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Abstract

Image understanding is a key issue in modern robotics, computer vision
and machine learning. In particular, driving scene understanding is very
important in the context of advanced driver assistance systems for intelligent
vehicles. In order to recognize the large number of objects that may be found
on the road, several sensors and decision algorithms are necessary. To make
the most of existing state-of-the-art methods, we address the issue of scene
understanding from an information fusion point of view.

The combination of many diverse detection modules, which may deal
with distinct classes of objects and different data representations, is han-
dled by reasoning in the image space. We consider image understanding
at two levels: object detection and semantic segmentation. The theory of
belief functions is used to model and combine the outputs of these detection
modules. We emphasize the need of a fusion framework flexible enough to
easily include new classes, new sensors and new object detection algorithms.

In this thesis, we propose a general method to model the outputs of
classical machine learning techniques as belief functions. Next, we apply
our framework to the combination of pedestrian detectors using the Caltech
Pedestrian Detection Benchmark. The KITTI Vision Benchmark Suite is
then used to validate our approach in a semantic segmentation context using
multi-modal information.

Keywords Information fusion · Driving scene understanding · Theory of
belief functions · Dempster-Shafer theory · Object detection · Semantic seg-
mentation
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Résumé

La compréhension d’image est un problème majeur de la robotique mod-
erne, la vision par ordinateur et l’apprentissage automatique. En particulier,
dans le cas des systèmes avancés d’aide à la conduite, la compréhension de
scènes routières est très importante. Afin de pouvoir reconnâıtre le grand
nombre d’objets pouvant être présents dans la scène, plusieurs capteurs et
algorithmes de classification doivent être utilisés. Afin de pouvoir prof-
iter au mieux des méthodes existantes, nous traitons le problème de la
compréhension de scènes comme un problème de fusion d’informations.

La combinaison d’une grande variété de modules de détection, qui peu-
vent traiter des classes d’objets différentes et utiliser des représentations dis-
tinctes, est faite au niveau d’une image. Nous considérons la compréhension
d’image à deux niveaux : la détection d’objets et la segmentation sémantique.
La théorie des fonctions de croyance est utilisée afin de modéliser et com-
biner les sorties de ces modules de détection. Nous mettons l’accent sur la
nécessité d’avoir un cadre de fusion suffisamment flexible afin de pouvoir
inclure facilement de nouvelles classes d’objets, de nouveaux capteurs et de
nouveaux algorithmes de détection d’objets.

Dans cette thèse, nous proposons une méthode générale permettant de
transformer les sorties d’algorithmes d’apprentissage automatique en fonc-
tions de croyance. Nous étudions, ensuite, la combinaison de détecteurs de
piétons en utilisant les données du Caltech Pedestrian Detection Benchmark.
Enfin, les données du KITTI Vision Benchmark Suite sont utilisées pour
valider notre approche dans le cadre d’une fusion multimodale d’informations
pour de la segmentation sémantique.

Mots-clés Fusion d’informations · Compréhension de scènes routières ·
Théorie des fonctions de croyance · Théorie de Dempster-Shafer · Détection
d’objets · Segmentation sémantique
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摘摘摘要要要

图像理解是现代机器人学、计算机视觉和机器学习领域的关键问题之一。
对行驶场景的理解在高级智能驾驶辅助系统中至关重要。为了更好地识别
大量的路面上的物体，通常我们需要使用多个传感器和不同的识别算法。
在这里我们从信息融合的角度来解决场景理解的问题，以求获得先进的识
别算法。
不同种类的物体使用不同的模型来识别，因为不同的物体需要使用不同

的数据来表达。我们考虑从图像空间的角度来组合这些不同的识别方法。
我们将从物体检测和图像语义分割这两个的层次来考虑图像理解。借助于
信任函数理论，我们实现对多种检测模块输出的建模和组合。值得强调的
是，我们需要建立一个灵活自由的数据融合框架，以便于随时加入新的物
体类别、传感器数据和检测方法。
本文提出了一种通用的将经典的机器学习的输出转化为信任函数的方

法。利用提出的方法，我们组合所有发布在Caltech Pedestrian Detection
Benchmark行人检测标准上的行人检测器的输出来得到最终的检测结果。
同时我们利用KITTI Vision Benchmark Suite的视觉标准数据来验证我们的
多传感器数据融合方法在解决场景语义分割上的有效性。

关关关键键键词词词 信息融合 · 路况图像理解 · 信任函数 · Dempster-Shafer理论 · 物
体检测 · 意义分割
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Introduction

Scene understanding is a very important task for different applications:
robotics, human machine interaction, surveillance, etc. For automotive ap-
plications, sub-tasks such as road recognition, pedestrian detection or traf-
fic sign understanding, among many others, are already by themselves very
challenging. Many algorithms have been developed over the last decades to
tackle these individual problems, each of them using possibly different kinds
of sensors. For autonomous vehicles, it is necessary to have a deep under-
standing of the driving scene. The vehicles need to assess the 3D structure
of the scene, detect static and moving objects and analyze their dynamic in-
teractions. In this thesis, we do not tackle this task in its entirety but focus
on advanced driver assistance systems for intelligent vehicles. The goal is to
warn the driver of potential dangers by projecting relevant information on
an image that reflects what the driver sees.

Scene understanding, when seen as an image understanding problem, is
generally handled at two levels: object detection and semantic segmentation.
The computer vision community puts extensive efforts into object detection
issues. In particular, pedestrian detection is one of the most studied cases.
Dozens of new pedestrian detectors are proposed every year. In the recent
years, a general trend is to aggregate several types of visual features and to
use powerful machine learning techniques to learn a classifier. Based on the
same idea, using multiple sensors to get more information is common prac-
tice in robotics. Ranging sensors are typically used to differentiate obstacles
from the navigable space. Three dimensional information is often captured
with stereo camera and used for object recognition. GPS and proprioceptive
sensors are also considered for localization and egomotion estimation.

A deeper understanding of an image can be achieved with semantic seg-
mentation. Instead of only detecting objects, usually represented by bound-
ing boxes, semantic segmentation aims at classifying every pixels of the
image of the scene. Such a task is clearly much more difficult than object
detection. Yet, with the availability of more and more training data, features
and machine learning algorithms, the performances of semantic segmenta-
tion algorithms keep increasing year by year.

In this thesis, we do not aim at introducing new detection algorithms
but we investigate the combination of existing methods. The diversity, thus

1



2 INTRODUCTION

potential complementarity, of existing detection algorithms makes their com-
bination a challenging and interesting issue. To make the most of existing
techniques, one has to find a way to properly fuse all relevant sources of in-
formation. Existing detection or semantic segmentation algorithms output
different types of imperfect information. This information may be uncertain
but also partial.

The theory of probabilities is commonly used to model imperfect infor-
mation. However, it is often not powerful enough to deal with certain kinds
of imperfections such as imprecision or ignorance. Therefore, many theories
were developed during the last decades to construct more powerful represen-
tations. In this thesis, we focus on the theory of belief functions, also known
as Dempster-Shafer theory. It is a fairly simple generalization of the theory
of probabilities. It can be used to model different kinds of imperfect infor-
mation and also to combine information from multiple sources. We consider
scene understanding from an information fusion point of view by combining
multiple classifiers that may reason with different types of objects and based
on data from different kinds of sensors.

This report is structured in five chapters. Chapter 1 presents general
aspects of information fusion for scene understanding. A short review of ex-
isting methods for object detection and semantic segmentation is provided.
Several aspects of the combination of pattern classifiers are then discussed.
Finally, the classical Bayesian approach for information fusion is presented.
Chapter 2 focuses on the theory of belief functions. We describe how in-
formation is represented and combined. Decision making and statistical
inference are also presented. In Chapter 3, we propose a general calibra-
tion framework that can transform the output of any classifier into belief
functions. The binary classifier calibration is first studied then extended to
multi-class problems. The calibration is then applied to the combination of
pedestrian detectors in Chapter 4. The bounding boxes returned by several
detectors are calibrated, clustered and combined. Finally, the fusion frame-
work applied to a multi-modal semantic segmentation problem is described
in Chapter 5. The construction of different detection modules is detailed
and they are tested on data from the KITTI Vision Benchmark Suite.



Chapter 1

Information fusion for scene
understanding

Intelligent vehicles are often equipped with multiple types of sensors. Cam-
eras and LiDAR (Light Detection And Ranging) are the most common ones.
Each sensor perceives the surrounding environment differently and can pro-
vide its own partial knowledge about it. The aim of multi-modal data fusion
is to combine all the information retrieved from the data acquired by the
available sensors. In the context of a driver assistance system, where the
task is to warn drivers about potential dangers, it seems relevant to display
information on an image that reflects what the driver sees.

We consider scene understanding as an image understanding problem
with possibly other sources of information given by other sensors. In gen-
eral, image understanding is a very broad and challenging task. The recent
paper of Everingham et al. [43], which gives a retrospective on the PASCAL
Visual Object Classes (VOC) challenge, provides a thorough view of state-
of-art achievements regarding image understanding. The VOC challenge is
composed of three types of tasks. The first one is a classification task, where
the aim is to predict whether a specific object, among a predefined set of
twenty classes, is present in an image or not. The second task is object de-
tection. Here, the objects need to be localized, if present, in the image. The
localization is done by using rectangular bounding boxes. The last challenge
is to segment the images by classifying each pixel as belonging to one of the
twenty potential objects or as background. Figure 1.1 shows some examples
from the VOC challenge.

These three tasks are of increasing difficulty. The segmentation task
can easily be used for the detection one, which can in turn be used for
classification. In the VOC 2012 edition [44], the organizers built a super-
classifier from the seven methods that were submitted to the classification
challenge. The scores returned by the classifiers were concatenated into a
single vector and a linear SVM was trained with it. An increase of more

3
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(a) (b) (c)

Figure 1.1: Examples from the PASCAL VOC challenge. (a) Image contain-
ing two buses. (b) Ground truth bounding boxes of a bus and a pedestrian.
(c) Ground truth segmentation of the two buses pictured in (a).

than 10% in terms of average precision was reported for certain object classes
such as “bottle” or “pottedplant”. Performance losses were observed for five
classes, but they remained relatively limited. The VOC organizers discussed
the benefits of combining multiple classifiers in [43]. They also reported some
limitations on extending their combination approach to the detection and
segmentation tasks. Yet, these two tasks are the only ones that may be of
interest for automotive applications, a classification result being of relatively
limited use.

In this chapter, we first introduce in Section 1.1 some common ap-
proaches and methods to detect objects or segment semantic regions. Then,
we discuss general aspects of pattern classifiers combination in Section 1.2.
Finally, in Section 1.3 we describe information representation and combina-
tion in the framework of classical probability theory.

1.1 Scene understanding

We consider scene understanding as an image understanding problem. It
can be decomposed into two main tasks: object detection and semantic
segmentation.

1.1.1 Object detection

Object detection is very important for driving safety applications. The
detection of pedestrians, vehicles or potentially dangerous moving obstacles
is a complex issue. When using cameras, the detections are often represented
with rectangular bounding boxes.

Pedestrian detection Pedestrian detection is certainly the most studied
and important case. A lot of pedestrian detectors can be found in the liter-
ature [40, 54, 33]. These detectors are very diverse and based on different
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kinds of features, training data and classifiers. Most methods using monoc-
ular camera are based on a sliding window approach. Because the size and
the position of pedestrians are unknown, the image is densely scanned over
a large set of scales and positions. Then for each window some features
are extracted and a classifier is used to decide whether it corresponds to a
pedestrian or not.

The use of histograms of oriented gradient (HOG) has been popularized
by Dalal and Triggs [20]. Almost all state-of-the-art pedestrian detectors
use the HOG feature in some forms. A lot of works have contributed to im-
prove the pioneer work of Dalal and Triggs by integrating new features. The
combination of HOG feature with color [119] or motion [19] information has
proved to increase the detectors performance. The addition of new informa-
tion is usually handled by concatenating several feature vectors representing
different kinds of information into one super -vector.

Using only a single camera is often not enough to achieve satisfying
results. The integration of other sensors can provide additional information.
Sensors such as stereo camera or LiDAR (Light Detection And Ranging) are
commonly used to retrieve 3D information. This information can be used
in many different ways. A few attempts to detect pedestrians directly from
LiDAR 3D data can be found in the literature [3, 84]. Given the limited
resolution of LiDAR sensors, the performances of such approaches remain
limited. Another popular method is to use 3D information to retrieve regions
of interests (ROI) which are then further analyzed from color images [50,
100]. Geometric cues like the ground plane have also been used to infer
constraints for object detection [67, 72]. The use of infra-red images has
also been considered in many studies [110, 10]; they can be especially useful
for night vision.

Vehicle detection Many algorithms, originally designed for pedestrian
detection, can also be adapted to learn models for other kinds of objects such
as cars [47, 111]. Contrary to pedestrian detection, there is a high within-
class variability in terms of appearance between vehicles. The combination
of different models learned from distinct view-points is often useful [65]. In
contrast, geometrical analysis of vehicles is easier, as compared to pedestrian
detection. Many vehicle detection algorithms using radar-based [93], laser-
based [121] or sonar-based [62] active sensors can be found in the literature.

Moving object detection For safety applications, the detection of mov-
ing objects or obstacles is often more important than the detection of static
ones. Whether they are pedestrians, cars or bicycles, the risk of collision
with these moving objects needs to be assessed. The motion of the objects
can be estimated through tracking [134]. The use of multiple sources of
information can also help the tracking process [94, 140, 41]. Conversely, the
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tracking process itself can also help detection [2]. Wedel and Cremers [125]
analyzed the 3D motion of a scene using 3D data from a stereo camera sys-
tem. From two consecutive pairs of stereo images, they managed to estimate
the 3D displacement of each pixel. The motion of an object in the image
reference can be induced by both its own motion or by the camera motion
(egomotion). Therefore, the camera motion needs to be known in order to
detect moving objects in the world reference.

The camera motion, which is often rigidly attached to the vehicle, is
known if the motion of the vehicle itself is known. The motion of the car can
be estimated from its localization. Simultaneous localization and mapping
(SLAM) is a very popular way to both estimate the position of the vehicle
and detect static structures through a map [38]. Range sensors like LiDAR
are commonly used for SLAM. Probabilistic occupancy grid maps [39] can
be used to combine maps computed from different sensors. Wang et al. [122]
added a moving object tracking module within the SLAM framework. Non-
probabilistic formulations of occupancy grids have also been considered [80].
The additional use of GPS data, maps [66] or odometry modules [53] can
further increase the performance of both localization, mapping and moving
object detection.

1.1.2 Semantic segmentation

The detection of some classes, such as roads or buildings, can hardly be
represented by bounding boxes. An image annotation at the pixel level is
then required. The pixels of the image need to be classified and grouped
into segments, i.e., a group of adjacent pixels with the same class. This task
is called semantic segmentation, image labeling [68] or image parsing [46,
116]. In several works, the segmentation is only considered for some classes
considered as object (thing), as opposed to background (stuff ) [49, 70].
Typically, the ground and buildings are considered as background in the
VOC challenge.

For automotive applications, the analysis of the background is also of
high interest. In particular, the detection of the road and the navigable space
is primordial for autonomous driving systems. In [57], Hoiem et al. recovered
the 3D layout of a scene from a single image by separating the ground
from the vertical structures and the sky. Several monocular image semantic
segmentation frameworks have been proposed [106, 115, 46]. Ladicky et
al. [69] extended the method of Shotton et al. [106] by including depth
information from a stereo camera. Given the high diversity of the classes
that need to be classified, an extensive set of features is often considered.
These features usually encode local information, such as texture, which are
well adapted to describe stuff. However, for object detection, they are not
as powerful as more global features such as those used in sliding windows
based methods.
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Leibe et al. [73] used an object detection module to initialize object
segmentation. Ladicky et al. [68] used the bounding boxes returned by an
object detector to compute high order cliques within a conditional random
field (CRF) formulation. The segments included in the bounding boxes are
led to belong to similar classes. Tighe and Lazebnik [116] used per-exemplar
detectors to get object segmentation from a set of segmented training data.
Conversely, many detection methods submitted to VOC use semantic seg-
mentation to get initial ROI.

Semantic segmentation can also be computed from 3D information [130,
82]. Occupancy grid maps computed from a SLAM module can, for example,
easily be used to segment out the obstacle-free space [5].

1.2 Combining pattern classifiers

Many of the methods presented in the previous section combine several
sources of information to attain better performance, given a specific task. In
this thesis, we aim at combining directly several detection modules. Several
issues need to be solved to combine different types of pattern classifiers.

1.2.1 Types of outputs

There are many possible ways to combine multiple pattern classifiers, which
highly depend on the outputs of the classifiers. Xu et al. [131] described
three principal types of outputs (see also [64, Chapter 4.1]):

• Type 1 (The Abstract level). The classifier returns a unique predicted
class label without any confidence measure.

• Type 2 (The Rank level). The classifier returns a ranking of all, or the
most plausible, class labels.

• Type 3 (The Measurement level). The classifier assigns a confidence
measure, or score, to each class label.

It is clear that the third type of outputs is the most informative one. It
can easily generate outputs of type 2, which in turn can lead to outputs of
type 1. Outputs at the abstract level are typically provided by black box
commercial tools such as MobilEye R©1 products [78]. The rank level case is
rarely seen in studies dealing with intelligent vehicles. Classical classifiers,
used in the machine learning community, can usually provide outputs at the
measurement level. In this thesis, we will mainly deal with this last type of
outputs.

1MobilEye products use cameras for collision warning, they can detect pedestrians as
well as lane markers.
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1.2.2 Trainable and non-trainable combiners

Given the classification outputs of several classifiers, the combination strate-
gies can be separated into two kinds: trainable and non-trainable [37, 117].
In the first case, the outputs of each classifier are used as inputs in a new
round of training. A simple way is to concatenate the initial outputs into
a feature vector and train a new classifier using classical machine learning
techniques. Using trainable approaches is appealing as the outputs of the
initial classifiers can be directly supplied to a new classifier without the need
of any particular processing. However, the re-training step may also be seen
as a major drawback, as new classifiers can hardly be added afterward. In
many practical situations, new sources of information can become available
over time: new sensors can be included in the system or additional training
data can be acquired. In such cases, we may not wish to train the whole
combiner again every time.

The non-trainable approaches consist in combining directly the outputs
of the base classifiers, using a pre-defined combination rule. The simplest
example is the majority vote. It is one of the few cases where the out-
puts of the base classifiers do not have to be pre-processed. Otherwise, the
various outputs have to be made comparable beforehand. This constitutes
the major difficulty of non-trainable methods. Class membership probabil-
ities are often used as common representations. The transformation of the
outputs of a classifier into probabilities is referred to as calibration. In non-
trainable approaches, the quality of the calibration often prevails over the
classification accuracy of the initial classifiers [8, 37]. Compared to trainable
combiners, non-trainable methods may lead to sub-optimal results, as the
potential interactions among the initial classifiers are not considered. How-
ever, in contrast with the trainable case, new classifiers can be easily added
and combined iteratively.

This last point is a prerequisite for a flexible multi-modal system. There-
fore, only non-trainable combination approaches are considered in this the-
sis.

1.2.3 Class definition

The definition of the classes of objects in an image understanding context
is non-trivial. Having an exhaustive list of the objects that may appear in
an image may seem impossible in practice. All the semantic segmentation
methods presented in the previous section deal with different sets of classes.
In our case, we will only consider classes that are of interest in automotive
applications. Figure 1.2 shows the set of 30 basic classes used for our ground
truth annotations. Figure 1.3 shows some images we have selected and
manually annotated from the KITTI Vision Benchmark Suite [51].

In our case, we do not expect to build a general classifier that would
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Figure 1.2: Class decomposition.

recognize each of these basic classes. Instead, we try to combine methods
that may recognize only a partial number of classes or sets of classes. This
set of basic classes is also allowed to evolve over time if new classes need to
be introduced.

