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Chapter 1

Curriculum Vitæ

Born in Chatenay–Malabry (France), the 18th of July 1979.

1.1 Career

Since Jan. 2013, Chargé de Recherche 1ère classe CNRS (section 13). Lab-

oratoire d’Électrochimie Moléculaire, Université Paris–Diderot, France. Group of Profs.

Marc Robert and Jean–Michel Savéant.

Jan. 2009 - Dec.2012, Chargé de Recherche 2nde classe CNRS (section 13).

Laboratoire d’Électrochimie Moléculaire, Université Paris–Diderot, France. Group of

Profs. Marc Robert and Jean–Michel Savéant.

Dec. 2007 - Dec. 2008, Post-doctoral position. Laboratoire d’Électrochimie

Moléculaire, Université Paris–Diderot, France. Group of Profs Marc Robert and Jean–

Michel Savéant.

Oct. 2007 - Dec. 2007, Post-doctoral position. School of Chemical Sciences,

University of East Anglia, Norwich, UK. Group of Prof. Chris Pickett.

Oct. 2005 - Sept. 2007, Post-doctoral position. Laboratoire de Physique de la

Matière Condensée, École Polytechnique, Palaiseau, France. Group of Prof. Jean–Pierre

Boilot.

1.2 Education

Sept. 2005, PhD. Department of Biological Chemistry, John Innes Centre, University

of East Anglia, Norwich, UK. Group of Prof. Chris Pickett.

Title of the thesis : Chemistry related to the [FeFe]–hydrogenases.

http://tel.archives-ouvertes.fr/tel-00011568/fr/
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July 2002, D.E.A. des Systèmes Bioorganiques et Bioinorganiques. Université

Paris–Sud, Orsay, France.

July 2001, Maîtrise de Chimie, Option Chimie Bioorganique et Bioinorgani-

que. Université Paris–Descartes, Paris, France.

July 1999, D.U.T. de Chimie. Université Paris–Sud, Orsay, France.

1.3 Dissemination of research

1.3.1 Peered–review publications

*: corresponding author

Publications related to the PhD

P1 C. Tard, X. M. Liu, D. L. Hughes, and C. J. Pickett*

A novel {FeI–FeII–FeII–FeI} iron thiolate carbonyl assembly which electrocatalyses

hydrogen evolution.

Chem. Commun., 2005, 133–135.

http://dx.doi.org/10.1039/b411559g

P2 C. Tard, X. M. Liu, S. K. Ibrahim, M. Bruschi, L. De Gioia, S. C. Davies, X. Yang,

L. S. Wang, G. Sawers, and C. J. Pickett*

Synthesis of the H–cluster framework of iron–only hydrogenase.

Nature, 2005, 433, 610–613.

http://dx.doi.org/10.1038/nature03298

P3 X. M. Liu, S. K. Ibrahim, C. Tard, and C. J. Pickett*

Iron–only hydrogenase: Synthetic, structural and reactivity studies of model com-

pounds.

Coord. Chem. Rev., 2005, 249, 1641–1652.

http://dx.doi.org/10.1016/j.ccr.2005.04.009

P4 D. E. Schwab, C. Tard, E. Brecht, J. W. Peters, C. J. Pickett, and R. K. Szilagyi*

On the electronic structure of the hydrogenase H–cluster.

Chem. Commun., 2006, 3696–3698.

http://dx.doi.org/10.1039/b604994j

P5 S. K. Ibrahim, X. M. Liu, C. Tard, and C. J. Pickett*

Electropolymeric materials incorporating subsite structures related to iron–only hy-

drogenase: active ester functionalised poly(pyrroles) for covalent binding of {2Fe3S}–

carbonyl/cyanide assemblies.
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Chem. Commun., 2007, 1535–1537.

http://dx.doi.org/10.1039/b617399c

P6 M. H. Cheah, C. Tard, S. J. Borg, X. M. Liu, S. K. Ibrahim, C. J. Pickett*, and S.

P. Best*

Modeling [Fe–Fe] hydrogenase: evidence for bridging carbonyl and distal iron coor-

dination vacancy in an electrocatalytically competent proton reduction by an iron

thiolate assembly that operates through Fe(0)–Fe(II) levels.

J. Am. Chem. Soc., 2007, 129, 11085–11092.

http://dx.doi.org/10.1021/ja071331f

P7 F. F. Xu, C. Tard, X. F. Wang, S. K. Ibrahim, D. L. Hughes, W. Zhong, X. R. Zeng,

Q. Y. Luo, X. M. Liu, and C. J. Pickett*

Controlling carbon monoxide binding at di–iron units related to the iron–only hy-

drogenase sub–site.

Chem. Commun., 2008, 606–608.

http://dx.doi.org/10.1039/b712805c

P8 C. Tard and C. J. Pickett*

Structural and functional analogues of the active sites of the [Fe]–, [NiFe]–, and

[FeFe]–hydrogenases.

Chem. Rev., 2009, 109, 2245–2274.

http://dx.doi.org/10.1021/cr800542q

Publications related to post–doctoral research

P9 L. L. Xuan, S. Brasselet, F. Treussart, J.–F. Roch,* F. Marquier, D. Chauvat, S.

Perruchas, C. Tard, and T. Gacoin

Balanced homodyne detection of second–harmonic generation from isolated subwave-

length emitters.

Appl. Phys. Lett., 2006, 89, 121118–121113.

http://dx.doi.org/10.1063/1.2356375

P10 L. L. Xuan, C. Y. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin,

P. Villeval, and J.–F. Roch*

Photostable second–harmonic generation from a single KTiOPO4 nanocrystal for

nonlinear microscopy.

Small, 2008, 4, 1332–1336.

http://dx.doi.org/10.1002/smll.200701093

P11 C. Tard, S. Perruchas,* S. Maron, X. F. Le Goff, F. Guillen, A. Garcia, J. Vigneron,

A. Etcheberry, T. Gacoin, and J.–P. Boilot*

Thermochromic luminescence of sol–gel films based on copper iodide clusters.
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Chem. Mater., 2008, 20, 7010–7016.

http://dx.doi.org/10.1021/cm801780g

P12 P. Wnuk,* L. Le Xuan, A. Slablab, C. Tard, S. Perruchas, T. Gacoin, J. F. Roch,

D. Chauvat, and C. Radzewicz

Coherent nonlinear emission from a single KTP nanoparticle with broadband fem-

tosecond pulses.

Opt. Express, 2009, 17, 4652–4658.

http://dx.doi.org/10.1364/oe.17.004652

P13 S. Perruchas,* C. Tard, X. F. Le Goff, A. Fargues, A. Garcia, S. Kahlal, J.–Y. Sail-

lard, T. Gacoin, and J.–P. Boilot*

Thermochromic luminescence of copper iodide clusters: the case of phosphine lig-

ands.

Inorg. Chem., 2011, 50, 10682–10692.

http://dx.doi.org/10.1021/ic201128a

Publications at the Laboratoire d’Électrochimie Moléculaire

P14 C. Costentin, M. Robert, J.–M. Savéant,* and C. Tard

Inserting a hydrogen–bond relay between proton exchanging sites in proton–coupled

electron transfers.

Angew. Chem. Int. Ed., 2010, 49, 3803–3806.

http://dx.doi.org/10.1002/anie.200907192

P15 C. Costentin, V. Hajj, M. Robert, J.–M. Savéant,* and C. Tard

Effect of base pairing on the electrochemical oxidation of guanine.

J. Am. Chem. Soc., 2010, 132, 10142–10147.

http://dx.doi.org/10.1021/ja103421f

P16 C. Costentin, M. Robert, J.–M. Savéant,* and C. Tard

H–bond relays in proton–coupled electron transfers. Oxidation of a phenol concerted

with proton transport to a distal base through an OH relay.

Phys. Chem. Chem. Phys., 2011, 13, 5353–5358.

http://dx.doi.org/10.1039/c0cp02275f

P17 C. Costentin, V. Hajj, M. Robert, J.–M. Savéant,* and C. Tard

Concerted heavy–atom bond cleavage and proton and electron transfers illustrated

by proton–assisted reductive cleavage of an O–O bond.

Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 8559–8564.

http://dx.doi.org/10.1073/pnas.1104952108

P18 J. Bonin, C. Costentin, M. Robert, J.–M. Savéant,* and C. Tard

Hydrogen–bond relays in concerted proton–electron transfers.
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http://dx.doi.org/10.1002/anie.200907192
http://dx.doi.org/10.1021/ja103421f
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Acc. Chem. Res., 2012, 45, 372–381.

http://dx.doi.org/10.1021/ar200132f

P19 C. Costentin, M. Robert, J.–M. Savéant,* and C. Tard

Breaking bonds with electrons and protons. Models and examples.

Acc. Chem. Res., 2014, 47, 271–280.

http://dx.doi.org/10.1021/ar4001444

P20 C. Di Giovanni, W.–A. Wang, S. Nowak, J.–M. Grenèche, H. Lecoq, L. Mouton, M.

Giraud,* and C. Tard*

Bioinspired iron sulfide nanoparticles for cheap and long–lived electrocatalytic molec-

ular hydrogen evolution in neutral water.

ACS Catal., 2014, 4, 681–687.

http://dx.doi.org/10.1021/cs4011698

P21 J.–M. Savéant* and C. Tard*

Proton–coupled electron transfer in azobenzene–hydrazobenzene couples with pen-

dant acid–base functions. Hydrogen–bonding and structural effects.

J. Am. Chem. Soc., 2014, 136, 8907–8910.

http://dx.doi.org/10.1021/ja504484a

1.3.2 Patent

Pat1 C. Tard and M. Giraud

Iron sulfide based catalyst for electrolytic water reduction into hydrogen gas.

Patent registration EP13305888, 2013.

1.3.3 Peer reviewing

PR1 2012, Inorg. Chim. Acta, ed. Prof. Bernhard Lippert

Functionalised silica gel; iron complex; catechol degradation

PR2 2013, Inorg. Chem., ed. Prof. James M. Mayer

Cobalt complex; electrochemical study; hydrogen evolution reaction

PR3 2013, Inorg. Chem., ed. Prof. James M. Mayer

Palladium complex; electrochemical study; hydrogen evolution reaction

PR4 2013, J. Am. Chem. Soc., ed. Prof. Joseph T. Hupp

Molybdenum complex; photocatalysis; electrochemical study; hydrogen evolution

reaction

PR5 2014, ACS Catal., ed. Prof. Susannah L. Scott

Molybdenum film; electrochemical study; hydrogen evolution reaction
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PR6 2014, Nat. Commun., ed. Dr. Luke Batchelor

Di–iron complex; electrochemical study; hydrogen evolution reaction; hydrogenase

models

PR7 2012 & 2014, 2 ANR grant proposals

1.3.4 Bibliometry (2012 ISI Journal Citation Report, January 2015)

Journals Impact factor Publications Citations

Chem. Rev. 45.66 P8 472

Nature 42.35 P2 313

Acc. Chem. Res. 24.35 P18/P19 15/3

Coord. Chem. Rev. 12.10 P3 181

J. Am. Chem. Soc. 11.44 P6/P15/P21 71/6/0

Angew. Chem. Int. Ed. 11.34 P14 22

Proc. Natl. Acad. Sci. U. S. A. 9.81 P17 12

Chem. Mater. 8.54 P11 33

ACS Catal. 7.58 P20 5

Small 7.51 P10 36

Chem. Commun. 6.72 P1/P4/P5/P7 40/28/26/44

Inorg. Chem. 4.79 P13 54

Phys. Chem. Chem. Phys. 4.20 P16 12

Opt. Express 3.53 P12 9

Appl. Phys. Lett. 3.52 P9 17

Total 21 1399

Average Citations per Article 66.62

Mean Edition Impact Factor 12.90

h–index 14

1.3.5 Communications

Oral communications in conferences and symposiums

OC1 June 2010, 43rd Heyrovský Discussion, Castle Třešť, Czech Republic

Inserting a hydrogen bond relay between proton exchanging sites in proton–coupled

electron transfers.

http://www.jh-inst.cas.cz/~hdisc/

OC2 July 2011, Journées d’Électrochimie 2011, Grenoble, France

Utilisation de relais dans les transferts couplés électron–proton longue distance.

http://www.je2011.fr/index.php

OC3 March 2012, Young Engineers + Scientists Symposium 2012, Berkeley, California,

USA
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Long range proton–coupled electron transfers: towards a biomimetic approach.

http://yess2012.org/

OC4 Sept. 2012, SNU – Paris–Diderot Chemistry Symposium 2012, Seoul, South Korea

Long range proton–coupled electron transfers in biomimetic systems.

OC5 Nov. 2012, Blaise Pascal International Chair, Vincent L. Pecoraro, Orsay, France

Long range proton–coupled electron transfers in biomimetic systems.

OC6 June 2013, 46th Heyrovský Discussion, Castle Třešť, Czech Republic

Transition metal chalcogenide nanoparticles for electrocatalytic hydrogen evolution.

http://www.jh-inst.cas.cz/~hdisc/2013

Laboratory seminars

LS1 Sept. 2004, School of Chemical Sciences, University of East Anglia, Norwich, UK

The active site of all–iron hydrogenase.

LS2 Oct. 2005, Laboratoire de Chimie et de Biochimie Pharmacologique et de Toxi-

cologie, Université Paris Descartes, France

Modèles synthétiques du site actif de l’hydrogénase à fer.

LS3 Nov. 2005, Laboratoire de Chimie Inorganique, Université Paris–Sud, France

Modèles synthétiques du site actif de l’hydrogénase à fer.

LS4 Feb. 2006, Institut Lavoisier, Université de Versailles St–Quentin, France

Modèles synthétiques du site actif de l’hydrogénase à fer.

LS5 Apr. 2007, Département de Chimie Organique, Université de Genève, Switzerland

Synthetic models of the active site of the [FeFe]–hydrogenase.

Posters

Post1 Apr. 2003, Dalton Discussion 5, Leiden, The Netherlands

{2Fe3S}–assemblies related to the sub–site of all–iron hydrogenase.

Post2 July 2003, RSC Coordination Chemistry Discussion Group, Manchester, UK

{2Fe3S}–assemblies related to the sub–site of all–iron hydrogenase.

Post3 Sept. 2003, COST Meeting, Active Sites of Hydrogenases, Muelheim, Germany

Toward total synthesis of a free–standing H–cluster.

Post4 July 2004, Gordon Conference, Nitrogen Fixation, New London, NH, USA

Synthesis of {2Fe-3S}–cores related to the sub–site of [Fe]–hydrogenase: towards

total synthesis of the H–cluster.

7
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Post5 Aug. 2004, COST Meeting, 7th International Hydrogenases Conference, Reading,

UK

Synthesis of {2Fe-3S}–cores related to the sub–site of [Fe]–hydrogenase: towards

total synthesis of the H–cluster.

Post6 Jan. 2007, SFC Chimie de Coordination, Paris, France

Luminescent materials based on transition metal clusters.

Post7 June 2007, Summer School C’Nano IdF, Le Tremblay–sur–Mauldre, France

Contrôle optique du mouvement et de l’organisation de nanoparticules.

Post8 Oct. 2011, PCET 2011, Richelieu, France

Inserting a hydrogen bond relay between proton exchanging sites in proton–coupled

electron transfers.

1.4 Research funding and scientific activities

1.4.1 Research funding

*: Principal investigator

RF1 2010, C. Tard*

Japan Society for the Promotion of Science

Fe/S nanoparticles for hydrogen evolution, rejected.

RF2 2010, M. Robert*, participation 20 %

Agence Nationale de la Recherche

Transfert et transport couplés d’électron et de proton dans des systèmes biomimé-

tiques, accepted, 489 326 e.

RF3 2011, C. Tard*

ANR, Programme Jeunes Chercheuses Jeunes Chercheurs

Nanoparticules Fe/S pour la production réversible d’hydrogène, rejected.

RF4 2011, C. Tard and M. Robert*

Région Ile–de–France, DIM NanoSciences

Transfert couplé électron–proton sur longue distance relayé par des molécules d’eau,

rejected.

RF5 2012, C. Tard*

ANR, Programme Jeunes Chercheuses Jeunes Chercheurs

Nanoparticules Fe/S pour la production réversible d’hydrogène, accepted, 179 263 e.

RF6 2012, C. Tard and M. Robert*

Région Ile–de–France, DIM Des atomes froids aux nanosciences
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Water assisted long range proton–coupled electron transfer through biomimetic nano–

channels, accepted, 42 800 e.

RF7 2014, C. Tard and M. Giraud*

LUCIA beam line at the SOLEIL synchrotron

Probing the role of sulfur in hydrogen–producing iron sulfide nanocatalysts, accepted.

1.4.2 Students

– Co–supervision of 2 post–doctoral fellows, Matteo Duca (2012–2013, funding RF6, pub-

lication P21) and Carlo Di Giovanni (2013–2015, funding RF5, publication P20). Matteo

Duca has worked on the electrochemical studies of long–ranged proton–coupled electron

transfer in synthetic bio–channels (see section 3.2). Carlo Di Giovanni is currently involved

in the project of electrocatalytic reduction of protons using iron–sulfide nanoparticles (see

section 2.3.5).

– Co–supervision of 1 PhD student, Viviane Hajj (2008–2011, publications P15 and P17).

During her PhD, Viviane Hajj has developed the synthesis of guanidine and cycloperox-

ide derivatives in order to study bio–inspired proton–coupled electron transfer reaction

by electrochemical techniques (see section 2.3.4). Supervision of 2 PhD students, Alison

Tebo and Jefferson Plegaria, from the group of Vincent L. Pecoraro at the University of

Michigan. During their visits in our laboratory (2 × 2 months each), we investigated the

electrochemical behaviour of bioinorganic peptides models of iron and copper proteins.

– Supervision or co–supervision of 10 undergraduate students from École Normale Su-

périeure – Paris (2), INP Phelma (Grenoble), Université Paris–Diderot (2), Université

Paris–Descartes (2), INSA Strasbourg, Lycée Notre–Dame (Verneuil, BTS) and King’s

College (Cambridge, UK).

1.4.3 Teaching

2003–2005 During my PhD thesis I was involved in the laboratory practical course for first year

students at the School of Chemical Sciences and Pharmacy of the University of East

Anglia (Norwich, U. K.). The experiments were related to bonding structure and

periodicity, chemistry of carbon compounds, analytical chemistry and spectroscopy.

2007 During my post-doctoral contract at the École Polytechnique I was involved in the

practical courses in organic chemistry for the competitive examination admission.

1.4.4 Scientific collaborations

SC1 2005, University of Melbourne, Department of Chemistry

Dr. Stephen P. Best, spectroelectrochemistry of [FeFe]–Hydrogenase models (publi-

cation P6).

2 months visit in May–June 2005.

9
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SC2 2005–2007, ENS Cachan, Laboratoire de Photonique Quantique et Moléculaire,

UMR 8537

Prof. Jean–François Roch, photophysic studies of KTiOPO4 nanoparticles (publica-

tions P9, P10 and P12).

SC3 2006–2007, CEA Saclay, SPCSI, Laboratoire d’Électronique et Nanophotonique

Organique

Dr. Céline Fiorini, functionalized nanoparticles STM studies.

SC4 since 2010, Université Paris–Diderot, Laboratoire ITODYS, UMR 7086

Dr. Marion Giraud, synthesis and characterization of Fe/S nanoparticles (publica-

tion P20 and patent Pat1).

SC5 since 2011, CEA Saclay, DMS, Institut Rayonnement Matière de Saclay

Dr. Thibault Cantat, organic molecules for the electrocatalysis of carbon dioxide

reduction.

SC6 since 2012, University of Michigan, Department of Chemistry

Prof. Vincent L. Pecoraro, water channel and proton–coupled electron transfer (pub-

lication P21).

4 months visit in Feb.–June 2012.

1.4.5 Conferences and seminars organization

Since 2010, I am co–organizing the Lavoisier Lectures with 3 colleagues from the chem-

istry department. Once a year and during one week the chemistry department hosts a

prestigious scientist. We already welcomed Profs. George M. Whitesides (2011, Harvard),

John H. Seinfeld (Caltech, 2011), Naomi J. Halas (2012, Rice University) and Patrick R.

Unwin (2013, Warwick University).

In 2011, our research group organized an international conference in the Loire Valley

on Proton–Coupled Electron Transfer reactions, with the participation of Profs. Dennis

Evans, Marc Fontecave, Leif Hammarström, Sharon Hammes–Schiffer, James M. Mayer,

Thomas J. Meyer, Daniel Nocera and JoAnne Stubbe. During the organization process, I

was in charge of the website, the registration and the communication with the attendees.

1.4.6 Administrative duties

I have been elected at the Laboratoire d’Électrochimie Moléculaire laboratory council

(2013–2017) and at the chemistry department scientific council (2014–2018).

10
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Chapter 2

Scientific assessment

2.1 Doctoral thesis assessment

My PhD thesis started in October 2002 at the Biological Chemistry Department of the

John Innes Centre (Norwich, UK) under the supervision of Prof. Chris Pickett. Fol-

lowing the unraveling of the crystal structure of the [Fe–Fe]–hydrogenase enzyme, able

to reversibly converts protons into molecular hydrogen,[1, 2] the group of Prof. Pickett

started in 1999 to study the synthesis of organometallic models of the active site of this

enzyme, the so–called ‘H–cluster’.[3] This enzymatic active site is rather peculiar, and is

composed of an [Fe4S4]–cluster linked by a cysteinyl residue to a [Fe2S2]–sub–site (Fig-

ure 2.1).[4] The binuclear metal centre, thought to be the catalytic part, is bridged by a

dithiolate ligand, now depicted as a di(thiomethyl)amine. Biologically unusual carbonyl

and cyanide ligands also coordinate the two irons. The synthesis of sub–site structural

analogues has been extensively studies after the publication of the X–ray crystal structure

of the enzyme, and is based on the reaction between a dithiol ligand and an iron carbonyl

complex. Notably the complex Fe2(CO)
6
(SEt)

2
has been synthesized in 1929,[5] and since

then hundreds of di–iron complexes have also been prepared.[6, 7]

The major challenge of modelling the active site of the [Fe–Fe]–hydrogenase is to find

a molecular complex able to catalyse reversibly the reduction of protons into molecular

hydrogen. One can envisage that such catalysts would give a chance to molecular hy-

drogen to become an alternative to fossil fuels, as exemplified by the number of models

prepared so far. Indeed, production of molecular hydrogen currently uses either hydrocar-

bon sources (by reforming or pyrolysis) or noble metal catalysts for the electrocatalytical

reduction of water, these two option being unrealistic on the mid– and long–term regard-

ing sustainability and cost issues.[8] Molecular complexes could be envisaged as potential

candidates for electrocatalysis of hydrogen evolution, but only if ease of preparation, sta-

bility, efficiency and cost of these molecules provide a net advantage over the existing

materials. Concerning small–molecule activation in general, this is clearly not the case

yet, and currently much of the attention is focused on the mechanistic understanding of

the catalysis and the unravelling of biological machinery processes.
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Figure 2.1: X–ray structure of the active site of the [FeFe]–hydrogenase (PDB ID, 3C8Y).
Orange spheres: Fe; blue spheres: N; red spheres: O; yellow sphere: S; grey spheres: C.

The work of my PhD thesis was focused on the synthesis, and reactivity and electro-

chemical studies of chemical models of the active site of the [Fe–Fe]–hydrogenase enzyme.

Without going into the details of the different molecules prepared during these three years,

two model complexes have attracted much of our attention regarding their biological struc-

tural and activity relevance.

2.1.1 H–cluster framework

The recent unravelling of the [FeFe]–hydrogenase structure led us to investigate the syn-

thesis of a free–standing structural model of the active site. The hardship of this project

was the preparation of an asymmetrical [Fe4S4]–cluster where a [Fe2S2]–unit could be

attached. Whereas the chemistry of FeS complexes related to iron–sulphur proteins has

attracted much attention over the past 40 years or so, only very few examples of asymmet-

ric cubane [Fe4S4]–clusters have been explored. We thus decided to follow the synthesis

described by Holm and co–workers,[9] who designed a ligand able to coordinate three out

of the four irons, leaving the fourth iron able to coordinate an extra ligand. Following

this strategy, we designed and synthesised the first model of the entire H–cluster of the

[Fe–Fe]–hydrogenase enzyme through linking of a di–iron sub–site to a [Fe4S4]–cluster

(Figure 2.2).[10] The electron transfer process of this system has been studied by electro-

chemical and spectroelectrochemical methods, and electronic and mechanistic aspects of

the interplay between the sub–site and iron–sulphur cluster explored.

