/Off 500 0.7 2.2 No
link 2–5 FTP/TCP 510 9.5 2.7 Yes
link 5–7 FTP/TCP 680 27.6 0.7 Yes
link 5–7 FTP/TCP 1000 16.8 5.5 Yes

Note that when the cross traffic is transported by TCP, it is necessary to account
for the propagation delay in order for the scheme to behave well, thereby, suggesting an
extension to the M+M/M/1/K queue model in which the end-to-end delay is the sum of
the response time of the queue and a propagation delay. The latter might be constant or a
random variable.

Sec. 1.8 Extensions 61

1.8 Extensions

1.8.1 From simulation to reality

Till now, we have always assumed to have access to the first n samples of {ai}i, {di}i,
{Xi}i and {Yi}i. In this work, we have carried out simulations to generate traffic traces,
and the samples were extracted from the traces. However, ultimately, we must extract the
samples from the real network (e.g. the Internet). How can we do this?

Usually, real-time applications use the Real-time Transport Protocol (RTP) [109] to-
gether with UDP and IP. RTP provides end-to-end network transport functions suitable for
this kind of application, over multicast or unicast network services. RTP consists of two
parts, a data part and a control part referred to as RTCP, the RTP Control Protocol. The
feedback information is carried in RTCP packets referred to as Receiver Reports (RRs).The
rate at which they are multicast is controlled so that the load created by the control infor-
mation is a small fraction of that created by data traffic. The RR sent by a destination
includes several pieces of information: the highest sequence number received, the number
of packets lost, the estimated packet interarrival jitter, and timestamps. At the sender,
the {ai}i are available, the {di}i are retrieved from the timestamps present in the RR and
the {Xi}i are retrieved from the highest sequence number received at the destination, also
given in the RR. As for the {Yi}i, they are hard to obtain. In [86], the authors propose
an algorithm to estimate the clock skew in network delay measurements. This algorithm
can be adapted to estimate the {Yi}i (mainly, Y = 0 if the measured delay is minimal) but
this estimation will be weak and uncertain, as the service times are considered constant.
Fortunately we found that PL_R is the best scheme and hence we will not use U . The work
assumes a perfect knowledge of the bottleneck capacity. In some cases, µ is known exactly
(we know the routes and we know the routers) but sometimes µ is to be estimated and this
introduces further error. Its impact still needs to be investigated.

1.8.2 Example of a possible application

An interesting application for the methods proposed in this chapter is routing in
content distribution networks. The goal would be to infer the available bandwidth and
buffer size of the bottleneck queue on a path between two application layer routers so as to
determine how to route new traffic. It should be possible to probe at a sufficiently high rate
to quickly obtain good estimates. This could be done by embedding a Poisson stream within
the data traffic and/or adding a (relatively) low bandwidth probe stream. Furthermore,
between two application layer routers, we expect there to be one bottleneck node residing
at a peering point between the two backbone networks within which the routers reside.

62 Chap. 1 Inference models to estimate network characteristics

1.9 Conclusion

In this work, we have proposed two simple models for a connection, based on a single
server queue with finite waiting room, to infer the buffer size and the intensity of cross
traffic at the bottleneck link of a path between two hosts. We have quantified several
parameters of both models and obtained eleven pairs of moment-based estimators. Using
traces generated by the network simulator ns-2, estimated values for both parameters have
been calculated according to the characteristics of the a priori models. Pairs of estimators
have been discarded while others have proved to give good results. However, the pair of
estimators we have “elected” as the best one need to be tested on an experimental network,
or even better, on the Internet, in order to evaluate its performance under realistic network
traffic conditions.

Chapter 2

Estimation of multicast membership

The second chapter of the thesis concerns multicast applications that are interested in the
evolution of their membership over time. The chapter covers optimal on-line estimation
algorithms for determining the membership of a multicast group. Throughout the chapter,
three distinct methodologies are detailed and analyzed. The first one builds on Kalman
filter theory to derive an optimal estimator that is tested both on synthetic traces and real
audio traces. Under more general assumptions, the second approach relies on Wiener filter
theory to achieve the same result, whereas the third approach develops the best first-order
linear filter from which an estimator that holds for any lifetime distribution is derived.
This methodology is illustrated in the case where the distribution of the receivers lifetime
is hyperexponential. The chapter also provides guidelines on how to tune the parameters
involved in the schemes in order to achieve high quality estimation while simultaneously
avoiding feedback implosion.

Keywords: on-line estimation, multicast, M/G/∞ queue, diffusion, Kalman filter, Wiener
filter, simulation, validation, distribution fit.

Note: Parts of the material presented in this chapter are published in [9, 10, 11, 12].

64 Chap. 2 Estimation of multicast membership

2.1 Introduction

Since its introduction, IP multicast [43, 44] has seen slow deployment in the Internet.
As stated in [45], the service model and architecture do not efficiently provide or address
many features required for a robust implementation of multicast. However, the fact re-
mains that IP multicast is very appealing in offering scalable point-to-multipoint delivery
specially in satellite communications. Current research efforts tend to propose alternatives
to IP multicast like the so-called “application layer multicast” [36, 56, 68, 96, 104], the idea
being to deploy multicast at the application layer. Also, new models to support multicast
communications in a more effective way have been proposed, such as the EXPRESS mul-
ticast [63]. The latter is an extension to IP multicast that provides explicit support for
large-scale multicast applications such as real-time stock quote dissemination, live sports
video feeds or Internet radio and TV. EXPRESS provides as well a best-effort count of the
number of subscribers.

This work is motivated by the conviction that large-scale multicast applications will
be widely deployed in the future as soon as the capability becomes available. We believe
that membership estimates will be an essential component of this widespread deployment
as they can be very useful for scalable multicast. The membership of a session can be used
for feedback suppression as it is the case in current protocols such as RTP [109] and SRM
[54]. In order to regulate the amount of session/control messages sent by receivers – the
idea being not to exceed 5% of overall session bandwidth – these protocols use delay timers
that are tuned based on the membership estimates.

The membership of a multicast session can be used for charging the sources in large-
scale applications. ISPs traditionally charge their customers on an input-rate basis. An
alternative pricing scheme would be to charge sources based on their audience size which is
more profitable in the case of millions of subscribers.

Estimating the size of a multicast session can be quite useful to many applications.
Bolot, Turletti and Wakeman [23] use membership estimation to further estimate the pro-
portion of congested receivers as needed in their videoconference system IVS [65]. Future
Internet radios and TVs will need to characterize their audience preferences and to follow
the fluctuations of the audience size over time. Dutta, Schulzrinne and Yemini proposed
an architecture for Internet radio and TV called MarconiNet [52] that relies on RTCP
[105, 109]. Even though RTCP provides an easy mechanism for collecting statistics on the
size of the audience, it does not scale well to large multicast sessions. In such applications,
sampling-based techniques are more appropriate.

There has been a significant research effort in devising sampling-based schemes for the
estimation of the membership in multicast sessions [23, 57, 79, 87]. The feedback algorithms
presented in these references are all at-least-one scenarios in the sense that the membership
estimation is based on at least one acknowledgement coming from the receivers. In these
probabilistic schemes, the receivers send ACKs to the source as a reply to a specific request,
either with a certain probability as in [23], or after some random time like in [57, 79, 87]. But

Sec. 2.1 Introduction 65

what is common to these schemes – except the one used in [87] – is that they all assume that
the size of the group does not change during the estimation process. Whenever an estimation
of the population size is needed, the application re-runs the estimation algorithm without
taking into account previous estimates.

In this work, we propose a novel sampling-based technique which is not an at-least-one
scenario. Whenever a source is interested in knowing how many recipients are connected to
the multicast session (or are actively following some application that is being broadcast),
it could ask all of the connected members to send an acknowledgment (ACK). But this is
undesirable in case of large populations as the ACKs could overload the network. To avoid
this, the source could alternatively ask each active connected receiver to send an ACK with
some small probability p. Yet, p needs to be chosen carefully because if it is too small, the
estimation would be inaccurate.

If the source wishes to further have the possibility of tracking the population size, it
should ask the receivers to repeatedly send ACKs say every S seconds. Occasionally, the
source re-issues this request to insure that newly arrived receivers participate in the polling.
If S is not too large then the population size at two consecutive estimation instants would
present statistical dependence. The engineering question we pose in this chapter is how can
we benefit from this dependence in order to be able to get better estimation, or alternatively,
to get a given quality of estimation with a smaller required volume of ACKs (i.e. decreasing
p or increasing S).

Throughout the chapter, we will address the issue of tracking the membership of a
multicast group. Considering the sampling scheme proposed earlier, we build on adaptive
filter theory to derive the estimator. Three distinct approaches are successively analyzed,
starting with Kalman filter theory, proceeding with Wiener filter theory and ending with
least square estimation given a particular filter structure.

The Kalman filter is introduced for the heavy traffic regime under which the member-

ship process weakly converges to an Ornstein-Ühlenbeck process. Due to the linearity of the
latter, the Kalman filter is optimal. Note that the Kalman filter gives a linear, unbiased,
and minimum error variance recursive algorithm, and under normality assumptions, this
filter is optimal, not only among all linear filters based on a set of observations, but among
all measurable filters [107, Section 2.2].

The Wiener filter is introduced next for a general traffic regime. The heavy traffic
assumption is relaxed at the cost of the restriction to a class of filters which is linear and
optimal only among all linear filters. In Wiener filter theory, the minimum mean-square
error criterion is used to optimize the filter, and unlike Kalman filters which are applied in
linear systems in general, Wiener filters are time invariant and are only applied in linear
time invariant systems.

The ’Least Mean Squares’ algorithm is introduced for a general traffic regime and a
general distribution of the receivers lifetime. A first-order linear filter, which is optimal
among the class of all first-order linear filters, is derived and its parameters are computed
numerically in the case that the distribution of the receivers lifetime is hyperexponential.

66 Chap. 2 Estimation of multicast membership

The chapter is organized as follows. First, we will briefly overview the sampling-based
estimation schemes studied in the literature (Section 2.2) and discuss the motivations behind
our work (Section 2.3). Our first approach, based on Kalman filter theory, is developed in
Section 2.4 and validated via simulations, driven by both synthetic and real traces. Section
2.5 builds on Wiener filter theory to design the membership estimator, whereas a least
square estimation method is adopted in Section 2.6. Before undertaking the robustness of
the latter pair of estimators in Section 2.8, we propose some guidelines on how to choose
parameters p and S (Section 2.7). Finally, ongoing research is discussed in Section 2.9.

2.2 Related work

In the previous section, we briefly introduced the different feedback mechanisms pro-
posed in the literature. Throughout this section, we will review each technique separately,
following their chronological conception.

The feedback mechanism proposed by Bolot, Turletti and Wakeman in [23] (BTW

mechanism) consists of a series of probabilistic polling rounds, each with a higher reply
probability than in the previous one, until feedback is obtained. Each round begins when
the sender (or source) multicasts a polling request in which the reply probability pn is

specified. In the first round, p1 = 2−16, and for each subsequent round n, n ≥ 1, we have
pn = 2n−2/(216 − 2n−2). After issuing a polling request, the sender sets a timer at twice
the largest round trip time in the receiving group. When the timer timeouts, the sender
initiates a new round with a higher probability. The polling rounds keep going until either
a reply has been received, or the round in which the reply probability is 1 has been reached,
in which case any receiver will send a response. This ends the ongoing series of rounds, or
epoch. This probabilistic scheme is used to estimate the number of receivers in a multicast
group and further estimate the proportion of congested receivers in the group. The authors
of [23] map the number of receivers N to the average round E[First] in which the first reply
is received as follows:

N ∼ e16.25−E[First]/1.4 = N̂BTW . (2.1)

The BTW mechanism relies on probabilistic arguments for scalability and it avoids feedback
implosion unless N is an order of magnitude greater than 216. However, the estimator
deriving from (2.1) does not fully render the variations in the membership, and as time goes

on, E[First], and therefore N̂BTW , converges to its average value over the entire multicast

session duration. The BTW estimator, N̂BTW , has been analyzed in [57], and an extension
to the mechanism is therein proposed.

The notion of timer-based schemes for multicast feedback was first mentioned in [124],
but Nonnenmacher and Biersack were the first to deeply analyze this family of mechanisms
[87, 88]. They have evaluated the performance of timer-based schemes, in which the timer
is either uniformly distributed, beta distributed or exponentially distributed. The main

Sec. 2.2 Related work 67

concern of the authors is the scalability to groups as large as 106 receivers. The feedback
implosion problem is handled at the receivers: each participant multicasts his response unless
he receives one from another participant, in which case he will suppress his own feedback.
The analysis performed in [87] revealed that, from the set considered, the best distribution
in terms of feedback latency, sensitivity to poor estimates of the number of receivers and
feedback suppression is the exponential distribution. The timer-based feedback proposed
by Nonnenmacher and Biersack (NB mechanism) is intended for reliable multicast, but it
can be used as well for membership estimation.

The NB feedback mechanism is round-based and works as follows. Based on an
estimation of N , the number of receivers, the sender computes λ and T , the parameters
of a truncated exponential distribution (each timer coming from this distribution is in the
interval [0, T]). At the beginning of each round n, the source multicasts a request for
feedback (n, λ, T). The receivers set their timers accordingly and send a feedback message
when the timer times out, unless it is suppressed by another message. On the receipt of the
feedback messages, the sender estimates N using the timer settings of all of the receivers
that returned feedback, which triggers the computation of λ and T for the subsequent round.
To express the estimator of N , let F (z) be the distribution of the truncated exponential
timer z, c be the constant delay between receivers and between any receiver and the sender,
m be the minimal timer among the feedback returned and Y be the amount of feedback
returned. It is therefore shown [87] that

F (z) =
eλz/T − 1

eλ − 1
,

N̂n = Y
1− F (m)

F (m+ c)− F (m)
= Y

eλ(1−m/T) − 1

eλc/T − 1
, (2.2)

N̂n,α =

{

1, n = 1,

αN̂n−1,α + (1− α)N̂n, n > 1.
(2.3)

The exponential weighted moving average expression N̂n,α, with α = 0.8, is used as mem-

bership estimator, whereas the expression of N̂n is used to compute λ and T to react faster

to changes in the population size. It readily comes from (2.3) that E[N̂n,α] = E[N̂n] in

steady-state, but it is seen that E[N̂n] 6= N , and the bias on the estimator depends on the
membership N as illustrated in [57]. Another issue is the choice of the parameter α in (2.3).
Nonnenmacher and Biersack suggest the use of α = 0.8 to achieve a fast convergence and
a reasonably smooth estimate. However, it is not known whether this choice is optimal or
not.

To the best of our knowledge, Friedman and Towsley were the first ones to investigate
the estimation of the membership size as a whole. In [57], they base their analysis upon a
mapping of the polling mechanisms to the problem of estimating the parameter N of the
binomial (N, p) distribution, they derive an interval estimator for N and bounds for the

68 Chap. 2 Estimation of multicast membership

amount of feedback as well as the polling probability in order to achieve specific require-
ments. They apply their results on both mechanisms introduced in [23, 87] which have point
estimators and further add some contributions to each. Friedman and Towsley propose an
extension to the BTW mechanism that achieves a desired measure of quality. In this new
feedback scheme, as soon as a reply reaches the sender, the polling continues at the same
probability until a minimum amount of feedback hmin is reached. The interval estimator
proposed in [57] is centered on E[Y]/p where Y denotes the amount of feedback received
in each round (only the last k rounds having a reply probability of p are considered) and p

denotes the reply probability in the last k rounds. It is shown that

Ñ =
E[Y]

p
± zα/2

2kp

(

(1− p)zα/2 +
√

4k(1− p)E[Y] + (1− p)2z2α/2

)

. (2.4)

where zα/2 is the value for which the CDF of the standard normal distribution is Φ(zα/2) =

(1−α/2). Note that an estimate for N is computed only after several polling rounds, which
was not the case for the estimator proposed by Nonnenmacher and Biersack which returns
an estimate at each polling round (see (2.3)). Another weakness of (2.4) is that it does not
take advantage of previous estimates as does (2.3).

Concerning the NB mechanism, Friedman and Towsley map the timer-based scheme
to their binomial model. The reply probability is then

p =
F (m+ c)− F (m)

1− F (m)

and (2.2) can be rewritten N̂n = Y/p. This point estimator is known to be bursty and in
order to have a more stable estimator, Nonnenmacher and Biersack have introduced the

estimator N̂n,α defined in (2.3). The latter does not fit in the binomial model presented in

[57] as the reply probability in the timer-based scheme changes from round to round, and
it is not possible to rely on any two polling rounds resulting in the same probability, as
required in the binomial model. Thus, the authors have restricted themselves to estimation

over a single polling round, and propose a new point estimator N̂FT = 1+ (Y − 1)/p which
revealed to be unbiased, whereas the point estimator Y/p is biased (recall that Y denotes
the amount of feedback received in a single polling round). The interval estimator proposed

in [57] is centered on N̂FT and given by

ÑFT = 1 +
Y − 1

p
± zα/2

2kp

(

(1− p)zα/2 +
√

4k(1− p)(Y − 1) + (1− p)2z2α/2

)

. (2.5)

One major contribution of [57] is that it removes the assumption on homogeneous delays
used in the NB mechanism. Friedman and Towsley propose a modification to this mech-
anism that makes Y denote the amount of feedback received should the inter-host delays
be constant and equal to c. The interval estimator given in (2.5) is tested via simulations

Sec. 2.3 Motivation 69

under the NB mechanism and the modified one, provided that the inter-host delays are beta

distributed. Their simulations revealed that ÑFT is unbiased under the modified mechanism
and biased under the NB mechanism. The last contribution of [57] is a maximum likelihood
estimator for the NB mechanism that uses information from multiple polling rounds. We
believe that such an estimator will not fully render the dynamics of the membership, as it
requires several polling rounds to return an estimate.

Another timer-based feedback scheme is proposed in [79] in which receivers send their
randomly delayed reply only to the source which in turn initiates a new round of replies.
Each request for replies sent by the source would reset the timers at the receivers. Two
versions of the mechanism are proposed depending on whether the estimation is based on
the first arrival solely or on all the received responses. The latter version improves the
accuracy of the estimator, but in both versions, there is a risk of a feedback implosion. In
each version, a maximum likelihood estimator is derived and multiple polling rounds are
necessary to return a single estimate. The paper focused on the quality of the estimator
rather than on the dynamic nature of multicast sessions.

To conclude this section on related works, we would like to briefly discuss a paper “On
the scaling of feedback algorithms for very large multicast groups” [58]. This paper does
not deal with the estimation of the membership itself, but rather on its impact on three
feedback algorithms, which all are at-least-one scenarios. It is concluded that the possible
estimations of the group size might be a source for disturbances and that the exponential
feedback raise algorithm is the algorithm of choice for very large groups. Both the BTW
and NB mechanisms are considered to have an exponential feedback raise.

2.3 Motivation

In order to fully reproduce the evolution of the multicast membership, we aim at
developing a moving average estimator like the one given in (2.3). That estimator was

shown to be biased1, while what we are actually looking for is an unbiased estimator that
would take advantage of previous estimates in an optimal way.

We propose a mechanism in which the receivers probabilistically send “heartbeats” to
the sender (hereafter called the source) in a periodic way. This mechanism is much simpler
to implement at the receivers side than is the timer-based mechanism used in [87]. The
feedback implosion problem is addressed via a convenient choice of the reply (or ACK)
probability p. The ACK interval S between two consecutive polling instants has to be
larger than the largest round-trip time between a receiver and the source. Inter-hosts delays
are not required to be homogeneous. That is because of the periodic nature of the ACKs
generation process and because the ACK interval S is large enough in order to have all of
the ACKs produced in a round reach the source before the (automatic) start of the next
round.

1It is shown in [57] that the estimator given in (2.2) is biased and we know that E[N̂n,α] = E[N̂n].

70 Chap. 2 Estimation of multicast membership

A naive approach to the estimation problem would consist of dividing Yn, the total
number of ACKs received at the nth observation step, by the ACK probability p. This
ratio is then a point estimator of the size of the multicast group at time nS. It is expected
that this estimator will perform very poorly, both because it does not take into account the
“history” of the membership process, and because the ratio of the number of ACKs received
over the group size will converge to p a.s. only when the group size is large (the strong law
of large numbers). (This is why the point estimator in the center of the interval estimator
given in (2.4) takes the expectation of Y instead of just taking Y .)

Our experiments reported in Figure 2.1 have confirmed the poor behavior of this naive
estimator. Figure 2.1 depicts the evolution of membership size of an audio session recorded
in December 1996 (details in Section 2.4.4) and the estimate returned by the naive approach.
The ACK interval S is set to 1 second. Two values (0.01 and 0.5) for the ACK probability
p were retained. Figure 2.1(a) displays the evolution of the number of group members and
its “naive” estimation over time for p = 0.01. Obviously, there is too much noise in the
estimation. Results for p = 0.5 are shown in Figure 2.1(b). Even for this high (undesirable)
probability, the naive estimator performs poorly. It is clear that some filtering is necessary
in order to reduce the estimation error.

A first approach to filter out the noisy observations consists of using an exponential
weighted moving average (EWMA) like the one used in (2.3). We can write

N̂n = αN̂n−1 + (1− α)
Yn

p
. (2.6)

In steady-state, we have E[N̂n] = E[Yn]/p = E[Nn]. The estimator N̂n is then unbiased.
It remains to choose the parameter α in an optimal way. We have tested several values of
α, namely 0.95, 0.99 and 0.999. The performance of the EWMA algorithm can be visually
observed in Figure 2.2. For the particular audio trace therein plotted, it appears that
α = 0.999 is a good choice.

The main drawback of this approach, is that one can not know what value of α is
the best, and one also does not know whether a good value of α for one trace will also be
good for another. The correct approach is to compute the optimal α that minimizes the
estimation error. Notice that (2.6) is an autoregressive equation of the form

N̂n = AN̂n−1 +BYn.

One might wonder if this form is the best one or not. Instead of computing the optimal α for
this particular form, we will rely on adaptive filter theory to construct the best estimator,
and the equation giving this estimator might well take another form than the one in (2.6).

Remark 2.3.1 Throughout this chapter, it is assumed that neither the requests for ACKs
sent by the source, nor the ACKs sent by the receivers, are lost. The loss of polling requests
has a smaller impact on the membership estimation mechanism as the source can repeatedly

Sec. 2.4 Optimal estimation using a Kalman filter 71
0

2
0

0
4

0
0

6
0

0

0 40000 80000 120000

(a) Membership evolution vs. time: p = 0.01, naive estimation = 100 × amount of ACKs received

(s)

Naive estimation
Audio trace

0
3

0
6

0
9

0

0 40000 80000 120000

(b) Membership evolution vs. time: p = 0.5, naive estimation = 2 × amount of ACKs received

(s)

Naive estimation
Audio trace

Figure 2.1: Membership evolution of a short audio session and its estimation using a naive
approach (S = 1s)

send them or send a group of them whenever the parameters S and/or p are to be changed.

As for the loss of ACKs, it is possible to incorporate the loss probability in our feedback
mechanism. Let pL denote the probability that an ACK is lost before it reaches the source.

It suffices then to require an ACK probability of p/(1−pL) in order to have, over the session

duration, an average of pE[N] ACKs received per round. This is equivalent to requiring an

ACK probability of p in a safe environment (i.e. no losses).

2.4 Optimal estimation using a Kalman filter

A precise mathematical formulation of the estimation problem would require the use
the theory of nonlinear stochastic filtering, which does not provide us with tractable solu-
tions. We shall instead introduce some simplifying assumptions that will allow us to obtain
a good estimation scheme, which, even if not always the optimal, will show good perfor-

72 Chap. 2 Estimation of multicast membership
0

3
0

6
0

9
0

0 40000 80000 120000

Membership evolution vs. time, and EWMA estimation: p = 0.01, S = 1s

(s)

EWMA, α = 0.95
EWMA, α = 0.99
EWMA, α = 0.999
Audio trace

Figure 2.2: Membership evolution of a short audio session and EWMA estimation

mance. To that end we shall consider an exponential distribution for the time during which
a receiver stays in the multicast session (referred to as “lifetime” or even “on-time”) and
make a large group size assumption. This will allow us to obtain a diffusion approximation
for the population dynamics. Sampling this process at some regular time intervals will yield
a discrete-time linear stochastic difference equation for the population dynamics. We will
further derive a linear discrete-time equation for the measurements. The fact that both the
population dynamics and the measurements in our approximations are linear, will allow us
to use the powerful Kalman filtering theory to design simple dynamic estimation procedures
which are optimal for the heavy traffic model (in minimizing the second moment of the
error). These schemes thus make the best use of previous estimates in order to update
the current estimation optimally. Having proposed a dynamic estimation procedure that
is optimal in our simplified mathematical model, we will test it on real traces that do not
satisfy the assumptions of that model. We will observe good performance of this procedure
in these cases.

We will next present the queueing model for the multicast group (Section 2.4.1). After
that, we will derive the membership estimator in Section 2.4.2 and validate our approach in
Sections 2.4.3 and 2.4.4.

2.4.1 The model

We consider a multicast group that participants join and leave at random times. Let
Ti and Ti +Di be the join time and the leave time, respectively, of the ith participant. In
the following, Di > 0 is called the on-time of the ith participant and {Di}i is referred to

Sec. 2.4 Optimal estimation using a Kalman filter 73

as the on-time sequence. Let N(t) be the number of participants at time t or, equivalently,
the size of the multicast session at time t. Under the enforced assumption that N(0) = 0,
we have

N(t) =
∑

i

1{Ti ≤ t < Ti +Di} (2.7)

where 1{E} is equal to 1 if the event E occurs and to 0 otherwise.

The source requests its receivers to send ACKs with probability p every S seconds.
It is assumed that neither polling requests nor ACKs can be lost (see Remark 2.3.1). We
assume that S is large enough so that all of the ACKs generated in each round reach the
source before the start of the subsequent round. The times t = nS, n = 1, 2, . . ., will denote
the end of each round. Under the above assumptions, it is seen that, at time nS, the source
possesses all of the ACKs sent to it by participants in the nth round (i.e. in the interval
of time](n − 1)S, nS]). Throughout, p and S are held fixed (see Section 2.7 for possible
extensions).

Given this scheme, our objective is to devise an algorithm for estimating the session
size at times t = nS for n = 1, 2,

Primarily for mathematical tractability we shall assume from now on that the arrival
process is Poisson with rate λ > 0 and that on-times form a renewal sequence with common
exponential distribution with finite mean 1/µ, further independent of the arrival process
(more general arrival processes can be considered – see Remark 2.4.1). In this setting, the
process {N(t), t ≥ 0} as defined in (2.7) is simply the occupation process in a M/M/∞
queueing system with arrival rate λ and mean service time 1/µ [75]. For such a queue, it
is known that the stationary number of busy servers is distributed according to a Poisson
random variable (RV) with parameter ρ := λ/µ; in particular, the mean number of busy
servers in steady-state is equal to ρ.

Unfortunately, little is known about the transient behavior of the M/M/∞ for a fixed
traffic intensity ρ. We will instead investigate the M/M/∞ queue in heavy traffic. To this
end, let us introduce the scaled process {NT (t), t ≥ 0} which is identical to the original
process {N(t), t ≥ 0} except that the arrivals have been speeded up by a factor T , that is,
the arrival rate in the M/M/∞ queue is now λT . The mean service rate is kept unchanged
and equal to 1/µ.

Since NT (t) → ∞ a.s. as T → ∞, we will instead work with the normalized process
{ZT (t), t ≥ 0} defined by

ZT (t) =
NT (t)− ρT√

T
, t ≥ 0. (2.8)

The process {ZT (t), t ≥ 0} describes the fluctuations of the scaled process {NT (t), t ≥ 0}
around its limiting trajectory ρT as T → ∞.

74 Chap. 2 Estimation of multicast membership

A nice feature of the process {ZT (t), t ≥ 0} is that it converges to a diffusion process
as T → ∞. More precisely, as T → ∞ the process {ZT (t), t ≥ 0} converges in distribution

to the Ornstein-Ühlenbeck process {X(t), t ≥ 0} given by [103, Theorem 6.14, page 155]

X(t) = e−µt X(0) +
√
2λ

∫ t

0

e−µ(t−u) dB(u), (2.9)

where {B(t), t ≥ 0} is the standard Brownian motion (see also [24, Theorem 1, page

172]). The Ornstein-Ühlenbeck process defined in (2.9) is an ergodic Markov process and
its invariant distribution is a normal distribution with mean zero and variance ρ [70, page
358].

In the next section, we shall devise optimal estimators for the elements of the sequence
{X(nS), n = 1, 2, . . .} based on Kalman filter theory.

A word on the notation in use: N(m, v) will denote a normal distribution with mean
m and variance v and X ∼ N(m, v) will denote a RV with distribution N(m, v).

Remark 2.4.1 . The convergence of the process {ZT (t), t ≥ 0} to a diffusion process (but

with different coefficients than that in (2.9)) still takes place if the arrival process is replaced

by a process slightly more general than a Poisson process [24, Theorem 1, pages 172-173]. On

the other hand, if the on-times are generally distributed and the arrival process is Poisson,

then one only knows that the process {ZT (t), t ≥ 0} converges to a Gaussian process [106].

2.4.2 Kalman filter

In order to achieve an optimal estimation for the heavy traffic model, we shall use a
Kalman filter that computes the state estimator out of two linear equations: the system
dynamic equation and the measurement equation. These two equations are introduced in the
next two sections. Throughout these sections we shall assume that the process {X(t), t ≥ 0}
is in equilibrium at time t = 0, namely, X(0) ∼ N(0, ρ).

System dynamics

From (2.9) we obtain

X(t) = e−µ(t−s) X(s) +
√
2λ

∫ t

s

e−µ(t−u) dB(u)

for 0 ≤ s ≤ t, from which it follows that

ξn+1 = γ ξn + wn, n = 0, 1, . . . (2.10)

Sec. 2.4 Optimal estimation using a Kalman filter 75

where

ξn := X(nS),

γ := e−µS,

wn :=
√
2λ

∫ (n+1)S

nS

e−µ((n+1)S−u) dB(u).