1.3 Bayesian fusion

The use of probabilistic measures is the most common way to model imper-
fect information. Let Ω = {ω1, . . . , ωK} be a set of K mutually exclusive
classes called the frame of discernment, which corresponds to the set of all
possible classes. The imperfect knowledge about the true class ω ∈ Ω of an
instance, after observing some data x ∈ X, is modeled by an a posteriori
probability distribution P (·|x) defined over Ω. This probability distribution
will also be noted PΩ

x (·), the superscript Ω will sometimes be omitted if
there is no ambiguity about the frame of discerment.

1.3.1 Information representation

After observing some data x ∈ X, the probability PΩ
x (ωi) can be interpreted

as the confidence degree of the class ωi ∈ Ω.

Definition 1.1. If there exists a singleton ωj ∈ Ω such that PΩ
x (ωj) = 1,

the information is said to be certain. Otherwise, it is uncertain.
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Figure 1.3: Examples of annotated images from the KITTI dataset.
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The closer the probability distribution is to the uniform distribution, the
less informative it is. In particular, complete ignorance is handled by the
principle of indifference [60, Chapter IV, pages 41–64]:

“The Principle of Indifference asserts that if there is no known rea-
son for predicating of our subject one rather than another of sev-
eral alternatives, then relatively to such knowledge the assertions
of each of these alternatives have an equal probability. Thus equal
probabilities must be assigned to each of several arguments, if
there is an absence of positive ground for assigning unequal ones”.

Ignorance can occur when the data x conveys no relevant information or
when is it known to be unreliable. In this case, the uniform distribution UΩ

over Ω is used

UΩ(ωi) =
1

|Ω|
, ∀ωi ∈ Ω. (1.1)

1.3.2 Combination rules

Probabilistic fusion relies mainly on Bayes’ rule. Let P (ωi|x1) and P (ωi|x2),
for i = 1, . . . ,K, be the probability distributions over Ω returned by two
modules after observing some data x1 ∈ X and x2 ∈ X, respectively. By
assuming conditional independence, the following expression holds:

p(x1,x2|ωi) = p(x1|ωi)p(x2|ωi), ∀i ∈ {1, . . . ,K}. (1.2)

Bayes’ rule then yields

P (ωi|x1,x2) =
P (ωi)p(x1,x2|ωi)

p(x1,x2)
(1.3a)

=
P (ωi)

p(x1,x2)
p(x1|ωi)p(x2|ωi) (1.3b)

=
p(x1)p(x2)

p(x1,x2)

P (ωi|x1)P (ωi|x2)

P (ωi)
(1.3c)

∝ P (ωi|x1)P (ωi|x2)

P (ωi)
, ∀i ∈ {1, . . . ,K}. (1.3d)

In practice, the prior class distribution P (ωi) is difficult to estimate and is
often replaced by a uniform distribution. When a uniform prior class dis-
tribution is used, the combination rule (1.3) is referred to as the product
rule. Other combination rules that replace the product by the sum, the
minimum or the maximum operator can be derived from the product rule
by using different approximations [63]. These four combination rules will be
denoted, respectively, by the operators �, �, ∧ and ∨. The support µi of
the class ωi computed from these combination rules, given L probabilities
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P (ωi|x1), . . . , P (ωi|xL), is summarized in Table 1.1. To retrieve a proba-
bility distribution from these supports, they are normalized to sum up to
one. The combination rule resulting from the sum operator is actually the
average rule.

To illustrate the differences between these rules, let us consider a binary
classification problem with Ω = {0, 1}. Figure 1.4 shows the combined
probability P (y = 1|x1,x2) computed from two probabilities P (y = 1|x1)
and P (y = 1|x2), where y ∈ {0, 1} is the true class of an observed instance.
The average rule is sometimes considered to be more stable [113] than the
product rule. Indeed, we can see in Figure 1.4b that the average rule is less
prone to drive the combined probability to a very low or very high value.
For the average rule, a high probability can only be obtained if both the
initial probabilities are high. On the contrary, with the product rule, a
very low probability can still lead to a very high combined probability. For
example, the combination of Px1(y = 1) = 0.1 with Px2(y = 1) = 0.99 gives
Px1 � Px2(y = 1) ≈ 0.917, while Px1 � Px2(y = 1) = 0.545.

Definition 1.2. Let P be a binary probability distribution over a binary
random variable Y defined as P (Y = 1) = q and P (Y = 0) = 1− q for some
q ∈ [0, 1]. The entropy H(P ) associated to P defined as

H(P ) = −q ln q − (1− q) ln(1− q), (1.4)

quantifies the amount of information encoded by P . The higher is the en-
tropy, the less informative is P . In particular, the entropy is maximized by
the uniform distribution.

Proposition 1.1. Let Px1 and Px2 be two binary probability distributions.
Their combination follows the following ordering:

H(Px1 � Px2) ≤ H(Px1 ∧ Px2) ≤ H(Px1 � Px2) ≤ H(Px1 ∨ Px2). (1.5)

Proof. The proof is given in Appendix (see page 107).

The product rule can be seen as more committed than the other three
while the maximum rule is the most cautious one. In practical situations,
Tax et al. [113] recommended to use averaging estimated posterior proba-
bilities when the posterior probabilities to combine are not well estimated.
They would prefer the product combination rule only when good estimates
of posterior class probabilities are available.

Another interesting way to visualize the differences between these com-
bination rules is to look at the gain Px1,x2 − Px1 obtained after combining
Px1 with Px2 . Figure 1.5 shows the gains obtained from the different combi-
nation rules. We can remark that the uniform distribution is, as one would
expect, a neutral element of the product rule. However, it is not the case
for the three other rules; none of them actually has a neutral element. This
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Table 1.1: Probabilistic combination rules.

Combination rules Support of the class ωi

Product µ∗i =
L∏
j=1

P (ωi|xj)

Average µ+
i =

L∑
j=1

P (ωi|xj)

Minimum µ∧i = min
j=1,...,L

{P (ωi|xj)}

Maximum µ∨i = max
j=1,...,L

{P (ωi|xj)}

result is counter-intuitive as a uniform distribution should convey no infor-
mation. In a classification context, this result might be acceptable for the
average rule as the ranking of the potential outcomes, with respect to their
respective estimated probability, is not changed by combining with an uni-
form distribution. This is not the case for the minimum and maximum rules
when the classification involves three or more classes.

Another difference is that the average, minimum and maximum rules are
idempotent. It means that a probability distribution combined with itself
leads to the same probability. It is not true for the product rule. When the
conditional independence property (1.2) is not satisfied, it is more cautious
not to use the product rule.

Next, we can see that the gain obtained by the average and maximum
rules is bounded in [−0.5,+0.5]. This implies that certain information can-
not be well represented. A probability P (y = 1) = 1, for which there is no
uncertainty involved, may still be changed if combined with another prob-
ability distribution with the average or maximum rules. Using the product
or minimum rules, such a probability distribution is not modified as it is
considered certain.

Finally, it is important to note that the product and minimum rules
cannot be used to combine contradictory sources of information. Two prob-
ability distributions are contradictory if the support resulting from their
combination is null for all the classes. Table 1.2 summarizes the properties
of these four combination rules.

1.3.3 Reliability

When the reliability r ∈ {0, 1} of the source of information is known, it can
be combined with the initial probability distribution PΩ

x . If the source of
information is reliable, i.e., r = 1, then PΩ

x is kept as is, otherwise it conveys
no information and should be replaced by UΩ. The combined probability
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Figure 1.4: Combination of two probability distributions. The horizontal
axis corresponds to the value of P (y = 1|x1) and the vertical axis cor-
responds to the value of P (y = 1|x2). The colors show the value of the
combined probability P (y = 1|x1,x2).

Table 1.2: Properties of combination rules.

Properties Prod. Avg. Min. Max.

Uniform distribution as neutral element
√

Representation categorical information
√ √

Idempotence
√ √ √

Combination of contradictory information
√ √
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Figure 1.5: Probability gain obtained from the combination. The horizontal
axis corresponds to the value of P (y = 1|x1) and the vertical axis corre-
sponds to the value of P (y = 1|x2). The colors show the value of the gain
G = P (y = 1|x1,x2)− P (y = 1|x1). The dotted line separates the positive
gains from the negative ones.
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PΩ
x,r is derived from the law of total probability

PΩ
x,r(ωi) = PΩ

x (ωi|r = 1)PR(r = 1) + PΩ
x (ωi|r = 0)PR(r = 0) (1.6a)

= PΩ
x (ωi)PR(r = 1) + UΩ(ωi)PR(r = 0), (1.6b)

= PΩ
x (ωi)PR(r = 1) +

1− PR(r = 1)

|Ω|
, (1.6c)

for all ωi ∈ Ω. If the probability of a source of information to be reliable
is low, i.e., PR(r = 1) ≈ 0, then PΩ

x,r ≈ UΩ. Combining Px,r with another
probability distribution using the product rule will then lead to only small
changes, as expected. However, it is not the case for the other combination
rules. For the average and maximum rules, the probability PR(r = 1) is
often used as a weight w for computing the support function. The support
function of the weighted average rule is defined as

µ̃+
i =

L∑
j=1

wjP (ωi|xj), ∀i ∈ {1, . . . ,K}, (1.7)

where wj = PR(rj = 1) represents the reliability of j-th source of infor-
mation. Similarly, the support function of the weighted maximum rule is
defined as

µ̃∨i = max
j=1,...L

{wjP (ωi|xj)}, ∀i ∈ {1, . . . ,K}. (1.8)

For the minimum rule, there is no straightforward way to take into account
the reliability of a source of information.

1.3.4 Refinement

An important point to note is that probability distributions to be combined,
have to be defined over the same frame of discernment. When several mod-
ules deal with different kinds of objects, it is necessary to reason with several
frames of discernment with varying granularities. From a frame of discern-
ment Ω, a refinement Θ can be defined by splitting some or all its elements
into new classes.

Definition 1.3. A refining from Ω to Θ can be defined [105, Chapter 6,
Section1] by an application ρ : 2Ω → 2Θ such that

• {ρ ({ω}) , ω ∈ Ω} ⊆ 2Θ is a partition of Θ; (1.9a)

• ∀A ⊆ Ω, ρ (A) =
⋃
ω∈A

ρ ({ω}) . (1.9b)

The notation 2Ω refers to the power set of Ω, which is the set of all subsets of
Ω. Condition (1.9b) implies that the refining ρ is fully defined by the images
of all the singletons {ω} ∈ 2Ω under ρ.
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Ωs Sky Sky

Ωg Ground Ground

Λ Ground Vertical structures Sky

Ωv Vegetation Vegetation Vegetation Vegetation

Θ Grass Road Tree/Bush Obstacle Sky

Figure 1.6: Illustration of multi-class fusion. A ground detector can be
combined with a sky detector by defining the “vertical” class which refers
to anything that is not the ground or the sky. The combination with a veg-
etation detector leads to an even finer class decomposition. The “obstacle”
class refers to anything that is neither the sky, the ground nor vegetation.
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Example 1. Figure 1.6 shows a typical example of a combination of de-
tectors defined over distinct frames of discernment. This example will be
used throughout this thesis and will serve as basis to show the limita-
tions of probabilistic reasoning. If a ground detector reasoning over Ωg =
{ground, ground} has to be combined with a sky detector reasoning over
Ωs = {sky, sky}, a common frame of discernment Λ = {ground, vertical, sky}
has to be defined, as illustrated in Figure 1.6. The refining from Ωg to Λ is
defined by {

ρ({ground}) = {ground},
ρ({ground}) = {vertical, sky}. (1.10)

The notation {ground} is used instead of {ground} whenever we want to
specifically refer to the non-ground class as a singleton, but they both se-
mantically refer to the same thing. The class “vertical” actually corresponds
to everything that is neither the ground nor the sky, i.e., {vertical} =
{ground} ∩ {sky}. Then, if a vegetation detector reasoning over Ωv =
{vegetation, vegetation} has to be added, the frame Λ can be further re-
fined to Θ by 

ρ′({ground}) = {grass, road},
ρ′({vertical}) = {tree, obstacle},

ρ′({sky}) = {sky}.
(1.11)

The “obstacle” class refers to anything that is neither the sky, the ground
nor vegetation.

An important type of imperfection that occurs when dealing with refine-
ments is imprecise information. Consider the case described in Example 1
and assume that the output of a ground detector, initially defined on Ωg,
is expressed in the refined frame of discernment Λ. Let xg ∈ X be some
observed data and PΩg

xg
be the probabilities returned by a ground detector

defined as

PΩg
xg

(ground) = q, PΩg
xg

(ground) = 1− q, (1.12)

where q ∈ [0, 1]. The information represented by PΩg
xg

can be rewritten over
the refined frame Λ as

PΛ
xg

(ground) = q, PΛ
xg

(vertical or sky) = 1− q. (1.13)

However, expression (1.13) does not fully define the probability PΛ
xg

. Actu-
ally, every probability distribution P so that P (vertival) + P (sky) = 1− q,
verifies the constraints defined by (1.13). We say that the information rep-
resented by (1.13) is imprecise [120]. In such situations, the principle of in-
difference states that the classes “vertical” and “sky” should have an equal
probability. It leads to the following probability:

PΛ
xg

(ground) = q, PΛ
xg

(vertical) = PΛ
xg

(sky) =
1− q

2
. (1.14)
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As the ground detector cannot differentiate the “vertical” class from the
“sky” class, the initial probability assigned the non-ground class is uniformly
distributed to these two refined classes.

One major issue with such an approach is that the information repre-
sented by (1.14) is not exactly the same as (1.12). Suppose that the observa-
tion xg conveys no relevant or reliable information. The initial probability
PΩg
xg

should be uniform (q = 1/2):

PΩg
xg

(ground) = 1/2, PΩg
xg

(ground) = 1/2, (1.15)

in which case the ground detector cannot make any decision, as expected.
Reasoning on another frame of discernment such as Λ does not change the
information at hand, which should still be modeled by a uniform distribu-
tion. However, equation (1.14) does not define a uniform distribution but
yields

PΛ
xg

(ground) = 1/2, PΛ
xg

(vertical) = PΛ
xg

(sky) = 1/4. (1.16)

Even worse, the ground detector would then be able to make a decision
and choose the “ground” class as the most probable one. Paradoxically, if
instead of {ground}, the class {ground} had been refined into {grass, road},
the same reasoning over Ψ = {grass, road, ground} leads to

PΛ
xg

(ground) = 1/2, PΛ
xg

(grass) = PΛ
xg

(road) = 1/4. (1.17)

The same ground detector would then chose the “non-ground” class as the
most probable one. This example shows that traditional probability theory
cannot properly represent imprecise information.

1.4 Conclusion

In this thesis, scene understanding is seen as an image understanding prob-
lem. Multiple sources of information from potentially different sensors are
considered for both object detection and semantic segmentation. In order to
be flexible enough to include new sources of information, only non-trainable
combiners are considered. In such a context, all the classification modules
need to provide comparable outputs. Probabilistic measures are commonly
employed to represent imperfect information. However, many types of im-
perfect information cannot be properly represented with probability distri-
butions. More complex theories have been developed during the last decades
to better represent and combine imperfect information. One of them will be
reviewed in the next chapter.
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Chapter 2

Theory of belief functions

Multi-modal information fusion tasks require powerful tools to represent and
combine several types of imperfect information. As shown in the previous
chapter, probabilistic approaches, even though commonly employed, may
be too limited. The theory of belief functions, also known as Dempster-
Shafer theory [105], evidence theory or the transferable belief model [109],
is a generalization of the theory of probabilities. It offers a well-founded
and elegant framework to represent and combine a large variety of imper-
fect information [61]. It is also a generalization of possibility theory [137]
and is closely linked to other theories including random sets [85], imprecise
probability [120] and fuzzy sets [136].

In this chapter, we first describe in Section 2.1 how different types of
information can be represented in the framework of belief functions. In
Section 2.2, we discuss the combination of mass functions and present a few
combination rules. Next, we describe in Section 2.3 some operations over
the frame of discernment such as refinement, coarsening and conditioning.
Then, in Section 2.4, we consider the issue of decision making using belief
functions. Finally, statistical inference based on belief functions is described
in Section 2.5.

2.1 Information representation

2.1.1 Mass function

Definition 2.1. A mass function, also called basic belief assignment or
basic probability assignment, over a frame of discernment Ω is a function
mΩ : 2Ω → [0, 1] verifying

mΩ(∅) = 0,
∑
A⊆Ω

mΩ(A) = 1. (2.1)

The superscript Ω will sometimes be omitted when there is no ambiguity
about the frame of discernment. Given an object of class ω ∈ Ω, the belief

21
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about its membership to some subsets of Ω can be modeled by a mass
function m. The quantity m(A), for a given subset A ⊆ Ω, represents
the belief committed exactly to the hypothesis ω ∈ A. It is important to
understand that the hypothesis ω ∈ A does not support the membership of
ω to any subset B ( A. If m(A) > 0, then A is said to be a focal element,
or focal set, of m.

Definition 2.1 imposes that the empty set cannot be a focal element.
If this constraint is relaxed, the mass function is said to be unnormalized.
Then, the quantity m(∅) can be interpreted as the degree of support of
the hypothesis that the true class ω is actually outside of the frame Ω.
In this thesis, the closed-world assumption is used [107], i.e., the frame of
discernment Ω is considered exhaustive. This might seem contradictory with
our discussion about the difficulty of having an exhaustive list of objects
in an image understanding context (Section 1.2.3). However, because the
reasoning is performed over sets of classes, it is easy to define the complement
A of any set A.

For instance, in the example given in Figure 1.6, the frame of dis-
cernment Ωg = {ground, ground} is exhaustive as every observed object
is either ground or not. Similarly, the class “vertical structures” in Λ =
{ground, vertical, sky} actually refers to anything that is not the ground or
the sky. Therefore, only normalized mass function will be used in this work.

Definition 2.2. A mass function that has Ω as unique focal element, i.e.,
m(Ω) = 1, is said to be vacuous.

The vacuous mass function actually represents total ignorance as the
closed-world assumption implies that the hypothesis ω ∈ Ω is always true.

Definition 2.3. A non-vacuous mass function that has only one focal ele-
ment is called a categorical mass function.

A categorical mass function represents certain information in which no
uncertainty is involved.

Definition 2.4. A probability distribution over Ω is a particular kind of
mass function that has only singletons as focal elements. Such a mass func-
tion is said to be Bayesian.

In the theory of belief functions, probability distributions are used to
represent precise information.

Definition 2.5. A simple mass function is a mass function that has at most
two focal elements, including Ω. For A ⊂ Ω and w ∈ [0, 1], the notation Aw

refers to the simple mass function m defined as

m(A) = 1− w, m(Ω) = w. (2.2)
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Table 2.1: Examples of mass functions defined over Λ =
{ground, vertical, sky}.

Mass function Example Type of information

Vacuous m(Λ) = 1 Complete ignorance

Categorical m({vertical, sky}) = 1 Certain information

Bayesian
m({ground}) = 1/2,

Precise information
m({vertical}) = m({sky}) = 1/4

Simple
m({ground}) = 2/3, Support a unique

m(Λ) = 1/3 hypothesis

Dogmatic
m({ground}) = 1/3,

m({vertical, sky}) = 2/3

Simple mass functions represent evidences that support only one hy-
pothesis. The mass function A0 is categorical, while A1 is vacuous for any
A ⊂ Ω.

Definition 2.6. A mass function is said to be dogmatic if Ω is not a focal
element. In particular, categorical and Bayesian mass functions are dog-
matic.

The use of dogmatic mass functions should be handled with caution
as they imply strong assumption. Let F = {Fi ⊂ Ω|1 ≤ i ≤ k} be the
set of all focal elements of a dogmatic mass function m. Let F = {E ⊆
Ω|∀i ∈ [|1, k|], E ∩ Fi = ∅} be the set of all subsets E ⊂ Ω than intersect
none of the elements of F . Then, for all subsets E ∈ F , the hypothesis
E is completely ruled out by m. When the use is not totally justified,
dogmatic mass functions may lead to somewhat counter-intuitive results
when combined with conflicting information.