The voltammograms obtained have been simulated and we proposed a mechanism that
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Figure 2.2: Synthetic H–cluster model.

involves an intramolecular electron transfer between the reduced [Fe4S4]–cluster and the

[Fe2S2]–sub–site in concert with reversible opening of the µ–SCH2 bridge. This study out-

lined the fundamental role of the functionality brought by the thioether ligand, whereas all

the other synthetic systems studied so far are focused on the modification of ligands around

the di–iron centre, the functionalisation the dithiolate bridging ligand or the modification

of second coordination sphere.

X–ray absorption spectroscopic measurements and density functional theory (DFT)

calculations also suggested that the synthetic hydrogenase H–cluster is best described as an

electronically inseparable 6Fe–cluster due to extensive delocalization of frontier molecular

orbitals of the iron centres, sulphide and the non–innocent dithiolate ligands.[10, 11]

Furthermore, this assembly electrocatalyses dihydrogen evolution in organic solvents

at a relative low overpotential potential for such di–iron model, indicating that the model

is relevant in terms of structure and activity. Nevertheless, it has to be stressed that the

synthesis of this type of complex is long and difficult, rendering its potential application

unrealistic for industrial purposes.

2.1.2 {FeI–FeII–FeII–FeI} iron thiolate carbonyl assembly

A mixed–valent tetra–iron thiolate carbonyl assembly has been synthesized in which two

dithiolate tetracarbonyl di–iron centres with a butterfly configuration of the [Fe2S3]–cores

are fused by two bridging thiolates which form a central planar [Fe2S2]–unit.[12] This

was the first example of a chain of four metal–metal bonded iron atoms supported by a

bridging sulphur framework.

Just as for the di–iron–sulphur complexes family, this assembly electrocatalyses hydro-

gen evolution. Electrocatalytic proton reduction proceeds slowly at mild potentials by a

one–electron reduction of the complex, a rate–limiting protonation followed by a further

one–electron reduction, and finally dihydrogen elimination. Our study showed that a dra-

matic increase in the rate of electrocatalysis occurs if two–electron reduction precedes the

protonation (Figure 2.3).

Spectroelectrochemical measurements coupled to DFT calculations showed that the

striking increased rate of electrocatalysis obtained from [Fe4S6]–core over all previously

13



Cédric Tard – Mémoire d’HDR – 2014

Figure 2.3: DFT calculated structures and mechanism of proton reduction by the mixed–
valent [Fe4S6]–complex.

identified model compounds appears to be related to the features uniquely common be-

tween it and the H–cluster, namely, that turnover involves the same formal redox states of

the di–iron unit (FeIFeII and Fe0FeII), the presence of an open site on the outer Fe atom

of the Fe0FeII unit, and the thiolate–bridge to a second one–electron redox unit.[13] While

lacking the CN– ligands and including two, instead of one, bridging thiolate sulphur atoms

to a second redox centre, this assembly provided an important insight into the reactivity

of the H–cluster.

2.2 Post–doctoral assessment

After my PhD, I joined the group of Prof. Jean–Pierre Boilot at the Laboratoire de

Physique de la Matière Condensée of the École Polytechnique (Palaiseau, France). The

group is well recognized for its contributions in solid state chemistry, and notably in the

study of optical properties of functional hybrid organic–inorganic materials. I have been

involved in three projects related to luminescent properties, second–harmonic generation

and optical control of nanoparticles motion, mainly performing luminescence studies and

synthesis of complexes and nanoparticles.
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2.2.1 Thermochromic luminescence of copper iodide clusters

The aim of this project was to study luminescent molecular inorganic clusters within a

solid matrix, these clusters having photostability properties of inorganic nanoparticles

together with monodispersity of organic molecules. Indeed, it is well known that the

poor photostability of organic molecules is a major drawback in terms of applications,

and the issue of controlling the size and the surface of nano–objects is also problematic.

Incorporation of these molecular inorganic clusters within a sol–gel matrix would thus

provide a way to prepare luminescent, homogeneous and photostable materials at room

temperature and ambient pressure.

The sol–gel process is a soft method of producing solid–state

materials by hydrolysis and condensation of molecular pre-

cursors. The precursor can be an alcoholate or a metallic

salt. The ‘sol’ is prepared at ambient temperature by hy-

drolysis of the precursor, and the ‘gel’ is formed when the

solvent molecules are trapped within the solid matrix form-

ing a biphasic system. The drying step is crucial and has to

be controlled in order to obtain a xerogel (slow drying) or

an aerogel (supercritical drying).

Sol–gel process

The system chosen was the cubane [Cu4I4]–cluster (Figure 2.4, left), known for its ther-

mochromic luminescent properties,[14, 15] and by combining these two properties, lumi-

nescence and thermochromism, we aimed at developing new materials with unusual prop-

erties. The tetracopper(I) clusters [Cu4X4L4] (X = Cl, Br, I; L = pyridine or amine–based

derivatives) are known to be highly luminescent at room temperature. These compounds

are easily synthesized from cheap precursors in solution at room temperature, and can be

obtained with different types of ligands (L) allowing their functionalization. Furthermore,

these copper clusters display emission spectra that are sensitive to their environment, the

temperature, and the rigidity of the medium. For example, the thermochromic lumines-

cence originates from two emission bands whose relative intensities vary in temperature.

At room temperature, the luminescence is dominated by a low energy band (LE) which

has been attributed to a combination of a halide–to–metal charge transfer (XMCT) and

copper–centred d → s, p transitions. This emission is called cluster centred (CC) as it

involves a [Cu4I4]–cluster centred triplet excited state, which is essentially independent

of the nature of the ligand. At low temperature, this band is extremely weak, and the

emission is dominated by a high energy band (HE) which has been attributed to a triplet

halide–to–ligand charge transfer (XLCT) excited state (Figure 2.4, right). As the π* or-

bitals of the ligands are involved in this XLCT band, the emission at low temperature is

only observed for clusters incorporating π–unsaturated ligands. All these properties make

these copper clusters particularly attractive for their incorporation in organic or inorganic

polymeric matrices, to synthesize materials with original optical applications.
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Figure 2.4: Left: General representation of [Cu4I4L4]–clusters (X = Cl, Br, I; L = organic
ligand). Right: Simplified energy level diagram of the copper iodide clusters studied.

Very few examples of phosphine derivative [Cu4I4]–clusters have been reported in the

literature. Compared to pyridine or amine–based derivatives, they are more stable, and

thus particularly interesting for the synthesis of original emissive materials. Thus, we per-

formed photophysical studies on phosphine–based clusters, and we investigated the corre-

lation between experimental (structural and optical) and theoretical data and compared

the results with previous works on pyridine–based clusters to provide new insights into this

complicated photophysical system.[16] Under UV excitation (330 nm), two intense emis-

sions were observed for the clusters studied with a bright green–yellow luminescence at

room temperature which becomes blue at low temperature (8 K) (Figure 2.5). The DFT

calculations were in agreement with the following band assignment: the LE band origi-

nates from a [Cu4I4]–cluster centred excited state whereas the HE one involves a mixed

charge–transfer (MLCT/XLCT) excited state, which differs from [Cu4I4py4]–cluster type.

As the π* orbitals of the ligands are involved in this XLCT band, the emission at low

temperature is only observed for clusters incorporating π–unsaturated ligands. The ther-

mochromic luminescence exhibited by these clusters derives from the thermal equilibrium

between two separate excited states (MLCT/XLCT and CC). In contrast with the pyri-

dine derivatives, the same excitation states and low activation energies for these clusters

reflect high coupling of the two emissive states. The effect of the Cu–Cu interactions on

the emission properties of these clusters is not so obvious. Particularly, our results disagree

with previous studies suggesting that only compounds with Cu–Cu distances shorter than

2.8–2.9 Å exhibit emissive CC states.[17] On the contrary, for the LE band emission the

Cu–Cu distances do not seem to be an essential parameter.

This photophysical study led us to investigate the incorporation of copper iodide clus-

ters in sol–gel silica matrices.[18] These photoactive entities were functionalized with phos-

phine ligands bearing alcoxysilane groups able to copolymerize with the methyltriethoxy-

silane (MTEOS) sol–gel precursor. By this way, the optical properties of these clusters

were successfully preserved in the matrix, as evidenced by solid–state NMR and X–ray
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Figure 2.5: Phosphine [Cu4I4L4]–cluster powders under UV irradiation at 312 nm at room
temperature (left) and in liquid nitrogen (right).[16]

photoelectron spectroscopy (XPS) analyses showing that a great majority of the clusters

remained intact within the film. A few oxidized phosphine ligands were detected in the

film by NMR, whose presence was inherent to the acidic sol–gel conditions. The lumi-

nescence properties of the sol–gel films displayed striking change in the colour emission

in temperature from 292 K to 8 K, which was consistent with the previous photophysi-

cal analysis performed on the free-standing copper iodide phosphine cluster (Figure 2.6).

These films were the first exhibiting thermochromic luminescence, and one can envisage

to be useful for temperature sensing applications.

2.2.2 Second–harmonic generation from KTiOPO4 nanocrystals

This project was realized in collaboration with the Laboratoire de Photonique Quantique

et Moléculaire of the ENS Cachan for the optical characterization part (SC2).

Nonlinear second–harmonic generation (SHG) microscopy has become a commonly

used technique for investigating interfacial phenomena and imaging biological samples.

For organic nanocrystals, resonant optical interaction leads to an enhancement of the

nonlinear response but also to a parasitic effect that is detrimental for practical applica-

tions, namely photobleaching due to two–photon residual absorption. This issue could be

circumvent using SHG microscopy, but it usually leads to weak photon flux, and extremely

faint signals are therefore expected from nano–objects with second–harmonic nonlinear re-
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Figure 2.6: Top: [Cu4I4L4]–clusters film deposited on glass substrates (a) under ambient
light and (b) under UV irradiation at 312 nm at room temperature and (c) under UV
irradiation at 312 nm in liquid nitrogen. Bottom: Temperature dependence emission
spectra for [Cu4I4L4]–clusters film on a glass substrate from 120 K to 8 K with λex =
300 nm.
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sponse. Direct detection with avalanche photodiode in photon counting regime is a prac-

tical solution and coherent detection of the SHG signal can be performed using a balanced

homodyne detection scheme allowing a sensitivity to extremely low photon flux rates. We

therefore decided to consider a well–known SHG–active bulk material and investigate its

properties in nanoparticle form.

The second–harmonic generation is a non-linear optical phe-

nomenon. Photons interacting with non-linear materials are

‘associated’ to generate new photons with twice the energy

— i.e. a doubled frequency or half the wavelenght — of

the initial photons. In microscopy, the contrast will be ob-

tained by a variation of the SHG capability of a material (or

a biological tissue) from the incident light.

Second–harmonic generation

Potassium titanyl phosphate KTiOPO4 (KTP) is a widely used nonlinear crystal. The

KTP nanoparticles were extracted from the raw powder that remains in the trough at

the end of the flux–growth process, which leads to the synthesis of large–sized KTP single

crystals. We then applied a size–selection procedure by selective centrifugation to obtain

a colloidal solution of non–aggregated particles.[19] Under femtosecond excitation and in

ambient conditions, a single nano–KTP particle with a size of around 60 nm, independently

determined with atomic force microscopy (AFM), generates a perfectly stable blinking–

free second–harmonic signal that can be easily detected in the photon–counting regime.[20]

Furthermore, we showed that the use of broadband ultrashort laser pulses improved the

second–harmonic emission from a single nanoparticle of size about 120 nm (Figure 2.7).[21]

It resulted in a contrast enhancement of the SHG image obtained by raster scanning the

sample.∗ In this process, smaller nanoparticles were revealed for a given background. This

work is currently extended to the optical nonlinear response of other nanoparticles and

specific single nanostructures, and to other nonlinear coherent processes.

2.2.3 Optical control of nanoparticles organization and movement

This project was developed in collaboration with the Laboratoire d’Électronique et Nano-

photonique Organique at the CEA Saclay (SC3).

Molecular motors are gaining increased interest for their integration within nanoscaled

devices with the perspective of low cost, low power consumption and new functionalities

with improved performances. The ability to direct the spatial distribution of nanoparticles

with a controlled defined arrangement of variable sized nanoparticles leads to the promise

of the future design and realization of complex and functional systems. The approach

proposed in this project was based on a non–contact optical manipulation of a molecular

photoactive entity attached to a nanoparticle.

∗The raster scanning gives a dot matrix data structure with rectangular pixels
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Figure 2.7: KTP nanoparticle associated second harmonic emission with a diffraction–
limited spot. Inset: AFM raster scan of a 120 nm KTP nanoparticle.

Azobenzene molecules are considered as unique photomechanic systems giving rise to

light–induced switching properties cis ↔ trans at the single molecular level. Another

key aspect strengthening the interest of azobenzene molecules is their ability to produce

average photo–induced mass–transport effects when embedded into an organic host. We

started the investigation and optimization of photoactive molecules based on azobenzene–

units in contact with gold nanoparticles with the idea in mind that reversible structural

changes, inherent to azo–photoisomerisation upon resonant illumination, enables the con-

version of photon energy into mechanical energy. Two strategies have been tested: a) the

‘moving walkway’, where nanoparticles would move on a surface modified by azobenzene

molecules upon irradiation; b) the ‘moving nanoparticles’, where direct functionalization

of nanoparticles with azobenzene units would permit the light–induced movement of the

nanoparticle (Figure 2.8). The synthesis of several molecules and stable nanoparticles has

been performed, and some preliminary tests have been conducted using local probe mi-

croscopy techniques with an aperture near–field optical microscope coupled to an atomic

force microscope and a scanning tunnelling microscope. No relevant results from these

experiments have come out so far.

2.3 Research at the Laboratoire d’Électrochimie Molécu-

laire

2.3.1 Context

The Laboratoire d’Électrochimie Moléculaire, led by Dr. Benoit Limoges, is part of the

chemistry department at the Université Paris–Diderot, and is composed of 17 researchers.
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Figure 2.8: Schematic view of the photo–induced movement of gold nanoparticles. Left:
the ‘moving walkway’; right: the ‘moving nanoparticles’.

The research activities are focused on both fundamental and applied aspects of molecular

and biomolecular electrochemistry.

I have been hired in 2007 as a post–doctoral fellow and in 2008 as a CNRS researcher

in the team Electron transfer and molecular changes. Fundamental aspects, reactivity of

organic and biomimetic molecules led by Prof. Marc Robert. Our group is composed of 6

researchers, and is interested in the general understanding of electron transfer chemistry

coupled to molecular changes, such as in proton–coupled electron transfer (PCET) or

bond cleavage / formation. Mechanistic studies are supported by electrochemical and

photochemical studies, together with theoretical descriptions of the mechanistic models.

Following these fundamental studies, the group is now moving towards the investigation

of detailed mechanistic studies of catalytic activation of small molecules.

The team work is a fundamental aspect of the working process in our group. In the

projects presented in this manuscript, the different tasks are conducted in agreement with

the different partners all along the research process. Following my PhD and post–doctoral

experience concerning the synthesis of elaborate molecular and nanometric systems, I

brought to the team the possibility to investigate new strategies to tackle some of the

synthetic challenges encountered. Thus, I am involved in the design, the synthesis and

the electrochemical studies of the system of interest. The interpretations and theoretical

descriptions are devoted to my colleagues, Profs. Cyrille Costentin, Marc Robert and

Jean–Michel Savéant.

2.3.2 Proton–coupled electron transfer

The group has a long and solid experience in the investigation of electronic transfer mech-

anisms that started in the 1970s. Over the past decade, the group has made important

contributions to PCET reactions, in term of experimental studies as well as theoretical

investigations.[22, 23, 24] This topic is directly connected to the fossil fuel energy crisis

that the world is now facing, and of which the consequences are going to be more and more

problematic. PCET reactions are found to be ubiquitous in nature, and are involved in

numerous natural and artificial processes. The understanding of such transfer mechanism

is crucial to get a more comprehensive glimpse of complex biological processes, as well as

a better view of the potential implication of PCET reactions in the catalytic activation

of small molecules (e.g. H2O, O2 or CO2). This would conceivably end up in the depic-
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Figure 2.9: Square–scheme for PCET reactions.

tion of crucial parameters to obtain economically viable molecules / materials towards the

development of cheap, sustainable and robust catalysts.

Water oxidation in photosystem II is one of the most studies example for the coupling

between PCET and catalysis. This enzyme can be found in plants and algae, and is

involved in the photosynthesis process as the catalyst for the oxidation of water into

molecular oxygen. The abundant literature on this topic is coming from the fact that

in this enzyme the solar energy is converted into chemical energy by the formation of

an O–O bond at room temperature, atmospheric pressure and without the use of noble

metals. To design catalysts able to reproduce such process, the understanding of the

intimate mechanism of PCET reactions within the enzyme and how it may affect the

catalysis at the active site is of primary importance. In the following discussion, we will

investigate PCET reactions in the view of their biological relevance, and notably the

correlation between the electron transfer and the long–range transfer of protons as well

as PCET reaction and bond breaking. But first, it is necessary to replace this discussion

in the context of more fundamental aspects with a brief and simplified description of the

theoretical models considered.

Theoretical model of PCET and CPET reaction

The acronym PCET is the generic term that describes reactions where proton and electron

are transferred, either stepwise or in the same step. Unlike simple electron transfer or

proton transfer reactions, PCET reactions are more complicated as the coupling between

the two particles directly influences the process, thermodynamically and kinetically. The

square–scheme in figure 2.9 is typically used to represent this reaction, with either proton

transfer followed by electron transfer (PT–ET, green), or electron transfer followed by

proton transfer (ET–PT, blue). The concerted proton–electron transfer (CPET) pathway

can also be involved (red), and has the advantage to circumvent high energy intermediates.

Until recently, only the sequential pathways were considered. When the rate–determi-

ning step is the electron transfer, with proton transfer reaction at equilibrium, the Marcus–

Hush model can be applied using the Born–Oppenheimer approximation. The movement

of electrons and nucleus is decoupled, because of the mass difference between the particles,
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Figure 2.10: Potential energy profiles of reactants (R) and products (P) in the case of an
outer–sphere electron transfer according to the Marcus–Hush model).

and the electron transfer dynamic is solely governed by intramolecular reorganisation and

solvent reorganisation. We can represent reactant and product energies using parabolas

in function of the reaction coordinate (Figure 2.10). The difference between the two

parabola minima is the driving force −∆G◦, and in electrochemistry, for an oxidation, it

corresponds to the difference between the potential applied at the electrode E and the

standard potential of the redox couple E◦ such as:

− ∆G◦ = F (E − E◦) (2.1)

A nuclear pre–organisation is necessary to allow the electron transfer, which happens

at the intercept of the two parabolas, where the energies of the reactant and the product

are equals, with an activation energy given by:

∆G 6= =
λ

4

(

1 +
∆G◦

λ

)2

(2.2)

where

λ = λi + λ0 (2.3)

with λi as the internal reorganisation (i.e. angle and bond deformation) and λ0 as the

solvent reorganisation (i.e. for the most part polarisation).

In the case of the transition state theory, the kinetic rate constant k of the electron

transfer has the following expression:

k = Z exp

(

−
∆G 6=

RT

)

(2.4)

where the pre–exponential factor Z is given by:

Z = Zel
× χ (2.5)
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where Zel is the collision frequency defined as:

Zel =

√

RT

2πM
(2.6)

and χ the transmission coefficient:

χ =
2p

1 + p
(2.7)

where M is the molar mass of the reactant and p is the probability of electron transfer.

Several experimental features observed in PCET reactions do not fit with stepwise

mechanisms. Therefore the Marcus–Hush model is not sufficient any more to described

the electron transfer. The theoretical framework for homogeneous CPET has been mainly

developed over the past 20 years.[25] Nevertheless, this theory was not suitable for elec-

trochemical studies, and a model developed in the laboratory intends to describe the

concerted mechanism, in which the proton and the electron are transferred in the same

elementary step.[23]

The main feature of CPET theories is the double Born–Oppenheimer approximation,

which considers the electron as a light particle compared to the proton, and treats the

proton as a light particle compared to the rest of the system, so the dynamic of the electron

and the proton is controlled by heavy atoms and solvent reorganisation. As in Marcus–

Hush theory, the CPET mechanism can be described by two diabatic electronic states, and

the electron and the proton transfer occurs at the intercept of the two parabola. At this

stage a second Born–Oppenheimer approximation can be made, due to the difference in

mass between the proton and the electron. Thus, the two electronic states can be described

as a function of the proton coordinate, and the electron transfer occurs at the intercept

of the two states, the proton being transferred by tunnel effect in his fundamental state

(Figure 2.11).

The activation energy and the rate constant have the same form as in equations (2.2)

and (2.4) for an outer sphere electron transfer, but with different reorganisation energy

and pre–exponential factor expressions. As for a CPET reaction, the reorganisation energy

λ is given by:

λ = λi + λET
0 + λP T

0 (2.8)

where λi is the internal reorganisation energy, λET
0 is the reorganisation energy for the

electron transfer and λP T
0 is the reorganisation energy for the proton transfer. The pre–

exponential factor includes the probability of the electron transfer and the proton transfer.

As compared to the sequential pathway, in the case of a concerted mechanism we

expect a smaller rate constant for the electron transfer because of the increase in the

reorganisation energy of the system. Furthermore, if the experiment is conducted in a

deuterated media, a kinetic isotope effect (KIE) is expected because the proton transfer

occurs in the rate–determining step. Experimentally, the presence of a KIE would therefore

be a strong indicator whether the mechanism is sequential or concerted.
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Figure 2.11: CPET potential energy profiles for the reorganisation of heavy atoms in the
system (parabolas) and for the proton transfer concerted with the electron transfer at the
transition state (inset).

Experimental studies of CPET reaction

The model described above for CPET reactions was developed in regards with experi-

mental electrochemical data.[22] Experimental examples of CPET reaction studied in the

laboratory prior to my venue consisted in (i) the oxidation of phenol derivatives as a

model for the oxidation of a tyrosine residue nearby the active site of the oxygen–evolving

complex (OEC) in photosystem II (Figure 2.12, left);[26] (ii) the oxidation of an osmium

complex coordinating a water molecule as an illustration of PCET reaction involving a

metal centre;[27] (iii) the reduction of superoxide ion in an aprotic solvent, where water

molecules played the role of proton donor during the reductive process;[28] and (iv) the

oxidation of benzoquinones bearing carboxylic acid groups as an example of a proximal

proton accepting group can influence the mechanistic pathway.[29]

Among these studies, a seminal paper from the group on the electrochemical oxidation

of phenols with an attached proton acceptor has attracted much of my attention.[30] The

model system, an aminophenol (Figure 2.12, right), showed that oxidation of phenols in

aprotic solvents was facilitated by the presence of an H–bonded amine group, with a small

but definite H/D KIE. The different mechanistic pathways depicted in figure 2.9 have

been envisaged and confronted to the theoretical model presented above, and it has been

evidenced that the CPET route prevails in this system. From the conclusions of this study,

we will now discuss the strategies developed to extend the concept of a pending donating

/ accepting group nearby a redox event implying long range proton transfer or proton

transfer and bond breaking.
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Figure 2.12: Left: X–ray structure of the OEC proximal Tyr161–His190 couple in pho-
tosystem II (PDB ID, 3ARC);[31] purple spheres: Mn; white sphere: Ca; red spheres:
O. Right: Schematic representation of the aminophenol oxidation, model of the tyrosine–
histidine couple.

In a typical cyclic voltammetric experiment, we use a

three–electrode setting containing the electroactive species

at a millimolar concentration and a supporting electrolyte.

Glassy carbon is used as the working electrode (WE) where

the electron transfer occurs, platinum as the counting elec-

trode (CE) to collect the current and aqueous saturated

calomel electrode (SCE) as the reference electrode (RE). The

double–wall jacketed glassy cell can be thermostated by cir-

culation of water and to neglect any convection phenomenon

the solution is not stirred. A potentiostat is connected to

these electrodes and allow to set a known potential at the

working electrode relative to the reference electrode.

C
R

ga

Cyclic voltammetry setup
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2.3.3 Proton–coupled electron transfer and relays

Long–distance electron and proton transfer are key processes in a considerable number

of both biological and synthetic systems. The Grotthuss mechanism is the paradigm

that defines proton transfer through a water molecules wire.[32, 33] A seminal example is

photosystem II, the enzyme responsible for water oxidation, where the protons generated

after the oxygen evolution are driven from the buried active site towards the surface of

the enzyme by an array of water molecules and amino acids (Figure 2.13). The possibility

that these transfers might be concerted has been at the centre of my research for the past

7 years, and we aim at developing new biomimetic systems to study such reaction by the

mean of electrochemical techniques.

Scheme of the Grotthuss mechanism concept of structural

diffusion of excess protons in a hydrogen–bonded water

molecule network. Only water molecules that contribute to

the transient Grotthuss wire of hydrogen–bonded molecules

are depicted.