The RVs {wn, n = 0, 1, . . .} are i.i.d. with

wn ∼ N(0, Q), n = 0, 1, . . . (2.11)

(see e.g. [24, page 17]) where Q is given by

Q = 2λE

[

∫ (n+1)S

nS

e−µ((n+1)S−u) dB(u)

]2

= 2λ

∫ (n+1)S

nS

e−2µ((n+1)S−u) du

= ρ (1− γ2).

Notice that

ξn ∼ N(0, ρ), n = 0, 1, . . . (2.12)

under the assumption that X(0) = ξ0 ∼ N(0, ρ), which implies from (2.10) that

Cov(ξn, ξn+1) = γρ, n = 0, 1, (2.13)

Equation (2.10) establishes a simple one-order recursive expression relating the state
of the limiting process {X(t), t ≥ 0} between two consecutive polling instants. We shall
next derive the corresponding measurement discrete-time equation, which will allow us to
use standard optimal estimation techniques.

Measurement equation

Let ζ in be the indicator function that receiver i = 1, 2, . . . , NT (nS) has sent an ACK in

the nth polling round, with ζ in = 1 if an ACK was sent by receiver i and ζ in = 0 otherwise.

From the definition of the model it is seen that, conditioned on NT (nS), ζ1n, . . . , ζ
NT (nS)
n are

i.i.d. Bernoulli RVs with E[ζ in] = p. The conditional expectation and variance of the number

of ACKs Yn :=
∑NT (nS)

i=1 ζ in received by the source at time nS are then respectively given by

E [Yn |NT (nS)] = NT (nS) p (2.14)

Var [Yn |NT (nS)] = NT (nS) p(1− p). (2.15)

76 Chap. 2 Estimation of multicast membership

We define our normalized measurement equation as

MT (nS) =
Yn − pρT√

T
, n = 0, 1, (2.16)

which, with the help of (2.8), can be rewritten as

MT (nS) = pZT (nS) + VT (nS), (2.17)

where

VT (nS) :=
Yn −NT (nS)p√

T
. (2.18)

The next step is to let T → ∞ in (2.17).

Proposition 2.4.1 There exist i.i.d. RVs {vn, n = 0, 1, . . .} with

vn ∼ N(0, R), n = 0, 1, . . . (2.19)

where R := ρ p (1 − p), independent of {wn, n = 0, 1, . . .}, such that {vk, k = n, n + 1, . . .}
is independent of {ξk, k = 0, 1, . . . , n} for n = 0, 1, . . ., and such that (ZT (nS), VT (nS))

converges weakly to (ξn, vn) as T → ∞. �

Proof. Define

Z(m,n) :=

∑m
i=1 ζ

i
n −mp√
m

.

Observe that

VT (nS) = Z(NT (nS), n)

√

NT (nS)

T
(2.20)

where VT (nS) is defined in (2.18).

The RV Z(m,n) converges weakly as T → ∞ to a normal RV ℓn with mean zero and
variance p (1− p). Equivalently, for any bounded continuous function f ,

lim
m→∞

E [f(Z(m,n))] = E[f(ℓn)].

Since NT (nS)/T converges P a.s. to ρ as T → ∞ [103, Theorem 6.13, pages 153-154], it
follows that

lim
T→∞

E [f(VT (nS)) |NT (nS)] = E[f(vn)] (2.21)

Sec. 2.4 Optimal estimation using a Kalman filter 77

where vn = ρ ℓn is a normal RV with mean zero and variance ρp (1− p).

Now let f and g be two arbitrary bounded continuous functions. Then

lim
T→∞

E
[

f(VT (nS))g(ZT (nS))
]

= lim
T→∞

E
[

E
[

f(VT (nS))g(ZT (nS))|NT (nS)
]]

= lim
T→∞

E
[

E
[

f(VT (nS))|NT (nS)
]

g(ZT (nS))
]

= lim
T→∞

E
[{

E[f(VT (nS))|NT (nS)]− E[f(vn)] + E[f(vn)]
}{

g(ZT (nS))− g(ξn) + g(ξn)
}]

= lim
T→∞

E
[{

E[f(VT (nS))|NT (nS)]− E[f(vn)]
}{

g(ZT (nS))− g(ξn)
}]

(2.22)

+ lim
T→∞

E
[

g(ξn){E[f(VT (nS))|NT (nS)]− E[f(vn)]}
]

(2.23)

+ lim
T→∞

E
[

E[f(vn)]{g(ZT (nS))− g(ξn)}
]

(2.24)

+ lim
T→∞

E
[

E[f(vn)] g(ξn)
]

. (2.25)

The limit which we are searching for is the sum of four distinct limits. It appears that:

• the limit (2.22) reduces to 0 due to the bounded convergence theorem,

• the limit (2.23) reduces to 0 thanks to Equation (2.21),

• the limit (2.24) reduces to 0 because of the weak convergence of ZT (nS) to ξn as
T → ∞,

• the limit (2.25) is equal to E[f(vn)]E[g(ξn)]

We therefore have

lim
T→∞

E
[

f(VT (nS)) g(ZT (nS))
]

= E[f(vn)]E[g(ξn)]. (2.26)

On the probability space that carries the RVs {ξn, wn}n one can always construct
the RVs vn so that they are i.i.d. with a normal distribution with mean zero and variance
ρp (1−p), further independent of {wn, n ≥ 0} and such that, for every n ≥ 0, the {vk, k ≥ n}
are independent of {ξ0, ξ1, . . . , ξn}. Under this construction, we deduce from (2.26) that

lim
T→∞

E
[

f(VT (nS)) g(ZT (nS))
]

= E[f(vn) g(ξn)]

or, equivalently, that (ZT (nS), VT (nS)) converges weakly to (ξn, vn) as T → ∞ (Note:
choose f(x) = exp(it1x) and g(x) = exp(it2x) with t1 and t2 real numbers), which concludes
the proof. �

78 Chap. 2 Estimation of multicast membership

We deduce from Proposition 2.4.1 that MT (nS) defined in (2.16) converges weakly as
T → ∞ to a RV mn such that

mn = pξn + vn, n = 0, 1, (2.27)

The properties enjoyed by the RVs vn together with (2.12), (2.13) and (2.27) readily imply
that

mn ∼ N(0, ρ p) (2.28)

cov (mn, mn+1) = γρ p2, n = 0, 1, (2.29)

Deriving the filter parameters

Equations (2.10) and (2.27) represent the equations of a discrete time linear filter,
for which we can compute the optimal estimator. Throughout we shall assume that the
Gaussian initial condition ξ0, the signal noise sequence {wn}n and the observation noise
sequence {vn}n are all mutually independent.

Let ξ̂n be an estimator of ξn, and denote by ǫn = ξn − ξ̂n the estimation error. The
estimator that minimizes the mean square of the estimation error is given by the following
Kalman filter (see e.g. [112, page 347]), which has a simple recursive structure:

Pn =
(

(

γ2Pn−1 +Q
)−1

+ p2/R
)−1

(2.30)

Kn = Pnp/R (2.31)

ξ̂n = γξ̂n−1 +Kn

(

mn − p
(

γξ̂n−1

))

(2.32)

for n = 1, 2, . . ., with ξ̂0 = E[ξ0] = 0 and where the constants γ, R and Q have been
defined earlier in the section. Equation (2.30) is called the Riccati equation and Pn gives
the variance of the estimation error ǫn. In (2.31) Kn is called the filter gain. Equation (2.32)
is the state estimate equation, and it is the sum of an extrapolation term and an update
term.

The above filter minimizes the sum of mean square estimation errors until time nS.
One can also (and will from now on) use the stationary version of the Kalman filter, which
minimizes the time average mean square estimation error, namely,

P =
(

(

γ2 P +Q
)−1

+ p2/R
)−1

K = Pp/R (2.33)

ξ̂n = γξ̂n−1 +K
(

mn − p
(

γξ̂n−1

))

. (2.34)

Sec. 2.4 Optimal estimation using a Kalman filter 79

P now gives the steady-state variance of the estimation error. It is obtained as the unique
positive solution of the algebraic Riccati equation

p2γ2P 2 + (Qp2 +R
(

1− γ2
)

)P −RQ = 0.

We find

P = −Qp2 +R (1− γ2)−
√

(Qp2 +R (1− γ2))2 + 4p2γ2RQ

2p2γ2
. (2.35)

We may replace Q = ρ(1 − γ2) and R = ρp(1 − p) in (2.35). Substituting the resulting
expression into (2.33), we can express the filter gain in terms of p and γ = exp(−µS)

K =
−(1− γ2) +

√

(1− γ2)(1− γ2(1− 2p)2)

2γ2p(1− p)
. (2.36)

For every n, the error ǫn is a normal RV with mean zero and variance P , further independent
of the observation mn [123, page 240].

Membership size estimation

We now return to our original estimation problem, namely, the derivation of an esti-

mate – called N̂n – for the number of participants NT (nS) at time nS.

Recall that the process {NT (t), t ≥ 0} describes the number of busy servers in an
M/M/∞ queue with arrival rate λT and service rate µ. If NT (0) = 0, namely the system is
initially empty, then we know by Takács [114, Theorem 1, pages 160-161] that E[NT (t)] =

ρT (1− e−µt) for any time t. In particular, E[NT (t)] = ρT in steady-state (i.e. as t → ∞).

Motivated by (2.8), we define N̂n as follows:

N̂n = ξ̂n
√
T + ρT (2.37)

with ξ̂n given in (2.34). We go back to the latter equation. Replacing mn with MT (nS) as

provided in (2.16) and using (2.37), we derive the following estimate for N̂n

N̂n = γ(1−Kp)N̂n−1 +K Yn + ρT (1− γ)(1−Kp). (2.38)

Here Yn denotes the amount of ACKs collected at time nS.

Starting from E[ξ̂0] = 0 it is seen from (2.34) and (2.27) that E[ξ̂n] = 0 for n = 0, 1, . . .,

which in turn implies from (2.37) that E[N̂n] = ρT . The estimator N̂n is asymptotically
unbiased in the sense that

∣

∣

∣
E
[

N̂n −NT (nS)
]
∣

∣

∣
= e−µnS −→

n
0.

80 Chap. 2 Estimation of multicast membership

Regarding the variance of the error en := NT (nS)−N̂n, it is a function of the parameter

T . We have (use (2.8)) en =
√
T
(

ZT (nS)− ξ̂n

)

, so that

Var

(

en√
T

)

= Var
(

ZT (nS)− ξ̂n

)

.

Although we have not been able to prove this result, we believe that Var
(

en/
√
T
)

→ P as

T → ∞.

We conclude this section by summarizing the estimation algorithm (ρ and T are
known/estimated beforehand)

Initialization: Set p and S to the desired values, and N̂0 to ρT (ξ̂0 = 0). Compute
γ = exp(−µS) and the filter gain K according to (2.36).

nth observation step: Collect the ACKs received in the interval of time ((n − 1)S, nS]

and compute N̂n as in (2.38).

Remark 2.4.2 The autoregressive equation in (2.38) does not exhibit the same form as the

one in (2.6) as it further has a constant term ρT (1− γ)(1−Kp). In other words, if we had

computed the optimal α in (2.6), we would not have obtained the optimal estimator, at least

under the assumptions considered in Section 2.4.1.

2.4.3 Simulations

Our estimator has been derived under a set of various statistical assumptions (Poisson
arrivals, exponential on-times, heavy traffic regime) that may be violated in practice. In
this section, we investigate the robustness of our estimator and try to identify situations
where it works well/poorly. To do so, we have conducted various simulations (using a C

program) where some or all of the assumptions needed for the derivation of the estimator
are violated.

Four types of simulations have been performed. For each simulation, the parameters λ
and T are taken to be equal to 1 and 1/185.9s−1, respectively, and the run time is 124240s.
These values have been measured on a real trace (see Section 2.4.4 for details on the traces
we have used). The ACK probability p and the ACK interval S have been set to 0.01 and
1.0s, respectively. (see Section 2.7 for details on how these parameters can be set).

Two figures are associated with each simulation depending on the load (defined as ρT)
of the system: ρT = 34.1 referred to as “light load” (Figure 2.3) and ρT = 200 referred
to as “heavy-load” (Figure 2.4). Each graph displays three curves: the simulated data, the
estimated data and the mean load ρT . For each simulation, the performance of the estimator

Sec. 2.4 Optimal estimation using a Kalman filter 81

0
2
0

4
0

0 40000 80000 120000

m
em

b
er

sh
ip

(s)

(a) Poisson inter-join times, exponential on-times

34.1

All exponential
Estimation

0
3
0

6
0

9
0

0 40000 80000 120000

m
em

b
er

sh
ip

(s)

(b) Pareto inter-join times (shape 1.1), exponential on-times

34.1
Pareto inter-join times
Estimation

0
1

0
2

0
3

0

0 40000 80000 120000

m
em

b
er

sh
ip

(s)

(c) Poisson inter-join times, Pareto on-times (shape 1.1)

34.1

Pareto on-times
Estimation

0
2

0
4

0
6

0

0 40000 80000 120000

m
em

b
er

sh
ip

(s)

(d) Pareto inter-join times (shape 1.1), Pareto on-times (shape 1.1)

34.1

All Pareto
Estimation

Figure 2.3: Estimation of the multicast membership over time (p = 0.01, S = 1s): the light

load case λT = 1/185.9s−1, µ = 1/6342s−1

is collected in Table 2.1. The second column gives the sample mean of the relative error

expressed in percentage (i.e. 100× |NT (nS)−N̂n|
NT (nS)

), column 3 gives the 25th percentile, column

4 reports the median value, etc.

In the first simulation the users join the multicast group according to a Poisson process
and their on-times are exponentially distributed. The Poisson assumption for the joining
process is fairly realistic, as mentioned in [7]. The validity of the exponential assumption
for the on-times has been observed for short sessions. The obtained results are reported in
Figures 2.3(a) and 2.4(a). Both for light and heavy loads the estimated value appears to
be very close to the true value; in particular, 95% of the time the relative error is less than
13.1% (resp. less than 4.7) when ρT = 34.1 (resp. ρT = 200) (see rows 3–4 in Table 2.1 for

82 Chap. 2 Estimation of multicast membership

0
7
5

1
5
0

2
2
5

0 40000 80000 120000

m
em

b
er

sh
ip

(s)

(a) Poisson inter-join times, exponential on-times

200

All exponential
Estimation

0
1
0
0

2
0
0

3
0
0

0 40000 80000 120000

m
em

b
er

sh
ip

(s)

(b) Pareto inter-join times (shape 1.1), exponential on-times

200

Pareto inter-join times
Estimation

0
6

0
1

2
0

1
8

0

0 40000 80000 120000

m
em

b
er

sh
ip

(s)

(c) Poisson inter-join times, Pareto on-times (shape 1.1)

200

Pareto on-times
Estimation

0
6

0
1

2
0

1
8

0

0 40000 80000 120000

m
em

b
er

sh
ip

(s)

(d) Pareto inter-join times (shape 1.1), Pareto on-times (shape 1.1)

200

All Pareto
Estimation

Figure 2.4: Estimation of the multicast membership over time (p = 0.01, S = 1s): the heavy

load case λT = 1/185.9s−1, µ = 1/37180s−1

details).

In the second simulation the on-times are still exponentially distributed but now the
inter-arrivals are Pareto distributed with shape parameter equal to 1.1, leading to an infinite
variance of the inter-arrival times. The results are displayed in Figures 2.3(b) and 2.4(b).
We first observe that both the estimator and the real values are far away from the “limiting
trajectory” when the load is light. This is due to the infinite variance of the inter-arrival
times which prevents the stationary regime to be reached rapidly. Nevertheless, the accuracy
of the estimator is still remarkable both at light and heavy loads (see rows 6–7 in Table 2.1).

In the third simulation the arrival process is Poisson and the on-times are Pareto
distributed with shape parameter equal to 1.1. Both the estimator and the real values are
far away from the limiting trajectory for both loads. When the load is light, the accuracy

Sec. 2.4 Optimal estimation using a Kalman filter 83

Table 2.1: Sample mean and percentiles of the relative error expressed in percentage

Simulation Mean 25 50 75 90 95
All exponential

Light load ρT = 34.1 5.6 1.9 4.1 7.3 10.6 13.1
Heavy-load ρT = 200 2.3 0.8 1.7 2.7 3.8 4.7

Pareto inter-arrivals
Light load ρT = 34.1 6.6 2.6 5.3 9.2 12.9 15.7
Heavy-load ρT = 200 4.4 1.5 3.3 5.3 7.2 9.8

Pareto on-times
Light load ρT = 34.1 12.2 4.0 9.2 16.5 26.7 35.7
Heavy-load ρT = 200 6.8 3.2 6.1 8.9 12.4 15.1

All Pareto
Light load ρT = 34.1 9.7 3.9 7.8 12.5 18.5 25.6
Heavy-load ρT = 200 5.2 1.7 3.5 6.1 9.9 14.5

Table 2.2: Mean and variance of the error en = NT (nS)− N̂n

Simulation Mean Variance
All exponential
ρT = 34.1, TP = 5.514 0.07 4.7
ρT = 200, TP = 14.067 −0.006 9.95

Pareto inter-arrivals
ρT = 34.1, TP = 5.514 2.8 19.7
ρT = 200, TP = 14.067 3.6 67.3

Pareto on-times
ρT = 34.1, TP = 5.514 −1.2 4.1
ρT = 200, TP = 14.067 −3.8 10.1

All Pareto
ρT = 34.1, TP = 5.514 0.6 16.9
ρT = 200, TP = 14.067 −0.4 57.9

of the estimator is not as good as in the previous simulations but it is still fair. This lack of
accuracy is more a consequence of the light measured load (18.1) than of the Pareto on-time
assumption. The accuracy of the estimator dramatically increases as the load increases.
See Figures 2.3(c) and 2.4(c) and rows 9–10 in Table 2.1 for details. In order to enhance
the performance of the estimator for small multicast groups, one should increase the ACK
probability p. Notice that the average amount of ACKs generated when the light is load is
equal to 18.1×0.01 = 0.18 whereas it equals 67.05×0.01 = 0.67 in the heavy-load simulation.
Refer to Section 2.7 for details on how to set p and S in order to have a predefined quality
of estimation, while avoiding feedback implosion.

In the fourth and last simulation, all assumptions are simultaneously violated: both
the inter-arrival times and the on-times are Pareto distributed with shape parameter equal
to 1.1. The overall performance of the estimator is better than in the third simulation.

84 Chap. 2 Estimation of multicast membership

See Figures 2.3(d) and 2.4(d) and rows 12–13 in Table 2.1 for details. Table 2.2 contains
the mean (column 2) and variance (column 3) of the error en. The expected mean is 0
and the (conjectured) expected variance is TP (see previous Section). “Mean” denotes the
measured average and “Var” denotes the measured variance. Looking at Table 2.2, we can
easily observe that

• There is a small bias when the distributions of the inter-arrival times and of the on-
times are different, that is, when one of them is Pareto and the other one is exponential
(see rows 6–7 and 9–10 in Table 2.2). The negative bias −3.8 in the heavy-load case
can be observed in Figure 2.4(c) where the estimation is clearly above the simulated
group size;

• The variances measured when the arrival process is Poisson are very close to each
other for both values of the workload (see rows 3–4 and 9–10 in Table 2.2) and they
are not too far from the expected variances;

• The variances measured when the inter-arrival times are Pareto distributed are both
far from the expected variances but are relatively close to each other (see rows 6–7
and 12–13 in Table 2.2).

2.4.4 Validation with real traces

An extensive study of the characterization of MBone sessions dynamics is due to
Almeroth and Ammar [7, 6]. They have developed a tool called Mlisten [8] that collects
the join/leave times for multicast group members in MBone sessions. We have applied our

algorithm to some of these traces collected in 19962. As stated in [6] (see Remark 2.4.3 page
88), the joining process is reasonably close to a Poisson process. As to the on-times, two
cases have to be distinguished depending on the duration of a session. For long sessions
some people will join for very long periods while others will join only for a few minutes. In
this case, the Zipf distribution fits well in the collected data. In the case where sessions are
short, the maximum membership duration is much shorter than for long sessions, thereby
eliminating long on-times.

We have run our algorithm on two different traces, one collected from a short audio
session that started on 9th of December 96 and lasted for 1 day 10 hours 30 minutes and
40 seconds, i.e. 124240 seconds; the other one results from a long audio session that lasted
from 18th of November 96 to 10th of December 96 (21 days 12 hours 37 minutes and 27
seconds, that is 1859847 seconds). Figures 2.5 and 2.6 plot the actual group size and its
estimation for each session.

The values of the arrival rate T (throughout λ = 1, so that the arrival rate is T)
and the expected on-times 1/µ were extracted from the traces. For the short duration

2The traces are available at ftp://ftp.cc.gatech.edu/people/kevin/release-data/. We were able to collect
more recent traces during Summer 2001. Some of these traces are discussed in Section 2.8.

Sec. 2.4 Optimal estimation using a Kalman filter 85
1
s

1
m

1
h

06 12 00 06

(b) inter-join times

1
s

1
m

1
h

1
d

06 12 00 06

(c) on-times

(Day hour)

0
0
.5

1

0 0.25 0.5 0.75 1

Exponential fit

Weibull fit

Weibull linear fit for inter-join times, shape 0.85, scale 118

0
0
.5

1

0 0.25 0.5 0.75 1

Exponential fit

Weibull fit

Weibull linear fit for on-times, shape 0.32, scale 1000

0
2

.5
5

7
.5

12:00 15:00 18:00

(d) Subset of data from 11:30 a.m. till 6:30 p.m.
inter-join times (mins)

1
s

1
m

1
h

12:00 15:00 18:00

on-times

0
0

.5
1

0 0.25 0.5 0.75 1

Exponential fit Weibull fit

Weibull linear fit for inter-join times, shape 0.93, scale 1.4

0
0

.5
1

0 0.25 0.5 0.75 1

Exponential fit

Weibull fit

Weibull linear fit for on-times, shape 0.36, scale 1833

0
2
0

4
0

6
0

06 1212 0000 06(Day hour)

(a) Membership evolution of a short audio session starting on 9 Dec 96: ρT = 34.1, p = 0.01, S = 1s

34.1

Audio trace
Estimation

Figure 2.5: Estimation of the multicast group size using the trace of a short audio session
and probability plots for the observed data

session, the measured “load” is ρT = 34.1; for the long duration session, the measured load
is ρT = 63.5.

We have observed (see Figure 2.5(a)) that our estimator does not work well in case

the session gathers a few participants3. In this case, it overestimates the size of the group;

the absolute error |NT (nS) − N̂n| is not significant but the relative error is very high and
approaches 100% (see around 2 a.m. in Figure 2.5(a)). This behavior was already reported
in Section 2.4.3. The sample mean and some percentiles of the relative error (expressed in
percentage) for both sessions are listed in Table 2.3.

The data set corresponding to the short audio session exhibits two very different parts:

3Here again, increasing the ACK probability p will definitely enhance the performance of the estimator.

86 Chap. 2 Estimation of multicast membership
1
s

1
m

1
h

23 Nov 96 30 Nov 96 07 Dec 96

(b) inter-join times

1
s

1
m

1
h

1
w

23 Nov 96 30 Nov 96 07 Dec 96

(c) on-times

0
0
.5

1

0 0.25 0.5 0.75 1

Exponential fit

Lognormal fit

Lognormal linear fit for inter-join times, µ = 4.53, d = 1.41

0
0
.5

1

0 0.25 0.5 0.75 1

Exponential fit

Lognormal fit

Lognormal linear fit for on-times, µ = 5.55, d = 3.24

0
8

1
6

2
4

00:00 08:00 16:00 00:00

(d) Subset of data relative to 4 Dec 96
inter-join times (mins)

1
s

1
m

1
h

1
d

00:00 08:00 16:00 00:00

on-times

0
0

.5
1

0 0.25 0.5 0.75 1

Exponential fit

Weibull fit

Weibull linear fit for inter-join times, shape 0.83, scale 2.5

0
0

.5
1

0 0.25 0.5 0.75 1

Exponential fit

Lognormal fit

Lognormal linear fit for on-times, µ = 5.63, d = 3.24

0
4
0

8
0

1
2
0

23 Nov 96 30 Nov 96 07 Dec 96

(a) Membership evolution of a long audio session: ρT = 63.5, p = 0.01, S = 1s

63.5

Audio trace
Estimation

Figure 2.6: Estimation of the multicast group size using the trace of a long audio session
and probability plots for the observed data

very few users are connected during the first quarter of the data set, thereby suggesting that
this part was recorded before the start of the transmission. The remaining part of the data
set records participants activity during the transmission.

Our algorithm has first been run on the entire trace. As expected, it performs poorly
on the first quarter of the trace; its performance improves drastically on the remaining part
of the trace.

The first quarter of the data set has then been removed and our algorithm has been
run on the resulting trace (we found T = 1/157.7s−1, µ = 1/5994.6s−1 and ρT = 38).
Most of the time, the relative error is less than 15.9% (see row 4 in Table 2.3), which is a
satisfactory result.

Table 2.4 reports the mean (column 2) and variance (column 3) of the error en. As

Sec. 2.4 Optimal estimation using a Kalman filter 87

Table 2.3: Sample mean and percentiles of the relative error expressed in percentage

Real audio trace Mean 25 50 75 90 95
Short trace

Entire trace ρT = 34.1 15.0 2.3 5.2 11.8 44.9 61.2
Last 3/4 of trace ρT = 38.0 6.2 1.8 4.2 7.3 11.4 15.9

Long trace
ρT = 63.5 4.7 1.3 2.7 4.7 7.7 13.1

Table 2.4: Mean and variance of the error en = NT (nS)− N̂n

Real audio trace Mean Variance TP
Short trace

Entire trace ρT = 34.1 0.219 6.070 5.514
Last 3/4 of trace ρT = 38.0 0.338 6.339 6.303

Long trace
ρT = 63.5 0.017 8.083 6.723

before, “Mean” is the measured average error, “Var” is the measured variance and “TP ” is the
(conjectured) expected variance. We can see from this table that, as expected, the measured
average error is close to 0. Also notice that the measured variance and the expected variance
are close to each other (see columns 3–4 in Table 2.4).

Distribution fits

The distribution fits for the inter-arrival time process and the on-time process for both
the short and long duration sessions are presented in Figures 2.5(b) and (c) and 2.6(b) and
(c) and summarized in Table 2.5 (see rows 2–3). We have found that for both types of
sessions, the joining process is not Poisson and on-times are not exponentially distributed.

Table 2.5: Distributions that best fitted into the inter-arrivals and on-times sequences

Entire trace Best fit for inter-join times Best fit for on-times sequence
Short session Weibull with shape 0.85, scale 118 Weibull with shape 0.32, scale 1000
Long session Lognormal with µ = 4.53, d = 1.41 Lognormal with µ = 5.55, d = 3.24

Subset of trace Best fit for inter-join times Best fit for on-times sequence
Short session Weibull with shape 0.93, scale 1.4 Weibull with shape 0.36, scale 1833
Long session Weibull with shape 0.83, scale 2.5 Lognormal with µ = 5.63, d = 3.24

For the entire short audio session, the inter-arrival time distribution is well represented
by a Weibull distribution with shape parameter 0.85 and the on-time distribution fits well
a Weibull distribution with shape parameter 0.32 (see Figures 2.5(b) and (c) and row 2
in Table 2.5). Recall that the smaller the shape parameter the heavier the tail (a Weibull

88 Chap. 2 Estimation of multicast membership

distribution with shape parameter 1 is an exponential distribution).

For the entire long audio session, the inter-arrival time distribution is well represented
by a Lognormal distribution with parameters µ = 4.53 and d = 1.41 and the on-time
distribution fits well a Lognormal distribution with parameters µ = 5.55 and d = 3.24 (see
Figures 2.6(b) and (c) and row 3 in Table 2.5). Recall that the Lognormal distribution is
long-tailed; the higher the parameter d, the longer the tail.

Remark 2.4.3 Our results are different from the results reported in [6] which is explained

by the fact that they have analyzed only the parts of the traces with the highest human
activity. We took two subsets of data, one from each trace, and fitted the inter-join times
and the on-times sequences into well-known distributions. Our results, plotted in Figures

2.5(d) and 2.6(d) and reported in rows 5–6 in Table 2.5, reveal that the distribution of the

inter-arrivals is approximately exponential (even though the best fit is a Weibull distribution)

which agrees with the observations of Almeroth and Ammar in [6]. However, the on-times

distribution in the subset coming from the short audio session cannot be approximated by
an exponential distribution. In fact, we always find that the on-times are subexponentially

distributed (either Weibull or Lognormal distribution). In Section 2.8, four video traces are

investigated and the distributions that best fitted into the sequences at hand came out to be

subexponential also (see Table 2.10 page 107 for details).

To conclude this section, we would like to point out that our estimator seems to be
very robust to changes in the distribution laws. Although the assumptions that the inter-
arrival times and the on-times have an exponential distribution is crucial in the theory that
we have developed, it is interesting to note that our estimator still performs well for other
distributions, including various subexponential distributions (Pareto, Lognormal, Weibull).

2.5 Optimal estimation using a Wiener filter

In Section 2.4, we have proposed a dynamic scheme that tracks the variations of the
membership in an optimal way. To derive the optimal estimator we have used a diffusion
approximation for the heavy traffic regime. Under the assumptions of Poisson join times
and exponentially distributed connection times, the diffusion approximation yields linear
dynamics which enabled us to design the optimal filter using Kalman filter theory.

Our purpose now is to develop an estimator under more general assumptions than the
ones used in Section 2.4. In this section, we use Wiener filter theory to derive the optimal
estimator. The dynamics are not required to be linear as in the case of the Kalman filter.
This will allow us to remove the heavy traffic assumption made in Section 2.4. We will first
present the model and next derive the optimal filter.