Table 2.1 gives some examples of mass functions and the type of infor-
mation that are encoded.

2.1.2 Other representations

The information encoded by a mass function can be represented in other
ways. The notions of belief, plausibility, commonality, contour and pignistic
probability play important roles in many aspects of evidential reasoning.

Definition 2.7. Belief and plausibility functions are defined, respectively,
as

Bel(A) =
∑
B⊆A

m(B) and Pl(A) =
∑

B∩A 6=∅

m(B), (2.3)

for all A ⊆ Ω. The quantity Bel(A) measures the degree of support of A,
while Pl(A) = 1 − Bel(A) measures the lack of support to the complement
of A.
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Definition 2.8. The commonality function q associated to a mass function
m is defined as

q(A) =
∑
B⊇A

m(B), ∀A ⊆ Ω. (2.4)

The quantity q(A) can be interpreted as the degree of belief that could poten-
tially support any element of A if further information becomes available.

There exists a one-to-one correspondence between mass, belief, plausi-
bility and commonality functions. The mass function can be computed from
the belief, plausibility and commonality functions as

m(A) =
∑
B⊆A

(−1)|A\B|Bel(B) (2.5a)

=
∑
B⊆A

(−1)|A\B|
(
1− Pl

(
B
))

(2.5b)

=
∑
B⊇A

(−1)|A\B|q(B). (2.5c)

Definition 2.9. The contour function pl : Ω → [0, 1] associated to a mass
function is defined as the plausibility of the singletons

pl(ω) = Pl({ω}), ∀ω ∈ Ω. (2.6)

Definition 2.10. A mass function can be transformed into a probability
distribution BetP by the pignistic transformation [109] defined as

BetP (ω) =
∑

A⊆Ω,ω∈A

m(A)

|A|
, ∀ω ∈ Ω. (2.7)

BetP is called the pignistic probability associated to m. The mass m(A) is
uniformly distributed to all of the elements of A.

The contour function and the pignistic probability are often used for
decision making. This issue is further discussed in Section 2.4.

2.1.3 Consonant belief functions

Definition 2.11. A mass function is said to be consonant if its focal ele-
ments F = {Fi ⊆ Ω|1 ≤ i ≤ k}, are nested: F1 ⊂ F2 ⊂ . . . ⊂ Fk.

Consonant mass functions play an important role in the theory of belief
functions. In particular, the plausibility of consonant mass function defines
a possibility distribution [137]. This makes the theory of belief functions a
generalization of the possibility theory.
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Proposition 2.1. Let m be a mass function and Pl its associated plausi-
bility function, the following propositions are equivalent:

1. m is consonant;

2. Pl(A ∪B) = max(Pl(A), P l(B)), ∀A,B ⊆ Ω;

3. Pl(A) = max
ω∈A

Pl({ω}), ∀A ⊆ Ω, A 6= ∅.

From a more philosophical point of view, one may argue that the infor-
mation induced by a single piece of evidence should always be modeled by a
consonant mass function. The presence of non consonant mass functions is
then only justified when combining several sources of information. In [105],
Shafer cited the economist Shackle who argued in [104] that:

“To assign greater than zero degrees of potential surprise to both
the hypothesis and its contradictory would [...] betray an unre-
solved mental confusion.”

The notion of potential surprise is to be understood as belief in the theory
of belief functions.

In practice, consonant mass functions are also useful because they have a
maximum of |Ω| focal elements instead of 2|Ω| in the general case. They can
be used as approximations of general mass functions [18, 35]. Consonant
mass functions also appear when considering belief functions ordering. In
the theory of belief functions, the Least Commitment Principle [108] plays
a role similar to the principle of indifference in probability theory. This
principle indicates that, given two belief functions compatible with a set of
constraints, the least informative, with respect to a given ordering, should
be selected. A popular partial ordering is the q-ordering [34].

Definition 2.12. A mass function m1 is said to be q-less committed than
m2 and noted m1 vq m2 if and only if

q1(A) ≤ q2(A), ∀A ⊆ Ω. (2.8)

This least commitment principle can be used to associate a non-Bayesian
mass function to a probability distribution. The pignistic transformation
given in Definition 2.10 transforms a mass function into a probability dis-
tribution. This transformation is, however, not invertible: different mass
functions can lead to the same pignistic probability. A generalized inverse
can however be defined by using the least commitment principle. Given a
probability distribution P , Dubois et al. [36] showed that the least informa-
tive belief function with respect to the q-ordering is unique and consonant.
It can be constructed as follows:
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• The probability measure is first transformed into a possibility measure:

poss (ωi) =
∑
ωj∈Ω

min(P (ωi), P (ωj)), ∀ωi ∈ Ω. (2.9)

• The possibilities πj = poss(ωij ) are sorted so that:

π1 ≥ π2 ≥ . . . ≥ π|Ω|. (2.10)

• The associated consonant mass function is then defined as:

m(A) =


πj − πj+1 if A = {ωi1 , . . . , ωij},
π|Ω| if A = Ω,

0 otherwise.
(2.11)

The ignorance m(Ω) resulting from this transformation is equal to the min-
imum plausibility of the singletons. In particular, a uniform probability
distribution leads to the vacuous mass function.

2.1.4 Discounting

In the theory of belief functions, knowledge about the reliability of a source
of information can be handled by a discounting factor [105, Chapter 11,
Section5]. A discounting factor is used to weaken a mass function by trans-
ferring some masses to the ignorance state.

Definition 2.13. For a factor α ∈ [0, 1], the discounted mass function αm
is defined as

αm(A) = (1− α)m(A), ∀A ( Ω (2.12a)
αm(Ω) = (1− α)m(Ω) + α. (2.12b)

If α = 0, the information is considered reliable and is kept as is. On the
other hand, if α = 1, the information is totally unreliable and leads to the
vacuous mass function. Smets [108] showed that the discounting equation
(2.12) can be derived by interpreting 1 − α as the degree of belief that the
information is reliable. Thus, the discounting factor α plays a role equivalent
to PR(r = 0) in the probabilistic case (1.6).

2.2 Combination rules

2.2.1 Dempster’s rule

Definition 2.14. Given two mass functions m1 and m2 induced by two
independent sources of information, one can combine them using Dempster’s
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rule of combination, or orthogonal sum, to compute a new mass function
m1 ⊕m2 defined as

(m1 ⊕m2)(∅) = 0, (2.13a)

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C), ∀A 6= ∅, (2.13b)

where

κ =
∑

B∩C=∅

m(B)m(C). (2.14)

The quantity κ measures the conflict between the two mass functions.
The combination rule (2.13) is valid if and only if κ < 1, otherwise, m1

and m2 are incompatible and cannot be combined. Dempster’s rule is com-
mutative, associative and has the vacuous mass function as unique neutral
element.

Dempster’s rule can be expressed very simply in terms of commonality
functions. Given L commonality functions q1, . . . , qL, their combination by
Dempster’s rule is defined as

(q1 ⊕ . . .⊕ qL)(A) =
1

1−K
∏

1≤i≤L
qi(A), (2.15a)

∝
∏

1≤i≤L
qi(A), ∀A ⊆ Ω, (2.15b)

where K is the overall conflict resulting from the combination of the mass
functions m1, . . . ,mL. It can be expressed as

K =
∑

A1,...,AL⋂
Ai=∅

∏
1≤i≤L

mi(Ai). (2.16)

We can see from (2.15) that Dempster’s rule is actually equivalent to the
probabilistic product rule (1.3) when combining Bayesian mass functions.
Indeed, we have ∀ωi ∈ Ω, q({ωi}) = m({ωi}).

2.2.2 Cautious rule

Similarly to the probabilistic product rule, Dempster’s rule is not idempo-
tent. It assumes that the mass functions to combine are induced by indepen-
dent sources of information. In cases where this independence assumption
is not reasonable, Denœux [26] proposed to use the cautious rule.

Every mass function m can be written as the combination by Dempster’s
rule of simple mass functions

m =
⊕
∅6=A⊂Ω

Aw(A), (2.17)
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with w(A) ∈ [0, 1] for all A ∈ 2Ω\{∅}. This representation is called the
canonical decomposition of m and is unique for non dogmatic mass functions.
The weights w(A) can be obtained from the commonalities as follows:

w(A) =
∏
B⊇A

q(B)(−1)|B|−|A|+1
, (2.18)

for all A ⊂ Ω.

Definition 2.15. Let m1 and m2 be two non dogmatic mass functions and
w1 and w2 their associated weights from their respective canonical decompo-
sition. Their combination using the cautious rule is noted m1 7m2 and is
defined as

m1 7m2 =
⊕
A⊂Ω

Aw1(A)∧w2(A), (2.19)

where ∧ denotes the minimum operator. The cautious rule is associative,
commutative, idempotent and has the vacuous mass function as unique neu-
tral element.

2.2.3 Triangular norm-based rules

It is possible to formulate both Dempster’s rule and the cautious rule with
a triangular norm-based combination rule [26, 98]. The combination with
Dempster’s rule of two non dogmatic mass functions m1 and m2 can be
written as an expression similar to (2.19):

m1 ⊕m2 =
⊕
A⊂Ω

Aw1(A)w2(A). (2.20)

With Dempster’s rule, the weights w1 and w2 are multiplied while with
the cautious rule the minimum operator is used. Frank’s family of t-norms
generalizing these two operators is defined as

w1>sw2 =


w1 ∧ w2 if s = 0,
w1w2 if s = 1,

logs

(
1 + (sw1−1)(sw2−1)

s−1

)
otherwise.

(2.21)

For any s ∈ [0, 1], w1>sw2 returns a value between w1w2 and w1 ∧ w2.

Definition 2.16. The combination of two non dogmatic mass functions m1

and m2 with Frank’s triangular norm of parameter s ∈ [0, 1] is defined as

m1 js m2 =
⊕
A⊂Ω

Aw1(A)>sw2(A). (2.22)

The degree of independence between the two mass functions m1 and m2

can be taken into account by varying the value of s from 0 to 1.
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2.2.4 Other combination rules

Dempster’s rule has been often criticized and its validity questioned as it may
lead to some counter-intuitive results when combining conflicting evidence.
Many alternatives to Dempster’s rule can be found in the literature [71, 132,
114]. These rules were mainly proposed to address the issue of combining
conflicting information. More specifically, the conflict κ (2.14) resulting
from the combination of two mass functions is distributed differently to the
various subsets of the frame of discernment.

Similarly to the use of the average or maximum rule in the probabilistic
case, these alternative rules allow the combination of contradictory infor-
mation but prevent the representation of certain types of information. In
particular, categorical, Bayesian and dogmatic mass functions can often not
be properly handled by these alternative combination rules. The use of
these alternative rules thus limits the power of the belief functions theory
to represent a large variety of information. In this work, we adopt the same
point of view as Haenni [55] who considered that so-called counter-intuitive
results that may be obtained from Dempster’s rule are often due to a wrong
modelisation of the pieces of evidence to combine. Efforts should thus be put
on representing properly the information at hand rather than on modifying
the combination rule.

2.3 Operations over the frame of discernment

2.3.1 Refinement

Because mass functions are directly defined over sets of classes, refinement
and imprecise information can be easily handled.

Definition 2.17. Given a refining ρ : 2Ω → 2Θ, a mass function mΩ defined
over Ω can be transformed into a mass function mΘ defined over Θ, such
that for all B ⊆ Θ:

mΘ(B) =

{
mΩ(A) if ∃A ⊆ Ω, B = ρ(A),
0 otherwise.

(2.23)

Example 2. Remind Example 1, where an initial probability PΩg
xg

defined
over the frame Ωg = {ground, ground} has to be redefined over the frame
Λ = {ground, vertical, sky}. The probability PΩg

xg
can be interpreted as a

Bayesian mass function mΩg
xg

defined as

mΩg
xg

({ground}) = q, mΩg
xg

({ground}) = 1− q, mΩg
xg

(Ωg) = 0, (2.24)

where q ∈ [0, 1]. The refining from Ωg to Λ (1.10) then simply yields

mΛ
xg

({ground}) = q, mΛ
xg

({vertical, sky}) = 1− q, mΛ
xg

(Λ) = 0. (2.25)
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The initial mass assigned to the singleton {ground} is simply transferred
to {vertical, sky} and not uniformly distributed as in the probabilistic case.
The information encoded by the two mass functions mΩg

xg
and mΛ

xg
is thus

the same.

2.3.2 Coarsening

The opposite operation to refining is called coarsening. If a frame of discern-
ment Θ is a refinement of Ω, then Ω is a coarsening of Θ. By definition, the
cardinality of a refinement Θ is greater than the cardinality of the original
frame Ω. This implies that a refining ρ : 2Ω → 2Θ cannot be bijective, thus
not invertible. There are two ways to define a mass function over a coarser
frame.

Definition 2.18. The inner reduction ϕ : 2Θ → 2Ω and outer reduction

ϕ : 2Θ → 2Ω associated to a refining ρ are defined, respectively, as

ϕ(B) = {ω ∈ Ω|ρ({ω}) ⊆ B}, ∀B ⊆ Θ, (2.26)

ϕ(B) = {ω ∈ Ω|ρ({ω}) ∩B 6= ∅}, ∀B ⊆ Θ. (2.27)

Definition 2.19. The inner and outer reduction of a mass function mΩ

over Θ are defined, respectively, as

mΘ(A) =
∑

B⊆Ω, ϕ(B)=A

mΩ(B), ∀A ⊆ Θ, (2.28)

mΘ(A) =
∑

B⊆Ω, ϕ(B)=A

mΩ(B), ∀A ⊆ Θ. (2.29)

Remark. In general, the inner reduction mΘ defined by Equation 2.28 is not
normalized, i.e., we may have mΘ(∅) > 0. It is, however, not the case for
the outer reduction mΘ which is always a normalized mass function.

Example 3. Suppose several mass functions were combined over a common
refined frame Θ = {road, grass, tree, obstacle, sky}. Suppose now that we
actually only need to reason over the coarser frame Λ = {ground, vertical, sky}.
These two frames are illustrated in Figure 2.1a and Figure 2.1b. The set
B = {road, tree, obstacle} ⊂ Ω (see Figure 2.1c) has no correspondence in
the frame Λ. The inner reduction ϕ(B) = {vertical} corresponds to the
largest subset of Λ that is entirely included in B (see Figure 2.1d). The
outer reduction ϕ(B) = {ground, vertical} corresponds to the smallest sub-
set of Λ that intersects B (see Figure 2.1e). It is important to note that if
the mass functions mΛ and mΛ are refined back to Θ, none of them would
actually lead to the initial mass function mΘ.

Proposition 2.2. Let mΘ be a mass function defined over Θ and mΩ its
outer reduction over Ω. The following propositions hold:
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Figure 2.1: Coarsening of a frame of discernment.
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Figure 2.2: Conditioning and deconditioning.

1. Bel
Ω

(A) = BelΘ(ρ(A)), ∀A ⊆ Ω;

2. Pl
Ω

(A) = PlΘ(ρ(A)), ∀A ⊆ Ω.

In practice, the outer reduction is often preferred as it is consistent with
respect to the belief and plausibility functions.

2.3.3 Conditioning

The conditioning of a mass function can be formulated as its combination
with a categorical mass function.

Definition 2.20. Let mΩ be a mass function. The conditioning mΩ[B] of
m with respect to B ⊆ Ω is defined as

mΩ[B] = mΩ ⊕B0, (2.30)

where B0 is the categorical mass function with unique focal element B.

The mass function mΩ[B] encodes the information represented by mΩ

given that hypothesis B is true. In particular, we have mΩ[B](A) = 0 for
all A * B. Suppose now that we are given a conditional mass function
mΩ[B]. In general, there are multiple mass functions whose conditioning



2.4. DECISION MAKING 33

with respect to B would lead to mΩ[B]. The least commitment principle
tells that the least committed one should be used.

Definition 2.21. Given a conditional mass function mΩ[B], its ballooning
extension mB⇑Ω is defined as{

mB⇑Ω
(
A ∪B

)
= mΩ[B](A) , ∀A ⊆ B,

mB⇑Ω(C) = 0 , ∀C ⊂ B. (2.31)

Example 4. Figure 2.2 shows an example of conditioning and ballooning ex-
tension. The initial mass mΘ({obstacle, sky}) is transferred to the singleton
{obstacle} after conditioning with respect to the setB = {grass, tree, obstacle}.
The ballooning extension of this conditional mass function would then trans-
fer this mass to the set {road, obstacle, sky}.

2.4 Decision making

The final aim of a classification task is to decide a class from the frame of
discernment. There exist several strategies for decision making [24] when
reasoning within the theory of belief functions. Two simple strategies con-
sist in choosing the singleton with maximum belief or plausibility. They are
called, respectively, the pessimistic and optimistic strategy. Another widely
used strategy is to use the pignistic probability transformation and selected
the singleton with maximum probability. In this thesis, the optimistic strat-
egy will be used. Two principal arguments can be stated in favor of this
choice. The first is that selecting the singleton with maximum plausibility
is computationally efficient [7]. The second argument is that the decisions
made from the optimistic strategy remain coherent with frame refinement.

2.4.1 Computation considerations

In general, the computation of Dempster’s rule (2.13) requires a number of
operations exponential in |Ω|. This can easily lead to intractable compu-
tation when |Ω| becomes large, typically as soon as |Ω| ≥ 10. Barnett [7]
showed that for certain subsets of Ω, the plausibility can be computed effi-
ciently.

Definition 2.22. Let E = {mi|1 ≤ i ≤ L} be a set of L mass functions to
combine and Fi the set of focal elements associated to each mi. A set A ⊂ Ω
is said to be atomic with respect to E if and only if

1) A 6= ∅, (2.32a)

2) ∀i ∈ {1, . . . , L}, ∀F ∈ Fi, A ⊆ F or A ∩ F = ∅. (2.32b)
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Intuitively, it means that a non-empty set A ⊂ Ω is atomic if none of the
mass functions from E can distinguish an element of A from another one. It
can easily be shown that a singleton {ω} ⊂ Ω is always atomic. Barnett [7]
showed that if A is atomic with respect to E then

∀i ∈ {1, . . . , L}, P li(A) = qi(A), (2.33)

which leads to

(Pl1 ⊕ . . .⊕ PlL)(A) = (q1 ⊕ . . .⊕ qL)(A) (2.34a)

∝
∏

1≤i≤L
qi(A) (2.34b)

∝
∏

1≤i≤L
Pli(A), (2.34c)

where qi and Pli are the commonality and plausibility associated to mi. As
singletons are always atomic, we finally get

(Pl1 ⊕ . . .⊕ PlL)({ω}) ∝
∏

1≤i≤L
Pli({ω}) (2.35a)

∝
∏

1≤i≤L
pli(ω). (2.35b)

To find the singleton with maximum plausibility resulting from the combi-
nations of mi, we only need to multiply the associated contour functions
pli. In theory, the computation of pli from mi requires O(|Fi|) time which
can be as large as O(2|Ω|). However, in many practical situations, we have
Fi � 2|Ω|. Moreover, in practice, the information at hand can be directly
encoded as a contour function without the need of explicitly representing
the underlying mass function. In such situations, the optimistic decision
reached from L sources of information can be computed in O(L|Ω|) time.

2.4.2 Decision making example

To show the differences between different decision making strategies, let us
consider the following mass function defined on Ω = {grass, road, ground}:

mΩ({grass, road}) = 0.2, (2.36a)

mΩ({grass, ground}) = 0.3, (2.36b)

mΩ({road, ground}) = 0.5. (2.36c)

Table 2.2 shows the beliefs, plausibilities and pignistic probabilities on the
singletons. Here, the pessimistic strategy cannot lead to any decision: actu-
ally, in the worst case scenario, any decision could be wrong given the current
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Table 2.2: BelΩ, PlΩ and BetPΩ from mass function (2.36).