+

+

Grotthuss mechanism

Due to the fact that efficient proton tunnelling is required, the occurrence of concerted

processes presupposes the presence of short distances between the group generating the

proton upon oxidation and the proton acceptor, i.e. that the two groups are connected via

a hydrogen bond. Indeed, the distances over which the proton may travel are limited to

the rather small distances, in contrast with the electron in outer sphere electron transfer

reactions with no coupled proton transfer. To start with, we had to develop a synthetic

system with an oxidable proton donor, a relay and a proton acceptor, and where the

proton transfer distances would be respected.

We prepared a series of molecules containing an oxidizable phenol (as proton donor),

a pyridine group (as proton acceptor) and an alcohol group between them, in order to test

the concept of H–bond relay (Figure 2.14).[34, 35] Electrochemical oxidation was inves-

tigated by means of cyclic voltammetry and compared with the response obtained with

a previously investigated amino phenol, in which the proton generated by phenol oxida-

tion travels directly to the amine in the absence of H–bond relay.[30] The voltammograms

displayed a partial chemical reversibility, the cathodic reverse trace corresponding to the

re–reduction of the phenoxyl radical generated during the oxidation (Figure 2.15). The

kinetics of this electrochemical electron transfer reaction can be derived from the distance

between the anodic and cathodic peak, based on the Butler–Volmer equation:
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Figure 2.13: Structure around Tyr161 in photosystem II emphasizing the hydrogen bond
pattern from the OEC to the luminal bulk phase, according to the 1.9 Å structure (PDB
ID, 3ARC).[31] OEC: purple spheres: Mn; white sphere: Ca; red spheres: O. Water
molecules participating in the hydrogen–bond network are depicted in orange.
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Figure 2.14: Schematic representation of the H–bond relay molecule oxidation.
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Figure 2.15: Cyclic voltammetry of 1 mmol/l H–bond relay compound in acetonitrile with
0.1 mol/l of n–Bu4NBF4 at 0.2 V/s (working electrode: glassy carbon disk electrode).
Black: + 1 % MeOH; red: + 1 % MeOD.
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where [Red] and [Ox] are the concentrations of reduced and oxidized forms at the electrode

surface. Variations with temperature led to an Arrhenius plot that may be described by:

ln ks = ln Zhet
−

1
4RT

(λ + 2FφS
+ 4∆ZPE 6=

− 2∆ZPE) (2.10)

where φS is the potential difference between the solution and the reaction site and ∆ZPE 6=

and ∆ZPE are the zero–point energies in the transition state and in the initial state,

respectively.

An H/D KIE of 2.9 is observed (Figure 2.15), and is pointing to the occurrence of

a concerted pathway. It is interesting to note that for the relay molecule, the term λ +

2FφS
+ 4∆ZPE 6= − 2∆ZPE = 1.55 eV, which is almost the same as for the aminophenol,

and quantum chemical estimates of λi showed that it is practically constant. Furthermore,

solvent reorganization and other parameters are also expected to be similar among these

compounds. It thus appears that reorganization parameters are not the main factors that

make the CPET oxidation of H–bond relay molecules intrinsically slower than the oxidation

of the aminophenol, in which a single proton is moved concertedly with electron transfer.

The reason is essentially related to the magnitude of the pre–exponential factor Z, which

is a measure of the efficiency of proton tunnelling concerted with electron transfer.[34]

We could therefore conclude that the efficiency of tunnelling is less in the case of the

relay molecules, where two protons are moved concertedly with electron transfer, than in

the case where a single proton is transferred. An independent theoretical study on this
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Figure 2.16: DET model potential energy profiles.

system by the group of Prof. Hammes–Schiffer came to the same conclusion, i.e. that the

rate constant for the CPET reaction is lower when two protons are transferred because

of the smaller overlap integral between the reduced ground state and the oxidized proton

vibrational wave functions.[36]

This ‘Grotthuss–like’ proton transfer over (formally) 2.5 Å avoids going through a

high–energy intermediate where the relay would be protonated. This simple model led

us to pave the way towards more complicated systems, where the nature and the number

of relays could be modified. The aim is now to design a more biological relevant model,

where water itself could play the role of the relay. This prospect will be detailed in the

perspectives chapter (see section 3.2).

2.3.4 Proton–coupled electron transfer and bond breaking

O–O bond

Electron transfer to a molecule is often associated to molecular modifications that can lead

sometime to bond breaking in a dissociative electron transfer (DET). Unlike the Marcus–

Hush model, which only considers outer sphere electron transfers, the elaboration of a

model for DET reactions is based on Morse curve potential energy profile for the bond

cleavage and repulsive Morse curve for the broken bond (Figure 2.16).[37] This model

has been validated by numerous experimental examples involving electrochemical electron

transfers as well as thermal or photochemical homogeneous electron transfers. We can

further note that DET mechanism is involved in numerous natural and artificial reactions,

such as in reductive dehalogenase enzymes which are responsible for carbon–halogen bond

breaking. The reductive bond cleavage associated with a proton transfer can also be

found in nature and in catalytic processes. For instance, oxygen activation in cytochrome

C oxidase involves electrons, protons and the cleavage of an O–O bond to release two

molecules of water:
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Figure 2.17: Schematic representation of the cycloperoxide reduction.

O2 + 4 H+ + 4 e−
−−→ 2 H2O (2.11)

In this study, we intended to shed light on the coupling between DET and PCET

reactions in a model compound to understand the degree of concertedness between all

three events, i.e. electron transfer, proton transfer and bond cleavage. The ‘all in concert’

pathway would be susceptible to give a huge thermodynamic gain, but these three events

may not occur in a concerted way, and sequential routes have to be considered. The

competition between the different pathways had therefore to be addressed by experimental

and theoretical studies.

To illustrate this type of reaction, we choose to look at the reductive cleavage of an

O–O peroxo bond in the presence of a pending proton donor (Figure 2.17).[38, 39] It is

now well described that the electrochemical reduction of aliphatic peroxides studied in an

aprotic solvent consists in a DET, in which the O–O bond is cleaved concertedly with

electron transfer thus generating a broken anion radical.[40] The total gain in driving

force expected should approximately correspond to the difference of pKa between the

alcohol formed upon reduction and the proximal acid (i.e. 19 pH units from the pKa of

tert–butanol and the pKa of acetic acid in DMF, equivalent to −1.11 eV in terms of free

energy).

Looking at the general scheme where the different mechanistic possibilities are sum-

marized (Figure 2.19), it appears that the two outer–sphere electron transfer routes (in

black and in green) can be ruled out by the general DET to aliphatic peroxides, as already

mentioned above. Among the two remaining possibilities, the stepwise pathway where the

electron transfer is concerted with the bond–breaking followed by the protonation step (in

blue) is not in line with the increase of driving force, but is simply driven by the ther-

modynamics of the first step (i.e. the peak potential of the cycloperoxide–carboxylic acid

compound should in this case be similar to that of the cycloperoxide–methyl ester com-

pound where protonation is not involved). Comparison between the cyclic voltammetric

response of the cycloperoxide bearing the carboxylic acid and the corresponding methyl

ester, where the proton transfer is not allowed, shows a dramatic peak potential shift of

+0.7 V (Figure 2.18). This observation therefore rules out the occurrence of this stepwise

DET/proton transfer pathway.

The all–concerted pathway (in red) is thus the only route remaining that could satisfy

the experimental observations. A theoretical model has been developed for this concerted
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Figure 2.18: Cyclic voltammetry of 2 mmol/l cycloperoxide–carboxylic acid compound
(red) and cycloperoxide–methyl ester (black) in DMF with 0.1 mol/l of n–Bu4NBF4 at
0.2 V/s (working electrode: glassy carbon disk electrode).
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Figure 2.19: Stepwise and concerted pathways in reactions where electron transfer is
coupled with heavy–atom bond cleavage (Y–X) and proton transfer.
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Figure 2.20: Concerted electron transfer, proton transfer and bond breaking potential
model energy profiles.

proton–electron–bond breaking reaction.[38] A combination between the CPET and the

DET models has been established to express a relation between the rate constant and

the driving force. As in the case of the CPET model, two successive Born–Oppenheimer

approximations have been applied (Figure 2.20). The first one defines the transition state

in terms of heavy atoms coordinates, which takes into account the solvent reorganisation,

the vibrations of reactant bonds not being cleaved during the reaction, and the contribution

of bond cleavage. Such as in the case of DET reactions, the bond breaking contribution is

describe by a Morse curve for the reactants and a repulsive Morse curve for the products.

The second Born–Oppenheimer approximation at the transition state distinguishes the

proton and the electron transfer. Following this model, cyclic voltammogram simulations

allowed us to correctly reproduce the experimental voltammograms. Finally, we observed

that the peak potential difference is 0.7 V rather than the expected 1.1 V value, which

could be explained by a charge dipole interaction between the radical and the anion.

To conclude, a theoretical model supported by an experimental system evidenced the

relevance of the proposed ‘all in concert’ mechanism, where electron and proton are trans-

ferred while the bond is broken. Since then, this model has also been applied by the group

to catalytic systems, such as the reduction of carbon dioxide by iron(0) porphyrins.[41]

N–N multiple bonds

N–N multiple bonds activation has focused a long–standing interest, notably due to the

dinitrogen reduction to ammonia reaction:
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Figure 2.21: Schematic representation of the azobenzene reduction.

N2 + 6 H+ + 6 e−
−−→ 2 NH3 (2.12)

This reaction has attracted much attention over the past decades, particularly due

to the fact that biological N2 fixation can be performed at ambient pressure and tem-

perature by nitrogenase enzymes, with a heterometallic iron/molybdenum/sulfur/carbon

cluster active.[42] The need for mechanistic studies for the strong N–N multiple bonds

activation is thus imperative to unravel general trends towards the design of new types of

electrocatalysts.

A similar strategy as for the O–O bond reduction has been undertaken (see sec-

tion 2.3.4), with the design of an organic molecule bearing a N=N bond with pendant H–

bonded acid groups. The role of proximal acid/base couples on the reduction/oxidation of

the N=N/HN–NH couple has been investigated on azobenzene derivatives with carboxylic

acids (Figure 2.21).[43]

The cyclic voltammetric responses confirmed that the azo and hydrazo compounds are

redox partners: the reverse trace of the azo compound is similar to the forward trace of

the hydrazo compound, and vice versa (Figure 2.22). Methylation of the carboxylic acid

showed a considerable shift in potential towards negative values (ca. −0.8 V), rendering

the reduction of the azo bond more difficult, similar to what was observed in the case

of the cycloperoxide reduction (see section 2.3.4). We thus have demonstrated that the

presence of proximal proton sources could give a huge thermodynamic raise that helps the

N=N/HN–NH bond breaking/formation.

To understand the reasons for such dramatic effect on the reduction potential, we

performed cyclic voltammogram simulations and DFT calculations, and demonstrated

that: (i) intramolecular electron and proton transfers occur in a stepwise manner, rather

than concertedly (no H/D KIE observed); (ii) intramolecular PCET in these molecules

is accompanied by considerable structural changes, affecting the kinetic of the electron

transfer. In terms of catalysis, these conclusions are of crucial importance to develop

effective molecular catalysts bearing pendant acidic moieties for N–N bond(s) activation.

Following these conclusions, we are currently focusing on the second 2–electron reduc-

tive step for the hydrazobenzene-carboxylic acid derivative which should end up to the

N–N bond breaking to release aniline–carboxylate. In a near future we also envisage to link

the two aromatic rings in order to render the N–N bond breaking chemically reversible.
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Figure 2.22: Cyclic voltammetry of 1 mmol/l azobenzene–carboxylic acid compound
(black), hydrazobenzene-carboxylate (blue) and azobenzene–methyl ester (red) in DMF
with 0.1 mol/l of n–Bu4NBF4 at 0.2 V/s (working electrode: glassy carbon disk electrode).

2.3.5 Proton reduction electrocatalysis by Fe/S nanoparticles

Molecular catalysis† can be somehow limited in terms of applications, mainly due to the

stability of the catalysts and the difficulty to separate the products from the catalyst.

If we consider stability, robustness or ease of preparation, electrocatalysis † can often be

of primary interest. Inspired by my previous experiences with nanoparticles and iron–

sulphide systems, I started this project to bring a different view into the group for the

study of catalysis of small molecules activation by electrochemical techniques. I began this

new work in collaboration with Dr. Marion Giraud for the synthesis of the nanocatalysts

(ITODYS, Université Paris–Diderot), and the project is currently funded with an ANR

JCJC grant that I am leading (funding RF5). We had one post-doctoral fellow and four

undergrad students involved in this project over the past 4 years.

Molecular hydrogen is currently at the forefront for the prospect of new energy vec-

tors as a way to store energy in chemical bonds. Its clean, cold combustion in fuel cells

or its production in water electrolyzers will require the replacement of noble–metal cat-

alysts such as platinum and its alloys by earth–abundant catalysts for proton reduction

into dihydrogen if worldwide use of hydrogen is considered. As introduced in section 2.1,

hydrogenase metalloenzymes are capable of reversibly converting protons into molecular

hydrogen. Biomimetic synthetic molecular electrocatalysts, in solution or grafted onto

an electrode, are currently presenting poor to moderate activity toward molecular hy-

drogen evolution or uptake reactions.[7] Furthermore, examples of functional molecular

†Molecular catalysis is coined here to define catalyst molecules homogeneously dispersed in solution
or immobilized in a mono– or multi–layer coating on the electrode surface, as opposed to electrocatalysis

which involves the electrode material as the catalyst.[44]
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non–precious–metal catalysts operating at low overpotentials and high current densities

under mild conditions (ca. pH 7, 1 atm, room temperature) that would compete with

natural enzymes or platinum itself are scarce. Recently heterogeneous electrocatalysts,

in the form of electrodeposited bulk material or nanoparticles, based on molybdenum

sulphide,[45, 46, 47, 48] cobalt sulphide,[49] cobalt phosphate,[50] iron [51] or nickel [52]

phosphides, and alloys of nickel–molybdenum [53, 54] have been reported for their high

activity toward molecular hydrogen evolution in acidic or neutral water at relatively low

overpotentials. Given the ubiquity of iron sulphide minerals in nature, such as pyrite FeS2

which is the most abundant mineral on the Earth’s surface,[55] we decided to investi-

gate iron sulphide nanomaterials as a bio–inspired catalyst that would combine features

from the natural enzyme (the Fe/S core) and high stability and robustness given by the

nanostructuration of the material.

We prepared pyrrhotite FeS nanoparticles, using the solvothermal approach, by de-

composition of Fe2S2(CO)
6

complex in octylamine at 280 ◦C.[56] Characterisation by

energy-dispersive X–ray (EDX), thermogravimetric analysis (TGA), transmission elec-

tron microscopy (TEM), scanning electron microscopy (SEM), X–ray diffraction (XRD)

and Mössbauer spectroscopy allowed us to probe the nature of the particles, their mor-

phology and the local chemical environment around the iron, thus describing the system

as a Fe1−xS structure (0 ≤ x ≤ 0.125) (Figure 2.23).

In nanoscience, the solvothermal synthesis is used to pre-

pare nanometric size crystals that cannot be formed from

other synthetic routes. This soft chemistry process involves

the use of a solvent under moderate pressure and tempera-

ture conditions, and dissolved precursors. By manipulating

the experimental conditions (concentration of the precur-

sors, nature of the solvent, temperature, pressure, etc...)

one can control the size, shape, nature and crystallisation

of the nano–objects.

Solvothermal synthesis

Long–duration controlled–potential electrolysis (CPE) was performed to assess the

durability and robustness of a FeS nanoparticle–coated glassy carbon electrode (Fig-

ure 2.24, dashed line). Quantitative (≥ 0.99) Faradaic yield for molecular hydrogen evolu-

tion was confirmed by gas chromatography analysis as well as by volumetric measurements

of the gas evolved. The decrease in the slope of the Q versus time curve is due to the

pH increase of 0.3 unit caused by proton consumption. To further investigate this point,

the crucible coated with the FeS nanoparticles was refilled with a fresh solution of 1 mol/l

phosphate buffer at pH 7.0, and an identical Q versus time profile was obtained over a 1

day electrolysis under the same experimental conditions (Figure 2.24, solid line). Again, an

almost quantitative Faradaic yield (≥ 0.98) was obtained for H2 generation, outlining the

remarkable stability of such nanoparticles over the course of catalysis. No particular care
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Figure 2.23: TEM and SEM images of FeS–nanoparticles.

in storage of the catalyst or pre–degassing of the phosphate buffer solution was required,

demonstrating the long–term stability of this material. After these 6 days of electrolysis,

no major structural changes in the electrolysed catalyst were observed by XRD, and the

morphology of the FeS nanoparticles was also found to be unchanged. Following these

conclusions, a patent has be deposited,[57] opening the way towards the development of a

new class of cheap and robust electrocatalysts based on iron sulphide nanoparticles. This

prospect will be detailed in the perspectives chapter (see section 3.3.1).

Despite the fact that these FeS–nanoparticles seem at first to compare less favourably,

with materials such as cobalt phosphate [50] or molybdenum sulphide [47] (Table 2.1),

the remarkable stability and the ease of preparation are clearly showing that iron sul-

phide materials are very promising. If we now compare the abundance and cheapness of

the different materials, iron sulphide nanoparticles could be favoured compared to cobalt

phosphate or molybdenum sulfide materials. A rough comparison between the different

metal prices shows that in 2013, iron ore (96 $/t) was much cheaper than nickel (17,530

$/t), molybdenum (28,100 $/t) or cobalt (30,400 $/t), the platinum–group metal being

itself much more expensive (19,500,000 $/t).[58] We can therefore envisage that iron sul-

fide nanoparticles may offer a great advantage in term of cost and availability compared

to other transition metal electrocatalysts for molecular hydrogen evolution and further

investigations on related materials are currently in progress.

We also have to bear in mind that this comparison with existing materials has not

been optimised in the sense that they have not been carried on a rational comparison

including the parameters controlling the catalytic current (catalyst loading of the electrode,

thickness of the film,...). These aspects will be developed in the perspective chapter (see

section 3.3.2).
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Figure 2.24: First (dashed black line) and second (solid red line) CPE of a FeS
nanoparticle–coated glassy carbon electrode at an overpotential of 350 mV (−0.763 V vs.
NHE) in 1 mol/l potassium phosphate buffer at pH 7.0, showing charge build–up ver-
sus time (Q = f(t)) for the cell with (dashed black line) and without (dotted blue line)
FeS–nanoparticles.

Table 2.1: Exchange current densities (J0) of different electrocatalysts, in water at pH 7.0
(data extracted from polarization curves)

Material J0 (mA/cm2) Slope (mV/ dec) Range of η (mV) References
Co–MoS3 1.1×10−2 87 87 – 122 [47]
Ni–MoS3 1.0×10−2 96 110 – 144 [47]
Fe–MoS3 4.8×10−3 95 137 – 176 [47]
Co/P/O 1.9×10−3 134 200 – 300 [50]

MoS3 8.9×10−4 86 171 – 203 [47]
FeS 6.6×10−4 150 350 – 450 [56]
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Chapter 3

Perspectives

3.1 Preamble

The main line of the different scientific projects I have been involved in so far is driven

by the interplay between protons and electrons in ‘bio–inspired’ or ‘biomimetic’ systems.

Following this track, I intend to pursue two main directions for the next ten years. To begin

with, I will focus on the development of the cheap, robust and sustainable iron sulphide–

based electrocatalysts described previously, extending their applications towards other

reactions and implement them into functional devices. Considering the promising results

obtained so far and the amount of manpower engaged, this project is expected to go on for

the next 5–7 years. The second orientation of my research will concern a more fundamental

topic, the mechanistic study of long–range proton transfer following an electron transfer

within a protein–like environment. This project is much more precarious due to the fact

that a biomimetic model has still yet to be constructed, but some preliminary systems

have already been investigated and gave us some ideas about the difficulties that could

be encountered. Regarding the hardship of this proposal, I expect that the design and

synthesis of a decent model combined with solid electrochemical mechanistic studies would

take some 5–7 years to be completed.

3.2 Long–range proton–coupled electron transfer in biomo-

lecules

The approach proposed in this project aims at preparing nano–channels in order to trap

water molecules within a biomimetic controlled environment to study the mechanism of

proton transfer upon a redox event from a proton donating group to a proton accepting

group. As underlined above (see section 2.3.3), long–distance proton transfer coupled with

electron transfer are ubiquitous in Nature, and are notably used to control the electro–

neutrality around catalytic active sites upon oxidation or reduction (i.e. water oxidation

in photosystem II or hydrogen evolution in hydrogenases). Electrochemical mechanistic

investigations of such systems should elucidate the role of the water molecules or the
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Figure 3.1: Representation of the 3SCC approach, with the crystal structure of the pho-
tosystem II enzyme (PDB ID, 3ARC (left), the 3SCC model peptide (middle) and the
H–bond relay molecule (right).

influence of the distance between the proton donor and the proton acceptor regarding the

long–range PCET reaction.

Following the study of the simple model system where an alcohol moiety played the

role of relay, we intend to extend the complexity by investigating more biologically relevant

biomimetic systems. Biological water channels such as aquaporins [59] or proton transfer

proteins such as gramicidin [60] have been envisaged as potential candidates for our study,

but the main drawback of these systems was that their functionalisation with proton

donating and accepting groups is not straightforward.

We then considered hydrophobic channels, as it has been shown that water molecules

placed in a hydrophobic pore may be able to drive protons extremely rapidly by a Grot-

thuss mechanism.[60] Do do so, I started a collaboration with the group of Prof. Vincent L.

Pecoraro in 2012 (collaboration SC6) to synthesise asymmetric self–assembling peptides.

Three–stranded coiled coil (3SCC) peptides provide a veritable bottom–up approach to

the de novo design of model peptides.[61] De novo design differentiates from other types

of protein design strategies as it is based on ‘first principles’; this paradigm refers to the

postulation that the primary amino acid sequence controls the three–dimensional struc-

ture of a protein. These self–assembling structures can be engineered so as to contain

catalytic metal centres or chosen amino acids for specific applications.

Interestingly, most of the functional metalloenzyme mimics are associated with α–

helical coiled coils. This structural organisation would allow us to benefit from the inner

channel of the α–helix, which contains water molecules, to study proton transfer between

a proton donor and a proton acceptor within a protein environment. Thus, the protein

design allow us to step our study on a well defined biologically relevant system, in between

a purely synthetic model, such as the ‘H–bond relay molecule’ (see section 2.3.3), and an

entire enzyme system, such as the photosystem II (Figure 3.1).

Our strategy is based on an asymmetric 3SCC structure, in which only one of the three

strands features a tyrosine residue and an histidine residue to investigate a potential long–

range PCET reaction (Figure 3.1, blue helix). The tyrosine residue is thus buried in the
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core of the 3SCC so as to impair coupling reactions. Unfortunately, the electrochemical

study showed so far that the phenoxyl radical generated upon oxidation is not stable

within the time scale of the experiment, and probably reacts with neighbouring amino

acids within the channel. We then have to envisage other strategies to release that proton

upon oxidation, and a new system has yet to be designed and synthesised.

3.3 Chalcogenide transition metal nanoparticles for small

molecules activation

3.3.1 FeS nanoparticles

The results obtained so far on the electrochemical studies of pyrrhotite–like FeS nanopar-

ticles showed that this type of material exhibit a good catalytic activity towards molec-

ular hydrogen evolution in neutral water with significant robustness and stability (see

section 2.3.5).[56, 57] This study inspired us to pursue the development of new catalysts

based on this iron sulphide composition, bearing in mind that we want to formulate cheap,

sustainable, robust and easily prepared materials from abundant natural resources. We thus

intend to prepare new stoichiometric compositions (i.e. greigite Fe3S4 or pyrite FeS2) to

investigate whether other type of FeS materials could give better activities for proton

reduction than pyrrhotite nanomaterials.

Still inspired by biological metalloenzymes, we also envisage to prepare transition

metal–doped FeS nanoparticles. Indeed, several FeS–metalloenzymes are known to catal-

yse small molecule activation in the presence of an extra transition metal (Figure 3.2),

such as molybdenum in the case of the nitrogenase (reduction of N2 into NH3) [42] or

nickel in the case of the carbon monoxide dehydrogenase (reduction of CO2 into CO) [62]

and [NiFe]–hydrogenase (reduction of H+ into H2).[4] By incorporating some controlled

amount of cheap and abundant transition metals into the composition of FeS nanoparti-

cles, we intend to modify the catalytic activity of the nanocatalysts. We also aim at open

up their reactivity towards other small molecule activation reactions, such as those de-

picted for the biological systems. These synthesis of such nanoparticles will be carried out

in collaboration with Dr. Marion Giraud (ITODYS, Paris–Diderot), with the correlated

electrochemical studies done at the LEM.