Sec. 2.5 Optimal estimation using a Wiener filter 89

2.5.1 The model

Recall the notation introduced in Section 2.4.1: Ti denotes time that receiver i joins
the multicast group; Di denotes the lifetime (or on-time) of the ith participant, in other
words, receiver i leaves the group at time Ti+Di; and N(t) denotes the number of receivers
in the multicast group at time t or equivalently the membership at time t. It is seen then
that

N(t) =
∑

i≥1

1{Ti ≤ t < Ti +Di},

where 1{E} equals 1 if the event E occurs and 0 otherwise.

We shall assume that the join times form a homogeneous Poisson process (with con-
stant intensity 0 < λ = 1/E[Ti+1 − Ti]) and that the on-times form a renewal sequence
of random variables (RVs) with common probability distribution Ψ(x) = P (Di < x),
0 < E[Di] < ∞, further independent of the join times. In the following D will denote
a generic RV with probability distribution Ψ(x).

In queueing terminology, {N(t), t ≥ 0} represents the occupation process (number of
busy servers) in an M/G/∞ queue [75].

We still rely on the same polling scheme used before: receivers, with probability p,
send ACKs to the source every S seconds. Note that in practice the source will have to
regularly multicast the pair (p, S) to ensure that each participant will know these values.
We will assume that S is large enough (the order of magnitude is in seconds) so that at times
t = nS, n = 0, 1, . . ., the source holds all of the ACKs produced in round n. Throughout, p
and S are held fixed (see Section 2.7 for possible extensions).

Let Yn be the number of ACKs received by the source at time nS. Based on the
knowledge of Y1, . . . , Yn, our objective is to find an optimal estimator (in a sense to be

defined below) N̂n for Nn := N(nS), the size of the multicast group at time nS. In filtering

parlance, Yn is an input signal and we want to generate another signal N̂n that is as close
as possible to an unknown signal Nn (e.g. by minimizing the mean square error).

For later use we briefly review some results on the M/G/∞ queue. In steady-state,
the number N of busy servers is a Poisson random variable with parameter ρ := λE[D],

namely, P [N = j] = ρj exp(−ρ)/j!. In particular, both the mean and the variance of the
number of busy servers are equal to ρ. The autocovariance function of the stationary version
of the process {N(t), t ≥ 0}, also denoted by {N(t), t ≥ 0}, is given by [41, Equation (5.39)]

Cov(N(t), N(t + h)) = λ

∫ ∞

|h|

P (D > u) du. (2.39)

In the following we will denote by CovX(·) the autocovariance function of any second-
order discrete-time stationary process {Xn, n = 0, 1, . . .}. With this notation and the defi-

90 Chap. 2 Estimation of multicast membership

nition of the process {Nn}n, we see from (2.39) that

CovN(k) = ρ γ|k|, k = 0,±1, . . . , (2.40)

with γ := exp(−µS), when the on-times {Di}i are exponentially distributed with mean 1/µ.

Throughout, we will assume that

∑

k≥0

CovN(k) < ∞. (2.41)

In other words, we will exclude the situation where the on-times are heavy-tailed (e.g. Pareto
distribution).

2.5.2 Wiener filter

Our objective is to transform a signal Yn (noisy observation) into another signal N̂n

(estimator) that is the closest to an unknown signal Nn. By closest we mean that the mean

error is zero (i.e. E[N̂n] = E[Nn]) and that the mean square error is minimized.

Such a transformation can be achieved by the Wiener filter that identifies the optimal
linear filter [61]. Applying Wiener theory yields the transfer function of the linear filter,
which can be transformed back to the time domain to obtain the impulse response of the

filter. From the impulse response of the filter, the expression of N̂n as a function of Yn and,

possibly, of N̂n−1, N̂n−2, . . ., can be found. We will detail this procedure below.

Since a filter that minimizes the mean square error when the underlying processes
are centered (i.e., zero-mean processes) also minimizes the mean square error when the
same processes are non-centered, we will derive the Wiener filter for the centered (station-

ary) versions of processes {Nn}n, {N̂n}n and {Yn}n, denoted by {νn}n, {ν̂n}n and {yn}n,
respectively. We have observed in the previous section that E[Nn] = ρ. On the other hand

E[Yn] = E[E[Yn |Nn]] = E[pNn] = pρ. (2.42)

Therefore νn = Nn − ρ, ν̂n = N̂n − ρ and yn = Yn − pρ. We aim at determining the impulse
response {ho,n}n of the optimal filter in the mean-square sense. For a discrete-time causal

linear filter with impulse response {hn}n, we have

ν̂n =

∞
∑

k=0

hkyn−k.

The mean square value of the error signal Nn−N̂n = νn− ν̂n is denoted by ǫ := E[(νn− ν̂n)
2].

It is shown in [61] that ǫ is minimal when the impulse response of the filter satisfies the

Sec. 2.5 Optimal estimation using a Wiener filter 91

Wiener-Hopf equation:

∞
∑

m=0

ho,mCovy(k −m) = Covνy(k), k = 0, 1, . . . , (2.43)

where Covy(k) denotes the autocorrelation of the filter input (the measurements) {yn}n and

Covνy(k) = E[νn−k yn] denotes the cross-correlation function of processes {νn}n and {yn}n.
We can express Covy(k) and Covνy(k) in terms of Covν(k) as follows

Covy(k) = p2Covν(k) + 1{k = 0}ρp(1− p) (2.44)

Covνy(k) = pCovν(k) (2.45)

where we have used the identity Covν(k) = CovN(k).

Remark 2.5.1 Autocorrelation and autocovariance are the same for zero-mean processes;
the same remark applies to cross-correlation and covariance.

One way of solving the Wiener-Hopf equation for the optimal impulse response {ho,n}n
is instantiated in the prewhitening approach [61, page 81] which makes use of the following

basic idea. If the signal {yn}n were white noise, then Covy(k−m) = 1{m = k}σ2 where σ2 is
the variance of any noise sample, and the optimal impulse response, denoted h′

o,k in this case,

will satisfy h′
o,k = 1{k ≥ 0}Covνy(k)/σ

2. The structure of the optimal filter consists then

of two filters connected in cascade. The first filter, called whitening filter, transforms the
signal {yn}n into a white noise {ωn}n of variance σ2, and its transfer function is denoted by
1/G(z). The second filter, whose impulse response is {h′

o,n}n, operates on {ωn}n to output

{ν̂n}n, the estimator of {νn}n. Its transfer function is denoted by H ′
o(z) :=

∑∞
k=0 h

′
o,kz

−k

(throughout, z is a complex number such that |z| = 1).

{yn}n

measurement
Noisy

{ν̂n}n
Estimator

1
G(z)

Whitening
filter

{ωn}n
H ′

o(z)

Optimal filter
for white noise

Optimal Wiener filter for general input signal

White
noise

Ho(z)

Figure 2.7: The prewhitening approach

The transfer function of the optimal filter which we are looking for is then (see Figure 2.7)

Ho(z) :=
∞
∑

k=0

ho,kz
−k =

1

G(z)
×H ′

o(z).

92 Chap. 2 Estimation of multicast membership

For later use, introduce

Sy(z) =
∞
∑

k=−∞

Covy(k)z
−k,

Sνy(z) =

∞
∑

k=−∞

Covνy(k)z
−k,

the z-transforms of the autocovariance function of {yn}n and of the cross-correlation se-
quence {Covνy(k)}k, respectively. For |z| = 1, Sy(z) is called the power spectrum of {yn}n
and Sνy(z) is called the cross-power spectrum between {νn}n and {yn}n. Observe from (2.44)
and (2.45) that both Sy(z) and Sνy(z) are well-defined for |z| = 1 under the assumption

(2.41).

We are now in position to derive the Wiener filter. First, we write Sy(z) as

Sy(z) = σ2G(z)G(z−1) (2.46)

where σ2 is a constant, the function G(z) is the part of Sy(z) having all of its zeros and

poles inside the unit circle, therefore G(z−1) is the part of Sy(z) having all of its zeros and
poles outside the unit circle. This operation is called the canonical factorization of the power
spectrum of {yn}n, and allows the derivation of the transfer function of the whitening filter,

which is nothing but 1/G(z) (σ2 is then the variance of the white noise at the output of the
whitening filter).

As for the second filter, which transforms {ωn}n into {ν̂n}n, its transfer function can
be rewritten

H ′
o(z) =

1

σ2

∞
∑

k=0

Covνω(k)z
−k.

It is shown in [61], that
∑∞

k=−∞ Covνω(k)z
−k = Sνy(z)/G(z−1). This ratio is interpreted as

the transfer function of a linear filter whose impulse response, {Covνω(k)}k, has values at
the left and the right of the time origin (non-causal filter). However, what we are actually

looking for, is
∑∞

k=0 Covνω(k)z
−k, which is the transfer function of the part of the impulse

response at the right of the time origin (causal filter). This can simply be done by expanding

the ratio Sνy(z)/G(z−1) into fractions and then taking only the fractions with zeros and poles
inside the unit circle. In other words, we transfer the filter from a non-causal filter into a
causal one. The transfer function of the causal version of the filter is then

H ′
o(z) =

1

σ2

[

Sνy(z)

G(z−1)

]

+

.

Sec. 2.5 Optimal estimation using a Wiener filter 93

Having expressed the transfer functions 1/G(z) and H ′
o(z), it remains to invert the

transfer function of the optimal filter, Ho(z) =
H′

o(z)
G(z)

, back into the time domain to find the

desired recurrence between ν̂n and yn and, subsequently, between the non-centered variables

N̂n and Yn.

The success of the prewhitening approach rests on the ability to factorize the power
spectrum of the original input signal {yn}n as in (2.46). This procedure is illustrated in
Section 2.5.3 for the case where the underlying model is the M/M/∞ queue.

2.5.3 Application to the M/M/∞ model

In light of the results reported in Section 2.5.2, all what we have to do is to find
expressions for Sy(z) and Sνy(z). This can easily be done when the underlying model is the
M/M/∞ queueing model, as shown below.

Let us first determine Sy(z). By using (2.44) and (2.40) together with the property

CovN(k) = Covν(k), we find

Covy(k) =

{

p2ργ|k|, for k 6= 0
pρ, for k = 0.

Since γ = exp(−µS) < 1 and |z| = 1, the z-transform of Covy(k) is

Sy(z) =

−1
∑

k=−∞

p2ργ−kz−k + pρ+

∞
∑

k=1

p2ργkz−k

=
pρ [γ(p− 1)z2 + [1 + γ2(1− 2p)]z + γ(p− 1)]

z(1− γz)(1 − γz−1)
.

The second-order polynomial in the variable z in the numerator has two positive real roots
given by r and 1/r, with

r =
1 + γ2(1− 2p)−

√

(1− γ2)[1− γ2(1− 2p)2]

2γ(1− p)
.

Note that r < 1. Hence

Sy(z) =
γρp(1− p)

r

[

(1− rz)(1− rz−1)

(1− γz)(1− γz−1)

]

= σ2G(z)G(z−1)

with

σ2 :=
γρp(1 − p)

r
, and G(z) :=

1− rz−1

1− γz−1
.

94 Chap. 2 Estimation of multicast membership

We now compute Sνy(z). From (2.45) and (2.40) we find

Covνy(k) = pργ|k|

so that

Sνy(z) =
pρ(1− γ2)

(1− γz)(1 − γz−1)
.

The transfer function H ′
o(z) is given by

H ′
o(z) =

1

σ2

[

Sνy(z)

G(z−1)

]

+

=
r(1− γ2)

γ(1− p)(1− γr)(1− γz−1)

and the transfer function Ho(z) of the optimal filter takes here the simple form

Ho(z) =
r(1− γ2)

γ(1− p)(1− γr)(1− rz−1)
=

B

1− Az−1

where

A = r, B =
r(1− γ2)

γ(1− p)(1− γr)
.

The impulse response of this linear filter is given by the first-order recurrence relation [61]

ν̂n = Aν̂n−1 +Byn

with ν̂n the estimator of νn. We now return to the original processes {N̂n}n and {Yn}n, to
finally obtain the optimal linear filter:

N̂n = AN̂n−1 +BYn + ρ(1− A− pB), (2.47)

where

A =

1 + γ2(1− 2p)−
√

(

1− γ2
)(

1− γ2(1− 2p)2
)

2γ(1− p)
(2.48)

B =

−(1− γ2) +

√

(

1− γ2
)(

1− γ2(1− 2p)2
)

2γ2p(1− p)
. (2.49)

It is interesting to compare this filter with the Kalman filter derived in Section 2.44.
Recall that the first-order linear filter obtained in Section 2.4 is given by (2.38):

N̂n = γ(1−Kp)N̂n−1 +KYn + ρT (1− γ)(1−Kp), (Kalman) (2.50)

4Recall that a Kalman filter is the optimal filter under the condition of linear dynamics and observation,
which does not hold in our case. However, the dynamics do converge to a linear diffusion as the traffic load
tends to infinity, allowing us in Section 2.4 to obtain a Kalman filter which is optimal for the asymptotic
heavy traffic regime.

Sec. 2.5 Optimal estimation using a Wiener filter 95

where the filter gain K is given in (2.36). Looking at (2.49) and (2.36), we can see that

they are exactly the same. We therefore have K = B. Developing the coefficient of N̂n−1 in
(2.50), we obtain γ(1 −Kp) = A. It remains to compare the constant terms in (2.50) and
(2.47). Recall that ρT in Section 2.4 denotes the actual average number of receivers which
is simply denoted by ρ in the present section. Developing the constant terms in both linear
filters we find (1 − γ)(1 − Kp) = 1 − A − pB. We have therefore shown that the filters
returned by both the Kalman theory and the Wiener theory are identical!

This result is not so surprising, since both the Kalman filter and the Wiener filter are
optimal (among the class of linear filters) in the sense that they minimize the mean square
error. The key point is that the Kalman filter used in Section 2.4 was derived under a heavy
traffic assumption, while the Wiener filter computed in the present section holds for any
value of the model parameters λ and µ. This partly explains why the estimator behaves
well under light or moderate traffic as experimentally observed in Sections 2.4.3 and 2.4.4.

Remark 2.5.2 In our estimation problem, both the Wiener approach and the Kalman ap-
proach returned the same result. But in general, the Kalman filter theory is more powerful
than the Wiener filter theory. The latter can be applied in linear time invariant systems,
whereas the former can be applied in linear systems that are either time invariant or time
variant. Another difference is that a Kalman filter is always a first-order filter whereas the
solution to the Wiener filter might use the entire observed data, the Kalman filter is there-
fore computationally more efficient than the Wiener filter. Last, all of the entities in the
Kalman theory are vectors allowing the estimation of multiple processes based on multiple
observations.

Note that if we had used the non-stationary version of the Kalman filter in Section

2.4.2 (Equations (2.30)–(2.32)), the resulting estimator would not be identical to the one

derived from the Wiener theory which assumes stationarity.

We conclude this section by computing the mean square error ǫmin := E[(Nn − N̂n)
2]

of our estimator. It is known that [61]

ǫmin =

M
∑

k=1

Res[F (z), zk]

with

F (z) :=
1

z

(

Sν(z)−Ho(z)Sνy

(

z−1
)

)

where z1, . . . , zM are the poles (if any) of the function F (z) inside the unit circle. The
notation Res[F (z), zk] stands for the residue of F (z) at point z = zk, namely, the coefficient
of 1/(z − zk) in the Laurent series expansion of F (z) in the vicinity of zk. The residue is
given by

Res[F (z), zk] =
1

(m− 1)!

(

d(m−1)

dzm−1
(z − zk)

mF (z)

)

z=zk

,

96 Chap. 2 Estimation of multicast membership

where m denotes the multiplicity of the pole zk. Specializing F (z) to the values of Sν(z),
Sνy(z) and Ho(z) found earlier, yields

F (z) =
ρ(1− γ2)((1− Bp)z −A)

(1− γz)(z − γ)(z − A)
.

This function has two poles inside the unit circle which are located at z = A and z = γ;
the residues of F (z) at these poles are given by −ρpAB(1 − γ2)/[(1 − γA)(A − γ)] and
ρ[1 + pBγ/(A− γ)], respectively. Summing up these residues gives

ǫmin = ρ

(

1− Bp

1− γA

)

.

By using the expressions of A and B, we finally obtain

ǫmin = ρ
−(1− γ2) +

√

(1− γ2)(1− γ2(1− 2p)2)

2γ2p
. (2.51)

This expression for ǫmin can be used to tune the parameters p and γ or equivalently S (see
Section 2.7).

2.6 Efficient estimation using an optimal first-order lin-

ear filter

The theory reported in Section 2.5.2 applies to any on-time distribution Ψ(x) (with
the exception of heavy-tailed distributions). However, it is not easy to identify the function
G(z) that appears in the canonical factorization of the spectrum Sy(z) (see (2.46)) and

thereby the optimal filter, except when the on-times are exponentially distributed RVs (see
Section 2.5.3).

As already pointed out, we would like to develop an estimator under more general
assumptions. In Section 2.5, we removed the heavy traffic assumption which was required
in Section 2.4. In this section we will try to derive an estimator under the assumption that
the lifetime distribution is general (we want to illustrate this approach for the particular
case in which the lifetime distribution is not exponential).

2.6.1 The model

The model considered here is identical to the one presented in Section 2.5.1. Mainly,
the join times form a homogeneous Poisson process with intensity λ, the on-times form a
renewal sequence of RVs with common probability distribution Ψ(x) = P (Di < x), 0 <

Sec. 2.6 Efficient estimation using an optimal first-order linear filter 97

E[Di] < ∞, further independent of the join times. Therefore, {N(t), t ≥ 0} represents the
occupation process in an M/G/∞ queue.

Recall that N(t) is a Poisson RV with parameter ρ := λE[D]. Both the mean and
the variance of N(t) are equal to ρ and

Cov(N(t), N(t + h)) = λ

∫ ∞

|h|

P (D > u) du.

2.6.2 Optimal first-order linear filter

In this section, we will determine the first-order linear filter that minimizes the mean
square error. Observe that, unlike the Wiener filter, the proposed approach will not return
the optimal filter among all of the linear filters but simply the optimal linear filter among
all first-order linear filters. We will illustrate this approach at the end of this section in the
case where Ψ(x) is an hyperexponential distribution.

Recall the definition of the centered processes {νn}n, {ν̂n}n and {yn}n made at the
beginning of Section 2.5.2. Also recall Equations (2.44)–(2.45)

Covy(k) = p2Covν(k) + 1{k = 0}ρp(1− p), (2.52)

Covνy(k) = pCovν(k). (2.53)

The methodology is simple: we want to find constants A ∈ (0, 1) and B such that

ǫ := E[(νn − ν̂n)
2] is minimized when the process {ν̂n}n satisfies the following first-order

recurrence relation

ν̂n = Aν̂n−1 +Byn. (2.54)

In steady-state this implies that

ν̂n = B

∞
∑

k=0

Akyn−k. (2.55)

The mean square error ǫ is equal to

ǫ = E
[

ν̂2
n

]

+ E
[

ν2
n

]

− 2E [ν̂nνn] .

We have E[ν2
n] = E[(Nn − ρ)2] = ρ. From (2.55) and (2.53) we find

E [ν̂nνn] = pB
∞
∑

k=0

AkCovν(k) = pBg(A)

98 Chap. 2 Estimation of multicast membership

where

g(z) :=

∞
∑

k=0

zkCovν(k). (2.56)

The power series g(z) converges for |z| < 1 (Note: k → Covν(k) is nonincreasing) and is
therefore differentiable for |z| < 1. We will denote by g′(z) its derivative.

It remains to express E[ν̂2
n] in terms of the parameters A and B. Squaring both sides

of (2.54) and then taking the expectation yields

E
[

ν̂2
n

]

=

(

B

1− A2

)

(

2AE[ν̂n−1yn] +BE
[

y2n
])

.

With the identities E[y2n] = Covy(0) = ρp (see (2.52)) and E[ν̂n−1yn] = Bp2 (g(A) − ρ)/A

(Note: use (2.55), (2.53) and Covν(0) = ρ), we obtain

E
[

ν̂2
n

]

=

(

pB2

1− A2

)

(2pg(A) + ρ(1− 2p)) .

Finally, the mean square error is

ǫ = ρ− 2pBg(A) +

(

pB2

1−A2

)

(2pg(A) + ρ(1− 2p)) . (2.57)

In order to minimize ǫ, A ∈ (0, 1) and B must be the solution of the following system of
equations:



























∂ǫ

∂A
=

2pB

1− A2

(

AB

[

2pg(A) + ρ(1− 2p)

1−A2

]

+ g′(A)(pB − (1− A2))

)

= 0

∂ǫ

∂B
= 2p

(

B

[

2pg(A) + ρ(1 − 2p)

1− A2

]

− g(A)

)

= 0.

The second equation gives

B =
g(A)(1−A2)

2pg(A) + ρ(1− 2p)
. (2.58)

Substituting this value of B into the first equation shows that A must satisfy

Ag(A)(2pg(A) + ρ(1− 2p))− g′(A)(1−A2)(pg(A) + ρ(1− 2p)) = 0. (2.59)

If this equation has a unique solution A ∈ (0, 1), then substituting this value of A into (2.58)
will give the optimal pair (A,B). Proposition 2.6.1 shows that this is indeed the case.

Sec. 2.6 Efficient estimation using an optimal first-order linear filter 99

Proposition 2.6.1 (Existence and uniqueness of the solution)

Define

f(x) := (2pg(x) + ρ(1 − 2p))xg(x)− (pg(x) + ρ(1− 2p))(1− x2)g′(x),

where g(x) is given in (2.56).

If g′(x) > 0 for x ∈ [0, 1), then f(x) has a unique zero in [0, 1). �

Proof. Write f(x) as f(x) = f+(x)− f−(x) where

f+(x) := [2p(g(x)− ρ) + ρ] xg(x)

f−(x) := [p(g(x)− ρ) + ρ(1− p)] (1− x2)g′(x).

The derivative of f−(x) is given by f ′
−(x) = −αx2 − βx+ α using

α := p (g′(x))
2
+ [p(g(x)− ρ) + ρ(1− p)]g′′(x),

β := 2[p(g(x)− ρ) + ρ(1− p)]g′(x).

Since g′(x) > 0 and g(x) > ρ (see (2.56)), it is seen that α > 0 and β > 0 which implies
that f ′′

−(x) = −2αx− β < 0 for x ∈ [0, 1). We further have that f ′
−(x) is strictly decreasing

in [0, 1), with f ′
−(0) = α > 0 and f ′

−(1) = −β < 0. Thus, the function f ′
−(x) has only one

zero in [0, 1).

Therefore, and under the assumptions of the lemma, it is seen that:

(i) f+(x) is continuous and strictly increasing in [0, 1) with f+(0) = 0;

(ii) f−(x) is continuous in [0, 1) and f−(1) = 0. There exists x0 ∈ (0, 1) such that f−(x)

is strictly increasing in [0, x0), strictly decreasing in (x0, 1) and f ′
−(x0) = 0.

We deduce from the above that f(x) has a unique zero in [0, 1) if g′(x) > 0 in [0, 1). This
condition will hold as long as P (D > S) > 0. In practice, one can always select S such that
this condition is true. �

The reader can check that the filter defined in (2.54) with the optimal pair (A,B) is
the same as the Wiener filter found in Section 2.5.3 when the on-times are exponentially
distributed.

100 Chap. 2 Estimation of multicast membership

2.6.3 Application to the M/HL/∞ model

We now illustrate the approach developed in this section by considering the situation
where on-times have an L-stage hyperexponential distribution. More precisely, we assume
that

Ψ(x) = 1−
L
∑

l=1

ple
−µlx (2.60)

with 0 < pl < 1, l = 1, 2, . . . , L, and
∑L

l=1 pl = 1. In this setting the underlying queueing

model can be seen as L independent M/M/∞ queues in parallel. The arrival rate to queue

l is plλ and the service rate is µl. Define γl := exp(−µlS), ρl := plλ/µl so that ρ =
∑L

l=1 ρl.

The autocovariance function of the process {νn}n is equal to

Covν(k) =

{

ρ for k = 0
∑L

l=1 ρlγ
|k|
l for k 6= 0

so that

g(A) =
L
∑

l=1

ρl
1−Aγl

.

Numerical example 5: L = 2, p = 0.0106 and S = 2.5s. Also

1/µ1 = 3897s, ρ1 = 19.5, γ1 = 0.999359
1/µ2 = 480061s, ρ2 = 75.1, γ2 = 0.999995
1/µ = 18316s, ρ = 94.7,

The optimal first-order filter is

N̂n = 0.99879456 N̂n−1 + 0.10720289 Yn + 0.006540864.

For comparison, the Wiener filter found in Section 2.5.3 (for exponential on-times) for these
values is

N̂n = 0.99828589 N̂n−1 + 0.14885344 Yn + 0.012900081.

2.7 Guidelines on choosing parameters p and S

A “good” pair (p, S) should (i) limit the feedback implosion while at the same time (ii)
achieve a good quality of the estimator. Of course (i) and (ii) are antinomic and therefore

5The values of the parameters come from the trace called video1 investigated in Section 2.8.

Sec. 2.7 Guidelines on choosing parameters p and S 101

a trade-off must be found. This trade-off will be formalized as follows: we want to select a
pair (p, S) so that the mean number of ACKs generated every S seconds (see (2.42)) and
the relative error of the variance of the estimator (denoted as η) are bounded from above
by given constants, namely











E[Yn] = pρ ≤ α

η =

∣

∣

∣

∣

∣

Var(Nn)− Var(N̂n)

Var(Nn)

∣

∣

∣

∣

∣

≤ β.
(2.61)

Remark 2.7.1 Instead of bounding the average number of ACKs generated every S sec-
onds, one may alternatively choose to bound the average number of ACKs generated every
I seconds. Unlike S, I will be fixed over all of the multicast sessions. The constraint on the

number of ACKs is then E[Yn]I/S ≤ α, or equivalently, p ≤ αS/ρI.

When N̂n is optimal then Var(Nn) − Var(N̂n) = E[(Nn − N̂n)
2] and η becomes the

“normalized mean square error” [62, page 202]. Optimality was shown for the M/M/∞
queue, therefore η = ǫmin/ρ with ǫmin given in (2.51).

For given constants α and β, it is easy to solve the constrained optimization problem
defined in (2.61), provided that η is known. For the M/M/∞ model, where ǫmin is given in
(2.51), we find that p = α/ρ and that S, or equivalently γ, is the unique positive solution
of the equation ǫmin = ρβ.

The problem now is to choose constants α and β so that conditions (i) and (ii) are
satisfied. Table 2.6 lists the probability of having 5 ACKs or more, every S seconds, for
several values of α and of the average membership ρ. Looking at Table 2.6, we find that
α in the range [0.5, 2] is a reasonable choice. We have also found in our experiments that
β ≤ 0.15 gives satisfactory results.

Table 2.6: Probability of having 5 ACKs or more every S seconds

Session size α = 0.1 α = 0.5 α = 1 α = 2 α = 3 α = 4 α = 5
ρ = 10 2.4 10−08 0.000064 0.0016 0.0328 0.150 0.36690 0.623
ρ = 50 6.3 10−08 0.000146 0.0032 0.0490 0.179 0.37105 0.569
ρ = 100 7.0 10−08 0.000159 0.0034 0.0508 0.182 0.37114 0.564
ρ = 150 7.2 10−08 0.000163 0.0035 0.0514 0.183 0.37115 0.562

We conclude this section with general remarks on how to adapt the parameters p and
S to important variations in the membership. The estimation schemes in Sections 2.4.2,
2.5.3 and 2.6.3 have been obtained under the assumption that parameters p and S are
fixed. However, the filters therein constructed can still be used if p and/or S change over
time, provided that these modifications do not prevent the system to be most of the time in
steady-state. In that setting, a new filter will have to be recomputed after each modification.

102 Chap. 2 Estimation of multicast membership

Such a modification can be carried out each time the number of ACKs received during a
given period of time significantly deviates from the current expectation (i.e. pρ).

2.8 Validation with real video traces

In this section we apply the estimators developed in Sections 2.5.3 and 2.6.3 to four

real video traces. Two types of estimators will be used: the estimator – denoted as N̂E
n

– found in (2.47) when the population is modeled as an M/M/∞ queue; the estimator –

denoted as N̂H2

n – derived in Section 2.6.3 in case the join times are Poisson and the on-times
have a 2-stage hyperexponential distribution (M/H2/∞ model).

The objective is twofold: we want to investigate the quality of both estimators when
compared to real life conditions, and we want to identify the best one. Notice that the

estimator N̂E
n – as it is identical to the one derived in Section 2.4.2 – has been already

validated in Sections 2.4.3 and 2.4.4.

We have collected four MBone traces – denoted videoi, i = 1, . . . , 4 – between August
2001 and September 2001 using the MListen tool [8]. Each trace corresponds to a long-lived
video session (see duration of each session in Table 2.7, where the superscript “d” stands for
“days”). We have run both algorithms (estimators) on each trace.

For each trace, and as detailed in Appendix (page 112), we have identified the param-
eters of the M/M/∞ model (parameters λ and µ, or equivalently parameters ρ and µ) and
of the M/H2/∞ model (parameters ρ, µ1, µ2, p1 and p2 = 1− p1 – see definitions in Section
2.6.3). The values of these parameters are reported in rows 3–8 in Table 2.7.

Table 2.7: Parameter identification
Trace video1 video2 video3 video4
Session lifetime 3d 13h 33m 20s 11d 1h 46m 8s 50d 22h 13m 20s 29d 16h 43m 13s

ρ 94.7 14.1 8.1 17.9
1/µ(s) 18316 16476 66823 83390
1/µ1(s) 3897 1 1 1
1/µ2(s) 480061 226498 900854 473268
p1 0.97 0.93 0.93 0.82
p2 0.03 0.07 0.07 0.18
p 0.011 0.034 0.062 0.028
S(s) 2.5 3.2 20.0 10.0
α 1.0 0.5 0.5 0.5
β 0.15 0.1 0.1 0.1

Parameters p and S have been chosen by following the guidelines presented in Section
2.7, namely α ∈ {0.5, 1} and β ∈ {0.1, 0.15}. Values of these parameters are listed in rows

Sec. 2.8 Validation with real video traces 103

9–10 in Table 2.7. The performance of estimators N̂E
n and N̂H2

n are reported in Tables 2.8
and 2.9.