{grass} {road} {ground}
BelΩ 0 0 0

PlΩ 0.5 0.7 0.8

BetPΩ 0.25 0.35 0.4

Table 2.3: BelΘ, PlΘ and BetPΘ from mass function (2.37).

{ground}
{grass} {road} {tree} {obst.} {sky}

BelΘ 0 0 0 0 0

PlΘ 0.5 0.7 0.8 0.8 0.8

BetPΘ 0.175 0.225 0.2 0.2 0.2

mass function. Choosing {grass} instead of {ground} would be wrong if the
masses mΩ({grass, ground}) and mΩ({road, ground}) were actually entirely
related to {ground}. Conversely, the other decision would also be wrong if
the same masses were now related respectively to {grass} and {road}. On
the other hand, both plΩ and BetPΩ would lead to {ground}, which seems
quite reasonable.

Now, if the singleton {ground} is refined into {tree, obstacle, sky}, the
mass function (2.36) will simply be rewritten as

mΘ({grass, road}) = 0.2, (2.37a)

mΘ({grass, tree, obstacle, sky}) = 0.3, (2.37b)

mΘ({road, tree, obstacle, sky}) = 0.5. (2.37c)

Table 2.3 shows the measures induced by this new mass function. Follow-
ing BetPΘ, the decision is changed and now leads to {road}. In contrast,
the plausibility criterion does not discriminate between {tree}, {obstacle}
and {sky}, which are still more plausible than {grass} and {road}. The
optimistic strategy thus remains coherent with its previous decision. The
optimistic strategy is thus more conclusive than the pessimistic one and
more coherent than the pignistic one.

2.5 Statistical inference

The theory of belief functions can also be used for statistical inference.
Shafer [105] originally proposed to use a “likelihood-based” belief function
for statistical inference. This approach was further justified by Denœux [27].
Knowledge about some parameters can then be used for prediction as in [59].
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2.5.1 Likelihood-based belief function

Let X ∈ X be some observable data and θ ∈ Θ the unknown parameter
of the density function fθ(x) generating the data. Information about θ
can be inferred given the outcome x of a random experiment. Shafer [105]
proposed to build a belief function BelΘx on Θ from the likelihood function.
After observing X = x, the likelihood function Lx : θ 7→ fθ(x) is normalized
to yield the following contour function:

plΘx (θ) =
Lx(θ)

supθ′∈Θ Lx(θ′)
, ∀θ ∈ Θ, (2.38)

where sup denotes the supremum operator. The consonant plausibility func-
tion associated to this contour function is

PlΘx (A) = sup
θ∈A

plΘx (θ), ∀A ⊆ Ω. (2.39)

The focal sets of BelΘx are defined as

Γx(γ) = {θ ∈ Θ | plΘx (θ) ≥ γ}, ∀γ ∈ [0, 1]. (2.40)

The random sets formalism [85] can be used to represent the belief and
plausibility functions on Θ. Given the Lebesgue measure λ on [0, 1] and the
multi-valued mapping Γx : [0, 1]→ 2Θ, we have

BelΘx (A) = λ ({γ ∈ [0, 1] | Γx(γ) ⊆ A})
PlΘx (A) = λ ({γ ∈ [0, 1] | Γx(γ) ∩A 6= ∅}) , ∀A ⊆ Θ. (2.41)

A complete description of the theory of random sets and its relation to
Dempster-Shafer theory can be found in [85].

2.5.2 Forecasting

Suppose that we now have some knowledge about θ after observing some
training data x. The forecasting problem consists in making some predic-
tions about some random quantity Y ∈ Y whose conditional distribution
gx,θ(y) given X = x depends on θ. A belief function on Y can be derived
from the sampling model proposed by Dempster [21]. For some unobserved
auxiliary variable Z ∈ Z with known probability distribution µ independent
of θ, we define a function ϕ so that

Y = ϕ(θ, Z). (2.42)

A multi-valued mapping Γ′x : [0, 1] × Z → 2Y is defined by composing Γx
with ϕ

Γ′x : [0, 1]× Z → 2Y

(γ, z) 7→ ϕ(Γx(γ), z).
(2.43)
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A belief function on Y can then be derived from the product measure λ⊗µ
on [0, 1]× Z and the multi-valued mapping Γ′x

BelYx (A) = (λ⊗ µ) ({(γ, z) | ϕ (Γx (γ) , z) ⊆ A}) , (2.44a)

PlYx (A) = (λ⊗ µ) ({(γ, z) | ϕ (Γx (γ) , z) ∩A 6= ∅}) , (2.44b)

for all A ⊆ Y.

2.5.3 Binary case example

In the particular case where Y is a random variable with a Bernoulli distri-
bution B(ω), it can be generated by a function ϕ defined as

Y = ϕ(ω,Z) =

{
1 if Z ≤ ω,
0 otherwise,

(2.45)

where Z has a uniform distribution on [0, 1]. Assume that the belief function
BelΩx on Ω is induced by a random closed interval Γx(γ) = [U(γ), V (γ)]. In
particular, it is the case if it is the consonant belief function associated to a
unimodal contour function. We get

Γ′x(γ, z) = ϕ ([U(γ), V (γ)] , z) =


1 if Z ≤ U(γ),
0 if Z > V (γ),
{0, 1} otherwise.

(2.46)

The predictive belief function BelYx can then be computed as

BelYx ({1}) = (λ⊗ µ)({(γ, z) | Z ≤ U(γ)}) (2.47a)

=

∫ 1

0
µ({z | z ≤ U(γ)})f(γ)dγ (2.47b)

=

∫ 1

0
U(γ)f(γ)dγ = E(U) (2.47c)

and

BelYx ({0}) = (λ⊗ µ)({(γ, z) | Z > V (γ)}) (2.48a)

= 1− (λ⊗ µ)({(γ, z) | Z ≤ V (γ)}) (2.48b)

= 1− E(V ). (2.48c)

As U and V take only non-negative values, these quantities have the follow-
ing expressions:

BelYx ({1}) =

∫ +∞

0
(1− FU (u))du (2.49a)

=

∫ ω̂

0
(1− plΩx (u))du (2.49b)

= ω̂ −
∫ ω̂

0
plΩx (u)du (2.49c)



38 CHAPTER 2. THEORY OF BELIEF FUNCTIONS

ω

p
lΩ x
(ω

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

mY
x ({1})

mY
x ({0, 1})

mY
x ({0})

Figure 2.3: Predictive mass function mY
x based on the contour function plΩx .

and

PlYx ({1}) = 1−BelYx ({0}) (2.50a)

=

∫ +∞

0
(1− FV (v))dv (2.50b)

= ω̂ +

∫ 1

ω̂
plΩx (v)dv, (2.50c)

where ω̂ is the value maximizing plΩx . In many practical situations, the
belief function BelYx cannot be expressed analytically. However, they can be
approximated either by Monte Carlo simulation using Equations (2.47) and
(2.48) or by numerically estimating the integrals of Equations (2.49) and
(2.50). The predictive mass function mY

x can be represented by the areas of
regions delimited by the contour function, as shown in Figure 2.3.

2.6 Conclusion

The theory of belief functions is a generalization of the theory of probabil-
ity. It can be used to represent many types of imperfect information. In
particular, imprecision and ignorance are better modeled by belief functions
compared to classical probabilities. Several combination rules are also de-
fined to combine information coming from different sources. The definition
of new classes through refinement is easily handled as the reasoning is done
over sets of classes. This theory will be used in the next three chapters to
model different kinds of imperfection information.



Chapter 3

Calibration of classifiers

The combination of pattern classifiers is an important issue in machine learn-
ing. In many practical situations, different kinds of classifiers have to be
combined. If the outputs of the classifiers are of the same nature, such as
probability measures or belief functions, they can be combined directly. Sev-
eral classification methods such a k-nearest neighbor rule, neural network or
decision trees can return probabilities. Evidential versions of these methods
can be found in the literature [23, 25, 112]. Other methods like support vec-
tor machines (SVM) or boosting may only return some classification scores.
In order to combine different types of classifiers, their outputs need to be
made comparable.

The transformation of the output of a classifier into a posterior class
probability is called calibration. Several methods can be found in the lit-
erature [95, 138, 139]. In this chapter, we first review in Section 3.1 three
binary probabilistic calibration methods and study their evidential exten-
sion. Then, in Section 3.2, we extend the calibration to multi-class problems.
Finally, some experimental results are presented in Section 3.3.

3.1 Binary classifier calibration

Let us consider a binary classification problem. Let X = {(x1, y1), . . . , (xn, yn)}
be some training data, where xi ∈ R is the score returned by a pre-trained
classifier for the i-th training sample whose label is yi ∈ {0, 1}. Given a test
sample of score s ∈ R and unknown label y ∈ {0, 1}, the aim of calibration
is to estimate the posterior class probability P (y = 1|s). Several calibration
methods can be found in the literature. Binning [138], isotonic regression
[139] and logistic regression [95] are the most commonly used.

39
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3.1.1 Binning

Binning [138] is a rather simple way to do calibration by partitioning the
score space into bins. For the j-th bin, which is an interval [sj , sj ], we
count the number of positive examples kj over all the nj training examples
whose score falls into this particular bin. Given a test sample of score s ∈
[sj , sj ] and unknown label y ∈ {0, 1}, estimating P

(
y = 1|s ∈ [sj , sj ]

)
can

be formulated as a simple binomial proportion estimation problem. Given
nj trials with kj successes, the probability P

(
y = 1|s ∈ [sj , sj ]

)
of having

a success from a new trial is the unknown binomial proportion τj ∈ [0, 1]
associated to the j-th bin. The best estimate of τj from a Bayesian point of
view is simply τ̂j = kj/nj , which yields

Pb

(
y = 1|s ∈ [sj , sj ]

)
=
kj
nj
, Pb

(
y = 0|s ∈ [sj , sj ]

)
=
nj − kj
nj

. (3.1)

To avoid a crisp 0 or 1 probability, especially in case of few data, the Laplace
estimator can be used instead. It assumes that both a success and a failure
have already been observed prior to the nj trials. This leads to the following
estimator:

Pl

(
y = 1|s ∈ [sj , sj ]

)
=
kj + 1

nj + 2
, Pl

(
y = 0|s ∈ [sj , sj ]

)
=
nj − kj + 1

nj + 2
.(3.2)

One limitation of these two probabilistic estimators is that the uncer-
tainty due to the number of samples is not taken into account. For example,
a bin containing 10 positive examples out of 20 and another one with 100
positive examples out of 200 will be given the same Bayesian and Laplacian
estimates. Yet, in the second case, the estimate is much more certain. This
kind of uncertainty can be better handled by using belief functions instead
of probabilities.

One way to get belief functions is to transform the probabilistic out-
puts into mass functions using the inverse pignistic transformation (see Sec-
tion 2.1.3). However, it does not solve the issue mentioned previously. An-
other simple way is to use Dempster’s model [22] which leads to the following
mass function:

md({1}) =
kj

nj + 1
, md({0}) =

nj − kj
nj + 1

, md({0, 1}) =
1

nj + 1
. (3.3)

Similarly to Laplace estimator, it can be interpreted as having observed one
sample prior to the trial but with unknown label. The amount of ignorance
md({0, 1}) is inversely proportional to nj + 1.

From a statistical inference point of view, confidence intervals are often
used to better model the uncertainty due to a small sample size. A confi-
dence interval [τ j , τ j ] at confidence level 1−α ∈ [0, 1], i.e., P

(
τ j ≤ τj ≤ τ j

)
=
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1 − α, can be represented by the following contour function defined over
τj ∈ T :

plTci(τj) =

{
1 if τ j ≤ τj ≤ τ j ,
α otherwise.

(3.4)

This contour function can be used within the Equations (2.49) and (2.50)
to derive the associated predictive mass function. The associated predictive
mass function is then defined as

mci({1}) = (1− α)τ j , mci({0}) = (1− α)(1− τ j). (3.5)

For the Clopper-Person interval [16], the bounds are defined as

τ j = B
(α

2
; kj , nj − kj + 1

)
, τ j = B

(
1− α

2
; kj + 1, nj − kj

)
, (3.6)

where B(q;β, γ) is the q-th quantile of a beta distribution with shape pa-
rameters β and γ. The choice of the confidence level is often arbitrary, a
confidence level of 95% is a common one.

An alternative to confidence intervals is the use of the likelihood function
as proposed by Denœux [27]. If the relative likelihood function is used as
contour function for τj , we get

plTl (τj) =
τ
kj
j (1− τj)nj−kj

τ̂
kj
j (1− τ̂j)nj−kj

, (3.7)

which gives the following predictive mass function (see Section 2.5.3):

ml({1}) =


0 if τ̂j = 0,

τ̂j −
B(τ̂j ; kj + 1, nj − kj + 1)

τ̂
kj
j (1− τ̂j)nj−kj

if 0 < τ̂j < 1,

nj
nj + 1

if τ̂j = 1,

(3.8a)

ml({0}) =



nj
nj + 1

if τ̂j = 0,

1− τ̂j −
B(τ̂j ; kj + 1, nj − kj + 1)

τ̂
kj
j (1− τ̂j)nj−kj

if 0 < τ̂j < 1,

0 if τ̂j = 1,

(3.8b)

where B and B are, respectively, the lower and upper incomplete beta func-
tion defined as

B(z; a, b) =

∫ z

0
ta−1(1− t)b−1dt, (3.9a)

B(z; a, b) =

∫ 1

z
ta−1(1− t)b−1dt = B(1− z; b, a). (3.9b)
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Figure 3.1: (a) Belief and plausibility of success given a proportion of 2/3
w.r.t the number of samples. (b) Belief and plausibility of success given
10 samples w.r.t the binomial proportion. The Clopper-Pearson confidence
interval was computed with a confidence level of 95%.

They can be computed exactly for integer values of a and b as

B(z; a, b) =
a+b−1∑
j=a

(a− 1)!(b− 1)!

j!(a+ b− 1− j)!
zj(1− z)a+b−1−j . (3.10)

Figure 3.1 illustrates the belief and plausibility of success obtained with
different number of samples and binomial proportions. In Figure 3.1a, we
can see that when the number of sample grows, Dempster’s model converges
very rapidly to the Bayesian estimate while the Clopper-Pearson interval is
more conservative. The likelihood-based approach gives intermediate re-
sults. As stated earlier, the probabilistic Bayesian estimator and its asso-
ciated inverse pignistic transform does not take into account the number
of samples. In Figure 3.1b, it is interesting to note that, when the em-
pirical proportion τ̂ is equal to 0 or 1, the likelihood-based approach gives
Dempster’s model.

One difficulty of binning is the choice of the number and size of the bins.
The number of bins can be set arbitrarily or optimized by cross-validation.
In the later case, it may become problematic if only a few training data
are available. Given a fixed number of bins, the boundaries of each bin are
usually chosen so that all the bins have the same size or about the same
number of samples. Figure 3.2 shows the results obtained after calibrating a
SVM classifier on the UCI1 Australian dataset. The binning was done using
the bins (−∞,−3], (−3,−2],. . ., (+2,+3], (+3,+∞).

1http://archive.ics.uci.edu/ml

http://archive.ics.uci.edu/ml
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(b) Isotonic regression
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(c) Logistic regression

Figure 3.2: Belief and plausibility of having a positive example given an
SVM score trained on the Australian dataset.
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3.1.2 Isotonic regression

In many practical situations, the scores are seen as confidence measures.
This implies that the transformation from a score to a probability measure
should be done using a non-decreasing function. This assumption is strong,
but it remains reasonable in many practical situations. An alternative to
binning that incorporates such prior constraint is isotonic regression [139]. It
consists in fitting a stepwise-constant non-decreasing, i.e., isotonic, function
g : R→ [0, 1] to the training data by minimizing the mean-squared error

MSE(g,X ) =
1

n

n∑
i=1

[g (xi)− yi]2 , (3.11)

The optimal function ĝ can be computed efficiently using the pair-adjacent
violators (PAV) algorithm [4], which is detailed in Algorithm 1.

Algorithm 1 Pair-adjacent violators (PAV) algorithm

Require: training data (x1, y1), . . . , (xi, yi), . . . , (xn, yn) sorted w.r.t. xi
ĝi ← 0, wi ← 0
ĝ1 ← y1, w1 ← 1
i← 1
for j = 2 : n do
i← i+ 1
ĝ(xi)← yj
wi ← wj
while i ≥ 2 and ĝ(xi−1) ≥ ĝ(xi) do
ĝ(xi−1)← (wi−1 · ĝ(xi−1) + wi · ĝ(xi))/(wi−1 + wi)
wi−1 ← wi−1 + wi
i← i− 1

end while
end for
return ĝ(s) = ĝi,j , for xi < s ≤ xj

The calibration result from isotonic regression can also be seen as a
particular case of binning. All the previous methods can thus be used.
Figure 3.2b shows the likelihood-based interval for each bin defined by the
isotonic regression. We can see, however, that the lower and upper envelopes
defined by the intervals are not isotonic. A simple way to get an isotonic
envelope is to first scan the bins in increasing order and keep the highest
upper bound seen so far to define the upper envelope, then to scan the bins
in decreasing order and keep the lowest lower bound to define the lower
envelope. Figure 3.2b also illustrates the obtained belief and plausibility
functions.
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3.1.3 Logistic regression

Platt [95] further constrains the calibration problem by using a parametrized
formulation using logistic regression. Niculescu-Mizil and Caruana [86]
showed that logistic regression is well-adapted for calibrating maximum mar-
gin methods like SVM. Moreover, it is less prone to over-fitting as compared
to binning and isotonic regression, especially when relatively few training
data are available. Logistic regression calibration consists in fitting a sig-
moid function

P (y = 1|s) ≈ hs(θ) =
1

1 + exp (θ0 + θ1s)
. (3.12)

The parameter θ = (θ0, θ1) ∈ R2 of the sigmoid function is determined by
maximizing the likelihood function on the training data,

LX (θ) =

n∏
i=1

pyii (1− pi)1−yi with pi =
1

1 + exp(θ0 + θ1xi)
. (3.13)

To reduce over-fitting and prevent θ0 from becoming infinite when the train-
ing examples are perfectly separable, Platt proposed to use an out-of-sample
data model by replacing yi and 1− yi by t+ and t− defined as

t+ =
n+ + 1

n+ + 2
and t− =

1

n− + 2
, (3.14)

where n+ and n− are respectively the number of positive and negative train-
ing samples. This ensures LX to have a unique supremum θ̂ = (θ̂0, θ̂1). By
formulating the logistic regression as a generalized linear model [56], normal
approximation intervals can be used to compute a confidence interval over
hs(θ̂). The mass function (3.5) can then be used.

The likelihood function LX can be used to define a plausibility function
PlΘX over the parameter θ ∈ Θ as follows:

PlΘX (A) = sup
θ∈A

plΘX (θ), ∀A ⊆ Θ, (3.15)

where

plΘX (θ) =
LX (θ)

LX (θ̂)
, ∀θ ∈ Θ, (3.16)

After observing the score s of a test sample, its label y ∈ {0, 1} can be seen
as the realisation of a random variable Y with a Bernoulli distribution B(ω),
where ω = hs(θ) ∈ [0, 1]. As described in Section 2.5.3, a predictive belief
function BelYX (·, s) can be derived from the contour function plΩX (·, s). The
function plΩX (·, s) can be computed from PlΘX as

plΩX (ω, s) =

{
0 if ω ∈ {0, 1}

PlΘX
(
h−1
s (ω)

)
otherwise,

(3.17)
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Figure 3.3: Calibration results on the Australian dataset. (b) The three
colored areas correspond to the predictive mass function mY

X (·, s).

where

h−1
s (ω) =

{
(θ0, θ1) ∈ Θ

∣∣∣∣ 1

1 + exp(θ0 + θ1s)
= ω

}
(3.18)

=
{

(θ0, θ1) ∈ Θ
∣∣ θ0 = ln

(
ω−1 − 1

)
− θ1s

}
, (3.19)

which finally yields

plΩX (ω, s) = sup
θ1∈R

plΘX
(
ln
(
ω−1 − 1

)
− θ1s, θ1

)
, ∀ω ∈ (0, 1). (3.20)

Figure 3.3 illustrates the computation of the predictive belief function
BelYx,s. Figure 3.3a shows level sets of the contour function plΘX computed
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from the scores of an SVM classifier trained on the Australian dataset. The
value of plΩX (ω, s) is defined as the maximum value of plΘX (·, s) along the
line θ0 = ln

(
ω−1 − 1

)
− θ1s represented by the doted lines. It can be ap-

proximated by a gradient descent algorithm. Figure 3.3b shows the contour
function plΩX (·, s) from which BelYX (·, s) can be computed using Equations
(2.49) and (2.50).