3.3.2 Proton–electron transport and transfer in electrocatalytic films

The benchmarking of different catalysts is a laborious task, difficult in the sense that

each experimentalist do not study a given material in the same experimental conditions.

Therefore, there is a need to identify intrinsic parameters that would allow to get a fair

comparison between different materials. The work presented so far on this thematic did

not include any mechanistic study on the interplay between protons and electrons within

the catalytic film. To identify the factors that are driving the catalytic performances, we

need to address a methodology to understand such issues.
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Figure 3.2: Schematic representation of FeS–enzyme active sites of CO–dehydrogenase
(top left),[62] nitrogenase (top right),[42] [NiFe]–hydrogenase (bottom left) and [FeFe]–
hydrogenase (bottom right).[4]

A seminal study on this problematic has recently been published in the group on a

cobalt–based catalyst for oxygen evolution, where thermodynamic and kinetic characteris-

tic have been derived to benchmark this catalyst vis–à–vis other competing materials.[63]

In this particular case the material was electrodeposited, and the catalyst and the con-

ducting material are the porous cobalt material, where the substrate and the product

can be transported trough the film. We would like to extend this methodology to our

type of systems where the catalytic nanoparticles are conducting but not in contact with

each other. The dispersion of the FeS nanoparticles within a Nafion film allows the rapid

diffusion of protons through the film and can control a certain homogeneity between the

catalytic centres (Figure 3.3). We thus intend to extract from the analysis of electrochem-

ical measurements the optimum parameters (film thickness, catalyst concentration, buffer

concentration, etc...) to get a global benchmarking index able to present a reasonable

comparison between catalysts studied in the same conditions. This part will be carried

out with Prof. Cyrille Costentin and Jean–Michel Savéant.

3.3.3 Photoelectrocatalysis

Solar energy is considered as the most interesting renewable source of energy through its

worldwide uniform accessibility, as opposed to wind power, hydroelectricity or geothermal

energy. However, the day / night alternation, the latitude, and the meteorological and

seasonal variabilities induce a sporadic availability of the electricity generated. Further-

more, our energy consumption is itself intermittent, and can be in opposed phase with

the solar–induced power generation. These considerations call for the development of en-

ergetic vectors to allow the solar energy gathered to be stored, redistributed and possibly

transported.‡ To do so, a solution would be to convert the solar energy into chemical

‡These statements and conclusions are also applicable to wind power electricity generation.
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energy, in the form of chemical bonds within molecules, similar to what Nature is doing

with photosynthesis.[64, 8]

Thus we would like to investigate the ability for iron sulphide materials, and notably

pyrite FeS2, to harvest visible light in photovoltaic devices. Pyrite possesses semiconduct-

ing properties, with a weak band gap (0.95 eV) and a strong optical absorption,[65, 66]

and is the most abundant mineral on Earth.[67] Combination of this photovoltaic device,

in the form of a bulk material or as a nanoparticle, and the FeS nanoparticles within

a solar cell is envisaged to photogenerate molecular hydrogen from water using visible

light (Figure 3.4). At first, we do not intend to investigate the water oxidation at the

(photo)anode, and we will just focus on the reductive part at the photocathode. The idea

is to deposit the FeS nanoparticles on the semiconducting surface (i.e. pyrite) and by

illuminating the device to observe evolution of hydrogen.

The proof of concept has yet to be performed. A possibility is that the photogenerated

electrons may not be energetic enough to perform the catalysis, and then we may have to

connect our system to a potentiostat to provide the extra energy required. Another issue

that we may be facing at some point is the charge recombination after the irradiation, and

understanding of charge–transfer processes is important in the perspective of designing

light–harvesting assemblies.[68] On a long term view, the coupling of the reductive part

with the oxidation of water on a (photo)anode is also planed to provide a functional device.

This project will be undertaken within our group using the expertise in photochemistry

of Dr. Julien Bonin.
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like the incommensurate phase of Pr1/2Ca1/2MnO3, where strong
ferromagnetic fluctuations have been measured14,26, rather than the
long-range magnetic order we would predict. Second, in order to
keep the calculations tractable, the phase transitions at TC and TCO

have been forced to be continuous. This explains why the re-entrant
magnetism above TL shown in Fig. 2 appears only when TC . TCO.
If this theory were generalized to include discontinuous phase
transitions, this condition would relax. Another consequence of
assuming continuous-phase transitions is that phase separation
cannot be predicted. In real systems, phase separation is possible
because strain3,9, or disorder8, can make more-or-less localized
phases dominate within a given region. Orbital ordering is
described by a vector order parameter, and thus our simple model
cannot address the complexity of different orbitally ordered phases
that have been proposed12.
The Ginzburg–Landau phenomenology we propose is capable of

systematizing some puzzling data for manganites near x ¼ 1/2, but
of course the propensity for mixed and homogeneous phases is
driven by the underlying physical parameters that make the ener-
getic cost of spatial fluctuations low. This ‘electronic softness’means
that as well as spatially disordered ‘phase separation’, we find new
ordered phases which are long-period arrangements of the two
competing orders. Indeed, it may be that this potential for textured
electronic phases is a hallmark of electronic oxides near the Mott
transition29, seen perhaps in the coexistence of density waves and
superconductivity in the copper oxides30. A
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The metal-sulphur active sites of hydrogenases catalyse hydrogen
evolution or uptake at rapid rates. Understanding the structure
and function of these active sites—through mechanistic studies
of hydrogenases1–4, synthetic assemblies5–12 and in silico

models13–15—will help guide the design of new materials for
hydrogen production or uptake16. Here we report the assembly
of the iron-sulphur framework of the active site of iron-only
hydrogenase (the H-cluster), and show that it functions as an
electrocatalyst for proton reduction. Through linking of a di-iron
subsite to a {4Fe4S} cluster, we achieve the first synthesis of a
metallosulphur cluster core involved in small-molecule catalysis.
In addition to advancing our understanding of the natural
biological system, the availability of an active, free-standing
analogue of the H-cluster may enable us to develop useful
electrocatalytic materials for application in, for example, revers-
ible hydrogen fuel cells. (Platinum is currently the preferred
electrocatalyst for such applications, but is expensive, limited in
availability and, in the long term, unsustainable17.)

The crystallographic characterization of Fe-only hydrogenases1,2

has revealed a striking resemblance of the di-iron subsite of the H-
cluster to known [Fe2(m-SR)2(CO)6] (R ¼ organic group) com-
plexes. This type of assembly, first discovered18 more than 70 years
ago, opened the way for the synthesis of {2Fe2S}- and {2Fe3S}-
complexes with key structural and/or spectroscopic features of this
biologically unprecedented—low-valent, carbon monoxide- and
cyanide-coordinated—di-iron unit (Fig. 1). A major challenge is
now to build a free-standing analogue of the entire H-cluster, as this
offers the prospects of understanding the interplay of the conjoined
di-iron and cubane units that form the enzymic catalytic machinery
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and of the development of new catalytic materials.
The dithiolate ligand A, which possesses an appended thioester

group, was synthesized as outlined in Fig. 2.A reacts with Fe3(CO)12
to give the thioester activated di-iron subsite analogue, B. Unlike
dithiolate thioether ligands with the same tripodal carbon back-
bone19, the thioester sulphur does not displace CO and coordinate
to an Fe atom of the di-iron unit, as shown in the X-ray crystal-
lographic structure (Supplementary Fig. 1). Undoubtedly this is
because the electron-withdrawing acyl group lowers the nucleo-
philicity of the S atom to which it is attached.

The cubane cluster [Fe4S4(L)(SEt)]
22 (L ¼ 1,3,5-tris (4,6-

dimethyl-3-mercaptophenylthio)-2,4,6-tris (p-tolyl-thio)benzene),
denoted C, which has three of the cubane iron atoms blocked by
the chelating ligand, was synthesized by an established procedure20.
C reacts cleanly with one equivalent of B over a 12 h period
at room temperature to give, after work-up, analytically
pure ½Fe4S4ðLÞ3{Fe2ðCH3CðCH2SÞ3ÞðCOÞ5}�½NBu4�2, D (Fig. 2).

Negative ion electrospray mass spectrometry (ESMS; MeCN)
on D showed peaks centred at mass/charge (m/z) ¼ 856.9
(100%) for the dianion and at m/z ¼ 1,957.1 (10%) for
{½Fe4S4ðLÞ3{Fe2ðCH3CðCH2SÞ3ÞðCOÞ5}�

22½NBu4�
þ}, with respect-

ive isotopic distribution patterns consistent with doubly and singly
charged species. Fourier transform infrared (FTIR) n(CO) bands for
D at 2,035(medium, m), 1,970(strong, s) and 1,912(weak, w) cm21

are very similar to those of [Fe2(CH3C(CH2S)2(CH2SCH3))(CO)5]
(2,049(m), 1,983(s) and 1,927(w) cm21) in which the thioether
ligand is known to be coordinated to one Fe atom19. Thus
the reaction between B and C proceeds beyond elimination of
MeCOSEt—carbon monoxide is lost from the proximal Fe atom of
the di-iron unit, and results in the formation of a {Fecubaneðmÿ
SRÞFesubsite} linkage as found in the H-cluster (Fig. 3). This is
supported by the solid state Mössbauer spectrum of D at 80 K,
which exhibits four overlapping quadrupole split doublets with
isomer shift (i.s.) and quadrupole splitting (q.s.) parameters (in
mm s21) consistent with four differentiated iron sites; two associ-
ated with the site-differentiated cubane (i.s. ¼ 0.47, q.s. ¼ 1.14;
i.s. ¼ 0.45, q.s. ¼ 0.87) and two with the di-iron subsite
(i.s. ¼ 0.04, q.s. ¼ 1.00 (Fe distal to cubane); i.s. ¼ 0.04,
q.s. ¼ 0.50 (Fe proximal to cubane))19.
Full geometry optimization of an in silico model of D,

½Fe4S4ðSCH3Þ3{Fe2ðCH3CðCH2SÞ3ÞðCOÞ5}�
22, was carried out in

the density functional theory (DFT) framework using the BP86
pure functional21,22 and an all-electron valence triple-z basis set with
polarization functions on all atoms (TZVP)23. This resulted in a
structure fully consistent with that proposed on the basis of
experimental data for D (Fig. 3). In particular, one of the thiolate
groups bridges almost symmetrically the {4Fe4S} and the {2Fe2S}
units, with an Fe–Fe distance (2.6 Å) in the binuclear cluster that is
indicative of a metal–metal bond. Analysis of the electronic proper-
ties of the in silico structure reveals that the redox state of the
binuclear moiety can be described as Fe(I)Fe(I).
The {Fecubane(m-SR)Fesubsite} linkage provides substantial elec-

tronic communication between the di-iron centre and the {4Fe4S}
cubane centre, as is evident from the following spectroscopic and
electrochemical measurements. Formally replacing the Me of the
thioether ligand in [Fe2(CH3C(CH2S)2(CH2SCH3))(CO)5] by the
cubane dianion shifts all the n(CO) frequencies of the appended
subsite by ,15 cm21 to lower values: the {Fe4S4(L)}

22-core is a
‘better’ donor group than is methyl. The inductive influence of the
cubane in lowering n(CO) is reciprocated in the shift of the redox

Figure 1 Composite structure of the H-cluster. This was constructed from the crystal

structures of Fe-only hydrogenase isolated from Desulfovibrio desulfuricans (Protein Data

Bank Code 1HFE)2 and Clostridium pasteurianum (Protein Data Bank Code 1FEH)1, and

FTIR data from Desulfovibrio vulgaris. The apical group on the sub-site ligand may

possibly be an NH, but this remains crystallographically and analytically unresolved.

Figure 2 Synthetic pathways for assembly of the H-cluster model and related subsite-cluster materials. Reaction steps are as follows: (i) acetic anhydride, NaHCO3, diethyl ether, (ii)

Fe3(CO)12, toluene, (iii) C, MeCN, (iv) [Fe4S4(SEt)4][NBu4]2, MeCN.
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potential for the reduction of the cubane core to more positive
potentials. The primary reversible one-electron reduction of D
(0.1 M [NBu4][BF4]-MeCN, cyclic voltammetry, sweep rate
100mV s21) occurs at E1/2 ¼ 20.86 V versus (Ag/AgCl, CH2Cl2,
0.45M [NBu4][BF4], 0.05M [NBu4]Cl); that for the parent
cluster [Fe4S4(L)(SEt)]

22 is at E 1/2 ¼ 20.98 V under identical
conditions. The DE 1/2 for the formal replacement of EtS by
{Fe2ðCH3CðCH2SÞ3ÞðCOÞ5} of þ120mV shows that the energy
of the cubane lowest unoccupied molecular orbital (LUMO) is
substantially lowered.
Gas-phase photoelectron spectroscopy (PES)24,25 of isolated

½Fe4S4ðSEtÞ3{Fe2ðCH3CðCH2SÞ3ÞðCOÞ5}�
22 is concordant with

this. The PES of this anion at an excitation wavelength of 355 nm
revealed two low-binding-energy spectral features that are very
similar to the first two bands of [Fe4S4(SEt)4]

22 but shifted by
about 0.6 eV to higher energy (adiabatic electron detachment
energy increases from 0.29 to 0.89 eV (ref. 26); Supplementary
Fig. 2). Thus on replacing EtS by the subsite unit the highest-energy
orbitals remain localized on the cubane core but are substantially
stabilized. At 266 and 193 nm, higher-energy spectral features
associated with the attached subsite are also observed that are
absent in the parent dianion, [Fe4S4(SEt)4]

22.
Complete substitution of the {4Fe4S}-core by di-iron units is

possible (Fig. 2, step (iv)). The reaction of [Fe4S4(SEt)4][NBu4]2
(MeCN, room temperature, 12 h) with an excess of B followed by
work-up and ESMS shows formation of a dianion withm/z centred
at 1,009.6 (100%) and an isotopic pattern corresponding to
the dianion [Fe4S4{Fe2(CH3C(CH2S)3)(CO)5}4]

22, E. Cyclic

voltammetry of E (vitreous carbon electrode, 100mV s21, room
temperature, 0.1M [NBu4][BF4]-CH2Cl2) shows a primary revers-
ible one-electron reduction couple at 20.65 V versus (Ag/AgCl,
CH2Cl2, 0.45M [NBu4][BF4], 0.05M [NBu4]Cl) corresponding to
the reduction of the {4Fe4S}2þ core, and a multi-electron reduction
at 21.58V which encompasses the irreversible reduction of the
subsite units. The primary reversible reduction of [Fe4S4(SEt)4]

22

occurs at21.15Vunder the same conditions, attesting to the strong
electron-withdrawing properties of the m-S ligated di-iron subsites.
The DE ofþ500mV for replacement of the four EtS ligands by four
subsite ligands (that is, an average of 125mV per substitution) fits
very well with the 120mV shift observed on replacing the single EtS
with the di-iron subsite to give D.

Beyond inductive effects transmitted through the {2Fe2S}ðmÿ
SCH2RÞ{4Fe4S} framework, there is evidence for an interplay of
redox states that transcends the behaviour of the isolated com-
ponent di-iron and the cubane centre. Repetitive cyclic voltamme-
try of D over 10 cycles shows the build-up of a reversible system at
20.96V versus (Ag/AgCl, CH2Cl2, 0.45M [NBu4][BF4], 0.05M
[NBu4]Cl) (Fig. 4a and Supplementary Fig. 3 (process II)). The
voltammogram can be reasonably simulated by a mechanism
that involves intramolecular electron transfer between the reduced
cluster and subsite in concert with reversible opening of the m-SCH2

bridge. This leaves the cubane linked to the subsite by an alkylthio-
late in a {4Fe4S}2þ state and therefore susceptible to further
reduction. This would be expected to take place at a potential
close to that observed for the alkylthiolate ligated ½Fe4S4ðLÞðSEtÞ�

22,
as is observed (Supplementary Fig. 4 and Supplementary Text).

Studies11,27 have shown that simple subsite models are capable of
electrocatalysing proton reduction and H/D exchange reactions,
albeit at low reduction potentials12,28. Figure 4b shows that
the H-cluster analogue D electrocatalyses proton reduction at a
diffusion-controlled rate. The current–potential curve for the
reduction of protons in the presence of the catalyst (Ep¼21.13V)
is displaced by,200mV positive from that measured in the absence
of the catalyst (Ep ¼ 21.33V versus (Ag/AgCl, CH2Cl2, 0.45M
[NBu4][BF4], 0.05M [NBu4]Cl)).

The m-S cysteinyl bridge identified in the enzyme structures1,2

must provide substantial electronic communication between the
subsite and the {4Fe4S}-cubane, because we have shown for D that
these units do not behave as insulated redox entities. TheMössbauer
parameters for D corrected for the second order Doppler effect to
4.2 K (site differentiated cubane: i.s. ¼ 0.50, 0.48, q.s. ¼ 0.87, 1.14;
di-iron subsite: i.s. ¼ 0.07,0.07 q.s. ¼ 0.50, 1.00mm s21) are simi-
lar to those attributed to these components in the reduced state of
Clostridium pasteurianum hydrogenase II (site differentiated

Figure 3 Structure of [Fe4S4(SCH3)3{Fe2(CH3C(CH2S)3)(CO)5}]
22, derived from DFT

calculations. Numbers show bond lengths in Å.

Figure 4 The electrochemical behaviour of the synthetic H-cluster model. a, Cyclic

voltammogram of D (0.1 M [NBu4][BF4]-MeCN, 30mV s
21, vitreous carbon), showing

interconverting redox processes I and II. E 1/2 for II occurs at a potential close to that for C,

indicative of the rearrangement of the m-S bonded subsite to the terminal alkylthiolate.

Inset, first-scan response at the faster scan rate of 0.1 V s21 but otherwise under the

same conditions; note suppression of the interconversion. b, Cyclic voltammogram of D

(1.5 mM), showing the electrocatalytic response in the absence (trace i) and in the

presence (trace ii) of 4,6-dimethyl pyridinium cation as a source of protons (15mM) at a

normalized scan rate of 0.1 V s21. The peak current for proton reduction in the absence of

the catalyst is within 5% of that in its presence, but is shifted about 200mV to a more

negative potential.
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cubane: i.s. ¼ 0.47, 0.47, q.s. ¼ 0.85, 1.35; di-iron subsite:
i.s. ¼ 0.08, q.s. ¼ 0.87mm s21) measured at 4.2 K. This is concor-
dant with the generally accepted re-assignment of the electronic
structure of the six-iron core of the reduced biological cluster as
[{Fe(I).Fe(I)}subsite-{4Fe4S}cubane

2þ ]29, the established redox
configuration of our synthetic cluster. In the synthetic system, we
have seen that the reduction of the cubane unit by one electron to the
{4Fe4S}þ level is easier than is reduction of the {Fe(I).Fe(I)}subsite,
which is coordinatively saturated with a closed-shell (36-electron)
configuration. A corresponding state of the H-cluster, in which the
cubane unit is reduced to the {4Fe4S}þ level, has yet to be detected,
although neighbouring {4Fe4S} relay centres in C. pasteurianum
hydrogenase II can be reduced to this level29. This raises the question
as to whether the {4Fe4S}þ level of the H-cluster is physiologically
accessed during turnover. A vacant or (weakly) water-coordinated
site has been identified crystallographically in the enzyme at the
distal iron atom in the resting state of the enzyme. It is possible that
protonation at this site lowers the energy of the Fe(I)·Fe(I) subsite
unit sufficiently to enable its reduction by the anchored cubane
operating at the {4Fe4S}2þ level. ThatD is capable of electrocatalys-
ing proton reduction may be similarly linked to the formation of a
vacant site, in this case by the opening of the m-S bridge on
reduction.

The artificial H-clusters reported here should enhance our under-
standing of the intimate chemistry of the natural process, and lead to
systems with low overpotentials for hydrogen uptake/evolution11,28.
Given that redox-active {4Fe4S}2þ-centres can be incorporated at
high concentration into cysteine functionalized electropolymers30,
we can envisage their modification, using the chemistry we have
described, thereby providing a route to advanced electrode
materials. A
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A number of reconstructions of millennial-scale climate varia-
bility have been carried out in order to understand patterns of
natural climate variability, on decade to century timescales, and
the role of anthropogenic forcing1–8. These reconstructions have
mainly used tree-ring data and other data sets of annual to
decadal resolution. Lake and ocean sediments have a lower
time resolution, but provide climate information at multicen-
tennial timescales that may not be captured by tree-ring data9,10.
Here we reconstruct Northern Hemisphere temperatures for
the past 2,000 years by combining low-resolution proxies with
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Abstract: IR spectroelectrochemistry of Fe4{Me(CH2S)3}2(CO)8 (4Fe6S) in the ν(CO) region shows that

the neutral and anion forms have all their CO groups terminally bound to the Fe atoms; however, for the

dianion there is a switch of the coordination mode of at least one of the CO groups. The available structural

and ν(CO) spectra are closely reproduced by density-functional theory calculations. The calculated structure

of 4Fe6S2- closely mirrors that of the diiron subsite of the [Fe-Fe] hydrogenase H cluster with a bridging

CO group and an open coordination site on the outer Fe atom of pairs of dithiolate-bridged Fe0FeII subunits

connected by two bridging thiolates. Geometry optimization based on the all-terminal CO isomer of 4Fe6S2-

does not give a stable structure but reveals a second-order saddle point ca. 11.53 kcal mol-1 higher in

energy than the CO-bridged form. Spectroelectrochemical studies of electrocatalytic proton reduction by

4Fe6S show that slow turnover from the primary reduction process (E1/2′ ) -0.71 V vs Ag/AgCl) involves

rate-limiting protonation of 4Fe6S- followed by reduction to H:4Fe6S-. Rapid electrocatalytic proton reduction

is obtained at potentials sufficient to access 4Fe6S2-, where the rate of dihydrogen elimination from the

FeIIFeII core of 4Fe6S is ca. 500 times faster than that from the FeIFeI core of Fe2(µ-S(CH2)3S)(CO)6. The

dramatically increased rate of electrocatalysis obtained from 4Fe6S over all previously identified model

compounds appears to be related to the features uniquely common between it and the H-cluster, namely,

that turnover involves the same formal redox states of the diiron unit (FeIFeII and Fe0FeII), the presence of

an open site on the outer Fe atom of the Fe0FeII unit, and the thiolate-bridge to a second one-electron

redox unit.