Table 2.8 reports several order statistics (columns 3–7) and the sample mean of the

relative error |Nn−N̂n|
Nn

(column 2), where N̂n is either N̂E
n or N̂H2

n . All results are expressed

in percentages. The first observation is that both estimators perform reasonably well. The
sample mean of the relative error is always less than 6.82% and is as low as 3.79%; when

averaging over all experiments, this sample mean is less than 4.5% for both N̂E
n and N̂H2

n (see
last two rows). The last column gives the 95th percentile and reads as follows: the relative

error achieved on trace video3 by N̂E
n (resp. N̂H2

n) is 95% of the time less than 11% (resp.
12.6%). The second observation is that no scheme is uniformly better than the other over
an entire session but their sample means are very close to each other (see column 2). For

instance, N̂E
n performs better than N̂H2

n regarding the 90th and the 95th percentiles whereas

the result is reversed regarding the 25th percentile. It looks like the relative error on N̂H2

n

is empirically more dispersed around its mean than is the relative error on N̂E
n , and has a

longer tail. Across all sessions (see last two rows), 75% of the time N̂H2

n performs better

than N̂E
n . This improvement does not come for free, since it requires the identification of 4

parameters (ρ, µ1, µ2 and p1) instead of 2 (ρ and µ) for N̂E
n .

Table 2.8: Mean and percentiles of the relative error |Nn − N̂n|/Nn

Estimator Mean 25 50 75 90 95
video1
N̂E

n 6.82 1.09 2.42 5.25 11.5 19.4
N̂H2

n 6.12 1.08 2.55 6.31 13.5 20.6
video2
N̂E

n 4.19 1.41 3.08 5.43 8.66 11.9
N̂H2

n 4.12 0.98 2.14 4.41 8.78 12.6
video3
N̂E

n 4.20 1.55 3.26 5.71 8.71 11.0
N̂H2

n 3.98 1.07 2.36 4.83 9.35 12.6
video4
N̂E

n 3.79 1.23 2.57 4.51 7.50 11.0
N̂H2

n 4.06 1.02 2.21 4.39 8.98 14.7
Over all traces

N̂E
n 4.44 1.33 2.88 5.22 8.60 12.0

N̂H2

n 4.34 1.02 2.26 4.73 9.61 14.2

Table 2.9 reports the sample mean and the sample variance of the error Nn − N̂n. In

the 4th column, we list the theoretical variance. It is given by ǫmin for N̂E
n (see (2.51)) and

104 Chap. 2 Estimation of multicast membership

by ǫ for N̂H2

n (see (2.57)). The expected average E[Nn−N̂n] is zero in both approaches. Both

estimators N̂E
n and N̂H2

n have almost no bias (see column 2), and their empirical variances
closely match the theoretical ones given by ǫmin and ǫ, respectively. It is of interest to point

out that for the 4 traces studied, ǫ, the theoretical mean square error provided by N̂H2

n , is

smaller than ǫmin, the theoretical mean square error provided by N̂E
n (however, this result

is reversed if we consider the empirical mean square errors). Thus, N̂H2

n is more efficient6

than N̂E
n (again, N̂E

n is empirically more efficient than N̂H2

n). The last column provides the

relative error on Var(N̂E
n), called η (= ǫmin/ρ) in Section 2.7. Notice that η < β (β is given

in row 12 in Table 2.7).

Table 2.9: Empirical mean and variance of the error Nn − N̂n

Estimator Mean Variance ǫmin, ǫ η
video1
N̂E

n −0.112 12.664 13.942 0.147
N̂H2

n −0.047 12.851 12.120
video2
N̂E

n 0.006 0.495 1.407 0.099
N̂H2

n 0.019 0.785 0.396
video3
N̂E

n 0.037 0.207 0.737 0.091
N̂H2

n 0.019 0.229 0.208
video4
N̂E

n 0.052 0.911 1.566 0.087
N̂H2

n 0.065 1.423 0.676

In Figure 2.8 (resp. 2.9, 2.10 and 2.11) we plot the variations of membership for
session video1 (resp. video2, video3 and video4), together with the estimates returned by

N̂E
n and N̂H2

n . Among all 4 sessions, session video1 presents the highest variations in Nn.
Figure 2.8(a) (resp. 2.9(a), 2.10(a) and 2.11(a)) displays three curves: the collected video

trace, the estimation returned by N̂E
n , labeled “Exponential”, and the estimation returned

by N̂H2

n , labeled “Hyperexponential”. It is clearly visible, especially at the left-hand side

of graph 2.8(a), that N̂E
n tracks better the session dynamics than N̂H2

n . Actually, N̂E
n

follows better Nn during periods of high variations whereas N̂H2

n is slightly closer to Nn

during flat periods. Both estimators N̂E
n and N̂H2

n have been derived under some specific
and restrictive assumptions: Poisson join times for both of them, exponential (resp. 2-stage
hyperexponential) on-times for the first (resp. second) one. It is interesting to know whether
or not these assumptions were violated in each session videoi, i = 1, . . . , 4. We have therefore

6An estimator is said to be more efficient if it has a smaller variance.

Sec. 2.8 Validation with real video traces 105
1

s
1

m
1

h

12 Sep 01 13 Sep 01 14 Sep 01

(b) inter-join times

1
s

1
m

1
d

12 Sep 01 13 Sep 01 14 Sep 01

(c) on-times

0
0

.5
1

0 0.25 0.5 0.75 1

Exponential fit

Lognormal fit

Lognormal linear fit for inter-join times, µ = 3.38, d = 1.49

0
0

.5
1

0 0.25 0.5 0.75 1

Exponential fit

Weibull fit

Weibull linear fit for on-times, shape 0.345, scale 3700

0
6

0
1

2
0

1
8

0

12 Sep 01 13 Sep 01 14 Sep 01

(a) Membership evolution of long-lived session video
1
: ρ = 94.67, p = 0.0106, S = 2.5s.

Video trace
Exponential
Hyperexponential

Figure 2.8: Membership estimation of session video1 and corresponding probability plots

1
s

1
m

1
h

 13 Sep 01 17 Sep 01 21 Sep 01

(b) inter-join times

1
s

1
m

1
d

 13 Sep 01 17 Sep 01 21 Sep 01

(c) on-times

0
0
.5

1

0 0.25 0.5 0.75 1

Exponential fit

Lognormal fit

Lognormal linear fit for inter-join times, µ = 5.20, d = 1.68

0
0
.5

1

0 0.25 0.5 0.75 1

Exponential fit

Weibull fit

Weibull linear fit for on-times, shape 0.26, scale 1400

0
8

1
6

2
4

12 Sep 01 14 Sep 01 16 Sep 01 18 Sep 01 20 Sep 01 22 Sep 01

(a) Membership evolution in long-lived session video
2
: ρ = 14.138, p = 0.034, S = 3.2s.

Video trace
Exponential
Hyperexponential

Figure 2.9: Membership estimation of session video2 and corresponding probability plots

106 Chap. 2 Estimation of multicast membership
1

s
1

m
1

h

 15 Aug 01 29 Aug 01 12 Sep 01

(b) inter-join times

1
s

1
m

1
d

 15 Aug 01 29 Aug 01 12 Sep 01

(c) on-times

0
0

.5
1

0 0.25 0.5 0.75 1

Exponential fit

Weibull fit

Weibull linear fit for inter-join times, shape 0.65, scale 3500

0
0

.5
1

0 0.25 0.5 0.75 1

Exponential fit
Lognormal fit

Lognormal linear fit for on-times, µ = 5.075, d = 3.323

0
6

1
2

1
8

08 Aug 01 15 Aug 01 22 Aug 01 29 Aug 01 05 Sep 01 12 Sep 01 19 Sep 01

(a) Membership evolution in long-lived session video
3
: ρ = 8.12, p = 0.0616, S = 20s.

Video trace
Exponential
Hyperexponential

Figure 2.10: Membership estimation of session video3 and corresponding probability plots

1
s

1
m

1
h

25 Aug 01 08 Sep 01 22 Sep 01

(b) inter-join times

1
s

1
m

1
d

25 Aug 01 08 Sep 01 22 Sep 01

(c) on-times

0
0
.5

1

0 0.25 0.5 0.75 1

Exponential fit

Weibull fit

Weibull linear fit for inter-join times, shape 0.55, scale 2700

0
0
.5

1

0 0.25 0.5 0.75 1

Exponential fit

Weibull fit

Weibull linear fit for on-times, shape 0.18, scale 4000

0
9

1
8

2
7

25 Aug 01 01 Sep 01 08 Sep 01 15 Sep 01 22 Sep 01

(a) Membership evolution in long-lived session video
4
: ρ = 17.92, p = 0.02787, S = 10s.

Video trace
Exponential
Hyperexponential

Figure 2.11: Membership estimation of session video4 and corresponding probability plots

Sec. 2.9 Estimating parameters ρ and µ 107

carried out a statistical analysis of each trace in order to determine the nature of their join
time process and of their on-time sequence.

As shown in Table 2.10 and Figures 2.8, 2.9, 2.10 and 2.11, parts (b) and (c), nei-
ther is the join time process Poisson nor are the on-times exponentially distributed (or
hyperexponentially distributed) for any of the traces. The inter-join times and the on-times
appear to follow subexponential distributions (Lognormal and Weibull distributions), a sit-
uation quite different from the assumptions under which the estimators have been obtained.
Despite these significant differences, the estimators behave well and therefore show good
robustness to assumption violations.

Table 2.10: Distributions that best fitted into the inter-arrivals and on-times sequences

Trace Best fit for inter-arrivals sequence Best fit for on-times sequence
video1 Lognormal with µ = 3.38, d = 1.49 Weibull with shape 0.35, scale 3700
video2 Lognormal with µ = 5.20, d = 1.68 Weibull with shape 0.26, scale 1400
video3 Weibull with shape 0.65, scale 3500 Lognormal with µ = 5.08, d = 3.32
video4 Weibull with shape 0.55, scale 2700 Weibull with shape 0.18, scale 4000

In Sections 2.4.3 and 2.4.4, estimator N̂E
n was shown to behave well in case the distri-

butions of both sequences are subexponential (Pareto, Lognormal, Weibull). We confirm this

observation and note that estimator N̂H2

n performs well for two subexponential distributions
(Lognormal, Weibull).

In summary, both estimators perform very well when applied to real video traces and
are robust to significant deviations from their (theoretical) domain of validity. Estimator

N̂H2

n returns the best global performance for the relative error criterion, but does not track

high fluctuations as well as N̂E
n . Overall, we have found that N̂E

n is a good estimator, both
in terms of its performance and its usability since it only requires the knowledge of two
parameters: ρ and µ.

2.9 Estimating parameters ρ and µ

The main pending issue concerns the knowledge of parameters ρ and µ (or equivalently
any two parameters among ρ, λ and µ, since ρ = λ/µ in steady-state). When these parame-
ters are not known, the source should estimate them. Again, the source could estimate any
two parameters among ρ, λ and µ and infer the third one.

One possible way of estimating λ is to let a newly arrived receiver send a “hello”
message to the source with a certain (constant) probability q (q should be small enough to
avoid overwhelming the source with hellos). The source would then use the arrival time tm

of the mth hello to estimate λ. The maximum likelihood estimator is λ̂ = m/(qtm). This

108 Chap. 2 Estimation of multicast membership

estimator is unbiased and consistent by the strong law of large numbers (limm→∞ tm/m =

1/(qλ)).

In a similar way, the source can estimate µ if receivers probabilistically send a “good-
bye” message reporting their lifetime when they leave the session. Let τm′ be the lifetime
indicated in the m′th goodbye message received at the source, then the maximum likelihood

estimator of µ is simply µ̂ = m′/(
∑m′

i=1 τm′). The estimator µ̂ is unbiased and consistent.

A natural estimator for ρ is ρ̂ = E[N̂n]. As long as there is no estimation of both ρ and
µ, it is not possible to compute the filter coefficient A and B. Then only a naive estimator
for Nn can be used, defined as the ratio of the number of ACKs received Yn over the ACK
probability p (see Section 2.3). Notice that E[Yn/p] = ρ.

We have tested the estimator N̂E
n when λ and ρ are estimated. We have chosen a hello

probability q = 0.1, which means that, on average, one hello message is sent to the source
for every 10 arrivals. The performance of the estimator can visually be observed in Figure
2.12 which displays two graphs. In the upper graph, the ACK probability is p = 0.011

yielding an average amount of ACKs equal to E[Yn] = 1.04; in the lower graph, we have
p = 0.021 yielding E[Yn] = 1.99. We have plotted five curves in each graph: (i) the original
video trace, (ii) the membership estimation for the case that the parameters are known

beforehand, (iii) the membership estimation for the case that estimators λ̂ = m/(qtm) and
ρ̂ = E[Yn]/p are used, (iv) the estimation returned by the EWMA algorithm (see (2.6))
for α = 0.99 and (v) the estimation returned by the EWMA algorithm for α = 0.999. We

have represented only a subset of the data which corresponds to the first 17h 30m, since the
beginning of the session is the most challenging for our algorithm. As expected, when the

parameters ρ and µ are unknown, the estimator N̂E
n does not behave as well as when the

parameters are known beforehand. Still, its performance is reasonably fair as can be seen
in Table 2.11.

Table 2.11 reports the sample mean and some order statistics of the relative error

Table 2.11: Mean and percentiles of the relative error expressed in percentage

Estimator (p = 0.011) Mean 25 50 75 90 95 99
Parameters are known 7.32 1.40 3.00 5.80 12.21 19.34 110.8
Parameters are estimated 6.50 1.81 4.01 7.56 14.39 22.24 42.49
EWMA α = 0.99 6.30 2.28 4.91 8.57 12.57 15.55 25.94
EWMA α = 0.999 19.20 4.70 10.95 23.42 54.59 61.18 82.89

Estimator (p = 0.021) Mean 25 50 75 90 95 99
Parameters are known 6.03 1.17 2.61 4.95 8.76 14.46 84.91
Parameters are estimated 5.18 1.46 3.16 5.88 10.51 16.39 44.05
EWMA α = 0.99 4.60 1.57 3.37 5.99 9.19 11.43 23.70
EWMA α = 0.999 6.65 1.31 3.30 7.44 14.49 21.23 59.47

Sec. 2.9 Estimating parameters ρ and µ 109
0

6
0

1
2
0

1
8
0

12:00 16:00 20:00 00:00

(a) Subset of data relative to the first 17
h
 30

m
 of the session duration; ρ = 94.67, p = 0.011, S = 2.5s

Video trace
Parameters are known
λ and ρ are estimated, q = 0.1
EWMA, α = 0.99
EWMA, α = 0.999

0
6
0

1
2
0

1
8
0

12:00 16:00 20:00 00:00

(b) Subset of data relative to the first 17
h
 30

m
 of the session duration; ρ = 94.67, p = 0.021, S = 2.5s

Video trace
Parameters are known
λ and ρ are estimated, q = 0.1
EWMA, α = 0.99
EWMA, α = 0.999

Figure 2.12: Membership estimation of session video1 when (i) parameters are known be-

forehand, (ii) estimators λ̂ = m/(qtm) and ρ̂ = E[Yn]/p are used (q = 0.1) and (iii) EWMA
estimators are used (α = 0.99, 0.999)

returned by our scheme and by the EWMA algorithm proposed in (2.6) in both cases.
Observe that, when the parameters are estimated and for p = 0.011, the relative error is
90% of the time within 14.39% of the true membership which is a fair result (see row 3
in Table 2.11). The performance of the estimator is enhanced when the amount of ACKs
received every S seconds is increased. When p = 0.021, the average E[Yn] is almost doubled

(but there is still no feedback implosion), and the relative error on N̂E
n is 95% of the time

within 16.39% of the true membership which is a good result (see row 8 in Table 2.11). As
for the EWMA estimator, we observe both in Figure 2.12 and Table 2.11 (rows 4 and 9)
that the performance is very good when α = 0.99, the corresponding estimator is actually

the best one, following the 95th percentile criterion, among all four estimators: N̂E
n when

the parameters are known, N̂E
n when the parameters λ and ρ are estimated, EWMA with

α = 0.99 and EWMA with α = 0.999 (see column 7 in Table 2.11). However, the EWMA

110 Chap. 2 Estimation of multicast membership

estimator with α = 0.999 does not behave well when p = 0.011 as its performance is the
worst one (see row 5 in Table 2.11). Last, observe that the sample mean of the relative

error returned by N̂E
n when the parameters are estimated is smaller than the one returned

by N̂E
n when the parameters are known beforehand (see column 2 in Table 2.11, rows 2–3

and 7–8). This is because the 99th percentile of the latter is much greater than the 99th

percentile of the former. At the very beginning of the trace, the error returned by N̂E
n , when

the parameters are known beforehand, is very large, in contrast to the error returned by the
other estimators.

Table 2.12 reports the sample mean (column 2) and the sample variance (column 3) of
the error between the true membership and its estimation. Notice how for both considered
ACK probabilities, the variance of the EWMA estimator with α = 0.999 is high (see rows
5 and 10 in Table 2.12). When increasing the ACK probability p from 0.011 to 0.021, the

error variance of N̂E
n when the parameters λ and ρ are estimated decreases almost by half

(see rows 3 and 8, column 3).

Table 2.12: Empirical mean and variance of the estimation error

Estimator (p = 0.011) Mean Variance
Parameters are known 0.1432 40.3128
Parameters are estimated 0.5606 68.1708
EWMA α = 0.99 −0.2732 45.0886
EWMA α = 0.999 4.1743 332.966

Estimator (p = 0.021) Mean Variance
Parameters are known −0.0871 26.5487
Parameters are estimated 0.2402 37.6369
EWMA α = 0.99 0.0006 23.1149
EWMA α = 0.999 0.2570 79.6634

Remark 2.9.1 For the trace video1, the EWMA estimator with α = 0.99 behaves very well
in contrast to the EWMA estimator with α = 0.999. This is exactly the inverse of what we
have observed when applying both EWMA estimators on the audio trace shown in Figure 2.2
page 72. There, the EWMA estimator with α = 0.99 was still very bursty.

To conclude this discussion, we believe that using the estimator N̂E
n and estimating

the parameters λ and ρ on-line is appealing in the sense that, even though its performance
is not the best one ever, one is sure of having a fair result for a relatively small amount of
ACKs. This is not the case of the EWMA estimator as the user will not know in advance
what value assign to α.

Current research focuses on identifying the best two parameters to estimate in order to
have the fastest convergence and the lowest error while minimizing the overhead bandwidth
generated, keeping in mind that moving average estimators for λ and µ are also possible.

Sec. 2.10 Conclusion 111

Another perspective concerns the design of an efficient estimator provided that the
underlying model is either the M/W/∞ queue or the M/L/∞ queue, where W and L

stand for Weibull and Lognormal, respectively. Indeed, we have observed that the on-time
distribution is either Weibull or Lognormal (refer to Tables 2.5 and 2.10 for details). To
compute the filter parameters, one has the choice of adopting the autoregressive equation
given in (2.54) and computing the coefficients A and B which minimize the mean-square
error, or one can adopt the EWMA scheme given in (2.6) and derive the parameter α which
minimize the mean-square error. We believe that the canonical factorization step required
in the Wiener theory cannot be achieved when considering either the M/W/∞ queue or the
M/L/∞ queue, impairing the use of this theory in our context.

2.10 Conclusion

The major contribution of this work is the design of novel estimators for evaluating
the membership in multicast sessions. We have designed estimators capable of efficiently
tracking the dynamics of multicast sessions while simultaneously avoiding feedback implo-
sion. We have successively investigated three distinct approaches, each enabling the sender
in a multicast application to track on-line the variation of the audience over time.

We have first modeled the multicast group as an M/M/∞ queue and established our
results under the assumption that this queue is under heavy traffic. In this regime the
backlog process of the M/M/∞ queue is “close” to a diffusion process that can be used to
cast our estimation problem into the appealing framework of Kalman filter theory. Using
this theory we have derived an estimator that minimizes the variance of the error. We
have carried out several simulations to test the robustness of our estimator in the case
where the arrivals are not Poisson and/or the on-times are not exponentially distributed.
The estimator has also been computed on real audio traces and its performance have been
shown to be excellent. It is worthy to point out that it is the first time that a membership
estimator is tested on real traces, exhibiting human behavior and correlations between the
different processes at hand.

Aiming at generalizing the multicast model, we relied on the appealing Wiener filter
theory to compute the optimal linear estimator for session membership when the underly-
ing model is an M/M/∞ queue (the heavy traffic assumption is no longer needed). The
optimality refers to the unbiasedness of the estimator and to the fact that the mean square
error is minimized. The latter estimator turned out to be identical to the one designed using
the Kalman filter theory.

We have also developed the optimal first-order linear filter in case the on-time distri-
bution is arbitrary and have derived the associated estimator in case the on-times have a
2-stage hyperexponential distribution. The last pair of estimators have been validated on
real video traces. Their performance have been shown to be excellent, one of them showing
a good ability to adapt to highly dynamic multicast sessions.

112 Appendix

Appendix: Computing parameters from trace

Each trace records (Ti, Di), i ≥ 1. To use the M/M/∞ queue model, we identify 1/λ =

E[Ti+1 − Ti] and 1/µ = E[D], and deduce ρ = λ/µ. To use the M/H2/∞ queue model, λ
is computed as before. Identifying µ1, µ2, p1 and p2 requires the knowledge of the first three
moments of D (recall that p2 = 1 − p1). For a 2-stage hyperexponential distribution, the
kth moment is given by

E[Dk] =

2
∑

l=1

plk!

(µl)k
= k!

(

p1
(µ1)k

+
p2

(µ2)k

)

, for k ≥ 1.

The parameters µ1, µ2, p1 and p2 are then solution to the following system of four equations,
where σl stands for 1/µl with l = 1, 2.

p1 + p2 = 1 (2.62)

p1σ1 + p2σ2 = E[D] (2.63)

p1σ
2
1 + p2σ

2
2 = E[D2]/2 (2.64)

p1σ
3
1 + p2σ

3
2 = E[D3]/6. (2.65)

Equations (2.62) and (2.63) readily give

p1 =
σ2 − E[D]

σ2 − σ1
, (2.66)

p2 =
E[D]− σ1

σ2 − σ1

. (2.67)

Substituting Equations (2.66) and (2.67) for p1 and p2 into (2.64) yields

(σ2 − σ1)E[D2]/2 = (σ2 − E[D])σ2
1 + (E[D]− σ1)σ

2
2

= E[D](σ2 − σ1)(σ2 + σ1)− σ1σ2(σ2 − σ1)

=⇒ E[D2]/2 = E[D](σ2 + σ1)− σ1σ2. (2.68)

Substituting Equations (2.66) and (2.67) for p1 and p2 into (2.65) yields

(σ2 − σ1)E[D3]/6 = (σ2 − E[D])σ3
1 + (E[D]− σ1)σ

3
2

= E[D](σ2 − σ1)(σ
2
2 + σ1σ2 + σ2

1)− σ1σ2(σ2 − σ1)(σ2 + σ1)

=⇒ E[D3]/6 = E[D]
(

(σ2 + σ1)
2 − σ1σ2

)

− σ1σ2(σ2 + σ1). (2.69)

Appendix 113

Introduce now Sσ and Pσ as the sum and the product of σ1 and σ2, respectively. Equations
(2.68) and (2.69) become

E[D2]/2 = E[D]Sσ − Pσ

E[D3]/6 = E[D](S2
σ − Pσ)− PσSσ =

(

E[D]Sσ − Pσ

)

Sσ − E[D]Pσ

= (E[D2]/2)Sσ − E[D]Pσ

where the latter identity is obtained when using the first one. It then follows that

Sσ =
3E[D]E[D2]− E[D3]

3(2E[D]2 −E[D2])
, (2.70)

Pσ =
3E[D2]2 − 2E[D]E[D3]

6(2E[D]2 −E[D2])
, (2.71)

and σ1 = 1/µ1 and σ2 = 1/µ2 are the (positive) solutions of x2 − Sσ x + Pσ = 0, or
equivalently, the solutions of

6
(

2E[D]2 −E[D2]
)

x2 + 2
(

E[D3]− 3E[D]E[D2]
)

x+ 3E[D2]2 − 2E[D]E[D3] = 0.

Finally,

σ1,2 = 1/2×
(

Sσ ±
√

(Sσ)2 − 4Pσ

)

.

We now can compute p1 and p2 as given in Equations (2.66) and (2.67). It is then possible
to calculate ρl = plλ/µl and γl = exp(−µlS) for l = 1, 2. Last ρ = ρ1 + ρ2.

114 Appendix

Chapter 3

Analysis of two agent location
mechanisms in a mobile environment

This chapter is devoted to the performance evaluation and comparison of two approaches for
locating an agent in a mobile agent environment. The first approach dynamically creates a
chain of forwarders to locate a moving agent whereas the second one relies on a centralized
server to perform this task. This chapter builds on Markov chain analysis to evaluate the
cost of communication in the presence of migration. It undertakes validation of the proposed
models by comparing theoretical results first with simulations and then with experimental
results. Our research revealed that neither approach is uniformly best than the other as their
respective performance depends on the system parameters. The analysis developed in this
chapter can be used to select the best scheme based on its average response time. Designers
and programmers can benefit from this research by implementing the best mechanism which
minimizes communication times between components of the application at hand.

Keywords: mobile code, migration, centralized server, forwarders, Markov chain.

Note: Part of the material presented in this chapter is published in [13, 14, 15].

116 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

3.1 Introduction

The Internet has allowed the creation of huge amounts of data located on many dif-
ferent machines. Performing complex operations on some data requires that the data be
transferred first to the machine on which the operations are to be executed. This transfer
may require a non-negligible amount of bandwidth and may seriously limit performance if it
is the bottleneck. However, instead of moving the data to the code, it is possible to move the
code to the data, and perform all of the operations locally. This simple idea has led to a new
paradigm called code-mobility [117]. In this paradigm, a mobile object – sometimes called
an agent – is given a list of destinations and a series of operations to perform at each one of
them. The mobile object will visit all of the destinations, perform the requested operations
and possibly pass the result on to another object. Any machine willing to receive an agent
must provide an agent-platform which is a placeholder where the agent is executed.

Code mobility has recently received a lot of attention because of its wide application
to fields ranging from e-commerce (e.g. searching for the lowest fare on many different sites)
to data mining [33]. Mobility can be implemented as a service provided by an operating
system [92]; however this severely limits its usefulness in a heterogeneous environment such
as the Internet. Another solution is to use a library which provides an application with all
of the necessary features [5, 19, 60, 74, 84, 101, 121].

Any mobility mechanism must first provide a way to migrate code from one host to
another. It must also ensure that any communication between objects will not be impaired
by migration, namely that two objects should still be able to communicate even if one of
them has migrated. Such a mechanism is referred to as a routing mechanism or even as
a location mechanism since it often relies on the knowledge of the location of the mobile
objects to ensure communications. Location problems are not exclusive to code mobility.
They can be encountered under different forms in many different networking areas, where
the object to be located can either be fixed [85] or mobile as in wireless [102] and ad-hoc
networks [25, 42, 69], or more recently in peer-to-peer networking [18, 38, 76, 113].

In the more specific setting of code mobility, two location mechanisms are widely used:
the first one uses a centralized (location) server which keeps track of the location of agents,
whereas the second one relies on special objects – called forwarders – whose role is to forward
a message to the agents. A more careful description of these approaches will be given later
on.

Mobility raises several concerns, among them security [32, 71] (of both the mobile
agent and the host sheltering it) and performance issues [20, 55]. In [55] the complexity
of using forwarding addresses is extensively studied whereas [20] addresses fault-tolerance
properties in forwarder-based mechanisms. In this chapter we will only focus on performance
issues and, more specifically, on the cost of communication in the presence of migration. To
the best of our knowledge, this is the first time that such an analysis is performed. In [84]
the authors only give intuitive criteria on how to select the proper location scheme under
certain circumstances. Our analysis can be used to select the best scheme based on its

Sec. 3.2 Definitions and Notation 117

response time. It also allows us to compute the average number of forwarders, which is
useful to study the fault-tolerance of forwarding schemes [20].

In this work we develop Markovian models of the forwarders and of the location
server as implemented in ProActive [101], a Java library that provides all of the necessary
primitives for code mobility. Closed-form expressions for various performance measures are
derived, including the time needed to reach an agent and the mean number of forwarders.
These expressions are in turn used to evaluate the cost of location under various network
conditions and for different applications. For the purpose of validation, we have developed
for each mechanism both an event-driven simulator and a benchmark that uses ProActive.
Simulations and experiments conducted on a LAN and on a MAN have validated both
models and have shown that no scheme performs uniformly better than the other, thereby
justifying the present research.

The chapter is organized as follows: preliminary definitions and notation are intro-
duced in Section 3.2; the forwarding mechanism is presented and evaluated in Section 3.3
and the centralized server mechanism is investigated in Section 3.4. Simulations and exper-
imental results are reported in Section 3.5 as well as a theoretical comparison between both
approaches. Extension of our work to more general cases are discussed in Section 3.6.

3.2 Definitions and Notation

In this section we introduce several random variables (RVs) that we will use to con-
struct our models. Throughout the chapter a mobile object will indifferently be called a
mobile agent or simply an agent. The following notation is related ti a given source-agent
pair.

The ith message is sent by the source to the agent at time ai and the communication
is over at time di := ai + τi. The RV τi – referred to as the (ith) communication time – is a
scheme-dependent quantity that will be defined later for each mechanism (forwarders and
centralized server). In the time-interval (di, ai+1) no message is generated by the source.
Let wi+1 := ai+1 − di be the length of this time-interval and assume that w1 := a1 and that
no message is generated in [0, a1).

The jth migration of the mobile agent occurs at time mj > 0 and it requires the
mobile agent pj units of times to reach its new location. During a migration period the
agent is unreachable. The mobile agent then spends uj+1 units of time at its jth location,
time during which it can be reached by a message, and then initiates a new migration. We
set u1 := m1 and assume that the mobile agent does not migrate in [0, m1) (see Figure 3.1).