3.1.4 Discounting and keeping decision

As explained in Section 2.1.4, a mass function can be discounted by a factor
δ ∈ [0, 1] representing the belief about its reliability. By cross-validation,
an accuracy estimate can be computed from the training data. It is simply
defined as the ratio of correct predictions over all the training data. It is
thus a binomial proportion estimation as in the binning case. The methods
presented in Section 3.1.1 returns a mass function about the accuracy. The
belief of having a correct prediction is then used as a discounting factor.
As illustrated on Figure 3.1a, the belief is low when the sample is small;
discounting by it would thus result in a highly uncertain belief function as
it is desired.

Another important aspect is the fact that calibration may change the
final decision. In Figure 3.2 we can see that, after calibration, a zero score
does not exactly lead to a probability of 1/2. In the case of an SVM classifier,
as only the sign of a score matters, one may argue that a positive score only
supports the hypothesis of having a positive example but with more or less
certainty depending on its value. In this sense, there should be no mass
allocated to the singleton {0} when the score is positive. Similarly, no mass
should be assigned to the singleton {1} when the score is negative.

A simple way to keep the decisions unchanged is to calibrate the positive
and negative scores separately. For the positive scores, the mass assigned
to {0} is set to zero and added to the unknown state {0, 1}. A similar
procedure is applied to the negative scores. In this way, the belief of having
a success when the score is negative will always be zero while the plausibility
of having a success when the score is positive will always be one.

3.2 Multi-class problem

Let us now consider a set of C classes Ω = {ω1, . . . , ωC}. Multi-class classi-
fiers are often built by decomposing the initial problem into multiple binary
classification ones. The two most common decompositions are the one-vs-all
and one-vs-one strategies.
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3.2.1 Multi-class probability from binary sub-problems

For a one-vs-all decomposition, a decision is made by choosing the binary
classifier with the highest score. When the binary classifiers are calibrated,
a simple normalization is a simple and efficient way to get a multi-class
probability [139].

For a one-vs-one decomposition, majority vote is usually used for deci-
sion making. Getting a multi-class probability is more challenging that in
the one-vs-all case. The output rij of a calibrated classifier trained on the
classes {ωi, ωj} can be seen as an estimate of P (ω = ωi|ω ∈ {ωi, ωj},x) for
an observation x of class ω. From these rij it is necessary to estimate the
multi-class probability p so that p(i) = P (ω = ωi|x). Many approaches,
based on different kinds of hypotheses, can be found in the literature. Wu
et al. [129] compared several methods and proposed a more efficient one
consisting in minimizing the following cost function:

min
p

C∑
i=1

∑
j 6=i

(rjip (i)− rijp (j))2 subject to

C∑
i=1

p(i) = 1. (3.21)

Again, it is important to note that the decisions made from the raw
SVM scores and the ones made from the estimated probabilities may be
different. A simple majority vote with raw SVM scores is actually a very
competitive strategy and may, in certain cases, perform better than any
probabilistic calibration methods. Wu et al. [129] reported that the higher
the number of classes was the smaller improvement was observed from their
probabilistic combination. In their experiments with the letter dataset (26
classes), the majority vote on the raw SVM scores out-performed by at
least 3% in accuracy all other approaches. But in their experiments, they
used a fixed number of training samples 300 and 800, which would lead to
have about 20 and 60 training samples for each pairwise binary classifier.
This will result in a calibration of high uncertainty which may explain the
decrease in performance. Therefore the calibration of a classifier not always
improves the performance of a single binary or multi-class classifier but may
still be necessary if several classifiers are to be combined.

3.2.2 From binary to multi-class belief functions

Just as in the probabilistic case, it is possible to derive a multi-class belief
function from a binary decomposition. Quost et al. proposed an evidential
combination for both one-vs-all [96] and one-vs-one [97] decompositions.

Let mij be the mass function obtained from a classifier trained on Ωij =
{ωi, ωj} through a one-vs-one decomposition. This mass function can be
seen as an estimate of a multi-class mass function mΩ conditioned on the
knowledge that the true label is in Ωij . The conditional mass function given
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B ⊆ Ω, noted mΩ[B], is defined as

mΩ[B](A) =


∑

C∩B=A

mΩ(C) if A ⊆ B,

0 otherwise.
(3.22)

This conditional mass function is not always normalized, that is mΩ[B](∅)
may not be null. The normalized conditional mass function mΩ[B]∗ can be
obtained by

mΩ[B]∗(A) =


mΩ[B](A)

1−mΩ[B](∅)
if A ⊆ Ω, A 6= ∅,

0 if A = ∅.
(3.23)

The goal is then to find a mass function mΩ whose conditioning on each Ωij

would lead to mij . This is equivalent to have a mass function satisfying

mΩ[Ωij ](A) = mij(A)(1−mΩ[Ωij ](∅)), ∀A ∈ 2Ωij\∅, ∀i > j.(3.24)

The constraints (3.24) actually define a system of 3C(C − 1)/2 linear equa-
tions with 2K − 2 unknowns. Unfortunately, this system rarely has a solu-
tion. Quost et al. [97] thus suggested to have an approximate solution by
minimizing the following quadratic problem:

min
mΩ

∑
i>j

∑
∅6=A⊆Ω

(
mΩ [Ωij ] (A)−mij (A)

(
1−mΩ [Ωij ] (∅)

))2
, (3.25)

subject to

mΩ(A) ≥ 0, ∀A ⊆ Ω, A 6= ∅, (3.26a)

mΩ(∅) = 0, (3.26b)∑
A⊆Ω

mΩ(A) = 1. (3.26c)

A similar approach can also be used in the case of a one-vs-all decomposi-
tion [96].

3.3 Experimental evaluations

Experimental evaluations were conducted on several binary and multi-class
classification problems from UCI. For each dataset, three independent clas-
sifiers were trained on non-overlapping subsets of different sizes. Two of
them were trained using a fixed number of data while the third one was
trained with a variable number of data. Table 3.1 shows the number of
samples used to train and test each classifier. For each experiment, a 5-fold
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Table 3.1: Number of samples using for training and testing on different
datasets from UCI.

Dataset Classes Train #1 Train #2 Train #3 Test

autralian 2 30 70 10–200 390
diabetes 2 30 70 10–200 468
heart 2 20 40 10–140 70
ionosphare 2 20 40 10–190 101
liver-disorders 2 20 40 10–190 95
sonar 2 20 40 10–90 58

dna 3 200 400 100–700 1000
MNIST 10 200 400 100–700 1000
satimage 6 200 400 100–700 1000
segment 7 200 400 100–700 1000
USPS 10 200 400 100–700 1000

cross validation was conducted to get both the score data and the accuracy
estimates. The whole process was repeated for 100 rounds on each dataset.
The LibSVM2 library [14] was used to learn the base classifiers.

The results for binary classification are shown in Table 3.2, 3.3 and
3.4. In the case of relatively few training data, when the decisions are
allowed to change through calibration, majority vote from raw SVM scores
almost always gave better results than probabilistic or evidential calibration
methods. This can be explained by the fact that the calibration step can be
of very poor quality and may lead to high bias on the decision value. Only
when the decisions were kept, that is the sign of the raw SVM scores were
still considered, the calibrated classifiers managed to reach performances
close or better than majority vote. Especially, logistic regression, which was
the least prone to over-fitting, performed almost always better than majority
vote when the decisions were kept unchanged.

When the third classifier was trained with much more data than the two
others, the combination of the three tended to decrease the performance of
the third one, which was the best out of the three. In the case of major-
ity vote, the combination always lead to worse results than the best single
classifier. This could be expected as the lower accuracies of the first two
classifiers were not taken into account. The use of a calibrated methods
without decision keeping could in some cases out-perform majority vote,
but it was not guaranteed. However, they hardly reached the performance
of the best single classifier. The best results were obtained when the deci-
sions were kept unchanged, the results were then close or better than the
best single classifier. Compared to majority vote, the gain could go up to
3% in accuracy.

2http://www.csie.ntu.edu.tw/~cjlin/libsvm

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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The use of belief functions other than the inverse pignistic transforma-
tion gave better results than probabilistic calibrations. Especially when the
classifiers were trained with an unbalanced amount of data, in which case
it was important to model the uncertainty relative to the calibration step.
The inverse pignistic based calibration gave results similar to probabilistic
calibration but could be used to keep the decisions unchanged which lead to
improvements. For both binning and isotonic regression, Dempster’s model
gave the best results closely followed by confidence interval based model.
For logistic regression, the likelihood based calibration approach reached
the highest accuracy. Overall, the best results were obtained by using a
logistic regression calibration with a likelihood-based discounted belief func-
tion while keeping the decisions unchanged.

In the case of multi-class classification, if the class distribution in the
training data is uniform, each binary classifier from a one-vs-one decom-
position are trained with a similar amount of data. In such a case, the
evidential combination proposed by Quost et al. [96] was shown to perform
as well as the probabilistic approach from Wu et al. [129]. To show the
potential gain from the evidential approach, we transformed the multi-class
classification shown on Table 3.1 into three class problems by keeping two
classes and grouping the rest. Table 3.5 shows the results obtained with the
multi-class classification. Only logistic regression has been considered as it
has been shown to perform better than both binning and isotonic regression.
While considering single multi-class classifiers, the use of evidential calibra-
tion while keeping the decisions gave the best performances except for the
dna dataset. For the dna dataset, which was originally a three class clas-
sification problem, the class distribution was actually uniform. The same
conclusions were reached when combining the three multi-class classifiers
although the results from the probabilistic and evidential approaches were
very close.

One drawback of the evidential calibration methods is the higher compu-
tational cost, especially when dealing with a high number of classes. Solving
(3.25) may be problematic when the number of classes is large. The use of
one-class classifier can, however, help to keep it tractable [97].

3.4 Conclusion

In this chapter, we showed how to extend three classical probabilistic cali-
bration methods using belief functions. Belief functions can better represent
the uncertainty of the calibration procedure, especially when few data are
available. It also allows to keep the decisions of the original classifiers un-
changed. We applied our calibration to SVM classifiers but the calibration
can actually be used with any classifier. In the next chapter, we will exploit
these calibration methods to combine multiple pedestrian detectors which
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use different types of classifier. We will also show that in the particular case
of pedestrian detection, keeping the decisions of the classifiers unchanged
becomes crucial.
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Chapter 4

Combination of pedestrian
detectors

Pedestrian detection is an important issue in the development of safe in-
telligent vehicles. In computer vision, it is the most studied case of object
detection. There exist many pedestrian datasets; INRIA [20], ETH [42],
TUD-Brussels [128] and Caltech Pedestrian Detection Benchmark [33] are
among the most popular ones. The last one is the largest. More than
30 state-of-the-art detectors have been tested on it and their outputs are
publicly available. Moreover, the high diversity of the evaluated methods
makes their combination an ever more interesting issue. Table 4.1 lists the
detectors evaluated on the Caltech dataset.

Diversity, and thus potential complementarity of the detectors exists be-
cause of mainly three reasons. The first one is related to the features used
to represent pedestrians. Haar-like features [118], shapelets [101], shape
context [81] and histograms of oriented gradient (HOG) [20] features are
commonly used. The last one is the most popular and almost all detec-
tors use it in some forms. Wojek and Schiele [127] concatenated all the
previously mentioned features and trained a new model outperforming all
individual ones. Other features such as local binary pattern (LBP) [123] or
motion features [119] were also considered in addition to HOG. However,
even though the HOG feature is used in these methods, it is not guaranteed
that a pedestrian detected by the original ‘HOG’ detector [20] would still
be detected by the other methods. Nevertheless, the use of multiple types
of features as in [31, 30, 92] or features learned in very large spaces [32, 6]
have led to significant improvements.

The second source of diversity comes from the classifier. Linear SVM
and AdaBoost are often considered. The use of latent variables in SVM has
been popularized by Felzenszwalb et al. [47] for part-based approaches. Non-
linear SVM [77], Partial Least Squares analysis [102] or boosting optimizing
directly the area under the receiver operating characteristic (ROC) curve [90]

57
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Table 4.1: List of algorithms evaluated on the Caltech Pedestrian Bench-
mark. This table only lists the algorithms that were submitted before 2014.

# Algorithm Features Classifier Training
1 ‘VJ’ [118] Haar AdaBoost INRIA
2 ‘HOG’ [20] HOG linear SVM INRIA
3 ‘HikSvm’ [77] HOG HIK SVM INRIA
4 ‘LatSvm-V1’ [47] HOG latent SVM PASCAL
5 ‘LatSvm-V2’ [47] HOG latent SVM INRIA
6 ‘MultiResC’ [91] HOG latent SVM Caltech
7 ‘MultiResC+2Ped’ [88] HOG latent SVM Caltech
8 ‘MT-DPM’ [133] HOG latent SVM Caltech
9 ‘MT-DPM+Context’ [133] HOG latent SVM Caltech
10 ‘PoseInv’ [76] HOG AdaBoost INRIA
11 ‘MLS’ [83] HOG AdaBoost INRIA
12 ‘DBN-Isol’ [87] HOG DeepNet INRIA
13 ‘DBN-Mut’ [89] HOG DeepNet INRIA/Caltech
14 ‘HOG-LBP’ [123] HOG+LBP linear SVM INRIA
15 ‘MOCO’ [15] HOG+LBP latent SVM Caltech
16 ‘pAUCBoost’ [90] HOG+COV pAUCBoost INRIA
17 ‘FtrMine’ [32] channels AdaBoost INRIA
18 ‘ChnFtrs’ [31] channels AdaBoost INRIA
19 ‘FPDW’ [30] channels AdaBoost INRIA
20 ‘CrossTalk’ [29] channels AdaBoost INRIA
21 ‘Roerei’ [9] channels AdaBoost INRIA
22 ‘ACF’ [31] channels AdaBoost INRIA
23 ‘ACF-Caltech’ [31] channels AdaBoost Caltech
24 ‘ACF+SDt’ [92] channels AdaBoost Caltech
25 ‘MultiFtr’ [127] multiple AdaBoost INRIA
26 ‘MultiFtr+CSS’ [119] multiple linear SVM TUD-Motion
27 ‘MultiFtr+Motion’ [119] multiple linear SVM TUD-Motion
28 ‘MF+Motion+2Ped’ [88] multiple linear SVM TUD-Motion
29 ‘FeatSynth’ [6] multiple linear SVM INRIA
30 ‘AFS’ [74] multiple linear SVM INRIA
31 ‘AFS+Geo’ [74] multiple linear SVM INRIA
32 ‘Pls’ [102] multiple PLS+QDA INRIA
33 ‘Shapelet’ [101] gradients AdaBoost INRIA
34 ‘ConvNet’ [103] pixels DeepNet INRIA
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Figure 4.1: Percentage of detected pedestrians by at least k ∈ {1, 5, . . . , 34}
detectors at 1 FPPI. The detections were done on the Caltech-Test dataset
with the “Reasonable” and “Overall” scenarios.

were also used. More recently, deep learning was also considered [87, 89, 103].
Finally, the choice of the training data, if not the same for all detectors, is
an additional source of diversity.

Different forms of detectors combination can be found in the literature.
The use of multiple sensors in robotics has often led to the combination of
several detectors. The easiest way is to use a first weak detector to gather
a set of regions of interest, which are then more deeply analyzed by a more
efficient one. The ‘FeatSynth’ [6] algorithm actually only processes the de-
tections returned by ‘FtrMine’ [32]. Some works make use of other object
detectors such as cars [133] or 2-pedestrians detectors [88]. Recently, De-
noeux et al. [28] applied an optimal object association algorithm to combine
the outputs of two object detectors in polynomial time. However, the opti-
mal association problem with more than two detectors is NP-hard.

To figure out the potential gain from combining multiple detectors, we
show in Figure 4.1 some detection statistics for the Caltech dataset. We
can see that, at one False Positive Per Image (FPPI), more than 95% of
the pedestrians in the “Reasonable” scenario were detected by at least one
detector. The “Reasonable” scenario corresponds to pedestrians over 50
pixels tall and with an occlusion rate lower than 35%. As a comparison,
the currently best performing algorithm (‘ACF+SDt’ [92]) has a recall of
about 80% at 1 FPPI. Similarly, in the “Overall” scenario where all the
pedestrians were considered, about 60% of the pedestrians were detected
by at least one detector. The ‘MT-DPM+Context’ [133] algorithm, which
outperforms ‘ACF+SDt’ in this scenario, hardly reached a 40% recall. The
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potential gain of combining in a proper way all those detectors is thus fairly
significant.

In this thesis, a pedestrian detector is seen as a black box which re-
turns a set of bounding boxes (BBs) with associated scores as illustrated
in Figure 4.2. As explained in Section 1.2.2, there exist two main combi-
nation strategies: trainable and non-trainable combinations. For detection
problems, trainable approaches are limited in several aspects. Contrary to
classification problems, the information retrieved from a set of classifiers, for
a given entity, may only be partial in a detection context. A BB returned
by one detector may not be detected by other detectors. Most trainable
approaches need the responses of all the detectors to reach a final decision.
One possible way to cope with such issues would be to use a common sliding
windows exploration for all the detectors and combine their outputs at each
position and scale. However, that would be very computationally demand-
ing and many detection algorithms actually do not use exhaustive sliding
windows search. Finally, using trainable combination methods would imply
new training every time a new detector needs to be combined. In the pedes-
trian detection field, where many new algorithms are designed every year,
that may be seen as an important drawback. Therefore, in this thesis, we
will focus on non-trainable combination approaches.

In this chapter, we propose a combination framework that models the
outputs of the detectors with the theory of belief functions and combines
them with a pre-defined rule. In Section 4.1 we describe how the BBs re-
turned by multiple detectors are associated, calibrated and combined. Then,
in Section 4.2 we compare different combination methods using the Caltech
dataset.

4.1 Combination of bounding boxes

The outputs of most pedestrian detectors are given as bounding boxes. To
each of them is associated a score representing the confidence of the detector.
The range of these scores depends on the features and the classifier used for
detection. Figure 4.2 shows some detection results from three algorithms,
applied to one particular image frame. The ‘VJ’ algorithm gives pretty
poor results with a very high false detection rate. Even worse, the BBs
with the highest scores are actually false positives. The ‘HOG’ algorithm
gives relatively good results with few false positives. It can be noticed that
the two detected pedestrians in the foreground have very low scores. The
‘ACF+SDt’ algorithm is the one with the highest recall. Even though it
returns more false positives than ‘HOG’, most of the true positives have a
higher score than the false negatives. It is, however, interesting to notice that
on the particular image shown in Figure 4.2, the only pedestrian missed by
‘ACF+SDt’ was actually detected by both the ‘VJ’ and ‘HOG’ algorithms.
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(a) ‘VJ’ [118] (b) ‘HOG’ [20]

(c) ‘ACF+SDt’ [92]

Figure 4.2: Pedestrian detection results from three algorithms. The colour
of the bounding boxes represents the score. Solid boxes are true positives
and doted boxes are false positives. The red arrow points to a pedestrian
detected by both ‘VJ’ and ‘HOG’ but not ‘ACF+SDt’.