Introduction

Notwithstanding the uncertainty remaining over the exact
identity of the central light atom of the dithiolate bridge and
the CO/CN arrangement, the structure of the catalytic center of
the [Fe-Fe] hydrogenase enzyme is well-established by X-ray
crystallographic1-3 and spectroscopic3-5 investigations. These
results provide a framework for the development and evaluation
of computational methods for describing the system. In this
regard, density functional theory (DFT) has been shown to be
extremely effective in terms of reproducing both the structure
and spectroscopic details of closely related diiron compounds.6-9

Importantly, these approaches offer the possibility of charting

the reaction path or, more properly, providing a quantitative
basis for excluding alternative reaction schemes.
Deliberation on the reaction path for dihydrogen oxidation

has focused on the open coordination site of Fed (Scheme 1),
the site of CO binding in the CO inhibited form of the enzyme.12

Both [2Fe]Hox and its one-electron-reduced analogue, [2Fe]Hred,
have similar structures, although in the latter case there is a
weak interaction between Fep and the bridging CO group to
give an up:down edge-shared bi-square pyramidal geometry.1,3,13

Activation of dihydrogen may proceed by dihydrogen binding
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to this site (Scheme 1a). Heterolytic cleavage of bound
dihydrogen would be assisted by interaction with the lone pair
of the nitrogen atom of a di(thiomethyl)amine (dta) bridging
ligand. DFT calculations suggest that such a path is energetically
feasible,10 and there is independent support for the assignment
of the dta bridge based on analysis of the hydrogen-bonding
interactions in the crystal.5 An alternate reaction path may be
proposed that involves dihydrogen binding to Fep where Fed
interacts with the nonbonded hydrogen atom. In this case,
dihydrogen binding is coupled with the bridging CO group
adopting a terminal mode of coordination to Fed (Scheme 1b).
DFT calculations suggest that this reaction path is also energeti-
cally feasible,8,11 and a recent comparative study of the
alternative proposals suggests that the energy differences are
not sufficiently large for the DFT methods to allow exclusion
of either alternative.14

There are excellent structural and functional models of the
H-cluster, and progress in these areas has recently been
reviewed.15 For the most part, the focus has concentrated on
[2Fe]H, where the most simple example, Fe2(µ-S(CH2)3S)(CO)6
(3S), has been shown also to exhibit hydrogenase activitysat
least in terms of electrocatalytic proton reduction.16,17 Further
elaboration by incorporation of a dta bridge,18,19 regiospecific
cyanation,20 and site differentiation by incorporation of a pendant
thioether or thiolate to the bridging ligand19,21 yields close
compositional analogues of the CO inhibited form of [2Fe]H

and an all-CO analog that incorporates both the 2Fe3S and
4Fe4S domains of Hox.22 Spectroscopic and computational
studies of ligand substitution reactions of diiron compounds
related to [2Fe]H suggest that a change in the mode of CO
coordination facilitates ligand association/dissociation.23,24 Sim-
ply, this allows the higher coordination intermediate to be
accommodated by homolytic cleavage of the Fe-Fe bond while
an 18-electron count is retained at both metal centers. However,
these considerations do not provide a basis for distinction
between the alternate pathways shown in Scheme 1. While a
higher reactivity for terminally bound over bridging hydrides
is suggested by studies of the isomers of [HFe2(µ-S(CH2)2S)-
(CO)2(PMe3)4]+ recently reported by Rauchfuss and co-work-
ers,25 the protonated forms of [HnFe2(µ-PPh2)2(CO)6]n-2, n )

1 or 2, have terminally bound hydrides, and these are unreactive
with protons.26,27Moreover, Fe2(µ-PPh2(CH2)3PPh2)(CO)6 (3P)
and 3S undergo electrocatalytic proton reduction at similar rates,
where the reaction path appears to involve a bridging hydride
(i.e., the reverse of Scheme 1b).28 This conclusion is supported
by an independent DFT study of the reaction path for 3S.29

Central to the current investigation is the relative importance
of bridging and terminally bound hydrides in the reaction path
and, consequently, the role of the two iron atoms of [2Fe]H in

(13) Nicolet, Y.; Lemon, B. J.; Fontecilla-Camps, J. C.; Peters, J. W. Trends
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Scheme 1. Schematic Representation of Hox, the Catalytic Center of the Oxidized Form of [Fe-Fe] Hydrogenase, the Diiron Subsite,
[2Fe]Hox, and Structures of Intermediates Associated with the Pathways for Dihydrogen Activation That Involve Dihydrogen Binding to (a)
Fed10 or (b) to Both Metal Atoms of the Diiron Subsite8,11
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dihydrogen activation (Scheme 1). Since the choreography of
the reaction involves either CO or H bridging of the diiron
centers, the reaction path may be considered from the perspec-
tive of either the H or CO groups.
The compound Fe4[MeC(SCH2)3]2(CO)8 (4Fe6S), which is

formed in the reaction of Bosnich’s trithiol and [Fe3(CO)12],30

presents pairs of dithiolate-bridged diiron centers that feature
markedly different coordination environments for the Fe atoms
and promotes electrocatalytic proton reduction at relatively mild
potentials and at a higher formal oxidation state for the Fe
centers than for previously identified structural or functional
models of [2Fe]H. The present investigation seeks to delineate
the reduction chemistry of 4Fe6S and to establish the relation-
ships between this chemistry and that of [2Fe]H.

Experimental Section

Unless otherwise stated chemicals (Aldrich) and high-purity gases
(BOC) were obtained from commercial sources and used without further
purification. The 13CO (99.2 atom %) was obtained from Trace Sciences
International Corp., Ontario, Canada. Elemental analyses were per-
formed by Medac Ltd, Egham, UK. Solvents were purified using
standard procedures31 and were distilled under a dinitrogen atmosphere
immediately prior to use or transfer to a glove box (Vacuum
Atmospheres). Tetra-n-butylammonium hexafluorophosphate (TBA-
[PF6]) was synthesized and purified using standard procedures32 and
lutidinium p-toluenesulfonate, LutH[OTs], was prepared by reaction
of 2,6-dimethylpyridine (Lut) with the appropriate acid.
Synthesis of Fe4(CO)8(CH3C(CH2S)2)2‚1/2(CH2Cl2), 4Fe6S‚

1/2(CH2Cl2). Fe3(CO)12 (3.0 g, 5.9 mmol) was dissolved in toluene (50
cm3) and stirred. 1,1,1-Tris(mercaptomethyl)ethane (1.0 g, 5.9 mmol)
was added and the solution was heated at 80 °C for 2 h. After solvent
removal, the solid was purified by flash chromatography (diethyl ether
and then dichloromethane) to give a dark brown solid (0.27 g, 0.3 mmol,
10%). This solid was recrystallized from dichloromethane to afford a
shiny, microcrystalline brown-black material. νmax/cm-1 (CO): 2046,
1988 and 1947 cm-1 (dichloromethane). NMR δH (400 MHz; solvent
CDCl3; standard SiMe4): 0.94 (s, 6H, 2×CH3), 1.16 (2H, d, J 14.2
Hz, 2×CHSFe), 1.59 (2H, d, J 14.2 Hz, 2×CHSFe), 1.97 (2H, d, J
13.9 Hz, 2×CHSFe), 2.13 (2H, d, J 13.2 Hz, 2×CHSFe), 2.77 (2H, d,
J 13.7 Hz, 2×CHSFe), 3.54 (2H, d, J 13.7 Hz, 2×CHSFe), 5.32
(1H, 0.5 CH2Cl2). MS-FAB (NOBA matrix, m/z): M + H+ 779.
MS-ES+ (cone potential 50 V, solvent carrier MeCN/CH2Cl2 +

ammonium acetate): M + H+ 779, M + NH4+ 796. Anal. Calcd for
C18H18O8S6Fe4‚1/2(CH2Cl2): C 27.08; H 2.33; S 23.4; Fe 27.2.
Found: C 27.27; H 2.27; S 22.5; Fe 26.6.
Notes: The presence of 0.5 mol of dichloromethane per complex in

the recrystallized material was confirmed by comparison of the
integrated proton resonances for the complex with that for the solvate
molecule in CDCl3; experimental Fe and S analyses are somewhat low
compared with theory, but this is not exceptional for this class of iron-
sulfur compound,33 where formation of metal sulfides can interfere in
the analysis. Importantly, solution spectroscopic (FTIR, NMR) and
electrochemical data reported above for the material used in this study
is identical with that of structurally characterized 4Fe6S prepared by
the same method but isolated as homogeneous dark red needles from
ethyl acetate/diethyl ether.30

Spectroelectrochemical (SEC) experiments were conducted using
a purpose built cell previously described.34 All experiments employed

a 3 mm diameter vitreous carbon working electrode, silver pseudo-
reference electrode, and platinum foil counter electrode. The potential
of the reference electrode was estimated from the voltammetry of the
solution under investigation and, by comparison with experiments
conducted in the presence of ferrocene (Fc), all potentials are quoted
relative to the Ag+/AgCl reference electrode. Against this reference
the Fc+/Fc couple occurs at +0.51 V in CH2Cl2.35 Solutions for SEC
analysis were prepared under strictly anaerobic conditions either through
the agency of a Vacuum Atmospheres glove box or using standard
Schlenk techniques. The applied potential was controlled using a PAR
model 362 potentiostat. A Powerlab 4/20 interface (ADInstruments)
using EChem V1.5.2 or Chart V4.12 provided a means of setting the
applied potential and monitoring the potential and current response
during SEC experiments. IR spectra were obtained using a Bio-Rad
FT175C FTIR equipped with a Ge/KBr beamsplitter and narrow band
MCT detector. Spectral subtraction and curve fitting were performed
using Grams/32 AI software (Galactic), and multicomponent analysis
was conducted using routines available within Igor Pro (version 5.04B,
Wavemetrics).

DFT calculations were carried out within the Gaussion 03 (revision
B.04)36 suite using the exchange-correlation functional BP8637 and
LanL2DZ38 (Fe and the C and H atoms of the bridge) and LanL2DZdp39

(remaining atoms) basis sets obtained from Extensible Computational
Chemistry Environment Basis Set Database, Version 02/25/04 (Mo-
lecular Science Computing Facility, Pacific Northwest Laboratory,
Richland, WA). All geometries are fully optimized and confirmed as
minima by an analytical frequency calculation at the same level of
theory. DFT-optimized structures are indicated when parentheses
enclose the formula used to designate the different species. The validity
of the calculated gas-phase geometry may be established by comparison
of the calculated and observed IR spectra in the ν(CO) region.
Geometry optimization of 4Fe6S using B3LYP and basis sets
described above give structural parameters and ν(CO) band profiles in
similarly good agreement with those observed; however the wavenum-
ber offsets for these compounds were found to be smaller when using
the BP86 functional. The inclusion of solvation effects provides more
accurate estimates of the relative energies of the calculated structures,
although a far smaller effect is evident for the calculated geometries
and IR spectra. In view of the computational overhead for a problem
as complex as that posed by the tetrairon compounds, all calculations
reported are for gas-phase species. The crystal structure of 4Fe6S was
used as input for the DFT-based geometry optimization, where the
suitability of the approach is demonstrated by the close agreement
obtained between the observed and calculated geometry and ν(CO)
bands. Geometry optimization of 4Fe6S- proceeded from {4Fe6S} with
the addition of a single electron. The procedure was repeated to give
the calculated structure of 4Fe6S2-. In the crystalline form, 4Fe6S has
Ci symmetry30 and geometry optimization of 4Fe6S0/-/2- will also give
structures with Ci symmetry. Calculations based on a starting geometry
with C1 symmetry refined to give structures indistinguishable from those
calculated as described above. Starting geometries for H:4Fe6S-

proceeded from {4Fe6S2-} with placement of the hydrogen atom
either at the open coordination site of one of the outer Fe atoms or
between an outer and inner pair of Fe atoms. In the latter case, the
bridging CO group was placed in the open coordination site of the
outer Fe atom.
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Results and Discussion

Spectroelectrochemistry. The cyclic voltammetry of 4Fe6S
in CH2Cl2 reveals successive reversible and quasi-reversible
single-electron reduction steps (Figure 1a).30 Reversible inter-
conversion between the neutral and anionic forms of 4Fe6S is
well-demonstrated in IR-SEC experiments, where the extent
of recovery of the neutral species is near quantitative and not
dependent on the reduction time (Figures 1b and S1 of the
Supporting Information). Experiments conducted using more
reducing potentials show that the dianion of 4Fe6S is moderately
stable at room temperature (Figure 1c), where ca. 95% of the
anion can be recovered provided the duration of the reduction
step is less than 10 s (Figure S2, Supporting Information).
Reduction at longer times results in a more complex band profile
consistent with the formation of several as yet undefined
decomposition products. The IR spectra of 4Fe6S- and 4Fe6S2-

have been extracted from the SEC results by spectral subtraction
and these together with the spectrum of the parent compound
are shown Figure 1d. Analogous experiments carried out under
elevated pressures of CO (0.4 MPa) show that while 4Fe6S- is
unaffected by additional CO, 4Fe6S2- undergoes further reac-
tion, leading to a mixture of products (Figure S3, Supporting
Information).
The general shift of the ν(CO) band profile lower by ca. 50

cm-1 with the addition of each electron is approximately half
of that obtained for one-electron reduction of the related diiron
compound, 3S.16 Further, since there is not a marked increase
in the difference between the lowest and highest energy ν(CO)
bands for either the anion or dianion, the additional charge is
distributed over the four Fe atoms. This conclusion is supported
by the magnitude of the shift of the highest energy ν(CO) bands.
Furthermore, experiments carried out in the presence of elevated
pressures of 13CO show that reduction to the anion results in
CO/13CO exchange that continues over a period of ca. 30 s,
presumably until the isotopic composition of CO bound to the

complex matches that in the thin film of solution (Figure S4,
Supporting Information). The lability of the complex to ligand
exchange is consistent with its formulation as an odd-electron
metal carbonyl species.40 In addition to supporting the odd-
electron assignment of 4Fe6S- the isotopic substitution experi-
ments also confirm assignment of the bands in this spectral
region to metal carbonyl vibrations.
Similar ν(CO) band profiles are obtained for 4Fe6S and

4Fe6S-; however, these differ markedly from that of the dianion
(Figure 1d). The appearance of a ν(CO) band at 1780 cm-1 for
4Fe6S2- suggests a rearrangement of the CO groups about the
iron-sulfur core with the formation of a product having at
least one bridging CO group. The substantial structural change
indicated by the IR spectra is fully consistent with the
slow heterogeneous electron-transfer kinetics suggested by the
quasi-reversible nature of the second reduction wave (Figure
1a).30

DFT Studies of the 4Fe6S Redox Series. DFT calculations
of the neutral compound yield structural parameters (Table 1)
and IR spectrum (Figure 2a) in excellent agreement with that
observed. The LUMO is calculated to be Fe-Fe antibonding
with respect to the central Fe atoms, and on this basis, reduction
would be expected to result in an increase in electron density
distributed over both diiron fragments of the molecule. The shift
of the entire band profile is consistent with such an analysis.
The structure of {4Fe6S-} has an elongated central Fe-Fe
bond, and the calculated IR spectrum of the anion has a band
profile and wavenumber in remarkably good agreement with
those observed (Figure 2b). Whereas a further lengthening of
the central Fe-Fe contact is expected following formation of
{4Fe6S2-}, it is surprising that this is also accompanied by a
rearrangement of the CO groups. One of the terminal CO groups
on both outer-Fe atoms is calculated to adopt a position bridging
the outer and inner Fe atoms and this leaves an open coor-
dination site on the outer-Fe atoms (Figure 3b). To ascertain
the possibility for formation of the all-terminal CO isomer
of 4Fe6S2-, geometry optimization was conducted starting
from a model with a Fe/S core based on {4Fe6S2-} and an
arrangement of CO groups analogous to that of {4Fe6S-}.
While no local minimum with an all-terminal CO geometry is
obtained, a second-order saddle point, 11.53 kcal mol-1 higher
in energy than the CO-bridged form, is identified. In this case,

(40) Cotton, F. A.; Wilkinson, G. AdVanced Inorganic Chemistry, 5th ed.; Wiley-
Interscience: New York, 1988.

Figure 1. (a) Electrochemistry of 4Fe6S (1 mM CH2Cl2/0.2 M TBA[PF6])
and IR-SEC spectra after application of a potential of (b) -0.95 V and (c)
-1.50 V. The time between spectra is ca. 2 s. (d) The absorbance spectra
of the parent compound and the one- and two-electron reduction products,
in the latter two cases by spectral subtraction using the SEC spectra.

Table 1. Experimental (4Fe6S) and Predicted Bond Lengths for
the Redox Series 4Fe6S0/-/2- and the Terminal Hydride Form of
4Fe6S2-

{Ht:4Fe6S2-}b

4Fe6Sa {4Fe6S}b {4Fe6S-}b {4Fe6S2-}b H:2Fec 2Fed

Feouter-Feinner/Å 2.543 2.544 2.582 2.538 2.534 2.535
Feouter-Souter/Å 2.264 2.297 2.305 2.351 2.318 2.350
Feinner-Feinner/Å 2.651 2.628 2.900 3.467 3.451
Feinner-Sinner/Å 2.236 2.240 2.278 2.333 2.357 2.302
Fe-COe/Å 1.791 1.764 1.754 1.728 1.747 1.733
C-Oe/Å 1.173 1.180 1.189 1.176 1.184
Feinner-CObridge/Å 2.028 1.868 2.078
Feouter-CObridge/Å 1.855 2.132 1.825
C-Obridge/Å 1.203 1.188 1.202

a X-ray distances from ref 30. b DFT calculated distances. c Protonated
diiron subunit of {Ht:4Fe6S2-}, Fe-H ) 1.490 Å. d Nonprotonated diiron
subunit of {Ht:4Fe6S2-}. e Averaged value.
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the two imaginary frequencies correspond to displacement
coordinates that involve a rotation of the Fe(CO)3 fragments
and lead, ultimately, to the CO-bridged structure. These calcula-

tions suggest that the energy difference between the isomeric
forms of {4Fe6S2-} is significantly larger than the uncertainty
in the relative energies introduced by the use of gas-phase
calculations (up to 3 kcal mol-1), this being estimated from
studies of related diiron compounds.9 The conclusion that the
CO-bridged structure of {4Fe6S2-} is significantly more stable
than the all-terminal CO form is supported by the excellent
agreement between the calculated and observed IR spectra
(Figure 2c).

The high reactivity of 4Fe6S2- is readily understood in terms
of a CO-bridged structure with open coordination site on the
outer Fe atoms, since a similar rearrangement of the all-ter-
minal CO form has previously been invoked to explain the
associative character of the substitution reactions. Pickett and
co-workers have shown that cyanation of Fe2(µ,µ-(SCH2)2C-
(CH3)(CH2SR))(CN)(CO)4 proceeds through a long-lived CO-
bridged intermediate, where transfer of the bridging CO group
is coupled to dissociation of the pendant thioether to give the
final product.23

The striking resemblance between the geometry of the diiron
units of {4Fe6S2-} and the X-ray structure of Hox from
Clostridium pasteurianum, CpI,2 is shown in Figure 3. Both
[2Fe]Hred and the inner and outer pair of Fe atoms of {4Fe6S2-}

may have formal oxidation states of either FeIFeI or FeIIFe0. In
both cases, a change in the mode of coordination of one of the
CO groups between terminal and bridging will switch the
oxidation state assignment from one alternative to the other.
For 4Fe6S2-, the presence of two additional bridging thiolates
bound to Feinner appears to push the equilibrium in favor of the
FeIIFe0 form. IR spectroscopy indicates that for [2Fe]Hred all the
CO groups adopt a terminal mode of coordination,5 although
the crystallographic structure indicates a hemibridging interac-
tion between CO and Fep. DFT calculations indicate that this
interaction mixes a significant FeIIFe0 contribution into the
ground state.7 Thus, 4Fe6S2- presents a close structural and
electronic analogue of Hred.

Spectroelectrochemistry in the Presence of 2,6-Dimeth-

ylpyridinium, LutH+. IR-SEC spectra recorded during the
reduction of 4Fe6S at mild potentials in the presence of 20 equiv
of LutH+ are shown in Figure 4. The spectral changes closely
mirror those obtained for reduction of 4Fe6S in the absence of
acid (Figure 1b), although the rate of depletion of the starting
material is lower and weak features due to the conversion of
LutH+ to Lut become apparent in the spectrum between 1550
and 1700 cm-1. The possibility that proton reduction involves
either direct reduction at the electrode surface or is the result
of the formation of low concentrations of the dianion was
examined in experiments where the potentiostat was switched
to open circuit at a time when both LutH+ and 4Fe6S- are
present in the thin layer (Figure 4b). Over a period of ca. 50 s
there is conversion of all the 4Fe6S- to 4Fe6S. The interpreta-
tion that the spectral changes observed during this period are
due to chemical reaction, as opposed to mixing between the
bulk solution and that of the thin layer, is based on the
comparatively rapid time scale over which the spectral changes
develop. Further, immediately after switching the cell to open
circuit, the differential absorption features associated with the
conversion of LutH+ into its conjugate base, Lut, continue to
develop while there is a significant concentration of 4Fe6S- in
the thin layer (Figure 4c). Analogous experiments conducted

Figure 2. Comparison between the calculated (top) and observed (bottom)
ν(CO) bands of (a) 4Fe6S, (b) 4Fe6S-, and (c) 4Fe6S2-. The experimental
intensities were obtained by curve fitting the ν(CO) band profile. The
structures of 4Fe6S- and Fe6S2- are based on those obtained by DFT
calculation.

Figure 3. (top) Structure of Hox as determined by X-ray crystallography
of the oxidized form of the [Fe-Fe] hydrogenase from C. pasteurianum
(PDB ID 1C4A).2 Note in this published structure the atoms forming the
dithiolate bridge were not refined nor assignment of the diatomic ligands
as either CO or cyanide made (see Scheme 1). (bottom) DFT-calculated
structure of Fe4S62-.
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in the absence of acid show that 4Fe6S- is stable over the time
scale of several minutes and there is no significant spectral
change following the switching of the potentiostat to open
circuit. The changes in concentration of 4Fe6S, 4Fe6S-, and
LutH+ during an experiment including three successive reduc-
tion/open circuit cycles is shown in Figure 4c. With each
reduction cycle there is a faster rate of depletion of the starting
material and slower rate of its recovery. Both observations may
be explained in terms of a lowering of the concentration of
LutH+ due to proton reduction in the thin layer of solution. It
is important to note that the loss of 4Fe6S- through formation
of the dianion by disproportionation followed by reaction with
acid may be ruled out by the small value of Kdisp (ca. 10-6).
Since in this case formation of the dianion would be rate-
limiting, the rate of reaction would be expected to be indepen-
dent of acid concentration. This analysis is supported by
electrochemical simulation of the voltammetry of 4Fe6S in the
presence of acid.30

These results show unequivocally that the reduction of protons
by 4Fe6S- is a kinetically significant process. The absence of
additional spectral features during the reaction indicates that
there is no buildup of significant concentrations of additional
products; consequently, dihydrogen elimination by a bimolecular
reaction involving two equivalents of H:4Fe6S can be ruled
out. A reaction path involving rate-limiting formation of
H:4Fe6S, reduction by 4Fe6S-, and rapid reaction of H:4Fe6S-

with protons would account for the overall reaction and apparent

absence of additional products. On the basis of the equilibrium
constants and reduction potentials deduced from modeling the
electrochemistry,30 the equilibrium constant for the protonation
of 4Fe6S- is estimated to have a value of ca. 10. Complete
removal of 4Fe6S-, as is evident in the SEC experiments, results
from removal of the reaction product by irreversible protonation
and dihydrogen elimination.

Since dihydrogen evolution following one-electron reduction
is limited by the rate of protonation of 4Fe6S-, the time
dependence of the spectral changes obtained after switching the
potentiostat to open circuit provides a means of estimating the
rate constant for the protonation reaction. For the first cycle an
observed rate constant (kobs) of 0.25 ( 0.01 s-1 is obtained from
fitting the spectral changes for depletion of 4Fe6S- and recovery
of 4Fe6S over the first half-life after switching the potentiostat
to open circuit. For rate-limited protonation, kobs will equal the
product of the second-order rate constant for the protonation of
4Fe6S- (k1) and the concentration of LutH+. The estimated
value of k1 of 9 ( 2 M-1 s-1 is in satisfactory agreement with
that previously deduced from digital simulation of the electro-
chemistry (25 M-1 s-1).30

The relative rates of electrocatalysis for the two reduction
processes is apparent from the time and potential dependence
of the spectral changes during thin layer SEC experiments of
4Fe6S with 35 equiv of LutH+. Reduction at mild potentials
leads to a modest current response, and this is associated with
conversion of a significant fraction of the neutral compound

Figure 4. IR-SEC recorded of 4Fe6S (1.7 mM, CH2Cl2/0.2 M TBA-
[PF6]) in the presence of LutH+ (34 mM) (a) during the reduction at
potentials sufficient to generate the monoanion, (b) the spectral changes
obtained after switching the potentiostat to open circuit, and (c) the time
dependence of the relative concentrations of LutH+, 4Fe6S, and 4Fe6S-

obtained by multicomponent fitting of the individual spectra. The last
spectrum of each set shown in a and b is highlighted.

Figure 5. The time dependence of (a) the applied potential, (b) current
response, and (c) the time dependence of the concentration changes of
4Fe6S, 4Fe6S-, 4Fe6S2-, Lut, and LutH+ during thin-layer SEC of 4Fe6S
(1.1 mM) and LutH+ (38 mM) in CH2Cl2 (0.2 M TBA[PF6]). The
concentration changes of Lut and LutH+ have been divided by a factor of
40. The mass balance of 4Fe6Sn- species corresponds to the sum of the
concentration changes for 4Fe6S, 4Fe6S-, and 4Fe6S2-.
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into the one-electron reduced form (Figure 5). Since the turnover
on protons is slow, the predominant species in solution is
4Fe6S-. In the second stage of the reaction the potential is
stepped to a value sufficiently reducing to access the dianion,
and this is associated with a marked increase in the rate of
depletion of LutH+ together with an increase in the concentra-
tion of the neutral compound and concomitant decrease in
concentration of 4Fe6S- (Figure 5). This surprising situation
may be explained in terms of the relative rates of recovery of
4Fe6S by reaction of 4Fe6S2- and 4Fe6S- with LutH+.
Analogous experiments conducted with differing acid concen-
trations and for different periods of reduction at -1.1 V suggest
that the extent of transient recovery of 4Fe6S after switching
the potential to -1.6 V depends on the residual acid concentra-
tion. Despite the rapid turnover on protons following two-
electron reduction, comproportionation of 4Fe6S2- and 4Fe6S
in the thin layer provides a means of generating significant
concentrations of 4Fe6S-. Only when the concentration of
4Fe6S is small does 4Fe6S2- become the predominant product
(Figure 5). Following the application of more strongly reducing
potentials, the mass balance of 4Fe6Sn- species (Figure 5)
indicates the formation of low concentrations of other metal-
based species. It is clear that these species do not play a
significant role in the catalytic reaction, since there is no delay
in the onset of the full catalytic current following the step in
potential. Rearrangement of protonated reduced compounds has
previously been found to accompany the electrocatalytic reac-
tion, and this is responsible for the loss of catalyst from the
system.16 It has not proved possible to obtain well-defined
spectra of these products.