Both the source and the agent exhibit a two state process: the source alternates
between an “idle” state and a “communicating” state, and the agent alternates between an
“idle” state and a “migrating” state.

The following assumptions will be enforced throughout the chapter:

118 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

message generation communication period

w1Source t
τ2τ1 w2 w3 τ3

a1 d3d1 a2 d2 a30

migration initiation

Agent t
u2p1 p2 u3 p3 u4u1

m2 m3 m4m10

Figure 3.1: A time diagram including all RVs relative to the source and to the agent

A1 The input sequences {wi, i ≥ 1}, {pj, j ≥ 1} and {uk, k ≥ 1} are assumed to be mutu-
ally independent renewal sequences of RVs such that wi, pj and uk are exponentially
distributed RVs with parameters λ > 0, δ > 0 and ν > 0, respectively.

3.3 The forwarders

3.3.1 Description

Forwarding techniques were first introduced in distributed operating systems like
DEMOS/MP [99] for finding mobile processes. The mechanism is straightforward: on leav-
ing a host (machine), a process leaves a special reference, called a forwarding reference which
points toward its next location. Upon a later migration, a new forwarding reference, point-
ing toward the new location, is created, and the previously created forwarding reference is
now pointing to the new one. Thus, as the system runs, chains of forwarders are built (as
illustrated in Figure 3.2, step 1). A consequence of this mechanism is that a caller does not
usually know the location of the callee. A special built-in mechanism called short-cutting
allows the update of the address as soon as a communication takes place. When a for-
warded message reaches a mobile agent, the latter communicates its new location to the
caller. As a result, all subsequent requests issued by this caller will not go through the
existing forwarders – which are shortcut.

An illustration of the short-cutting feature is given in Figure 3.2: a message is sent by
the source to the last known location of the agent (Host B). Since the agent is no longer at
this location, the message is then forwarded to the host that was next visited by the agent
(Host C). Again, the agent has already moved when the message reaches Host C and the
message is forwarded to the next visited host (Host D) where the agent is finally located.
A location message is then sent by the agent (located at host D) to the source and the next
message will be sent by the source to Host D.

In order to maintain the same semantic as that of a static program (i.e. with no mobile
agent) one has to introduce constraints. In particular, communications through a chain of
forwarders should be synchronous, i.e. the caller remains blocked during the communication
phase. With these assumptions we can now describe the protocol in use:

Sec. 3.3 The forwarders 119

Host B

Source

Host A

Host C

Agent

Host D

1. Request

Forwarder

Step 1

2. Forwarding 3. Forwarding

Host B

Source

Host A

Host C

Agent

Host D

Step 2

4. Reply

5. New Location

Figure 3.2: The short-cutting feature in the forwarding mechanism

• Upon migration, a mobile agent leaves a forwarder on the current site;

• This forwarder is linked to the mobile agent on the remote host;

• No communication can occur while the mobile agent is migrating;

• Every forwarder is exclusive to the agent that had created it;

• When receiving a message, the forwarder sends it to the next hop (possibly the mobile
agent);

• Any successful communication places the mobile agent one hop away from the caller
(e.g. after Step 2 in Figure 3.2 the agent is located one hop away from the source).

The above protocol is implemented in various Java libraries (MOA [84], ProActive [101]
and Voyager [121]) except for the short-cutting feature that is triggered by the agent at the
end of the message processing.

3.3.2 A Markovian analysis of the forwarders

In this section we will evaluate the performance (response time and number of for-
warders in Sections 3.3.2.1 and 3.3.2.2 respectively) of the mechanism introduced in Section
3.3.1 through a Markovian analysis. We will assume that a mobile agent does not return to
a previously visited site where there is still an active forwarder, i.e. it does not migrate twice
(or more) to a particular site between two consecutive epochs di (see Section 3.2). Hence,
there can be no loops within a chain. It is clear that under these conditions the length of a
chain can extend to infinity if the number of hosts is infinite. Observe that a forwarder is
used only once by a given source, because of the short-cutting that takes place at the end
of a successful communication.

A forwarding mechanism is well represented by the chains of forwarders that it pro-
duces. In an application a chain of forwarders connects a single source to a single agent

120 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

and its dynamics is not affected by other objects; there will be as many chains as there
are source-agent pairs. It suffices then to study the behavior of one chain to evaluate the
performance of the forwarders approach. To study the dynamics of a chain, one should take
into account the state of a chain and the states of the source and the agent at its endpoints.
Notice that this does not place any assumption on the number of objects (source or agent)
in the application.

From the description given in Section 3.3.1, it can be seen that at any time the system
is in one of the following states (see Figure 3.3):

• States (i, 0, 0), i ≥ 1, indicate that the agent is available (i.e. not migrating) and
located i hops away from the source, and that no message is traveling;

• State (1, 0, 1∗) indicates that the agent is available and located one hop away from a
message, and the latter has never been through any forwarder;

• State (1, 0, 1) indicates that the agent is available and located one hop away from a
message, the latter having already gone through at least one forwarder;

• States (i, 0, 1), i ≥ 2, indicate that a message is traveling, the agent is available and
located i hops away from the message;

• States (i, 1, k), i ≥ 1, indicate that the agent is migrating and that before the initiation
of its migration it was located i hops away from the source if no message is traveling
(k = 0) or it was located i hops away from the message if a message is traveling
(k = 1);

• State (0, 1, 1) indicates that a message that has gone through at least one forwarder
and the agent are at the same location but that the agent is migrating (i.e. the agent
has initiated a migration just before the arrival of the message);

• State (0, 0, 1) indicates that the message has reached the agent after having traveled
through at least one forwarder and that the agent is currently communicating its new
position to the source.

State (1, 0, 1∗) has been introduced to take into account the fact that if a new message
reaches the agent after exactly one hop and that the agent has not initiated a migration
before the arrival of the message then the cycle is over and the source can transmit a
new message; otherwise, if a message reaches the agent after having gone through at least
one forwarder then the agent will have to communicate its location to the source once the
message has reached it.

Under the enforced assumption

A2 The traveling time of a message from one host (possibly the source) to the next one
(possibly the agent) is an exponential RV with parameter γ > 0. The successive

Sec. 3.3 The forwarders 121

3, 0, 02, 1, 02, 0, 01, 1, 01, 0, 0

1, 0, 1∗

3, 0, 12, 1, 12, 0, 11, 1, 11, 0, 10, 1, 10, 0, 1

ν

ννν δδδ

γ γ γ γ γγ

ν νδ δν

λ
γ

λ λ λλγ

Figure 3.3: System states and transition rates in the forwarding mechanism

traveling times are assumed to be mutually independent and independent of the input
sequences {wi}i, {pi}i and {ui}i introduced in Section 3.2,

and assumption A11, it is easily seen that the sojourn time in each state is exponentially
distributed and that any state can be reached from any other state in a finite number of
steps. In other words, the process defined above is an irreducible Markov process on the
state-space E := {(0, 0, 1), (0, 1, 1), (1, 0, 1∗), (i, j, k), i ≥ 1, j, k = 0, 1}.

The transition rates are indicated in Figure 3.3: from state (1, 0, 0) the process may
jump to state (1, 0, 1∗) with rate λ (new message generated) or to state (1, 1, 0) with rate
ν (migration of the agent); from state (1, 0, 1∗) the process may move to state (1, 1, 1) with
rate ν (migration) or to state (1, 0, 0) with rate γ (message has reached the agent, cycle
is over); from state (i, 0, 0) with i ≥ 2 the process may jump to state (i, 1, 0) with rate ν

(migration) or to state (i, 0, 1) with rate λ (new message generated); from state (i, 1, 1) with
i ≥ 1 the process can move to state (i + 1, 0, 1) with rate δ (end of migration) or to state
(i − 1, 1, 1) with rate γ (message has reached next host on its route); from state (i, 1, 0)

with i ≥ 1 the process can jump to state (i+ 1, 0, 0) with rate δ (end of migration period)
or to state (i + 1, 0, 1) with rate λ (new message generated); from state (i, 0, 1) with i ≥ 1

the process can move to state (i − 1, 0, 1) with rate γ (message has reached next host) or
to state (i, 1, 1) with rate ν (migration); from state (0, 1, 1) the process may only move to
state (1, 0, 1) with rate δ (end of migration); finally, from state (0, 0, 1) the process may only
move to state (1, 0, 0) with rate γ (location message sent by agent has reached the source;
cycle over).

Let pi,j,k be the stationary probability that the process is in state (i, j, k) ∈ E . If
the Markov process is ergodic then the stationary probabilities {pi,j,k, (i, j, k) ∈ E} are the

1Assumptions A1 and A2 are mainly made for sake of mathematical tractability. We have however
observed in our experiments that our models are fairly robust to deviations from these assumptions – see
Section 3.5.

122 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

unique strictly positive solution of the Chapman–Kolmogorov (C-K) equations [75]

(λ+ ν) p1,0,0 = γ (p0,0,1 + p1,0,1∗) (3.1)

(λ+ ν) pi,0,0 = δ pi−1,1,0 i = 2, 3, . . . (3.2)

(λ+ δ) pi,1,0 = ν pi,0,0 i = 1, 2, . . . (3.3)

δ p0,1,1 = γ p1,1,1 (3.4)

(δ + γ) p1,1,1 = ν (p1,0,1 + p1,0,1∗) + λ p1,1,0 + γ p2,1,1 (3.5)

(δ + γ) pi,1,1 = ν pi,0,1 + λ pi,1,0 + γ pi+1,1,1 i = 2, 3, . . . (3.6)

(ν + γ) p1,0,1∗ = λ p1,0,0 (3.7)

p0,0,1 = p1,0,1 (3.8)

(ν + γ) p1,0,1 = δ p0,1,1 + γ p2,0,1 (3.9)

(ν + γ) pi,0,1 = δ pi−1,1,1 + λ pi,0,0 + γ pi+1,0,1 i = 2, 3, . . . (3.10)

such that
∑

(i,j,k)∈E pi,j,k = 1.

We will not try to solve Equations (3.1)–(3.10) explicitly. Instead, we will use the
standard z-transform approach to characterize the ergodicity condition and the invariant
measure of the Markov process. To this end, define for |z| ≤ 1

f(z) :=
∞
∑

i=1

zipi,0,0, g(z) :=
∞
∑

i=1

zipi,1,0, h(z) :=
∞
∑

i=0

zipi,0,1, k(z) :=
∞
∑

i=0

zipi,1,1,

the z-transform of the stationary probabilities {pi,0,1}i≥0, {pi,1,0}i≥1, {pi,1,1}i≥0 and {pi,0,0}i≥1,
respectively. Last, introduce for |x| ≤ 1, |y| ≤ 1 and |z| ≤ 1

F (x, y, z) :=
∑

(i,j,k)∈E

zixjykpi,j,k

=
∞
∑

i=1

zipi,0,0 + x
∞
∑

i=1

zipi,1,0 + y
∞
∑

i=0

zipi,0,1 + xy
∞
∑

i=0

zipi,1,1 + zy2 p1,0,1∗

= f(z) + x g(z) + y h(z) + xy k(z) + zy2 p1,0,1∗

the z-transform of the stationary probabilities {pi,j,k, (i, j, k) ∈ E}. F (x, y, z) is determined
in the following proposition:

Proposition 3.3.1 (z-transform of the Markov process)

The Markov process depicted in Figure 3.3 is ergodic if and only if

1

γ
<

1

ν
+

1

δ
. (3.11)

Sec. 3.3 The forwarders 123

In steady-state, the z-transform F (x, y, z) is given by

f(z) =
z γ(λ+ δ)(λ+ ν)(γ + ν)

ν(ν + λ+ γ) a(z)
p1,0.1 (3.12)

g(z) =
z γ(λ+ ν)(γ + ν)

(ν + λ+ γ) a(z)
p1,0,1 (3.13)

h(z) = −z2 δγ

b(z)
p0,1,1 +

[

δ(ν − γ)z2 − γ(ν + δ)z + γ2

b(z)

−z3δγ[λ a(z) + (γ + ν)(λγ + (λ+ δ)(λ+ ν))]

(ν + λ + γ) a(z) b(z)

]

p1,0,1 (3.14)

k(z) =
γ (γ − z (γ + ν))

b(z)
p0,1,1 −

z2γ(λ+ ν)(γ + ν)(λγ + (λ+ δ)(λ+ ν))

(ν + λ+ γ) a(z) b(z)
p1,0,1 (3.15)

p1,0,1∗ =
λγ

ν (ν + λ+ γ)
p1,0,1 (3.16)

p0,1,1 =
1− δν/(γ(δ + ν))

1 + [1− δν/(γ(δ + ν)) + (λ+ ν)(γ + ν)(γ + λ)/(λν(ν + λ+ γ))] c(z0)
(3.17)

p1,0,1 =
[1− δν/(γ(δ + ν))]c(z0)

1 + [1− δν/(γ(δ + ν)) + (λ+ ν)(γ + ν)(γ + λ)/(λν(ν + λ+ γ))] c(z0)
(3.18)

for |z| ≤ 1, with

a(z) := −δνz + (λ+ δ)(λ+ ν),

b(z) := δνz2 − γ(γ + ν + δ)z + γ2,

c(z) :=
(γ − z (γ + ν)) (ν + λ+ γ) a(z)

((λ+ ν)(γ + ν)(λγ + (λ+ δ)(λ+ ν)) z2)
,

z0 = γ
(

γ + ν + δ −
√

(γ + ν + δ)2 − 4νδ
)

/(2νδ).

�

Proof. We first derive (3.12) and (3.13). From (3.2) and (3.3) we obtain

pi,0,0 =

(

δν

(λ+ δ)(λ+ ν)

)i−1

p1,0,0, pi,1,0 =

(

δν

(λ+ δ)(λ+ ν)

)i−1
ν

λ+ δ
p1,0,0

for i ≥ 1, so that

f(z) =

[

z (λ+ δ)(λ+ ν)

(λ+ δ)(λ+ ν)− z δν

]

p1,0,0, g(z) =

[

z ν(λ + ν)

(λ+ δ)(λ+ ν)− z δν

]

p1,0,0. (3.19)

124 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

From (3.1) and (3.7)–(3.8) we find

p1,0,0 =
γ(γ + ν)

ν(ν + λ+ γ)
p1,0,1. (3.20)

Introducing (3.20) into (3.19) gives (3.12) and (3.13). On the other hand, we find (3.16)
from (3.20) and (3.7).

We now address the computation of h(z) and k(z). From (3.4)–(3.6) and (3.8)–(3.10)
we find

[z(γ + ν)− γ] h(z) = zν[p1,0,1 − zp1,0,1∗]− γ[p1,0,1 + z2p1,0,1∗] + zλf(z) + z2δk(z) (3.21)

[z(γ + δ)− γ] k(z) = γ(z − 1)p0,1,1 + zλg(z) + zνh(z) − zν[p1,0,1 − zp1,0,1∗]. (3.22)

Substituting f(z), g(z) and p1,0,1∗ into (3.21)–(3.22) for their values found in (3.12), (3.13)

and (3.16), respectively, defines a linear system of two equations in the unknowns h(z) and
k(z). Solving formally for this system of equations yields (3.14) and (3.15). Observe from
(3.14) and (3.15) that h(z) and k(z) are well-defined (i.e. analytic) for |z| ≤ 1 as long as b(z)
does not vanish for |z| ≤ 1. We will come back in a short while on this analyticity issue.

For the time being, let us consider the normalizing condition F (1, 1, 1) = 1 = f(1) +

g(1) + h(1) + k(1) + p1,0,1∗ . With the help of equations (3.16) and (3.12)–(3.15) we see that
the normalizing condition will be satisfied iff.

p0,1,1 +
(λ+ ν)(γ + ν)(γ + λ)

λν(ν + λ+ γ)
p1,0,1 =

δν

δ + ν

(

1

ν
+

1

δ
− 1

γ

)

(1− p1,0,1). (3.23)

We conclude from (3.23) that the condition

1

γ
<

1

ν
+

1

δ
, or equivalently 1− δν

γ(δ + ν)
> 0,

is necessary for the Markov process to be stable. Indeed, if 1
γ
= 1

ν
+ 1

δ
then (3.23) only holds

if p0,1,1 = p1,0,1 = 0 and the Markov process is not ergodic on the state-space E ; if 1
γ
> 1

ν
+ 1

δ

then (3.23) cannot hold if p0,1,1, p1,0,1 > 0 and again the Markov process is not ergodic on E .

We now come back to the analyticity of h(z) and k(z) in the unit disk. It is easily
seen that under condition (3.11) the polynomial b(z) has exactly one zero z = z0 in |z| ≤ 1

given by

z0 := γ
γ + ν + δ −

√

(γ + ν + δ)2 − 4νδ

2νδ

so that h(z) (resp. k(z)) will be well-defined (i.e. analytic) at z = z0 if the coefficient of
1/b(z) in (3.14) (resp. in (3.15)) vanishes at this point. This gives rise to two relations

Sec. 3.3 The forwarders 125

between p0,1,1 and p1,0,1 that are actually identical and given by (using (3.15))

p1,0,1 = c(z0) p0,1,1, with c(z) =
(γ − z (γ + ν)) (ν + λ+ γ) a(z)

(λ+ ν)(γ + ν)(λγ + (λ+ δ)(λ+ ν)) z2
. (3.24)

Solving for the system of linear equations (3.23) and (3.24) in the unknowns p0,1,1 and p1,0,1
yields (3.17) and (3.18), which completes the calculation of F (x, y, z). Notice that p0,1,1 and

p1,0,1 are strictly positive due to (3.11) and to the fact that b(γ/(γ + ν)) < 0 which in turn
implies that z0 < γ/(γ + ν).

In summary, we have shown that F (x, y, z), as given in Proposition 3.3.1, is analytic
in |z| < 1 for any value of x and y, continuous in |z| ≤ 1 for any value of x and y and
satisfies the condition F (1, 1, 1) = 1 if (3.11) holds. We can actually find ǫ > 0 such that
F (x, y, z) is analytic in |z| < 1 + ǫ for any value of x and y (if z1 and z2 denote the zeros
of b(z) and a(z), respectively, in |z| > 1, then ǫ = min(|z1|, |z2|) − 1). Therefore, we may
invoke a classical result on z-transform [81] to conclude that (3.11) is the stability condition

and that F (x, y, z) is the z-transform of the stationary probabilities. Note that 1
γ
< 1

ν
+ 1

δ

is not only a necessary condition for stability, but also a sufficient condition since, when it
holds, one can find a unique strictly positive and normalized solution to the C-K equations,
that is given by the coefficients of the z-transform F (x, y, z). �

3.3.2.1 The expected communication time

In this section we determine the expected communication time. The communication
time is the time needed to a message to reach the mobile agent, to which we must add the
time it takes to the mobile agent to send its new position to the source in case the message
has to go through at least one forwarder. If the message reaches the mobile agent after
exactly one hop then there is no need for the mobile agent to send its position to the source
since the source knows it; in this case, the communication terminates once the message has
reached the mobile agent, thereby justifying the definition of the communication time given
above.

At the end of a communication the agent is not migrating, the source idles and it is
one hop away from the agent. This corresponds to state (1, 0, 0). At this time, the source
stays idle for an exponentially distributed duration with mean 1/λ. After this idling period
a new communication is initiated and the system can be in any one of the following states:
(1, 0, 1∗), (i, 0, 1) for i ≥ 2, or (i, 1, 1) for i ≥ 1. Define Ti,j,k with i ≥ 1, j = 0, 1, k = 1

or with (i, j, k) = (1, 0, 1∗), as the expected communication time given that a message was
generated when the system was in state (i, j, k) just after the generation of the message.

The expected communication time TF (the subscript F refers to “Forwarders”) is given

126 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

by

TF = qF (1, 0, 1
∗) T(1,0,1∗) +

∞
∑

i=2

qF (i, 0, 1) T(i,0,1) +

∞
∑

i=1

qF (i, 1, 1) T(i,1,1)

where qF (i, j, k) denotes the probability of reaching state (i, j, k) given that the process
initiated in state (1, 0, 0). It actually represents the probability that a communication starts
when the system moves from state (i, j, 0) to state (i, j, k). With the help of Figure 3.3 we
find that

qF (1, 0, 1
∗) =

λ

λ+ ν
(3.25)

qF (i, 0, 1) =
λ(λ+ δ)

δν
ri i = 2, 3, . . . (3.26)

qF (i, 1, 1) =
λ

δ
ri i = 1, 2, . . . (3.27)

where r :=
δν

(λ+ δ)(λ+ ν)
< 1. By using (3.25)–(3.27) we may rewrite TF as follows

TF =
λ

λ+ ν
T1,0,1∗ +

λ(λ+ δ)

δν

∞
∑

i=2

ri Ti,0,1 +
λ

δ

∞
∑

i=1

ri Ti,1,1. (3.28)

With the definitions G(z) :=

∞
∑

i=0

zi Ti,0,1 and H(z) :=

∞
∑

i=0

zi Ti,1,1, (3.28) becomes

TF =
λ

λ+ ν
T1,0,1∗ +

λ(λ+ δ)

δν
(G(r)− r T1,0,1 − T0,0,1) +

λ

δ
(H(r)− T0,1,1) .

We now need to determine the generating functions G(z) and H(z) at z = r. To this end
we will use the following recursive equations that follow from the Markovian description of
the protocol displayed in Figure 3.3:

T1,0,1∗ =
1

ν + γ
+

ν

ν + γ
T1,1,1

T0,0,1 =
1

γ

Ti,0,1 =
1

ν + γ
+

ν

ν + γ
Ti,1,1 +

γ

ν + γ
Ti−1,0,1 i = 1, 2, . . .

T0,1,1 =
1

δ
+ T1,0,1

Ti,1,1 =
1

δ + γ
+

δ

δ + γ
Ti+1,0,1 +

γ

δ + γ
Ti−1,1,1 i = 1, 2, . . .

Sec. 3.3 The forwarders 127

which yields

(ν + γ (1− z))G(z)− ν H(z) =
1

1− z
+

ν

γ
− νT0,1,1

−δ G(z) + (δ + γ (1− z)) zH(z) =
z

1− z
− δ

γ
+ γz T0,1,1.

Solving for G(z) and H(z) gives

G(z) =
1

D(z)

(

(δ + ν) z

1− z
+

ν

γ
(1− z)(γz − δ) + γz + ν(γz − δ) zT0,1,1

)

(3.29)

H(z) =
1

D(z)

(

(δ + ν) z

1− z
+ (γ + δ) z − (γ2 z2 − γ(γ + ν) z + δν)T0,1,1

)

(3.30)

where we have defined

D(z) := (z − 1)
(

γ2 z2 − γ(γ + ν + δ) z + δν
)

. (3.31)

Using (3.29)–(3.31) and after some algebraic manipulations, we find (use T1,0,1∗ = T0,1,1 −
1/δ − 1/(γ + ν))

TF =
1

α(λ)

[

((λ+ δ)(λ+ ν)− γν) T0,1,1

−(λ + δ)(λ+ ν + δ)

δ
− (λ+ δ)(λ+ ν)(λ(λ+ ν) + ν(γ + ν)) + δγνλ

λ (λ+ ν)(γ + ν)

]

(3.32)

where α(λ) := (λ + δ)(λ + ν) − γ(λ + ν + δ). It remains to identify the constant T0,1,1 in

(3.32). This can be done by noticing that α(λ) has a single zero λ = λ0 in [0,∞) given by

λ0 =
γ − ν − δ +

√

(γ + ν + δ)2 − 4δν

2
.

In order for TF to be well-defined for all non-negative values of λ, the coefficient of 1/α(λ)
in (3.32) must vanish when λ = λ0, which gives us an extra relation from which we can
determine T0,1,1. Using the identity (λ0+δ)(λ0+ν) = γ(λ0+ν+δ) and setting the coefficient

of 1/α(λ) in (3.32) to 0 when λ = λ0, gives

T0,1,1 =
γ(λ0 + ν + δ) + δ λ0

γδλ0
.

128 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

Finally

TF =







































































1

α(λ)

[

((λ+ δ)(λ+ ν)− γν) T0,1,1 −
(λ+ δ)(λ+ ν + δ)

δ

−(λ+ δ)(λ+ ν)(λ(λ+ ν) + ν(γ + ν)) + δγνλ

λ(λ+ ν)(γ + ν)

]

for λ 6= λ0

(2λ+ ν + δ)(2γ(γ + ν)(λ+ ν + δ) + δλ(λ+ ν)((γ + ν) T0,1,1 − 1))

λδ(2λ+ ν + δ − γ)(λ+ ν)(γ + ν)

−(2λ+ ν)(λ+ δ)(λ+ ν − γ(γ + ν) T0,1,1) + γνδ

λ(2λ+ ν + δ − γ)(λ+ ν)(γ + ν)
for λ = λ0

(3.33)

where the latter relation is obtained after a routine application of l’Hôpital’s rule.

3.3.2.2 The expected number of forwarders

In this section we compute the expected number of forwarders in steady-state between
the agent and the source. Let q(i) be the probability that the agent is located i ≥ 1

hops away from the source, which corresponds to a situation where there are exactly i− 1
forwarders in the system. Clearly,

q(i) = pi,0,0 + pi,1,0 + pi,0,1 + pi,1,1 + 1{i = 1}p1,0,1∗ , i = 1, 2, . . .

and the expected number Ns of forwarders (the subscript s refers to “source”, which is the
starting point of the count of the number of forwarders) is given by

Ns =
∞
∑

i=1

(i− 1) q(i) =
∞
∑

i=1

i q(i)−
∞
∑

i=1

q(i)

= f ′(1) + g′(1) + h′(1) + k′(1) + p1,0,1∗ − (1− p0,0,1 − p0,1,1) (3.34)

where φ′(1) denotes the derivative of φ(z) at point z = 1. From (3.12) and (3.13) we find

f ′(1) + g′(1) =
γ(λ+ δ)(λ+ ν)2(γ + ν)

λ2ν(ν + λ+ γ)(λ+ δ + ν)
p1,0,1 (3.35)

whereas the relation

h′(1) + k′(1) =
δν(δγ + ν2)− (ν2δ(ν − γ) + γ(ν + δ)(δγ − ν2))p1,0,1

ν(δ + ν)(γ(δ + ν)− δν)

+
δγ(γ + ν)(δλ(ν − γ) + ν(λ+ ν)(λ + δ))

λ2(ν + λ+ γ)(λ+ ν + δ)(γ(δ + ν)− δν)
p1,0,1 (3.36)

Sec. 3.3 The forwarders 129

follows from (3.14) and (3.15). Combining now (3.34), (3.35) and (3.36) with the expressions
found for p0,0,1, p1,0,1∗ and p0,1,1 (in (3.8), (3.16) and (3.23), respectively), we find

Ns =
δ2(γ2 − γν + ν2)(1− p1.0.1)

γ(δ + ν)(γ(δ + ν)− δν)
+

(

νγ(γ + λ)(γ + ν)

λ2(ν + λ+ γ)
− γ2 − ν2

ν

)

δ p1,0,1
γ(δ + ν)− δν

(3.37)

where p1,0,1 is given in (3.18). As shown in [20] Ns can be used to evaluate the fault-tolerance
of the protocol. This issue is not addressed here.

Ns represents the expected number of forwarders through which a message would go
on its way to reach the agent if the agent does not migrate in the meanwhile. We will
compute now the expected number of forwarders, denoted by N , through which a message
has to go in order to reach the agent. A similar analysis to the one conducted in Section
3.3.2.1 has to be done. Note that we should have N > Ns as the number of forwarders
between the message and the agent may increase over time.

When a communication starts, a message is generated and the system can be in any
one of the following states: (1, 0, 1∗), (i, 0, 1) for i ≥ 2, or (i, 1, 1) for i ≥ 1. If the number of
forwarders is n at the beginning of a communication, this number decreases as the message
travels towards the agent but it can increase if the agent migrates in the meanwhile. Define
Ni,j,k with i ≥ 1, j = 0, 1, k = 1 or with (i, j, k) = (1, 0, 1∗), as the expected number of
forwarders given that a message was generated when the system was in state (i, j, k) just
after the generation of the message.

The expected number of forwarders N is given by

N = qF (1, 0, 1
∗)N(1,0,1∗) +

∞
∑

i=2

qF (i, 0, 1)N(i,0,1) +

∞
∑

i=1

qF (i, 1, 1)N(i,1,1)

where qF (i, j, k) denotes the probability of reaching state (i, j, k) given that the process was
initially in state (1, 0, 0) (probability introduced in Section 3.3.2.1). It actually represents
the probability that a communication starts when the system moves from state (i, j, 0) to
state (i, j, k). The expressions of qF (i, j, k) are given in (3.25)–(3.27). Using them, we may
rewrite N as follows

N =
λ

λ+ ν
N1,0,1∗ +

λ(λ+ δ)

δν

∞
∑

i=2

ri Ni,0,1 +
λ

δ

∞
∑

i=1

riNi,1,1. (3.38)

With the definitions N0(z) :=
∞
∑

i=0

zi Ni,0,1 and N1(z) :=
∞
∑

i=0

zi Ni,1,1, (3.38) becomes

N =
λ

λ+ ν
N1,0,1∗ +

λ(λ+ δ)

δν
(N0(r)− r N1,0,1 −N0,0,1) +

λ

δ
(N1(r)−N0,1,1) . (3.39)

It remains to determine the generating functions N0(z) and N1(z) at z = r. To this end, we
will use the following recursive equations that follow from the Markovian description of the

130 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

protocol displayed in Figure 3.3:

N1,0,1∗ =
ν

ν + γ
N1,1,1 (3.40)

N0,0,1 = 0 (3.41)

N1,0,1 =
ν

ν + γ
N1,1,1 +

γ

ν + γ
N0,0,1 (3.42)

Ni,0,1 =
ν

ν + γ
Ni,1,1 +

γ

ν + γ
(1 +Ni−1,0,1) i = 2, 3, . . . (3.43)

N0,1,1 = N1,0,1 (3.44)

Ni,1,1 =
δ

δ + γ
Ni+1,0,1 +

γ

δ + γ
(1 +Ni−1,1,1) i = 1, 2, (3.45)

Notice from Equations (3.40)–(3.42) and (3.44) that

N1,0,1∗ = N1,0,1 = N0,1,1. (3.46)

After some algebraic manipulations on Equations (3.40)–(3.45), we obtain the following
linear system of equations in the unknowns N0(z) and N1(z)

(ν + γ (1− z))N0(z)− ν N1(z) =
γz2

1− z
− νN1,0,1

−δ N0(z) + (δ + γ (1− z)) zN1(z) =
γz2

1− z
+ γz N1,0,1.