4.1.1 Clustering of bounding boxes

In a sliding windows approach, a single pedestrian is often detected at several
nearby positions and scales. A non-maximal suppression (NMS) step is often
needed in order to select only one BB per pedestrian. In our context, the
same issue occurs but instead of having multiple detections from a single
detector they are returned by several ones. As reported by Dollár et al. [33],
there exist two dominant NMS approaches: mean shift mode estimation [20]
and pairwise maximum suppression [47]. For the former it is necessary to
define a covariance matrix representing the uncertainty in position and size
of the BBs. This can be difficult considering the high variety of detectors.
Felzenszwalb et al. [47] proposed a simpler way by suppressing the least
confident of any pair of BBs that overlap sufficiently. Given two bounding
boxes BBi and BBj , their area of overlap is defined as follows:

aunion =
area(BBi ∩BBj)
area(BBi ∪BBj)

. (4.1)
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Dollár et al. (see addendum to [31]) proposed to replace the above definition
with:

amin =
area(BBi ∩BBj)

min(area(BBi), area(BBj))
. (4.2)

Using aunion or amin as a distance measure between BBs, a simple hierarchi-
cal clustering can be used to group them until the overlap exceeds a certain
threshold. The distance between two clusters is defined as the maximum
distance between every pairs of BBs. This guarantees that, within a cluster,
the overlapping area between two BBs is always sufficient. Dollár et al. [31]
showed that proceeding greedily leads to the best results. They processed
the detections in decreasing order of scores; when two BBs are associated,
the one with the lowest score would no longer be used for further associa-
tions. In our clustering formulation, this last point is equivalent to defining
the distance between two clusters as the distance between their respective
highest-scored BBs.

4.1.2 Calibration and combination

The BBs greedy clustering method presented in the previous section sup-
poses that the scores returned by the detectors are comparable. In practice,
it is rarely the case. The detectors need to be calibrated first. All the cali-
bration methods proposed in the previous chapter can be used. Figure 4.3a
shows the isotonic and logistic regression based calibration of the ‘HOG’
detector. One particularity of object detection is the relatively high false
positive rate. For example with the ‘HOG’ algorithm, more than 99% of
the detections have a score less than 0.1, as illustrated on Figure 4.3b. Less
than 0.1% of these detections are true positives. As a result, most detections
have an associated probability lower than 0.1. From a Bayesian perspective,
multiple sources of information returning low probabilities would actually
lead to an even lower one. This would also be the case with belief functions
expect if we consider that the detected BBs only support the presence of
pedestrians (see Section 3.1.4). Thus only simple mass functions of the form
{1}α, with α ∈ [0, 1], are used as outputs of the evidential calibration.

The combination of two simple mass functions {1}α1 and {1}α2 can be
expressed very easily. Their combination with Dempter’s rule ⊕, the cau-
tious rule 7 and Frank’s family of t-norms based rule js are defined as

{1}α1 ⊕ {1}α2 = {1}α1α2 , (4.3a)

{1}α1 7 {1}α2 = {1}α1∧α2 , (4.3b)

{1}α1 js {1}α2 = {1}α1>sα2 . (4.3c)
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Figure 4.3: (a) Logistic and isotonic calibration of the scores from the ‘HOG’
pedestrian detector. (b) Histogram of the scores.

4.1.3 Clustering detectors

Detectors that return similar mass functions are likely to use similar infor-
mation. Their combination should thus be handled more cautiously [98].
To define a measure between classifiers, a distance between mass functions
has to be defined first. A survey of such distances can be found in [58]. A
commonly used distance measure d(m1,m2) between two mass functions m1

and m2 is defined as√√√√1

2

∑
A,B⊆Ω\{∅}

|A ∩B|
|A ∪B|

(m1(A)−m2(A))(m1(B)−m2(B)). (4.4)

For two simple mass functions, we get

0 ≤ d ({1}α1 , {1}α2) =
|α1 − α2|√

2
≤ 1√

2
. (4.5)

The average distance for all detections is then used as a distance between
the detectors C(k) and C(`):

D(C(k), C(`)) =
1

n

n∑
i=1

d
(
m(k),i,m(`),i

)
, (4.6)

where m(k),i and m(`),i refer to the mass functions associated to the i-th
BB cluster provided by C(k) and C(`), respectively. The above definition
actually assumes that, for every BB returned by C(k) there is an associated
one returned by C(`). It is actually not the case. When one of the detector
does not provide any BB, the distance is set to

1√
2
≤ d ({1}α1 , ∅) = d

(
{1}α1 , {0}0

)
=

√
1 + (1− α1)2

2
≤ 1. (4.7)
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Using this pairwise distance, the detectors can be grouped through hierar-
chical clustering.

4.2 Experimental results

We conducted our experiments on the Caltech Pedestrian Detection Bench-
mark. The dataset consists in six training sets (set00-set05) that have been
used to train detectors (see Table 4.1), and five testing sets (set06-set10).
For our experiments we kept one of the testing sets (set06) as a validation set
for calibration and the remaining four sets were used for testing. A five-fold
cross-validation step was also conducted on the validation set to tune the
different parameters of the combination system. As a performance measure,
we used the log-average miss rate as proposed in [33]. It corresponds to
the average of the miss rates computed at nine FPPI rates evenly spaced in
log-space in the range 10−2 to 100.

4.2.1 Calibration and association of detectors

The first step of the combination is the calibration of the detectors. Fig-
ures 4.4 and 4.5 show the calibration of the pedestrian detectors, as well
as the score distribution on the validation set. The white dots represent
the calibration results using the binning approach with ten bins of equal
size. The binning calibration is only used to have an empirical view of the
shape of the posterior probability function. We can see that, for most of
the methods, the posterior probability has a sigmoid shape and tends to in-
crease with score. The distributions of the scores seem to have a Laplacian
shape. It is interesting to note that the methods that combine an existing
method with some new information, i.e., ‘MultiResC+2Ped’, ‘DBN-Mut’,
‘MultiFtr+CSS’, ‘MultiFtr+Motion’ and ‘MF+Motion+2Ped’, tend to con-
centrate the scores in one point. Apart from the ‘VJ’ and ‘PoseInv’ methods,
we can see that the isotonic calibration returns a categorical mass function
{1}0 when the score is high enough. Having such certain information may
be a sign of over-fitting. Logistic regression does not provide categorical
mass functions but may still lead to very high confidence even for a detector
with relatively low performance. In order to take into account the global
performance of a detector, its log-average miss rate is used as a discounting
factor.

Once the detectors have been calibrated, a BBs association strategy
needs to be set before combining the BBs. Figure 4.6 shows the influence
of the threshold used for the associations. The results were much better
when doing the association greedily after score calibration. The best per-
formance was obtained using the area of overlap aunion with a threshold of
0.45, although using amin with a threshold of 0.8 gave very close results.



4.2. EXPERIMENTAL RESULTS 65

0.54 0.56 0.58 0.6
0

0.2

0.4

0.6

0.8

1
(1) VJ

0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1
(2) HOG

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
(3) HikSvm

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1
(4) LatSvm−V1

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
(5) LatSvm−V2

−2 0 2 4 6
0

0.2

0.4

0.6

0.8

1
(6) MultiResC

2 4 6 8
0

0.2

0.4

0.6

0.8

1
(7) MultiResC+2Ped

0 1 2 3
0

0.2

0.4

0.6

0.8

1
(8) MT−DPM

0 1 2 3
0

0.2

0.4

0.6

0.8

1
(9) MT−DPM+Context

1 1.05 1.1 1.15 1.2
0

0.2

0.4

0.6

0.8

1
(10) PoseInv

0 50 100
0

0.2

0.4

0.6

0.8

1
(11) MLS

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1
(12) DBN−Isol

−2 0 2 4
0

0.2

0.4

0.6

0.8

1
(13) DBN−Mut

0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1
(14) HogLbp

−2 0 2 4 6
0

0.2

0.4

0.6

0.8

1
(15) MOCO

−0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1
(16) pAUCBoost

0.6 0.65 0.7 0.75 0.8
0

0.2

0.4

0.6

0.8

1
(17) FtrMine

50 100 150 200
0

0.2

0.4

0.6

0.8

1
(18) ChnFtrs

Figure 4.4: Calibration of pedestrian detectors. The x-axis corresponds to
the raw scores returned by the detectors and the y-axis corresponds to the
calibrated posterior probability. The white dots correspond to binning using
ten equally spaced bins. Isotonic and logistic regression based calibration
are represented, respectively, by the blue and red curves. The gray bars
represent the empirical normalized distribution of the scores.
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Figure 4.5: Calibration of pedestrian detectors. The x-axis corresponds to
the raw scores returned by the detectors and the y-axis corresponds to the
calibrated posterior probability. The white dots correspond to binning using
ten equally spaced bins. Isotonic and logistic regression based calibration
are represented, respectively, by the blue and red curves. The gray bars
represent the empirical normalized distribution of the scores.
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a t-norm rule with parameter different from 0 and 1.
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For the t-norm-based rule, the detectors were combined following the
hierarchical clustering shown in Figure 4.7. For each pairwise combination
the parameter of the t-norm was computed from the validation set. For
most pairs of clusters, the best results were obtained using Dempster’s rule
(p = 1). The detectors #7 and #26 are, respectively, the combination of
#6 and #27 with a 2-pedestrian detector while #9 uses a car detector with
#8. For these three pairs, the cautious rule (p = 0) was optimal. The
only case where the t-norm parameter was different from 0 and 1 was the
combination between ‘ChnFtrs’ and ‘FPDW’. The relatively high diversity
of the evaluated detectors explains the limited gain from the t-norm rule
compared to Dempster’s rule.

4.2.2 Combination performances

We compared the probabilistic combination rules with the evidential ones.
Figure 4.8a and 4.8b show the results obtained on the “Reasonable” case sce-
nario using a logistic and isotonic calibration, respectively. For the weighted
version of the combinations, the average precision estimated on the valida-
tion set was used as weight, i.e., discounting factor. We can see that the
product and minimum rules performed very poorly. The average rule per-
formed better than the majority vote. The cautious rule, which is equivalent
to the maximum rule, performed better than all the other probabilistic rules
but worse than Dempster’s rule and the t-norm based rule. Using an addi-
tional weight led to better results for all combination methods except the
minimum combination rule. The logistic calibration always gave better re-
sults than the isotonic calibration.

Figures 4.8c and 4.8d compare the 12 best detectors, including ‘VJ’ and
‘HOG’, to the logistic and isotonic weighted t-norm and the logistic weighted
average. In the “Reasonable” scenario, the logistic weighted t-norm led to an
improvement of 9% in terms of log-average miss rate and 6% for the isotonic
one. The weighted average only led to 1% improvement. In the “Overall”
scenario, the logistic and isotonic t-norm have very similar results with a
performance improvement of 4% while the weighted average performed worse
than the ‘MT-DPM+Context’ alone.

Results for the other scenarios are detailed in Figures 4.9, 4.10 and 4.11.
The logistic weighted t-norm combination always gave the best results. The
logistic and isotonic regression based t-norm rules always gave better results
than the best single detector. The logistic weighted average rule performed
worse than the best single detector in certain scenarios: (4.10b), (4.10c),
(4.11b) and (4.11c).

Figure 4.12 shows some typical combination results where the confidence
of some true positives was increased after the combination. The results from
the logistic weighted t-norm methods are displayed next to the results from
the ACF+SDt and MT-DPM+Context methods, which are the two best
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(d) Overall scenario

Figure 4.8: (a-b) Results of different combination strategies using a logistic
and isotonic regression calibration methods on the “Reasonable” scenario.
(c) Results on the “Reasonable” scenario. (d) Results on the “Overall”
scenario.
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(a) Overall aspect ratios
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(b) Typical aspect ratios
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(c) Atypical aspect ratios

Figure 4.9: Results with respect to the aspect ratios.
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Figure 4.10: Results with respect to the scale.
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Figure 4.11: Results with respect to the occlusion.



4.3. CONCLUSION 73

detectors. Typical examples where the confidence of some false positives
detected by multiple detectors was increased are shown in Figure 4.13.

4.3 Conclusion

In this chapter, we proposed and evaluated an evidential framework for
combining pedestrian detectors, noticing it could also be applied directly to
detect other classes of objects. The use of belief functions and evidential
combination rules yielded much better results than classical probabilistic
approaches. One novelty of our approach relies on the use of an optimized t-
norm rule, which can take into account the dependencies between detectors.
This property can become critical if many new detectors are to be added.
As optimized pairwise rules may provide only sub-optimal results, a global
optimization will be investigated in future work. An important advantage
of the proposed approach is that it allows us to easily include a new detector
regardless of the features, training data and classifier it uses. Moreover, this
modularity allows new detectors to rely on existing state-of-the-art ones.
Therefore, one may focus future research on the development of detectors
specially designed to detect hard examples without risking an overall recall
loss.
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ACF+SDt MT-DPM+Context Logistic weighted t-norm

Figure 4.12: Detection results at 1 FPPI in the “Reasonable” scenario.
Solid BBs correspond to true positives and doted BBs to false positives,
the color represents the belief of containing a pedestrian after calibration.
Those images show some combination results where the confidence of some
true positives was increased. Some false positives were also discarded after
combination.



4.3. CONCLUSION 75

ACF+SDt MT-DPM+Context Logistic weighted t-norm

Figure 4.13: Detection results at 1 FPPI. Those images show some com-
bination results where the confidence of some false positives returned by
multiple detectors was increased.
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Chapter 5

Local fusion in
over-segmented images

The use of bounding boxes is limited to the detection of certain kinds of
objects such as pedestrian or vehicles. Other classes of objects such as road,
lane marking or sky, can only be detected at a segmentation level. Rea-
soning at the pixel level, however, may be too local and difficult. Semantic
segmentation is often done by over-segmenting the image as in [57, 68]. The
common task of all the modules, whatever the data representation they use
(image, 3D points cloud or optical flow), then becomes to label each individ-
ual image segment. Figure 5.1 provides an overview of our fusion framework.
Several sensors observe an urban scene, including a camera that produces
an over-segmented image. Each sensor provides data to one or more mod-
ules, which are executed totally or partially in parallel to classify each image
segment.

In this chapter, we first discuss the problem of over-segmentation for clas-
sification. We then describe the construction of several detection modules
using probabilistic and evidential formulations. Finally, the whole multi-
modal system is evaluated on real urban driving scene data in Section 5.3.

5.1 Image over-segmentation

Many over-segmentation algorithms based on the mean-shift algorithm [17],
graphs [48] or the k-means algorithm [1] can be found in the literature. The
graph-based method proposed by Felzenszwalb and Huttenlocher [48] has
been used in several works dealing with scene understanding [57, 68, 46].
Figure 5.2a shows the over-segmentation obtained by this method. We can
see that the size and shape of the segments are very heterogeneous. It is
relatively difficult to describe these kinds of segments with geometric notions
such as height or depth. Other over-segmentation approaches [75, 1, 79] can
provide a grid-like segmentation with a relatively uniform distribution in size

77
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Realfworldfdrivingfscene

Camera LIDAR SensorfN...

Over-segmentation

Ground Vegetation

Fusionfonfafunified
decisionfspace

Independentfclassificationfmodules

... ClassfK

Classifiedfsegments

Figure 5.1: Overview of the fusion framework. N sensors, including a cam-
era, observe the scene and provide data to K independent modules. The
classification outputs are then fused in a unified decision space built from
an over-segmented image.

and in shape. We chose to use the SLIC (Simple Linear Iterative Clustering)
algorithm [1] for its simplicity and speed. We can see in Figure 5.2b that
the over-segmentation obtained using the SLIC algorithm is more regular.

The formulation of the SLIC algorithm is very simple. Each pixel is
described by a vector xi = [li ai bi ui vi], i = 1, . . . , n, where the components
li, ai and bi are the color in the CIELAB color space, ui, vi are the pixel
coordinates and n is the number of pixels. The k-means algorithm is then
used to group pixels into k clusters, which correspond to the segments.
The distance between two pixels xi and xj combines two distances: a color
distance dc and a spatial distance ds defined as

dc(xi,xj) =
√

(lj − li)2 + (aj − ai)2 + (bj − bi)2, (5.1a)

ds(xi,xj) =
√

(xj − xi)2 + (yj − yi)2. (5.1b)

These two distance measures are then normalized and combined, leading to

D(xi,xj) =

√(
dc(xi,xj)

nc

)2

+

(
ds(xi,xj)

ns

)2

. (5.2)

The spatial normalization constant ns corresponds to the maximum spatial
distance expected within a given cluster, which can be approximated by
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(a) Graph-based approach proposed by Felzenszwalb and Hutten-
locher [48]

(b) SLIC algorithm [1]

Figure 5.2: Over-segmentation results.

ns =
√
n/k. One can either set the desired number of clusters k or the

desired average size of the segments ns. The color normalization constant
nc is more difficult to estimate as the distance dc can vary significantly
from cluster to cluster and image to image. Achanta et al. [1] proposed
to fix nc to a constant in the range [1, 40]. The parameter nc weights the
relative importance between color similarity and spatial proximity. When
nc is large, spatial proximity is more important and yields more compact
superpixels, i.e., they have a lower area to perimeter ratio. When nc is small,
the superpixels adhere more tightly to image boundaries, but may have less
regular size and shape. In our experiments, we choose ns = 12 and nc = 20
which realize a good trade-off between of size and shape.

5.2 Belief functions for semantic segmentation

We applied a belief function-based fusion framework to a multi-modal system
including a stereo camera and a LiDAR sensor, which are supposed to be
calibrated [51]. Several modules independently process the outputs of these
sensors to classify each segment of the image in Figure 5.2b. Some simple
classification rules are first applied directly using pixel coordinates. The 3D
information from the stereo images and the LiDAR are then used to detect
the ground. Next, two monocular-based approaches allow us to infer the
scene layout and further extend it by including a vegetation class. Finally,
a temporal propagation module is used to link two consecutive images. The
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inputs of the different modules described below are shown in Figure 5.3.