Digital simulation of the respective electrocatalytic proton
reduction reactions suggests that the rate of dihydrogen elimina-
tion following two-electron, two-proton addition is substantially
higher for 4Fe6S (2000 s-1)41 than either 3P (2.4 s-1)28 or 3S
(5 s-1).16 This order of reactivity is surprising, since the hydridic
character of the species may be expected to be enhanced as the
complex is reduced and the formal oxidation states of the iron
atoms is higher for 4Fe6S than for 3S or 3P. This suggests a
different reaction path for electrocatalytic proton reduction by
4Fe6S. Since the reaction path for rapid proton reduction by
4Fe6S involves net two-electron reduction prior to protonation,

it is likely that the structural rearrangement accompanying
formation of 4Fe6S2- is central to the increased reactivity. Both
the opening of a coordination site on the outer iron atom and
the development of Fe0FeII centers would promote the proton
basicity and hydridic character needed to facilitate such a
reaction.
A possible reaction path available to 4Fe6S2- and not the

diiron compounds is for protonation to occur on the inner iron
atoms and for both diiron fragments of H2:4Fe6S to be directly
involved in dihydrogen elimination. However, this reaction path
may be excluded on the basis of the calculated Fe-Fe distance
(Table 1). Recent theoretical29 and experimental28 studies of 3S
and 3P suggest that electrocatalytic proton reduction proceeds
via dihydrogen elimination from a FeA:FeB dihydride, where
the rate of dihydrogen elimination is related to the H-H
distance, this being related to the FeA-FeB separation.28 The
calculated structure of the H2:4Fe6S isomer having the inner
Fe atoms protonated has a Feinner-Feinner distance (3.447 Å)
little changed from that of {4Fe6S2-} (Table 1) and an H-H
distance of 4.273 Å. A similar Fe-Fe distance is obtained for
DP2-, and in that case, the dihydride does not eliminate
dihydrogen at a significant rate.26

Therefore, dihydrogen elimination from H2:4Fe6S is centered
on one of the Feouter-Feinner fragments with the remaining diiron
fragment available to provide an additional reducing equivalent.
Protonation of 4Fe6S2- may occur at the open coordination site
of one of the outer iron atoms or, alternatively, at the inner
iron atom, where this is coupled with a rearrangement of the
bridging CO group (Scheme 2). These alternatives mirror the
latter stages of the paths of dihydrogen oxidation proposed for
the H-cluster (Scheme 1).
Dihydrogen elimination from a dihydride obtained by pro-

tonation of a species such as Hb:4Fe6S- may, in view of the
shorter Feouter-Feinner separation, be expected to support a faster
rate of dihydrogen elimination than the corresponding species
of 3S and 3P; however, the oxidation states of the iron atoms
is higher and this may be expected to lower the basicity of the
H-bridged species. Crystallographically characterized hydride-
bridged FeIIFeII species have been obtained by protonation of
the disubstituted FeIFeI phosphines25 to give [Fe2(µ-pdt)(µ-H)-
(PR3)2(CO)4]+ and by hydride addition to the FeIIFeII precursor
of 2SHb+.42 In neither case is there any indication of significant

(41) The value of the rate constant for dihydrogen elimination was not given
explicitly in ref 30. The value reported is obtained by fitting the voltammetry
to a model consistent with those used in refs 28 and 16.

(42) Zhao, X.; Georgakaki, I. P.; Miller, M. L.; Mejia-Rodriguez, R.; Chiang,
C.-Y.; Darensbourg, M. Y. Inorg. Chem. 2002, 41, 3917-28.

Scheme 2. Possible Structures of H:4Fe6S-

Electrocatalytic H+ Reduction by a 4Fe6S Assembly A R T I C L E S
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proton basicity, even in the presence of acids significantly
stronger than LutH+.

Terminally bound hydrides are known for thiolate- and
phosphido-bridged diiron compounds, although the hydridic
character of these diiron species is markedly different. Whereas
2SHt

+ reacts with acid to eliminate dihydrogen, [Fe2(µ-PPh2)2H-
(CO)6]- is unreactive. In the latter case, the IR spectra indicate
that the two iron centers are weakly interacting and the hydride
formulation would imply binding to an FeII center.26 The
difference in ligand set and stronger electronic interaction
between the FeII centers of 2SHt+ would appear to promote the
hydridic character of the terminally bound hydride. Similar
considerations apply for Ht:4Fe6S-, where the outer and inner
iron atoms are bridged both by a dithiolate and a CO group as
for 2SHt+ and, notably, Hox. The hydridic character of the
tetrairon complex may be further enhanced by redistribution of
charge from the remote pair of iron centers. Geometry optimiza-
tion of H:4Fe6S- starting from the protonated form of 4Fe6S2-

corresponding to Ht:4Fe6S- (Scheme 2a) proceeds to a well-
defined energy minimum, as judged by the calculated vibrational
frequencies. The structure retains a terminal hydride and
bridging CO group. These calculations suggest that the bridging
CO group moves from a position closer to Feouter for the dianion
to one closer to Feinner for {Ht:4Fe6S-}, while there is a smaller
shift of the bridging CO toward Feouter for the nonprotonated
subunit (Table 1).
DFT-based geometry optimization of Hb:4Fe6S- (Scheme 2b)

gives a similarly well-behaved minimum with a calculated
gas-phase free energy 0.75 kcal mol-1 lower than that of
{Ht:4Fe6S-}, well within the uncertainty of the calculation.
Further work is needed to establish whether there is a sufficiently
large difference in the calculated activation energies to provide
an unequivocal basis for distinguishing between the two reaction
paths. These calculations would have clear parallels with those
conducted on the enzyme.14

Conclusion

The application of SEC approaches has allowed identification
of the IR spectra of the 4Fe6S, 4Fe6S-, and 4Fe6S2- redox
series. Whereas the ν(CO) band pattern is largely retained
following one-electron reduction, there are significant changes
associated with formation of 4Fe6S2-, most notably the ap-
pearance of a ν(CO) band at 1764 cm-1 indicative of the
presence of at least one CO group adopting a bridging mode of
coordination.
DFT-based geometry optimization of 4Fe6S gives structural

parameters and IR spectra in excellent agreement with those
observed. The LUMO is calculated to be antibonding with
respect to the inner Fe atoms, and one-electron reduction is
manifested by a lengthening of this bond. Addition of a sec-
ond electron is calculated to give a further lengthening of the

Feinner-Feinner distance and, unexpectantly, a rearrangement of
the CO groups about the 4Fe6S core. The calculated geometry
consists of two identical diiron units with an open coordination
site on Feouter and a bridging CO group on Feouter and Feinner.
These features of the structure are unprecedented in dithiolate-
bridged diiron chemistry outside the [Fe-Fe] hydrogenase
enzyme.
Electrocatalytic proton reduction proceeds slowly at mild

potentials by one-electron reduction of 4Fe6S, rate-limiting
protonation, further one-electron reduction, and dihydrogen
elimination. A dramatic increase in the rate of electrocatalysis
occurs if two-electron reduction precedes protonation. The
structural rearrangement associated with formation of 4Fe6S2-

provides a diiron unit, which is closely related to Hred sharing
(i) an accessible Fe0FeII redox level with an open coordination
site on the Fe0 center and (ii) a thiolate bridge to a second redox
center able to provide a second electron during proton reduction
to give a final oxidized FeIFeII form. These features of the
chemistry clearly require differentiation of the coordination
environments of the Fe centers of the diiron unit.
While further calculations are needed to establish unequivo-

cally that an alternate reaction path of 4Fe6S can be dismissed,
consideration of the structures of the compounds, their relation
to electrocatalytic proton reduction by 3S and 3P, and the
difference in rate of dihydrogen elimination following proto-
nation of 2SHt+ and 2SHb+ suggest formation of a terminal
hydride (Ht:4Fe6S, Scheme 2a) and a reaction path analogous
to the reverse of Scheme 1a. While lacking the CO/CN-

substitution pattern and including two, instead of one, bridging
thiolate sulfur atoms to a second redox center, 4Fe6S neverthe-
less provides important insights into the reaction path of the H
cluster and for the design of new electrocatalysts.
Note Added in Proof. A paper published after submission

of the manuscript (Ezzaher, S.; Capon, J.-F.; Gloaguen, F.;
Pétillon, F. Y.; Schollhammer, P.; Talarmin, J.; Pichon, R.;
Kervarec, N. Inorg. Chem. 2007, 46, 3426-8) shows that
protonation of the asymmetrically substituted diiron(I) com-
pound Fe(µ-S(CH2)3S)CO4(dppe), dppe ) Ph2PP(CH2)2PPh2,
proceeds through a terminally bound hydride en route to the
more stable hydride-bridged form. This observation provides
further support for a reaction path for 4Fe6S that involves a
terminally bound hydride (Scheme 2a).
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Thermochromic Luminescence of Sol-Gel Films Based on Copper

Iodide Clusters
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The incorporation of copper iodide clusters in sol-gel silica has been investigated to prepare materials
with original luminescent properties. The synthesis, structural characterizations, and optical properties of
sol-gel films containing [Cu4I4L4] clusters, L ) phosphine-based ligands, are reported. Clusters studied
are [Cu4I4(PPh2(CH2)2Si(OCH2CH3)3)4] (C1), able to copolymerize with the silica matrix, and [Cu4I4-
(PPh2(CH2)2CH3)4] (C2) used as a reference for the characterizations. The luminescent films exhibit the
optical properties of these clusters in accordance with XPS and NMR studies demonstrating their integrity
in the gel matrix. The temperature dependence of light emission properties of clusters and films shows,
for the first time for phosphine-based [Cu4X4L4] clusters, thermochromic luminescence with bright yellow
luminescence at room temperature and purple emission at 77 K. As a result of weak Cu-Cu interactions,
the two emissive states appear as highly coupled with a low energy barrier (2 kJ ·mol-1), leading to a
controlled thermochromism in a large temperature range.

Introduction

Research on luminescent materials has been actively
pursued in the last two decades due to their numerous
applications in light emitting devices (fluorescent tubes,
lasers, cathode X-ray, projection television, OLED, flat panel
display, etc.). Silica- and/or siloxane-based hybrid organic-
inorganic matrices present several advantages to design
materials for optical applications such as mild synthesis
conditions, versatile chemistry, easy shaping, good mechan-
ical properties, and excellent optical quality.1-3 For applica-
tions in solid-state lasers4 or electroluminescent devices,5

numerous luminescent transparent composite materials (films
or monoliths) have been prepared by dispersing or grafting

luminescent species in sol-gel silica matrices.6 Organic
dyes,7 nanoparticles, such as semiconductor quantum dots,8

and rare-earth doped oxides,9 and also coordination com-
plexes of lanthanide ions10-13 generally constitute the active
luminescent species trapped in these sol-gel materials. In
the near future, luminescent transition metal clusters could
represent another class of phosphors for the synthesis of light-
emitting materials (silica-based materials or not). These
molecular clusters are promising photoactive species since
they combine inorganic nature of nanoparticles with mono-
disperse size distribution and easy functionalization of
organic molecules.

Photoluminescent d10 coinage metal compounds have been
studied for many years due to their various photophysical
luminescent properties.14-16 Among them, the formulated
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tretracopper(I) clusters [Cu4X4L4] (X ) Cl, Br, I; L )

pyridine or amine-based derivatives) are known to be highly
luminescent at room temperature.15,17 The molecular struc-
ture of these cubane type clusters is represented Figure 1.
These compounds are easily synthesized in solution and can
be obtained with different types of ligands (L) allowing their
functionalization. Besides, these copper clusters display
emission spectra that are strikingly sensitive to their environ-
ment, the temperature, and the rigidity of the medium. For
example, the thermochromic luminescence18 originates from
two emission bands whose relative intensities vary in
temperature.19 At room temperature, the luminescence is
dominated by a low energy band (LE) which has been
attributed, based on experimental data15 and recent DFT
calculations,20 to a combination of a halide-to-metal charge
transfer (XMCT) and copper-centered d f s, p transitions.
This emission is called “cluster centered” (3CC) as it involves
a [Cu4I4] cluster centered triplet excited state, which is
essentially independent of the nature of the ligand. At low
temperature, this band is extremely weak, and the emission
is dominated by a higher energy band (HE) which has been
attributed to a triplet halide-to-pyridine ligand charge-transfer
(3XLCT) excited state. As the π* orbitals of the ligands are
involved in this XLCT band, the emission at low temperature
is only observed for clusters incorporating π-unsaturated
ligands. All these properties make these copper clusters
particularly attractive for their incorporation in organic or
inorganic polymeric matrices, to synthesize materials with
original optical applications. To our knowledge no such
cluster-based materials have been already reported.
There have been considerably less photophysical inves-

tigations of [Cu4X4L4] clusters with L ) phosphine deriva-
tives compared to pyridines or amines ones. The only
luminescence studies reported for clusters with the [Cu4I4]
core have concerned the emission at 654 nm of [Cu4I4-
(PnBu3)4]15 at room temperature in toluene and of [Cu4I4-
(dmpp)4] (dmpp ) 1-phenyl-3,4-dimethylphosphole)21,22 at
15 K in the solid state at 664 nm. By analogy with [Cu4I4L4]
(L ) pyridine or amine derivatives) clusters, this emission
observed for [Cu4I4(PnBu3)4] was attributed to the LE band
previously cited (XMCT/d-s). The absence of the HE band

was explained by the saturated aliphatic character of the
PnBu3 ligand. For [Cu4I4(dmpp)4], the emission was assigned
to a metal-ligand charge-transfer transition (MLCT) based
on vibronic structure analyses. No luminescence properties
at low temperature have been reported for these two
compounds.
Herein, we report on the synthesis, structural characteriza-

tions, and optical properties of sol-gel films containing
[Cu4I4L4] clusters. Iodide cluster derivatives were selected
because of their known higher luminescence quantum yield
and stability compared to the chloride and bromide ana-
logues.15 An original copper iodide cluster with phosphine
ligands bearing alcoxysilane groups is synthesized allowing
a covalent grafting of clusters to the silica matrix. Since
luminescence properties of [Cu4I4L4] clusters having phos-
phine ligands are not well-known, a reference cluster without
polymerizable groups is also prepared to facilitate the
characterization of films. Thus, the cluster integrity in
sol-gel films is demonstrated from XPS and NMR studies.
Light emission properties of clusters and films are studied
in detail as a function of the temperature. The thermochromic
luminescence is observed for the first time in sol-gel films.
Under UV excitation, clusters and films exhibit a bright
yellow luminescence at room temperature, while the emission
becomes purple after immersion in liquid nitrogen. Moreover,
we clearly display the high coupling between excited states
(3XLCT and 3CC) with the appearance of two thermally
equilibrated emissions in the 10-120 K range.

Experimental Section

Synthesis. All manipulations were performed with standard air-
free techniques using Schlenk equipment, unless otherwise noted.
Solvents were distilled from appropriate drying agents and degassed
prior to use. Diphenyl-ethyltriethoxysilane-phosphine (1) was
synthesized by the method reported in the literature.23 Copper(I)
iodide, diphenyl-propyl-phosphine (2), and methyltriethoxysilane
(MTEOS) were purchased from Aldrich and used as received.

C1-2. To a suspension of CuI in dichloromethane (20 mL) was
added the corresponding ligand (1 or 2) (Figure 2). The solution
was stirred for 2 h at room temperature. The mixture was filtrated,
and after evaporation of the solvent the product was recovered as
colorless oil for C1. C2 was purified by flash chromatography (silica
gel, cyclohexane/ethylacetate 4:1), and colorless crystals were
obtained by slowly cooling the cyclohexane/ethylacetate solution
from room temperature to 4 °C. C1: CuI (1.0 g, 5.3 mmol), 1 (2.0
g, 5.3 mmol), yield ) 72% (2.2 g, 0.95 mmol). C2: CuI (840 mg,
4.4 mmol), 2 (1 g, 4.4 mmol), yield ) 76% (1.4 g, 3.3 mmol).
Elemental analyses and NMR characterization are reported in
Supporting Information.
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Figure 1. General representation of [Cu4X4L4] clusters (X ) Cl, Br, I; L
) pyridine or amine-based derivatives).

Figure 2. Phosphine ligands studied: 1 ) PPh2(CH2)2Si(OCH2CH3)3, 2 )

PPh2(CH2)2CH3.
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C1 Films. The sol was prepared by mixing C1 cluster, methyl-
triethoxysilane (MTEOS), N,N-dimethylformamide, and HCl aque-
ous solution (pH ) 2.5) with a molar ratio of 1.5 × 10-3:1:3:3.
The mixture was stirred at room temperature overnight. The solvents
were evaporated until the volume of the solution was reduced by
80% and a viscous liquid was obtained. After filtration a colorless
and transparent liquid was obtained which was diluted by a factor
of 2 with tetrahydrofuran and spin-coated on substrates at room
temperature (3000 rpm, 2 min). Films obtained were colorless with
thickness typically of 500 nm to 1 µm. The substrates (glass, silica,
silicon) were previously soaked in a piranha solution, washed with
water and ethanol, and dried.

Characterizations. 1H and 31P liquid-state NMR spectra were
recorded on Bruker AvanceII300 or Tecmag Apollo360 spectrom-
eters, respectively, using Bruker probes at room temperature,
operating at the radio frequency of 300 MHz (for 1H) and 145 MHz
(for 31P). 1H spectra were internally referenced from peaks of
residual protons in deuterated solvents or from tetramethylsilane
(TMS). A solution of 85 wt % H3PO4 was used as an external
standard for 31P spectra. Elemental analyses (C, H) were performed
by the Service Central d’Analyses, CNRS of Vernaison. UV-visible
absorption and transmittance spectra were recorded with a Varian
Cary 50 spectrophotometer on films deposited on quartz substrates.

Luminescence spectra were recorded on a SPEX Fluorolog FL
212 spectrofluorimeter (HORIBA JOBIN YVON). The excitation
source is a 450 W xenon lamp; excitation spectra were corrected
for the variation of the incident lamp flux, as well as emission
spectra for the transmission of the monochromator and the response
of the photomultiplier (Peltier cooled Hamamatsu R928P photo-
multiplier). Low temperature measurements have been done with
two different setups: a liquid nitrogen cryostat Meric TR S1900 or
a liquid helium circulation cryostat SMC TBT Air Liquid model
C102084. Determinations of the quantum luminescence yield for
clusters and films are described in Supporting Information.

XPS spectra were recorded on a Thermo Electron VG-ES-
CALAB 220 iXL spectrometer. Films were coated on p+ silicon
wafer. X-ray excitation was performed with a twin anode using its
Al KR line. This excitation mode was preferred to a monochromatic
one to minimize the charging effect. So spectra were recorded
without any charge compensation by an electron flood gun.
Presented data were recorded in a constant energy analyzer mode
with pass energy of 20 eV. The photoelectrons were detected
perpendicularly to the surface. The samples were stable under long
time experiments. Spectrometer calibration was performed using
the manufacturer procedure and was completed by a self-consistent
check, on sputtered copper, silver, and gold samples, based on the
ASTM E902-94 recommendation. Binding energy values of Au 4f7/2
and Cu 2p3/2 were 84 and 932.65 eV, respectively. The atomic %
compositions are obtained using the peak areas of the levels
corrected by the respective sensitivity factors. A global correction
of the binding energy (BE) positions was performed assuming a
pure Cu(I) contribution and shifting Cu 2p3/2 lines to 933 eV, the
value reported for the [Cu4Cl4(PPh3)4] cluster.24

Single crystals suitable for X-ray structure determination were
obtained for C2 as described in the synthesis section. Crystals were
mounted on fiberglass using paraton oil and immediately cooled
to 150 K in a cold stream of nitrogen. All data were collected on
a Nonius Kappa CCD diffractometer at 150(1) K using Mo KR (λ
) 0.71073 Å) X-ray source and a graphite monochromator. The
cell parameters were initially determined using more than 50

reflections. Experimental details are described in Table S1 (Sup-
porting Information). The crystal structures were solved in SIR 9725

and refined in SHELXL-9726 by full-matrix least-squares using
anisotropic thermal displacement parameters for all non-carbon and
non-hydrogen atoms. All the hydrogen atoms were placed in
geometrically calculated positions.

Results and Discussion

Synthesis and Structural Characterization of Clusters

and Films. [Cu4I4L4] clusters coordinated by pyridine or
amine-based ligands have been extensively studied compared
to other ligands. However, the synthesis of sol-gel silica
films requires the use of an aqueous solution of HCl as
catalyst, and pyridine and amine-based complexes are known
to be unstable in acidic conditions. Therefore, iodide clusters
are functionalized with phosphine derivatives, which are
known to be more stable.
The functional cluster (C1) is synthesized with the [Cu4I4]

moiety coordinated by a diphenyl-phosphine ligand bearing
a trialcoxysilane group formulated PPh2(CH2)2Si(OCH2CH3)3
(1) and represented in Figure 2. Ligands bearing alcoxysilane
groups are used to copolymerize with silica precursors of
the matrix during the sol-gel reactions. This leads to a
covalent grafting of clusters to the silica network and to high
concentration and homogeneous distribution of clusters
within the matrix (see XPS measurements). Cluster C1 is
prepared as colorless oil. The 1H NMR spectrum shows that
a small portion of alcoxysilane groups are hydrolyzed,
probably explaining negative attempts of crystallization for
this cluster.
Compounds based on transition metals with d10 electronic

configuration are known to present a variety of structural
forms. Although the most commonly observed structure for
1:1:1 Cu:X:L stoichiometry is the tetranuclear motif
[Cu4X4L4], it is important to verify the molecular structure
of C1 to correctly analyze the optical properties of the
corresponding materials. Thus, to ascertain the cubane
molecular structure of cluster C1, a “reference” cluster was
synthesized. This reference cluster C2 was obtained by using
the ligand PPh2(CH2)2CH3 (ligand 2 in Figure 2) which
differs from 1 by the absence of alcoxysilane group. As for
C1 and in the same conditions, the reaction of 2 with CuI
leads to the corresponding clusters [Cu4I4(2)4] (C2). C2 was
crystallized, and its structure was solved by single crystal
X-ray diffraction analysis at 150 K. The molecular structure
of C2 is depicted in Figure 3.
As expected, C2 presents the cubane structure formed by

four copper atoms and four iodine atoms which occupy
alternatively the corners of a distorted cube. More precisely,
the [Cu4I4] core consists in a copper tetrahedron embedded
within a somewhat larger iodine tetrahedron. The phosphine
ligands (2) are bonded to each copper atom by the phos-
phorus atom. C2 is thus formulated [Cu4I4(PPh2(CH2)2CH3)4]
in agreement with NMR and elemental analysis. The values

(24) Battistoni, C.; Mattogno, G.; Paparazzo, E. Inorg. Chim. Acta 1985,
102, 1.

(25) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo,
C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R.
J. Appl. Crystallogr. 1999, 32, 115.

(26) Sheldrick, G. M. SHELXL-97; Universität Göttingen: Göttingen,
Germany, 1997.
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for the Cu-I (2.668 and 2.701 Å) and Cu-P (2.254 Å)
distances are within the range of reported values for this type
of cluster with phosphine ligands such as PPh327 and
PPh2CH3.28 In C2, the Cu-Cu bonds lengths are 3.079 and
3.265 Å. These values are slightly longer compared to those
found in similar clusters [Cu4I4(PPh3)4] (average 2.968 Å,
range 2.839-3.165 Å at 295 K) and [Cu4I4(PPh2CH3)4]
(average 2.930 Å, range 2.840-3.010 Å at 295 K). The
Cu-Cu bonds in [Cu4I4L4] clusters based on pyridine or
amine ligands are significantly shorter compared to phosphine
derivatives.29 For example, in [Cu4I4py4] Cu-Cu bond
distances are in the range 2.619-2.721 Å (average 2.690
Å),30 that is, shorter than the sum of the van der Waals radii
of copper(I) (2.80 Å),31 implying high metal-metal bonding
interactions.
By comparing the different analyses of clusters C1 and

C2 (NMR, luminescence vide infra), it can be assumed that
the structure of C1 has a cubane form as expected for the
stoichiometry employed. Moreover, as already mentioned,
poor literature data are available concerning the optical
properties of [Cu4X4L4] clusters with L ) phosphine ligands.
The C2 cluster obtained as a colorless solid has helped the
characterization of the luminescent properties of C1 and the
corresponding sol-gel films.