Solving for N0(z) and N1(z) gives

N0(z) =
1

D(z)

(

γ z2

z − 1

(

γz2 − (γ + δ)z − ν
)

+ ν(γz − δ) zN1,0,1

)

(3.47)

N1(z) =
1

D(z)

(

γ z2

z − 1

(

γz − (γ + δ + ν)
)

− (γ2 z2 − γ(γ + ν) z + δν)N1,0,1

)

(3.48)

where D(z) is given in (3.31). Using (3.47)–(3.48) together with (3.46) and (3.31), (3.39)
can be rewritten as follows:

N =
((λ+ δ)(λ+ ν)− γν)N1,0,1 − νγ(λ+ δ)/λ

(λ+ δ)(λ+ ν)− γ(λ+ ν + δ)
(3.49)

where the denominator is nothing but the polynomial α(λ) introduced in the previous sec-
tion. To identify the constant N1,0,1 in (3.49), we proceed as in Section 3.3.2.1. In order for
N to be well-defined for all non-negative values of λ, the numerator in (3.49) must vanish

when λ = λ0 = 1/2 ×
(

γ − ν − δ +
√

(γ + ν + δ)2 − 4δν
)

, which is the only positive zero

Sec. 3.3 The forwarders 131

of the denominator α(λ) (see Section 3.3.2.1). It is readily seen that N1,0,1 = ν/λ0 (Note:

use the relation (λ0 + δ)(λ0 + ν) = γ(λ0 + ν + δ)). Finally

N =























((λ+ δ)(λ+ ν)− γν)ν/λ0 − νγ(λ + δ)/λ

(λ+ δ)(λ+ ν)− γ(λ+ ν + δ)
for λ 6= λ0,

ν(2λ2
0 + (ν + δ)λ0 + γδ)

λ2
0(2λ0 + ν + δ − γ)

for λ = λ0,

(3.50)

where the latter relation is obtained after a routine application of l’Hôpital’s rule.

Both expected numbers computed in this section (i.e. Ns and N) are expected to be
increasing functions of δ and ν and decreasing functions of λ and γ which is illustrated in
Figure 3.4. Looking at the upper graphs in Figure 3.4 in which the evolution of both N and
Ns are plotted against λ (upper graph at the left) and ν (upper graph at the right), we can
verify that N > Ns. The crosses in each graph indicate the value of N (the expected number
of forwarders that a message encounters) corresponding to the same values of the model

parameters: λ = 1, ν = 10, δ = 20, γ = 50. In Figure 3.4, the plots for δ = 30s−1, δ = 40s−1

(lower graph at the left) and γ = 9s−1 (lower graph at the right) depict the behavior of
our model when the ergodicity condition is close to being violated. In that situation, the
expected number of forwarders grows to infinity.

0
3

6

1 2 3 4 5 6 7 8 9 10E
x
p
ec

te
d
 n

u
m

b
er

 o
f

fo
rw

ar
d
er

s

λ (s
-1)

×

1

2 5

ν = 10 s
-1

Mean hop time 1/γ = 20 ms, mean migration duration 1/δ = 50 ms

N
Ns

0
3

6

1 2 3 4 5 6 7 8 9 10

ν (s
-1)

×

λ = 1 s
-1

2

5
10

N
Ns

6
1

0
2

0
4

0

10 15 20 25 30 35 40 45 50

N
u
m

b
er

 o
f

fo
rw

ar
d
er

s
N

γ (s
-1)

×10

20 30
δ = 40 s

-1

Mean inter-message time 1/λ = 1 s, mean inter-migration time 1/ν = 0.1 s

5
2

0
3

5

10 15 20 25 30 35 40

δ (s
-1)

×

γ = 9 s
-1

10

12

50

Figure 3.4: The expected number of forwarders

132 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

3.4 Centralized Server

3.4.1 Description

An alternative to the forwarders approach for locating a mobile agent is to use a
location server. Such a server keeps track of the location of mobile agents in a database.
Servers like this are widely used in the Internet. For instance, the Domain Name Server
[85] uses a hierarchically organized servers to associate a location (IP address) to a symbolic
name. For sake of simplicity, we will consider here a single centralized server, although many
different schemes can be conceived to improve speed and reliability. We will also assume
that each object (source or mobile agent) knows the location of this server.

The idea behind the location server is simple: each time a mobile agent migrates, it
informs the server of its new location. Whenever the source wants to reach the mobile agent,
it sends a message to the last known location of the mobile agent; if this communication
fails, then the source sends a location request to the server. This solution is often referred
to as a lazy solution since the references to a mobile agent are only updated when needed.
We now give a careful description of the protocol used by the source and the mobile agent
to communicate with the server:

• The Mobile Agent

Step 1: Performs the migration;

Step 2: Sends its new location to the server.

• The Source

Step 1: Issues a message to the mobile agent with the recorded location. Upon failure
goes to Step 2;

Step 2: Queries the server to have the current location of the mobile agent;

Step 3: Issues a message to the mobile agent with the location provided by the server.
Upon failure, returns to Step 2.

The above protocol is implemented in various Java libraries (MOA [84] and ProActive [101]).
An illustration of this approach is given in Figure 3.5. In Figures 3.5(b)-(c) the chronological
order of the events is indicated by the numbers 1, 2, In Figure 3.5(b) a migration (events
no. 1 & 2) takes place before a message has been sent by the source. When the source finally
sends a message (event no. 3) to the agent at Host B (last known position of the agent),
it receives a communication error from Host B (event no. 4). The source then asks the
home site to give it the location of the agent (event no. 5). Once the source knows the new
location of the agent (event no. 6), it sends a copy (event no. 7) of the original message to
Host C (i.e. to the agent). The communication is successful and the source becomes idle.

Sec. 3.4 Centralized Server 133

Host B

Source

Host A

Server

Home Site

Agent

Host C

1. Migration6. Reply5. Request

3. Communication

4. Fail

2. Update Location

Communication

7. Further

(b) Step 1 {3} fail, step 2 {5, 6}, successful step 3 {7}

Agent

Host B

Source

Host A

Server

Home Site

Communication

(a) Successful step 1

Host B

Source

Host A Host B

Source

Host A

Server

Home Site

Host C

Server

Home Site

Host C

Agent

Host D

Agent

Host D

4. Migration
Location

6. Update

Communication

7. Further

10. Further9. Further5. Reply3. Request
8. Fail

1. Communication

ReplyRequest

Communication

11. Further

2. Fail

in Reply

Step 2: Wrong location

location in Reply

Step 2: Correct

(c) Step 1 {1} fail, step 2 {3, 5}, step 3 {7} fail, step 2 {9, 10}, successful step 3 {11}

Figure 3.5: Some possible scenarios in the centralized approach from the source point of
view

Figure 3.5(c) displays a more complicated situation. In this case, the server does not
give the correct location of the agent to the source since the agent has initiated a migration
in the meantime. As a result, the source will have to send a second location request to the
server (event no. 9) before finally being able to reach the agent (event no. 11).

Regarding the service policy, there exist several different schemes that can be imple-
mented. In ProActive [101], the performance of the server has been optimized so that
it does not act as a bottleneck. The buffer at the server is completely partitioned in the
sense that each source-agent pair possesses its own queue. The server cyclically polls these
different queues, serving one request per queue in each cycle. Within each queue, there
is a priority scheduling mechanism that gives priority to update requests over location

requests. If a queue contains several update requests sent by the same mobile agent
then only the newest is processed and the others are destroyed. Note that the service pol-
icy is non-preemptive since ProActive is a Java library and that the execution of a Java
method cannot be stopped. As a consequence an update request under processing cannot
be preempted by a more recent one, which may harm the performance of the protocol2. For-

2Notice that only the queue that is attended by the server may have two update requests, all other

134 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

ν λ νλ(a)

Start of service

λ(b)

End of service to source
Sending reply

Server
blocked

λν νλ(c)

End of service
Request sent

back to queue

update request from Agentν λ location request from Source

Figure 3.6: Details on the service policy at the server

tunately, it has been observed that this event is very rare in practice. Another consequence
of this scheme is that upon serving a location request, the server has to check whether
the corresponding queue contains an update request coming from the mobile agent; if this
is the case, then the location request is sent back to the queue; otherwise, it sends the
position of this mobile agent (as found in the database) to the source. Finally, communica-
tions in ProActive between the server and the different sources are synchronous. Therefore,
a source that has sent a location request cannot perform any other task before it gets a
reply from the server, which implies there is at most one pending location request per
source at the server.

Figure 3.6 illustrates some scenarios at the server. In Figure 3.6(a), two requests
are queued in the buffer. The update request is served with priority even though the
location request is older. In Figure 3.6(b), the server is blocked after serving a location

request, until the reply reaches the source. Figure 3.6(c) illustrates one inconvenient of
using a Java library. Since the service policy is non-preemptive, a location request that
is already served, is sent back to the queue to be served again whenever an update request

is waiting in the buffer.

Observe that the server delivers a customized service to each type of queries: for
update requests it just updates the agent location in a database, whereas for location

requests it scans the database for the current agent location and further scans the queue
for any update request.

3.4.2 A Markovian analysis of the server

An exact modeling of the centralized approach would consist of modeling the system as

ones having at most one single pending update request.

Sec. 3.4 Centralized Server 135

a nonexhaustive cyclic server with vacations and finite buffers at the queues. In this section,
we develop an approximate model that considers a single queue – thereby a single source
communicating with a single agent – where the processing speed of the server is reduced to
account for the contention due to the potential presence of several sources and/or agents.
This queue may have at most a single location request and two update requests. By
arguing that it is highly unlikely that an arriving update request finds an update request

(from the same agent) being processed, we will assume that there can be at most one pending
update request at the queue or, in other words, that an update request under processing
is preempted by a more recent one (cf. Section 3.4.1). The latter restriction can easily been
removed at the expanse of enlarging the state-space (which would yield a 29.6% increase in
the number of states).

We assume that the set of assumptions A1 holds (cf. Section 3.2). Note, however,
that in this context pj will represent the sum of the jth traveling time of the agent to its
new host and of the travel time of the associated update request to the server site. We
further assume that the traveling times between the source and the presumed location of
the mobile agent (resp. between the source and the location server) are i.i.d. exponentially
distributed RVs with parameter γ1 > 0 (resp γ2 > 0). Finally, we assume that the service
times – regardless of the query type – are i.i.d. exponentially distributed RVs with parameter
µ > 0 (notice that if there is only one source-agent pair in an application, µ would be the
server processing speed). All of these RVs are assumed to be mutually independent.

We model the system behavior by a finite-state Markov process whose transition
diagram and rates are given in Figure 3.7. A state has the representation (i, j, k) with
i ∈ {A,B, . . . , G}, j ∈ {0, 0∗, 1, 1∗} and k ∈ {0, 1, 1∗, 2}, where the 2-dimensional vectors
A,B, . . . , G are defined in Figure 3.7.

More precisely, the vector i = (i1, i2) represents the state of a queue at the server,
namely, the type of the message (update request or location request) in the queue,
with il ∈ {0, λ, ν} the type of the message that occupies the lth position in the queue
(l = 1, 2). By convention, il = 0 (resp. il = λ, il = ν) indicates that the lth position is
not occupied (resp. the lth position is occupied by a location request, the lth position
is occupied by an update request). Recall that update requests have non-preemptive
priority over a location request and that an arriving update request that finds one
update request will destroy it at once.

The component j ∈ {0, 0∗, 1, 1∗} in the state description (i, j, k) represents the state
of the mobile agent: j = 1 (resp. j = 1∗) will indicate that the mobile agent is migrating
and that the source knows (resp. does not know) the location of the host that the mobile
agent is leaving; similarly, j = 0 (resp. j = 0∗) will indicate that the mobile agent is not
migrating and that the source knows (resp. does not know) its location.

Finally, the component k ∈ {0, 1, 1∗, 2} in the state description (i, j, k) represents the
state of the source: k = 0 if the source has no activity, k = 1 if it has sent a message to the

136 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

C, 1∗, 2

C, 0∗, 2

A, 0∗, 2

A, 1∗, 2

B, 1∗, 2

B, 0∗, 2

A, 1∗, 1

A, 0∗, 1A, 1∗, 0

A, 0∗, 0

B, 0∗, 1

B, 1∗, 1

B, 1∗, 0

B, 0∗, 0

A, 0, 0A, 0, 1

A, 1, 0A, 1, 1

D, 1∗, 2

E, 0∗, 2

E, 1∗, 2

D, 0∗, 2

F, 1∗, 2

G, 0∗, 2

G, 1∗, 2

F, 0∗, 2

A, 1, 1∗

Server active

Server blocked

A = 0, 0
B = ν, 0
C = ν, λ
D = λ, 0
E = λ, ν

F = 0, 0

G = ν, 0

λ

λ

λ

δ

δ

δ

γ1

γ2γ1

γ2γ1

γ2

γ1

γ2 γ2

γ2

γ1

λ

λ

ν

δ δ

µ

µ

γ2

γ2

λ

µ

µ

µ

µ

µ

µ

µ

µ

µ

µ

ν

ν

ν

ν

ν

δ

δ

δ

δ

δ

γ1

ν

ν
δ

ν

ν

ν

ν ν

δ

δ

δ

Figure 3.7: System states and transition rates in the centralized approach

mobile agent, k = 1∗ if the message sent by the source has reached a site that the mobile
agent is about to leave, and k = 2 if it has sent a location request to the server. The
latter only occurs if the presumed location of the mobile agent is no longer valid.

The system enters state (A, 0, 0) just after the end of a communication (defined as the
instant when a message has reached the agent). It remains in that state for an exponentially
distributed duration with mean 1/λ, and then a new message is generated by the source.
The time that elapses between the generation of a new message by the source and the next
visit to state (A, 0, 0) is the communication time (i.e. quantities τi’s introduced in Section
3.2). In other words, the successive communication times {τi}i are initialized when k goes
from 0 to 1, and are stopped when k goes from 1 to 0. Each time a communication fails, a
request is issued to the server and k switches from 1 to 2. As soon as the server replies, k
switches back to 1 and the message is re-issued by the source to the location of the mobile
agent returned by the server (which may or may not be the current location).

Under the above description/assumptions, the process depicted in Figure 3.7 is an
irreducible finite-state Markov process on the state-space F , where F is the set of all states
indicated in Figure 3.7 (F contains 27 elements). Let p = {pi,j,k, (i, j, k) ∈ F} be the sta-

tionary probability of this Markov process (p exists since an irreducible finite-state Markov
process is ergodic). If Q denotes the infinitesimal generator of this Markov process (whose
elements can easily be identified from Figure 3.7), then we know (see e.g. [75]) that p is the
unique solution of the system of linear equations p ·Q = 0, p · 1 = 1, which can be solved
by using a routine numerical procedure.

Sec. 3.4 Centralized Server 137

3.4.2.1 The expected communication time

We are interested in finding the expected communication time (see Section 3.4.2),
denoted as TS (the subscript S refers to “Server”). Recall that a communication begins
when the source – after an idling period with mean 1/λ – sends a message to the mobile
agent and terminates when the latter is reached. It is seen from Figure 3.7 that a message
may only be generated when the system is in 6 distinct states – the states where k = 0. As
soon as k = 1 a message is generated. Hence, a communication may start only when the
system is in one of the following states: (A, 0, 1), (A, 1, 1), (A, 0∗, 1), (A, 1∗, 1), (B, 0∗, 1) or
(B, 1∗, 1).

Let Ti,j,k denote the expected time to hit state (A, 0, 0) starting from state (i, j, k).
The expected response time TS of the system is given by

TS =
∑

j=0,1

qS(A, j, 1) TA,j,1 + qS(A, j
∗, 1) TA,j∗,1 + qS(B, j∗, 1) TB,j∗,1 (3.51)

where qS(i, j, 1) denotes the probability that the communication is initiated when the system
is in state (i, j, 1). With Figure 3.7 it is easily seen that

qS(A, 0, 1) =
λ

λ+ ν
(3.52)

qS(A, 1, 1) =
νλ

(λ+ δ)(λ+ ν)
(3.53)

We will next compute qS(v), the probability that a transmission is initiated in state v ∈ V,
where

V := {(A, 0∗, 1), (A, 1∗, 1), (B, 0∗, 1), (B, 1∗, 1)}.

Let p(w; v) be the probability that a communication is initiated in state v ∈ V given that
the system is in state w ∈ V∪{(A, 0∗, 0), (A, 1∗, 0), (B, 0∗, 0), (B, 1∗, 0)}. We see from Figure
3.7 that

qS(v) =
δν

(λ+ δ)(λ+ ν)
P ((B, 0∗, 0); v) (3.54)

for v ∈ V. We now need to compute P ((B, 0∗, 0); v) for v ∈ V. The following linear relations
readily derive from Figure 3.7:

p((A, 0∗, 0); v) =
λ

λ+ ν
p((A, 0∗, 1); v) +

ν

λ+ ν
p((A, 1∗, 0); v)

p((A, 1∗, 0); v) =
λ

λ+ δ
p((A, 1∗, 1); v) +

δ

λ + δ
p((B, 0∗, 0); v)

138 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

p((B, 0∗, 0); v) =
λ

λ+ ν + µ
p((B, 0∗, 1); v) +

ν

λ+ ν + µ
p((B, 1∗, 0); v)

+
µ

λ+ ν + µ
p((A, 0∗, 0); v)

p((B, 1∗, 0); v) =
λ

λ+ δ + µ
p((B, 1∗, 1); v) +

δ

λ+ δ + µ
p((B, 0∗, 0); v)

+
µ

λ+ δ + µ
p((A, 1∗, 0); v)

for all v ∈ V. Rearranging these equations give, in matrix form,









λ+ ν −ν 0 0
0 λ+ δ −δ 0
−µ 0 λ+ ν + µ −ν
0 −µ −δ λ+ δ + µ

















p((A, 0∗, 0); v)
p((A, 1∗, 0); v)
p((B, 0∗, 0); v)
p((B, 1∗, 0); v)









= λ









p((A, 0∗, 1); v)
p((A, 1∗, 1); v)
p((B, 0∗, 1); v)
p((B, 1∗, 1); v)









(3.55)

for all v ∈ V. All terms in the r.h.s. of (3.55) are either 0 or 1, as shown in Table 3.1 (rows
2–5). From rows 2–5 in Table 3.1 and (3.55), we can compute p((B, 0∗, 0), v) for all v ∈ V
(see last row of Table 3.1).

Table 3.1: Values of the probabilities, with K := (λ+ ν + µ)(λ+ δ + ν)

v (A, 0∗, 1) (A, 1∗, 1) (B, 0∗, 1) (B, 1∗, 1)
p((A, 0∗, 1); v) 1 0 0 0
p((A, 1∗, 1); v) 0 1 0 0
p((B, 0∗, 1); v) 0 0 1 0
p((B, 1∗, 1); v) 0 0 0 1

p((B, 0∗, 0); v)
(λ+ δ)µ

K

(2λ+ δ + µ+ ν)νµ

(µ+ λ+ δ)K

(λ+ ν)(λ + δ)

K

(λ+ ν)(λ + δ)ν

(µ+ λ + δ)K

Substituting the resulting values of p((B, 0∗, 0); v) into (3.54) yields

qS(A, 0
∗, 1) =

νµδ

(λ+ ν)(λ + ν + µ)(λ+ δ + ν)
(3.56)

qS(A, 1
∗, 1) =

ν2µδ(2λ+ δ + µ+ ν)

(λ+ δ)(λ+ ν)(λ + ν + µ)(λ+ δ + ν)(µ+ λ+ δ)
(3.57)

qS(B, 0∗, 1) =
νδ

(λ+ ν + µ)(λ+ δ + ν)
(3.58)

qS(B, 1∗, 1) =
ν2δ

(λ+ ν + µ)(λ+ δ + ν)(µ+ λ+ δ)
. (3.59)

Sec. 3.5 Validation and comparison 139

It remains to compute the hitting times Ti,j,k. They are easily identified from the

infinitesimal generator matrix Q as follows (see Theorem 3.3.3 pages 113-114 in [89])

TA,0,0 = 0,
∑

i,j,k

q(i′,j′,k′),(i,j,k)Ti,j,k = −1 for (i′, j′, k′) 6= (A, 0, 0) (3.60)

where q(i′,j′,k′),(i,j,k) are the elements of the generator matrix Q. In order to simplify (3.60),
let us introduce MA,0,0 as the minor of the matrix Q obtained by removing the row and the
column corresponding to state (A, 0, 0). Let T = {Ti,j,k, (i, j, k) ∈ F − {(A, 0, 0)}} be the

vector of hitting times, except TA,0,0 (which is null). Equation (3.60) then reads

MA,0,0 ·T = −1. (3.61)

Solving (3.61) and using (3.52),(3.53) and (3.56)–(3.59), we finally find TS.

3.5 Validation and comparison

3.5.1 Validation through simulations

The theory developed in Sections 3.3 and 3.4 relies on several assumptions. Mainly,
idle times for a source and for an agent, migration durations, traveling times of messages in
the network and service times (centralized approach only) were all assumed to be exponential
RVs and independent from each other.

In this section we undertake validation of the Markovian models presented in Sections
3.3 and 3.4 against results obtained from event-driven simulations of both schemes. In the
simulations, we have considered a single agent and a single source. We have run several sim-
ulations that explore the effects of violations of one assumption at a time and the violations
of all of the assumptions. This way we can observe the robustness of the corresponding
model and the impact of each assumption on its performance.

In order to test realistic distributions for the RVs at hand, we have collected measure-
ments of the travel times, the migration duration and the service times on a LAN and a
MAN and fitted the resulting data to well-known distributions. Table 3.2 summarizes our
findings. Except for the service times which are approximately constant, all other (network-
dependent) parameters are well represented by Weibull distributions. The distribution of
the communication rate λ (inverse of the average idle time for the source) and the migration
rate ν (inverse of the average idle time for the agent) depends only on the application. To
test the robustness of the models against each assumption, we have run simulations where
all random variables are exponential except one whose distribution is either deterministic (in
the case of idle times and service times) or Weibull (in the case of migration durations and
travel times). Last, we simulate the systems where all random variables are non-exponential.
In these runs, the only assumptions not violated are the ones concerning the independence
of the processes at hand.

140 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

Table 3.2: Distribution fits for the model parameters

Random variable (ms) 100Mb/s switched LAN 7Mb/s MAN
Forwarders

migration durations Weibull shape 4, scale 100 Weibull shape 2.5, scale 392
travel times Weibull shape 11, scale 23 Weibull shape 6, scale 88

Server
migration durations Weibull shape 2.5, scale 75.5 Weibull shape 3, scale 1010
travel times source-agent Weibull shape 1.8, scale 9.7 Weibull shape 10, scale 28.6
travel times source-server Weibull shape 1.8, scale 14.7 Weibull shape 1.8, scale 93
service times ≈ constant ≈ constant

Table 3.3: Sample mean and percentiles of the relative error provided by the models. Default
values: λ = 1, ν = 10, δ = 11 (forwarders), δ = 15 (server), γ = 45, γ1 = 115, γ2 = 75, µ =

2325
Simulations Mean 25 50 75 90 95
Forwarders

deterministic source idle timesλ ∈ [1, 10] 7.7 6.5 8.8 9.6 10.3 10.5
deterministic agent idle timesν ∈ [1, 10] 1.6 0.3 1.4 2.4 3.5 4.2
Weibull migration times δ ∈ [8, 25] shape 4 8.3 4.3 8.2 10.4 14.7 16.3
Weibull travel times γ ∈ [33.8, 69.8] shape 11 2.7 1.0 2.2 3.9 6.4 7.1
All together λ, ν ∈ {1, 3, 5, 7, 9} 14.1 4.9 10.0 20.6 32.4 38.3

Server
deterministic source idle timesλ ∈ [1, 10] 14.9 15.1 16.3 17.1 17.1 17.2
deterministic agent idle times ν ∈ [1, 10] 2.4 2.2 2.2 2.6 4.1 4.8
Weibull migration times δ ∈ [12, 19] shape 2.5 12.3 11.7 12.2 13.5 14.8 15.5
Weibull travel times γ1 ∈ [90, 131] shape 1.8 1.3 0.6 1.5 1.8 2.1 2.3
Weibull travel times γ2 ∈ [56, 94] shape 1.8 0.9 0.3 0.6 1.3 2.2 2.7
deterministic service times µ ∈ [500, 2500] 1.5 0.6 1.5 2.2 2.9 3.5
All together λ, ν ∈ {1, 3, 5, 7, 9} 14.1 6.1 10.5 17.0 30.0 40.1

Table 3.3 reports the sample mean and the percentiles of the relative error (expressed in
percentage) between simulated results and theoretical expected response times as predicted
by both models. The values in Table 3.3 are obtained after 3000 seconds of simulation
(the steady-state is reached after 1000 seconds of simulation run, see [64] for more details
on the convergence issue). It appears that both models are very robust against Weibull
travel times. In 95% of the simulations conducted, the relative error on the communication
time stays under 7.1% (resp. 2.3% and 2.7%) in the forwarders mechanism (resp. centralized
mechanism) (see row 6 (resp. rows 12 and 13) in Table 3.3).

Neither model is sensitive to the distribution of agent idle times. In 95% of the
simulations conducted, the relative error on the communication time stays within 4.2% (resp.
4.8%) of the simulated value in the forwarders mechanism (resp. centralized mechanism) (see

Sec. 3.5 Validation and comparison 141

row 4 (resp. row 10) in Table 3.3). The model of the location server is very robust against
deterministic service times. The largest error observed during the simulations is 3.7%.

However, the models are more sensitive to the distribution of the migration durations
and the source idle times. Nevertheless, when simulating the forwarders scheme the mean
relative error is 7.7% (resp. 8.3%) for the case that the source idle times are deterministic
(resp. the migration durations are Weibull) (see column 2 in Table 3.3 row 3 (resp. row
5)). When simulating the centralized approach, we observe almost the same relative error
when the source idle times are deterministic (resp. the migration durations are Weibull),
the largest error being 17.2% (resp. 16%).

When all of the assumptions concerning the distribution of the RVs are violated, the
performance of the models is fair. In half of the simulations the relative error on the response
time is less than 10.5% and its mean is 14.1% in both models (see rows 7 and 15 in Table
3.3). The robustness of the models against correlated processes will be addressed in the
next section.

3.5.2 Validation through experiments

In order to further validate the models, we have conducted extensive experiments
on a LAN and a MAN. All benchmarks were written using the ProActive library [101]
which provided us with all of the necessary mobile primitives. The network was composed
of various Pentium II and Pentium III machines running Linux (2.2.18) and Sun SPARC
machines running SunOS interconnected with a 100Mb/s switched LAN or a 7Mb/s MAN
(four machines were used overall). We used Java 1.2.2 Green threads [59] in all experiments.

For each approach (forwarders and location server), we executed a single source-agent
pair on the testbed. Source idle times are exponentially distributed with rate λ (i.e. λ is the
communication rate when the source is idling) and inter-migration times of the agent are
exponentially distributed with rate ν. Parameters λ and ν can be modified from one exper-
iment to another. All of the other model parameters (δ, γ, γ1, γ2, µ) are system-dependent
and cannot be changed. Hence, among all of the assumptions that we made to construct
the models, only 2 assumptions are not violated (the ones concerning the input sequences
{wi, i ≥ 1} and {uk, k ≥ 1} (see Section 3.2)). Indeed, migration durations and communica-
tions latencies were found to have Weibull distributions both on a LAN and a MAN whereas
service times were approximately constant. Furthermore, assumptions on the independence
of these processes are not valid under real conditions. Migration durations and travel times
are particularly correlated in real life.