5.2.1 Classification from pixel location

Some very simple rules can be directly inferred from pixel coordinates. For
example, we are certain that the “lower” part of the image cannot be the
sky and the “upper” part cannot be the ground. By assuming a maximum
pitch angle of ±5◦, upper (Vmax) and lower (Vmin) bounds of the horizon line
can be computed as illustrated by the blue and green lines in Figure 5.4a.
This assumption may not hold in certain complex situations such as uphills
or downhills, for which a robust horizon line estimator would be needed. A
segment in the image can be described by its minimum and maximum verti-
cal coordinate (v, v). Two distinct mass functions can then be constructed.
The first one is defined over the frame of discernment Ωs = {sky, sky} as

mΩs
v ({sky}) =

{
1 if v ≤ Vmin,
0 otherwise,

(5.3a)

mΩs
v ({sky}) = 0, (5.3b)

mΩs
v (Ωs) = 1−mΩs

v ({sky}). (5.3c)

This mass function states that, if the maximum vertical coordinate is lower
that the lower bound Vmin, then the segment cannot be the sky. Otherwise,
we do not know if the segment corresponds to the sky or not, which is
represented by the vacuous mass function mΩs

v (Ωs) = 1. Similarly, a second
mass function is defined over Ωg = {ground, ground} as

mΩg
v ({ground}) =

{
1 if v ≥ Vmax,
0 otherwise,

(5.4a)

mΩg
v ({ground}) = 0, (5.4b)

mΩg
v (Ωg) = 1−mΩg

v ({ground}). (5.4c)

These two mass functions can be combined by Dempster’s rule on a common
refinement Λ ={ground, vertical, sky}, yielding

mΛ
v,v

(
{sky}

)
=

{
1 if v ≤ Vmin,
0 otherwise,

(5.5a)

mΛ
v,v

(
{ground}

)
=

{
1 if v ≥ Vmax,
0 otherwise,

(5.5b)

mΛ
v,v(Λ) = 1−mΛ

v,v

(
{sky}

)
−mΛ

v,v

(
{ground}

)
, (5.5c)

where {sky} ={ground, vertical} and {ground} ={vertical, sky}. Fig-
ure 5.4b illustrates the combined mass functions.
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(a) Disparity map

(b) Laser points

(c) Optical flow

Figure 5.3: Inputs to the multi-sensor system. (a) The disparity map is
computed from the ELAS algorithm [52]. (b) A single laser layer is extracted
from a Velodyne LiDAR. (c) The optical flow is computed using the TV-L1
formulation as implemented in OpenCV [135].
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Following the same reasoning, a probabilistic approach would lead to the
following probabilities:

PΩs
v (sky) =

{
1 if v ≤ Vmin,

1/2 otherwise,
(5.6a)

PΩs
v (sky) =

{
0 if v ≤ Vmin,

1/2 otherwise,
(5.6b)

and

PΩg
v (ground) =

{
1 if v ≥ Vmax,

1/2 otherwise,
(5.7a)

PΩg
v (ground) =

{
0 if v ≥ Vmax,

1/2 otherwise.
(5.7b)

By using the product rule � over Λ ={ground, vertical, sky}, with a uniform
prior distribution, the combined probability is defined as follows:

PΛ
v,v v ≤ Vmin v ≥ Vmax otherwise

ground 2/3 0 2/5

vertical 1/3 1/3 1/5

sky 0 2/3 2/5

(5.8)

The resulting probability PΛ
v,v = PΩs

v � PΩg
v does not encode the same in-

formation as PΩs
v and PΩg

v . In particular, complete ignorance, which is

represented differently by PΩs
v = UΩs

v and PΩg
v = UΩg

v , is not encoded by
a uniform distribution in Λ. By reasoning directly on Λ, the principle of
indifference would actually lead to the following probability:

QΛ
v,v v ≤ Vmin v ≥ Vmax otherwise

ground 1/2 0 1/3

vertical 1/2 1/2 1/3

sky 0 1/2 1/3

(5.9)

The probability distributions QΛ
v,v ans PΛ

v,v are illustrated in Figure 5.4c and

Figure 5.4d, respectively. The probability QΛ
v,v seems much more reasonable

than PΛ
v,v. In particular, the red zone, where nothing can actually be in-

ferred, is well represented by a uniform distribution with QΛ
v,v but not with

PΛ
v,v.

However, if a new class, such as vegetation, has to be added, neither PΛ
v,v

or QΛ
v,v would actually be correct. This example clearly shows that imprecise

information cannot be properly represented by probabilities. Moreover, the
information on the upper and lower part of the image remains certain when
using belief functions while it is encoded as uncertain with probabilities.



5.2. BELIEF FUNCTIONS FOR SEMANTIC SEGMENTATION 83

(a) Lower and upper bounds

mΛ
v,v ({vertical, sky}) = 1

mΛ
v,v(Λ) = 1

mΛ
v,v ({ground, vertical}) = 1

(b) Mass function

PΛ
v,v(ground) = 0, PΛ

v,v(vertical) = 1/3, PΛ
v,v(sky) = 2/3

PΛ
v,v(ground) = 2/5, PΛ

v,v(vertical) = 1/5, PΛ
v,v(sky) = 2/5

PΛ
v,v(ground) = 2/3, PΛ

v,v(vertical) = 1/3, PΛ
v,v(sky) = 0

(c) Combined probability

QΛ
v,v(ground) = 0, QΛ

v,v(vertical) = QΛ
v,v(sky) = 1/2

QΛ
v,v(ground) = QΛ

v,v(vertical) = QΛ
v,v(sky) = 1/3

QΛ
v,v(ground) = QΛ

v,v(vertical) = 1/2, QΛ
v,v(sky) = 0

(d) Uniform probability

Figure 5.4: Classification from pixel coordinates. (a) Lower and upper
bounds of the horizon line: Vmin (green), Vmax (blue). (b) Mass function
mΛ
v,v = mΩG

v ⊕ mΩS
v . (c) Probability PΛ

v,v = PΩS
v � PΩG

v . (d) Probability

QΛ
v,v.
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5.2.2 Stereo-based classification

3D information is very useful for scene understanding. A disparity map
encoding the depth of each pixel (Figure 5.3a) can be estimated using a
stereo camera. We used the ELAS algorithm [52] which is designed for fast
high-resolution image processing.

A Euclidean 3D point cloud is first generated from the disparity map and
used to estimate the ground surface. We programmed a RANSAC robust
plane estimator to detect the ground plane. The assumption of a planar
ground turns out to be reasonable in practice. For greater robustness, the
use of more complex models such as B-splines [124] could also be considered.

The estimated ground plane Π is used to build a ground detector. Each
segment is seen as a set of 3D points: x = {p1, . . . , pk, p

∗
k+1, . . . , p

∗
n}, where

the points denoted by p∗i are those for which no disparity has been estimated.
A segment is classified as ground or non-ground depending on its distance
to the ground plane. The distance d between the observation x and the
plane Π is defined as the median distance of the valid points pi to Π, while
forgetting the invalid ones p∗j :

d(x,Π) = med
i=1,...,k

δ(pi,Π), (5.10)

where δ(pi,Π) is the Euclidean distance from pi to Π. Figure 5.5a illustrates
the distance to the ground obtained for each pixel. Figure 5.5b shows the
median distance computed for each segment.

To get a probability measure from the distance d, logistic regression is
used by assuming that

PΩg
d (ground) =

1

1 + exp(ad+ b)
, (5.11)

where the sigmoid parameters a, b ∈ R can be optimized given some train-
ing data. As only k out of n points are visible, the reliability of the
observation is modeled by PR(r = 1) = k/n. When no disparity esti-
mates are available, i.e. PR(r = 1) = 0, we get the uniform distribution
PΩg
d,0 (ground) = PΩg

d,0 (ground) = 1/2. Figure 5.5c shows the probability ob-
tained from the distance to the ground plane.

With belief functions, a more cautious model can be used. Instead of
using the median distance, two distances d and d were considered. They
correspond, respectively, to the minimum and maximum distance from the
segment to the ground plane and are defined as

d = min
i=1,...,k

δ(pi,Π) and d = max
i=1,...,k

δ(pi,Π). (5.12)

The minimum distance d was used to build a mass function mΩG
d that only

supports the non-ground class. If the minimum distance is large, then we
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Figure 5.5: Stereo-based ground classification. (a) Distance to the ground
plane for each pixel. (b) Median distance of segments to the ground plane.
(c) Probability of the ground class PΩg

d . (d) Amount of ignorance mΩg

d,d
(Ωg).
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are confident about the non-ground class. However, if the minimum distance
is small, nothing can actually be said. The mass function mΩg

d was defined
in a way similar to (5.11):

mΩg
d ({ground}) =

1

1 + exp(ad+ b)
, (5.13a)

mΩg
d ({ground}) = 0, (5.13b)

mΩg
d (Ωg) = 1−mΩg

d ({ground}), (5.13c)

where the parameters a and b were determined using some training data. In
a similar way, the maximum distance d was used to build a mass function
mΩg

d
that only supports the ground class. A combined mass function mΩg

d,d
=

mΩg
d ⊕m

Ωg

d
was then obtained by Dempster’s rule. Finally, the mass function

was discounted by a factor α = 1− k/n, which results in the vacuous mass
function when no disparity was estimated.

Figure 5.6a shows the measures PΩg
d , mΩg

d and mΩg

d
obtained from logis-

tic regression. Figure 5.6b illustrates the degree of ignorance mΩg

d,d
(Ωg) for

different values of d and d. We can see that when d is small and d is large
(top right corner), the amount of ignorance is high. In contrast, when d is
large (bottom right) or d is small (top left), the information is more certain.
Figure 5.5d displays the degree of ignorance in a typical case.

5.2.3 LiDAR-based classification

A LiDAR sensor provides a set of 3D points that are the impacts of laser
beams (Figure 5.3b). As with the stereo camera, a segment S hit by some
laser beams is perceived as a set of k 3D points. By using the ground
plane estimated from the disparity map, the same form of mass function
as in the stereo case was used for S. Additionally, the space between the
projections on the ground plane of the laser impacts and the LiDAR’s origin
is considered to be obstacle free.

The data from the LiDAR sensor are illustrated in Figure 5.7a. The red
dots represent the impacts returned by the LiDAR. The segments hit by
these impacts are modeled and classified in the same way as in the stereo
case. The green dots correspond to the projections of the impacts on the
ground plane estimated by the stereo module. The green lines represent the
laser rays from the green dots to the LiDAR’s origin. The segments crossed
by at least one green line are assimilated to the “ground” class. A categorical
mass function mΩg

L ({ground}) = 1 is assigned to these segments. In the

probabilistic case, the probability PΩg
L (ground) = 1 is used. Furthermore, a

discounting factor or reliability measure PR(r = 0) = α = k/n is considered
for the segments hit or crossed by at least one laser beam. The quantity n is
defined as the maximum number of beams that could have hit or crossed the



5.2. BELIEF FUNCTIONS FOR SEMANTIC SEGMENTATION 87

Distance to ground plane (cm)

P
ro

b
a
b

il
it

y,
b

el
ie

f,
p

la
u

si
b

il
it

y

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
BelΩg

d
({ground})

PΩg
d (ground)

PlΩg
d ({ground})

(a)

Maximum distance d (cm)

M
in

im
u

m
d
is

ta
n

ce
d

(c
m

)

0 20 40 60 80 100

20

40

60

80

100 0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
0

(b)

Figure 5.6: (a) Probability, belief and plausibility of the ground class with
respect to the distance to the ground plane. The belief and plausibility
are defined as BelΩg
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(a) Impacts and beams from the LiDAR sensor

(b) Mass functions from the LiDAR module

Figure 5.7: (a) Red dots represents the impacts returned by the LiDAR.
Green dots correspond to the projections of the impacts on the ground
plane. The green lines represent the laser rays from the green dots to the
LiDAR’s origin. (b) The red, green and blue (RGB) colors represent the
mass assigned to {ground}, {ground} and Ωg respectively.

segment. Finally, the segments between the red and green dots, represented
by the blue lines, are ambiguous and are modeled by a vacuous mass function
or uniform probability distribution. It is also the case for all the segments
that are neither hit nor crossed by some laser beams. The result obtained
from the LiDAR module is displayed in Figure 5.7b.

5.2.4 Surface layout from monocular images

Geometric structures in the scene can also be estimated directly from a single
image. We used the method proposed by Hoiem et al. [57], whose code and
pre-trained models are publicly available1. They used a set of multiple
features including location, color, texture and perspective cues such as line
intersections or vanishing points. Boosted decision trees were used to learn
a multi-class classifier. The logistic regression version of Adaboost was used
in order to get well-calibrated probabilities as output.

Hoiem et al. [57] considered three classes: “support”, “vertical” and

1http://www.cs.uiuc.edu/~dhoiem

http://www.cs.uiuc.edu/~dhoiem
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“sky”. In our case, the “support” class corresponds to the ground. Hoiem
et al. further decomposed the “vertical” class into five subclasses: “left”,
“center”, “right”, “porous” and “solid”. These five subclasses are, however,
of limited meaning in our case, so they were not considered. Additionally,
the over-segmentation algorithm from Felzenszwald and Huttenlocher [48],
which was originally used, was replaced by the SLIC over-segmentation [1].

As the output is a probability distribution, it can be directly used for
probabilistic fusion. It can also be considered as a Bayesian mass function in
an evidential context. However, the use of a Bayesian mass function would
constrain the results of the combination to be Bayesian. To avoid such
situations, the inverse pignistic transformation is used (see Section 2.1.3).
Finally, the accuracy of the algorithm of Hoiem et al. [57] on our training
data is used as a discounting factor. Figure 5.8a displays results obtained
with this module.

5.2.5 Texture-based classification

The textural appearance of a segment is an important cue about its class. We
used the Walsh-Hadamard transform to encode the texture, as proposed by
Wojek and Schiele [127]. For each segment, the Walsh-Hadamard coefficients
were computed over 8×8 and 16×16 pixel patches centered at the centroid
of the segment. The three color channels were processed individually in the
L*a*b* color space resulting in a feature vector of dimension 960.

This texture information was then used to build a vegetation detection
module. A linear binary classifier was trained from a L1-regularized logistic
regression as implemented in the Liblinear library [45]. This library was
designed to efficiently learn linear classifiers from very large datasets. The
probabilistic classifier output was handled as described in Sec. 5.2.4. No
discounting or reliability estimation was used for this module as the classi-
fier was directly trained on the KITTI dataset and can be assumed to be
well-calibrated. Figure 5.8b displays results obtained with this vegetation
detector.

5.2.6 Temporal propagation

Given two consecutive images at times t and t − 1, the optical flow (Fig-
ure 5.3c) can be used to propagate the information. We used the OpenCV
implementation of the TV-L1 formulation as proposed by Zach et al. [135].
To each segment St at time t was associated a previous segment St−1 at
time t− 1, defined as the segment pointed by the mean flow of the pixels in
St. The mass function or probability associated to St−1 was simply propa-
gated to St. A discounting factor corresponding to the ratio of pixels in St
whose flow actually points to St−1 was then used as reliability measure. This
temporal propagation can be used with any frame of discernment. The prop-
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agation of the results from the stereo-based ground detector is illustrated in
Figure 5.8c and Figure 5.8d.

5.3 Experimental results

The KITTI dataset [51] was used to validate our approach, considering the
stereo color camera and Velodyne 64-beam LiDAR. However, only one layer
of the Velodyne LiDAR was used in order to simulate a single layer LiDAR,
commonly employed in mobile robotics. A total of 110 images were manually
annotated, 70 for training and 40 for testing. Details about the annotated
frames are given in Table 5.1. Figure 1.3 (page 10) shows some annotations
examples.

The training data were used to learn the probabilities and mass functions
for the stereo, LiDAR and texture-based modules. They were also used to
get the discounting factor of the monocular surface layout estimation. No
training was needed for the pixel-based and temporal propagation modules.
Each classification context introduced in Section 5.2 was considered as an
individual module. Table 5.2 summarizes the frames of discernment of these
different modules.

5.3.1 Ground detection

The first task was to evaluate ground detection. Modules 2, 3, 4 and 7
were first considered. Table 5.3 shows the results of the ground detection
task. Some detection examples are shown in Figure 5.9. By considering the
stereo module alone, about 10% of the segments were ignored due to lack
of disparity estimation. The blue regions in the images in Figure 5.9b are
the segments with high uncertainty. Typically, the disparities could not be
estimated in some textureless regions such as the sky or on white building
facades.

After adding the LiDAR module, the recall rate of the ground class was
increased by more than 5%. For example, we can see in Figure 5.9c-ii that
the bottom right part of the ground was detected by the LiDAR module
but not by the stereo one. The LiDAR module also slightly increased the
recall rate of the non-ground class (≈ +0.2%). In Figure 5.9c-iii, we can
see in the left part some laser impacts corresponding to some non-ground
segments that were not detected by the stereo module. Finally, we can also
observe a slight increase of the misclassification rate for the non-ground class
(≈ +0.2%). In the KITTI platform setup, the Velodyne LiDAR was installed
on top of the car. This may explain that, in some particular cases, some
small objects below the laser beam may be misdetected. In Figure 5.9c-
i, we can see that the pole in the foreground was missed by the LiDAR
sensor and thus classified as ground. Such minor issues may be dealt with
by considering additional LiDAR layers.



5.3. EXPERIMENTAL RESULTS 91

(a) Results from the monocular surface layout estimation

(b) Vegetation detection using texture information

(c) Stereo-based ground detection at time t− 1

(d) Temporal propagation of the stereo module

Figure 5.8: Classification from different modules. For (a), the RGB colors
represent the probability of the vertical, ground and sky classes, respec-
tively. For (b), the RGB colors represent the mass assigned to {vegetation},
{vegetation} and Ωv, respectively. For (c) and (d), the RGB colors represent
the mass assigned to {ground}, {ground} and Ωg respectively.
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Table 5.1: Annotated frames from the KITTI dataset. The highlighted rows
correspond to the data used for testing.

Category Date Seq. Annotated frames

Campus 2011-09-28 016 13, 144

Campus 2011-09-28 021 153

Campus 2011-09-28 038 29

City 2011-09-26 001 59, 107

City 2011-09-26 002 16, 56

City 2011-09-26 005 16, 56, 104, 153

City 2011-09-26 009 13, 58, 158, 265, 360, 370,
380, 390, 400, 412, 417

City 2011-09-26 011 10, 30, 50, 75, 100,
126, 150, 175, 190, 200

City 2011-09-26 013 14, 100, 143

City 2011-09-26 014 157, 200, 209

City 2011-09-26 017 32

City 2011-09-26 048 0, 21

City 2011-09-26 051 67, 86

City 2011-09-26 056 80, 158, 201

City 2011-09-26 057 41, 112

City 2011-09-26 059 26

City 2011-09-26 060 7

City 2011-09-26 084 248

City 2011-09-26 091 12, 85

City 2011-09-26 093 30, 303, 404

City 2011-09-26 095 126

City 2011-09-26 096 0, 92, 362

City 2011-09-26 104 16, 43, 239, 285

City 2011-09-26 106 1

City 2011-09-26 113 0

City 2011-09-26 117 103, 230, 384, 461, 594

City 2011-09-28 002 40, 50, 60, 70, 93, 317

City 2011-09-29 026 0

City 2011-09-29 071 11, 103, 318, 665, 906, 940

Residential 2011-09-26 019 329, 371

Residential 2011-09-26 020 0

Residential 2011-09-30 018 80, 192, 277, 329, 357, 496,
600, 650, 700, 750, 800, 850

Road 2011-09-26 015 167, 184, 220, 280

Road 2011-09-26 027 56

Road 2011-09-26 028 184, 231
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Table 5.2: Frames of discernment of the different modules.

Module Frame of discernment

#1 Pixel Ωs = {sky, sky}
#2 Pixel Ωg = {ground, ground}
#3 Stereo Ωg = {ground, ground}
#4 LiDAR Ωg = {ground, ground}
#5 Surface Λ = {ground, vertical, sky}
#6 Texture Ωv = {vegetation, vegetation}
#7 Optical flow multiple

The third considered module was the pixel-based one, for which all the
segments above the horizon line upper bound were assigned to the non-
ground class. As this module did not provide any information about the
ground class, the results for this class remained unchanged. However, an
increase of more than 5% was observed for the recall rate of the non-ground
class. In particular, additional information was provided by this module in
the parts of the sky and the buildings that were not classified by the stereo
or LiDAR module (see Fig 5.9d).

Finally, the temporal propagation increased the recall rate or both the
ground and non-ground classes by about 2%. Less than 2% of the segments
were left without decision. In this ground detection module case, all the
modules were correctly defined in their initial frames of discernment. The
use of upper and lower bounds for the distance to the ground plane in the ev-
idential method yielded slightly better results than the probabilistic model.
But overall, the results from the probabilistic and evidential approaches were
very similar.

5.3.2 Addition of the sky class

The sky class was added to the system with the monocular surface layout
estimation module. The pixel-based module applied to the sky class was
also included. The classification results are detailed in Table 5.4 and some
examples are shown in Figure 5.10.

As explained in Section 5.2.1, the outputs of the ground detection mod-
ules had to be transformed onto the new frame of discernment. In the
probabilistic case, several effects could be noted. First, all the probabilities
assigned to the non-ground class were divided by two and distributed to the
vertical and sky classes. This resulted in over-confidence about the ground
class. We can see from Table 5.4 that, after combining the monocular mod-
ule with the ground detection ones, the recall rate of the ground class was
increased by more than 10%. However, this came at the expense of a higher
error rate (≈ +5%) and a lower recall rate of the non-ground class (≈ −5%).
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We can see in Figure 5.10c that many non-ground regions were misclassified
as ground.