C1 was incorporated within a sol-gel silica matrix by
using MTEOS (methyltriethoxysilane) as silica precursor.
The copolymerization was performed by classical sol-gel
process in acidic conditions. The gel obtained was spin-
coated on substrates leading to transparent and colorless films
(C1 film).
To know whether all the clusters are conserved after the

sol-gel process, we have performed NMR and X-ray
photoelectron spectroscopy (XPS) experiments. 31P liquid
NMR spectra of the sol before spin coating show a singlet
centered at -24.9 ppm and a less intense one at +36.8 ppm

(Figure S3, Supporting Information). The major peak at
-24.9 ppm corresponds to the phosphorus atom coordinated
to copper atoms of the cluster. The second peak at +36.8
ppm corresponds to oxidized phosphorus, so to the ligand
OPPh2(CH2)2Si(OC2H5)3. On the basis of several experi-
ments, the proportion of the two species [CuI(PPh2(CH2)2-
Si(OC2H5)3)]:OPPh2(CH2)2Si(OC2H5)3 deduced from the
peak area values is around 10:1. The reactions were also
performed under inert atmosphere (nitrogen), but the propor-
tion of oxidized ligands did not decrease. The oxidation of
the ligand can be explained by the use of HCl to generate
the acidic conditions required to the catalysis of the sol-gel
reactions. Similar observations have been previously reported
when this ligand is bound to silicon.32

XPS measurements were performed on the C2 cluster and
C1 films, and the corresponding data are reported in Table
1. Survey spectra detect only the expected atomic elements:
Cu, I, P, O, Si, and C, supporting a very clean and
reproducible coating procedure. As expected, a 1:1:1 Cu:
I:P stoichiometry is observed for the cluster C2. In contrast
with NMR results, the C1 film appears as slightly substo-
ichiometric in phosphorus (vide infra). Measurements on
several samples gave similar atomic Si/Cu ratios confirming
homogeneous distribution of clusters in the silica matrix. This
Si/Cu ratio is low compared to the starting composition (15
instead of 170). This is probably due to the filtration of the
sol before deposition, which eliminates some silica ag-
gregates. As clearly suggested by the direct binding energy
(BE) data (Table 1), the spectra are slightly shifted toward
positive BE, indicating a slight charging effect. This charging
effect is evidenced through the asymmetric shape of the XPS
peaks as shown for the Cu 2p ones in Figure 4. In accordance
with XPS report concerning the [Cu4Cl4(PPh3)4] cluster
giving Cu 2p3/2 binding energy at 933 eV,24 a global BE
correction has been performed (see Table 1 and Experimental
Section).
The I 3d signals present only one contribution in agreement

with only one chemical environment. They are similar in
shape and position for C2 cluster and C1 film (Figures S5-
6, Supporting Information). If we consider the correction of
the charging effect describe in Table 1, the BE positions
become very close for C2 and C1 samples (619.72 and
619.63 eV, respectively) consistent with I(-I) species.33 The
P 2p signals are also similar for C2 cluster and C1 film
(Figures S5-6, Supporting Information). After correction,
their BEs have very specific positions around 131.3-131.5
eV. These typical values are consistent with one phosphorus
species corresponding to the phosphine ligand coordinated
to copper atoms. Our values are in perfect agreement with
the XPS data reported for the [Cu4Cl4(PPh3)4] cluster (131.5
eV).24 Phosphorus oxide observed by NMR was not detected
by XPS analysis (a phosphorus oxide must appear at 133
eV without the charging effect). This shows a problem on
the phosphorus measurement which is probably related to
the substoichiometry found and could be due to a change of(27) Dyason, J. C.; Healy, P. C.; Engelhardt, L. M.; Pakawatchai, C.;

Patrick, V. A.; Raston, C. L.; White, A. H. J. Chem. Soc., Dalton
Trans. 1985, 831.

(28) Churchill, M. R.; Rotella, F. J. Inorg. Chem. 1977, 16, 3267.
(29) Vega, A.; Saillard, J.-Y. Inorg. Chem. 2004, 43, 4012.
(30) Raston, C. L.; White, A. H. J. Chem. Soc., Dalton Trans. 1976, 2153.
(31) Bondi, A. J. Phys. Chem. 1964, 68, 441.

(32) Komoroski, R. A.; Magistro, A. J.; Nicholas, P. P. Inorg. Chem. 1986,
25, 3917.

(33) X-ray Photoelectron Spectroscopy Database 20, Version 3.0; National
Institute of Standards and Technology: Gaithersburg, MD (http://
srdata.nist.gov/XPS).

Figure 3. Molecular structure of C2 [Cu4I4(PPh2(CH2)2CH3)4].
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the film surface during the analysis or its transfer toward an
UHV chamber. The Si 2p BE value of 103 eV for C1 film
is typical of SiO2 sol-gel configuration with Si(IV) species.
For the C 1s signal, the maximum BE values are slightly
below 285 eV in agreement with the dominant phenyl
contribution. The important result concerns the Cu 2p3/2 lines
observed for the C1 film with the total lack of shakeup
satellite peaks characteristic of Cu(II) paramagnetic com-
pounds (Figure 4), so the Cu(II) environment can be totally
excluded. Even if the lack of Cu(0) is evident for synthesis
consideration, the Cu(I) presence is totally confirmed by the
Auger CuLMM line that is typical of a pure Cu(I) response,
as expected for the studied clusters (Figure 4c). Note that a
shoulder is observable in the Cu 2p3/2 line. This can be
attributed to another Cu(I) specie. As the iodine signal is
similar to the one observed for C2 and because no Cu(II)
species are present, we can suggest that the other Cu(I)
species are structurally close to the cubane form [Cu4I4L4].
A possible explanation is the distortion of the cubane form
in the matrix. The cubane is four coordinated by phosphine
bearing alcoxysilane groups. If all these groups are connected
to the sol-gel silica matrix in the four directions, this
generates constraints on the cluster and slightly changes the
coordination environment of the copper. This phenomenon
could explain the shoulder observed but needs to be
confirmed by further investigations.

Optical Properties. At room temperature, clusters C1 and
C2 emit intense yellow-green light under UV irradiation.
Solid-state emission and excitation spectra of powder of C2

are shown in Figure 5. At 295 K, the maximum of the
emission band is observed at 570 nm (λex ) 300 nm). The
external quantum yield of C2 at room temperature is
determined by using the standard luminophore Zn2SiO4:Mn
as reference (Supporting Information). The quantum yield
of C2 is 64% under excitation at 260 nm. By lowering the
temperature, a new emission band appears at higher energy,
and at 87 K the two emission bands are clearly observed

with maxima at 425 and 572 nm. The excitation profiles are
similar for the two emission bands.

Only qualitative luminescence study of C1 cluster was
done due to the difficulty of handling viscous oil. At room
temperature, under UV excitation (λex ) 300 nm), C1

exhibits a yellow luminescence centered at 585 nm. The
thermochromic luminescence of C1 is verified by a qualita-
tive test. When the sample is immerged into liquid nitrogen,
the luminescence becomes purple by irradiation at 312 nm.
From previous studies on [Cu4I4L4] (L ) pyridine or amine
derivatives) clusters, this thermochromism property appears
to be specific to the cubane form. Thus, this luminescence
behavior observed both for C1 and for C2 clusters also
confirms their tetranuclear molecular structure. Moreover,
the thermochromic luminescence property observed for C1

and C2 seems to be comparable to the one reported for
[Cu4I4L4] (L ) pyridine or amine derivatives) clusters. In a
first approximation, the similarity of the emission bands of
C2 suggests the same band assignment. The LE band at 572
nm could be assigned to a combination of an iodide-to-copper
charge transfer transition (XMCT) and of a copper-centered
d f s, p transition. The HE band at 425 nm could be
attributed to iodide-to-phosphine ligand charge-transfer
transition (XLCT). The presence of this band is in accordance

Figure 4. XPS spectra not corrected for charging effect of Cu 2p lines of (a) C2 and (b) C1 film and (c) Auger CuLMM spectra of C1 film.

Table 1. XPS Data for C2 and the C1 Film

C2 C1 film

BE values (eV)
BE Cu 2p3/2
corrected correction

BE Values
corrected (eV) atomic % BE values (eV)

BE Cu 2p3/2
corrected correction

BE Values
corrected (eV) atomic %

Cu 2p3/2 934.52 933 1.52 933 2.20 935.12 933 2.12 933 1.76
I 3d5/2 621.24 619.72 2.56 621.75 619.63 1.78
P 2p 133.05 131.53 2.82 133.47 131.35 1.36
Si 2p - 105.2 103.08 25.71
O 1s 532.14 530.62 30.76 534.9 532.78 27.23
C 1s 286.06 284.54 61.66 287.04 284.92 42.17

Figure 5. Solid-state excitation (dotted and dashed lines) and emission (solid
lines) spectra at 295 and 87 K of C2 powder.
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with the unsaturated character of the P(C6H5)2C3H7 (2) and
P(C6H5)2Si(OC2H5)3 (1) involved ligands.
Figure 6 shows the strong yellow emission of the hybrid

colorless silica films obtained (C1 film), under irradiation
at 312 nm at room temperature. The internal quantum yield
(Q) of C1 film under excitation at 280 nm was evaluated to
31% by using a film of YVO4:Eu nanoparticles34 as a
reference (Supporting Information). This value is quite high
and interesting for applications as light emitting devices, but
it is worth noting that the wave-guiding effect of the light
emission for the samples is not considered. As previously
shown for C1 clusters, thermochromic luminescence of films
is revealed by immersion in liquid nitrogen. Under the same
UV excitation, the yellow emission disappears and becomes
purple (Figure 6c). It is clear that the observation of similar
optical properties for clusters embedded in the sol-gel matrix
also proves that a large part of them conserves their integrity
in silica films.
The luminescence spectra of the films are recorded

between 292 and 8 K and are shown in Figure 7. At 292 K,
the emission spectrum of the C1 film displays a single
emission band centered at λmax ) 589 nm. The emission
wavelength is thus similar to the one observed for C1 before
its introduction in the sol-gel matrix (λmax ) 585 nm) and
is slightly shifted (19 nm) compared to C2 (λmax ) 570 nm).
This band could be assigned to the LE band previously
mentioned. As expected, at about 120 K, a new emission
band appeared at 425 nm. By lowering the temperature down
to 10 K, this band progressively increases in intensity with
the concomitant extinction of the band at 589 nm. At 70 K,
intensities of the two bands are similar and the addition of
blue and yellow light gives the purple emission observed

for the film in liquid nitrogen (Figure 6c). This band could
be assigned to the HE band discussed above attributed to a
halide-to-ligand charge transfer emission (XLCT). Note that
this band appears at a similar wavelength compared to the
one observed for cluster C2 (λmax ) 425 nm) which has
similar ligands. Moreover, the excitation spectra recorded
for the LE emission at 292 K and for the HE emission at 8
K are quite similar with a maximum at λmax ) 310 nm
(Figure 7a). When the sample is progressively warmed up
to room temperature the yellow emission of the LE band is
recovered, indicating a completely reversible thermochromism.

An important point is that in the 10-120 K range, all the
emission curves present an isobestic point at 520 nm. This
is characteristic of equilibrium of two thermally induced
processes, which are in our case the light emission from the
two LE and HE excited states. After integration of peaks,
an Arrhenius plot leads to activation energy of 1760 J (150
cm-1), corresponding to the difference between the energies
of the two emission states in thermal equilibrium (Figure
S4 in Supporting Information). In a comparable study, a
higher value of 1000 cm-1 has been reported for the
[Cu4Br4(dpmp)4] (dpmp ) 2-diphenylmethylpyridine) clus-
ter.35 This indicates a very high coupling of the two
emissions states in our films.

Photophysical studies of the [Cu4I4L4] (L ) pyridine or
amine derivatives) clusters demonstrate marked environment
sensitivity of the LE band with temperature but also with
the rigidity of the medium.15 This rigidochromism behavior
has been attributed to molecular distortions of the clusters.36,37

More recently, the position of the LE band has been reported
to be directly related to the Cu-Cu distances in the cluster
core [Cu4I4].38 According to theoretical works, the Cu-Cu
bonds in the excited state (LUMO) are of bonding character.
As the temperature decreases, the Cu-Cu distances become
shorter, the bonding character increases, the energy level is
lowered, and thus the LE emission band shifts to longer
wavelength (from 580 nm at 298 K to 619 nm at 77 K for
the [Cu4I4py4] cluster). In contrast, as observed for C2, no
displacement of the LE emission band of C1 film occurs by
lowering the temperature from 295 to 8 K. This suggests no
rigidochromism effect for sol-gel films and implies that
Cu-Cu interactions are not involved in the LE emission
band, which could be assigned to a pure XMCT transition
without participation of copper transitions. In fact, the
presence of the LE emission in our clusters and films could
appear surprising because it has been previously suggested
that only complexes with Cu-Cu distances less than twice
the Van der Waals radius of Cu(I) (1.4 Å) show the LE
emission.15 This is clearly not the case for C2 with Cu-Cu
bond length average of 3.15 Å. However, ab initio calcula-
tions at the Hartree-Fock level have clearly demonstrate a
relationship between the Cu-Cu distances in the cubane type
clusters and the energies and distortions (from the ground

(34) Huignard, A.; Gacoin, T.; Boilot, J.-P. Chem. Mater. 2000, 12, 1090.

(35) Ryu, C. K.; Vitale, M.; Ford, P. C. Inorg. Chem. 1993, 32, 869.
(36) Vogler, A.; Kunkely, H. J. Am. Chem. Soc. 1986, 108, 7211.
(37) Tran, D.; Bourassa, J. L.; Ford, P. C. Inorg. Chem. 1997, 36, 439.
(38) Kim, T. H.; Shin, Y. W.; Jung, J. H.; Kim, J. S.; Kim, J. Angew.

Chem., Int. Ed. 2008, 47, 685.

Figure 6. Photographs of C1 film deposited on glass substrates (1.5 × 1.5
cm2) (a) under ambient light and (b) under UV irradiation at 312 nm (UV
lamp) at room temperature and (c) under UV irradiation at 312 nm (UV
lamp) in liquid nitrogen.

Figure 7. Temperature dependence of luminescence spectra for C1 film
on glass substrate (a) emission (solid lines) at 292 and 8 K with
corresponding excitation spectra (dotted lines) and (b) emission spectra from
120 to 8 K with λex ) 300 nm.

7015Chem. Mater., Vol. 20, No. 22, 2008Sol-Gel Films Based on Copper Iodide Clusters



state) expected for the cluster centered (CC) excited states.39

The reduced Cu-Cu interaction leads to less distortion in
the CC state relative to the ground state. The lesser distortion
leads to great communication with the XLCT state. While
for the [Cu4I4(py)4] pyridine cluster (dCu-Cu ) 2.69 Å) the
lowest energy excited state is such a CC state, the lowest
excited state in the [Cu4I4(dpmp)4] cluster (dpmp ) 2-diphe-
nylmethylpyridine, dCu-Cu ) 2.90 Å) is a XLCT state. It
seems that our clusters are likely to be a borderline case
where the CC state is slightly separated from the XLCT state
to be thermally populated from it. This leads to a high
coupling between the two emissions at low temperature and
a perfectly controlled thermochromic luminescence. Never-
theless, to verify the LE band assignment for C2 and to
elucidate the influence of the Cu-Cu interaction on this band,
theoretical works and structure determinations are required
for other phosphine-based clusters in relation with their
luminescent properties. This will be the subject of further
investigations.

Conclusion

Bright luminescent films under UV excitation based on
copper-iodide clusters [Cu4I4L4] have been synthesized using
the sol-gel process. The incorporation of these new pho-
toactive entities into the silica matrix was performed from
their functionalization with phosphine ligands bearing al-
coxysilane groups able to copolymerize with the MTEOS
sol-gel precursor. By this way, the optical properties of these
clusters are successfully preserved in the matrix. NMR and
XPS analyses show that a great majority of the clusters
remain intact in the film. Only some oxidized phosphine

ligands are detected in the film whose presence is inherent
to the acidic sol-gel conditions. The use of other sol-gel
matrixes involving different catalysis conditions could
prevent this ligand oxidation.
To our knowledge, the clusters studied here are the first

example of [Cu4I4L4] clusters with L as phosphine ligand,
which displays the thermochromic luminescence behavior.
As a result of weak Cu-Cu interactions, the emissive states
of [Cu4I4L4] clusters with phosphine ligands appear as highly
coupled with a low energy barrier (2 kJ ·mol-1). This leads
to thermochromism in a large temperature range and contrasts
with the prototypical [Cu4I4py4] cluster for which the two
excited states are weakly coupled with a higher energy barrier
(about 10 kJ ·mol-1).15 Photophysical studies of these
phosphine-based clusters and especially correlation between
structural and optical data should be investigated in the near
future.
The luminescence properties of the sol-gel films display

striking change in the color emission in temperature due to
the cluster integrity. These films are the first exhibiting
thermochromic luminescence, and they could be useful as
sensors for numerous applications. They have the advantage
of the relatively low cost and easy synthesis of the Cu(I)
compounds. More generally, it appears that luminescent
transition metal clusters constitute an interesting family of
phosphors to investigate opening the way to original emissive
materials.
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Long-distance electron[1] and proton transfer (or transport)[2]

are key processes in a considerable number of natural
systems. When electron- and proton-transfer processes are
coupled and involve different sites (proton-coupled electron
transfer (PCET) reactions),[3] the occurrence of concerted
proton–electron transfer (CPET) reactions usually require
the presence of a hydrogen bond between the proton borne by
the group being oxidized and the proton acceptor (and
vice versa for a reduction process), as is appears to be the case
in emblematic systems such as photosystem II[4] and ribonu-
cleotide reductase.[5] The distances over which the proton may
travel as the result of a CPET reaction are limited to values
that usually induce the formation of a hydrogen bond in the
starting molecule.

Herein we explore the idea according to which this
distance might be substantially increased by inserting a
hydrogen-bond relay between the group being oxidized and
the distant proton acceptor as represented in Scheme 1.[6a,b]

The relay is a group bearing a hydrogen atom, able to accept a
hydrogen bond from the moiety being oxidized and, at the
same time, able to form a hydrogen bond with the proton
accepting group without going through a protonated state in
the course of the reaction.

Although other moieties could play a similar function, we
have selected an OH group for this purpose—having in mind

the role sometimes invoked of water molecules in PCET
reactions.[7] The molecule in Scheme 1 does not retain the
properties of chains of water molecules engaged in a
Grotthuss-type transport of a proton,[8] however the OH
group possesses the basic property of water molecules in that
it is both a hydrogen-bond acceptor and donor.

To test the occurrence of the reaction depicted in
Scheme 1 we chose to use the electrochemical approach for
the PCET reactions[3b,9] rather than the homogeneous
approach. The main reason for this choice of nondestructive
electrochemical techniques, such as cyclic voltammetry meas-
urements,[10] is the quick investigation of a continuous range
of driving forces that leads to the determination of a standard
rate constant (rate constant at zero driving force). The main
features of the typical cyclic voltammogram shown in
Figure 1a are a one-electron stoichiometry (determined
from the peak height) and chemical reversibility, thus
indicating that the cation radical 2a resulting from oxidation
is stable on the cyclic voltammetric time scale. Species 2a is
actually stable for longer periods of time as revealed by
preparative-scale electrolysis[6c] at 1.34 V vs. NHE. These
results confirmed the one-electron stoichiometry and the
formation of the expected radical cation 2a, which is
characterized by a typical UV/Vis spectrum for a phenoxyl
radical species[11] (l : 389, 407, 645 nm; e : 1507, 1549,
164 Lcmÿ1molÿ1). The infrared spectrum of 2a shows the
depletion of a band at 1631 cmÿ1 corresponding to a C=C
vibration of the pyridine moiety (the second pyridine C=C
band is hidden by the supporting electrolyte). The same
evolution was observed upon protonation of 2,4,6-trimethyl
pyridine (band at 1633 cmÿ1), thus confirming that the
pyridine moiety is protonated upon generation of the
phenoxyl radical species.

The reversibility and one-electron stoichiometry of the
cyclic voltammetric response shown in Figure 1a contrasts
with the irreversibility and two-electron stoichiometry
observed when neither the pyridine acceptor, nor the OH
relay are present as with 2,4,6-tri-tert-butyl phenol (1c ;
Figure 1c). For 1c,[12] the cation radical that was initially
generated rapidly and irreversibly deprotonates, and the
resulting phenoxyl radical is oxidized more easily than the
starting phenol according to an ECE mechanism,[10] thus
resulting in a two-electron stoichiometry. The same behavior
is also observed in the presence of the OH relay and in the
absence of the pyridine moiety (Figure 1d; the synthesis of 1d
is described in the Supporting Information). It also follows
that the reversible oxidation of 1a does not proceed through
the intermediacy of the cation radical bearing a positive
charge on the central OH group.

Scheme 1.
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The cyclic voltammetric response of 1a (Figure 1a)
resembles more that of the aminophenol 1b (Figure 1b) in
terms of both electron stoichiometry and chemical reversi-
bility, although the anodic-to-cathodic potential separation is
larger in the first case than in the second. As shown
earlier,[13, 14] with 1b, the proton generated upon one-electron
oxidation of the phenol moiety is transferred to the amine
group concertedly with electron transfer thanks to a six-
membered ring configuration, which is favorable to the
formation of a hydrogen bond between the phenol and
amine group in the starting molecule. In the case of 1a, proof
that the alcoholic OH group effectively serves as a hydrogen-
bond relay between the phenol and pyridine groups requires
that the molecule is not folded so as to put these two groups at
a sufficiently short distance from one another to bring about

the direct formation of a hydrogen bond between them. The
X-ray structure of 1a[6b] (Figure 2) shows that this is indeed
the case—the distance between the phenolic oxygen atom and

the nitrogen atom of pyridine is indeed 4.44 � and the O2-
O1-C1-N1 dihedral angle is 113.98. The DFT calculations[6c]

led to a very similar result in the case of 1a (Figure 2) and also
showed that substantial folding does not take place in cation
radical 2a.

Another interesting observation is that of the existence of
an H/D kinetic isotope effect (KIE) for 1a—similar to what
was observed with 1b (see Table 1)—thus pointing to the
occurrence of a concerted pathway indicating that the
equilibrium shown in Scheme 1 is not merely the expression
of a global process but should be viewed as an elementary
CPET step. This conclusion also falls in line with the
implausibility of a mechanism that would proceed through
oxidation of the zwitterionic form (1az) of 1a, owing to the
small equilibrium ratio [1az]/[1a]� 10ÿ9.[15] Also, the fact that
the reaction does not proceed via an intermediate in which
the central OH group is protonated is in agreement with the
pKa values of phenol (pKa= 27)[15a] and protonated alcohol
(pKa< 2)[15d] in acetonitrile.

Figure 1. Cyclic voltammetry measurements in acetonitrile + 0.1m

nBu4NBF4 for 1 mm of compound at a glassy carbon electrode and at

a scan rate of 0.2 Vsÿ1. In the scan of 1a, the solid and dashed

traces were recorded in the presence of 1% CH3OH or CD3OD,

respectively.

Figure 2. X-ray structure[6] of 1a and DFT calculations[10] for 1a and 2a.
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In the framework of the CPET mechanism, we derive the
standard rate constant of the reaction (kS) from the peak
separation in Figure 1a, after linearization of the Marcus–
Hush–Levich activation-driving force law, thus leading to the
Butler–Volmer rate law[6c,13b] with a transfer coefficient equal
to 0.5 [Eq. (1)]; where i : current, S : electrode surface area,
[]: concentrations at the electrode surface, E : electrode
potential, E0 : CPET standard potential. The standard rate
constant of the reaction (kS), that is, the rate constant at zero
driving force, is a measure of the intrinsic characteristics of
the reaction.

i

FS
¼ kS exp

F

2RT
Eÿ E0
ÿ �

� �

½1� ÿ exp
ÿF

RT
Eÿ E0
ÿ �

� �

½2�

� �

ð1Þ

It is immediately clear that with 1a, a scan rate of only
0.2 Vsÿ1 is sufficient for the peak separation to be controlled
by the CPET kinetics (Figure 1a). Whereas at this scan rate,
the oxidation of 1b is still controlled by diffusion (Figure 1b).
For 1b, one has to operate at a scan rate of 5 Vsÿ1 to reach the
CPET kinetic control to achieve good peak separation.[13]

Table 1 summarizes the values of kS obtained by using, as the

diffusion coefficient the value derived from the peak heights
(10ÿ5 cm2 sÿ1), together with the values of the standard
potential. Comparison between the values of kS in the
presence of 1% of CH3OH or CD3OD allowed the determi-
nation of the H/D kinetic isotope effects reported in Table 1
(upon introduction of 1% of CD3OD, the NMR proton
signals for phenol and alcohol disappeared therefore indicat-
ing complete deuteration).