Figures 3.8 and 3.9 report both the experimental and theoretical expected response
times as well as the expected number of forwarders obtained for a LAN and for a MAN.
Graphs on the left display the expected response time (upper graphs) or the expected number
of forwarders (lower graph) as a function of the communication rate λ for λ ranging from

1s−1 to 10s−1, for three different values of the migration rate ν (ν = 1, 5, 10s−1); similarly,

142 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

1
0

5
0

9
0

1
3
0

M
ea

n
 r

es
p

o
n

se
 t

im
e

T
S
 (

m
s)

Location server

Benchmark ν = 1
Model ν = 1

Benchmark ν = 5
Model ν = 5

Benchmark ν = 10
Model ν = 10

1
0

5
0

9
0

1
3
0

Benchmark λ = 1
Model λ = 1
Benchmark λ = 5
Model λ = 5
Benchmark λ = 10
Model λ = 10

5
0

1
0

0
1
5
0

2
0
0

M
ea

n
 r

es
p

o
n

se
 t

im
e

T
F

 (
m

s)

Forwarding mechanism

Benchmark ν = 1
Model ν = 1

Benchmark ν = 5
Model ν = 5

Benchmark ν = 10
Model ν = 10

5
0

1
0

0
1
5
0

2
0
0

Benchmark λ = 1
Model λ = 1
Benchmark λ = 5
Model λ = 5
Benchmark λ = 10
Model λ = 10

0
3

6
9

1 2 3 4 5 6 7 8 9 10

M
ea

n
 n

u
m

b
er

 o
f

fo
rw

ar
d

er
s

N

Communication rate λ (s
-1)

Benchmark ν = 1
Model ν = 1

Benchmark ν = 5
Model ν = 5

Benchmark ν = 10
Model ν = 10

0
3

6
9

1 2 3 4 5 6 7 8 9 10

Migration rate ν (s
-1)

Benchmark λ = 1
Model λ = 1
Benchmark λ = 5
Model λ = 5
Benchmark λ = 10
Model λ = 10

Figure 3.8: Validation with experiments on a 100Mb/s LAN

graphs on the right display the expected response time (upper graphs) or the expected
number of forwarders (lower graph) as a function of the migration rate ν for ν ranging

from 1s−1 to 10s−1, for three different values of the communication rate λ (λ = 1, 5, 10s−1).
For each value of the pair (λ, ν), the empirical values of δ and γ (resp. δ, γ1, γ2 and µ)
were substituted into the expressions of TF and N (resp. TS) given in (3.33) and (3.50)
(resp. (3.51)) when the forwarding mechanism (resp. the centralized mechanism) was used.
Observe that analytical and experimental response times are very close to each other across
almost all experiments. The average number of forwarders obtained in the experiments is
not as well predicted by the model via (3.50), especially on a MAN. It appears that the
analytical values underestimate the actual average number of forwarders. The gap between

Sec. 3.5 Validation and comparison 143
0

1
5
0
0

3
0
0
0

M
ea

n
 r

es
p

o
n

se
 t

im
e

T
S
 (

m
s)

Location server

Benchmark ν = 1
Model ν = 1

Benchmark ν = 5
Model ν = 5

Benchmark ν = 10
Model ν = 10

0
1
0
0
0

2
0
0
0

Benchmark λ = 1
Model λ = 1
Benchmark λ = 5
Model λ = 5
Benchmark λ = 10
Model λ = 10

0
1

5
0

0
3
0
0
0

M
ea

n
 r

es
p

o
n

se
 t

im
e

T
F

 (
m

s)

Forwarding mechanism

Benchmark ν = 1
Model ν = 1

Benchmark ν = 5
Model ν = 5

Benchmark ν = 10
Model ν = 10

0
5

0
0

1
0
0
0

1
5
0
0

Benchmark λ = 1
Model λ = 1
Benchmark λ = 5
Model λ = 5
Benchmark λ = 10
Model λ = 10

0
2

4
6

8

1 2 3 4 5 6 7 8 9 10

M
ea

n
 n

u
m

b
er

 o
f

fo
rw

ar
d

er
s

N

Communication rate λ (s
-1)

Benchmark ν = 1
Model ν = 1

Benchmark ν = 5
Model ν = 5

Benchmark ν = 10
Model ν = 10

0
2

4
6

8

1 2 3 4 5 6 7 8 9 10

Migration rate ν (s
-1)

Benchmark λ = 1
Model λ = 1
Benchmark λ = 5
Model λ = 5
Benchmark λ = 10
Model λ = 10

Figure 3.9: Validation with experiments on a 7Mb/s MAN

analytical and experimental values increases when the communication rate λ decreases. For
small migration rates ν < 5, there is almost no gap (i.e. almost no absolute error).

For each network configuration (LAN or MAN), the performance of the models are
collected in Tables 3.4–3.5. In Table 3.4, we report the sample mean (column 2) and order
statistics (25th, median, 75th, 95th and 99th percentiles in columns 3–7) of the absolute

error (or gap) between analytical N and experimental results. In Table 3.5, we report the
sample mean (column 2) and order statistics (25th, median, 75th, 90th and 95th percentiles
in columns 3–7) of the relative error between analytical TF or TS and experimental results.

We have chosen to report statistics on the absolute error (or gap) |Nexp−N | in Table

144 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

Table 3.4: Sample mean and percentiles of the absolute error on the average number of
forwarders in the forwarding mechanism

Experiments Mean 25 50 75 95 99
100Mb/s LAN 0.4172 0.1764 0.3914 0.6281 0.8336 1.2336
7Mb/s MAN 0.8360 0.1280 0.4202 1.3881 2.6996 5.2652
Overall 0.6247 0.1467 0.4045 0.7371 1.9469 4.4891

Table 3.5: Sample mean and percentiles of the relative error on the communication time in
both mechanisms
Experiments Mean 25 50 75 90 95
Forwarders

100Mb/s LAN 7.3 2.1 5.7 10.8 17.0 20.3
7Mb/s MAN 12.1 2.3 7.8 19.0 25.9 35.0
Overall 9.7 2.2 7.1 15.4 22.1 26.3

Server
100Mb/s LAN 4.6 2.3 4.3 6.2 8.5 10.4
7Mb/s MAN 13.9 6.2 11.3 21.5 28.3 33.0
Overall 9.6 3.7 6.5 13.4 23.4 28.3

3.4, rather than reporting statistics on the relative error |Nexp − N |/Nexp, as we believe
that the former are more insightful. For instance, in experiments over a LAN, the plots
corresponding to ν = 1 (refer to the lowest graph at the left in Figure 3.8) are almost
identical. The maximum gap between the plots is 0.16558 which is an excellent result;
however, for the same gap Nexp = 1.13393 yielding 14.6% of relative error which does not
sound very good. In experiments over a LAN, the absolute error between experimental and
analytical mean number of forwarders is relatively low, the highest gap being 1.26 (see row
2 in Table 3.4). This is not the case in experiments over a MAN where the maximal gap
is 5.38164. Still, the average gap is 0.836 and in 75% of the experiments the gap is under
1.3881 (see row 3 in Table 3.4).

Results in Table 3.5 indicate that the theoretical models behave fairly well. Their
overall performance are very close to each other (see rows 5 and 9 in Table 3.5): the sample
mean of the relative error is 9.7% (resp. 9.6%) for the model of the forwarders (resp. of
the server) (see column 2 in Table 3.5) and in 90% of the experiments using the forwarders
(resp. the location server) the relative error is below 22.1% (resp. 23.4%) (see column 6 in
Table 3.5). However, both models are more robust when applied on a LAN (see rows 3 and
7 in Table 3.5) than when applied on a MAN (see rows 4 and 8 in Table 3.5).

The model of the server has been validated for one source-agent pair. We still need to
perform experiments including multiple sources and/or agents in order to complete the val-
idation of the model. Beside validation, we can use the experimental results to compare the
performance of the location mechanisms. For better viewing, the empirical mean response

Sec. 3.5 Validation and comparison 145

time returned by both mechanisms is the only variable plotted in Figure 3.10. Graphs
on the left display the empirical mean response time as a function of the communication

0
6
5

1
3
0

1
9
5

E
m

p
ir

ic
al

 m
ea

n
 r

es
p

o
n

se
 t

im
e

Communication rate λ (s
-1)

Local Area Network (100Mb/s)

Forwarders ν = 1
Server ν = 1
Forwarders ν = 5
Server ν = 5
Forwarders ν = 10
Server ν = 10

0
7
5

1
5
0

2
2
5

Migration rate ν (s
-1)

Forwarders λ = 1
Server λ = 1
Forwarders λ = 5
Server λ = 5
Forwarders λ = 10
Server λ = 10

0
1

5
0

0
3

0
0

0

1 2 3 4 5 6 7 8 9 10

E
m

p
ir

ic
al

 m
ea

n
 r

es
p

o
n

se
 t

im
e

Communication rate λ (s
-1)

Metropolitan Area Network (7Mb/s)

Forwarders ν = 1
Server ν = 1
Forwarders ν = 5
Server ν = 5
Forwarders ν = 10
Server ν = 10

0
1

0
0

0
2

0
0

0
3

0
0
0

1 2 3 4 5 6 7 8 9 10

Migration rate ν (s
-1)

Forwarders λ = 1
Server λ = 1
Forwarders λ = 5
Server λ = 5
Forwarders λ = 10
Server λ = 10

Figure 3.10: Experimental results obtained on a LAN and a MAN

rate λ, for λ ranging from 1s−1 to 10s−1, for three different values of the migration rate ν

(ν = 1, 5, 10); similarly, graphs on the right display the empirical mean response time as a

function of the migration rate ν, for ν ranging from 1s−1 to 10s−1, for three different values
of the communication rate λ (λ = 1, 5, 10). Looking at the upper pair of graphs in Figure
3.10 (experiments on a LAN), it appears that the location server scheme has a lower response
time when compared to the forwarders scheme. Unexpectedly, we observe the opposite in
the lower pair of graphs (experiments on a MAN), where the forwarders scheme achieves the
smallest communication time in most of the experiments. It looks like the location server
scheme performs the best only within high speed networks. When communication latencies
increases (and subsequently the migration durations), the forwarding technique surpasses
the centralized technique in performance.

Remark 3.5.1 We would like to point out that the ergodicity condition was always satisfied
in our experiments. Actually, this will always be the case, in practice, due to the fact that
the migration of an agent over the network is achieved by sending several messages from

146 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

the old site to the new one. Sending only one of these messages is expected to take 1/γ

seconds, while the whole migration process accounts for 1/δ seconds. Thus, we always have

1/δ > 1/γ.

3.5.3 A theoretical comparison of both approaches

As already mentioned, many parameters are network-dependent so that an experi-
mental comparison of both the forwarder approach and the centralized server approach is
necessarily limited to a few scenarios. No such limitation occurs when comparing both ap-
proaches by using the theoretical results obtained in Sections 3.3 and 3.4. We will focus on
the expected response time given by each approach and, more precisely, on their difference
∆T , namely,

∆T = TF − TS (3.62)

where TF and TS are given in (3.33) and (3.51), respectively. Several cases have been
investigated corresponding to different values of the model parameters. Unless otherwise
mentioned, the parameters have the values listed in Table 3.6. Each entry in Table 3.6 is the

Table 3.6: Values used for theoretical comparison

Network δ(s−1) γ(s−1) γ1(s
−1) γ2(s

−1) µ(s−1)
100Mb/s LAN 10.9 45.6 115.6 76.3 2325
7Mb/s MAN 1.6 12.3 36.7 12.1 938

average value obtained over all experiments reported in Section 3.5.2. In each case we have
identified regions where ∆T = 0, which corresponds to situations where both schemes yield
the same expected response (communication) times. When ∆T > 0 (resp. ∆T < 0) the
location server (resp. forwarding) scheme gives the best performance. Figure 3.11 displays
the sign of ∆T in all of the cases that we have investigated.

We first consider LAN and MAN conditions (refer to rows 2 and 3 in Table 3.6 for
self-contained information) and we vary the communication and migration rate from 1 to
50. The sign of ∆T in these cases is shown in Figure 3.11(a). Under LAN conditions,
the line ∆T = 0 corresponds to very high migration rates (ν > 30). Above this line, the
forwarders mechanism performs better than the centralized mechanism, and below this line,
the opposite statement holds. Under MAN conditions, the line ∆T = 0 corresponds to very
low migration rates (ν < 2.5) and to high communication rates (λ > 10). Below this line,
the centralized mechanism performs better than the forwarders mechanism, and above it,
the opposite statement holds. Observe that in our experiments, we investigated the region
1 ≤ λ10 and 1 ≤ ν10 and we have found that, over a LAN, the centralized technique is faster,
and over a MAN, the forwarders achieve lower communications time. Our conclusions, drawn
from the experiments, agree with the study of the sign of ∆T . However, what we could

Sec. 3.5 Validation and comparison 147
1

2
5

1
0

2
0

5
0

10 25 40

m
ig

ra
ti

o
n

 r
at

e
ν

 (
s-1

)

communication rate λ (s
-1
)

(a)

∆T > 0
location server better

∆T = 0, MAN conditions

∆T = 0, LAN conditions

∆T < 0, forwarders better

1
0

2
5

4
0

5 10 15 20 25 30
co

m
m

u
n

ic
at

io
n

 r
at

e
λ

 (
s-1

)

inverse of the average migration duration δ (s
-1
)

(b) LAN conditions

∆T < 0

∆T = 0, ν = 15

∆T = 0, ν = 20

∆T = 0, ν = 25

∆T = 0, ν = 30

∆T = 0, ν = 35

∆T = 0, ν = 40

∆T > 0

1
0

2
0

3
0

0 25 50 75 100

in
v
er

se
 o

f
av

er
ag

e
m

ig
ra

ti
o

n
 d

u
ra

ti
o

n
 δ

 (
s-1

)

service rate at location server µ (s
-1
)

(c) LAN conditions

∆T < 0

∆T = 0,
λ = 1,
ν = 1

∆T = 0,
λ = 1,

ν = 5

∆T = 0,
λ = 5,
ν = 1

∆T = 0,
λ = 5, ν = 5

∆T > 0

1
0

2
5

4
0

10 100 1000

co
m

m
u
n
ic

at
io

n
 r

at
e

λ
 (

s-1
)

service rate at location server µ (s
-1
)

(d) LAN conditions

∆T < 0

∆T = 0, ν = 1

∆T = 0
ν = 5

∆T = 0
ν = 10

∆T = 0
ν = 15 ∆T = 0

ν = 20
∆T = 0
ν = 25

∆T = 0
ν = 30

∆T = 0
ν = 35

∆T > 0

Figure 3.11: Sign of the difference between response times ∆T = TF − TS

not foresee in the experiments is that for some migration rates (e.g. ν = 35) the forwarders
scheme is better only for intermediate values of the communication rate (λ = 9 . . . 19 for
instance). This is also observed in Figures 3.11(b) and (d) for fixed values of δ and µ. A
closer look at this phenomenon revealed that, for intermediate values of λ, the difference
∆T is slightly negative. In other words, the performance of the mechanisms considered
here is almost the same for this choice of parameters. This observation suggests that it
would be preferable to draw the lines |∆T | = ǫ, where ǫ is small, instead of drawing the line
∆T = 0. Then, for ∆T > ǫ, the location server is preferable; for ∆T < ǫ, the forwarders
are preferable; and for |∆T | ≤ ǫ either mechanism can be chosen.

In Figure 3.11(c), we observe that for extremely low service rate (µ less than 16s−1), the
forwarders technique becomes better than the centralized technique. The frontier between
the regions where one approach is better than the other, i.e. the line ∆T = 0, depends
on the values of λ and ν. Surprisingly enough, increasing the communication rate while
keeping the migration rate unchanged does not have the same effect on this frontier: for
ν = 1, an increase in λ from 1 to 5 shifts the line ∆T = 0 to the left (lower service rate)
whereas the same increase in λ, but for ν = 5, shifts the frontier to the right (higher service
rate). (A shift to the right enlarges the region where forwarders are better and a shift
to the left enlarges the region where the server is better.) Notice that for applications
generating a single source-agent pair, the operational conditions are far away from these

148 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

frontiers (µ = 2325 in our experiments over a LAN). However, when there are multiple
sources and/or agents, the buffer at the server is completely partitioned between them, so
that each pair would have only a fraction of the server processing speed (which is simply
µ = 2325). We have seen from our simulations (reported in Section 3.6), that the service
rate per queue depends on parameters λ and ν. For instance, we have seen that for λ = 1

and ν = 1 there should be around 100 source-agent pairs in order to have a service rate
per queue as low as 30, whereas 60 pairs are enough to achieve the same service rate per
queue when λ = 10 and ν = 1. It is only for a large number of source-agent pairs that the
performance of the server degrades till the point where forwarders may perform better.

Figure 3.11(d) displays the frontiers ∆T = 0 for several values of the migration rate
(ν ∈ {1, 5, 10, 15, 20, 25, 30, 35}) and for µ ∈ [10, 2500] and λ ∈ [1, 50]; the travel times and
the migration durations correspond to a LAN (values in Table 3.6). When ν increases, the
line ∆T = 0 shifts to the right (higher service rate) enlarging the region where forwarders
are better. Actually, as the migration rate increases, the performance of both approaches
degrades: in the forwarders approach, the forwarding chain gets longer, thereby yielding
larger communication times; in the centralized approach, the effect of such an increase is
threefold. First, the probability that the recorded location at the source is no longer valid
increases. Second, the probability of having a wrong location in the server’s reply increases
as well. Third, there will be much more update requests generated. Since these requests
have the highest priority, the service of location requests coming from the source will be
delayed in time (see Section 3.4.1). Each of these effects will increase the communication
time. As a result, when ν increases, the performance of the server degrades more rapidly
than the performance of the forwarders.

To conclude this section, we would like to stress the fact that selecting the best location
scheme is not as intuitive as it could look in the first place. Our study of the sign of ∆T
has pointed out several unexpected effects when the value of some parameter is changed.

3.6 Extension to the case of multiple source-agent pairs

The model developed in Section 3.4.2 is precise in the case of a single source-agent pair.
But it is just an approximation in the case of applications with several sources and/or agents.
In this section, we will first give some guidelines on a precise modeling of systems with
multiple objects, and show next how one can use our model in such systems (approximate
solutions only).

In applications with several sources and/or agents, there is a single server attending
multiple queues. Each queue can have up to two requests, a single update request coming
from an agent and a single location request from a source trying to communicate with
the agent. There are as many queues as there are source-agent pairs. The server switches
from queue to queue in a cyclic way, serving a unique request in each queue. Such a server
is well modeled by a single-server polling model with cyclic non-exhaustive service. In order

Sec. 3.6 Extension to the case of multiple source-agent pairs 149

to obtain accurate results, the fact that the server stays blocked while sending the replies
to the sources must be taken into account. In such cases, the server is unavailable for work
even though customers could be waiting. To model this, there are two possible choices:
either adopting a server with vacation [115] as illustrated in Figure 3.12(a), or considering
the “block” times as making part of the service times of location requests, in which case
it would be better to have two different service rates (µ1 for the update requests and µ2

for the location requests) (see illustration in Figure 3.12(b)). Such polling models are
not easy to analyze. An alternative (and precise) model is presented next.

Input flows

.

..
.
..

Input flows

Input flows

.

..
.
..

Server
µ1, µ2

(b) Server with differentiated service

cyclic
scheduler

Input flows

.

..
.
..

Input flows

Input flows

.

..
.
..

vacation

Server µ
with

(a) Server with vacation

cyclic
scheduler

Figure 3.12: Possible choices for modeling the original system

A vacation model describes a single-server queue in which the server can be unavailable
for work (away on "vacation") even though customers are waiting [115]. In the polling model
illustrated in 3.12(a), the time that the server spends away from any particular queue,
serving the other queues or waiting for the end of a “block” period, can be viewed as a
vacation from that queue. Adoption of this viewpoint greatly simplifies the analysis of the
polling model. The decomposition of the multiple queues system into multiple single queue
subsystems is illustrated in Figure 3.13.

Figure 3.13(a) illustrates the real system having a cyclic server with vacation. Figure
3.13(b) illustrates the equivalent system having independent queues, each with one server
with vacation. Note that the moments of the vacations are not the same in both systems.
In the original system (at the left), the vacations stand for the time in which the server is
blocked, whereas in the equivalent system (at the right), the vacations stand for the time
the server is away from any particular queue (“block” time + service times of other queues).
In both systems, there are two input flows in each queue, one resulting from the update

requests sent by a mobile agent, and the other resulting from the location requests

sent by a source. The arrival rates into queue i (i = 1, . . . , n where n is the total number of
queues) are then νiδi/(νi+δi) (update requests from agent i) and ei (location requests

from source i). The rate ei and the first two moments of the vacation period can hardly be

150 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

.

..

.

..

en

νnδn
νn+δn

.

..
.
..

ei

νiδi
νi+δi

e1

ν1δ1
ν1+δ1

.

..
.
..

vacation

Server µ
withe1

Subsystem 1
ν1δ1
ν1+δ1

vacation

Server µ
withei

Subsystem i
νiδi
νi+δi

vacation

Server µ
withen

νnδn
νn+δn

Subsystem n

vacation

Server µ
with ≡

scheduler
cyclic

(a) Original system (b) Equivalent system

Figure 3.13: Decomposition of the cyclic-service system into n independent single queue
subsystems

computed.

The model developed in Section 3.4.2 can be used if one is able to find the equivalence
shown in Figure 3.14. At the left of Figure 3.14, the subsystem with one queue and one
server with vacation is drawn (the same subsystem as in Figure 3.13(b)). At the right of
Figure 3.14, an equivalent system having a server with reduced speed µi is illustrated. The

Server µ

vacation
with Server µi⇐⇒ei

νiδi
νi+δi

ei

νiδi
νi+δi?

Figure 3.14: Equivalence between two systems, one having a server with vacation (service
rate µ) and the other having a server with service rate µi

key point of this equivalence resides in the computation of the processing speed µi of queue
i in the equivalent system. We will necessarily have µi ≤ µ to compensate the vacation
periods in the system at the left of Figure 3.14. The equality µi = µ is obtained when there
are a single source-agent pair in the system. Observe that, if there are just a few sources
and/or agents, there is likely to be just one active (non-empty) queue most of the time,
due to multiplexing. In such cases, it is sufficient to consider µi ≈ µ. But what about the
general case?

The equivalent systems drawn in Figure 3.14 are assumed to behave identically con-
cerning waiting times and response times. Let Tvacation (resp. Treduced) denote the response
time of the system with vacation (resp. the system with reduced speed). The time Tvacation

Sec. 3.6 Extension to the case of multiple source-agent pairs 151

depends on parameters νi, δi, ei, µ and the first two moments of the vacation periods. The
time Treduced depends on parameters νi, δi, ei and µi which is to be calculated. Writing
Tvacation = Treduced yields the computation of µi in terms of νi, δi, ei, µ and the first two
moments of the vacation periods. Unfortunately, it is quite hard to express ei and the first
two moments of the vacation periods, and not much can be done without these parameters.

One may infer the value of µi by measuring, at the source, the response time of
the server. If the source records the sending time st of a location request and the
reception time rt of its reply, it can measure the response time as rt − st − RTT , where
RTT is the round-trip time of a message through the network. The service rate is roughly
1/(rt−st−RTT). For systems with a single source-agent pair, we have 1/(rt−st−RTT) .

µ = µi. This approximation works only in the special case of high speed networks (LAN for
instance). Recall that whenever the server sends a reply to a source, it remains blocked until
the reply reaches its destination (synchronous communications between objects). Therefore,

when the ratio travel time
service time

increases the approximation gets worse and worse since the block

times are considered to be service times.

We already know that over a MAN the forwarders scheme performs better. A single
server with multiple queues is definitely slower than a server with a single queue. It is
evident that the forwarders will achieve better results in applications with multiple objects.
We will therefore concentrate on LAN networks, and determine up to which utilization of
the server the approximation holds. Note that it is possible to determine which mechanism
achieves the lowest response time by substituting µi into ∆T as given by (3.62) (refer to
Figure 3.11(d) for more details).

We have carried out four sets of simulations with multiple objects. In each set of
simulations, all of the RVs were distributed exponentially. This way, one can precisely
measure the goodness of the approximation made in the inference of µi. All source-agent
pairs had the same migration and communication rates, νi = ν and λi = λ for i = 1, . . . , n
where n denotes the number of source-agent pairs considered in a particular simulation. In
each set of simulations, n was held fixed during a simulation run, and its value ranged from
1 to 100 over all simulations in the same set (the total number of simulations is thus 400).
Over all 400 simulations, the travel times, the service times and the migration durations
were i.i.d. RVs with rates γ1, γ2, µ and δ respectively. The values retained for the latter
parameters correspond to a LAN condition (refer to row 2 in Table 3.6 for self-contained
information). Finally, each set of simulations is characterized by a single value for the pair
(λ, ν). The values retained are (1,1), (1,10), (10,1) and (10,10).

For each simulation, we have computed the expected communication time TS using
(3.51) together with the approximation of µi, and measured the utilization of the multiqueue
server. The average response time returned by the simulations together with the theoretical
TS are plotted against the number of source-agent pairs n in Figure 3.15. (The analysis
curves are not smooth because µi is inferred from measurements.) We have also plotted,
for each set of simulations, the utilization of the server and the relative error between the
simulated result and the analytical one. Figure 3.15 contains eight graphs, two of which

152 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

pertain to the same set of simulations. Observe how in all four sets of simulations, the
analytical TS is larger than the simulated result. This is expected since the inferred µi (cf.
Figure 3.14) is lower than the true one, and the gap between both values increases as the
number of queues n increases.

4
0

5
0

6
0

0 20 40 60 80 100

M
ea

n
 r

es
p
o
n
se

 t
im

e
(m

s)

(a) λ = 1s
-1

, ν = 1s
-1

simulation
analysis

0
.0

1
0
.1

1

0 20 40 60 80 100

U
ti

li
za

ti
o

n
 a

n
d

 r
el

at
iv

e
er

ro
r

10% of error

70% of utilization

utilization
relative error

1
5
0

2
2
5

3
0
0

0 20 40 60 80 100

(b) λ = 1s
-1

, ν = 10s
-1

simulation
analysis

0
.1

1

0 20 40 60 80 100

10% of error

48% of utilization

utilization
relative error

2
0

4
0

6
0

0 20 40 60 80 100

M
ea

n
 r

es
p

o
n

se
 t

im
e

(m
s)

(c) λ = 10s
-1

, ν = 1s
-1

simulation
analysis

0
.0

1
0

.1
1

0 20 40 60 80 100

U
ti

li
za

ti
o
n
 a

n
d
 r

el
at

iv
e

er
ro

r

number of couples source-agent n

10% of error

73% of utilization

utilization
relative error

0
3
0
0

6
0
0

9
0
0

0 20 40 60 80 100

(d) λ = 10s
-1

, ν = 10s
-1

simulation
analysis

0
.1

1

0 20 40 60 80 100

number of couples source-agent n

10% of error

50% of utilization

utilization
relative error

Figure 3.15: Simulated and analytical response times, utilization of the server and relative
error between both response times

Sec. 3.7 Conclusion 153

We have pointed out in Section 3.5.3 that the performance of the location server
mechanism degrades rapidly when the migration rate ν increases. This is even more true
in the case of multiple objects, especially as the migration rate increases for each agent (all
agents have the same migration rate in the simulations). The reader is invited to compare
the results shown in Figures 3.15(a) and (b) and the ones in Figures 3.15(c) and (d). The
approximation on µi yields a smaller error on the response time when the migration rate ν

is smaller, for the same utilization of the server and the same communication rate λ. On the
other hand, changing the communication rate λ from 1 to 10 while keeping the migration
rate ν unchanged does not have a big effect on the quality of the approximation (see Figures
3.15(a) and (c) and Figures. 3.15(b) and (d)). A quantitative comparison of the quality of
the approximation in the four sets of simulations is reported in Table 3.7.

Table 3.7 reads as follows: with a tolerance of 10% of error (resp. 15% of error) on
the response time, the approximate model can be used as long as the server utilization is
below 0.73 (resp. 0.81), which is attained when there are 59 (resp. 66) source-agent pairs,
given that λ = 10 and ν = 1 (see row 5 in Table 3.7). Note that in the set of simulations

Table 3.7: Utilization and number of source-agent pairs yielding 10% and 15% of error

10% of error 15% of error
Simulations set Utilization Number of pairs Utilization Number of pairs
λ = 1, ν = 1 0.70 92 N. A. (> 0.77) N. A. (> 100)
λ = 1, ν = 10 0.48 21 0.55 25
λ = 10, ν = 1 0.73 59 0.81 66
λ = 10, ν = 10 0.50 8 0.61 10

where λ = 1 and ν = 1, the maximal error obtained was 14.3%. Thus the utilization and
the number of pairs which yield 15% of error on the response time are not available, but
we know that for such error, the utilization of the server must be higher than 0.77 and that
there must be more than 100 source-agent pairs (see row 3 in Table 3.7).

To conclude this section, we can say that in all cases, the approximate model returns
fair prediction of the expected communication time as long as the utilization does not exceed
50%.

3.7 Conclusion

We have proposed simple Markovian analytical models for evaluating the performance
of two approaches for locating mobile agents. One approach uses forwarders to enable
communication between a source and a mobile agent; in the other approach communications
are ensured by a centralized server. Our models have been validated through simulations
and extensive experiments on a LAN and on a MAN. In all of the experiments that we

154 Chap. 3 Analysis of two agent location mechanisms in a mobile environment

have conducted, we have observed that the server yields the best performance on a LAN
and the forwarders are more efficient on a MAN. Using the theoretical expected response
times of both schemes, we have identified the best location scheme under a wide variety
of conditions. Last, note that our contribution in the field of code mobility is twofold.
First, we have identified the best location scheme depending on the network conditions.
Our conclusions are not that intuitive and they were made possible thanks to our rigorous
approach. Second, we have shown that modeling such mechanisms is possible using rather
simple techniques, thereby leaving the door open to the performance analysis of similar
schemes.

Chapter 4

Conclusion

4.1 Summary

During the course of the last three years, we have been applying a general methodology
to different problems encountered in distinct types of applications. This general methodol-
ogy consists first of proposing mathematical models for the system at hand. Then, metrics
of interest or estimators are derived under the assumptions of the proposed models. Finally,
the analytical results are compared with simulated and/or experimental results.

In the first chapter of the thesis, we have proposed two single server finite buffer
queueing models for a path between two hosts. The single queue is assumed to model the
bottleneck link along the path. Under Poisson arrivals and either exponential or determin-
istic service times, we express the loss probability, the server utilization and the expected
response time in terms of the intensity of the background traffic entering the queue and
the buffer size at the bottleneck link. Note that it is the first time that the analysis of the
M/D/1/K queue has been pushed so far. Conditional probabilities are further derived for
the M+M/M/1/K queue model. Taking any pair of these equations and solving for the
unknown cross traffic intensity and the unknown buffer size, returns estimates of these un-
known parameters, provided that some measurements of the metrics at hand are available.
The pairs of estimators – obtained using this procedure over all possible pairs of equations
– are then tested through simulations. Pairs of estimators are discarded while others have
proved to perform well, which is the case of the pair of estimators relying on measurements
of the loss probability and the response time.

In the second chapter of the thesis, we have proposed successively three models for
multicast groups. The first model, an M/M/∞ queue under heavy traffic, enables the use
of Kalman filtering theory to derive an efficient membership estimator, which is optimal
for the M/M/∞ queue under heavy traffic. The second model, an M/M/∞ queue under
a general traffic regime, lead to the same estimator, but this time the Wiener filter theory

155

156 Chap. 4 Conclusion

was used. Note that the later theory can be applied to the M/G/∞ queue as long as the
distribution of receivers lifetime is not heavy-tailed. However, the canonical factorization of
the power spectrum of the measurements process is possible only for the M/M/∞ queue.
The third and last model studied, an M/HL/∞ queue where HL denotes an L-stage hy-
perexponential distribution, allows the derivation of an efficient estimator which is optimal
among all estimators satisfying a first-order linear auto-regressive equation. To summarize
what precedes, we have proposed three models, have followed three distinct approaches
and obtained two distinct membership estimators. These estimators have been tested on
simulations driven by real traces. Their overall performance are almost identical, however
the estimator deriving from the M/M/∞ queue model shows a good ability to track high
variations in the membership, the other estimator being more on target in flat periods.