A large increase of recall for the sky class (≈ +10%) was also observed.
This resulted from the combination of the two pixel based modules. The
probability distribution resulting from their combination (5.8) always as-
signed more confidence to the sky class when a segment was not under the
horizon line lower bound. We can see in Figure 5.10c-ii that a large part of
the buildings was classified as sky.

The over-confidence in both the ground and sky classes led to a large
decrease of the vertical class recall rate (≈ −10%). This also led to a very
low error rate for the vertical class. We can see that the percentage of ground
and sky segments being misclassified as vertical structures became both very
low. For the ground class, this can be justified by the combination with an
additional ground detector. However, for the sky, the decrease of the error
rate was actually artificial. The ground detection modules did not provide
any information about the sky and the pixel-based module only corrected
some misclassifications occurring at the lower part of the image. In the upper
part of the image, the originally misclassified sky segments were corrected
only because the probability of the vertical class was artificial decreased.
Overall, the accuracy was still increased (+1.7%) but the error distribution
became completely different.

In the evidential case, the recall rates of all three classes were increased
and their error rates were decreased. Moreover, the performance of the
combined system remained coherent with respect to the performances of
the individual modules. We can see that the percentage of sky segments
being misclassified as vertical structures only decreased slightly (−2.2%).
Overall, the accuracy was increased by about 4%.

5.3.3 Addition of the vegetation class

Finally, the vegetation detector was added. The results are shown in Ta-
ble 5.5. The probabilistic combination led again to over-confidence in the
sky class as the probabilities on the ground and vertical classes were both
distributed to two finer classes. We obtained a 99.6% recall rate of the sky
class but with a very large error rate of 12.1%. Again, the lower error rate
of the obstacle class in the probabilistic case compared to the evidential one
(≈ −10%) is artificial and was induced by this over-confidence in the sky
class. Moreover, the probability originally assigned to the vegetation class
is distributed among two classes while the probability of the non-vegetation
class is distributed among three classes. This explains the very low recall
rate of the obstacle class. Again, the evidential fusion was more robust to
refinements and led to better overall accuracy. In particular, as the vegeta-
tion module did not provide any information about the ground and vertical
classes, the recall rate of these two classes remained unchanged in the eviden-
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tial case. On the contrary, in the probabilistic case, the recall rates changed
for both the ground and vertical classes. Some examples of classification are
shown in Figure 5.11.

5.4 Discussion and conclusion

The computation of the over-segmentation, disparity and optical flow can
be done in parallel. Real time implementations of these tasks are described
in the literature [99, 126], but they have not be applied in this work. All
the modules can also process data independently and in parallel, except the
LiDAR module, which actually needs the ground plane estimation from the
stereo module. For most of the modules, very simple methods were used,
resulting in low computation time. The cost of mass function combina-
tion is linear in both the number of modules and the number of considered
singletons, as only the plausibilities of singletons are computed.

One drawback of our approach is that we may not reach the best per-
formance attainable given all the information at hand. All the modules
are considered independently and only use a part of the available informa-
tion. A global learning, as well as an optimized combination rule [98], could
yield better results. It is, however, the price to pay if we want the system
to be flexible enough to allow for the inclusion of new modules and new
classes without having to retrain the whole system every time. Moreover,
the complexity of a global approach would grow with the increasing number
of modules and classes. The modular structure of the system also makes it
more robust to the failure of a sensor, such as the LiDAR.

We have introduced an original framework for multimodal information
fusion based on over-segmented images and Dempster-Shafer theory. This
framework is very flexible as it makes it possible to include new classes,
new sensors or new object detection algorithms without having to retrain
the whole system. The information combination approach lends itself to
parallel implementation and can cope with sensor failures. Future work will
consider additional classes such as pedestrian. New sources of information
such as GPS or digital maps will also be considered to detect moving objects.
Finally, syntactic-based approaches such the one proposed in [11] will be
further studied in order to merge segments belonging to the same object
and allow for a deeper understanding of the scene.
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Table 5.3: Classification results of the ground detection modules 2, 3, 4 and
7. The lines correspond to the decisions made by the system and the column
to the actual classes. The figures represent the recall rates in percentage.

Stereo Stereo+LiDAR
Stereo+LiDAR Stereo+LiDAR

+Pixel +Pixel+Flow

ground ground ground ground ground ground ground ground

Prob
ground 87.4 4.1 93.1 4.3 93.1 4.3 95.2 4.5

ground 4.2 85.2 4.2 85.4 4.2 91.3 3.9 93.8

ignore 8.4 10.7 2.7 10.3 2.7 4.4 0.9 1.7

Belief
ground 87.6 3.9 93.5 4.2 93.5 4.2 95.4 4.2

ground 4.0 85.4 3.9 85.5 3.9 91.4 3.7 94.1

ignore 8.4 10.7 2.6 10.3 2.6 4.4 0.9 1.7

Table 5.4: Classification results of the combination of the surface layout
estimation module with the ground detection ones. The figures represent
the recall and error rates in percentage. The numbers in brackets correspond
to the overall accuracy.

Surface layout (90.5%) Probabilistic fusion (92.2%) Evidential fusion (94.3%)

ground vert. sky error ground vert. sky error ground vert. sky error

ground 85.0 4.0 0.0 4.5 98.5 10.8 0.0 9.9 94.4 3.7 0.0 3.8

vert. 15.0 95.0 12.8 22.6 1.5 86.8 2.6 4.5 5.6 95.3 10.6 14.5

sky 0.0 1.0 87.2 1.1 0.0 2.5 97.4 2.5 0.0 1.0 89.4 1.1

96.6 91.0 96.9

ground ground ground

Table 5.5: Results of the combination of all the modules. The figures rep-
resent the recall and error rates in percentage. The numbers in brackets
correspond to the overall accuracy.

Probabilistic fusion (79.0%) Evidential fusion (81.4%)

grass road tree obst. sky error grass road tree obst. sky error

ground 86.4 3.7 4.0 5.3 0.0 13.1 73.3 1.7 1.4 1.7 0.0 6.1

road 7.0 95.0 0.4 7.6 0.0 13.6 11.2 94.5 0.4 4.2 0.0 14.3

tree 6.2 0.5 80.2 27.0 0.0 29.6 12.7 0.6 75.3 21.3 0.0 31.5

obst. 0.4 0.8 14.6 47.2 0.4 25.6 2.8 3.2 22.8 70.7 10.6 35.8

sky 0.0 0.0 0.8 12.9 99.6 12.1 0.0 0.0 0.0 2.0 89.4 2.2

97.8 85.2 94.4 95.3

ground vertical ground vertical
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(i) Campus
2011 09 28 016 013

(ii) City
2011 09 26 009 058

(iii) Residential
2011 09 30 018 650

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5.9: Classification from the ground detection modules. The RGB
colors represent the mass assigned to {ground}, {ground} and Ωg, respec-
tively. (a) Raw images. (b) Stereo-based module. (c) LiDAR module. (d)
Pixel-based module. (e) Temporal propagation of the combined mass func-
tion from the previous frame. (f) Combined mass functions. (g) Ground
truth images.
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(i) City
2011 09 26 009 013

(ii) Residential
2011 09 30 018 700

(iii) City
2011 09 26 011 010

(a)

(b)

(c)

(d)

(e)

Figure 5.10: Classification from different modules. The color code for (c), (d)
and (e) is defined as follows: ground = green, vertical = red, sky = blue. (a)
Raw image. (b) Output of the monocular surface layout estimation module,
the RGB colors represent the probabilities assigned to the ground, vertical
and sky classes, respectively. (c) Decisions resulting from the probabilistic
combination with the ground detection modules. (d) Decision results from
the evidential combination. (e) Ground truth images.



5.4. DISCUSSION AND CONCLUSION 99

(a) Probabilistic (b) Evidential (c) Ground truth

Figure 5.11: Classification results considering all the modules. The color
code is defined as follows: grass = magenta, road = green, tree = yellow,
obstacle = red, sky = blue.
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Conclusion and future work

In this thesis, we addressed scene understanding through an information fu-
sion point of view. Scene understanding was considered as an image under-
standing problem at two levels: object detection and semantic segmentation.
The main contribution of this thesis was to propose an evidential extension
of probabilistic calibration methods and to apply it to object detection and
semantic segmentation. The evidential calibration methods developed in
this thesis can be used to transform the output of any classifier into a belief
function. Belief functions can represent many kinds of imperfect information
that are not properly handled by classical probabilities. Belief functions can
better represent the uncertainty due to small training dataset. Also, con-
trary to probability distributions, belief functions can be made to support a
unique hypothesis without being certain. The theory of belief functions also
offers a high flexibility in terms of class definition. Refinement of frames of
discernment is properly handled by belief functions contrary to probability.
All these properties made the theory of belief functions especially well suited
for the combination of object detectors and semantic segmentation methods.

Many issues addressed in this thesis are, however, still open problems.
Several aspects are currently under study and many perspectives will be
studied in future work.

Belief functions The evidential calibration methods proposed in this the-
sis are extensions of probabilistic approaches. The mean-squared error, also
called Brier score [13], is a conventional measure used to compare an esti-
mated probability distribution to a reference one, i.e., ground truth. With
Dempster-Shafer theory, there is no consensus over the definition of a well
calibrated belief function. In particular, the distance between a belief func-
tion and a ground truth can be formulated in many different ways [58].

Most of the distance measures proposed in the literature use some struc-
tural properties by encoding the relations between focal elements. In partic-
ular, the cardinality of focal elements are often taken into account. This last
point implies that those distance measures can not be consistent over refine-
ment. For most of the distance measures d proposed in [58], we can show that
it is always possible to find two mass functions mΩ

1 and mΩ
2 , and a reference

one mΩ
∗ , such that d(mΩ

1 ,m
Ω
∗ ) < d(mΩ

2 ,m
Ω
∗ ) but d(mΘ

1 ,m
Θ
∗ ) > d(mΘ

2 ,m
Θ
∗ )
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for a particular refinement Θ of Ω. Only, the simple Euclidean distance:
d(m1,m2)2 =

∑
A⊆Ω(m1(A)−m2(B))2, remains consistent over refinement.

However, it lacks other important properties. In our particular case, as the
frame of discernment needs to be refined every time new classes are defined,
the consistency with respect to refinement is an important issue. One way
to address this issue is to compute distances over a coarsening that will
have only singleton as atomic focal element. This idea will be investigated
in future work.

Multi-class calibration was addressed from a binary decomposition point
of view. However, not all multi-class classifiers use such an approach. A
more general formulation would be to calibrate a vector of scores, which
would represent the confidence degree in each class, into a multi-class belief
function. This aspect is still an open issue.

Object detection We showed that the combination of multiple detectors
can greatly increase the performance. The method we proposed to combine
object detectors can also be used to better measure the contribution of a
new algorithm. In Figure 5.12, we show the performance evolution of pedes-
trian detectors over time. We can see from the blue curve, which represents
the log-average miss rate, that newer detectors are not always better than
existing ones. However, the red curve, which represents the performance
of the combination of the detectors, has clearly a decreasing shape. In the
bottom graph of Figure 5.12, we show the difference in performance of each
detector compared to the previously best existing method (blue bar) and
the gain obtained from the combination of the detectors (red bar). We can
see that even though many methods perform worse than existing methods,
their contribution in the combination leads to a positive gain. It is the other
way round for a few methods. For example, we can see that the ‘MultiFtr’
(#25) algorithm has a 5% lower miss rate compared to existing methods
but its combination with them does not lead to any gain. This can be
easily understood as the ‘MultiFtr’ algorithm only aggregates existing fea-
tures. Conversely, methods that introduce new features or information, such
as ‘HOG’ (#2), ‘LatSvm-V2’ (#5), ‘MultiFtr+Motion’ (#27), ‘MultiResC’
(#6) or ‘ACF+SDt’ (#24), have the highest contribution. The novelty of
a detector can thus be measured by its contribution when combined with
existing methods.

Our fusion framework is not limited to the combination of pedestrian de-
tectors and can be easily extended to other classes of objects. Yan et al. [133]
used a car detector to help pedestrian detectors. Modeling the interactions
between different detected objects will be considered in future work. The
tracking of detected objects is also an important aspect to address. In par-
ticular, the prediction at time t of the positions of objects detected at time
t− 1 can be seen as a detection module itself.
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Finally, one may argue that it is unreasonable to run more than 30 inde-
pendent detectors. Selecting only a subset of classifiers would be more ac-
ceptable in practice. Classifier selection is yet another challenging task [64].
Moreover, depending on the context (scale, aspect ratio, occlusion), the op-
timal subset of classifiers may vary. This issue remains an open problem
and will be investigated in future work.

Semantic segmentation We showed that our evidential fusion frame-
work is flexible enough to easily include new classes of objects, new sensors
and new detection modules. In [12], we additionally used the Automatic
Labeling Environment (ALE) software [68] to have a total of 14 classes. Fig-
ure 5.13b shows a classification result obtained from ALE. The combination
with other algorithms [46, 115, 116] will also be considered in future work.
In order to take into account the interaction between neighboring segments,
a global optimization step is often considered in semantic segmentation. For
example, conditional random fields (CRF) were used in [68]. An evidential
extension of CRF could be considered in our case. However, one limita-
tion of such approaches is that it is not possible to segment out individual
object. The particular structural properties of some classes are not taken
into account. The computation of a complete and/or parse graph using
visual grammars is one way to get a deeper understanding of an image. We
extended stochastic grammars to evidential grammars in [11]. Figure 5.13c
shows a preliminary result obtained from an evidential grammar based se-
mantic segmentation.
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Figure 5.12: Performance evolution of pedestrian detectors over time. The
numbers on the x-axis corresponds to the index number of the pedestrian de-
tectors (see Table 4.1). The methods are sorted by their year of publication.
All the methods published in a same year are sorted by increasing order of
performance, i.e., by decreasing order of log-average miss rate. (Top graph)
The blue curve represents the performance of the detectors in terms of log-
average miss rate. The red curve represents the performance of the iterative
combination of the detectors by Dempster’s rule. The y-axis corresponds
to the log-average miss rate. (Bottom graph) The blue bars represent the
absolute difference in performance compared to the previously best existing
method. The red bars represent the absolute performance gain obtained
from the combination of detectors. The y-axis corresponds to absolute dif-
ference in terms of log-average miss rate.
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(a) Raw image

(b) ALE classification result

(c) Semantic segmentation using evidential grammar

Figure 5.13: Semantic segmentation using ALE and an evidential grammar
based global optimization.
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Appendix

Proof of Proposition 1.1

Proposition 1.1 Let Px1 and Px2 be two binary probability distributions.
Their combination follows the following ordering:

H(Px1 � Px2) ≤ H(Px1 ∧ Px2) ≤ H(Px1 � Px2) ≤ H(Px1 ∨ Px2).

We define Px1 and Px2 as

Px1(Y = 1) = p, Px1(Y = 0) = 1− p,
Px2(Y = 1) = q, Px2(Y = 0) = 1− q,

where p, q ∈ [0, 1]. As Px1 and Px2 play symmetric role, we can assume,
without loss of generality, that p ≤ q.

To prove Proposition 1.1, we can first prove the following two lemmas.

Lemma 1 Let P a binary probability distribution defined as P (Y = 1) = p.
The entropy function H(P ) = −p ln p− (1− p) ln(1− p) (see Definition 1.2)
is increasing for p ∈ [0, 1/2] and decreasing for p ∈ [1/2, 1].

Proof.

dH(P )

dp
(p) ≥ 0 ⇔ − ln p− 1 + ln(1− p) + 1 ≥ 0

⇔ ln

(
1

p
− 1

)
≥ 0

⇔ p ≤ 1/2.

Lemma 2 Let ∗ be any of the four combination rules: �, �, ∧ and ∨. The
following property holds:

(Px1 ∗ Px2)(Y = 1) ≤ 1

2
⇔ p+ q ≤ 1.
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Proof.

• (Px1 � Px2)(Y = 1) ≤ 1

2
⇔ pq

pq + (1− p)(1− q)
≤ 1

2

⇔ pq ≤ 1− p− q + 2pq

2
⇔ p+ q ≤ 1.

• (Px1 � Px2)(Y = 1) ≤ 1

2
⇔ p+ q

p+ q + (1− p) + (1− q)
≤ 1

2

⇔ p+ q ≤ 1.

• (Px1 ∧ Px2)(Y = 1) ≤ 1

2
⇔ p ∧ q

(p ∧ q) + ((1− p) ∧ (1− q))
≤ 1

2

⇔ p ≤ p+ 1− q
2

⇔ p+ q ≤ 1.

• (Px1 ∨ Px2)(Y = 1) ≤ 1

2
⇔ p ∨ q

(p ∨ q) + ((1− p) ∨ (1− q))
≤ 1

2

⇔ q ≤ q + 1− p
2

⇔ p+ q ≤ 1.

Proof of Proposition 1.1. We first consider the case where p+ q ≤ 1. Using
Lemma 1 and Lemma 2, proving Proposition 1.1 becomes equivalent to
proving the following ordering:

(Px1 � Px2)(Y = 1) ≤ (Px1 ∧ Px2)(Y = 1) ≤ (Px1 � Px2)(Y = 1) ≤ (Px1 ∨ Px2)(Y = 1).

• (Px1 � Px2)(Y = 1) ≤ (Px1 ∧ Px2)(Y = 1)

⇔ pq

pq + (1− p)(1− q)
≤ p ∧ q

(p ∧ q) + ((1− p) ∧ (1− q))

⇔ pq

pq + (1− p)(1− q)
≤ p

p+ 1− q
⇔ q(p+ 1− q) ≤ pq + (1− p)(1− q)
⇔ p+ q ≤ 1, which is assumed to be true.
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• (Px1 ∧ Px2)(Y = 1) ≤ (Px1 � Px2)(Y = 1)

⇔ p ∧ q
(p ∧ q) + ((1− p) ∧ (1− q))

≤ p+ q

p+ q + (1− p) + (1− q)

⇔ p

p+ 1− q
≤ p+ q

2

⇔ 2p ≤ (p+ q)(p+ 1− q)
⇔ 2p ≤ p2 + p− pq + qp+ q − q2

⇔ 0 ≤ p2 − q2 + q − p
⇔ 0 ≤ (q − p)(1− (p+ q)),

which is true as we have assumed that p+ q ≤ 1 and p ≤ q.

• (Px1 � Px2)(Y = 1) ≤ (Px1 ∨ Px2)(Y = 1)

⇔ p+ q

p+ q + (1− p) + (1− q)
≤ p ∨ q

(p ∨ q) + ((1− p) ∨ (1− q))

⇔ p+ q

2
≤ q

q + 1− p
⇔ (p+ q)(q + 1− p) ≤ 2q

⇔ pq + p− p2 + q2 + q − qp ≤ 2q

⇔ q2 − p2 + p− q ≤ 0

⇔ (p− q)(1− (p+ q)) ≤ 0,

which is true as we have assumed that p+ q ≤ 1 and p ≤ q.

In the other case where p + q ≥ 1. Using Lemma 1 and Lemma 2, proving
Proposition 1.1 becomes equivalent to proving the following ordering:

(Px1 � Px2)(Y = 1) ≥ (Px1 ∧ Px2)(Y = 1) ≥ (Px1 � Px2)(Y = 1) ≥ (Px1 ∨ Px2)(Y = 1).

It can be proved in the same way as done previously.

�
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[69] L. Ladický, P. Sturgess, C. Russell, S. Sengupta, Y. Bastanlar,
W. Clocksin, and P. Torr. Joint optimization for object class seg-
mentation and dense stereo reconstruction. International Journal of
Computer Vision, 100(2):122–133, 2012.

[70] D. Larlus, J. Verbeek, and F. Jurie. Category level object segmenta-
tion by combining bag-of-words models with dirichlet processes and
random fields. International Journal of Computer Vision, 88(2):238–
253, 2010.
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