With such a small KIE and assuming that electron transfer
is adiabatic,[13b] the preexponential factor (Z) in the expres-
sion of the standard rate constant (as illustrated experimen-
tally by the temperature dependent kinetics of the oxidation
of 1b[13b]) [Eq. (2)][10, 13c] can be approximated by the collision

kS ¼ Z

ffiffiffiffiffiffiffiffi

RT

4pl

r

Z

1

ÿ1

exp ÿ
RT

4l
l

RT ÿ j
� �2h i

1þ expðjÞ
dj ð2Þ

frequency, Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RT=2pM
p

(M : molar mass, M=

423 gmolÿ1), thus leading to a numerical estimation of the
experimental reorganization energy, l= 1.36 eV for 1a, to be
compared with l= 1.06 eV for 1b. The solvent reorganization
energy (l0) has been estimated to be 0.78 eV for 1b, and is
likely to be the same for 1a. It follows that the internal
reorganization energy varies from 0.28 to 0.58 eV from 1b to
1a. With a more rigid structure, in which the movements of
the heavy atoms would be minimized, the standard rate

constant for 1a should therefore be marginally slower than for
1b.

We may thus conclude that the introduction of a hydrogen
bonding group between the electron and proton exchanging
sites may offer an efficient route for proton movement over
distances as large as 4.3 Á̊, by means of the translocation of
two protons in a concerted manner with electron transfer.
This Grotthuss-type proton transfer is as efficient as the travel
a proton accomplishes over distances of the order of 2.5 � in
systems where hydrogen bonding between the phenol moiety
and the proton acceptor benefits from the formation of a six-
membered ring. The key feature of this efficient proton
movement is a “hydrogen-bond swing” as the one shown in
Scheme 1, which avoids going through a high-energy inter-
mediate in which the relay would be protonated. The ability
of the trifluoro-substituted alcohol group to serve as an
efficient relay is presumably the result of a good balance
between its hydrogen-bond-accepting and -donating capabil-
ities.

Work is in progress to further investigate the mechanism
of the hydrogen-bond relay and to uncover the parameters
that constitute a good relay.
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Ludovic Mouton,‡ Marion Giraud,*,‡ and Ced́ric Tard*,†
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ABSTRACT: Alternative materials to platinum-based catalysts are
required to produce molecular hydrogen from water at low overpotentials.
Transition-metal chalcogenide catalysts have attracted significant interest
over the past few years because of their activity toward proton reduction
and their relative abundance compared with platinum. We report the
synthesis and characterization of a new type of iron sulfide (FeS, pyrrhotite)
nanoparticles prepared via a solvothermal route. This material can achieve
electrocatalysis for molecular hydrogen evolution with no structural
decomposition or activity decrease for at least 6 days at a mild overpotential
in neutral water at room temperature.

KEYWORDS: hydrogen evolution reaction, iron sulfide nanoparticles, electrocatalysis, nanoparticle Mos̈sbauer spectroscopy,
electrode modification

1. INTRODUCTION

Environmental and economic factors require a drastic change
in energy production. Replacing fossil fuels by renewable and
sustainable energy sources is an absolute necessity in order to
face contemporary energy challenges. Molecular hydrogen is
currently at the forefront for the prospect of new energy vectors
as a way to store energy in chemical bonds. Its clean, cold
combustion in fuel cells1 or its production in water electrolyzers
will require the replacement of noble-metal catalysts such as
platinum and its alloys by earth-abundant catalysts for proton
reduction into dihydrogen if worldwide use of hydrogen is
considered.

Inspiration can be found in microorganisms and algae, where
hydrogenase metalloenzymes are capable of reversibly convert-
ing protons into molecular hydrogen.2 The active sites of these
enzymes are made of Fe/S or Fe/Ni/S core clusters, and
molecular hydrogen can be evolved at turnover frequencies as
high as 9000 moles of H2 per mole of hydrogenase per second
in water at pH 7 and 30 °C.3 Attempts to implement these
enzymes onto electrodes have been made, but major practical
drawbacks of these natural systems arise from their high oxygen
sensitivity, their bulkiness (which limits the number of catalysts
per unit of surface area), and the difficulty of producing high
amounts of material for industrial purposes.4 Despite numerous

examples and attractive properties, such as their oxygen stability
and solubility in different media, hydrogenase biomimetic
synthetic molecular electrocatalysts, in solution or grafted onto
an electrode, present poor to moderate activity toward
molecular hydrogen evolution or uptake reactions.5,6 Interest-
ingly, it has been demonstrated that cubane-type Fe4S4 clusters
can reduce protons into dihydrogen from weak organic acids,7

but the poor stability of such molecules toward water and
dioxygen is still problematic when considering these systems
as potential efficient catalysts. It is worth noting that these
molecular Fe4S4 clusters can be stabilized within porous
chalcogenide frameworks and that such systems show activity
for homogeneous electrocatalysis and photocatalysis for
dihydrogen evolution and carbon dioxide reduction.8−10

Non-precious-metal catalysts operating at low overpotentials
and high current densities under mild conditions (ca. pH 7,
1 atm, room temperature) that would compete with natural
enzymes or platinum itself are scarce. Recently, long-lived and
cheap coordination complexes that can homogenously reduce
protons to molecular hydrogen in neutral aqueous media have
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been prepared11 using molybdenum,12 cobalt,13−15 or nickel16,17

as metal centers. Furthermore, molybdenum sulfide electro-
catalysts, in the form of nanocrystals,18 amorphous electro-
polymerized films,19,20 molecular complexes,21 or amorphous
particles,22 or transition-metal alloys of nickel−molybdenum,23,24

cobalt sulfide,25 and iron26 or nickel27 phosphides have also been
reported for their high activity toward molecular hydrogen
evolution in acidic or neutral water at relatively low over-
potentials and represent a very promising way to replace noble-
metal catalysts. Therefore, we can think that stabilization of other
types of transition-metal chalcogenide moieties within nano-
system assemblies could allow the preparation of cheap and
sustainable bioinspired catalysts.

Given the ubiquity of iron sulfide minerals in nature, such as
pyrite FeS2, which is the most abundant mineral on the Earth’s
surface,28 we decided to study the electrocatalytic properties of
iron sulfide nanoparticles that can be synthesized easily and
rapidly on a gram scale from an abundant and cheap precursor.
Herein we report the preparation of air-stable pyrrhotite-
type FeS nanoparticles dispersed in Nafion films, which
exhibit molecular hydrogen evolution in neutral water at
room temperature with catalytic stability exceeding 6 days of
electrolysis.

2. RESULTS AND DISCUSSION

2.1. Synthesis and Characterization of Nanoparticles.
The synthesis of pyrrhotite FeS nanoparticles was performed
using a single precursor source, Fe2S2(CO)6,29,30 which
decomposes in octylamine under solvothermal conditions at
230 °C. This simple and rapid method allows us to prepare
nanoparticles in >80% yield. The chemical composition of the
prepared powder was evaluated by energy-dispersive X-ray
(EDX) measurements, which indicated that the powder mainly
contained Fe and S atoms and corresponded to a 1:1 Fe/S
stoichiometry (Figure S3 and Table S1 in the Supporting
Information). The organic content of the powder, estimated via
thermogravimetric analysis (TGA) measurements under air,
was found to be negligible.

As displayed in Figure 1, the X-ray diffraction (XRD)
pattern, which can be fully indexed in a pure pyrrhotite
phase (P63/mmc space group), reveals that the particles are
crystalline. Refinement of the lattice parameters led to the

values a = 3.450 Å and c = 5.770 Å, in good agreement with the
values obtained for another synthetic pyrrhotite, Fe1−0.125xS
(0 ≤ x ≤ 1), which has the NiAs structure.31 They are rather
close to those of Fe0.921S (ICSD 98-016-8077) in that study,31

but since atomic positions and occupancies were not refined
(only strain was refined through the “arbitrary texture” option
of the MAUD software), one cannot conclude at this stage that
this sample is exactly the same and possesses this refined
stoichiometry. The mean crystallite size was estimated to be
about 100 nm, but the refinement showed that the crystallites
are anisotropic (Figure S6 and Table S2 in the Supporting
Information).
The transmission electron microscopy (TEM) image

(Figure 2 left) provides a 2D representation of the nano-
particles. The black powder recovered by centrifugation
consists of hexagonally shaped nanoparticles that are
polydispersed with sizes ranging from 50 to 500 nm. The
size range values are close to the average coherent diffraction
domain obtained by XRD (using the Debye−Scherrer law),
suggesting that the particles are mostly single crystals. The
selective-area electron diffraction (SAED) pattern on a single
particle (Figure 3) shows a monocrystalline-particle diffraction
pattern with sixfold symmetry, which is expected for a
crystalline hexagonal array observed along the ⟨001⟩ zone
axis. The scanning electron microscopy (SEM) image (Figure 2
right) reveals that the particles have a faceted platelet
morphology with aspect ratios as low as 1/10 and confirms
both the size range and the polydispersity of the sample
observed by TEM. It also supports the very low content of
organic matter in the sample.
In order to improve the structural characterization of our

sample, we decided to use 57Fe Mössbauer spectrometry, which
is a sensitive tool for probing the local chemical environment,
to bring information complementary to that of XRD. Indeed,
the Mössbauer spectra recorded at both 300 and 77 K clearly
exhibit a magnetic hyperfine structure with broadened lines
(Figure 4).
The modeling procedure involved a discrete series of

magnetic sextets with isomer shift values ranging from 0.68
to 0.78 mm/s and from 0.78 to 0.88 mm/s and hyperfine field
values ranging from 23 to 31 T and from 25 to 35 T at 300 and
77 K, respectively, with rather low values of the quadrupole
shift. As it was established above by X-ray diffraction that the
sample is well-crystalline, the broadened lines should result
from local chemical disorder in the environment of the Fe
nuclei and a lack of stoichiometry. The mean values listed in
Table 1 can be compared with those in the literature;32 the
present results allow us a priori to conclude that the Fe species
belong to Fe1−xS sulfides, close to a S-deficient disordered
pyrrhotite.

2.2. Electrochemical Studies and Stability of the
Coated Electrode. Catalyst ink was prepared using a Nafion
dispersion and FeS nanoparticles to evaluate the catalytic
activity toward molecular hydrogen evolution. Vitreous carbon
rotating disk electrodes (RDEs) were coated with FeS nano-
particles dispersed in Nafion and aged for 12 h at 100 °C in an
oven. Analysis of a coated electrode film by SEM showed a
rather dense and uniform film with a thickness estimated to be
around 40 nm (Figure 5).
Under an argon atmosphere, cyclic voltammetry in 0.1 mol/L

potassium phosphate (pH 7.0) exhibited a sharp rise in current
from ca. −0.8 vs NHE (Figure 6). Some small bubbles evolved
from the surface of the coated electrode, and from gas

Figure 1. XRD pattern of FeS nanoparticles. The vertical bars represent
the theoretical pattern for pyrrhotite Fe0.921S (ICSD 98-016-8077).31
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chromatography analysis we determined that this current
enhancement was due to molecular hydrogen evolution. On
the reverse scan we observed two oxidation peaks at −0.50 and
−0.42 vs NHE, probably due to oxidation of hydride or
dihydrogen species trapped at the surface of the catalytic film,
but no further characterizations were performed. The coated

Figure 2. (left) TEM and (right) SEM images of FeS nanoparticles.

Figure 3. (a) SAED pattern along the ⟨001⟩ axis on the single particle shown in (c). (b) Theoretical pattern along this axis obtained with the Carine software.

Figure 4. Mössbauer spectra recorded at 300 and 77 K.

Table 1. Mean Values of the Hyperfine Parameters
Characteristic of the Prepared Fe1−xS Nanoparticles and
Other Iron Sulfide Materials from the Literature

formula T (K) δ (mm/s)a 2ε (mm/s)a Bhf (T)
b ref

Fe1−xS 300 0.74 0.08 23.5 this work

FeS 300 0.7−0.9 −0.3 30−32 32

Fe11S12 300 0.55 0.05 22.0−23.5 32

Fe10S11 300 0.55 0.05 25.5−26.5 32

Fe9S10 300 0.55 0.10 27.5−31.5 32

Fe7S8 300 0.77 0.08 22.9 32

0.79 0.03 26.7

0.79 0.15 31.1

0.81 −0.09 34.5

Fe1−xS 77 0.84 −0.02 30.7 this work
aUncertainty = ±0.02 mm/s. bUncertainty = ±0.5 T.
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electrodes were found to be stable for electrochemical studies
for more than 6 months with no particular storage care.
The stability of the modified electrode was investigated over

24 h by a galvanostatic experiment at a current density of J =
0.7 mA cm−2 (I = 50 μA) at pH 7.0 (Figure 7). The decrease in
overpotential observed during the first 24 h indicates a rise
in the activity of the film toward H2 generation, likely due to
some modifications of the surface state of the catalyst. The
overpotential then decreases slightly over the course of the
experiment. The small spikes detected on the curve are due to
the formation of small H2 bubbles at the surface of the coated
electrode.
To determine the dependence of the catalytic activity and

film stability on pH, small amounts of concentrated HCl or
NaOH were added under an argon atmosphere to a 0.1 mol/L
buffered solution at pH 7.0 in order to vary the pH from 6.0 to
8.0. Higher catalytic activity (in terms of current density) was
noted at lower pH. On the contrary, under basic conditions a
strong decrease in the current was observed. It is worth
mentioning that the pH changes did not produce irreversible
alterations of the film, as the initial current density was fully
recovered by restoring the initial pH 7.0 conditions (Figure 8).

Figure 5. SEM images of an FeS nanoparticle/Nafion-coated rotating disk electrode: (a) side view; (b) top view.

Figure 6. Cyclic voltammograms of FeS nanoparticles dispersed in
Nafion on a rotating disk electrode (solid line), a Nafion-coated
electrode (dashed line), and a bare electrode (dotted line).
Voltammograms were recorded in 0.1 mol/L potassium phosphate
buffer at pH 7.0 and 20 °C (scan rate 0.1 V/s; rotation rate 4000 rpm;
scan number 10).

Figure 7. Galvanostatic control experiment on an electrode function-
alized with FeS nanoparticles dispersed in Nafion (overpotential = |

applied potential + 0.059 × pH| vs NHE). The experiment was
performed on a rotating disk electrode in 0.1 mol/L potassium
phosphate buffer at pH 7.0 and 20 °C (I = 50 μA; rotation rate 4000
rpm). No quantifiable pH variation during the experiment was
observed.

Figure 8. Linear sweep voltammetry of FeS nanoparticles dispersed in
Nafion. Voltammograms were recorded on a rotating disk electrode in
0.1 mol/L potassium phosphate buffer at pH 6.0, 7.0, and 8.0 at 20 °C
(scan rate 0.01 V/s; rotation rate 4000 rpm). Initial pH 7.0 conditions
(solid black line); pH 6.0 (red line); pH 7.0 restored conditions from
pH 6.0 (dashed line); pH 8.0 (blue line); pH 7.0 restored conditions
from pH 8.0 (dotted line).
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2.3. Controlled-Potential Electrolysis. Long-duration
controlled-potential electrolysis (CPE) was performed to assess
the durability and robustness of the FeS nanoparticle-coated
electrode. Figure 9 (left) shows the amount of charge measured
at different overpotentials (η = |applied potential + 0.059 ×
pH| vs NHE) at pH 7.0 after subtraction of the contribution
from the blank solution. Low current densities were observed at
low overpotentials, and a sharp increase arises from 325 mV.
To estimate the Faradaic efficiency for the H2 production, CPE
was performed in a 1 mol/L phosphate buffer solution at pH
7.0 over 5 days at η = 350 mV (−0.763 V vs NHE) (Figure 9
right, dashed line). Quantitative (≥0.99) Faradaic yield for
molecular hydrogen evolution was confirmed by gas chromato-
graphy analysis as well as by volumetric measurements (Figure
S8 in the Supporting Information). The slight decrease in the
slope of the Q versus time curve is due to the pH increase of
0.3 unit caused by proton consumption. To further investigate
this point, the crucible coated with the FeS nanoparticles was
refilled with a fresh solution of l mol/L phosphate buffer
at pH 7.0, and an identical Q versus time profile was obtained
over a 1 day CPE under the same experimental conditions
(Figure 9 right, solid line). Again, an almost quantitative
Faradaic yield (≥0.98) was obtained for H2 generation,
outlining the remarkable stability of such nanoparticles over
the course of catalysis. No particular care in storage of the
catalyst or pre-degassing of the phosphate buffer solution was
required, demonstrating the long-term stability of this material.
After these 6 days of electrolysis, no major structural changes in
the electrolyzed catalyst were observed by XRD (Figures S5−
S7 in the Supporting Information), and the morphology of the
FeS nanoparticles was also found to be unchanged (Figure S2
in the Supporting Information).
Comparison of different solid-state catalysts is a challenging

task because of differences in the electrode preparation (coating
vs electrodeposition) and the amount of material loaded onto
the electrode. A rough comparison can be envisaged by
measuring polarization curves and extracting the current
density at an overpotential of 0 V (J0) and the slope of this
curve.25 A measure of the catalytic activity of FeS nanoparticles
was extrapolated from polarization curves in neutral water
and compared with those of related solid-state catalysts for
hydrogen evolution (Figure 10 and Table 2). A linear increase
in log J was found in the overpotential range from 350 to
450 mV. At a given current density of J = 0.18 mA cm−2 (log
J = −3.75), the overpotential of our material is shifted positively

by about 300 mV relative to Co−MoS3, the best in the
molybdenum sulfide series reported by Hu and co-workers,19

and by about 100 mV relative to the cobalt phosphate material
reported by Artero and co-workers.33

3. SUMMARY AND CONCLUSIONS

We have demonstrated that a robust and efficient catalyst for
molecular hydrogen evolution from neutral water that operates
at a mild overpotential can be made from excessively cheap

Figure 9. (left) Controlled-potential electrolysis of FeS nanoparticles in 0.1 mol/L potassium phosphate buffer at pH 7.0. (right) First (dashed line)
and second (solid line) bulk electrolyses at an overpotential of 350 mV (−0.763 V vs NHE) in 1 mol/L potassium phosphate buffer at pH 7.0,
showing a buildup of charge (Q) vs time [Q = f(t)] for the cell with and without (dotted line) FeS nanoparticles.

Figure 10. Tafel plots of electrodeposited catalysts (from literature
data) and FeS nanoparticles (from this work) in water at pH 7.0. The
Co/P/O curve (red) was recorded in a 0.5 mol/L phosphate buffer at
5 mV/s.33 The curves for MoS3 (blue), Fe−MoS3 (green), Ni−MoS3
(purple), and Co−MoS3 (orange) were recorded in a phosphate buffer
(unknown concentration) at 1 mV/s.19 The curve for FeS nano-
particles (black) was recorded in a 0.1 mol/L phosphate buffer at
1 mV/s.

Table 2. Exchange Current Densities (J0) of Different
Electrocatalysts in Water at pH 7.0a

material J0 (mA cm−2) slope (mV/dec) η range (mV) ref

Co−MoS3 1.1 × 10−2 87 87−122 19

Ni−MoS3 1.0 × 10−2 96 110−144 19

Fe−MoS3 4.8 × 10−3 95 137−176 19

Co/P/O 1.9 × 10−3 134 200−300 33

MoS3 8.9 × 10−4 86 171−203 19

FeS 6.6 × 10−4 150 350−450 this work
a Data were extracted from the polarization curves in Figure 10.
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Earth-abundant materials and exhibits a catalytic activity
exceeding 5 days.
Despite the fact that our FeS nanoparticles compare less

favorably with cobalt phosphate or molybdenum sulfide
materials at a given overpotential, the remarkable stability and
the ease of preparation clearly show that the iron sulfide
materials are very promising. If we now compare the abundance
and cheapness of the different materials, the iron sulfide nano-
particles are clearly favored over cobalt phosphate or molybdenum
sulfide materials. A rough comparison between the different metal
prices shows that in 2012, iron ore ($101/ton) was much cheaper
than nickel ($22,890/ton), molybdenum ($34,100/ton) or cobalt
($36,100/ton), with the platinum-group metals being much
more expensive ($25,000,000/ton).34 We can therefore envisage
that iron sulfide nanoparticles may offer a great advantage in term
of cost and availability compared with other transition-metal
electrocatalysts for molecular hydrogen evolution, and further
investigations on related materials are currently in progress.

4. EXPERIMENTAL SECTION

Methods and Materials. All of the chemicals were of
analytical grade and were used without further purification.
Octylamine and Nafion (0.05 thick membrane, perfluorosulfonic
acid−PTFE copolymer, 5% w/w solution) were purchased from
Alfa Aesar. Tetraethylammonium acetate and potassium phos-
phate were purchased from Sigma-Aldrich. The Fe2S2(CO)6
precursor was synthesized according to previously published
procedures.29,30

Instrumentation. XRD patterns were determined on a
PANalytical X’Pert PRO diffractometer equipped with a
multichannel X’Celerator detector using Co Kα radiation
(λ = 1.7902) in the 2θ range 10−130°. The data were collected
at room temperature with a step size of 0.033° and a time by step
equal to 100 s. The refinement of the phase was determined
using the MAUD software based on the Rietveld method
combined with Fourier analysis,35 which is well-adapted for
nano-objects. The size of the coherent diffraction domains
(crystallite size) was determined with both MAUD software and
Highscore Plus software from PANalytical. Gas chromatography
analyses for dihydrogen detection were performed on a Hewlett-
Packard 6890 series GC system with a thermal conductivity
detector fitted with a 2 m long Agilent Technology 1/8″
Carbosieve S3 60−80 mesh column and calibrated with pure
H2 gas.
Synthesis and Characterization of Nanoparticles. The

synthesis of the particles was adapted from a published pro-
cedure.36 In a typical synthesis, Fe2S2(CO)6 (143 mg, 0.42 mmol)
was dissolved in 35 mL of octylamine in a stainless steel autoclave
equipped with a Teflon container at room temperature. The dark-
red solution was placed in an oven at 230 °C and kept at this
temperature overnight (ca. 16 h). The black precipitate obtained
was centrifuged at 22 500 rpm in polypropylene copolymer
tubes and washed five times with absolute ethanol, each washing
being followed by centrifugation at 22 500 rpm. The collected
black powder (62 mg, 0.70 mmol as FeS only, 84% yield),
was dried under vacuum for 1 h at room temperature and
then characterized as it was by XRD, EDX, TEM, SEM, and
Mössbauer spectroscopy.
Microscopy. The particle size and morphology were

determined by TEM and SEM. For TEM analysis, the powders
were dispersed in chloroform, and a drop was placed on a
200 mesh carbon-coated copper grid. Images were recorded
using a JEOL JEM-100CXII microscope operating at 100 kV.

SEM images were obtained with a Zeiss Supra 40 scanning
electron microscope. The images were taken at different magnific-
ations using an In lens detector at a low voltage (5 kV) and in a
small working distance (5 mm). An SEM image of a coated
electrode was also taken. The atomic composition of the powder
was analyzed using an EDX system with a JEOL 6510 scanning
electron microscope. The analyses were performed at 15 kV and
a work distance of 10 mm. The results were analyzed using
the IRIDIUM Ultra software. The semiquantitative analyses
(Table S1 in the Supporting Information) were obtained with a
FeS2 pyrite standard.

Mössbauer Spectroscopy. The 57Fe Mössbauer spectra
were recorded at 300 and 77 K with a bath cryostat in a
transmission geometry using a 57Co/Rh source mounted on a
conventional electromagnetic drive with a triangular velocity
form. The sample consisted of a thin powdered layer containing
5 mg of Fe/cm2. The obtained Mössbauer spectra were analyzed
by least-squares fitting to Lorentzian functions. The isomer shift
values (δ) were referred to that of α-Fe at 300 K.

Electrochemistry. The potentiostat used for cyclic
voltammetry was an Autolab PGSTAT 12. The working
electrode was a 3 mm diameter glassy carbon (GC) rotating
disk electrode (Tokai) that was carefully polished and
ultrasonically rinsed in absolute ethanol before use. The counter
electrode was a platinum wire, and the reference electrode was
an aqueous SCE electrode. All of the potentials were referred to
NHE by adding +0.244 V to the potential vs SCE (a conversion
to RHE can be done by adding 0.059 × pH to the potential vs
NHE). All of the experiments were carried out under argon at
20 °C at different scan rates and a rotation rate of 4000 rpm.
From a mixture of pyrrhotite FeS nanoparticles (10 mg), Nafion
(33 μL), and isopropanol (100 μL), 2 μL was deposited on the
electrode surface, which was then dried in air and left for 12 h at
100 °C in an oven. A 0.1 mol/L phosphate buffer (pH 7.0) was
prepared and used as a supporting electrolyte and degassed
under argon. Experimental details for Figures 6, 7, 8, and 9 are
detailed in the Supporting Information.
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