In the third chapter, we have proposed Markovian models for agent location mecha-
nisms in a mobile code environment. To the best of our knowledge, it is the first time that
such mechanisms are modeled and their performance are formally evaluated. We derive
expressions for the expected response time of each mechanism in each model and further
express the expected number of forwarders in the decentralized mechanism. The theoretical
results are compared to both simulated and experimental results (experiments conducted
over both a LAN and a MAN). It appeared in our experiments that forwarders achieve
better performance over a MAN and that the centralized technique is preferable in a LAN.
The relatively close match between the latter results validates both Markovian models and
allows the use of the theoretical formulas as predictors of the performance of the mecha-
nisms. We have investigated the performance of the mechanisms under a wide variety of
conditions using the difference between the expected response times of each mechanism.
This theoretical comparison has illustrated several unexpected effects when some parameter
is changed and revealed that no mechanism is uniformly better than the other.

4.2 Perspectives

Concerning the first part of the thesis (Chapter 1), we have seen that the scheme
PL_U_R does not perform especially well in simultaneously estimating the bottleneck
bandwidth µ, the cross traffic intensity at the bottleneck link λ and the buffer size at the
bottleneck link K. We should therefore use an estimate of µ (provided by pathrate, PBM or
ROPP for instance) and then use scheme PL_R to estimate λ and K. The impact of using
µ̂ instead of using µ still needs to be investigated. Beside that, the M+M/M/1/K queue
model may be extended to account for the propagation delay. The latter could be modeled
by a normally distributed random variable or an exponentially distributed random variable.

Concerning the estimation of the membership of multicast groups, we plan to work on
more realistic models, such as the M/W/∞ queue or the M/L/∞ queue. The first step will
be to compute (2.39) for these queues. After that, one may follow the approach of Section
2.6.2 to find the optimal first-order filter, using either (2.6) or (2.54). We actually do not

Sec. 4.2 Perspectives 157

know which auto-regressive equation is preferable. Future research will certainly address
this issue. Another point which will also need to be addressed concerns the choice of the
ACK probability and the ACK interval for the considered model. Instead of limiting the
amount of feedback generated each round, we might limit the amount of feedback generated
each I seconds, as already suggested in Remark 2.7.1.

Concerning the research on agent location mechanisms, we plan to revisit the model
for the centralized mechanism. Instead of the single queue server investigated in Section
3.4.2, we will consider a multiqueue single server with vacation. Another possibility consists
of studying a multiqueue server with feedback, in which a query that has already been
served can potentially be replaced in the queue. Besides, we are interested in modeling
other agent location mechanisms, especially a mixed mechanism recently implemented in the
ProActive library. In this mixed approach, both forwarders and a location server are used
to ensure communications. Forwarders have a fixed lifetime and mobile objects periodically
update their locations at the server. When a message finds no object (forwarder or mobile
agent) on a given site, the source queries the location server to have the latest known location
of the mobile object. The engineering questions which arise in such mechanisms are “what
is the ideal lifetime for forwarders?” and “how often should the mobile object inform the
location server of its location?” Future research aim at answering these questions.

158 Chap. 4 Conclusion

Glossary

List of abbreviations

ACK Acknowledgement
a.s. almost surely
CAC Call Acceptance Controller
CDF Cumulative Distribution Function
CCDF Complementary Cumulative Distribution Function
cf. confer
C-K Chapman–Kolmogorov
DiffServ Differentiated Services
e.g. example
EWMA Exponential Weighted Moving Average
FTP File Transfer Protocol
i.e. id est
iff. if and only if
i.i.d. independent and identically distributed
IP Internet Protocol
ISP Internet Service Provider
IVS INRIA Videoconferencing System
LAN Local Area Network
l.h.s. left-hand side
LST Laplace–Stieltjes Transform
MAN Metropolitan Area Network
MBone Multicast Backbone
MINC Multicast-based Inference of Network-internal Characteristics
MOA Mobile Objects and Agents
N. A. Not Available
NAG Numerical Algorithms Group
ns network simulator
P a.s. almost surely under the measure P
PASTA Poisson Arrivals See Time Average
PBM Packet Bunch Mode
PR Peak Rate
QoS Quality of Service
RBPP Receiver-Based Packet Pair

159

160 Glossary

RED Random Early Detection
resp. respectively
r.h.s. right-hand side
ROPP Receiver Only Packet Pair
RR Receiver Report
RTCP RTP Control Protocol
RTP Real-time Transport Protocol
SBPP Sender-Based Packet Pair
RV Random Variable
SRM Scalable Reliable Multicast
TCP Transmission Control Protocol
TV Television
UDP User Datagram Protocol
vs. versus
w.r.t. with respect to

Bibliography

[1] Differentiated Services (DiffServ). http://www.ietf.org/html.charters/diffserv-
charter.html.

[2] Introduction to the internet - using the internet.
http://www.sofweb.vic.edu.au/internet/.

[3] MINC: Multicast-based Inference of Network-internal Characteristics.
http://www.research.att.com/projects/minc/.

[4] The TCP-friendly website. http://www.icir.org/floyd/tcp_friendly.html.

[5] Aglets Software Development Kit. IBM, 1999. http://www.trl.ibm.com/aglets/.

[6] K. Almeroth and M. Ammar. Collecting and modeling of the join/leave behavior of
multicast group members in the MBone. In Proc. of HPDC ’96, Syracuse, New York,
pages 209–216, August 1996.

[7] K. Almeroth and M. Ammar. Multicast group behavior in the Internet’s Multicast
Backbone (MBone). IEEE Communications Magazine, 35:224–229, June 1997.

[8] K. C. Almeroth and M. H. Ammar. MListen, 1995.
http://www.cc.gatech.edu/computing/Telecomm/mbone/.

[9] S. Alouf, E. Altman, C. Barakat, and P. Nain. Optimal estimation of multicast
membership. submitted to IEEE Trans. on Signal Processing, Special Issue on Signal

Processing in Networking.

[10] S. Alouf, E. Altman, C. Barakat, and P. Nain. Estimating membership in a multicast
session, February 2002. INRIA, Research Report RR-4391.

[11] S. Alouf, E. Altman, and P. Nain. Optimal on-line estimation of the size of a dynamic
multicast group, November 2001. INRIA, Research Report RR-4329.

[12] S. Alouf, E. Altman, and P. Nain. Optimal on-line estimation of the size of a dynamic
multicast group. In Proc. of IEEE INFOCOM ’02, New York, New York, volume 2,
pages 1109–1118, June 2002.

161

162 Bibliography

[13] S. Alouf, F. Huet, and P. Nain. Forwarders vs. centralized server: An evaluation
of two approaches for locating mobile agents. Performance Evaluation, (Proc. of

Performance ’02, Rome, Italy), 49(1-4):299–319, September 2002.

[14] S. Alouf, F. Huet, and P. Nain. Forwarders vs. centralized server: An evaluation of two
approaches for locating mobile agents, April 2002. INRIA, Research Report RR-4440.

[15] S. Alouf, F. Huet, and P. Nain. Forwarders vs. centralized server: An evaluation of two
approaches for locating mobile agents (extended abstract). Performance Evaluation

Review, (Proc. of ACM SIGMETRICS ’02, Marina Del Rey, California), 30(1):278–
279, June 2002.

[16] S. Alouf, P. Nain, and D. Towsley. Inferring network characteristics via moment-
based estimators. In Proc. of IEEE INFOCOM ’01, Anchorage, Alaska, volume 2,
pages 1045–1054, April 2001.

[17] S. Asmussen. Applied Probability and Queues. John Wiley & Sons, 1987.

[18] A. Bakker, E. Amade, G. Ballintijn, I. Kuz, P. Verkaik, I. van der Wijk, M. van Steen,
and A. S. Tanenbaum. The globe distribution network. In Proc. of USENIX ’00

(FREENIX Track), San Diego, California, pages 141–152, June 2000.

[19] F. Baude, D. Caromel, F. Huet, and J. Vayssière. Objets actifs mobiles et communi-
cants. Technique et Science Informatique, 21(6), 2002.

[20] J. Baumann. Control algorithms for mobile agents. PhD thesis, University of Stuttgart,
Germany, IPVR Department, 1999.

[21] J.-C. Bolot. Characterizing end-to-end packet delay and loss in the Internet. Journal

of High-Speed Networks, 2(3):305–323, December 1993.

[22] J.-C. Bolot. End-to-end packet delay and loss behavior in the Internet. In Proc. of

ACM SIGCOMM ’93, San Francisco, California, pages 289–298, September 1993.

[23] J.-C. Bolot, T. Turletti, and I. Wakeman. Scalable feedback control for multicast
video distribution in the Internet. In Proc. of ACM SIGCOMM ’94, London, UK,
pages 58–67, September 1994.

[24] A. A. Borovkov. Asymptotic Methods in Queueing Theory. John Wiley & Sons, 1984.

[25] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva. A performance com-
parison of multi-hop wireless ad hoc network routing protocols. In Proc. of MobiCom
’98, Dallas, Texas, pages 85–97. ACM Press, October 1998.

Bibliography 163

[26] R. Cáceres, N. G. Duffield, A. Feldmann, J. Friedmann, A. Greenberg, R. Greer,
T. Johnson, C. Kalmanek, B. Krishnamurthy, D. Lavelle, P. Mishra, K. Ramakrishnan,
J. Rexford, F. True, and J. van der Merwe. Measurement and analysis of ip network
usage and behavior. IEEE Communications Magazine, 38(5):144–151, May 2000.

[27] R. Cáceres, N. G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley. Loss-based
inference of multicast network topology. In Proc. of IEEE CDC ’99, Phoenix, Arizona,
volume 3, pages 3065–3070, December 1999.

[28] R. Cáceres, N. G. Duffield, J. Horowitz, and D. Towsley. Multicast-based inference
of network-internal loss characteristics. IEEE Transactions on Information Theory,
45(7):2462–2480, November 1999.

[29] R. Cáceres, N. G. Duffield, J. Horowitz, D. Towsley, and T. Bu. Multicast-based
inference of network-internal characteristics: accuracy of packet loss estimation. In
Proc. of IEEE INFOCOM ’99, New York, New York, volume 1, pages 371–379, March
1999.

[30] R. Cáceres, N. G. Duffield, S. B. Moon, and D. Towsley. Inference of internal loss rates
in the MBone. In Proc. of IEEE/ISOC Global Internet ’99, Rio de Janeiro, Brazil,
December 1999.

[31] R. Carter and M. Crovella. Measuring bottleneck link speed in packet-switched net-
works. Performance Evaluation, 27&28:297–318, October 1996.

[32] D. M. Chess. Security issues in mobile code system. In Lecture Notes in Computer

Science 1419, pages 1–14. Springer-Verlag, 1998.

[33] D. M. Chess, C. G. Harrison, and A. Kershenbaum. Mobile agents: Are they a good
idea? Technical report, IBM T.J. Watson Research Division, March 1995.

[34] K. J. Christensen. Tools page for Ken Christensen.
http://www.csee.usf.edu/∼christen/tools/toolpage.html.

[35] K. J. Christensen. Reproduction of some key results in Leland et al., May 2002.
Available as http://www.csee.usf.edu/∼christen/tools/bellcore.pdf.

[36] Y. Chu, S. Rao, and H. Zhang. A case for end system multicast. In Proc. of ACM

SIGMETRICS ’00, Santa Clara, California, pages 1–12, June 2000.

[37] D. Clark. The design philosophy of the DARPA Internet. In Proc. of ACM SIGMET-

RICS ’88, Stanford, California, pages 1–12, August 1988.

[38] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous
information storage and retrieval system. In Lecture Notes in Computer Science 2009,
pages 46–66. Springer-Verlag, 2001.

164 Bibliography

[39] J. W. Cohen. The Single Server Queue. North-Holland publishing company, 1982.

[40] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the
Lambert W function. Advances in Computational Mathematics, 5:329–359, 1996.

[41] D. R. Cox and V. Isham. Point Processes. Chapman and Hall, New York, 1980.

[42] S. R. Das, C. E. Perkins, and E. M. Royer. Performance comparison of two on-demand
routing protocols for ad hoc networks. In Proc. of INFOCOM ’00, Tel-Aviv, Israel,
volume 1, pages 3–12, March 2000.

[43] S. Deering. Host extensions for IP multicasting. RFC 1112, Network Working Group,
August 1989.

[44] S. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis, Stanford
University, December 1991.

[45] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen. Deployment issues
for the IP multicast service and architecture. IEEE Network magazine, Special Issue

on Multicasting, 14(1):78–88, January/February 2000.

[46] C. Dovrolis, P. Ramanathan, and D. Moore. What do packet dispersion techniques
measure? In Proc. of IEEE INFOCOM ’01, Anchorage, Alaska, volume 2, pages
905–914, April 2001.

[47] N. G. Duffield, J. Horowitz, and F. Lo Presti. Adaptive multicast topology inference.
In Proc. of IEEE INFOCOM ’01, Anchorage, Alaska, volume 3, pages 1636–1645,
April 2001.

[48] N. G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley. Multicast topology in-
ference from end-to-end measurements. In Proc. of ITC Specialist Seminar on IP

Traffic Measurement, Modeling and Management, Modeling and Management, Mon-
terey, California, September 2000.

[49] N. G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley. Network delay tomography
from end-to-end unicast measurements. In Lecture Notes in Computer Science 2170,
Proc. of IWDC ’01, pages 576–595. Springer-Verlag, September 2001.

[50] N. G. Duffield and F. Lo Presti. Multicast inference of packet delay variance at interior
network links. In Proc. of IEEE INFOCOM ’00, Tel Aviv, Israel, volume 3, pages
1351–1360, March 2000.

[51] N. G. Duffield, F. Lo Presti, V. Paxson, and D. Towsley. Inferring link loss using
striped unicast probes. In Proc. of IEEE INFOCOM ’01, Anchorage, Alaska, volume 2,
pages 915–923, April 2001.

Bibliography 165

[52] A. Dutta, H. Schulzrinne, and Y. Yemini. MarconiNet - an architecture for Internet
radio and TV networks. In Proc. of NOSSDAV ’99, Basking Ridge, New Jersey, June
1999.

[53] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance.
IEEE/ACM Trans. on Networking, 1(4):397–413, August 1993.

[54] S. Floyd, V. Jacobson, S. McCanne, C. Liu, and L. Zhang. A reliable multicast
framework for light-weight sessions and application level framing. In Proc. of ACM

SIGCOMM ’95, Cambridge, Massachusetts, pages 342–356, August 1995.

[55] R. J. Fowler. The complexity of using forwarding addresses for decentralized object
finding. In Proc. of PODC ’86, New York, New York, pages 108–120, August 1986.

[56] P. Francis. Yoid: Extending the internet multicast architecture. Unrefereed report,
April 2000. Available at http://www.icir.org/yoid/docs/index.html.

[57] T. Friedman and D. Towsley. Multicast session membership size estimation. In Proc.

of IEEE INFOCOM ’99, New York, New York, volume 2, pages 965–972, March 1999.

[58] T. Fuhrmann and J. Widmer. On the scaling of feedback algorithms for very large
multicast groups. Computer Communications, Special Issue on Integrating multicast

into the Internet, 24(5-6):539–547, March 2001.

[59] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. GOTOP Infor-
mation Inc., 1996.

[60] R. S. Gray. Agent Tcl: A flexible and secure mobile agent system. In Proc. of the 4th

Annual Tcl/Tk Workshop, Monterey, California, pages 9–23, July 1996.

[61] S. Haykin. Modern Filters. Macmillan, New York, 1989.

[62] S. Haykin. Adaptive Filter Theory. Prentice Hall, 3rd edition, 1996.

[63] H. W. Holbrook and D. R. Cheriton. IP multicast channels: EXPRESS support for
large-scale single-source applications. In Proc. of ACM SIGCOMM ’99, Cambridge,
Massachusetts, pages 65–78, September 1999.

[64] F. Huet. Objets mobiles: conception d’un middleware et évaluation de la localisa-

tion. PhD thesis, University of Nice - Sophia Antipolis, France, December 2002. in
preparation.

[65] INRIA. IVS, 1992. http://www-sop.inria.fr/rodeo/ivs.html.

[66] D. S. Isenberg. The rise of the stupid network. Computer Telephony, 1997.

[67] V. Jacobson. Congestion avoidance and control. In Proc. of ACM SIGCOMM ’88,

Stanford, California, pages 314–329, August 1988.

166 Bibliography

[68] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’Toole. Overcast: Reliable
multicasting with an overlay network. In Proc. of USENIX OSDI ’00, San Diego,
California, pages 197–212, October 2000.

[69] P. Johansson, T. Larsson, N. Hedman, B. Mielczarek, and M. Degermark. Scenario-
based performance analysis of routing protocols for mobile ad-hoc networks. In Proc.
of MobiCom ’99, Seattle, Washington, pages 195–206. ACM Press, August 1999.

[70] I. Karatzas and S. E. Shreve. Brownian Motion and Stochastic Calculus. Springer,
1991.

[71] G. Karjoth, D. B. Lange, and M. Oshima. A security model for Aglets. IEEE Internet

Computing, 1(4):68–77, July-August 1997.

[72] D. G. Kendall. Stochastic processes occurring in the theory of queues and their analysis
by the method of the imbedded markov chain. Annals of Mathematical Statistics,
24:338–354, 1953.

[73] S. Keshav. A control-theoretic approach to flow control. In Proc. of ACM SIGCOMM

’91, Zurich, Switzerland, pages 3–15, September 1991.

[74] J. Kiniry and D. Zimmerman. A hands-on look at Java mobile agents. IEEE Internet

Computing, 1(4):21–30, July-August 1997.

[75] L. Kleinrock. Queueing Systems: Theory, volume 1. John Wiley and Sons, 1975.

[76] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. Oceanstore: An
architecture for global-scale persistent storage. In Proc. of ASPLOS ’00, Boston,
Massachusetts, pages 190–201, November 2000.

[77] K. Lai and M. Baker. Measuring bandwidth. In Proc. of IEEE INFOCOM ’99, New

York, New York, volume 1, pages 235–245, March 1999.

[78] A. M. Lee. Applied Queueing Theory. London: Macmillan, New York: St. Martin’s
Press, 1966.

[79] C. Liu and J. Nonnenmacher. Broadcast audience estimation. In Proc. of IEEE

INFOCOM ’00, Tel Aviv, Israel, volume 2, pages 952–960, March 2000.

[80] J. Mahdavi and S. Floyd. TCP-friendly unicast rate-based flow control, Jan-
uary 1997. Technical note sent to the end2end-interest mailing list, available via
http://www.psc.edu/networking/papers/tcp_friendly.html.

[81] V. A. Malyshev. An analytical method in the theory of two-dimensional positive
random walks. Mathematicheskii Zhurnal, 13(6):1314–1329, 1972.

Bibliography 167

[82] M. Mathis, J. Semske, J. Mahdavi, and T. Ott. The macroscopic behavior of the TCP
congestion avoidance algorithm. Computer Communication Review, 27(3):67–82, July
1997. http://www.acm.org/sigcomm/ccr/archive/1997/jul97/ccr-9707-mathis.html.

[83] S. McCanne and S. Floyd. The LBNL/UCB network simulator. Lawrence Berke-
ley National Laboratory, Univ. of California at Berkeley. Software on line at
http://www.isi.edu/nsnam/ns/.

[84] D. S. Milojičić, W. LaForge, and D. Chauhan. Mobile Objects and Agents (MOA).
In Proc. of USENIX COOTS ’98, Santa Fe, New Mexico, April 1998.

[85] P. Mockapetris and K. J. Dunlap. Development of the Domain Name System. In Proc.

of SIGCOMM ’88, Stanford, California, pages 123–133. ACM Press, August 1988.

[86] S. B. Moon, P. Skelly, and D. Towsley. Estimation and removal of clock skew from
network delay measurements. In Proc. of IEEE INFOCOM ’99, New York, New York,
volume 1, pages 227–234, March 1999.

[87] J. Nonnenmacher. Reliable multicast transport to large groups. PhD thesis, Ecole
Polytechnique Federale de Lausanne, Switzerland, July 1998.

[88] J. Nonnenmacher and E. Biersack. Scalable feedback for large groups. IEEE/ACM

Trans. on Networking, 7(3):375–386, June 1999.

[89] J. Norris. Markov Chains. Cambridge University Press, 1997.

[90] Numerical Algorithm Group. NAG C Library Manual, the c05tbc function. Available
as http://www.nag.co.uk/numeric/cl/manual/pdf/C05/c05tbc.pdf.

[91] Numerical Algorithm Group. NAG C Library Manual, the d01sjc function. Available
as http://www.nag.co.uk/numeric/cl/manual/pdf/D01/d01sjc_cl06.pdf.

[92] M. Nuttall. A brief summary of systems providing process or object migration facili-
ties. Operating Systems Review, 28(4):64–80, October 1994.

[93] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP throughput: A simple
model and its empirical validation. In Proc. of ACM SIGCOMM, Stanford, CA USA,
pages 303–314, August 1988.

[94] V. Paxson. Measurements and analysis of end-to-end Internet dynamics. PhD thesis,
Lawrence Berkeley National Laboratory, University of California at Berkeley, April
1997. Available via ftp://ftp.ee.lbl.gov/papers/vp-thesis/.

[95] V. Paxson and S. Floyd. Wide-area traffic: the failure of Poisson modeling. In Proc.

of ACM SIGCOMM ’94, London, UK, pages 257–268, September 1994.

168 Bibliography

[96] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An application level
multicast infrastructure. In Proc. of USENIX USITS ’01, San Francisco, California,
pages 49–60, March 2001.

[97] J. Postel. User datagram protocol. RFC 768, ISI, August 1980.

[98] J. Postel. Transmission control protocol. RFC 793, DARPA Internet program protocol
specification, September 1981.

[99] M. L. Powell and B. P. Miller. Process migration in DEMOS/MP. In Proc. of SOSP

’83, Bretton Woods, New Hampshire, October 1983. Published as Operating Systems
Review, 17(5):110-119.

[100] F. Lo Presti, N. G. Duffield, J. Horowitz, and D. Towsley. Multicast-based inference
of network-internal delay distributions. Technical report, University of Massachusetts
at Amherst, December 1999.

[101] ProActive. INRIA, 1999. http://www-sop.inria.fr/oasis/ProActive.

[102] S. Ramanathan and M. Steenstrup. A survey of routing techniques for mobile com-
munications networks. Mobile Networks and Applications, 1(2):89–104, October 1996.

[103] P. Robert. Réseaux et Files d’Attente: Méthodes Probabilistes, volume 35 of Mathé-

matiques & Applications. Springer Paris, 2000.

[104] V. Roca and A. El-Sayed. A host-based multicast (HBM) solution for group commu-
nications. In Proc. of ICN ’01, Colmar, France, pages 610–619, July 2001.

[105] J. Rosenberg and H. Schulzrinne. Timer reconsideration for enhanced RTP scalability.
In Proc. of IEEE INFOCOM ’98, San Francisco, California, volume 1, pages 233–241,
March/April 1998.

[106] W. A. Rosenkrantz and J. Horowitz. Statistical analysis of variance-time plots used
to estimate parameters of a long-range dependent process. Submitted for publication,
February 2001.

[107] P. Ruckdeschel. Robust Kalman Filtering – Optimality of the Kalman Fil-

ter. MD*TECH Method and Data Technologies, June 2002. http://www.xplore-
stat.de/tutorials/rkalmframe3.html.

[108] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.
ACM Trans. in Computer Systems, 2(4):277–288, November 1984.

[109] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: a transport protocol
for real-time applications. RFC 1889, Network Working Group, January 1996.

Bibliography 169

[110] V. Sharma and R. Mazumdar. Estimating traffic parameters in queueing systems with
local information. Performance evaluation, 32(3):217–230, April 1998.

[111] D. Sisalem and H. Schulzrinne. The loss-delay based adjustment algorithm: a TCP-
friendly adaptation scheme. In Proc. of NOSSDAV ’98, Cambridge, UK, pages 215–
226, July 1998.

[112] R. F. Stengel. Stochastic Optimal Control, Theory and Application. John Wiley &
Sons, 1986.

[113] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for internet applications. In Proc. of ACM SIGCOMM
’01, San Diego, California, pages 149–160, August 2001.

[114] L. Takács. Introduction to the Theory of Queues. Oxford University Press, Inc., 1962.

[115] H. Takagi. Queueing Analysis: a Foundation of Performance Evaluation, volume 1.
North-Holland, 1991.

[116] M.S. Taqqu, W. Willinger, and R. Sherman. Proof of a fundamental result in self-
similar traffic modeling. Computer Communication Review, 27(2):5–23, April 1997.

[117] T. Thorn. Programming languages for mobile code. ACM Computing Surveys,
29(3):213–239, September 1997.

[118] E. C. Titchmarsh. The Theory of Functions. Oxford University Press, 2nd edition,
1939.

[119] J. van der Merwe, R. Cáceres, Y.-H. Chu, and C. Sreenan. mmdump: a tool for
monitoring Internet multimedia traffic. ACM SIGCOMM Computer Communication

Review, 30(5):48–59, October 2000.

[120] Virtual Laboratories in Probability and Statistics. Probability Plots.
http://www.math.uah.edu/stat/sample/sample8.html.

[121] Voyager. ObjectSpace, Inc., 1999. http://www.objectspace.com.

[122] D. J. Wetherall. Service introduction in an active network. PhD thesis, Dept. of
Electrical Engineering and Computer Science, MIT at Cambridge, February 1999.
Available via http://www.cs.washington.edu/homes/djw/papers/ants-thesis.ps.gz.

[123] P. Whittle. Optimal Control. Basics and Beyond. John Wiley & Sons, 1996.

[124] R. Yavatkar and L. Manoj. Optimistic strategies for large-scale dissemination of mul-
timedia information. In Proc. of ACM Multimedia ’93, Anaheim, California, pages
1–8, August 1993.

Résumé

Dans cette thèse, nous avons abordé plusieurs problèmes de modélisation dans les réseaux dans le but
d’estimer certains paramètres ou d’évaluer les performances de certains mécanismes. Le premier sujet traité
concerne les applications point-à-point qui adaptent leur débit à l’état du réseau. Une façon de faire consiste
à estimer la capacité de la mémoire et l’intensité du trafic transverse au nœud le plus congestionné de la

connexion. À cette fin, nous avons développé deux modèles d’inférence basés sur les files M/M/1/K et

M/D/1/K. Onze schémas différents, permettant l’estimation des paramètres cités ci-haut, ont été mis en
place et leurs performances ont été évaluées et comparées. Nous avons indentifié le meilleur de ces schémas
grâce à des simulations réalisées avec ns-2. Le deuxième sujet traité concerne l’estimation en ligne de la
taille des groupes multipoints. Dans un premier temps, nous avons modélisé le groupe multipoint par une
file d’attente M/M/∞ et avons montré qu’en trafic fort le problème d’estimation peut être résolu à l’aide
d’un filtre de Kalman. Dans un deuxième temps, nous avons utilisé le même modèle mais sans l’hypothèse
d’un trafic fort. L’estimation est obtenue grâce à un filtre de Wiener. Nous avons également construit
un estimateur dans le cas d’un modèle M/H2/∞. Les performances de ces estimateurs ont été évaluées
et comparées grâce à des traces réelles. Le troisième sujet étudié concerne des applications à code mobile
dans lesquelles un agent en cours d’exécution peut changer de hôte. Différents mécanismes de localisation
d’agents mobiles existent. Dans le cadre de cette thèse, nous avons modélisé deux de ces approches à l’aide
de chaînes de Markov afin d’évaluer le temps de localisation d’un agent. Ayant validé nos modèles à l’aide de
simulations et d’expérimentations autant sur un LAN que sur un MAN, nous avons pu utiliser ces modèles
pour comparer formellement les performances des mécanismes étudiés.

Mots-clés — Files d’attente M/M/1/K, M/D/1/K et M/G/∞; chaîne de Markov; mesures; estimation
en ligne; multipoint; processus de diffusion; filtres de Kalman et de Wiener; code mobile; migration; répé-
teurs; serveur de localisation; validation; distribution empirique; simulations; experimentations.

Abstract

In this thesis, we have looked at several modeling problems to estimate some parameters or to evaluate

the performance of some mechanisms. The first subject studied is about unicast applications performing

rate control to adapt to network conditions. To that end, we have proposed to estimate the cross traffic

intensity and the buffer size at the bottleneck of a connection. We have developed two inference models

based on the M/M/1/K and M/D/1/K queues, and derived eleven schemes for estimating the above-

mentioned characteristics. The performance of these schemes have been evaluated and compared using

ns-2 simulations, and the best scheme has been identified. The second subject investigated is about the

on-line estimation of the membership of dynamic multicast groups. We first model the multicast group by

an M/M/∞ queue and show that under heavy traffic the estimation problem can be solved using a Kalman

filter. We next use the same model, but with a general traffic regime, and derive the estimator using Wiener

filter theory. We last design an efficient estimator using the M/H2/∞ queue model. The performance

of these estimators have been evaluated over simulations driven by both synthetic and real session traces.

The third subject studied is about location mechanisms in a mobile agent environment. There are two

widely used mechanisms to ensure communications between components of applications. We have proposed

Markovian models to evaluate the cost of these mechanisms in terms of response times. We have validated

our models both via simulations and experiments over a LAN and a MAN. We were then able to use the

models to formally compare the performance of both mechanisms.

Keywords — Queueing; Markov chain; M/M/1/K, M/D/1/K and M/G/∞ queues; measurement; on-

line estimation; multicast; diffusion; Kalman and Wiener filters; mobile code; migration; forwarders; location

server; validation; distribution fit; simulations; experiments.

